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B. Abstract. 

 

Respiratory syncytial virus (RSV) is a pneumovirus that infects almost all children by the age 

of three, and causes an intense pulmonary infiltrate termed bronchiolitis. The tissue damage 

caused by this immune response significantly reduces lung function such that hospitalisation 

and mechanical ventilation may be required. There is no licensed vaccine against RSV, partly 

because the exact immunological mechanism responsible for bronchiolitis remains unclear, 

though CD4 and CD8 T cells are known to be essential. 

Interleukin-21 (IL-21) is a recently identified member of the γc chain cytokine family, 

important in autoimmunity, cancer, and chronic viral infections. Produced mainly by CD4 T 

cells, IL-21 affects the responses of several cell types but is particularly important for 

enhancing activation and survival of CD8 T cells. As such, it was hypothesised that IL-21 

could be targeted therapeutically to reduce anti-RSV CD8 T cell responses and reduce the 

incidence of bronchiolitis.  

This hypothesis was tested in three models of RSV disease. Here, it is shown that IL-21 is 

critical for control of CD4 T cell responses rather than CD8. IL-21 depletion increases T cell 

responses, including cell recruitment and cytokine production, thereby increasing disease. 

Conversely, it reduced regulatory T cell influx and antibody production. In contrast, IL-21 

over-expression ablates the anti-viral T cell response and RSV disease without affecting 

regulatory T cells. Also, early chemokine production by infected epithelial cells is inhibited 

and that DC migration is affected, possibly reducing T cell activation and influx. Antibody 
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production is also reduced, and consequently lymphocyte memory development is blocked 

resulting in no protection against viral rechallenge. 

Therefore, IL-21 plays a crucial role in the development of anti-viral pulmonary immunity 

and should be considered as part of a therapy to alleviate primary RSV disease in 

conjunction with other factors to boost anti-viral memory. [296 words]  
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RA   Rheumatoid arthritis 

RAG   Recombination activating gene 

RANTES  Regulated upon activation, normal T-cell expressed, and secreted 
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Abbreviation  Full Name 

RBC   Red blood cell 

RDA   Representation difference analysis 

rm   Recombinant murine 

RNA   Ribonucleic acid 

ROI   Reactive oxygen intermediate 

ROR   Retinoic-acid-related orphan receptor 

RPMI   Roswell park memorial institute 

RQ   Relative quantity 

RSV   Respiratory syncytial virus 

runx   Runt-related transcription factor 

rVV   Recombinant vaccinia virus 

s   Seconds 

SARS   Severe acute respiratory syndrome 

SH   Small hydrophobic 

SHM   Somatic hypermutation 

STAT   Signal transducer and activator of transcription 

T-bet   T-box 

Tc   Cytotoxic T 

TCGF   T cell growth factor 

TCR   T cell receptor  

Tfh   Follicular T helper cell 

TGF   Transforming growth factor 

Th   Helper T 

tk   Thymidine kinase 

TLR   Toll-like receptor 
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Abbreviation  Full Name 

TNF   Tumour necrosis factor 

TRAIL   TNF-related apoptosis inducing ligand 

Treg   Regulatory T cell 

TSLP   Thymic stromal lymphopoietin 

URTI   Upper respiratory tract infection 

V   Variable 

v/v   Volume-by-volume 

w/v   Weight-by-volume 

WT   Wild-type 

X-SCID   X-linked severe combined immunodeficiency 

XBP   X-box binding protein  
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F. Introduction.   

         

1. The respiratory system 

        

1.1. Lung structure 

In mammals and more complex animals, the lungs are located near the backbone on either 

side of the heart. Mammalian lungs have a soft, spongy texture and the exposed internal 

surface covered with epithelium. The internal surface is folded upon itself, like the microvilli 

of the intestine, maximising the total surface area compared to the outer surface area of the 

lung itself. Human lungs are a typical example. Though similar, the two lungs are not 

identical. For example, there are three lobes on the right and two on the left. Further, the 

left lung contains an indentation (the cardiac notch) where the heart resides. The lobes are 

individually-contained within pleural cavities, and bathed in pleural fluid. This aids 

lubrication, as well as aiding and maintaining contact with the rib cage (1). 

Air enters the lungs through the oral and nasal cavities. It flows through the pharynx, the 

larynx, the trachea (the ‘upper’ respiratory tract), and then a progressively subdividing 

system of bronchi. The bronchial tree continues branching until it reaches the level of 

terminal bronchioles, which lead to alveolar sacs. Alveolar sacs are made up of clusters of 

alveoli, the individual alveoli are tightly wrapped in blood vessels to aid gas exchange [Fig.1; 

(2)]. 
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Figure 1. Lung structure and immune induction in the lungs. Air enters the lungs via the trachea, and then a 
progressively subdividing system of bronchi. The bronchial tree continues branching until it reaches the 
level of terminal bronchioles, which lead to alveolar sacs. Alveolar sacs are made up of clusters of alveoli, 
like individual grapes within a bunch. Antigens in the airway are sampled by dendritic cells (DCs) and they 
migrate via the lymphatics to the draining lymph nodes where they present to naïve T cells (adapted from 
Holt PG et al. Nature Rev Immunol 2008 8 142). 
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1.2. Lung function 

The lungs are essential for respiration in all land-based animals, as well as a few fish species. 

Their primary function is to exchange oxygen in the atmosphere for carbon dioxide in the 

bloodstream in approximately 700 million tiny, thin-walled alveolar sacs. Deoxygenated 

blood is pumped via the heart through the pulmonary artery to the lungs, where oxygen is 

captured by haemoglobin within red blood cells. The oxygen-rich blood then returns to the 

heart via the pulmonary veins for distribution via the circulation. 

 In addition to their main function, the lungs also perform other secondary tasks such as 

maintenance of blood pH, filtration of venous blood, catabolism of peptides, and acting as a 

physical barrier to protect the heart (1). 

        

1.3. The immunological challenges for the lung 

In order to optimally perform its primary function, the largest possible surface area of the 

lungs must be exposed to the external environment in order to maximise the amount of 

oxygen in the air that can be consumed, and carbon dioxide from the blood exhaled. 

However, as a result this maximises the exposure of the lungs to pathogenic material and 

allergic irritants in the atmosphere. Despite this, the lower respiratory tract (the bronchi, 

bronchioles, and alveoli) must be maintained to allow for efficient lung function. Moreover, 

the environment of the lung is very moist and fluid, excellent growing conditions for many 

species of microbes. Consequently, most respiratory illnesses are the result of bacterial or 

viral infection of the lungs. Therefore, the lungs have to constantly defend themselves 

against microbial infection and prevent pathogens from entering the body (2). The 
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mechanisms (both immunological and non-immunological) that have developed to provide 

this defence are discussed in the following sections. 

 

2. The immune system 

The immune system is a network of biological structures comprising cells and soluble factors 

whose function is to protect the host from damage caused by foreign bodies (pathogens: 

disease-causing agents). These foreign bodies range from viruses to parasitic worms, and 

the immune system must recognise these distinctly from the host’s own tissue. Almost all 

living things possess an ‘immune system’; even bacteria contain enzymes that protect them 

against bacteriophage infection (3). 

The development of the immune system placed an evolutionary selection pressure on 

pathogens that needed to invade a host in order to replicate, grow, and survive. 

Consequently, pathogens have devised many methods of subverting the immune system 

(e.g. antigenic variation, immune factor mimicry, inhibiting immune factor expression) 

which in turn placed a selection pressure on the immune system, leading to evolution and 

expansion of the immune system. This dynamic process has shaped development of our 

immune system into its current form (4,5). 

The mammalian immune system is organised into two distinct parts, with distinct properties 

(3). These are the innate immune system and the adaptive immune system. A table of their 

characteristics and differences are shown (Table 1). 
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Table 1. A comparison of the innate and adaptive immune systems 

Innate Adaptive 

Found in nearly all organisms Found only in jawed vertebrates 

Response is non-specific Response is pathogen and antigen-specific 

Response time  hours Response time - days 

Comprises both cell and soluble factors 

No immunological memory formed Immunological memory formed 

 

Each branch of the immune system will be described in turn. 

 

2.1. The innate immune system 

The innate system is the more ancient in evolutionary terms. It is found in all plant and 

animal species, but also forms the immune systems of insects, fungi, and smaller multi-

cellular organisms. It responds to foreign agents in a non-specific manner. The response is 

rapid, but does not confer any immunological memory against the agent, meaning it will 

respond in an identical manner if the agent were encountered again (3). The major 

components of the innate immune system are described below with an emphasis on the 

respiratory tract (Fig.2.). 

 

2.2. Cells of the innate immune system 

        

2.2.1. Epithelial cells 

Epithelial cells are a crucial component of the innate immune system because they form a 

continuous barrier against pathogen entry into the circulation and deeper tissues. Within 

the lung for example, the type I and type II alveolar epithelial cells and conducting airway  
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Figure 2. Components of innate and adaptive immunity. Innate immunity is rapid but non-specific, 
responding in an identical manner with each exposure. Cellular components include macrophages, dendritic 
cells, mast cells, NK cells, and granulocytes. Soluble factors include complement proteins. Adaptive 
immunity is slower to respond but antigen-specific, forming memory after primary exposure. Therefore, 
further exposures are responded to with greater expediency by these specific cells. Cellular components 
include B cells and T cells, soluble factors include antibodies. γδ T cells and NKT cells share characteristics 
and features of both innate and adaptive immune systems. (adapted from Dranoff G et al. Nat Rev Cancer 
2004 4 11). 
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epithelial cells are of particular importance because they are the primary targets of many 

respiratory pathogens, particularly respiratory viruses. These include Coronaviruses [e.g. 

SARS; (6)], influenza A [e.g. pandemic H1N1 and avian H5N1 strains; (7,8)], influenza B, 

rhinoviruses (9), and respiratory syncytial virus (RSV) (10). As these cells are essential to 

efficient gas exchange, infection can compromise respiratory function and lead to acute 

respiratory distress syndrome [ARDS; (11)]. Terminally-differentiated type I alveolar 

epithelium accounts for only 10% of the alveolar cell population yet covers 95% of the 

surface alveolar cells cover (12). Their primary role is gas exchange. In contrast, type II 

alveolar epithelium accounts for only 5% of the surface covered. They constitutively 

produce surfactant protein that aids efficient gas and fluid exchange, anti-microbial 

peptides that maintain mucosal immunity, and act as stem cells for both themselves and 

type I alveolar epithelial cells (13). 

Upon infection, epithelial cells secrete a broad spectrum of factors to mobilise further anti-

microbial immune components. One of the first families of proteins to be produced are the 

interferons (IFNs) whose main function is to induce neighbouring epithelial cells into an anti-

viral state. Epithelial cells produce type I IFNs (e.g. IFN-α, IFN-β, IFN-κ, IFN-ε, and limitin) 

that signal through the ubiquitously expressed IFN-α/β receptor (14), and type III IFNs (e.g. 

IFN-λ1, IFN-λ2, and IFN-λ3 in humans; IL-28A and B in mice) that signal though IL-28R (15). 

The importance of the type I interferons as an anti-viral immune mechanism is evidenced by 

the susceptibility of IFN-α/βR knock-out (KO) mice to many respiratory viral infections (16). 

Binding of type I interferons to their cognate receptor induces the transcription factor ISGF3 

(IFN-stimulated gamma factor 3) to initiate transcription of several genes whose proteins 

possess potent anti-viral activity. These include 2’-5’ oligoadenylate synthetases (OAS), 
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protein kinase R (PKR), and orthomyxovirus resistant GTPases (the Mx family) (17). OAS 

degrades all cellular, including viral, RNA; PKR inhibits RNA translation; Mx1 inhibits 

transcription (18); and MxA inhibits posttranslational processing (19-21). The type III IFNs 

appear to play a lesser role than type I IFNs in anti-viral immunity , because mice deficient in 

the IL-28R are less susceptible to respiratory virus infection than IFN-α/βRKO mice (22). The 

limited expression of IL-28R compared to IFN-α/βR may in part account for this difference 

(23). However, type III IFNs have been shown to play a non-redundant role in protection 

against respiratory viral challenge where mice lacking receptors for both type I and III IFNs 

are significantly more susceptible to challenge than mice lacking just one (15). 

Upon infection, epithelial cells are the first cellular source of pro-inflammatory cytokines 

and chemokines including: TNF (24), IL-6 (25), IL-8 in humans (26), MCP-1 (26), MIP-1 (26), 

IP-10 (25), and RANTES (25), which trigger downstream inflammatory responses. . This 

cocktail of cytokines and chemokines produced during the first 48hrs after infection is 

associated with symptoms of fever, sleeplessness, and loss of appetite. One major function 

of these soluble factors is to increase expression of adhesion molecules on the endothelium 

which enables other cells of the innate immune system including macrophages, monocytes, 

dendritic cells (DCs), and neutrophils to infiltrate lung tissue (27,28). In the context of 

pathogen challenge, these infiltrating cells become activated upon exposure to the cocktail 

of inflammatory mediators and binding of pathogen-associated- molecular-patterns 

(PAMPS) to pattern recognition receptors (PRRs) expressed by the cell. However, in addition 

to aiding host defence, these factors can also damage host tissue, either directly inducing 

cell apoptosis, or indirectly by recruiting inflammatory cells, that further amplify the 

inflammatory process. Therefore there is a trade-off between an effective anti-microbial 
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response and damage limitation.  This is evident in disease conditions such as ARDS where 

the immune response and not the pathogen is responsible for much of the pathology 

(11).Finally, epithelial cells can assist in reducing viral spread by inducing ‘self-apoptosis’. 

This may occur via cell-intrinsic mechanisms [e.g. caspase-8 induction; (29)], or extrinsic 

mechanisms [e.g. expression of TNF-related apoptosis-inducing ligand (TRAIL) (30)]. 

 

2.2.2. Macrophages 

Macrophages are phagocytes and a crucial component of the host innate immune system. 

They phagocytose and process pathogens, produce inflammatory mediators, thereby 

making a significant contribution to both innate and the adaptive immunity. Macrophages 

are a heterogeneous population based on their anatomical location and function. In 

addition to the heterogeneity based on their location, macrophage heterogeneity is also 

observed within a single organ. The different tissue populations are replenished by new 

monocytes that proliferate to maintain a steady state (31). This process is dependent on 

chemokine release and migration of different monocyte subsets expressing distinct 

repertoires of chemokine receptors. It is unknown if tissue-resident macrophages are 

terminally differentiated, or if they remain functionally-flexible to respond to different 

stimuli or alter their effector function according to changes in the microenvironment (32). 

Within the lung, there are alveolar, interstitial, and intravascular macrophage subsets (33), 

and each subset performs specific functions within the lung. For example, alveolar 

macrophages reside in the alveoli ingesting irritants and microbes from the alveolar space. 

Intravascular macrophages perform the same function for the circulation. Interstitial 

macrophages reside within the interstitial spaces and help limit inflammation and fibrosis 
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(34). As mentioned above, it is unclear if these subsets are derived from a common 

monocyte pool following a specific inflammatory signal, or whether each subset has its own 

unique precursor so that distinct populations develop in response to different stimuli at 

specific locations. 

In order to effectively perform their function, alveolar macrophages have the greatest 

expression of pattern recognition receptors (PRRs) and scavenger receptors. They are long-

lived cells (35), and have been observed to possess both pro-inflammatory and anti-

inflammatory functions. Their function in vivo is regulated by their continuous exposure to 

lipids and surfactant proteins which form a significant part of their microenvironment (36). 

Surfactant proteins are known to modulate the expression of inflammatory mediators by 

alveolar macrophages by reducing TLR-agonist-mediated activation via Toll-like receptors 

(TLRs) (37). However, alveolar macrophages express a broad TLR repertoire and are 

rendered insensitive to IL-10 exposure upon TLR stimulation, inducing pro-inflammatory 

cytokine production [e.g. IL-1β, IL-6, IL-8, IL-12, IFN-γ, and TNF-α (38)]. This is particularly 

important for immune induction as interstitial macrophages increase IL-10 production at 

this time (see below) (39). Secretion of pro-inflammatory mediators drives monocyte and 

neutrophil recruitment into the airways. Macrophage activation also drives the production 

of reactive oxygen species and nitric oxide synthase (40,41), allowing for the effective killing 

of ingested microorganisms. 

Interstitial macrophages reside in the narrow space between the alveolar epithelium and 

the vascular endothelium. In contrast to alveolar macrophages, these cells are located in a 

relatively sterile environment surrounded by extracellular matrix. Despite the technical 

challenges in isolating this subset, recent studies have shown that interstitial macrophages 
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may modulate the functions of dendritic cells to prevent allergic inflammation. Further, this 

subset appears more capable than alveolar macrophages at antigen presentation (42,43). 

This population also exhibits potent anti-inflammatory properties by producing cytokines 

such as IL-10 (44). Despite this progress, there is a great need to further characterise this 

subset, in particular to determine the functional interrelationship of interstitial 

macrophages with dendritic cells and alveolar macrophages in the lung under both steady-

state and pro-inflammatory conditions. 

Intravascular macrophages are a newly-identified member of the pulmonary macrophage 

family (45). They are located in the capillaries in the alveolar septa in some species (e.g. 

cattle) but have not been identified in rodent or primate species. Studies to date have 

demonstrated that intravascular macrophages initiate lung inflammation, and have 

potential as a therapeutic target for modulating lung inflammation (46). However, more 

studies are required to fully understand the immunological role this subset plays in lung 

homeostasis and protection against disease. 

 

2.2.3. Dendritic cells (DCs) 

Lung DCs can be divided into at least five subsets depending on origin, anatomic location, 

and function. At baseline, the airways are lined with an intraepithelial, highly dendritic 

network of MHCIIintCD11chi cells that are CD11b- and, at least in mice, express langerin and 

the mucosal integrin CD103 (αEβ7) (47). This subset extends dendrites into the airway 

lumen forming tight junctions with bronchial epithelial cells (23, 26–28). It is very likely that 

airway epithelial cells are crucial in controlling the surveillance function and activation of 

this DC subset in the lungs (38). Immediately beneath the airway, the lamina propria 
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contains MHCIIhiCD11chi cells that highly express CD11b and produce inflammatory 

chemokines such as CCL17 and CCL22 (23, 29, 30). This CD11b+CD103- subset also expresses 

the SIRPα molecule, a ligand of CD47 involved in DC migration (31). A similar division into 

CD11b+ and CD11b- subsets can also be applied to interstitial DCs obtained by enzymatic 

digestion of peripheral lung tissue (25, 26). The alveolar space also contains CD11chiMHCIIhi 

DCs. At least in rodents and man, alveolar DCs highly express CD103. Both CD11b+ and 

CD11b- subsets express high levels of CD11c and are termed conventional DCs (cDCs). These 

contrast with CD11cint plasmacytoid DCs (pDCs) that express Siglec-H, and bone-marrow 

stromal antigen-1 (48). The exact anatomic location of lung pDCs is unknown although they 

have been identified lining the alveolar septa and recovered from enzymatic digests of the 

large airways (24, 32). Finally, under inflammatory conditions [e.g. viral infection, allergen 

challenge, or lipopolysaccharide (LPS) administration] there is recruitment of CD11b+ 

monocyte-derived DCs that rapidly upregulate CD11c (49). 

DCs perform a unique sentinel function in the lung in that they recognize inhaled antigens 

through expression of PRRs such as Toll-like receptors, NOD-like receptors, and C-type lectin 

receptors. These receptors recognise conserved motifs on virtually all pathogens and 

allergens (14, 15). Because DCs are able to sense the presence of danger as well as process 

antigen and migrate to the draining lymph nodes, these cells form the bridge between 

innate and adaptive immunity in the lung. Lung DCs also express a broad range of receptors 

for inflammatory mediators that are released upon tissue damage [damage-associated 

molecular patterns (DAMPs; e.g. ATP, uric acid, and high mobility group box 1)] by 

pathogens, trauma, or necrosis (50,51). DCs also express neuropeptide receptors that can 

respond to neurotransmitters released in response to efferent neural responses (52). 
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Interestingly, lung DCs have been observed to bind unmyelinated nerve endings around the 

airway mucosa, suggesting neural responses play a role in lung DC effector responses (17, 

18). 

The type of immune response elicited in the lung depends on the nature of the local tissue 

environment. It is therefore very likely that immune recognition by barrier cells such as 

epithelial cells determines the functional properties of resident DCs, thereby shaping the 

phenotype of antigen-specific immunity (38). This concept is of critical importance for the 

regulation of mucosal homeostasis and for the initiation of innate and adaptive immune 

responses in the lung. 

 

2.2.4. Neutrophils 

Neutrophils are one of the most predominant haematopoietic cells in the human body with 

~5×109/l in peripheral blood. Those isolated from peripheral blood are short-lived cells with 

a lifespan of only 5-6 days and tissue-derived neutrophils 1-2 days (53). The population has 

to be replenished daily via continuous CXCR4-dependent release of new cells form the bone 

marrow (54). Neutrophil influx into the pulmonary compartment occurs in many diseases of 

the lung, and neutrophils are believed to be fundamental in dysregulated inflammatory 

responses [e.g. COPD (55) and asthma (56)]. Neutrophil influx is principally controlled by 

binding of leukotriene-B4 and/or IL-8 (KC in mice) binding to their cognate receptors (LTB4R 

and CXCR1 or CXCR2 respectively) (57,58). However, other chemokines such as CXCL5 (ENA-

78) may also contribute. 

Upon recruitment and activation, neutrophils can carry out multiple effector functions to 

enhance pathogen clearance. Neutrophils phagocytose invading pathogens and cellular 
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debris prior to destroying phagocytosed material by enzymatic digestion [e.g. elastase (59)]. 

They also undergo a degranulation and respiratory burst process which destroys pathogenic 

(and host) material in the immediate environment. Neutrophils possess four granule types 

that contain an array of cytotoxic and immunoregulatory components: secretory, tertiary, 

specific, and azurophilic (60). More recently, neutrophils have been shown to release ‘NETs’ 

(neutrophil extracellular traps): a dense web of chromatin complexed with primary and 

secondary granule components that trap and kill bacteria and fungi (61). Neutrophils are 

also a significant early source of IP-10 that recruits NK cells and later Th1 cells (62). They 

have also been shown to process and present antigens to dendritic cells for downstream 

presentation to T cells. 

Neutrophils possess potent anti-microbial effector mechanisms that can also damage host 

tissue. Therefore, regulation of neutrophil activity is essential to limit unwanted damage. 

This occurs primarily via neutrophil apoptosis and uptake of neutrophil debris by 

inflammatory macrophages. This phagocytic process induces release of the anti-

inflammatory molecules IL-10 and TGF-β that aid response resolution (63). This not only 

allows the safe removal of a cell type capable of extensive damage to host tissue if left 

unregulated, but also ensures that the activity of other immune cells in the environment is 

kept in check.  

 

2.2.5. Eosinophils 

Eosinophils develop and mature in the bone marrow from myeloid precursors. They 

comprise 1-6% of white blood cells in man. In a healthy individual they are found in the 
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thymus medulla, lower intestinal tract, lymph nodes, and spleen (64). They circulate in the 

blood and migrate into infected/inflamed tissues in response to eotaxin-1, -2, or -3, RANTES, 

or leukotrienes (e.g. leukotriene B4) (65). Within inflamed sites they are activated by type 2 

cytokines, particularly IL-5 (66). Their cytoplasm contains granules comprising a variety of 

enzymes and chemicals including histamine, eosinophil-derived neurotoxin (EDN), 

eosinophil peroxidase (EPO), major basic protein (MBP), eosinophil cationic protein (ECP), 

plasminogen, lipase, and nucleases (67). Upon degranulation, these factors are released into 

the environment where ECP creates channels that disrupt plasma membranes of large, 

extracellular pathogens such as helminths. ECP also stimulates mast cell degranulation and 

mucus production by fibroblasts. EPO forms reactive oxygen species (e.g. superoxide and 

peroxide) and reactive nitrogen species that enter target cells, increase oxidative stress, and 

cause death by apoptosis or necrosis. However, they also toxic to host tissues and may 

cause unwanted damage. MBP induces mast cell and basophil degranulation. ECP and EDN 

are ribonucleases and have demonstrated anti-viral activity (68). Activated eosinophils also 

produce eicosanoids that recruit other immune cells, enzymes such as elastase, and a wide 

array of cytokines (69). They may also present antigen to T cells via MHCII (70). Eosinophils, 

with basophils and mast cells, are considered important in wound healing, allergy, and 

asthma pathogenesis (71), however the limited efficacy of anti-IL-5 therapy (mepoluzimab 

or reslizumab) in asthma and allergy has raised questions about their exact role in these 

conditions (72,73). 
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2.2.6. Basophils 

Basophils are the least common circulating white blood cell in man, comprising 0.01-0.3% 

(74). They share many characteristics with mast cells and eosinophils. For example, they 

possess large cytoplasmic granules that contain chemicals and enzymes designed to combat 

large extracellular parasites such as worms, and are considered important in allergy and 

asthma. They express FcεRI that enables them to bind environmental allergens (e.g. pollens) 

via IgE (75). Their granules contain histamine, heparin and chondroitin, as well as enzymes 

such as elastase and lysophospholipase. Like eosinophils, they also secrete eicosanoids as 

well as numerous cytokines (76).    

 

2.2.7. Mast cells 

Mast cells share many structural features of basophils and are derived from the same 

progenitor cell. Like eosinophils, they are important in allergy, asthma (77,78), and wound 

healing (79) but are also crucial in anaphylaxis (80), and implicated in autoimmune 

conditions such as diabetes (81) and rheumatoid arthritis (82). They also possess large 

cytoplasmic granules but these are particularly rich in histamine and heparin (83,84). They 

too bind antigens fixed by IgE via FcεRI, but unlike basophils they are resident in many 

tissues of the body rather than a circulating population of cells. They reside in close 

proximity to blood vessels and nerves as well as surfaces exposed to the environment such 

as the nasal and lung mucosa (85,86). There are considered to be two types of mast cell 

depending on the site they reside in, connective and mucosal. 
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Mast cells can be activated by binding IgE, direct physical or chemical insult (e.g. opoids or 

alcohols), or by activated complement proteins (87). They respond, as eosinophils and 

basophils do with degranulation. As well as histamine and heparin, mast cells secrete 

tryptases and serotonin (88-90). Like eosinophils and basophils they also produce 

eicosanoids and several cytokines (91,92). 

 

2.2.8. Natural Killer (NK) cells 

NK cells are innate lymphocytes comprising 10% of lymphocyte numbers in the lung (93), 

and are a critical first line of defence against respiratory pathogens (94). Their importance in 

respiratory viral infection is clear because their depletion increases morbidity and mortality 

(95). In the healthy lung they are maintained by IL-15 secretion by bronchial epithelium (96), 

but suppressed by anti-inflammatory factors secreted by alveolar macrophages [e.g. IL-10 

and TGF-β (97,98)]. Large numbers of NK cells are recruited from the circulation within 

24hrs of pathogen challenge. They can be activated by pro-inflammatory cytokines [e.g. IFN-

α, IL-2, IL-12, and IL-18 (99-101)] released by infected epithelial cells and macrophages 

(102), as well as by binding of an array of activatory and inhibitory ligands on infected cells. 

In order to bind these ligands, NK cells express a diverse spectrum of complementary 

receptors. The activatory family include the Ly49 homodimers (an ancient family of C-type 

lectin molecules), the NCR (natural cytotoxicity receptors), the CD94-NKG2D heterodimers, 

and FcγRIII (CD16) that binds IgG and mediates antibody-dependent cytotoxicity (ADCC). 

Inhibitory receptors include KIRs (killer-cell immunoglobulin-like receptors) that recognise 

both classical and non-classical MHCI molecules, the Ly49 homodimers, and the more 

recently discovered LIRs (leukocyte inhibitory receptors). The balance of these signals 
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determines whether NK cells remain dormant and inactive, or become activated and carry 

out their effector functions which include cytokine production [primarily IFN-γ (100)], and 

cytotoxicity (103). 

NK cell function is also important for induction of adaptive immunity. In particular, NK cells 

are important for the activation of cytotoxic T cell responses during responses to respiratory 

viral infection (104). 

 

2.2.9.  Natural Killer T (NKT) cells 

NKT cells are a numerically minor (~0.1% of peripheral blood T cells in man), heterogeneous 

cell population, so-called because they share features of both T cells (a αβ T cell receptor) 

and NK cells [e.g. CD56, CD16 (both in man) and CD161] (105). However, unlike conventional 

T cells their TCR is of limited diversity (mouse NKT cells express Vα14/Vβ2,7, or 8, human NKT 

cells express Vα24/Vβ11), and recognise non-peptide ligands in the context of an 

oligomorphic CD1d molecule (106,107). There are three main subsets of NKT cells: Type 1 

that have a semi-invariant TCR, and recognise glycolipid antigens in the context of CD1d; 

Type 2 that have a diverse TCR, and recognise ceramide-like molecules (e.g. sulfatide) in the 

context of CD1d; and Type 3 that have a diverse TCR, and do not recognise CD1d (108,109). 

Unlike conventional T cells, they also express a memory phenotype (i.e. CD44hi in mice, 

CD45RA-/CD45RO+ in man) and rely on the transcriptional regulator promyelocytic 

leukaemia zinc finger (PLZF) for their development (110). 

Upon activation NKT cells can release significant amounts of a wide array of cytokines (e.g. 

IFN-γ, IL-2, IL-4, IL-5, IL-10, IL-17 and IL-21) and chemokines (e.g. TNF) (111,112). They also 
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exhibit cytotoxic potential through expression of Fas/FasL and granzyme B (113). Given their 

considerable effector functions, NKT cells have been shown to play important roles in 

responses to a wide array of infectious diseases (e.g. M.tuberculosis) (114), chronic diseases 

(e.g. asthma) (115), cancers (116), and autoimmune conditions (e.g. RA, diabetes, and 

EAE)(117). The best described role of NKT cells in immunity is their recognition of glycolipid 

antigens from many species of bacteria (118-120).   

 

2.2.10. γδ T cells 

γδ T cells constitute a minor T cell population (<5%) in the secondary lymphoid organs, but 

are a major component (up to 60% of T cells) of organs which possess epithelium such as 

skin, lung, and gut (121). Interestingly, resident γδ T cells within each organ express a biased 

TCR repertoire, suggesting that they are adapted to operate within their unique 

environment. For example, those in the skin preferentially express Vγ5, those in the gut 

express Vγ7, and those in the lung express Vγ6 (122,123). How this preferential homing of γδ 

T cell subsets occurs is unknown. It is known that specific Vγ chains are not necessary to 

populate a specific tissue, as mice with specific chain depletions have tissues populated by 

alternative Vγ-chain-expressing T cells (124). However, specific γδ T cell subsets can affect 

disease as observed in cocksackie-B3-mediated myocarditis. In this model it has been found 

that Vγ1
+ T cells suppress and Vγ4

+ T cells exacerbate the development of this condition 

(125). Furthermore, in L.monocytogenes infection, Vγ1
+ T cells reduce disease resistance 

despite γδ T cells as a whole being protective (126). 
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γδ T cells play a significant role in both the development and inhibition of airway disease. In 

models of OVA-induced tolerance, a regulatory CD8+ γδ T cell population was induced that 

produced IFN-γ and inhibited IgE production (127). Moreover, these cells only tolerised 

against OVA, and not against an unrelated protein such as Derp1, suggesting that the γδ T 

cells were acting in an antigen-specific manner. Another study in non-obese diabetic (NOD) 

mice found a similar effect by γδ T cells but here they produced IL-4 and IL-10 (128). They 

observed that, after the onset of disease in NOD mice, repeated exposure to aerosolised 

human insulin reduced the incidence of insulin-dependent diabetes mellitus and inhibited 

pancreatic islet destruction. This alleviation from disease was mediated by CD8+ γδ T cells, 

and they reduced IFN-γ production by autoreactive αβ TCR+ T cells. As for the previous 

study, the antigen-specificity of these γδ T cells is unknown. There was some evidence that 

they were responding to insulin, as denatured insulin failed to induce these regulatory cells 

(129). Moreover, a single amino acid change that prevented insulin binding to its receptor 

still elicited regulatory CD8 γδ T cells. 

Other studies using OVA immunisation and challenge as a model of allergic inflammation in 

γδ-T-cell-deficient mice found that γδ T cells enhanced pulmonary CD4 and CD8 T cells, as 

well as eosinophilia (130). Addition of IL-4 to these mice reversed the observed losses, 

suggesting that γδ T cells boosted allergic inflammation by producing IL-4 directly or 

signalling its production by other cells (e.g. basophils, NKT cells, or CD4 T cells). γδ T cells 

also regulate airway hyperreactivity as responses to methacholine have demonstrated in 

OVA immunised and challenged mice. Mice depleted of γδ T cells exhibit increased 

responses to methacholine, suggesting that they play a negative regulatory role in this 

process (131). This role is independent of αβ TCR+ T cells. 
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Pulmonary γδ T cells have been shown to be critical for protection against bacterial 

challenge to the lung. Intranasal challenge of WT mice with the gram-positive bacteria 

N.asteroides results in damage to the non-ciliated tracheal-bronchial epithelium that elicits 

a strong neutrophilia (132). In the absence of γδ T cells, the damage to the lung is 

significantly increased with increased bacterial replication, and mice die within 14 days of 

infection. Similar observations have been made in mouse models of lung damage caused by 

exposure to ozone. In these models, γδ T cells clearly play a crucial regulatory role in limiting 

potentially damaging immune responses while simultaneously curtailing bacterial growth. 

IL-22 production by responding γδ T cells has been shown to protect against potentially 

damaging immune responses. In a murine model of hypersensitivity pneumonitis induced by 

repeated exposure to B.subtilis, responding Vγ6+Vδ1+ γδ T cells expressed aryl hydrocarbon 

receptor (AhR), IL-17 and IL-22. If mice were depleted of γδ T cells, AhR function was 

blocked, or IL-22 was neutralised, they failed to effectively clear the pathogen, resulting in 

recruitment of CXCR3+ CD4 T cells, excessive collagen deposition, and pulmonary fibrosis. 

However, IL-22 treatment of TCRδKO mice was sufficient to protect against αβ-T-cell-

mediated fibrosis by reducing CXCL9 secretion that recruited the pathological CD4 T cells 

(133). 

 

2.2.11. Innate Lymphoid cells (ILC) 

Innate lymphoid cells (ILCs) are a recently discovered group of innate lymphocytes, including 

NK cells, that lack the rearranged antigen-receptors expressed by conventional T and B cells 

of the adaptive immune system (134,135). This cell subset requires the transcription factor 

Id2 and the γc chain (CD132) for their development (136). However, they differ in their 
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cytokine requirements: as NK cells require IL-15, and all other ILCs require IL-7 for their 

development (137,138). As described earlier NK cells are important for destruction of 

tumours and virally-infected cells (139), however other ILCs regulate an array of 

homeostatic processes and immunological mechanisms in several organs by secreting 

different cytokines (140). 

At the most basic level ILCs are identified as being Lin-CD127+ (141). They are primarily 

located at mucosal sites and have been divided into subsets based on their cytokine profile. 

For example, one subset (termed ‘ILC1’) that expresses T-bet and produces IFN-γ (but is not 

an NK cell as it is absent in IL-7R-/- mice) has been found in the human gut (142). Another 

population (‘ILC2’) that expresses GATA3 and RORα and produces IL-5 and IL-13 has been 

identified in the human lung and intestine (143,144). A third population (‘ILC3’) that express 

RORγt and produces IL-17 and IL-22 is found in lymph nodes and mucosal sites (145). There 

are clear parallels between ILCs and helper T cell subsets with ILC1, ILC2, and ILC3 being the 

innate equivalents of Th1, Th2, and Th17/Th22 cells respectively. Moreover, they utilise 

similar transcriptional programs that control their development and function (140). The 

functional significance of this is as yet unclear but it seems logical that ILCs support 

development of the optimal immune environment for differentiation of helper T cells.  

ILC1s are derived from a RORγt+ precursor but shift to express T-bet, and rapidly produce 

IFN-γ upon IL-12/-18 exposure (142,146,147). This suggests that there is plasticity between 

ILC subsets as has been observed for conventional helper T cell subsets. ILC1s are prominent 

at mucosal sites and their development is thought to be partly-controlled by colonisation of 

these sites by microbial flora (148). They are thought to be causative in colitis as their 

depletion ameliorated disease and adoptive transfer into recipients was enough to induce 
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disease. They have also been found infiltrating the inflamed ileum of human patients 

suggesting they play a role in clinical disease. 

ILC2s are thought to develop from a distinct precursor compared to ILC1s and ILC3s. This 

precursor has been identified as Lin-CD127+Flt3+ and develops upon exposure to IL-7 and IL-

33 (149). As a result they express GATA-3 and RORα (143,144), but are not reliant on RORγt 

as ILC1s and ILC3s are (150). ILC2s are also found at mucosal sites but have been shown to 

produce type 2 cytokines upon exposure to IL-25, particularly IL-33. They can be identified 

as being Lin-CD127+Sca-1+ST2+ (151). Functionally, they have been shown to be crucial for 

expulsion of helminths in the intestine (149), as well as for induction of airway 

hyperreactivity and tissue repair after respiratory viral infection (152).  

ILC3s are very similar to lymphoid tissue inducer (LTi) cells (153). Like ILC3s, LTi cells require 

Id2, RORγt, and CD132 for their development. They also produce IL-17 and IL-22 upon 

stimulation (154). It is unclear whether ILC3s develop from LTi cells as contrasting data have 

been produced. In two studies, an NKp46-reporter system was used to track NKp46+ RORγt- 

and RORγt+ ILCs. When the progeny of RORγt+ cells were tracked, one group concluded that 

IL-22 producing RORγt+ cells were not derived from LTi cells but from a RORγt+ liver 

precursor that could independently generate all RORγt+ ILCs present in mice (LTi cells and 

ILC3s) (155). However, another report showed that LTi cells adoptively transferred into mice 

generated NKp46+RORγt+ ILCs capable of producing IL-22. Interestingly, RORγt expression 

was not stable in these cells, as a proportion lost RORγt expression and IL-22 production, 

and began to produce IFN-γ (147). This suggested that ILC1s may be derived from an LTi or 

RORγt+ population. However, ILC3s are not derived from NK cells. In one study, a population 

of CD3-NKp46+ cells was shown to consist of NK1.1+Ly49+RORγt- NK cells and NK1.1-

CD127+RORγt+ ILC3s, and only ILC3s produced IL-22 (138). Further fate-mapping 
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experiments tracked the RORγt+ cells and found that ILC3s were not precursors of NK cells. 

One of the major functions of ILC3s seems to be the maintenance of epithelial cell integrity 

and barrier function, especially in the intestine. For example, ILC3s have been shown to be a 

critical IL-22 source in C.rodentium infection (156,157), and IL-22 production is at least partly 

regulated by expression of the aryl hydrocarbon receptor (AHR) transcription factor in ILC3s 

(158-160).  

 

2.3. Soluble factors of the innate immune system 

        

2.3.1. Mucus 

Mucus is an extracellular gel matrix comprising water, heavily glycosylated proteins, and 

several antimicrobial compounds (e.g. lactoferrin, lysozyme, and lactoperoxidase) (161). It 

forms a fluid, physical barrier that protects the epithelial layer from exposure to inhaled 

pathogens, particles, and toxins, immobilising them, and carrying them out of the lungs by 

means of ciliary beating (described in the next section) and coughing. Although a deficient 

mucus barrier leaves the lungs vulnerable, excessive mucus production or impaired mucus 

clearance can also lead to many common airway diseases (e.g. asthma) (162). Therefore, 

mucus production is tightly controlled at the transcriptional level. 

Pulmonary epithelium is composed of two principal cell types: ciliated and secretory. 

Secretory cells can be further divided into different subtypes based on their microscopic 

appearance (e.g. Clara, goblet, and serous cells) (163). Secretory cells release a broad range 
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of antimicrobial molecules (e.g. defensins, lysozyme, and IgA) with mucins, and these 

become incorporated into its substructure, increasing its anti-microbial potential (164). 

There are 17 genes encoding mucins in the human genome, seven of which are secreted 

proteins and ten membrane-bound. The most important immunologically are MUC5AC and 

MUC5B. They are strongly expressed in the airways and are detected in similar quantities in 

human mucus (165). 

Mucins trap pathogens by providing a promiscuous glycoprotein array capable of interacting 

and binding with a broad spectrum of microbial proteins. This array of glycoproteins 

changes during inflammation to aid pathogen capture and clearance (166), as well as acting 

as a solid physical barrier. However, mucus is not a uniform, solid structure. It is a matrix, 

containing many pores that are sufficiently large (approximately 500 nm) to be traversed by 

small viruses with hydrophilic structural proteins and envelopes (165). 

The proportion of MUC5AC and MUC5B that comprise mucus varies with health status. 

Many pathogens increase mucin expression such as viruses (167), as well as multiple stimuli 

such as cytokines (e.g. interleukin (IL)-4, IL-9, IL-13, IL-17, and IL-25) (168). At baseline, 

MUC5AC is produced predominantly by surface goblet cells in the airways, whereas MUC5B 

is produced by secretory cells (165). In mice, only MUC5B is produced by airway secretory 

cells, and mice with MUC5B deletion die from dysregulated lung inflammation (161). This 

suggests that MUC5B is essential as a barrier in mice, mediating pathogen clearance, and 

probably plays a similar role in human airways (169). 
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2.3.2. Defensins 

Defensins are small (18-45 amino acids) cationic peptides found in numerous cell types in 

both plants and animals. They all contain a conserved 6-8 cysteine-rich motif that is crucial 

to their function as anti-microbial agents (170). They are found in cells typically involved in 

phagocytosing and killing bacteria such as neutrophils and other granulocytes, 

macrophages, epithelial cells, NK cells, and T cell subsets (171). There are three families of 

defensins: α-defensins, β-defensins, and θ-defensins. α-defensins are produced mainly by 

neutrophils, NK cells, and T cells; β-defensins are very common being produced by most 

leukocytes and epithelial cells; θ-defensins are very rare and have only been identified in 

rhesus macaques to date (171,172). They function by binding to microbial cell walls and 

forming pores that allow internal components to leak out, and studies have demonstrated 

them effective against bacteria, fungi, and viruses (173). 

         

2.3.3. Alarmins 

Alarmins are endogenous molecules that are constitutively available and released upon 

tissue damage to activate the immune system (174). Alarmin members are structurally 

diverse and evolutionarily unrelated. They include High Mobility Group Box Protein (HMG) 

B1 (175), Heat Shock Protein (HSP) 60/70 (176) , β-defensins (177), cathelicidin (178), S100B 

(179), and S100A8 (humans only) (180). They are released by necrotic cells upon infection or 

tissue injury, but epithelial cells and stimulated leukocytes also secrete them. Once 

released, they recruit and activate innate cells, including dendritic cells (DCs), and their 

ability to activate DCs makes them important in the induction of adaptive immune 
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responses (51). Excessive alarmin release can lead to exacerbations of inflammatory 

processes leading to tissue damage and induction of autoimmunity (181). In contrast, 

alarmins also play important roles in tissue homeostasis and repair when transiently-

expressed (182).  For example, cutaneous application of recombinant alarmins to the skin 

has been shown to be beneficial in wound repair by recruiting, activating, and inducing 

differentiation of mesenchymal stem cells (183). 

The potential of alarmins for initiating an inflammatory cascade is exemplified by S100A8/9. 

These two proteins are the most abundant cytosolic proteins in neutrophils and 

macrophages (184). Upon exposure of these cells to very low doses of lipopolysaccharide 

(LPS) they immediately release S100A8/9 which bind to the TLR4 receptor, and increase 

secretion of TNF and other pro-inflammatory factors (185). S100A8/9 levels are inversely 

correlated with survival from sepsis and toxic shock, and blockade of S100A8/9 is associated 

with reduced mortality (186). These proteins are also highly expressed in phagocytes within 

the joints of rheumatoid arthritis (RA) sufferers (187). In contrast, HSP60 and 70 have been 

shown to induce regulatory T cell influx and activation that may be beneficial to RA patients 

(188). 

Alarmins also have contradictory effects on the development and spread of various cancers. 

S100A8/9 has been shown to promote the proliferation and survival of tumour cells in vitro 

(189). They have also been shown to suppress T cells responses an increase immune evasion 

of malignant cells (190). These effects may be due to the ability of alarmins to promote 

migration and angiogenesis (191,192). HMGB1 is upregulated in melanoma, prostate cancer, 

breast cancer, and pancreatic cancer (193). Alarmin depletion has been shown to reduce 

cancer growth (194). Despite this some defensins have been shown to exhibit tumour-
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suppressive properties, and HMGB1 released from dying tumour cells activate DCs to 

present cancer antigens to CTL by cross-presentation (195). Therefore the effects of 

alarmins on different cancers may be context-dependent.  

        

2.3.4. Pentraxins 

Pentraxins are a class of pattern recognition receptor with a conserved 8-amino acid 

sequence (the pentraxin signature) that bind their ligands in a calcium-dependent manner 

(196). They are divided into two families: the short pentraxins [C-Reactive Protein (CRP), and 

Serum Amyloid P protein (SAP)] and long pentraxins (Pentraxin-3 plus several neuronal 

pentraxins) (197,198). CRP resembles antibody in terms of function: it promotes 

agglutination of foreign matter, activates complement via the classical pathway, and 

promotes bacterial phagocytosis (199). SAP binds lipoprotein and is thought to be important 

in the development of atherosclerosis and amyloidosis (200).         

 

2.3.5. Complement 

Complement is a family of ~25 serum proteins that are produced as inactive precursors 

mainly in the liver, but are also produced by macrophages, monocytes and epithelial cells. 

Upon infection, a subset of these proteins is activated by cleavage which leads to a massive 

amplification of activated complement proteins (201). The end product of this amplification 

is assembly of the membrane attack complex that binds microbes and ruptures their 

membranes (201). Activation of the complement system can occur in several ways that are 
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separated into pathways: the classical pathway, the alternate pathway, and the lectin 

pathway.  

The classical pathway is activated by the C1 complex. The C1 complex forms when C1q binds 

foreign bodies directly, or to IgG or IgM bound to the surface of foreign bodies. This induces 

a conformational change in C1q that activates C1r, which in turn activates C1s by cleavage. 

One molecule of C1q, and two molecules of C1r and C1s each form the C1q complex (202). 

The C1 complex then cleaves C4 (into C4a and b) and C2 (into C2a and b), and the cleavage 

products C4b and C2a form a C3-convertase (203). The lectin pathway works in an 

analogous manner but uses mannose binding lectin (MBL) and ficolins instead of the C1 

complex (204). Upon pathogen binding, MBL and ficoloins activate two MBL-associated 

serine proteases (MASP-1 and -2) that cleave C4 and C2 into C4a and C4b plus C2a and b as 

described above (205). 

The alternative pathway does not involve antibodies. In the serum the C3 molecule 

continuously breaks apart into C3a and b, but is rapidly inactivated by factors H and I 

(negative regulators of the complement system) (206). However, in the presence of a 

foreign body cleaved C3b can bind to its surface, protecting it from inactivation. Factor D 

cleaves C3b into Ba and Bb, and Bb binds more C3b to create C3bBb. C3bBb is stabilised by 

factor P and together this forms a C3-convertase that amplifies the cleavage of C3 into C3a 

and b (207). 

All three pathways form C3-convertases that cleave the C3 protein into C3a and b (208). As 

well as leading to activation of other complement proteins C3a induces degranulation of 

mast cells and increases vascular permeability to allow greater cell influx, whereas C3b 

binds to foreign material opsonising it for phagocytosis (209). The membrane attack 
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complex forms when C3b binds to C4bC2a to cleave C5 into C5a and b. C5a acts as a 

chemoattractant for macrophages and neutrophils. C5b results in cleaveage and activation 

of C6, C7, C8, and C9. The membrane attack complex is formed of activated C5b, C6, C7, C8, 

and C9 molecules (210).  

         

2.3.6. Cytokines  

Cytokines are small molecules that are essential for effective intercellular communication. 

They are produced by virtually all nucleated cells (which distinguish them from hormones) 

and act on virtually all nucleated cells. Many cytokines are expressed during both innate and 

adaptive immune responses, making categorisation difficult. However, a selection have 

been chosen that are more associated with innate than adaptive immunity and are 

described below (Fig.3). 

G-CSF (Granulocyte-colony stimulating factor): This is a cytokine produced by endothelium 

and macrophages as well as several other tissues to drive granulocyte and stem cell 

development in the bone marrow (211). The receptor is expressed by progenitor cells in the 

bone marrow and by neurons in the spinal chord and brain. It stimulates the survival of 

neutrophils and neurons, and neurogenesis (212). 

GM-CSF (Granulocyte macrophage-colony stimulating factor): This is produced by several 

cell types including macrophages, T cells, NK cells, mast cells, endothelium, and fibroblasts 

(213). It stimulates granulocyte and macrophage development in the bone marrow where 

the receptor is mainly expressed (214).  
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Figure 3. Soluble factors of the innate immune system. This table lists cytokines that are important in 
induction, maintenance, and inhibition of innate immunity. Their structure, molecular weights, sources, and 
known effects are listed. (adapted from 
http://nfs.unipv.it/nfs/minf/dispense/immunology/lectures/files/immune_network.html). 

http://nfs.unipv.it/nfs/minf/dispense/immunology/lectures/files/immune_network.html
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 IL-1α and β: IL-1α is produce by macrophages, neutrophils, epithelial cells (constitutively in 

an inactive form), and endothelial cells (215). Its major function is in the maintenance of 

barrier function at sites directly exposed to the environment. In its precursor form it also 

acts as an alarmin, acting as a danger signal. It binds to IL-1RI. IL-1α and TNF also combine to 

promote fever in the earliest stages of microbial infection to initiate immune responses 

(216). IL-1α is central to many immune processes that are beyond the scope of this section. 

IL-1β is produced by macrophages in an inactive form that is cleaved into an active form by 

caspase-1 activated as part of the inflammasome (217). It is a central mediator of immune 

responses, regulating cell activation, proliferation, differentiation and apoptosis (218). In 

man, it is known to induce the differentiation and activation of Th17 cells in conjunction 

with IL-6, IL-21, and IL-23 (219).  

IL-6: IL-6 is a member of the gp130 cytokine family that all utilise gp130 as part of its 

cytokine receptor. The IL-6-specific receptor counterpart is IL-6Rα (CD126) (220). IL-6 is 

secreted by T cells and macrophages [in response to microbial Pathogen-associated 

molecular patterns (PAMPs)] to stimulate immune responses (221). It is a critical factor in 

fever induction. IL-6 can cross the blood-brain barrier and signal the hypothalamus to 

change the set point temperature of the host via prostaglandin E2 production (222). IL-6 also 

induces acute phase responses by stimulating production of C-reactive protein (CRP) (223). 

It boosts neutrophil development in the bone marrow and inhibits regulatory T cell 

suppression. It also plays an important role in CD4 T cell differentiation into Th17 cells that 

are important in anti-bacterial responses but also the development of autoimmunity 

(224,225). 
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IL-6 has been shown to be crucial in many immune responses and diseases including 

diabetes (226), rheumatoid arthritis (224), systemic lupus erythrematosus (SLE) (227), as 

well as cancer (228). 

IL-12: IL-12 is produced by activated macrophages, dendritic cells, and B cells (229). It is a 

heterodimer, composed of p35 and p40 subunits (230). Its receptor is composed of IL-12Rβ1 

and IL-12Rβ2 chains and signals via STAT4, which are particularly important for T cell 

differentiation into Th1 cells (231). It stimulates IFN-γ and TNF (and reduces IL-4) production 

from NK cells as well as T cells (232). IL-12, in conjunction with IL-2, also enhanced 

cytotoxicity functions of stimulated NK cells and CD8 T cells. IL-12 is particularly important in 

anti-viral responses and immunity against intracellular pathogens. However, dysregulation 

of IL-12 production is associated with the development of autoimmunity (231).  

IL-15: Please see section on γc chain cytokines. 

IL-25: Also known as IL-17E, IL-25 shares significant sequence homology to IL-17 (233). It is 

produced by epithelial cells, mast cells, and Th2 cells and increases production of IL-8 and 

type 2 cytokines such as IL-4, -5, and -13 to drive eosinophilic responses (234,235). It is 

particularly important in responses in the gut and the development of chronic gut 

inflammation (236). It may also play a role in the development of asthma. 

IL-33: Like IL-1β, IL-33 is produced as a precursor that can act as an alarmin, binding its 

receptor ST2 (237,238). It is cleaved into its mature form by cathepsin G and elastase, 

however caspase-1 inactivates it upon cleavage (239). IL-33 is constitutively produced in an 

inactive form by endothelial cells and upon release induces cytokine production by ILC2s, 

Th2 cells, mast cells, basophils, eosinophils, NK cells, and NKT cells (240). As a type 2 factor it 
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is strongly associated with allergic and asthmatic responses. IL-33, in conjunction with IL-2, -

7, or TSLP upregulates expression of ST2 on the surface of Th2 cells, increasing its activity. 

Further binding induces IL-13 production, proliferation and activation of Th2 cells, even in 

the absence of antigen (240). This is analogous to the effects of IL-1 on Th17 cells and IL-18 

on Th1 cells. 

TNF: This is the signature cytokine of the tumour necrosis factor family of cytokines, whose 

main function is the induction of apoptosis (241). Monocytes are a primary source of TNF, 

but it is also produced by T cells, B cells, mast cells, epithelial cells, and endothelial cells 

(242). It is produced as a trimer that is bound to the monocyte plasma membrane by an 

anchor peptide (243). The anchor is cleaved and the trimer released where it is 

proteolytically-cleaved into active monomers (244). TNF induces cachexia (loss of body 

mass) and fever (either directly or by increasing IL-1 secretion) (245). It can also induce cell 

proliferation and reduce Th17 differentiation at sites of inflammation (246,247). 

TSLP: Thymic stromal lymphopoietin (TSLP) is mainly produced by non-haematopoietic cells 

such as epithelial cells, fibroblasts, and stromal cells (248). It serves a major function in 

activating antigen-presenting cells such as DCs, monocytes, and macrophages (249,250). In 

response, these cells release T-cell-attracting chemokines such as monocyte-derived 

chemokine (MDC) and thymus and activation related chemokine (TARC) (251). Thymic TSLP 

induces regulatory T cell differentiation via monocytes and plasmacytoid dendritic cells 

(PDCs) (252,253). TSLP is heavily implicated in asthma pathogenesis where it induces airway 

hyperreactivity and infiltration of the lung by Th2 cells (251). It is also a therapeutic target in 

arthritis because it induces TNF production by T cells which is central to pathogenesis (254). 
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2.3.7. Chemokines     

Chemokines are a family of small proteins that regulate chemotaxis (i.e. movement along a 

chemical concentration gradient) of immune cells. Some are involved in homeostatic 

processes (e.g. immune surveillance and angiogenesis) and are constitutively secreted, 

whereas others are produced during immune responses to pathogen invasion to direct 

immune cells in the peripheral circulation to the site of inflammation. They share four 

cysteine residues that are critical for their 3-dimensional structure and are divided into 

families depending upon their amino acid sequence around these cysteine residues. They 

exert their effects by binding to G-protein-linked transmembrane receptors. Chemokines 

are generally expressed earlier than most cytokines as they recruit many immune cells to 

the site of inflammation, where cytokines are produced and exert their effects (3). However, 

as for cytokines, classification into ‘innate’ and ‘adaptive’ chemokines is difficult. Therefore, 

the selection presented is a ‘best fit’ for each type of response. 

Eotaxins: There are three eotaxins: eotaxin-1 (CCL11), -2 (CCL24), and -3 (CCL26) that are all 

chemotactic for eosinophils and are therefore associated with asthmatic responses (255). 

CCL11 binds CCR2, CCR3, and CCR5 but has greatest affinity for CCR3, and consequently is 

not chemotactic for neutrophils and macrophages which do not express CCR3 (256). CCL24 

and CCL26 also utilise CCR3 and have been shown to be chemotactic for resting T cells and 

basophils as well as eosinophils (257,258). 

Fractalkine: Also known as CX3CL1 and neurotactin (in mice), it is the only known member 

of the CX3C family (259). It is also unusual in that it is a very large protein (373 amino acids) 

with a mucin stalk that allows it to bind to the surface of endothelial cells (260). Fractalkine 
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binds the receptor CX3CR1 and strongly chemoattracts T cells and monocytes, whereas the 

surface-bound form is chemoattractive for leukocytes (261). 

IL-8: IL-8 (CXCL8) is a member of the CXC cytokine family and is produced by macrophages, 

epithelial cells, and endothelial cells (262). IL-8 binds to CXCR1 and CXCR2 to mediate its 

effects (263). IL-8 is a potent chemotactic factor, particularly for neutrophils and other 

granulocytes (264). Moreover, it induces respiratory burst, degranulation, and phagocytosis 

in recruited granulocytes (265). IL-8 is considered to play a key role in various inflammatory 

disease including bronchiolitis and psoriasis (266). 

MIP-1α: Macrophage inflammatory protein-1α (CCL3) is chemotactic for granulocytes 

(neutrophils, basophils, eosinophils) (267). It is produced by macrophages, particularly after 

exposure to microbial products such as LPS. It also increases production of TNF, IL-1, and IL-

6 from these cells and therefore amplifies inflammation (268). 

MIP-2α: Macrophage inflammatory protein-2α (CXCL2) is produced by monocytes and 

macrophages and chemoattracts granulocytes and haematopoietic stem cells (269). It binds 

the CXCR2 receptor (270). 

RANTES: Regulated upon activation T cell expressed and secreted (RANTES; CCL5) is 

produced by T cells as well as other immune cells. It binds to three chemokine receptors: 

CCR1, CCR3, and CCR5, making it chemotactic for multiple cell types including T cells, 

eosinophils, and basophils, and other leukocyte populations (271-273). In combination with 

IL-2 and/or IFN-γ it increases NK cell proliferation and cytotoxicity, and acts as a natural 

suppressor of HIV (274,275).  
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2.4. The adaptive immune system 

The adaptive immune system developed with vertebrates. It responds to foreign agents in 

an antigen-specific manner, each antigen being recognised by only a small number of clonal 

cells. As such the response is much slower than innate immunity because the activated cells 

must first proliferate to sufficient number before carrying out their effector functions. 

However, these cells also form the basis of immunological memory such that upon re-

exposure they will respond much more rapidly (3). The major components of the adaptive 

immune system are described in the following sections (Fig.2.). 

 

2.5. Cells of the adaptive immune system 

 

2.5.1. B cells 

B cells (so-called because they mature in the Bursa of fabricus in birds and bone marrow in 

man) are lymphocytes and white blood cells, forming part of the humoral immune system 

(276). They can be distinguished from other lymphocyte subsets by expression of a B cell 

receptor (BCR) that is analogous to the TCR expressed on T cells (277). As for the TCR, the 

BCR is generated by recombination of germline gene segments (V, D and J) to form a clonal 

receptor with unique specificity (276). However, in contrast to the TCR which recognises a 

linear peptide epitope complexed with an MHC molecule, the BCR recognises a three 

dimensional structure comprising several discontinuous epitopes (278). B cells act as APCs, 

presenting peptides to CD4 T cells in the context of MHCII molecules. This B-cell:CD4-T-cell 

interaction between TCR and MHCII:peptide (signal 1) results in activation of both B cell and 
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CD4 T cell in conjunction with costimulatory molecule  interaction (signal 2) and cytokine 

secretion (signal 3) (276). The primary function upon B cell activation is the production of 

antibody, soluble molecules that are identical to the BCR and bind the same epitope on 

microbial pathogens (279). This may neutralise the pathogen, preventing invasion of host 

cells and tissues, or ‘tag’ the pathogen for destruction by phagocytosis or complement 

fixation (3,280). Antigens are T-cell-independent (e.g. proteoglycans that crosslink BCRs so 

do not require CD4 T cells to activate the responding B cell) or -dependent (e.g. most 

protein antigens that require CD4 T cell activation of B cells to induce and antibody 

response) (281).  

B cells develop continuously in the bone marrow in most mammals. During development, B 

cells progress through several stages of development (282). At each stage they rearrange 

their antibody gene loci to generate a unique, clonotypic BCR (283). The stages are early pro 

(Heavy (H) chain undergoes DJ rearrangement), late pro (H chain undergoes VD 

rearrangement, expresses CD19), large pre (expresses surface IgM), small pre (Light (L) chain 

undergoes VJ rearrangement), and immature (loses CD127 expression)  (3). If any step fails 

to produce a productive rearrangement then the B cell dies by clonal deletion (276). As for T 

cells, B cells are tested for autoreactivity during development. B cells that bind too strongly 

to self are either clonally deleted, become anergic, or the BCR undergoes receptor editing. 

Receptor editing is the introduction of point mutations by the recombination activation 

gene (RAG) 1 &2 proteins in the L chain that changes its affinity for antigen (284). The B cell 

is then retested, and if the BCR is less autoreactive it can continue development. However, if 

the BCR remains autoreactive then the B cell is deleted (285). Immature B cells migrate to 
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the secondary lymphoid organs (they are now called ‘transitional’ B cells) and a proportion 

express surface IgD and mature into functional B cells (282). 

Clonal B cells are continuously produced in the bone marrow and exist in multiple forms. B-1 

cells (‘natural’ B cells) are found mainly in the peritoneal and pleural cavities, and express 

polyspecific, low affinity IgM rather than IgG. These polyspecific IgM molecules often target 

bacterial polysaccharide antigens, other immunoglobulins, or self-antigens (286). B-2 cells 

are considered to be the generic ‘B cell’.  Plasma cells and memory B cells are generated 

after primary B cell activation in germinal centres (284,287). Inflammatory plasma cells 

produce large amounts of antibody at inflamed sites until antigen levels are ablated. These 

plasma cells then die by apoptosis because of a lack of survival signals derived from soluble 

factors such colony-stimulating factors (CSFs) (288). CXCR4-expressing long-lived plasma 

cells migrate in a CXCL12-dependent manner to the bone marrow where they survive for 

many years in survival niches, producing antibody (289). They are maintained by a diverse 

array of survival factors such as IL-6, XBP-1, BAFF, CXCL9, and CXCL16 (290). Memory B cells 

are also long-lived cells but patrol the periphery (rather than migrate into the bone marrow) 

patrolling for their specific antigen. These cells also undergo affinity maturation via somatic 

hypermutation (mutation of the complementary-determining regions that increase the 

antibody affinity for antigen) and clonal selection (survival of only the clones with the 

greatest affinity) (285,287). 
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2.5.2. T cells 

T cells (so-called because they are derived from the thymus) are white blood cells 

comprising part of the lymphocyte population. They can be distinguished by the presence of 

a clonotypic T-cell receptor (TCR) on their cells surface, which is generated by recombination 

of germline gene segments (V, D, and J) to recognise a unique peptide epitope in the 

context of major histocompatibility complex (MHC) molecules (291).  The TCR signals via a 

CD3 signalling complex that is attached to it and required for TCR expression. This complex 

comprises six proteins in two heterodimeric (εγ and εδ) and one homodimeric (ζζ) pair. The 

ζζ homodimer is particularly crucial as it contains six ITAM (intracellular tyrosine activation 

motifs) motifs that can be phosphorylated to allow recruitment of intracellular signalling 

proteins (e.g. Lck and ZAP-70) that initiate signalling cascades resulting in T cell activation 

(291,292). The importance of T cells for protection against pathogens is evident in AIDS 

patients, where a lack of functional CD4 T cells leads to failure of CD8 T cell and B cell 

function and overwhelming susceptibility to pathogen invasion and spread (293,294). 

There are several distinct types of T cell, some form part of the innate immune system (NKT 

cells, γδ T cells) and have already been described, and others form part of the adaptive 

immune system (CD4 T cells, CD8 T cells, regulatory T cells) and will be described in further 

detail in the following sections. 

 

2.5.2.1. Thymic development        

T cell development begins in the bone marrow but mostly occurs in the thymus (295). The 

process is initiated by Sca-1+ KIT+ haematopoietic stem cells (HSC) which is a heterogeneous 
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mixture of Flt3- and CD150-expressing cells (296). True HSCs are positive for CD150 and 

have long term self-renewal capacity, whereas multi-potent progenitors (MPPs) are CD150- 

and do not self-renew (297). Some MPPs are Flt3hi and respond to Flt3L to differentiate into 

lymphoid-primed progenitors (LPPs) (298). These are the first cells to express the 

recombinase activating genes (RAG-1 and -2) that generate the T cell receptor. These cells 

subsequently form common lymphoid progenitors (CLPs) and only LPPs and CLPs can 

migrate to the thymus to develop into T cells. Migration is dependent on expression of 

CCR7, CCR9, and PSGL1 [P-selectin glycoprotein ligand 1] (299). 

Upon thymic entry close to the cortico-medullary junction, CLPs begin differentiation and 

final commitment to the T cell lineage (300,301). They undergo four stages of differentiation 

[termed double negative (DN) 1-4] that are characterised by extensive proliferation and 

expression of CD25 and/or CD44 (302). DN2-3 differentiation occurs in the thymic cortex 

(303). These four stages precede expression of CD4 and CD8, and involve rearrangement of 

the VDJ segments to form the TCR β, γ, or δ chains at the DN3 stage (303). Productive 

rearrangement occurs in the subcapsular zone, the γδ TCR commits a cell to the γδ T cell 

lineage, whereas a β chain binds the pre-TCRα chain to commit to the αβ T cell lineage. This 

stage is called 'β selection' (304). Regardless of lineage commitment, both then differentiate 

to the DN4 stage (αβTCR-committed cells require Notch signalling for this to occur) and 

express CD4 and CD8 (the 'double-positive' stage) (305). Differentiation to DN4 requires TCR 

signalling, acting as a checkpoint that productive TCR rearrangement has occurred (303). 

Double-positive (DP) cells move to the cortex where they rearrange their TCRα genes to 

produce a TCRα chain, that replaces the pre-TCRα chain, and formation of a clonal TCR 

heterodimer (306). These cells then interact with thymic epithelial cells and those that 
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weakly recognise self-antigen:MHC molecules are selected for further development, known 

as 'positive selection'(307,308). Cells that do not respond to self-antigen:MHC complexes 

die by neglect, and those that respond too strongly die by negative selection in the medulla 

(309). Cells that successfully transit this stage become single-positive (SP; either CD4 or 

CD8), enter the medulla and exit the thymus. Exit from the thymus is regulated by a 

sphingosine-1-phosphate chemotactic gradient (310). During this time, surviving SP cells 

mature from CD69hi, CD62Llo, CD24hi to CD69lo, CD62Lhi, CD24lo and will form part of the 

naïve T cell compartment (311). 

 

2.5.2.1.1. CD4 T cells 

CD4 T cells express a TCR heterodimer, CD3 signalling complex, and CD4 surface molecules 

as well as a broad repertoire of costimulatory molecules. Upon activation they produce and 

secrete a wide array of soluble factors. The principal function of CD4 T cells is to orchestrate 

the action of other immune cell types via the release of cytokines. In particular, CD4 T cells 

are essential for optimal B cell activation, antibody production, and isotype class switching 

(312). They are also crucial for optimal activation of CD8 T cells and induction of cytotoxic 

activity (313). CD4 T cells also increase microbial activity of the innate immune system, 

particularly macrophages (314). The primary mechanism of this ‘help’ is expression of 

cognate antigen on MHCII molecules on APCs (B cells, macrophages, and DCs) (315). MHCII 

molecules primarily express exogenous antigens that are engulfed by cells into vesicles that 

then fuse with a vesicle array containing enzymes that degrade the proteins into peptides 

(316). Other vesicles containing newly-synthesised MHCII molecules complexed with CLIP 

peptide fuse with these peptide-containing vesicles allowing loading of these peptides in 
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exchange for CLIP. These new complexes are then transported to the surface for recognition 

by peptide-specific CD4 T cells (316). The peptide-binding cleft of MHC II is open-ended and 

so can bind longer peptides (12-25 amino acids) than MHCI. This peptide:MHCII complex is 

recognised using the TCR and CD4 molecules (signal 1), but CD4 T cells also require 

costimulatory molecule interaction (e.g. CD28, OX40, CD40L; signal 2) and cytokine 

signalling (signal 3) for full activation (317). As a result, the APC is activated by the CD4 T cell 

(318). These APCs can activate other cell types (e.g. DCs activate CD8 T cells) or carry out 

effector functions (e.g. B cells produce antibody). The importance of these functions is 

evident in AIDS patients who lack a functional CD4 T cell compartment. These patients 

rapidly succumb to infections they would normally repulse (293,294). 

CD4 T cells develop in thymus, and after leaving reside in the secondary lymphoid organs, 

including lymph nodes throughout the body (319). ~95% form part of the naïve T cell 

population, but a small fraction form natural ‘regulatory T cells’ (nTregs) that express the IL-

2Rα protein (CD25), the transcription factor FoxP3, and IL-10 (320). Their function is to 

inhibit activation and effector functions of other immune cells in order to prevent excessive 

tissue damage. This they achieve using soluble factors (e.g. IL-10) or contact-mediated (e.g. 

CTLA-4) mechanisms (321). What determines whether a CD4 T cell becomes an nTreg or 

naïve T cell is unclear. Upon activation, naïve CD4 T cells express CD25 and secrete IL-2 that 

acts in an autocrine (i.e. upon the cell that produced it) and paracrine (i.e. on neighbouring 

cells) fashion to induce proliferation (322). During proliferation, CD4 T cells become effector 

cells and undergo a period of ‘transcriptional reprogramming’, during which time their 

specific effector functions are determined. These have been broadly defined on the basis of 

their cytokine repertoire as Th1, Th2, Th9, Th17, Th22, Tfh and iTreg subsets (323). The 
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mechanisms that determine the effector CD4 T cell phenotype are immensely complex and 

an intensely active area of study. As such they are discussed in greater detail in a later 

section (section 2.7). 

Once a pathogen has been cleared and antigen has disappeared then ~95% of effector T 

cells die by apoptosis (324). The remainder, expressing CD127 (IL-7Rα), survive and form the 

memory T cell population that protects against re-infection with any pathogen expressing a 

cross-reactive epitope (325). This memory is dependent on IL-7 and IL-15 for its long-term 

survival (326). Memory T cells exist as ‘effector’ or ‘central forms. Effector memory patrols 

the periphery (they are CCR7 and CD62L negative), have limited proliferative capacity but 

retain their effector functions. In contrast, central memory is retained in the secondary 

lymphoid organs (they are CCR7 and CD62L positive), proliferate continuously to replenish 

the memory pool, but retain few effector functions (325). Memory T cells do not have the 

strict costimulatory requirements as naïve T cells, and as such are able to respond more 

rapidly to rechallenge. What determines which CD4 T cells become memory (and what type) 

and which die is not fully understood but may be related to their degree of differentiation 

(i.e. those that are fully, terminally-differentiated effector cells die and those that are not 

fully committed become memory) (326). 

Given the diverse anti-microbial immune responses that CD4 T cells generate via cytokine 

secretion, these cells also have the potential to generate aberrant responses such those 

observed in hypersensitivity reactions (327), and the autoimmune diseases rheumatoid 

arthritis (328), and diabetes (329).  
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2.5.2.1.2. CD8 T cells 

CD8 T cells also express a clonal TCR that recognises a specific epitope, just as for CD4 T 

cells, but CD8 T cells recognise their specific peptides (7-9 amino acids) in the context of 

MHCI molecules (330). This is due to CD8 binding to the α3 subunit of MHCI. The major 

effector function of CD8 T cells is the ability to kill infected cells (typically virally-infected, 

but any intracellular pathogen), preventing pathogen replication and spread (331,332). 

Microbial proteins that are degraded by the proteasome into peptides are bound to MHCI 

molecules within vesicles and transported to the surface where they are recognised by 

peptide-specific CD8 T cells (333). It is also possible for ‘cross-presentation’ of exogenously-

derived antigens to be degraded into peptides and loaded into MHCI molecules for 

presentation to CD8 T cells (334). As for CD4 T cells, CD8 T cells require three signals for full 

activation: TCR signalling by recognition of specific peptide in the context of MHCI, 

costimulatory molecule interaction, and cytokines (335). Upon activation, CD8 T cells 

proliferate upon exposure to IL-2 which acts as a T cell growth factor and maximises the 

number of effector CD8 T cells to locate and destroy other virally-infected cells (322). Upon 

recognition and CD8 T cell activation; there are five major mechanisms that can be used to 

lyse an infected cell: perforin, granzyme, and granulysin release, Fas/FasL interaction, and 

cytokine release. Perforin is a pore-forming protein released from granules by activated CD8 

T cells. It disrupts the osmotic balance of the infected cell, allowing entry of not only 

extracellular fluid but also granzyme proteins that activate serine proteases called caspases 

that induce programmed cell death (apoptosis) (336,337). Granulysin performs a similar 

function to perforin (338). Fas/FasL interaction also leads to apoptosis of the infected cell 

(339). Intracellular signals result in the formation and recruitment of the death-inducing 
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signalling complex (DISC) that recruits the Fas-associated death domain (FADD) (340). This 

activates the initiator caspases 8 and 10 that results in activation of effector caspases 3, 6, 

and 7, resulting in apoptosis (341). Finally, CD8 T cells are a potent source of cytokines that 

can cause cell death, particularly TNF (342). Given that CD8 T cells have potent cytotoxic 

activity that destroys host cells, they have the potential to cause extensive damage to host 

tissue which has to be strictly controlled (343). Therefore, many disease states (pathogen-

derived and autoimmune) can be attributed to dysregulated CD8 T cell responses (344-346). 

Similar to their CD4 counterparts, central and effector memory CD8 T cells form once a 

pathogen has been cleared and antigen levels decrease (347). However, the survival of this 

memory is dependent on CD4 T cells and cytokines for its survival, in particular IL-7 and IL-

15, but also IL-21 produced by CD4 T cells (348). 

 

2.6. Soluble factors of the adaptive immune system 

 

2.6.1. Cytokines 

In this section the effects of several cytokines associated with different helper T cell subsets 

(i.e. Th1, Th2, Th17, Th22, and regulatory T cells) will be described (Fig.4). 

IFN-γ: The only member of the type II IFN family, IFN-γ is a dimer considered essential for 

protective immunity against intracellular microbes and tumours (349,350). It is produced by 

NK cells and NKT cells, particularly after IL-12 secretion by macrophages which are 

classically-activated by IFN-γ (351). It is also produced by CD4 and CD8 T cells during  
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Figure 4. Soluble factors of the adaptive immune system. This table lists cytokines that are important in 
induction, maintenance, and phenotype of adaptive immunity. Their structure, molecular weights, sources, 
and known effects are listed. (adapted from 
http://nfs.unipv.it/nfs/minf/dispense/immunology/lectures/files/immune_network.html). 

http://nfs.unipv.it/nfs/minf/dispense/immunology/lectures/files/immune_network.html
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antigen-specific adaptive immune responses, and is the signature cytokine of Th1 cells (350). 

Macrophages and DCs have also been shown to produce IFN-γ upon infection, possibly as a 

method of self-activation (350). The biological effects of IFN-γ are mediated by binding a 

heterodimeric receptor comprising IFNGR1 and IFNGR2 chains, and activation of the JAK-

STAT pathway (352). These effects are pleiotropic, to describe a few in brief: it increases 

antigen presentation, lysosomal activity, and iNOS production by macrophages, increases T-

bet expression to enhance Th1 differentiation of CD4 T cells and CTL, increases IgG2a and 

IgG3 production by activated plasma cells, boosts NK cell cytotoxicity, and promotes 

adhesion molecule expression to enhance leukocyte migration (350,351). Due to its 

importance in immunoregulation dysregulated IFN-γ production is considered causative of 

multiple autoimmune conditions (e.g. diabetes, MS, RA) (353-357). 

IL-2: Please see section on γc chain cytokines. 

IL-4: Please see section on γc chain cytokines. 

IL-5: IL-5 is a homodimer produced mainly by Th2 CD4 T cells, mast cells, and eosinophils 

(358-361). Its production is regulated by several transcription factors including GATA-3 

(361). Upon binding its specific IL-5Rα, its main effects are increasing B cell activation and 

antibody production as well as eosinophil maturation, activation, and effector function 

(362,363). IL-5 has a strong association with diseases characterised by eosinophil activation 

and recruitment: helminth infection, asthma and allergy being particular examples 

(363,364). However, IL-5 blockade was ineffective at significantly reducing asthma 

pathology so it is currently unclear how crucial IL-5 is in this chronic disease (365). 

IL-9: Please see section on γc chain cytokines. 
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IL-10: IL-10 is a homodimer and class II cytokine (with IL-19, -20, -22, -24, -26, -28, and -29) 

(366). It is produced by several cell types including monocytes, T cells (particularly 

regulatory T cells), B cells, and mastocytes (367-369). IL-10 production is normally triggered 

by microbial colonisation of mucosal tissues, as part of tissue homeostasis, or by PD-1 

binding, as a negative immune signal (367,370). It binds a heterodimeric receptor consisting 

of IL-10R1 and R2 chains, the latter chain being shared by other IL-10 family members (371). 

IL-10 is considered particularly critical for inhibition of NK, CD4, and CD8 T cell responses as 

these cause significant tissue damage if uncontrolled (367,372-374). It also inhibits 

macrophage activity by reducing IL-12 secretion, as well as reducing MHC II and 

costimulatory molecule expression (369,375). Many of its anti-inflammatory effects are 

mediated by reducing NF-κB activation (369). However, it can also be stimulatory: it 

increases B cell proliferation as well as survival, and increases antibody production by such 

cells (376). IL-10 appears to be particularly important in intestinal immunoregulation as IL-

10KO mice develop chronic conditions (e.g. Crohns disease), and IL-10 administration has 

been shown to be beneficial in alleviating disease symptoms (375). 

IL-13: IL-13 is a type 2 cytokine that is produced by several cell types, but especially by Th2 

cells (377). IL-13 shares many effects with IL-4, and this is partly due to it sharing a receptor 

chain (IL-4Rα) but also utilises at least two IL-13-specific receptor chains (377). Like IL-4, IL-

13 signalling acts mainly through STAT6 activation and translocation. However, even more 

than IL-4, IL-13 is considered to be central to asthma pathogenesis (378-380). The reasons 

for this are not fully understood but may stem from the fact that while IL-4 acts mainly on 

the pro-allergic haematopoietic cells, IL-13 acts on the non-immune structural cells (e.g. 

smooth muscle and goblet cells) that are responsible for the observed clinical symptoms of 
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asthma (i.e. airway hyperreactivity and mucus plugging) (380). This is supported by the 

findings that several polymorphisms are associated with asthma development, yet deletion 

of IL-13 does not significantly affect Th2 cell differentiation or IgE production (379). Despite 

this, IL-13 is capable of inducing IgE production by activated B cells, and is important for 

chemokine release that recruits allergen-specific Th2 cells to the lung (378). It is likely 

therefore that IL-13’s effects on non-haematopoietic cells are more important for asthma 

pathogenesis. As for other type 2 cytokines, IL-13 is important in protective anti-helminth 

responses. IL-13 induces glycoprotein hypersecretion to enhance parasite detachment from 

the gut wall, and also increases gut muscle contractions to aid parasite expulsion (377,380). 

IL-17: IL-17, otherwise known as IL-17A, is the first member of the IL-17 family of cytokines 

named A-F (381). It is produced mainly by T cells and is the signature cytokine of Th17 cells 

(382). Its production is induced by several soluble factors including TGF-β, IL-6 (in mice), IL-

1β (in humans) IL-21, and IL-23 (383-387). IL-17A signals via a heterodimeric receptor 

consisting of IL-17RA and RC chains activating STAT3 (388). The IL-17 family’s main function 

is to degrade invading pathogen matrix, particularly extracellular pathogens (389). Similar to 

IFN-γ, IL-17A is important as a mediator of delayed-type reactions by inducing chemokine 

release that recruits monocytes and neutrophils to inflamed sites (390). IL-17 is a critical 

factor in several diseases including lupus, RA, psoriasis, multiple sclerosis, tumour rejection, 

allograft rejection, and asthma (391-393). Its wide-ranging effects are partly due to its ability 

to induce production of many downstream mediators including IL-6, TNF, PGD2, IL-1β, IL-8, 

and MCP-1 from several different cell types including epithelial cells, macrophages, 

fibroblasts, and endothelium. The chemokines induced by IL-17 preferentially recruit 

neutrophils and not eosinophils (390,393-395). 
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IL-22: IL-22 is a member of the IL-10 cytokine family and is produced by DCs and T cells, and 

is particularly important in immunity against bacterial pathogens (366,396). It binds a 

heterodimeric receptor comprising IL22R1 and IL-10R2, and is negatively regulated by a 

soluble IL-22 receptor called IL-22BP. It signals via Jak1 and Tyk2, then STAT3 (397). IL-22 is 

particularly important in maintaining epithelial cell barrier integrity, like IL-10 (398). It 

stimulates innate immunity against invading microbes by stimulating production of 

defensins and alarmins (399,400).  

 

2.6.2. Chemokines 

In this section I will briefly describe chemokines that are associated with recruitment of Th1, 

Th2, and Th17 cells. 

IP-10: Interferon-gamma induced protein-10 (CXCL10) is produced by monocytes, 

endothelial cells, and fibroblasts in response to IFN-γ. It binds to the CXCR3 receptor and is 

chemoattractive for T cells, NK cells, DCs, monocytes, and macrophages (27,401,402). 

MDC: Known as Macrophage-derived chemokine or CCL22, this chemokine is secreted 

primarily by macrophages, DCs, and epithelial cells and binds the CCR4 receptor (403-405). 

It is important for recruitment of Th2 cells to the site of inflammation (406,407). 

TARC: Also known as ‘Thymus and Activation Related Chemokine’ or CCL17, this chemokine 

is constitutively expressed in the thymus where it may drive thymocyte migration. However, 

it is only transiently expressed by stimulated PBMC (408). TARC is specifically chemotactic 

for T cells by binding the CCR4 receptor (409,410). 
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MIP-3α: Macrophage inflammatory protein-3 (CCL20) is produced by myeloid cells and 

lymphocytes and is strongly chemoattractive for lymphocytes expressing the CCR6 

chemokine receptor (411,412). It is induced by lipopolysaccharide (LPS), TNF, and IFN-γ and 

is important in the induction of mucosal lymphoid tissue by attracting T cells and DCs to 

epithelial cells (413-415). It is also thought to be crucial in disease pathogenesis involving 

Th17 cells or type 17 responses, particularly gut inflammation and autoimmunity (e.g. IBD & 

Crohn’s disease), as well as disease of the CNS (e.g. multiple sclerosis) (416,417).  

 

2.6.3. Antibody 

Antibodies (also known as immunoglobulins; Ig) are Y-shaped, globular plasma glycoproteins 

belonging to the immunoglobulin superfamily (418). They are produced by activated, 

antigen-specific B cells (primarily long-lived plasma cells that reside in the bone marrow) 

and their primary function is to bind and neutralise foreign antigens that may be potentially 

hazardous for host tissue (279). Antigen binding also targets it for destruction either via 

phagocytosis by macrophages or neutrophils (3), by opsonisation (280), or complement 

fixation (280). As each antibody molecule can bind two separate epitopes, it can agglutinate 

antigens enhancing their immunogenicity thereby activating effector cells (3,419). For 

example, macrophages can bind these complexes using Fc receptors to enhance 

phagocytosis, neutrophils and mast cells degranulate upon complex binding, and NK cells 

increase cytokine release and cytotoxic functions upon Fc receptor binding (3). As Fc 

receptors bind specific antibody isotypes, cellular functions can be tailored to the specific 

response required (283). 
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All antibody classes have the same basic structure, composed of two identical heavy (H) 

chains linked to two identical light (L) chain connected by disulphide bonds (420). Each chain 

is made of 70-110 amino acid immunoglobulin domains: L chains comprise one IgV and one 

IgC dmain and H chains have one IgV domain and 3-4 IgC domains (421). There are two 

types of L chain called lambda (λ) and kappa (κ) and only one is used per antibody (3). There 

are several different types of H chain from which antibodies derive some of their 

characteristics. These are known as antibody ‘isotypes’ of which there are five classes: IgA 

(found at mucosal surfaces), IgE (protects against helminths and elicits histamine release 

from mast cells), IgG (dominating isotype; can cross placenta providing protection to 

foetus), IgD (expressed on B cells prior to antigen exposure; activates basophils and mast 

cells), and IgM (neutralises foreign material prior to IgG production) (3). At the opposite end 

lies the variable (V) or Fab (antigen-binding fragment) domain, containing the ‘paratope’ 

(283). Each antibody molecule possesses two such domains and each one is formed from 

the variable regions within β strands [also known as complementarity determining regions 

(CDR) or idiotypes] of the L and H chain (422,423). Three CDRs from each chain make up the 

antibody V domain. These regions bind a unique three dimensional epitope, distinguishing 

them from T cell epitopes that are linear peptide sequences. As such, the V domain is 

hypervariable, recognising approximately 1010 distinct epitopes (278). This antibody 

repertoire is generated in a similar manner to the TCR repertoire is during T cell 

development in the thymus: three germline gene segments (V, D, and J) are selected at 

random from a large array (e.g. there are ~65 different VH genes) and joined to form the 

basic paratope structure (276,424). For L chains only V and J genes combine. This process is 

called somatic recombination and once determined a B cell cannot express a different 

paratope (known as ‘allelic exclusion’) (425). This variability is increased during somatic 
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hypermutation when B cells randomly mutate the V gene after activation (285,287). 

Antibody genes encoding the Fc (crystallisable fragment) portion of the heavy chain 

(isotype) can also be changed in a process termed ‘class switching’ that occurs via class 

switch recombination at switch regions upstream of each C region gene (426,427). These 

changes alter the effector functions of the molecule. 

 

2.7. T cell differentiation 

The cytokine profiles of CD4 T cells distinguish their functions and have been extensively 

used as lineage-specific markers [Fig.5; (428)]. Each profile is discussed below. 

 

2.7.1. Th1 cells 

Th1 cells mediate delayed type hypersensitivity responses, and are crucial for protective 

immunity against infection with pathogens that have intracellular life stages such as 

bacteria, viruses, and certain parasites. The signature cytokine of Th1 cells is IFN-but they  

also produce IL-2 and lymphotoxin (LT). IFN- promotes Th1 development by inducing IL-12 

production from activated macrophages and IL-12 receptor expression on antigen-activated 

CD4 T cells, while directly inhibiting the growth of Th2 cells. 

The transcription factor that controls Th1 differentiation was first identified using a yeast 

expression cloning strategy in combination with RDA (representational difference analysis). 

This resulted in the isolation of a novel protein belonging to the T box family of transcription 

factors called T-bet (T-box expressed in T cells) since it was thought to be only expressed in 

thymocytes and Th1 cells. However, it is now known to also be expressed in innate lymphoid  
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Figure 5. CD4 T cell subsets. Upon recognition of cognate antigen presented by DCs, CD4 T cells begin to 
proliferate. During this time they begin to differentiate into distinct lineages dependent upon the T-cell-
receptor affinity for the antigen:MHCII complex, costimulatory molecule interactions, and cytokines in the 
microenvironment as shown. Lineage commitment is controlled by expression of unique transcription 
factors which promotes production of a distinct subset of effector molecules. These molecules, typically 
cytokines, orchestrate immune responses against infectious pathogens and inert antigens (taken from Swain 
SL et al. Nature Rev Immunol 2012 12 136). 
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cells (429), NK cells (430), NKT cells (431), γδ T cells (432), CD8 T cells (433), and DCs (434). 

T-bet promotes transcription of the ifng gene (435) and CXCR3 expression (436) in 

retrovirally-transduced primary T cells, and redirects Th2 cells into the Th1 pathway.  

Although beneficial during infection, strong Th1 responses must be regulated to prevent 

tissue destruction and immunopathology. Failure to do this results in many autoimmune 

diseases to self-antigens. For example, studies suggest that Th1 cells play a major role in 

diabetes(437). Blockade of IFN- (438) or absence of STAT4 (439) prevent disease, whereas 

IL-12 accelerates it (440). ‘Self-regulation’ through interleukin-10 (IL-10) produced by 

activated Th1 cells is required for limiting immunopathology, and Foxp3+ Treg cells are also 

essential for effective control of Th1 responses in vivo. 

 

2.7.2. Th2 cells           

Th2 cells develop following infection with extracellular pathogens such as helminth 

parasites. Th2 cells produce high levels of IL-4 (their signature cytokine), IL-5, and IL-13. 

IL-4 acts in a positive-feedback loop by inducing expression of IL-4 receptors on naive CD4 T 

cells to promote further Th2 differentiation. In addition, IL-4 is a negative Th1 differentiation 

by decreasing IL-12 receptor expression on naïve T cells, committing them to the Th2 

lineage. IL-4 signals via STAT6 and induces the key transcription factors GATA-binding 

protein 3 (GATA-3), c-maf, and NFATc (441). However, the mechanisms by which Th2 

responses are initiated have not been explored extensively. One mouse study suggested 

that basophils are important in promoting allergen-induced Th2 cell differentiation (442). 

These cells also have a primary role in IgE-mediated chronic allergic inflammation (443). In 

humans, the basophil has long been associated with allergic inflammation in chronic       
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disease, and both human and mouse basophils are able to produce large amounts of Th2 

cell-promoting cytokines, like IL-4 and TSLP (442). However, it is unclear how often basophils 

are the early IL-4 source as others may also be utilised (e.g. innate lymphoid cells, γδ T cells 

and NKT cells). 

Overzealous Th2 responses can also cause inappropriate responses and disease to 

otherwise innocuous antigens, resulting in allergies and asthma. Such over-active responses 

are an increasing problem in the western world. 

 

2.7.3. Th17 cells 

The signature cytokines produced by Th17 cells are IL-17A and IL-17F. They differentiate 

from naïve CD4 T cells in response to TGF- and IL-6 (383-385). STAT3 is fundamental for 

Th17 development, being involved in IL-6 signalling to induction of IL-21, an autocrine factor 

implicated in the progression of Th17 development. IL-21, also acting through STAT3, 

promotes expression of the transcription factors RORt and ROR, which are essential for 

Th17 differentiation. IL-23R (444) is induced and maintained by IL-21in developing Th17 

cells, and pairs with IL-12R1 chain to bind IL-23 (a heterodimer of IL-23p19 and IL-12p40; 

(445)). Although IL-23 is dispensable for Th17 differentiation (383,384), its requirement for 

Th17-mediated immune responses or autoimmunity is well established, by enhancing and 

maintaining Th17 differentiation (446). Indeed, Th17 cells differentiated by TGF-β and IL-6 in 

the absence of IL-23 have been shown to protect in a model of EAE (447), consistent with an 

essential role for IL-23 in pathogenic Th17 responses. Nevertheless, the precise details 

regarding IL-23 action on Th17 differentiation remain unclear (448). 
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Th17 cells are considered an important lineage for study because they play a central role in 

many autoimmune diseases such as EAE (449), rheumatoid arthritis (416,450), and 

myocarditis (451). Mice with T cells that are unable to respond to TGF-β are Th17-cell-

deficient, yet they succumb to autoimmunity with massive infiltration of lung, liver, 

stomach, pancreatic islets, and thyroid glands (452). 

There is considerable plasticity exhibited by Th17 cells, dictated by the local cytokine 

environment during on-going inflammatory responses. For example, using an adoptive 

transfer system, Bending et al showed that Th17 cells, even when 99% pure increased their 

expression of the transcription factor T-bet and IFN-γ upon exposure to IL-12 in vitro. 

Further, they upregulated T-bet expression and secreted IFN-γ in NOD mice, causing 

diabetes (453). Similar conclusions were made in IL-17 reporter mice (454). Thus, these 

studies demonstrated that the conversion of Th17 cells into Th1 cells determined disease 

severity, not the presence of Th17 cells themselves. 

 

2.7.4. Th9 cells 

The Th9 subset is the one of the most recently identified, being discovered independently 

by two research groups (455,456).  One used gene microarray analysis of highly polarized 

effector CD4 T cell subsets and found that IL-9 production was associated with Th17 

differentiation. Further studies of the conditions in which IL-9 production was promoted 

demonstrated that IL-9-producing CD4 T cells were a distinct subset from those previously 

described. They called this new subset Th9 cells (455).  

The second demonstrated that IL-4 inhibited TGFβ-induced Foxp3 expression, suppressing 

the generation of regulatory CD4 T cells. However, the two cytokines together induced IL-



85 
 

9+/IL-10+ CD4 T cells that, unlike regulatory CD4 T cells, had no suppressive capacity despite 

the fact they produced IL-10. In fact, these Th9 cells induced the development of colitis, as 

well as peripheral neuritis when adoptively-transferred with CD45RBhi CD4+ effector T cells 

into recombination activating gene 1-(RAG-1)-deficient mice (456). Another study has 

identified PU.1 as a putative transcription factor required for Th9 cell differentiation (457). 

There is little known about the role of this subset in disease, though recent studies suggest 

they are a clinically relevant marker of chronic asthma and allergic inflammation. Further 

studies are required to investigate these cells in more detail. 

 

2.7.5. Th22 cells  

Th22 cells are the most recently identified lineage in humans (but not rodents) that naïve T 

cells may become upon activation, having recently become distinct from Th17 cells. The 

signature cytokine produced by Th22 cells is IL-22 (which can also be produced by Th17 

cells), but this lineage also produces TNF, IL-13 and IL-26. Factors that drive differentiation 

of T cells into the Th22 lineage are IL-6 and TNF, but may also require interaction with pDCs 

(458). Upon activation in these conditions, naïve T cells upregulate expression of the 

transcription factor aryl hydrocarbon receptor (AHR) that drives expression of genes 

associated with Th22 cells such as il22 (459,460) , but also the chemokine receptors ccr4, 

ccr6, and ccr10 (458). In contrast, IL-22 production by Th17 cells is not regulated by AHR, 

highlighting a critical distinction between the two lineages (461). 

IL-22 (originally called IL-10-related T-cell-derived inducible factor; IL-TIF) is a member of the 

IL-10 family of cytokines, sharing 22% amino acid sequence homology in mice and 25% in 

humans. The gene is on chromosome 12q15 in humans and 10 in mice, both are in close 

proximity to the ifng gene. Curiously, there are two il22 genes in mice, il22a and il22b. The 
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major difference between them is a 658 nucleotide deletion in il22b that encodes part of 

the promoter and the first intron. Therefore, it is possible that this gene is non-functional 

(462). IL-22 mediates its effects via a heterodimeric type II cytokine receptor, comprising IL-

22R1 and IL-10R2 chains (463). IL-10R2 is expressed at variable levels on virtually 

all somatic cells except the brain (464),  but IL-22R1 exhibits restricted expression  on 

epithelial cells of the skin, pancreas, liver, kidney, and gut but not on T cells, B cells, 

monocytes, or DCs (465). Expression in the lung is extremely low. There is also a soluble IL-

22R1 protein called IL-22BP, that likely binds soluble IL-22 thereby reducing its bioactivity in 

vivo (463). Binding of IL-22 to its receptor initiates a signalling cascade that begins with 

phosphorylation of JAK1 and Tyk2 followed by phosphorylation and homodimerisation of 

STAT1, 3, and 5. This has been demonstrated in several different cell lines in vitro (397). 

The major functions of IL-22 are induction of innate immunity and tissue repair. Its role in 

repairing tissue has been confirmed in several tissues including skin, liver, kidney, gut, and 

lung. Its role as a pathogenic factor is less well-defined as this appears to depend on disease 

location and the other immune factors in the environment (466). 

The role of IL-22 has been tested in several different diseases, but the best studied is 

psoriasis. There is a very strong correlation between serum IL-22 levels and severity of 

psoriasis (467). Keratinocytes are a central immune cell in this disease and IL-22 is known to 

boost their immune activity by increasing anti-microbial peptide and MMP-1 production 

(467). Moreover, IL-22 increases STAT3 expression by keratinocytes, thereby increasing its 

own signalling potential. TNF blockade is highly efficacious in psoriasis and this appears to 

be linked to its ability to increases keratinocyte responsiveness to IL-22 by increasing IL-

22R1 expression (468). Therefore, as IL-22 blockade does not reduce immunity to bacterial 

infections as TNF blockade has been known to, and IL-22R1 is not expressed by many 
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immune cells, so IL-22 appears to be a very promising candidate for therapeutic intervention 

in this disease. The role of IL-22 in other diseases is less well-studied. In Crohn’s disease for 

example, blood IL-22 levels are significantly increased. However, other studies have 

demonstrated a protective role for this cytokine as it induced intestinal epithelial cells and 

subepithelial myofibroblasts to produce a range of anti-inflammatory, and regenerative 

proteins (469). Bronchoalveolar lavage fluid (BALF) levels are significantly reduced in 

patients suffering from acute respiratory distress syndrome (ARDS), suggesting a protective 

role in this disease (470). In contrast, IL-22 seems to play a pathogenic role in rheumatoid 

arthritis (RA). IL-22 is produced mainly by T cells, NK cells, macrophages, and synovial 

fibroblasts in RA, and increases proliferation of synovial fibroblasts as well as their 

chemokine production (467). In RA, the majority of IL-22R1-positive cells are synovial 

fibroblasts, highlighting the importance of IL-22 in this autoimmune condition. Furthermore, 

IL-22KO mice are less susceptible to collagen-induced arthritis (CIA) induction and 

progression with significantly less cytokine and chemokine production in affected tissues 

and joints (471). Therefore, IL-22 seems to be a crucial target for therapy in arthritic disease 

(472). 

        

2.7.6. Induced Regulatory T (Treg) cells 

Induced Tregs (iTregs) are produced when naïve T cells upregulate FoxP3 upon activation. 

This distinguishes them from naturally-occurring Tregs (nTregs) that express FoxP3 as 

thymocytes undergoing T cell development (473,474). Despite their similar 

immunoregulatory effector functions iTregs and nTregs are functionally non-redundant, 

though their relative importance in different disease states is not well understood 

(475,476). For example, nTregs originate from the thymus and are selected for recognition 
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of self-antigen, whereas iTregs are derived from peripheral conventional T cells that 

recognise foreign antigen. They should therefore be recruited by different signals to 

different targets (477,478).  

In the periphery iTregs develop upon exposure to TGF-β (which is boosted by retinoic acid) 

and IL-2 and are inhibited by IL-6, IL-21, and IL-23 (479-482). Aryl hydrocarbon also increases 

FoxP3 expression (483). iTregs are increased by unfavourable T cell activation conditions, 

such as antigen presentation by immature DCs, or antigen persistence (484,485). The 

amalgamation of signals determine the level of FoxP3 transcription: IL-2 induces STAT5 

nuclear translocaton that binds to enhancer elements near the FoxP3 promoter (486), TGF-β 

signalling activates Smad3 (487), whereas STAT3 activation induced by IL-6 and IL-21 

competitively inhibit STAT5 binding (482). Despite this iTregs require STAT3 and RORγt to 

suppress Th17 cells, as they require T-bet, IRF-4, and Bcl-6 to suppress Th1, Th2, and Tfh 

cells respectively (488). Thus, iTreg formation and activity are balanced by homeostatic and 

inflammatory signals. 

iTregs are particularly important in immunoregulation of the gut because there are few 

nTregs present that will have been selected on intestinal or microbial antigens in the thymus 

(489). iTregs have been detected in the gastrointenstinal tract and been shown to protect 

against the development of colitis in CNS-1-deficient mice (490). These mice lack a 

conserved nucleotide sequence in the FoxP3 gene that is required for iTreg but not nTreg 

development. 

The role of iTreg in disease of the central nervous system (CNS) are unclear. Both iTreg and 

nTreg have been shown to be protective against EAE in mice whereas their deletion 

exacerbates disease (491). However, in CNS-1-deficient mice (which lack iTreg) no difference 

was observed compared to control animals (492). There are similar unclear effects of iTregs 
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in diabetes. iTreg are induced in Non Obese Diabetic (NOD) mice when immunised with 

insulin, and transfer of these blocks disease in recipient mice (493). However, induction of 

iTreg by administration of DCs expressing an insulin mimitope failed to affect disease 

progression but did reduce incidence (494). Further, treatment of mice with All trans 

retinoic acid (ATRA) reduced insulitis, however no significant protection was conferred by 

treatment in mice deleted of nTregs, suggesting iTregs did not confer protection (495). 

Further investigation in these disease models is necessary to confirm the role iTregs play in 

these diseases. 

The environments of tumours are commonly immunosuppressive and infiltrated with 

regulatory T cells (496). However, whether these are iTregs or nTregs appears to be tumour-

dependent. In studies of MO-5, TC-1, and murine glioblastoma (GBM) there was no 

significant overlap in TCR repertoires between effector and regulatory T cells, suggesting the 

Tregs were not derived from antigen-specific T cells and were derived from nTregs (497-

499). However, another study using B16F1 melanoma in mice, and melanoma in humans, 

suggested considerable overlap and iTreg involvement (500). Further study of the driving 

factors of iTreg development in different tumour environments is required to understand 

why such variability exists.  

 

2.7.7. Follicular T helper (Tfh) cells 

Tfh cells are a recently discovered CD4 T cell subset that are specialised in supporting 

germinal centre (GC) formation, B cell activation, and antibody production (501). As for 

other CD4 T cell subsets, Tfh differentiation requires a distinct set of cytokine and 

costimulatory signals that drive transcription and expression of specific transcription factors 

(501). For Tfh cell differentiation, IL-6, IL-21, and IL-27 are all capable of increasing 
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expression of the transcription factors Bcl-6 and c-maf, the cytokine IL-21 (by a positive 

feedback loop), and the surface molecules ICOS, OX40, CD40L, BTLA, and PD-1 (502,502-

504). It is unclear if there is a hierarchy between these cytokines, or whether they are 

equally effective at inducing Tfh differentiation as conflicting data has been generated 

between studies. It is likely that some functional redundancy exists between them. Likewise, 

failure to engage ICOS, CD40L, and CD28 results in reduced Tfh differentiation (505,506). 

The SLAM family of receptors is also important as these utilise SAP as part of their signalling 

pathway, and SAP is essential for Tfh differentiation as it is instrumental for interaction with 

B cells (507). These factors are all important for optimal B cell activation, proliferation, 

differentiation, and antibody production, confirmed by studies in knockout or loss-of-

function mouse strains. There is a strict requirement for expression of ligands for the 

surface molecules on the surface of APCs, but the kinetics of the interactions differ for 

different APCs. Using deletion studies, it has been demonstrated that initial Tfh 

differentiation is provided by naive T cell interaction with DCs (502). However, it is equally 

clear that for complete differentiation to occur these same T cells must interact with 

antigen-specific B cells (508,509). This suggests that the initial differentiation signals are 

provided by DCs in secondary lymphoid organs resulting in upregulation of surface CXCR5 

expression, and loss of CCR7 expression, on T cells. This enables translocation of these cells 

to the B cell follicles where they undergo full differentiation (510). 

As for other T cell subsets, Tfh cell commitment is characterised by expression of specific 

transcription factors. For Tfh cells this is Bcl-6, a transcriptional repressor (511). Several 

studies have demonstrated the essential requirement for Bcl-6 in Tfh development, where 

overexpression increases Tfh numbers and deficiency reduces them (512,513). Bcl-6 



91 
 

expression in activated CD4 T cells inhibits expression of other signature transcription 

factors (e.g. T-bet, GATA-3, RORγt) that direct differentiation towards other subsets (e.g. 

Th1, Th2, Th17) (512-514). However, Bcl-6 alone cannot fully differentiate naive CD4 T cells 

into Tfh cells, other transcription factors are also necessary. c-maf, a transcription factor 

found in Th2 cells, is also important because it increases IL-21 and CXCR5 expression (515). 

c-maf expression is also induced by IL-6, IL-21, and IL-27 which supports the idea that co-

expression of Bcl-6 and c-maf increases Tfh differentiation. Moreover, expression of c-maf in 

Bcl-6-expressing CD4 T cells increases CXCR5, ICOS, and PD-1 expression compared to either 

factor alone (503). 

As Bcl-6 and c-maf expression drive Tfh differentiation, so there exist counter mechanisms 

that inhibit it. This is crucial to prevent aberrant Tfh responses that may predispose to 

autoimmune conditions, particularly those driven by autoantibodies. The primary counter 

mechanism is expression of a transcriptional co-repressor, Blimp-1, often driven by IL-2 

production and STAT5 expression (516). Inhibition of any of these factors increases Tfh 

differentiation whereas overexpression has the opposite effect (517,518). The mechanism 

of inhibition is binding of Bcl-6, blocking its activity and both Blimp-1 and STAT5 have both 

been shown to bind Bcl-6 (519). Regulatory T cells also inhibit Tfh cells as they do for other 

CD4 T cell subsets, expressing cellular factors associated with each subset. For example, 

regulatory T cells that express T-bet specifically inhibit Th1 cells, whereas those that express 

IRF-4 inhibit Th2 cells (520). For Tfh cells, there is a subset (10-15%) that express FoxP3, 

suggesting this is the regulatory population for this subset (521). These follicular regulatory 

T cells share features of both Tfh cells and regulatory T cells, but they do not express CD40L 

or IL-21 and are derived from naturally occurring regulatory T cells rather than naïve CD4 T 
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cells (522). Bcl-6 or CXCR5 deletion prevents development and follicular localisation of these 

cells respectively, which resulted in increases in B cell activation and antibody production 

(521,523). Therefore, this population is essential for effective Tfh cell regulation. Plasma 

cells are also thought to inhibit Tfh differentiation as Tfh numbers are increased in plasma-

cell-deficient mice and naïve CD4 T cells activated by plasma cells do not upregulate Bcl-6 or 

IL-21 expression (524). However, the mechanism by which this occurs is unknown. 

 

2.7.8. T cell plasticity 

T cell differentiation was initially considered to be a permanent alteration and commitment 

to a particular transcriptional program and distinct set of effector functions. However, it has 

become increasingly clear that differentiation is a fluid, dynamic process with T cells 

switching from one subset to another depending on their environment and cellular 

interactions (525). Gene expression early (1-3d) after T cell activation is dependent upon the 

open chromatin structure and accessible, unmethylated genes that will drive T cell 

differentiation (e.g. tbx21, gata3, rorgt) (526,527). In uncommitted T cells these genes 

remain active, and transcription continues even as T cells commit to a particular lineage. As 

a result, ‘intermediate’ T cell populations exist that express more than one specific 

transcription factor (e.g. T-bet and Bcl-6, GATA3 and RORγt) (514,528). Therefore, even 

when a T cell is considered ‘differentiated’ it remains capable of switching to an alternative 

lineage if environmental conditions dictate this to be necessary. 

T cell differentiation is also affected by the nature of the pathogen and infection process. 

Acute infectious pathogens induce Th1, Th2, and Th17 differentiation corresponding to 

increased expression of T-bet, GATA-3, and RORγt (514). Consequently, Bcl-6 expression is 
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restricted until antigen levels are reduced, and pro-inflammatory transcription factors are 

no longer required and must be inhibited to prevent unwanted tissue damage. Once 

transcription factor levels decrease then Bcl-6 expression is no longer repressed. However, 

in chronic infections the persistent antigen levels inhibit pro-inflammatory transcription 

factor expression and therefore Bcl-6 expression increases (529). This cross-regulation has 

been observed most clearly in comparison of acute and chronic LCMV infection (529). 

 Therefore, T cell differentiation is not absolutely controlled by intracellular signalling 

pathways controlled by master transcription factors but also by the nature of pathogen 

invasion, and interplay between other immune factors. 

 

2.8. The γc chain cytokine family 

The γc chain cytokine family are a group of type I cytokines that all utilise the γc chain (IL-2Rγ 

chain; CD132) as part of their receptor. There are currently six members: IL-2, IL-4, IL-7, IL-9, 

IL-15, and IL-21, and one pseudo member: TSLP [Fig.6; (530)]. TSLP is a pseudo member as it  

utilises IL-7Rα chain, but not CD132, as part of its receptor. As it does not use CD132 it will 

not be discussed here any further. The family is renowned for its importance in T cell 

development and function as humans who have a non-functional, mutated form of CD132 

have no functional T cell compartment (531). This condition, referred to as X-linked severe 

combined immunodeficiency (X-SCID), has other symptoms beyond those of T cells. 

Sufferers also possess no functional NK cells and produce no antibodies as B cell 

development and function is crippled. Therefore, the γc chain cytokine family are critical 

regulators of elements of both innate and adaptive immunity. Despite all signalling through 

the γc chain, each cytokine has different functions and this is attributed to the STAT (signal  
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Figure 6. The γ
c
 chain cytokine family. This family consists of six full members: IL-2, IL-4, IL-7, IL-9, IL-15, and 

IL-21 (highlighted) and one pseudomember: TSLP. Apart from TSLP all utilise the γ
c
 chain as a component of 

their receptor. All members also use a unique second chain that forms their heterodimeric receptor. IL-2 and 
IL-15 also use IL-2Rβ chain to form a heterotrimer. Receptor expression and the downstream JAK and STAT 
signalling molecules that each receptor uses are shown. Cell types that produce each cytokine are also 
shown (adapted from Rochman Y et al. Nature Rev Immunol 2009 9 480). 
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transducer and activator of transcription) proteins that they activate. For example, IL-2, IL-7, 

IL-9, and IL-15 signal via STAT5a and 5b, whereas IL-4 primarily signals via STAT6, and IL-21 

signals via STAT3. These differences in signalling may account for the observed differences 

in function. 

        

2.8.1. Interleukin (IL)-2      

IL-2 is the prototypical member of the family as it was the IL-2 receptor where the γc chain 

was first identified (532). The IL-2 receptor is a heterotrimer consisting of IL-2Rα chain  

 (CD25), IL-2Rβ chain (CD122), and CD132. As for all family members, the α chain confers 

cytokine specificity and the β and γ chains maximise intracellular signalling. IL-2 is produced 

by T cells (533) was first named T-cell growth factor (TCGF) because of its ability to induce 

naïve and memory T cell proliferation (534). However, it can also elicit activation-induced 

cell death [AICD; (535)] of T cells, and aid regulatory T cell development in a STAT5-

dependent manner (536,537). Therefore, IL-2 has both pro-inflammatory and anti-

inflammatory properties. It also affects other cell types, boosting cytolytic activity of NK 

cells, and antibody production by B cells (538). 

IL-2 is one of the first cytokines produced after T cell activation, and is therefore important 

in T cell differentiation. It is known to be essential for Th2 differentiation (539,540), yet 

despite being one of the main cytokine products of Th1 cells it is unclear if it is required for 

Th1 differentiation (541). As described earlier, IL-2 activates STAT5a and STAT5b signalling 

proteins upon binding to its receptor and these proteins increase transcription of the il4ra 

gene (540). This increases responsiveness of activated T cells to IL-4, making them more 

likely to differentiate into Th2 cells. Moreover, activated STAT5 proteins bind to consensus 
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sequences within DNase-I-hypersensitivity sites throughout the entire Th2 locus, allowing 

greater access for the transcriptional machinery to bind to the promoters of genes such as 

il4, il13, sept8, kif3a, and irf1. Therefore, IL-2 not only enhances responsiveness to IL-4 but 

also increases production of Th2 cytokines and associated factors (539,540). IL-2 is also 

known to inhibit Th17 differentiation as IL-2KO mice have an increased frequency of IL-17 

production (542,543). 

Due to its ability to induce T cell proliferation, IL-2 has already been tested therapeutically 

to expand T cell populations in HIV (544), and cancer (545), patients. 

 

2.8.2. IL-4 

IL-4 is produced by activated T cells (546), NKT cells (547), eosinophils (548), and mast cells 

(549). It is regarded as the classical Th2 cytokine as it is required for the development and 

function of Th2 cells. As such it is a crucial factor in the development of asthma and allergy 

(550), and plays a crucial role in antibody isotype class switching (551). It increases 

differentiation of DCs from progenitor cells in the presence of Granulocyte-Macrophage 

Colony Stimulating Factor (GM-CSF), and enhances survival of DCs in the periphery (552). 

However, in the presence of IL-4 DCs maintain an immature state with reduced expression 

of MHCII and costimulatory molecules, possibly by reducing their responsiveness to type I 

IFNs (553).  
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2.8.3. IL-7 

IL-7 is a homeostatic cytokine, and is unusual among the γc cytokines in that it is 

constitutively produced by stromal and epithelial cells (554), as well as by fibroblastic 

reticular cells in the T cell zone of the secondary lymphoid organs (555). However, it is 

continuously consumed by naïve and memory T cells to maintain their survival; therefore 

the IL-7 concentration is dictated by the number of T cells consuming it. For example, in 

lymphopaenic patients the IL-7 concentration is raised (e.g. AIDS patients) and decreases 

upon increased T cell numbers (e.g. AIDS patients undergoing HAART therapy) (556). 

Another unusual aspect of IL-7 function is that expression of its receptor (IL-7Rα, CD127) is 

the reverse of receptors for other γc chain cytokines. For the other family members, 

receptor expression is low on inactive T cells and is upregulated upon T cell activation (e.g. 

IL-2Rα, CD25). However, IL-7Rα expression is high on inactive T cells (e.g. naïve and memory 

T cells) and decreases upon T cell activation (557,558). This supports the idea that IL-7 acts 

mainly on naïve and memory T cells rather than on activated, effector T cells. 

IL-7 has a central role in T cell development in both human and rodent species as studies in 

SCID patients and those with mutations in il7ra (559) or jak3 [JAK3 is a signalling component 

that is recruited to the γc chain; (560)] genes have identified the lack of IL-7 signalling as the 

reason for the lack of T cells. Further, it also aids memory T cell development and survival 

after pathogen challenge (554,561).  IL-7 enhances T cell survival in two ways; it promotes 

the expression of anti-apoptotic factors (e.g. Bcl-2 and Mcl1) and reduces expression of pro-

apoptotic factors (e.g. Bax and Bad) (562). IL-7 is also important for the development of B 

cells in rodent species, but not humans, indicating functional differences between species 

(563). 
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Based on its ability to enhance both naïve and memory T cell growth and survival, IL-7 (like 

IL-2) is currently being tested in candidate therapies against HIV (564).  

 

2.8.4. IL-9 

IL-9 (originally P40) is produced by activated CD4 T cells (455,456) and is a critical factor in 

mucus production (565) and mast cell activation (566). It also activates epithelial cells 

(567,568), T cells (569), B cells (570), and eosinophils (571), and with IL-4 is regarded as a 

potent inducer of asthma and allergic inflammation (572). More recent studies have 

highlighted an important role for IL-9 in pathological Th2 responses to Respiratory Syncytial 

Virus (573). 

 

2.8.5. IL-15 

IL-15 is produced by epithelial cells (574), monocytes (575), and DCs (576). It has an 

essential role in NK cell development: the NK cell deficiency in X-SCID and mutated JAK3 

patients is attributed a lack of signalling by this cytokine (563). IL-15 is also an important 

homeostatic cytokine in memory CD8 T cell maintenance (554), less so in memory CD4 T cell 

maintenance (577). However, unlike IL-7, IL-15 is not essential for T cell development 

though it does aid survival of naïve and memory CD8 T cells (578,579). Curiously, IL-15 

increases CD8 T cell proliferation and survival when it is ‘trans-presented’ to them (580). 

Specifically, IL-15 bound to IL-15Rα on non-T-cells is presented to CD8 T cells expressing the 

IL-2Rβ and IL-2Rγ chains. 
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Based on its abilities to boost NK cell and CD8 T cell activity, IL-15 is currently being tested 

as an adjuvant in vaccine design (545). 

 

2.8.6. IL-21 

As IL-21 is the focus of my studies it will be described in greater detail. 

 

2.8.6.1. Sources 

IL-21 is a type I cytokine, the newest member of the γc chain cytokine family with IL-2, IL-4, 

IL-7, IL-9, and IL-15. It was cloned and identified as the ligand for IL-21R, which was 

identified in 2000, and its amino acid sequence most closely resembles IL-2, IL-4, and IL-15 

(581). The il21 gene is adjacent to the il2 gene and they share very similar gene structure; 

suggesting one was created by the duplication of the other (581). The source of IL-21 was 

the CD4 T cell; however subsequent studies more accurately specified that NKT cells (582), 

Th17 cells (583), and follicular helper T cells [TFH cells; (511)] produce IL-21. 

 

2.8.6.2. Receptor expression 

The il21r gene was originally identified during genome sequencing as an open reading frame 

(ORF) encoding a type I cytokine receptor. It is located on human chromosome 16, 

immediately downstream of the il4ra gene (584), and its amino acid sequence most closely 

resembles the IL-2Rβ chain. Taken together with its restricted expression on haemopoietic 

cells, these findings suggested that IL-21R belonged to the γc chain cytokine receptor family. 

As for all true members of this family, the γc chain (CD132) is essential for signalling to occur 

once IL-21 has bound IL-21R (585). 
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IL-21R expression is greatest on B cells, and is expressed constitutively by some B cell lines 

(586). CD4 and CD8 T cells have low levels of expression, but it is upregulated upon cognate 

antigen recognition (584). It has also been identified on NK cells, DCs, macrophages, and 

keratinocytes (584,587). 

Upon binding of IL-21 to IL-21R, the cytokine:receptor complex heterodimerises with the γc 

chain. This surface interaction brings the signalling domains on intracellular chains into close 

proximity, such that phosphorylation at specific tyrosine (Y) residues, allows recruitment of 

the Janus kinase signalling proteins Jak1 and Jak3 (584,588). Subsequent activation of Jak1 

and Jak3 by phosphorylation results in activation of signal transducer and activator of 

transcription (STAT) proteins. One is STAT3 but STAT1 and STAT5 can also be weakly 

activated (584,589). This results in phosphorylation and homodimerisation of STAT proteins; 

followed by their translocation to the nucleus where they bind specific target gene 

promoter elements. Mutation analysis of the six tyrosine residues on the intracellular 

domain of IL-21R identified residue Y510 as crucial for STAT1 and 3 activation in CD8 T cells; 

as well as for optimal B cell proliferation (590). The downstream signalling events are less 

well characterised, but IL-21/IL-21R interaction has been shown to activate the p52 isoform 

of Shc (an initiator of the MAPK pathway), and the serine/threonine kinase Akt, a 

downstream mediator of the PI3K pathway (590). 

 

2.8.6.3. Effects 

There has been extensive research into the effects of IL-21 on different immune cell types in 

several different in vitro and in vivo models [Fig.7; (591)]. However, a true and complete  
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Figure 7. The major effects of IL-21. IL-21 affects a wide range of myeloid and lymphoid immune cells but 
the effects depend on other signals in the environment. B cells are activated by IL-21 upon BCR ligation, but 
IL-21 induces B cell apoptosis on its own. IL-21 activates CD8 T cells and NK cells synergistically with IL-15. 
IL-21 regulates both NKT cell and CD4 T cell activation and differentiation. IL-21 inhibits DC maturation but 
activates macrophages. IL-21 also reduces the effectiveness of regulatory T cell action (taken from 
Sondergaard H et al. Tissue Antigens 2009 74 467). 
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understanding of IL-21 function has been hampered by its context-dependent effects; which 

will be explained below. 

 

2.8.6.3.1. CD4 T cells 

Early studies indicated that IL-21 was mainly produced by Th2 CD4 T cells, and was therefore  

a Th2 cytokine (592). This was confirmed both in vitro by stimulation of naïve CD4 T cells 

with PMA/Ionomycin in the presence of Th1- or Th2-skewing conditions, and in vivo using 

the Leishmania major model (592). However, while IL-21 reduced IFN-γ (but not IL-2 or TNF) 

production, it did not further promote Th2 cell differentiation, distinguishing it from other 

Th2 cytokines like IL-4. Moreover, IL-21 did not inhibit expression of the Th1 transcription 

factor T-bet (592), it inhibited IFN-γ production in an IL-4-dependent manner by reducing 

STAT4 (592) and Eomes (593) expression. However, one of the most important effects of IL-

21 on CD4 T cell function to be elucidated is its effect on the differentiation of naïve CD4 T 

cells into the Th17 lineage.  Three separate studies published in July and September 2007 

(two in the same issue of the Nature journal) demonstrated that IL-21 was produced by 

Th17 CD4 T cells and acted in an autocrine manner to enhance its own production and 

maintain Th17 development (386,446,583). Th17 differentiation occurs when naïve CD4 T 

cells are activated in the presence of TGF-β and IL-6, and upregulate expression of the rorc 

(retinoic-acid-related orphan receptor γ) gene (594). IL-6 is crucial for Th17 differentiation as 

TGF-β alone promotes differentiation of Foxp3+ regulatory CD4 T cells. This was confirmed 

in IL-6KO mice. However, Th17 cells re-appear when these regulatory CD4 T cells are 

depleted suggesting that these cells play an active role in inhibiting Th17 differentiation. 
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Gene expression analysis of in vitro generated Th1, Th2, and Th17 cells demonstrated that 

all three subsets expressed the il21 gene. However, the greatest expression was observed in 

Th17 cells (583). IL-21 alone does not induce Th17 development [though it does upregulate 

expression of il23r, rorc, il17, il17f, and il22 genes (583)]; it works synergistically with TGF-β. 

IL-6, but not TGF-β, induces production of IL-21 in a STAT3-dependent manner. This was 

confirmed in IL-6KO mice when activated CD4 T cells do not produce IL-21 or differentiate 

into Th17 cells. However, CD4 T cells from IL-6KO mice differentiated into Th17 cells 

normally upon activation in the presence of TGF-β and IL-21, suggesting that IL-21 acts 

independently of IL-6 once it is produced (583). Further studies in STAT3KO and RORγKO 

mice demonstrated that STAT3, but not RORγ, was crucial to IL-21 production (583). Th17 

differentiation of activated STAT3KO and RORγKO CD4 T cells in the presence of TGF-β and 

IL-21 was greatly reduced, demonstrating that both these factors are essential to IL-21-

driven Th17 differentiation. The same phenotype was also observed when CD4 T cells from 

IL-21KO mice were tested; Th17 differentiation could be rescued when IL-21 was added 

exogenously (583). Another downstream effect of IL-21 signalling is the expression of il23r 

mRNA and IL-23R protein (446). Though IL-23 is incapable of inducing Th17 differentiation 

on its own, it maintains RORγt expression, thus promoting development of the Th17 lineage. 

The ICOS:ICOSL interaction is crucial for IL-21 action. Studies performed in ICOSKO, ICOSLKO, 

and c-mafKO mice demonstrated that signalling through ICOS activated c-maf, a 

transcription factor crucial for the production of IL-21 (515). Therefore, though ICOS:ICOSL 

interaction is not important for early Th17 differentiation (i.e. the action of TGF-β and IL-6) 

it is crucial for the later maintenance of Th17 development by IL-21 and IL-23. This was 

confirmed in deficient mice by demonstrating a lack of c-maf activation, IL-21 production, IL-

23R expression, and optimal IL-17 production (515). 
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In vivo studies have demonstrated the same phenotype, Th17 differentiation is abrogated in 

the spleens and intestinal lamina propia of IL-21KO mice (446,583). Extensive in vivo studies 

of Th17 differentiation and function have been performed in the mouse model of multiple 

sclerosis, EAE (Experimental autoimmune encephalomyelitis). Immunisation of mice with 

MOG35-55 (myelin oligodendrocyte glycoprotein) peptide results in a response against the 

CNS and an autoimmune disease characterised by paralysis of the limbs (583). 5 days after 

two immunisations WT mice started to exhibit signs of disease that peaked on day 11. In IL-

21KO mice disease kinetics was identical but magnitude was reduced suggesting that IL-21 

was important for its development. Splenic CD4 T cells isolated from WT mice produced 

significant levels of IL-17, in IL-21KO mice however these cells produced IFN-γ but no IL-17 

(583). A similar defect in Th17 differentiation and disease reduction was observed in IL-6KO 

mice (386). 

Another important function of IL-21 is its role in T follicular helper (Tfh) cell development 

and function. Tfh cells are a CD4 T cell subset that resides in the secondary lymphoid organs, 

particularly the spleen. They are critical for optimal germinal centre reactions where B cells 

are activated, and memory B cell development, as well as plasma cell differentiation. They 

express the CXCR5 chemokine receptor (595) which binds CXCL13 and localises them close 

to germinal centres (596). They also express inducible costimulatory receptor (ICOS) which is 

essential for Tfh cell development (597) and activation of B cells via interaction with ICOSL.  

ICOS deficiency in humans causes a striking reduction in the number of Tfh cells (598). PD-1 

is also highly expressed by Tfh cells (599,600). Like other CD4 T cell subsets that express 

signature transcription factors, Tfh cells express the transcriptional co-repressor Bcl6, but 

express high levels of IL-21 rather than IFN-γ, IL-4, IL-10, or IL-17 (599). IL-21 acts in an 
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autocrine manner on Tfh cells (600), and is important to Tfh cell function as it activates B 

cells and induces isotype class switching (587). In the absence of IL-21 or IL-21R, few Tfh 

cells develop after protein immunisation, and as a consequence there is reduced germinal 

centre B cell activation and antibody production (599). In comparison conventional CD4 T 

cell functions (e.g. proliferation, IFN-γ production) are normal. The same phenotype is 

observed in IL-6KO and IL-6RKO mice (599), and as IL-6 is known to induce production of IL-

21 (as described above) this suggests that there is an integral link between these two 

factors, Tfh development, and optimal B cell responses. 

 

2.8.6.3.2. CD8 T cells 

In contrast to IL-2 and IL-15 which drive acquisition of effector functions by CD8 T cells, in 

vitro priming of CD8 T cells with specific antigen and IL-21 suppresses the production of IFN-

γ, granzyme B and expression of IL-2Rα (601). Expression of the eomes gene is also 

suppressed in CD8 T cells by IL-21. Eomes is indicative of induction of cytolytic function, 

again suggesting that IL-21 inhibits effector functions in CD8 T cells. Moreover, IL-21 

suppresses antigen-induced expansion and differentiation of CD8 T cells into memory [as 

measured by CD44 expression (602)]. Therefore, IL-21 possesses potent negative regulatory 

effects on in-vitro-activated CD8 T cells. 

Microarray analysis of gene expression by CD8 T cells primed with antigen and IL-21 

demonstrated that IL-21 initiates a distinct genetic program compared with IL-2 and IL-15. 

Specifically, IL-21 upregulates expression of the genes Lef1, Sell (L-selectin), Itgae, and Tcf7 

(associated with immature CD8 T cells; (603)) and downregulates Gzmb, Il2ra, Ifng, and 
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eomes (associated with mature effector CD8 T cells). This is believed to occur because IL-21 

primarily signals via STAT1 and 3 whereas IL-2 and IL-15 signal via STAT5a and b (590).  

Nevertheless, adoptive transfer of IL-21-primed CD8 T cells caused tumour regression in 

mice, whereas no protection was evident when IL-2- or IL-15-primed CD8 T cells were 

transferred (601). This is thought to be due to expression of L-selectin by IL-21-primed CD8 T 

cells which allow migration to the lymph nodes, greater cell expansion, and acquisition of 

effector function in vivo. In contrast, IL-2 or IL-15-primed CD8 T cells lose expression of L-

selectin, do not expand or increase in effector function, and are thus unable to kill tumours. 

Chronic viral infection (e.g. HIV, HBV, HCV, and LCMV) is associated with persistent viral 

antigen exposure, and continuous T cell activation resulting in clonal deletion or anergy 

(604). Several models of chronic viral infection have demonstrated that IL-21 is crucial for 

sustained CD8 T cell responses (605), via CD4 T cell help (606). Studies have shown that in 

the absence of IL-21, despite enhanced CD4 T cell responses, CD8 T cells are deleted, 

exacerbating viral persistence. For example, during chronic LCMV infection high levels of IL-

21 mRNA are expressed by virus-specific CD4 T cells, whereas IL-2 mRNA is extinguished 

(605). When WT and IL-21RKO mice were chronically-infected with LCMV no difference in 

CD8 T cell recruitment or function (IFN-γ and TNF production) was observed during the 

acute phase (day 8 p.c) of the response. However, during the chronic phase (day 30 p.c) 

there was a significant decrease in the number of responding virus-specific CD8 T cells in IL-

21KO (607) and IL-21RKO mice (605,608) compared to WT controls. Further, the CD8 T cells 

in IL-21KO and IL-21RKO mice were PD-1hi (indicative of exhaustion), whereas those from 

WT mice were PD-1lo (607,608). This suggests that IL-21 signalling is crucial to sustain CD8 T 

cell responses during chronic infection. To confirm this, administration of IL-21 to IL-21KO 

mice could restore CD8 T cell responses to LCMV, reducing viral titres (607). Reconstitution 
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of irradiated WT mice with Ly5.1+ WT and Ly5.2+ IL-21RKO bone marrow allowed both WT 

and IL-21RKO CD8 T cells to respond to chronic LCMV infection in the same host. During the 

acute phase of the response there was no difference in the number of responding WT or IL-

21RKO CD8 T cells. However, by the chronic phase there were significantly more WT than IL-

21RKO CD8 T cells responding, demonstrating that IL-21 sustains the CD8 T cell response by 

acting directly on the cells themselves (605). These differences were not evident when mice 

were challenged with an acute LCMV strain or other non-persistent viruses (e.g. influenza, 

vaccinia), suggesting this role of IL-21 in sustaining CD8 T cell responses is restricted to 

chronic infection.  

 

2.8.6.3.3. B cells 

Several studies have highlighted the indirect effect of IL-21 on B cells and antibody 

production by promoting follicular helper T cell development and function. However, B cells 

express high levels of IL-21R and can respond to IL-21 directly (586). For example, Ozaki et al 

demonstrated that IL-21 increased B cell proliferation induced by anti-IgM, especially in the 

presence of anti-CD40. However, this increase required a combination of signals as in the 

absence of either B cell receptor or anti-CD40 stimulation, IL-21 induced much less 

proliferation (609). IL-21 also induced expression of Syndecan-1 (CD138, a plasma cell 

marker) and surface IgG1 on B cells stimulated with anti-IgM antibody. However, only a 

fraction of the surface IgG1+ cells expressed CD138, indicating that IL-21 increased post-

switch B cells as well as plasma cells.  

In contrast to its effects on B cell proliferation, IL-21 also induces the apoptosis of primary 

resting and activated B cells (609,610). Moreover, IL-21 can induce the apoptosis of primary 
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B cells even in the presence of costimulatory factors such as IL-4, LPS, or anti-CD40 Ab. IL-

21-induced apoptosis was shown to correlate with a down-regulation in the expression of 

Bcl-2 and Bcl-xL, two antiapoptotic members of the Bcl-2 family (610). However, the latter 

study found that while mRNA levels for these anti-apoptotic proteins decreased, protein 

levels remained the same (609). This suggests that other mechanisms may be important. 

These changes in B cell maturation correlate with changes in transcription factor expression 

by responding B cells. For example, Blimp-1 is a transcription factor that has been identified 

as a master regulator of plasma cell differentiation (611), whereas Bcl-6 and Pax5 are 

required for germinal centre formation (612). Interestingly, Blimp-1 and Bcl-6 can each 

inhibit expression of each other, and Blimp-1 additionally is an inhibitor of the expression of 

Pax5 (613). Ozaki et al found that IL-21 induced expression of both Blimp-1 and Bcl-6 mRNA 

in purified splenic B cells, whereas it inhibited expression of Pax5 mRNA, when stimulated 

with anti-IgM antibody (609). This was confirmed at the protein level by western blotting.  

Other transcription factors are known to drive plasma cell or memory B cell differentiation. 

Specifically, IRF-4, and XBP-1 drive plasma cell differentiation (614), and with Blimp-1 these 

factors inhibit expression of Bach2, MiTF (615,616), and IRF-8 (617). These factors together 

with Bcl-6 promote memory B cell differentiation. However, it is unknown what effect IL-21 

has on expression of these additional factors. 

The changes in transcription factor expression attributed to IL-21 have yet to be traced 

through the signalling pathways elicited by IL-21 binding to its receptor.  For example, Zhou 

et al demonstrated that Bcl-6 expression is upregulated by IFN-γ-mediated activation of 

STAT1 (618). However, this study used Jurkat T cells rather than B cells and it is unclear if the 

same effect would result in a different cell type. IL-21 is known to induce STAT3 activation 

and STAT3 is necessary for T-cell-dependent IgG plasma cell differentiation (619). 
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Additionally, it has been shown that expression of activated STAT3 in fibroblasts leads to 

upregulation of Bcl-6 expression (620). Therefore, STAT3 activates Bcl-6 in different cell 

types. Unfortunately, STAT3 activation was not correlated with the expression of Blimp-1 or 

XBP-1 in these studies but as they are universally required for plasma cell development, it is 

likely their activation patterns are similar. A role for STAT5 is more controversial as 

conflicting data have been published. First, Scheeren et al demonstrated that in human B 

cells phosphorylated STAT5 directly induces Bcl-6 expression and that ectopic expression of 

STAT5 or Bcl-6 in peripheral B cells increased their self-renewal capacity. However, soon 

afterwards Walker et al showed that Stat5 represses Bcl-6 expression in B-lymphoma cells 

and other haematopoietic cells (519). This difference was attributed to the STAT5-binding 

site which is not highly conserved among human, rat, and mouse species. Therefore, STAT5 

may upregulate Bcl-6 in some cell types of one species and downregulate Bcl-6 expression in 

the same cell types of a different species. A further study by Kuo et al demonstrated that 

STAT5 mRNA was also increased in human memory B cells and decreased in plasma cells 

generated in vitro (621). The authors from this study concluded that STAT5 activation 

negatively correlates with Bcl-6 expression which was low in both cell types. However, none 

of these studies investigated the effect of IL-21 on STAT5 activation and it remains unclear 

what molecular mechanisms are used by IL-21 to elicit the observed effects on B cells. 

 

2.8.6.3.4. Dendritic cells (DCs) 

Compared to lymphocytes, there have been relatively few studies investigating the effect of 

IL-21 on development and function of DCs. Like B cells, they express IL-21R and are able to 

respond to IL-21 in the environment. However, unlike its γc cytokine family counterpart IL-
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15 [for which DCs express both cytokine (576) and its specific receptor IL-15Rα (622)] IL-21 

does not activate DCs, it maintains them in an immature state and suppresses their T-cell 

stimulatory capacity (622). This has been demonstrated most simply with bone-marrow-

derived DCs (BMDCs) which are generated from bone marrow cells grown in the presence of 

GM-CSF (623). IL-21 does not inhibit the development of BMDCs when added to culture but 

does reduce their expression of the IL-2Rα and β chains compared to IL-15 (622). It also 

reduces the expression of MHCII, which is necessary to activate antigen-specific CD4 T cells, 

and the chemokine receptor CCR7, which is crucial for migration of DCs to the draining 

lymph nodes where naïve T cells reside (622). Further, DCs cultured in IL-21, but not IL-15, 

displayed increased antigen uptake (in this case FITC-conjugated dextran particles). 

Therefore DCs are maintained in an immature state in the presence of IL-21. In contrast, IL-

15 matures DCs resulting in their inability to capture antigen and increased capacity to 

present antigen in the context of MHC molecules (622). These phenotypic and functional 

differences were maintained even when DCs were exposed to lipopolysaccharide (LPS), a 

bacterial wall product that binds the toll-like receptor (TLR) 4 and is known to activate DCs 

and induce their maturation. This lack of DC activation occurred despite similar levels  of 

TLR4 on both cells exposed to IL-15 or IL-21 (622). DCs are known to produce several pro-

inflammatory factors including IL-1β, IL-6, IL-12, and TNF upon maturation/activation with 

LPS (624). Culture of DCs in the presence of IL-21, but not IL-15, reduces production of these 

factors, further reducing the ability of the DCs to initiate immune responses (622). This has 

been confirmed in vivo by adoptive transfer of DCs cultured in the presence of IL-15 or IL-21 

and loaded with the hapten fluorescein isothiocyanate (FITC). Only IL-15-exposed DCs 

activated antigen-specific T cells. Despite a lack of CCR7 on the DCs exposed to IL-21 the DCs 

migrated equally into the draining lymph nodes (dLN), demonstrating that the migratory 
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capacity of IL-21-exposed DCs had not been adversely affected (622). It is possible that other 

compensatory factors enabled these DCs to migrate, but not activate antigen-specific T cells.  

 

2.8.6.3.5. NK cells 

There have been several studies investigating the role of IL-21 in NK cell development and 

function. It is known that IL-21 is not required for NK cell development as IL-21RKO mice 

have normal numbers of NK cells (625,626). However, exposure of BM cells in culture to IL-

21 boosts NK cell generation, possibly in an IL-15-dependent manner (581,627). The effect 

appears to be dose-dependent as low doses boosted generation and high doses inhibited it 

(628). A similar effect, though not identical, has been observed in humans (629). The effect 

of IL-21 on mature NK cells is also IL-15-dependent. In the presence of IL-15, IL-21 increased 

the cytolytic activity and IFN-γ production of NK cells, while inhibiting their proliferative 

capacity (630). This may be due to increased cell apoptosis. It also altered the receptor 

expression of NK cells, increasing the CD94-NKG2A inhibitory heterodimer as well as CD154 

and KLRG1, and reducing expression of NK1.1, Ly49D and Ly49F, as well as NKG2D (630). 

This was confirmed by demonstrating that IL-21-exposed mature NK cells were less able to 

lyse NKG2D-sensitive targets (631). These changes in receptor expression are partly due to 

repression of the DAP10 adaptor protein after IL-21 signalling. Conversely, IL-21 inhibited 

NKG2D expression on immature NK cells, therefore the effects of IL-21 on NK cells appear to 

be maturation-dependent. IL-21 also modulates cytokine production by mature NK cells, 

increasing IFN-γ and IL-10, while reducing GM-CSF, but having no effect on TNF (630). 

However, these effects only occurred in the presence of IL-2 or IL-15, suggesting that IL-21 

promotes effector and regulatory functions of NK cells in the presence of these factors.   
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2.8.6.3.6. NKT cells 

There have been limited studies investigating the effect of IL-21 on NKT cells. As for other 

lymphocytes, NKT cells constitutively express IL-21R and so are capable of responding to IL-

21 in the environment (586). More importantly however, NKT cells are a major source of IL-

21 and therefore can regulate their own activity (582). IL-21 production by NKT cells 

surpassed that of conventional CD4 T cells; therefore under certain conditions NKT cells may 

be the dominant source. IL-21 alone increases the survival of NKT cells in vitro, and can 

synergise with IL-2, IL-15, or their cognate glycolipid antigen to enhance their proliferation.  

After antigenic stimulation, IL-21 (in the presence of IL-2) increased the granularity, 

granzyme B production and expression of NK receptors NKG2A/C/E, Ly49C/I, and CD94 by 

NKT cells (582). Alone, IL-21 did not alter NK receptor expression. IL-21 also increased IL-4 

and IL-13 production by NKT cells after antigenic stimulation, though there was no 

consistent effect on IFN-γ production. The effect of IL-21 on NKT cells may be subset-

dependent as thymic and liver NKT cells responded differently after antigenic stimulation. 

Therefore further studies may be required to fully elucidate the effect of IL-21 on each 

subset (582). 

 

2.8.6.3.7 Macrophages and Neutrophils 

As for NKT cells, there have been few studies investigating the effect of IL-21 on neutrophils 

or macrophages. One study used an air pouch model (where air is injected subcutaneously 

(s.c) into the back of mice) to investigate whether IL-21 played a role in neutrophil 

recruitment or function. The study found that IL-21 administration to the air pouch 
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recruited both monocytes/macrophages and neutrophils. However, further studies found 

that neutrophils do not express IL-21R and cannot respond to its presence. The recruited 

macrophages did express IL-21R and in response secreted CXCL8 (but not CCL3, CCL5, 

CXCL5, or IL-6) which recruited the neutrophils. Therefore, neutrophils do not respond 

directly to IL-21, but can be affected indirectly by the action(s) of IL-21 on other cells (632). 

 

3. Respiratory viruses 

 

3.1. Paramyxoviruses  

The paramyxoviruses (Greek: para- beyond, myxo- mucus/slime, virus- poison/slime) are all 

members of the paramyxoviridae family belonging to the mononegavirales order. They have 

been identified in multiple land-based and aquatic species demonstrating a vast host range. 

They share multiple common features: they are all negative sense, single-stranded, RNA 

viruses and are responsible for a number of important human and animal diseases. They can 

be roughly divided into two sub-families: the paramyxovirinae and the pneumovirinae, 

though currently there are a number of unassigned viruses (e.g. Beilong virus, J virus, and 

Tailam virus) (633). The members are organised phylogenetically as shown (Table 2). The 

features of these viruses will be explained, and each genus will be briefly described in turn. 

 

3.1.1. Common Physical features         

The paramyxoviruses are all enveloped viruses but their shape can vary from spherical to 
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filamentous. Their surface is dominated by fusion and attachment proteins that allow 

infection of target cells, and matrix proteins that are located within the envelope and 

stabilise the virion structure. Internally, the nucleocapsid consists of the genomic RNA 

bound by nucleocapsid proteins, phosphoproteins, and polymerase proteins (633).  

The paramyxoviruses share proteins of similar function. The Nucleocapsid (N) protein binds 

to hexamers of RNA and protects them from enzymatic digestion. The Phosphoprotein (P) 

binds together with the nucleocapsid and polymerase (L) proteins to form the polymerase 

complex necessary for genome replication. The Matrix (M) protein maintains virion 

structure by holding together the envelope and the nucleocapsid core. The Fusion (F) 

protein assembles as a trimer on the envelope surface and initiates class I fusion of the viral 

envelope and target cell membranes prior to cell entry. The H/HN/G 

(Haemagglutinin/Haemagglutinin Neuraminidase/Glycoprotein) proteins are all necessary 

for viral attachment to the target cell and mediate cell entry. Morbilliviruses and 

Henipaviruses express H protein; Respiroviruses, Rubulaviruses, and Avulaviruses express 

HN protein; and the Pneumovirinae express G protein. Finally, the polymerase (L) protein is 

the catalytic subunit that forms part of the RNA-dependent, RNA polymerase complex 

necessary for genome replication (633). 

However, not all paramyxvoviruses share the same proteins. For example, the 

pneumovirinae not only express N protein but also two non-structural proteins: NS1 and 

NS2 that interfere with the host type I interferon response. They also express a second 

matrix protein: M2 that encodes an elongation factor (M2-1) and a regulator of 

transcription (M2-2). Such differences indicate that the paramyxoviruses have adopted 
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different strategies to successfully replicate in their individual hosts (633). 

 

3.1.2. Common Genomic features 

The RNA genome of paramyxoviruses is non-segmented and typically 15-19kb in length 

comprising 6-10 genes. They all share three extracistronic regions: a 3ˈ, 50 nucleotide, 

leader sequence used in transcription initiation; a 5ˈ trailer sequence whose length varies 

between viral species (50-161 nucleotides), and intergenomic regions that vary in length 

depending upon the viral species (633).  

The typical gene sequence of paramyxoviruses is: nucleocapsid-phosphoprotein-matrix-

fusion-attachment-polymerase. As a result of their genome structure, paramyxoviruses 

exhibit transcriptional polarity: genes closest to the 3ˈ leader sequence are transcribed in 

greater quantity than those distal to the leader sequence. This is caused by the RNA-

dependent, RNA polymerase pausing at the intergenic sequences in the genome. Upon 

release of the transcribed mRNA from the previous gene there is a chance that the 

polymerase will dissociate from the genome, when it will have to reattach at the 3ˈ leader 

sequence. This process continues as the polymerase transcribes towards the 5ˈ trailer 

sequence. Consequently, the polymerase is more likely to dissociate from the intergenic 

sequences distal to the 3ˈ leader sequence, reducing the transcriptional frequency of genes 

distal to the leader sequence. As a result of transcriptional polarity the gene sequence of 

paramyxoviruses has evolved to maximise chances of successful replication. For example, 

the ns1 and ns2 genes of Respiratory Syncytial Virus (RSV) are first in the genome as they 

are required to reduce the anti-viral type I interferon response of host epithelial cells. In 
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contrast, the polymerase gene, l, is the most 5ˈ as it is only required for genomic replication 

(634). 

Many paramyxoviruses have genome lengths that are a multiple of 6 (the ‘rule of six’). This 

is because the nucleocapsid (N) protein of the virus binds hexamers of RNA, and these 

viruses replicate more efficiently when all their RNA is bound by N protein. This rule only 

applies to paramyxoviruses that encode the N protein. The pneumovirinae do not follow this 

rule (634). 

Another process that paramyxoviruses utilise is RNA editing. This applies mainly to the p and 

m2 genes when multiple proteins are produced by a single gene via alternative stop codons. 

The alternative P proteins are thought to aid productive viral replication by switching 

replication from mRNA to anti-genome synthesis. The M2-1 and M2-2 proteins of 

pneumovirinae are involved in regulation of transcription (634). 

 

3.1.3. RSV structure and genome  

RSV is an enveloped, negative sense, RNA virus that ranges from 80-200nm in diameter. The 

variability is due to the pleomorphic virion shape that ranges from spherical to the more 

common filamentous. As described earlier, the F, G, and SH proteins are located in the virus 

envelope, the M protein lies on the inner envelope surface, and the genome is encapsulated 

with the N, P, L, and M2-1 proteins (Fig.8) (633).  

RSV can be divided antigenically into two groups: A and B that were created ~350 years ago 

(635). Members of the two groups co-circulate, and though there is a predominance of one 

subtype over the other, people can be infected with both simultaneously. The dominance is  
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Figure 8. RSV structure, protein composition, and genome. RSV virions (V) are typically captured as spherical 
structures (see electron micrograph) comprising 11 proteins. F denotes filamentous nucleocapsids within 
the cytoplasm. The position and function of each protein are indicated. The gene order within the genome 
is shown with overlapping genes and open-reading frames indicated. Gene nucleotide length is indicated 
with intergenic sequence lengths underlined (adapted from Collins PL et al. Virus Research 2011 162 80). 
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caused by sub-optimal immunity against the heterologous strain due to the previous 

dominance of the subgroup (636). The division is caused by the accumulation of genetic 

changes in the viral genome, the greatest number of which occur in the two mucin-like 

domains of the attachment (G) gene (637). Mutation is driven by a selective pressure by 

host anti-viral antibodies, against the surface attachment (G) and fusion (F) proteins of the 

virus that are generated after infection. This pressure drives the co-evolvement of several 

antigenically-distinct strains with several distinct mutations in these proteins (638). 

The RSV genome is 15.2kb in length, comprising 10 genes that encode 11 proteins [Fig.8; 

(639)]. Despite the similar genome length RSV is a complex paramyxovirus, containing 

additional proteins not present in other paramyxoviruses such as NS1, NS2, SH, M2-1, and 

M2-2.   

 

3.1.4. Pathogenicity 

Several clinically and economically important animal and human diseases are caused by 

paramyxoviruses. The human diseases will be described in turn. 

 

3.1.4.1. Mumps virus: Mumps 

Mumps (or epidemic parotitis) is a contagious disease characterised by painful swelling of 

the parotid (salivary) glands, typically on both sides of the head. Swelling of the testis 

(orchitis) and rash can also occur. Despite an effective vaccine in the form of the childhood 

measles-mumps-rubella immunisation, the disease remains common in third world  
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countries and sporadic outbreaks still occur in the developed world. The disease is generally 

self-limiting and life-long immunity is generated from natural infection (640). 

 

3.1.4.2. Measles virus: Measles 

Measles (or ‘rubeola’) is a highly contagious disease of the respiratory organs, and is spread 

by aerosol transmission. It is characterised by a generalised erythematous (redness of the 

skin) rash, fever, cough, runny nose, and conjunctivitis that can last up to 12 days from 

exposure. Complications range from diarrhoea and pneumonia to acute encephalitis 

(mortality: 15%) and corneal ulceration, though the more severe are only observed in 

infected adults rather than children. Immunisation against measles is typically administered 

to children as part of the trivalent measles-mumps-rubella vaccine and is highly effective. As 

such, measles is now an uncommon disease in developed countries, though it remains 

endemic in the developing world (641).  

 

3.1.4.3. Parainfluenza virus: Bronchitis and Croup    

The parainfluenza viruses are clinically significant because they are the second most 

common cause of lower respiratory tract infection (LRTI) in young children (after RSV), and 

they cause ~75% of croup cases. There are four serotypes [HPIV-1: Croup, HPIV-2: Croup, 

HPIV-3: Bronchiolitis and pneumonia, HPIV-4: General upper respiratory tract infection 

(URTI) and LRTI]. Like RSV, repeated re-infection with parainfluenza viruses is common, 

resulting in mild upper respiratory tract infection for between 1-7 days. However, as for 

most paramyxoviruses infection of immunocompromised individuals can result in 
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pneumonia and be fatal. Despite extensive research there is still no licensed vaccine against 

any of the serotypes (642). 

 

3.1.4.4. Metapneumovirus (HMPV): Bronchitis 

Metapneumovirus was isolated in 2001 and is closely related to avian metapneumovirus 

subgroup C. HMPV causes ~10% of respiratory infection cases, and together with RSV and 

HPIV, is one of the most common causes of LRTI in children. However, in contrast to RSV, 

HMPV tends to infect slightly older children and cause more severe disease. As for RSV, 

nearly all children have been infected with HMPV by the age of five years, and co-infections 

of RSV and HMPV are common. Genetically RSV and HMPV are analogous, though HPV does 

not encode non-structural proteins and has a slightly different gene order compared to RSV. 

As for other paramyxoviruses, viral transmission occurs primarily via aerosols (643). 

 

3.1.4.5. Respiratory Syncytial Virus (RSV): Bronchiolitis 

RSV was first identified in 1956 (644), its name is derived from the F protein of the virus 

causing cell membranes to fuse (forming syncytia). It is the most common cause of infant 

LRTI and hospitalisation in the western world, estimated to cause >30 million LRTI cases 

worldwide with 10% requiring hospitalisation each year (645).  The clinical burden of RSV is 

made more substantial by the fact that the virus is ubiquitous, and nearly all children are 

infected with RSV at least once in the first three years of life. Of these, 2-3% will require 

hospitalisation and mechanical ventilation. Moreover, for unknown reasons, immunity to 

infection is lost in a short space of time such that individuals can be re-infected with the 
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same strain in the same year. The long-term consequences of this are significant as there is 

growing evidence and belief that children who suffer from RSV bronchiolitis (infection of the 

small airways) are more likely to develop asthma, wheezing, and breathing difficulties later 

in life (646). It is also being increasingly recognised that RSV infection causes significant 

disease in the elderly (647). 

The symptoms of RSV infection are indistinguishable from those of the common cold: fever, 

runny nose, sore throat, lethargy, and loss of appetite. However, symptom severity 

increases in the immunocompromised and there have been cases of fatalities in this 

population (648). Treatment is mainly supportive as the disease is typically mild and does 

not warrant anti-virals. For high-risk infants, Palivizumab (SynagisTM) can be administered 

prophylactically (649). This monoclonal antibody neutralises viral infection by targeting the F 

protein. It is moderately effective when given prophylactically (i.e. monthly injections over 

the course of a RSV season) but more limited if infection has already occurred. Moreover, 

due to the expense of treating patients with the drug for so long it is only used on the 

immunosuppressed, premature infants, and those with pulmonary and cardiac insufficiency. 

At present, there is no licensed vaccine against RSV. However, great effort is always being 

made to test the efficacy of new candidates. 

As RSV is the chosen disease model for my studies, I will now describe it’s characteristics in 

greater detail. 
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3.1.5. RSV infection of the host 

The primary target of RSV is the superficial ciliated respiratory epithelium, reducing ciliary 

function which may be responsible for the airway obstruction characteristic of RSV disease. 

However, the virus does not invade the underlying layers and does not cause syncytia in 

these areas, suggesting the virus is not cytopathic compared to more aggressive respiratory 

viruses such as influenza (650). Virus binding to target cells seems to occur via several 

distinct mechanisms as multiple receptors for RSV F and G proteins have been identified. F 

protein can bind TLR4 which is primarily expressed on myelomonocytic leukocytes. The 

significance of this interaction on viral infection is unclear as there is contradictory data on 

the effect of TLR deletion on RSV disease (651). More recently, the F protein has been show 

to bind the nuclear receptor nucleolin (652). This interaction has been shown to be essential 

for viral replication in vivo and may form an attractive target for therapy. Both RSV F and G 

proteins have been shown to bind glycosaminoglycans (GAGs; e.g. heparin and chondroitin 

sulphate) that form the glycocalyx on cells (653). Removal of GAGs on cell lines prevents 

efficient infection by RSV, demonstrating their importance. However, it is unknown how 

important they are in vivo. RSV has also been shown to bind annexin II and L-selectin 

though, again, how important this is to viral growth in vivo is unclear (654).  

The RSV genome replicates within the cytoplasm of the cell, creating a positive-sense 

complimentary genome sequence for the polymerase complex to generate new negative-

sense genome sequences for packaging prior to viral budding from the cell. Individual RNA 

sequences are used to generate new proteins using hijacked cellular machinery. During this 

process RSV generates reactive oxygen intermediates (ROIs) that drive NF-κB activation and 

production of pro-apoptotic factors within the cell (655,656) [Fig.9; (657)]. NF-κB is a critical  
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Figure 9. RSV binding, replication, and triggering of innate immunity. RSV binds to the surface of the 
mucociliary epithelium via multiple receptors including TLR4 and glycosaminoglycans. Upon binding and 
entry the virus replicates, generating reactive oxygen species that activate NF-κB-mediated pathways. These 
include production of type I interferons and several chemokines that create an anti-viral state and recruit 
innate cells that produce downstream mediators (taken from Openshaw PJ et al. Clin Microbiol Rev 2005 18 
541). 
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mediator of many innate genes that drive the anti-viral response including the interferons 

and many chemokines (658,659). These chemokines recruit innate cells to the lung tissue 

and airways and the production of more pro-inflammatory mediators. For example, IL-8 

drives neutrophilia (660). Several of these chemokines [e.g. MIP-1α (661), CCL11 (662), and 

CCL5 (663)] have been shown to be central mediators of severe disease as their depletion or 

blockade reduces disease severity. CCL5 may be particularly important because genetic 

polymorphisms that regulate chemokine signalling correlate with disease severity in humans 

(664). IL-9 is also of interest in RSV bronchiolitis as it is crucial to the development of Th2 

responses (573) and asthma (566,665), and neutrophils have recently been identified as a 

significant source (666). 

Newly-formed virions bud from the luminal surface of infected cells and spread to 

neighbouring cells by cilial motion and by syncytia formation (650). 

 

3.1.6. The immune response to RSV infection 

An overview of the immune response to RSV infection is shown [Fig.10; (657)]. The innate 

response against RSV infection begins prior to the first round of viral replication. Upon viral 

entry, surfactant proteins act to bind virions and prevent viral entry (667). They also label 

the neutralised virions for destruction by professional phagocytes such as macrophages and 

neutrophils. Following RSV infection, macrophages produce a range of pro-inflammatory 

mediators [e.g. type I IFN (668)] that recruit other innate cells (102). They are also important 

for clearing cellular debris that may contain infectious virus (669). One such cell type 

recruited early after RSV challenge is the NK cell that infiltrates the airway and lung tissue.   
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Figure 10. An overview of innate and adaptive immunity to RSV. RSV infects the mucociliary epithelium 
initiating soluble mediator release (e.g. TNF, CCL5 CCL11) that recruits innate cells. Such cells include NK 
cells, neutrophils, and macrophages. At this time DCs ingest viral antigens and migrate to the draining lymph 
nodes where they present processed antigens to naïve T cells. Activated T cells proliferate and migrate to 
the lung tissue and airways where they release more soluble mediators and kill infected cells. CD4 T cells 
induce B cell activation, infiltration, and antibody production(taken from Openshaw PJ et al. Clin Microbiol 
Rev 2005 18 541). 
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These cells are crucial to optimal protection as they produce significant amounts of IFN-γ 

that promotes Th1 differentiation of T cells to drive more effective anti-viral immunity, and 

are directly cytotoxic to virally-infected cells, reducing viral replication (670). Neutrophils are 

also recruited early after challenge and as professional phagocytes may also be important 

for clearing debris from the airways, reducing inflammation (671). Although fewer in 

number eosinophils may also aid in viral clearance and tissue repair (672). Finally, DCs are 

an important early source of IL-12 that aids development of a Th1 response, and ingest viral 

antigen for presentation to naïve T cells in the draining lymph nodes, initiating the adaptive 

immune response (101). 

Although antibodies are considered essential for long-term protection from infection, T cells 

are thought to be more important for viral clearance upon challenge. This is clear from 

studies in T-cell-depleted mice (332), and in humans deficient in T cells, or with defective T 

cell function (673). Viral replication continues in these hosts significantly longer than in T cell 

competent individuals. CD8 T cells are considered to be the central mediators of viral 

clearance because of their cytotoxic effector function (674). However even with CD4 T cell 

help (believed to be mediated by IL-21 secretion) the memory is short-lived (675). The host 

may also actively down regulate the cytotoxic activity of CD8 T cells in order to minimise 

lung damage (676). 

The most extensive studies of adaptive immune responses during RSV infection have been 

performed in rodent models of augmented disease. In particular, the Formalin-Inactivated-

RSV (FI-RSV) model is the best studied as it accurately replicates what occurred in a now 

infamous vaccine trial conducted in 1966-7 (677). In this trial, FI-RSV was administered to 

infants and children between two months and nine years of age, vaccine doses were 
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separated by 1-3 months to ensure adequate boosting of the immunological memory. 

Control children were given a parainfluenza vaccine. Upon exposure to RSV, the rate of viral 

infection was similar between the two groups, suggesting that there was no antibody-

mediated protection of the vaccines. However, whereas only 5% of the control vaccines 

required hospitalisation, 80% of the FI-RSV-vaccinated children required hospitalisation. 

These children presented with severe symptoms of bronchiolitis, bronchitis, rhinitis, and 

pneumonia. Tragically, two of these patients died (678). Postmortem analysis showed a 

significant cellular infiltrate in the lungs of these two children, comprising a mixture of 

lymphocytes, neutrophils, and eosinophils. The fact that there was no increase in viral 

replication indicated in these children suggests that it was the immunopathological 

response rather than direct effects of the virus that killed them (679). Serum analysis 

indicated that while high titres of anti-F- and anti-G-specific antibodies were produced by all 

the FI-RSV vaccines, they were non-neutralising and therefore not protective (680). 

Subsequent animal studies have confirmed that T cells (and not antibodies) are the cause of 

the pathology as their depletion ablates disease severity (681). Moreover, further analysis 

revealed that the immune response was Th2 in phenotype as there was a significant 

increase in production of IL-4, IL-5, and IL-13, and was mediated by CD4 T cells (682). 

More recent prime-challenge studies, using vaccinia vectors expressing individual RSV 

antigens to prime mice, have better elucidated the immune responses induced by each RSV 

antigen. A particularly interesting result from these studies is that priming with the RSV G 

protein promotes a CD4-T-cell-mediated Th2-biased memory. Upon RSV challenge, these 

primed mice develop a Th2 CD4 T cell response with a pulmonary eosinophilia, as observed 

in FI-RSV studies (683). This is the only protein known to elicit this response as RSV F protein 
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drives a Th1 memory comprising both CD4 and CD8 T cells (684), and RSV M2 protein drives 

a Tc1 CD8 T cell memory (685). Further studies on the immunological properties of RSV G 

protein demonstrated that priming with the secreted form of G protein only elicited a 

stronger Th2 response and pulmonary eosinophilia than the membrane-bound form (686). 

Moreover, using deletion mutants of RSV G protein, a 13-amino acid sequence of the 

receptor binding site has been identified as responsible for the Th2 response and pulmonary 

eosinophilia (687). Interestingly, this region is essential for the attachment function of RSV G 

protein as the sequence is heavily conserved between RSV strains. Therefore, based on 

these studies it is believed that the secreted form of RSV G protein and its receptor binding 

site are fundamental to any causative properties RSV may possess in predisposing 

individuals to asthma and allergy. 

While Th2-biased CD4 T cells promote pulmonary eosinophilia, adoptive transfer of Tc1 CD8 

T cells inhibits it (688). Moreover, depletion of CD8 T cells promotes pulmonary eosinophilia 

in mouse strains normally resistant to eosinophilic responses (689). This suggests that the 

CD4:CD8 T cell balance plays a crucial role on multiple aspects of the immune response to 

RSV including the level of disease severity, viral clearance, cytokine production, and 

pulmonary eosinophilia.     

There is strong evidence that long term protection against rechallenge with antigenically-

syngeneic RSV strains is mediated by neutralising antibodies against the surface fusion and 

attachment proteins of RSV (675). To confirm this, it was demonstrated that passive transfer 

of serum from previously infected animals into naïve recipients protects them against RSV 

infection (690). This fact has been utilised clinically by the prophylactic use of Palivizumab to 

protect high-risk infants from RSV challenge (649). Mucosal IgA is also thought protect 
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against rechallenge but local levels decrease with time and serum antibodies are considered 

a more reliable marker of protection. However, serum antibodies enter the respiratory tract 

by passive transudation, an inefficient process that requires a high serum antibody 

concentration before significant protection is achieved (691). Therefore, long-term 

protection may depend upon a combination of locally-derived virus-specific IgA ‘topped up’ 

by passive transudation of virus-specific serum IgG1 and IgG2a antibodies. 

 

3.1.7. Immunological challenges to vaccine design 

In the half-century since the discovery of RSV many vaccine candidates have been designed, 

including killed or attenuated virus, purified RSV proteins, viral nanoparticles, virus-like 

particles (VLPs; particles that mimic virion structure but lack genetic material), virosomes 

(vesicles carrying virus-derived proteins but lacking genetic material), and replication-

competent and -incompetent vectors carrying RSV genes. While many of these have shown 

promise in small animal models this has not translated into larger animal models or humans.  

This disappointment has led to a certain hesitation when interpreting data from small 

animal models. There are obvious limitations testing RSV vaccines in rodent models, given 

their genetic, structural, and immunological differences. Therefore, larger animal models 

such as non-human primates are desirable but costly, lengthy, and ethically complex. 

Moreover, while human trials are ultimately essential only those in healthy adults and the 

elderly are undertaken with any frequency. This is because trials in babies and infants are 

avoided given the terrible consequences of the ‘Lot 100’ FI-RSV trial in the 1960s. Therefore, 

vaccine candidates are only tested in this group when all other possibilities have been 

exhausted. However, interpretation of trial results from previously-infected adults with 
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fully-developed immune systems may not translate into infants with immature immune 

systems (692). 

There is general agreement that a successful RSV vaccine must elicit memory from CD4 & 

CD8 T cells as well as B cells in order to maximally protect the host from re-infection. Some 

vaccine studies, where only one of these populations has been activated, would support this 

idea. However, there is a clear correlation between the ‘amount’ of lymphocytic memory 

generated and the development of pathology. This pathology is multi-factorial: antibodies 

from B cells generate immune complexes that activate NK cells, phagocytes, and fix 

complement; while CD4 T cells secrete pro-inflammatory cytokines such as IFN-γ and TNF, 

and CD8 T cells kill host cells via cytotoxic molecules such as perforin, granzymes, TRAIL, and 

TNF. Despite knowing this, it is proving incredibly difficult to tease apart the immune system 

components necessary for long-lived, effective protection from those that cause pathology. 

This is made more complex by the presence of maternal antibodies in infants, the clinically 

most significant population. It may be that protection and pathology are intrinsically-linked, 

in which case it will be necessary to reduce pathology while maintaining effective protection 

(692). 

 

4. Background to the project 

The most significant clinical burden caused by RSV disease is infection of the very young or 

very old. In infants, where the immune system is still relatively immature, RSV infection 

causes mucus plugging of the airways, destruction of the airway and bronchial epithelium, 

and exacerbation of pre-existing asthmatic conditions. In the elderly where there is stronger 
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cellular immunity, particularly lymphocytic memory, there is increased immune complex 

deposition, cellular influx, and extensive destruction of the airway and bronchial epithelium. 

Both these responses lead to significantly reduced lung function, and compromised gas 

exchange, leading to breathing difficulties, and possible need for hospitalisation. Therefore, 

there is an urgent need to limit the destruction of the epithelium, and prevention of 

breathing problems, without compromising viral clearance. Activated, cytotoxic CD8 T cells 

are primarily responsible for destruction of the epithelium and are therefore the natural 

target for therapeutic intervention. However, CD8 T cells are crucial to viral clearance and so 

their depletion is ill-advised. Therefore, limiting CD8 T cell activation and effector function 

may inhibit epithelial cell destruction without significantly compromising viral clearance. 

Multiple factors affect CD8 T cell activation and effector function (e.g. IL-2, IL-15, IFN-γ) but 

are considered too important to the development of an effective anti-viral response to be 

ablated.  

Another γc chain cytokine family member expressed during respiratory viral infections is IL-

21. Increased expression has also been observed in emphysema patients and correlates with 

T cell influx into the airway, suggesting they are the major source. The IL-21R protein is 

expressed by epithelial cells, macrophages, DCs, and numerous lymphocytes and is 

increased in various inflammatory conditions. However, most importantly, CD8 T cell 

activity, particularly cytotoxic functions are enhanced by IL-21 exposure. This has been 

demonstrated in intestinal disease, including IBD, but it has never been tested if IL-21 can be 

targeted to reduce lung CD8 T cell activity and effector function. This is a particularly 

attractive possibility as CD8 T cell proliferation is driven mainly by IL-2 and IL-15, therefore 

sufficient CD8 T cell activity may remain after IL-21 depletion to effectively clear the virus 
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without leading to excessive epithelial cell damage. Therefore, the major aim of this study 

was to determine if IL-21 modulation could alleviate RSV disease without compromising 

viral clearance.    

 

5. Hypothesis 

IL-21 enhances the cytotoxic effector functions of infiltrating CD8 T cells responding to RSV 

challenge, leading to detrimental epithelial cell damage and increased RSV disease. 

 

6. Study aims and objectives  

1. To determine the effect of IL-21 depletion on the primary CD8 T cell response to RSV 

challenge. 

2. To determine the effect of IL-21 depletion on memory CD8 T cell responses to RSV 

challenge. 

3. To determine the effect of IL-21 over expression on primary and memory CD8 T cell 

responses to RSV challenge.   
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G. Materials and Methods 

 

1. Hep-2 cells 

Hep-2 cells (American Type Culture Collection; LGC Standards, Middlesex, UK) is a larynx 

epidermoid carcinoma derived from adult human tissue. When healthy, it propagates 

adherently. However, recent studies have indicated that it may contain a contaminant: Hela 

(Henrietta Lacks: the patient that these cervical cells were isolated from) cells, a cervical 

adenocarcinoma that is indistinguishable from Hep-2 cells (693,694). 

 

2. Viruses  

Respiratory Syncytial Virus (RSV) A2 strain was used in this study. The original stocks were 

donated by E.J.Stott (Institute for Research on Animal Diseases, Newbury, UK), and 

propagated thereafter in-house. The Recombinant RSV strain that encoded the murine il21 

gene was donated by Peter Collins (National Institute of Allergy and Infectious Disease, 

Bethesda, USA). 

Recombinant vaccinia viruses (rVV; Western Reserve strain) were used to prime memory T 

cell populations in BALB/c mice against individual RSV proteins. rVV-βgal (recombinant 

vaccinia virus expressing β-galactosidase) was donated by SmithKline Beecham Biologicals. 

rVV-G and rVV-M2 were donated by Professor Gail Wertz (University of Alabama, 

Birmingham, USA) and stored at -80C. All virus preparations were propagated in-house, as 

well as tested and confirmed to be free of mycoplasma (Gen-Probe, San Diego, CA). 
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3. Growth of virus stocks 

Hep-2 cells (5×106/flask) were propagated in 175cm2 flasks in 25ml supplemented RPMI 

1640 medium [Roswell Park Memorial Institute 1640 medium (Invitrogen, Paisley, UK) 

supplemented with heat-inactivated foetal bovine serum (FBS; 10% v/v; Invitrogen, Paisley, 

UK), L-glutamine (2nM; Invitrogen, Paisley, UK), penicillin G (100U/ml; Invitrogen, Paisley, 

UK), streptomycin sulphate (100µg/ml; Invitrogen, Paisley, UK)].  The cells were monitored 

daily until ~75% confluent. The media was removed and the cells washed by exposure to 

25ml FBS-free-RPMI 1640 twice to remove remaining FBS which interferes with viral binding 

to cells. FBS-free media was removed and the cells exposed to 5ml FBS-free-RPMI 1640 

containing RSV [Multiplicity of Infection (MOI): 0.01]. The flasks were incubated at 37°C/5% 

CO2 for 90mins and rotated every 15mins by 90° to ensure equal exposure of all cells to 

virions. A control flask was also used in which cells were exposed to serum-free RPMI 1640 

medium only. After 90mins, 15ml of the original media was re-added back to each flask to 

ensure survival of the cells. All flasks were incubated at 37°C/5% CO2 and monitored daily 

for signs of viral growth (i.e. CPE: cytoplasmic effect, cells ‘bleb’ and detach from the surface 

of the flask as the virus replicates and buds from the cells). The cells were harvested when 

~75% show signs of CPE. To harvest the virus, first remaining adherent cells are detached 

from the flask by scraping them with a cell scraper. 1ml medium aliquots are then 

immediately transferred into 1.8ml cryovial tubes and snap-frozen in liquid nitrogen. The 

vials are then transferred to liquid nitrogen tanks for long-term storage.  

Propagation of vaccinia virus stocks was performed in an identical manner except the 

medium is transferred into 200µl eppendorf tubes in 100µl aliquots and stored at -80°C. 
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4. Titration of virus stocks 

For titration of both RSV and vaccinia virus stocks, Hep-2 cells (5×105/well) were seeded into 

6-well plates in 5ml supplemented RPMI 1640 medium and incubated at 37°C/5% CO2 

overnight. The media was then removed and the cells washed with 3ml serum-free RPMI 

1640 twice. Test virus stocks were diluted in a ten-fold dilution series in serum-free RPMI 

1640 medium from 10-1 to 10-7. A viral stock of known viral titre was used as a positive 

control, and serum-free RPMI-1640 medium as a negative control. 1ml of each virus dilution 

is added to a well and each dilution is tested in duplicate wells. The plates are incubated at 

37°C/5% CO2 for 90mins, during which the plates are rotated every 15mins by 90° to ensure 

equal exposure of the cells to virions.  

For titration of RSV stocks, after 90mins 2ml of the original media is re-added to the wells to 

ensure cell survival. The plates are then monitored every 24hrs for signs of syncytia 

formation (fusing of plasma cell membranes to form ‘giant’ multi-nucleated cells), typically 

up to a maximum of 48hrs. Once syncytia formation is observed, the media is removed, the 

cells washed with Phosphate-buffered-saline [PBS: NaCl (137mmol/l), KCl (2.7mmol/l), 

Na2HPO4•2 H2O (10mmol/l), KH2PO4 (2mmol/l), pH 7.4] twice to remove residual serum, and 

the cells fixed in 1ml methanol containing H2O2 (2% v/v) for 20mins. The methanol was 

removed and the cells washed twice in 3ml PBS/BSA (1% w/v). Cells were stained for RSV 

antigen expression by exposing them to 1ml biotinylated goat anti-RSV antibody (AbD 

Serotec, Kidlington, UK) diluted 1:200 (20µg/ml) in PBS/BSA (1% w/v). The cells were 

incubated for 1hr at room temperature. The cells were washed twice with PBS/BSA (1% 

w/v), and then stained with 1ml Extravidin-HRP (Sigma-Aldrich, Gillingham, UK) diluted 

1:500 in PBS/BSA (1% w/v). The cells were incubated for 30mins at room temperature. The 
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cells were washed twice with PBS/BSA (1% w/v), and then stained with 1ml AEC substrate 

[3-amino-9-ethylcarbozole (3.3mg/ml in DMSO), H2O2 (2µl/ml in citrate phosphate buffer); 

Sigma-Aldrich, Gillingham, UK]. The cells were incubated in the dark and monitored for the 

development of insoluble red staining on infected cells expressing RSV antigens. Once the 

negative control cells showed signs of colour development (via non-specific staining of 

extravidin-HRP) the cells were washed with PBS to remove the substrate and plaques 

counted in each well. The pfu/ml was calculated as follows: number of plaques × virus 

dilution factor. 

For titration of vaccinia virus stocks, after 90mins the cells were washed with PBS and cells 

were overlayed with 1ml low-boiling point agar solution (0.75% w/v; Sigma-Aldrich, 

Gillingham, UK). The cells were incubated at 37°C/5% CO2 for a minimum of 48hrs. After this 

time, the wells are monitored for the presence of plaques (holes in the monolayer where 

cells have lysed due to viral replication and budding). If none are present the wells are re-

incubated under the same conditions and monitored daily until plaques appear. Once 

plaques are present the agar is carefully removed and the cells fixed with 1ml methanol 

containing H2O2 (2% v/v) for 20mins at room temperature. The cells are washed twice with 

PBS and the cells stained for 5mins with 1ml crystal violet solution (1mg/ml; Sigma-Aldrich, 

Gillingham, UK). The cells are washed once in PBS to remove excess crystal violet and the 

plaques counted in each well using a light microscope. The pfu/ml was calculated as follows: 

number of plaques × virus dilution factor. 
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5. Testing of virus stocks for mycoplasma contamination 

Prior to use, sample vials of all virus stocks were tested for mycoplasma contamination, a 

minimum of three randomly-chosen vials per stock were tested. An enzyme immunoassay 

was used for the detection of four serologically-distinct strains of mycoplasma (M.arginini, 

M.hyorhinis, A.laidlawaii, and M.orale) according to the manufacturer’s instructions.  

Virus stocks to be tested were thawed and 2ml of each diluted with 0.5ml sample buffer. 

200µl of the coating antibodies for the four mycoplasma strains was coated into duplicate 

wells on a microplate. The plate was sealed with cling film and incubated for 2hrs at room 

temperature. The coating antibody solution was removed by banging the plate dry onto 

paper towel and the wells blocked by adding 200µl of blocking buffer [PBS/BSA (1% w/v)]. 

The plates were sealed with cling film and incubated for 2hrs at room temperature. The 

wells were washed three times with wash buffer [PBS/Tween20 (0.05% v/v)] and dried on 

paper towel. 200µl of each sample plus negative and positive controls was then pipetted 

into duplicate wells. The plate was then sealed with cling film and incubated overnight at 

4°C. Wells were washed three times with wash buffer and dried on paper towel. 200µl of 

the relevant biotinylated detection antibodies were added into the relevant wells, the plates 

sealed with cling film, and then incubated for 2hrs at room temperature. The plates were 

washed three times with wash buffer and dried on paper towel. 200µl of streptavidin-

alkaline phosphatase was added to all wells, the plates sealed with cling film, and incubated 

for 1hr at room temperature. The plates were washed four times with wash buffer and dried 

on paper towel. 200µl of substrate solution was added to all wells, the plates sealed with 

cling film and incubated at room temperature in the dark. The plates were monitored for 

colour development and once colour was detected in the negative wells the plates were 
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read on a microplate reader (Molecular Devices, Wokingham, UK) using a reference 

wavelength of 405nm. Readings could be accurately determined down to and optical 

density (OD) value of 0.2.   

 

6. Mice 

All mice used in this study were eight-week-old female BALB/c (BALB/cAnNCrl strain; H-2d 

haplotype) mice purchased from Harlan Olac (Bicester, U.K.). They were kept in specific 

pathogen-free conditions, housed in individually-ventilated cages, according to institutional 

and UK Home Office guidelines. All protocols used in this study were reviewed and approved 

by local ethics, safety, and regulatory committees and licensed by the UK Home Office.  

 

7. Mouse infection and treatment 

For cutaneous infection with recombinant vaccinia virus (rVV), mice were first anaesthetised 

using an isofluorane chamber and their rumps shaved with clippers to expose the skin. The 

skin was then decornified using an emery board until there was a visible abrasion, and rVV-

βgal, -G or -M2 [10l, 106 pfu; (695)] applied to the decornified area with a pipette. The viral 

inoculum was rubbed into the skin to ensure optimal exposure. The mice were replaced into 

the cages and left to recover from the anaesthetic. They were then left for 10 days for the 

lesion to develop, and were monitored daily during this time to ensure no abnormalities 

with regard to lesion development or mouse health occurred. By 14 days post infection the 

lesions were healed and the mice were challenged with RSV. 
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For RSV challenge, mice were first anaesthetised using an isofluorane chamber. The mice 

were then held upright by clamping the neck between the thumb and fore-finger such that 

the nose of the mouse was upright. RSV inoculum (100µl; 106 pfu) was then slowly pipetted 

onto the nose sealing the nostrils. Once the mouse had inhaled the drop it was replaced 

with another and the process continued until the inoculum had been fully inhaled. The 

mouse was then placed carefully in the cage and left to recover from the procedure. 

 

8. Antibody administration 

Some mice were treated with rabbit anti-mouse-IL-21 polyclonal antibody (Novo Nordisk, 

Copenhagen, Denmark) to deplete endogenous IL-21. This treatment was performed one 

day prior and one day post cutaneous infection with vaccinia virus. To do this stock anti-IL-

21 antibody (15mg/ml) was diluted to the required concentration (typically 1mg/ml, though 

for in vivo antibody titration experiments this was 0.02, 0.04, 0.1, 0.2, 0.4, or 1mg/ml) in 

PBS. Mice were restrained via the neck, back, and tail in one hand and 0.5ml of anti-IL-21 

antibody injected, using a 2.5ml syringe (Becton Dickinson, Oxford, UK) with a 27G needle 

(Becton Dickinson, Oxford, UK) attached, into the peritoneum. Once the antibody had been 

administered, the mice were replaced in the cage.  

 

9. Mouse weighing 

Mice were weighed daily after RSV challenge. Mouse cages are only opened, and mice are 

only ever handled, inside a microbiological safety cabinet. Mice were therefore weighed by 

placing them individually into a plastic container which was sealed with a lid. Weight is 
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expressed as a percentage of the day 0 weight for each mouse. This removes any inherent 

bias due to some mice being inherently larger than others, and normalises the data for all 

mice.   

 

10. Mouse euthanasia 

In order to harvest samples from mice they must be euthanized in such a way as to minimise 

distress of the animal without affecting the organs of interest. To do this, mice were 

injected with pentobarbital (3mg/mouse; i.p). The mice were then placed in a sealed box for 

the drug to take effect. Once the animal is unconscious it is pinned to a cork board via its 

legs and swabbed with ethanol (70% v/v). The skin is then cut away to reveal the femoral 

arteries. These arteries are then severed to ensure terminal blood loss such that the animal 

cannot recover. 

 

11. Tissue recovery 

Once mice are euthanized, the skin is cut from the genitals to the neck. The skin is then 

pinned down at the neck to the cork board to allow it to be peeled back. The mouse is 

swabbed with ethanol (70% v/v) and the peritoneal lining cut away to expose the digestive 

organs, spleen and diaphragm. The spleen can be carefully cut from surrounding connective 

tissue and placed into a macerator tube (Miltenyi Biotec, Bisley, UK) containing 5ml 

supplemented RPMI 1640 medium and placed on ice.  

The diaphragm is then carefully punctured at the point where the heart is visible. This  
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ensures that the lungs are not pierced which is important for acquiring bronchoalveolar. 

The diaphragm is then carefully punctured at the point where the heart is visible. This 

ensures that the lungs are not pierced which is important for acquiring bronchoalveolar 

lavage fluid (BALF) samples.  The diaphragm is then carefully cut away which will allow the 

lungs to inflate during the lavage process. 

The tissue covering the trachea is then carefully removed without piercing the trachea itself. 

A horizontal incision is then made with a scalpel blade in the trachea itself between two 

cartilage rings approximately half-way up the trachea. 1.5ml of lavage buffer [PBS/BSA (1% 

w/v)/EDTA (2mM)] is then administered into the lungs through the incision using a 2.5ml 

syringe, with a 27G needle covered by 2cm of 3mm diameter plastic tubing. The fluid is 

withdrawn and the process repeated. Once the fluid has been recovered a second time, it is 

placed into a 15ml conical tube and placed on ice. 

Once the BALF has been recovered the lungs can be removed. The rib cage is cut away 

either side of the lung tissue. The lungs are then teased away from the heart and 

mediastinal lymph nodes using tweezers and carefully cut away using scissors. The tissue is 

placed into a macerator tube (Miltenyi Biotec, Bisley, UK) containing 5ml supplemented 

RPMI 1640 medium and placed on ice. 

 

12. Organ processing and cell recovery 

Lavage cells are recovered by centrifuging BALF at 770g for 2mins and decanting the BALF 

into 2ml eppendorf tubes. These tubes are sealed and stored in plastic bags at -80°C for 
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further analysis. The pelleted cells are resuspended in 1.3ml of lavage buffer and stored on 

ice for staining for flow cytometry. 

Lung cells and spleen cells are recovered by first macerating them using a GentleMacsTM 

dissociator (Miltenyi Biotec, Bisley, UK). Lungs were macerated for 45s, spleens for 20s. The 

cell suspension was then poured through a 100µm filter (Sartorius, Epsom, UK) into a 50ml 

conical tube. Tissue pieces were pressed through the filter using the plunger from a 2.5ml 

syringe. Remaining cells in the macerator tube were washed out with 5ml supplemented 

RPMI 1640 medium through the filter into the 50ml tube. This was repeated for all samples. 

The filtered samples were closed and centrifuged at 770g for 2mins and the supernatant 

decanted into waste. Red blood cells (RBCs) were now lysed by resuspending the remaining 

cells in 5ml RBC lysis buffer (eBioscience, Hatfield, UK). The cells were vortexed, left to stand 

for 2mins, and then vortexed again to ensure equal cell distribution. After 2mins, 5ml 

supplemented RPMI 1640 medium was added to each sample and vortexed again. The 

samples were centrifuged again at 770g for 2mins, the supernatant decanted, and 

remaining cells resuspended in 20ml supplemented RPMI 1640 medium. The cells were then 

counted by Trypan blue exclusion assay. 

 

13. Trypan blue exclusion assay 

To count cells by trypan blue exclusion, 50µl trypan blue solution (0.4% v/v; Invitrogen, 

Paisley, UK) was pipetted into wells of a 96-well, v-bottomed plate. 50µl of each cell sample 

were added to individual wells and mixed to ensure equal exposure of cells to trypan blue. 

10µl of each sample was immediately pipetted in-turn into a CountessTM cell counting slide 
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chamber (Invitrogen, Paisley, UK). The chamber was then inserted into a digital CountessTM 

machine and counted. Duplicate counts were taken for each sample and an average taken. 

 

14. Staining and flow cytometric analysis of surface antigens 

Cellular phenotyping was performed on BALF, lung, and spleen cells by flow cytometry as 

described (695). Cells (1×106/well) were transferred into 96-well, v-bottomed plates and 

washed in FACS staining buffer [PBS/BSA (1% w/v)/EDTA (2mM)/NaN3 (0.1% w/v)]. Cells 

were then stained with 50µl αCD16/32 antibodies (10μg/ml; Fc block; Becton Dickinson, 

Oxford, UK) diluted in FACS staining buffer. Cells were incubated at 4°C for 20mins. Cells 

were then stained against cell surface proteins that identify cell subsets and other markers 

of interest (e.g. activation). A list of all proteins stained for by specific monoclonal 

antibodies and the relevant isotype control antibodies used are listed (Table 2). All 

antibodies were titrated prior to use within a dilution range of 1:100-1:12000 using spleen 

cells from naïve mice. Typically, a dilution of 1:200 was found to be optimal for a significant 

distinction between negative (MFI: <101) and positive (MFI: >103) populations. The relevant 

antibodies were diluted together in FACS staining buffer and 50µl of each cocktail was 

added to relevant wells without washing them. The cells were shaken on a plate-shaker to 

ensure mixing of cells and antibodies, and then they were incubated at 4°C for 45mins. The 

plates were centrifuged at 770g for 2mins and the supernatants removed using a multi-

channel pipette. The cells were washed in 200µl PBS to remove any remaining BSA and 

centrifuged again at 770g for 2mins. The supernatants were removed using a multi-channel 

pipette and the cells fixed by adding 100µl PBS/paraformaldehyde (4% v/v). The cells were 

resuspended on a plate-shaker and incubated at 4°C for 20mins. The plates were then 
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centrifuged at 770g for 2mins and the supernatants removed using a multi-channel pipette. 

The cells were then washed with 200µl FACS staining buffer, centrifuged at 770g for 2mins, 

and the supernatants removed using a multi-channel pipette. The cells were finally 

resuspended in 200µl FACS staining buffer and taken for analysis. For all samples, at least 

50×103 cells were collected on a Dako Cyan flow cytometer. Analysis was performed using 

FlowJo v3.1.2. 

 

15. Staining and flow cytometric analysis of intracellular antigens 

Cytokine production by individual lung and spleen cell types was determined by intracellular 

staining of cells stimulated with a polyclonal stimulus. To achieve this, cells (2×106/sample) 

were stimulated with either nothing or αCD3/28-expressing beads [50µl/well (2×106 beads); 

Invitrogen, Paisley, UK] in a final volume of 1ml supplemented RPMI 1640 medium in a 48-

well flat-bottomed plate. The cells were incubated at 37°C/5% CO2 for 24hrs, and then the 

supernatants carefully transferred into an empty 48-well plate without disturbing the cells. 

The supernatants are then stored at -80°C for further analysis. 

The remaining cells are resuspended in 0.5ml of supplemented RPMI 1640 medium 

containing PMA (100ng/well; Sigma-Aldrich, Gillingham, UK), Ionomycin (1µg/well; Sigma-

Aldrich, Gillingham, UK) and brefeldin A (1µl/well; Becton Dickinson, Oxford, UK). PMA is a 

phorbol ester and Ionomycin a calcium ionophore that stimulate cells in a polyclonal 

manner. Brefeldin A is a lactone antibiotic produced by Eupenicillium brefeldianum. It 

inhibits protein transport from the endoplasmic reticulum to Golgi apparatus, thus 

preventing release of any cytokines produced by stimulated cells. The cells are incubated for 
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a further 4hrs, the cells resuspended, and transferred into a 96-well, v-bottomed plate. 

Typically for staining for intracellular cytokines, each sample was split into two wells: one for 

assaying cytokine production by CD4 T cells and one for CD8 T cells. The cells were then 

centrifuged at 770g for 2mins and the supernatant removed using a multi-channel pipette. 

The cells were washed with FACS staining buffer, centrifuged at 770g for 2mins, the 

supernatant removed using a multi-channel pipette, and cells stained for surface antigens of 

interest as described in section 14. After fixation and washing of the samples, the cells were 

permeabilised by resuspending them in 50µl FACS staining buffer containing 

permeabilisation solution (1:10 dilution; Becton Dickinson, Oxford, UK). The 

permeabilisation solution contains saponin (a plant-derived amphipathic glycoside) that 

allows macromolecules (in this case antibodies) to pass through plasma membranes. The 

cells were shaken on a plate-shaker and incubated at 4°C for 20mins. Cells were then 

stained for the cytokine or transcription factor of interest. A list of all proteins stained for by 

specific monoclonal antibodies and the relevant isotype control antibodies used are listed 

(Table 2). All antibodies were titrated prior to use as described in section 2.14. The relevant 

antibodies were diluted together in FACS staining buffer containing permeabilisation 

solution and 50µl of each cocktail was added to relevant wells without washing them. The 

cells were shaken on a plate-shaker to ensure mixing of cells and antibodies, and then they 

were incubated at 4°C for 45mins. The plates were centrifuged at 770g for 2mins and the 

supernatants removed using a multi-channel pipette. The cells were washed in 200µl FACS 

staining buffer, the cells centrifuged at 770g for 2mins, and the supernatant removed using 

a multi-channel pipette. The cells were finally resuspended in 200µl FACS staining buffer and 

taken for analysis. For all samples, at least 50×103 cells were collected on a Dako Cyan flow 

cytometer. Analysis was performed using FlowJo v3.1.2. 
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Table 3. Details of fluorochrome-conjugated antibodies and isotype controls utilised in this study  

     Antibody specificity Clone Isotype Fluorochrome Company 

B220 RA3-6B2 Rat IgG2a PE-Cy5.5 Biolegend 

CCR3 83101 Rat IgG2a PerCP R&D Systems 

CD4 GK1.5 Rat IgG2b Pacific Blue Biolegend 

CD8 53-6.7 Rat IgG2a Pacific Blue 
Becton 

Dickinson 

CD11b M1/70 Rat IgG2b Pacific Blue Biolegend 

CD11c N418 
Armenian Hamster IgG 

λ2 APC 
Becton 

Dickinson 

CD19 6D5 Rat IgG2a FITC Biolegend 

CD27 LG.3A10 Armenian Hamster IgG PE Biolegend 

CD40 3.23 Rat IgG2a APC Biolegend 

CD69 310106 Rat IgG2b FITC R&D Systems 

F4/80 BM8 Rat IgG2a PE-Cy5.5 Biolegend 

ICOS C398.4A Armenian Hamster IgG PE-Cy5.5 Biolegend 

ICOSL HK5.3 Rat IgG2a PE Biolegend 

MHCII M5/114.15.2 Rat IgG2b Pacific Blue Biolegend 

NKp46 29A1.4 Rat IgG2a PE-Cy5.5 Biolegend 

OX40 Polyclonal Goat IgG PE R&D Systems 

PD-1 29F.1A12 Rat IgG2a FITC Biolegend 

TCR H57-597 Armenian Hamster IgG PE-Cy5.5 Biolegend 

IFN-γ 37895 Rat IgG2a APC R&D Systems 

IL-17 Polyclonal Goat IgG PE R&D Systems 

FoxP3 FJK-16s Rat IgG2a PE eBioscience 

RORγt B2D Rat IgG1 PE eBioscience 

T-bet 4B10 Mouse IgG1 PE eBioscience 

     Isotype controls: specificity Clone Isotype Flurochrome Company 

KLH RTK2758 Rat IgG2a Multiple Biolegend 

KLH 54447 Rat IgG2a PerCP R&D Systems 

Trinitrophenol + KLH RTK4530 Rat IgG2b Multiple Biolegend 

Mouse pooled 
immunoglobulin R35-95 Rat IgG2a Pacific Blue 

Becton 
Dickinson 

Trinitrophenol + KLH G235-2356 
Armenian Hamster IgG 

λ1 APC 
Becton 

Dickinson 

Trinitrophenol + KLH HTK888 Armenian Hamster IgG Multiple Biolegend 

KLH 141945 Rat IgG2b FITC R&D Systems 

Polyspecific Polyclonal Goat IgG PE R&D Systems 

Unknown Unknown Rat IgG1 PE eBioscience 

Unknown P3.6.2.8.1 Mouse IgG1 PE eBioscience 
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16. In vitro cytokine production by lung and spleen T cells 

Lungs and spleens were harvested and processed as described in section 12, and cells were 

counted using trypan blue exclusion assay as described in section 13. Lung and spleen cells 

(2×106well) were set up in 48-well plates, and set up in culture with media, RSV (MOI 2.0; 

6×106pfu/well), or αCD3/αCD28-coated beads [Invitrogen, Paisley, UK; pre-titrated to 

50µl/well (2×106 beads)] in a final volume of 1ml supplemented RPMI 1640 medium. Cells 

were incubated at 37°C/5% CO2 for 72hrs. After incubation, supernatants were carefully 

removed without disturbing the cells, and stored at -80°C for further analysis. 

In some experiments, cells were stimulated with media or αCD3/αCD28-coated beads 

[50µl/well (2×106 beads)] in a final volume of 1ml supplemented RPMI 1640 medium. Cells 

were incubated at 37°C/5% CO2 for 24hrs. After incubation, supernatants were carefully 

removed without disturbing the cells, and stored at -80°C for further analysis. 

 

17. In vitro cytokine production from sorted lung DCs and CD4 T cells 

Lung cells from control, or IL-21-depleted, rVVG-primed mice were collected as described in 

section 11, processed as described in section 12, and counted as described in section 13. 

CD4 T cells from both groups were MACS-sorted using a positive isolation kit (Miltenyi 

Biotech, Bisley, UK). Lung cells were centrifuged at 770g for 2mins in a 50ml conical tube, 

and the supernatant decanted. The cells were resuspended in 100µl of lavage buffer per 107 

cells, containing αCD16/32 antibodies [1:200 dilution (10µg/ml); Fc block; Becton Dickinson, 

Oxford, UK]. The cells were vortexed to ensure equal exposure of cells to the antibody, and 

were incubated at 4°C for 20mins. The cells were centrifuged at 770g for 2mins, the 
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supernatant decanted, and the cells resuspended in 90µl of lavage buffer per 107 cells, and 

then 10µl of CD4 microbeads per 107 cells added. The cells were vortexed to ensure equal 

exposure of cells to the microbeads, and incubated on ice for 20mins. The cells were 

centrifuged at 770g for 2mins, the supernatant removed and the cells washed in 2ml lavage 

buffer per 107 cells. The cells were centrifuged at 770g for 2mins, the supernatant decanted, 

and the cells resuspended in 0.5ml lavage buffer per 108 cells. The cells were then sorted on 

an autoMACSTM machine on a positive selection programme. A CD4 T cell purity of >90% 

was routinely obtained, as determined by flow cytometry.  

Dendritic cells were FACS-sorted from the remaining lung cells. Cells were centrifuged at 

770g for 2mins and the supernatant decanted. The cells were then resuspended in 100µl of 

lavage buffer per 107 cells, containing FITC-conjugated αCD11c and PE-conjugated αCD11b 

antibodies (1:200 dilution; Becton Dickinson, Oxford, UK). The cells were vortexed to ensure 

equal exposure of the cells to the antibody, and the cells incubated on ice for 30mins. The 

cells were centrifuged at 770g for 2mins, the supernatant decanted, and the cells 

resuspended in 1ml lavage buffer per 107 cells, vortexed, and taken for sorting. Cells staining 

positively for both CD11b and CD11c were collected on a FACS Diva sorter into 5ml FBS to 

ensure maximum cell viability. DC purity of >93% was obtained. Collected DCs were 

centrifuged at 770g for 2mins, the supernatant decanted, and the cells washed in 5ml 

supplemented RPMI 1640 medium. The cells were centrifuged at 770g for 2mins, 

resuspended in 5ml supplemented RPMI 1640 medium, and counted by trypan blue 

exclusion as described in section 2.13.  Once counted, DCs were set up in culture in round-

bottomed 96-well plates (4×104/well), centrifuged at 770g for 2mins, and the supernatant 

removed using a multi-channel pipette. The cells were then resuspended in supplemented 
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RPMI 1640 medium (100µl/well) containing either a non-specific RSV G  negative control 

peptide (p11: G64-78; Cambridge Research Biochemicals, Cleveland, UK ) or antigen-specific 

peptide (p31: G184-198; ProImmune, Oxford, UK; both at 10μg/ml). The cells were 

incubated at 37°C/5% CO2 for 1hr. Sorted CD4 T cells (100µl; 4105 cells/well) were then 

immediately added to each well and the cells incubated at 37°C/5% CO2 for 72hrs. After 

incubation, the supernatants were carefully removed without disturbing the cells, 

transferred into empty round-bottomed 96-well plates, and stored at -80C for further 

analysis. 

 

18. Cytokine sandwich ELISA 

Cytokine levels in supernatants were quantified using sets of paired monoclonal antibodies 

(Duosets; R&D Systems, Abingdon, UK) using the following protocol. ImmunosorpTM ELISA 

plates (VWR, Lutterworth, UK) were coated with 100µl/well of the relevant capture 

antibody (1:200 dilution of stock in PBS), sealed with cling film and incubated at 4C 

overnight. The supernatants were decanted and the wells dried on paper towel. The wells 

were blocked with 200µl of blocking buffer, sealed with cling film, and incubated at room 

temperature for 2hrs. After incubation the wells were washed three times with wash buffer. 

Samples were thawed and vortexed, as well as doubling dilution standard curves prepared 

in ELISA buffer [PBS/BSA (1% w/v)/Tween 20 (0.05% v/v)]. Samples and standards 

(100µl/well) were added to relevant duplicate and triplicate wells respectively, the plates 

sealed with cling film, and incubated at 4°C overnight. A list of standard curve ranges in 

pg/ml is listed (Table 3). The wells were washed four times with wash buffer and relevant  
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Cytokine ELISA Lower limit of standard curve (pg/ml) Upper Limit of Standard Curve (pg/ml)

6kine (CCL21) 15.63 2000

Granzyme B 7.32 15000

IFN-γ 29.3 60000

IL-4 2.44 5000

IL-10 39.06 5000

IL-17 78.13 10000

IL-21 4.88 10000

IP-10 (CXCL10) 15.63 2000

MIP-1α (CCL3) 15.63 2000

MIP-2α (CXCL2) 15.63 2000

MIP-3α (CCL20) 15.63 2000

MIP-3β (CCL19) 15.63 2000

RANTES (CCL5) 4.88 10000

TNF 4.88 10000

Table 3. Cytokine standard curves used for sandwich ELISA 
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detection (biotinylated) antibodies were diluted in ELISA buffer (1:200 dilution of stock) and 

added to relevant wells (100µl/well). The plates were sealed with cling film and incubated at 

room temperature for 1hr. After incubation, the wells were washed four times with wash 

buffer, and avidin-horseradish peroxidase conjugate (Becton Dickinson, Oxford, UK) was 

diluted in ELISA buffer (1:1000 dilution) and added to all wells (100µl/well). The plates were 

sealed with cling film and incubated at room temperature for 30mins. The wells were 

washed five times with wash buffer and then OPD substrate (O-Phenylenediamine; Sigma-

Aldrich, Gillingham, UK) was added (100µl/well; 1mg/ml) and incubated in the dark. The 

wells were monitored for colour development, and once the full range of the standard curve 

could be observed then the reaction was terminated by adding sulphuric acid (2M; 

50µl/well). The plates were read on a microplate reader (Molecular Devices, Wokingham, 

UK) using a reference wavelength of 490nm. The standard curves were used to calculate 

sample concentrations. 

 

19. RSV-specific antibody ELISA 

Levels of RSV-specific IgA, IgE, IgG1, and IgG2a were determined as follows. ImmunosorpTM 

ELISA plates (VWR, Lutterworth, UK) were coated with 200µl/well of RSV antigen or Hep-2 

control lysate (1:500 dilution in PBS), sealed with cling film and incubated at 4C overnight. 

The supernatants were decanted and the wells dried on paper towel. The wells were 

blocked with 200µl of blocking buffer, sealed with cling film, and incubated at room 

temperature for 2hrs. After incubation the wells were washed three times with wash buffer, 

the supernatants decanted, and the wells dried on paper towel. Two-fold dilution series of 

mouse serum (starting at 1:100 dilution) and BALF (starting at 1:4 dilution) samples were 
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prepared in ELISA buffer. A two-fold dilution series of normal mouse serum was also 

prepared and used as a negative control. Negative control samples, serum samples, and BAL 

samples were added to the relevant wells (100µl/well) on the plate, the plates sealed with 

cling film, and incubated at 4°C overnight. All samples were tested in duplicate wells. The 

wells were washed four times with wash buffer and biotinylated mouse IgA, IgE, IgG1, and 

IgG2a-specific antibodies (Becton Dickinson, Oxford, UK) were diluted in ELISA buffer (1:500 

dilution; 1µg/ml) and added to relevant wells (100µl/well). The plates were sealed with cling 

film and incubated at room temperature for 1hr. After incubation, the wells were washed 

four times with wash buffer, and avidin-horseradish peroxidase conjugate (Becton 

Dickinson, Oxford, UK) was diluted in ELISA buffer (1:1000 dilution) and added to all wells 

(100µl/well). The plates were sealed with cling film and incubated at room temperature for 

30mins. The wells were washed five times with wash buffer and then OPD substrate (Sigma-

Aldrich, Gillingham, UK) was added (100µl/well) and incubated in the dark. The wells were 

monitored for colour development, and once colour began to develop at the lowest 

concentration of the samples then the reaction was terminated by adding sulphuric acid 

(2M; 50µl/well). The plates were read on a microplate reader (Molecular Devices, 

Wokingham, UK) using a reference wavelength of 490nm. 

 

20. MACS sorting and adoptive transfer of splenic CD4 T cells 

Mice were immunised with rVV-G and RSV-challenged as described in section 2.7. as well as 

IL-21-depleted (or not) as described in section 2.8. The mice were left for 28d to allow 

memory development and spleens harvested as described in section 2.12. CD4 T cells from 

both control and IL-21-depleted groups were MACS-sorted using a positive isolation kit 
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(Miltenyi Biotech, Bisley, UK). Spleen cells were centrifuged at 770g for 2mins in a 50ml 

conical tube, and the supernatant decanted. The cells were resuspended in 100µl of MACS 

buffer (formulation as for lavage buffer) per 107 cells, containing αCD16/32 antibodies 

[1:200 dilution (10µg) Fc block; Becton Dickinson, Oxford, UK]. The cells were vortexed to 

ensure equal exposure of cells to the antibody, and were incubated at 4°C for 20mins. The 

cells were centrifuged at 770g for 2mins, the supernatant decanted, and the cells 

resuspended in 90µl of MACS buffer per 107 cells, and then 10µl of CD4 microbeads per 107 

cells added. The cells were vortexed to ensure equal exposure of cells to the microbeads, 

and incubated on ice for 20mins. The cells were centrifuged at 770g for 2mins, the 

supernatant removed and the cells washed in 2ml lavage buffer per 107 cells. The cells were 

centrifuged at 770g for 2mins, the supernatant decanted, and the cells resuspended in 

0.5ml lavage buffer per 108 cells. The cells were then sorted on an autoMACSTM machine on 

a positive selection programme. A CD4 T cell purity of >90% was routinely obtained, as 

determined by flow cytometry. Mice were injected with relevant splenic CD4 T cells 

(2.5106/mouse in 0.5ml PBS; i.p) 24h before RSV challenge (1×106pfu/mouse; i.n). 

  

21. Quantification of viral replication and transcription factor gene expression 

To determine viral replication and gene expression in the pulmonary compartment, lungs 

were harvested as described in section 2.11. However, the lungs were placed into a 1.8ml 

cryovial (VWR, Lutterworth, UK) and snap frozen in liquid nitrogen. For processing, lungs 

were transferred into a 7ml bijou (VWR, Lutterworth, UK) containing 1ml RLT buffer 

(Qiagen, Crawley, UK). Lung tissue was then homogenised using a motorised homogeniser 

until no tissue remains. 700l of each sample was pipetteded into RNeasy columns (Qiagen, 
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Crawley, UK) then centrifuged at 9600g at room temperature for 1min. Flow-through in the 

collector tube was discarded. This step was repeated until all of the sample had been passed 

through the RNeasy column. 700l of RW1 buffer (Qiagen, Crawley, UK) was added to the 

column, followed by centrifugation at 9600g at room temperature for 1min. Flow-through 

was discarded. 500l RPE buffer was added to the columns, followed by centrifugation at 

9600g at room temperature for 1min. Flow-through was discarded. This step was repeated. 

The RNeasy columns were transferred to 2ml collection tubes and centrifuged at 9600g at 

room temperature for 1min. The previous collection tubes were discarded. The RNeasy 

columns were transferred to 1.5ml collection tubes and the previous collection tubes were 

discarded. 30l of nuclease-free water was added to the RNeasy columns followed by 

centrifugation at 9600g at room temperature for 1min. This step was repeated resulting in 

60l of RNA in nuclease-free water in the collection tube. The Rneasy columns were 

discarded and the concentration of the eluted RNA was determined using 

spectrophotometry and measured as a concentration of µg/ml. 

Before conversion to cDNA, the RNA samples were diluted with nuclease-free water to the 

concentration of the sample with the lowest concentration. Following these dilutions, 60l 

of each RNA sample was added to 8.6l 10x buffer (Qiagen, Crawley, UK), 8.6l dNTPs 

(Qiagen, Crawley, UK), 4.3l random hexamers (Promega, Southampton, UK), and 4.3l 

reverse trascriptase (Qiagen, Crawley, UK) in 0.2ml eppendorf tubes on ice. The samples 

were then placed in a thermal block at 37C for 1 hour to generate cDNA,  and then stored 

at -20°C. 

Viral replication was measured as the number of L gene copies expressed in the lung. They 

were measured against standard plasmids (107 to 101 copies) and a non-template control. 
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100ng cDNA was used per reaction in 96-well FAST reaction plates (Applied Biosystems, 

Paisley, UK) with the following reagents: 2× mastermix (Qiagen, Crawley, UK), Forward L 

gene primer (900nM; Invitrogen, Paisley, UK), Reverse L gene primer (300nM; Invitrogen, 

Paisley, UK), and L gene probe (100nM; Invitrogen, Paisley, UK) in a 20l total volume. The 

same machine and conditions were used to measure L gene expression as described above 

for transcription factor gene expression. The data were analysed and a L gene copy number 

was determined using the standard curve that was run in parallel by comparing Ct values. 

 

22. Statistical Analysis 

In order to increase the probability that data followed a Gaussian distribution and were 

normally distributed all experiments were performed at least twice with a minimum of five 

mice per group, however many were performed several times. Prior to statistical analysis all 

data were analysed in individual columns using a D’Agostino-Pearson normality test to 

confirm a high P value (i.e. that the data follow a Gaussian distribution) and that parametric 

statistical test were valid. A Student t-test was used to analyse statistical differences 

between two groups. One-way analysis of variance (ANOVA) was employed to analyze 

differences between more than two groups and significance was assumed at p<0.05. A 

Tukey post-test was used to identify differences between specific groups, with a significance 

threshold of p<0.05. 
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H. Endogenous IL-21 regulates pathogenic mucosal CD4 T cell responses during primary 

RSV challenge in mice 

 

1. Introduction 

Given the broad, pleiotropic actions of IL-21, affecting the activation and effector functions 

of several cell types, it is unsurprising that previous studies modulating its expression in 

different disease models have dramatically different effects, leading to conflicting 

conclusions. For example, IL-21 is considered a pathological factor in several diseases of the 

gastrointestinal tract [e.g. colitis (696), Crohn’s disease (697), and IBD (698)] and RA (699), 

and its depletion is considered a promising candidate for therapy in these settings. In 

contrast, IL-21 is considered beneficial for immune responses against HBV (700) and HIV 

(701), and for inhibiting hypersensitivity reactions (702) and rhinitis (703). The conflicting 

data from these studies may be in part due to the effects of IL-21 on cytokine production. 

Separate studies have conclusively shown that IL-21 is a Th1-biasing factor by boosting IFN-γ 

production by NK cells (589), a Th2-biasing factor by boosting STAT6 and inhibiting STAT4 

expression in naïve CD4 T cells (592), and a Th17-biasing factor by stabilising IL-23R and 

RORγt expression in activated CD4 T cells (386,446,583). More recently, other studies have 

demonstrated that IL-21 can act as an anti-inflammatory factor similar to IL-10 (704). 

Therefore, the action of IL-21 is likely to be very different in different disease states. 

Previous studies investigating the actions of IL-21 in different diseases have focussed on 

autoimmune conditions of the gastrointestinal tract and joints as described above. There 

have also been many studies in different cancer models (705-707), but limited studies in 
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other diseases [e.g. Listeria (708), Leishmaniasis (709), HBV infection (700), HIV infection 

(710), and immediate hypersensitivity (702)]. In contrast, there have been almost no studies 

investigating the role of IL-21 in respiratory disease, and those that have are focussed on 

allergy [e.g. rhinitis (703)]. Specifically, there has been no comprehensive study of the role 

of IL-21 in immune responses to respiratory viral infection. This is particularly important as 

these infections are ubiquitous, occur throughout life, are the most common cause of 

asthma exacerbations, and therefore have a prominent clinical and economic burden. Given 

the known effects of IL-21 on CD8 T cell activation and effector function it possesses 

considerable therapeutic potential in respiratory disease that to date has not been 

investigated. This study addresses this gap in our knowledge in a murine model of 

Respiratory Syncytial Virus (RSV). I have studied the effect of endogenous IL-21 on disease 

severity and viral replication during primary RSV infection via antibody-mediated depletion. 

Further, I show the effects of IL-21 depletion on recruitment and activity of immune cells 

and production of soluble immune factors over the course of primary challenge. 

 

2. Titration of the IL-21-depleting antibody 

Prior to studying the effect of IL-21 depletion on immune responses to primary RSV 

challenge, I determined the optimal antibody dose for in vivo use by titration. Groups of 

mice were injected intraperitoneally (i.p) to systemically deplete IL-21 with doses ranging 

from 0-500µg of anti-IL-21 or isotype control antibody. Previous studies have demonstrated 

that IL-21 plays a crucial role in optimal B cell activation and antibody production 

(625,711,712). Therefore, as well as serum IL-21, antibody levels were determined seven 

days later. Serum IL-21 was undetectable by sandwich ELISA and therefore could not be 
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used a read out (Fig.1.1a), however serum IgA (Fig.1.1b), IgE (Fig.1.1c), IgG1 (Fig.1.1d) and 

IgG2a (Fig.1.1e) were detectable. I observed no effect on serum antibody levels by isotype 

control antibody. Moreover, no effect on serum antibody levels was detected when 0-50µg 

doses of anti-IL-21 were used. Using 100-500µg antibody doses, I observed a dose-

dependent reduction on serum IgG1 (Fig.1.1d) and IgG2a (Fig.1.1e), but not IgA (Fig.1.1b) or 

IgE (Fig.1.1c), antibody levels. This reduction peaked at the 500µg dose, therefore this dose 

was used for further studies. 

To confirm this dose was depleting IL-21, I injected rmIL-21 (10ng/mouse; i.p) every 48hrs 

for six days. rmIL-21 significantly boosted serum IgG1 (compare Fig.1.2a and Fig.1.1d) but 

not IgG2a (compare Fig.1.2b and Fig.1.1e) levels. Co-injection of pre-titrated anti-IL-21 

antibody (0.5mg/mouse; i.p) on day -1 and +1 relative to the first rmIL-21 dose (on d0) 

ablated the effects of rmIL-21 and significantly decreased serum IgG1 (Fig.1.2a) and IgG2a 

(Fig.1.2b) compared to baseline levels. In contrast, co-injection of isotype control antibody 

had no effect. 

 

3. Titration of the Respiratory syncytial virus stock in vitro and in vivo 

Prior to use, RSV stocks have to be titrated both in vitro (to determine the titre in pfu/ml) 

and in vivo. I generated an RSV stock and determined the titre in vitro by plaque assay. Viral 

stock was tested at three dilutions (10-3, 10-5, and 10-7) that are known to enable reliable 

counting of plaques to determine an accurate viral titre. No viral antigens were detected on 

the surface of uninfected Hep2 cells (Fig.1.3a), however large plaques were visible when 

Hep2 cells were infected with RSV (Fig.1.3b). As expected, the greatest numbers of plaques  
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Figure 1.1. Titration of the IL-21-depleting antibody. Mice were injected (i.p) with 0, 10, 20, 50, 100, 200, or 
500µg of anti-IL-21 or isotype control antibody. Serum IL-21 (a), IgA (b), IgE (c), IgG1 (d), and IgG2a (e) levels 
were determined seven days later by ELISA. Data is expressed as mean±SEM. The graphs are representative 
of two independent experiments of five mice per group. Student t test result **: p<0.01, ***: p<0.001. 

a. 

b. c. 

d. e. 
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were observed when the virus was least diluted (10-3). Plaques were counted and a 

consistent titre of 2.2×107pfu/ml was calculated. The RSV dose used to infect mice varies 

between different laboratories and different studies because each stock used contains a 

different number of replication-competent, and defective-interfering (DI), particles. 

Therefore, it is important to determine the effective RSV dose for in vivo studies prior to 

use. I challenged multiple groups of mice with between 0, 1×105, 2×105, 5×105, 1×106, or 

2×106pfu/mouse, and weighed them for 14 days. In this model weight loss is a reliable 

marker of disease severity (102). Weight loss also correlates with T cell recruitment and 

activation and a productive RSV infection is known to elicit a T cell response that causes 

disease severity. Weight loss of 5-10% of baseline weight is considered acceptable because 

disease severity caused by RSV infection is mild. Moreover, changes in disease severity by IL-

21 depletion can be easily monitored by weighing the mice. 

Weight loss was not detectable in uninfected mice (vehicle only) or mice infected with low 

doses of RSV (<5×105pfu; Fig.1.3c). Significantly greater weight loss was observed in mice 

challenged with higher doses and peaked at the highest dose (Fig.1.3c). On the basis of 

weight loss, a dose of 1×106pfu/mouse was chosen for future studies. To confirm that the 

virus was fit and replicating in vivo, I determined the number of viral L gene copies in the 

lungs of infected mice at several time points post challenge by quantitative PCR (qPCR; 

protocol described in Materials and Methods).  The L gene is measured to determine viral 

replication as it is the most 3ˈ gene on the polysome. Therefore, detection of viral RNA 

encoding this gene ensures that transcription of the whole polysome, and productive viral 
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Figure 1.2. Testing of the IL-21-depleting antibody. Mice were injected with rmIL-21 (10ng/mouse; i.p) every 
48hrs for six days. Anti-IL-21 or isotype control antibody (0.5mg/mouse; i.p) was injected one day prior and 
one day after the first injection of rmIL-21. Serum IgG1 (a), and IgG2a (b) levels were determined by ELISA. 
Data is expressed as mean±SEM. The graphs are representative of two independent experiments of five 
mice per group. Student t test ***: p<0.001. 
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Figure 1.3. Titration of the Respiratory syncytial virus stock in vitro and in vivo. RSV stock was generated and 
the titre determined in vitro by plaque assay (as described in Materials and Methods). Viral stock was tested 

at three dilutions (10
-3

, 10
-5

, and 10
-7

) and the number of plaques counted. Representative images of 
plaques from uninfected cells (a) and infected cells (b) are shown (10x magnification). Mice were challenged 

with RSV (0-2×10
6
pfu/mouse; i.n) and weighed them for 14 days. Weight is shown as a percentage of 

baseline weight (c). The number of viral L gene copies in the lungs of infected mice was determined on d0, 
2, 4, and 7 post challenge by quantitative PCR (qPCR; protocol described in Materials and Methods; d). Data 
is expressed as mean±SEM. The graphs are representative of two independent experiments of five mice per 
group. ANOVA or student t test result *: p<0.05, ***: p<0.001. 

a. b. 

c. d. 
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replication has occurred. 

Viral L gene was undetectable in lung tissue from uninfected mice but was detectable at day 

two p.c, peaking at day four p.c before returning to baseline at day seven (Fig.1.3d).  

 

4. IL-21 depletion increases disease severity after primary RSV challenge 

To determine the effect of IL-21 depletion on the response to RSV, I administered 0.5mg 

anti-IL-21 antibody or isotype control (i.p) on d-1 and +1 relative to RSV challenge (on d0). 

The mice were weighed from challenge to determine the level of disease severity. Mice 

treated with control antibody exhibited weight loss typical of a primary infection (Fig.1.4): 

no significant weight loss occurred between d0-4 p.c, followed by a period of weight loss 

that peaked on d7 p.c. after which mice regained weight with all mice  reaching their 

starting  weight by d10 p.c. IL-21-depleted mice exhibited the same phenotype as control 

mice from d0-4 (Fig.1.4). However, from d4-7 p.c this group lost significantly more weight 

than the control group, peaking on the same day prior to recovery thereafter.  
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Figure 1.4. IL-21 depletion increases disease severity after primary RSV challenge. Mice were challenged 

with RSV (1×10
6
pfu/mouse; i.n) on d0. Anti-IL-21 antibody or isotype control (0.5mg/mouse; i.p) was 

administered one day prior and one day after RSV challenge. Mice were weighed daily for 14 days. Weight is 
shown as a percentage of baseline weight. Data is expressed as mean±SEM. The graphs are representative 
of at least six independent experiments of five mice per group. Student t test result *: p<0.05. 
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5. IL-21 depletion increases viral clearance after primary RSV challenge 

Next, I determined the effect of IL-21 depletion on viral replication and clearance. Viral 

replication was measured by detection of the number of viral L gene copies in lung tissue by 

qPCR at several time points post RSV challenge. The virus replicated similarly in both groups 

of mice: L gene copies were first detected at d2 p.c, peaked at d4 p.c, and cleared by d7 p.c 

(Fig.1.5). IL-21 depletion did not affect the kinetics of viral replication and clearance but 

there was a significant reduction in L gene copy number at d4 p.c (Fig.1.5).  

 

 6. IL-21 depletion increases CD4 T cell recruitment after primary RSV challenge 

Viral clearance is associated with the initiation of an anti-viral T cell response and 

recruitment of T cells to the lung tissue and airway. As the number of L gene copies was 

significantly reduced I hypothesised this was due to an increase in T cell numbers and 

activity in the pulmonary compartment. Therefore, I determined the number of immune 

cells in the airway and lung tissue at several time points post challenge. Cellular recruitment 

into the airway (Fig.1.6a) and lung tissue (Fig.1.6b) increased after RSV challenge, peaking at 

d7 p.c. IL-21 depletion did not significantly alter cellular recruitment into either 

compartment up to d4 p.c. However, by d7 p.c I observed a significant increase in both 

compartments in IL-21-depleted mice. 

To determine if the cellular phenotype of the anti-viral response had been altered by IL-21 

depletion, I characterised the cell types recruited by flow cytometry. At d2-4 p.c there was a 

significant influx of neutrophils (identified as CD3-B220-CD11b+CCR3-; BAL: Fig.1.6c; Lung: 
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Figure 1.5. IL-21 depletion increases viral clearance after primary RSV challenge. Mice were challenged with 
RSV on d0. The number of viral L gene copies in the lungs of infected mice was determined on d0, 2, 4, and 
7 post challenge by quantitative PCR. Data is expressed as mean±SEM. The graphs are representative of 
three independent experiments of five mice per group. Student t test result ***: p<0.001. 
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Figure 1.6. IL-21 depletion increases CD4 T cell recruitment after primary RSV challenge. Mice were 
challenged with RSV on d0. BALF (a) and lung tissue (b) were harvested at d0, 2, 4, 7, 10, and 14 post 
challenge. BALF cells were phenotyped by flow cytometry and neutrophil (c), NK cell (d), CD4 T cell (e), CD8 

T cell (f), B cell (g), and DC (h) cell counts determined. At least 50×10
3
cells/sample were collected. Data is 

expressed as mean±SEM. The graphs are representative of two independent experiments of five mice per 
group. Student t test result *: p<0.05, **: p<0.01, ***: p<0.001. 

a. b. 

c. d. 

e. f. 

g. h. 
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Appendix 1.1a) and NK cells (identified as TCRβ-NKp46+; BAL: Fig.1.6d; Lung: Appendix 1.1b). 

IL-21 depletion did not significantly alter the number of either cell type at this time, though 

there was a trend for increased NK cell numbers. By d7 p.c, the number of these cells 

decreased and both CD4 (Fig.1.6e) and CD8 (Fig.1.6f) T cell recruitment peaked. IL-21 

depletion did not significantly affect the number of CD8 T cells recruited to either 

compartment, though increased numbers were detected (BAL: Fig.1.6f; Lung: Appendix 

1.1d). However, I did observe a significant increase in CD4 T cell recruitment in both airway 

(Fig.1.6e) and lung tissue (Appendix 1.1c). 

The recruitment of other cell types was also determined. I observed no significant changes 

in the numbers of B cells (B220hiCD19+ ; BAL: Fig.1.6g; Lung: Appendix 1.1e), dendritic cells 

(DCs; identified as CD11c+MHCIIhi; BAL: Fig.1.6h; Lung: Appendix 1.1f), eosinophils (identified 

as CD3-B220-MHCII-CD11b+CCR3+; BAL: Appendix 1.2a; Lung: Appendix 1.2b), or 

macrophages (identified as MHCIIintCD11b+CD11c+F4/80+; BAL: Appendix 1.2c; Lung: 

Appendix 1.2d) between the two groups in either compartment at any time post challenge. 

However, I did observe a trend for increased numbers of DCs and a reduction in B cells in 

the airway of IL-21-depleted mice. 

  

7. IL-21 depletion increases NK cell and CD4 T cell activity after primary RSV challenge 

After RSV challenge, disease severity positively correlates with T cell recruitment to the 

pulmonary compartment. Moreover, it also correlates with increases in T cell activity (e.g. 

expression of co-stimulatory molecules and cytokine production). To determine if recruited 

T cells were active I first determined their level of co-stimulatory molecule expression by 

flow cytometry. ICOS and CD69 are two reliable surface markers of cell activity, particularly 
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lymphocytes. CD69, but not ICOS, expression was detected on recruited NK cells to BAL 

(Fig.1.7a) and lung (Fig.1.7b), peaking at d4 p.c, and IL-21 depletion slightly increased 

expression of CD69, but not ICOS, on this cell type. CD69 and ICOS was also detected on 

both BAL (Fig.1.7c) and Lung (Fig.1.7d) CD4 T cells, and BAL (1.7e) and Lung (Fig.1.7f) CD8 T 

cells after RSV challenge, peaking at d7 p.c. However, while IL-21 depletion slightly 

increased expression of ICOS (but not CD69) on CD4 T cells, it had no significant effect on 

either marker on CD8 T cells.  
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Figure 1.7. IL-21 depletion increases NK cell and CD4 T cell activity after primary RSV challenge. Mice were 
challenged with RSV on d0. BALF  and lung cells were harvested at d0, 2, 4, 7, 10, and 14 post challenge and 
phenotyped by flow cytometry. Activity of BAL (a, c, e) and lung (b, d, f) NK cells (a-b), CD4 T cells (c-d), and 
CD8 T cells (e-f) were determined by measuring the percentage of cells positive for ICOS or CD69 expression 

by flow cytometry. At least 50×10
3
cells/sample were collected. Data is expressed as mean±SEM. The graphs 

are representative of two independent experiments of five mice per group. Student t test result *: p<0.05. 

a. b. 

c. d. 

e. f. 
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8. IL-21 depletion increases pro-inflammatory cytokine and chemokine production after 

primary RSV challenge 

The cytokine response to RSV challenge is characterised by significant production of many 

cytokines and chemokines. Pro-inflammatory cytokines such as IFN-γ and TNF as well as the 

cytolytic protein granzyme B are associated with type I responses and significant T cell influx 

and effector function. This type of response elicits effective viral clearance. Chemokines 

such as RANTES are responsible for recruitment of T cells to the pulmonary compartment 

and the anti-inflammatory cytokine IL-10 is produced upon their activation as a means of 

self-regulation. Finally, IL-4 is a Th2 cytokine that has been found to be up regulated in cases 

of RSV bronchiolitis. To assess whether the increased activation state of infiltrating T cells 

resulted in changes in the pulmonary environment I measured production of these soluble 

factors into the bronchoalveolar lavage fluid (BALF) and by polyclonal stimulation of lung 

cells. Levels of IFN-γ, IL-4, TNF, IL-10, RANTES, and granzyme B were determined by 

sandwich ELISA. RSV challenge elicits an anti-viral response that is type I in phenotype, 

characterised by increased BAL IFN-γ (Fig.1.8a), granzyme B (Fig.1.8b), TNF (Fig.1.8c), 

RANTES (Fig.1.8d), and negligible IL-4 (Fig.1.8e) production. Production of IFN-γ, granzyme 

B, and TNF peaked at d7 p.c, consistent with the peak of T cell recruitment, the primary 

source in this model. In contrast, IL-10 peaked at d4 p.c, though it was remained detectable 

at d7 p.c (Fig.1.8f). IL-21 depletion had no effect on IL-4 production (Fig.1.8e). Depletion also 

had no significant effect on granzyme B (Fig.1.8b) or TNF (Fig.1.8c), though there were 

increased levels detected in the BAL. In contrast, IL-21 depletion significantly increased 

production of IFN-γ (Fig.1.8a) at d7 p.c, IL-10 (Fig.1.8f) at d4 p.c, and significantly increased 

RANTES (Fig.1.8d) production at d2 and d7 p.c. 
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Figure 1.8. IL-21 depletion increases pro-inflammatory cytokine and chemokine production after primary 
RSV challenge. Mice were challenged with RSV on d0. BALF was harvested on d0,2, 4, 7, 10, and 14 post 
challenge and IFN-γ (a), Granzyme B (b), TNF (c), RANTES (d), IL-4 (e), and IL-10 (f) were determined by 
sandwich ELISA. Data is expressed as mean±SEM. The graphs are representative of three independent 
experiments of five mice per group. Student t test result *: p<0.05, ***: p<0.001. 

a. b. 

c. d. 

e. f. 
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To assess the cytokine profile of T cells in the lung tissue I stimulated lung cells with αCD3 

/αCD28-antibody-expressing beads. Peak production of IFN-γ (Fig.1.9a), granzyme B 

(Fig.1.9b), TNF (Fig.1.9c), RANTES (Fig.1.9d), IL-4 (Fig.1.9e), and IL-10 (Fig.1.9f) was detected 

in the supernatants of stimulated lung cells from RSV-challenged mice at d7 p.c. Lung cells 

from IL-21-depleted mice exhibited a similar phenotype to that observed in the BALF at this 

time, with increased production of IFN-γ, granzyme B, TNF, RANTES, and also IL-10. There 

was no effect on IL-4 production. 

 

9. IL-21 depletion increases IFN-γ production by CD4 T cells after primary RSV challenge      

IL-21 depletion increased cytokine production into the BALF and by polyclonally-stimulated 

lung T cells. To confirm these cytokines were T-cell-derived I performed intracellular staining 

of stimulated lung cells to phenotype cytokine production at the single cell level. As IFN-γ is 

the signature cytokine of the type I response elicited by RSV challenge and was significantly 

increased by IL-21 depletion, I assayed its production by different cell types at several time 

points post challenge. IFN-γ was not produced by macrophages, neutrophils (Fig.1.10a), DCs, 

or B cells (Fig.1.10b) at any time point tested. IFN-γ production was detected by NK cells at 

d4 p.c, though IL-21 depletion had no effect on the percentage of IFN-γ-producing-NK-cells  
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Figure 1.9. IL-21 depletion increases cytokine and chemokine production by T cells after primary RSV 
challenge. Mice were challenged with RSV on d0. Lung cells were harvested seven days post challenge, RBCs 

lysed, and single cell suspensions counted by trypan blue exclusion assay.  Lung cells (2×10
6
cells/well) were 

stimulated with either media alone or αCD3/28-expressing beads (50µl/well) for 24hrs. Supernatants were 
harvested and IFN-γ (a), Granzyme B (b), TNF (c), RANTES (d), IL-4 (e), and IL-10 (f) were determined by 
sandwich ELISA. Data are expressed as mean values. The graphs are representative of two independent 
experiments of five mice per group. Student t test result *: p<0.05, **: p<0.01, ***: p<0.001. 

a. b. 

c. d. 

e. f. 
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Figure 1.10. IL-21 depletion increases IFN-γ production by CD4 T cells after primary RSV challenge. Mice 
were challenged with RSV on d0. Lung cells were harvested on d0, 2, 4, 7, 10, and 14 post challenge lungs 

and stimulated overnight with media or αCD3/28-expressing beads (10μl/10
6
 cells). Macrophages and 

neutrophils (a), DCs and B cells (b), NK cells (c), CD8 T cells (d), and CD4 T cells (e) were stained for IFN-γ 

using specific catch and detection reagents (10μl/10
6
 cells). The percentage of each cell type staining 

positive for IFN-γ was determined by flow cytometry and is shown. At least 50×10
3
cells/sample were 

collected. Data is expressed as mean±SEM. The graphs are representative of two independent experiments 
of five mice per group. Student t test result *: p<0.05. 

a. b. 

c. d. 

e. 
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(Fig.1.10c). At d7 p.c, the majority of IFN-γ-producing cells were T cells (Fig.1.10d&e). CD8 T 

cells were the most common source of IFN-γ in RSV-challenged mice, and IL-21 depletion did 

not alter the percentage of cells (Fig.1.10d). However, in IL-21-depleted mice the primary 

source of IFN-γ was the CD4 T cell as depletion significantly increased the percentage of CD4 

T cells producing this cytokine (Fig.1.10e). 

 

10. IL-21 depletion reduces virus-specific antibody production after primary RSV challenge 

Previous studies have demonstrated that pathogen-specific antibodies are essential for 

optimal long-term protection against re-infection with an antigenically-syngeneic virus. 

Moreover, IL-21 is known to boost B cell activation and memory development as well as 

increasing antibody isotype class switching and production. Therefore, I determined the 

effect of IL-21 depletion on RSV-specific antibody production. Serum was harvested from 

mice 14 days post RSV challenge and RSV-specific IgA, IgE, IgG1, and IgG2a levels were 

determined by ELISA. 

No virus-specific serum IgA (Fig.1.11a) or IgE (Fig.1.11b) could be detected in either group. 

However, virus-specific serum IgG1 (Fig.1.11c) and IgG2a (Fig.1.11d) could be detected from 

control mice. Levels of both isotypes were significantly reduced in IL-21-depleted mice. 
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Figure 1.11. IL-21 depletion reduces virus-specific antibody production after primary RSV challenge. Mice 
were challenged with RSV on d0. Serum was harvested 14 days later and virus-specific IgA (a), IgE (b), IgG1 
(c), and IgG2a (d) levels were determined by ELISA. Data is expressed as mean±SEM. The graphs are 
representative of two independent experiments of five mice per group. ANOVA result *: p<0.05, **: p<0.01, 
***: p<0.001. 
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11. Discussion 

We hypothesised that IL-21 increased CD8 T cell activation and effector function driving lung 

tissue damage, and reducing lung function upon RSV challenge. However, the results of this 

chapter indicate that IL-21 primarily acts to limit CD4 T cell activation, possibly by inhibiting 

DC-mediated activation in the draining lymph nodes. There was little or no effect on 

responding CD8 T cells. Consequently, disease severity was reduced but viral replication was 

enhanced. The reasons for the change in viral replication are unknown but likely reflect an 

as yet unobserved effect on innate immune components. Therefore, IL-21 is acting as an 

anti-inflammatory factor, as demonstrated in rhinitis studies, rather than pro-inflammatory, 

as demonstrated in autoimmunity and cancer studies.  

One of the first cell types that may be affected by IL-21 depletion are epithelial cells. As 

bronchial and alveolar epithelium are the primary targets of RSV infection any effects that 

IL-21 has on viral replication kinetics or the epithelial cell response to infection could have 

significant downstream effects on the immune response. It is unknown if lung epithelium 

expresses IL-21R, though it has been shown on intestinal and gastric epithelium (713,714). 

Moreover, IL-21 was shown to increase CCL20 and matrix metalloproteinase production 

from these cells in IBD patients, suggesting a pathogenic role (713). My data do not support 

the hypothesis that IL-21 is pro-inflammatory as disease severity was increased upon IL-21 

depletion. However, more direct studies on epithelial cells would be required to ascertain 

any effect of IL-21. There is also no evidence that IL-21 affects viral replication kinetics as 

this was unaltered between control and depleted mice. However, changes on days that 

were untested cannot be ruled out and need to be confirmed. As there was a reduction in 

viral replication at d4 p.c it is possible that IL-21 increases viral productivity, independent of 
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any effects on the immune system. Studies of acute influenza and vaccinia infection 

concluded that IL-21 had no effect on viral clearance, which does not support a direct anti-

viral role for IL-21 (608). It is not clear what clears RSV in this study; it is likely to be a 

combination of unidentified innate cells and T cells. Graham et al elucidated the effect of T 

cells on viral replication (332). In their study they demonstrated that depletion of either T 

cell subset prolonged viral replication in the lung, and depletion of both CD4 and CD8 T cells 

further extended viral replicative capacity. However, this does not account for viral 

clearance from d4 p.c when T cells are largely absent from the airway. Depletion of 

individual innate populations would help understand which are important for early RSV 

clearance. 

Alveolar macrophages are also responsive to IL-21 and their phagocytic and 

cytokine/chemokine-producing activity could be modulated by IL-21 depletion. These cells 

line the alveolar sacs and are susceptible to infection by RSV, though to a much more limited 

extent than epithelium. Previous studies have shown that IL-21 does not increase 

macrophage proliferation but supports their survival by increasing expression of p21waf1 and 

p27Kip1 anti-apoptotic factors (715). Moreover, this study demonstrated that IL-21 increased 

antigen uptake, processing, and presentation to CD4 T cells (but not CD8 T cells) by 

macrophages. Therefore, this supports a pro-inflammatory role for IL-21 on macrophages 

via CD4 T cell activation. As disease was increased upon IL-21 depletion in my study, it is 

unlikely that these changes occurred, though an effect on macrophages by changes in other 

innate factors cannot be ruled out. However, as macrophages were not studied in more 

detail further experimentation would be required to confirm this. 
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Dendritic cells (DCs) are known to be central to naïve T cell activation in the lymph nodes 

upon antigen capture, processing, and presentation via MHC molecules. Therefore, changes 

in T cell recruitment, activity, and effector function could be the result of changes in DC 

function. Previous studies have shown that IL-21 prevents DC maturation, antigen 

presentation by DCs, and costimulatory molecule expression (622,716). Consequently, T cell 

activation is reduced. This mechanism is supported by my data as IL-21 depletion increased 

CD4 T cell recruitment, activation, and IFN-γ production.  However, DC recruitment to the 

BALF was not altered by IL-21 depletion at the time points tested and migration to the 

draining, mediastinal lymph nodes was not assessed. To determine if IL-21 depletion altered 

T cell activation by DCs in the draining lymph nodes, expression of costimulatory molecules 

by migrating DCs and activation markers on T cells would need to be measured. Therefore, 

the data generated in this chapter do not clarify whether IL-21 effects on DC-mediated, 

rather than macrophage-mediated, T cell activation are responsible in this disease model. 

IL-21 depletion has known effects on other cells of the innate immune system. Previous 

studies have shown that IL-21 inhibits NK cell proliferation and increases death by 

apoptosis, but the cytotoxicity of these same cells is enhanced by IL-21 in the presence of IL-

2 or IL-15 (626,630). NK cells are important in the early response to RSV as they kill infected 

cells and provide an early source of IFN-γ (717). As IFN-γ levels increased with IL-21 

depletion it is possible that NK cells contributed to this. However, there was no evidence 

that IL-21 depletion significantly affected NK cell responses in terms of recruitment, 

expression of activation markers, or production of IFN-γ. Moreover, BALF granzyme B and 

TNF levels were unchanged by IL-21 depletion, and as these are all major products of 

activated NK cells adds support that they are unaffected by IL-21 depletion in this setting. 
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Other innate factors may also have been affected by IL-21 depletion but were not studied. 

These include Natural Killer (NK) T cells, γδ T cells, and innate lymphoid cells (ILCs). NKT cells 

are known to produce IL-21 upon activation (582); in this model this is most likely to be 

cytokine-driven as NKT cells recognise glycolipid antigens that are not expressed by RSV. 

However, they may respond to lipid antigens released by dead and dying cells (718). There is 

little information regarding the effect of IL-21 depletion on NKT cells, they are a potent early 

source of a wide array of soluble factors and any changes in their expression may be due to 

effects on this cell type. A ‘Tfh-like’ NKT cell population has recently been identified that 

increases antibody production (719). Therefore, the observed reduction in virus-specific 

antibody levels may be due to effects on this population, but more detailed studies of these 

possibilities are required. γδ T cells and ILCs are also potent early cytokine sources  but 

there is insufficient data generated in this study to conclusively support an effect of IL-21 

depletion on these effector functions. Previous studies of γδ T cell responses to RSV 

suggested that this cell type was important in optimal memory CD8 T cell responses, but 

had little effect on primary responses (123). As CD8 T cell responses were unchanged by IL-

21 depletion there is no evidence that γδ T cells are affected. However, the same study also 

identified γδ T cell as a potent RANTES source and as this cytokine was significantly 

upregulated by IL-21 depletion. This indicates that IL-21 may regulate cytokine production 

by these cells. There is no information about the effects of IL-21 on ILCs and specific studies 

of this cell type would be required to address this question.  

Granulocytes, particularly neutrophils, are recruited early after RSV challenge (657). 

Basophil, mast cell, and eosinophil recruitment were not measured in this study and 

neutrophil recruitment was unaffected by IL-21 depletion, suggesting no effect. This cannot 
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be correlated with IL-17 or CCL20 production as levels were not assayed in this study. As 

there was no increase in IL-4 production but a significant increase in IFN-γ production, there 

is no evidence that type 2 responses had been induced by IL-21 depletion, a type 1 response 

remains dominant. 

Given the significant changes in disease severity as well as different aspects of the anti-RSV 

immune response at d7 p.c, there is strong evidence that the adaptive immune response 

has been affected by IL-21 depletion. My hypothesis was that CD8 T cells would be most 

affected by IL-21 depletion given its known effects on CD8 T cell activation, proliferation, 

cytotoxic functions, and memory development (720). However, there is little data to 

support this hypothesis in this study. No changes in CD8 T cell recruitment, activity, or 

effector function were observed. This may reflect the relative lack of effect on primary CD8 

T cell responses as compared to memory (720). Although this was not addressed here, 

secondary RSV challenge of depleted vs control mice would help to answer this question. 

Nevertheless, Zeng et al showed that IL-21 potently synergised with IL-15 to significantly 

increase proliferation and IFN-γ production by both naïve and memory CD8 T cells (721). 

They also demonstrated that CD8 T cell activation and effector function was impaired in IL-

21R-deficient mice. Assaying IL-15 levels after RSV challenge (including after IL-21 depletion) 

may help elucidate the importance of IL-15 in the anti-RSV CD8 T cell response. More 

recently, Spolski et al have studied pneumovirus infection in IL-21R-deficient mice (722). 

They demonstrated that both CD4 and CD8 T cell responses were inhibited in IL-21R-

deficient mice with diminished IL-6 and CXCL1 production, and reduced neutrophilia. 

Consequently disease severity and mortality was reduced in these mice. This study is 

particularly interesting as RSV and pneumovirus belong to the same pneumovirinae 
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subfamily, have similar genome structure, and cause similar clinical disease. Why then does 

IL-21 have different effects on the anti-viral responses? The reasons for this are unclear 

currently, it is possible that IL-21R-deficient mice have homeostatic alterations that affect 

responses to respiratory challenge, and studying responses to RSV in these mice would 

answer this. Performing antibody depletion studies in pneumovirus-challenged mice would 

be the most direct way of comparing the effects on the two pathogens. CD8 T cell cytotoxic 

function was also not specifically measured so changes cannot be ruled out. For example, IL-

21 depletion significantly increased granzyme B levels from stimulated lung cells which 

could be derived from several sources [e.g. CD4 T cells, γδ T cells, NKT cells, or NK cells 

indirectly (723)].  The same group have also suggested that the balance of GM-CSF and IL-21 

determines whether DCs apoptose or survive to stimulate T cells (724). Therefore, the 

observed differences in IL-21 effects between PVM and RSV disease models may be due to 

differences in this balance. As neither study has measured both factors further work will be 

required to ascertain if this is a possibility. 

In contrast, there is stronger evidence that the CD4 T cell response is affected by IL-21 

depletion. The importance of T cells in the development of RSV disease severity was first 

identified by Graham et al (332), and their potential to augment disease severity was 

confirmed by Alwan et al (683,688).  Graham et al also elucidated the effect of T cells on 

viral replication (332). RSV-specific T cells are activated in the mediastinal lymph nodes by 

dendritic cells from the airway and lung tissue and proliferate rapidly. They then migrate to 

the pulmonary compartment starting at d4 p.c and peaking at d7 p.c. Peak recruitment of 

CD4 and CD8 T cells is observed at this time, but IL-21 depletion does not appear to affect 

timing, only the magnitude of the CD4 T cell influx. Recruitment is likely chemokine-driven 
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and I detected increased RANTES [a potent T cell chemokine; (725)] levels in the BALF at d2 

p.c preceding T cell recruitment. Other chemokines not measured here may also contribute 

and should be measured. However, cytokine production is affected at d7 p.c, particularly 

IFN-γ which is elevated. This correlates with enhanced recruitment of CD4 T cells to the 

BALF and together with the increased production of this cytokine by these cells, indicates 

that IL-21 depletion has increased IFN-γ production by responding CD4 T cells. As polyclonal 

stimuli have been used to activate these cells I cannot determine that this is production by 

antigen-specific CD4 T cells, but as antigen-specific T cells dominate this phase of the acute 

response [bystander-activated T cells are recruited earlier and are declining by this time 

(726)] it is likely that the observed IFN-γ is produced in an antigen-specific manner.  

There is little evidence here that IL-21 depletion affected T cell differentiation and the gross 

immunological phenotype of the response. As RSV is an obligate intracellular pathogen, a 

type 1 response is typically generated, dominated by IFN-γ production, T cell recruitment, 

and IgG2a production by activated B cells (657). There is negligible production of other 

signature cytokines such as IL-4 (type 2), though IL-9 (Th9), IL-17 (Th17), and IL-22 (Th22) 

production were not determined here. In this study, the cytokine response was dominated 

by IFN-γ, granzyme B, TNF, and RANTES. IL-17 was not tested and would need to be 

measured to confirm any effect, though neutrophilia was unchanged by IL-21 depletion 

which may indicate the type 17 response is little altered. Although IL-21 depletion increased 

IFN-γ and RANTES production in the BALF and IFN-γ, granzyme B, TNF, and RANTES by 

stimulated lung cells, there is no evidence that IL-21 depletion changed the overall 

phenotype of the response, it remained predominantly type 1. 
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The observed increase in disease severity and CD4 T cell activity could be explained by a 

reduced immunoregulatory response, confirmed by a reduction in regulatory T cell 

recruitment and/or activity. Regulatory T cells (Tregs) are known to play a crucial role in 

protecting against the development of several autoimmune diseases, and previous studies 

have demonstrated their importance in microbial infections (727). Unfortunately, they were 

not measured in this study and it would be important to do so to ascertain whether IL-21 

depletion affected them. No previous studies have observed a direct effect of IL-21 on 

regulatory T cells, but IL-21 can increase ‘resistance’ of effector T cells to Treg-induced 

suppression (728). However, this does not fit with my observations as IL-21 depletion should 

make T cells prone to immunosuppression but this has not been observed. IL-21 may be 

required for optimal Treg influx into the pulmonary compartment and further work should 

test this possibility. One method that Tregs use to inhibit cellular responses is production of 

anti-inflammatory factors such as IL-10 and TGF-β. TGF-β was not measured in this study but 

a significant increase in IL-10 production was observed in both BALF and lung. This could be 

interpreted as an increase in Treg recruitment or activity but as activated effector T cells 

also produce IL-10 as a method of self-regulation it is just as likely that the latter is the 

source. 

An alternative mechanism is that IL-21 is directly anti-inflammatory. IL-21, like IL-10, is 

produced by all pro-inflammatory T cell lineages indicating it may have crucial anti-

inflammatory functions (like IL-10) by inhibiting T cell activation. For example, IL-21 has 

been shown to restrict primary and secondary CD8 T responses against melanomas, 

carcinomas, and lymphomas (729). Furthermore, Spolski et al demonstrated that IL-10 levels 

were elevated in a mouse model of SLE, and that IL-21 was necessary for optimal IL-10 
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induction (704). Moreover, they showed that Th1 priming in these mice in the presence of 

IL-21 induced a subpopulation of T cells with immunosuppressive capacity. Therefore, IL-21 

may act to limit immune responses by inducing IL-10 production. IL-21 has also been shown 

to inhibit immediate hypersensitivity reactions in the skin (702). It boosts IL-10 production in 

visceral leishmaniasis (709), by human naïve CD4 T cells (730), Tr1 cells (731), and NK cells 

(732). A lack of IL-21 may lead to dysregulated responses against Hepatitis B virus in the 

young (700), and boost IL-17 production by CD4 T cells in L.monocytogenes infection (708). 

Increased IL-21 expression by CD4 T cells was associated with control of HIV replication, but 

this may simply reflect greater T cell activity (701,733). Its increased production has also 

been positively-correlated in several diseases, but this again may reflect self-regulation by 

activated T cells (734,735). In this model of RSV infection, IL-10 peaked at d4 p.c when T cell 

activation in the draining mediastinal lymph nodes and recruitment to the pulmonary 

compartment have been initiated but not peaked. Therefore, these cells may contribute but 

are unlikely to be the major IL-10 source. One alternative are regulatory T cells that are 

known to be a potent source of IL-10 and other anti-inflammatory cytokines (736,737). 

Intracellular staining for IL-10 of recruited cells would help clarify the IL-10 source.  

Anti-viral antibodies provide long-term protection against viral rechallenge and are 

considered a crucial component of successful vaccination (657). Moreover, recent studies 

have demonstrated a central role for IL-21 in optimal B cell activation and antibody 

production by supporting Bcl-6 expression and follicular T helper cell differentiation [Tfh; 

(511,600)], as well as acting directly on B cells (625). Therefore, IL-21 depletion would be 

expected to reduce antibody production and this was observed in this study. Virus-specific 

IgG antibody levels were significantly reduced in depleted mice, suggesting a crucial role in 
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induction of humoral immunity. This agrees with early studies that demonstrated IL-21 was 

crucial for development of antibody-secreting plasma cells (738). IL-21 depletion may inhibit 

Tfh differentiation and/or B cell activation to induce the observed phenotype. Other studies 

demonstrated a crucial role for Tfh-derived-IL-21 for antibody production (739), and more 

recent studies have demonstrated an essential role for IL-21 in Bcl-6-mediated Tfh cell 

development and function (600,740). These effects of IL-21 on Tfh and B cell activity play a 

critical role on germinal centre formation and reactions within (712,741). Markers for Tfh 

cells were not included measured in this study but further analysis including these markers 

(CXCR5, PD-1, ICOS, and Bcl-6), as well as those for B cell activation (CD19/21), would 

answer these questions. 

The results of this chapter indicate a novel aspect of IL-21 function: that it acts as an anti-

inflammatory factor in RSV immunity, important for limiting responding CD4 T cell activity 

during primary immune responses to viral challenge. Surprisingly, it has no effect on CD8 T 

cell function. Several mechanisms have been discussed that may explain the effects of IL-21 

on primary responses to RSV challenge, but the effect on memory T cell responses has not 

been addressed. It is possible that IL-21 has a more prominent role in recall T cell responses 

to viral challenge, therefore in the next chapter I address the role of IL-21 on memory CD4 & 

CD8 T cell responses to RSV challenge.  
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I. Endogenous IL-21 regulates pathogenic mucosal CD4 T cell responses during enhanced 

RSV disease in mice. 

 

1. Introduction 

In the previous chapter I demonstrated that IL-21 was important for limiting pathology 

associated with primary RSV challenge. This correlated with IL-21 controlling the magnitude 

of the cellular response, the cytokine response, and other effector functions (e.g. granzyme 

B production) to RSV challenge. In particular, IL-21 was crucial for controlling the primary 

CD4 T cell response rather than the CD8 T cell response, suggesting its action on CD4 T cells 

was more important in the context of primary RSV infection. However, it is unknown if the 

same effects would be observed in memory T cell responses against RSV. Clinically, this is 

relevant for two reasons. First, it is unclear if exacerbated RSV disease is caused by primary 

or memory T cell responses so both must be studied. Second, RSV vaccination enhances T 

cell memory so the effects of IL-21 depletion are potentially important in this setting.  

To determine if memory responses were affected I utilised a model of augmented RSV 

disease involving priming BALB/c mice with a vaccinia virus vector (rVV) encoding individual 

RSV genes in place of the thymidine kinase (tk) gene (742). The advantage of this model is 

that priming mice with these vectors leads to activation and memory development of a 

restricted subset of T cells specific for the expressed RSV protein that will immediately 

respond upon RSV challenge. For example, priming BALB/c mice with rVV-G (a vaccinia virus 

expressing RSV G protein) activates G184-198-specific CD4 T cells with an oligoclonal TCR 

repertoire and a type II cytokine phenotype (i.e. increased IL-4 production) (743). No RSV-
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specific CD8 T cells are primed. Upon RSV challenge, the CD4 T cells are recalled to the 

pulmonary compartment immediately where they produce increased amounts of IL-4, IL-5, 

and IL-13, induce a pulmonary eosinophilia, with increased and more rapid pathology 

compared to primary RSV challenge. RSV-specific CD8 T cells are also activated but are 

recruited with kinetics observed after primary RSV challenge. This model replicates some of 

the clinical and immunological features of RSV bronchiolitis observed in children (744). In 

contrast, mice primed with rVV-M2 develop an oligoclonal, M2 82-90-specific CD8 T cell 

memory with a type I cytokine phenotype (i.e. increased IFN-γ and TNF production) (685). 

No RSV-specific CD4 T cells are primed. Upon RSV challenge, the CD8 T cells are immediately 

recalled to the pulmonary compartment where they produce increased amounts of IFN-γ, 

TNF, and granzyme B, with increased and more rapid pathology compared to primary RSV 

challenge (685). RSV-specific CD4 T cells are also recruited after RSV challenge but with 

kinetics observed after primary RSV challenge. This model replicates many of the clinical and 

immunological features of ‘shock lung’ (acute respiratory distress syndrome) (11). Using 

these two vectors I can study the effect of IL-21 depletion on memory CD4 and CD8 T cell 

responses to RSV exclusively. This will allow me to more accurately determine the effects of 

IL-21 depletion on CD4 and CD8 T cell responses to RSV. 

 

2. Assessment of the effect of IL-21 depletion on immune responses to vaccinia virus 

immunisation 

Prior to studying the effects of IL-21 depletion on CD4 or CD8 T cell recall responses to RSV, I 

wanted to confirm that IL-21 depletion had no effect on cutaneous vaccinia virus infection. 

This is important as changes to the amount of RSV antigen induced by IL-21 depletion may 
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affect the development of RSV-specific T cell memory indirectly, giving a false impression of 

the effects of IL-21 on T cell responses to RSV. Monitoring on-going cutaneous vaccinia virus 

replication is technically difficult because the levels of virus shedding are hard to detect 

without sacrificing the animal. However, upon cutaneous infection a lesion develops on the 

surface of the skin that increases in size as the virus replicates and disappears once the virus 

is cleared by the host (745). The diameter of this lesion can be easily and accurately 

measured without affecting the welfare of the animal. Therefore, lesion sizes were 

measured on mice cutaneously-infected with rVV-βgal (β-galactosidase: used as a negative 

control; Fig.2.1a), rVV-G (Fig.2.1b), or rVV-M2 (Fig.2.1c) over 14 days. All mice were infected 

with the same dose of vaccinia virus and consequently lesion sizes were very similar 

between groups. These mice were treated with control antibody (i.p) one day prior and one 

day post cutaneous infection, and were compared to mice treated with anti-IL-21 antibody 

(i.p) infected with the same dose of vaccinia viruses (Fig.2.1). Lesion sizes between mice 

treated with anti-IL-21 antibody were very similar to those treated with control antibody, 

suggesting that vaccinia virus replication (and therefore the level of RSV antigen expressed) 

had not been affected by IL-21 depletion. 

 

3. IL-21 depletion during priming increases cytokine production by RSV-G-specific CD4 T cells 

but not RSV-M2-specific CD8 T cells 

Before studying the effects of IL-21 depletion on T cell responses to RSV challenge, I first 

determined the effects on primary T cell responses to rVV priming. Spleen cells from primed 

mice were isolated; then CD4 T cells sorted from rVV-G (‘G’)-primed mice and CD8 T cells 

sorted from rVV-M2 (‘M2’)-primed mice. Equal numbers of T cells were then stimulated for 
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72hrs with either media, specific peptide (CD4 T cells recognise RSV G 184-198 in the 

context of I-Ed, CD8 T cells recognise RSV M2 82-90 in the context of Kd) presented by 

irradiated splenic APC, or αCD3/αCD28-expressing beads. Cytokine and granzyme B 

production into the supernatants was assayed by ELISA. As expected, splenic cells from mice 

immunised with control vector (rVV-βgal) mice did not produce cytokines to RSV peptide 

stimulation, only to polyclonal stimulation (Fig.2.2&2.3). I did not observe any effect of IL-21 

depletion on these cells. Unstimulated cells did not produce cytokines (Fig.2.2&2.3), though 

granzyme B could be detected in CD8 T cell cultures (Fig.2.3b).  
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Figure 2.1. IL-21 depletion prior to cutaneous vaccinia virus infection has no effect on lesion size. BALB/c 

mice were immunised by cutaneous scarification with rVV-βgal, rVV-G, or rVV-M2 (1×10
6
pfu/mouse; scar) 

vaccinia virus vectors. Anti-IL-21 antibody or isotype control (0.5mg/mouse; i.p) was administered one day 
prior and one day after priming. On d2, 4, 7, 10, and 14 post challenge lesion sizes at the scarification site 
were measured. Data is expressed as mean±SEM. The graph is representative of two independent 
experiments of five mice per group. 

a. 

b. 

c. 
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Figure 2.2. IL-21 depletion during priming with rVV-βgal reduces IL-21 production by CD4 T cells. Mice were 
immunised with rVV-βgal and spleens were harvested 14 days post priming, RBCs lysed, and single cell 
suspensions counted by trypan blue exclusion assay. CD4 T cells were sorted by MACS and purity confirmed 

by flow cytometry.  CD4 T cells (2×10
6 

cells/well) were stimulated with either media alone, irradiated APC 

(2×10
5 

cells/well) pulsed with specific peptide (G 184-198), or αCD3/28-expressing beads (50µl/well) for 
72hrs. Supernatants were harvested and IFN-γ (a), Granzyme B (b), IL-4 (c), IL-10 (d), IL-17 (e), and IL-21 (f) 
were determined by sandwich ELISA. The graphs are representative of two independent experiments of five 
mice per group. Student t test result ***: p<0.001. 

a. b. 

c. d. 

e. f. 
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Figure 2.3. IL-21 depletion during rVV-βgal priming has no effect on cytokine production by CD8 T cells. 
Mice were immunised with rVV-βgal and spleens were harvested 14 days post priming, RBCs lysed, and 
single cell suspensions counted by trypan blue exclusion assay. CD8 T cells were sorted by MACS and purity 

confirmed by flow cytometry. CD8 T cells (2×10
6 

cells/well) were stimulated with either media alone, 

irradiated APC (2×10
5 

cells/well) pulsed with specific peptide (M2 82-90), or αCD3/28-expressing beads 
(50µl/well) for 72hrs. Supernatants were harvested and IFN-γ (a), Granzyme B (b), IL-4 (c), IL-10 (d), IL-17 
(e), and IL-21 (f) were determined by sandwich ELISA. The graphs are representative of two independent 
experiments of five mice per group.  

a. b. 

c. d. 

e. f. 
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CD4 T cells from G-primed, non-depleted mice produced detectable amounts of IFN-γ 

(Fig.2.4a), IL-4 (Fig.2.4c), IL-10 (Fig.2.4d), IL-17 (Fig.2.4e), but not IL-21 (Fig.2.4f) after 

stimulation with specific peptide. These levels were all increased after polyclonal 

stimulation and all cytokines assayed could be detected. IL-21 depletion significantly 

increased IFN-γ (Fig.2.4a) and IL-10 (Fig.2.4d) production by peptide-stimulated cells. In 

contrast, it reduced IL-4 production (Fig.2.4c). No other changes were observed under these 

conditions. IL-21 depletion significantly increased production of all cytokines by CD4 T cells 

stimulated with αCD3/CD28-expressing beads, except IL-4 (Fig.2.4c) and IL-21 (Fig.2.4f) 

which was ablated. In contrast, granzyme B production was unaffected. As expected, CD8 T 

cells isolated from G-primed mice did not respond to G peptide stimulation but did when 

stimulated with the polyclonal stimulus (Fig.2.5). IL-21 depletion had no effect on their 

cytokine production. 

Likewise, CD4 T cells isolated from M2-primed mice did not respond to M2 peptide 

stimulation but did when stimulated with polyclonal stimulus (Fig.2.6). IL-21 depletion had 

no effect, other than significantly reduce IL-21 production by these cells when stimulated 

with the polyclonal stimulus (Fig.2.6f). CD8 T cells from non-depleted, M2-primed mice 

produced significant amounts of IFN-γ (Fig.2.7a), granzyme B (Fig.2.7b), and IL-10 (Fig.2.7d) 

but IL-4, IL-17, and IL-21 were not detected. IL-21 depletion had no significant effect on 

cytokine or granzyme B production. 
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Figure 2.4. IL-21 depletion during rVV-G priming increases IFN-γ, IL-10, and reduces IL-4 production by RSV-
G-specific CD4 T cells. Mice were immunised with rVV-G and spleens were harvested 14 days post priming, 
RBCs lysed, and single cell suspensions counted by trypan blue exclusion assay. CD4 T cells were sorted by 

MACS and purity confirmed by flow cytometry. CD4 T cells (2×10
6 

cells/well) were stimulated with either 

media alone, irradiated APC (2×10
5 

cells/well) pulsed with specific peptide (G 184-198), or αCD3/28-
expressing beads (50µl/well) for 72hrs. Supernatants were harvested and IFN-γ (a), Granzyme B (b), IL-4 (c), 
IL-10 (d), IL-17 (e), and IL-21 (f) were determined by sandwich ELISA. The graphs are representative of two 
independent experiments of five mice per group. Student t test result *: p<0.05, **: p<0.01, ***: p<0.001. 

a. b. 

c. d. 

e. f. 
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Figure 2.5. IL-21 depletion during rVV-G priming does not affect cytokine production by CD8 T cells. Mice 
were immunised with rVV-G and spleens were harvested 14 days post priming, RBCs lysed, and single cell 
suspensions counted by trypan blue exclusion assay. CD8 T cells were sorted by MACS and purity confirmed 

by flow cytometry. CD8 T cells (2×10
6 

cells/well) were stimulated with either media alone, irradiated APC 

(2×10
5 

cells/well) pulsed with specific peptide (G 184-198), or αCD3/28-expressing beads (50µl/well) for 
72hrs. Supernatants were harvested and IFN-γ (a), Granzyme B (b), IL-4 (c), IL-10 (d), IL-17 (e), and IL-21 (f) 
were determined by sandwich ELISA. The graphs are representative of two independent experiments of five 
mice per group.  

a. b. 

c. d. 

e. f. 
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Figure 2.6. IL-21 depletion during rVV-M2 priming inhibits IL-21 production by CD4 T cells. Mice were 
immunised with rVV-M2 and spleens were harvested 14 days post priming, RBCs lysed, and single cell 
suspensions counted by trypan blue exclusion assay. CD4 T cells were sorted by MACS and purity confirmed 

by flow cytometry. CD4 T cells (2×10
6 

cells/well) were stimulated with either media alone, irradiated APC 

(2×10
5 

cells/well) pulsed with specific peptide (M2 82-90), or αCD3/28-expressing beads (50µl/well) for 
72hrs. Supernatants were harvested and IFN-γ (a), Granzyme B (b), IL-4 (c), IL-10 (d), IL-17 (e), and IL-21 (f) 
were determined by sandwich ELISA. The graphs are representative of two independent experiments of five 
mice per group. Student t test result *: p<0.05. 

a. b. 

c. d. 

e. f. 
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Figure 2.7. IL-21 depletion during rVV-M2 priming has no effect on cytokine production by CD8 T cells. Mice 
were immunised with rVV-M2 and spleens were harvested 14 days post priming, RBCs lysed, and single cell 
suspensions counted by trypan blue exclusion assay. CD8 T cells were sorted by MACS and purity confirmed 

by flow cytometry. CD8 T cells (2×10
6 

cells/well) were stimulated with either media alone, irradiated APC 

(2×10
5 

cells/well) pulsed with specific peptide (M2 82-90), or αCD3/28-expressing beads (50µl/well) for 
72hrs. Supernatants were harvested and IFN-γ (a), Granzyme B (b), IL-4 (c), IL-10 (d), IL-17 (e), and IL-21 (f) 
were determined by sandwich ELISA. The graphs are representative of two independent experiments of five 
mice per group. 

a. b. 

c. d. 

e. f. 
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4. IL-21 depletion during priming with rVV-G exacerbates pathology after RSV challenge 

significantly more than during priming with rVV-M2  

Next, I wanted to determine whether the enhanced cytokine production from memory CD4 

T cells, but not CD8 T cells, altered the recall response in immunised mice after RSV 

challenge. Therefore, mice were challenged with RSV 14 days after priming with the vaccinia 

virus vectors. They were weighed daily and observed for visible signs of pathology. Primed 

mice develop a more rapid and aggressive response after RSV challenge. Consequently, 

disease severity (as measured by weight loss) is much more severe than observed in 

unimmunised mice. Primed mice began to lose weight immediately after RSV challenge and 

at a greater rate than observed in unimmunised mice (Fig.2.8). Weight loss peaked at d5-6 

p.c in primed mice, two days earlier than unimmunised animals. At this time primed mice 

were exhibiting signs of severe disease (e.g. piloerection, hunched form, no/slower 

movement) not observed in unimmunised animals. Weight loss was more severe in M2-

primed mice (Fig.2.8c) than G-primed mice (Fig.2.8b), demonstrating that CD8 T cells are 

more important for the observed pathology in this setting. Finally, primed mice recover 

more slowly than unimmunised animals; some mice do not recover their baseline weight by 

experiment termination. 

IL-21 depletion increased weight loss in primed mice. In G-primed animals, IL-21 depletion 

significantly enhanced weight loss from d5 p.c until d12 p.c (Fig.2.8b). Moreover, whereas 

non-depleted mice recovered their baseline weights by d8 p.c, IL-21-depleted mice had not 

and were still exhibiting visible signs of illness. In M2-primed animals, IL-21 depletion had a 

similar but less marked effect. Pathology was enhanced, but the difference from non-

depleted mice was reduced compared to that observed in G-primed mice (d7 p.c: G-primed  
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Figure 2.8. IL-21 depletion during priming with rVV-G exacerbates pathology after RSV challenge 
significantly more than during priming with rVV-M2. Mice were immunised with rVV-βgal, -G, or –M2 as 

described in Fig.2.1. 14 days later mice were challenged with RSV (1×10
6
pfu/mouse; i.n). Mice were 

weighed daily for 14 days. Weight is shown as a percentage of baseline weight prior to RSV challenge. Error 
bars represent SEM. The graphs are representative of at least six independent experiments of five mice per 
group. Student t test result *: p<0.05, **: p<0.01, ***: p<0.001. 

a. 

b. 

c. 
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mice, 24.2%; M2-primed mice, 6.8%). The difference became statistically significant from d7 

p.c until d14 p.c (Fig.2.8c). Both groups of mice exhibited similar visible signs of disease, yet 

recovered with the same kinetic as control animals. 

 

5. IL-21 depletion significantly increases T cell recruitment in rVV-G-, but not rVV-M2-, 

primed mice after RSV challenge 

Pathology in RSV disease positively correlates with cell recruitment to the pulmonary 

compartment. I therefore, determined the effect of IL-21 depletion on this in augmented 

disease. Total live cell counts from BAL and lung tissue were determined by trypan blue 

assay. As expected, total cell counts were greatest when pathology was most severe, and 

were significantly higher in primed (Fig.2.9c-f) than unprimed (Fig.2.9a&b) mice at all time 

points tested. In G-primed mice, IL-21 depletion significantly enhanced cell recruitment to 

the BAL (Fig.2.9c) and lung (Fig.2.9d). In contrast, in M2-primed mice IL-21 depletion 

significantly enhanced cell recruitment to the BAL (Fig.2.9e) but not the lung (Fig.2.9f). As 

described in the previous chapter, IL-21 depletion in primary RSV challenge significantly 

increases CD4 T cell recruitment to the BAL (Fig.1.6e) and lung tissue (Appendix 1.1e) by d7 

p.c. I therefore determined recruitment of memory CD4 and CD8 T cells in augmented 

disease. The same effect was observed in rVV-βgal-immunised mice for BAL (Fig.2.10a) and 

lung (Appendix 2.1a) CD4 T cells as was observed in primary RSV challenge. Further, there 

was no effect on CD8 T cell recruitment (Fig.2.10b & Appendix 2.1b). The numbers of CD4 

and CD8 T cells recruited to the airway in G- (Fig.2.10c) and M2-primed (Fig.2.10f) mice 

respectively were significantly enhanced compared to rVV-βgal-immunised mice. 
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Figure 2.9. IL-21 depletion significantly increases cell recruitment in G-, but not M2-, primed mice after RSV 
challenge. Mice were immunised and challenged as described in Fig.2.8. BALF (a, c, e) and lung tissue (b, d, 
f) were harvested at several time points post challenge. Samples were processed, the RBCs lysed, and live 
cells counted by trypan blue exclusion assay. Error bars represent SEM. The graphs are representative of 
three independent experiments of five mice per group. Student t test result *: p<0.05, **: p<0.01. 

a. b. 

c. d. 

e. f. 



205 
 

 

  

0 5 10 15
0

100

200

300

400

500

600

700

800

900
Control

IL-21

***

Day post RSV challenge

C
e

ll 
c
o

u
n
ts

 (


1
0

-3
)

0 5 10 15
0

100

200

300

400

500

600

700

800

900

Day post RSV challenge

C
e

ll 
c
o

u
n
ts

 (


1
0

-3
)

0 5 10 15
0

100

200

300

400

500

600

700

800

900
***

*

***

Day post RSV challenge

C
e

ll 
c
o

u
n
ts

 (


1
0

-3
)

0 5 10 15
0

100

200

300

400

500

600

700

800

900

*

Day post RSV challenge

C
e

ll 
c
o

u
n
ts

 (


1
0

-3
)

0 5 10 15
0

100

200

300

400

500

600

700

800

900

Day post RSV challenge

C
e

ll 
c
o

u
n
ts

 (


1
0

-3
)

0 5 10 15
0

100

200

300

400

500

600

700

800

900

Day post RSV challenge

C
e

ll 
c
o

u
n
ts

 (


1
0

-3
)

rVV-βgal 

rVV-G 

rVV-M2 

BAL CD4 T cells BAL CD8 T cells 

Figure 2.10. IL-21 depletion significantly increases T cell recruitment in G-, but not M2-, primed mice after 
RSV challenge. Mice were immunised and challenged as described in Fig.2.8. BALF cells were harvested at 
several time points post challenge. Samples were processed and live cells counted by trypan blue exclusion 
assay. BALF CD4 (a, c, e) and CD8 (b, d, f) T cells in rVV-βgal (a-b), rVV-G (c-d), and rVV-M2 (e-f) were 

phenotyped by flow cytometry and cell counts determined. At least 50×10
3
cells/sample were collected. 

Data are expressed as mean±SEM. The graphs are representative of three independent experiments of five 
mice per group. Student t test result *: p<0.05, ***: p<0.001. 

a. b. 

c. d. 

e. f. 
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In G-primed mice, IL-21 depletion significantly increased CD4 T cell recruitment from d4-10 

p.c in both BAL (Fig.2.10c) and lung tissue (Appendix 2.1c). Moreover, the number of CD8 T 

cells was also significantly increased in the BAL but only at d7 p.c (Fig.2.10d). No increase 

was observed in the lung tissue (Appendix 2.1d). In M2-primed mice, IL-21 depletion did not 

alter CD4 T cell recruitment to the BAL (Fig.2.10e) or lung tissue (Appendix 2.1e), and did not 

significantly increase CD8 T cell recruitment (Fig.2.10f and Appendix 2.1f). 

 

6. IL-21 depletion during priming increases cytokine production in BAL and lung after RSV 

challenge 

As IL-21 depletion increased recall CD4, but not CD8, T cell responses after RSV challenge I 

wanted to know if this affected cytokine production in the pulmonary compartment. 

Therefore, I measured cytokines in the BALF, and supernatants from lung cells stimulated 

with αCD3/αCD28-expressing beads, at several time points post RSV challenge. In 

unimmunised mice, BAL IFN-γ levels did not increase until d4 p.c, peaked at d7, and 

returned to baseline levels by d10 p.c (Fig.2.11a). As described for primary RSV challenge, IL-

21 depletion significantly increased BAL IFN-γ levels but only at d7 p.c, the peak of 

pathology. There was negligible IL-4 production in rVV-βgal-immunised mice and IL-21 

depletion had no effect on the levels produced (Fig.2.11c). I also measured BAL IL-10 

(Fig.2.11d), IL-17 (Fig.2.11e), granzyme B (Fig.2.11b), and IL-21 (Fig.2.11f) levels. There was 

little IL-17 and no IL-21 could be detected. 
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BAL granzyme B was detectable from d2 p.c, peaked at d7 p.c, and became undetectable at 

d10 p.c (Fig.2.11b). IL-21 depletion had no effect on the levels produced. Finally, BAL IL-10 

peaked at d4 p.c, and was undetectable by d10 p.c (Fig.2.11d). IL-21 depletion significantly 

increased levels at d4 p.c but had no effect at d7 p.c, as observed during primary RSV 

challenge.  

In G-primed mice, peak IFN-γ levels were 3-fold higher than in unimmunised mice. IFN-γ was 

detectable at d2 p.c, peaked at d4-7 p.c, and returned to baseline at d14 p.c (Fig.2.12a). IL-

21 depletion significantly increased production at d4&7 p.c. BAL IL-4 levels were also 

significantly higher than in unimmunised mice peaking at d4 p.c and became undetectable 

at d10 p.c (Fig.2.12c). IL-21 depletion reduced production which was reached statistical 

significant at d4&7 p.c. BAL IL-21 (Fig.2.12f) was undetectable in G-primed mice. Granzyme 

B was detectable in the BAL and peaked at d4-7p.c but IL-21 depletion had no significant 

effect on its production (Fig.2.12b). Finally, BAL IL-10 (Fig.2.12d) and IL-17 (Fig.2.12e) levels 

peaked at d4 p.c and IL-21 depletion significantly increased levels at both d4&7 p.c.  

In M2-primed mice, peak BAL IFN-γ levels were >2-fold higher than in G-primed mice 

(Fig.2.13a). The kinetics of production was similar to G-primed mice but IL-21 depletion had 

no significant effect on production. No IL-4 was detectable at any time and IL-21 depletion 

had no effect (Fig.2.13c). Likewise BAL IL-17 (Fig.2.13e), and IL-21 (Fig.2.13f) were 

undetectable in M2-primed mice and IL-21 depletion had no effect on production. BAL IL-10 

was detectable on d4-7 p.c but at lower levels than those observed in G-primed mice   
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Figure 2.11. IL-21 depletion during rVV-βgal priming increases BAL IFN-γ and IL-10 levels after RSV 
challenge. Mice were immunised with rVV-βgal and challenged as described in Fig.2.8. BALF was harvested 
at several time points post challenge and IFN-γ (a), Granzyme B (b), IL-4 (c), IL-10 (d), IL-17 (e), and IL-21 (f) 
were determined by sandwich ELISA. Error bars represent SEM. The graphs are representative of three 
independent experiments of five mice per group. Student t test result *: p<0.05, ***: p<0.001. 

a. b. 

c. d. 

e. f. 
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Figure 2.12. IL-21 depletion during rVV-G priming increases BAL IFN-γ, IL-10, and IL-17 and reduces IL-4 
levels after RSV challenge. Mice were immunised with rVV-G and challenged as described in Fig.2.8. BALF 
was harvested at several time points post challenge and IFN-γ (a), Granzyme B (b), IL-4 (c), IL-10 (d), IL-17 
(e), and IL-21 (f) were determined by sandwich ELISA. Error bars represent SEM. The graphs are 
representative of three independent experiments of five mice per group. Student t test result *: p<0.05, **: 
p<0.01, ***: p<0.001. 

a. b. 

c. d. 

e. f. 
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Figure 2.13. IL-21 depletion during rVV-M2 priming has no effect on BAL cytokine levels after RSV challenge. 
Mice were immunised with rVV-M2 and challenged as described in Fig.2.8. BALF was harvested at several 
time points post challenge and IFN-γ (a), Granzyme B (b), IL-4 (c), IL-10 (d), IL-17 (e), and IL-21 (f) were 
determined by sandwich ELISA. Error bars represent SEM. The graphs are representative of three 
independent experiments of five mice per group. 

a. b. 

c. d. 

e. f. 



211 
 

 (Fig.2.13d). Again, IL-21 depletion had no effect on IL-10 production. BAL granzyme B was 

detectable at d2 p.c , peaked at d7 p.c, and was undetectable at d14 p.c (Fig.2.13b). 

However, IL-21 depletion had no significant effects on production.  

Cytokine production by lung cells from rVV-βgal-immunised (Appendix 2.2), G-primed 

(Appendix 2.3), and M2-primed (Appendix 2.4) mice stimulated with a polyclonal stimulus 

showed a very similar phenotype to that described for the BAL. However, IL-21 production 

was detected in G-primed mice, suggesting that memory CD4 T cells were a potent source of 

this factor. 

These data from primed animals confirm that IL-21 plays a much more significant role in 

controlling the recruitment, activation and effector functions of CD4 T cells and CD4-T-cell-

driven immune responses during RSV infection. Therefore, I focussed subsequent studies on 

G-primed animals and CD4-T-cell-mediated immune responses to RSV challenge.  

 

7. IL-21 depletion during priming increases cell recruitment to the pulmonary compartment 

after RSV challenge 

Having shown that IL-21 depletion increased both CD4 and CD8 T cell recruitment to the 

pulmonary compartment in G-primed mice after RSV challenge, next I determined if 

recruitment of other immune cells were also affected. To determine this BALF and lung 

tissue were harvested from mice at the peak of pathology (d5 p.c) as this time correlates 

with the greatest changes in total cell recruitment, CD4 T cell recruitment, and cytokine 

production. Recruitment of several different cell types was determined by flow cytometry. 

In non-depleted mice, I detected recruitment of lymphocytes [CD4 T cells (TCRβ+CD4+), CD8 
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T cells (TCRβ+CD8+), B cells (B220+CD19+), and NK cells (TCRβ-DX5+)], granulocytes 

[neutrophils (CD3-B220-CD11b+CCR3-) and eosinophils (CD3-B220-CD11b+CCR3+)], and APCs 

(MHCII+CD11b+CD11c+) to the BAL. IL-21 depletion increased recruitment of CD4 T cells and 

CD8 T cells (as described previously), and NK cells (Fig.2.14a). However, B cell recruitment 

was significantly decreased. IL-21 depletion also significantly increased neutrophil 

recruitment to the airway, but eosinophilia remained unchanged (Fig. 2.14c). Recruitment of 

antigen-presenting cells (APCs; DCs) was also significantly increased by IL-21 depletion 

(Fig.2.14e). Only a minority of these cells were F4/80+ indicating that these were mostly DCs 

and not macrophages.  

A similar effect of IL-21 depletion was also observed on cell recruitment to the lung tissue. 

Lymphocytosis (Fig.2.14b), granulocytosis (Fig.2.14d), and DC recruitment (Fig.2.14f) were 

all enhanced in IL-21-depleted mice. 

 

 8. IL-21 depletion during priming compromises viral clearance after RSV challenge 

In RSV disease, enhanced cellular recruitment positively correlates with enhanced viral 

clearance. To determine the effect of IL-21 depletion on viral clearance, I measured the 

number of RSV L gene copies in lung tissue at several time points post RSV challenge by 

qPCR. mRNA was purified from lung tissue, converted to cDNA, and the number of L gene 

copies determined using L-gene-specific primers and probe. In unimmunised mice, viral L 

gene copies were first detected at d2 p.c, peak at d4 p.c, and return to baseline levels by d7 

p.c (Fig.2.15). In contrast, viral L gene remains undetectable in immunised, non-depleted 

mice as they produce a much more rapid and vigorous anti-viral response. However, viral L  
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Figure 2.14. IL-21 depletion during rVV-G priming increases cell recruitment to the pulmonary 
compartment after RSV challenge. Mice were immunised with rVV-βgal (‘non’) or rVV-G (‘Con’ and ‘Dep’) 
and challenged as described in Fig.2.8. BALF (a, c, e) and lung (b, d, f) samples were harvested at d5 post 
challenge. Samples were processed, RBCs lysed, and live cells counted by trypan blue exclusion assay. CD4 T 
cells, CD8 T cells, B cells and NK cells (a-b); neutrophils and eosinophils (c-d); and DCs (e-f) were 

phenotyped by flow cytometry and cell counts determined. At least 50×10
3
cells/sample were collected. 

Error bars represent SEM. The graphs are representative of at least five independent experiments of five 
mice per group. Student t test result *: p<0.05, **: p<0.01, ***: p<0.001. 

a. b. 

c. d. 

e. f. 
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Figure 2.15. IL-21 depletion during rVV-G priming compromises viral clearance after RSV challenge. Mice 
were immunised with rVV-βgal (‘Unimmunised’) or rVV-G (‘Con’ and ‘Dep’) and challenged as described in 
Fig.2.8. Lungs were harvested at several time points post challenge. The number of viral L gene copies in the 
lungs of infected mice was determined at several time points post challenge by quantitative PCR (qPCR; 
protocol described in Materials and Methods). Error bars represent SEM. The graphs are representative of 
three independent experiments of five mice per group. ANOVA (Tukey post test) ***: p<0.001. 
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gene was detectable at d4 p.c in IL-21-depleted mice, though the L gene copy number was 

3-fold lower than unimmunised animals (Fig.2.15). 

 

9. IL-21 depletion at priming boosts the number of RORγt+ and T-bet+ pulmonary CD4 T cells 

after RSV challenge 

Changes in cytokine production may reflect alterations in CD4 T cell differentiation. To 

examine how IL-21 depletion affects CD4 T cell differentiation, I determined FoxP3, RORγt, 

and T-bet expression in splenic CD4 T cells prior to RSV challenge and lung CD4 T cells at d5 

p.c (the peak of disease severity). IL-21 depletion did not alter FoxP3 (Fig.2.16a), RORγt 

(Fig.2.16b), or T-bet (Fig.2.16c) expression by splenic CD4 T cells (Fig.2.16d), nor did it alter 

cell numbers (Fig.2.16e). However, at d5 p.c, a significantly reduced proportion of BAL CD4 T 

cells from IL-21-depleted mice expressed FoxP3 (Fig.2.17a&d), while the proportion 

expressing RORγt (Fig.2.17b&d) or T-bet (Fig.2.17c&d) was similar. Consequently, there was 

an increase in total RORγt+ and T-bet+ BAL CD4 T cell numbers as a result of IL-21-depletion 

(Fig.2.17e). This trend also occurred in lung tissue (Fig.2.18), but there were no significant 

differences in the cells of the mediastinal lymph nodes (Fig.2.19).   
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Figure 2.16. IL-21 depletion has no effect on FoxP3, RORγt, and T-bet expression by splenic CD4 T cells 
after priming with recombinant vaccinia virus. Mice were immunised with rVV-G as described in Fig.2.8. 
Fourteen days post priming spleens were harvested. CD4 T cells were stained for FoxP3 (a), RORγt (b), or 
T-bet (c) according to the manufacturer’s instructions. The percentage of CD4 T cells expressing each 
transcription factor was determined by flow cytometry and is shown in each dotplot. Grouped data for 
percentage (d) and total number (e) is also shown. The graph is representative of two independent 
experiments of five mice per group. 
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Figure 2.17. IL-21 depletion in primed mice reduces FoxP3 expression by BAL CD4 T cells after RSV 
challenge. Mice were immunised with rVV-G and challenged as described in Fig.2.8. Five days post 
challenge BALF was harvested. CD4 T cells were stained for FoxP3 (a), RORγt (b), or T-bet (c) 
according to the manufacturer’s instructions. The percentage of CD4 T cells expressing each 
transcription factor was determined by flow cytometry and is shown in each dotplot. Grouped data 
for percentage (d) and total number (e) is also shown. The graph is representative of two 
independent experiments of five mice per group. Student t-test result **: p<0.01, ***: p<0.001. 
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Figure 2.18. IL-21 depletion in primed mice reduces FoxP3 expression by lung CD4 T cells after RSV 
challenge. Mice were immunised with rVV-G and challenged as described in Fig.2.8. Five days post 
challenge lungs were harvested. CD4 T cells were stained for FoxP3 (a), RORγt (b), or T-bet (c) 
according to the manufacturer’s instructions. The percentage of CD4 T cells expressing each 
transcription factor was determined by flow cytometry and is shown in each dotplot. Grouped data 
for percentage (d) and total number (e) is also shown. The graph is representative of two 
independent experiments of five mice per group. Student t-test result *: p<0.05. 
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Figure 2.19. IL-21 depletion in primed mice has no effect on FoxP3, RORγt, and T-bet expression by 
dLN CD4 T cells after RSV challenge. Mice were immunised with rVV-G and challenged as described 
in Fig.2.8. Five days post challenge draining lymph nodes were harvested. CD4 T cells were stained 
for FoxP3 (a), RORγt (b), or T-bet (c) according to the manufacturer’s instructions. The percentage of 
CD4 T cells expressing each transcription factor was determined by flow cytometry and is shown in 
each dotplot. Grouped data for percentage (d) and total number (e) is also shown. The graph is 
representative of two independent experiments of five mice per group. Student t-test result *: 
p<0.05. 
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10. IL-21 depletion during priming increases IFN-γ and IL-17 production by CD4 T cells after 

RSV challenge 

Analysis of transcription factor expression by pulmonary CD4 T cells indicated that IL-21 

depletion reduced FoxP3 and increased RORγt and T-bet expression. Therefore, next I 

determined whether these increased signals for the Th1 (T-bet) and Th17 (RORγt) signature 

transcription factors resulted in greater expression of IFN-γ and IL-17 by these cells. To 

achieve this, spleens were processed from control and IL-21-depleted mice 14 days post 

cutaneous vaccinia virus infection and CD4 T cells sorted using MACS technology. 

These cells were then stimulated with media or αCD3/αCD28-expressng beads. Cytokine 

secretion was blocked using Golgiplug and IFN-γ and IL-17 production measured by CD4 T 

cells at the single-cell level by flow cytometry.  

~90% of the stimulated cells in culture were CD4 T cells (Fig.2.20a). No cytokine production 

was detected by CD4 T cells from either group after stimulation with media (Fig.2.20b). 

However, after polyclonal stimulation ~80-85% of CD4 T cells from both groups produced 

IFN-γ (Fig.2.20c), and there was no significant difference between CD4 T cells from control 

or IL-21-depleted mice (Fig.2.20d). However, while no IL-17 production was detected by CD4 

T cells from control mice, there was a small (1.74%) but visible population of CD4 T cells 

from IL-21-depleted mice producing IL-17 (Fig.2.20c). 93% of the CD4 T cells producing IL-17 

co-produced IFN-γ, and the difference in IL-17 production between the two groups was 

significant (Fig.2.20d). 
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Figure 2.20. IL-21 depletion during rVV-G priming increases IL-17 production by CD4 T cells. Mice were 
immunised rVV-G and 14 days post priming spleens were harvested. CD4 T cells were sorted by MACS and 

stimulated overnight with media (b) or αCD3/28 beads (10μl/10
6
 cells; c). CD4 T cells (a) were stained for 

IFN-γ and IL-17 using specific catch and detection reagents (10μl/10
6
 cells). The percentage of CD4 T cells 

secreting each cytokine was determined by flow cytometry and is shown in each dotplot. Grouped data is 
also shown (d). The graphs are representative of two independent experiments of five mice per group. 
Student t-test result ***: p<0.001. 
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Next, I determined whether this difference in cytokine production was present post RSV 

challenge. Therefore, lungs were processed from control and IL-21-depleted mice at d5 p.c 

and stimulated as above. CD4 T cells were identified as above and comprised 23-28% of lung 

lymphocytes (Fig.2.21a). ~12% of CD4 T cells produced IFN-γ when cultured in media alone, 

but IL-17 was undetectable (Fig.2.21b). Polyclonal stimulation of lung CD4 T cells increased 

the percentage producing IFN-γ in both groups (control: 12.6%; IL-21-depleted: 19.5%) but 

significantly more CD4 T cells from IL-21-depleted mice produced IFN-γ compared to control 

cells (Fig.2.21c&d). Moreover, significantly more lung CD4 T cells from IL-21-depleted mice 

produced IL-17 compared to those from control mice (control: 2.9%; IL-21-depleted: 9.1%). 

However, in contrast to splenic CD4 T cells post priming, IL-17+ CD4 T cells were split into 

IFN-γ- (~60%) and IFN-γ+ (40%) subsets. 

 

11. IL-21 depletion during priming increases antigen-specific cytokine production by CD4 T 

cells after RSV challenge 

Previous data indicate that IL-21-depleted-CD4-T-cells produce increased amounts of IFN-γ 

and IL-17 upon polyclonal stimulation compared to non-depleted controls. However, it was 

unclear if this phenotype occurred if the CD4 T cells were stimulated with cognate antigen. 

To determine this, I MACS-sorted lung CD4 T cells and FACS-sorted lung DCs from control 

and IL-21-depleted mice at d5 p.c. Cell purity was >90%. DCs were pulsed with either 

specific (G 184-198) peptide or a control (G 64-78) peptide and co-cultured with CD4 T cells 

for 72hrs. Supernatants were harvested and cytokines assayed by sandwich ELISA. 
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Figure 2.21. IL-21 depletion during rVV-G priming increases IFN-γ and IL-17 production by CD4 T cells. Mice 
were immunised rVV-G and challenged as described in Fig.2.8. Five days post challenge lungs were 
harvested. CD4 T cells were sorted by MACS and stimulated overnight with media (b) or αCD3/28 beads 

(10μl/10
6
 cells; c). CD4 T cells (a) were stained for IFN-γ and IL-17 using specific catch and detection 

reagents (10μl/10
6
 cells). The percentage of CD4 T cells secreting each cytokine was determined by flow 

cytometry and is shown in each dotplot. Grouped data is also shown (d). The graphs are representative of 
two independent experiments of five mice per group. Student t-test result **: p<0.01. 
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No cytokines were detected when CD4 T cells were stimulated with control peptide 

(Fig.2.22). CD4 T cells from non-depleted mice produced significant amounts of IFN-γ 

(Fig.2.22a) and IL-21 (Fig.2.22e), and small but detectable amounts of IL-10 (Fig.2.22c), IL-4 

(Fig.2.22b), and IL-17 (Fig.2.22d). However, CD4 T cells from IL-21-depleted mice produced 

significantly increased levels of all cytokines assayed except IL-21 whose production was 

ablated (Fig.2.22e). IFN-γ (Fig.2.22a) and IL-17 (Fig.2.22d) production were particularly 

enhanced compared to the increase in IL-4 (Fig.2.22b) and IL-10 (Fig.2.22c). 
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Figure 2.22. IL-21 depletion during rVV-G priming increases antigen-specific cytokine production by CD4 T 
cells after RSV challenge. Mice were immunised rVV-G and challenged as described in Fig.2.8. Five days post 

challenge lungs were harvested. CD4 T cells were sorted by MACS and DCs sorted by FACS. DCs (4×10
4
 

cells/well) were pulsed with specific (G184-198) peptide or control (G64-78) peptide (10µg/ml) for 1hr prior 

to co-culture with CD4 T cells (4×10
5
 cells/well). Cells were incubated for 72hrs, the supernatants were 

harvested, and IFN-γ (a), IL-4 (b), IL-10 (c), IL-17 (d), and IL-21 (e) levels determined by sandwich ELISA. The 
graphs are representative of three independent experiments of five mice per group. Student t-test result *: 
p<0.05, ***: p<0.001. 

a. b. 

c. d. 

e. 
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12. Adoptive transfer of CD4 T cells from rVV-G-primed, IL-21-depleted, RSV-challenged 

mice exacerbates immunopathology in recipient mice after RSV challenge 

IL-21 depletion increases CD4 T cell recruitment and cytokine production to enhance 

pathology after RSV challenge. However, it is possible that other cells apart from CD4 T cells 

are responsible for the observed increase in pathology. To determine how important CD4 T 

cells were to pathology, I adoptively-transferred memory CD4 T cells into naïve recipients 

prior to RSV challenge. Post RSV challenge, memory T cells exist in several tissues, including 

BALF, lung, the mediastinal lymph nodes, and spleen. The memory populations comprise 

distinct subsets of memory T cells that elicit different effects on disease (746). However, as 

the spleen was the site of memory T cell development post priming, and was where most 

memory T cells resided (in numerical terms) I used this site as the memory T cell source. I 

therefore phenotyped the splenic CD4 T cells 28 days post RSV challenge to determine the 

effect of IL-21 depletion on the transferred cells. Since there is no direct method by which to 

isolate anti-RSV-G-protein-specific memory CD4 T cells, I determined the cytokine secretion 

profile of G-specific cells taken 28 days post RSV challenge, after stimulation with specific 

peptide (G184-198). There was no cytokine production by naïve spleen cells after peptide 

stimulation (Fig.2.23). No IL-4 (Fig.2.23b), IL-17 (Fig.2.23d), or IL-21 (Fig.2.23f) production 

was detected from G-specific spleen cells from control or IL-21-depleted mice; there was 

weak but detectable IL-10 production (Fig.2.23c), but no significant difference resulting from 

IL-21 depletion. In contrast, there was significant IFN-γ (Fig.2.23a) and granzyme B 

(Fig.2.23e) production by spleen cells, which was increased by IL-21 depletion in vivo.  

The percentage of splenic CD4 T cells expressing FoxP3 (Fig.2.24a), RORγt (Fig.2.24b), T-bet 

(Fig.2.24c) did not differ significantly between groups (Fig.2.24d), but priming and RSV 



227 
 

challenge increased splenic CD4 T cell numbers so that FoxP3+, RORγt+, and T-bet+ CD4 T 

cells increased in total number. Importantly, there were significantly more FoxP3+ splenic 

CD4 T cells from control mice compared to IL-21-depleted (Fig.2.24e). 
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Figure 2.23. IL-21 depletion at priming increases IFN-γ and granzyme B production by splenic CD4 T cells 28 
days post RSV challenge. Mice were immunised with rVV-G and challenged as described in Fig.2.8. 28 days 
post challenge, spleen cells from both groups plus naïve mice were harvested and processed. Spleen cells 

(2×10
6
cells/well) were stimulated with media, specific G peptide (10µg/ml), or αCD3/28-expressing beads 

(50µl/well) for 72hrs. The supernatants were harvested, and IFN-g (a), IL-4 (b), IL-10 (c), IL-17 (d), granzyme B 
(e) and IL-21 (f) levels determined by sandwich ELISA. The graphs are representative of two independent 
experiments of five mice per group. Student t-test result **: p<0.01, ***: p<0.001. 
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Figure 2.24. IL-21 depletion at priming significantly alters the number FoxP3
+
, RORγt

+
, and T-bet

+
 CD4 T 

cells 28 days post RSV challenge. Mice were immunised with rVV-G and challenged as described in 
Fig.2.8. 28 days post challenge, spleen cells from both groups plus naïve mice were harvested and 
processed. CD4 T cells were stained for FoxP3 (a), RORγt (b), or T-bet (c) according to the manufacturer’s 
instructions. The percentage of CD4 T cells expressing each transcription factor was determined by flow 
cytometry and is shown in each dotplot. Grouped data for percentage (d) and total number (e) is also 
shown. The graph is representative of two independent experiments of five mice per group. Student t-
test result **: p<0.01, ***: p<0.001. 



230 
 

Splenic CD4 T cells from naïve, control or IL-21-depleted primed and RSV challenged mice 

were MACS-sorted and adoptively-transferred (i.p) into naïve recipient BALB/c mice 24hrs 

before i.n. challenge with RSV. Organs were harvested on d7 (p.c). Transfer of naïve CD4 T 

cells did not protect against disease, whereas CD4 T cells from primed, non-depleted, mice 

significantly reduced weight loss. In contrast, CD4 T cells from primed, IL-21-depleted, mice 

increased the magnitude of weight loss and did not protect against disease (Fig.2.25a). 

However, addition of CD4 T cells from G-primed mice did significantly reduce viral 

replication compared to naive (Fig.2.26). Increased weight loss was associated with 

enhanced T cell recruitment to the airway (Fig.2.25d&e). Of the CD4 T cells recruited to the 

BAL (Fig.2.25b) and lung (Fig.2.25c) most were T-bet+, and there were significantly more 

when CD4 T cells from IL-21-depleted mice were administered. There was also an increase 

in FoxP3+ and RORγt+ BAL CD4 T cells in these mice. Significantly more CD4 (Fig.2.25d) and 

recipient CD8 (Fig.2.25e) T cells expressed an activated phenotype (CD69+, OX40+, and 

ICOS+) when CD4 T cells were administered from IL-21-depleted mice. CD4 T cells from IL-

21-depleted mice also recruited more BAL recipient NK cells, though there activity (as 

measured by CD69 expression) was identical (Fig2.25f). This increase in T-bet+ CD4 T cells, 

CD8 T cells, and NK cells increased BAL IFN-γ (Fig.2.25g) but not IL-4 levels (Fig.2.25h); in 

contrast there was no increase in BAL IFN-γ, and a significant increase in IL-4 when control 

CD4 T cells were administered. BAL IL-17 levels were unaltered (Fig.2.25i).  

To confirm these effects of IL-21 depletion were restricted to CD4 T cells I performed 

parallel experiments in mice primed with RSV M2 protein (rVV-M2; Fig.2.27). Priming with 

this protein elicits a CD8 T cell memory that is recalled to the pulmonary compartment upon 
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Figure 2.25. Adoptive transfer of CD4 T cells from IL-21-depleted mice exacerbates pathology in 
recipient mice upon RSV challenge. Mice were immunised with rVV-G and challenged as described in 

Fig.2.8. 28 days post challenge, splenic CD4 T cells were MACS-sorted and 210
6
 cells/mouse were 

transferred (i.p) into naïve recipients one day prior to RSV infection. Naïve T cells were sorted and 
transferred into a third group as a control. Weights were measured daily for fourteen days (a). Seven 

days post challenge BAL fluid and lungs were harvested. The number of FoxP3
+
, RORγt

+
, and T-bet

+
 

CD4 T cells in BAL (b) and lung (c) were determined by flow cytometry. Recruitment and activity of 
CD4 T cells (d), CD8 T cells (e), and NK cells (f) to the BAL was determined by flow cytometry using 

specific markers. IFN- (g) and IL-4 (h) and IL-17 (i) levels in BAL fluid were determined by sandwich 
ELISA. Error bars represent SEM. The graphs are representative of three independent experiments of 
five mice per group. ANOVA (Tukey post test) result *: p<0.05, **: p<0.01, ***: p<0.001. 
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Figure 2.26. Adoptive transfer of CD4 T cells from primed and challenged mice reduces viral replication in 
recipient mice upon RSV challenge. Mice were treated as in Fig.2.23. Four days post challenge lungs were 
harvested into liquid nitrogen. Lungs were processed, and RNA extracted as described in Materials & 
Methods. cDNA was produced by RT-PCR and copies of the RSV L gene were determined by qPCR (Taqman). 
Plasmids encoding the L gene were used as standards to quantitate L gene copies. Results are expressed as 
the number of L gene copies. The graphs are representative of two independent experiments of five mice per 
group. ANOVA (Tukey post test) result *: p<0.05, **: p<0.01. 
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Figure 2.27. Adoptive transfer of CD8 T cells from IL-21-depleted mice does not alter 
pathology in recipient mice upon RSV challenge. Mice were immunised with rVV-M2 and 
challenged as described in Fig.2.8. 28 days post challenge, splenic CD8 T cells were MACS-

sorted and 210
6
 cells/mouse were transferred (i.p) into naïve recipients one day prior to 

RSV infection. Naïve T cells were sorted and transferred into a third group as a control. 
Weights were measured daily for fourteen days (a). Seven days post challenge BAL fluid was 
harvested. The number of CD8 T cells (b), CD4 T cells (c), and NK cells (d) and activity as 

determined by CD69 and ICOS expression were determined by flow cytometry. IFN- (e), 
TNF (f), IL-17 (g), and IL-4 (h) levels in BAL fluid were determined by sandwich ELISA. Error 
bars represent SEM. The graphs are representative of three independent experiments of 
five mice per group. ANOVA (Tukey post test) result *: p<0.05, **: p<0.01. 

a. b c. 

d. e. f. 

g. h. 
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RSV challenge. Upon CD8 T cell adoptive transfer and RSV challenge there were no 

significant changes in disease severity (Fig.2.27a) between recipients receiving control CD8 T 

cells or CD8 T cells from IL-21-depleted mice. This correlated with unaltered recruitment 

and activity of CD8 T cells (Fig.2.27b), CD4 T cells (Fig.2.27c), or NK cells (Fig.2.27d) into the 

BALF at the peak of disease (d7 p.c). Moreover, BAL IFN-γ (Fig.2.27e), TNF (Fig.2.27f), 

RANTES (Fig.2.27g), and IL-4 (Fig.2.27h) levels were unchanged, confirming that the 

observed effects described in this study are limited to CD4 T cells.  

 

13. IL-21 depletion during priming reduces antibody production after RSV challenge 

In the previous chapter, I observed that IL-21 depletion significantly reduced RSV-specific 

serum IgG1 and IgG2a levels compared to control animals. To determine if the same effect 

was observed in G-primed animals, serum was harvested 14 days post cutaneous vaccinia 

virus infection, prior to RSV challenge, and 14 days post RSV challenge. RSV-specific IgA, IgE, 

IgG1, and IgG2a were determined by ELISA. 

No RSV-specific serum IgA (Fig.2.28a) or IgE (Fig.2.28b) were detected in either group prior 

to RSV challenge. RSV-specific serum IgG1 was detected in non-depleted mice, and this was 

significantly reduced in IL-21-depleted mice (Fig.2.28c). Very low levels of RSV-specific 

serum IgG2a were detected in control mice and IL-21 depletion had no significant effect on 

its production (Fig.2.28d). 

No RSV-specific serum IgA (Fig.2.29a) or IgE (Fig.2.29b) could be detected from either group 

in serum samples taken 14 days post RSV challenge. RSV-specific serum IgG1 was detectable 

in both groups and was significantly reduced in IL-21-depleted mice (Fig.2.29c). Moreover,  
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Figure 2.28. IL-21 depletion during rVV-G priming reduces antibody production.  Mice were immunised with 
rVV-G and serum was harvested 14 days later and virus-specific IgA (a), IgE (b), IgG1 (c), and IgG2a (d) levels 
were determined by ELISA. Error bars represent SEM. The graphs are representative of three independent 
experiments of five mice per group. ANOVA (Tukey post test) result **: p<0.01. 

a. b. 

c. d. 
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Figure 2.29. IL-21 depletion during rVV-G priming reduces antibody production after RSV challenge. Mice 
were immunised rVV-G and challenged as described in Fig.2.8. Serum was harvested 14 days later and virus-
specific IgA (a), IgE (b), IgG1 (c), and IgG2a (d) levels were determined by ELISA. Error bars represent SEM. 
The graphs are representative of three independent experiments of five mice per group. ANOVA (Tukey post 
test) result **: p<0.01, ***: p<0.001. 

a. b. 

c. d. 
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RSV-specific serum IgG2a was also detectable in both groups but again was significantly 

reduced in IL-21-depleted mice (Fig.2.29d). 
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14. Discussion 

The results here confirm and extend the previous finding that IL-21 is a critical factor in 

controlling CD4 T cell responses to RSV challenge. Compared to the effects of IL-21 

depletion on primary RSV infection, the effect on memory CD4 T cell responses is more 

striking, in terms of changes in disease severity, cellular influx, T cell differentiation, and 

cytokine production. Conversely, the effect on memory CD8 T cell responses is more limited.  

As systemic IL-21 depletion occurred at the time of vaccinia virus priming, most changes in 

lymphocyte memory development are likely associated with changes in cell behaviour at 

this time and not after RSV challenge. There was no effect of IL-21 depletion on lesion size 

at the vaccinia virus infection site, indicating that IL-21 did not affect vaccinia virus infection 

or replication. However, viral replication was not directly measured as viral genome and/or 

protein is difficult to detect in whole skin samples, therefore lesion size was used as an 

indirect measure. Using this, the observed changes in T cell priming were not due to 

changes in vaccinia virus RSV antigen production. 

Upon scarification, lymphocytes are primed by cognate antigens captured by Langerhans 

cells and transported to the local draining pancreaticolienal (splenic) lymph nodes and 

spleen (747). Therefore, the effects of IL-21 depletion likely occur at these sites. The two 

most direct effects of IL-21 depletion may occur on the APCs presenting antigen (Langerhans 

cells and/or splenic DCs), and/or the antigen-specific T cells themselves. The data from G-

primed mice suggest that T cell activation was increased by IL-21 depletion, as cytokine 

production by αCD3/28-stimulated splenic T cells was increased, though proliferation was 

not measured. As this is APC-independent it suggests that the T cells are affected by IL-21 
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depletion, however it does not rule out an effect of APCs. Upon antigen-specific cytokine 

production with G or M2 peptide, increased cytokine production was also observed upon IL-

21 depletion. This does not confirm an effect of IL-21 on APC as T cell effects may explain 

the phenotype. It will be necessary to stimulate an unrelated transgenic T cell population 

with FACS-sorted APC from the spleen or dLN from control and IL-21-depleted mice to 

confirm if the APC have been affected. 

Previous studies have demonstrated that by 14 days post priming memory splenic T cell 

populations have developed, as transfer of splenic T cells into naïve recipients transfers the 

disease phenotype (688). Therefore it is these memory T cells that respond to RSV 

challenge. Post RSV challenge T cell memory is also located in the lungs and draining, 

mediastinal lymph node, as well as spleen. However, the spleen retains the numerically-

largest memory T cell pool. 

There is also an antibody response upon priming, which is much stronger after G-priming 

compared to M2-priming. This is likely due to the increased T cell help provided by G-

specific CD4 T cells rather than M2-specific CD8 T cells (687,748). IL-21 depletion reduced 

RSV-specific IgG1 production; however it was only significant at a high serum concentration 

suggesting the effect is minimal. Moreover, there was no increased production of other 

isotypes which supports the idea that IL-21 depletion had not significantly altered class 

switching. Several studies have demonstrated a critical role for IL-21 in antibody production 

but not necessarily isotype switching. IL-21RKO mice have reduced IgG1 and increased IgE 

which suggests a regulatory role in production of these isotypes, but not in boosting isotype 

classes associated with a particular response type (625). Some effects on antibody 

production may be due to changes in follicular helper T cell activity, a possibility not 
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investigated in this study. Analysis of Bcl-6+, CXCR5+, ICOS+, and PD-1+ CD4 T cell numbers in 

the spleen and draining lymph nodes would begin to address this. Several studies have 

shown an important role for IL-21 in CD4 T cell differentiation into Tfh cells (511,600), and 

the changes in antibody production observed here support an effect on Tfh differentiation. 

No changes in transcription factor expression were observed in splenic CD4 T cells isolated 

from depleted mice post priming, suggesting that IL-21 does not alter CD4 T cell 

differentiation after primary activation under these conditions. However, there was a small 

increase in IL-17, but not IFN-γ, production upon CD4 T cell stimulation in vitro indicating an 

effect on responding CD4 T cells. Previous studies suggest that IL-21 can influence Th1, Th2, 

and Th17 lineage development (386,589,592). Although IL-21 is acknowledged to be an 

important factor for CD4 T cell differentiation into Th17 cells (386,446,583), there are other 

studies that have observed an increase in IL-17 production in IL-21-deficient conditions. 

Ertelt et al observed that IL-21 deficiency resulted in enhanced IL-17 (but not IFN-γ) 

production by L.monocytogenes-specific CD4 T cells (708). Coquet et al observed that IL-21 

deficiency did not affect Th17 differentiation in a model of EAE, yet disease severity was 

increased in IL-21- and IL-21R-deficient mice, suggesting that IL-21 was an anti-inflammatory 

cytokine in this model of autoimmunity (749). No changes in splenic CD8 T cell cytokine 

production were observed in M2-primed mice after IL-21 depletion, indicating the effects 

were restricted to CD4 T cells. These data correlate with the previous observation in the 

primary challenge model that only primary CD4 T cell responses, and not CD8, were altered 

by depletion. 

The effects of IL-21 depletion on CD4 T cells could be indirect by acting other cell types (e.g. 

B cells). For example, IL-21 depletion may reduce regulatory B cell subsets that results in 
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increased CD4 T cell activation. Such a CD24+ CD38+ regulatory population was recently 

described by Blair et al in SLE patients (750) and analysis should be extended to this model 

at both the post-priming and post RSV challenge stages. Other cells may also be involved 

such as DCs and macrophages that are also present in the spleen. There is little evidence 

that macrophage activation is altered by IL-21 depletion, but there is for DC activity and 

studies by Brandt et al support the idea (622). Selective depletion of these various cell types 

would help determine if they were crucial for the observed changes in CD4 T cell activation 

upon IL-21 depletion. 

In the 14 days between priming and RSV challenge T cell memory is formed. The strength of 

the recall response is affected by the size of the memory pool, which may be increased by 

IL-21 depletion. My observed increase in IFN-γ, IL-10, and IL-17 production after both 

polyclonal stimulation and specific peptide antigen support the concept of an increased T 

cell memory. The concomitant reduction in IL-4 production suggests that CD4 T cell 

differentiation may be altered at this time though no changes in T-bet and RORγt were 

observed and GATA-3 was not measured. Currently, it is unfeasible to determine the size of 

the memory CD4 T cell pool as there are no G-specific I-Ed tetramers available to measure 

G184-198-specific CD4 T cells in G-primed mice. However, M2 82-90 H-2Kd tetramers are 

commercially available to detect antigen-specific CD8 T cells in M2-primed mice to confirm 

any effect of IL-21 depletion in M2-primed mice.  

The consequences of IL-21 depletion during priming were striking after RSV challenge. 

Disease severity in this model, in contrast to the primary RSV challenge model, is much 

more rapid and severe because of the presence of T cell memory elicited by priming. As 

observed in the previous chapter IL-21 depletion significantly increased disease severity 
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after RSV challenge. The disease kinetic was very similar though IL-21-depleted mice 

required more time to recover compared to control mice. These observations were also 

made after both G- and M2-priming, indicating that IL-21 depletion does affect memory CD8 

T cell responses, despite no changes in CD8 T cell activation or cytokine production being 

observed post priming or using the primary challenge model. Indeed, IL-21 depletion in M2-

primed mice had no effect on the response type as measured by cytokine production, 

remaining dominated by IFN-γ and granzyme B with no IL-4 or IL-17 production. This 

suggests that IL-21 depletion in this model had no effect on other cell types that are known 

sources of these cytokines (e.g. IL-4 from CD4 T cells, NKT cells, or basophils; IL-17 from CD4 

T cells, γδ T cells, or NKT cells). Critically however, the effect in G-primed mice was much 

greater than M2-primed mice, supporting the previous conclusion that IL-21 depletion has a 

far greater effect on CD4 T cells than CD8.  

Could the increase in disease severity in primed animals be caused by a common 

mechanism that is independent of T cell activation? For example, could the observed 

changes be due to changes in innate immune components (particularly those in the 

pulmonary compartment)? This is possible as the depletion was systemic and could affect 

immune cells in the lung. As discussed in the previous chapter IL-21 has wide-ranging effects 

on several components of innate immunity, though many of these effects do not predict the 

observations on T cell activity and effector function that I have made in this study. For 

example, IL-21 has been shown to increase macrophage survival and their capacity to 

activate CD4 T cells. Therefore, IL-21 depletion should have the opposite effects that were 

not observed here. Could the effects of IL-21 depletion on macrophages be specific to 

regulatory T cell (Treg) influx and activity as this CD4 T cell subset were specifically reduced 



243 
 

after RSV challenge? This could apply to all innate components: does IL-21 depletion affect 

the ability of the innate immune system to recruit and/or activate Tregs? Does IL-21 

depletion affect naturally-occurring Tregs more than induced Tregs? Individual Treg 

populations were not identified in this study, but my data clearly show that loss of IL-21 

reduces the proportion of the responding T cells comprising Tregs as opposed to pro-

inflammatory effector T cell populations. It is possible that the conventional T cell response 

may have been boosted directly by depletion of IL-21 (the effect on Tregs being insignificant 

or consequential rather than causal). However, given what is known about the effect of the 

size of the Treg response on pulmonary immune responses, it is very likely that IL-21 at least 

partly acts via modulating Tregs. If increased pathology was maintained in IL-21-depleted 

mice in the presence of increased numbers of Tregs then this would indicate that IL-21 has 

immunological effects beyond those on Tregs.  

There are conflicting data from other studies on the effects of IL-21 on regulatory T cells. 

Piao et al showed in a model of EAE that IL-21 blockade directly reduced regulatory T cell 

activity, thereby increasing proteolipid peptide (PLP) 139-151-autoreactive CD4 T cell influx 

into the CNS and disease severity (751). However, two further studies (one using human 

CD4 T cells, the other a mouse model of spontaneous diabetes) demonstrated that IL-21 

blocks the suppressive effects of regulatory T cells on effector T cells, without affecting 

regulatory T cell activity (752,753). The effect of IL-21 on regulatory T cells was further 

complicated by the finding that these cells can produce pro-inflammatory cytokines such as 

IL-17, and differentiate into Th17 cells, in the presence of IL-21 (754). Therefore, the effect 

of IL-21 on regulatory T cell activity and pro-inflammatory effector T cells is clearly 
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dependent on the disease conditions. My data does not clarify this ambiguity and it 

warrants further, more targeted studies of the effects of IL-21 on individual cell types. 

In the previous chapter a central role of IL-21 in DC-mediated T cell activation was 

highlighted, and is further supported here. Although the increase in BAL DC numbers was 

low compared to CD4 T cells after RSV challenge, they have the potential to significantly 

increase T cell activity and cytokine production. As for T cells, IL-21 may have affected DC 

activity at priming that is further enhanced after RSV challenge. It is unknown if IL-21 affects 

different DC subsets at different anatomical locations, and whether these subsets are 

affected equally. My analyses were restricted to MHCII, CD11c, and CD11b protein 

expression which only marks for CD11b+ inflammatory DCs. Extension of these studies into 

other DC subset markers shown to be dominant in type 1 or type 2 responses [e.g. OX40, 

PDL1, PDL2 (755)] would help determine whether IL-21 had specific effects on different DC 

subsets. IL-21 has been shown to inhibit antigen presentation by DCs, their maturation, and 

costimulatory molecule expression. Consequently this reduces their ability to stimulate T 

cells (622). While my T cell:DC co-culture data do not highlight differing effects of IL-21 

depletion on specific DC subsets (as individual lung DC subsets were not sorted), they do 

support the hypothesis that IL-21 depletion increases their T-cell-activating capacity. 

In vivo, CD4 T cells interact with DCs in tertiary lymphoid organs in the lung, particularly in 

the inducible bronchus-associated lymphoid tissue (iBALT). Recent studies in influenza 

infection have found that CD11chi DCs are essential for the maintenance of iBALT via 

production of lymphotoxin beta (LTβ), and the homeostatic chemokines CXCL12, CXCL13, 

CCL19, and CCL21 (756). Depletion of DCs or LTβ leads to ablation of iBALT and lymphocyte 

activation, and IL-21 reduces MHCII and costimulatory molecule expression on DCs, thereby 
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reducing their ability to activate CD4 T cells (622). Therefore, if IL-21 is central to DC activity 

then further studies should be performed to determine whether IL-21 is important in iBALT 

formation and T cell activation during RSV disease. 

The increase in IFN-γ and IL-17 production suggests that IL-21 is an anti-inflammatory 

cytokine and not necessarily subset-biasing. This may correlate with the co-stimulatory 

molecule repertoire expressed by the DCs, as OX40L and PDL2 have recently been shown to 

bias T cell cytokine production towards Th1 and Th2 respectively (755). Further studies will 

likely extend this to Th17 cytokines. However, as IL-21 has been shown to affect several 

types of immune response (type 1, 2, and 17) its action may be site- and disease-specific. 

For example, during primary RSV challenge IL-21 may act as a type 1 factor boosting IFN-γ 

production, therefore its depletion should reduce type 1 immunity. However, its effects on 

DC activation, antigen presentation and costimulatory molecule expression may mask this 

and the resulting phenotype is a slight increase in the T-cell-driven-type-1 response. In the 

G-priming and challenge model, IL-21 may act in a different manner, acting as a type 2 

factor that results in increased IFN-γ and reduced IL-4 production upon depletion. B cells 

may be a source of IL-4 (757), and their reduction both in this study and in previous RSV 

studies where their recruitment is attenuated also indicates them as a source (695). NKT 

cells are also a potent early source of IL-4 and IL-21 may also affect this immune cell type. 

The observed IL-10 increase is likely effector T-cell-derived as there were significantly fewer 

pulmonary regulatory CD4 T cells expressed Foxp3 after RSV challenge. However, my data 

do not rule out other lung cell sources of these cytokines after RSV challenge and 

intracellular staining of other cell types (e.g. B cells, macrophages, DCs, ILCs, γδ T cells, 
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epithelial cells, mast cells, basophils, and granulocytes) would help clarify whether these 

cytokines are not just T-cell-derived. 

Upon RSV challenge, increases in BAL CD4 T cells and neutrophils were greatest, followed by 

CD8 T cells and NK cells, and finally DCs (MHCII+/CD11b+/CD11c+ cells). As G-priming 

activates CD4 T cells, it is unsurprising that (upon recall) their numbers would increase 

greatly in the event of increased activation and expansion caused by a lack of 

immunoregulatory IL-21. In contrast the 3-fold increase in neutrophilia likely reflects an 

increase in chemokine levels (e.g. KC) caused by a more pro-inflammatory environment 

(758). A similar mechanism may be responsible for the increase in NK cell numbers 

(102,759). CD8 T cells respond to RSV challenge in an antigen-specific manner, but it is likely 

that increased chemokine levels and greater CD4 T cell help also contribute to their 

increased recruitment (760,761). Viral clearance is associated with strong cellular immune 

responses; however in this study I observed a compromised anti-viral response. This is likely 

due to the reduction in anti-viral serum antibody levels, indicative of reduced B cell activity. 

The reduced B cell recruitment to the airway supports this. Given that IL-21 depletion 

occurred prior to RSV challenge, it is highly unlikely that the changes in viral L gene copies 

are due to direct effects of IL-21 on viral replication. Several studies have demonstrated a 

crucial role for IL-21 on both B cell activation (625) and cells crucial for their activation [e.g. 

Follicular T helper (Tfh) cells (511,600)] as discussed in the previous chapter. These data, 

including those from these further studies, demonstrate that IL-21 is crucial for optimal 

antibody production and its depletion is detrimental to short- and long-term protection 

against viral challenge. 
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In conclusion, my findings show that IL-21 plays a key role in limiting the magnitude and 

regulating the phenotype of virus-specific CD4 T and B cell responses and in anti-viral 

immunity. These new insights extend our understanding of the role of IL-21, which has not 

previously been shown to be involved in defence against respiratory infection. Moreover, 

my findings highlight the therapeutic potential of IL-21 in limiting inflammation while 

enhancing pathogen clearance. IL-21 co-administration with RSV vaccine antigens might be 

particularly effective in infancy, when IL-21 responses are impaired, and warrant further 

study (700). On the basis of these data, I hypothesise that in the context of RSV challenge, 

IL-21 administration would reduce cellular influx into the pulmonary compartment, reduce 

pro-inflammatory cytokine production (possible via the induction of regulatory T cells), and 

increase virus-specific antibody production, thereby boosting protection. Therefore in the 

next chapter I address whether IL-21 has the anticipated effects as described above by 

comparing responses against WT RSV and a novel IL-21-expressing RSV construct. 
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J. IL-21 expression during RSV challenge differentially regulates both primary and 

secondary CD4 T cell responses in mice. 

 

1. Introduction 

My previous studies have shown that IL-21 is an important factor for the development of 

optimal immunity against RSV challenge. IL-21 is crucial for short-term recovery from viral 

challenge as it regulates CD4 T cell recruitment, activation, and pro-inflammatory cytokine 

production. These effects aid viral clearance and limit disease severity. Moreover, IL-21 is 

essential for long-term protective immunity against viral rechallenge by increasing virus-

specific antibody production by B cells. Therefore, while IL-21 depletion is not desirable in 

this disease setting, I hypothesised that IL-21 would be beneficial for the host by limiting 

CD4 T cell responses to RSV challenge, and boosting virus-specific antibody production.  

In order to test this hypothesis I have delivered murine IL-21 into the lung during RSV 

challenge. To do this I have utilised a novel RSV strain that encodes the murine il21 gene 

between the F and G genes in the viral genome. Upon viral infection of epithelial cells 

murine IL-21 is produced as the virus replicates, which is secreted from infected cells. This 

method has been previously used to study the effects of cytokine administration on immune 

responses to RSV (762-764). This method of delivery is highly desirable  because cytokines 

have a very high turnover rate, as they bind to their cognate receptors and are internalised 

or enter the kidneys from the circulation for degradation (765). As such, recombinant 

cytokines have to be injected on a daily basis to maintain biologically relevant levels in the 

serum and target tissues. This is not only distressing for the animal, triggering stress 
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hormones and other factors which may inadvertently affect immune responses, but the act 

of injection may  introduce artefact by altering the on-going immune response. This is 

particularly applicable for intranasal injections into the pulmonary compartment. These 

problems are circumvented by the use of these cytokine-expressing RSV strains. Typically, 

the cytokine is produced and is detectable only while the virus replicates (763), however, 

the effects on the immune response are long-lasting and easily assayed. More importantly, 

these cytokine-expressing RSV strains are identical to wild-type RSV at the protein level as 

all mutations of the genome are within introns and are silent post-transcription (763). 

Therefore, antigen-specific immune responses are unaffected. There are mutations at the 

nucleotide level within the sh gene but these do not affect detection of viral replication by 

qPCR, which detects copies of the viral L gene (763). 

Therefore, our collaborators (Dr U Bucholz and P Collins, NIAID, USA) constructed, and I 

have grown, an IL-21-expressing RSV stock (RSV-IL-21). I titred the virus and confirmed IL-21 

expression. I have then challenged BALB/c mice with either wild-type RSV or RSV-IL-21 and 

compared the immune responses to primary challenge, T cell memory development, 

antibody production, and protection against rechallenge with wild-type RSV. 

 

2. Titration of the IL-21-expressing Respiratory syncytial virus (RSV-IL-21) stock in vitro 

Prior to use in vivo the RSV-IL-21 stock was titred by plaque assay and the IL-21 

concentration in the inoculum determined by ELISA. As RSV-IL-21 is the only virus that 

encodes the murine il21 gene, it should be the only stock that contains murine IL-21.  Two 

stocks were grown, ‘p3’ and ‘p4’. The RSV-IL-21 titres were calculated to be: p3 
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1×107pfu/ml, p4: 8.5×106pfu/ml. The IL-21 concentration in the inoculum was found to be 

very high in both stocks (~10ng/ml). A wild-type RSV stock (titre: 2.2×107pfu/ml) was used 

as a negative control and no IL-21 was detected (Fig.3.1). Further, an IL-7-expressing RSV 

stock (3.3×107pfu/ml) was also tested. This strain has the murine il7 gene encoded in the 

same place as the il21 gene using the same methodology, and controls for the presence of a 

gene in the viral genome. No IL-21 was detected in this inoculum either (Fig.3.1). Therefore, 

only RSV-IL-21 was capable of producing murine IL-21. The RSV-IL-21 ‘p3’ stock was used for 

further in vivo experiments. 

 

3. IL-21 expression ablates disease severity upon primary RSV challenge 

To determine the effect of IL-21 expression on the response to RSV, mice were challenged 

with RSV or RSV-IL-21 (1×106pfu/mouse; i.n) on d0. Mice were weighed from challenge to 

determine the level of disease severity. Mice challenged with wild-type RSV exhibited 

weight loss typical of a primary infection with peak weight loss on d7 p.c (Fig.3.2). Strikingly, 

mice challenged RSV-IL-21 exhibited no weight loss upon challenge (Fig.3.2). 

 

4. IL-21 expression significantly inhibits cell recruitment after primary RSV challenge 

To determine why mice challenged with RSV-IL-21 lost no weight I determined cell 

recruitment to the airway and lung tissue on day seven post challenge, the peak of 

pathology in mice challenged with wild-type RSV.  Cell recruitment to the airway (Fig.3.3a) 

and lung tissue (Fig.3.3b) was significantly reduced in mice challenged with RSV-IL-21  
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Figure 3.1. Titration of the Respiratory syncytial virus stock in vitro. An IL-21-expressing RSV (RSV-IL-21) 
stock (p3 and p4) was generated and the titre determined in vitro by plaque assay (as described in Materials 
and Methods). The concentration of IL-21 in the viral inoculum was determined by sandwich ELISA. WT RSV 
and an IL-7-expressing RSV (RSV-IL-7) stock were tested as negative controls. Data is expressed as mean 
values. The graphs are representative of two independent experiments of five mice per group. Student t 
test result ***: p<0.001. 
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Figure 3.2. IL-21 expression ablates disease severity upon primary RSV challenge. Mice were challenged 

with RSV or RSV-IL-21 (1×10
6
pfu/mouse; i.n) on d0. Mice were weighed daily for 14 days. Weight is shown 

as a percentage of baseline weight. Data is expressed as mean±SEM. The graphs are representative of two 
independent experiments of five mice per group. Student t test result *: p<0.05, **: p<0.01, ***: p<0.001. 
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Figure 3.3. IL-21 expression significantly inhibits cell recruitment after primary RSV challenge. Mice were 

challenged with RSV or RSV-IL-21 (1×10
6
pfu/mouse; i.n) on d0. BALF cells and lung tissue were harvested 

seven days post challenge. Samples were processed and total cell counts in the BALF (a) and lung tissue (b) 
determined. CD4 T cells, CD8 T cells, NK cells, and B cells in BALF (c) and lung tissue (d) were phenotyped by 
flow cytometry and cell counts determined. Macrophages, DCs, neutrophils (PMN), and eosinophils in BALF 

(e) and lung tissue (f) were determined using the same method. At least 50×10
3
cells/sample were collected. 

Data are expressed as mean values. The graphs are representative of two independent experiments of five 
mice per group. Student t test result *: p<0.05, **: p<0.01, ***: p<0.001. 

a. b. 

c. d. 

e. f. 
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compared to RSV WT. To determine which cell recruitment was reduced I characterised cell 

recruitment by flow cytometry. I observed a significant reduction in recruitment of CD4 T 

cells, CD8 T cells, NK cells, and B cells into the airway (Fig.3.3c) and lung tissue (Fig.3.3d). 

The reduced lymphocytosis was evident on forward/side scatter plots by flow cytometry 

(Appendix 3.1). Moreover, non-lymphocytic cells were also affected: there were significant 

reductions in recruitment of DCs, neutrophils into the airway (Fig.3.3e) and lung tissue 

(Fig.3.3f). Eosinophils were reduced in the lung tissue only. Interestingly, macrophage 

numbers in both compartments were unaltered. 

 

5. IL-21 expression has little effect on  viral clearance after primary RSV challenge 

As described in the previous results chapter (section 2.8), cell recruitment to the pulmonary 

compartment negatively correlates with viral clearance. Therefore, I wanted to know if viral 

clearance had been affected by the reduction in cell recruitment to the airway and lung 

tissue. To achieve this I measured the number of RSV L gene copies in lung tissue at several 

time points post RSV challenge by qPCR. Total RNA was purified from lung tissue, converted 

to cDNA, and the number of L gene copies determined using L-gene-specific primers and 

probe. In mice challenged with RSV WT, viral L gene copies were first detected at d2 p.c, 

peak at d4 p.c, and return to baseline levels by d7 p.c (Fig.3.4). There were no significant 

differences in viral L gene copies detected in mice challenged with RSV-IL-21 from d0-4 p.c. 

However, viral L gene copies remained detectable in the RSV-IL-21-challenged mice at d7 p.c 

whereas virus had been cleared in RSV-challenged mice by this time (Fig.3.4). By d10 p.c, the 

number of viral L gene copies returned to baseline levels.  
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Figure 3.4. IL-21 over expression has little effect on viral clearance after primary RSV challenge. Mice were 

challenged with RSV or RSV-IL-21 (1×10
6
pfu/mouse; i.n) on d0. Lungs were harvested at several time points 

post challenge. The number of viral L gene copies in the lungs of infected mice was determined at several 
time points post challenge by quantitative PCR (qPCR; protocol described in Materials and Methods). Data is 
expressed as mean±SEM. The graphs are representative of two independent experiments of five mice per 
group. Student t test result *: p<0.05. 
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6. IL-21 expression inhibits T cell activation after primary RSV challenge 

As T cells are central to the weight loss observed in this model, and their recruitment was 

severely inhibited, I determined if their activity was also affected by measuring ICOS 

expression on T cells in the airway and lung tissue. At the peak of weight loss, the majority 

of CD4 and CD8 T cells recruited to the airway are activated and express ICOS. However, 

there was a significant reduction in ICOS expression on both BALF CD4 and CD8 T cells from 

RSV-IL-21-challenged mice (Fig.3.5a). The same difference was observed in the lung tissue, 

though the overall percentage of ICOS-positive T cells was further reduced. Representative 

dot plots for CD4 T cells (Fig.3.5b) and CD8 T cells (Fig.3.5c) are shown. 

 

7. IL-21 expression increases ICOSL expression on macrophages and DCs after primary RSV 

challenge 

As ICOS expression was reduced on T cells in RSV-IL-21-challenged mice compared to RSV-

challenged mice, I determined whether ICOSL expression was also altered on APCs. This is 

important because IL-21 is known to reduce DC activation and costimulatory molecule 

expression (622) but increase macrophage activity (715). Therefore alterations in APC 

activation by IL-21 may account for the reduction in T cell activation. ICOSL expression was 

measured on macrophages and DCs in the airway and lung tissue seven days post challenge. 

Approximately 50% of airway macrophages and DCs expressed ICOSL in RSV-challenged 

mice, ICOSL expression was slightly reduced on APCs from the lung tissue (Fig.3.6a). In RSV-

IL-21-challenged mice ICOSL expression significantly increased on both macrophages and 

DCs, and on APCs from both airway and lung tissue (Fig.3.6a). Representative dot plots for  
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Figure 3.5. IL-21 expression inhibits T cell activation after primary RSV challenge. Mice were challenged with 

RSV or RSV-IL-21 (1×10
6
pfu/mouse; i.n) on d0. BALF cells and lung tissue were harvested seven days post 

challenge. Samples were processed and ICOS expression on CD4 and CD8 T cells was phenotyped by flow 

cytometry (a). At least 50×10
3
cells/sample were collected. Data are expressed as mean values. 

Representative dot plots for CD4 T cells (b) and CD8 T cells (c) are shown. The graphs are representative of 
two independent experiments of five mice per group. Student t test result *: p<0.05, **: p<0.01, ***: 
p<0.001. 

a. 

b. 

c. 
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Figure 3.6. IL-21 expression increases ICOSL expression on macrophages and DCs after primary RSV 

challenge. Mice were challenged with RSV or RSV-IL-21 (1×10
6
pfu/mouse; i.n) on d0. BALF cells and lung 

tissue were harvested seven days post challenge. Samples were processed and ICOSL expression on 

macrophages and DCs was phenotyped by flow cytometry (a). At least 50×10
3
cells/sample were collected. 

Data are expressed as mean values. Representative dot plots for ICOSL expression (c) on macrophages (b) 
are shown. The graphs are representative of two independent experiments of five mice per group. Student t 
test result *: p<0.05, ***: p<0.001. 

a. 

b. 

c. 
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ICOSL expression (Fig.3.6c) on macrophages (Fig.3.6b) from RSV-challenged and RSV-IL-21-

challenged mice are shown. 

 

8. IL-21 expression reduces T-bet+ T cell recruitment to the pulmonary compartment after 

primary RSV challenge 

As T cell recruitment and activation were reduced in RSV-IL-21-challenged mice I wanted to 

determine whether the remaining recruited T cells were regulatory T cells, explaining the 

lack of disease. To achieve this I determined FoxP3, RORγt, and T-bet expression in 

pulmonary CD4 T cells and CD4 T cells within the mediastinal (draining) lymph nodes at d7 

p.c. IL-21 did not alter the percentage of BAL CD4 T cells expressing FoxP3 (Fig.3.7a&d) or 

RORγt (Fig.3.7b&d). However, it significantly reduced the percentage and number of BAL 

CD4 T cells expressing T-bet (Fig.3.7c&e respectively) as well as the number expressing 

RORγt (Fig.3.7e). This phenotype was largely replicated in lung tissue (Fig.3.8), however 

there was also a significant reduction in numbers of FoxP3+ lung CD4 T cells (Fig.3.8e). In the 

draining lymph nodes there was a significant reduction in numbers of FoxP3+ CD4 T cells 

(Fig.3.9e) but no alteration in RORγt (Fig.3.9b, d, e) or T-bet expression (Fig.3.9c, d, e). There 

was a similar phenotype observed by CD8 T cells: a significant reduction in the percentage 

(Appendix 3.2a, c, e) and number (Appendix 3.2b, d, f) of pulmonary CD8 T cells expressing 

Foxp3, RORγt, and particularly T-bet. 
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Figure 3.7. IL-21 expression significantly reduces T-bet expression by BAL CD4 T cells after 

primary RSV challenge. Mice were challenged with RSV or RSV-IL-21 (1×10
6
pfu/mouse; i.n) 

on d0. BALF cells were harvested seven days post challenge. CD4 T cells were stained for 
FoxP3 (a), RORγt (b), or T-bet (c) according to the manufacturer’s instructions. The 
percentage of CD4 T cells expressing each transcription factor was determined by flow 
cytometry and is shown in each dotplot. Grouped data for percentage (d) and total 
number (e) is also shown. The graph is representative of two independent experiments of 
five mice per group. Student t-test result *: p<0.05, **: p<0.01, ***: p<0.001. 
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Figure 3.8. IL-21 expression significantly reduces T-bet expression by lung CD4 T cells after 

primary RSV challenge. Mice were challenged with RSV or RSV-IL-21 (1×10
6
pfu/mouse; i.n) 

on d0. Lungs were harvested seven days post challenge and processed. CD4 T cells were 
stained for FoxP3 (a), RORγt (b), or T-bet (c) according to the manufacturer’s instructions. 
The percentage of CD4 T cells expressing each transcription factor was determined by flow 
cytometry and is shown in each dotplot. Grouped data for percentage (d) and total 
number (e) is also shown. The graph is representative of two independent experiments of 
five mice per group. Student t-test result *: p<0.05, **: p<0.01, ***: p<0.001. 
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Figure 3.9. IL-21 expression significantly reduces the number of dLN FoxP3+ CD4 T cells 
after primary RSV challenge. Mice were challenged with RSV or RSV-IL-21 

(1×10
6
pfu/mouse; i.n) on d0. Mediastinal lymph nodes were harvested seven days post 

challenge and processed. CD4 T cells were stained for FoxP3 (a), RORγt (b), or T-bet (c) 
according to the manufacturer’s instructions. The percentage of CD4 T cells expressing 
each transcription factor was determined by flow cytometry and is shown in each dotplot. 
Grouped data for percentage (d) and total number (e) is also shown. The graph is 
representative of two independent experiments of five mice per group. Student t-test 
result *: p<0.05. 
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9. IL-21 expression reduces BALF IFN-γ, granzyme B, and chemokine production after 

primary RSV challenge 

As T cell recruitment and activation were reduced in RSV-IL-21-challenged mice I 

hypothesised that cytokine secretion into the airway would also be reduced. To determine 

this I measured pro-inflammatory cytokines described before (IFN-γ IL-4, IL-17), the cytolytic 

protein granzyme B, the anti-inflammatory cytokine IL-10, and IL-21 in the BALF seven days 

post RSV challenge. IL-21 was only detectable in the BALF of RSV-IL-21-challenged mice at 

this time (Fig.3.10a).  Moreover, no changes in IL-4 (Fig.3.10d), IL-10 (Fig.3.10e), or IL-17 

(Fig.3.10f) were detected between groups. However, I did detect a significant decrease in 

granzyme B production (Fig.3.10c), and IFN-γ production was ablated (Fig.3.10b), in the 

airway in RSV-IL-21-challenged mice. 

 T cell recruitment to the pulmonary compartment is mediated by chemokine gradients 

generated early after viral challenge between the draining lymph nodes and the pulmonary 

compartment. Therefore, I determined whether chemokine production had been reduced 

by measuring the lymphocyte chemoattractants MIP-3α (CCL20), MIP-3β (CCL19), 6kine 

(CCL21.) and IP-10 (CXCL10), as well as the granulocyte chemoattractants MIP-1α (CCL3), 

and MIP-2α (CXCL2) during the first 96hrs post challenge. There was production of MIP-1α 

(Fig.3.11a), MIP-2α (Fig.3.11b), MIP-3α (Fig.3.11c), and IP-10 (Fig.3.11f) 24hrs post RSV 

challenge, and apart from MIP-3α, rapidly dropped to baseline by 48hrs post challenge. MIP-

3α remained detectable until 96hrs post challenge. MIP-2α levels did not alter after RSV-IL-

21 challenge (Fig.3.11b), but MIP-1α (Fig.3.11a), MIP-3α (Fig.3.11c), and IP-10 (Fig.3.11f) 

levels were all significantly reduced at 24hrs post challenge.  In contrast MIP-3β was only 

detectable after 48hrs post challenge at very low levels in RSV-challenge, but not RSV-IL-21  
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Figure 3.10. IL-21 expression reduces BALF IFN-γ and granzyme B production after primary RSV challenge. 

Mice were challenged with RSV or RSV-IL-21 (1×10
6
pfu/mouse; i.n) on d0. BALF was harvested seven days 

post challenge and IL-21(a), IFN-γ (b), Granzyme B (c), IL-4 (d), IL-10 (e), and IL-17 (f) were determined by 
sandwich ELISA. Data are expressed as mean values. The graphs are representative of two independent 
experiments of five mice per group. Student t test result ***: p<0.001. 

a. b. 

c. d. 

e. f. 
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Figure 3.11. IL-21 expression reduces BALF chemokine production after primary RSV challenge. Mice were 

challenged with RSV or RSV-IL-21 (1×10
6
pfu/mouse; i.n) on d0. BALF was harvested every 24hrs for four 

days post challenge and MIP-1α (a), MIP-2α (b), MIP-3α (c), MIP-3β (d), 6kine (e), and IP-10 (f) were 
determined by sandwich ELISA. Data are expressed as mean values. The graphs are representative of two 
independent experiments of five mice per group. Student t test result *: p<0.05, **: p<0.01, ***: p<0.001. 

a. b. 

c. d. 

e. f. 
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challenged mice (Fig.3.11d), and 6kine levels did not rise above baseline in either group at 

any time (Fig.3.11f).  

 

10. IL-21 expression increases IFN-γ, IL-17 , and IL-21 production by lung T cells after primary 

RSV challenge 

As pro-inflammatory cytokine secretion into the BALF was decreased in RSV-IL-21-

challenged mice I next determined the effect of IL-21 expression on cytokine production by 

stimulated lung T cells seven days post challenge. Stimulated lung T cells from RSV-

challenged mice produced significant amounts of IFN-γ (Fig.3.12b) and granzyme B 

(Fig.3.12c), and IL-4 (Fig.3.12d), IL-10 (Fig.3.12e), and IL-17 (Fig.3.12f) were detected at 

lower levels. However, no IL-21 was detected (Fig.3.12a). No changes were observed 

granzyme B, IL-4, and IL-10 production by stimulated lung T cells from RSV-IL-21-challenged 

mice. However, significant IL-21 (Fig.3.12a) production was detected and there were also 

significant increases in IFN-γ (Fig.3.12b) and IL-17 (Fig.3.12f) production by T cells from RSV-

IL-21-challenged mice.   
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Figure 3.12. IL-21 expression increases IFN-γ, IL-17, and IL-21 production by lung T cells after primary RSV 

challenge. Mice were challenged with RSV or RSV-IL-21 (1×10
6
pfu/mouse; i.n) on d0. Lung cells were 

harvested seven days post challenge and samples processed.  Lung cells (2×10
6
cells/well) were stimulated 

with either media alone or αCD3/28-expressing beads (50µl/well) for 24hrs. Supernatants were harvested 
and IL-21 (a), IFN-γ (b), Granzyme B (c), IL-4 (d), IL-10 (e), and IL-17 (f) were determined by sandwich ELISA. 
Data are expressed as mean values. The graphs are representative of two independent experiments of five 
mice per group. Student t test result **: p<0.01, ***: p<0.001. 

a. b. 

c. d. 

e. f. 
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11. IL-21 expression inhibits T cell recruitment to the pulmonary compartment after primary 

RSV challenge 

IL-21 expression during RSV challenge ablates weight loss by reducing chemokine 

production, T cell recruitment, activation, and pro-inflammatory cytokine production. I was 

therefore interested to determine what effect the reduced primary T cell response has on 

the development of memory T cell populations. To address this, mice were challenged with 

RSV or RSV-IL-21, weighed for 14 days, and then left for two weeks for memory T cell 

populations to develop. In this model of RSV disease, cell recruitment to the pulmonary 

compartment terminates 14 days post challenge, and by 28 days memory formation has 

completed (766). 28 days post challenge BALF, lung, and spleen cells were harvested and 

memory cell counts determined. Total cell counts in BALF (Fig.3.13a), lung (Fig.3.13c), and 

spleen (Fig.3.13e) were similar between groups. However, when lymphocyte populations 

were counted I observed an ablation in T cells and a severe reduction in B cell numbers in 

the BALF from RSV-IL-21-challenged mice (Fig.3.13b). Moreover, there were significant 

reductions in T cell numbers, particularly CD4 T cells, in the lung tissue from this group 

(Fig.3.13d). B cell numbers were unchanged. In contrast, T cell and B cell counts in the 

spleen were the same (Fig.3.13f).  

 

12. IL-21 expression inhibits effector, but not central, memory T cell development in the 

lung tissue after primary RSV challenge 

The development of lymphocyte memory is fundamental to long-term protection against 

rechallenge. As IL-21 expression had ablated memory T cell recruitment in the BALF, and 
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Figure 3.13. IL-21 expression inhibits memory T cell recruitment to the pulmonary compartment after 

primary RSV challenge. Mice were challenged with RSV or RSV-IL-21 (1×10
6
pfu/mouse; i.n) on d0. BALF, 

lung, and spleens were harvested 28 days post challenge and samples processed. Total cell counts in the 
BALF (a), lung (c), and spleen (e) were determined by trypan blue exclusion assay. CD4 T cells, CD8 T cells, 
and B cells were phenotyped in the BALF (b), lung (d), and spleen (e) by flow cytometry and counts 

determined. At least 50×10
3
cells/sample were collected. Data are expressed as mean values. The graphs are 

representative of two independent experiments of five mice per group. Student t test result *: p<0.05, **: 
p<0.01, ***: p<0.001. 

a. b. 

c. d. 

e. f. 
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significantly reduced it in the lung, I wanted to know which memory subsets were reduced. 

Therefore, I determined T cell expression of CD44 and CD62L on CD4 and CD8 T cells in 

BALF, lung, and spleen from RSV-challenged- and RSV-IL-21-challenged mice. These two 

markers can be used to distinguish central memory T cells (CD44hiCD62L+) from effector 

memory T cells (CD44hiCD62L-) (767). Despite reducing memory T cell recruitment to the 

BALF, there was no change in the percentage of CD4 (Fig.3.14a), or CD8 (Fig.3.14b), T cells 

that were central or effector memory between the groups. However, in the lung tissue 

there was a significant reduction in the proportion of effector memory CD4 (Fig.3.14c), and 

CD8 (Fig.3.14d), T cells in RSV-IL-21-challenged mice. Representative dot plots are shown 

(Appendix 3.3). The proportion of T cells that were central memory remained similar. In the 

spleen there were more central memory T cells relative to effector memory T cells, and the 

proportion of CD4 (Fig.3.14e) and CD8 (Fig.3.14f) T cells comprising each subset remained 

similar between the groups. 

 

13. IL-21 expression ablates cytokine production and significantly reduces granzyme B by 

antigen-specific lung T cells after primary RSV challenge 

As IL-21 expression had affected the memory T cell composition in the lung tissue I wanted 

to know if it affected RSV-specific cytokine production of lung cells upon stimulation with 

RSV. Lung cells from challenged mice were stimulated in vitro with either media, RSV 

(MOI:2.0), or αCD3/28- expressing beads (to ensure T cells are functional) for 72hrs. 

Supernatants were then harvested and IFN-γ, IL-4, IL-10, IL-17, granzyme B, and IL-21 were 

measured. Lung cells from RSV-challenged mice produced significant amounts of IFN-γ 

(Fig.3.15a) and granzyme B (Fig.3.15e) upon exposure to RSV, with low but detectable 
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Figure 3.14. IL-21 expression inhibits effector, but not central, memory T cell development in the lung tissue 

after primary RSV challenge. Mice were challenged with RSV or RSV-IL-21 (1×10
6
pfu/mouse; i.n) on d0. 

BALF, lung, and spleens were harvested 28 days post challenge and samples processed. CD44 and CD62L 
expression on CD4 T cells (a, c, e) and CD8 T cells (b, d, f) were phenotyped in the BALF (a-b), lung (c-d), and 

spleen (e-f) by flow cytometry. At least 50×10
3
cells/sample were collected. Data are expressed as mean 

values. The graphs are representative of two independent experiments of five mice per group. Student t 
test result ***: p<0.001. 

a. b. 

c. d. 

e. f. 
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 levels of IL-10 (Fig.3.15c) and IL-17 (Fig.3.15d). No IL-4 (Fig.3.15b) or IL-21 (Fig.3.15f) was 

detected. Strikingly however, lung cells from RSV-IL-21-challenged mice produced no 

cytokines in response to RSV stimulation, except for a small but detectable level of 

granzyme B (Fig.3.15e). This ablation in cytokine production was not because T cells were 

unable to respond as lung cells from both groups produced significant levels of all cytokines 

measured after polyclonal stimulation with αCD3/28-expressing beads. 

 

14. IL-21 expression reduces cytokine production by antigen-specific spleen T cells after 

primary RSV challenge 

Next, I wanted to determine if IL-21 expression had ablated cytokine production by antigen-

specific memory cells in the spleen as it had in the lung tissue. To determine this, I harvested 

spleens cells from the same mice as the lung cells, and stimulated them as for the lung cells. 

After 72hrs the same factors were measured in the supernatants. Spleen cells from RSV-

challenged mice produced significant amounts of IFN-γ (Fig.3.16a), IL-10 (Fig.3.16c), and 

granzyme B (Fig.3.16e) upon exposure to RSV, a very similar phenotype to that observed for 

lung cells. There was small, but detectable production of IL-17 (Fig.3.16d) but no IL-4 

(Fig.3.16b) or IL-21 (Fig.3.16f) production. Spleen cells from RSV-IL-21-challenged mice 

exhibited an identical cytokine phenotype albeit at a significantly reduced level. There was 

significant production of IFN-γ (Fig.3.16a), IL-10 (Fig.3.16c), and granzyme B (Fig.3.16e),  
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Figure 3.15. IL-21 expression ablates cytokine and granzyme B production by antigen-specific lung T cells 

after primary RSV challenge. Mice were challenged with RSV or RSV-IL-21 (1×10
6
pfu/mouse; i.n) on d0. 

Lungs were harvested 28 days post challenge and samples processed. Lung cells (2×10
6
cells/well) were 

stimulated with either media alone, RSV (MOI: 2.0) or αCD3/28-expressing beads (50µl/well) for 72hrs. 
Supernatants were harvested and IFN-γ (a), IL-4 (b), IL-10 (c), IL-17 (d), Granzyme B (e), and IL-21 (f) were 
determined by sandwich ELISA. Data are expressed as mean values. The graphs are representative of two 
independent experiments of five mice per group. Student t test result *: p<0.05, **: p<0.01, ***: p<0.001. 

a. b. 

c. d. 

e. f. 
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Figure 3.16. IL-21 expression reduces cytokine production by antigen-specific spleen T cells after primary 

RSV challenge. Mice were challenged with RSV or RSV-IL-21 (1×10
6
pfu/mouse; i.n) on d0. Spleens were 

harvested 28 days post challenge and samples processed. Spleen cells (2×10
6
cells/well) were stimulated 

with either media alone, RSV (MOI: 2.0) or αCD3/28-expressing beads (50µl/well) for 72hrs. Supernatants 
were harvested and IFN-γ (a), IL-4 (b), IL-10 (c), IL-17 (d), Granzyme B (e), and IL-21 (f) were determined by 
sandwich ELISA. Data are expressed as mean values. The graphs are representative of two independent 
experiments of five mice per group. Student t test result *: p<0.05, **: p<0.01, ***: p<0.001. 

a. b. 

c. d. 

e. f. 
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though all were significantly reduced. IL-17 (Fig.3.16d) production was unchanged and there 

was no IL-4 (Fig.3.16b) or IL-21 (Fig.3.16f) production by spleen cells from these mice either.  

 

15. IL-21 expression reduces virus-specific serum antibody production after primary RSV 

challenge 

My previous studies have shown that IL-21 depletion in the context of primary RSV 

challenge, and after CD4 T cell priming and RSV challenge, significantly reduced virus-

specific serum antibody production. Therefore, I had hypothesised that IL-21 expression 

would boost virus-specific antibody production. To determine if this was the case, I 

measured virus-specific serum antibody production in RSV- and RSV-IL-21-challenged mice 

28 days post infection. No virus-specific serum IgA (Fig.3.17a) or IgE (Fig.3.17b) was 

detected in either group. However, virus-specific serum IgG1 (Fig.3.17c) and IgG2a 

(Fig.3.17d) were detected in RSV-challenged mice. These isotypes were also detected in 

RSV-IL-21-challenged mice but at a significantly reduced level. 

 

16. IL-21 expression reduces virus-specific BAL antibody production after primary RSV 

challenge 

Surprisingly, IL-21 expression reduced virus-specific serum antibody production. Therefore, I 

extended the analysis to virus-specific BALF antibody. As for serum, no virus-specific IgE 

(Fig.3.18b) was detected in either group, but virus-specific IgA (Fig.3.18a), IgG1 (Fig.3.18c) 

and IgG2a (Fig.3.18d) were detected in BALF from RSV-challenged mice. As observed in  
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Figure 3.17. IL-21 expression reduces virus-specific serum antibody production after primary RSV challenge. 

Mice were challenged with RSV or RSV-IL-21 (1×10
6
pfu/mouse; i.n) on d0. Serum was harvested 28 days 

later and virus-specific IgA (a), IgE (b), IgG1 (c), and IgG2a (d) levels were determined by ELISA. Data is 
expressed as mean±SEM. The graphs are representative of two independent experiments of five mice per 
group. ANOVA result ***: p<0.001. 
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Figure 3.18. IL-21 expression reduces virus-specific BAL antibody production after primary RSV challenge. 

Mice were challenged with RSV or RSV-IL-21 (1×10
6
pfu/mouse; i.n) on d0. BALF was harvested 28 days later 

and virus-specific IgA (a), IgE (b), IgG1 (c), and IgG2a (d) levels were determined by ELISA. Data is expressed 
as mean±SEM. The graphs are representative of two independent experiments of five mice per group. 
ANOVA result *: p<0.05, **: p<0.01, ***: p<0.001. 
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serum, BALF from RSV-IL-21-challenge mice contained significantly reduced levels of virus-

specific IgA (Fig.3.18a), IgG1 (Fig.3.18c) and IgG2a (Fig.3.18d). 

 

17. IL-21 expression during primary RSV challenge exacerbates weight loss upon secondary 

RSV challenge 

My studies so far indicate that IL-21 expression ablates disease by significantly inhibiting the 

T and B cell response to RSV challenge, consequently reducing memory development in the 

lung against the virus. The only detectable memory is that present in the spleen, and RSV-

specific antibody production was significantly reduced. Therefore, because of the lack of 

RSV-specific lymphocytic memory after primary challenge, protection against rechallenge 

should be reduced. To determine if that is the case, I challenged mice with RSV that were 

challenged four weeks previously with either RSV or RSV-IL-21. In my rechallenge studies, 

both groups of mice began to lose weight immediately after secondary challenge. Weight 

loss peaked in both groups on d2 post challenge, but the magnitude of weight loss in mice 

previously challenged with RSV-IL-21 was significantly greater than those previously 

challenged with RSV (Fig.3.19). Then kinetic of weight loss was similar however, with both 

groups almost recovered by d4 post challenge. 

 

18. IL-21 expression during primary RSV challenge increases cell recruitment to lung tissue 

upon secondary RSV challenge 

An increase in disease severity correlates with increases in cell recruitment to the 

pulmonary compartment. Therefore, I determined recruitment of both lymphocytic and  
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Figure 3.19. IL-21 expression during primary RSV challenge exacerbates weight loss upon secondary RSV 

challenge. Mice were challenged with RSV or RSV-IL-21 (1×10
6
pfu/mouse; i.n) on d0. Mice were left for 28 

days and then rechallenged with RSV (1×10
6
pfu/mouse; i.n). Mice were weighed daily for 4 days. Weight is 

shown as a percentage of baseline weight. Data is expressed as mean±SEM. The graphs are representative 
of two independent experiments of five mice per group. Student t test result **: p<0.01, ***: p<0.001. 
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non-lymphocytic populations after secondary RSV challenge. Total cell recruitment to the 

airway was unchanged (Fig.3.20a), though I did observe a significant increase in cell 

recruitment to lung tissue in mice previously challenged with RSV-IL-21 (Fig.3.20b). 

Recruitment of individual cell types was determined by flow cytometry. No changes in 

recruitment of lymphocytic (Fig.3.20c) or non-lymphocytic (Fig.3.20e) populations to the 

airway were observed. However, in the lung tissue I observed a significant increase in NK 

cells (Fig.3.20d) and neutrophils (Fig.3.20f), though no other changes were evident. 

 

19. IL-21 over expression during primary RSV challenge has no effect on viral clearance upon 

secondary RSV challenge 

An increase in cell recruitment negatively correlates with viral clearance. Therefore, I 

measured the number of RSV L gene copies in lung tissue at d0,2 and 4 post RSV challenge 

by qPCR (as described previously). Irrespective of IL-21 over expression during primary RSV 

challenge, viral L gene copies were below the limit of detection in lungs of mice 

rechallenged with RSV WT at the time points tested. 

 

20. IL-21 expression during primary RSV challenge increases airway T cell activity upon 

secondary RSV challenge 

Although there was no increase in T cell recruitment to the pulmonary compartment after 

viral rechallenge, I assessed whether there was an increase in T cell activity as this also 

correlates with disease severity. Upon activation, memory T cells express an increased 

spectrum of costimulatory molecules compared to naive T cells. Typically, naïve T cell  
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Figure 3.20. IL-21 expression during primary RSV challenge increases cell recruitment to lung tissue upon 

secondary RSV challenge. Mice were challenged with RSV or RSV-IL-21 (1×10
6
pfu/mouse; i.n) on d0. Mice 

were left for 28 days and then rechallenged with RSV (1×10
6
pfu/mouse; i.n). BALF cells and lung tissue were 

harvested four days post challenge. Samples were processed and total cell counts in the BALF (a) and lung 
tissue (b) determined. CD4 T cells, CD8 T cells, NK cells, and B cells in BALF (c) and lung tissue (d) were 
phenotyped by flow cytometry and cell counts determined. Macrophages, DCs, neutrophils (PMN), and 
eosinophils in BALF (e) and lung tissue (f) were determined using the same method. At least 

50×10
3
cells/sample were collected. Data are expressed as mean values. The graphs are representative of 

two independent experiments of five mice per group. Student t test result *: p<0.05, **: p<0.01, ***: 
p<0.001. 

a. b. 

c. d. 

e. f. 
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activation can be detected by measuring CD28 (768), CD69 (769), CD25 (770), and ICOS 

(771) expression, and it is thought that naïve T cell activation relies primarily on the 

CD28:CD80/86 costimulatory pathway (771). However, memory T cells have less 

dependence on the CD28:CD80/86 pathway because they express additional costimulatory 

molecules such as CD27 and OX40 (772), and can utilise additional costimulatory pathways 

upon interaction with antigen-presenting APCs. PD1 can also be used as a marker of 

antigen-experienced cells (i.e. they have been activated) (773). At d4 post-secondary 

challenge, the majority of infiltrating BALF CD4 T cells expressed both OX40 and ICOS and a 

minority expressed PD1 (Fig.3.21a). The expression of these molecules was significantly 

increased in mice previously challenged with RSV-IL-21. A similar phenotype was exhibited 

by BALF CD8 T cells, though there was no change in ICOS expression (Fig.3.21b). 

 

21. IL-21 expression during primary RSV challenge increases BAL IFN-γ and IL-10 production 

upon secondary RSV challenge 

An increase in disease severity correlates with increases in T cell activity and increased pro-

inflammatory cytokine production. As T cell activity was increased in mice previously 

challenged with RSV-IL-21, I determined if cytokine production was also enhanced. BALF 

IFN-γ (Fig.3.22a), IL-4 (Fig.3.22b), IL-10 (Fig.3.22c), IL-17 (Fig.3.22d), granzyme B (Fig.3.22e), 

and IL-21 (Fig.3.22f) levels were determined by sandwich ELISA. I detected significant levels 

of IFN-γ and granzyme B in the BALF of mice previously challenged with RSV. There was also 

weak but detectable production of IL-10, but little IL-21, and no IL-4 or IL-17 production. 

However, in mice previously challenged with RSV-IL-21, I detected significantly enhanced 

production of BALF IFN-γ (Fig.3.22a), IL-10 (Fig.3.22c), and IL-21 (Fig.3.22f). BALF Levels of IL- 
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Figure 3.21. IL-21 expression during primary RSV challenge increases airway T cell activity upon secondary 

RSV challenge. Mice were challenged with RSV or RSV-IL-21 (1×10
6
pfu/mouse; i.n) on d0. Mice were left for 

28 days and then rechallenged with RSV (1×10
6
pfu/mouse; i.n). BALF cells were harvested four days post 

challenge. Samples were processed and PD1, OX40, and ICOS expression on CD4 and CD8 T cells was 

phenotyped by flow cytometry (a). At least 50×10
3
cells/sample were collected. Data are expressed as mean 

values. The graphs are representative of two independent experiments of five mice per group. Student t 
test result *: p<0.05, **: p<0.01. 

a. 

b. 
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Figure 3.22. IL-21 expression during primary RSV challenge increases BAL IFN-γ and IL-10 production upon 

secondary RSV challenge. Mice were challenged with RSV or RSV-IL-21 (1×10
6
pfu/mouse; i.n) on d0. Mice 

were left for 28 days and then rechallenged with RSV (1×10
6
pfu/mouse; i.n). BALF was harvested four days 

post challenge and IFN-γ (a), IL-4 (b), IL-10 (c), IL-17 (d), Granzyme B (e), and IL-21 (f) were determined by 
sandwich ELISA. Data are expressed as mean values. The graphs are representative of two independent 
experiments of five mice per group. Student t test result *: p<0.05, **: p<0.01, ***: p<0.001. 

a. b. 

c. d. 

e. f. 
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4, (Fig.3.22b), IL-17 (Fig.3.22d), and granzyme B (Fig.3.22e) were unchanged. Cytokine 

production by polyclonally-stimulated lung cells was similar between groups, though a 

reduction in IL-17 production by lung cells from mice previously-challenged with RSV-IL-21 

was observed (Appendix 3.4). 
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22. Discussion 

Previous data in this study had supported the hypothesis that IL-21 acted as an important 

regulator of CD4 T cell activation in primary, but particularly memory, responses to RSV 

challenge. Regulatory effects on dendritic cell (DC) activity may be responsible for these 

observations. On this basis, I hypothesised that IL-21 over-expression would further reduce 

DC activity, and therefore CD4 T cell responses to RSV challenge, consequently reducing 

disease severity. By using a novel IL-21-expressing RSV construct (RSV-IL-21), and comparing 

the immune responses of this virus to that of WT RSV I have confirmed that IL-21 has potent 

anti-inflammatory effects in the pulmonary compartment. Expression of supra-physiological 

IL-21 levels during primary infection ablated the T cell response and disease severity 

(including piloerection, hunched posture, and group isolation) after RSV challenge without 

affecting viral replication. However, there were detrimental effects on humoral immunity, 

memory development, and protection from rechallenge. Therefore, IL-21 is a powerful 

inhibitor of primary T cell responses in the pulmonary compartment but also reduces long-

term protection which needs to be addressed in further studies. 

Mice can be treated with cytokines using various methods, each with advantages and 

disadvantages as discussed in the introduction. My use of a ‘viral vector’ allows continuous 

cytokine production without further animal manipulation and the rate of production can be 

controlled by moving the gene upstream or downstream on the genome, utilising 

transcriptional polarity of the RSV genome (634). This contrasts favourably with daily 

exogenous administration, which is necessary as cytokines are rapidly taken up by receptor-

expressing cells and filtered from the circulation by the kidneys prior to removal in urine 

(765). As such the serum half-life of many cytokines can be measured in hours. However, 
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once a viral vector has been administered there is no control over the amount of cytokine 

produced in vivo which may affect data interpretation. Therefore, it is important to measure 

cytokine production over a time course. Significant IL-21 production was confirmed in vitro 

and in vivo by ELISA. In vivo, BALF IL-21 was first detectable at d4 p.c when viral replication 

peaked and peaked at d7 p.c as virus was cleared. As epithelium is the primary target of RSV 

it is likely that most IL-21 is derived from these cells with initial detection of IL-21 at d4 p.c. 

This seems surprisingly slow as the first viral proteins are detectable only 6-8hrs post viral 

infection and L gene transcription within 48hrs (639). As RSV replicates using polysomes and 

transcriptional polarity, and the murine IL-21 gene was positioned between RSV F and G 

genes, then transcription should have occurred within 48hrs. Therefore, initial IL-21 protein 

production should have occurred within this time, but was undetectable in the BALF. The 

viral inoculum contains ~100-fold more IL-21 than that observed at the peak in the BALF, yet 

by d2 p.c this is undetectable. Most may have been lost by pinocytosis by macrophages and 

type I and II epithelial cells. A small proportion, however, is likely to have bound IL-21R on 

various cells including epithelial cells, macrophages and DCs and elicited a biological effect. 

There are other possible explanations for this lack of detection. First, the ELISA may not be 

sensitive enough to detect very low levels of IL-21 production, and the use of more sensitive 

techniques such as luminex, Meso Scale Discovery (MSD), or Europium detection may be 

more informative. Measure of murine IL-21 mRNA in lung tissue by qPCR would determine 

when the gene was transcribed. However, it is also possible that IL-21 was not released by 

infected cells until d4 p.c, possibly as a result of cell death. This would be difficult to test in 

vivo, but in vitro studies of epithelial cell death after RSV-IL-21 infection may help answer 

this. The IL-21 peak at d7 p.c occurs after viral replication has ceased, though measurements 

at other time points would more accurately determine this. Assuming peak production does 



288 
 

occur at d7 p.c, immune cells may be responsible for production after viral replication has 

ceased. This idea is supported by the fact that CD4 T cells are a major IL-21 source, and their 

recruitment and activity peaks at d7 p.c in this model. Although there were very few CD4 T 

cells present in the BALF of RSV-IL-21-challenged mice at this time they were present in the 

lung tissue, albeit at reduced levels. Moreover, there was significant IL-21 production upon 

stimulation of lung cells from RSV-IL-21-challenged mice with a polyclonal T cell stimulus. As 

IL-21 is known to enhance its own production in an autocrine and paracrine manner, it is 

likely that innate CD3-expressing cells had been induced to initiate IL-21 production. Such 

cells could include NKT cells, MAIT (Mucosal-Associated Invariant T) cells, and/or γδ T cells. 

Moreover, other cells may have been induced to produce IL-21 in a cytokine-dependent 

manner (rather than TCR-stimulation), including ILCs, NK cells, DCs, macrophages, and/or 

fibroblasts. Specific studies of IL-21 production by these cell types (e.g. by intracellular 

staining for IL-21) is necessary to determine the source(s). 

Viral replication was unaffected by the addition of the IL-21 gene or inhibition of the 

immune response. This suggests that innate immune mechanisms that carry out viral 

clearance were unaffected by increased IL-21 production. IL-21 is known to increase NK cell 

cytotoxic functions in the presence of IL-15, and NKT cells by itself, but it is not known if this 

occurred in vivo. Moreover, γδ T cells may be affected but it is unclear how important they 

are in primary anti-viral immune responses (123). Macrophage and ILC activity may also be 

altered but these require experimental confirmation. Viral replication data suggests that the 

reduced transcription of the F, M2, and L genes due to the IL-21 gene insertion does not 

significantly affect ‘viral fitness’. IL-21-expressing RSV could be cultured to the same number 

of plaque-forming units as RSV WT, indicating no reduction of viral fitness in vitro. 
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Moreover, the viral vector is antigenically-identical to RSV WT, therefore, antigen 

presentation, and antigen-specific immune responses should be identical.  

Previous data in this study and from this chapter strongly supports a critical role for IL-21 in 

limiting DC maturation and antigen presentation to naïve T cells. Previous studies by Brandt 

et al have clearly demonstrated that IL-21 reduces MHCII expression by DCs that prevents 

them from activating CD4 T cells in the draining lymph nodes (622). As well as a lack of T cell 

influx into the BALF and lung tissue, there was ablation of DC recruitment. There are three 

possible explanations for this: IL-21 causes DCs to down-regulate MHCII, CD11b, and CD11c 

proteins used as markers in this study, DCs are failing to migrate back to the pulmonary 

compartment from the draining lymph nodes, or IL-21 over-expression induces DC 

apoptosis. Investigating the first possibility is difficult as another means of detecting these 

cells would be necessary. Extending the markers measured (e.g. Siglec H) or using 

alternative detection techniques (e.g. haematoxylin and eosin staining) may help. DC 

migration studies could answer the second possibility. Whether IL-21 over-expression 

affects specific DC subsets is another important question that was not addressed in this 

study, and the use of more markers (OX40L, CD40, and PD-L2 as described in the previous 

chapter) would help answer this question. DC migration from the BALF to the mediastinal 

lymph nodes was also not measured in this study, but in vivo CFSE labelling of DCs prior to 

viral challenge would enable DC tracking to the draining lymph nodes where costimulatory 

molecule expression on DCs, and activation markers (e.g. CD69) on T cells, could be 

measured to determine whether DC migration and activation potential are altered by IL-21 

over expression. DCs returning from the mediastinal lymph nodes could be determined by 

measuring CFSE, assuming that DC proliferation has not reduced the signal to undetectable 
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limits. DC apoptosis could be addressed using TUNEL (Terminal deoxynucleotidyl transferase 

dUTP nick end labeling) staining.  

The lack of T cell influx in RSV-IL-21-challenged mice could reflect a direct effect of IL-21 on T 

cells, however there is contradictory evidence of this in previously published IL-21 studies. 

IL-21 has been shown to boost T cell activation in different models (626,774-777), but more 

recent studies have demonstrated that it has potent anti-inflammatory effects 

(704,729,731,778). In my studies, IL-21 significantly reduced ICOS expression on both BAL 

and lung CD4 and CD8 T cells, suggesting it reduced their activation (directly or indirectly). 

ICOSL expression on macrophages and DCs increased simultaneously, indicating that 

ICOS:ICOSL interactions reduce ICOSL molecule expression on these cells. ICOSL may be 

removed by endocytosis or trogocytosis. Although there was a clear reduction in cytokine 

production into the BALF there was significant cytokine production by stimulated lung cells. 

Indeed, IFN-γ, IL-17, and IL-21 levels were higher in samples from RSV-IL-21-challenged 

mice. This suggests that IL-21 may block migration of activated T cells from the lung tissue 

into the BALF, possibly by altering integrin and adhesion molecule expression on T cells as 

well as structural cells. The reduction in BALF chemokine production in RSV-IL-21-challenged 

mice also supports this idea. Analysis of these molecules on the surface of infiltrating cells 

and lung sections would help clarify this issue. 

The data generated here support the concept that IL-21 does not alter T cell differentiation. 

No significant bias in cytokine production in the BALF or by stimulated lung cells was 

observed in RSV-IL-21-challenged mice. Moreover, no significant alterations in transcription 

factor expression were observed by CD4 T cells in either the pulmonary compartment or 

mediastinal lymph nodes. Only significant reductions in BALF IFN-γ and granzyme B were 
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noted, as well as a loss of T-bet expression in responding T cells, suggestive of a loss of pro-

inflammatory T cell influx rather than diversion to an alternative T cell profile. Importantly, 

there is no data that supports regulatory T cell differentiation by IL-21 as no increase in 

FoxP3 expression was observed. Therefore, IL-21 is inhibiting the anti-viral response via 

other mechanisms. These data support the idea that IL-21 is acting as an anti-inflammatory 

factor rather than a T-cell-subset-biasing cytokine.  

The lack of cell recruitment and migration observed in this study could also be explained by 

a reduction in chemokine expression, as was observed in the BALF. RSV infection of 

mucociliary epithelium induces production of several chemokines including RANTES, MCP-1, 

and MIP-1α (779,780). Similar results have been observed in human studies (781). Certain 

chemokines such as RANTES (663), CCL20 (782), and MIP-1α (661,783) have been associated 

with RSV disease. Other studies have suggested that RSV may inhibit early chemokine 

release, presumably to reduce the immune response and prolong the opportunity for viral 

replication (784). Moreover, the development of Th1 and Th2 responses against RSV is 

chemokine-driven (662,785). The loss of MIP-1α, MIP-3α, and IP-10 suggest that IL-21 may 

act to reduce chemotactic factors that prevent cellular recruitment. Indeed, changes in 

chemokine production could explain many of the observations in this study and is indicative 

of a major effect of IL-21. Previous studies in rheumatoid arthritis (786), and an air-pouch 

model of inflammation (632), have demonstrated that macrophages express IL-21R and are 

activated by IL-21. Other studies have demonstrated that IL-21 induces alternative 

activation of macrophages to boost Th2 responses (775), and can enhance antigen 

processing and presentation to CD4 T cells (715). They have also been shown to secrete 

MIP-1α (268) and CXCL10 (787) upon activation. Therefore, IL-21 may ablate RSV disease by 
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controlling T cell recruitment via chemokine production by macrophages. There are few 

studies that have focussed on changes in chemokine expression caused by changes in IL-21 

expression, and those that have demonstrated that IL-21 increased chemokine expression, 

particularly CCL20 (713). Therefore, my finding that IL-21 inhibits chemokine production in 

the pulmonary compartment is a novel finding and warrants further study as it has 

therapeutic implications. As opposed to other sites, IL-21 may have a unique role in 

controlling cellular recruitment to the BALF via changes in chemokine production. An 

extensive analysis of BALF chemokine production [including TNF, another pro-inflammatory 

factor not assayed in this study known to increase RSV disease severity (788)] over a time 

course of RSV challenge should confirm the effect, compared to IL-21 depletion (where 

RANTES production was increased, supporting the general concept) and untreated animals. 

The mechanism as to how IL-21 controls chemokine production should then be investigated. 

It is likely that most chemokines are produced by infected epithelium or macrophages, as 

well as other innate cells. Therefore, future studies should focus here. If the mechanism can 

be determined then it may be utilised therapeutically to treat multiple lung diseases, not 

just viral infection. 

Previous data in this study had predicted that IL-21 overexpression would boost B cell 

activity and increase virus-specific antibody production, thereby improving long-term 

protection from rechallenge with an antigenically-syngeneic virus. However, a significant 

loss in virus-specific antibody production was observed in both BALF and serum, and there 

was no indication that B cell activation had increased. This is surprising given previous 

studies that have identified crucial roles in follicular helper T cell development (599,600), B 

cell activation (738), isotype class switching (789), plasma cell generation (609,790), and 
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antibody production (625). Nevertheless, there is no data to suggest the IL-21 over-

expression boosts B cell responses during RSV challenge. As B cell activation requires CD4 T 

cell help, it is likely that the loss of CD4 T cells in the primary response has decreased help 

given to B cells in the secondary lymphoid organs. This, in turn, has resulted in reduced 

antibody production, and memory B cell generation. Further specific studies measuring 

different B cell populations in challenged mice, and adoptively transferring CD4 T cells from 

RSV-challenged mice will address these issues. 

IL-21 over-expression significantly reduced RSV disease by inhibiting T cell recruitment, 

cytokine production, and effector function. It is unsurprising therefore that it significantly 

reduced the development of T cell memory in the pulmonary compartment, specifically 

effector T cell memory. However, it only affected lymphocytic memory in the pulmonary 

compartment; the splenic compartment remained functional as measured by antigen-

specific cytokine production (proliferation was not measured). This indicates that IL-21 over-

expression only affects the local site where it is produced, and not systemically. There is 

conflicting data regarding the effect of IL-21 on the development of T cell memory, focussed 

mostly on CD8 T cell memory. Allard et al demonstrated that in the absence of infection, 

transgenic mice that over-express IL-21 have an enhanced central memory CD8 T cell 

compartment in the spleen, and both central and effector memory T cell compartment in 

the lymph nodes (791). In contrast, the B cell compartment was unchanged, and CD4 T 

compartments were reduced in number. This study suggests that IL-21 supports CD8 T cell 

memory but not CD4 T cell memory. Likewise, Kaka et al demonstrated that IL-21 over-

expressing CD8 T cells augmented development of central memory CD8 T cells upon 

activation (792). In contrast, Sondergaard et al demonstrated that IL-21 restricted primary 
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CD8 T cell expansion in a model of tumour immunity, and had no effect on the memory 

responses to tumours (729). Further, in a model of LCMV infection, Yi et al found that IL-21 

had no quantitative effect on the primary CD8 T cell response though it did enhance recall 

responses upon viral rechallenge (793). A study by Barker et al also observed important 

enhancing effects of CD4-T-cell-derived IL-21 on both primary and memory CD8 T cell 

responses (794). My studies suggest that pulmonary IL-21 over-expression inhibits B cell as 

well as CD4 and CD8 T cell memory in the pulmonary compartment, a contrasting 

conclusion. The reasons for this difference are unknown at present, and warrant further 

investigation. Why is lymphocytic memory not supported by IL-21 over-expression in the 

lung? A study of memory T cell differentiation in a mouse model of malaria suggested a 

linear pathway of development with CD27+CD62L+ central memory T cells differentiating 

into CD27+CD62L- ‘early’ effector memory, and finally to CD27-CD62L- ‘late’ effector memory 

T cells (795). If this occurs in T cell responses to RSV then my data suggest that IL-21 blocks 

the central to ‘early’ effector memory transition in the pulmonary compartment, as the 

proportion of CD44hiCD62L+ central memory CD4 T cells was unaltered but there was a 

significantly reduced CD44hiCD62L- effector memory CD4 T cell compartment. This would 

also explain the effects of IL-21 depletion on memory CD4 T cell responses after rVV-G-

priming: IL-21 depletion allows maximal transition from the central memory stage to the 

effector memory, resulting in an increased pro-inflammatory T cell response, and increased 

disease. Further studies of T cell memory development in IL-21KO & IL-21Tg mice would 

address this possibility.  

Another possibility is that IL-21 affects the fate decision of T cells to die by apoptosis or 

survive to become memory. Previous studies have shown that IL-21 can induce CD8 T cell 
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apoptosis (778), and B cell apoptosis (586,610). Therefore, it is possible that IL-21 also 

induces T cell apoptosis during respiratory viral infection. Apoptosis measurements (e.g. 

TUNEL staining) of infiltrating cells during RSV vs RSV-IL-21 challenge would help answer this 

question. IL-21 could be directly inhibitory on T and B cells but the data from my studies do 

not fully support this. Certainly IL-21 depletion enhanced T cell responses, particularly CD4 T 

cells, but equally effects on DCs could account for the observations. Further, IL-21 depletion 

reduced B cell influx and virus-specific antibody secretion in the prime and challenge model, 

suggesting it is necessary despite the availability of increased CD4 T cell help.  

Reduced chemokine production may also account for the specific memory loss in the lung, 

and may explain why there is intact memory in one compartment but not another. 

Chemokine administration (e.g. CXCL10, CCL20) into the BALF in RSV-IL-21-challenged mice 

would help demonstrate whether chemokine loss was responsible for the lack of T cell or DC 

influx.  

Another promising mechanism is that IL-21 inhibits DC numbers in the BALF by inhibiting DC 

influx or survival in this compartment. If DC maturation and/or migration is negatively 

affected by IL-21, then naïve T cell activation in the mediastinal lymph nodes would be 

reduced and little migration to the BALF would occur. Consequently, there would be fewer T 

cells to form memory, not just in the BALF but also in the draining lymph nodes (an organ 

not tested in my studies). As there is less T cell help for B cells, antibody production was 

reduced and memory B cells did not form. Effects of other innate cells (e.g. macrophages) 

cannot be ruled out at this stage, and selective depletion studies of different cell types 

(particularly professional APCs) prior to RSV challenge would help ascertain which cells are 
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important for memory formation in this model. There may also be knock-on effects on B cell 

memory also. The specific effects of IL-21 on highlighted cell types can then be focused on. 

The failure to generate an effector T cell memory population in the lung had detrimental 

effects on protection against viral rechallenge. Mice previously challenged with RSV-IL-21 

exhibited increased T cell activation and more severe disease. There are two likely 

mechanisms for this phenotype: reduced virus-specific antibody levels failed to protect 

against rechallenge, and/or a pathogenic role for central memory T cells. Both of these 

possibilities are supported by previous studies. Early studies by Graham et al investigated 

the immunological determinants that correlated with RSV clearance upon rechallenge (796). 

Clearance correlated with the presence of lymphocytic aggregates around the 

bronchovascular bundles, and RSV-specific antibody levels. Depletion studies by the same 

group confirmed their importance (332). Depletion of either T cell subset during primary 

RSV challenge delayed viral clearance and reduced disease severity upon secondary RSV 

challenge. The necessity of antibody in protection against RSV was confirmed by other 

studies by Graham et al when they demonstrated that antibody depletion during primary 

challenge did not significantly affect viral clearance during primary challenge but delayed 

viral clearance, and increased disease severity, during secondary RSV challenge (797). 

A recent study by Teijaro et al demonstrated similar mechanisms in influenza infection. 

Adoptive transfer of lung memory T cells, from mice challenged with influenza, into naïve 

recipients protected them upon challenge with the same strain, and enhanced viral 

clearance. However, transfer of splenic memory T cells failed to protect and exacerbated 

disease (746). Central memory T cells vigorously expanded in lung and spleen, increased 

weight loss and mortality in challenged mice, and compromised viral clearance. Those 
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differences observed by Teijaro et al are very similar to those observed in my studies after 

RSV-IL-21 challenge and indicate a similar mechanism (though I have no evidence that the 

infiltrating cells upon RSV rechallenge originated from the spleen). In my study IL-21 was 

administered locally, therefore systemic IL-21 administration may reduce memory 

development systemically rather than just the pulmonary compartment. This may allow 

enhanced memory retention in the lung and increased protection both from T cells and 

antibody production by B cells. These studies do not rule out effects by other cell types on 

the balance of pulmonary T cell memory after RSV-IL-21 challenge. It would be of interest to 

deplete specific cell types (e.g. macrophage depletion using chlodronate liposomes) in the 

pulmonary compartment after convalescence and determine if the balance of memory T 

and B cell populations is restored.    

The results of this chapter extend the findings of the previous chapters. IL-21 has a crucial 

role in limiting T cell activation during respiratory viral infection. This may be a direct effect 

or mediated via inhibition of DC maturation, migration, and antigen presentation in the 

draining lymph nodes. This results in a lack of effector T cell memory in the lung tissue, as 

well as reduced B cell help and a failure to generate optimal virus-specific antibodies. 

Consequently, the host has reduced protection against rechallenge with an antigenically-

syngeneic virus. Further work is required to fully elucidate the immunological mechanisms 

responsible for the observed effects. The data presented here do not address all 

possibilities, and definitively confirm how IL-21 acts during respiratory viral challenge. 

However, this study has highlighted the prospect of utilising IL-21 to control primary T cell 

responses in the pulmonary compartment, and alleviating disease, possibly in conjunction 

with other soluble factors.  
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K. Conclusions 

My original hypothesis was that IL-21 potentiated CD8 T cell activity, as previous studies had 

clearly demonstrated this. In cancer studies, IL-21 enhanced the cytotoxic activity of NK 

cells, NKT cells, and CD8 T cells to increase regression of cancerous tissue. Thus, IL-21 was 

clearly beneficial in anti-cancer responses and remains a very exciting therapeutic target. 

Similar effects have been observed in models of chronic viral infection such as LCMV and 

HIV.  In respiratory disease however, CD8 T cells are the main cause of loss of lung function 

after severe respiratory viral infection. As this is the major cause of clinical burden in 

respiratory disease, its alleviation by inhibiting CD8 T cell activation and function, without 

significantly affecting viral clearance, was a major therapeutic goal. Given its described 

effects, IL-21 it was an attractive candidate to achieve this. 

The principal finding of my studies however, and perhaps most surprising, is that IL-21 plays 

a crucial role in limiting CD4 T cell responses to RSV infection, not CD8 T cells. In particular, it 

limits effector memory responses. How does it do this? My data point to multiple 

mechanisms including inhibiting chemokine secretion, and reducing T cell activation by DCs. 

This is described pictorially in Figure 4.1. Therefore, in the context of respiratory viral 

disease IL-21 has considerable therapeutic potential to alleviate disease, though my data 

suggest that IL-21 over-expression alone is insufficient and may need to form part of a 

combination therapy. However, my data do not conclusively prove any of the above and 

clearly further work is required to fully elucidate the mechanisms and therapeutic potential 

of IL-21. 

Why does IL-21 function in such a distinct way during RSV infection compared to cancer 

studies? This is likely due to the nature of the diseases. The response to RSV is acute,  
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  Figure 4.1. The effects of IL-21 on T cell responses to Respiratory Syncytial Virus (RSV). IL-
21 inhibits macrophage-derived chemokines necessary to recruit activated T cells to the 
site of infection. Consequently, there is a lack of T-cell-derived pro-inflammatory 
mediators (e.g. IFN-γ and granzyme B) that elicit disease. The lack of T cells results in a 
lack of T cell help for B cells reduces antibody production, and memory T cell 
development. This negatively impacts on protection against rechallenge. 
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complete within two weeks of viral challenge, whereas responses to cancer may be months 

or years in length. Therefore, the requirement for continuous T cell support is paramount in 

anti-cancer responses but not so for anti-RSV responses. Consequently, other functions of 

IL-21 may be more critical. The lung may also be a site of unique immunology, given its 

continuous exposure to the environment for example. As such, the anti-inflammatory 

functions of IL-21 may be more important at this site than at other sites that are not directly 

exposed. Of the γc chain cytokine members, IL-21 is the only one that signals mainly via 

STAT3 (IL-2, -7, and -15 signal via STAT5, whereas IL-4 and -9 via STAT6) as do the anti-

inflammatory cytokines IL-10 and IL-22, which may be indicative of its more anti-

inflammatory nature. 

What are the major anti-inflammatory functions of IL-21 in the context of RSV disease? The 

data from this study suggest three primary mechanisms: reduction in chemokine secretion, 

blockade of DC migration, and enhancement of regulatory T cell recruitment and/or 

function. However, these may not operate simultaneously, nor may they operate equally 

throughout a genetically heterogeneous human population. Moreover, the use of the rVV-G 

prime and challenge model may not accurately reflect memory responses derived from 

natural viral challenge. Therefore, further work using RSV challenge alone is recommended 

to confirm the findings of this study. It would also be of interest to establish if the IL-21 

functions described here are present in other respiratory viral disease (e.g. influenza). The 

existence of common pathways would enhance the possibility of targeting IL-21 

therapeutically in the lung. 

What are the future directions of IL-21 research in the context of respiratory infection? A 

consensus on the effects of IL-21 in respiratory disease are required, in particular the 
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conflicting data between IL-21 function in PVM vs RSV disease requires attention. Direct 

comparisons of the responses to these two viruses are necessary to determine the critical 

parameters that are responsible for the differing effects of IL-21. For example, IL-21 has 

been shown to induce DC apoptosis, which should reduce T cell activation. However, the 

same study found that GM-CSF can rescue these DCs and increase inflammation. Therefore, 

differences between seemingly similar respiratory viruses may be due to the balance of IL-

21 and GM-CSF produced during their respective responses. These possibilities need to be 

addressed. 

Another important obstacle to the use of IL-21 therapeutically is the lack of 

immunoprotection when IL-21 is over-expressed. Given the central role of T cells in loss of 

lung function, it seems logical to boost antibody-mediated protection and enhance long 

term protection. There are many immunological factors that boost B cell activation and 

antibody production, and it would be a significant undertaking to identify a factor that 

works in combination with IL-21 to alleviate RSV disease while boosting protection. 

Moreover, as RSV is mostly a disease of infants these factors must be effective in an 

immature immune system, a critical factor that has not been addressed in this study. 

Nevertheless, there is some support for IL-21 being beneficial in neonates. A recent study 

found that IL-21 was instrumental in protecting adults from hepatitis B disease. However, IL-

21 is largely absent in neonates and may well be the reason why this age range suffer 

significantly more disease. Whether this protective role of IL-21 extends to RSV disease 

remains to be determined. 
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Appendix 1.1. IL-21 depletion increases CD4 T cell recruitment after primary RSV challenge. Mice were 
challenged with RSV on d0. Lung tissue was harvested on d0, 2, 4, 7, 10, and 14 post challenge. Samples 
were processed and lung cells were phenotyped by flow cytometry. Neutrophil (a), NK cell (b), CD4 T cell (c), 

CD8 T cell (d), B cell (e), and DC (f) cell counts determined. At least 50×10
3
cells/sample were collected. Data 

is expressed as mean±SEM. The graphs are representative of two independent experiments of five mice per 
group.  

a. b. 

c. d. 

e. f. 
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Appendix 1.2. IL-21 depletion has no effect on eosinophil and macrophage recruitment after primary RSV 
challenge. Mice were challenged with RSV on d0. BALF and lung tissue was harvested on d0, 2, 4, 7, 10, and 
14 post challenge. Samples were processed and BALF and lung cells were phenotyped by flow cytometry. 
BAL (a), and Lung (b) eosinophil and BAL (c) and Lung (d) macrophage cell counts were determined. At least 

50×10
3
cells/sample were collected. Data is expressed as mean±SEM. The graphs are representative of two 

independent experiments of five mice per group.  

a. b. 

c. d. 
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Appendix 1.3. IL-21 production is not detectable in the BALF or by stimulated lung cells after primary RSV 
challenge. Mice were challenged with RSV on d0. BALF was harvested on d0,2, 4, 7, 10, and 14 post 
challenge and IL-21 production (a) was determined by sandwich ELISA. Lung cells were harvested seven 
days post challenge, RBCs lysed, and single cell suspensions counted by trypan blue exclusion assay.  Lung 

cells (2×10
6
cells/well) were stimulated with either media alone or αCD3/28-expressing beads (50µl/well) for 

24hrs. Supernatants were harvested and IL-21 levels (b) determined by sandwich ELISA. Data is expressed as 
mean±SEM. The graphs are representative of three independent experiments of five mice per group. 

a. 

b. 
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Appendix 2.1. IL-21 depletion significantly increases T cell recruitment in G-, but not M2-, primed mice after 
RSV challenge. Mice were immunised and challenged as described in Fig.2.8. Lung cells were harvested at 
several time points post challenge. Samples were processed, RBCs lysed, and live cells counted by trypan 
blue exclusion assay. Lung CD4 (a, c, e) and CD8 (b, d, f) T cells in rVV-βgal (a-b), rVV-G (c-d), and rVV-M2 (e-

f) were phenotyped by flow cytometry and cell counts determined. At least 50×10
3
cells/sample were 

collected. Error bars represent SEM. The graphs are representative of three independent experiments of 
five mice per group. Student t test result *: p<0.05. 
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Appendix 2.2. IL-21 depletion during rVV-βgal priming increases IFN-γ, granzyme B, and IL-10 by lung cells 
after RSV challenge. Mice were immunised with rVV-βgal and challenged as described in Fig.2.8. Lung cells 
were harvested at several time points post challenge. Samples were processed, RBCs lysed, and live cells 

counted by trypan blue exclusion assay. Lung cells (2×10
6 

cells/well) were stimulated with either media 
alone or αCD3/28-expressing beads (50µl/well) for 24hrs. Supernatants were harvested and IFN-γ (a), 
Granzyme B (b), IL-4 (c), IL-10 (d), IL-17 (e), and IL-21 (f) were determined by sandwich ELISA. Error bars 
represent SEM. The graphs are representative of three independent experiments of five mice per group. 
Student t test result *: p<0.05, **: p<0.01. 

a. b. 

c. d. 

e. f. 
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Appendix 2.3. IL-21 depletion during rVV-G priming increases IFN-γ, IL-10, and IL-17, and reduces IL-4 
production by lung cells after RSV challenge. Mice were immunised with rVV-G and challenged as described 
in Fig.2.8. Lung cells were harvested at several time points post challenge. Samples were processed, RBCs 

lysed, and live cells counted by trypan blue exclusion assay. Lung cells (2×10
6 

cells/well) were stimulated 
with either media alone or αCD3/28-expressing beads (50µl/well) for 24hrs. Supernatants were harvested 
and IFN-γ (a), Granzyme B (b), IL-4 (c), IL-10 (d), IL-17 (e), and IL-21 (f) were determined by sandwich ELISA. 
Error bars represent SEM. The graphs are representative of three independent experiments of five mice per 
group. Student t test result *: p<0.05, **: p<0.01, ***: p<0.001. 

a. b. 

c. d. 

e. f. 
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Appendix 2.4. IL-21 depletion during rVV-M2 priming has no effect on cytokine production by lung cells 
after RSV challenge. Mice were immunised with rVV-M2 and challenged as described in Fig.2.8. Lung cells 
were harvested at several time points post challenge. Samples were processed, RBCs lysed, and live cells 

counted by trypan blue exclusion assay. Lung cells (2×10
6 

cells/well) were stimulated with either media 
alone or αCD3/28-expressing beads (50µl/well) for 24hrs. Supernatants were harvested and IFN-γ (a), 
Granzyme B (b), IL-4 (c), IL-10 (d), IL-17 (e), and IL-21 (f) were determined by sandwich ELISA. Error bars 
represent SEM. The graphs are representative of three independent experiments of five mice per group.  

a. b. 

c. d. 

e. f. 
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Appendix 3.1. IL-21 expression significantly inhibits cell recruitment after primary RSV challenge. Mice were 

challenged with RSV or RSV-IL-21 (1×10
6
pfu/mouse; i.n) on d0. BALF cells were harvested seven days post 

challenge. Samples were processed and total cell counts in the BALF determined. Forward (FS) and side 

scatter plots (SS) were phenotyped by flow cytometry. At least 50×10
3
cells/sample were collected. The plots 

are representative of two independent experiments of five mice per group. 
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Appendix 3.2. IL-21 expression significantly reduces T-bet expression by CD8 T cells after 

primary RSV challenge. Mice were challenged with RSV or RSV-IL-21 (1×10
6
pfu/mouse; i.n) 

on d0. BALF (a-b), lungs (c-d), and mediastinal lymph nodes (e-f) were harvested seven 
days post challenge and processed. CD8 T cells were stained for FoxP3, RORγt, or T-bet 
according to the manufacturer’s instructions. The percentage of CD8 T cells expressing 
each transcription factor was determined by flow cytometry. Grouped data for percentage 
(a, c, e) and total number (b, d, f) is also shown. The graph is representative of two 
independent experiments of five mice per group. Student t-test result *: p<0.05, **: 
p<0.01, ***: p<0.001. 



371 
 

 

  

Events 

RSV RSV-IL-21 

CD4 

CD44 

CD62L 

Appendix 3.3. IL-21 expression inhibits effector, but not central, memory T cell development in the lung 

tissue after primary RSV challenge. Mice were challenged with RSV or RSV-IL-21 (1×10
6
pfu/mouse; i.n) on 

d0. Lungs were harvested 28 days post challenge and samples processed. CD44 and CD62L expression (b) on 

CD4
+
 cells (a) were phenotyped in the lung by flow cytometry. At least 50×10

3
cells/sample were collected. 

The plots are representative of two independent experiments of five mice per group.  

a. 

b. 
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Appendix 3.4. IL-21 expression during primary RSV challenge increases cell recruitment to lung tissue upon 

secondary RSV challenge. Mice were challenged with RSV or RSV-IL-21 (1×10
6
pfu/mouse; i.n) on d0. Mice 

were left for 28 days and then rechallenged with RSV (1×10
6
pfu/mouse; i.n). Lung cells were harvested four 

days post challenge and samples processed.  Lung cells (2×10
6
cells/well) were stimulated with either media 

alone or αCD3/28-expressing beads (50µl/well) for 24hrs. Supernatants were harvested and IFN-γ (a), IL-4 
(b), IL-10 (c), IL-17 (d), Granzyme B (e), and IL-21 (f) were determined by sandwich ELISA. Data is expressed 
as mean±SEM. The graphs are representative of two independent experiments of five mice per group. 
Student t test result *: p<0.05. 

a. b. 

c. d. 

e. f. 


