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Abstract

A hallmark of rheumatoid arthritis (RA) is cartilage erosion by pannus — an

inflamed, hyperplastic and highly invasive synovial tissue. Cartilage degradation is

primarily mediated by invading synovial fibroblasts. At the cartilage invasion front

of the pannus, these cells destroy the tissue, leading to the permanent loss of joint

structure and function. It has been shown that membrane type 1 metalloproteinase

(MT1-MMP) plays a key role in promoting RA synovial fibroblast invasion into the

cartilage. However little is known about regulatory mechanisms of MT1-MMP in

RA synovial fibroblasts.

MT1-MMP is highly upregulated in RA synovium, but mechanisms regulating

its expression are not well understood. Interestingly, several reports show high

MT1-MMP levels in fibroblasts at the pannus-cartilage junction. In addition, MT1-

MMP expression and activity in cultured cells can be induced by collagen. We

hypothesised that cartilage, more specifically cartilage collagen, induces MT1-MMP

activity in the pannus. In this study, I have confirmed that both collagen and

cartilage induce MT1-MMP activity and expression in RA synovial fibroblasts. To

understand mechanisms of collagen signalling I have also investigated the role of

collagen receptors, namely integrins and discoidin domain receptor 2 (DDR2), in

MT1-MMP activation. Knockdown of DDR2, but not collagen-binding integrins,

resulted in decreased MT1-MMP activity and expression upon collagen stimulation.

DDR2 knockdown also inhibited MT1-MMP-dependent collagen degradation and

invasion by RA synovial fibroblasts.

Analysis of DDR2 binding to intact or telopeptide-devoid collagens indicates

that collagen structure might influence cell signalling. Furthermore, activation of

MT1-MMP by cartilage, which is also mediated by DDR2, is enhanced by removal of

proteoglycans. In summary, I have demonstrated that cartilage signalling through

collagen receptor DDR2 induces MT1-MMP activity in RA synovial fibroblasts.
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Chapter 1

Introduction

1.1 Rheumatoid arthritis

Rheumatoid arthritis (RA) is one of the most common causes of joint disease. It

is an autoimmune disorder, characterised by chronic inflammation of multiple di-

arthrodial joints. Affected joints become stiff, swollen, tender and painful. Chronic

inflammation leads to a progressive and irreversible damage of the joint (Lee and

Weinblatt, 2001).

In Europe and the United States, around 0.5–1% of the population is affected

by RA (Kvien, 2004). In 2010, the committee of American College of Rheumatol-

ogy and European League Against Rheumatism (ACR/EULAR) published updated

classification criteria for RA, which take into account the number of involved joints,

duration of symptoms, levels of autoantibodies and acute-phase reactants (Table

1.1) (Aletaha et al., 2010).

Identification of rheumatoid factor (RF), an autoantibody against the Fc por-

tion of an IgG, resulted in classification of RA as an autoimmune disease (Firestein,

2003). However, RF expression is not limited to RA patients. Another autoantibody

known as anti-citrullinated protein antibody (ACPA) is more specific for RA and is

detected in 70% of patients, who usually show more severe symptoms (Nishimura

et al., 2007).
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1.1. Rheumatoid arthritis

Table 1.1: The 2010 ACR/EULAR classification criteria for RA. Patients
with a score of 6 or more are classified as having RA (Aletaha et al., 2010).

Classification criteria Score

A. Joint involvement

1 large joint 0

2–10 large joints 1

1–3 small joints (with or without involvement of large joints) 2

4–10 small joints (with or without involvement of large joints) 3

>10 joints (at least 1 small joint) 5

B. Serology

Negative RF and negative ACPA 0

Low–positive RF or low–positive ACPA 2

High–positive RF or high–positive ACPA 3

C. Acute-phase reactants

Normal C-reactive protein and normal erythrocyte sedimentation rate 0

Abnormal C-reactive protein or abnormal erythrocyte sedimentation rate 1

D. Duration of symptoms

less than 6 weeks 0

≥ 6 weeks 1

Despite extensive research, the initial cause of the disease is still unknown.

Women are affected 3 times more frequently than men and the average age of on-

set is around the fifth decade of life (Humphreys et al., 2013). MacGregor et al.

(2000) estimated that the heritability of RA is around 60%, which indicates that

both genetic and environmental factors play a role in RA pathogenesis. Bronchial

stress, such as tobacco smoking, is one of the major environmental risk factors

(Padyukov et al., 2004; Silman et al., 1996). The human leukocyte antigen (HLA)

locus contributes 30 to 50% of genetic susceptibility to RA (MacGregor et al., 2000).

The strongest genetic association was found among alleles of the HLA-DRB1 gene,

which encodes a β-chain of the class II HLA-DR molecules (Raychaudhuri et al.,

2012). Risk conferring HLA-DRB1 alleles have a ‘shared epitope’: a specific amino

acid sequence at positions 70–74 within the antigen binding groove of the HLA-DR

β-chain (du Montcel et al., 2005; Gregersen et al., 1987). Recent genome-wide asso-

ciation studies identified many non-HLA loci associated with RA, such as PTPN22,

PADI4 or STAT4. However, their overall contribution to genetic susceptibility to

RA is relatively modest (Ruyssen-Witrand et al., 2012).
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1.1. Rheumatoid arthritis

Furthermore, RA is a systemic disease and is associated with increased mor-

tality (Gabriel and Michaud, 2009). Systemic manifestations include acute-phase

protein production, anaemia, cardiovascular disease and osteoporosis (Choy, 2012).

Patients suffer from persistent pain, fatigue, depression and as the disease progresses,

they have to face increasing physical disability due to joint damage (Bombardier

et al., 2012; Choy, 2012).

At present, RA cannot be effectively cured (Scott, 2012). The goal of therapy

is stable remission, which is a prerequisite to stop the joint damage (Lukas et al.,

2010). Recently developed therapies which block pro-inflammatory pathways have

remarkably improved outcomes of the disease. Nevertheless, it has been reported

that in clinical practice less than half of RA patients achieve sustained remission

(Prince et al., 2012).

1.1.1 Clinical features

The main sites of disease activity in RA are diarthrodial (synovial) joints, most

often those of hands, feet and knees. In a healthy diarthrodial joint, a layer of

hyaline cartilage covers the surfaces of articulating bones (Figure 1.1). The cartilage

provides a smooth gliding surface, ensures friction-less joint movement and even load

distribution onto the subchondral bone (Goldring and Goldring, 2012). A fibrous

capsule encloses joint components and forms a joint cavity. The intra-articular

part of the capsule is lined with the synovial membrane (synovium), consisting of a

cellular lining layer (intima) and collagenous sublining tissue (subintima). The lining

layer faces the joint cavity and is one to three cells thick. It predominantly contains

fibroblast-like cells, also known as type B synoviocytes, and some macrophage-like

cells or type A synoviocytes (Smith, 2011). Sublining tissue contains blood and

lymphatic vessels and interspersed sublining fibroblasts. Synovial fibroblasts secrete

a hyaluronan-rich, viscous fluid into the joint cavity. They also produce lubricin, a

glycoprotein which helps to lubricate the cartilage (Jay et al., 2000).
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Figure 1.1: Schematic representation of healthy and RA diarthrodial
joints. In a healthy joint, the lining layer of the synovial membrane is one to three
cells thick. During RA many inflammatory cells infiltrate the synovial membrane
including T and B cells. The synovial lining becomes hyperplastic and can be
up to 20 cells thick. Membrane overgrowth is supported by angiogenesis. The
hyperplastic synovium forms an invasive pannus tissue, rich in synovial fibroblasts
and macrophages and also containing activated osteoclasts. The pannus attaches to
and degrades cartilage and bone and subsequently invades into those tissues. Figure
adapted from Choy (2012).

The hallmark of RA is chronic inflammation and hyperplasia of the synovial

membrane. In RA large numbers of immune cells infiltrate the synovial membrane,

including T and B cells, plasma cells, macrophages, dendritic cells and mast cells

(Figure 1.1) (Hitchon and El-Gabalawy, 2003, 2011). Although not present in the

synovium, neutrophils can be found in the synovial fluid. Infiltrated cells become

activated and produce a variety of cytokines and growth factors which contribute

to the joint inflammation by paracrine and autocrine signalling pathways. There

is an overall increase in synoviocyte numbers, due to increased local proliferation

or loss of apoptosis, and an additional influx of bone-marrow derived macrophages

(Ceponis et al., 1999, 1998; Tohyama et al., 2006). Increased numbers of both

types of synoviocytes lead to pronounced hyperplasia of the synovial lining. With
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the outgrowth of synovial membrane and chronic inflammation, the joint becomes

swollen and painful.

As a result of an influx of immune cells and synovial hyperplasia, the joint

environment also becomes hypoxic (Ng et al., 2010). Hypoxia leads to expression of

angiogenesis promoting cytokines and growth factors such as vascular endothelial

growth factor (VEGF) (Hitchon et al., 2002). Extensive angiogenesis supports fur-

ther growth of the synovial membrane. At the cartilage and bone junction, where

the synovium membrane is attached, the synovial lining expands and forms a char-

acteristic tissue called the pannus (Allard et al., 1990; Kobayashi and Ziff, 1975).

The pannus is a highly invasive, tumour-like tissue, which gradually overlays the

cartilage and invades deep into the cartilage and bone (Allard et al., 1991; Bromley

et al., 1985; Kobayashi and Ziff, 1975; Shiozawa et al., 1983). Synovial fibroblasts

and macrophages are predominant cells at the pannus invasion front, but activated

osteoclasts can also be found at the sites of bone resorption (Allard et al., 1991;

Kobayashi and Ziff, 1975; Miller et al., 2009; Schett, 2007; Shiozawa et al., 1983).

These cells gradually invade and degrade the underlaying structures, leading to

progressive joint damage and deformity (Allard et al., 1991).

1.1.2 Pathogenesis of RA and available therapies

The exact mode of RA pathogenesis is not completely understood. The proposed

mechanism involves activation of both innate and adaptive immunological responses

in genetically susceptible individuals (Smolen and Steiner, 2003). One of the initial

events is activation of T cells by antigen presenting cells (APCs), such as dendritic

cells, macrophages or B cells present in the synovium (Figure 1.2) (Aarvak and

Natvig, 2001). APCs present antigens to T-cell receptors in the context of HLA

class II molecules. However, the exact antigen or autoantigen has not yet been

elucidated (Imboden, 2009; Lundy et al., 2007). The process of T cell activation is

augmented by the presence of cytokines and requires co-stimulatory signals mediated
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1.1. Rheumatoid arthritis

by interaction of T-cell specific surface molecule CD28 with CD80 or CD86 present

on APCs (Kotani et al., 2006).

Activated T cells undergo polarisation towards pro-inflammatory T helper type

1 (TH1) and TH17 cells, characterised by expression of interferon (IFN)-γ and inter-

leukin (IL)-17 respectively. Few anti-inflammatory TH2 cells are found in the RA

synovium and the imbalance towards TH1 and TH17 cell subsets promotes chronic

inflammation. B cells and plasma cells produce cytokines, antibodies and autoanti-

bodies, and become additionally activated by T-cell-dependent mechanisms (Mauri

and Ehrenstein, 2007). Immune complexes formed of autoantibodies are able to

activate complement or cell surface Fc receptors, leading to further release of pro-

inflammatory cytokines.

TH1 and TH17 cells are able to activate synovial macrophages and fibroblasts

via direct cell-to-cell contact and release of INF-γ, tumour necrosis factor (TNF)-α

and IL-17. Activated macrophages are the principal source of pro-inflammatory cy-

tokines: TNF-α, IL-1 and IL-6, which play a central role in initiating signalling path-

ways and perpetuating inflammation (Feldmann et al., 1996; McInnes and Schett,

2011). High levels of these cytokines are present in synovial fluid and serum of

RA patients. They activate leukocytes, induce cytokine cascades, increase expres-

sion of chemokines, adhesion molecules and matrix degrading enzymes, such as

matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases with

thrombospondin motifs (ADAMTSs) in synovial cells and chondrocytes. They also

promote differentiation of bone-degrading osteoclasts, thereby directly orchestrating

joint damage (Figure 1.2).

Activated synovial fibroblasts secrete cytokines, chemokines and growth fac-

tors (such as VEGF) and are the main source of cartilage matrix-degrading enzymes

in the joint milieu. They show invasive properties, as they attach to and invade into

articular cartilage (Miller et al., 2009; Shiozawa et al., 1983). In addition, they show

several signs of tumour-like transformation. They remain activated and highly inva-

sive even in the absence of inflammatory signals. Isolated RA synovial fibroblasts,
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Figure 1.2: Pathogenesis of rheumatoid arthritis. (A) APCs activate T
cells, which differentiate mainly to TH1 cells in a process supported by INF-γ and
IL-2. TH1 cells further activate B cells and macrophages. B cells and plasma cells
express antibodies as well as RF and ACPA, which can form immune complexes.
TNF-α, IL-1 and IL-6 overexpressed by macrophages activate fibroblasts, chondro-
cytes and osteoclasts. These cells produce enzymes responsible for cartilage and
bone degradation (ADAMTSs, MMPs, cathepsin K). (B) Biologics suppress major
inflammatory pathways involved in RA pathogenesis, but do not directly inhibit
proteolytic enzymes damaging the joint. Figure adapted from Smolen and Steiner
(2003).

but not normal or osteoarthritis (OA) synovial fibroblasts, deeply invaded cartilage

explants when engrafted into mice with severe-combined immunodeficiency (Ceponis

et al., 1998; Müller-Ladner et al., 1996). Somatic mutations in the tumour suppress-

ing gene TP53 were identified in pannus-derived fibroblasts and lower expression of

the tumour suppressive protein PTEN was found in lining layer fibroblasts (Firestein

et al., 1997; Pap et al., 2000a; Yamanishi et al., 2005). In vitro cultured isolated RA

synovial fibroblasts grow in an anchorage independent manner and escape contact

inhibition (Lafyatis et al., 1989).
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1.1. Rheumatoid arthritis

Available therapeutics

The main treatments for RA include disease-modifying anti-rheumatic drugs

(DMARDs), which reduce inflammation, joint swelling and slow or halt joint dam-

age. DMARDs can be divided into synthetic small molecule DMARDs and biologics,

which are large molecules engineered to target and block inflammatory pathways

(Burmester, 2012; Feldmann and Maini, 2008). The first approved biologic was the

anti-TNF-α neutralising antibody, infliximab, confirming the central role of TNF-α

in RA (Elliott et al., 1994). Since then several types of biologics have been developed,

including four additional inhibitors of TNF-α signalling (adalimumab, golimumab,

certolizumab and etanercept); an inhibitor of T cell co-stimulation (abatacept); an

anti-CD20 B cell depleting antibody (rituximab); an antibody against IL-6 recep-

tor (tocilizumab) and an IL-1 receptor antagonist — anakinra (Figure 1.2B) (Choy

et al., 2013). Biologics are most often used in combination therapy with conventional

DMARDs. In addition, non-steroidal anti-inflammatory drugs and glucocorticoids

are often used to alleviate pain and inflammation.

1.1.3 Characterisation of joint damage in RA

Besides hyperplasia of the synovial membrane, another key feature of RA is erosive

degradation of bone and cartilage mediated by cells present in the pannus. Bone and

cartilage are two structurally distinct tissues and different mechanisms contribute

to their breakdown. Typically, degradation is progressive and irreversible. Clinical

data show that the majority of patients develop joint injury within two years of

initial symptoms and current therapies are only partially effective in preventing

joint damage (Machold et al., 2007).

Bone erosions

Bone is a complex tissue, rich in blood and nerve supply. 70% of the tissue consists

of a mineralised inorganic material called hydroxyapatite, 25% of organic material
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(mostly collagen type I) and 5% of water. The three major types of cells responsible

for tissue homeostasis are bone-producing osteoblasts, bone-degrading osteoclasts

and osteocytes residing inside the bone tissue (Schett, 2012).

Localised bone loss initially appears at the bone-pannus junction and is visible

as bony erosions on radiographs (Goldring, 2003; Karmakar et al., 2010; Schett

and Gravallese, 2012). Resorption of mineralised bone is mediated by activated

osteoclasts derived from the pannus tissue (Gravallese et al., 1998). Osteoclasts

are multinucleated cells which differentiate from monocyte/macrophage precursors

upon activation by receptor activator of nuclear factor kappa-B ligand (RANKL)

(Komano et al., 2006; Schett, 2007). Additionally, macrophage colony stimulating

factor induces proliferation of osteoclast precursor cells and is required for osteoclast

differentiation (Danks et al., 2002). In the RA synovium, RANKL is produced

by synovial fibroblasts and T cells (Gravallese et al., 2000; Kotake et al., 2005;

Tunyogi-Csapo et al., 2008). TNF-α, IL-1, IL-6 and IL-17 induce expression of

RANKL and promote RANKL-mediated osteoclastogenesis (Karmakar et al., 2010).

To solubilise the bone matrix, osteoclasts maintain an acidic environment at the

cell-matrix junction. In addition, they secrete enzymes such as cathepsin K and

MMPs to degrade collagen type I (Delaissé et al., 2003). Infrequent bone repair was

observed in some patients receiving combinational DMARD therapy, especially in

those without joint swelling (Lukas et al., 2010).

Cartilage degradation

Cartilage is an avascular and an anervous tissue, mainly composed of water (70%)

and extracellular matrix (ECM) proteins: collagen type II and aggrecan, which

account for 15–25% and 10% of wet weight respectively (Figure 1.3A). Other matrix

molecules are collagens type VI, IX, X and XI, link protein, hyaluronan, fibronectin,

cartilage oligomeric matrix protein and small leucine-rich proteoglycans (Goldring,

2012). The only cells present in cartilage are chondrocytes, and they account for
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1–2% of the tissue volume. Chondrocytes are responsible for cartilage homeostasis

as they synthesise, maintain and remodel the ECM (Goldring, 2012).

Collagen type II has a triple helical structure and is assembled into long fib-

rils, which act as a scaffold for the tissue and provide it with tensile strength. The

structure of collagen is described in detail in Section 1.3.2. Aggrecan is the main

proteoglycan in the cartilage and it forms large aggregates by non-covalent binding

to hyaluronan chains and link protein. Its core protein contains attachment sites

for sulfated glycosaminoglycan chains: keratan sulfate and chondroitin sulfate (Fig-

ure 1.3B). Their negative charge draws water into the cartilage, creating osmotic

pressure and enabling cartilage to withstand compression.

In RA, cartilage is degraded by the invasive synovial pannus tissue which is the

source of the majority of proteolytic enzymes. Cytokine-activated macrophages and

fibroblasts in the pannus as well as neutrophils in the synovial fluid secrete soluble

proteases. Accumulation of these proteases in the synovial fluid surrounding the

cartilage results in a degradation of the cartilage matrix. In addition, chondrocytes

within cartilage also produce proteases and contribute to tissue destruction. It is

believed that aggrecan degradation is one of the initial events in cartilage damage

during the development of RA (Nagase and Kashiwagi, 2003; van Meurs et al.,

1999). As aggrecan endows cartilage with resistance to compression, loss of this

proteoglycan causes major functional defects of the tissue. In addition, aggrecan

has been shown to protect cartilage from collagen degradation in experiments in

vitro (Pratta et al., 2003) and in in vivo models of RA (Little et al., 2007).

Aggrecan is cleaved at several sites by ADAMTSs and MMPs. Cleavage

within the interglobular domain of aggrecan at NITEGE373↓A374 by ADAMTSs or

at VDIPEN341↓F342 by MMPs results in release of the glycosaminoglycan-bearing

fragment from the cartilage and loss of protein function (Nagase and Kashiwagi,

2003) (Figure 1.3B). Although both neoepitopes (NITEGE and VDIPEN) can be

detected in RA cartilage and synovial fluid, ADAMTSs are regarded as the primary
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Figure 1.3: Main components of articular cartilage. (A) Collagen type II
fibrils and large aggregates of aggrecan bound to hyaluronan and link protein are
the main components of cartilage. Chondrocytes are the only cell type present
in cartilage. (B) Aggrecan core protein has three globular domains and it as-
sociates with hyaluronan and link protein through its N-terminal globular domain
(G1). Negatively charged keratan sulfate and chondroitin sulfate glycosaminoglycan
chains are attached to the core protein. Neoepitopes created by MMP (VDIPEN)
or ADAMTS (NITEGE) cleavage are indicated. (C) Collagen type II is cleaved by
MMP collagenases into 3/4 and 1/4 fragments. Collagen degradation can be detected
by immunoassays recognising 3/4 fragments (C2C; TIINE; C1,C2), cross-linked C-
terminal telopeptides (CTX-II) or fragments of triple helix released by degrada-
tion (HELIX-II; Coll2-1). Figure adapted from Nagase and Kashiwagi (2003) and
Heineg̊ard (2009). CS - chondroitin sulfate; G1,G2,G3 - globular domains; IGD -
interglobular domain; KS - keratan sulfate.
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aggrecan degrading enzymes (Durigova et al., 2010; Lark et al., 1997; van Meurs

et al., 1999).

Initial reports using light and electron microscopy showed marked invasion of

the pannus into the cartilage, indicating that this process is primarily responsible for

conspicuous tissue loss. Immunohistochemical analysis of cartilage from the patients

with advanced RA showed collagen degradation throughout the cartilage tissue,

whereas little or no degradation was detected in the normal cartilage (Dodge and

Poole, 1989). Electron microscopy confirmed extensive damage to collagen fibrils

in the cartilage of RA patients (Dodge et al., 1991). Collagenases from the MMP

family are the main collagen-degrading enzymes. They cleave fibrillar collagens

(such as collagen type II) into 3/4 and 1/4 fragments. Primary MMP cleavage in

collagen type II occurs at the G775↓L776 site and is followed by cleavage at the nearby

G778↓Q779 site, leading to collagen denaturation (Figure 1.3C) (Billinghurst et al.,

1997). Numerous immunoassays were developed to detect neoepitopes generated by

collagen degradation (Karsdal et al., 2011). Markers used to detect the collagen type

II breakdown include C-terminal cross-linked telopeptides (CTX-II), triple helical

fragments (HELIX-II, Coll2-1) and MMP-generated neoepitopes in 3/4 fragments

(C2C; C1,C2 and TIINE assays)(Figure 1.3C). The presence of these markers in

biological fluids often correlates with RA progression (Garnero et al., 2002; Karsdal

et al., 2011; Verstappen et al., 2006).

Cleavage of both aggrecan and collagen severely reduce tissue capability to

withstand compressive and mechanical forces. Furthermore, cartilage, unlike bone,

has a limited healing potential. Recent clinical data indicate that joint space nar-

rowing, an indicator of cartilage loss, is more strongly correlated with irreversible

physical disability than bone damage (Aletaha et al., 2011). Early stages of RA are

characterised by reduced synthesis of collagen type II, and additionally IL-1 sup-

presses proteoglycan production in chondrocytes (Fraser et al., 2003). Aggrecan loss

is reversible only in the absence of the collagen damage (Karsdal et al., 2008). The

presence of IL-1, IL-17A and reactive nitrogen intermediates induce chondrocyte
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apoptosis, which markedly compromises the ability of the cartilage to regenerate

(Allard et al., 1991; Goldring and Marcu, 2009; Kobayashi and Ziff, 1975). At

present, no specific inhibitors of cartilage damage are available to prevent future

disability (Figure 1.2B).

1.1.4 Cartilage degradation in RA is mediated by metallo-

proteinases

Destruction of the cartilage matrix is mediated by enzymes from two proteinase fam-

ilies: ADAMTSs and MMPs (Rengel et al., 2007). They belong to the metzincin sub-

group within the metalloproteinase superfamily (Gomis-Rüth, 2003; Stöcker et al.,

1995). The catalytic domains of these enzymes have a conserved HExxHxxGxxH

zinc binding motif in their active site (where ‘x’ is any amino acid). The three

histidines coordinate a zinc ion required for hydrolysis. Near the active site, they

also have a conserved methionine forming a β-turn.

Many of these metalloproteinases are overexpressed in the RA synovium in

response to inflammatory cytokines and upregulated growth factors. TIMPs (tis-

sue inhibitors of metalloproteinases) are endogenous inhibitors of MMPs and some

members of ADAM (a disintegrin and metalloproteinase) and ADAMTS families.

TIMPs are soluble proteins which inhibit enzymes by forming complexes at a 1:1

ratio. TIMPs have two domains, N-terminal and C-terminal. The N-terminal in-

hibitory domain binds to the active site of metalloproteinases and inhibits their

activity. There are four TIMPs in mammals, namely TIMP-1, -2, -3 and -4 (Brew

and Nagase, 2010; Murphy, 2011). Although TIMP expression is also upregulated in

RA, it is thought that an imbalance towards matrix-degrading enzymes leads to the

degradation of cartilage components (Tchetverikov et al., 2004; Yoshihara et al.,

2000). As DMARDs do not directly prevent joint damage, considerable research

is focused on proteases responsible for cartilage degradation and on mechanisms

regulating their expression.
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ADAMTSs

The ADAMTS family consists of 19 members of soluble enzymes expressed in con-

nective tissues and responsible for their homeostasis and remodelling (Fosang et al.,

2008; Stanton et al., 2011). ADAMTSs are the major enzymes that degrade proteo-

glycans including aggrecan, versican, neurocan, brevican and small leucine-rich pro-

teoglycans (Nagase and Kashiwagi, 2003; Stanton et al., 2011). The domain struc-

ture of ADAMTSs comprises a signal peptide, a pro-domain, a catalytic domain,

a disintegrin-like domain, a central thrombospondin type I repeat, a cysteine-rich

region and a spacer domain (Figure 1.4) (Porter et al., 2005). Additional C-terminal

thrombospondin type I repeats are also present, with the exception of ADAMTS-4

(Figure 1.4). Enzymes are synthesised as inactive zymogens (pro-enzymes) and are

activated during secretion by proprotein convertases such as furin.

Although aggrecan can be cleaved by both ADAMTSs and MMPs, some mem-

bers of the ADAMTS family appear to be primarily responsible for aggrecan loss

in RA (Durigova et al., 2010; Lark et al., 1997). ADAMTS-4 and ADAMTS-5

expressed by synovial fibroblasts and chondrocytes are believed be the major aggre-

canases in human cartilage pathology (Fosang et al., 2008; Song et al., 2007; Yaman-

ishi et al., 2002). Aggrecan neoepitopes characteristic for ADAMTS cleavage were

identified in patients with RA (Lark et al., 1997). ADAMTSs expression in the car-

tilage was reported to be induced by cytokines such as IL-1, TNF-α and oncostatin

M (Fosang et al., 2008). ADAMTS-5–deficient mice (but not ADAMTS-4–deficient)

are protected from cartilage degradation in inflammatory arthritis (Stanton et al.,

2005) or OA models (Glasson et al., 2005). It is still not clear whether ADAMTS-5

is the main enzyme responsible for the aggrecan degradation in human RA, as aggre-

can loss is induced by both enzymes in human cartilage explants (Song et al., 2007).

Activity of these enzymes is inhibited by TIMP-3 and α2-macroglobulin (Kashiwagi

et al., 2001; Tortorella et al., 2004).
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Figure 1.4: ADAMTS and MMP domain structure. Members of ADAMTS
and MMP families have similar domain structure: a signal peptide, pro-domain and
catalytic domain with conserved Zn2+ binding site. ADAMTS-4 and ADAMTS-5
are the major aggrecanases within the ADAMTS family and have an additional
disintegrin-like domain, thrombospondin type I repeats, cysteine-rich region and
spacer domain. Most MMPs have additional hinge regions and hemopexin domains,
with the exception of MMP-7, MMP-23 and MMP-26. Six membrane-bound MMPs
(MT-MMPs) are tethered to the plasma membrane via a transmembrane domain
or GPI anchor. MMP-23 has a cysteine array region and Ig-like domain. (Troeberg
and Nagase, 2012).
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MMPs

There are 23 MMPs in humans: 17 soluble-type and 6 membrane-type enzymes

(Brinckerhoff and Matrisian, 2002; Murphy and Nagase, 2011). Under physiological

conditions MMPs are involved in tissue remodelling as they are able to degrade

the complete ECM repertoire, including collagens, proteoglycans, laminins and fi-

bronectin. However, they are often upregulated in pathological conditions such as

cancer, OA, RA, and atherosclerosis (Egeblad and Werb, 2002; Page-McCaw et al.,

2007).

MMPs share a similar domain structure consisting of a signal peptide, a pro-

domain, a catalytic domain, a hinge region (a linker) and a hemopexin domain

(Figure 1.4). Six membrane-bound MMPs (membrane type MMPs or MT-MMPs)

are tethered to the plasma membrane via a transmembrane domain or a glycophos-

phatidylinositol (GPI) anchor. Many soluble-type MMPs are synthesised as zymo-

gens and activated extracellularly by enzymatic cleavage of their pro-domain by

other MMPs or serine proteases. Some soluble MMPs and all MT-MMPs that har-

bour a basic amino acid motif at the end of the pro-domain are activated during

the secretary pathway by proprotein converting enzymes. While soluble MMPs can

be inhibited by all four TIMPs, transmembrane-type MT-MMPs are inhibited by

TIMP-2, -3 and -4 but not by TIMP-1.

Fibrillar collagens are resistant to cleavage by many proteinases because of their

triple helical structure. The only mammalian enzymes able to efficiently degrade

collagen at neutral pH are collagenases belonging to the MMP family. MMP-1,

MMP-2, MMP-8, MMP-13 and membrane type I MMP (MT1-MMP or MMP-14)

are able to cleave collagen into 3/4 and 1/4 fragments (Page-McCaw et al., 2007).

Many MMPs are highly upregulated in RA synovium, both at the mRNA

and protein level. Synovial fibroblasts are the main source of MMPs in the RA

joint and produce MMP-1, -2, -3, -9, -13, MT1-MMP and MT3-MMP (Murphy and

Nagase, 2008). Cytokines such as IL-1, TNF-α, IL-17 and oncostatin M upregulate
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expression of many MMPs (Murphy and Nagase, 2008). High levels of MMP-1,

MMP-3, MMP-8, MMP-9 and MMP-13 are often found in synovial fluid of RA

patients (Tchetverikov et al., 2004; Yoshihara et al., 2000). MMP-1 and MMP-3 are

among the most upregulated and are also found in serum (Andereya et al., 2006;

Garnero et al., 2002; Tchetverikov et al., 2004). In a study by Soto et al. (2008),

analysis of a gene expression array from human RA synovial membranes showed

over 250-fold upregulation of MMP-1 mRNA. However, the precise role of these

MMPs in RA progression is not well understood.

Recently, MT1-MMP has been reported as a pivotal collagenase during carti-

lage invasion by the synovial pannus in RA joints (Miller et al., 2009; Sabeh et al.,

2010). Its expression is upregulated in RA synovium (Konttinen et al., 1999a; Miller

et al., 2009; Pap et al., 2000b; Soto et al., 2008; Yamanaka et al., 2000). Synovial

fibroblasts in the RA pannus tissue express high levels of MT1-MMP, which pro-

motes collagen degradation and cartilage invasion (Miller et al., 2009; Rutkauskaite

et al., 2005; Sabeh et al., 2010). It has been shown that knockdown of MT1-MMP,

but not other MMP collagenases, resulted in decreased invasion of RA synovial

fibroblasts into cartilage explants (Sabeh et al., 2010). These data suggest that

MT1-MMP is a crucial collagenolytic enzyme that promotes cartilage invasion by

synovial fibroblasts.
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1.2. Membrane type 1 matrix metalloproteinase

1.2 Membrane type 1 matrix metalloproteinase

1.2.1 Domain structure of MT1-MMP

MT1-MMP shares similar domain structure with other MMPs and consists of a pro-

domain with a signal peptide (M1–R111), a catalytic domain (Y112–G285), a hinge

region (linker 1) (E286–I318), a hemopexin domain (C319–C508), a stalk region (linker

2) (P509–S538), a transmembrane domain (A539–F562) and a cytoplasmic tail (R563–

V582) (Figure 1.5) (Itoh and Seiki, 2006).

MT1-MMP is synthesised as a pre-proenzyme to allow secretion. The signal

peptide is cleaved within the endoplasmic reticulum, resulting in a latent pro-enzyme

(Nagase et al., 2006). The remaining pro-domain of MT1-MMP contains a conserved

amino acid motif PRC93GVPD - the ‘cysteine switch’ (Wart and Birkedal-Hansen,

1990). The cysteine (underlined) in this motif interacts with the active-site zinc,

keeping the enzyme inactive. Proteolytic activation of MT1-MMP occurs within the

trans-Golgi network by furin and related proprotein convertases, which cleave the

inhibitory pro-domain. Furin recognises and cleaves the RRKR111↓Y112 sequence

located at the junction of the pro-peptide and catalytic domain (Figure 1.5) (Sato

et al., 1996; Yana and Weiss, 2000). Active MT1-MMP is then secreted to the cell

Stalk

(linker 2)

Hinge

(linker 1)

O-Gly sites

Zn2+Pro Cat HpxF TM CS

RRKR111
LLY573

DKV583

}

↓

Figure 1.5: Domain organisation of MT1-MMP. MT1-MMP domain struc-
ture includes a signal peptide (S), a pro-domain (Pro), a catalytic domain with
Zn2+ binding site (Cat), a hinge region (linker 1), a hemopexin domain (Hpx ), a
stalk (linker 2), a transmembrane domain (TM ) and a short cytoplasmic tail (C ).
Furin (F ) cleavage site at RRKR111 sequence is located at the pro-domain–catalytic
domain junction. In the hinge region five O-glycosylation (O-Gly) sites were identi-
fied. LLY573 is a binding motif for the µ2 subunit of AP-2 and the DKV583 sequence
is required for MT1-MMP recycling to the cell surface. Figure adapted from Itoh
(2006).
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1.2. Membrane type 1 matrix metalloproteinase

surface, where it forms a homodimer with another MT1-MMP by non-covalent as-

sociation between their hemopexin domains (Itoh et al., 2001; Lehti et al., 2002)

and transmembrane domains (Itoh et al., 2008). The crystal structure and muta-

genesis of MT1-MMP hemopexin domain revealed symmetrical interaction of those

domains (Tochowicz et al., 2011). Dimerisation was found to be an important reg-

ulatory mechanism of MT1-MMP function (See Section 1.2.10).

1.2.2 MT1-MMP function

MT1-MMP is broadly expressed in different tissues including heart, lung, liver,

placenta, muscle, kidney and pancreas (Takino et al., 1995). Its expression is induced

during tissue remodelling: in endothelial cells during angiogenesis (Yana et al.,

2007), in fibroblasts and keratinocytes during skin wound healing (Okada et al.,

1997; Zigrino et al., 2012). MT1-MMP is the major activator of proMMP-2 in vivo

(See Section 1.2.6) and both enzymes are often co-expressed (Nuttall et al., 2004).

Mutations in human MMP-2 (Martignetti et al., 2001) or MT1-MMP genes (Evans

et al., 2012) cause the rare Winchester or ‘vanishing bone’ syndrome, characterised

by multicentric osteolysis, short stature and arthritis (OMIM: 259600).

The essential role of MT1-MMP in bone development and tissue remodelling

is reflected by the profound phenotype of MT1-MMP deficient mice. Mt1-mmp -/-

mice are viable; however, soon after birth they develop severe abnormalities due

to impaired collagen turnover: soft tissues fibrosis, systemic arthritis, osteopenia,

skeletal defects, dwarfism and they die within a few weeks (Holmbeck et al., 1999,

2005, 2004; Zhou et al., 2000). The finding that knock-out of no other Mmp results in

such severe defects emphasises the indispensable role of MT1-MMP during postnatal

development (Holmbeck et al., 1999; Page-McCaw et al., 2007).

MT1-MMP was also shown to play an important role in angiogenesis. Zhou

et al. (2000) reported defective vascularisation of chondroepiphyses in Mt1-mmp -/-

mice and lack of neovascularisation in a cornea angiogenesis assay. During angio-
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genesis MT1-MMP is expressed in endothelial tip cells and it mediates collagen

degradation at the sites of developing neovessels (Yana et al., 2007). MT1-MMP is

also involved in many other processes, including kidney development (Riggins et al.,

2010), generation of white adipose tissue (Chun et al., 2006) and differentiation of

B cells in the bone marrow (Jin et al., 2011).

The role of MT1-MMP in cancer has been extensively investigated. High

expression of MT1-MMP was detected in many cancers including ovarian (Adley

et al., 2009), breast (Jiang et al., 2006; Okada et al., 1995; Perentes et al., 2011),

pancreatic (Määttä et al., 2000), cervical (Gilles et al., 1996), head and neck (Okada

et al., 1995), prostate (Cardillo et al., 2006), neuroblastoma (Zhang et al., 2012) and

colon (Kanazawa et al., 2010; Okada et al., 1995). MT1-MMP was also detected in

cancer-associated stromal cells: fibroblasts, macrophages and endothelial cells (Afzal

et al., 1998; Bisson et al., 2003; Ohtani et al., 1996; Okada et al., 1995; Polette et al.,

1997, 1996). Upregulation of MT1-MMP correlates with the presence of invasive,

more aggressive tumours, increased tumour growth, lymph node metastasis and

poorer outcome (Hotary et al., 2003; Jiang et al., 2006; Kamat et al., 2006; Sato

et al., 1994; Zhang et al., 2012).

1.2.3 Transcriptional regulation

Tissue remodelling requires stringent transcriptional regulation of proteolytic en-

zymes such as MT1-MMP. Although several research groups investigated transcrip-

tional regulation of MT1-MMP, mechanisms regulating its expression are not yet

established, especially in vivo. Analysis of the promoter region of MT1-MMP gene

by Lohi et al. (2000) showed a lack of a conserved TATA sequence and AP-1 bind-

ing site, which are present in many MMP promoters. As no TATA box is present,

MT1-MMP transcription starts at multiple sites (Lohi et al., 2000). In contrast to

other MMPs, MT1-MMP gene expression is not induced by inflammatory cytokines

or growth factors (Yan and Boyd, 2007).
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A proximal GC box at −92bp relative to the putative transcription start site

maintains binding of Sp-1 transcription factor which is required for basal promoter

activity (Lohi et al., 2000; Petrella et al., 2005; Sroka et al., 2007). A binding

site for Egr-1 transcription factor, which partially overlaps with the Sp-1 site, was

also identified as an important inducer of MT1-MMP expression in several cell

types including ovarian carcinoma cells (Barbolina et al., 2007), v-src transformed

Madin–Darby canine kidney cells (Cha et al., 2000) and endothelial cells (Haas

et al., 1999; Yun et al., 2002). In a study conducted by Petrella et al. (2005) in

von Hippel-Lindau renal cell carcinoma, cooperative binding of Sp-1 and HIF-2α is

required for maximal induction of MT1-MMP expression under hypoxic conditions.

β-catenin/Tcf-4 binding to the MT1-MMP promoter was reported in the human

SW480 colorectal cancer cell line (Takahashi et al., 2002). A putative binding site for

nuclear factor kappa B (NF-κB) was also found in the 5’ flanking region and NF-κB

signalling was implicated in induction of MT1-MMP expression in skin fibroblasts

stimulated with TNF-α and collagen type I (Han et al., 2001). However, the effect

of TNF-α on MT1-MMP expression is not consistent between different cells and

investigators, and thus it is yet to be proven if this NF-κB binding site is truly

functional.

1.2.4 Post-translational modifications

Several modifications of amino acid residues within MT1-MMP have been reported.

Five O-glycosylation sites at T291, T299, T300, S301 and S304 were identified within

the hinge region of MT1-MMP (Figure 1.5) (Remacle et al., 2006; Shuo et al., 2012;

Wu et al., 2004). O-glycosylation was suggested to protect MT1-MMP from auto-

catalytic degradation and to be required for proMMP-2 activation, at least in some

cell types (Remacle et al., 2006; Wu et al., 2004). Another modification was found

in the cytoplasmic domain. It was reported that cysteine (C574) in the cytoplas-

mic tail was palmitoylated and this lipid modification was shown to be essential for
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its clathrin-dependent endocytosis and cell migration promoting activity (Anilku-

mar et al., 2005). Ubiquitination of another cytoplasmic residue – L581, regulates

MT1-MMP trafficking and promotes invasion in three-dimensional (3D) collagen

matrices (Eisenach et al., 2012). Several reports show that cytoplasmic tyrosine

Y573 becomes phosphorylated by Src kinase and that phosphorylation is required

for cell motility, collagen gel invasion, MT1-MMP-induced VEGF-A expression and

tumour growth (Eisenach et al., 2012; Nyalendo et al., 2008, 2007; Wang and Mc-

Niven, 2012; Williams and Coppolino, 2011).

1.2.5 Substrate specificity

Major MT1-MMP substrates include fibril-forming collagens type I, II and III. Like

other MMP collagenases, MT1-MMP cleaves fibrillar collagens into characteristic

3/4 and 1/4 fragments (Ohuchi et al., 1997). ECM substrates of MT1-MMP are

listed in Table 1.2.

Table 1.2: Summary of ECM substrates of MT1-MMP.

Extracellular matrix proteins Reference

fibril-forming collagens (type I, II, III) Ohuchi et al. (1997)

gelatin Ohuchi et al. (1997)

fibronectin d’Ortho et al. (1997); Ohuchi et al. (1997)

vitronectin Ohuchi et al. (1997)

laminin 1 Ohuchi et al. (1997)

laminin 2/4 Ohtake et al. (2006)

laminin 5 γ2 chain Koshikawa et al. (2000, 2004)

laminin 10 Bair et al. (2005)

aggrecan d’Ortho et al. (1997)

fibrin and fibrinogen Bini et al. (1999); Hotary et al. (2002)

perlecan d’Ortho et al. (1997)

lumican Li et al. (2004)

tenascin d’Ortho et al. (1997)

nidogen d’Ortho et al. (1997)
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Apart from ECM degradation, MT1-MMP was shown to shed several ECM

receptors, such as CD44, the major hyaluronan receptor on the cell surface. CD44

shedding by MT1-MMP was demonstrated to stimulate cell migration (Kajita et al.,

2001). Furthermore, shed forms of CD44 and MT1-MMP were co-localised in tis-

sue specimens of oral, gastric and hepatic tumours, suggesting that CD44 shedding

by MT1-MMP contributes to progression of these cancers (Nakamura et al., 2004).

MT1-MMP was also reported to shed syndecan 1 (Endo et al., 2003) and cell surface

tissue transglutaminase (Belkin et al., 2001). It also processes αv integrin (Deryug-

ina et al., 2002; Ratnikov et al., 2002). MT1-MMP also cleaves the cell-cell adhesion

receptors N- and E-cadherins and low-density lipoprotein receptor-related protein-

1, a plasma membrane endocytic and signalling receptor (Covington et al., 2006;

Rozanov et al., 2004; Selvais et al., 2011). MT1-MMP can also degrade other mem-

brane proteins such as RANKL (Hikita et al., 2006), pro-angiogenic semaphorin

4D (Basile et al., 2007), transmembrane mucin glycoprotein MUC1 (Thathiah and

Carson, 2004) or protein tyrosine kinase-7 (Golubkov et al., 2010).

MT1-MMP was also shown to proteolytically modify cytokines, chemokines

and growth factors, resulting in either pro- or anti-inflammatory responses. It was

shown that MT1-MMP activates as well as degrades proTNF-α (d’Ortho et al.,

1997; Tam et al., 2004). It cleaves chemokines such as stromal cell-derived factor-1

(McQuibban et al., 2001), monocyte chemoattractant protein-3 (McQuibban et al.,

2002) and processes latent transforming growth factor β (Karsdal et al., 2002; Mu

et al., 2002). However, the significance of these events in vivo is yet to be elucidated.

The sequence specificity of MT1-MMP was investigated using peptide phage

display libraries. MT1-MMP recognises the consensus sequence PXX’↓XHy at sub-

strate’s P3–P1’ sites, which is present in collagens (Jabaiah and Daugherty, 2011;

Kridel et al., 2002; Ohkubo et al., 1999). Hydrophobic residues (XHy) like leucine

or isoleucine are often present at P1’. This consensus sequence is not-specific for

MT1-MMP as it is recognised by many other MMPs, including MMP-2 and MMP-

9. Highly selective substrates were subsequently identified (Kridel et al., 2002).
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Although no clear consensus sequence has been found, cleaved peptides often con-

tained arginine at the P4 position, a hydrophobic residue at P1’ and lacked proline

at P3 (Kridel et al., 2002). This indicates that MT1-MMP has two substrate binding

modes, one unique and one common with other MMPs (Kridel et al., 2002).

1.2.6 ProMMP-2 activation by MT1-MMP

One of the major functionalities of MT1-MMP is activation of proMMP-2 on the cell

surface. MT1-MMP was originally identified as a cellular activator of proMMP-2

(Sato et al., 1994; Strongin et al., 1995). Since then, the mechanism of MT1-

MMP-dependent proMMP-2 activation have been extensively investigated and it

has been revealed that proMMP-2 activation by MT1-MMP is not a simple enzyme-

substrate interaction, but involves several protein-protein interactions and requires

the presence of TIMP-2 (Figure 1.6).

First, the N-terminal domain of TIMP-2 binds to the active site of MT1-

MMP and forms an enzyme-inhibitor complex. The exposed C-terminal domain of

the TIMP-2 has an affinity for the hemopexin domain of proMMP-2. Therefore,

the MT1-MMP–TIMP-2 complex can act as a receptor for proMMP-2, resulting

in formation of an MT1-MMP–TIMP-2–proMMP-2 tri-molecular complex on the

cell surface. Because the catalytic site of the MT1-MMP is inhibited by TIMP-2,

another MT1-MMP molecule needs to be present in close proximity to this com-

plex to proteolytically activate proMMP-2. This is achieved by homodimerisation

of MT1-MMP and formation of proMMP-2–TIMP-2–(MT1-MMP)2 complex (Itoh

et al., 2001). Active (TIMP-2 ‘free’) MT1-MMP in this complex cleaves within the

pro-domain of MMP-2 between N37 and L38. This results in a partially activated

intermediate form of MMP-2, which is then released. Subsequent intermolecular

auto-processing generates fully active MMP-2. ProMMP-2 activation is thought

to be particularly important for cancer cell invasion into basement membranes as

MT1-MMP does not degrade its major component, type IV collagen, but activated
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Figure 1.6: Mechanism of proMMP-2 activation by MT1-MMP. MT1-
MMP is present on the cell surface as an active enzyme and forms a dimer with
other MT1-MMP molecules through the hemopexin domain. Catalytic domain of
MT1-MMP binds N-terminal domain of TIMP-2. TIMP-2 in this complex binds
hemopexin domain of proMMP-2, and another, active MT1-MMP in the complex
cleaves the pro-domain of MMP-2 and the active enzyme is released.

MMP-2 does (Taniwaki et al., 2007). In addition to proMMP-2, MT1-MMP was also

shown to activate proMMP-13 (Knäuper et al., 2002). The mechanism of proMMP-

13 activation is not fully understood, but Knäuper et al. (2002) showed that it is a

TIMP-2-independent process.

1.2.7 Autocatalytic processing

The presence of an active MT1-MMP on the cell surface results in its auto-degradation

and formation of 18 kDa soluble and 44 kDa inactive, membrane-bound MT1-MMP

species (Lehti et al., 1998; Stanton et al., 1998). The cleavage occurs at G284↓G285

in the hinge region, resulting in a loss of the catalytic domain from the cell surface

(Hernandez-Barrantes et al., 2000; Toth et al., 2002). Processed forms of MT1-

MMP are correlated with high activity of MT1-MMP on the cell surface and with

proMMP-2 activation (Stanton et al., 1998). Membrane-bound 44 kDa MT1-MMP
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species were detected in cells expressing either endogenous (Ellerbroek et al., 1999;

Stanton et al., 1998) or recombinant MT1-MMP (Cho et al., 2008; Hernandez-

Barrantes et al., 2000; Lehti et al., 1998). These were also found in rheumatoid

arthritis synovial tissue extracts (Konttinen et al., 1998), platelets (Kazes et al.,

2000) and in cancer cell lines (Ellerbroek et al., 1999; Stanton et al., 1998).

1.2.8 MT1-MMP inhibitors

MT1-MMP activity can be inhibited by endogenous tissue inhibitors of metallo-

proteinases including TIMP-2, TIMP-3 and TIMP-4, whereas TIMP-1 is a poor

inhibitor for MT1-MMP (Seiki, 2003). Other endogenous inhibitors include GPI-

anchored reversion-inducing cysteine-rich protein with Kazal motifs (Oh et al., 2001)

and testican family proteoglycans (Nakada et al., 2001).

As MMPs are considered responsible for tissue destructive processes in diseases

such as cancer and arthritis, pharmaceutical companies developed several broad-

spectrum, synthetic MMP inhibitors including ilomastat (GM6001) or marimastat

(BB2516). These are small molecule, peptide-based MMP inhibitors, containing a

hydroxamate group which chelates the zinc ion in the active site of the enzymes.

Unfortunately, during clinical trials they showed low efficacy and significant side

effects including musculoskeletal pain and joint stiffness (Fingleton, 2008). It is

now considered that the side effects are due to the non-selective nature of these

inhibitors. There are more than 60 metalloproteinases that share similar topology

of their active site and most of them could be inhibited by these compounds. Thus

it is important to identify the target enzyme and inhibit it in a highly selective

manner.

The biopharmaceutical company Dyax Corp created a humanised anti–MT1-

MMP inhibitory antibody named DX-2400 (Devy et al., 2009). DX-2400 is highly

selective and does not block activity of other MMPs. It was shown that DX-2400 in-
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hibited the biological functions of MT1-MMP and inhibited cancer invasion, metas-

tasis, growth and angiogenesis using in vitro and in vivo models (Devy et al., 2009).

1.2.9 Trafficking and cell surface localisation of MT1-MMP

MT1-MMP on the cell surface is readily internalised by clathrin- and caveolae-

dependent processes (Figure 1.7) (Gálvez et al., 2004; Jiang et al., 2001; Remacle

et al., 2003; Uekita et al., 2001). The main route of MT1-MMP uptake is via

clathrin-coated membrane pits and is dependent on interaction of the LLY573 motif

in the cytoplasmic tail of MT1-MMP with the µ2 subunit of adaptor protein (AP)-2

(Figure 1.5). AP-2 binding initiates clathrin attachment and formation of endocytic

vesicles (Uekita et al., 2001). Clathrin-mediated endocytosis is very rapid and the

half-life of MT1-MMP on the cell surface is reportedly less than 30 minutes (Anilku-

mar et al., 2005; Uekita et al., 2001). A second route of MT1-MMP internalisation is

via caveolae, which are flask-shaped, cholesterol-rich membrane domains associated

with caveolin 1 protein (Annabi et al., 2001; Gálvez et al., 2004; Remacle et al.,

2003). Caveolae-dependent endocytosis is much slower and it has been shown that

the half-life of mutant MT1-MMP with defects in clathrin-mediated endocytosis is

around one hour (Anilkumar et al., 2005).

Once internalised, MT1-MMP-containing vesicles are fused to early endosome

and late endosomal/lysosomal compartments (Figure 1.7) (Eisenach et al., 2012;

Jiang et al., 2001; Remacle et al., 2003, 2005; Steffen et al., 2008; Takino et al., 2003;

Wang et al., 2004b; Williams and Coppolino, 2011). MT1-MMP can be then recycled

back to the cell surface or degraded within lysosomes (Remacle et al., 2003; Steffen

et al., 2008; Takino et al., 2003; Wang et al., 2004b; Williams and Coppolino, 2011).

It has been shown that recycling of MT1-MMP is dependent on the DKV582 motif at

the end of the cytoplasmic tail (Wang et al., 2004c) Recently it was also reported that

K581 within this motif is mono-ubiquitinated, and lack of this modification decreased

cell surface levels of MT1-MMP (Figure 1.5) (Eisenach et al., 2012). Whether these
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two findings are related or not is still to be confirmed. Association of MT1-MMP

with tetraspanin transmembrane protein CD63 induces trafficking of MT1-MMP-

containing vesicles into lysosomes and promotes its degradation (Takino et al., 2003).

On the other hand, it has been reported that a significant portion of MT1-MMP is

stored in intracellular compartments (Li et al., 2008; Remacle et al., 2003; Williams

and Coppolino, 2011). It is possible that this intracellular pool of MT1-MMP is for

rapid delivery to the cell surface when its activity is required.

MT1-MMP has been shown to localise at motility-associated membrane struc-

tures. Invadopodia are one such structure and are characterised as actin-rich mem-

brane protrusions where focal degradation of ECM occurs (Murphy and Court-

neidge, 2011). MT1-MMP is considered a marker of invadopodia formation, as
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it accumulates at these structures and mediates ECM degradation (Artym et al.,

2006; Steffen et al., 2008). MT1-MMP co-localises with cortactin which, together

with N-WASP (neuronal Wiskott–Aldrich Syndrome protein) and Arp2/3 complex,

promotes actin polymerisation and formation of mature invadopodia (Figure 1.7)

(Artym et al., 2006; Ridley, 2011). Trafficking of MT1-MMP to invadopodia is

thought to be mediated by transport of MT1-MMP-containing secretory vesicles

on microtubules (Ridley, 2011). In late endosome/lysosomal compartments, MT1-

MMP co-localises with VAMP7 (vesicle associated membrane protein 7), a mem-

brane protein required for delivery and fusion of vesicles to their target membranes

(Steffen et al., 2008; Williams and Coppolino, 2011). VAMP7 was reported to reg-

ulate exocytosis of MT1-MMP and deliver it to invadopodia (Steffen et al., 2008;

Williams and Coppolino, 2011). MT1-MMP accumulation at plasma membrane ar-

eas attached to collagen substrate was also reported (Bravo-Cordero et al., 2007).

Enrichment of MT1-MMP at these sites is though to be through Rab8-mediated ex-

ocytosis of MT1-MMP-containing vesicles from the endosome (Bravo-Cordero et al.,

2007).

Another motility-associated membrane structure where MT1-MMP is localised

is the lamellipodium, a migration front of the cell cultured on a two-dimensional

(2D) substrate (Mori et al., 2002). It has been reported that targeted localisation

to lamellipodia is mediated by interaction of MT1-MMP with CD44, through the

hemopexin domain of the enzyme and the stalk region of CD44. This interaction

results in indirect association of MT1-MMP with the actin cytoskeleton, as CD44

binds F-actin-associated ezrin/radixin/moesin (ERM) proteins (Mori et al., 2002).

1.2.10 Dimerisation as a regulatory mechanism

Another mechanism regulating MT1-MMP activity is homo-dimerisation. On the

cell surface MT1-MMP forms dimers and oligomers, which are required for its two

fundamental functions: proMMP-2 activation and collagen degradation (Itoh et al.,
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2006, 2001; Lehti et al., 2002). It was reported that MT1-MMP dimerisation at

lamellipodia and filopodia (thin, actin-rich membrane protrusions) was controlled by

the small GTPases Rac1 and Cdc42. In cells migrating in collagen gels, dimerisation

was always detected at the cells’ migration front (Itoh et al., 2011).

MT1-MMP forms a dimer through both its hemopexin domain and transmem-

brane domain, but the primary dimer interface is thought to be through hemo-

pexin domains (Itoh et al., 2008, 2001). The recent crystal structure of MT1-MMP

hemopexin domain shows that it has a β-propeller structure with four blades, with

an overall disc-like shape similar to other MMPs (Tochowicz et al., 2011). In this

report, the dimer interface between the hemopexin domains was also identified. Two

hemopexin domains form a symmetrical interaction through blades II and III, which

is facilitated by residues D385, K386, T412 and Y436. Hemopexin domain-mediated

dimerisation was reported to be crucial for cell surface collagen film degradation,

collagen invasion and in vivo tumour growth (Itoh et al., 2006, 2008; Remacle et al.,

2012; Wang et al., 2004a). ProMMP-2 activation, however, is not dependent on

hemopexin-mediated dimer formation (Itoh et al., 2008; Remacle et al., 2012; Wang

et al., 2004a), but on transmembrane domain-mediated dimerisation (Itoh et al.,

2008).

1.2.11 Role of MT1-MMP in cellular invasion

MT1-MMP emerged as a central pericellular collagenase. Although overexpression

of MT1-MMP as well as MT2-MMP and MT3-MMP (but not soluble MMPs) results

in acquisition of the ability to invade basement membranes or fibrin gels, only MT1-

MMP expression supports collagen type I degradation and invasion (Hotary et al.,

2006, 2002). Cells derived from Mt1-mmp -/- mice are unable to degrade collagen

and that defect cannot be rescued by other collagenases (Holmbeck et al., 1999).

Degradation of collagen matrix has been reported to depend solely on MT1-MMP

in a variety of cells, including skin fibroblasts (Holmbeck et al., 1999; Madsen et al.,
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2007; Sabeh et al., 2009a, 2004; Zhang et al., 2006b), pulmonary fibroblasts (Rowe

et al., 2011), cardiac fibroblasts (Koenig et al., 2012), endothelial cells (Chun et al.,

2004), vascular smooth muscle cells (Filippov et al., 2005), human mesenchymal

stem cells (Lu et al., 2010) and rheumatoid synovial fibroblasts (Miller et al., 2009;

Sabeh et al., 2010).

For MT1-MMP to promote collagen invasion, anchoring to the membrane ap-

pears to be a crucial feature (Hotary et al., 2000; Sabeh et al., 2009a, 2004). How-

ever, simply anchoring a collagenase to the membrane does not make this enzyme

a promotor of invasion. When soluble MMP-13 was fused with the transmembrane

and cytoplasmic domains of MT1-MMP, cells expressing this chimera were not able

to degrade collagen. (Itoh et al., 2006). Addition of MT1-MMP-derived hemopexin

domain to this chimera was necessary to induce enzyme dimerisation and enable

collagen degradation (Itoh et al., 2006).

In addition to cell invasion, MT1-MMP was also shown to promote tumour

growth within a 3D collagen environment where it creates space for cells to grow

(Hotary et al., 2000). A crucial role for MT1-MMP in cancer metastasis has been

demonstrated in Mt1-mmp -/- mice, which show reduced tumour dissemination (Sz-

abova et al., 2008). Additionally, mice treated with the anti-MT1-MMP antibody

DX-2400 show reduced tumour growth and metastasis in xenograft models (Devy

et al., 2009).

1.2.12 Functional activation of MT1-MMP by collagen

Expression of MT1-MMP in healthy tissue is usually low and increases when cells

need to remodel the surrounding ECM in physiological or pathological situations.

As described in the previous sections, MT1-MMP function is regulated by many

different processes, including endocytosis and dimerisation. However, the presence

of the active form of MT1-MMP on the cell surface does not necessarily indicate

that the enzyme is ‘functionally active’. For example, although primary fibrob-
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lasts constitutively express MT1-MMP, MMP-2 and TIMP-2 when in culture — all

molecules required for proMMP-2 activation — no active MMP-2 was detected dur-

ing normal cell culture conditions (Zigrino et al., 2001). These results indicate that

although MT1-MMP is expressed, activated and targeted to cell surface, it is unable

to activate MMP-2 and is therefore considered functionally inactive. Cells require

an ‘activator’ to induce MT1-MMP activity. The mechanisms underlying the func-

tional activation of MT1-MMP are not completely understood, but it is believed that

they include both transcriptional and non-transcriptional processes. Concanavalin

A and phorbol 12-myristate 13-acetate are examples of such activators, and they can

induce proMMP-2 activation and a significant increase in MT1-MMP expression in

a variety of cells (Lohi and Keski-Oja, 1995; Lohi et al., 1996; Overall and Sodek,

1990). It has been proposed that concanavalin A-induced proMMP-2 activation is

due to reduced endocytosis of MT1-MMP and increased levels and activity of the

enzyme on the cell surface (Jiang et al., 2001; Remacle et al., 2003).

Among physiological stimuli, collagen type I is known to induce proMMP-2

activation in a number of cells including fibroblasts and cancer cells. ProMMP-2

activation was observed in cells cultured in the presence of type I collagen, but not

in cells cultured on plastic or other commonly used ECM molecules including gelatin

(denatured collagen), laminin, fibronectin, collagen type IV or Matrigel, and this

activation is often accompanied by an increase in MT1-MMP expression (Azzam and

Thompson, 1992; Guo and Piacentini, 2003; Nguyen et al., 2000; Ruangpanit et al.,

2001; Zigrino et al., 2001). Collagen-induced activation of proMMP-2 was observed

in primary fibroblasts from human skin (Azzam and Thompson, 1992; Han et al.,

2001; Lee et al., 1997; Ruangpanit et al., 2001, 2002; Zigrino et al., 2001), breast

(Lafleur et al., 2006) and lung (Tomasek et al., 1997), as well as in endothelial cells

(Haas et al., 1998; Nguyen et al., 2000). In skin fibroblasts, proMMP-2 activation

was observed also in the presence of collagen type II and III (Ruangpanit et al.,

2001). Similarly to fibroblasts, hepatic stellate cells express proMMP-2, MT1-MMP

and TIMP-2 in culture, but no active MMP-2 is detected. ProMMP-2 activation
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occurs only when they are co-cultured with hepatocytes, characterised by extensive

ECM production (including collagens) (Théret et al., 1999). Tumour cells, such as

ovarian cancer (Ellerbroek et al., 2001), HT1080 (Takino et al., 2004) and malignant

mesothelioma cells (Sakai et al., 2011), also show proMMP-2 activation in response

to collagen. Therefore collagen appears to be a functional activator of MT1-MMP

and may play an important role in upregulating MT1-MMP in tissues.

1.3 Collagen as a signalling molecule

In the human body, collagens are the most abundant proteins. They are major

components of the extracellular matrix in general and account for approximately

30% of total protein mass (Myllyharju and Kivirikko, 2004). Collagens support

tissue structure, assemble into cellular barriers such as basement membranes and

provide signals for cell growth, differentiation and migration.

1.3.1 Collagen structure

Collagens are formed from three polypeptide chains, known as α chains. Within one

collagen molecule, individual α chains can be identical or different, resulting in the

formation of homo- or heterotrimers. So far, 46 α chains have been identified, which

assemble into 28 distinct collagen types (Ricard-Blum, 2011). Collagen type I is a

heterotrimer of two α1(I) and one α2(I) chains, whereas three identical α1(II) or

α1(III) chains form collagen type II or III respectively (collagen type in parentheses).

A characteristic feature of collagens is the presence of one or multiple triple helical

domains, and their lengths and numbers vary greatly between collagens. Several

collagen types have additional domains, e.g. membrane-associated collagens with

interrupted triple helices have transmembrane domains.

In a single collagen molecule three α chains are interwoven around each other

and form a right-handed triple helix. Polypeptide chains contain a repeated Gly-

X-Y amino acid sequence, where X is often proline and Y is often 4-hydroxyproline
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(Shoulders and Raines, 2009). The presence of a small and flexible glycine at every

third amino acid is required for formation of a tight helical structure. Proline and

4-hydroxyproline stabilise the α chains before triple helix assembly, and 4-hydroxy-

proline at position Y increases thermal stability of collagen (Shoulders and Raines,

2009).

Collagens interact with each other and form supramolecular assemblies such

as fibrils (e.g. type I, II, III), networks (type IV) or hexagonal networks (type VIII

and X), beaded filaments (type VI) or anchoring fibrils (type VII). Fibril-associated

collagens with interrupted triple helices, such as type IX, bind to collagen fibrils

(Myllyharju and Kivirikko, 2004). Some collagens are widely distributed within

the human body, while expression of other collagen types is restricted to specific

tissues. The most prevalent is type I collagen. It is found in the majority of

tissues including skin, bones, vessel walls, tendons and ligaments. On the contrary,

collagen type II is mostly found in cartilage and vitreous, type IV is only present

in basement membranes and collagen type X is found exclusively in hypertrophic

cartilage (Myllyharju and Kivirikko, 2004).

1.3.2 Assembly of collagen fibrils

The subfamily of fibril-forming collagens include collagen type I, II, III, V, XI, XXIV

and XXVII (Myllyharju and Kivirikko, 2004; Ricard-Blum, 2011). Their α chains

are more than 1000 amino acid long polypeptides. Prior to triple helix assembly,

they are posttranslationally modified in the endoplasmic reticulum. Proline and

lysine are hydroxylated to 3- and 4-hydroxyproline and hydroxylysine respectively.

Additionally, asparagine and hydroxylysine are glycosylated and inter- and intra-

chain disulfide bonds are formed. Three α chains are assembled intracellularly into

procollagen molecules with a one residue stagger between them. Procollagen of fib-

rillar collagens consists of a central, uninterrupted triple helical domain with N- and

C-terminal pro-peptides, separated by short non-helical sequences known as telopep-
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Figure 1.8: Formation of collagen fibrils. Synthesis of procollagen α chains of
fibril-forming collagens and their assembly into triple helical structure takes place
in the endoplasmic reticulum. After secretion, pro-peptidases cleave N- and C-
terminal pro-peptides (pro), exposing non-helical telopeptides (telo). Matured
collagen molecules self-assemble into collagen microfibrils and then into larger fibrils,
which show banding pattern (with D periodicity). Covalent cross-linking in the
telopeptides is facilitated by lysyl oxidase. Figure adapted from Myllyharju and
Kivirikko (2004) and Shoulders and Raines (2009).

tides (Figure 1.8). After secretion, pro-domains are removed by pro-peptidases: the

N-terminal pro-peptide is cleaved by ADAMTS-2 and the C-terminal one by bone

morphogenetic protein-1. After removal of pro-peptides, the N- and C-terminal

telopeptides become exposed and individual collagen molecules self-assemble into in-

termediate fibrils (microfibrils) with a diameter up to 5 nm (Figure 1.8). Merging of

microfibrils results in the formation of mature collagen fibrils with a diameter vary-

ing from 15 nm to 500 nm (Ricard-Blum, 2011). Because of a staggered arrangement

of collagen monomers within a fibril, electron microscopy images of collagens show
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a characteristic banding pattern with a D periodicity of 64–67 nm. Telopeptides

are essential for proper fibril assembly and cross-linking. After assembly, lysines,

hydroxylysines and histidines in telopeptides from the same or adjacent collagen

molecules become cross-linked by lysyl oxidase. Cross-linking increases strength

and stability of collagen fibrils (Shoulders and Raines, 2009).

1.3.3 Collagen function

One of the main functions of collagen is to support tissue architecture as well as to

provide a scaffold for cell attachment and migration. Due to their high stability and

exceptional tensile strength, collagens facilitate mechanical properties of connective

tissues such as skin, tendons, cartilage and bone. Collagens such as network-forming

collagen type IV also constitute barriers for cell migration including basement mem-

branes. Mutations in collagen genes often perturb collagen triple helical structure

and are associated with many disorders. Mutations in the most common type I col-

lagen cause osteogenesis imperfecta, characterised by fragile bones (Ricard-Blum,

2011). An increasing body of evidence shows that collagen also acts as a signalling

molecule and induces cell growth, motility, survival, differentiation and morphogen-

esis. Altered collagen expression characterises pathologies such as atherosclerosis,

cancer and tissue fibrosis. Basal membranes maintain the polarity of endothelial and

epithelial cells that reside on top of them. Presence of some minor collagen types is

often needed for tissue homeostasis. For example, expression of collagen type X is

required for endochondral ossification and collagen VII is essential for integrity of

dermal tissues. Collagen signalling is linked to acquisition of mesenchymal pheno-

type by epithelial cells, in a process known as endothelial-to-mesenchymal transition

(Medici and Nawshad, 2010). Moreover, stiffness of the collagenous matrix appears

to regulate differentiation of mesenchymal stem cells into bone, neurones or muscle

cells (Engler et al., 2006).
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Cell-matrix interactions are mediated by plasma membrane receptors, whose

functions extend beyond substrate attachment, as they are able to transduce signals

and initiate signalling pathways. Integrins and discoidin domain receptors (DDRs)

are two major families of collagen receptors that mediate collagen signalling.

1.3.4 Integrins

Integrins are a large family of ubiquitous cell adhesion receptors (Hynes, 2002).

On the cell surface they form non-covalently bound heterodimers, composed of α

and β subunits. In humans and higher vertebrates, 18 α and 8 β subunits asso-

ciate into 24 distinct integrin receptors (Figure 1.9A). Those can be divided into

four groups based on their primary ligand specificity: RGD-recognising integrins,

collagen integrins, laminin integrins and leukocyte-associated integrins (Barczyk

et al., 2010; Hynes, 2002). However, the list of integrin ligands is far longer and in-

cludes fibronectin, vitronectin, osteopontin, tenascin, fibrinogen, thrombospondin,

E-cadherin and more (Humphries et al., 2006).

The overall structure of integrins can be described as a ligand binding head-

piece, a ‘leg’, transmembrane domain and short cytoplasmic tail (Figure 1.9B). The

extracellular structure of the α subunit consists of a seven-bladed β-propeller, a

‘thigh’ and two ‘calf’ regions: calf-1 and calf-2 . Among 18 α subunits, nine of them

have an additional αI domain inserted between blades 2 and 3 of the β-propeller

domain (Figure 1.9). In these integrins, the αI domain is responsible for ligand

binding. The extracellular part of the β subunit contains: βI domain, hybrid do-

main, a plexin-semaphorin-integrin domain, tandem of four epidermal growth factor

(EGF)-like domains and β-tail domain. In integrins without an αI domain, ligand

binding is facilitated by both the β-propeller of the α subunit and the βI domain

of the β subunit (Hynes, 2002; Luo et al., 2007).
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Figure 1.9: Family of integrin receptors. (A) The family of integrins consists
of 24 receptor heterodimers formed from 18 α and 8 β subunits. Integrins are
divided into four major groups based on their specificity of ligand binding. Collagen-
binding integrins recognise the GFOGER motif present in fibrillar collagens. The
nine α subunits containing an additional ligand-binding αI domain are highlighted
in dark grey. (B) Schematic structure of an integrin dimer on the cell surface, with
α subunit containing αI domain. Figure adapted from Barczyk et al. (2010). EGF
- epidermal growth factor-like; PSI - plexin-semaphorin-integrin.

Collagen binding receptors include integrins α1β1, α2β1, α10β1 and α11β1

(Leitinger, 2011). Collagen binding integrins are involved in inflammatory signalling,

tissue fibrosis, wound healing, and tumour progression. Integrins α1β1 are widely

expressed in many cell types, especially in mesenchymal cells; α2β1 integrins are

expressed in epithelial cells and platelets; expression of α10β1 integrins is restricted

to chondrocytes and α11β1 integrins are expressed in mesenchymal non-muscle cells

at the sites where interstitial collagen is highly organised (Barczyk et al., 2010;

Popova et al., 2007). Mice deficient in α1, α2, α10 or α11 subunit are viable

and show only mild defects, which indicates redundancy in function of α subunits

(Leitinger, 2011), while deficiency of the β1 subunit is lethal at the embryo stage

(Stephens et al., 1995). Integrins α1β1 and α10β1 preferentially bind network-

forming collagen type IV to fibril-forming collagen type I, whereas integrins α2β1
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and α11β1 bind more to collagen type I than IV (Barczyk et al., 2010; Popova et al.,

2007). Binding motifs in fibrillar collagens are well characterised and GFOGER was

the first identified high-affinity sequence found in collagens type I and II (Knight

et al., 1998, 2000). Since then, several binding motifs have been characterised,

leading to identification of the minimal consensus binding sequence Gxx’GEx” in

fibrillar collagens (Raynal et al., 2006; Xu et al., 2000; Zhang et al., 2003).

At the ECM attachment sites, integrins cluster and form focal adhesions. Sev-

eral adaptor molecules are recruited to the integrin cytoplasmic domains, including

focal adhesion kinase, paxillin, talin, tensin, vinculin and α-actinin, forming the

focal adhesion complex. Through these adaptor molecules, integrins link the ECM

to the actin cytoskeleton, which also allows generation of traction force required

for cell migration. In addition to their cell adhesion property, integrins can medi-

ate inside-out and outside-in signalling in a bidirectional manner (Harburger and

Calderwood, 2009). On the cell surface they exist in one of two conformations:

bent (with headpiece pointing towards the cell membrane) or open (headpiece fac-

ing away from the cell membrane), corresponding to low- and high-affinity states

respectively (Luo et al., 2007). Binding of adaptor proteins e.g. talin to the cyto-

plasmic tails can induce conformational changes to the high-affinity state (inside-out

signalling) (Harburger and Calderwood, 2009). Ligand binding promotes the open

conformation, formation of integrin clusters and initiation of signalling pathways re-

quired for cell spreading, migration, growth and proliferation (outside-in signalling).

Ligand-mediated integrin clusters are stabilised by binding of talin and paxillin to

the integrin cytoplasmic tail. In turn, talin and paxillin recruit focal adhesion ki-

nase and actin-binding proteins, leading to the formation of mature focal adhesions.

Focal adhesion kinase is a non-receptor tyrosine kinase, which becomes phosphory-

lated and forms a complex with Src kinase upon integrin activation. This complex

further phosphorylates proteins present at focal adhesions and propagates signal

transduction (Berrier and Yamada, 2007; Mitra et al., 2005; Nagano et al., 2012).
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1.3.5 Discoidin domain receptors

Discoidin domain receptors (DDRs) are widely expressed cell surface collagen re-

ceptors and they belong to the family of receptor tyrosine kinases (RTKs) (Johnson

et al., 1993; Leitinger, 2011; Shrivastava et al., 1997; Vogel et al., 1997). Unlike

other RTKs, ligands of DDRs are not soluble molecules but collagens (Shrivastava

et al., 1997; Vogel et al., 2000, 1997). There are only two members of this family:

DDR1 and DDR2, with approximately 78% sequence homology. DDRs appear to

be well conserved among species (Leitinger, 2011; Vogel et al., 2000). Their ex-

tracellular domains share sequence homology to discoidin-I, a protein involved in

cell aggregation in the slime mold Dictyostelium discoideum, therefore the name

of this receptor family (Johnson et al., 1993). The structure of DDRs comprises

extracellular, globular discoidin domain and discoidin-like domains, followed by a

transmembrane domain, a large intracellular juxtamembrane region and a kinase

domain at the C-terminus (Figure 1.10) (Carafoli et al., 2012; Playford et al., 1996;

Vogel, 1999).

DDRs are expressed during embryogenesis and in adult tissues, with distinct

expression patterns (Marco et al., 1993; Vogel et al., 2006). DDR1 is found in lung,

colon, kidney, brain, placenta as well as in keratinocytes, hepatocytes and smooth

muscle cells. DDR2 is expressed in heart, skeletal muscles, lung, brain, kidney

and connective tissue (Vogel et al., 2006). DDR1 is mainly expressed in epithelial

cells, while DDR2 is found in mesenchymal cells. In humans, DDR1 is present in

5 isoforms (transcript variants 1–5) due to alternative splicing and variants 4 and

5 are deficient in kinase activity. DDR2 has only 1 identified isoform (Alves et al.,

2001; Song et al., 2011).

DDRs are implicated in cell growth, motility, MMP expression, cancer and

metastasis (Leitinger and Hohenester, 2007; Vogel et al., 2006). Mutations in hu-

man DDR2 lead to a rare, autosomal recessive spondylo-meta-epiphyseal dysplasia

short limb-abnormal calcification type syndrome (OMIM:271665), which is charac-
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Figure 1.10: Structure of discoidin domain receptors. DDR1 and DDR2, the
only members of the DDR family, belong to the receptor tyrosine kinase superfam-
ily. DDR structure comprises discoidin domain, discoidin-like domain, transmem-
brane domain and kinase domain. They form constitutive dimers on the cell surface
through their transmembrane domains. DDRs bind collagens in their native triple
helical form and do not bind denatured collagens. Each molecule has a collagen
binding site in the discoidin domain. However, the specific binding mode has not
been defined.

terised by short stature and shortening of upper and lower limbs (Ali et al., 2010;

Bargal et al., 2009). Correspondingly, Ddr2 -/- mice show dwarfism, craniofacial de-

formities, decreased chondrocyte proliferation and shortening of long bones (Kano

et al., 2008; Labrador et al., 2001). Ddr1 -/- mice are also smaller than their litter-

mates and show defects in mammary gland development (Vogel et al., 2001). Both

DDRs are implicated in cancer (Johnson et al., 1993; Valiathan et al., 2012; Zhang

et al., 2012), atherosclerosis (Ferri et al., 2004; Franco et al., 2008) and liver fibrosis.

Expression levels of DDR2 are elevated in RA in the synovial intimal lining and are

correlated with increased expression of MMP-13 (Su et al., 2009). Activation of

DDR2 is also linked to the induction of MMP-13 in mouse models of OA (Xu et al.,

2005, 2011).
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DDRs bind collagens through their discoidin domain and binding induces phos-

phorylation of tyrosines in the cytoplasmic kinase domain independently of integrins

(Carafoli et al., 2009; Vogel et al., 2000). As opposed to other RTKs, phosphoryla-

tion is slow and sustained and reaches a maximum after hours instead of minutes

(Shrivastava et al., 1997; Vogel et al., 2000, 1997). On the cell surface, DDRs form

stable homodimers prior to ligand binding as a result of tight interactions of their

transmembrane domains (Noordeen et al., 2006).

Both DDR receptors are activated by fibrillar collagens type I, II, III and

V (Shrivastava et al., 1997; Vogel et al., 1997). Other ECM molecules such as

fibronectin or laminin do not induce autophosphorylation (Leitinger, 2003; Vogel

et al., 1997). DDR1 is also activated by collagen type IV and VIII (Hou et al.,

2001; Leitinger, 2003; Shrivastava et al., 1997; Vogel et al., 1997). DDR2 does not

bind to collagen IV, but instead binds collagen type X and preferentially binds col-

lagen type II, both found in cartilage (Leitinger and Kwan, 2006; Leitinger et al.,

2004). Denatured collagens do not induce activation of DDRs, indicating that na-

tive triple helical structure is required for recognition and binding (Leitinger, 2003;

Vogel, 1999). Recently, the minimal binding motif in collagens I-III was identified as

GVMGFO. Triple helical peptides containing the GVMGFO sequence where found

to induce DDR autophosphorylation with kinetics similar to native collagen (Konit-

siotis et al., 2008; Xu et al., 2011). Purified DDR2 discoidin domain binds triple

helical peptides with 1:1 stoichiometry and the crystal structure of this complex

identified residues required for ligand binding. However, the exact model of colla-

gen binding by the DDR dimer on the cell surface is not known (Carafoli et al.,

2009; Konitsiotis et al., 2008).
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1.4 Cartilage signalling in synovial cell invasion

In RA synovium, MT1-MMP shows a characteristic pattern of expression (Figure

1.11). Analysis of several samples of human RA cartilage showed consistently higher

MT1-MMP expression in cells invading the cartilage and in direct contact with the

cartilage matrix (Konttinen et al., 1998; Miller et al., 2009; Petrow et al., 2002).

In normal synovium, little or no expression of MT1-MMP, MMP-2 and TIMP-2 is

detected and no activation of MMP-2 is observed (Goldbach-Mansky et al., 2000;

Petrow et al., 2002; Yamanaka et al., 2000). The expression of all three proteins

is elevated in RA and MT1-MMP often co-localises with MMP-2 and TIMP-2 in

synovial membrane, particularly in lining layer fibroblasts (Konttinen et al., 1999a,

1998; Pap et al., 2000b; Petrow et al., 2002; Yamanaka et al., 2000). Secreted MMP-

2 accumulates in the synovial fluid and its levels have been found to correlate with

cartilage erosions (Goldbach-Mansky et al., 2000; Tchetverikov et al., 2004). Active

MMP-2 was detected in synovial fluid and synovial membranes of RA patients as

well as in the conditioned medium from RA synovial fibroblasts (Smolian et al.,

2001; Tchetverikov et al., 2004; Yamanaka et al., 2000). These findings indicate

that MT1-MMP, which is a cellular activator of proMMP-2, is functionally active

in RA synovial cells.

Figure 1.11: MT1-MMP is expressed at pannus-cartilage junctions in RA
joint. Sections of RA joints were stained against MT1-MMP. Arrowheads indicate
cartilage-pannus junction and high expression of MT1-MMP. Figures courtesy of Dr.
Yoshifumi Itoh, Kennedy Institute of Rheumatology, University of Oxford. Scale
bar: 100 µm.
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As described above, fibrillar collagens were shown to activate MT1-MMP and

induce proMMP-2 activation in a variety of cells. Several research groups investi-

gated the role of collagen receptors in this process, predominantly integrins. How-

ever, their role in this process is not fully understood. It has been reported that

aggregation of integrins using bead-immobilised anti-β1 integrin antibodies increases

MT1-MMP expression and induces proMMP-2 activation in ovarian cancer cell lines

(Ellerbroek et al., 1999, 2001). In skin fibroblasts cultured in the presence of col-

lagen, MT1-MMP expression was also reported to be at least partially mediated

by integrins (Zigrino et al., 2001). Antibodies against α2 integrin subunit reduced

proMMP-2 activation in human umbilical vein endothelial cells cultures within colla-

gen gels. On the contrary, a study by Sakai et al. (2011) shows that knockdown of β1

integrin expression does not affect MT1-MMP synthesis or proMMP-2 activation in

human malignant mesothelioma cells cultured in 3D collagen. Another study showed

that function inhibiting anti-β1 integrin antibodies alone, or in combination with

anti-α2 integrin antibodies, did not block collagen-induced proMMP-2 activation in

hepatic stellate cells (Théret et al., 1999). In addition, β1 integrin often co-localises

with MT1-MMP at the cell invasion front, both on 2D substrates and within 3D

matrices (Ellerbroek et al., 2001; Gálvez et al., 2002; Wolf et al., 2007; Woskowicz

et al., 2013). This led to the conclusion that β1 integrin and MT1-MMP cooperate

in ECM cleavage. Although both can be found in the same invasive structures, there

is inconclusive evidence that MT1-MMP is in direct contact with β1 integrin and

some studies were unable to efficiently co-immunoprecipitate MT1-MMP and β1

integrin (Gálvez et al., 2002; Woskowicz et al., 2013). The role of DDRs in collagen-

induced MMP-2 activation has not been studied in detail. Overexpression of DDR2,

but not of DDR1, promoted collagen-induced proMMP-2 activation in smooth mus-

cle cells (Ferri et al., 2004). In isolated RA synovial fibroblasts stimulated with

collagen type II, DDR2 was implicated in mediating increase of MMP-1 and MMP-

2 expression (Zhang et al., 2006a). Additionally, Ddr2-/- mice show impaired wound

healing and lower levels of proMMP-2 (Olaso et al., 2011).
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1.5 Hypothesis and aims of the thesis

In RA, cartilage destruction by pannus invasion is an irreversible process, in which

synovial fibroblasts are actively involved. These cells show several signs of trans-

formation and, when isolated, deeply invade into the cartilage even without the

inflammatory environment of the RA joint (Miller et al., 2009; Rutkauskaite et al.,

2005; Sabeh et al., 2010). During progression of the disease, synovial fibroblasts

express a variety of proteolytic enzymes which degrade the cartilage components.

Among these, MT1-MMP - a membrane-bound collagenase - appears to be crucial

for promoting synovial cell invasion. Recent studies demonstrated that MT1-MMP

is required for collagen degradation and cartilage invasion by RA synovial fibroblasts

(Miller et al., 2009; Sabeh et al., 2010).

Interestingly, MT1-MMP is highly expressed in synovial fibroblasts invading

the cartilage and in close contact with cartilage’s major ECM component: fibrillar

collagen type II (Miller et al., 2009). It has been demonstrated that one of the

activators of MT1-MMP in many cell types, by yet unknown mechanisms, is fibrillar

collagen (Ellerbroek et al., 2001; Haas et al., 1998; Ruangpanit et al., 2001; Takino

et al., 2004; Zigrino et al., 2001).

Therefore, we hypothesise that collagen is a likely functional activator of MT1-

MMP in RA synovial fibroblasts. Indeed, RA synovial fibroblasts invade deeper into

aggrecan-depleted cartilage, where collagen fibrils are more exposed (Miller et al.,

2009).

Although considerable research has been carried out to identify collagens re-

ceptors involved in induction of MT1-MMP activation by fibrillar collagens, no

conclusive agreement has been found. Thus the objective of this study is to deter-

mine collagen receptors involved in collagen-induced MT1-MMP activation in RA

synovial fibroblasts.
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Aims of this thesis:

- confirm that collagen induces MT1-MMP expression and activity in RA synovial

fibroblasts.

- investigate mechanisms of collagen-induced expression and activity of MT1-MMP

in RA synovial fibroblasts.

- identify collagen receptor(s) involved in collagen-induced MT1-MMP activation.

- examine role of collagen receptors in MT1-MMP-dependent degradation of collagen

and gelatin as well as in MT1-MMP-dependent collagen invasion.

- determine ability of cartilage tissue to activate MT1-MMP and investigate role of

collagen receptors in this process.
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Chapter 2

Materials and Methods

2.1 Reagents

2.1.1 Antibodies

Primary antibodies

Mouse anti-(human MT1-MMP hemopexin domain) monoclonal antibody (222-

1D8) was a gift from Professor Motoharu Seiki (University of Tokyo, Japan); rabbit

anti-(human MT1-MMP catalytic domain) monoclonal antibody (clone EP1264Y)

was from Epitomics, Abcam (Cambridge, UK); humanised anti-(human MT1-MMP

catalytic domain) monoclonal antibody DX-2400 was a gift from Dyax Corp. (Bur-

lington, USA); goat anti-(human G-actin) polyclonal antibody (I-19) was from Santa

Cruz Biotechnology Inc. (Santa Cruz, USA); goat anti-(human DDR1 extracellular

domain) polyclonal antibody (AF2396) and goat anti-(human DDR2 extracellular

domain) polyclonal antibody (AF2538) were from R&D Systems (Abingdon, UK);

mouse anti-phosphotyrosine antibody (clone 4G10); rabbit anti-(human β1 inte-

grin) polyclonal antibody (AB1952); mouse anti-(human β1 integrin) monoclonal

antibody, azide-free (clone 6S6) and mouse anti-(human β1 integrin) monoclonal

antibody, azide-free (clone P4G11) were from Millipore (Watford, UK). Antibodies

supplied in azide-free solution were suitable for the cell culture.
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Secondary antibodies

The following alkaline phosphatase (AP)-conjugated antibodies were from Sigma-

Aldrich (Dorset, UK): rabbit anti-(goat IgG), goat anti-(mouse IgG Fc specific) and

goat anti-(mouse IgG Fab specific). AP-conjugated goat anti-(rabbit IgG) antibody

was from Promega (Southampton, UK). Horseradish peroxidase (HRP)-conjugated

swine anti-(rabbit IgG) antibody was from Dako UK Ltd. (Ely, UK).

2.1.2 Cell culture reagents

Human synovial fibroblasts were isolated from samples obtained from rheumatoid

arthritis patients undergoing joint replacement surgery. Human dermal fibroblasts

were isolated from skin samples obtained from healthy donors. HT1080 fibrosar-

coma cell line and human embryonic kidney 293 (HEK293) cells were purchased

from LGC Promochem and HEK293-EBNA cells were purchased from Life Tech-

nologies (Paisley, UK). HEK293-EBNA stably expressing DDR2 (in pCEP4 vector)

were a kind gift from Dr. Yasuyuki Shitomi (Kennedy Institute of Rheumatology,

University of Oxford, UK).

Dulbecco’s Modified Eagle’s Medium (DMEM) was from Lonza (Verviers, Bel-

gium). Dulbecco’s phosphate buffered saline (DPBS), fetal bovine serum (FBS)

and OptiMEM reduced serum medium were from Life Technologies (Paisley, UK).

1 M HEPES buffer, hygromycin B (50 mg/ml in PBS), penicillin (10,000 units/ml),

streptomycin (10 mg/ml), trypsin/EDTA in DPBS were from PAA Laboratories

(Pasching, Austria). Concanavalin A type VI, Cytodex 3 microcarrier beads, ster-

ile dimethyl sulfoxide (DMSO), type A gelatin from porcine skin and 10×RPMI-

1640 were from Sigma-Aldrich (Dorset, UK). Interferin transfection reagent and 12-

well 8 µm polyethylene terephthalate (PET) track-etched membrane culture inserts

(transwells) were from VWR International Ltd. (Lutterworth, UK). Corning Cell-

BIND 12-well plates were from Costar (Amsterdam, The Netherlands). SMART-

pool ON-TARGETplus siRNAs for MT1-MMP, DDR2 and integrin β1 (ITGB1)
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as well as non-targeting siRNA were purchased from Dharmacon, ThermoScientific

(Northumberland, UK). Recombinant human TNF-α and IL-1β were from Pepro-

tech (London, UK). TransIT-2020 Transfection Reagent was from Mirus (Madison,

USA). GM6001 (Ilomastat) was purchased from Elastin Products Company (Mis-

souri, USA). PureCol collagen type I from bovine hide was from Advanced BioMatrix

(Leimuiden, The Netherlands); CellMatrix Type I-A collagen type I from porcine

tendon was from Nitta-Gelatin Inc. (Osaka, Japan). Guinea pig acid- and pepsin-

extracted collagens were provided by Dr. Rob Visse (Kennedy Institute of Rheuma-

tology, University of Oxford, UK). Human and bovine collagen type II from articular

cartilage were from Chondrex Inc. (Redmond, WA, USA). Purified recombinant hu-

man TIMP-1 and TIMP-2 were provided by Dr. Yoshifumi Itoh (Kennedy Institute

of Rheumatology, University of Oxford, UK). Activated recombinant MMP-1 was

provided by Dr. Mohammad Nickdel (Kennedy Institute of Rheumatology, Uni-

versity of Oxford, UK). Triple helical peptides were a kind gift from Dr. Birgit

Leitinger (Imperial College London, UK).

2.1.3 Molecular biology reagents

2-amino-2-methyl-1,3-propanediol (ammediol), ammonium chloride (NH4Cl), bo-

vine serum albumin (BSA), bromophenol blue, calcium chloride (CaCl2), glutaralde-

hyde, glycine, magnesium chloride (MgCl2), β-mercaptoethanol (β-Me) and Trizma

base were purchased from Sigma-Aldrich (Dorset, UK). Acetic acid, ammonium per-

sulfate, butanol, Coomassie Brilliant Blue R-250, formic acid, glycerol, hydrochloric

acid (HCl), methanol, 10× phosphate buffered saline (PBS), sodium azide (NaN3),

sodium chloride (NaCl), sodium dodecyl sulfate (SDS), sodium hydroxide (NaOH),

sodium bicarbonate (NaHCO3), sucrose, sulfuric acid (H2SO4), N, N, N’, N’-tetra-

methylethylenediamine (TEMED), toluene, Triton X-100, Tween 20 and zinc chlo-

ride (ZnCl2) were from VWR International Ltd. (Lutterworth, UK). Trans-Blot

Turbo 0.2 µm polyvinylidene difluoride (PVDF) Membrane Transfer Packs were
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from Bio-Rad Laboratories (Hemel Hempstead, UK). Marvel dry skimmed milk

was from Premier Foods, UK. Western Blue stabilised substrate for AP was pur-

chased from Promega (Southampton, UK). Novex 4–16% casein zymogram Tris-

glycine gels were from Life Technologies (Paisley, UK). BCA Protein Assay Kit,

Maxima Probe/ROX quantitative polymerase chain reaction (qPCR) Master Mix

(2×) and Page Ruler Plus Pre-stain Protein Ladder were purchased from Ther-

moScientific (Northumberland, UK). Micro RNeasy RNA extraction kit and 0.1 ml

PCR tubes with lids were from Qiagen (Crawley, UK). Gene expression TaqMan

assay for human MT1-MMP (ID: Hs00237119-m1; FAM probe), Ribosomal RNA

Control Reagents (VIC probe) and High-Capacity cDNA Reverse Transcription

Kit were from Applied Biosystems, Life Technologies (Paisley, UK). 30% (w/v)

acrylamide/bis-acrylamide (37.5 : 1) was from Severn Biotech Ltd. 3,3’,5,5’-tetra-

methylbenzidine (TMB) Microwell Peroxidase Substrate System was from KPL

(Gaithersburg, MD, USA). Corning 96-well EIA/RIA High Binding flat bottomed

plates were from Costar (Amsterdam, The Netherlands).

2.1.4 Molecular cloning reagents

Agarose (electrophoresis grade), 100 mM dNTP Set, DH5α and TOP10 Escherichia

coli electrocompetent cells, LB medium, LB agar, pCEP4 DNA plasmid vector and

zeocin (100 mg/ml) were from Life Technologies (Paisley, UK). pFUSE–rIgG–Fc1

DNA plasmid vector (with zeocin resistance gene) was from InvivoGen, Source Bio-

Science (Nottingham, UK). Chloroform, ethanol, sodium acetate (C2H3NaO2) and

SYBR Green I nucleic acid stain (10,000×) were from Sigma-Aldrich (Dorset, UK).

CloneJET PCR Cloning Kit (with pJET1.2 DNA plasmid vector), FastAP Ther-

mosensitive Alkaline Phosphatase, FastDigest restriction enzymes, FastDigest uni-

versal buffer, GeneJET Gel Extraction Kit, Gene Ruler 1 kb Plus DNA Ladder,

Phusion Hot Start II High Fidelity polymerase (F-549), 5×Phusion High Fidelity

reaction buffer (F-518), Rapid DNA Ligation Kit, T4 DNA Ligase and ZipRuler
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Express DNA Ladder Set were from ThermoScientific (Northumberland, UK). Pfu

polymerase and 10×Pfu reaction buffer were from Agilent Technologies (Woking-

ham, UK). Taq polymerase and 10×Taq reaction buffer were from New England

Biolabs Ltd (Hitchin, UK). PureYield plasmid Midiprep system with endotoxin

removal was from Promega (Southampton, UK). Ethidium bromide, ethylenedi-

aminetetraacetic acid (EDTA), electroporation cuvettes (2 mm gap) and potassium

acetate (CH3CO2K) were from VWR International Ltd. (Lutterworth, UK). Car-

benicillin was purchased from Millipore (Watford, UK). RNase A from bovine pan-

creas (DNase-free) was from Qiagen (Crawley, UK).

2.1.5 Immunocytochemistry reagents

Alexa Fluor 488- and Alexa Fluor 568-conjugated phalloidin, Alexa Fluor 488 sul-

fodichlorophenol ester, 4’,6-diamidino-2-phenylindole (DAPI), goat serum and Pro-

Long Gold mounting solution were purchased from Life Technologies (Paisley, UK);

glass cover slips (∅ 18 mm) and Menzel-Gläser microscope slides were obtained from

VWR International Ltd. (Lutterworth, UK); paraformaldehyde (PFA) was from

Sigma-Aldrich (Dorset, UK).

2.1.6 Plasmid DNA constructs

DDR1 (transcript variant 1; accession number NM001954.4) and DDR2 (transcript

variant 2; accession number NM006182.2) full length cDNA clones in pSG5 vector

(DDR1/pSG5 and DDR2/pSG5) were provided by Dr. Yoshifumi Itoh (Kennedy

Institute of Rheumatology, University of Oxford, UK). The following plasmids were

also provided by Dr. Itoh: DDR1-W53A/pSG5 – DDR1 with introduced W53 to

Ala mutation and DDR1-NHA-R105A-CF/pSG5 – DDR1 with introduced R105 to

Ala mutation, N-terminal HA tag (NHA) and C-terminal FLAG tag (CF).
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2.2 Culture of mammalian cells

2.2.1 Cell culture conditions

Mammalian cells were cultured in DMEM supplemented with 10% (v/v) FBS,

100 U/ml penicillin and 100 µg/ml streptomycin and maintained in sterile condi-

tions at 37°C in 5% (v/v) CO2 atmosphere in the humidified incubator. Cells were

routinely sub-cultured when they reached confluency. To detach cells from cul-

ture dishes, they were washed twice in DPBS and incubated with trypsin/EDTA

for 5 minutes at 37°C. Cells were harvested with serum-containing DMEM and

centrifuged at 510× g for 5 minutes in a bench top centrifuge. Cell pellets were

resuspended in fresh growth medium and seeded onto new dishes. RA synovial fi-

broblasts and dermal fibroblasts were split at ratios 1:3 or 1:5, respectively. HT1080

and HEK cells were split at 1:5 ratio. Medium was changed every 2–3 days.

2.2.2 Cryopreservation of cells

Cells where cryopreserved in growth medium containing DMSO as a protective

agent. Cells were harvested by trypsinization and resuspended in a mixture of

DMEM (40% v/v), DMSO (10% v/v) and FBS (50% v/v). Aliquots of cell suspen-

sions were frozen overnight at −80°C in freezing containers with a cooling rate of

1°C per minute. Cell stocks were thereafter stored in liquid nitrogen (−196°C). To

recover cells from the frozen stock, cryovials were quickly thawed in the 37°C water

bath, the cell suspension mixed with 9 ml of pre-warmed DMEM and centrifuged

for 5 minutes at 510× g. Cell pellets were resuspended in fresh growth medium and

seeded onto culture dishes.
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2.2.3 Transfection of cells with siRNAs

SMARTpool ON-TARGETplus siRNA sets containing 4 different siRNA duplexes

were used to knockdown expression of individual genes. Non-targeting siRNA

(siNT) was used as a negative control. 2.5× 104 cells were transfected with 5 nM

siRNAs in a 24-well plate with 2µl of Interferin as a transfection reagent. Alter-

natively, 2× 105 cells were transfected with 5 nM siRNAs in a 60 mm culture dish

with 15 µl of Interferin. Conditions for transfection are summarised in Table 2.1.

Duplexes of siRNAs were first diluted in OptiMEM, then mixed with Interferin,

dispensed onto the dishes and incubated at room temperature for 20 minutes to

allow formation of siRNA-Interferin transfection complexes.

Cells in growth medium were then added into the dishes and cultured for

24–48 h before proceeding with further experiments. Efficiency of gene knockdown

was confirmed on a protein level by SDS-PAGE and Western Blotting, usually 48 h

after transfection. Densitometry analysis of Western blot bands intensities was

performed using Phoretix 1D Gel Analysis Software.

Table 2.1: Transfection of mammalian cells with 5 nM siRNA.

Culture siRNA OptiMEM Interferin Cell Number Total

Dish Duplexes Volume Volume in Medium Volume

24-well 3 pmol 100 µl 2µl 2.5× 104 in 500 µl 600 µl

60 mm 22 pmol 400 µl 15µl 2× 105 in 4 ml 4.4 ml

Optimisation of siRNA transfections

Three siRNA concentrations were tested (5 nM, 10 nM and 20 nM) to determine

the lowest effective siRNA concentration for transfection of fibroblasts. All concen-

trations showed high efficiency of gene expression knockdown in both RA synovial

(Figure 2.1A) and dermal fibroblasts (Figure 2.1B). Densitometry analysis of West-

ern blots of DDR2 and integrin β1 showed more than 80% reduction of expression

at the protein level 48 h after transfection. Transfection with 5 nM siRNA provides

53



2.2. Culture of mammalian cells

more that 80% expression knockdown for up to 5 days, therefore this concentration

was used throughout the study (Figure 2.1C).

Figure 2.1: Optimisation of fibroblast transfection with siRNAs. RA
synovial fibroblasts (A) or dermal fibroblasts (B) were transfected with 20 nM
non-targeting siRNA and 5, 10 or 20 nM of siRNAs for DDR2 and ITGB1 in 24-well
plates. Cells were lysed after 48 h and protein levels evaluated by Western Blotting.
(C) RA synovial fibroblasts were transfected with 5 nM siNT and siDDR2 in 24-
well plates and gene knockdown analysed at 2, 3, 4 and 5 days after transfection.
Untreated (UT) cells at 5 days were also analysed. Percent of remaining gene
expression was calculated by comparison with same day siNT transfected cells.
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2.2.4 Transfection of mammalian cells with plasmid DNA

2× 105 cells were seeded in 6-well plates 24 h before transfection, in growth medium

without antibiotics. The next day, cells were usually 60–70% confluent and medium

was changed to 2 ml of fresh growth medium also without antibiotics. For transfec-

tion, 1µg of DNA was mixed with 3 µl of TransIT transfection reagent in 100 µl of

OptiMEM, vortexed and incubated for 20 minutes at room temperature and then

drop-wise added to cells. The medium was changed the following day to full growth

medium. Cells were used for further experiments 24–48 h after transfection. Protein

expression was evaluated by SDS-PAGE and Western Blotting, usually 48 h after

transfection.

2.2.5 Establishment of stable cell lines

HEK293-EBNA cells were transfected with DNA constructs cloned into pCEP4

vector. pCEP4 vectors carry an Epstein-Barr Virus replication origin (oriP) and

nuclear antigen (encoded by the EBNA-1 gene) enabling its episomal replication

in HEK293-EBNA. Cells were transfected in a 6-well plate format, with 1µg DNA

and TransIT transfection reagent as described above (Section 2.2.4). 48 h after

transfection, the medium was changed to complete growth medium supplemented

with 400 µg/ml of hygromycin B. The medium was changed every 2–3 days to re-

move dead cells and to replenish the antibiotic. Cells were split in 1:3 ratio when

they reached confluence. Stable cell lines were established by continuous culture in

the presence of hygromycin B for approximately 2–3 weeks, until the majority of

non-transfected cells died. Frozen cell stocks were prepared from early established

cultures.
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2.3 Molecular cloning techniques

2.3.1 Solutions used for molecular cloning

Alkaline lysis solution I

25 mM Tris-HCl (pH 8.0), 10 mM EDTA (pH 8.0).

Alkaline lysis solution II

0.2 M NaOH, 1% (w/v) SDS.

Alkaline lysis solution III

3 M potassium acetate, 11.5% (v/v) acetic acid.

Carbenicillin stock solution (1000× )

Carbenicillin (ampicillin analogue) dissolved at 100 mg/ml in water, 0.22 µm

filter sterilised and stored in aliquots at −20°C.

DNA loading buffer (6× )

30% (v/v) glycerol, 0.25% (w/v) bromophenol blue.

Tris-Acetate-EDTA (TAE) electrophoresis buffer (0.5× )

20 mM Tris, 10 mM acetate, 0.5 mM EDTA (pH 8.0).

Tris-EDTA (TE) buffer (pH 8.0) with RNase A

10 mM Tris-HCl (pH 8.0), 1 mM EDTA (pH 8.0), 100µg/ml RNase A.

2.3.2 Conditions for bacterial culture

LB medium and LB agar were prepared according to manufacturer’s instructions

and sterilised by autoclaving at 121°C. Prior to use, they were supplemented with

appropriate antibiotics (100 µg/ml of carbenicillin or 25 µg/ml of zeocin). Usually

50–100 µl of liquid bacteria culture were spread on agar plates or bacteria were

streaked using a sterile loop. Plates were incubated at 37°C in an incubator for

16–18 h to allow growth of single colonies. Thereafter plates were stored at 4°C. For

liquid cultures, LB medium was inoculated with bacteria from a single colony or a

small volume of culture and incubated for 16–18 h at 37°C with 220 rpm shaking.
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2.3.3 Preparation of bacteria glycerol stocks

Bacteria from overnight cultures were pelleted down by centrifugation at 16,000× g

for 3 minutes in a 1.5 ml microfuge tube with a screw cap, resuspended in 20%

(v/v) sterile glycerol in LB medium, vortexed thoroughly and snap frozen in liquid

nitrogen. Glycerol stocks were stored at −80°C.

2.3.4 Alkaline lysis for isolation of plasmid DNA

An alkaline lysis method was used for isolation of plasmid DNA from small volumes

(3–4 ml) of bacteria cultures (Sambrook and Russell, 2001). Cells from overnight

cultures were pelleted down by centrifugation for 3 minutes and supernatants dis-

carded. All centrifugation steps were performed at 16,000× g. Cell pellets were

thoroughly resuspended in 100 µl of ice cold Alkaline Lysis Solution I and lysed in

200 µl of room temperature Solution II, mixed by inversion and incubated on ice for

5 minutes. 150 µl of Solution III was added to the cell lysate, mixed by inversion

and incubated on ice for a further 5 minutes. To help remove proteins, 10µl of

chloroform was added, the lysate briefly vortexed and centrifuged for 10 minutes.

The supernatant was transferred to a new 1.5 ml microfuge tube and mixed with

2 volumes of 100% ethanol, incubated at room temperature for 2–3 minutes and

centrifuged for 10 minutes. The DNA pellet was washed once with 700µl of 70%

ethanol and air dried. DNA was resuspended in 50µl of TE buffer with RNase A

and incubated at 37°C for 30 minutes to remove RNA.

2.3.5 Medium scale isolation of plasmid DNA with silica-

membrane columns

To isolate plasmid DNA from medium size bacteria cultures (50–100 ml) PureYield

Plasmid Midiprep System with endotoxin removal was used to obtain high quality

DNA for transfection of mammalian cells. Plasmid DNA was isolated with silica-
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membrane columns according to manufacturer’s instructions. DNA was eluted from

the column with 500–800µl of nuclease-free water.

2.3.6 Measurement of DNA concentration

DNA concentrations were measured by sample absorbance at 260 nm using a Nano-

Drop 1000 Spectrophotometer. Additionally, purity of the samples was measured as

a ratio of absorbance at 260 nm (absorbance peak for DNA) and 280 nm (absorbance

peak from protein). Samples with 260/280 ratio higher than 1.8 were considered

pure.

Alternatively, DNA fragments were separated by agarose gel electrophoresis

(See Section 2.3.8) alongside serial dilutions of DNA ladders with known concen-

trations of DNA fragments. DNA concentration was estimated by comparison to

intensities of DNA ladder fragments of similar size.

2.3.7 Restriction enzyme digestion of DNA

FastDigest restriction enzymes were used to digest plasmid DNA. Their activity is

described as such that 1 µl of the Fast Digest enzyme can cleave up to 1 µg of DNA

in FastDigest buffer during 5–15 minutes incubation time in 20µl reaction volume.

Individual enzymes were used at 1/20 reaction volume supplemented with uni-

versal 10×FastDigest buffer to a final 1× concentration. If not otherwise stated,

reaction components were mixed, briefly spun and incubated between 30 minutes

to 2 h at 37°C, but no longer than specified to avoid unspecific DNA cleavage (star

activity).

2.3.8 Agarose gel electrophoresis

DNA fragments were separated by electrophoresis using 1% (w/v) agarose mini-

gels prepared in 0.5×TAE buffer supplemented with 0.5µg/ml ethidium bromide.

DNA samples were mixed with 6×DNA loading buffer prior to loading. Gels were
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run for 15–30 minutes at 135 V in 0.5×TAE buffer. DNA ladders (0.5 µg per well)

were run alongside the DNA samples as weight markers. Gels were scanned using

a Molecular Imager Gel Doc XR+ Image System (Bio-Rad Laboratories, Hemel

Hempstead, UK) with UV Transilluminator and analysed with Quantity One 1-D

Analysis Software (Bio-Rad Laboratories, Hemel Hempstead, UK).

2.3.9 Extraction of DNA fragments from agarose gels

A GeneJET Gel Extraction Kit was used for purification of DNA fragments sepa-

rated by gel electrophoresis. Prior to loading samples onto the gel, they were mixed

with SYBR green I and separated on 1% agarose gels prepared without ethidium

bromide. DNA bands were identified under the UV Transilluminator, excised with a

clean scalpel and transferred to pre-weighted 1.5 ml microfuge tubes. DNA was ex-

tracted from agarose gels according to manufacturer’s instructions and eluted from

the column in 20µl of Elution Buffer or nuclease-free water.

2.3.10 Ligation of DNA fragments

To ligate DNA fragments, 2µg to 4 µg of plasmid DNA were digested using appro-

priate enzymes in 40 µl total reaction volume and enzymes inactivated according to

their specifications. To prevent re-circularisation of the empty vector, 1 µl (1 U) of

FastAP Thermosensitive Alkaline Phosphatase was added to the linearised vector

and incubated for 30 minutes at 37°C to remove 5’- and 3’-phosphate groups from

the DNA ends. DNA fragments were separated by agarose electrophoresis followed

by DNA extraction from the gel. To estimate the concentration of extracted DNA,

1 µl of DNA was run on an agarose gel alongside weight markers. Ligation of vec-

tor and insert DNA fragments was performed at room temperature for 30 minutes,

using 1 µl (5 U) T4 DNA ligase in 20 µl total reaction volume supplemented with

1×Rapid Ligation Buffer and 1:3 molar excess of insert. Usually 50 to 100 ng of

vector were used per reaction, and the amount of insert required for ligation was
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calculated from the following equation:

ng of insert =
ng of vector× insert size (in kb)

vector size (in kb)
× molar amount of insert

molar amount of vector

To remove T4 DNA ligase after ligation, 20µl of chloroform was added, after

which the mixture was briefly vortexed and spun for 10 minutes at 16,000× g to

separate the phases. The upper aqueous phase was transferred to a new microfuge

tube and used for transformation.

2.3.11 Transformation of bacteria by electroporation

An electroporation protocol was used for transformation of competent cells with

plasmid DNA. A vial with 50 µl of electrocompetent bacteria was thawed on ice,

mixed with 1 µl of DNA (1–10 ng) and transferred to a disposable electroporation

cuvette with a 2 mm electrode gap. Cells were electroporated with a 5 ms pulse

and the following parameters: voltage – 2.5 kV, capacitor – 25 µF and resistor –

200 Ohms. Cells were recovered from the cuvette with 1 ml LB medium and incu-

bated at 37°C for 1 h with 220 rpm shaking to allow the expression of the antibiotic

resistance gene. 10–200µl from each transformation was spread on LB agar plates

containing an appropriate antibiotic. Plates were incubated at 37°C overnight.

2.4 Molecular biology techniques

2.4.1 RNA extraction

Total RNA from less than 5× 105 cells was extracted with a RNeasy Micro Kit, ac-

cording to manufacturer’s instructions. RNA was eluted from the column with 16µl

of nuclease-free water. RNA concentration and purity was measured by NanoDrop

1000 Spectrophotometer.
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2.4.2 Synthesis of cDNA

Extracted RNA was reverse-transcribed to single stranded cDNA with a High Ca-

pacity cDNA Reverse Transcription Kit, according to manufacturer’s protocol. Re-

action components are listed in Table 2.2. Up to 2 µg of total RNA was used per 20µl

reaction. Reverse transcription was performed in a thermocycler with the following

conditions: 10 minutes at 35°C, 120 minutes at 37°C followed by heat inactivation

at 85°C for 5 minutes.

2.4.3 Real-time quantitative PCR

Gene expression was analysed by real-time quantitative PCR (qPCR) using TaqMan

Gene Expression Assays from Applied Biosystems. These assays consist of gene

specific, pre-mixed, unlabelled primers and TaqMan Minor Groove Binding probes

(labelled with FAM fluorophore). Ribosomal RNA Control Reagents (with VIC

labelled probe) were used for amplification of the 18S gene as an endogenous control.

Real-time qPCR was performed in triplicate in 10 µl, using 1 µl cDNA as a

template, 5µl of 2×Maxima Probe/ROX qPCR Master Mix, 1 µl of 10×Primer

and Probe TaqMan Mix and 3µl of nuclease-free water. Separate (singleplex) reac-

tions were set up for each gene. Negative control reactions with no template were

performed in each PCR run. Amplification and detection were performed in 0.1 ml

tubes with lids in a Corbett Rotor Gene 6000 (Corbett Life Science) equipped with

a 72-well Rotor-Disc. Cycling conditions were as follows: initial denaturation for 10

minutes at 94°C followed by 40 three-step cycles: 10 seconds denaturation at 95°

C, 10 seconds annealing at 55°C and 20 seconds extension at 72°C. The FAM fluo-

rophore was detected in the Green Channel (excitation 470 nm, detection 510 nm)

and the VIC fluorophore was detected in the Yellow Channel (excitation 530 nm,

detection 555 nm). Corbett Rotor Gene 6000 Software was used to analyse the re-

sults of the real-time quantitative PCR reaction and to set up the threshold cycle

(CT).
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Table 2.2: Reverse transcription reaction components.

Components Volume

Reverse Transcription Buffer (10× ) 2.0 µl

dNTP Mix (25× ) 0.8 µl

Reverse Transcription Random Primers (10× ) 2.0 µl

MultiScribe™ Reverse Transcriptase 1.0 µl

Nuclease-free water 3.2 µl

RNA (up to 2 µg) 10.0 µl

Total volume 20 µl

Relative quantification of gene expression with ∆∆CT method

The comparative ∆∆CT method was used to calculate relative gene expression for

MT1-MMP (Livak and Schmittgen, 2001). In this method, levels of target gene

expression (MT1-MMP) are first normalised to the endogenous control (18S), by

calculation of the ∆CT value. ∆CT is defined as the difference between the average

CT values of target and control genes for an individual sample. Finally, expression of

the target gene in the treated samples is presented as a fold change over expression

in untreated samples. Fold change was calculated from the following formula:

Fold change = 2−∆∆CT

where ∆∆CT = ∆CT Treated −∆CT Untreated

and ∆CT = CT Target Gene − CT Control Gene

All calculations were performed in Microsoft Office Excel Software.
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2.5 SDS-PAGE

2.5.1 Solutions used for SDS-PAGE

Anode reservoir buffer (pH 8.23; 4× )

62.5 mM ammediol, 50 mM HCl.

Cathode reservoir buffer (pH 9.39; 4× )

41 mM ammediol, 40 mM glycine, 0.4% (w/v) SDS.

De-staining solution

30% (v/v) methanol, 1% (v/v) formic acid.

Resolving gel buffer (pH 8.96)

110 mM ammediol, 47 mM HCl, 0.02% (w/v) NaN3.

SDS-PAGE sample buffer (2× )

2% (w/v) SDS, 0.1% (w/v) bromophenol blue, 40% (v/v) glycerol, 50% (v/v)

stacking gel buffer (4× ), 0.9% β-mercaptoethanol.

Stacking gel buffer (pH 8.37)

84 mM ammediol, 62 mM HCl, 0.02% (w/v) NaN3.

Staining solution

0.1% (w/v) Coomassie Brilliant Blue R-250, 50% (v/v) methanol, 20% (v/v)

acetic acid.

Sucrose solution 50% (w/v) sucrose, 0.03% (v/v) toluene, 0.02% (w/v) NaN3.

Proteins were separated by SDS polyacrylamide gel electrophoresis (SDS–

PAGE) based on the ammediol buffer system (Bury, 1981). For SDS-PAGE, protein

samples were mixed at 1:1 ratio with 2× sample buffer or cells were directly lysed in

1× sample buffer. SDS-PAGE sample buffer contains SDS, which binds to proteins

proportional to their molecular weight and provides them with a negative charge.

During electrophoresis, SDS-coated and therefore negatively charged proteins mi-

grate in the electric field according to their molecular weight. Resolving (7.5%)

and stacking (4%) gels were used for SDS-PAGE throughout the study and their

components are listed in Table 2.3.
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Table 2.3: Composition of SDS-PAGE gels. Components of 7.5% resolving
and 4% stacking gels for SDS-PAGE.

Components Resolving gel Stacking gel

(7.5%) (4%)

30% (w/v) acrylamide/bis-acrylamide 1500 µl 320 µl

Resolving / stacking gel buffer 1500 µl 642 µl

Sucrose solution 1290 µl 642 µl

dH2O 1710 µl 963 µl

10% (w/v) ammonium persulfate 42 µl 31 µl

TEMED 4.5 µl 6.75 µl

Polyacrylamide mini-gels were cast between glass slabs with 1.5 mm spacers.

First, the resolving gel was poured between the slabs, overlaid with water-saturated

butanol and allowed to polymerise. The butanol layer ensured an even interface

between resolving and stacking gels by excluding oxygen from a polymerising gel.

After polymerisation, butanol was decanted and gels washed with dH2O. The stack-

ing gel was poured on top of the resolving gel, 1.5 mm thick combs were inserted

and the gel was allowed to polymerise. Samples prepared in 1× SDS-PAGE sample

buffer were boiled for 15 minutes prior to loading, unless otherwise stated. Usually

15 µl of sample was loaded onto the gel with 6 µl of pre-stained protein marker.

Gels were run at 150 V (constant voltage) for approximately 60 minutes until the

bromophenol blue dye reached the bottom of the gel.

2.6 Western Blotting

2.6.1 Solutions used for Western Blotting

Antibody dilution buffer

1% (w/v) BSA, 50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 0.05% (v/v) Tween

20, 0.02% (w/v) NaN3.
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Non-fat dry milk, 5%

5% (w/v) dry skimmed milk, 10 mM Tris-HCl (pH 7.5), 150 mM NaCl, 0.02%

(w/v) NaN3.

PBS-T

0.05% (v/v) Tween 20, 0.02% (w/v) NaN3 in PBS.

After SDS-PAGE, proteins were transferred from gels onto 0.2 µm PVDF mem-

branes using a Trans-Blot Turbo Transfer System (Bio-Rad Laboratories, Hemel

Hempstead, UK). The blotting sandwich was assembled according to manufacturer’s

instructions and proteins (30–150 kDa) were transferred for 7–10 minutes at a con-

stant current of 1.3 A and a voltage of up to 25 V. Membranes were blocked in 5%

non-fat dry milk for 20 minutes and washed 3 times for 5 minutes in PBS-T. Primary

antibodies were diluted as indicated (usually 1:500–1:1000, see Table 2.4) in anti-

body dilution solution and incubated with membranes overnight at 4°C. Afterwards,

membranes were washed 3 times for 5 minutes each in PBS-T and incubated for 1h

at room temperature with secondary AP-conjugated antibodies diluted at 1:10,000

in antibody dilution solution. After washing twice with PBS-T, membranes were

incubated with 6–8 ml of AP substrate for 30–60 minutes until bands appeared.

Table 2.4: Primary antibodies used for Western Blotting.

Antibodies Dilution Concentration

anti-actin 1:500 0.4 µg/ml

anti-β1 integrin 1:1000 n / a

anti-DDR1 1:1000 0.2 µg/ml

anti-DDR2 1:1000 0.2 µg/ml

anti-MT1-MMP hemopexin domain (222-1D8) 1:1000 0.5 µg/ml

anti-MT1-MMP catalytic domain 1:2000 n / a

anti-phosphotyrosine 1:1000 1ug/ml

n / a - data non available
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2.7 Zymography of metalloproteinases

2.7.1 General solutions

SDS-PAGE sample buffer (2× )

2% (w/v) SDS, 0.1% (w/v) bromophenol blue, 40% (v/v) glycerol, 50% (v/v)

stacking gel buffer (pH 8.37; 4× ).

Washing buffer for zymography

2.5% (v/v) Triton X-100, 50 mM Tris-HCl (pH 7.5), 5 mM CaCl2, 5 µM ZnCl2,

0.02% NaN3.

Tris-glycine SDS-PAGE running buffer (1× )

25 mM Tris, 192 mM glycine, 0.1% SDS.

Staining solution

0.1% (w/v) Coomassie Brilliant Blue R-250, 50% (v/v) methanol, 20% (v/v)

acetic acid.

De-staining solution

30% (v/v) methanol, 1% (v/v) formic acid.

Zymography is a simple and sensitive technique that allows for detection of

enzyme activity e.g. in conditioned medium. (Troeberg and Nagase, 2004). It is

based on a modified SDS-PAGE method, where an enzyme substrate such as gelatin

or casein is incorporated into the gel. Protein samples are prepared under denaturing

(SDS) and non-reducing conditions. After electrophoresis, SDS is replaced with

Triton X-100 to allow refolding of the protein, and during incubation enzymes digest

the incorporated substrate. Afterwards gels are stained with Coomassie Brilliant

Blue R-250, and digested areas can be visualised as white bands against a dark

background. Gelatin zymography is most commonly used to detect the gelatinases

MMP-2 and MMP-9. SDS in sample buffer disrupts interaction of the pro-domain

cysteine with the active site zinc, leading to enzyme activation without proteolytic

cleavage, therefore both latent and active MMPs can be detected (Troeberg and
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Nagase, 2004). Size difference allows to distinguish between the two forms and to

asses levels of protein activation.

2.7.2 Gelatin zymography

Gelatin zymography was used to detect gelatinase activity in the conditioned medium

collected from cultured cells. Gelatin was incorporated into 7.5% resolving poly-

acrylamide gels at a concentration of 0.8 mg/ml. Culture medium was mixed with

2× SDS-PAGE sample buffer without β-Me at a 2:1 ratio and 15 µl of the mix used

for loading the gel (without boiling). Gels were run at 150 V for 60–70 minutes.

After electrophoresis, gels were equilibrated in zymography washing buffer for 1 h,

with changes of buffer every 15 minutes to replace SDS with Triton X-100. After

washing, gels were incubated in washing buffer for 16–18 h at room temperature or

at 37°C. Gels were stained with staining solution for 30 minutes–1 h and incubated

with de-staining solution until thoroughly destained.

2.7.3 Casein zymography

Pre-cast 4–16% gradient Tris-glycine casein zymograms were used to detect ca-

sein activity in the conditioned culture medium. Culture medium was mixed with

2× SDS-PAGE sample buffer without β-Me and up to 32 µl of the mix used for

loading (without boiling). Gels were run at 125 V for 90 minutes using Tris-glycine

SDS-PAGE running buffers. After electrophoresis gels were equilibrated in zymog-

raphy washing buffer for 1 h, with changes of buffer every 15 minutes to replace

SDS with Triton X-100. Gels were incubated for 24 h at 37°C. Staining was not

necessary, as gels had a proprietary dye already incorporated into the gel.
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2.8 Gelatin film degradation assay

2.8.1 Preparation of Alexa Fluor 488-labelled gelatin

To label gelatin with Alexa Fluor 488 fluorescent dye, 100µg of Alexa Fluor 488 sul-

fodichlorophenol ester was dissolved in 250µl of 20 mg/ml gelatin in 0.1 M sodium

bicarbonate. The mixture was stirred for 1 h at room temperature and the reaction

stopped by addition of 50 µl of 1 M ammonium chloride. Next, 50µl of 10×PBS

was added and the concentration of gelatin adjusted to 10 mg/ml with dH2O. La-

belled gelatin solution was dialysed against 1 L of autoclaved PBS for 18 h at 4°

C. Finally, the concentration of Alexa Fluor 488-labelled gelatin (Alexa488-gelatin)

was adjusted to 1 mg/ml using 50% (v/v) glycerol in PBS and the solution stored

in aliquots at −20°C.

2.8.2 Coating glass coverslips with Alexa488-gelatin

To coat glass coverslips with fluorescently labelled gelatin, Alexa488-gelatin was

diluted in dH2O to 50µg/ml and incubated at 60°C for 20 minutes to completely

dissolve the gelatin. Coverslips were incubated on top of 150µl of Alexa488-gelatin

drops for 20 minutes, followed by 15 minutes cross-linking with 1% (v/v) glutaralde-

hyde and 15 minutes incubation with 1 M ammonium chloride. Coverslips were

transferred gelatin side up into a 12-well plate containing 70% (v/v) ethanol and

incubated from 2 h to overnight at 4°C for sterilisation.

2.8.3 Gelatin film degradation assay setup

Before seeding cells, coverslips were washed at least three times in DPBS or serum-

free DMEM in sterile conditions under a tissue culture hood. 2.5× 104 cells were

seeded per coverslip and cultured for 48 h in 2% FBS DMEM. After the culture pe-

riod, cells were fixed in 3% (w/v) PFA in PBS for 15 minutes and washed in PBS. To

stain nuclei and F-actin, coverslips were incubated for 1 h with 0.2% (v/v) Triton X-
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100 solution containing DAPI (1:400 dilution) and Alexa Fluor 568-conjugated phal-

loidin (1:100 dilution). Coverslips were washed once in PBS and mounted on glass

slides with ProLong Gold and secured with nail polish. Images were acquired with

a Nikon Eclipse TE2000-E inverted fluorescence microscope with a CCD-camera

using 4× objective lenses and analysed in Volocity 3D Image Analysis Software

(PerkinElmer, Cambridge, UK).

2.9 Collagen film degradation assay

PureCol type I collagen (9 volumes) was mixed on ice with 1 volume of ice-cold

10×RPMI-1640 and neutralised by drop-wise addition of 1 M NaOH until the pH

reached 7.5–8 as checked by pH papers. The final concentration of neutralised

collagen was 2.7 mg/ml. Costar CellBIND 12-well plates were chilled on ice and the

bottom of the wells was evenly coated with 100 µl of neutralised collagen, by addition

of 800 µl of collagen and removal of 700µl. Plates were thereafter incubated for 1 h

at 37°C to allow collagen fibril formation. 0.5× 105 cells were seeded on top of the

collagen layer in 0.5 ml serum-free DMEM and cultured for 3 days. Afterwards cells

were gently washed twice with DPBS and lifted from collagen by incubation with

trypsin/EDTA. The collagen layer was fixed with 3% PFA in PBS for 15 minutes and

incubated with staining solution [(0.1% (w/v) Coomassie Brilliant Blue R-250, 50%

(v/v) methanol, 20% (v/v) acetic acid)] for 30 minutes. Plates were then washed

in de-staining solution [(30% (v/v) methanol, 1% (v/v) formic acid)], followed by

washing with dH2O and allowed to air dry. Images were captured with a light

microscope with a CCD-camera using 4× objective lenses and analysed in Volocity

Software. Degraded regions appeared as white areas against darkly stained intact

collagen.
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2.10 Alexa488-collagen degradation (Collagen488)

Collagen solution was neutralised on ice, using 9 volumes of collagen and 1 vol-

ume of 10×PBS and drop-wise addition of 1 M NaOH until the pH reached 7.5-8.

The concentration of neutralised collagen was 2.7 mg/ml. 500 µl of neutralised col-

lagen was added per well in a 12-well plate and 250µl per well in a 24-well plate.

Collagen was polymerised for 1 h at 37°C, and then incubated for 30 minutes at

room temperature with 500µl of sterile 0.1 M NaHCO3 applied per well. Alexa

Fluor 488 sulfodichlorophenol ester was dissolved in 0.1 M NaHCO3 at 2–20 µg/ml.

Collagens were incubated with Alexa Fluor 488 sulfodichlorophenol ester solution

for 2 h at room temperature, washed three times with 1×PBS and DMEM. Af-

terwards, 2.5× 104 dermal fibroblasts were seeded in 300µl serum-free and phenol

red-free DMEM and incubated between 2–5 days, as indicated. Culture medium

was collected, spun down at 16,000× g and 200 µl used to detect Alexa Fluor 488

fluorophore released into the medium. Bacterial collagenase (100 µg/ml) was used to

digest the remaining collagen, for 1 h at 37°C. Solution fluorescence was measured

using a spectrophotometer, using an excitation wavelength 485 nm and emission

wavelength of 538 nm.

2.11 Analysis of cell invasion in 3D collagen

Microcarrier beads invasion assay and transwell invasion assay were carried out as

described by Palmisano and Itoh (2010).

2.11.1 Microcarrier beads invasion assay

Attachment of cells to beads

Gelatin-coated Cytodex 3 microcarrier beads were prepared, autoclaved and sus-

pended in sterile PBS according to Palmisano and Itoh (2010). Before experiments,

an aliquot of bead suspension was diluted to 250 beads per 1 ml of serum-free DMEM
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with antibiotics. A suspension of 5× 104 cells was prepared in 1 ml of serum-free

DMEM and mixed with 1 ml of 250 beads in 2 ml microfuge tubes. The medium was

supplemented with HEPES buffer (pH 7.5) at 100 mM final concentration to avoid

changes in the pH. Tubes were incubated at 37°C with gentle agitation for 4–6 h

until cells attached to the beads, as inspected under the light microscope. After-

wards beads were allowed to settle at the bottom of the tube and were washed twice

with DMEM to remove unattached cells. All but approximately 50 µl of medium

was removed and remaining cell-beads suspension cooled on ice.

Mixing collagen with cell-beads suspension

9 volumes of type I collagen were mixed with 1 volume of 10×RPMI-1640 and

neutralised by drop-wise addition of 1 M NaOH until the pH reached 7.5–8. For

this purpose CellMatrix Type I-A collagen or a mixture of CellMatrix Type I-A

and PureCol collagens was used. 650µl of neutralised collagen solution was mixed

with the cell-beads suspension and transferred into 12-well plates. The final col-

lagen concentration was approximately 2.5 mg/ml. Plates were incubated at 37°C

for 1 h to allow collagen fibril formation. 1 ml of 10% serum DMEM was added on

top of the polymerised collagen and cells incubated at 37°C. During the incubation

time, cells migrated away from the bead surface into the surrounding collagen gel.

After 72 h, medium was removed and cells were fixed in 3% (w/v) PFA in PBS

for 1 h at room temperature. Images were captured with a light microscope with a

CCD-camera using 10× objective lenses. Distances between cells (cell nucleus) and

the bead surface were measured in pixels in ImageJ software (National Institutes of

Health) and then converted to µm (1.25 µm/pixel) (Figure 2.2).
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Figure 2.2: Example of measurement of cell migration distance in micro-
carrier beads invasion assay. ImageJ was used to measure distances between
cell nucleus and bead surface (right panel). Distances were measured in pixels and
converted to µm (1.25 µm/pixel). Scale bar: 110 µm.

2.11.2 Transwell invasion assay

For the transwell invasion assay, 12-well transwell chambers were used, which were

fitted with PET removable membranes with 8 µm diameter pores through which cells

can migrate (Figure 2.3). PET membranes at the bottom of transwells were coated

with 50 µl of neutralised collagen by addition of 200µl of collagen and removal of

150 µl. For this purpose CellMatrix Type I-A collagen was used at final concentra-

tion of 2.7 mg/ml. Collagen-coated transwells were incubated at 37°C for 60 minutes

to allow fibril formation. 5× 104 cells in 1 ml of serum-free medium were added to

the top chamber and 1.5 ml of 10% FBS DMEM was added to the bottom cham-

ber and incubated at 37°C for 3 days. After incubation, media were removed from

both chambers and cells fixed with 3% (w/v) PFA in PBS for 20 minutes at room

temperature. Collagen and cells that did not migrate were removed from the upper

chamber by swabbing with a cotton bud (Figure 2.3). Cells that migrated through

the membrane remained at the bottom side of the chamber and were stained with

DAPI (1:400) and Alexa Fluor 488-conjugated phalloidin (1:100) dissolved in 0.2%

(v/v) Triton X-100 for 1 h to visualise the nuclei and F-actin respectively. Mem-

branes were removed with a sharp scalpel and mounted with ProLong Gold solution

on microscope slides, covered with glass coverslips and secured with nail polish.

Thirty images covering the whole membrane area were taken with a Nikon Eclipse
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TE2000-E inverted fluorescence microscope with a CCD-camera with 4× objective

lenses. Cells were automatically counted in Volocity Software based on detection of

DAPI-stained nuclei.

Figure 2.3: Protocol of transwell invasion assay. In the transwell invasion
assay, cells are seeded on top of collagen type I-coated transwells in serum-free
medium. Transwells are placed into 12-well plates filled with 10% FBS medium, and
FBS acts as a chemoattractant. During 72 h of culture, cells invade into collagen and
migrate through pores to the bottom side of the membrane. Cells that did not invade
are removed with a cotton bud together with the collagen layer. Remaining cells
are fixed with 3% PFA, stained with DAPI (blue) and Alexa Fluor 488-conjugated
phalloidin (green) and counted. Figure and protocol adapted from Palmisano and
Itoh (2010).

2.12 Cloning, expression and purification of DDR-

Fc tagged proteins

Dimeric soluble extracellular domains (ECD) of DDR1 and DDR2 were used to ex-

amine their binding properties (described in Results Chapter 5). First, DNA frag-

ments encoding ECD of DDRs were amplified by PCR, sequenced and cloned into

pFUSE–rIgG–Fc1 (pFc1) DNA vector to introduce a Fc tag at the C-terminus to al-

low for dimerisation of the protein. Next, DDR-ECD-Fc fragments were cloned into

pCEP4 vector and transfected into HEK293-EBNA to generate stable cell lines. Pro-

teins were then purified from conditioned media using Protein A Sepharose. Detailed

methodology is described in Sections 2.12.1 and 2.12.2. Along with wild type DDR-

Fc/pCEP4 constructs (DDR1-Fc and DDR2-Fc), the following constructs with in-
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troduced mutations were created as negative controls:

– DDR1-W53A-Fc/pCEP4

– DDR1-R105A-Fc/pCEP4

– DDR2-W52A-Fc/pCEP4

2.12.1 PCR amplification of ECDs

PCR amplification of DDR1-ECD, DDR2-ECD and DDR1-W53A-ECD

Primers for amplification of ECDs of DDR1 and DDR2 were designed in DNA Dy-

namo software, based on analysis of cDNA sequence and information about domain

structure available from the UniProt website (www.uniprot.org; DDR1 ID Q08345-

1; DDR2 ID Q16832, January 2011). Primers were designed so that they amplified

the endogenous Kozak consensus sequences and the first 416 amino acids for DDR1

(M1–T416) and the first 398 amino acids for DDR2 (M1–R399). Additional restric-

tion enzyme sites in the primers introduce XhoI sites at both 5’ and 3’ ends of the

amplified sequence. Primers were synthesised by Eurofins MWG Operon (Ebers-

berg, Germany) and their sequences are presented below, with underlined XhoI sites:

DDR1-ECD Forward (XhoI): 5’-GTGCTCGAGCAGGAGCTATGGGACCAG-3’

DDR1-ECD Reverse (XhoI): 5’-GTCTCGAGGTCGGGCTCCCCTCGG-3’

DDR2-ECD Forward (XhoI): 5’-GAGCTCGAGCACCATCTTCTGAGATGATCC-3’

DDR2-ECD Reverse (XhoI): 5’-GTCTCGAGCGAGTGTTGCTGTCATCAAC-3’

DNA fragments coding DDR ECDs were amplified by PCR. Reaction compo-

nents are listed in Table 2.5. DDR1/pSG5, DDR2/pSG5 and DDR1-W53A/pSG5

were used as a DNA templates to amplify DDR1-ECD, DDR2-ECD and DDR1-

W53A-ECD. Negative PCR controls were also prepared, where DNA template was

replaced by dH2O. PCR cycling conditions were as follows: initial denaturation for

2 minutes at 94°C, followed by 30 three-step cycles: 30 sec denaturation at 94°C,
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30 sec annealing at 55°C and 1 min 15 sec extension at 72°C and final extension for

10 min at 72°C. PCR products (1 µl) were analysed by agarose gel electrophoresis

(Figure 2.4).

Table 2.5: Components of PCR to amplify ECDs of DDRs.

Components Volume Final concentration

DNA template (10 ng/µl) 1.0 µl 0.2 ng/µl

Pfu reaction buffer (10× ) 5.0 µl 1×
Forward primer (10 mM) 1.5 µl 0.3 µM

Reverse primer (10 mM) 1.5 µl 0.3 µM

dNTPs (10 mM each) 1.0 µl 0.2 µM

dH2O 39.0 µl –

Pfu Polymerase (2.5 U/µl) 1.0 µl 0.05 U/µl

Total volume 50 µl

Figure 2.4: Results of PCR amplification of DDR ECDs. PCR products
(1 µl) were separated by agarose electrophoresis. Expected sizes of the DNA frag-
ments are indicated (DDR1-ECD: 1272 bp and DDR2-ECD: 1227 bp). PCR negative
controls (PCR -ve ctr) generated no bands, as expected. M - DNA marker
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Strand overlap extension PCR to create DDR2-ECD-W52A

The W52→A mutation was introduced in DDR2 cDNA by strand overlap extension

PCR, where two rounds of PCR reactions are performed using 4 different primers

(Figure 2.5). DDR2-ECD-Forward and DDR2-ECD-Reverse primers were used, as

well as two additional primers DDR2-W52A-Forward and DDR2-W52A-Reverse,

which were designed in DNA Dynamo Software and synthesised as previously de-

scribed. These primers are partially complementary and contain a modified sequence

(GCG instead of TGG) to introduce the W52A mutation. They are shown below,

the mutation is indicated in red and the overlapping sequence is underlined:

DDR2-W52A Forward: 5’-CCAGTCAGGCGTCAGAGTCCACAGCTGC-3’

DDR2-W52A Reverse: 5’-GACTCTGACGCCTGACTGGAAGCTGTGATGT-3’

Figure 2.5: Schematic representation of PCR mutagenesis by strand
overlap extension. Mutation W52→A (marked by asterisk) is introduced in
DDR2-W52A Forward and Reverse primers which are partially overlapping. These
primers and DDR-ECD Forward and Reverse are used in the first round of two sep-
arate PCR reactions – PCR1 (DDR2-ECD-For and DDR2-W52A-Rev) and PCR2
(DDR2-W52A-For and DDR2-ECD-Rev). Two partially overlapping and shorter
DNA products are created. In the third PCR reaction (PCR3), products of PCR1
and PCR2 are purified, combined and amplified with DDR2-ECD Forward and Re-
verse primers, resulting in full length product DDR2-ECD with introduced W52A
mutation.
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Tm for primers were calculated according to guidelines for Phusion Hot Start

II polymerase and the annealing temperature was 3°C higher than the lower primer

Tm. PCR components used in all reactions are listed in Table 2.6. During the first

round of PCR, two DNA fragments with short overlapping sequence are amplified

in two separate reactions (PCR1 and PCR2, Figure 2.5), and the mutation is in-

troduced in the overlap. In the second round of PCR, overlapping DNA products

are combined and extended, resulting in the full length product with the introduced

mutation.

Table 2.6: Components of the strand overlap PCR.

Components Volume Final concentration

DNA template (1 ng/µl) 2.0 µl 0.02 ng/µl

Phusion HF reaction buffer (5× ) 10.0 µl 1×
Forward primer (10 mM) 2.5 µl 0.5 µM

Reverse primer (10 mM) 2.5 µl 0.5 µM

dNTPs (10 mM each) 1.0 µl 0.2 µM

dH2O 31.5 µl –

Phusion Hot Start II (2 U/µl) Polymerase 0.5 µl 0.02 U/µl

Total volume 50 µl

DDR2/pSG5 was used as a template in the first round of PCRs. PCR1 uses

primers DDR2-ECD Forward and DDR2-W52A Reverse and PCR2 uses primers

DDR-W52A Forward and DDR-ECD Reverse. Cycling conditions were as follows:

initial denaturation for 30 sec at 98°C followed by 30 three-step cycles: 10 sec

denaturation at 98°C, 15 sec annealing at 63°C and 25 sec extension at 72°C, finished

by final extension for 10 minutes at 72°C. PCR products were confirmed by agarose

gel electrophoresis (Figure 2.6A).

PCR-generated fragments were then extracted from the gel and 1 µl of each

product used as a template in PCR3. Primers used in PCR3 were DDR2-ECD For-

ward and Reverse resulting in same length product as DDR2-ECD. The following
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cycling conditions were used: initial denaturation for 30 sec at 98°C followed by

30 three-step cycles: 10 sec denaturation at 98°C, 15 sec annealing at 67°C and 30

sec extension at 72°C and final extension for 10 minutes at 72°C. The expected full

length DDR2-W52A-ECD fragment of 1227 bp was confirmed by agarose gel elec-

trophoresis (Figure 2.6B). Negative PCR controls with DNA templates substituted

by dH2O were used in all PCR reactions.

Figure 2.6: Results of the strand overlap extension PCR. PCR products
(1 µl) from first (A) and second (B) round of PCR reactions were separated by
agarose electrophoresis. Expected sizes of the DNA fragments are indicated (PCR1:
1059 bp, PCR2: 187 bp, PCR3 DDR2-W53A-ECD: 1227 bp). PCR negative controls
(PCR -ve ctr) generated no bands, as expected. M - DNA marker

Cloning into pJET1.2 and pFUSE-rIgG-Fc1

PCR products of DDR1-ECD, DDR1-W53A-ECD, DDR2-ECD and DDR2-W52A-

ECD were purified from agarose gels, blunt-end ligated into pJET1.2 cloning vector

and electroporated into E. coli DH5α. DNA from several single colonies was purified

by the alkaline lysis method and samples positive for an insert were identified by

digest with XhoI. Positive DNA samples were sequenced at Eurofins MWG Operon

to confirm they did not carry additional mutations. Introduced mutations were also

confirmed (Figure 2.7). DDR-ECD fragments were excised from pJET1.2 vector via
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XhoI sites and subcloned into the reading frame of pFc1 vector, and electroporated

into E. coli TOP10 cells. DNA was isolated from several single colonies and the

presence and orientation of the insert checked by restriction digest with PstI.

Generation of DDR1-R105A-ECD by domain swapping

To generate the DDR1-R105A-ECD construct, an 895 bp fragment containing the

R105A mutation was cut from DDR1-NHA-R105A-CF/pSG5 vector with ScaI and

BstXI restriction enzymes and ligated in place of the identical fragment (without

mutation) in DDR1-ECD/pFc1. E. coli TOP10 was electroporated with the ligation

product and confirmation of insert presence were carried out as described above. The

introduced mutation was confirmed by sequencing (Figure 2.7).

Figure 2.7: Results of DNA sequencing. DNA from positive clones were
sequenced by Eurofins MWG Operon. Sequence alignment of obtained sequencing
results was made in DNA Dynamo software. Comparison of DDR1-W53A, DDR1-
R105A and DDR2-W52A ECDs to wild type DDRs show the presence of introduced
mutations. DNA sequencing chromatograms of DDR1-W53A, DDR1-R105A and
DDR2-W52A are also presented.
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Cloning into pCEP4 vector and confirmation of expression

DDR-ECD-Fc fragments were excised with EcoRV and NheI restriction enzymes,

cloned into pCEP4 via PvuII and NheI sites and electroporated into E. coli DH5α.

Positive colonies were identified by digestion with NruI and SalI restriction enzymes

(Figure 2.8). Endotoxin-free DNA from positive clones was purified and used to

transfect HEK293-EBNA cells. Five stable 293-EBNA cell lines expressing each

DDR-ECD-Fc protein were established in the presence of hygromycin B (See Section

2.2.5).

Figure 2.8: Restriction enzyme digestion of DDR-Fc/pCEP4 constructs.
DNA from five DDR-Fc/pCEP4 construct was digested with NruI and SalI re-
striction enzymes and separated by agarose gel electrophoresis. All constructs are
positive for insert. M - DNA marker

2.12.2 Protein purification

HEK293-EBNA cells expressing DDR-ECD-Fc constructs were cultured in several

150 cm2 dishes in the presence of hygromycin B until confluent. Then, medium was

changed to 35 ml serum-free DMEM and collected three times at 48 h intervals. Col-

lected media were spun down at 3000 rpm for 10 minutes to remove cell debris and

frozen at −20°C until purification. Thawed medium was filtered using a 0.22 µm fil-

ter and the concentration of phosphates adjusted to 20 mM with 10×PBS. Protein

A Sepharose Fast Flow (0.5 ml) was packed in a chromatography column and equi-

librated with 10 volumes of sterile PBS. Medium (up to 200 ml) was applied to the

column using a peristaltic pump at a rate of 1 ml/minute. Afterwards, the column
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was washed with 20–30 ml of PBS. Bound proteins were eluted from the column

with sterile 100 mM Glycine buffer (pH 3.0) in 6× 1ml fractions and immediately

neutralised with 30µl of sterile 1 M Tris-HCl pH 9.0. To identify protein fractions,

15 µl of protein samples were mixed 1:1 with 2× SDS sample buffer (with β-Me),

boiled for 5 minutes and 20 µl analysed by SDS-PAGE. Fractions with high protein

concentrations were pooled and dialysed against PBS. After dialysis, samples were

centrifuged at 4000 rpm for 20 minutes at 4°C. Supernatants were transferred to

new tubes and protein concentration was measured by NanoDrop absorbance at

280 nm as well as by BCA Protein Assay Kit using BSA dilutions as a standard

(microplate procedure, working range 20–2000µg/ml). 25 µl sample or its two–fold

dilutions were used in triplicates and samples incubated for 30 minutes at 37°C.

Absorbance was measured at 560 nm using a FLUOstar Omega microplate reader

(BMG Labtech) and a standard curve plotted using using 4-parameter fit in MARS

Data Analysis Software (BMG Labtech). Unknown protein concentrations were

calculated from the standard curve. Protein concentration was adjusted to 1 µM in

PBS, aliquoted and stored −20°C.

2.13 Solid phase binding assay

The solid phase binding assay was modified from Leitinger (2003); Leitinger and

Kwan (2006); Xu et al. (2010). 96-well EIA/RIA flat bottom plates were used in

the assay. Plates were coated overnight at 4°C with 50µl of 100 µg/ml collagen

type I (either PureCol or CellMatrix), neutralised with 1 M NaOH and diluted in

PBS. Cell Matrix collagen type I was neutralised with 1M NaOH and diluted with

PBS to 0.75 mg/ml, 10 µl was placed in the centre of the well and incubated at 37°

C for 1 h to allow fibril formation. Plates were washed three times with PBS-T

[0.05% (v/v) Tween 20 in 1×PBS] and blocked with 150 µl of 0.05 mg of κ-casein

in PBS-T for 1 h at room temperature on an orbital shaker. DDR-Fc proteins were

diluted in blocking solution prior to assay and 50µl of protein was applied per well
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and incubated for 3 h, at room temperature on a shaker, and washed three times

with PBS-T. Wells were incubated with 50µl of swine anti-rabbit-HRP antibody

diluted 1:3000 in blocking solution for 1 h. Afterwards plates were washed 6× in

PBS-T for a total time of 1 h, due to non-specific binding of antibodies to high

concentration collagen. Long washing did not affect detection of protein bound to

diluted collagen. Proteins were detected with TMB substrate, and reaction stopped

with 2 M H2SO4. Plates were read at 450 nm using a FLUOstar Omega microplate

reader (BMG Labtech). Background readings (no protein samples) were subtracted

from sample readings.

2.14 Statistical analysis

All statistical analyses were performed in GraphPad Prism statistics software (Graph-

Pad Software, Inc.). One-way analysis of variance (ANOVA) with Bonferroni Mul-

tiple Comparison Test (for comparison of more than two groups) was used. P-

values ≤ 0.05 were considered significant and thus: p> 0.05 is non-significant (ns),

* p≤ 0.05, ** p≤ 0.01 and *** p≤ 0.001.
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Chapter 3

Dissection of collagen signalling in

proMMP-2 activation

3.1 Introduction

In the RA joint, synovial cells degrade the cartilage by the action of several prote-

olytic enzymes (Allard et al., 1991; Bromley et al., 1985; Kobayashi and Ziff, 1975;

Shiozawa et al., 1983). Aggrecan and other proteoglycans are cleaved by metallo-

proteinases including ADAMTSs and MMPs, and the remaining collagen type II is

then degraded by collagenolytic MMPs. Although soluble MMP collagenases such

as MMP-1, MMP-2, MMP-8 and MMP-13 are often upregulated and present in

high levels in the synovial fluid, they do not appear to directly support the synovial

cell invasion (Sabeh et al., 2010). MT1-MMP, a membrane associated collagenase,

is thought to be the key collagen-degrading enzyme during invasion of RA synovial

fibroblasts into the cartilage (Miller et al., 2009; Sabeh et al., 2010). MT1-MMP

was shown to play a major role in collagen turnover in vivo (Holmbeck et al., 1999)

as well as in cell migration (Itoh et al., 2001), and is often highly upregulated in

invasive cancers (Sato et al., 1994).

Expression of MT1-MMP in a normal synovium is usually low. A number

of studies have detected MT1-MMP mRNA in synovial tissues by PCR (Davidson
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et al., 2006; Konttinen et al., 1999a; Pap et al., 2000b; Petrow et al., 2002; Ya-

manaka et al., 2000) or by in situ hybridisation (Pap et al., 2000b; Petrow et al.,

2002). Although these reports show the presence of mRNA, only a few studies have

detected MT1-MMP protein in normal synovial tissues by immunohistochemistry

(Goldbach-Mansky et al., 2000; Konttinen et al., 1998). Konttinen et al. (1998)

found that MT1-MMP was present in only a few stromal cells in the synovial mem-

brane, accompanied by expression in the vascular endothelium. It has been also

reported that MT1-MMP protein was absent in synovial tissue lysates (Jain et al.,

2009; Yamanaka et al., 2000).

In contrast to non-arthritic synovium, the majority of examined RA tissue

samples show markedly increased MT1-MMP expression at both protein and mRNA

levels (Jain et al., 2009; Konttinen et al., 1999a, 1998; Miller et al., 2009; Mitsui

et al., 2001; Pap et al., 2000b; Petrow et al., 2002; Soto et al., 2008; van Lent et al.,

2005; Yamanaka et al., 2000). Several immunohistochemistry analyses demonstrated

that MT1-MMP is mainly expressed in synovial lining cells, with some expression

in the sublining layer and in endothelial cells (Konttinen et al., 1998; Pap et al.,

2000b; Petrow et al., 2002; van Lent et al., 2005; Yamanaka et al., 2000). The

majority of MT1-MMP-expressing cells are CD68-negative synovial fibroblasts and

some CD68-positive macrophage-like cells (Konttinen et al., 1998; Miller et al., 2009;

Pap et al., 2000b; Petrow et al., 2002). In samples which analyse the cartilage-

pannus junction, where cells are in a direct contact with the cartilage, MT1-MMP

levels are particularly high (Konttinen et al., 1998; Miller et al., 2009; Petrow et al.,

2002) (Figure 1.11).

Although isolated RA synovial fibroblasts express MT1-MMP, proMMP-2 and

TIMP-2, proMMP-2 activation is not readily detected, indicating that MT1-MMP

is functionally inactive under these conditions. Initial data from our lab showed that

addition of collagen to these cells induced proMMP-2 activation (Yoshifumi Itoh,

unpublished results). As RA synovial cells at the cartilage-pannus junction express
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high levels of MT1-MMP, we hypothesised that cartilage collagen is an activator of

MT1-MMP expression as well as function.

The aim of this chapter is thus to identify mechanisms of collagen-induced

MT1-MMP activation in RA synovial fibroblasts.

3.2 Results

3.2.1 Collagen induces proMMP-2 activation in RA

synovial fibroblasts

Collagen was reported to induce proMMP-2 activation in both fibroblasts and can-

cer cell lines; however, this process has not been thoroughly investigated in RA

synovial fibroblasts (RASF). Here, I addressed the question of whether collagen can

induce proMMP-2 activation in RASF in comparison with HT1080 cells and human

dermal fibroblasts. HT1080 is a human fibrosarcoma-derived cell line characterised

by invasive properties and high MT1-MMP expression. It has been shown that

HT1080 cells activate proMMP-2 when cultured on top or within collagen type I

(Takino et al., 2004) or on fibronectin (Stanton et al., 1998). Collagen type I, II and

III, but not other ECM proteins, were reported to induce proMMP-2 activation in

dermal fibroblasts (Ruangpanit et al., 2001).

12-well culture plates were coated with a thin layer of neutralised collagen type

I (PureCol, 2.7 mg/ml) and incubated for 1 h at 37°C to induce formation of colla-

gen fibrils. HT1080 (0.75× 105), RASF (1× 105) and dermal fibroblasts (1× 105)

were plated onto the collagen layer in 0.5 ml of serum-free DMEM and cultured

for 48 h. Where indicated, medium was supplemented with the MMP inhibitor

GM6001 at 10µM. Conditioned media were collected at the end of the experiment

and then cells were lysed in 1× SDS loading buffer with β-mercaptoethanol. Media

were analysed for MMP-2 by gelatin zymography and cell lysates were subjected to

Western Blotting and analysed for expression of MT1-MMP and actin (Figure 3.1).
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Figure 3.1: Analysis of collagen-induced proMMP-2 activation in dif-
ferent cell types. HT1080, RASF and dermal fibroblasts were cultured atop of
plastic (–) or collagen film (+)(PureCol, 2.7mg/ml) in 0.5 ml of serum-free DMEM
for 48 h. Cells were cultured in the absence (–) or presence (+) of a MMP inhibitor
GM6001 at 10 µM. Conditioned media were analysed by gelatin zymography (Zymo;
top panel). Areas degraded by gelatinases (MMP-2 and MMP-9) appear as clear
bands against a dark background and both pro- and active species can be detected.
MT1-MMP and actin expression were analysed by Western Blotting using anti-
(MT1-MMP hemopexin domain) 222-1D8 antibody and anti-actin antibody (WB;
middle and bottom panel respectively). Active full length MT1-MMP and its pro-
cessed forms (including 44 kDa) are indicated by arrowheads. The data show the
representative of two independent experiments.

As shown in Figure 3.1, HT1080 cells activated proMMP-2 in the absence of

collagen and show an intermediate MMP-2 form of 68 kDa and fully active 66 kDa

form. Activation was further enhanced by collagen and cells predominantly show

fully active form of MMP-2. In RASF and dermal fibroblasts, activation of MMP-2

was not detected in cells cultured on plastic, but was induced by collagen. GM6001

completely inhibited proMMP-2 activation. As discussed above, no activation of

MMP-2 is observed in the absence of collagen, despite high levels of MT1-MMP

expression in cells cultured on plastic.
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MT1-MMP is detected as a 57 kDa active form. An additional 44 kDa band was

also detected in HT1080 cells regardless of collagen or GM6001 addition. In RASF,

the 44 kDa MT1-MMP band was only observed in cells cultured on collagen and

its generation was effectively inhibited by GM6001. In dermal fibroblasts, 44 kDa

was not detected. Further processed forms of MT1-MMP (15–30 kDa) were also

observed in all cells. These forms were more pronounced in HT1080 samples and

in collagen-treated RASF and dermal fibroblasts. RASF and dermal fibroblasts

cultured on collagen in the presence of GM6001 showed a slightly increased level of

57 kDa MT1-MMP. This is likely due to prevention of autocatalytic processing as

reported previously (Hernandez-Barrantes et al., 2000; Toth et al., 2002).

It has been demonstrated that the presence of the 44 kDa form is correlated

with MT1-MMP-dependent proMMP-2 activation (Stanton et al., 1998), and my

data are in agreement with these studies. MT1-MMP 44 kDa processed forms are

only present in fibroblasts cultured on collagen and displaying proMMP-2 activation.

These data have confirmed that in RASF, collagen induces activation of MT1-MMP

function as well as increases MT1-MMP expression.

A time course analysis was performed to analyse further proMMP-2 activa-

tion in RASF. Cells were plated at 1× 105 in 12-well plates and the following day

media were replaced with serum-free DMEM. Concanavalin A (ConA; 50 µg/ml)

was added to one sample as a positive control for proMMP-2 activation. ConA is

a known inducer of proMMP-2 activation and MT1-MMP expression in a variety

of cells, including RASF and normal human fibroblasts (Azzam and Thompson,

1992; Smolian et al., 2001). Type I collagen (PureCol, 100µg/ml) was added to

the medium and cells were cultured for the indicated times over a period of 26 h,

without replacing the culture medium. As shown in Figure 3.2A, RASF showed no

activation of proMMP-2 without collagen treatment (0 h) and with collagen incu-

bation times for up to 5 h. After 18 h, active MMP-2 began to be detected and was

highest at 26 h. The ConA treatment induced an efficient activation of proMMP-2

and levels of active MMP-2 were significantly higher than those induced by collagen.
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Figure 3.2: Time course analysis of proMMP-2 activation in RASF. (A)
RASF were cultured in serum-free medium and PureCol collagen was added to the
medium at 100 µg/ml for the indicated times. All samples were seeded at the same
time, collagen added for indicated periods of time and all samples were collected at
the same time (26 h after addition of collagen to the first sample). ConA was added
at 50 µg/ml and cells cultured for 26 h as well. (B) RASF were cultured in the
absence (–) or presence (+) of collagen. Collagen was either added to the medium
at 100 µg/ml (‘medium’); cells were plated on top of collagen-coated wells (‘2D’)
or mixed with 100µl of 2.7 mg/ml collagen, incubated for 1 h at 37°C and overlaid
with medium (‘3D’). Cells were cultured in serum-free DMEM for 24 h or 48 h as
indicated.

Next, I compared three different approaches to using collagen to induce pro-

MMP-2 activation in cells. For this experiment a pepsin-extracted porcine type I

collagen, PureCol, was used. The same numbers of RASF were either: cultured

in serum-free medium supplemented with 100µg/ml collagen; seeded on top of

collagen-coated wells (2.7 mg/ml) or mixed with 100 µl of 2.7 mg/ml collagen. Cells

mixed with collagen were incubated for 1 h at 37°C to form a collagen gel and were

overlaid with serum-free medium. Cells were cultured for 24 h or 48 h. All collagen

treatments induced proMMP-2 activation when compared to untreated cells (Fig-

ure 3.2B). There was no significant difference between collagen treatments. More

proMMP-2 activation was observed after 48 h than 24 h. The data indicate that
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proMMP-2 activation by collagen is time-dependent and all collagen treatments are

efficient in inducing this activation and therefore can be used in further experiments.

3.2.2 ProMMP-2 activation in RASF is MT1-MMP

dependent

Activation of proMMP-2 in RASF appears to be MMP-dependent, as it was inhib-

ited by GM6001. MMP-2 processing has been shown to be mediated by MT1-MMP

in HT1080 cells and dermal fibroblasts (Cho et al., 2008; Ruangpanit et al., 2001).

However, mRNA of MT2-MMP and MT3-MMP, which were reported to activate

proMMP-2, were also detected in RASF in previous studies (Hotary et al., 2000;

Pap et al., 2000b; Pei, 1999; Seiki, 1999; Takino et al., 1995).

To confirm that collagen-induced proMMP-2 processing in RASF is dependent

on MT1-MMP, cells were cultured with several specific inhibitors of MMPs and

MT1-MMP. RASF were cultured for 48 h in 12-well plates, in 0.5 ml of serum-free

DMEM supplemented with 100 µg/ml of collage type I (PureCol). The following

MMP inhibitors were used: GM6001 (10µM), TIMP-1 (0.5µM), TIMP-2 (0.5µM)

and anti-MT1-MMP inhibitory antibody DX-2400 (0.5µM). DX-2400 was used at

0.5 µM, as this concentration almost completely inhibited proMMP-2 activation in

dermal fibroblasts (Figure 3.3B).

Zymography data showed that collagen-induced proMMP-2 activation was in-

hibited by addition of GM6001, TIMP-2 and DX-2400, but not by TIMP-1 (Figure

3.3A). TIMP-1 inhibits all soluble MMPs, but not membrane-type MT-MMPs, in-

cluding MT1-, MT2-, MT3- and MT5-MMP. Addition of GM6001 and TIMP-2, but

not DX-2400 prevented formation of 44 kDa processed MT1-MMP (Figure 3.3A).

These samples also showed higher MT1-MMP expression levels. This may be due

to incomplete inhibition of MT1-MMP by large IgG molecules.

To further confirm the involvement of MT1-MMP in proMMP-2 activation,

MT1-MMP expression was knocked down by siRNA. RASF and dermal fibroblasts
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Figure 3.3: Collagen-induced proMMP-2 activation is MT1-MMP-
dependent in RA synovial fibroblasts. (A) RA synovial fibroblasts were cul-
tured in the presence of collagen type I for 48 h and culture media were analysed
by zymography. MT1-MMP and actin expression were analysed by Western Blot-
ting using anti-(MT1-MMP hemopexin domain) antibodies (222-1D8) and anti-actin
antibodies. Concentrations of inhibitors were as follows: 10 µM GM6001, 0.5 µM
TIMP-1, 0.5 µM TIMP-2 and 0.5µM DX-2400. (B) Zymography analysis of condi-
tioned medium from dermal fibroblasts cultured on collagen films and treated with
increasing concentrations of DX-2400 inhibitory anti-MT1-MMP antibody. GM6001
was supplemented at 10µM. (C) RA synovial fibroblasts and (D) dermal fibrob-
lasts were transfected with siNT and siMT1-MMP. After 48 h medium was replaced
with serum-free DMEM containing 100µg/ml collagen type I and cells cultured for
further 48 h. MT1-MMP and actin expression were analysed by Western Blotting
using anti-(MT1-MMP catalytic domain) antibodies and anti-actin antibodies.
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were transfected with 5 nM siRNA for MT1-MMP (siMT1-MMP) or non-targeting

siRNA control (siNT) followed by stimulation of cells with 100µg/ml collagen. As

shown in Figure 3.3, MT1-MMP expression was effectively knocked down by siRNA

and prevented collagen-induced proMMP-2 activation in RASF (Figure 3.3C) and

dermal fibroblasts (Figure 3.3D). Taken together, these results show that MT1-MMP

is essential for collagen-induced proMMP-2 activation in RA synovial fibroblasts as

well as dermal fibroblasts.

3.2.3 Analysis of collagens inducing proMMP-2 activation

Next, I examined the ability of different collagen preparations to induce proMMP-2

activation in RASF. There are four different collagen type I preparations available in

Dr. Itoh’s lab, including CellMatrix, PureCol, acid- and pepsin-extracted collagens

from guinea pig skin (Table 3.1). Acid-extracted collagens are typically isolated

from tissues by solubilising collagens using only acetic acid, thus they retain intact

telopeptide regions and cross-links. Pepsin-extracted collagens have intact triple

helical domains but telopeptide regions are cleaved by pepsin and as a result they

are devoid of cross-links (Sabeh et al., 2009b; Sato et al., 2000).

Cells isolated from three different donors were used (indicated A, B and C on

Figure 3.4). RASF were cultured either on top of collagen-coated wells (2 mg/ml)

or plated on plastic and collagens were added to the culture medium at 100 µg/ml.

Table 3.1: List of type I collagens used in the study.

Collagen Extraction Tissue Presence of

preparation method type telopeptides

CellMatrix * acid-extracted porcine tendon +

PureCol * pepsin-extracted bovine hide (skin) 
Guinea pig † acid-extracted skin +

Guinea pig † pepsin-extracted skin 
* commercially available; † extracted by Dr. Rob Visse, Kennedy Institute of Rheumatology.
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ConA was added at 50µg/ml. Cells were cultured in 1 ml of serum-free medium

for 24 h (Figure 3.4A,B) or 48 h (Figure 3.4C). Conditioned media were analysed by

zymography and cell lysates by Western Blotting for MT1-MMP and actin expres-

sion.

There were notable differences in proMMP-2 activation between donors as

well as between collagens used in the experiment. In general, cells cultured for 48 h

showed higher proMMP-2 activation than cells cultured for 24 h. ConA induced

substantial proMMP-2 activation in sample A and C, but did not induce proMMP-

2 activation in sample B, although increase in MT1-MMP levels and formation of

44 kDa species were observed in this sample (lane 2). In general, cells cultured on

top of collagen (lanes 3–6) showed higher MMP-2 activation and greater increase

in MT1-MMP expression and processing than cells cultured with collagen in the

medium (lanes 7–10).

Among collagen preparations tested, the pepsin-extracted PureCol consistently

induced proMMP-2 activation in all samples, although levels of active MMP-2 var-

ied between cell donors. MT1-MMP expression and its processing to the 44 kDa

form was also induced in the majority of cells cultured in the presence of PureCol.

PureCol elicited a particularly high response in donor C (lanes 4 and 8). The

pepsin-extracted guinea pig collagen also induced high proMMP-2 activation in cells

cultured on top of the collagen matrix (lane 5); however, when this collagen was

added to the medium, it induced activation of MMP-2 and increase of MT1-MMP

expression only in donor A (lane 9). The acid-extracted guinea pig collagen was

also able to induce proMMP-2 activation in the majority of samples (lanes 6 and

10); however, it didn’t increase MT1-MMP levels and processing as much as e.g.

PureCol. In general, the CellMatrix collagen didn’t activate proMMP-2 very well,

which is particularly notable in donor C (lanes 3 and 7). Only a limited increase in

the full length and 44 kDa MT1-MMP species was observed in CellMatrix-treated

cells.
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Figure 3.4: Collagen functionally activates MT1-MMP in RA synovial
fibroblasts. RASF (1× 105) from three donors (A,B,C) were cultured in 12-
well plates for 24 h (A,B) or 48 h (C) in the presence of various type I collagen
preparations (Table 3.1). Plates were either coated with a thin layer of 2 mg/ml
neutralised collagen (‘coated’ – lanes 3-6) or collagen was added to the medium at
100 µg/ml (‘added’ – lanes 7-10). ConA was supplemented at 50 µg/ml (lane 2).
G.pig - Guinea pig, pep. - pepsin-extracted, acid - acid-extracted.

Overall, among all collagens tested, treatments with the pepsin-extracted Pure-

Col resulted in the most consistent activation of MMP-2 and MT1-MMP (Figure

3.2B and 3.4). Therefore, I decided to use PureCol in all further experiments, unless

otherwise stated.

3.2.4 Collagen increases expression of MT1-MMP gene

Western blot analyses of MT1-MMP protein in RASF have shown processing of

the enzyme to the 44 kDa from upon collagen stimulation, as demonstrated in Fig-

ures 3.1, 3.3 and 3.4. This is due to the autocatalytic processing by MT1-MMP

itself initiated by the collagen, and addition of GM6001 inhibits formation of the

44 kDa MT1-MMP. At the same time, cells simultaneously treated with collagen and

GM6001 showed increased levels of full length MT1-MMP protein, likely reflecting

increased MT1-MMP expression in these cells. I therefore next examined if this

increase in MT1-MMP protein is reflected at the mRNA level.

RASF and dermal fibroblasts were cultured in triplicate on top of collagen-

coated wells for 24 h or 48 h. Total RNA was extracted, reverse-transcribed to cDNA

and MT1-MMP and 18S expression levels were measured by qPCR using specific

TaqMan probes and primers. MT1-MMP expression was normalised to 18S, using

the ∆∆CT method. Relative changes in MT1-MMP expression data are presented

as a mean fold difference in MT1-MMP mRNA levels in comparison to untreated

cells at 24 h (Figure 3.5). Statistical analysis was performed using one-way ANOVA

with Bonferroni Multiple Comparison Test.
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MT1-MMP expression in RASF increased 6-fold in collagen-treated cells at

24 h (*** p≤ 0.001) and approximately 8-fold at 48 h (*** p≤ 0.001)(Figure 3.5A).

In comparison, MT1-MMP expression in dermal fibroblasts increased around 2.5-

fold (** p≤ 0.01) at 24 h and 48 h (Figure 3.5B). Basal MT1-MMP expression levels

did not change significantly at 24 and 48 h in both RASF and dermal fibroblasts.

These data confirm that collagen indeed upregulates MT1-MMP gene expression.
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Figure 3.5: Collagen-induced MT1-MMP mRNA expression. RASF (A)
or dermal fibroblasts (B) were cultured on collagen type I-coated plates for 24 h
or 48 h. Total RNA was extracted, reverse-transcribed to cDNA and analysed by
quantitative PCR. MT1-MMP expression was normalised to 18S expression. MT1-
MMP expression across time points was compared to non-treated samples at 24 h
and represented as a fold increase. Data are expressed as mean ± standard error of
the mean (SEM); n = 3; ** p≤ 0.01, *** p≤ 0.001.
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3.2.5 Detection of active MMP-2 in RASF treated with

collagen type II

It has been well-established that type I collagen stimulates the activation of MT1-

MMP. In order to examine whether cartilage collagen (type II collagen) can induce

proMMP-2 activation as well, RASF were cultured in the presence of human or

bovine collagen type II and compared with PureCol-stimulated cells. Concentration

of collagens in the medium was adjusted to 100µg/ml and cells were cultured for

48 h. As shown in Figure 3.6, all three collagens induced MMP-2 activation; how-

ever, treatment with human collagen type II generated lower levels of active MMP-2.

The 44 kDa processed form of MT1-MMP was also present in all collagen-treated

samples and correlated with levels of active MMP-2. These results indicate that

cartilage collagen type II induces MT1-MMP activity similarly to type I collagen.

Figure 3.6: Collagen type II induces proMMP-2 activation. RASF were
cultured in serum-free DMEM supplemented with 100µg/ml of the following colla-
gens: PureCol, human and bovine type II collagens. Culture media were analysed
by zymography and MT1-MMP and actin expression by Western Blotting.
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3.2.6 Effect of signalling molecule inhibitors on collagen-

induced proMMP-2 activation

To gain insight into pathways that might mediate the collagen signalling, I examined

a panel of inhibitors of several key molecules involved in signal transduction. Their

specificity and concentrations used in the experiment are listed in Table 3.2. Dermal

fibroblasts were used to investigate the role of these compounds in collagen-induced

proMMP-2 activation. Fibroblasts were pre-incubated with inhibitors at indicated

concentrations for 1 h, and thereafter cultured in the presence of 100µg/ml collagen

type I and inhibitors in the medium (Figure 3.7A). In a separate experiment fibrob-

lasts were plated on PureCol-coated plates (2.7 mg/ml) and cultured for 3 days with

specified inhibitors (Figure 3.7B).

The protein kinase C (PKC) family of protein kinase enzymes consists of sev-

eral isoenzymes. They are involved in the transduction of extracellular signals and

regulate cell proliferation, migration and survival. Several broad and selective PKC

inhibitors were used in this study. Bisindolylmaleimide I (1 µM), an inhibitor of

several PKC isozymes, prominently increased proMMP-2 activation especially in

Table 3.2: Inhibitors used in the study.

Inhibitor Description Working

name concentration

Bisindolylmaleimide I Protein kinase C (PKC) inhibitor 1 µM

(PKC α, βI, βII, γ and ε isozymes)

Gö6976 PKC α and βI isozymes inhibitor 1 µM

PKC β inhibitor Inhibitor of PKC βI and βII isozymes 500 nM

PKC ζ Inhibitor PKC ζ pseudosubstrate inhibitor, myristoylated 10 µM

PD98059 Inhibitor of MAP kinase kinase (MEK1/2) 10 µM

SB202190 Inhibitor of p38 MAP kinase 10 µM

Wortmannin Inhibitor of phosphoinositide 3-kinase 1 µM

PP2 Inhibitor of Src kinase family 5 or 10 µM

Cli-095 Inhibitor of Toll-like receptor 4 signalling 5 µM

SN50 Inhibitor of NF-κB nuclear translocation 100 µg/ml

SN50M Inactive control for SN50 peptide 100 µg/ml
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Figure 3.7: Role of inhibitors of various signalling pathways on collagen-
induced proMMP-2 activation in dermal fibroblasts. Gelatin zymography
analysis of conditioned medium from dermal fibroblasts cultured in the presence of
indicated inhibitors. Their concentrations are presented in Table 3.2. (A) Dermal
fibroblasts were seeded on plastic wells, and cultured in the absence (–) or presence
(+) of 100 µg/ml of collagen type I in serum-free medium for 2 days. (B) Dermal
fibroblasts were cultured on top of collagen type I-coated wells (2.7 mg/ml) for three
days, in serum-free medium supplemented with indicated inhibitors.

cells cultured on collagen-coated plates. Bisindolylmaleimide I inhibits PKC α, βI,

βII, γ and ε isoezymes. In contrast, Gö6976 (1 µM), which is an inhibitor of PKC α

and βI isozymes, inhibited proMMP-2 activation. Gö6976 does not inhibit PKC δ,

ε or ζ. However, a PKC β-selective inhibitor did not affect proMMP-2 activation at

500 nM. The inhibitor of PKC ζ showed cytotoxicity at 50µM, therefore it was used

at 10µM at which concentration it did not exert any effect on proMMP-2 activation

on cells cultured on collagen-coated plates.

PP2 (Src kinase inhibitor) used at 10 µM reduced proMMP-2 activation no-

tably, but it also showed some cytotoxicity (Figure 3.7A). To eliminate the possibil-
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ity of cytotoxic effects on proMMP-2 activation, cells were also treated with 5 µM

PP2 and activation was also inhibited (Figure 3.7B), suggesting that Src kinase in-

deed plays a role in this process. SN50 is an inhibitory peptide preventing translo-

cation of NF-κB into the nucleus, therefore it interferes with NF-κB signalling. At

100 µg/ml SN50 slightly decreased proMMP-2 activation. Inactive control peptide

SN50M (100 µg/ml) did not show any effect on MMP-2 levels.

The following inhibitors had no effect on the collagen-induced proMMP-2 ac-

tivation: PD98059 — a highly selective inhibitor of MEK1/2; SB202190 — a potent

inhibitor of p38 mitogen-activated protein (MAP) kinase; Wortmannin — a specific,

irreversible inhibitor of phosphoinositide 3-kinase; Toll-like receptor 4 signalling in-

hibitor Cli-095. These data indicate that PKC α, Src kinases, and potentially NF-κB

may be involved in collagen-induced proMMP-2 activation.

3.2.7 Effect of cytokines on MT1-MMP activity

Next, I examined the effect of pro-inflammatory cytokines, TNF-α and IL-1 on

proMMP-2 activation in RASF and dermal fibroblasts. These cytokines are known

to induce expression of various soluble MMPs, but there is a discrepancy between

studies about their effect on regulation of MT1-MMP expression and activity. In

a study by Han et al. (2001), collagen-induced proMMP-2 activation in dermal

fibroblasts was enhanced by addition of TNF-α, while no effect of these cytokines

was detected in Dr. Itoh’s lab previously (Miller et al., 2009).

RASF and dermal fibroblasts were cultured for 4 days in serum-free medium

with either 10 ng/ml of TNF-α or IL-1β or a combination of the two cytokines

supplemented at 10 ng/ml each. PureCol was added to the medium at 100µg/ml

where indicated. After this time medium was collected and analysed by gelatin

(Figure 3.8) and casein (Figure 3.9) zymography. Cell lysates were subjected to

Western Blotting (Figure 3.8).
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Figure 3.8: Cytokines TNF-α and IL-1β do not induce proMMP activa-
tion in RASF and dermal fibroblasts. RASF (A) and dermal fibroblasts (B)
were cultured for 4 days in 0.5 ml of serum-free DMEM. Cell were cultured in ab-
sence (–) or presence (+) of collagen type I (100µg/ml), TNF-α (10 ng/ml) or IL-1β
(10 ng/ml) alone or in combination. Conditioned media were analysed by gelatin
zymography and cell lysates by Western Blotting and probed for MT1-MMP and
actin.
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The addition of either TNF-α or IL-1β alone or in combination didn’t induce

proMMP-2 activation or marked increase in MT1-MMP expression in RASF and

dermal fibroblasts (Figure 3.8). The addition of collagen promoted proMMP-2 ac-

tivation in all samples, however the presence of cytokines (alone or in combination)

didn’t further increase proMMP-2 activation in these samples (Figure 3.8).

To confirm that TNF-α and IL-1β indeed activated fibroblasts, conditioned

medium was also analysed by casein zymography. The above cytokines are known

to induce expression of MMP-1 and MMP-3, which are able to digest casein. Analy-

sis of conditioned medium from cytokine- and collagen-induced fibroblasts by casein

zymography showed increase in caseinolytic activity in cytokine-treated RASF and

dermal fibroblasts (Figure 3.9A,C). Prominent double bands of around 50 kDa in

size were detected. Bands were much more prominent in IL-1β-treated cells than

with TNF-α treatment. Addition of both cytokines did not further promote ca-

sein degradation. In RASF, addition of collagen appeared to minimally increase

degradation of casein.

To further verify that the casein degradation is MMP-dependent, a casein

zymogram gel was incubated in buffer containing GM6001. Active MMP-1 (40 kDa)

was applied as a control. Casein gels were incubated in the absence or presence of

GM6001 for 24 hours at 37°C (Figure 3.9B). No caseinolytic bands were observed

in the gel incubated with GM6001, and clear degradation areas were observed in

the control zymogram. The data suggest that IL-1β and TNF-α were active and

cytokine-induced caseinolytic bands were indeed created by MMPs.

101



3.2. Results

Figure 3.9: Analysis of MMP activities by casein zymography. RASF (A)
and dermal fibroblasts (C) were cultured for 4 days with (+) or without (–) collagen
type I (100µg/ml), TNF-α (10 ng/ml) or IL-1β (10 ng/ml) alone or in combination,
as indicated. Conditioned medium was analysed by casein zymography. (B) 40 kDa
active MMP-1 and conditioned medium from IL-1β-treated RASF were subjected to
casein zymography in the presence or absence of GM6001. Both gels were incubated
for equal time at 37°C. Note that both the MMP-1 band and the band detected
in the conditioned medium disappeared when the gel was incubated with GM6001,
suggesting that the enzymes were metalloproteinases.
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3.2.8 Anti-integrin β1 antibodies do not affect proMMP-2

activation

Integrins α1β1, α2β1, α10β1 and α11β1 are considered as principal collagen recep-

tors (Leitinger, 2011). An increased expression of integrin subunits of α1, α2, α3,

α4, α5, β1 and β4 was detected in RASF, with particularly high levels of α1, α5, αv

and β1 (Lowin and Straub, 2011; Rinaldi et al., 1997). Subunits α10 and α11 were

not tested in the above studies. Integrins have also been implicated in collagen-

induced proMMP-2 activation in ovarian carcinoma (Ellerbroek et al., 1999) and

in normal human dermal fibroblasts (Zigrino et al., 2001). However, integrin β1

was found to be non-essential in this process in malignant mesothelioma cells (Sakai

et al., 2011).

A common approach to analyse the role of collagen-binding integrins is to

target β1 integrin, as all of them contain this subunit. It has been shown that

anti-β1 integrin antibodies inhibit attachment of cells to collagen type I (Sarkissian

and Lafyatis, 1999; Wilkins et al., 1996). In my experiments I used two types of

anti-integrin β1 antibodies to determine its role in proMMP-2 activation: function

blocking (clone 6S6) and activating antibodies (clone P4G11). These antibodies were

shown to inhibit or promote adhesion of cells to collagen substrate, respectively.

RASF were seeded in 12-well plates. After 2 h, media were replaced with 500µl

of serum-free DMEM with or without anti-integrin antibodies, 20µg/ml each, and

incubated with antibodies for 30 minutes at 37°C. Without replacing the medium,

cells were stimulated with collagen by adjusting its concentration in the medium to

100µg/ml. Cells were further cultured for 24 h.

Gelatin zymography showed that neither of the two antibodies induces activa-

tion of proMMP-2 (Figure 3.10). No changes in MT1-MMP expression or processing

were observed. Cells cultured in the presence of collagen showed marked increase in

proMMP-2 activation, MT1-MMP expression and formation of 44 kDa MT1-MMP

species. With antibodies and collagen, a slight increase of both pro- and active
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Figure 3.10: β1 integrin antibodies do not affect collagen-induced
proMMP-2 activation. RASF were preincubated with 20 µg/ml anti-integrin
antibodies, either function inhibiting (6S6 clone) or activating (P4G11 clone), for
30min followed by addition of collagen to medium (adjusting final concentration to
100 µg/ml). Cells were further cultured for 24 h, and medium and cells were analysed
by zymography and Western Blotting for MT1-MMP and actin expression.

MMP-2 was observed compared to control cells, however there were no differences

between activating and blocking antibodies used. Control collagen-treated cells also

appeared to contain somewhat fewer cells than other samples, based on actin levels

on Western blot (equal volumes applied for SDS-PAGE), thus it is likely that these

differences are due to variation in cell number at the end of experiments.

3.2.9 Activation of proMMP-2 is inhibited by DDR2

knockdown

As antibodies against β1 integrin did not appear to affect proMMP-2 activation,

I further examined role of integrins and DDRs by knocking down their expression

using siRNAs. First, HT1080, RASF and dermal fibroblasts were analysed for

expression of β1 integrin (ITGB1), DDR1 and DDR2 by Western Blotting (Figure
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3.11A). All cells expressed β1 integrin, which runs as a broad 130 kDa band of

glycosylated protein. DDR2 was detected in all cell types, and fibroblasts show

higher expression of DDR2 than HT1080 cells. Two major bands were detected at

around 130 kDa and the top one corresponds to the glycosylated protein (Blissett

et al., 2009). RASF and dermal fibroblasts do not express DDR1.

To evaluate the role of these receptors in collagen signalling their expression

was knocked down with specific siRNAs (5 nM). Non-targeting siRNA was used as

a control (siNT). After 2 days media were replaced with serum-free DMEM with

100 µg/ml collagen type I. An efficient knockdown of each gene was confirmed two

days after the transfection (Figure 3.11C). After 3 days conditioned media were

collected and analysed by zymography. Cell lysates were analysed by Western Blot-

ting (Figure 3.11B). Samples were prepared in triplicate, and densitometric analysis

of bands corresponding to active MMP-2 on gelatin zymogram was performed in

Phoretix 1D software. Levels of active MMP-2 in siNT cells treated with collagen

were arbitrarily set to 100%. All other values are represented in relation to this

value (Figure 3.11B). On average DDR2 knockdown reduced MMP-2 activation by

80%, while knockdown of ITGB1 showed minimal changes in activation (decreased

by only 4%). Knockdown of both DDR2 and ITGB1 also resulted in significant re-

duction of proMMP-2 activation by 70%. Western blot analysis showed no increase

in MT1-MMP expression and processing upon collagen stimulation of siDDR2 cells

(Figure 3.11B). Knockdown of ITGB1 resulted in comparable increase in MT1-MMP

expression and processing upon collagen stimulation as control cells, and knockdown

of the two collagen receptors resulted in moderate inhibition of processing and ex-

pression.

I next examined whether DDR2 knockdown inhibits proMMP-2 activation in-

duced by type II collagen. RASF were transfected with 5 nM siRNAs and cultured

for 2 days. Cells were then plated in 12-well plates and cultured for further 2 days

in the absence or presence of human or bovine type II collagen (100µg/ml). Con-

ditioned media were analysed by zymography and cell lysates by Western Blotting
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Figure 3.11: Knockdown of DDR2 inhibits proMMP-2 activation. (A)
Cell lysates from 1× 105 HT1080, RASF or dermal fibroblasts were analysed by
Western Blotting, and probed against β1 integrin (ITGB1), DDR2, DDR1 and
actin. Arrows indicate specific bands of full length proteins. All cells express β1
integrin, HT1080 cells express both DDR1 and DDR2, whereas fibroblasts express
only DDR2. (B) RASF (0.25× 105) were siRNA-treated, 3 wells per treatment,
after 2 days collagen was added to the cell culture medium (serum-free) and cul-
tured for further 3 days. Media were analysed by zymography and bands intensity
was measured. Average % of active proMMP-2 from 3 wells are presented below
zymogram. Active MMP-2 band corresponding to collagen-treated control siRNA
transfected cells (siNT) was set as 100%. (C) Efficiency of protein knockdown two
days after siRNA transfection. siD2/B1 - double siDDR2 and siITGB1 knockdown.
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for MT1-MMP and actin (Figure 3.12). No MMP-2 activation was observed in non-

treated cells. Addition of bovine or human type II collagen resulted in proMMP-2

activation, but more efficient proMMP-2 activation and MT1-MMP processing (to

44 kDa) were detected in cells treated with the bovine collagen. The knockdown of

DDR2 resulted in a decrease in proMMP-2 activation and inhibition of MT1-MMP

processing. Treatment with siITGB1 did not inhibit processing of MT1-MMP, how-

ever proMMP-2 activation was slightly lower than in control cells.

In conclusion, both type I and II collagens are able to induce proMMP-2 activa-

tion and this process is inhibited by knockdown of DDR2 in RA synovial fibroblasts,

accompanied by suppression of processing of MT1-MMP to 44 kDa. These data sug-

gest that DDR2 is the major receptor that transmits collagen signals for activation

of MT1-MMP function in fibroblasts.

Figure 3.12: DDR2 knockdown inhibits collagen type II induced MT1-
MMP activity. RASF were transfected with 5 nM siRNAs and after 2 days seeded
in 12-well plates. Collagen type II (human or bovine) was added to serum-free
medium at 100µg/ml. Cells were cultured for a further 2 days.
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3.2.10 DDR2 knockdown prevents collagen-induced

MT1-MMP expression

I have demonstrated that collagen regulates MT1-MMP mRNA levels in RASF.

Next, I examined the effect of knockdown of collagen receptors on MT1-MMP gene

expression. RASF were transfected with 5 nM siRNAs and after 2 days they were

either seeded on collagen type I-coated wells or plastic wells in serum-free medium.

Total RNA was extracted after 24 h, reverse-transcribed to cDNA and expression

of MT1-MMP and 18S rRNA measured by qPCR. MT1-MMP expression was nor-

malised to 18S and compared to non-targeting siRNA-transfected cells (siNT) cul-

tured in the absence of collagen (∆∆CT method). Cells from four different origins

were analysed. Each sample treatment was performed in triplicate (n = 3, per ex-

periment). Data are represented as mean ± SEM and statistical analysis performed

using one-way ANOVA with Bonferroni Multiple Comparison Test.

Comparable results were obtained in all four donors tested (Figure 3.13). In

every experiment MT1-MMP expression increased approximately 2.5–3.5-fold dur-

ing 24 h upon plating cells on collagen film. The fold increase was lower than in the

previous experiment (Section 3.2.4), but MT1-MMP mRNA was nevertheless signif-

icantly upregulated in three donors (#2,#3 and #4). Knockdown of DDR2 expres-

sion almost completely inhibited collagen-induced increase in MT1-MMP mRNA in

donor 1 and 4, but only partial inhibition by 40-50% was observed in donor 2 and

3.

Although some differences in MT1-MMP levels between collagen-treated siNT

and siDDR2 cells were observed, they did not show statistical significance. However,

in two samples there was also no significant difference between control cells seeded

on plastic and collagen-treated siDDR2 cells (Figure 3.13C,D). For siITGB1-treated

cells, expression of MT1-MMP did not differ significantly from control cells, indi-

cating that knockdown of β1 integrin does not inhibit collagen-induced MT1-MMP

expression.
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Figure 3.13: Effect of knockdown of β1 integrin and DDR2 on MT1-
MMP gene expression. Expression of DDR2 and β1 integrin was knocked down
by siRNA transfection of RASF from four different donors (A–D). After 2 days
cells were plated either on plastic or collagen type I-coated wells. Total RNA was
extracted after 24 h, reverse transcribed to cDNA and MT1-MMP mRNA and 18S
rRNA levels analysed by qPCR. MT1-MMP expression was normalised to 18S and
results are represented as a fold increase in MT1-MMP expression versus untreated
siNT. Data are shown as mean ± SEM; n = 3; * p≤ 0.05, ** p≤ 0.01, *** p≤ 0.001.
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For a more comprehensive analysis, results from all four qPCR experiments

were pooled together (Figure 3.13; donors #1–4). Pooled data were statistically

analysed using one-way ANOVA with Bonferroni correction and data represented

on Figure 3.14A (n = 12). Significant change in MT1-MMP expression was observed

for siNT (2.55-fold, *** p≤ 0.001) and siITGB1 (3.38-fold, *** p≤ 0.001) cells upon

collagen treatment. MT1-MMP expression was not significantly different between

collagen-treated siNT and siITGB1 transfected cells. A fold difference of 1.7 was

observed in siDDR2 cells. Moreover, there were no significant changes between

untreated siNT cells and siDDR2 collagen-treated cells. This indicates that DDR2

knockdown inhibits increase in MT1-MMP expression when cells are cultured in

presence of collagen. In these experiments, each treatment has only three samples.

It is possible that increasing the number of each sample would lead to statistical

significance.

Findings obtained by qPCR were confirmed by Western Blot analysis of MT1-

MMP protein expression (Figure 3.14B). Collagen stimulation results in autocat-

alytic processing of MT1-MMP to the 44 kDa species and further degradation prod-

ucts, which makes comparison of the protein levels difficult. Therefore, to com-

pare MT1-MMP protein levels, GM6001 was added to the medium while cells were

treated with collagen to prevent autocatalytic processing and degradation. β1 in-

tegrin and DDR2 were knocked down by siRNA transfection. After 2 days cells

were seeded on collagen type I-coated wells in the absence or presence of GM6001

(10 µM).

In agreement with previous results, addition of GM6001 to siNT transfected

cells that were not stimulated with collagen did not change levels of MT1-MMP

(Figure 3.14B). On the other hand, GM6001 treatment notably increased the level

of active MT1-MMP in collagen-treated cells while decreasing the level of the 44 kDa

form. This increase in MT1-MMP protein is due to inhibition of collagen-induced

autocatalytic degradation of MT1-MMP. Thus, GM6001 treatment allows direct

comparison of MT1-MMP levels when cells are stimulated with collagen. Knock-
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Figure 3.14: DDR2 knockdown in RASF prevents increase in MT1-MMP
mRNA and protein expression. (A) Quantitative PCR analysis of MT1-MMP
expression. Graph represents data combined from four separate experiments (four
donors). Data are expressed as mean ± SEM; n = 12; *** p≤ 0.001. (B) RASF were
cultured in the absence (–) or presence (+) of GM6001 at 10 µM and/or collagen
film in serum-free medium. Cells were cultured for 3 days, lysed and analysed by
Western Blotting.
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down of DDR2 reduced formation of the 44 kDa band upon collagen treatment.

Levels of MT1-MMP protein were also lower in siDDR2 cells cultured in the pres-

ence of GM6001 than in siNT cells. Knockdown of β1 integrin resulted in a slight

increase in generation of the 44 kDa species (without GM6001) as well as in increase

in MT1-MMP levels (with GM6001). Taken together, protein levels of MT1-MMP

corroborated qPCR data and both experiments show that the collagen-induced in-

crease in MT1-MMP mRNA and protein levels are mediated by DDR2.

3.2.11 Effect of triple helical peptides on fibroblasts

DDRs are activated by collagen independently of integrins and recognise distinct

motifs within collagen molecules (Konitsiotis et al., 2008; Vogel et al., 2000). DDR2

binding sites in type II and III collagen were identified by Leitinger and colleagues

using triple helical peptide Toolkits (Konitsiotis et al., 2008; Xu et al., 2011). Toolk-

its are sets of triple helical, 20–30 amino acid long synthetic peptides encompassing

sequences from homotrimer collagens II and III (Farndale et al., 2008). GVMGFO

is a minimal sequence supporting binding of DDRs and this sequence is present in

collagens I–III. However, autophosphorylation of recombinant DDR2 expressed in

HEK293 is only induced by peptides containing a longer GPRGQOGVMGFO mo-

tif, which also induce full binding of recombinant DDR2 (Konitsiotis et al., 2008).

When compared to collagen type I, this peptide induced DDR2 phosphorylation

with similar kinetics (Konitsiotis et al., 2008).

As knockdown of DDR2 inhibits collagen-induced MT1-MMP activity, next

I investigated whether activation of DDR2 using triple helical peptides would be

enough to induce proMMP-2 activation. Triple helical peptides (THPs) used in

this study were a kind gift from Dr. Birgit Leitinger (Imperial College London,

UK). The following THPs were used: negative control peptide THP-GPP-10, THP-

GVMGFO and THP-GVNleGFO, where Nle is norleucine (leucine isomer). The

substitution of methionine to norleucine resulted in increased binding affinity of
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this peptide to Fc-tagged discoidin domain of DDR2, as reported by Carafoli et al.

(2009). THP-GPP-10, which contains ten GPP repeats, does not support DDR2

or integrin binding or activation (Konitsiotis et al., 2008; Raynal et al., 2006). The

sequences of THPs are as follows:

THP-GPP-10: GPC-(GPP)10-GPC-NH2

THP-GVMGFO: GPC-(GPP)5-GPRGQOGVMGFO-(GPP)5-GPC-NH2

THP-GVNleGFO: GPC-(GPP)5-GPRGQOGVNleGFO-(GPP)5-GPC-NH2

Due to limited availability of the peptides the experimental set up was scaled

down. RASF (1.25× 104) and dermal fibroblasts (1.25× 104) were seeded in 48-well

plates. After 24 h medium was replaced with 100 µl of serum-free DMEM sup-

plemented with PureCol (100µg/ml) or with indicated THPs (also at 100 µg/ml)

(Figure 3.15). Cells were cultured for a further 3 days. Due to the low number of

cells used in these experiments, I could obtain only zymography data.

Zymography showed that PureCol, but not THPs, induced proMMP-2 acti-

vation in RASF and dermal fibroblasts (Figure 3.15). THP-GVMGFO and THP-

GVNleGFO peptides, but not THP-GPP-10, induced expression of proMMP-9 and

a slight shift in the proMMP-2 band. The high affinity GVNleGFO peptide appear

to induce more proMMP-9 production. In conclusion, selective activation of DDR2

did not result in proMMP-2 activation in RASF or dermal fibroblasts. These data

suggest that activation of only DDR2 may not be enough to induce proMMP-2

activation.
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Figure 3.15: Analysis of proMMP-2 activation by triple helical peptides.
RA synovial fibroblasts and dermal fibroblasts were cultured for 3 days in the ab-
sence (non-treated cells) or presence of collagen type I or THPs at 100 µg/ml in
serum-free medium. THP-GPP-10 was used as a negative control peptide and
both THP-GVNleGFO and THP-GVMGFO were reported to induce DDR2 au-
tophosphorylation. THP-GVNleGFO has higher DDR2 binding affinity than THP-
GVMGFO (Carafoli et al., 2009).

3.3 Discussion

I have shown that type I and II collagens are able to induce proMMP-2 activation in

RA synovial fibroblasts and dermal fibroblasts. Activation of MMP-2 was confirmed

to be solely due to MT1-MMP. In addition to functional activation of MT1-MMP,

resulting in MMP-2 cleavage, collagen also increases MT1-MMP mRNA and protein

levels.

Fibrillar collagens, including type II collagen present in articular cartilage, ac-

tivate RASF and therefore identification of the receptor mediating this activation is

important to understand the pathogenesis of RA. Here, I demonstrated that DDR2

mediates collagen-dependent activation of MT1-MMP in both RA synovial fibrob-

lasts and dermal fibroblasts. Knockdown of DDR2 resulted in decreased proMMP-2

activation in collagen-treated cells. DDR2 also mediates an increase in MT1-MMP

expression and autolytic processing. Interestingly, although knocking down DDR2

inhibits these processes, selective activation of DDR2 by THPs did not result in

proMMP-2 activation. Instead, levels of proMMP-9 were increased by THPs that
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were reported to activate DDR2 signalling. Since this MMP-9 upregulation was not

observed by collagen stimulation, it seems to be specific to THPs. However, due to

limited availability of THPs, further analysis of their effects on fibroblasts was not

possible.

I have found that collagen-binding integrins do not play a role in the process

of collagen-induced proMMP-2 and MT1-MMP activation in RASF. Knockdown of

β1 integrin, which is the common subunit in all collagen-binding integrin receptors,

did not have any significant effect on proMMP-2 activation, MT1-MMP expression

or activity. Moreover, addition of either function blocking or activating anti-ITGB1

antibodies to RASF also did not change the proMMP-2 activation pattern. The

majority of studies on the role of integrins in collagen-induced proMMP-2 activa-

tion were conducted using various anti-integrin antibodies, with conflicting results

depending on cell types used. A recent study by Sakai et al. (2011) demonstrated

that knockdown of ITGB1 subunit by siRNA in malignant mesothelioma cells does

not affect proMMP-2 activation in collagen-treated cells. Although the cell types

are different, my data confirmed their observation.

TNF-α and IL-1 are among cytokines that are highly upregulated in RA joints

and play a central role in perpetuating systemic inflammation in RA. Their expres-

sion is also high at the pannus-cartilage junction (Konttinen et al., 1999b). As they

are able to induce MMP expression, they are candidates to increase MT1-MMP

expression and activity as well. Increase in MMP-2 and MT1-MMP expression in

RASF treated with TNF-α were reported (Migita et al., 1996; Pakozdi et al., 2006).

Migita et al. (1996) also reported an increase in levels of active MMP-2 in these

cells. Moreover, Han et al. (2001) reported that collagen-induced proMMP-2 ac-

tivation in dermal fibroblasts is enhanced by addition of TNF-α. In contrast, a

study by Sabeh et al. (2010) demonstrated that IL-1β does not promote proMMP-

2 activation in RASF. In my experiment, proMMP-2 activation was not affected

by addition of either TNF-α nor IL-1β. These cytokines were confirmed to acti-

vate fibroblasts, as demonstrated by the increase in MMP-dependent caseinolytic
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activity detected in conditioned media. I thus conclude that upregulation of MT1-

MMP in RASF is neither due to or enhanced by TNF-α or IL-1β. The data us-

ing signalling molecule inhibitor showed that Gö6976 (inhibitor of PKC α and β),

PP2 (inhibitor of Src) and SN50 (inhibitor of NF-κB signalling) notably suppressed

collagen-induced proMMP-2 activation. NF-κB is one of the common transcription

factors unregulated by inflammatory cytokines, but NF-κB activation through cy-

tokines was not enough to induce proMMP-2 activation. Therefore, although NF-κB

may play a role in collagen-induced proMMP-2 activation, it may not be a direct

role and other factors may be required. Further investigation of collagen signalling

through DDR2 that leads into activation of the MT1-MMP gene and function would

be important to understand the mechanism of MT1-MMP expression in RA joints.
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Chapter 4

Role of collagen receptors in

collagen degradation and invasion

4.1 Introduction

RASF are highly invasive cells, which mediate pannus invasion and cartilage dam-

age in RA. In contrast to fibroblasts isolated from healthy skin or synovium tissues,

RASF deeply invade cartilage explants (Müller-Ladner et al., 1996; Rutkauskaite

et al., 2005; Seemayer et al., 2003). Furthermore, in vitro cartilage invasion by

RASF is facilitated without inflammatory signals provided by immune cells. The

above observations led to the conclusion that the aggressive behaviour of RASF is

an intrinsic feature of these cells (Seemayer et al., 2003). Damage to the collagen

network is a prerequisite for cell invasion into the cartilage. RASF and other types

of fibroblasts rely on MT1-MMP to degrade type I and II collagen layers, to in-

vade 3D collagen or the cartilage matrix (Holmbeck et al., 1999; Sabeh et al., 2010,

2004). Increased MT1-MMP expression exacerbates collagen invasion by RASF

(Miller et al., 2009). It is therefore important to determine factors that contribute

to the increase in MT1-MMP expression and function.
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In Chapter 3, I demonstrated that collagen was able to induce MT1-MMP

activity and expression, resulting in activation of proMMP-2. The observed MT1-

MMP activation was mediated through the collagen receptor DDR2, rather than

by integrins or pro-inflammatory cytokines. I hypothesised that in addition to

proMMP-2 activation, collagen can also modulate the ability of RASF to invade

and degrade collagen-rich tissues such as cartilage by increasing MT1-MMP activ-

ity.

The aim of this chapter is to further examine the roles of collagen receptors,

DDR2 in particular, in MT1-MMP-dependent degradation of type I collagen and

gelatin as well as in MT1-MMP-dependent collagen invasion. I will also investi-

gate the effect of a DDR2 inhibitor, dasatinib, on MT1-MMP activity, including

proMMP-2 activation, collagen degradation and invasion using a transwell assay.

4.2 Results

4.2.1 Analysis of gelatin film degradation by fibroblasts

Fluorescently labelled ECM proteins, such as gelatin or fibronectin, are often used

to evaluate invasive properties of cells in vitro, as they allow detection of localised

matrix degradation (Artym et al., 2006; Chen et al., 1985; Martin et al., 2012). Thin

layers of such labelled proteins are coated and fixed onto glass coverslips and their

degradation can be easily visualised by fluorescence microscopy.

In this study, I employed a gelatin film degradation assay to analyse the effect

of collagen on RASF and dermal fibroblasts degradation of the ECM. Gelatin was

labelled with Alexa Fluor 488 dye (Alexa488-gelatin). First, I examined the abil-

ity of fibroblasts to degrade the Alexa488-gelatin. RASF or dermal fibroblasts were

seeded on top of Alexa488-gelatin-coated glass coverslips in 2% FBS DMEM for 48 h.

Cells were cultured in the absence or presence of PureCol in the culture medium, at

100 µg/ml. The following inhibitors were also added to media as indicated: GM6001
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(10 µM), TIMP-1 (0.5 µM), TIMP-2 (0.5 µM) and DX-2400 (0.5µM). After 48 h me-

dia were removed, then cells were fixed with 3% PFA and stained with DAPI to

visualise nuclei (RASF; Figure 4.1A) or Alexa Fluor 568-conjugated phalloidin to

visualise F-actin (dermal fibroblasts; Figure 4.1B). Representative images for each

treatment showing similar cell numbers are presented on Figure 4.1. Degradation of

the gelatin is visible as dark areas against the bright fluorescent background (green).
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Figure 4.1: MT1-MMP dependent Alexa488-gelatin degradation by fi-
broblasts is induced by collagen type I. (A) RASF or (B) dermal fibroblasts
were seeded on top of Alexa488-gelatin-coated glass coverslips. Cells were cultured
in 2% FBS DMEM with or without PureCol at 100 µg/ml. Inhibitors were added
as indicated: GM6001 (10 µM), TIMP-1 (0.5 µM) or DX-2400 (0.5µM). After 2
days, cells were fixed and stained with DAPI (A) or Alexa Flour 568-conjugated
phalloidin (B). Images were taken with fluorescence microscope using 4× objective
lenses. Scale bar: 270 µm.
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Cancer cells are usually incubated on fluorescent ECM substrates for 2–24 h

to visualise degradation. Surprisingly, fibroblasts cultured in the absence of colla-

gen did not degrade Alexa488-gelatin and remained ‘inactive’ towards the readily

available substrate even during a prolonged culture time (48 h). However, gelatin

degradation by fibroblasts was markedly increased when collagen was added to the

media. Also, RASF cleaved gelatin to the higher degree than dermal fibroblasts as

more degraded (dark) areas were observed in synovial cells. Degradation was inhib-

ited by GM6001 and DX-2400 in both RASF and dermal fibroblasts, suggesting that

the activity was derived from MT1-MMP. Dermal fibroblasts were also treated with

TIMP-2 (0.5µM) and gelatin degradation was completely blocked (Figure 4.1B).

TIMP-1 at 0.5µM partially, but not completely, inhibited degradation in both cell

types. These data suggest that other TIMP-1-sensitive MMPs contribute to the

gelatin degradation. Since DX-2400 completely inhibited this activity, it is most

likely that it is due to MMP-2 activated by MT1-MMP. Thus collagen-induced

gelatin film degradation is attributable to both direct and indirect activity of MT1-

MMP.
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4.2.2 DDR2 mediates collagen-induced gelatin film degra-

dation in fibroblasts

In the previous Chapter, I showed that collagen-induced MT1-MMP expression

and proMMP-2 activation are at least partially mediated by DDR2 (Section 3.2.9).

Degradation of Alexa488-gelatin is inducible by collagen and dependent on both

MT1-MMP and MMP-2 activity. Therefore, I next examined whether DDR2 also

mediates collagen-triggered gelatin film degradation.

To analyse the role of integrin β1 and DDR2 in gelatin film degradation, ex-

pression of these receptors was knocked down by siRNA transfection. Two days post-

transfection, RASF or dermal fibroblasts were seeded on top of Alexa488-gelatin-

coated glass coverslips and incubated in 2% FBS DMEM for 48 h. Medium was

supplemented with PureCol at 100µg/ml as indicated. Afterwards cells were fixed

in 3% PFA and stained with DAPI to visualise nuclei (RASF; Figure 4.2A) or

Alexa Fluor 568-conjugated phalloidin to visualise F-actin (dermal fibroblasts; Fig-

ure 4.2B). Representative images showing similar cell numbers are shown on Figure

4.2.

Similarly to the previous experiment, fibroblasts transfected with non-targeting

siRNA did not show gelatin degradation unless they were cultured with collagen

present in the medium. Knockdown of DDR2 almost completely inhibited collagen-

induced Alexa488-gelatin degradation in both RASF (Figure 4.2A) and dermal fi-

broblasts (Figure 4.2B). Knockdown of β1 integrin subunit had no effect on gelatin

degradation in either cell type. Again, dermal fibroblasts showed lower levels of

collagen-induced gelatin degradation in control siRNA transfected cells than corre-

sponding RASF cells. The above results indicate that DDR2 activation by collagen

results in elevated MT1-MMP activity in fibroblasts and increased substrate degra-

dation.
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Figure 4.2: DDR2 knockdown inhibits collagen-induced gelatin film
degradation. DDR2 and β1 integrin expression were knocked down by siRNA
in RA synovial fibroblasts (A) or dermal fibroblasts (B). After 2 days, cells were
seeded on top of Alexa488-gelatin-coated glass coverslips and cultured in 2% FBS
DMEM for further 2 days with or without PureCol in the medium (100 µg/ml).
Cells were fixed with 3% PFA and stained with DAPI (A) or Alexa Flour 568-
conjugated phalloidin (B). Images were taken with a fluorescence microscope using
4× objective lenses. Scale bar: 270µm.
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4.2.3 Collagen film degradation is inhibited by DDR2 knock-

down

MT1-MMP is indispensable for the cleavage of fibrillar collagens. I have demon-

strated that collagen signalling through its receptor DDR2 increases MT1-MMP

activity towards proMMP-2 or gelatin. It is possible that collagen signalling may

also play a role in collagen degradation. Therefore, the role of collagen receptors was

further analysed in MT1-MMP-dependent collagen film degradation. I investigated

whether knockdown of either integrin β1 or DDR2 had an inhibitory effect on a

collagen film degradation by RASF or dermal fibroblasts.

Two days after siRNA transfection, fibroblasts were seeded on top of PureCol-

coated wells. After 3 days, cells were removed by extensive trypsinization. Since

trypsin does not degrade collagen, only intact collagen fibrils will remain. The col-

lagen layer was then fixed in 3% PFA and stained with Coomassie Brilliant Blue

R-250. Degradation appears as white areas against a dark background of the stained

collagen. Non-targeting siRNA transfected cells were cultured in the absence or pres-

ence of GM6001 at 10µM. Three wells were used per each treatment and represen-

tative images are shown on Figure 4.3 (RASF) and Figure 4.4 (dermal fibroblasts).

Additionally, conditioned culture media from RASF were collected after 72 h and

subjected to gelatin zymography (Figure 4.3C).

Although some studies show that loss of β1 integrin impairs cell attachment, all

siRNA transfected cells attached equally well to the collagen matrix. No differences

in attachment were observed between targeting and non-targeting siRNA transfected

cells 2 hours after plating.

Substantial collagen degradation was observed in both RASF (Figure 4.3) and

dermal fibroblasts (Figure 4.4) transfected with siNT. Degradation was inhibited

by GM6001 in both cell types. Knockdown of DDR2 significantly reduced collagen

degradation. Gelatin zymography also showed inhibition of proMMP-2 activation in

siDDR2, but not in other siRNA transfected RASF (Figure 4.3C). Levels of active
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Figure 4.3: Knockdown of DDR2 inhibits collagen film degradation in
RASF. DDR2 and integrin β1 expression in RASF from 2 donors was knocked
down by siRNA transfection. After 2 days, cells were seeded on top of PureCol-
coated 12-well plates and cultured in serum-free medium for further 3 days. GM6001
was used at 10 µM. Cells were removed by trypsinization, and the collagen layer fixed
with 3% PFA and stained with Coomassie Brilliant Blue. Degradation is visible as
white areas against the dark background. Three wells were used per treatment and
representative images are shown. (A) Images were captured with a light microscope
using 4× objective lenses. Scale bar: 270 µm. (B) Images were taken with a light
microscope using 20× objective lens. Scale bar 55 µm. (C) After 3 days, culture
media were analysed by gelatin zymography.
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Figure 4.4: Knockdown of DDR2 inhibits collagen film degradation in
dermal fibroblasts. DDR2 and integrin β1 expression in dermal fibroblasts was
knocked down by siRNA transfection. After 2 days, cells were seeded on top of
PureCol-coated wells (100µl of 2.7 mg/ml) and cultured in serum-free DMEM for
a further 3 days. GM6001 was supplemented at 10 µM. Cells were removed by
trypsinization, the collagen layer fixed with 3% PFA and stained with Coomassie
Brilliant Blue. Degradation is visible as white areas against the dark background.
Three wells were used per treatment and representative images are shown. (A)
Images were taken with a light microscope using 4× objective lens. Scale bar:
270 µm. (B) Images were taken with a light microscope using 20× objective lens.
Scale bar 55µm.

MMP-2 were lower in RASF from donor #2, and degree of collagen degradation was

also lower in these cells. It can be speculated that the extent of collagen damage is

relative to MT1-MMP activity and is reflected in levels of proMMP-2 activation.

Silencing of β1 integrin expression in RASF and dermal fibroblasts did not

inhibit collagen degradation. Furthermore, degradation seemed to be more pro-

nounced upon integrin knockdown. Further analysis of images captured with 20×

objective lens showed that siITGB1 cells create visibly larger and round ‘holes’ in the

collagen layer, with well defined boundaries (Figure 4.3B and Figure 4.4B). On the

contrary, control cells show a more diffuse collagen degradation. White unstained

areas were almost absent in GM6001 treated and in siDDR2 cells. In conclusion,

127



4.2. Results

these data indicate that collagen signalling through DDR2 is necessary for efficient

MT1-MMP-dependent collagen degradation by RASF and dermal fibroblasts.

4.2.4 Collagen488 degradation assay

Both gelatin and collagen film degradation assays allowed evaluation of the abil-

ity of fibroblasts to degrade the ECM and comparison of the changes in substrate

degradation in siRNA-transfected cells. In addition to the above assays, I con-

sidered quantitative methods to accurately determine changes in collagen degrada-

tion. The hydroxyproline assay is a technique frequently used to detect collagen

in biological samples (Creemers et al., 1997). Hydroxyproline (4-hydroxyproline)

is an amino acid commonly found in collagen and elastin. Levels of hydroxypro-

line detected in analysed samples correspond directly to the amount of degraded

collagen (or elastin). In this technique, hydroxyproline is oxidised and reacts with

p–dimethylaminobenzaldehyde resulting in formation of a colorimetric product.

I analysed serum-free culture media collected from collagen film degradation

assays using the hydroxyproline assay. However, despite several attempts I was not

able to detect hydroxyproline due to low detection limits and high interference from

cell culture medium components. During the initial step, samples are hydrolysed

in the presence of concentrated HCl overnight at 100°C. In this process medium

components became charred and subsequently interfered with absorbance measure-

ments.

Thus I decided to use fluorescently labelled collagens. A similar approach, us-

ing FITC-labelled collagen, has previously been successfully used to detect collagen

degradation by HT1080 cells (Wolf et al., 2007). I conjugated type I collagen to

Alexa Fluor 488 as described in Materials and Methods Section 2.10. Thick col-

lagen layers were incubated at 37°C prior to labelling to avoid interference of the

fluorescence dye with fibril formation. Cleavage of Alexa Fluor 488-labelled colla-
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gen (collagen488) would result in release of fluorescent dye into the medium, which

could be directly detected by fluorescence spectroscopy.

To optimise the assay, I compared labelling and degradation of CellMatrix,

PureCol or a mixture (1:1 v/v) of both collagens. Initially, Alexa Fluor 488 dye

was used at 20 µg/ml. Two different experimental layouts were compared: 12- or

24-well plates, filled with 500 µl or 250 µl of collagen respectively, to allow for scaling

down of reaction reagents and cell numbers. Dermal fibroblasts were used in the

optimisation because supplies of RA synovial fibroblasts were limited. Fibroblasts

were cultured on top of the collagen488 for 5 days in serum-free and phenol red-

free DMEM. GM6001 (10 µM) was added to the medium of cells cultured on top of

mixed (1:1) collagens. Preliminary results are presented in Figure 4.5.

High fluorescence levels were detected in culture media collected from fibrob-

lasts cultured on top of collagen488. Levels of detected fluorescence were on average

87% lower in GM6001-treated samples, suggesting that the increase in fluorescence
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Figure 4.5: Optimisation of collagen488 degradation. Comparison of colla-
gen488 degradation between 12-well and 24-well experimental set up. Collagen type
I was labelled with 20 µg/ml Alexa Fluor 488. Equal volumes of 1:1 CellMatrix
and PureCol mix (n=2) or each collagen alone (n=1) were used. Dermal fibroblasts
were cultured atop of collagen488 for 5 days. GM6001 was used at 10 µM. Media
were analysed by spectroscopy and fluorescence shown in arbitrary units (A.U.).
Readings from sample without cells were subtracted.
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was due to MMP activity. Fluorescence was slightly lower for 24-well than 12-well

plates. All collagens showed comparable levels Alexa Fluor 488 release within the

experimental set ups, indicating similar levels of labelling. Although the experiment

was conducted with a samples number of one (see Figure 4.5), consistent results were

obtained for all tested collagens.

Next, I performed a time course analysis of collagen488 degradation using Cell-

Matrix collagen labelled with 20 µg/ml of Alexa Fluor 488 dye. Dermal fibroblasts

were cultured for shorter time: 3, 4 and 5 days (Figure 4.6). In order to estimate

how much fluorophore was released into the medium and what amount of the la-

belled collagen488 remained in the well, collagens were digested with a bacterial

collagenase (100 µg/ml) and fluorescence of the cleaved collagen solution was also

measured (Figure 4.6B). Fibroblasts appear to release all the available Alexa Fluor

488 dye into the medium as early as the day 3 time point. Almost no fluorescence

was detected in bacterial collagenase cleaved collagen, indicating that all labelled

collagen488 has been already degraded by fibroblasts. GM6001 prevented colla-

gen488 degradation. At all time points, samples cultured in the absence of cells

showed a high background from spontaneous release of the Alexa Fluor 488 dye

into the medium. On average, more than 50% of fluorescence detected in fibroblast

culture medium could be attributed to non-specific fluorophore release.

As almost all collagen488 has been cleaved during 3 day culture, I decided

to analyse even shorter time points. To avoid high background readings due to

fluorophore release, CellMatrix collagen was labelled in 24-wells with a lower con-

centration of Alexa Fluor 488 — 2µg/ml rather than 20 µg/ml. Collagen488 were

also extensively washed in PBS before plating fibroblasts, which were then cultured

for 1 or 2 days (Figure 4.7). To further characterise a specificity of collagen488

degradation, the anti-MT1-MMP antibody DX-2400 (0.5µM) was used in addition

to GM6001 (10 µM). One sample per treatment was used, including collagen488

cultured without cells. Collagen488 samples incubated without fibroblasts were

digested with bacterial collagenase to estimate the total Alexa Fluor 488 content
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Figure 4.6: Time course analysis of collagen488 degradation. Dermal fi-
broblasts were cultured on collagen488 for 3, 4 or 5 days. 20 µg/ml Alexa Fluor
488 dye was used for labelling. GM6001 was added to medium at 10 µM. After
culture, remaining collagen was digested with bacterial collagenase (100µg/ml).
Medium (A) and digested collagen (B) were analysed by spectroscopy and fluores-
cence shown in A.U. Readings from samples without cells are included in the graph.
n=2.

(Figure 4.7). The volume of cleaved collagen was adjusted to match the volume of

conditioned media. Additionally, media from samples without cells were analysed to

detect non-specific fluorophore release. This non-specific fluorescence reading was

subtracted from sample readings. Background fluorescence readings were within

27% of fluorescence released by fibroblasts at day 2.

Figure 4.7 demonstrates that lower concentrations of Alexa Fluor 488 still re-

sult in a high labelling of collagen. One day incubation showed little collagen488

degradation (Figure 4.7A), but release markedly increased at day 2 (Figure 4.7B).
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Figure 4.7: Optimisation of collagen labelling with Alexa Fluor 488. Cell-
Matrix collagen was labelled with 2 µg/ml Alexa Fluor 488 solution in 24-well plates.
Dermal fibroblasts were cultured on top of collagen488 for 2 days. GM6001 was
used at 10 µM and DX-2400 MT1-MMP inhibitory antibody at 500nM. A sample
cultured without cells was digested with bacterial collagenase (100 µg/ml). Medium
and digested collagen were analysed by spectroscopy and fluorescence shown in A.U.
n=1.

As culture medium fluorescence levels were lower than fluorescence of digested col-

lagen488, it is likely that not all collagen488 was degraded by fibroblasts at day

2. Interestingly, although GM6001 inhibited collagen488 degradation, DX-2400 was

not able to block it. Fluorescence levels of medium from DX-2400 treated fibrob-

lasts were almost the same as that of untreated fibroblasts. Due to only a single

measurement (n=1), the results were treated with caution and I decided to test

collagen488 degradation using a panel of a MMP inhibitors.

In the next experiment, CellMatrix collagen was labelled with 2 µg/ml Alexa

Fluor 488 dye in a 24-well plate. At the same time, a 24-well plate was coated with

the same volume of CellMatrix collagen that was left unlabelled. Equal numbers

of dermal fibroblasts were seeded on top of both labelled and unlabelled collagen.

Fibroblasts were cultured for 2 days in the presence of the following inhibitors as

indicated: GM6001 (10µM), DX-2400 (0.5µM), TIMP-1 and TIMP-2 at 0.5 µM.

Collagen488 samples incubated without fibroblasts were digested with bacterial col-
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lagenase and media were collected to analyse background fluorescence, which was

within 23% of fibroblasts readings and subtracted from samples readings (Figure

4.8A). Gelatin zymography was used to analyse conditioned media from collagen488

and unlabelled collagen samples treated with inhibitors (Figure 4.8B).

The analysis of fluorescence of culture media showed that collagen488 degra-

dation could be inhibited by GM6001, TIMP-1 and TIMP-2, but again could not

be inhibited by DX-2400. Sensitivity to TIMP-1 and inability of DX-2400 to block

degradation indicates that this process is MT1-MMP-independent. To confirm the

effect of these inhibitors on MT1-MMP, collagen-induced proMMP-2 activation was

analysed by gelatin zymography. To exclude possible effects of collagen labelling,

samples obtained from unlabelled collagen were analysed for comparison. Pro-

MMP-2 activation in fibroblasts was clearly inhibited by GM6001, DX-2400 and

TIMP-2 but not by TIMP-1. No differences were observed between labelled and

unlabelled CellMatrix collagen.

A striking observation was made when fibroblasts were cultured on top of

collagen488 alone or when treated with DX-2400. On several occasions, collagen488

gels in those samples became very easy to dislocate from the well and sometimes

had a dissolved, jelly-like appearance which was not observed in GM6001-treated

cells. In contrast to GM6001-treated samples, increase in the volume of cell culture

medium was also observed in these samples.

At this point, the assay was not further optimised, as the observed collagen488

degradation was not reflecting MT1-MMP activity. The possible implications of

these results are discussed in Section 4.3.
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Figure 4.8: Effect of MMP inhibitors on collagen488 degradation. Cell-
Matrix collagen was either labelled with 2 µg/ml Alexa Fluor 488 solution in 24-well
plate or left unlabelled. Dermal fibroblasts were cultured on top of labelled or un-
labelled collagen for 2 days. The following inhibitors were used: GM6001 (10 µM),
DX-2400 (0.5 µM), TIMP-1 (0.5 µM) and TIMP-2 (0.5µM). Collagen488 sample
without cells was digested with bacterial collagenase (100µg/ml). (A) Fluores-
cence of medium and digested collagen was measured by spectroscopy and shown
in arbitrary units (A.U.). n=2. (B) Zymography analysis of conditioned medium
from cells cultured on top of collagen488 or unlabelled collagen.

4.2.5 DDR2 knockdown partially inhibits collagen invasion

in transwell invasion assay

The transwell invasion assay is commonly used to assess the invasiveness of a wide

range of cells (Palmisano and Itoh, 2010). The bottom parts of transwell chambers

are fitted with porous PET membranes which can be coated with a reconstituted

ECM, such as Matrigel or collagen. Cells are seeded on top of the matrix and

allowed to migrate to the bottom side of the membranes. Invaded cells are then

stained and counted.

Because cells primarily utilise MT1-MMP to invade 3D collagen gels, I used

collagen-coated transwells to analyse invasion of synovial and dermal fibroblasts.

Expression of integrin β1 or DDR2 was knocked down by siRNA transfection. After

two days, equal numbers of cells were seeded on top of collagen-coated transwells
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and cultured for 3 days, at which point cells were fixed, stained and counted. Four

transwells per treatment were used in each experiment. Statistical analysis was done

using one-way ANOVA with Bonferroni Multiple Comparison Test.

Two separate experiments with RA synovial fibroblasts from different donors

were performed. The numbers of invading RASF transfected with non-targeting

siRNA differed between the two experiments, with average invasion numbers around

3500 and 1300 respectively. Differences could be attributed to the variability be-

tween assays or invasive potential of RASF. Figure 4.9A illustrates combined data

for RASF from these two experiments. Due to differences in invasion, data are rep-

resented as a percent (%) of the average number of invading non-targeting siRNA

transfected cells and analysed by ANOVA.

Invasion was strongly inhibited by GM6001, with 94% reduction (*** p≤ 0.001).

DDR2 knockdown resulted in significant decrease in RASF invasion (* p≤ 0.05

siDDR2 vs. siNT and ** p≤ 0.01 siDDR2 vs. siITGB1). RASF transfected with

DDR2-targeting siRNA invaded collagen approximately 36% less than control cells.

There were no significant differences between invasion of siNT and siITGB1 samples.

For dermal fibroblasts, cell invasion numbers were much lower than for RASF.

The average number of invading siNT cells was around 200 (Figure 4.9B). Similarly

to RASF, invasion was inhibited by GM6001 (93% inhibition; * p≤ 0.05). Statistical

analysis by ANOVA did not show significant differences between invasion of siNT

and siDDR2 cells or between siNT and siITGB1 cells. Although not statistically

significant, Figure 4.9B shows reduction of invasion of siDDR2 cells by 53%. Even

though the variation in numbers of invading siITGB1 cells was substantial, the

average invasion was comparable and no different to invasion of control siNT cells.
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Figure 4.9: Fibroblast invasion in transwell assay is inhibited by DDR2
knockdown. Expression of collagen receptors was knocked down in fibroblasts
by siRNA transfection. After 2 days cells were cultured on top of collagen-coated
transwells. GM6001 was supplemented at 10µM. After 3 days non-invading cells
and collagen were removed, remaining cells fixed with 3% PFA, stained and counted.
(A) RA synovial fibroblasts. Data from two separate experiments are combined
and represented as percentage of average siNT invasion (± SEM). 1:1 mix of collagen
was used. n=8; * p≤ 0.05, ** p≤ 0.01, *** p≤ 0.001. (B) Dermal fibroblasts.
Data represented as number of invading cells ± SEM. CellMatrix collagen was used.
n=4; * p≤ 0.05.

4.2.6 DDR2 is not required for 3D collagen migration in

microcarrier beads invasion assay

Invasion of fibroblasts suspended within 3D collagen matrix was subsequently anal-

ysed by microcarrier beads invasion assay. First of all, I have performed a time

course analysis of fibroblast invasion. The same numbers of either RASF or dermal

fibroblasts were attached to microcarrier beads and suspended within CellMatrix

collagen. Cells were allowed to migrate away from the beads for 72 h and images

taken at 24 h intervals (Figure 4.10). At the 24 h time point, fibroblasts started to

elongate within the collagen matrix and very little invasion was observed. Time

course analysis showed that the majority of cells migrated away from the bead sur-
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Figure 4.10: Time course analysis of fibroblast migration within 3D colla-
gen in microcarrier beads invasion assay. (A) RASF or (B) dermal fibroblasts
were attached to gelatin-coated microcarrier beads, embedded within CellMatrix
collagen, final concentration approximately 2.2 mg/ml) and incubated at 37°C for
30 min. Afterwards, 0.5 ml of 10% FBS containing DMEM was added on top of
collagen gel. GM6001 was supplemented at 10 µM. Cells were cultured for 72 h and
images were captured at 24 h intervals with 10× objective lens. Scale bar: 110µm.

face in a radial pattern after 72 h. There were no noticeable differences in invasion

between synovial and dermal fibroblasts. GM6001 (10µM) inhibited cell migration,

which indicates that invasion is MMP-dependent. Fibroblasts exhibit a spindle-like

shape when migrating within collagen.

Invasion distances were compared in RASF from two different donors in which

collagen receptors were knocked down by siRNA transfection. Cells were attached

to beads 48 h posttransfection and allowed to invade collagen for a further 72 h.

Migration distances of individual cells were measured in µm and are presented as

a scatter-plot graph on Figure 4.11. Approximately 1/4 of all counted control cells
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were still attached to beads (3/4 of cells invaded into collagen gel). The percentages

of invading cells for each particular treatment are specified below the scatter-plots on

Figure 4.11. Comparison between groups was made with ANOVA with Bonferroni

Multiple Comparison Test. GM6001 significantly reduced invasion of siNT cells

from both RASF donors (*** p≤ 0.001). Although median migration was almost

identical for control cells from the two donors, for donor #2, the range of migration

was twice that observed for donor #1.

Contrary to results obtained in the transwell assay, knockdown of DDR2 ex-

pression did not inhibit invasion of fibroblasts suspended within 3D collagen. The

number of invading cells, as well as the median migration distance and range of

invasion were almost identical in siNT and siDDR2 cells from both RASF donors.

Interestingly, knockdown of β1 integrin resulted in changes in RASF invasion, how-

ever none of the observed differences were statistically significant. The percent

of invading cells was lower (57%) in siITGB1 samples, and the median migration

distance was also lower than in control cells. It was also observed that many cells

lacking β1 integrin had a round shape, instead of the typical spindle-like appearance

characteristic for invading fibroblasts, as illustrated on Figure 4.13.

From the scatter-plot analysis on Figure 4.11 it was apparent that the median

migration distance was lower for siITGB1 cells, however they did not show a par-

ticularly reduced range of migration. For informative purposes non-migrating cells

were removed from the scatter-plot and the resulting graph shown in Figure 4.12.

The graph demonstrates that indeed less siITGB1 cells were invading collagen, but

those which were able to migrate did not show any apparent defect in invasion, as

evident by lack of differences in migration distance between treatments.

To further analyse the discrepancies between the transwell and microcarrier

beads invasion assays, I decided to test different collagen preparations. Acid-

extracted collagens such as CellMatrix are preferred in invasion assays as they form

more compact, cross-linked collagen gels with smaller pores, which require prote-

olytic action of cells to migrate within them. Gels formed by pepsin-extracted
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Figure 4.11: Role of collagen receptors in microcarrier beads invasion
assay. Expression of DDR2 and integrin β1 was knocked down in RASF by siRNA
transfection. After 2 days cells were attached to microcarrier beads and embed-
ded within CellMatrix collagen at a final concentration of approximately 2.2mg/ml.
GM6001 was added at 10µM. Cells were cultured for a further 3 days, fixed with
3% PFA and images were taken with a light microscope using 10× objective lens.
Migration distance ( µm) was measured in ImageJ software. The fraction of cells
that migrated away from the bead are represented as a percent of total counted cells
(% invading cells). Bar represents median migration distance; n=100; *** p≤ 0.001.
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collagens lack telopeptides and thus form less cross-linked gels, resulting in colla-

gen scaffolds with larger pores which cells can negotiate without proteolysis (Sabeh

et al., 2009b). As observed in Chapter 3, PureCol collagen stimulates cells better

than CellMatrix and induces more proMMP-2 activation. For that reason I tested

either CellMatrix or several mixtures of CellMatrix and PureCol in different pro-

portions: 2:1, 1:1 and 1:2 v/v respectively. Dermal fibroblasts were attached to

microcarrier beads, embedded within these collagens and cultured for 72 h as de-

scribed previously (Figure 4.14). GM6001 inhibited migration of dermal fibroblasts

in all collagen preparations tested (Figure 4.14A). Median migration distance and

range were also nearly identical across all samples (Figure 4.14B).

Because invasion within all collagen gels was inhibited by GM6001 and there-

fore MMP-dependent, all collagen preparations were suitable to analyse MMP-
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Figure 4.13: Comparison of cell shape of siRNA-transfected fibroblasts
during 3D collagen invasion. During microcarrier beads invasion assay, siITGB1
transfected cells show a round cell shape instead of the characteristic spindle shape.
Scale bar: 110 µm.

dependent invasion. I thus decided to compare CellMatrix with a 1:2 mixture of

CellMatrix and PureCol, as it provides the highest concentration of pepsin-treated

PureCol. Again, expression of collagen receptors was knocked down by siRNA trans-

fection in RASF and dermal fibroblasts. 48 h posttransfection cells were attached to

beads, the sample divided into two and embedded within either CellMatrix or mixed

collagen gel (1:2) and cultured for 72 h. Cell migration distance was measured as

described and results are represented in Figure 4.15.

Overall, little variation was observed between different collagen preparations

with the exception of invasion of siITGB1 fibroblasts. Contrary to the results of

the first microcarrier beads invasion experiment, knockdown of integrin β1 did not

result in any significant inhibition of invasion in CellMatrix collagen only. How-

ever, invasion was significantly inhibited in the mixed collagen gel, with siITGB1

RASF showing significantly more inhibition versus control cells (Figure 4.15B; ***

p≤ 0.001) than dermal fibroblasts (Figure 4.15D; * p≤ 0.05).

Synovial fibroblasts showed a slightly higher range of migration and median

migration distance than dermal fibroblasts. Fibroblasts embedded within CellMa-

trix collagen also seemed to invade further than in the mixed collagen matrix. No

other major differences in invasion were observed between synovial (Figure 4.15A,B)

and dermal fibroblasts (Figure 4.15C,D). As in the previous experiment, knockdown

of DDR2 had no significant effect on cell invasion and range in either collagen type,
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Figure 4.14: Fibroblast invasion within different preparations of 3D col-
lagen gels during microcarrier beads assay. (A) The same number of dermal
fibroblasts were attached to microcarrier beads and embedded within CellMatrix
collagen or a mixture of CellMatrix and PureCol (2:1, 1:1 or 1:2 v/v) at 2.2 mg/ml
final concentration. GM6001 was added at 10 µM. Cells were cultured for 3 days,
fixed with 3% PFA and images taken with 10× objective lens. Scale bar: 110 µm
(B) Migration distance ( µm) of fibroblasts were measured in ImageJ software; bar
represents median migration distance; n=100. CM - CellMatrix collagen.
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Figure 4.15: Effect of collagen gel composition on migration of siRNA
transfected fibroblasts in microcarrier beads invasion assay. Expression
of collagen receptors DDR2 and integrin β1 was knocked down by siRNA in RA
synovial fibroblasts (A,B) or dermal fibroblasts (C,D). After two days cells were
attached to microcarrier beads and embedded within collagen: CellMatrix (A,C)
or 1:2 mixture of CellMatrix and PureCol respectively (B,D). Cells were cultured
for a further 3 days (with or without 10µM GM6001), fixed in 3% PFA, migra-
tion distances measured and represented in µm. Bar represents median migration
distance; * p≤ 0.05, *** p≤ 0.001; Number of counted cells n=150 with excep-
tion of: (A) siNT+GM6001 n=58 (B) siNT+GM6001 n=49; siITGB1 n=101 (C)
siNT+GM6001 n=57 (D) siNT+GM6001 n=53.

as observed for both RASF and dermal fibroblasts. GM6001 inhibited collagen in-

vasion in all samples (*** p≤ 0.001). In conclusion, the invasive capability of RASF

and dermal fibroblasts in different collagen preparations was not altered by DDR2

silencing. Knockdown of β1 integrin reduced the ability of cells to migrate within a

collagen matrix, especially in matrices containing a higher ratio of pepsin-extracted

collagen.

In addition to the above findings, analysis of images showed an interesting

pattern of cell invasion within 3D collagen gels, as illustrated on Figure 4.16. Some

of the fibroblasts were identified to follow each other, in a head-to-tail manner. The

leading cell appeared to ‘clear the path’ for the trailing cells. Cells invaded at regular

intervals, but cell-cell contacts were not readily visible in most cases.

Such multicellular invasion was reported previously for HT1080 cells and fi-

broblasts (Fisher et al., 2009; Gaggioli et al., 2007). The leader cells proteolytically

degrade the collagen matrix and form so-called single cell invasion tunnels — SCITs

— with the diameter of the cell’s nuclei (Fisher et al., 2009). Those tunnels can

be afterwards traversed by following cells without proteolytic cleavage of collagen.

Even though MMP inhibitors block formation of SCITs, they do not block migra-

tion within already formed collagen tunnels. It is possible that fibroblasts in this

study formed similar tunnels within collagen which were subsequently used by other

fibroblasts. As a result, invasion of trailing cells does not require MT1-MMP.
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Figure 4.16: Multicellular invasion of fibroblasts within 3D collagen. Dur-
ing microcarrier beads invasion assay, fibroblasts showed chain-like cell invasion
within the collagen matrix. Cells invaded head-to-tail, at regular intervals as indi-
cated by arrow heads. Scale bar: 110 µm.

4.2.7 Dasatinib inhibits RASF invasion and motility

I investigated whether DDR2 inhibition by dasatinib has the same effect as DDR2

knockdown. Dasatinib is a small molecule tyrosine kinase inhibitor. It was devel-

oped to treat chronic myeloid leukaemia by inhibition of BCR-ABL kinase and was

subsequently approved by the US Food and Drug Administration (FDA) for clinical

use (Lombardo et al., 2004). In addition, it is a potent inhibitor of DDR1 and DDR2

kinases, but it also inhibits Src family kinases, PDGFRβ and p38 (Day et al., 2008;

Lombardo et al., 2004). Dasatinib prevents collagen-induced autophosphorylation

of DDR2 with a reported IC50 within the low nanomolar range (Day et al., 2008).

First, I examined the effect of dasatinib on proMMP-2 activation in RA syn-

ovial fibroblasts. Synoviocytes were transfected with non-targeting or DDR2-target-

ing siRNA, in triplicates. 2 days after transfection, PureCol was added to the

medium at 100 µg/ml. GM6001 was used at 10 µM and dasatinib at 100 nM. After

3 days medium was collected and analysed by gelatin zymography, cell lysates were

analysed by Western Blotting (Figure 4.17A). Levels of active MMP-2 on zymo-

grams were measured by densitometry. Active MMP-2 detected in collagen-treated

siNT cells was arbitrarily set to 100% and all other measurements are represented

as percent of this value. Densitometry results are shown on Figure 4.17B.

As in previous experiments, DDR2 silencing resulted in significant reduction

of proMMP-2 activation upon collagen stimulation. Dasatinib treatment resulted
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Figure 4.17: Dasatinib prevents collagen-induced proMMP-2 activation.
Tyrosine kinase inhibitor dasatinib reduces proMMP-2 activation in RA synovial
fibroblasts stimulated with collagen. (A) RA synovial fibroblasts transfected with
non-targeting or DDR2-targeting siRNA were cultured in absence (–) or presence
(+) of PureCol in medium (100 µg/ml) for 2 days. GM6001 (10µM) and dasatinib
(100 nM) were supplemented into the medium as indicated. Samples were done
in triplicates. Medium was analysed by zymography and cell lysates by Western
Blotting. (B) Zymograms were analysed by densitometry to asses levels of active
MMP-2. Measurements are represented as percentage (%) of active MMP-2 in siNT
cells stimulated with collagen (100%). Data shown as mean ± SEM. n=3.

in almost identical reduction in proMMP-2 activation (average 82.8% and 82.7%

reduction for siDDR2 and dasatinib respectively). GM6001 blocked proMMP-2

activation in control cells by more than 95%, to the level observed in untreated

siNT cells. DDR2 depletion as well as dasatinib treatment result in lower levels

of MT1-MMP. Furthermore, no MT1-MMP processing was observed in these sam-

ples. In conclusion, dasatinib exerts a similar effect on MT1-MMP activation as

DDR2 knockdown, preventing proMMP-2 activation, MT1-MMP expression and

processing.
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As DDR2 silencing had a discernible effect on RASF invasion into 3D collagen, I

investigated the action of dasatinib on RASF transwell invasion. The same numbers

of RA synovial fibroblasts were seeded on top of collagen-coated transwells and

cultured for 3 days in the absence or presence of either GM6001 (10 µM) or dasatinib

(100 nM). Four transwells were used per treatment. Migrating cells were counted

and differences between groups were analysed by ANOVA. Results are presented in

Figure 4.18.

A significant reduction of invading cells was observed for GM6001 (*** p≤0.001)

and dasatinib (*** p≤ 0.001) treatments in comparison to control cells. Synovial

fibroblast invasion into collagen matrix could be inhibited by dasatinib. To ver-

ify if the inability of dasatinib-treated cells to invade the 3D ECM results from

reduced collagen cleavage by MT1-MMP, a collagen film degradation assay was per-

formed. RASF were substituted with dermal fibroblasts, which were cultured on

top of PureCol-coated wells. Serum-free medium was supplemented with GM6001

(10 µM) or dasatinib (100 nM). After 5 days cells were removed by trypsin and
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Figure 4.18: Collagen invasion is inhibited by dasatinib. RA synovial fi-
broblasts were cultured on top of CellMatrix-coated transwells for 3 days. GM6001
was used at 10µM and dasatinib at 100 nM. Invading cells were stained and counted.
Numbers of invading cells are shown as mean ± SEM. n=4; *** p≤ 0.001.
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the remaining collagen was fixed and stained. Representative images are shown on

Figure 4.19.

Dermal fibroblasts degraded the collagen matrix as demonstrated by the pres-

ence of visible white areas. Degradation was greatly reduced by GM6001. In gen-

eral, dasatinib treatment resulted in less degraded collagen matrix but in some areas

degradation was clearly visible as ‘holes’. However, some of the dasatinib-treated

cells were found detached and floating after the incubation period. Fibroblasts seem

to degrade and simultaneously remodel the ECM, resulting in an uneven collagen

layer. The majority of dasatinib-treated cells neither degraded nor remodelled col-

lagen, which therefore resembles matrix incubated without cells (Figure 4.19).

The degradation pattern observed upon dasatinib treatment (‘holes‘) could re-

sult from reduced mobility of fibroblasts on the substrate, which would increase focal

degradation of the collagen layer because cells were unable to move. To examine

this possibility, RASF motility was examined with an in vitro wound healing assay,

that assesses the ability of fibroblasts to migrate across a cell-free gap. Silicone

inserts with two chambers were used to generate a 500 µm gap between adhered

RA synovial fibroblasts. Inserts were attached to the bottom of 24-well plates and

1.3× 104 RASF seeded within each of the insert’s chambers. Fibroblasts were al-

lowed to adhere overnight in complete medium to create a confluent cell layer. The

next day, medium was changed 30 min before removing inserts to complete DMEM

Figure 4.19: Collagen film degradation in dasatinib-treated fibroblasts.
Dermal fibroblasts were cultured on top of PureCol-coated 12-well plates (100 µl of
2.7mg/ml collagen). GM6001 was supplemented into medium at 10 µM, dasatinib
at 100 nM. After 5 days cells were removed by trypsin treatment, the collagen layer
was fixed in 3% PFA and stained with Coomassie Brilliant Blue-250. Images were
taken with a light microscope using 4× lens. Scale bar: 270 µm.
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supplemented either with dasatinib or equal volume of DMSO as a control. Two

dasatinib concentrations were used — 50 nM and 100 nM. Inserts were then removed

thus creating a gap between attached fibroblasts (0 h time point). Cells were incu-

bated for a further 24 h. Images were taken at the beginning of the experiment (0 h)

and after 8 and 24 hours. Images of matching areas at different time points are

shown in Figure 4.20.

Figure 4.20: Dasatinib inhibits fibroblasts migration in a wound healing
assay. Silicone inserts were used to generate a 500µm cell free gap in order to asses
fibroblast migration. RASF (1.3× 104) were seeded within silicone inserts placed
onto 24-well plates. Cells were allowed to adhere overnight to enable formation of
a confluent cell layer. Medium was exchanged 30 minutes prior to insert removal
and contained either DMSO (control) or dasatinib at 50 nM or 100 nM. After inserts
were removed (0 h), fibroblasts were cultured for a further 24 h. Images of matching
areas of the same well were captured at indicated time points with a light microscope
using 4× objective lens. Vertical dotted lines show the cell migration front. Scale
bar: 270 µm.
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DMSO-treated fibroblasts started to migrate across the gap within 8 h and op-

posite migration fronts almost closed the gap after 24 h. Dasatinib reduced motility

of RA synovial fibroblasts. Migration fronts of cell monolayers showed very little

movement during the 24 hour incubation period. The two doses of dasatinib re-

sulted in similar inhibition of motility. No negative effects of dasatinib treatment

on cell phenotype were observed.

4.3 Discussion

In this Chapter, I have demonstrated that collagen is able to induce MT1-MMP

activity, leading to extensive substrate degradation and that this signalling is me-

diated by DDR2. RA synovial fibroblasts are able to extensively degrade and in-

vade collagen, and their invasiveness exceeds that of dermal fibroblasts. Silencing of

DDR2 reduced gelatin degradation as well as collagen degradation and invasion. All

of these processes have previously been demonstrated to be MT1-MMP-dependent

(Artym et al., 2006; Miller et al., 2009; Palmisano and Itoh, 2010). Although tran-

swell invasion was inhibited by DDR2 silencing, migration within 3D collagen is

independent of DDR2. However, it is possible that at least some of the cells do not

require MT1-MMP to invade collagen due to multicellular migration within pre-

formed tunnels in collagen gels. As a consequence, those cells do not require DDR2

signalling for invasion.

In my study, the ability of fibroblasts to degrade collagen or gelatin was not

compromised by knockdown of β1 integrin. In terms of invasion, transwell invasion

was not inhibited by silencing of β1 integrin but these cells showed reduced migration

within 3D collagen in the microcarrier beads assay. This is in agreement with a study

reported by Wolf et al. (2007), where inhibition of β1 integrin activity by antibodies

did not affect degradation of collagen, but reduced migration speed within a 3D

collagen matrix in HT1080 cells.
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Impaired invasion can be a result of reduced proteolytic activity or inability

to propel the cell body within the ECM. Because loss of β1 integrin did not inhibit

fibroblast capability to degrade collagen, it is likely that reduced migration within

the 3D matrix was a result of disrupted adhesion to the ECM. Cells depend on in-

tegrins for attachment to substratum. Ligand binding initiates integrin aggregation

and binding of adaptor proteins such as talin and vinculin which connect their cyto-

plasmic tails to actin filaments. In turn, contractile actomyosin complexes of actin

and non-muscle myosin II generate traction force to translocate the cell body for-

wards. Loss of integrins results in weaker substrate adhesions and reduced ability to

generate a pulling force. The round shape of siITGB1 cells within collagen confirms

low substrate adhesion during migration. Similarly, cells treated with anti-integrin

antibodies also adopt a round phenotype (Barbolina et al., 2007; Wolf et al., 2013,

2007).

I observed that synovial and dermal fibroblasts cultured in vitro require col-

lagen as an ‘activator’ of MT1-MMP function. This was particularly visible in the

Alexa488-gelatin assay where no gelatin degradation was detected until collagen was

added into the medium. Although substantial amounts of active MT1-MMP were

already present in fibroblasts, gelatin degradation was not initiated despite the fact

that gelatin is easier to digest than collagen. Stimulation with collagen had a similar

effect on proMMP-2 activation, as discussed in Chapter 3.

Several mechanisms are involved in regulation of MT1-MMP function, includ-

ing gene transcription, intracellular trafficking, autocatalytic processing and enzyme

dimerisation. As demonstrated in the previous Chapter, collagen upregulates lev-

els of MT1-MMP mRNA in fibroblasts which could explain the increased activity,

however, expression was elevated only a few-fold. Moreover, levels of active protein

on the cell surface did not change significantly in the presence of collagen unless an

MMP inhibitor was added to prevent MT1-MMP processing. This indicates that

the observed activation of MT1-MMP function cannot be explained exclusively by

an increased level of expression.
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It is possible that MT1-MMP activation results from increased concentration

of MT1-MMP on the cell surface. It has been reported that a considerable amount

of MT1-MMP is internalised in unstimulated cells. Collagen-induced accumulation

of MT1-MMP on the cell membrane could be achieved through modulation of a

number of processes such as endocytosis or targeted trafficking. In fact, collagen has

been shown to interfere with clathrin-mediated endocytosis of MT1-MMP, leading

to increased cell membrane levels of MT1-MMP (Lafleur et al., 2006). The effect of

collagen stimulation is autocatalytic processing of MT1-MMP resulting in formation

of the 44 kDa species, which has been reported to reduce enzyme endocytosis (Cho

et al., 2008). MT1-MMP is also targeted to and retained at focal adhesions and

invadopodia, where substrate degradation occurs (Artym et al., 2006; Steffen et al.,

2008; Woskowicz et al., 2013). The above mechanisms increase cell membrane levels

of active MT1-MMP and could facilitate formation of a fully active MT1-MMP

dimer, necessary for proMMP-2 activation and collagen cleavage (Itoh et al., 2008)

Preliminary results from the collagen488 degradation assay indicate a potential

new mechanism of collagen degradation in addition to MT1-MMP. MMP inhibitors

GM6001, TIMP-1 and TIMP-2 inhibited collagen488 degradation, suggesting in-

volvement of an active MMP that is not membrane bound. This MT1-MMP-

independent collagen degradation was only observed when cells were cultured in

serum-free medium, suggesting that serum components would effectively inhibit the

collagenase. These results are of particular interest, as mechanisms initiating MMP

activation in an in vivo environment are not fully understood. In vitro, MMPs can

be activated by trypsin, plasmin or other active MMPs and activated MMP-3 is

considered a potent activator of MMP-1 and MMP-9. Although the identity of the

active MMP was not confirmed, expression of MMPs is reportedly also induced by

collagen, including collagenases MMP-1 and MMP-13 in RA synovial fibroblasts

(Su et al., 2009; Zhang et al., 2006a). Based on our observations, we speculate

that collagen, already shown to promote MMP-2 activation, is a likely candidate as

an activator of other soluble MMP collagenases. It is of great interest to identify
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the MMP responsible for this collagen degradation and to investigate whether its

activity is dependent on DDR2-mediated collagen signalling.

Dasatinib is one of the few reported inhibitors of DDR1 and DDR2 and it is a

potent inhibitor of DDR2 kinase. It efficiently reduced collagen-induced proMMP-2

activation, MT1-MMP expression and processing. Cells treated with dasatinib were

unable to invade collagen in the transwell assay, however the effect of dasatinib on

collagen degradation was unclear and some cells were still able to degrade colla-

gen. We postulate that degradation could be at least in part attributed to reduced

cell motility. Nevertheless, DDR2 knockdown and dasatinib treatment had similar

effects on inhibiting MT1-MMP activity.

In conclusion, collagen is not only a protein that supports tissue structure but

also a signalling molecule that induces changes in cell behaviour. My results show

that collagen binding by DDR2 results in an increase in MT1-MMP activity and

acquisition of an aggressive and invasive phenotype. Further investigation of the role

of DDR2 in RA development would be important to understand the pathogenesis

of RA.
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Chapter 5

Analysis of DDR2 binding to

collagen

5.1 Introduction

In the previous Chapters, I have demonstrated that the DDR2 receptor mediates

collagen-induced MT1-MMP expression as well as functional activation of the en-

zyme already present on the cell surface. It is therefore particularly important to

understand mechanisms of collagen binding by DDR2 and subsequent activation of

the receptor.

My data show that synovial fibroblasts exhibit distinct levels of MT1-MMP

activation depending on the source of type I collagen used. I observed that stim-

ulation of synoviocytes with pepsin-extracted collagens resulted in higher levels of

active MMP-2 than incubation with acid-extracted collagens (Section 3.2.3, Figure

3.4). During collagen extraction with pepsin, the enzyme cleaves N- and C-terminal

telopeptides from collagen molecules (Sato et al., 2000). Telopeptides are short non-

helical fragments where cross-links are formed and their loss affects fibril formation

and stability. The discrepancy in proMMP-2 activation induced by these collagens

indicates different levels of MT1-MMP activation through DDR2. Therefore, these
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data suggest that DDR2 might be activated differently depending on the collagen

structure.

To address this question, I sought to evaluate the effect of pepsin-extracted

PureCol and acid-extracted CellMatrix collagens on DDR2 activation. Those col-

lagens were used to analyse MT1-MMP activation in fibroblasts as well as to in-

duce phosphorylation of DDR2 expressed in HEK293 cells. In addition, I evaluated

binding of purified DDR proteins to collagen. For this purpose I created DDR-

Fc constructs that consist of the extracellular domains of DDRs (including their

collagen-binding site) and are covalently dimerised via cysteine in the Fc tag.

The aim of this part of the thesis is to determine whether cartilage is able

to induce proMMP-2 and MT1-MMP activation in RASF, and if DDR2 is also

involved in this process. Moreover, as a recent study demonstrated that RASF

show greater invasion into proteoglycan-depleted cartilage (Miller et al., 2009), I

planned to investigate if such cartilage induces higher activation of MMP-2 and

MT1-MMP. Because proteoglycans are depleted early in RA, this might provide an

important insight into how cartilage structure influences activation of MT1-MMP

during disease.

5.2 Results

5.2.1 Differential activation of fibroblasts by PureCol and

CellMatrix

In order to examine the effect of different collagen preparations on MT1-MMP

activity, collagen films of CellMatrix collagen; a 1:1 mixture of CellMatrix and

PureCol; and PureCol collagen were prepared. RASF and skin fibroblasts were

seeded on top of the film and cultured in serum-free medium, with or without

GM6001, for 2 days. Cell lysates were analysed by Western Blotting and media

were collected and subjected to gelatin zymography.
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Figure 5.1: Analysis of proMMP-2 activation by CellMatrix and PureCol
collagens. RASF (A) or dermal fibroblasts (B) were cultured either on plastic or
on collagen-coated wells. Wells were coated with CellMatrix, PureCol or 1:1 mix
of two collagens and incubated 1 h at 37°C before plating cells. All collagens were
used at 2.7 mg/ml. Cells were cultured in serum-free medium in the presence (+) or
absence (–) of GM6001 at 10µM. Media were collected after 2 days and analysed by
gelatin zymography and cell lysates analysed by Western Blotting. CM - CellMatrix,
PC - PureCol.

Stimulation of fibroblasts with PureCol resulted in much higher levels of ac-

tive MMP-2 than stimulation with CellMatrix (Figure 5.1). CellMatrix collagen

triggered only limited proMMP-2 activation in both cell types. The increase in ac-

tive MMP-2 appears to be dependent on PureCol concentration as a 1:1 collagen

mix resulted in intermediate levels of active enzyme. In addition, PureCol (alone or

mixed) induced greater MT1-MMP processing, especially in RASF (Figure 5.1A).

In dermal fibroblasts, MT1-MMP processing was only visible in PureCol-treated

cells (Figure 5.1B). GM6001 prevents MT1-MMP processing by inhibiting enzyme

activity and therefore its addition during cell culture reflects an increase in MT1-

MMP expression upon collagen stimulation. The highest MT1-MMP levels were

observed in PureCol-treated cells, in the presence of GM6001. The increased MT1-

156



5.2. Results

MMP expression also appeared to be dependent on PureCol concentration and the

increase was minimal in CellMatrix-induced cells.

To further characterise the differences in fibroblast activation by these colla-

gens, conditioned media from dermal fibroblasts cultured on CellMatrix and PureCol

were analysed by gelatin and casein zymography. Gelatin zymography showed sim-

ilar results to those reported above, with PureCol inducing higher levels of active

MMP-2 than CellMatrix (Figure 5.2A). Interestingly, casein zymography showed a

clear increase in a casein-degradative activity in PureCol-treated samples (Figure

5.2B). CellMatrix did not induce an increase in the casein degradation in compar-

ison to non-treated cells. A faint band corresponding in size to active MMP-1 was

detected in the conditioned medium from PureCol stimulated samples. This might

indicate presence of another activated MMP in addition to MMP-2 in conditioned

medium from PureCol-treated cells, confirming that indeed this collagen induces

greater fibroblast activation.

Figure 5.2: Zymography analysis of MMP activity induced by CellMa-
trix and PureCol collagens. Dermal fibroblasts were cultured on collagen-coated
wells in serum-free medium for 2 days. Conditioned media were collected and sub-
jected to gelatin (A) and casein (B) zymography. For casein zymography, activated
recombinant MMP-1 was loaded on a gel alongside samples of conditioned media.
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5.2.2 Analysis of collagen-induced DDR2 phosphorylation

in HEK293 cells

PureCol induces higher proMMP-2 activation and MT1-MMP expression than Cell-

Matrix, therefore indicating higher activation of the DDR2 receptor and downstream

signalling pathways. Therefore, the effect of these two collagens on levels of DDR2

phosphorylation were investigated next. For this purpose, HEK293 cells were tran-

siently transfected with an empty (mock) vector or a DDR2-expressing plasmid.

Cells were stimulated by addition of collagen to the culture medium or by incuba-

tion on top of 2D collagen. DDR2 was reported to be activated by collagens present

in the medium at concentrations as low as 10 µg/ml (Vogel et al., 1997). Here, I

used 100µg/ml of collagen as this concentration induced proMMP-2 activation in

fibroblasts. Cells were incubated with collagens for 1 h and lysed afterwards.

Total cell lysates were subjected to Western Blotting and probed for DDR2,

actin and phosphotyrosine (pY) to detect DDR2 phosphorylation (Figure 5.3). An

analysis of pY Western blots showed that collagen induces phosphorylation of a

130 kDa protein in DDR2-expressing cells. No phosphorylation was detected in the

absence of collagen or in mock transfected cells. The above data indicate that the

130 kDa protein corresponds to phosphorylated DDR2. As shown on Figure 5.3,

PureCol induced higher levels of DDR2 phosphorylation than CellMatrix collagen.

Furthermore, phosphorylation was also higher for cells incubated on 2D PureCol

than when PureCol was present in the medium. A 1:1 mix of both collagens in-

duced intermediate levels of phosphorylated DDR2. Interestingly, no increase in

phosphorylation was observed in cells cultured on 2D CellMatrix, however addition

of this collagen into the medium resulted in a slightly elevated phosphorylation.

On a Western blot, overexpressed DDR2 is detected as three differently gly-

cosylated proteins of ∼130 kDa size. The highest molecular weight form most likely

corresponds to the mature and fully glycosylated DDR2, which is present on the cell

surface (Blissett et al., 2009). Strikingly, incubation of DDR2-overexpressing cells
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Figure 5.3: Analysis of DDR2 phosphorylation by CellMatrix and
PureCol. HEK293 cells were transiently transfected with mock or DDR2 express-
ing vector. After 2 days, collagens were added into the medium at 100µg/ml (A) or
cells were cultured on collagen-coated wells (B). Cells were incubated with collagens
for 1 h and lysed. Cell lysates were analysed by Western Blotting using anti-DDR2,
anti-phosphotyrosine (anti-pY) and anti-actin antibodies. CM - CellMatrix, PC -
PureCol.
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on CellMatrix resulted in an almost complete disappearance of the highest molec-

ular weight species of DDR2 (Figure 5.3B). Levels of lower molecular weight forms

of DDR2 remained unchanged. In samples where CellMatrix was added into the

medium, loss of mature DDR2 was less pronounced (Figure 5.3A). No changes in

DDR2 protein levels were observed in PureCol stimulated cells, however cells plated

on 1:1 collagen mix show a lower amount of mature DDR2.

Collectively, these results indicate that in contrast to PureCol, stimulation of

cells with CellMatrix collagen leads to loss of the cell surface DDR2 and diminished

DDR2 signalling. Furthermore, DDR2 phosphorylation in the collagen-treated cells

appears to correlate with levels of the cell surface DDR2.

5.2.3 Characterisation of DDR2 ectodomain shedding

Observed changes in the amount of DDR2 in the cell lysates occurred during a short

incubation time and affected only mature and fully glycosylated DDR2. There-

fore it is unlikely that the collagen stimulation significantly changed DDR2 expres-

sion during this time. It has been shown that collagen induces shedding of DDR1

ectodomain, resulting in accumulation of a 60 kDa fragment in the medium, how-

ever no shedding of DDR2 has been reported yet (Fu et al., 2013; Slack et al.,

2006; Vogel, 2002). DDRs are closely related proteins and it is possible that DDR2

ectodomain is also cleaved in the presence of collagen, resulting in a loss of the

extracellular fragment. To establish whether DDR2 shedding occurs upon colla-

gen stimulation, I analysed the conditioned culture medium for the presence of

∼60 kDa DDR2 ectodomain. HEK293 cells were transiently transfected with either

mock or DDR2 expression vector. Next, cells were incubated on 2D collagen for

1 h, with or without GM6001 (10 µM) or dasatinib (100 nM) in the medium. Cell

lysates were collected and subjected to Western blot analysis. Conditioned serum-

free media were collected, spun down to remove the cell debris and incubated with

trichloroacetic acid (TCA; 10% v/v of total volume) at 4°C for 18 h. Protein precip-
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itates were resuspended in 30µl of a 1× sample buffer. 15µl of a total precipitate

fraction was analysed by Western Blotting to detect the shed form of DDR2. As

demonstrated on Figure 5.4, I was unable to identify the shed form in any of the

TCA precipitates, despite the fact that CellMatrix induced loss of mature DDR2.

Moreover, the observed loss of DDR was not due to shedding by metalloproteinases

as GM6001 did not block it. Dasatinib completely abrogated phosphorylation of

DDR2 by collagens, but it did not prevent DDR2 loss. Analysis of pY Western

blot showed an additional phosphorylated band in CellMatrix-stimulated cells in

the presence of GM6001, but the identity of this protein is unknown.

Because I was not able to identify the shed form of DDR2 in the culture medium

during a 1 h incubation time, I tried to detect this ectodomain at longer time points

after collagen stimulation. HEK293-EBNA cells stably expressing DDR2 were used

to ensure an equal expression of DDR2 in all cells. Cells were cultured on top of

collagen-coated wells for the indicated times. Culture media were collected for TCA

precipitation. Precipitation was carried out overnight at 4°C and precipitates were

resuspended in 15µl of 1× sample buffer, and subjected to Western Blotting.

As illustrated on Figure 5.5, ∼60 kDa ectodomain of DDR2 was detected in all

TCA precipitation fractions, even in samples not stimulated with collagen. Shed

form accumulated in the medium and its highest levels were observed at the 8 h final

time point. Although PureCol appears to induce slightly higher shedding of DDR2,

no major differences were observed between samples incubated in the presence or

absence of collagen. The data indicate that DDR2 undergoes constitutive shedding

under these conditions. CellMatrix did not increase shedding and no increase in the

amount of shed form was observed in comparison to unstimulated samples, despite

the fact that mature DDR2 was absent in cell lysates.

To identify the sheddase activity responsible for the DDR2 cleavage, cells were

stimulated with collagen for 8 h in the presence of the metalloproteinase inhibitor,

marimastat. Marimastat is a broad-spectrum inhibitor of metalloproteinases, in-

cluding MMPs as well as members of ADAMTS and ADAM families. HEK293-

161



5.2. Results

Figure 5.4: Collagen binding but not signalling induces loss of cell surface
DDR2. HEK293 cells were transiently transfected with mock or DDR2 expressing
vector. Cells were incubated on collagen-coated wells for 1 h. GM6001 (10 µM) or
dasatinib (100 nM) were supplemented into serum-free medium as indicated. Cell
lysates were analysed by Western Blotting and probed for DDR2, pY and actin.
Medium was incubated overnight with TCA at 4°C to precipitate proteins. Pre-
cipitates (ppt) were resuspended in 30µl of 1× sample buffer, of which 15 µl were
analysed by Western Blotting. To detect shed DDR2 in the precipitated fraction,
Western blot membranes were probed using an antibody recognising ECD of DDR2.
Black arrowhead indicates glycosylated DDR2, whereas open arrowhead indicates
60 kDa marker of shed form of DDR2.
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Figure 5.5: Time course analysis of DDR2 shedding. HEK293-EBNA cells
stably expressing DDR2 were cultured on plastic or collagen film for the indicated
time (1–8 h). Wells were coated with 2.7mg/ml PureCol or CellMatrix. Afterwards,
cell lysates were analysed by Western Blotting and culture media were TCA pre-
cipitated overnight at 4°C. Protein precipitates (ppt) were resuspended in 15µl of
1× sample buffer, all of which was subjected to Western Blotting. Black arrowhead
indicates glycosylated DDR2, whereas open arrowhead indicates 60 kDa shed form
of DDR2. pl - plastic; P - PureCol;C - CellMatrix.

EBNA cells expressing DDR2 were incubated on CellMatrix or PureCol-coated wells

for 8 h in the absence or presence of marimastat, dasatinib or DMSO as a control

vehicle (Figure 5.6). Cell lysates were collected and subjected to Western Blotting.

Serum-free media were TCA precipitated and analysed by Western Blotting for the

presence of DDR2 ectodomain.

As previously shown, dasatinib did not prevent loss of DDR2 from the cell sur-

face. It also did not prevent shedding of DDR2. Marimastat inhibited accumulation

of the 60 kDa shed fragment of DDR2 in collagen-treated cells (both PureCol and

CellMatrix). However, marimastat did not prevent loss of full length DDR2 in cells

treated with CellMatrix.
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Figure 5.6: Marimastat prevents DDR2 shedding. HEK293-EBNA cells
stably expressing DDR2 were cultured on collagen-coated wells for 8 h. Serum-free
medium was supplemented with 20 µM marimastat or 100 nM dasatinib as indicated.
DMSO was used as a solvent control. Cell lysates were analysed by Western Blotting.
Media were TCA precipitated overnight at 4°C and precipitates (ppt) resuspended
in 15µl of 1× sample buffer, all of which was subjected to Western Blotting. Black
arrowhead indicates glycosylated DDR2, whereas open arrowhead indicates 60 kDa
shed form of DDR2. pl - plastic; P - PureCol; C - CellMatrix.

5.2.4 Collagen induces changes in DDR2 levels in

fibroblasts

I have demonstrated that in HEK293 cells overexpressing DDR2, the receptor un-

dergoes constitutive shedding and incubation with CellMatrix also results in changes

in the amount of fully glycosylated DDR2 in cell lysates. To confirm these findings

in primary cells, I cultured RASF and dermal fibroblasts on 2D PureCol and Cell-

Matrix. After 4 hours of incubation, cells were lysed and serum-free media were

TCA precipitated and subjected to Western Blotting (Figure 5.7).
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In agreement with results from DDR2 overexpression in HEK293 cells, CellMa-

trix resulted in significant loss of glycosylated DDR2 in both synovial and dermal

fibroblasts. PureCol also initiated loss of DDR2, albeit less efficiently in comparison

to the CellMatrix collagen. However, no shed form of DDR2 was detected in TCA

precipitates of medium after 4 hour incubation or even longer incubation times (up

to 48 h).

Figure 5.7: Comparison of effect of CellMatrix and PureCol on DDR2
levels in fibroblasts. RASF and dermal fibroblasts were incubated on collagen-
coated wells for 4 hours. Afterwards cells lysates were analysed by Western Blotting.
Culture media were TCA precipitated overnight at 4°C. Protein precipitates were
resuspended in 15 µl of 1× sample buffer and all of which was analysed by Western
Blotting. Black arrowhead indicates glycosylated DDR2, whereas open arrowhead
indicates 60 kDa marker of shed form of DDR2.
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5.2.5 Expression and purification of recombinant DDR-Fc

proteins

To determine whether the discrepancy in DDR2 activation by CellMatrix and Pure-

Col is a result of differences in collagen recognition, I analysed binding of DDRs

to these collagens. For this purpose chimeric, recombinant DDR-Fc proteins were

created, consisting of ECD of DDRs tagged with rabbit IgG Fc region. In total,

five constructs were made: DDR1-Fc, DDR2-Fc and non-binding DDR1-W53A-

Fc, DDR1-R105A-Fc and DDR2-W52A-Fc as negative controls. DDR1 constructs

were made in order to compare collagen binding properties of DDR1 and DDR2.

Similar DDR constructs have previously been successfully used in several studies to

determine the specificity of DDR1 and DDR2 binding to different types of collagen

(Carafoli et al., 2009; Leitinger, 2003; Leitinger and Kwan, 2006; Leitinger et al.,

2004; Xu et al., 2010).

Non-binding constructs have the indicated residues mutated to alanine: W53

and R105 in DDR1 and W52 in DDR2. These amino acids were selected based on

data from the crystal structure of DDR2 discoidin domain bound to collagenous

peptide published by Carafoli et al. (2009). The selected amino acids are conserved

in DDR1 and DDR2 and form part of a collagen binding pocket. W52 in DDR2

is critical for collagen binding and its mutation to alanine abrogates binding to

collagen and receptor activation (Carafoli et al., 2009). In a study by Abdulhussein

et al. (2004), mutation of the corresponding W53 in DDR1 did not block activation

of the receptor, therefore an additional DDR1-R105A-Fc construct was made, as

R105 mutation to alanine was reported to disrupt collagen binding.

Figure 5.8 shows schematic representation of DDR-Fc protein constructs used

in this study. DDR-Fc proteins comprise ECDs of DDRs, which are tagged at the

C-terminus with the Fc fragment of rabbit IgG. Fc tags have been shown not to

interfere with binding of DDR fusion constructs to collagen (Xu et al., 2010). ECDs

were identified in the UniProt online database and include the first 416 amino acids
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disulfide

bonds

Figure 5.8: Schematic representation of DDR-Fc protein structure. (A)
DDR-Fc chimera constructs are comprised of extracellular domains (ECDs) of DDRs
linked at their C-terminus to the Fc region of a rabbit IgG. Between DDR ECD and
Fc region there is a seven amino acid long spacer. First and last amino acids of DDR
ECDs are indicated, as well as crucial W52 in DDR2 and W53 and R105 residues in
DDR1 discoidin (DS) domains. (B) Upon expression in mammalian cells disulfide
bonds are formed in the hinge region of Fc fragment, resulting in a formation of a
soluble DDR-Fc dimer. CH - constant domain of heavy chain.

for DDR1 (M1–T416) and the first 398 amino acids for DDR2 (M1–R399). ECDs com-

prise the signal sequence, discoidin domain and discoidin-like domain. Fc fragments

contain the hinge region, which act as a flexible linker, and two constant domains —

CH2 and CH3 (Figure 5.8A). On the cell surface, DDRs are present as constitutive

dimers (Abdulhussein et al., 2008; Noordeen et al., 2006). In recombinant DDR-Fc

proteins, dimers are ensured by formation of disulfide bonds between two Fc regions

(Figure 5.8B). Although the collagen binding mode of DDRs on the cell surface has

not been determined yet, it had been demonstrated that DDR-Fc proteins require

dimerisation to bind the collagen (Leitinger, 2003).
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Figure 5.9 shows the overall strategy for a purification of DDR-Fc proteins.

ECDs of DDRs were amplified by PCR from cDNA templates. Mutations were

introduced by PCR as described in Materials and Methods (Section 2.12.1). First,

ECDs were cloned to the pFc1 vector to introduce an Fc tag. Afterwards DDR-Fc

fragments were subcloned into the pCEP4 vector to enable episomal expression in

HEK293-EBNA cells. Stable HEK293-EBNA cell lines for each DDR-Fc protein

were made. Proteins were expressed into serum-free medium and purified using

affinity chromatography, based on a protocol described by Leitinger (2003). Pu-

rification steps are presented in Figure 5.10A. Fractions containing the majority of

the protein were combined, dialysed against PBS and protein concentration was

adjusted to 1µM.

DDR cDNA
pFc1

DDR-ECD rabbit 

IgG Fc

pCEP4

DDR-ECD rabbit 

IgG Fc

EBNA-1
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HEK293-EBNA

Transfection
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Protein 

production
Protein 
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ECD

Figure 5.9: Cloning, expression and purification of DDR-Fc proteins.
ECDs of DDRs were amplified by PCR, sequenced and cloned into pFc1 vector
to introduce a rabbit IgG Fc tag. DDR-ECD-Fc fragments were subcloned into
pCEP4 vector, to enable episomal expression of DDR-Fc from HEK293-EBNA.
Stably transfected HEK293-EBNA cells secrete soluble DDR-Fc proteins into the
medium. Proteins are purified from collected media using affinity chromatography
(Protein A Sepharose).

The predicted molecular weight, without a signal peptide, of a DDR1-Fc dimer

is 140 kDa and DDR2-Fc dimer is 137.2 kDa, as determined by an online ProtParam

tool at ExPASy Bioinformatics Resource Portal. DDR-Fc proteins were purified to
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homogeneity as demonstrated by a single band detected by SDS-PAGE analysis

(Figure 5.10B). The reactivity of DDR-Fc constructs was confirmed by Western

Blotting using anti-(rabbit IgG Fc region) antibodies (Figure 5.11A) as well as

antibodies recognising ECDs of DDR1 or DDR2 (Figure 5.11B). DDR-Fc proteins

were recognised by both anti-rabbit IgG and anti-DDR antibodies. The dimerisation

of DDR-Fc proteins was also confirmed. Samples were resolved on a SDS-PAGE

under reducing or non-reducing conditions, using a sample buffer with or without β-

Me respectively, and subsequently analysed by Western Blotting. On Western blots

DDR-Fc dimers run as a single band of ∼200 kDa under non-reducing conditions,

whereas under reducing conditions, they run as a single band of ∼90 kDa.

Figure 5.10: Purification of DDR-Fc proteins. (A) Culture medium
(∼200 ml) from HEK293-EBNA stably expressing DDR1-Fc was passed through a
Protein A Sepharose affinity chromatography column (0.5 ml). Samples from each
purification step (input media, column flow through, PBS wash and elution frac-
tions) were mixed with an equal volume of 2× sample buffer with β-Me and 20 µl
resolved on a 7% SDS-PAGE under reducing conditions. Gels were stained with
Coomassie Brilliant Blue-250 and throughly de-stained. (B) Purified DDR-Fc pro-
teins were dialysed against PBS and the concentration adjusted to 1 µM. Equal
volumes of purified proteins were mixed with 2× sample buffer with β-Me and re-
solved on a 7% SDS-PAGE under reducing conditions (420 ng of DDR1 constructs
per lane; 412 ng of DDR2 constructs per lane). Afterwards, gels were stained with
Coomassie Brilliant Blue-250 and throughly de-stained.
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Figure 5.11: Western Blot analysis of purified DDR-Fc proteins. Pu-
rified DDR-Fc proteins were analysed by Western Blot using specific antibodies.
Samples were resolved by SDS-PAGE under reducing (Red.) or non-reducing con-
ditions (N.R.), with or without β-Me in the sample buffer respectively. Under
non-reducing conditions samples run as a single ∼200 kDa band of dimerised (D)
protein. Under reducing conditions proteins run as a ∼90 kDa monomer (M). (A)
Membranes were probed only with secondary AP-conjugated anti-(rabbit IgG) an-
tibody at 1:5000 dilution applied for 1 h. This antibody recognised the Fc tag
present in all DDR-Fc constructs. 1.5 ng of protein per lane was applied under non-
reducing conditions, and 15 ng per lane under reducing conditions. (B) Membranes
were probed for DDR1 or DDR2 with antibodies recognising their ECDs. Single
bands were observed for all samples. 10 ng of proteins were applied per lane.
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5.2.6 Solid phase binding assay to detect DDR-Fc binding

to immobilised collagen.

The binding of DDR-Fc proteins to the immobilised collagen was analysed by a

solid phase binding assay. First, I determined an optimal blocking buffer for DDR-

Fc constructs, as a similar DDR1-Fc protein was previously found to exhibit non-

specific binding to BSA (Leitinger et al., 2004). Two blocking buffers were compared:

1 mg/ml BSA in PBS-T and 0.05 mg/ml κ-casein in PBS-T. To perform the assay,

96-well plates were coated with 100µg/ml of CellMatrix overnight at 4°C. Plates

were subsequently incubated with blocking buffers for 1 h at room temperature.

Next, 50µl of 250 nM DDR1-Fc or DDR2-Fc diluted in blocking buffers were added

to wells and incubated for 3 hours. Binding was detected using HRP-conjugated

anti-(rabbit IgG) antibodies, which recognise the Fc fragment of rabbit IgG present

in all DDR constructs. A low background signal was detected in samples incubated

with an anti-rabbit antibody only (no DDR-Fc protein). Figure 5.12 shows com-

parison of DDR1-Fc and DDR2-Fc binding to non-coated or collagen-coated wells,

blocked with BSA or κ-casein.

Both DDR-Fc constructs showed a specific and strong binding to collagen. In

comparison to BSA, blocking with κ-casein resulted in a lower non-specific binding

to plastic. Also, a stronger signal was obtained for collagen-coated wells blocked with

κ-casein. Because κ-casein produces a higher signal to background ratio, 0.05 mg/ml

κ-casein in PBS-T was used as a blocking buffer throughout the study.

Next, I compared binding of DDR-Fc constructs to immobilised CellMatrix

and PureCol collagens in a solid phase binding assay. Ten-fold dilutions of DDR-Fc

proteins, ranging from 250 nM to 0.025 pM, were prepared in the blocking buffer.

Proteins were incubated on 96-well plates, coated with a 100µg/ml CellMatrix or

PureCol. Figure 5.13 illustrates binding of all DDR-Fc constructs to these collagens

or plastic.
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Figure 5.12: Optimisation of a solid phase binding assay for DDR-Fc
binding to collagen. 96-well plates coated with 100µg/ml of CellMatrix colla-
gen were blocked with either 1 mg/ml BSA in PBS-T or 0.05 mg/ml κ-casein in
PBS-T for 1 h at room temperature. DDR1-Fc and DDR-2 Fc were diluted in a
corresponding blocking solution to 250 nM and incubated on plates for 3 h. A HRP-
conjugated anti-(rabbit IgG) antibody (1:3000) was used to detect bound DDR-Fc
proteins. The reaction was developed by addition of a TMB substrate and stopped
by H2SO4. Plates were read at 450 nm. Assay was performed in duplicate.

Almost no binding to plastic was detected for any of the constructs. DDR1-Fc

and DDR2-Fc showed a high affinity, dose-dependent and saturable binding to both

immobilised collagens. The maximal binding was similar for all collagens. How-

ever, some differences in the binding affinity were detected. DDR1-Fc exhibited a

half-maximum binding to PureCol at ∼0.5 nM and to CellMatrix at ∼6 nM. This

indicates that DDR1-Fc has a higher affinity for PureCol than for CellMatrix col-

lagen. In contrast to the DDR1 construct, DDR2-Fc exhibited a somewhat higher

affinity for CellMatrix rather than PureCol. Half-maximal binding of DDR2-Fc

to PureCol was ∼2.5 nM and to CellMatrix was ∼1.3 nM. DDR1-R105A-Fc, DDR1-

W52A-Fc and DDR2-W53A-Fc constructs did not show binding to collagen at lower

concentrations, but show some binding at 250 nM.

This assay provides invaluable information about the specificity of DDR bind-

ing, however it does not accurately represent the structure of the collagen matrix in

a physiological state. In order to evaluate binding of DDRs to collagen gels, I thus

modified the solid phase binding assay. A small volume, 10 µl, of 1.5 mg/ml collagen

solution was placed as a drop in the centre of 96-wells and incubated at 37°C to
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Figure 5.13: Solid phase binding assay for analysis of DDR-Fc protein
binding to immobilised collagen. The binding of individual DDR-Fc constructs
to immobilised PureCol and CellMatrix was analysed by a solid phase binding assay.
96-well plates were coated with collagens at 100 µg/ml. Plates were blocked with
0.05 mg/ml κ-casein in PBS-T for 1 h. Ten-fold dilutions of DDR-Fc proteins in
blocking buffer were incubated on plates for 3 h. All assays were performed in
triplicate. Plates were read at 450 nm and data shown as mean ± SD.
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initiate fibril formation. The binding of DDR-Fc to this collagen was subsequently

analysed by a solid phase binding assay, as previously described. Unfortunately,

this approach resulted in a high background signal stemming from the non-specific

binding of the detection antibody to the collagen matrix. I found that a 10 µl drop

of collagen applied in the centre of the well resulted in less non-specific binding

than an evenly coated well with the same volume of collagen (by applying 50µl

of collagen solution and removing 40µl). Figure 5.14 demonstrates the levels of

background signal generated by the non-specific antibody binding in relation to the

varying CellMatrix concentrations. All HRP-conjugated antibodies available in our

lab showed similar non-specific binding to high concentration collagen gels. Several

measures were taken to reduce the background signal, including testing different

blocking solutions (1 mg/ml BSA, 10% dry-skimmed milk, 10% goat serum, 10%

FBS) or extensive washing with a high salt buffers, but with no success.

Figure 5.14: Non-specific antibody binding to fibrillar collagen. The bind-
ing of an anti-(rabbit IgG) antibody to CellMatrix collagen was analysed by a solid
phase binding assay in the absence of DDR-Fc protein. This antibody is used to
detect DDR-Fc proteins bound to the collagen, however it displays a non-specific
binding to collagen gels. CellMatrix collagen was neutralised and diluted to the in-
dicated concentrations in PBS-T, 10 µl of which were placed in the middle of 96-well
plates and incubated at 37°C for 1 h. A sample of 100 µg/ml collagen immobilised
at 4°C was also included. Afterwards plates were blocked in 0.05 mg/ml κ-casein
for 1 h and incubated for 1 h with an anti-(rabbit IgG) diluted 1:3000 in a blocking
buffer. Plates were developed as previously described and read at 450 nm. Assay
was performed in duplicate.
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The highest collagen concentration that yields a relatively low background

signal is 0.75 mg/ml collagen, therefore I decided to use this concentration in a solid

phase binding assay. CellMatrix collagen was first neutralised and then diluted to

0.75 mg/ml in PBS. Drops of 10 µl of collagen solution were placed in the centre of

96-well plates and incubated at 37°C for 1 h to initiate fibril formation. Afterwards, a

solid phase binding assay was carried out as previously described. Ten-fold dilutions

of DDR-Fc proteins, ranging from 250 nM to 0.025 pM, were prepared in a blocking

buffer and incubated with collagen for 3 hours.

Results of the DDR-Fc construct binding to the fibrillar CellMatrix collagen

are illustrated in Figure 5.15. A dose-dependent, specific and saturable binding

was detected for DDR1-Fc and DDR2-Fc. DDR1-R105A-Fc and DDR1-W53A-Fc

did not show dose-dependent binding, and detected signals showed high deviations.

DDR2-W52A-Fc binding to collagen was largely absent. This confirms specific

binding of DDR1-Fc and DDR2-Fc. Figure 5.15 indicates that DDR2-Fc binds more

to CellMatrix gel than DDR1-Fc, as it shows higher maximal binding. Moreover,

both constructs show high affinity binding, with a half-maximal binding within a

subnanomolar range (∼0.8 nM for DDR1-Fc, and ∼0.1 nM for DDR2-Fc).

Next, I analysed binding of DDR2-Fc to CellMatrix as well as PureCol gels

using the same assay. In order to further reduce the background signal, collagens

were used at 0.05 mg/ml. Ten-fold dilutions of DDR-Fc proteins, ranging from

500 nM to 0.05 pM, were prepared in blocking buffer and incubated with collagen

for 3 hours. Afterwards, the solid phase binding assay was carried out as previously

described and results are shown in Figure 5.16. DDR2-Fc binds to both collagens,

however there is much more variation in binding to PureCol. Moreover, DDR2-Fc

exhibits higher maximal binding to CellMatrix than to PureCol. The half-maximal

binding is nearly identical for the two collagens and is within subnanomolar range

(∼0.35 nM).
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Figure 5.15: Solid phase binding assay for analysis of DDR-Fc protein
binding to the CellMatrix collagen gel. Binding of individual DDR-Fc con-
structs to fibrillar collagen was analysed by a solid phase binding assay. CellMatrix
collagen was neutralised and diluted to 0.75 mg/ml in PBS. 10 µl of collagen was
placed in a centre of 96-wells and incubated at 37°C for 1 h to initiate collagen fibril-
logenesis. Plates were blocked with 0.05 mg/ml κ-casein in PBS-T for 1 h. Ten-fold
dilutions of DDR-Fc proteins in blocking buffer were incubated on plates for 3 h.
All assays were performed in triplicate. Plates were read at 450 nm and data shown
as mean ± SD.
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Figure 5.16: Analysis of a DDR2-Fc binding to fibrillar CellMatrix and
PureCol. The binding of DDR2-Fc to fibrillar CellMatrix and PureCol was anal-
ysed by a solid phase binding assay. 10µl of 0.5 mg/ml collagens were placed in
the centre of 96-well plates and incubated at 37°C for 1 h to induce fibrillogenesis.
Plates were blocked in 0.05 mg/ml of κ-casein in PBS-T and incubated with ten-fold
dilutions of DDR2-Fc in a blocking buffer for 3 h. Plates were read at 450 nm. Assay
was performed in triplicate. Data are represented as mean ± SD.

5.2.7 Analysis of DDR-Fc binding to collagen gel

In addition to the solid phase binding assay, the binding of DDR-Fc constructs to

fibrillar collagen was confirmed by Western blot analysis. DDR-Fc proteins were in-

cubated with CellMatrix or 1:1 mix of CellMatrix and PureCol. 10 µl of 1.5 mg/ml

collagen were placed in the centre of 96-well plates and incubated for 1 h at 37°C

to induce fibrillogenesis. In order to prevent non-specific binding, some collagen

samples were air-dried and re-hydrated in a blocking solution before DDR-Fc pro-

teins were applied. Plates were blocked with 0.05 mg/ml κ-casein for 1 h. DDR-Fc

constructs were diluted in blocking buffer and incubated on collagen for 3 hours.

Afterwards samples were washed in PBS-T for 1 h or 18 h at room temperature.

Samples were lysed in a 2× sample buffer and analysed by Western Blotting.

The results are represented in Figure 5.17. Similar results were obtained for fibrillar

and re-hydrated fibrillar collagens after an overnight wash, indicating comparable

177



5.2. Results

Figure 5.17: Detection of DDR-Fc binding to fibrillar collagen by West-
ern Blotting. CellMatrix (CM) or a 1:1 mix of CellMatrix and PureCol were
neutralised and diluted to 1.5 mg/ml in PBS. 10 µl of collagen solution was placed
in the centre of a 96-well and incubated for 1 h at 37°C to induce fibril formation. A
subset of collagen samples was air-dried for 18 h at room temperature. All samples
were incubated with 0.05 mg/ml κ-casein in PBS-T as a blocking buffer for 1 h at
room temperature. Air-dried collagen re-hydrated during the incubation. DDR-Fc
constructs were diluted to 250 nM in blocking solution and incubated on collagen for
3 h. Afterwards samples were washed several times in PBS-T for 1 h (short wash) or
for 18 h. Samples were lysed in 2× sample buffer, boiled and subjected to Western
Blotting. Membranes were probed for anti-(rabbit IgG Fc region) antibody.

binding properties of both collagen preparations. In samples that were washed in

PBS-T only for 1 h, re-hydrated collagen shows more specific binding. The nega-

tive control DDR2-W52A-Fc construct did not bind to re-hydrated collagens after

1 h of washing, however a pronounced binding of this construct was detected to

fibrillar collagen. In general, DDR2-Fc was found to bind more to the CellMatrix

than to the mix of two collagens. In addition, no binding to mixed collagen was

detected after an overnight wash. DDR1-Fc also showed higher binding to Cell-

Matrix, however noticeable binding was detected for the collagen mix as well. No

binding of DDR1-R105A-Fc, DDR1-W53A-Fc and DDR2-W52A-Fc to collagen was

detected after overnight washing in PBS-T, indicating specific binding of DDR1-Fc

and DDR2-Fc.
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In summary, DDR2 shows higher affinity binding to CellMatrix collagen than

to PureCol, although the latter induces greater DDR2 activation. Results were

confirmed using solid phase binding assay using immobilised collagen as well as 3D

collagen gels.

5.2.8 Role of DDR2 in cartilage-induced proMMP-2

activation

So far, I have shown that collagen stimulation, with both collagen type I and II, ac-

tivates MT1-MMP and induces MMP-2 processing. In order to determine whether

cartilage also induces MT1-MMP activation, RASF were attached to bovine carti-

lage explants and analysed for proMMP-2 activation. Bovine nasal septum cartilage

was frozen and thawed three times to kill chondrocytes. Cartilage explants were then

cut into 3× 5× 10 mm pieces, washed with 10% FBS DMEM and placed in a 24-

well plate. Approximately 1.5× 105 RASF were seeded on top of the cartilage in

15 µl for 3–4 h to allow cells to attach to the cartilage matrix. Then cartilage was

transferred to a new well using sterile forceps and serum-free DMEM was added to

cover the cartilage (∼700µl). The same number of cells was seeded in an empty well

as a control. An equal volume of medium was added to all wells, including those

from which cartilage had been transferred, to allow any unattached cells to grow

and therefore estimate how many cells remained attached to the cartilage.

Figure 5.18A shows images of bovine cartilage explants that were incubated

with and without cells. RASF are clearly visible attached to the cartilage matrix.

Zymography analysis of conditioned medium from RASF cultured in the presence of

cartilage shows proMMP-2 activation, which is inhibited by GM6001 (Figure 5.18B).

Moreover, cartilage also induces high expression of MT1-MMP, as observed in cells

treated with GM6001. It can be concluded that cartilage matrix indeed activates

MT1-MMP, increases it expression and promotes MMP-2 activation.
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Figure 5.18: Cartilage induces activation of proMMP-2. RASF were applied
on top of cartilage fragments in 15µl of 10% FBS DMEM for 3–4 hours, cartilage
transferred to new well, overlaid with serum-free medium and cultured for further
3 days. (A) Images of RASF attached to bovine cartilage explants. Images were
taken at 4× . Areas where cells attached to cartilage are indicated by arrow heads.
(B) Zymography analysis of cultured medium and Western Blots of MT1-MMP and
actin of cell lysates from cells attached to cartilage. GM6001 was added at 20 µM.

Next, I investigated whether removal of proteoglycans from the tissue results

in different RASF activation. As reported previously, RASF invasion into cartilage

explants from which proteoglycans has been removed is greater than into intact

cartilage (Miller et al., 2009). Because MT1-MMP is considered to be the collage-

nase that mediates RASF invasion, we thought that proteoglycan-depleted cartilage

might provide greater stimuli for MT1-MMP activation. Furthermore, I examined

if cartilage-dependent activation of MMP-2 is mediated by DDR2.

To remove proteoglycans, cartilage explants were incubated with trypsin at

100 µg/ml for 18 h followed by incubation with soybean trypsin inhibitor at 200µg/ml

for 24 h. Trypsin is able to remove proteoglycans from the cartilage, however it does

not degrade collagen. Before plating cells, untreated and trypsin-digested cartilage

pieces were washed several times with 10% FBS DMEM. RASF transfected with

siDDR2 or siNT were attached to cartilage explants for 4 h as previously described.

Afterwards, explants with attached cells were transferred to another culture well,

overlaid with an equal volume of serum-free medium and cultured for further 4 days.
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Samples were prepared in duplicate where possible, due to low cell numbers. Con-

ditioned media were analysed by gelatin zymography and cells were lysed in 100µl

of a 2×SDS sample buffer to analyse by Western Blotting (Figure 5.19).

Cells attached to both intact and trypsin-treated cartilage. Unexpectedly, zy-

mography analysis revealed that cartilage explants incubated without cells showed

a residual pro and active MMP-2, however pre-treatment with trypsin removed all

residual MMP-2.

Figure 5.19: Knockdown of DDR2 expression inhibits proMMP-2 acti-
vation by cartilage. RASF were transfected with siRNA and after 24 h were
attached to cartilage and incubated for further 4 days. Bovine cartilage was either
untreated or pre-treated with 100 µg/ml trypsin for 18 h followed by 24 h incubation
with soybean trypsin inhibitor at 200 µg/ml.
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Both cartilages induced proMMP-2 activation in siRNA-transfected cells. The

trypsin-treated cartilage seemed to be more efficient in inducing activation as it

shows about 50% activation of proMMP-2 to active form, while 10% or less activa-

tion was observed in the non-treated cartilage. This is also evident with generation

of 44 kDa MT1-MMP. Knockdown of DDR2 notably reduced levels of active MMP-

2, especially in cells cultured on the cartilage treated with trypsin. The DDR2

knockdown also prevented processing of the MT1-MMP to 44 kDa species in these

samples.

5.3 Discussion

Knowledge about mechanisms regulating the activation of synovial fibroblasts dur-

ing invasion is vital to the understanding of RA pathogenesis. Here I present the

evidence that RASF are activated not only by purified and reconstituted collagen

but also by cartilage tissue. Importantly, cartilage increases MT1-MMP expres-

sion and proMMP-2 activation. In agreement with previous experiments (Section

3.2.9), the cartilage-induced increase in MT1-MMP expression and activity is me-

diated through the DDR2 receptor. Interestingly, proteoglycan-depleted cartilage

induces greater MT1-MMP (and presumably DDR2) activation, as demonstrated

by higher levels of active MMP-2 and elevated MT1-MMP processing. Although

cartilage invasion was not investigated in this study, a report by Miller et al. (2009)

demonstrated that RASF show deeper invasion into proteoglycan-depleted cartilage.

Taken together, the above results strongly suggest that the high level of MT1-MMP

expression in synovial cells at the pannus-cartilage junction in RA specimens is likely

to be at least in part due to cartilage signalling. It is well recognised that MT1-

MMP expression directly correlates with cell invasiveness and this study confirms

that cartilage signalling contributes to the aggressive behaviour of invading cells.

My data also strongly suggest that DDR2 is a regulator of MT1-MMP function

and that the cartilage matrix provides unique signals for DDR2 activation. Addi-
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tionally, PureCol and CellMatrix collagens induced different levels of MT1-MMP

expression as well as of DDR2 autophosphorylation. CellMatrix induced very low

expression and activity of MT1-MMP, probably because it did not significantly in-

crease DDR2 phosphorylation and signalling. As mentioned earlier, these collagens

differ in structure as pepsin-extracted PureCol does not have telopeptides. Although

PureCol is still able to form fibrils, lack of telopeptide regions reduces numbers of

cross-links and such collagen shows lower thermal stability and lower fibril strength

(Sato et al., 2000). During RA, telopeptides in collagen type II in the cartilage

might be cleaved e.g. by soluble MMP-13 and possibly such tissue could induce

higher DDR2 signalling. Collectively, this suggests that not only proteoglycan re-

moval from cartilage, but also the structure of collagen might provide important

cues for receptor activation and MT1-MMP expression.

The variation in cellular responses initiated by these collagens could be a con-

sequence of differences in binding affinity to DDR2 and/or distinct ability to induce

DDR2 activation. Surprisingly, the DDR2-Fc construct used here shows high affinity

interaction with both collagens. DDR2-Fc displays even higher affinity for immo-

bilised CellMatrix collagen, although this collagen induces significantly less DDR2

activation. DDRs require a native triple helical structure of collagen for activation

and can be activated by monomeric collagen, but efficient proMMP-2 activation is

induced only by fibrillar collagen (Ruangpanit et al., 2001). Analysis of DDR2-Fc

binding to fibrillar collagen, either by a solid phase binding assay or by Western Blot-

ting, also indicates high affinity binding to CellMatrix collagen. Despite the high

affinity, CellMatrix appears to activate DDR2 receptor less than PureCol. This

could result from non-productive binding of CellMatrix to collagen, which does not

result in receptor phosphorylation or signalling. However, although CellMatrix in-

duces significantly lower DDR2 phosphorylation, it exerts an unexpected effect on

cell’s DDR2 levels, indicating that it is able to induce a cellular response. Cells

cultured on CellMatrix show noticeably reduced levels of fully glycosylated DDR2

in their cell lysates.
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Loss of DDR2 from the cell surface could be a consequence of shedding of its

ectodomain after collagen binding, which has been reported for DDR1. However,

no increase of DDR2 shedding was observed in CellMatrix stimulated cells after up

to 8 hours of incubation. The loss of DDR2 was not inhibited by any of the tested

inhibitors, including marimastat which prevented accumulation of shed form in the

medium, indicating the presence of some other mechanism. After ligand-induced ac-

tivation, numerous signalling receptors, including RTKs, are internalised to regulate

signalling. Activation of EGFR, a prototypical RTK, induces receptor internalisa-

tion into early endosomes, from which it can be recycled to the cell surface or,

alternatively, shuffled to late endosome/lysosome compartments for degradation. A

study by Mihai et al. (2009) demonstrated that DDR1 undergoes a rapid aggrega-

tion and endocytosis within minutes after collagen stimulation. Internalised DDR1

localises to Rab5-positive early endosomes and is reportedly recycled back to the cell

surface after 60 min (Mihai et al., 2009). The same study however reports persistent

reduction in cellular levels of DDR1 from 10 to up to 60 min after collagen addition,

possibly resulting from receptor degradation. Further analysis is required to deter-

mine whether DDR2 also undergoes internalisation and intracellular degradation.

To my knowledge, this is the first report demonstrating shedding of the DDR2

ectodomain. It is unclear whether shedding also occurs in fibroblasts, as I was

unable to detect the shed form of DDR2 in these cells. Ectodomain shedding is

a mechanism that regulates the function of many transmembrane proteins and is

often mediated by ADAMs. Shedding of the collagen-binding ectodomain of DDR1

prevents further activation of the receptor and has been shown to regulate cell

migration and signalling latency (Yasuyuki Shitomi, Yoshifumi Itoh, manuscript

submitted). Data from Dr. Itoh’s lab also indicate that collagen-induced shedding

of DDR1 is mediated by a member of the ADAM family. Consistent with their

results, shedding was inhibited by marimastat and it is therefore likely that DDR2

is cleaved by a similar or same protease. Although collagen did not significantly
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increase shedding of DDR2 over the 8 h incubation period, analysis of culture media

at later time points (e.g. 24 h) is necessary to confirm collagen-induced shedding.

The reasons for diminished levels of DDR2 on the cell surface are not clear

at this moment. Plausible explanations include ectodomain shedding or endocyto-

sis followed by degradation. It is unlikely that collagen inhibits DDR2 expression,

because levels of immature DDR2 remain unchanged. Ultimately, lower cell sur-

face levels of DDR2 result in less collagen binding and signalling, as observed in

CellMatrix-stimulated cells. In summary, these data provide important insights

into collagen and cartilage recognition by DDR2.
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Chapter 6

General discussion and future

work

6.1 Discussion

MT1-MMP is a major cellular collagenase. It has been demonstrated that this en-

zyme plays a prominent role in many physiological and pathological processes. Its

activity is rigorously regulated on many levels in order to maintain tissue homeosta-

sis. High MT1-MMP expression has been documented in several different diseases,

including RA and cancer, where it correlates with uncontrolled cellular invasion and

extensive ECM degradation. However, mechanisms of MT1-MMP upregulation are

not well understood. In RA, MT1-MMP is highly expressed in invading synovial

cells in the pannus which are in direct contact with the cartilage. This observation,

as well as the fact that MT1-MMP activity can be induced by collagen, prompted

us to hypothesise that MT1-MMP expression in synovial fibroblasts is upregulated

by the cartilage matrix. The aim of this thesis was to examine our hypothesis and

investigate mechanisms of MT1-MMP activation in RASF during RA development.

The main finding of my thesis was identification of DDR2 as a receptor which

mediates collagen-induced MT1-MMP activation in fibroblasts. I demonstrated, for

the first time, that MT1-MMP activity and expression in fibroblasts are increased
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through DDR2-mediated collagen signalling. Although it is still not known if DDR2

is the sole receptor responsible for mediating collagen-induced MT1-MMP activa-

tion, DDR2 knockdown clearly decreased MT1-MMP-dependent collagen degrada-

tion and invasion. I have also demonstrated that MT1-MMP activity is also induced

by the cartilage tissue, and that this signalling is mediated by DDR2 as well. These

findings strongly suggest that the high level of MT1-MMP detected at the pannus-

cartilage junction could be due to DDR2-mediated induction of MT1-MMP by the

cartilage tissue in RASF.

Little is known about signalling pathways initiated by DDR2. A Src kinase

had been shown to associate with DDR2 upon collagen binding and to mediate

downstream signalling (Ikeda et al., 2002; Yang et al., 2005). In agreement with

these studies, I have found that a Src inhibitor decreased collagen-induced MT1-

MMP activation. A recent study provided compelling evidence that the collagen-

induced DDR2 signalling in breast cancer cells activates Src and ERK2, which in

turn stabilise the transcription factor SNAIL1, resulting in MT1-MMP expression

(Zhang et al., 2013). Furthermore, another study showed that overexpression of

SNAIL1 induces MT1-MMP and MT2-MMP upregulation in breast cancer cells and

promotes cell invasion (Ota et al., 2009). SNAIL1 is a transcription factor mainly

implicated in epithelial-to-mesenchymal transition, but a recent report indicates

that it has a prominent function in mesenchymal cells as well (Peinado et al., 2007).

Mouse embryonic fibroblasts deficient in SNAIL1 have a phenotype similar to MT1-

MMP null fibroblasts: they are unable to degrade collagen, are less invasive and

show lower MT1-MMP levels in response to collagen (Rowe et al., 2009). It would

be interesting to investigate whether DDR2 also mediates MT1-MMP expression

through the SNAIL1 transcription factor in synovial fibroblasts.

The current study also shows that fibrillar collagens and cartilage act as activa-

tors of MT1-MMP expression and function in synovial and dermal fibroblasts. They

not only induced a prolonged transcriptional activation of the MT1-MMP gene, but

also promoted a functional activation of MT1-MMP already expressed on the cell
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surface. This was particularly visible in proMMP-2 activation and gelatin degra-

dation assays, where no MT1-MMP activity was detected unless the collagen was

introduced. The precise nature of this non-transcriptional activation is not clear at

the moment. It is possible that it involves regulation of the MT1-MMP endocytosis

and targeted trafficking to the substrate degradation sites. As a result, local concen-

tration of the enzyme on the plasma membrane increases, promoting formation of

the functional MT1-MMP dimer. ConA or collagen stimulation were demonstrated

to inhibit MT1-MMP endocytosis (Lafleur et al., 2006; Remacle et al., 2003), and

MT1-MMP localisation to invadopodia and collagen attachment sites were also re-

ported (Artym et al., 2006; Bravo-Cordero et al., 2007). Further research is required

to determine the mechanism of functional activation of MT1-MMP by collagen.

Although integrins are major collagen receptors there is no consensus about

their role in regulating MT1-MMP functions. My data indicate that collagen-

binding integrins do not play any role in collagen-induced MT1-MMP activation.

My results corroborate the findings published by Sakai et al. (2011) who demon-

strated that β1 integrin knockdown does not influence proMMP-2 activation in

malignant mesothelioma cells. Since all collagen-binding integrins contain the β1

subunit, we concluded that collagen-binding integrins do not play a direct role in

fibroblast activation by collagen.

Although it has been reported that inflammatory cytokines including IL-1 and

TNF-α upregulate MT1-MMP in RASF, my data indicate that TNF-α and IL-1β

do not influence MT1-MMP expression or activity in cultured fibroblasts. These

data are supported by the fact that the promotor region of MT1-MMP lacks AP-

1 binding sites (Lohi et al., 2000). It is therefore unlikely that these cytokines

are responsible for MT1-MMP activation in vivo. Because TNF-α and IL-1β do

not appear to regulate MT1-MMP function, this may at least partially explain the

failure of anti-inflammatory drugs to effectively prevent cartilage damage in RA

(Choy et al., 2013).
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I have also found that collagen induced expression and activation of MMP

collagenases other than MT1-MMP, as observed during the collagen488 degradation

assay. This finding, while preliminary, suggests a broader role of collagen signalling

in RA progression. Although the function of DDR2 in the process described above

has not been investigated in this study, it has been already reported that colla-

gen upregulates expression of MMP-1 and MMP-13 in synovial fibroblasts through

DDR2 (Su et al., 2009; Wang et al., 2002; Zhang et al., 2006a). Because little is

known about activation of these MMPs in vivo, it is tempting to speculate that they

are also activated by collagen-induced DDR2 activation.

6.1.1 DDR2 as a receptor of damaged ECM

The identification of DDR2 as an activator of MT1-MMP raises the following ques-

tion: what are the mechanisms regulating DDR2 activation? DDR2 is constitutively

expressed in mesenchymal cells and its ligand, collagen, is the most abundant pro-

tein in the human body. Despite this, expression of MT1-MMP in healthy tissues

is usually low. We hypothesise that DDR2 is a receptor that recognises ‘damaged’

collagen. Recognition of collagen within injured, but not in the normal tissues,

would therefore initiate the MMP-dependent ECM remodelling, which appears to

be hijacked in RA. In agreement with our hypothesis, we found that proteoglycan-

depleted cartilage induces greater proMMP-2 activation (Section 5.2.8) and synovial

cell invasion (Miller et al., 2009) than intact cartilage. These data are further sup-

ported by studies showing that initial damage to the tissue is a prerequisite for an

uncontrolled matrix degradation during disease. A study by Korb-Pap et al. (2012)

demonstrated that in the inflammatory model of arthritis, loss of proteoglycans in

the cartilage precedes pannus attachment and promotes its invasion. In the OA

model, overexpression of DDR2 in chondrocytes does not initiate the degradation of

the cartilage unless an initial damage to the pericellular matrix had occurred (Xu

et al., 2011).
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If this is the case, what would be the ‘damaged’ collagen? DDRs are not

activated by denatured collagen, whereas monomeric collagen, although shown to

activate the DDR2 receptor, is unstable in vivo and does not support proMMP-2

activation (Leikina et al., 2002; Ruangpanit et al., 2001). Therefore these forms

of collagen would be unlikely to activate DDR2 in tissues. Under physiological

conditions, collagens spontaneously assemble into fibrils. Until now, however, it has

not been investigated whether collagen fibrils activate DDR2. In the present study

I have shown that DDR2 binds to and is activated by fibrillar collagen. Moreover,

MMP-2 activation is also induced by the cartilage tissue, confirming that DDR2

recognises tissue-derived collagen as well.

Strikingly, I have observed differences in the ability of different form of colla-

gens, namely CellMatrix and PureCol collagens, to induce MT1-MMP activation.

Initially we thought that the structure of collagen fibrils might influence DDR activa-

tion. Based on data from collagen fibre diffraction, Orgel and co-workers proposed

a model of molecular collagen type I assembly (Orgel et al., 2006). This model

provides valuable insight into the supramolecular collagen structure and possible

protein-collagen interactions (Sweeney et al., 2008). DDR2 binding sites in collagen

monomer can be mapped onto the 3D structure of collagen fibrils derived from the

Orgel model to assess the accessibility of these sites for receptor binding.

Figure 6.1 illustrates the proposed model and molecular packing of collagen

type I. The basic units of the collagen fibril are microfibrils. Microfibrils consist of

a repeated arrangement of five collagen monomers, which form a rope-like, super-

twisted structure. Neighbouring microfibrils interdigitate to form a larger collagen

fibril. The molecular packing reveals that the C-terminal telopeptides face the fibril

exterior and N-terminal telopeptides are hidden within the fibril (Orgel et al., 2006).

Mapping of MMP cleavage site and binding sites for DDR and integrin showed

that they are confined to a specific region within the collagen fibril, in close prox-

imity to the C-telopeptide. Although these sites are scattered on a monomer, due

to twisting and staggered arrangement of collagen molecules within microfibril they
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M1

Figure 6.1: Molecular organisation of type I collagen fibril. (A) Schematic
representation of a collagen type I monomer, which has been rainbow-coloured —
from blue at the N-terminus to red at the C-terminus. Colour coded binding sites
for DDR (white) and integrin (red) as well as the MMP cleavage site (red) have been
indicated. (B) Collagen fibrils show a banding pattern with a D-periodicity. Each
collagen molecule spans five D periods (D1-D5). (C) 2D representation of colla-
gen microfibril. Five collagen monomers (M1-M5) constitute the microfibril and
individual microfibrils interdigitate and super-twist, so that the C-terminal telopep-
tides (C-telo) face the fibril surface (exterior) and the N-terminal telopeptides
(N-telo) are buried within the fibril (D) Molecular packing within D period of mi-
crofibril. Binding sites for MMPs, DDR2 and integrin (ITG) within the microfibril
are indicated. Cross-linking sites within telopeptides are indicated by arrows. (E)
Cross section view of the indicated D5 period shows molecular packing within the
microfibril and orientation of collagen molecules. Location of the MMP, DDR2 and
integrin binding sites within the cross section are indicated by colour-coded arrow-
heads. Access to these binding sites is predicted to be partially restricted by the
neighbouring M4 collagen molecule and C-telopeptide. Figure adapted from Orgel
et al. (2011b) and Nagase and Visse (2011).
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are clustered within the overlap region. It has been proposed that access to the

MMP cleavage site is partially restricted due to the neighbouring collagen monomer

and the C-telopeptide. Cleavage of either of these elements would fully expose the

MMP cleavage site and allow collagenolysis (Perumal et al., 2008). Indeed, telopep-

tide cleavage by MMP-3 appears to promote collagen degradation (Wu et al., 1991).

Access to the DDR2 binding site also seems to be partially restricted and, similar to

MMP site, accessibility is predicted to increase after C-telopeptide cleavage and/or

MMP-mediated cleavage of the collagen monomer (Orgel et al., 2011a). Since Cell-

Matrix collagen is an acid-extracted collagen and contains intact telopeptide regions,

we thought that this collagen would not be able to support DDR2 binding due to

steric hindrance, which would explain the lower MT1-MMP activation by CellMa-

trix. Surprisingly, DDR2 binds to CellMatrix with even greater affinity than to

PureCol. However, DDR2 bound to this collagen appears to be quickly downregu-

lated and no DDR2 phosphorylation or MT1-MMP activation were observed. The

reason for this is not known at this moment, however, it might provide an interesting

regulatory mechanism for DDR2 activation.

Another possibility for the increased receptor activation by damaged ECM is

lack of proteoglycans within cartilage, which would expose collagen fibrils. It is

a plausible mechanism in the context of RA, where proteoglycans in the cartilage

are degraded at early stages of the disease by aggrecanases, including ADAMTS-4

and ADAMTS-5. ADAMTS-4 has been shown to degrade other small leucine-rich

proteoglycans that bind to the collagen fibril surface, in close proximity to the

DDR2 binding site as well (Kashiwagi et al., 2004). These proteoglycans include

decorin, biglycan and fibromodulin and they have been shown to regulate stability

and diameter of the forming collagen fibrils. More importantly, the DDR2 binding

site within collagen is also recognised by vWF (Von Willebrand factor) and SPARC

(secreted protein acidic and rich in cysteine) (Giudici et al., 2008). Binding of these

proteins to the collagen would mask DDR2 binding sites and prevent recognition

by the receptor. In fact, a similar mechanism has been proposed for MMP-1 as
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addition of decorin to collagen prevents its cleavage by MMP-1 in vitro (Li et al.,

2013). Moreover, treatment of collagen type II with anti-biglycan antibodies causes

decomposition of collagen into smaller fibrils, potentially revealing binding epitopes

(Antipova and Orgel, 2012). Therefore, degradation of proteoglycans could result

in either perturbance of the fibril structure or unmasking of recognition sites within

the microfibril, leading to DDR2 binding and activation.

Based on these data, we would like to propose a mechanism of collagen-induced

MT1-MMP activation, illustrated on Figure 6.2. In healthy tissues, DDR2 may

exhibit a high affinity binding to fibrillar collagens in their physiological state, but

this binding would result in effective receptor downregulation, either by receptor

shedding or intracellular degradation. As a result no signal would be propagated,

and MT1-MMP expression would not be upregulated. Alternatively, collagen is not

recognised e.g. due to the masking of binding sites by SPARC or proteoglycans.

During injury or disease, cartilage becomes damaged and DDR2 is activated by

the tissue. Cartilage damage can either occur by proteolytic removal or mechanistic

translocation of C-terminal telopeptides, cleavage of the collagen molecules by MMP

collagenases or degradation of proteoglycans. DDR2 activation results in signal

transduction through Src and, possibly, ERK2 and SNAIL1. As a result, MT1-MMP

expression and activity increases, leading to acquisition of the invasive phenotype by

the cell. In addition, the upregulated DDR2 expression seen in RA synovium would

contribute to increased receptor signalling (Su et al., 2009; Wang et al., 2002).

Based on the data I showed in this study, it is tempting to speculate that sim-

ilar DDR2 signalling pathways could contribute to malignant conditions also char-

acterised by high MT1-MMP expression, such as cancers and liver fibrosis (Ohtani

et al., 1996; Sato et al., 1994; Takahara et al., 1997). Interestingly, chronic liver

injury is often characterised by fibrosis, an extensive production of collagen type

I-rich matrix by hepatic stellate cells. These cells also show high DDR2 expression

and activation of proMMP-2 in response to collagen (Olaso et al., 2001). Several

cancers, such as pancreatic ductal adenocarcinoma, are also associated with abnor-
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Figure 6.2: Proposed mechanism of DDR2 activation. During homeostasis
DDR2 does not induce collagen-signalling, either because collagen fibrils are not
recognised by the receptor (masked epitopes) or alternatively binding to the colla-
gen fibril induces downregulation of the receptor through shedding or intracellular
degradation. Unmasking of epitopes and/or change of fibril structure due to MMP
cleavage, removal of telopeptides or degradation of collagen-bound proteoglycans re-
sults in persistent activation of DDR2. In turn, initiation of downstream signalling
results in MT1-MMP expression and activation.
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mal expression of collagen-rich ECM — a process called the desmoplastic reaction.

It has been shown that increased collagen expression at the sites of tumour inva-

sion co-localise with MT1-MMP expression (Bisson et al., 2003; Gilles et al., 1996;

Shields et al., 2012). Taken all together, I therefore propose that identification of a

novel DDR pathway of collagen-induced MT1-MMP expression would shed a new

light into pathogenesis of various disorders including RA, cancer and chronic liver

injury.

6.2 Future work

I have shown that collagen-induced DDR2 activation results in an increase in MT1-

MMP expression and functions. However, further research is required to fully un-

derstand the mechanisms of DDR2 activation and collagen recognition during health

and disease. Most importantly, it is essential to determine how DDR2 is activated

by structurally different fibrillar collagens. For this purpose, acid-extracted colla-

gen gels could be treated with proteases, for example: MMPs (such as recombinant

MMP-1 or MMP-3) or neutrophil elastase. MMPs and neutrophil elastase remove

telopeptides, and MMP-1 is also able to cleave collagen. Subsequently, the ability

of proteinase-treated collagens to induce proMMP-2 activation in fibroblasts as well

as binding to and activation of DDR2 receptor would be analysed and compared

with untreated collagen. Similarly, cartilage would be treated with proteases as

described above, followed by analysis of DDR2 binding (using DDR-Fc constructs)

and phosphorylation (using cells overexpressing DDR2) as well as proMMP-2 acti-

vation in fibroblasts. These results would provide an additional insight into collagen

signalling during injury or under pathological conditions.

At present, the fate of DDR2 after collagen binding is not known. My data

indicate that DDR2 is constitutively shed and also appears to be degraded upon

collagen binding. To prove whether shedding is indeed enhanced by collagen treat-

ment, longer stimulation of cells with collagen should be performed and culture
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media analysed for the presence of DDR2 ectodomain. Intracellular degradation is

a common mechanism of downregulation of many different RTKs, including EGFR.

At the moment, it is not known whether DDR2 is internalised upon collagen binding,

but a recent report indicates that phosphorylated DDR2 is ubiquitinated and de-

graded (Yu et al., 2014). Confocal microscopy could be employed to analyse DDR2

internalisation and cellular localisation upon collagen stimulation. At the same

time, blocking of endocytosis pathways and lysosomal degradation would provide

necessary data to establish whether DDR2 is degraded intracellularly.

6.3 Therapeutic implications

At present, treatments for RA do not target joint tissue degradation despite this

being a hallmark of the disease. Therefore, there is still an unmet need for drugs that

prevent joint damage, especially loss of the cartilage. There is considerable evidence

that blocking MT1-MMP function alone prevents invasion of RA synovial fibroblasts

into the cartilage (Miller et al. 2009; Rutkauskaite et al. 2005; Sabeh et al. 2010;

Yoshifumi Itoh, unpublished results). However, there are currently no MT1-MMP

inhibitors that could be used to prevent the cartilage degradation in RA. Although

an MT1-MMP inhibitory antibody, DX-2400, has been shown to be effective in

preclinical cancer models, its safety and efficacy still need to be confirmed in human

clinical trials. In this context DDR2, which mediates MT1-MMP expression and

functional activation, could be considered as a potential therapeutic target for RA

treatment.

Here, I reported that dasatinib, a potent DDR2 inhibitor, prevented DDR2

autophosphorylation and subsequent MT1-MMP activation in response to collagen.

Moreover, invasive behaviour and motility of synovial fibroblasts were significantly

attenuated by dasatinib treatment. Dasatinib, and closely related imatinib and

nilotinib, are small molecule tyrosine kinase inhibitors targeting the oncogenic BCR-

ABL kinase and are approved drugs for chronic myeloid leukaemia. All of them
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have been reported to inhibit DDR phosphorylation (Day et al., 2008), but they

have much broader specificity and also inhibit the Src family of kinases (including

Src, Lck and Yes kinases), proto-oncogene c-Kit, beta-type platelet-derived growth

factor receptor and p38 (Lombardo et al., 2004).

In support of application of a tyrosine kinase inhibitor for RA treatment, ima-

tinib showed efficacy in treatment and prevention of murine collagen-induced arthri-

tis (Paniagua et al., 2006). Reported case studies showed that imatinib administra-

tion resulted in a considerable clinical improvement in three RA patients (Eklund

and Joensuu, 2003; Miyachi et al., 2003). Preliminary data in Dr. Itoh’s lab showed

that administration of dasatinib effectively halted progression of collagen-induced

arthritis in mice. Although the detailed mechanisms of action of these inhibitors

are not completely understood and they likely inhibit other tyrosine kinases, it is

possible that inhibition of DDR2-mediated MT1-MMP activation could have a ther-

apeutic effect. The development of a potent and selective inhibitor for DDR2 would

be required for an effective treatment. Recent discoveries of an DDR1 inhibitory

antibody as well as selective small molecule inhibitors for DDR1 indicate that de-

velopment of targeted DDR2 inhibitors may be feasible (Carafoli et al., 2012; Kim

et al., 2013). It is possible that such a kinase inhibitor may be developed as a future

disease-modifying drug for RA.

6.4 Conclusion

RA is a debilitating disease, which often leads to physical disability due to joint

damage. Cartilage degradation by the pannus tissue is irreversible and can progress

even in the absence of joint inflammation. In recent years, MT1-MMP had been

demonstrated to be a key collagenase in RA pathogenesis. In this thesis, I confirmed

the central role of MT1-MMP in synovial cell invasion. In addition, I identified

DDR2 as an upstream activator of MT1-MMP activity, which mediates cartilage

collagen-driven synovial cell invasion in the RA joint. We propose that DDR2 is
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a receptor that detects damaged ECM e.g. during disease or injury, and becomes

activated when it recognises abnormal collagen. We also believe that collagen sig-

nalling through DDR2 may apply to other diseases characterised by disregulated

collagen synthesis and MT1-MMP activity, such as tissue fibrosis and cancer. Over-

all, this work has expanded understanding of mechanisms governing MT1-MMP

function in disease and could help in the development of new therapeutics to block

MT1-MMP-dependent cell invasion in the future.
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Gomis-Rüth, F. X. (2003) “Structural aspects of the metzincin clan of metalloendopepti-
dases”. Mol Biotechnol 24:157–202.

Gravallese, E. M., Harada, Y., Wang, J. T., Gorn, A. H., Thornhill, T. S., Goldring,
S. R. (1998) “Identification of cell types responsible for bone resorption in rheumatoid
arthritis and juvenile rheumatoid arthritis”. Am J Pathol 152:943–51.

Gravallese, E. M., Manning, C., Tsay, A., Naito, A., Pan, C., Amento, E., Goldring, S. R.
(2000) “Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation
factor”. Arthritis Rheum 43:250–8.

Gregersen, P. K., Silver, J., Winchester, R. J. (1987) “The shared epitope hypothesis.
An approach to understanding the molecular genetics of susceptibility to rheumatoid
arthritis”. Arthritis Rheum 30:1205–13.

Guo, C., Piacentini, L. (2003) “Type I collagen-induced MMP-2 activation coincides with
up-regulation of membrane type 1-matrix metalloproteinase and TIMP-2 in cardiac
fibroblasts”. J Biol Chem 278:46699–708.

Haas, T. L., Davis, S. J., Madri, J. A. (1998) “Three-dimensional type I collagen lattices
induce coordinate expression of matrix metalloproteinases MT1-MMP and MMP-2 in
microvascular endothelial cells”. J Biol Chem 273:3604–10.

Haas, T. L., Stitelman, D., Davis, S. J., Apte, S. S., Madri, J. A. (1999) “Egr-1 mediates
extracellular matrix-driven transcription of membrane type 1 matrix metalloproteinase

205



Bibliography

in endothelium”. J Biol Chem 274:22679–85.

Han, Y. P., Tuan, T. L., Wu, H., Hughes, M., Garner, W. L. (2001) “TNF-alpha stimulates
activation of pro-MMP2 in human skin through NF-(kappa)B mediated induction of
MT1-MMP”. J Cell Sci 114:131–139.

Harburger, D. S., Calderwood, D. A. (2009) “Integrin signalling at a glance”. J Cell Sci
122:159–63.

Heineg̊ard, D. (2009) “Proteoglycans and more–from molecules to biology”. Int J Exp
Pathol 90:575–86.

Hernandez-Barrantes, S., Toth, M., Bernardo, M. M., Yurkova, M., Gervasi, D. C.,
Raz, Y., Sang, Q. A., Fridman, R. (2000) “Binding of active (57 kDa) membrane
type 1-matrix metalloproteinase (MT1-MMP) to tissue inhibitor of metalloproteinase
(TIMP)-2 regulates MT1-MMP processing and pro-MMP-2 activation”. J Biol Chem
275:12080–9.

Hikita, A., Yana, I., Wakeyama, H., Nakamura, M., Kadono, Y., Oshima, Y., Naka-
mura, K., Seiki, M., Tanaka, S. (2006) “Negative regulation of osteoclastogenesis
by ectodomain shedding of receptor activator of NF-kappaB ligand”. J Biol Chem
281:36846–55.

Hitchon, C., Wong, K., Ma, G., Reed, J., Lyttle, D., El-Gabalawy, H. (2002) “Hypoxia-
induced production of stromal cell-derived factor 1 (CXCL12) and vascular endothelial
growth factor by synovial fibroblasts”. Arthritis Rheum 46:2587–97.

Hitchon, C. A., El-Gabalawy, H. S. (2003) “The histopathology of early synovitis”. Clin
Exp Rheumatol 21:S28–36.

Hitchon, C. A., El-Gabalawy, H. S. (2011) “The synovium in rheumatoid arthritis”. Open
Rheumatol J 5:107–14.

Holmbeck, K., Bianco, P., Caterina, J., Yamada, S., Kromer, M., Kuznetsov, S. A.,
Mankani, M., Robey, P. G., Poole, A. R., Pidoux, I., Ward, J. M., Birkedal-Hansen, H.
(1999) “MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connec-
tive tissue disease due to inadequate collagen turnover”. Cell 99:81–92.

Holmbeck, K., Bianco, P., Pidoux, I., Inoue, S., Billinghurst, R. C., Wu, W., Chrysovergis,
K., Yamada, S., Birkedal-Hansen, H., Poole, A. R. (2005) “The metalloproteinase MT1-
MMP is required for normal development and maintenance of osteocyte processes in
bone”. J Cell Sci 118:147–56.

Holmbeck, K., Bianco, P., Yamada, S., Birkedal-Hansen, H. (2004) “MT1-MMP: a teth-
ered collagenase”. J Cell Physiol 200:11–9.

Hotary, K., Allen, E., Punturieri, A., Yana, I., Weiss, S. J. (2000) “Regulation of cell
invasion and morphogenesis in a three-dimensional type I collagen matrix by membrane-
type matrix metalloproteinases 1, 2, and 3”. J Cell Biol 149:1309–23.

Hotary, K., Li, X.-Y., Allen, E., Stevens, S. L., Weiss, S. J. (2006) “A cancer cell metallo-
protease triad regulates the basement membrane transmigration program”. Genes Dev
20:2673–86.

Hotary, K. B., Allen, E. D., Brooks, P. C., Datta, N. S., Long, M. W., Weiss, S. J. (2003)
“Membrane type I matrix metalloproteinase usurps tumor growth control imposed by
the three-dimensional extracellular matrix”. Cell 114:33–45.

Hotary, K. B., Yana, I., Sabeh, F., Li, X.-Y., Holmbeck, K., Birkedal-Hansen, H., Allen,
E. D., Hiraoka, N., Weiss, S. J. (2002) “Matrix metalloproteinases (MMPs) regulate
fibrin-invasive activity via MT1-MMP-dependent and -independent processes”. J Exp
Med 195:295–308.

Hou, G., Vogel, W., Bendeck, M. P. (2001) “The discoidin domain receptor tyrosine kinase
DDR1 in arterial wound repair”. J Clin Invest 107:727–35.

206



Bibliography

Humphreys, J. H., Verstappen, S. M. M., Hyrich, K. L., Chipping, J. R., Marshall, T.,
Symmons, D. P. M. (2013) “The incidence of rheumatoid arthritis in the UK: compar-
isons using the 2010 ACR/EULAR classification criteria and the 1987 ACR classification
criteria. Results from the Norfolk Arthritis Register”. Ann Rheum Dis 72:1315–20.

Humphries, J. D., Byron, A., Humphries, M. J. (2006) “Integrin ligands at a glance”. J
Cell Sci 119:3901–3.

Hynes, R. O. (2002) “Integrins: bidirectional, allosteric signaling machines”. Cell
110:673–87.

Ikeda, K., Wang, L.-H., Torres, R., Zhao, H., Olaso, E., Eng, F. J., Labrador, P., Klein, R.,
Lovett, D., Yancopoulos, G. D., Friedman, S. L., Lin, H. C. (2002) “Discoidin domain
receptor 2 interacts with Src and Shc following its activation by type I collagen”. J Biol
Chem 277:19206–12.

Imboden, J. B. (2009) “The immunopathogenesis of rheumatoid arthritis”. Annual review
of pathology 4:417–34.

Itoh, Y. (2006) “MT1-MMP: a key regulator of cell migration in tissue”. IUBMB Life
58:589–96.

Itoh, Y., Ito, N., Nagase, H., Evans, R. D., Bird, S. A., Seiki, M. (2006) “Cell surface
collagenolysis requires homodimerization of the membrane-bound collagenase MT1-
MMP”. Mol Biol Cell 17:5390–9.

Itoh, Y., Ito, N., Nagase, H., Seiki, M. (2008) “The second dimer interface of MT1-MMP,
the transmembrane domain, is essential for ProMMP-2 activation on the cell surface”.
J Biol Chem 283:13053–13062.

Itoh, Y., Palmisano, R., Anilkumar, N., Nagase, H., Miyawaki, A., Seiki, M. (2011)
“Dimerization of MT1-MMP during cellular invasion detected by fluorescence resonance
energy transfer”. Biochem J 440:319–26.

Itoh, Y., Seiki, M. (2006) “MT1-MMP: a potent modifier of pericellular microenviron-
ment”. J Cell Physiol 206:1–8.

Itoh, Y., Takamura, A., Ito, N., Maru, Y., Sato, H., Suenaga, N., Aoki, T., Seiki, M.
(2001) “Homophilic complex formation of MT1-MMP facilitates proMMP-2 activation
on the cell surface and promotes tumor cell invasion”. EMBO J 20:4782–4793.

Jabaiah, A., Daugherty, P. S. (2011) “Directed evolution of protease beacons that enable
sensitive detection of endogenous MT1-MMP activity in tumor cell lines”. Chem Biol
18:392–401.

Jain, A., Miller, M.-C., Troeberg, L., Itoh, Y., Brennan, F., Nanchahal, J. (2009) “Invasive
potential of human rheumatoid tenosynovial cells is in part MT1-MMP dependent”. J
Hand Surg Am 34:1282–90.

Jay, G. D., Britt, D. E., Cha, C. J. (2000) “Lubricin is a product of megakaryocyte
stimulating factor gene expression by human synovial fibroblasts”. J Rheumatol 27:594–
600.

Jiang, A., Lehti, K., Wang, X., Weiss, S. J., Keski-Oja, J., Pei, D. (2001) “Regulation of
membrane-type matrix metalloproteinase 1 activity by dynamin-mediated endocytosis”.
Proc Natl Acad Sci USA 98:13693–8.

Jiang, W. G., Davies, G., Martin, T. A., Parr, C., Watkins, G., Mason, M. D., Mansel,
R. E. (2006) “Expression of membrane type-1 matrix metalloproteinase, MT1-MMP in
human breast cancer and its impact on invasiveness of breast cancer cells”. International
Journal of Molecular Medicine 17:583–90.

Jin, G., Zhang, F., Chan, K. M., Wong, H. L. X., Liu, B., Cheah, K. S. E., Liu, X.,
Mauch, C., Liu, D., Zhou, Z. (2011) “MT1-MMP cleaves Dll1 to negatively regulate
Notch signalling to maintain normal B-cell development”. EMBO J 30:2281–93.

207



Bibliography

Johnson, J. D., Edman, J. C., Rutter, W. J. (1993) “A receptor tyrosine kinase found in
breast carcinoma cells has an extracellular discoidin I-like domain”. Proc Natl Acad Sci
USA 90:5677–81.

Kajita, M., Itoh, Y., Chiba, T., Mori, H., Okada, A., Kinoh, H., Seiki, M. (2001)
“Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migra-
tion”. J Cell Biol 153:893–904.

Kamat, A. A., Fletcher, M., Gruman, L. M., Mueller, P., Lopez, A., Landen, C. N., Han,
L., Gershenson, D. M., Sood, A. K. (2006) “The clinical relevance of stromal matrix
metalloproteinase expression in ovarian cancer”. Clin Cancer Res 12:1707–14.

Kanazawa, A., Oshima, T., Yoshihara, K., Tamura, S., Yamada, T., Inagaki, D., Sato,
T., Yamamoto, N., Shiozawa, M., Morinaga, S., Akaike, M., Kunisaki, C., Tanaka, K.,
Masuda, M., Imada, T. (2010) “Relation of MT1-MMP gene expression to outcomes in
colorectal cancer”. J Surg Oncol 102:571–5.

Kano, K., de Evsikova, C. M., Young, J., Wnek, C., Maddatu, T. P., Nishina, P. M., Nag-
gert, J. K. (2008) “A novel dwarfism with gonadal dysfunction due to loss-of-function
allele of the collagen receptor gene, Ddr2, in the mouse”. Mol Endocrinol 22:1866–80.

Karmakar, S., Kay, J., Gravallese, E. M. (2010) “Bone damage in rheumatoid arthritis:
mechanistic insights and approaches to prevention”. Rheum Dis Clin North Am 36:385–
404.

Karsdal, M. A., Larsen, L., Engsig, M. T., Lou, H., Ferreras, M., Lochter, A., Delaissé,
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almost exclusively in damaged joints without swelling”. Ann Rheum Dis 69:851–5.

Lundy, S. K., Sarkar, S., Tesmer, L. A., Fox, D. A. (2007) “Cells of the synovium in
rheumatoid arthritis. T lymphocytes”. Arthritis Res Ther 9:202.

Luo, B.-H., Carman, C. V., Springer, T. A. (2007) “Structural basis of integrin regulation
and signaling”. Annu Rev Immunol 25:619–47.
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Höök, M. (2000) “Multiple binding sites in collagen type I for the integrins alpha1beta1
and alpha2beta1”. J Biol Chem 275:38981–9.

Yamanaka, H., Makino, K., Takizawa, M., Nakamura, H., Fujimoto, N., Moriya, H.,
Nemori, R., Sato, H., Seiki, M., Okada, Y. (2000) “Expression and tissue localization of
membrane-types 1, 2, and 3 matrix metalloproteinases in rheumatoid synovium”. Lab
Invest 80:677–87.

Yamanishi, Y., Boyle, D. L., Clark, M., Maki, R. A., Tortorella, M. D., Arner, E. C.,
Firestein, G. S. (2002) “Expression and regulation of aggrecanase in arthritis: the role
of TGF-beta”. J Immunol 168:1405–12.

Yamanishi, Y., Boyle, D. L., Green, D. R., Keystone, E. C., Connor, A., Zollman, S.,
Firestein, G. S. (2005) “p53 tumor suppressor gene mutations in fibroblast-like syn-
oviocytes from erosion synovium and non-erosion synovium in rheumatoid arthritis”.
Arthritis Res Ther 7:R12–8.

Yan, C., Boyd, D. D. (2007) “Regulation of matrix metalloproteinase gene expression”.
J. Cell. Physiol. 211:19–26.

Yana, I., Sagara, H., Takaki, S., Takatsu, K., Nakamura, K., Nakao, K., Katsuki, M.,
ichiro Taniguchi, S., Aoki, T., Sato, H., Weiss, S. J., Seiki, M. (2007) “Crosstalk be-
tween neovessels and mural cells directs the site-specific expression of MT1-MMP to
endothelial tip cells”. J Cell Sci 120:1607–14.

Yana, I., Weiss, S. J. (2000) “Regulation of membrane type-1 matrix metalloproteinase
activation by proprotein convertases”. Mol Biol Cell 11:2387–401.

Yang, K., Kim, J. H., Kim, H. J., Park, I.-S., Kim, I. Y., Yang, B.-S. (2005) “Tyrosine
740 phosphorylation of discoidin domain receptor 2 by Src stimulates intramolecular
autophosphorylation and Shc signaling complex formation”. J Biol Chem 280:39058–
66.

Yoshihara, Y., Nakamura, H., Obata, K., Yamada, H., Hayakawa, T., Fujikawa, K., Okada,
Y. (2000) “Matrix metalloproteinases and tissue inhibitors of metalloproteinases in

223



Bibliography

synovial fluids from patients with rheumatoid arthritis or osteoarthritis”. Ann Rheum
Dis 59:455–61.

Yu, J., Zhao, H., Zhang, Y., Liu, Y.-C., Yao, L., Li, X., Su, J. (2014) “Ubiquitin ligase Cbl-
b acts as a negative regulator in discoidin domain receptor 2 signaling via modulation
of its stability”. FEBS Lett:–.

Yun, S., Dardik, A., Haga, M., Yamashita, A., Yamaguchi, S., Koh, Y., Madri, J. A.,
Sumpio, B. E. (2002) “Transcription factor Sp1 phosphorylation induced by shear stress
inhibits membrane type 1-matrix metalloproteinase expression in endothelium”. J Biol
Chem 277:34808–14.

Zhang, H., Qi, M., Li, S., Qi, T., Mei, H., Huang, K., Zheng, L., Tong, Q. (2012)
“microRNA-9 targets matrix metalloproteinase 14 to inhibit invasion, metastasis, and
angiogenesis of neuroblastoma cells”. Mol Cancer Ther 11:1454–66.

Zhang, K., Corsa, C. A., Ponik, S. M., Prior, J. L., Piwnica-Worms, D., Eliceiri, K. W.,
Keely, P. J., Longmore, G. D. (2013) “The collagen receptor discoidin domain receptor
2 stabilizes SNAIL1 to facilitate breast cancer metastasis”. Nat Cell Biol 15:677–87.

Zhang, W., Ding, T., Zhang, J., Su, J., Li, F., Liu, X., Ma, W., Yao, L. (2006a) “Ex-
pression of discoidin domain receptor 2 (DDR2) extracellular domain in pichia pastoris
and functional analysis in synovial fibroblasts and NIT3T3 cells”. Mol Cell Biochem
290:43–53.

Zhang, W., Matrisian, L. M., Holmbeck, K., Vick, C. C., Rosenthal, E. L. (2006b)
“Fibroblast-derived MT1-MMP promotes tumor progression in vitro and in vivo”. BMC
Cancer 6:52.

Zhang, W.-M., Kapyla, J., Puranen, J. S., Knight, C. G., Tiger, C.-F., Pentikainen, O. T.,
Johnson, M. S., Farndale, R. W., Heino, J., Gullberg, D. (2003) “alpha 11beta 1 integrin
recognizes the GFOGER sequence in interstitial collagens”. J Biol Chem 278:7270–7.

Zhou, Z., Apte, S. S., Soininen, R., Cao, R., Baaklini, G. Y., Rauser, R. W., Wang, J.,
Cao, Y., Tryggvason, K. (2000) “Impaired endochondral ossification and angiogenesis
in mice deficient in membrane-type matrix metalloproteinase I”. Proc Natl Acad Sci U
S A 97:4052–4057.

Zigrino, P., Ayachi, O., Schild, A., Kaltenberg, J., Zamek, J., Nischt, R., Koch, M.,
Mauch, C. (2012) “Loss of epidermal MMP-14 expression interferes with angiogenesis
but not with re-epithelialization”. Eur J Cell Biol 91:748–56.

Zigrino, P., Drescher, C., Mauch, C. (2001) “Collagen-induced proMMP-2 activation by
MT1-MMP in human dermal fibroblasts and the possible role of alpha2beta1 integrins”.
Eur J Cell Biol 80:68–77.

224


	List of Figures
	List of Tables
	Introduction
	Rheumatoid arthritis
	Clinical features
	Pathogenesis of RA and available therapies
	Characterisation of joint damage in RA
	Cartilage degradation in RA is mediated by metalloproteinases

	Membrane type 1 matrix metalloproteinase
	Domain structure of MT1-MMP
	MT1-MMP function
	Transcriptional regulation
	Post-translational modifications
	Substrate specificity
	ProMMP-2 activation by MT1-MMP
	Autocatalytic processing
	MT1-MMP inhibitors
	Trafficking and cell surface localisation of MT1-MMP
	Dimerisation as a regulatory mechanism
	Role of MT1-MMP in cellular invasion
	Functional activation of MT1-MMP by collagen

	Collagen as a signalling molecule
	Collagen structure
	Assembly of collagen fibrils
	Collagen function
	Integrins
	Discoidin domain receptors

	Cartilage signalling in synovial cell invasion
	Hypothesis and aims of the thesis

	Materials and Methods
	Reagents
	Antibodies
	Cell culture reagents
	Molecular biology reagents
	Molecular cloning reagents
	Immunocytochemistry reagents
	Plasmid DNA constructs

	Culture of mammalian cells
	Cell culture conditions
	Cryopreservation of cells
	Transfection of cells with siRNAs
	Transfection of mammalian cells with plasmid DNA
	Establishment of stable cell lines

	Molecular cloning techniques
	Solutions used for molecular cloning
	Conditions for bacterial culture
	Preparation of bacteria glycerol stocks
	Alkaline lysis for isolation of plasmid DNA 
	Medium scale isolation of plasmid DNA with silica-membrane columns
	Measurement of DNA concentration
	Restriction enzyme digestion of DNA
	Agarose gel electrophoresis
	Extraction of DNA fragments from agarose gels
	Ligation of DNA fragments
	Transformation of bacteria by electroporation

	Molecular biology techniques
	RNA extraction
	Synthesis of cDNA
	Real-time quantitative PCR

	SDS-PAGE
	Solutions used for SDS-PAGE

	Western Blotting
	Solutions used for Western Blotting

	Zymography of metalloproteinases
	General solutions
	Gelatin zymography
	Casein zymography

	Gelatin film degradation assay
	Preparation of Alexa Fluor 488-labelled gelatin
	Coating glass coverslips with Alexa488-gelatin
	Gelatin film degradation assay setup

	Collagen film degradation assay
	Alexa488-collagen degradation (Collagen488)
	Analysis of cell invasion in 3D collagen
	Microcarrier beads invasion assay
	Transwell invasion assay

	Cloning, expression and purification of DDR-Fc tagged proteins
	PCR amplification of ECDs
	Protein purification

	Solid phase binding assay
	Statistical analysis

	Dissection of collagen signalling in proMMP-2  activation
	Introduction
	Results
	Collagen induces proMMP-2 activation in RA synovial fibroblasts
	ProMMP-2 activation in RASF is MT1-MMP dependent
	Analysis of collagens inducing proMMP-2 activation
	Collagen increases expression of MT1-MMP gene
	Detection of active MMP-2 in RASF treated with collagen type II
	Effect of signalling molecule inhibitors on collagen-induced proMMP-2 activation
	Effect of cytokines on MT1-MMP activity
	Anti-integrin 1 antibodies do not affect proMMP-2 activation
	Activation of proMMP-2 is inhibited by DDR2 knockdown
	DDR2 knockdown prevents collagen-induced MT1-MMP expression
	Effect of triple helical peptides on fibroblasts

	Discussion

	Role of collagen receptors in collagen degradation and invasion
	Introduction
	Results
	Analysis of gelatin film degradation by fibroblasts
	DDR2 mediates collagen-induced gelatin film degradation in  fibroblasts
	Collagen film degradation is inhibited by DDR2 knockdown
	Collagen488 degradation assay
	DDR2 knockdown partially inhibits collagen invasion in transwell  invasion assay
	DDR2 is not required for 3D collagen migration in microcarrier bead invasion assay
	Dasatinib inhibits RASF invasion and motility

	Discussion

	Analysis of DDR2 binding to collagen
	Introduction
	Results
	Differential activation of fibroblasts by PureCol and CellMatrix
	Analysis of collagen-induced DDR2 phosphorylation in HEK293 cells
	Characterisation of DDR2 ectodomain shedding
	Collagen induces changes in DDR2 levels in fibroblasts
	Expression and purification of recombinant DDR-Fc proteins
	Solid phase binding assay to detect DDR-Fc binding to immobilised collagen.
	Analysis of DDR-Fc binding to collagen gel
	Role of DDR2 in cartilage-induced proMMP-2 activation

	Discussion

	General discussion and future work
	Discussion
	DDR2 as a receptor of damaged ECM

	Future work
	Therapeutic implications
	Conclusion

	Bibliography

