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The polymerization of laminin into a cell-associated network—a
key step in basement membrane assembly—is mediated by the
laminin amino-terminal (LN) domains at the tips of the three short
arms of the laminin abc-heterotrimer. The crystal structure of
a laminin a5LN–LE1–2 fragment shows that the LN domain is a
b-jelly roll with several elaborate insertions that is attached like a
flower head to the stalk-like laminin-type epidermal growth
factor-like tandem. A surface loop that is strictly conserved in the
LN domains of all a-short arms is required for stable ternary
association with the b- and c-short arms in the laminin network.
Keywords: basement membrane; LN domain; netrin; X-ray
crystallography
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INTRODUCTION
Basement membranes are specialized extracellular matrices that
underlie epithelial cell sheets and surround muscle, fat and
peripheral nerve cells. Basement membranes are crucially
involved in many developmental processes and their integrity is
essential for tissue function in adult animals. The main basement
membrane proteins are among the most highly conserved
extracellular proteins; they include laminins, type IV collagen,
nidogen and perlecan. Basement membrane assembly begins with
the polymerization of laminin into a cell-associated network
(Yurchenco et al, 2004). Consequently, total genetic ablation of
laminin leads to early arrest of embryo development. Mutations of
tissue-specific laminin genes cause severe diseases in humans,
such as congenital muscular dystrophy and epidermolysis bullosa
(Miner & Yurchenco, 2004).

Laminins are large, cross-shaped molecules consisting of three
polypeptide chains (a, b and g). The three short arms of the cross
are composed of one chain each, whereas the long arm is a coil

containing all three chains that terminates in a tandem of five
linkage group domains provided by the a-chain (Fig 1A). The
human genome encodes five a-, three b- and three g-chains which
are assembled into at least 15 laminin heterotrimers (Aumailley
et al, 2005). With the exception of the a3A, a4 and g2 chains, all
short arms have a single laminin amino-terminal (LN) domain at
their distal end, followed by a tandem of laminin-type epidermal
growth factor-like (LE) domains. The same domain architecture is
also found in netrins, an important class of axon guidance
molecules (Fig 1A; Dickson, 2002). Laminin-111 (a1b1g1)
polymerization in vitro requires calcium and a full complement
of LN domains, suggesting that the nodes in the polygonal
laminin-111 network contain one a1, one b1 and one g1 LN
domain (three-arm interaction model; Yurchenco et al, 1985;
Paulsson, 1988; Yurchenco & Cheng, 1993; McKee et al, 2007). In
support of this model, mutations in the LN domains of the a1 and
a2 chains compromise laminin function in vivo (Xu et al, 1994;
Patton et al, 2008; Edwards et al, 2010). Binding experiments with
short-arm fragments showed heterotypic interactions that were
consistent with the three-arm interaction model (a–b, a–g, b–g), as
well as unexpected homotypic a–a interactions (Odenthal et al,
2004). A molecular understanding of laminin polymerization has
been hindered by the lack of structural information about the LN
domain. In this study we report the crystal structure and functional
analysis of a laminin a5LN–LEa1–2 fragment.

RESULTS AND DISCUSSION
Crystallization of a laminin short-arm fragment
As LN domains cannot be produced in isolation (Ettner et al, 1998;
Odenthal et al, 2004), we produced a series of laminin short-arm
fragments containing the LN domain, followed by 2–4 LEa
domains (supplementary Table S1 online). The best crystals we
obtained were of an a5LN–LEa1–2 fragment and diffracted to
approximately 3.4 Å resolution. Individual mutations of the four
predicted N-linked glycosylation sites (N100A, N148T, N248E,
N383E) showed that glycosylation of Asn 148 and Asn 248 was
required for protein solubility. A crystal of the a5LN–LEa1–2
N100A/N383E double mutant diffracted to 2.9 Å resolution and
was used to determine the structure.
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Laminin a5LN–LEa1–2 structure
The laminin a5LN–LEa1–2 structure resembles a flower, with the
LN and LE domains forming the head and stalk, respectively
(Fig 1B,C). The head measures approximately 40� 40� 25 Å and
the stalk is approximately 60 Å long. When the head is viewed
from its narrow side, it appears tilted by approximately 25 1

relative to the straight stem. The LE domains of a5LN–LEa1–2 have
the canonical LE fold, that was previously established by the
crystal structure of laminin g1LEb2–4 (Stetefeld et al, 1996). The
a5LEa1–2 domains almost entirely consist of irregular coils and

are stabilized by a continuous ladder of disulphide bridges
(Fig 1B). The eight canonical cysteines in each domain are linked
1–3, 2–4, 5–6 and 7–8, creating four loops, which we refer to as
the 2–3, 3–4, 5–6 and 7–8 loops. In a5LEa1, there is a fifth
disulphide bridge linking the 5–6 and 7–8 loops. The long 3–4
loops of each LE domain contain short antiparallel b-strands and
protrude similarly to leaves from the stalk.

The LN domain is a richly elaborated antiparallel b-sandwich,
with strands b1–b8 forming a jelly-roll motif (Fig 1B,C). A DALI
search for related structures (Holm & Rosenström, 2010) showed
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that the core of the LN domain is most similar to bacterial
galactose binding domains (GBDs; supplementary Fig S1A
online). This relationship was recognized in a recent modelling
study (Kalkhof et al, 2010). However, the LN fold has several
additions to the jelly-roll motif that have no counterpart in GBDs.
The two b-sheets of the jelly-roll motif in a5LN are extended by
two short strands, b10 and b50. The latter strand is part of a larger
insertion between b5 and b6 that also contains a conserved
disulphide bridge between Cys 200 and Cys 220 (Fig 1D).
Additional large insertions between b6, b7 and b8 contain several
a-helices that contribute substantially to the bulk of the LN
domain. Residues 70–119—another insertion into the jelly-roll
motif—are disordered in the a5LN–LEa1–2 structure. The
disordered region contains four conserved cysteines, but other-
wise its sequence is highly variable in the LN domain superfamily
(Fig 1D).

There is no obvious linker segment between the LN and LEa1
domains (Fig 1B,C). The two domains interact through a large,
partly disjointed, interface that buries a total of approximately
2,500 Å2 of solvent-accessible surface area. Half of the buried area
is accounted for by the interaction of an extended N-terminal
segment with LEa1. Most notably, the side chain of Pro 52 is
accommodated in a pocket between the 1–3 and 2–4 disulphide
bridges of LEa1 (supplementary Fig S2 online). Pro 52 is strictly
conserved in all other LN domains (Fig 1D), suggesting that the
LN–LEa1 interface is similarly stabilized in all laminins and
netrins. The other contacts between the LN and LEa1 domains of
laminin a5 involve the long 3–4 and 7–8 loops of LEa1 and are not
as well conserved across the LN superfamily. The a5LN–LEa1–2
crystal structure contains three phosphate ions in the LN–LEa1
interface which interact with the side chains of His 57, His 158,
Arg 256, Lys 260, Arg 304 and His 308 (supplementary Fig S2
online). Arg 256 and Lys 260 are involved in proteoglycan-
mediated cell adhesion to the a5 short arm (Nielsen & Yamada,
2001). The phosphate ions might thus act similarly to the sulphate
groups of heparan sulphate chains.

Bacterial GBDs—which the core of the LN fold is most closely
related to—contain a structural calcium binding site at the carboxy
terminus of helix a1 (Boraston et al, 2004). There is no metal ion
bound to this region in the laminin a5LN–LEa1–2 structure, even
though suitable acidic ligands are present in the a5 chain (Asp 127
and Asp 298; supplementary Fig S1B,C online). To exclude the
possibility that calcium was lost from a5LN–LEa1–2 during
crystallization at pH 4–5, we tested for calcium binding at neutral
pH by measuring the intrinsic fluorescence of a5LN–LEa1–2 (the
putative calcium binding site is close to two fluorophores, Trp 132
and Trp 133). The fluorescence spectra in the presence and
absence of calcium were identical (supplementary Fig S1D
online), indicating that the N-terminal region of the a5 chain
does not bind to calcium. This conclusion agrees with the results
of circular dichroism spectroscopy experiments (Odenthal et al,
2004). The sites responsible for the calcium dependence of
laminin polymerization (Yurchenco et al, 1985; Paulsson, 1988)
remain unknown.

A motif involved in laminin-network formation
Having determined the first structure of an LN fragment, we
sought to identify the aLN domain regions responsible for laminin-
network formation. We thought that residues mediating network

interactions might be conserved in all a-chains, as laminin
heterotrimers with different a-chains can form mixed polymers
(Cheng et al, 1997). Mapping the conserved residues of mouse
laminin a-chains onto the a5LN domain structure showed that the
b6–b3–b8 face of the b-sandwich is more highly conserved than
the opposite face (not shown). Remarkably, two conserved surface
patches remain even when invertebrate laminin a-chains are
included in the analysis (Fig 2A, supplementary Fig S3 online).
Patch 1 is situated on the b1–b2–b7–b4–b5 face and comprises
Glu 178, Pro 189, Arg 265 and Arg 267. However, the glycan
attached to Asn 148 blocks access to these residues in a5LN.
All LN domains contain a predicted glycosylation site in this
region, either at the start of b2 as in a5LN or at the end of b1 (Fig 1D,
supplementary Fig S3 online). This suggests that patch 1 cannot
engage in intermolecular interactions. Patch 2 is on the b6–b3–b8
face and comprises Trp 132 and Asn 168, as well as Pro 229,
Leu 230 and Glu 231 in the b50–b6 loop (Fig 2B). Importantly,
there are no glycosylation sites obstructing patch 2 in any laminin
a-chain (Fig 2A). Further, with the exception of Trp 132, patch 2
residues are not conserved in laminin b- and g-chains (Fig 1D).
These observations do not support a structural role for patch 2 and
instead imply that it has a specific role in laminin a-chain
function.

To test whether patch 2 is important for a5LN–LEa1–2 function,
we introduced three mutations into the b50–b6 loop: L230A,
E231K and E234K. The first two residues are strictly conserved in
all a-chains, whereas Glu 234 is conserved in all a-chains except
in Drosophila wing blister (supplementary Fig S3 online). As a
control, we mutated a surface-exposed glutamic acid on the
opposite face of the LN domain (E202K). All mutants were
secreted as efficiently as wild-type protein by HEK 293 cells,
indicating correct folding. To determine the effects of the
mutations, we used an established functional assay in which
laminin-111 polymerization is inhibited by soluble short-arm
fragments (Yurchenco & Cheng, 1993; Cheng et al, 1997; Garbe
et al, 2002). As expected, wild-type a5LN–LEa1–2 protein robustly
inhibited laminin-111 polymerization, so that most of the
laminin-111 protein remained in the soluble fraction (Fig 2C,D).
The E202K control mutant was a similarly potent inhibitor. By
contrast, all three a5LN–LEa1–2 proteins with mutations in the
b50–b6 loop did not inhibit laminin-111 polymerization, demon-
strating that the b50–b6 loop of laminin a5LN interacts with a
crucial network-forming site on laminin-111. As b50–b6 loop
residues are strictly conserved in all laminin a-chains of
invertebrates and vertebrates (Fig 2A), it is likely that this aLN
region is involved in the network interactions of other laminins.

Which interaction in the laminin-111 network is blocked by
a5LN–LEa1–2? Binding experiments with recombinant LN–LEa1–
4 fragments of the a1, a5, b1 and g1 chains detected all possible
heterotypic interactions, as well as homotypic a1–a1 and a5–a5
interactions (Odenthal et al, 2004). However, this binding pattern
is inconsistent with results from an earlier study using proteolytic
laminin-111 fragments, which found only a single interaction of
measurable affinity (binary b1–g1 or ternary a1–b1–g1; Yurchenco
& Cheng, 1993). We used surface plasmon resonance (SPR)
binding experiments to study the interactions between the
LN–LEa1–4 fragments of the a5, b1 and g1 chains (Fig 3). We
detected a weak interaction (estimated Kd of X5 mM) between b1
and g1 (Fig 3B,C), but, in contrast to the results of Odenthal et al
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(2004), a5 did not bind to b1, g1 or to itself in our experiments (Fig
3D,E and data not shown). Most interestingly, when we flowed a
1:1 mixture of a5 and g1 over a b1 surface, we observed a larger
response than for g1 alone, indicative of a ternary a5–b1–g1
complex (Fig 3D). The same ternary complex could also be
assembled on a g1 surface (Fig 3E). The ternary a5–b1–g1
interaction showed slower kinetics than the binary b1–g1
interaction, possibly indicating that a5 binds to a b1–g1 hetero-
dimer. Although the underlying equilibria are probably more
complex, the association and dissociation phases of the ternary
complex (Fig 3D) could be fitted (w2¼ 1.9) by a 1:1 Langmuir
model with a Kd of 0.8 mM. The a5 L230A mutant—which
was inactive in the polymerization assay (Fig 2C,D)—also
formed a ternary complex with b1 and g1, but the mutant
complex dissociated substantially faster than the wild-type
complex (Fig 3D). Thus, mutations in the b50–b6 loop of a5LN
seem to destabilize the ternary a5–b1–g1 complex. As the
dissociation of the mutant complex could not be described by a
single rate constant, it was not possible to quantify the
destabilizing effect.

In conclusion, the results of our SPR binding studies with
laminin-511 short-arm fragments support the original three-arm
interaction model of laminin-111 polymerization (Yurchenco &
Cheng, 1993; McKee et al, 2007). We propose that transient
contacts between the b- and g-short arms are consolidated by the
slower incorporation of an a-short arm, and that the conserved
b50–b6 loop of aLN domains has an important function in
the cooperative assembly of the ternary abg nodes in the
laminin network.

METHODS
Protein production. Complementary DNAs coding for LN–LEa1–
2 and LN–LEa1–4 fragments of the mouse laminin a1, a2, a5, b1
and g1 chains (supplementary Table S1 online) were obtained by
PCR amplification from plasmids kindly provided by Takako
Sasaki (University of Erlangen, Germany). The PCR products were
cloned into a modified pCEP-Pu vector coding for proteins with a
C-terminal His6-tag (Carafoli et al, 2009). Site-directed mutagen-
esis was performed by strand overlap-extension PCR. All expres-
sion constructs were verified by DNA sequencing. Proteins were
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purified from the conditioned medium of episomally transfected
HEK293 c18 cells (Carafoli et al, 2009) by HisTrap affinity
chromatography (GE Healthcare), followed by size exclusion
chromatography on a S200 HR10/30 column (GE Healthcare) at
4 1C using a running buffer of 20 mM Na-HEPES, pH 7.5, 150 mM
NaCl, 2 mM CaCl2.
Crystal structure determination. Crystals of fully glycosylated
laminin a5LN–LEa1–2 were obtained by 200 nl sitting drop vapour
diffusion using a protein concentration of 8 mg/ml and 4%
PEG6000, 0.1 M MgCl2, 0.1 M sodium acetate, pH 5.2 as
precipitant. The crystals contain one a5LN–LEa1–2 molecule in
the asymmetrical unit and 75% solvent. Heavy atom derivatives
were prepared by soaking crystals for 18 h in 2 mM UO2(NO3)2 or
1 mM K2PtCl4. Crystals were flash-frozen in liquid nitrogen in
mother liquor supplemented with 20% glycerol. Diffraction data
were collected at the Diamond Light Source (native data,
beamline IO2, l¼ 0.980 Å) and at the Swiss Light Source

(derivative data, beamline PXIII, l¼ 1.000 Å). The diffraction limit
was anisotropic (approximately 3.2 Å in the a*b* plane and
approximately 4 Å along c*). The images were processed with
iMOSFLM (www.mrc-lmb.cam.ac.uk/harry/imosflm) and with
programs of the CCP4 suite (CCP4, 1994). A MIRAS-phased
electron density map at 3.4 Å resolution was obtained with
autoSHARP (Vonrhein et al, 2007). A partial model was built with
O (Jones et al, 1991) and refined with CNS (Brünger et al, 1998).
The model was completed using a native data set to 2.9 Å
resolution (approximately 3.2 Å along c*) collected from an
isomorphous crystal of the laminin a5LN–LEa1–2 N100A/N383E
double mutant obtained at 6 mg/ml protein concentration and
0.4 M NH4H2PO4 (pH 4.0). Crystallographic statistics are sum-
marized in Table 1. Figures were generated using PYMOL
(www.pymol.org).
Laminin polymerization assay. The assay was carried out as
described (Cheng et al, 1997). Briefly, mouse laminin-111 (Sigma)
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at a concentration of 0.25 mg/ml (0.35 mM) was incubated with
1 mM CaCl2 or 10 mM EDTA in 50 mM Tris–HCl, pH 7.4, 150 mM
NaCl, 0.1% Triton X-100 for 3 h at 37 1C in a total volume
of 100 ml. Some reactions also contained 2.1 mM laminin
a5LN–LEa1–2 proteins. Polymerized laminin-111 was pelleted
by centrifugation (approximately 10,000 g, 15 min). The pellet
and supernatant fractions were analysed by SDS–polyacrylamide
gel electrophoresis and Coomassie Blue staining. Band
intensities (a1 and b1/g1 combined) were quantified with ImageJ
(rsbweb.nih.gov/ij).
SPR experiments. The SPR experiments were performed at 25 1C
using a Biacore 3000 instrument (GE Healthcare). Proteins were
coupled to CM5 chips in 10 mM sodium acetate, pH 4.5,
according to the manufacturer’s instructions. Reference cells
without protein were treated identically. The running buffer was
20 mM Na-HEPES, pH 7.5, 150 mM NaCl, 2 mM CaCl2 at a flow
rate of 30ml/min. Binary interactions were measured without

regeneration of the sensor surfaces between runs. Ternary
interactions on the b1LN–LEa1–4 surface were measured with a
brief pulse of 10 mM glycine–HCl, pH 2.5, between runs. No
suitable regeneration buffer could be found for the g1LN–LEa1–4
surface. The sensorgrams were analysed with Biacore software.
Accession codes. The coordinates of the laminin a5 LN–LEa1–2
fragment have been deposited in the Protein Data Bank under
accession code 2y38.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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Table 1 | Crystallographic statistics of the laminin a5LN–LEa1–2 structure

Native (N100A/N383E) Native (wild type) UO2(NO3)2 (wild type) K2PtCl4 (wild type)

Data collection

Space group P62 P62 P62 P62

Cell dimensions

a, b, c (Å) 116.4, 116.4, 112.3 116.7, 116.7, 112.8 116.4, 116.4, 112.7 117.0, 117.0, 110.5

a, b, g (deg) 90, 90, 120 90, 90, 120 90, 90, 120 90, 90, 120

Resolution (Å) 25–2.9 (3.06–2.90)* 20–3.4 20–3.7 20–3.7

Rmerge 0.135 (0.679) 0.137 0.102 0.151

oI/s(I)4 10.7 (3.1) 11.3 16.4 10.3

Completeness (%) 100 (100) 100 100 100

Redundancy 11.0 (11.2) 10.9 11.5 11.2

Phasing

Rderiv 0.231 0.269

Phasing power (acentric/centric) 1.37/1.60 1.37/1.33

Refinement

Resolution (Å) 25–2.9

No. of reflections 19173

Rwork/Rfree 0.254/0.292

No. of atoms

Protein 2682

Ion 30

Average B-factor (Å2) 76.0

R.m.s. deviations

Bond lengths (Å) 0.008

Bond angles (deg) 1.8

Ramachandran plotw 68.6/28.6/2.4/0.3

LE, laminin-type epidermal growth factor-like domain; LN, laminin N-terminal. *Values in parentheses are for the highest resolution shell. wPercentage of residues in most
favoured/additionally allowed/generously allowed/disallowed regions (program PROCHECK).
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