Distributed Fault Detection and Isolation of
Large-scale Discrete-time Nonlinear Systems: an
Adaptive Approximation Approach

Riccardo M. G. Ferrari, Thomas Parisini, and Marios M. Palpou

Abstract—This paper deals with the problem of designing new problem. As far back as in the 1970s, researchers sought
a dli_StribUted fault ldetectionl %nd isolation dmetho_d0||509y fo to develop so called “decentralized control” methods [Hc8
nonlinear uncertain large-scale discrete-time dynamicabkystems. i i
As adivide et impera approach is used to overcome the scalability thner; tf;eref hda}v?ritt)) eter:j maﬁt)r/ ?dvinc;ﬁmenésnl?hthe tﬂefl%n n%nd
issues of a centralized implementation, the large scale dgsn analysis of distributed control schemes. € other hand,
being monitored is modelled as the interconnection of seval Much less research activity has been devoted at the profflem o
subsystems. The subsystems are allowed to overlap, thus s designing fault diagnosis schemes specifically for disted
some state components. For each subsystem, laocal Fault systems.
Diagnoser is designed, based on the measured local state of the " p e to the complexity of the problem, in practice it is diffi-

subsystem as well as the transmitted variables of neighbaont : : P o
states that define the subsystem interconnections. The idca Cult to achieve robust fault diagnosis in large-scale itisted

diagnostic decision is made on the basis of the knowledge dfe  Systems within a centralized implementation, mainly beeau
local subsystem dynamic model and of an adaptive approximan of scalability issues. In fact, a centralized scheme soomer
of the interconnection with neighboring subsystems. The & |ater may hit one of the two following constraints on the
i?f gr dseﬁeféalg%'dfos\}g”f’hde ngzﬁ?st‘;iﬁ;baasgg ggtl'gg)ﬁ}tor (')? %ﬁfg hardware/software architecture used to implement it: téuhi
affecting variabﬁes shared among O\yerlapping subs})//stemé'.he- ava"ab'? CompUtat'on power for er.i'Ua“”g the f"’.“%'t decis
oretical results are provided to characterize the detectio and and limited communication bandwidth for acquiring all the
isolation capabilities of the proposed distributed schemeFinally, necessary measurements. While considerable effort wasdaim
simulation results are reported showing the effectivenessf the at developing distributed fault diagnosis algorithms edhit
proposed distributed fault diagnosis methodology. to discrete event systems (see, for instance, [6]), much les

attention was devoted to discrete or continuous—time Byste

(see [7], where the problem of designing sensor networks for

|. INTRODUCTION fault-tolerant estimation is addressed, [8], [9] whereltfau

The problem of automated fault diagnosis and accommi@lerance in distributed systems is considered, [10], ,[11]
dation is motivated by the need to develop more autonomddg], Which are focused on decentralized fault detectior a
and intelligent systems that operate reliably in the presai [13] dealing with fault consensus in networks of unmanned
system faults. In dynamical systems, faults are charaetri Vehicles).
by critical and unpredictable changes in the system dyrgmic !n previous works [14], [15], [16], the authors developed
thus requiring the design of suitable fault diagnosis saemsome preliminary results on a quantitative distributeditfau
[1], [2], [3]. Moreover, with current technological trendsdetection scheme where a large-scale system was decomposed
several systems of practical interest are large-scaleoandNto @ set of disjoint subsystems, and the physical intenact
physically distributed and thus the decomposition andiapat€tween neighboring subsystems was described by uncertain
distribution of highly demanding computational tasks is djonlinear functions. A network otocal Fault Detectors
critical importance. (LFDE) was developed so that each LFDE monitored a smgle

Recently there has been significant research activity $4Psystem by making use of the measurement of local vari-
modeling,” control and cooperation methodologies for digPles, as well as the value of sorméerconnection variables
tributed systems (see, for example, [4], and the refereites COMMunicated by neighboring LFDs. But, apart from this
therein). This activity is motivated by several applicatp €Xchange of measurements, the neighboring LFDEs were not
especially in complex large-scale systems, such as traffivolved in the process of deciding whether a fault occurred
networks, environmental systems, communication networkd & subsystem. In this paper, the above distributed detecti
power grid networks, water distribution networks, etc. IBucScheme is extended to allow cooperation between neighporin
systems, although their dynamics and control objectiveg maFDES by usingverlapping decompositiorj$7] of the initial
appear to be completely different, have some important coftge-scale system. In this way, more than one LFDE may be
mon characteristics: their dynamics are complex and djyatignonitoring a singleshared variableand collectively decide
distributed, and, as a result, it is typically more convenie ©n the presence of faults influencing it. This is implemented
decompose the system into smaller subsystems which canPjemeans of a specially designed consensus-like estimation
more easily controlled and monitored locally (or regiogill Scheme that may improve the capability of the LFDEs to detect

The study of controlling spatially distributed systems ¢ & 2afSan|t with respect to the consensus-less, non overlapping
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Fault Diagnoser(see [18] for some preliminary results). ATherefore, we consider the decomposition of systefrinto

rigorous characterization of the fault isolation capapibf N subsystents.#;, I = 1,..., N, each characterized by a

the proposed scheme is given, while an 11-tanks systémoal state vectorr; € R™7, with a separate monitoringgent

is used throughout the paper to illustrate the decompositidesigned for each’;.

strategy, the modeling of local and distributed faults and, In order to introduce system decompositions, first of all the

finally, to show the effectiveness of the proposed methaglolosystemstructureis defined using graph theory [22].

by extensive simulation results. Definition 1: The structureX s~ of a dynamical systeny”
The paper is organized as follows: in Section I, a probleimaving a state vectat € R™ and an input vector ¢ R™ is

formulation is developed for fault diagnosis of distribdidy- the set of ordered pairs

namical systems. The design and analysis of a distributdtl fa

detection and isolation architecture is presented in Sedtl, s @) @Y. 4 4 " (3) (@)

followed by the detailed developmentpof its detection part i X {(w. i ) B byl ’n}’ @™ affectsz’?™}

Section IV, and of its isolation part in Section V. Finally, U {(u'?,29):ie{1,....m},je{1,...,n},

simulation results for illustrating the methodology areegi "u(® affectsz@)"} .

in Section VI, while Section VII provides some concluding

remarks. Definition 2: The structural graph[17] of a dynamical
system.”, having a state vectat € R™ and an input vector
Il. BACKGROUND u € R™, is the directed grapldigraph) G = {Ng, &g} having
- - - the node setVg £ {z® : i € {1,....n}} U{u® : i c
Let us consider a nonlinear dynamic systeff referred to g AR
asmonolithic systenand described by the following discrete—i{slé' - ’75}} and the system structudg;- as the arc set, that
g =27

time model The decomposition of the monolithic syste# is based on
S x(t+1) = f(x(t), u(t))+n(t)+B(t—Ty)¢(xz(t),u(t)), decomposing its structural graph. The idea of graph decempo
(1) sition has been used in many fields [23]. For example, graph
wheret € N is the discrete-time instanty € R™ and decomposition has been used in numerical methods involving
u € R™ denoté the state and input vectors, respectively, anéie solution to partial differential equations [24], [2326],
f : R™ xR™ s R™ represents thaominal healthy dynamics [27], in image processing [28], in operations research ,[29]
Moreover, the functiom : N — R™ stands for the uncertainty and, of course, in large—scale system decomposition [3@], [
in the state equation and includes external disturbances aso decompose a monolithic systesi described as in (1)
well as modeling errors and possibly discretization etrorand having a structural gragh= (Ng, &g), we defineN > 1
From a qualitative viewpoint, the terfi(t—Ty)p(x(t), u(t))  subsystems”;, with I € {1,..., N'}, each one having lacal
represents the deviation in the system dynamics due tostatevectorz; € R™ and alocal input vectoruy € R™7.
fault. The term 3(t — Ty) characterizes the time profile of These local vectors are constructed by taking components of
a fault that occurs at somanknown discrete-time instant the monolithic system vectots andu, based on ordered sets
Ty, and ¢(z,u) denotes the nonlinear fault function. Thisz, 2 (z(" . 7{")) of indices, calledextraction index set
formulation (first introduced in [19]) allows both additive[15], [31], [16]. These sets can be defined by introducing the
and multiplicative faults (sincep is a function ofz and following extraction mappingbetween local and monolithic
u), as well as more general nonlinear faults. The fault timadexes.
profile 3(t —Tp) modelsincipientfaults characterized by an  Definition 3: For each subsysten¥;, its extraction index

exponential decaying time-profile setZ; is obtained by means of aextraction mappingr; :
0 if t<T {1,..._,7_1_1}r—>{1,...,n}, SO thatZ]é(O'](].),...,O'[(’.fL[)).

Bt —Ty) = { (t=T) 0 , (2) Definition 4: Thelocal statex; € R™ and _thelocal input
1—0 o if t>To u; € R™ of a dynamical subsysten¥’, arising from the

whereb > 1 denotes the unknown fault-evolution rate (th@€COMPosition of a monolithic systenr’, are respectively

NOM A
case of an "abrupt" fault time-profile can be obtained as (e(k\)/ecgq))erI = CP'(QE(J) 2 j € Zr) andu; £ col(ul® :
oo in (2)). Note that the fault time profile given by (2) only(v'™, @))€ &, j € Iy, k = 1,...,m), whereZ; is the
reflects the developing rate of the fault, while all its othepxiraction index set of thé—th subsystem. _
basic features are captured by the functigfax, w), which _ Itis worth noting that, when performing the “col” operation
describes the changes in the dynamics due to the fault.  in the two previous definitions, the elements of the index’get
The problem of detecting and isolating faults in nonlined'® taken in the order they appear. According to Definition 4,
uncertain systems described by (1) using adaptive appeoxinfne local input contains all the input components that aféec
tion methodologies has been ‘addressed in several workd&ast one component of the local state vector. At this ptiiet,
the literature (see, among others, [20], [21] and the refezs Structural graph of thd—th subsystem can be easily defined
cited therein). In this paper, we consider design and aisabfs as the subgrapé; induced ong by the subset made of all the
an adaptive approximation methodology for the case of farggomponents ofr; together with those ofi;. The following
scale and distributed nonlinear systems for which a canéchl Provides a definition for the decomposition of a large-scale
Fault Detection and IsolatiofFDI) architecture may not be System. N ) )
possible or not desirable. As the impossibility usuallyives ~ Definition 5: A decompositiorD of dimensionN' of the
from a centralized implementation being unable to procekgge-scale systeny’ is a multisetD £ {.71, ..., n} made
and/or convey all the necessary measurements at a sir@fléV subsystems, defined through a multi§gt, ..., Zy } of
computation node in real time, in this papedigide et impera index sets, such that for eadhe {1,..., N} the following
approach is used, in order to decompose the (possible larggioms hold:
original FDI problem into a number of smaller problems, eas- 1) 7; £ §;
ier to solve with the available hardware/software infrasture. 2) I}J) < n, for eachj € {1,...,nr};

IHere and in the rest of the paper the use of bold letters iteticthat a ) N
given quantity is related to the monolithic system. 2|n the paper, a capital-case index denotes a specific stbrsys



3) the subdigraph off induced byZ; must be weakly where f; : R"7 x R™ +— R™ is thelocal nominalfunction
connected, that is, each component:pfmust act on or and g; : R™ x RPI x R™ — R™ represents théntercon-
must be acted on by at least another component;of nection function where the effects of the local uncertainty

4) JL\jII —{1,..n}. term 7; has also been incorporated, with = col(n'¥) :

I=1 j € Ir). Furthermoreu; € R™, (my < m) is thelocal

Axiom 1 prevents the definition of trivial empty subsystemsnput (see Definition 4),z; € R?’, (py < n — ny) is the

Axiom 2 is necessary for well-posedness, Axiom 3 avoidgctor of interconnection variablegsee Definition 8), and
that resulting subsystems have isolated state componerits; R™ x RP? x R™7 — R™ is thelocal fault function

while Axiom 4 requires that the decomposition covers the Let us now introduce two assumptions that will be used in
whole original monolithic system. It is important to noteath the subsequent analysis.

the above decomposition does not require that for any twoAssumption 1:The fault functiong is such that the funda-
subsystem&; NZ; =0, I,J € {1,...,N}. This allows for mental graptGp remains the same before and after the fault
a state component o¥ to be assigned to more than one sukevent.

systems, thus being “shared”. Such a decomposition isctalle Assumption 1 is introduced to simplify the formal analysis;
overlapping decompositiofDverlapping decompositions [32]according to this assumption, in the paper we suppose that
have been found to be useful tools when addressing largbe possible fault event does not cause a change to the system
scale systems. In particular, problems of stability, coindind  structureX o~ by adding new dependencies between variables
estimation [33], and fault diagnosis [34] for large—scabedr belonging to different subsystems, so that it is possible to
systems were addressed using overlapping decompositiongvrite the local fault functionp; as a function of local and

As a result of overlaps, some components:adre assigned interconnection variables orfly This also means that the

to more than one subsystems thus giving rise to the concepeighbors index sef; and the interconnection variables vector

of shared state variablandoverlap index set z; do not change structure due to the occurrence of a fault.
Definition 6: A shared state variable(®) is a component Assumption 2:For eachs7,I = 1,..., N, the state vari-

of = such thats € Z; N Z;, for somel, J € {1,... N}, I # J ablesx;(t) and control variables;(¢) remain bounded before

and a given decompositioR of dimensionN. and after the occurrence of a fault, i.e., there exist some

Definition 7: Theoverlap index seof subsystems sharing astability regionsR; = R} x Rj < R™ x R™, such that
variablez(®) is the setO, 2 {I : s € Z;}, whose cardinality (£1(t),ur(t)) € Rf x Ry, VI = 1,..., N, Vi > 0. Finally,
is N,. the time profile parametéris unknown but it is lower bounded

In the following, the notation:\*, with (") = (=), will Y @ known constart, that is 0 < b < b.

be used to denote the fact that theth state component of the As a consequence of Assumption 2, for each subsystem

. - o T, I = 1,...,N, it is possible to define some stability
?rwr:ag;r;iltk:a(;??h g’?ﬂﬁ gzgtseyn;fe?r]:}eé t(ge decomposition rlnecaregionst for the interconnecting variables. Since no fault
s-

: ; - : ; ccommodation is considered in this work (only fault detect
Now, we define the interaction (if any) between differe : : :
subsystems. In this framework, the external variables -nfl nd isolation), the feedback controller acting on the systé

encing the dynamics of local state components of subsyst st be such that the variablef) andu(t) remain bounded

) : . . all t > 0. However, it is important to state in advance
<1 making up the vector oihterconnection variables;. T T
Definition 8: The interconnection variablesvector z; € that the design of the distributed FDI methodology does not

, . depend on the specific structure of the underlying controlle
R¥, (pr S(k)" _(Z)f) gf) the subsystem7; is the Vvector ;4 hence the controller design is not discussed. Assumptio
zr = col@™ - (@™, 2%)) € &, j € Iy, k € {1,...,n}). s required for well-posedness, but does not cause majer los

The set of subsystems acting on a given subsyst€m of generality to the proposed FDI scheme. In fact, from a
through the interconnection vecter is theneighbors index set practical perspective, detecting faulty modes charamdrby
Jr, aconcept that naturally leads to the introduction offthe |5 ge or even unbounded "magnitudes” typically turns out to
damental graph{17] whose nodes represent subsystems apd quite an easy task by resorting to limit-checking teches
whose arcs represent their interaction through intercctio®® ~ The interconnection functiop; in the decomposition de-
variables. _ . . scribed by (3) includes the uncertainty represented byeim t

Definition 9: Theneighbors index seif a subsysten¥’7 is ), Therefore, in the sequel the following further assumption
the setJ; £ {K : 3(z*),2)) € &5, k € Ix, j € I1, K €  will be needed.

{1,...,N}\{I}}. o Assumption 3:The interconnection functiog; is an un-

Definition 10: The fundamental grapfof a distributed sys- structured and uncertain nonlinear function, whésth com-
tem, obtained by applying the decompositibrto the mono- ponent is bounded by some known funcfipne.,
lithic system.7, is the digraphGp = {Ng,, &g, }, Where
the node set\y, 2 {7 : I € {1,...,N}} contains the  |¢"")(xs, 2, ur)| < 3" (21, 21,ur), Var € RE,
subsystems and the arc setdg, = {(&;,.%7) : I € Vzr € R%Vur € RY, (4)
{1,....,N}, J € Ji}. .

Unlike linear systems, for which powerful model decompawhere the bounding function\ > 0 is known and bounded
sition techniques and descriptions exist (see for instahee forall 7 =1,..., N.
works published in recent years by D’Andrea et al. [35], [4])
that can be applied to systems showing either a regularl&)r Example
arbitrary structure, for nonlinear systems the decomjosit “ ™ _p L .
task is much more difficult, and in general it is not possible t To gain some more insight into the afore-described decom-
devise an additive decomposition into purely local and lyurePosition approach, consider the example depicted in Fig. 1,

interconnection terms. Therefore, a general decompasitio
in [17] is considered: SHowever, it is possible for a fault event to remove some ofititercon-
nections, which can be formally represented by setting sgmginction to
zero.
1 xr(t+1) = frxr(t),ur(t)) + gr(zr(t), zr(t), ur(t)) “4In the paper, when there is no risk of ambiguity and for theesaflsimplic-

+ B(ﬁ _ To)(b[(x[(t), Z[(ﬁ), u;(t)), (3) :tsy,uge%?mpact notation like, for instance;(t) = gr(xr(t), zr(t), ur(t)),



where a specific decomposition of a syste#h into three
overlapping subsystems’, .%, and.”5 is considered. The
example of Fig. 1 deals with a 11-tank system, which will b
re-considered in the simulation Section VI.

Layer 1 . Layer 2 . Layer 3

Figure 2. A scheme of the proposed DFDI architecture coirgre same
three subsystems of Fig. 1%,

the decompositiorD and based on Assumption 1, the intro-
duction of the global fault sef leads to the existence, for each
o of d ' sointo | subsystemy;, of alocal fault setF; containing/Nz, known
Figure 1. (a) Example of decomposition of a systefrinto three overlappin i i i
su%system(s?;l, T And 5, and FZb) the corres):)onding fundamentaf)gra%h.gygisl’O'f. p,OJSvS}I-tI)I}e ?ﬁﬂg?ggggaﬂlit[)gﬂ?cglr@%]els (:;I : ; d ftu(jlgéi-

N _ ) _sion d7P regarding the health of the corresponding subsystem
The decomposition shown in this example is7;, by relying onNx, +1 nonlinear adaptive estimators of the

such that: = Jm(l), 2 2@ @ G ocal stater;, with I € {1,..., N}. The first estimator, called

Zo = 2@, 2®) 20 ™7  and a3 = Fault Detection Approximation Estimat¢FDAE), is based on

), x®) 2 £10) £ADIT  gre the local states, the nominal model (3) and iﬁ %?edl for 1|‘au|t detection. The

_ — (2 — (3 remaining N, estimators, calledrault Isolation Estimators

ﬁ)lcal inpﬁts,’zlw _ [gﬂz) w(%?q,“i’i@ _ u[gg(a) a;e(s)frT]e (FIE), make up a bank of estimators to be used to determine

and 2 — 2@ m(GS]T are the interconnection Which of the possibleVz, faults in the setF; has occurred.
3 ’ @ @ ) Under normal operating conditions (that is from= 0

variables. Furthermorex = 7 = a3  and ynl a fault is detected) the FDAE is the only estimator that

e® = 29 = ¥ = 2V are shared variables witheach LFD employs. After a fault is detected &gy of the N

04 ={1, 2]1L andOs = {1,2,3}. LFDs, the GFD receives the corresponding local fault denisi

and in response triggers the switch of each LFD from fault

detection to fault isolation operating mode. In the lattexda,
I1l. DISTRIBUTED FAULT DETECTION AND | SOLATION each LFD activates its own bank of FIEs in order to try to
ARCHITECTURE locally isolate the occurred fault, by employing kind of a

The backbone of the propos@istributed Fault Detection Generalized Observer Schert@0S), (see [36], [37]). The
and Identification(DFDI) architecture is made oV com- |ocal fault decisionss;~ of the LFDs are communicated to
municating agents calledocal Fault Diagnoser§LFDs) .2 the GFD, allowing it to determine which one of the faults in
which are devoted to monitor eaFth of thé subsystems. The Eahnedg,él\?gc?rliti?ntﬁl)lf any, affects the systeny’ (see Section V
LFDs generate dault decisiond;” regarding the mode of :
behavior (healthy or one amonglthe possible faulty modes) ofIn the DFDI scheme, we assume that eviry LFD takes uncer-
the corresponding subsystefy. These decisions are gatheredfin measurements of; according toy;(t) = 1 (t) +&;(t),
by a higher level agent?, which is referred to asSlobal where¢; is an unknown term characterizing the measurement
Fault Diagnoser(GFD), in order to coordinate the LFDs andf'Tor associated with the process of measuringy each LFD
formulate a fault decisioa™ about the health of the global (W€ @ssume; to be perfectly available). Moreover, each LFD
system.#. Fig. 2 shows in pictorial form the structure of theeOmmunicates with the neighboring LFDsjh in order to fill
DFDI architecture using the same illustrative example of € interconnection vectar; (see the example in Fig. 2). Due
distributed system already presented in Fig. 1. The variols the uncertain state measurements, it follows that, auste
part of the architecture are arranged in three layers: tige fip! receiving the actual interconnection vectar, each LFD
layer is constituted of the physical subsystems, the secdi§geives from its neighbors the vectoy(t) = z(t) + (r(¢),
layer is made up by local fault diagnosers, while the thirghere(;(¢) is made of the components gf affecting the
one contains the global fault diagnoser. The different type relevant components of the measurements.J € J;.
arrows highlight the different interactions between thetpa Assumption 4:The measuring uncertainties represented by
of the architecture: physical interactions in the first kayethe vectors¢; and ¢; are unstructured and unknown, but,
consistent information flows between layer one and two af@f €achh = 1,...,n; and for eachk = 1,...,p;, the
between parts of layer two, while sporadic communicatigfPmponents of; and of(; are bounded, respectively, as
between the second and the third layer is illustrated byethsh (h) =(h) (k) (k)
arrows. More details on the structure of the LFDs and of the 1§ (DI <&, GV <¢ 7, Vi=0, (5
GFD will be provided later on. ~(h) (k) . L

Following the fault isolation formulation proposed in [21]Where&;” and (;™ are known positive scalars. Hence, it is
for isolation purposes we assume that for the global systém possible to defina priori two compact regions of intereﬁf,
there exists global fault setF containingNx possible non-
linear fault functions¢,(xz,u), 1 € {1, ..., Nr}. Following  5The global and the local fault sets is described in detailén. 3.



andR§ such thatt;(t) € RS and(;(t) € RS. Finally, the fault detection timeT}; is simply defined as the

Under the assumptions made so far, a shared varidblés earliest among the local detection times. _
measured by distinct LFDs in the overlap §&f with distinct Definition 14: The fault detection timeT, is defined as
uncertainties. Furthermore, because of Assumption 3,rthe 7; = min{t : S(t) # 0} .
terconnection part of the local model (3) may also be afficte This formalizes the fact that in the proposed architectiuee t
by distinct uncertainties. Following these consideratjoim event of a LFD detecting a fault is immediately relayed to the
the sequel, a cooperation mechanism between LFDs in glebal fault diagnose”. The GFD computes the fundamental
overlap setD, will be devised in order to improve the overalldetection signaturé and setsly as the earliest discrete-time
diagnosis performances by exploiting the distributed reatd  instant at which it becomes non empty. Then, it immediately
the fault diagnosis technique. informs every LFD that a fault has been detected in the system
and that the isolation mode, introduced in Section Ill and
further described in Section V, should be activated.

IV. DISTRIBUTED FAULT DETECTION Remark 1: The communication between the LFDs and the

After the DFDI algorithm is initialized at = 0 by turning GFD required to implement the DFDI architecture is event-
on eachl-th LFD, only its FDAE estimator is enabled anddriven, that is, only events such as the detection or ispiati
monitors the subsysten¥;, providing alocal state estimate of a fault are communicated through the channels depicted as
21,0 of the local stater;. The difference between the estimatelashed arrows in Fig. 2. As this kind of exchanged infornmatio
Zr1,0(t) and the measuremenis(t) yields theestimation error is limited to simple boolean values, this means that evemeif t
ero(t) 2 yr(t)—2r.0(t) which plays the role of a residual andcommunication between the LFDs and the GFD follows a one-
will be compared, component by component, with a suitable-all pattern, scalability should not be an issue in pradti
detection threshoRler o(t) € R, The following condition applications.

(k) =(k) _ . . . .
|€I,O(t)| = 6170(75)» VEk=1,....nr (6) A. Local Fault Detection and Approximation Estimator
is associated with théault-free hypothesis The local FDAE is a nonlinear adaptive estimator based on
_ the subsystem model (3), which (as in [16] in the continuos-
1,0 "The systems7 is healthy". (7) time case) generalizes to the distributed context the fault

By this, we mean that (6) is a necessary (but generally n%i gnosis methodology presented in [21] ;
sufficient), condition for (7). so that should condition (68 b. First of all, the simpler case of a non-shared state variable

. (k)
violated at some time instarf then the hypothesisz; o is > addressed. The estimate of theth componentycgg Is
falsified and the so—callédcal fault detection signature; o computed as
is generated, thus leading to a local fault detection deaisi *) *) *) )

In qualitative fault diagnosis schemes, such as [38], thiét fa 2, (¢ +1) = A&} (1) —y; (1) + f; (yr(t), ur(t))
signature is defined as a symbolic vector, that qualitativel (k) A

describes the behavior of residuals and their derivatifies a + 91 (yr(t),vr(t),ur(t),dr0), (10)
the occurrence of a fault. Instead, in quantitative schesw@  \yhereg < \ < 1. Following the idea presented in [16],

as [1], [2], [36], the fault signature represents the patefr ., termg'" is the k—th output of an adaptive approximator

residuals that exhibit abnormal behavior after the ocaunee . d%o | th K int tion T .
of a fault. In this regard, we introduce a few further usefif€Signed to learmn the unknown interconnection funcien

definitions. anddr o € (1)1,0 denotes its adjustable parameters vector, with
Definition 11: Thelocal detection signaturassociated with ©1,0 C R?"° being a compact sét As in [16], in this paper
the subsystenv7, I € {1,..., N} at the discrete-time instantwe assume thaji"’ represents a linear-in-the-parameters, but
t >0 is the index set otherwise nonlinear multivariable approximation modelgts
a as neural networks, fuzzy logic networks, polynomialsirepl
Sro(t) ={ke{l,...,ns}: It1, t>t1 >0 functions, wavelet networks, etc. _
such thate")(1,)| > é)(,)}. (8) LIS important to emphasize the differences among the

present approach and the one described in [21] regarding the

In relation with thefundamental graplintroduced in Defi- centralized case. Whilst in [21] the adaptive approximasor
nition 10, the fundamental detection signature can be dfin@evoted to learn the fault function after the detection ctatf
as follows. in the present case, the adaptive approximator starts fnem t

Definition 12: The fundamental detection signatuassoci- Very beginning to learn the uncertain interconnection fiamc
ated with the systen” at the discrete-time instamt> 0 is in order to facilitate more accurate and faster detectiois |

the index set worth noting that to implement (10), theth LFD needs only
to receive from its neighbors the values of the variablesintpk
St)E{Ie{l,...,N}: Sro(t) #0}. (9) up the the interconnection vectof(t).

In order forg; to learn the interconnection functign, the

Now, the local fault detection logic for thé-th LFD can rameter v 9 rdin he followin
be stated in terms of the local detection signatSie)(t). E?N? eter vecto o is updated according to the following

Specifically, a fault affecting thé—th subsystem is detected

by its LFD at the first discrete-time instahsuch thatS; o(t) 9, o(t+1) =P~ |7 0(t) + OH o (O)rrot+1)],
becomes non-empty. This discrete-time instant is called th rot+1) =P, , [910(t) + 110 Hr o(t)rr.0( )}
local fault detection timel; 4, as formally defined in the where Hyot) 2 6gf(t)/819[0 € R"xa0 denotes the

following. : ; i ; ;
Definition 13: Thelocal fault detection timd’; 4 is defined gradient matrix of the on-line approximator with respect
A .
as Trq = min{t : Sro(t) # 0} . 7For the sake of simplicity we assun®; o to be a origin—centered hy-

persphere with radiuMéI 0 (see [21] for some remarks on this geometrical
6To be defined in eq. (20). simplification). '



to its adjustable parameters, amgo(t + 1) is given by The termW, = [WS(I"’)] is a weighted adjacency matrix
rro(t+1) = erolt +1) — Xero(t). Pg, , Is a projection reflectingt(h§a way the various LFDs estimating the same share
g ) b A i ; . variable z'®) communicate with each other. In this work,
operator [39] restricting}; o within ©; ¢ according to: only doubly-stochastic adjacency maridas € RNexNe are
considered [41]. For example, we may considerNtedropolis

Po (Dr0) 2 Ur0 . . ?f |1?170| <M, , . adjacency matrices [42], [43] defined as
1,0 ’ M©17019]7()/|19[70| if |19[7()| > Mél,o 0 i ([ J) ¢ c
) ) S

The learning ratey; o(t) is computed at each step as W) 2 {1/(1+max{d",ds"}) | if (I,J) €&, T+ J
vr.0(t) £ pro/(ero+|H o (®)]F), with 7o > 0, 0 < 1= gy Wil N
piro < 2, where|| - | denotes the Frobenius norm and (13)
€1,0, 1,0 are design constants that guarantee the stability \%eredg) is the degree of thé—th node inGs.
the learning law [39], [40]. Remark 2: Requiring the matriXV, to be doubly stochastic

The case of a variable:*) of the original centralized js a standard assumption in many problems of distributed
system” that, after the decomposition, is shared among moggntrol and estimation. As previously said, there existpsim
than one LFDs (see the simple example shown in Fig. deights selection schemes such as the Metropolis or the
is more complicated. Clearly, one option is for each LFRjaximum-degref42] that guarantee double-stochasticity. Fur-
to just implement its own version of the recurrent equatiofer details on existence conditions for doubly stochaatic
(10), by using the measuremeyff"), the local modelf}‘”’ jacency matrices, which arguments are based on the Birkhoff

and the componentg'®”) of the adaptive interconnectionVon Neumann theorem, can be found in [44].
approximator. Instead, in order to take advantage of theBefore the occurrence of a fault (ie., for < Tp))a the
redundancy introduced by the overlap and motivated by tegnamics of the LFD estimation error compone{;l]\g can
encouraging practical results shown in [16], in this paper woe written as

use a deterministic consensus scheme between the LRDs in

so that their FDAEs %o)operate towards the estimation of theegfé)(t +1) =X e%)(t)

shared state variable'®’. The proposed consensus protocol s s s s
leads to the following FDAE dyﬁaneic equation for thepgeneric + ) WD (1) — P8 (1) + €87 (1) — €57 (1)1}

I-th LFD, I € Og,: JeO,
(o) 20 gy _ o1 0 WL (s (0),us(0) = 15 (at). s (1)
1.0 (t+1)= )‘(mI,O ) —y; () JEO,
+WEDLFED (yr (), wr () + 957 (i (), vr (1), ur (8), 91,0)] 957 (0 =50+ + ).
+A Y wib) {a&?jfé)(t) — i) SinceY>,, Wi'" = 1-w{""" by assumption, the estima-
JeO\{I} tion error dynamics satisfies
+ Y WU (s (t),ua () (o1

D) = 3 WD (-5 1+ AF ()
JeOg

+AGEI ) NS () P+ 1), (14)

JeON{I}
+ 5 (s (1), 00 (), us(t),D50)], (A1)

where the additional terms with respect to (10) appearin the followi | i definad )
in the second line smooth out the difference between tMiere the following scalar quantities are definad, (1)
various estimate of the shared variable, and those in the thfé:J)(:c_](t),u_](t)) - .(]‘SJ)(y(](t),u.](t)), Agf;J)(t)
line average the various local functions and approximatec.) ¢ ¢ ) — g8 ¢ ¢ .9
interconnection functions. It is of customary importance %gco(rﬁ{,ggﬁft(hé ude(c)t)ors A?”}] ;ﬁa’ ( A)’gi‘](a)r’eu‘]d(e)finé(’jo as
nOle el I order o Implement (1), e L% 1085 10U A1) £ fy(ay (1), s (1) ~ 1iun(1) u(0) and Agy() 2
nee € Information abou e expressionsfi and o g[(IC[_(t),Z](t),U[(t)) 7@](?{[@) v](t) Ul(t),ﬂl,())-

g_(f"); instead, it suffices tha®’;, J € O,, computedocally It is worth noting that, in general, the functionsf;(t)

the termf§51)+g55~’) and communicates it to the other LFDsand Ag;(t) take on non-zero values due to several factors,
according to a Suitable communication gragh alongside Including measurement errors an, the measurement errors

. C o a(sg) e of neighbouring LFDs, and the uncertainty in the intercon-
its actual state estimate, . Specifically, for the sake of ction functiong; itself. Although the aim of the adaptive

genAerallty, we assume tq have a generic commun|cat|_on graa{%broximato@ is to learn the uncertain functigyy, generally
gs = (05, &), that may include the all-to-all communication;” cannot be expected to match the actual teymeven it

as a special case. Bearing this in mind, (11) can be rewritigpy weights of the adaptive approximator could be optimally
in more compact form as selected. This may be formalized by introducing @ptimal

weight vectord; , [45]

> 1>

~—

B+ 1) = Ml () -y ()
0% A .
+ 3" WIS ) - 2P 1) Uro=arg min  sup |lgr(wr, 2, ur)

’19170 EC_)I,O XTI,21,UT

)

JeO, .
s —g1(zr, zr,ur, 9r0)ll,
+ >0 WD o (1) us(®)) | | o | S
Jeo. with 7 zy, us taking values in their respective domains. This

(5s) N leads to the definition of thMinimum Functional Approxi-
+957 (@), vs(t),us(t),910)]- (12)  mation Error (MFAE) v;, which describes the least possible



approximation error that can be achieved at the discrete-tiwhere (upper bound on the total uncertainty térm)
instantt if J70 =97

. —(s7) A <|A (ss) H 9 =
1(0) 2 110,510, 0r0) ~ 311 0,210,055 p) .0 e e O Haolsoiae D

+ AES7) (1) + max max |Ag, (1),
Er Cu

By introducing theparameter estimation erroﬁm 19;70 —
V1.0 and the following function with the functionk ;o being such thétmo(ﬁj,o) > (190
. A - 3 By taking the absolute value component-wise so that
Agl(t> *gI(ZI(t)vZI(t)vulgt%ﬂI,O) . |€s,0| = CO|(|€§?{))| = OS)! the inequalities (19)' can be
= gr(yr(t),vr(t),ur(t),9r0) . written as

it turns out that\g; (t) can be written as\gr (t) = Hr o010+  |eso(t + 1) < W [Mes.o(t)] + Ya(t)] + Aa(t) + Ea(t +1).
vi(t) + Agi(t). , . - :
By using (14), the dynamics of the LFD estimation erro¢sing the Comparison Lemma [46], the absolute value of

component'*?) before the occurrence of a fault (i.¢.< Tp) each component of, can be bounded by the corresponding
can be written as component ofés, defined as the solution of the following

equation
Sl = Wi [Aézs,é)(t) + XF;S‘])(t)} ot +1) = Wy [Nes(t) + Ys ()] + As(t) + Es(t + 1), (20)
JEOg
(s1) (s1) with initial conditions &,(0) £ col(&*”(0) : T € O,). Itis
FAGTO G, (25) worth noting that the adaptive thres{hold defined in (20) can b
where we introduced the followintptal uncertaintyterm easily implemented by any LFD i@, by means of a linear
) , , ) discrete-time first-order filter driven by a suitable inpaéé
@) 2 AFCD (1) = AP (1) + AglI (1) . [21] in the continuous-time case).

In order to analyze the behavior e&sé)(t) and define the ) .
_(s1) L " ) B. Faulty behavior and Fault Detectability
thresholde; (t) (see (B)), it is convenient to introduce the _ ) i _ _
following véctors related to the detection estimator oftag¢ [N this subsection, the behavior of the DFDI algorithm in the
LFDs sharing the variable(®): e, o(t) £ col(e(‘”) reo.) presence of a fault and its detection capabilities is ingettd.
g) ¢ 08,080 = 1,0 s/» Assume that at the discrete-time instant= T, a fault ¢
xs(t) 2 col(x™") 1 € ©0,), and &, (t) £ col(¢!*), T € O,). occurs. Let
The FDAE estimation error dynamics of all the LFDs(h (s)
can then be written in a more useful and compact form: ¢s(z,u) = col (¢ (z,u), s=1,...,n) (21)

€s,0(t+1) = W [Aeso(t) + xs(t)]| A& (1) +E&s(t+1) . (16)  with ¢ denoting the component of the fault function affect-
. . . . .._ing the s-th state equation of the monolithic system (see (1)).
Since A < 1 and W is a doubly stochastic matrix, all its ater the occurrence of the fault, far> Tj, the estimation

eigenvalues are within the unitary circle. Then, it follothat ; ; ) i
(16) represents the dynamics of a stable LTI discrete—tirﬁggégggamlcs for a shared state variable’ given by (16)

system. The solution of (16) is

ST a0t +1) = Wa (eso(t) + Xa(1)] + (1= b~ (1)
€s,0(t) =Wa{AD> L (AWa) ™ " (Waxs(h) + As(h) + s (t) +&s(t+ 1), (22)
h=0
FEg(h+ 1)) £ NI ey o (0)] + xs(t — 1)} wheregs(t) € RN+ is a vector whose components are all equal
At — 1)+ £a(t) s 17) o ¢»'®). The following theorem gives a sufficient condition
s AN for the estimation error to cross its corresponding thrieshmo
so that, Component_wise, it becomes finite time, thus allowing the fault to be detected by théh
LFD. Therefore, it characterizes the class of faults thatloa
t—2 detected by the proposed scheme, given the bounds available
eff))(t) = 68{3(13) =wl A W) 2" (W (h) on the unknown functions.

Theorem 1 (Local Fault Detectability)Given a subsystem

h=0 . . ; ! .
_ _ 7, if there exists a discrete-time instant > T, such that
t—1 t—1 I 0
FATW T es,0(0) + MG (h) +&s(h 4 1)) the fault¢; satisfies the inequality

txs(t =D} A -1 +€0(@), (18)
wherew] ; is a vector containing thé—th row of matrix V. J S AT = pm BTN ()| > 267 (1), (23)

Now, a threshold on the estimation error that guarantees nahr=1
false—positive fault detections far < Ty is proposed. The

absolute value of the estimation error fox T, can be upper for at least one component € {1,...,ns}, then the fault
bounded by using the triangular inequality as follows: is detected at the discrete-time instantthat is|e§fé)(t1)| >
=(s1)
y s (s & (ty).
e+ < 3 WIS @)+ 57 )] )
JeO,

(1) (s1) ®The notationmaxg , is short formax, _pe, -
+ )\51 (ﬁ) + §I (t + 1) ’ (19) 9As O j,0 is a compact the functior ;o can always be defined.



Proof: At the discrete-time instart§ > Ty, by using (17) V. DISTRIBUTED FAULT ISOLATION
and (21), the estimation error vectas, can be written as A Formulation of the distributed fault isolation problem

For isolation purposes, it is assumed that the fault functio
=1 t1h ¢ may either be unknown or belong to a known global fault

eso(t) =D (AW, [Waxs(h) + As(h) +&s(h+1)  setF X
= ‘7::{¢1($7u)a---a¢N;($7u)}'

s)
0
+ (1= b)) (h) ]+ A (Wo)'es0(0) . (24) 1 general, not all the subsystems are affected by a given
fault function ¢, , but only those in the correspondindault
By applying the same expansion as in equations (lififluence sets;. For eachi—th fault,2/; contains the indexes

and (18), the solution for the estimation error for the-th of all the subsystems”; that, after the decompositidh, are

component of the/—th subsystem can be written'3s assigned at least a global state compong#k for which the
fault function ¢, is non—zero for at least one discrete-time
instant, as defined below.

t1—2 Definition 15: The fault influence set4; for the i-th fault
ef{))(tl) - “’;I{A[Z (AW =2 (W o (h) function ¢, is the index set
h=0 Uy 2 {I: 3t 3s, s €Ty, ¢ (@(t),u(t)) #0}. (25)

+ A (R) + Es(h+ 1)) + X W Leg 0(0)] + xs(ts — 1)}

t—1 For each subsysterir;, alocal fault set#; (defined below)
Dy (I ty—1—h(q__p—(h—To)\ 4(51) can be built with the local fault functions obtained by alketh
AL (B —1) 4 (“th; A (1-b )21 (M) Global faultse, such thatl € Uy:
=1o
Fr& Ty 2L, UL )y ey rr, zr,ur)} .
Using the triangle inequality, we obtain 1 =Agma(ern 2 un) o1z, (Z1, 21, ur)}
Notice that the local fault functions depend only on the loca
t—2 variablesry, z; andu; (see Assumption (1)). The global index
(s1) T t1—2—h I and the local indexX; of a fault are related by a mapping
lero ()] = —|wg (A Z()\Ws) 1 (Wsxs(h)+A&s(h) ¢ :{1,....N5} — {1,...,N#}, so thatl = ¢;({;). This
h=0 means that, for all the subsystem¥§ so thatl € U, for the
+&(h+ 1)) = [Nw, Wi es0(0)] — |wg ;xs(t1 —1)|  generic component € Z; of a global fault function it holds
ti—1 that cz’)gs) (z,u) = ¢)§f{l) (xr,21,ur), With s = o1(s1) .
—|A&s (1) —€s(t1)|+] Z Atl‘l‘h(1—b‘(’l‘T°>)¢§S’)(h)| . The concept of the fault influence sets naturally leads to a
h=T, subdivision of the faults into two categories, dependingrup
their topology:local faults whose influence set is a singleton,
The threshold can be written as anddistributed faults whose influence set includes more than
one subsystem. Now, these categories are illustrated in the
-2 context of the same simple example of Fig. 1.
—(s1) _ T t1—2—h - F 1) Local Fault: The simplest situation is exemplified in
€10 (t) = %IWZ (AW)™ (WaXa(h) + Aga(h) Figure 3a. The structure of the fault, is enhanced: dashed
_ hfﬂl . arcs represent part of the healthy dynamics changed by the
+&s(h+ 1))+ AN W 0(0)] + xs(t1 — 1)} fault, and filled nodes represent variables affected by alé.f
+A§(I)(t1 _ 1)+§(I>(t1) As can be seen, the arc 1 is faulty so that the dynamics
S S °

of the variablesz™) and z(®) are affected, thus leading to
o s1) the fault influence set beingyy = {1}. This implies that
Now, from the definition of the_threshplé(lgo_ in Subsec- only the local detection signatui® , (see (8)) may become
tion IV-A, it follows that the last inequality is implied by ~ non-empty as this fault affects only variables “interna" t
subsystem?) that are not shared by any other subsystems.

t1—1 More precisely, if the first LFD detects a fault at a discrete-
€0 ()] > —ngé)(tl)ﬂ Z A =1 = (=To)y g0 ()| time instantTy 4, then the local detection signature satisfies
i h=T, 817()(T17d) 7& @, 817()(T17d) - {1, .. .,nl}. Furthermore, the

fundamental detection signature (see (25)5i§1.4) = {1}.
: L (s _(s . These faults are referred to kxal faults
so that the fault detection Cond't'.dﬂg7é)(t1)| = €§7é)(t1) IS 2) Distributed fault, non-overlapping signaturéis shown
implied by the theorem hypothess. . B Fig. 3b, a more general situation arises when links and
Remark 3:Theorem 1 provides a (possibly conservative)yriables in more than one subsystem are affected by the
sufficient condition for fault detectability: if at some diste- same single faultg,, for which it holdsifz = {2,3}. This
time instant > T at least one subsystem shows a non-empgyeans that, if all LFDs detect a fault at discrete-time intsta
local detection signaturé; o(¢), then this would cause thep, "1 — 93 thens; oTr.a) # 0, S10(Tra) € {1,...,nr}
GFD to be alerted by the corresponding LFD. In qualitative,q.s(7) = {2,3), vt > max{T};, I = 2,3}. Furthermore,

and rough terms, the inequality on the left-hand side of (2gjce there are no shared variables, the local detectiorasig
characterizes the relative "magnitude” of the effect offehdt 1 ,-es are such thel) ., Ni o1(Srot)) = 0, Vt.

versus the upper bound on the unknown functions quantifie
by the right-hand side of (23). It is also worth noting that b@itu
easily made specific to the case of non—-shared variables.

) Distributed fault, overlapping signatureA different
ation is shown in Fig. 3c where links and variables in enor
than one subsystem are affected by the same singlegault
with Us = {1,2,3} but, now, shared variables are involved.
10As W, is doubly stochastic and all the components¢gf are equal to  Specifically, this means that 7 4, I = 1,2, 3, are the local
@), it holds (Ws)"¢s = ¢s for all h. fault detection times of all the LFDs, the8;o(Tr.4) #



0,Sro0(Tra) € {1,...,n;} and S(t) = {1,2,3},Vt > The condition

max{Tr 4, I =1,2,3} and there may exist> min{77 4,1 = (k) _(k) _

1,2,3} such that, ., ny 01(Sro(t)) # 0, vt > 1. e <& i) Ve=1...,n (27)
In cases 2) and 3) above, without loss of generality, wig associated to the-th fault hypothesis

considered the situation where all LFDs detect a fault atesom . _ .

finite time. The case where not all LFDs are able to detect a’/7. : "The subsysteny’; is affected by the—th fault”,

fault can be addressed in an analogous way. , . _ (28)
In qualitative and quite rough terms, in this paper, w&ith I = 1,..., Nx,. Should condition (27) be violated at

assume that the generib-th LFD has access only to theSOme discrete-time instanf the hypothesisi#z, is falsified

knowledge of the local fault seF;. Furthermore, the/—th and a so—calletbcal fault isolation signatures;; is generated.

LFD is not informed about the fault influence sets of the globa. Definition 16: The [-th local isolation signatureshown by

faults corresponding to the local fault functions belomgin the subsystems7, I € {1,....N}, 1 € {1,...,Nr} at

Fr. As a consequence, the-th LFD may only be able to discrete-time instant > 0 is the index set

detect and isolate thddtal part" of a fault that influences N

the subsystems", but it has not enough information to Sr.i(t) ={k e {l,...,nr}: th,)t =l >(0)

discern whether the isolated local part correspond to al loca k ek

fault, or it is just caused by a “lrger distibuted fault such thatley; (t1)| > & (1)} (29)

This ambiguity is overcome by the third layer (see Fig. 2), As soon as the hypothesi#7; is falsified and the corre-

consisting of the global fault diagnoséf, which is assumed sponding isolation signaturé; ;(t) becomes non-empty, the

to have information about the global fault sEtand the fault specific FIE stops its operation and the fapylt; (¢) is excluded

influence sets of all the global fault functions. By exploiti as a possible cause of tlietectionsignature. The first such

this knowledge and the local fault decisiodfg® gathered by time instant is thesxclusion timeT., ; ;.

all the lower level LFDs, the GFD may be able to take a Definition 17: Thel-th fault exclusion tim& ; ; is defined

correct global fault decisiori™: a successful global isolation asT.;; £ min{t : Sy (t) # 0}.

of a fault by the GFD requires that all of the fault "local grt  |deally, the goal of the isolation logic is to exclude every
have beenocally isolatedby the LFDs in its influence set. In pyt one fault, whichmay be said to besolated To express
other words, while the goal of each LFD is to locally isolatgjs in a formal way, the following definition is introduced.
the local fault among the local fault functions belongingdtte Definition 18: A fault ¢;, € F; is locally isolated at
local fault set, the task of the GFD is to sort out which one @fiscrete-time instantiff \Vi. | {1,...,Ne, )\ {p},Sra(t) #
the global faults has occurred, thus taking a global deuisig ands; (1) = 0 Further,morél“l;(.m;[p N maX{jTe le

about the health of the monolithic systeffi. {1,....N= 1\ {p}} is thelocal fault isolation time.
Remark 4:Again we should note that, if a fault has been
B. Local fault isolation logic locally isolated, we can conclude that it actually occurifed
' 9 we assume a priori that only faults belonging to the Bet
After a fault has been detected at discrete-time insignt may occur. Otherwise, it can only be concluded that it cannot
and the GFD informs every LFD to switch from the detectiohe excluded that it occurred.
to the isolation mode, the FDAE adaptive approximaita(t)
.Of every LFD stops to learn the mterconnect_lon functloraa,ltthC‘ Local fault isolation and Fault Isolation Estimators
isVr,0(t) =910(Ty), Vt > Ty, to prevent the interconnection ) : .
approximator from keeping on learning also the “influce” qf NOW, the FIEs are described in detail. After the falt)
the fault functiong; on the interconnection term. At the sam(j;\;as occurred, the state equation of theth component of the
time, each LFD enables its bank &fr,, I = 1,..., N, Fault {—th subsystem becomes
Isolation Estimators(FIEs) in order to implement a GOS (s1) (1) (1)
for the task of fault isolation, such as the one described inz; "’ (t-+1) = ;"7 (xr(t), ur () +g; " (x1(t), z1(t), ur(t))
[21]. This scheme relies on the geneligh FIE of thel-th . (s)
LFD being matched to the corresponding fault functipy, +B(t = To)o™™ (w(t), ult)
belonging to the local fault sek;. Each fault function inF;  Thel-th FIE estimator dynamic equation for the most general
is assumed to be of the form case of a distributed fault, with a shared variable, is ddfine

as
dra(zr(t), 2(), ur(t)) = [(9r,0) " Hraa(r(t), z1(t), (51 (s1) (s1) ) ra(ss)
W) Oran) B (), 20,7 e T (CFD = METO =00+ 3 W

where, fork € {1,....n;},1 € {1,...,Nx}, theknown _ 25011 4 WD (g (8),ug () + 657 (¢
functions Hy ; 1, :{ R™ x R%”I X Ri“ — R‘UYM}V provide the L 0l J; U (@) s (0) + 8,7(0)
functional structure of the fault and thenknownparameter : ~(5) A
vectorsy ;€ ©7,, C Rk provide its “magnitude”. For + @57 (Wa(t),vs(t),us(t), 950, (30)
the sake of simplicity and without much loss of generalityg t () . N .

parameter domain®; ;; are assumed to be origin—centerewhere ¢ (y;(t), v (t),us(t), V1) = (V,s,) " %

hyper—spheres with radiufle, , , . Hyis,(ys(t),v5(t),us(t)) is the s;-th component

After the genericl-th FIE estimator is enabled, withe of a linearly-parameterized function that matches the
{1,..., Nz}, it monitors its subsysteny’, providing alocal structure of thel-th fault function ¢;;, and the vector
state estimatet;, of the local stater;, analogously to the ,, 2 col(ﬁ_” k. ke {1,...,nr}) has been introduced.

FDAE. The difference between the estimate; and the “Apalogously to the FDAE case, the parameters vectors are
measurementg; yields theestimation errore;; £ y; — 27, updated according to the learning law:

which, again, is used as a residual and compared, component . -

by component, with a suitabléetection threshold;; € R".  Yk(t+1) = Pg , (Fre@)+7s0,6 (O H o (@) 750kt +1))

I,k



10

7 3 1

:

R o Sl
p

L TPy S,

SEDEEEEEE _ 4

@) (b) ©

Figure 3. (a) A local fault: fort > Ty 4 only the local detection signatui®; o(t) of the first LFD is non empty, and the fundamental detectigmature

is a singletonS(t) = {1}, t > T} 4. (b) A distributed fault with non- overlapplng signatuiét > max{T7 4, I = 1,2, 3} all the local detection signatures
Sr1,0(t) of the LFDs are non empty and the fundamental detectionasige is equal taS(¥) = {1 2 3} (no shared variables appear in any of the local
detection signatures). (c) A distributed fault with ovppang signature¥t > max{TI a1 =1,2 3} all the local detection signatureS; o(t) of the
LFDstare ;lon empty, and the fundamental detection signasueeual toS(i) ={1,2 3} (in this case, shared variables may appear in the local titiec
signatures

wherery; p(t+1) =€yt +1) — Nesir(t), andP@“.k is error equation for a matched fault becomes
again a suitable projection operator v
: G0 =3 WD 0+
7) 5 N if (970 <M, Ok JEO,
A = { Mg . —(t— T3
B D214 |ﬂ(lek19Jlk if [0l > Mg, , + (1= b TN H ()T D,
+ (]— - bi(tiTD))AHJl SJ( )T,l9<]7l,5_]

The learning ratey,,;,(t) is computed at each step as — b T, )T 19J15J]+)\§(SI (t )+§§51)(t+1),

Yokt £ g/ Ern +I1H @), with ep0 >
0, 0 < upsx < 2. The corresponding estimation erros0 that its absolute value can be bounded by a threshold that

dynamic equatlon is is solution of the following equation

; . glsr) — IISVECE))
D+ 1) = M+ S WD) (1) — D) i (D) = > WG (1)

JeOg
JeOs
Sy s s s 7(5" . 9 .
+6™ 0 €7 O+ Y0 WAL + Agy (1) X gt>+||Hg,z,s;<;>||m,z,w<m,l,wg
Jeo, +AHJ,z,sJ( 0105, — b~ IO Hyy s, 195,05, 1]
+ (1= b~ TN () — 57 ()] + €7t + 1), FAECD (1) + €878+ 1)

As in Subsection IV-A, the error and threshold solut|ons foan
conveniently expressed in vector fore(t) = col( €11 ) Ie

O5), E(t) 2 col(e’)), I € O,), so that it holds

which implies

P+ =Y WIS 1) + x5 1)
JeEOg ( 1) W

—(t— 5 (s s s t+ — s

+ (1 _p To))¢(é)(t) _ ¢( J)(t)] + )\f( 1)( ) €s,1 )

" : X [Aes,u(t) + xs(t) + col((1 = b~ TN Hyy o (8) D16,

(sr)
+1).
&) + (1 =0 CTNAH ., () 01,

» — b T ()T 1s)] + N () + Es(t+ 1),
Now, considering a matched fault (that i) (t) = f,f{), 1r(8) Oraon)] + As(t) + &l )

v J € O), the error equation can be written as

t—1
( tJr 1 Z W (1,J) )\ (éJ)( ) XSSJ)(t) €s,l(t) _ Z ()\Ws)t_l_th
JeO, h=Ty
+ (1= TN (H o, () s, + AH S, D0s,) x [xs(h) +col((1 = b= ") Hyy o, (h) "1,
— Hoto, ()T 050,0, ]+ A () + €00 (1) + (L= b= ) AH s, (1) D1,

_ b_(h_T")HI,l,sz (h)TéI,l,sz )

where AHJ, (1) £ Hys,(es(t),2s(0,us(0) — . .
Hyus;(ys(t),vs(t),us(t)). By introducing the parameter+z [(AWS) (As(h)+Es (h+1))]+(AWs) ™ es 1(Ta) -
estimation errorg s ; 5, £ Pris,— 19],175], the FIE estimation h=



Componentwise, the estimation error is given by

t—1

M) = wer Y (W)
h=Ty

x [xs(h) +col((1 = b~ "1y o (h) "1,
+ (1 =b""TNAH; ., (h) V14,
— bi(hiTO)HI,l,sz (h)Tigl,l,sz)]
t—2

Fdwgr Y (W) > (A&s(h) + &+ 1))]

h=Ty
F AT (= 1) 4+ €80 () + Awa s AWe) 1 Te, (T

and, analogously, the threshold solution is given by
t—1
&t (1) =war Y (AW
h=Ty

X [Xs () +COI(|| Hr 1, ()| 51,0,5, (Or0,8,) + AHr 6, (1) 91,05,

— b T H s O 19108, )]
t—2

+ Mws,r > [AW) 2N (1) + &t + 1))
h=Ty

FAEED (= 1) 4+ €7 (1) 4 Awa,r AWe)Toe, (Ty) .

This threshold guarantees by definition that no matched iul
excluded because of uncertainties or the effect of the paterm TAL

estimation erro;; s, .
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and componentwise is described by

SD0) = was 3 AWal ™ xa(h) + An6ap()
h=T,
+ A\ws, 1 Z_: (MWL) 27 (N\g (R) + E5(h + 1))]

h=Ty
FAEE (= 1)+ €50(8) + Awg s AWe) Teey (Ty) -

Now, owing to the introduction of the above fault mismatch
vector, the following important sufficient condition fdault
isolability can be proved.

Theorem 2 (Local Fault Isolability)Given a fault¢; , €
Fr, if for eachl € {1,...,Nx} \ {p} there exists some
discrete-time instanff; > 7y and somes; € {1,...,n;}
such that

T -1
|ws,l Z ()\WS)TlilihAs,l(bs,p(h” >
h=T,
T —1
W, T Z (AW) T " [Xa (R)+COl(|| H s (T |11 1,6, (D1,0,5,)
h=Ty
+ AH 16, (TV)I10,s, — 0TI Hy g o, (T 191,05, 1]
-2
IeOu)+2{dwss Y [AWe)72" (N (T1) +&s(Ti+1))]
h=T,

=(s1) (Tl_1)+ *ESI) (Tl)“l‘)\ws,l()\Ws)TlildeEs,l(Td)} :

. then, thep—th fault is isolated. Furthermore, the local isolation

In the case of non-matched fault (that iime is upper-bounded b}’{ max T .
e{1,..

Sr ST !

SO (@ (1), 21 (8), ur (t)) o1 (@r(t), 21 (t), ur(t), V1) _ e {1..NF7, N\ p}
for somel € O, and with p # [), the dynamics of the Proof: By using the triangle inequality, the absolute value
s;—component of the estimation error of theth FIE of the Of the s;—th component of thé—th FIE of the /-th LFD

a

I-th LFD can be written as

(s1)

e (t+1) = Z WS(I’J)[Aegff)(t)+XFISJ)

JeOs
+ (1 - b_(t_TO))d)gizI;)(xI (t)a <1 (t)a ur (t)7 19111))
— 05 (1), 05 (8), s (8), D) FAEED (1) + €50 (14 1)

(t)

As shown before, a convenient way to study the behavior of

the estimation error of the LFDs sharing the variablé) is
to consider the vecto; ;, given by the dynamic equation

es,l(t + 1) = Ws [)\es,l(t) + Xs (t) + As,l¢s,p(t)] +
As(t) +&s(t+1),

where the followingmismatch vectowas introduced

Nsi¢sp(t) 2 cOl(1— b~ TP (1) T € O,) — dalt).
The solution can then be written as

catt) = 3 W)W, [xa(h) + Ay iy ()
h=T,
£ (AW A ()0 (A D) A) T, (T2).

h=Ty

estimation error is lower-bounded for> T by

t—1
€] > war Y W) A 1650 ()]
h= d
Tt—l
— we,r Y (W) Py (h)]
h=Ty
t—2
—Pwss Y [AWe) (N (h) + Es(h + 1))
h=Ty

— AP (= 1) = 1€ ()] = s, AW ™ Teg(Ta)] -

Using the known bounds ofys and & and the fact that the
[-th fault cannot already be excluded at tifig because of
the way its threshold has been defined, we have

t—1
€O > [war > W) T Ag 10 (R)]
h=Ty
t—1
- ws,] Z ()\Ws)t_l_hx.s(h)
h=Ty
t—2
— Aws,1 Z [()‘WS)t_Q_h()‘ES(h) +&s(h+1))]
h=Ty

- )‘Ey) (t - 1)| - égj) (t) - )‘WS,I()‘WS)tildeEs,l(Td) .
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In order for thei—th fault to be excluded, the inequalityAlgorithm 1 Global fault isolation logic
|e§‘fl’)(t)| > Eg‘fl’)(t) must be satisfied. This translates to the while S =0 do

following further inequality wait for a detection message
end while
Lt notify every LFD to stop learning
we 1 Y AWe) T Ay 165 (h)] > notify every LFD to start isolation
h=T, global isolation < false
1 Iisolaﬁed fault < NULL
- t—1—h. 00
erit) +wer y_ (\Ws) Xa(h) wait for a local isolation message
h=Ta p + global fault index corresponding to the fault locally
=2 _ B isolated or excluded
+ Aws 1 Z (AW 27" (N\s(h) + E5(h + 1))] k + kind of message
h=T, if k= excluded AND p = isolated fault then
= z 1T, lobal isolation < false
MG (= 1)+ ED (@) + Aws s AW,) T TE (T, gsolaﬁed fault + NfULL
which is implied by the inequality in the hypothesis of the else _
present theorem. Should the inequality hold for every fault  if ¢, locally isolated for eacty such that/ € iy
function of F; but thep—th, then this fault is locally isolated then ) '
in the sense of Definition 18. ] global isolation < true
isolated fault < p
. . . end if
D. Global fault isolation logic end if

As discussed earlier, in the proposed DFDI setting a distinc end loop
tion should be drawn on the way local and distributed faults
are isolated. If a fault is local, then having the correspogd
LFD exclude every but that fault is sufficient for declarirg i o
isolated. However, for distributed faults, the isolatioeeds Furthermore, to each tank are connected drain pipes whose
that all the LFDs, in the influence set of that faljltexclude nominal cross-section até; = [0.025 0.0125 0.0225 0.0275
all other faults. The following formalizes the conditiorrfa  0.075 0.0375 0.025 0.03 0.01 0.0125 0.015] m*. All the
fault, local or distributed, to be globally isolated: pipes outflow coefficients are unitary. When building thealoc

Definition 19: A fault ¢, € F is globally isolatedif for ~models f; of each LFD, the actual cross-sections used are
eachJ-th LFD in the fault influence sdt;, the corresponding affected by random uncertainties no larger than 5% and 8%
local functions ¢;;, have been isolated, wity & 4. of the nominal values, respectively for the tanks and for the
Furthermorel},,;; £ max{Tiocisor s+ J € Uy} is theglobal ~ PIPes. The outflow coefficients are off by no more than 10%.
fault isolation time. B Furthermor_e the tank. Ieyels measurementsare affected

In practice, the global isolation task is carried out by th@y measuring uncertaintiey whose components are upper
GFD, by using the fault influence sets of all the global fairits Pounded by¢, = [0.05 0.05 0.05 0.05 0.05] m, & =
F, and the LFDs local fault decisions. The GFD isolation logit0-06 0.06 0.06 0.06 ] m, and¢z = [0.04 0.04 0.04 0.04 0.04]
is detailed in Algorithm 1. In the algorithng/obal isolation M. ] ) )
is a boolean variable that is true only when a fault hasIn order to learn the interconnection functions of each
been successfully globally isolated, whilgolated fault is subsystem, that in this example account for the flows through
the global index of the isolated fault. It is assumed thaheagipes crossing a subsystem boundary, each LFD is provided
LFD sends a fault decision message to the GFD both whetth adaptive approximatorg;, implemented by RBF neural
it excludes and when it isolates a fault, so that two kinds &ftworks having 3 neurons along the range of each input
message are possibxcludedandisolated Clearly, in case of dimension. The parameter domaify were chosen to be
a fault not belonging to the a-priori known fault set, a logal hyperspheres with radii equal fo2 3 2 |- T§, with T =
isolated fault may still be excluded at a later discreteetin?).1s being the sampling period. The learning rate auxiliary

instant by its LFD. coefficients for the interconnection adaptive approximsato
were set tou1 o = 1074, 10 = 1073, pao = 0.5- 1074,
VI. SIMULATION RESULTS €20 = 107‘3, H3o = 0.5- 1074, €3,0 = 1075, while the filter

. L . - constants were all set td = 0.9, and the total uncertainties
Re-consider the monolithic system depicted in Fig. 1a (thgare hounded byy, — [0.36 042 042 0.6 0.6 ] -
square labels refer to the pipes number) and decomposed Hito =~ _ [0.36 048 042 03] - T, v3 =

three overlapping subsystems, according to the deconmposit; ) g 20.6 042 0.72 054 1-T.. The weightina matrices
D = {A,%, 5}, with index setsZ; = [1 2 3 4 57, 1Lor shared variables were I g

I, = [456 7" andZy = [5 8 9 10 11]". The tank

states nhumber 4 and 5 are shared, and the corresponding 0.8 0.2 06 0.2 0.2

overlap index sets ar®, = {1,2} and 05 = {2,3}. Three 1=1 092 08 | Ws=1] 02 06 02 ].

pumps are present, feeding the first, seventh and elevarith ta 02 02 06

with the following flows: uy = 1.25 4 0.25 - sin (0.05-1),  This can be interpreted, for instance in the case of tank 5, as
up =1.9—1-sin(0.005 - 1) anduz = 1.3+0.6-cos (0.03 - 7). each of the sharing LFD trusting its own estimate and model
The nominal tank sections are set according to the followifgree times more than the estimates of every other LFD in the
;’;%tg;fe;ir[lé glgel clrc?sg éelct(i) 65n2'2r2'?1!)miﬁavl\llgltle%1tj£tgl_ overlap set. Three faults were modelled:

p ; . .

[0.20.22 0.38 0.2 0.16 0.18 0.24 0.2 0.18 0.14 0.42 0.2| me. 1) Actuator fault in pump 1, 2 and 3: partial or full

shutdown of all the pumps modelled ag) =u®(1 -
UThe fault influence set was introduced in Def. 15. a®), whereu; represents the pumps flow in the faulty
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case and) < a® <1l,i€ {1, 2,3}. where 1937175 = a(3), H37175(f,) = —A(Tf1>u§1)(t), 1937271 =
2) Leakage in tank 4, 5 and 6:circular hole of unknown ) T \/T
radius0 < p( < A® in th(e)tank bottom, so that the”(lli_ ), 535271? :t;AT'm ﬁgf”:sf (t). at herefat
o () _ (i)\2 6) igs. 4-5 show the results of a simulation wherel'at=
?Létfﬁwg)dgf to the leak ig;; (p)" v/ 2920(1), 750 s an incipient fault of the first kind begins to affect the

. . three pumps, reducing their efficiency by an amount equal,
3) Breakdown of pipes 3 (tanks 3»4) and 5 (tanks 46): ospaciively, to 25%, 35% and 20%, with a time constant

partial or complete(llg)reakdqwn of those pipes, so that,a_"y 5 For each LFD, the detection and isolation residuals
relative quotad < a,,” < 1,7 € {3,5} of the water in components of the three tanks that are directly fed by the
the pipes is drained out of the tanks instead of flowingumps, are plotted: tank 1 corresponds to the first local
between them. This is equivalent to substituting the tWgomponent of subsystem 1, tank 7 to the fourth of subsystem 2,
pipes with four additional drain pipes, one connecteghd tank 11 to the fifth of subsystem 3. The sequence of events
to tank 3, two to tank 4 and one to tank 6. leading from fault occurrence to fault detection and finatly
All these cases represent distributed faults, the faulbénfte fault isolation, is summarized in Table VI. A few second®aft
sets beindf; = U = {1,2,3}, Us = {1,2}. As can be easily the fault occurrence time, the fault is detected by the FDAE
seen, the local fault diagnosers may experience the falipwiof the second LFD, as shown in Fig. 6(a). This results in the
local signatures: second LFD sending a fault detection message to the GFD, that
« LFD no. 1 can see as local only the breakdown of punfpus computes a non-empty fundamental detection signature
1, or the leakage in tanks 4 and 5, or the effect on tank response to this event, the GFD forces the remaining two
3 and 4 of the breakdown of pipe 3: LFDs to stop the detection mode, and start the isolation mode
« LFD no. 2 can see as local only the breakdown of punflf Operating. For this reason even if at later times the dietec
2, or the leakage in tanks 4, 5 and 6, or the effect dgsiduals of LFDs number 1 and 3 are able to cross their

tanks 4 and 6 of the breakdown of pipe 5; relative thresholds, these events do not correspond tola fau
« LFD no. 3 can see as local only the breakdown of pu tection, as the fault was already detected earlier by L&D n
3, or the leakage in tank 5. . During the isolation mode, all the LFDs are eventuallyeabl
; ) to reject the fault hypotheses no. 2 and 3, but never the fault
The resulting fault sets; are then: hypothesis no. 1, that is thus locally isolated. As the GFD
. T receives the local fault isolation messages from the LFDs, i
Fi = {leol(¥1.1,1H1,1.1(8),0,0,0,0)] constantly checks whether for a given fault all the LFDs in
[c01(0,0,0,91 2.4H12.4(t),91,25H1 25(1))] T, its fault influence set have locally isolated it. In the exdnp
T presented here, fault no. 1 is locally isolated by the thiFdDL
[01(0,0, 91,33 H1,3,5(t), V13,4 H1,3.4(), 0)] " } at time 824 s, thus prompting the GFD to globally isolatetfaul
where 9111 = oV, Hy,1(t) = 7AT§)U(11)(t)’ Droa = 1 at that same time.
) 4
7(p®), Higa(t) = —Fay/2000(t) |, 0125 = VIl. CONCLUSIONS
m(p), Hizs(t) = —4% V292 (1), thss = o, In this paper, a problem formulation and a distributed
T (3 B3) 4B3) | g @y 3 _fault diagnosis architecture for large-scale dynamicatewys
Hizs(t) = A P C Ap ((S|gn(x1 (t) — (ﬁ)? was presented. The proposed scheme relies on overlapping
\/29|g;§4) ) — 2P @) + /2022 t), 9134 = aY, decompositions of the system into sets of interconnected

ST (3).3) 4 (3) L (3) (4) simpler subsystems, in order to overcome the scalability

Hisa(t) = —gtap ¢ Ay - (Sign(z;”(t) — 21°(t)) - jssues of a centralized architecture thanks talidide et
(3)py _ .(4) (4) (). impera paradigm. Each subsystem is monitored by a local
\/29|x1 (&) =z @] + \/293:1 (®); fault diagnosis unit, which is able to detect the presence
of faults for the corresponding subsystem based on its own

_ T measurements and information from neighboring subsystems
Fz = {[c0l(0,0,0, 92,1 4Ha1a())] - An adaptive approximation scheme is developed in order to
[col(V2,2,1Ha,2,1(t),V2,2,2Ha 2.2(t), V2,2.3Ha23(t),0)] ', learn the functional uncertainty in the interconnectiotween
1 H H T neighboring subsystems, before any fault is detected. As
[col(25.1Ha5.1(1), 0, 9233H235(0), 0)] '} overlapping decompositions lead to some state components
_ (2) _ T, being shared between two or more subsystems, a specially
where 95.1,4 o, Hy14(t) acrts (1), designed consensus-based estimation scheme was devised in
Vo010 = w(pW), Haoi(t) = fATZZ)Q/Qggjél)(t) , order to allow the distributed diagnosis scheme to reach
w w ) a common decision about faults affecting such variables.
U222 = m(p®), Hana(t) = —-&1/29257 (), U223 = Distributed detectability and isolability results wereoped
©) - 3) sy i order to show the potential improvements attainable by
m(p'™), Haz3(t) :( )*(f)‘(i»( 29z, (t)’( )192,3,1 T) ap ', this consensus scheme w.r.t. a consensus-less one, and in
H H = — T 6B AG)hignz® ) — (U (#)) . order to provide a way to check the expected sensitivity
2’3’1((3)) 241()4) Lo (1() onz;"(t) = ()(1) of the FDI scheme to faults. To the best of the authors
\/29|a:2 () —z5'(t)] + /29257 (t), V233 = ap’, knowledge, this is the first work addressing a distributadtfa
_ T (5) (5) 4(5) (i Wy .63) _isolation scheme for nonlinear, uncertain large-scalerdis
Hy33(t) = At % Ap : (sign(zs"(t) — 237 (1) - fime systems. Simulation results were provided as well to
\/29|mg1)(t) _ mg) )| + \/ngéd)(ﬁ); illustrate the effectiveness of the proposed scheme.

Future research effort will be devoted to address several
interesting open issues, namely: i) inclusion of time-gela

F3 = {[c0l(0,0,0,0,931,5Hs1,5(t)] ", in the dynamic model of the distributed system and in the
P T communication links between the local FDI modules; ii) stat

[col(¥s,2,1 H3,2,1(£),0,0,0,0)] "}, yariables not available for measurement: iii) validation o
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Table |

TIME SEQUENCE OF FAULT OCCURRENCEDETECTION AND ISOLATION EVENTS
Time Event Detection/Isolation Togic results Figure
750 s Fault 1 occurs 7 7
752's  LFD n.2 local detection Sa.0 = {4} 6(a)
752's Global detection GFD verifies thdy = {2} /
752.5s LFD n.2 local isolation S2.1 =0, S22 = {4}, S2,3 = {4} 6(c,d)
760.5s LFD n.1 local isolation S1,1=0, S1,2 = {1}, S1,3 = {1} 5(c,d)
825 s LFD n.3 local isolation S31 =0, S32 = {5} 4(c)
825 s Global isolation GFD verifies th&; o # 0, S;3 #0 andS;1 =0, VI €l /

LFD #3, FDAE, comp. 5

—Residual
- = =Threshold
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@
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800 850 900
Time [s]

(b)

LFD #3, FIE #2, comp. 5

0.6r

[m]
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- = =Threshold
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have shown promising results.
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Figure 5. Time—behaviors of simulated signals related nédano. 1 when rioure 6. Time—behaviors of simulated signals related m&gano. 7 when
a leakage is introduced at time 750 s. The faults hypothese& and 3 are 5 Igeakagé is introduced at time 750 s. Thegfaults hypotheseg and 3 are
locally rejected shortly after fault detection. locally rejected shortly after fault detection.



