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Abstract– This paper addresses a spatiotemporal pattern recognition problem. The main pur-

pose of this study is to find a right representation and matching of action video volumes for cate-

gorization. A novel method is proposed to measure video-to-video volume similarity by extending

Canonical Correlation Analysis (CCA), a principled tool to inspect linear relations between two

sets of vectors, to that of two multiway data arrays (or tensors). The proposed method analyzes

video volumes as inputs avoiding the difficult problem of explicit motion estimation required in tra-

ditional methods and provides a way of spatiotemporal pattern matching that is robust to intra-class

variations of actions. The proposed matching is demonstrated for action classification by a simple

Nearest Neighbor classifier. We, moreover, propose an automatic action detection method which

performs 3D-window-search over an input video with action exemplars. The search is speeded-up

by dynamic learning of subspaces in the proposed CCA. Experiments on a public action data set

(KTH) and a self-recorded hand gesture data showed that the proposed method is significantly

better than various state-of-the-art methods with respect to accuracy. Our method has low time-

complexity and does not require any major tuning parameters.

Keywords– Action categorization, gesture recognition, canonical correlation analysis, tensor,

action detection, incremental subspace learning, spatiotemporal pattern classification.
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1 Introduction

The automatic classification and localization of human actions/gestures is useful for various ap-

plications such as video surveillance, human-computer interfaces and object-level video summa-

rization and retrieval. Broadly, relevant studies have either exploited explicit motion representa-

tion such as tracked trajectories of body parts [39, 9, 10, 3, 8] or directly analyzed space-time

volumes [1, 7, 5]. Methods using tracked trajectories interpret actions purely by motion informa-

tion and have tried to explicitly tackle main sources of variation in human motion, e.g. moving

cameras, view point and execution rate changes. However, obtaining the trajectory of body parts

requires much human supervision for initialization. Recognition accuracy of this method is highly

dependent on tracking in an unconstrained environment which is a currently challenging topic of

computer vision research. Active/passive markers on human bodies have been often used to reduce

the complexity of the problem. A major problem with methods directly analyzing space-time vol-

umes, on the other hand, is to find an efficient representation and matching of action videos, while

at the same time avoiding the difficult problem of explicit motion representation. These meth-

ods, so called view-/or exemplar-based methods, make partial use of both spatial and temporal

information delivering high recognition accuracy for a limited view. The methods in this cate-

gory [1, 7, 5] are more suited to simple motions. Action is often discriminated from activity [12]:

action is an individual atomic unit of activity and activity is a series of actions in a pre-defined

temporal order [44]. Whereas the trajectory-based approach is better suited to activity recognition

by interpreting temporal transition, volume-analysis methods are better suited to action recogni-

tion. This paper focuses on action (cf. activity) recognition methods that interpret video volumes

without the use of trajectory estimation.

A number of recent works have analyzed human actions directly in space-time volumes. Video

volume matching has been performed by utilizing dense optical flows [7, 6]. Optical flow esti-

mation for dense, unconstrained and non-rigid motion is, however, noisy and unreliable due to

problems caused by smooth surfaces, self-occlusions and appearance changes. The comparison

of two video volumes has been achieved either by matching templates called motion-history im-

ages [13, 18] or by measuring correlation of gradients of local space-time patches [1]. Motion-
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history images as a holistic (cf. local) representation tend to be sensitive to changes in background

and geometrical variation of actions. The method of local space-time patches [1] requires the man-

ual setting of positions and scales of the local patches, whose optimal settings depend on the data.

Silhouette images have been used [2, 4]. Feature vectors are extracted from silhouette images of

action sequences and Poisson equation, and Euclidian distance of the feature vectors is served as

similarity of action sequences in [2]. As noted in [2], silhouettes are not always available and

insufficient to represent complex spatial information.

One popular approach toward action recognition is based on spatiotemporal bag-of-words [5,

16, 15, 14]. Space-time interest points are detected in video volumes and local space-time vari-

ations around interest points are described by histograms. Histogram representations are then

combined with either Support Vector Machine (SVM) [16] or a probabilistic generative model [5].

Although they have yielded good accuracy mainly due to the high discrimination power of individ-

ual local descriptors, they exhibit ambiguity by ignoring global space-time shape information. In

spite of recent attempts [20, 19] to incorporate global information of action classes, there remains

the difficulty of setting parameters of the space-time interest points, as again these are application

or data dependent.

Traditional classifiers may be applied to either vector or tensor representation of video vol-

umes for action recognition tasks. Once a video volume is converted to a finite dimensional vector,

applying classifiers, e.g. Support Vector Machine (SVM) or NN classifier, is straightforward.

Concurrent studies have been carried out to classify tensors as an original form of imagery data

without requiring vectorization. Ensembles of multilinear classifiers have been developed for the

tensor data obtained from a color image [25] and the discriminant analysis method for the ten-

sor data from a gray image using filter banks [26]. Corpora of motion capture data (obtained by

infrared light markers) of multiple people and actions are analyzed as tensors for human motion

synthesis and recognition [41]. There are, however, few previous works that analyze video volume

tensors for action classification, except where Support Vector Machine for tensor data has been

proposed [43]. Both tensor classifiers [43] and traditional vector classifiers (afore-mentioned) di-

rectly exploit pixel statistics of holistic video volumes without useful-feature extraction. They are,

therefore, sensitive to spatiotemporal pattern variations of actions thus exhibiting poor generaliza-
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tion on novel testing data under small sample size (See Section 6.1 for accuracy comparison of

those methods).

Canonical Correlation Analysis. We have investigated a more principled and effective way of

video volume matching. Canonical Correlation Analysis (CCA), which has been, since Hotelling

(1936), a standard tool for inspecting linear relations between two random variables (or two sets

of vectors) [29], has more recently received increasing attention in computer vision literature (e.g.

[45, 31, 32, 23, 21]). CCA has been applied to human gait recognition [3] where trajectories of

joint angles of an articulated body are modelled by second-order stationary stochastic processes

and CCA is deployed for comparing the models. As noted above, extraction of trajectories is diffi-

cult and the model is limited to repetitive motions. An image set is collected either from a video or

sparse observations and is represented by a linear subspace (or hyper-plane) [31]. CCA measures

angles between two subspaces (cosine of the angles are called canonical correlations) for similar-

ity between two image sets. A probabilistic interpretation of CCA [23] yields a model that reveals

how well two input variables (i.e. two sets of vectors) are represented by a common source (latent)

variable. Computation of canonical correlations has been extended into a nonlinear feature space

by a positive definite kernel function [32]. In our earlier work [21], we proposed a CCA-based

image-set classification with a discriminative transformation and successfully demonstrated this

for various image-set based object recognition tasks. Allowing data interpolation of image sets

in CCA facilitates recognition of high-dimensional imagery data under small sample cases (See

Section 2.1 and 4 for details on CCA). Despite the success of CCA for image set matching (i.e.

a collection of images without any temporal coherence), CCA is not sufficient to represent and

match action video volumes in which both temporal and spatial information are important.

Proposed study.In this study (conference version [22]), we propose an action recognition method

by extending CCA of two sets of vectors into that of two video volume tensors. The method is a

pair-wise analysis of aligned and holistic action volumes. The proposed method is first applied to

classification of aligned actions (See Figure 1 for examples of actions in spatiotemporal bounding

boxes) and then to action detection in input videos. The advantages and disadvantages of the
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Hand
clapping
(hclp)

Hand
waving
(hwav)

Walking
(walk)

Figure 1: Example actions bounded in spatiotemporal domain.The bounding boxes indicate
the spatial alignment and the superimposed images of the initial, intermediate and the last frames
of each action show the temporal alignment. The alignment can be automatically done by the
proposed detection method.

ADVANTAGES DISADVANTAGES
Directly operates with video volumes,
requiring neither heuristics to set up important
parameters like local methods or assumptions
on input such as trajectories or silhouettes.

As a so called spatiotemporal appearance
based method, makes use of both spatial and
temporal information for maximum
discrimination of action classes.

Allows data interpolation in matching
facilitating recognition of high-dimensional
data which typically undergoes significant
changes (for further discussion see Section 4).

Alignment process in the method requires
prior camera motion compensation for
moving cameras.

Can not handle large view point changes
from those of exemplar actions.

Suited to simple motions that have
approximate linear time-warping. To deal
with the linear time-warping, the frames
between the defined initial and last posture
of actions are uniformly sampled for a fixed
number in the temporal alignment.

Table 1: Advantages and disadvantages of the proposed method.

proposed method over existing works are summarized in Table 1.

The proposed method focuses on the view points seen from training examples as in previous

studies [1, 7, 5]. In spite of a limited view scope, there remain a number of other variations to

consider such as changes in illumination, actors, backgrounds (indoor and outdoor) and clothes as

well as moderate changes in either view or camera movement, as contained in the experimental

data sets (See Figure 6,10 and 14). Rather than explicitly modelling all of the variations, we

take an exemplar-based approach that exhibits reasonable generalization over new data changes.

Regarding complex motions that involve nonlinear time-warping, these may be tackled in so called

divide and conquer manner by a method that works well with simpler motions. Importantly, many

existing works that make strong assumptions on inputs are not readily applicable to real-world
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problems. Our experiments also do not favour strong assumptions on inputs. The methods of these

work are, moreover, based mainly on motion information, ignoring the spatial domain of video

data, which provides strong evidence of action.

Harshman has also presented a concept of CCA of multiway data arrays in [30]. Although

it was carried out independently to our work, it has a common concept which supports the ideas

presented in this paper. Our work not only comprises our new Tensor CCA (TCCA) method but

also describes new applications of TCCA to action classification and detection.

The remainder of this paper is arranged as follows: Canonical Correlation Analysis and multi-

linear algebra are briefly reviewed in Section 2. The extension of CCA to video volume tensors and

its solution are given in Section 3. We perform action classification in the Nearest Neighbor sense

with the canonical correlation features, explained in Section 4. Section 5 is devoted to the action

detection method. The experimental results and conclusions are given in Section 6 and Section 7

respectively.

2 Background

2.1 Review on Canonical Correlation Analysis

Given two random vectors x ∈ R
m1 ,y ∈ R

m2 , a pair of transformations u,v, called canonical

transformations, is found to maximize the correlation of x′ = uTx and y′ = vTy as

ρ = max
u,v

Ê[x′y′]√
Ê[x′2]Ê[y′2]

=
uTCxyv√

uTCxxuvTCyyv
(1)

where Ê[f ] denotes empirical expectation of function f and ρ is called the canonical correlation.

Multiple canonical correlations ρ1, ..., ρd where d ≤ min(m1,m2) are defined by the next pairs

of u,v which are orthogonal to the previous ones. Canonical correlations are affine-invariant to

inputs, i.e. Ax+b,Cy+d for arbitrary (non-singular) A ∈ R
m1×m1 ,b ∈ R

m1 ,C ∈ R
m2×m2 ,d ∈

R
m2 . The proof is straightforward from (1) as Cxy,Cxx,Cyy are covariance matrices and are

multiplied by canonical transformations u,v.
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Given two vector sets as matrices X ∈ R
N×m1 and Y ∈ R

N×m2 , Goloub’s SVD solution [34]

is as follows. If P1,P2 ∈ R
N×d denote two eigenvector matrices of X,Y respectively, where

N � m1,m2 ≥ d, canonical correlations are obtained as singular values of (P1)
TP2 by

(P1)
TP2 = Q1ΛQT

2 , Λ = diag(ρ1, ...ρd). (2)

where Q1,Q2 are arbitrary rotating matrices s.t. Q1Q
T
1 = Q2Q

T
2 = Id. As d is typically a small

number, the complexity of SVD, O(d3), is very low.

2.2 Multilinear algebra and notations

Following the notations in [24, 28], a video volume is a third-order tensor which is denoted by A =

(A)ijk ∈ R
I×J×K . The inner product of any two tensors is defined as 〈A,B〉 =

∑
i,j,k(A)ijk(B)ijk.

The mode-j vectors are the column vectors of matrix A(j) ∈ R
J×(IK) and the j-mode product of a

tensor A by a matrix U ∈ R
N×J is

(B)ink ∈ R
I×N×K = (A×j U)ink = Σj(A)ijkunj (3)

The j-mode product in terms of j-mode vector matrices is B(j) = UA(j).

3 Tensor canonical correlation analysis

We generalize the canonical correlation analysis of two vector sets into that of two high-order

tensors. Previous studies [31, 32, 21] have made comparison of vectorized image sets in a standard

way of CCA. If a video volume is simply taken as a set of vectorized images for input of CCA,

temporal information of action videos would be lost as CCA is invariant to ordering of image-

vectors. An extension is proposed for considering both spatial and temporal information for action

classification.
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Figure 2: Tensor representation of standard CCA.A pair of canonical transformations, u and
v, are applied to the two data matrices X and Y to yield maximally correlated vectors (called
canonical vectors).

3.1 Tensor representation of standard CCA

Standard CCA is first represented by tensor notations. Given two vector sets as matrices X ∈
R

N×m1 , Y ∈ R
N×m2 (N � m1,m2), CCA is written as

ρ = max
u,v

x′Ty′, where x′ = Xu,y′ = Yv. (4)

Note that the canonical transformations u,v are, hereinafter, defined to be s.t. XU = P1Q1,YV =

P2Q2, where U,V have u,v in their columns respectively and P,Q are eigenvector and rotating

matrices defined in (2) respectively. If we take X,Y as 2nd-order tensors (X )ij, (Y)ij , the standard

CCA is then represented as

ρ = max
u,v

〈X ×j uT ,Y ×j vT 〉. (5)

CCA has one shared mode (index i) and mode products by canonical transformations (index j),

which is illustrated in Figure 2. The two data matrices, for which P1,P2 are computed, can be

written w.r.t. the j-mode vector matrices s.t. X = XT
(j),Y = YT

(j). The j-mode products X ×j UT ,

Y ×j VT in terms of j-mode vector matrices are UTX(j) = (P1Q1)
T , VTY(j) = (P2Q2)

T

respectively. The canonical transformations are obtained by U = (X(j)X
T
(j))

−1X(j)P1Q1, V =

(Y(j)Y
T
(j))

−1Y(j)P2Q2. Note that there is no loss of generality in applying the formulation (5) to

high-order tensors.
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3.2 Joint/Single-shared-mode TCCA

A single channel video volume is represented as a third-order tensor denoted by (A)ijk that has

the three axes of space (X and Y) and time (T). We assume that actions are spatiotemporally

bounded as shown in Figure 1 and every bounded video volume is uniformly resized to be R
I×J×K

(Note that this preserves unique spatiotemporal patterns of video volumes). Tensor data, therefore,

have all three indices (i, j, k) in common. Two different architectures of Tensor CCA (TCCA) are

proposed according to the number of shared modes.

Joint-shared-mode TCCA shares any two axes (i.e. a plane) and applies canonical transfor-

mations to the remaining single axis of tensor data. It involves three pairs of canonical transforma-

tions for given two tensors X ,Y ∈ R
I×J×K as

ρ = max
Φ

〈X ′,Y ′〉, where (6)

(X ′)ijk = (X ×i u
T
i )jk · (X ×j uT

j )ik · (X ×k uT
k )ij

(Y ′)ijk = (Y ×i v
T
i )jk · (Y ×j vT

j )ik · (Y ×k vT
k )ij

and Φ = {(ui,vi), (uj,vj), (uk,vk)}. The resulting two tensors X ′,Y ′ are called canonical ten-

sors. TCCA is seen as aggregation of three different canonical correlation analyzes, each of which

is conceptually for two sets of vectorized IJ planes (involving k-mode product), two sets of IK

(j-mode product) or JK planes (i-mode product). See Figure 3 (a). Note that the CCA in previous

studies [31, 32, 21] is equivalent to that for two sets of vectorized IJ planes (i.e. images).

Single-shared-mode TCCA takes any single axis in common (i.e. a scan line) and applies

canonical transformations to remaining two axes of tensor data as

ρ = max
Φ

〈X ′,Y ′〉, where (7)

(X ′)ijk = (X ×i u
T
i ×j uT

j )k · (X ×i u
T
i ×k uT

k )j · (X ×j uT
j ×k uT

k )i

(Y ′)ijk = (Y ×i v
T
i ×j vT

j )k · (Y ×i v
T
i ×k vT

k )j · (Y ×j vT
j ×k vT

k )i
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(a) Joint-shared-mode

(b) Single-shared-mode

Figure 3: Representation of Tensor CCA.(a) Each canonical transformation, ui,uj or uk applied
to the tensor data X yields a canonical plane. The three canonical planes make up the canonical
tensor X ′. Likewise canonical transformations vi,vj,vk are applied to Y for the canonical tensor
Y ′. (b) Any two canonical transformations (e.g. ui,uk) applied to the tensor X yields a canonical
vector. Other two canonical vectors are similarly obtained and the canonical tensor X ′ is obtained
by outer products of the three canonical vectors. The same process is done for Y .
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and Φ = {(ui,vi), (uj,vj), (uk,vk)}. Note that the canonical tensors are given by outer products

of the three vectors. Similarly, it is aggregation of three different canonical correlation analyzes,

each of which can be conceptually for sets of I (involving j,k-mode product), J (i,k-mode product)

or K (i,j-mode product) scan lines. See Figure 3 (b).

Multiple canonical correlations ρ1, ..., ρd are defined for both joint-shared-mode and single-

shared-mode TCCA, analogously to standard CCA. Compared with the previous study [30], Harsh-

man only considered a single-shared-mode, while we have proposed a general concept of multiple-

shared-modes.

3.3 Alternating solution

Intuitively, the proposed TCCA process in (6) and (7) involves three sub-analyzes, each of which

explains canonical correlations in different data domains. We, therefore, propose a solution that

performs a sub-analysis independently of the others. Each independent process is associated with

the respective canonical transformations and yields canonical correlations as inner products of the

respective canonical tensors. This section is devoted to explain the solution for the I single-shared-

mode for example. This involves two sets of canonical transformations {(Uj,Vj), (Uk,Vk)}
which contain {(uj,vj ∈ R

J), (uk,vk ∈ R
K)} in their columns, yielding the d canonical correla-

tions (ρ1, ...ρd) where d ≤ min(K, J) for given two data tensors, X ,Y ∈ R
I×J×K as

max
Uj ,Vj ,Uk,Vk

〈X ×j UT
j ×k UT

k , Y ×j VT
j ×k VT

k 〉. (8)

That is, canonical correlations are defined by inner product of two resulting canonical tensors. The

solution is obtained by performing the SVD method (See (5)) alternatively until convergence, as

detailed in Table 2.

The J and K single-shared-mode TCCA are performed in the same alternating fashion, while

the IJ, IK, JK joint-shared-mode TCCA (e.g. IJ joint-shared-mode TCCA corresponds to the

process involving k-mode product in (6)) by performing the SVD method (5) a single time without

iterations.
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Algorithm 1. Alternating solution for I single-shared-mode TCCA

Input: Two data tensors X ,Y ∈ R
I×J×K Output: canonical correlations

ρ1, ...ρd

1.Given a random guess for Uj ,Vj , X̃ ← X ×j UT
j , Ỹ ← Y ×j VT

j .
2. Do iterate the following until convergence:
3.Find U∗

k,V
∗
k that maximize 〈X̃ ×k UT

k , Ỹ ×k VT
k 〉 by the SVD method (5).

Let X̃ ← X̃ ×k U∗T
k , Ỹ ← Ỹ ×k V∗T

k ,

4.Find U∗
j ,V

∗
j that maximize 〈X̃ ×j UT

j , Ỹ ×j VT
j 〉 by the SVD method (5).

Let X̃ ← X̃ ×j U∗T
j , Ỹ ← Ỹ ×j V∗T

j ,

5.End
6.Obtain ρ1, ..., ρd (d ≤ min(K, J)) from the latest SVD solution.

Table 2: Proposed alternating algorithm for tensor canonical correlations.

4 Tensor CCA for action classification

Multiple canonical correlations computed in all sub-processes yield a total number of 2 × 3 × d

canonical correlation features (Each joint-shared-mode or single-shared-mode has 3 different CCA

processes and each CCA process yields d features). In general, each feature carries a different

amount of discriminative information for action classification. We propose the discriminative fea-

ture selection method and Nearest Neighbor (NN) classification, where the sum of selected canon-

ical correlations serves as a similarity measure between action video volumes.

4.1 TCCA features

Explaining data similarity in different domains. Intuitively, canonical correlation features ex-

plain data similarity in different data subspaces and dimensions. In Figure 4 (left), we have vi-

sualized the first few canonical tensors computed by the joint-shared-mode TCCA from the two

hand-waving sequences. Canonical tensors of IJ , IK, JK joint-shared-mode are the XY , XT

and Y T planes of the cubes respectively. The canonical tensors (XY planes) of the IJ joint-

shared-mode show the common spatial components of the two hand-waving videos. Note that the

canonical transformations applied to the K axis (temporal axis) in the IJ joint-shared-mode make

the mode independent of temporal information, i.e. temporal ordering of video frames, whereas all

other modes remain dependent. Similarly, the canonical tensors of the IK, JK joint-shared-mode

reveal the common components of the two videos in the joint space-time domain. The two modes
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are independent of J and I axis respectively. Likewise the single-shared-mode yields canonical

correlations of other data domains.

Linear data interpolation. Canonical correlations are of linear combinations (by canonical trans-

formations) of data vectors of two respective data sets. That is, CCA does interpolation of vectors

to find maximum correlations and additional data generated by the interpolation facilitates gener-

alization on new data and recognition of high-dimensional imagery data that typically undergoes

significant variations. The invariance afforded by the interpolation is equivalent to the mathemati-

cal affine-invariance of CCA in Section 2.1.

In Figure 4 (left), we can see that the canonical tensors in each pair are very much alike. The

two input sequences belong to the same action class, hand waving, but have different backgrounds,

lighting conditions. They are also posed by different persons wearing different clothes. Despite all

the differences, the canonical tensors, however, capture mutual information of the two inputs yield-

ing high correlations. The first pair of canonical tensors corresponds to the most similar direction

of variation of the two data sets and the next pairs represent other directions of similar variations.

The canonical tensors corresponding to XY planes emphasizes the movements of arms, which de-

fine the hand waving class, as a common source of information. All other canonical tensors (XT,

YT planes) are also pairwise similar. On the other hand, the canonical tensors are significantly

different from the paired ones in Figure 4 (right) where the two input sequences are from two dif-

ferent action classes (one is hand waving and the other walking). Although these sequences were

captured under the same environment and posed by the same person, TCCA returns least correla-

tions.

CCA as subspace angles.The proposed method embodies CCA. The geometrical interpretation

of CCA, which is equivalent to the standard formulation (1), gives another intuitive explanation.

Canonical correlations, which are cosines of principal angles 0 ≤ θ1 ≤ . . . ≤ θd ≤ (π/2) between

any two d-dimensional linear subspaces L1 and L2, are uniquely defined as:

ρi = cos θi = max
ai∈L1

max
bi∈L2

aT
i bi (9)
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Figure 4: Examples of pairwise canonical tensors.This visualizes the first few canonical tensors
computed for the pair of input sequences of (left) the same action class and (right) the two different
action classes. Canonical tensors of IJ , IK, JK joint-shared-mode are the XY , XT , Y T planes
of the cubes respectively. (left) Note the canonical tensors in each pair are very much alike although
the two hand-waving sequences are captured under different environmental conditions and posed
by different persons wearing different clothes. (right) On the other hand, the canonical tensors are
much dissimilar despite the sequences of the same person in the same environment.

subject to aT
i ai = bT

i bi = 1, aT
i aj = bT

i bj = 0, i �= j. CCA as subspace-based matching (mea-

suring angles between two subspaces) effectively places uniform prior on subspaces and yields

invariance to pattern variations subject to the subspaces. The subspace angle is intuitively a nat-

ural extension of prior subspace-based recognition methods. When a single vector is given as an

input, there is a standard way to classify it by subspaces: we measure the distances of the vector

to the subspaces and pick the nearest one. As we now need to classify a subspace instead of a

single vector, the distance is no longer valid but angles between subspaces become a reasonable

measurement.

4.2 Joint vs Single-shared-mode

Generally the single-shared-mode is more flexible and preserves less original data structures in

matching than the joint-shared-mode. The single-shared-mode involves two pairs of canonical

transformations whereas the joint-shared-mode has a single pair. Any ideal feature for clas-

sification should balance the flexibility (for minimizing intra-class variation) against the data-
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preserving power (for maximizing inter-class variation). We have observed from our experiments

that the joint-shared-mode TCCA delivers more discriminative features than the single-shared-

mode TCCA. Note again that the CCA of image sets [21] is identical to the IJ joint-shared-mode

TCCA method. The proposed single-shared-mode TCCA is, however, important: it consolidates

the unified TCCA method and improves accuracy of the joint-shared-mode. Superiority of one

type to the other may be application-dependent.

4.3 Feature selection

A discriminative boosting method is proposed to select useful tensor canonical correlation features.

First, the intra-class and inter-class feature sets (i.e. canonical correlations ρi, i = 1, ..., 6 × d,

computed from any pair of videos) are generated from the training data comprising of several

class examples. We use each tensor CCA feature to a build simple weak classifier M(ρi) =

sign [ρi − C] and aggregate the weak learners using the AdaBoost algorithm [35] (C is a classifier

threshold and optimized in the AdaBoost). In an iterative update scheme, classifier performance is

optimized on the training data to yield the final strong classifier by

M(ρ) = sign

[
M∑
i=1

wL(i)M(ρL(i)) − 1

2

M∑
i=1

wL(i)

]
(10)

where w contains the weights and L the list of selected features. Nearest Neighbor (NN) classifi-

cation by sum of selected canonical correlations is performed to categorize a new test video.

5 Action detection

The proposed TCCA is time-efficient provided that actions are aligned in space-time domain. How-

ever, searching non-aligned actions by TCCA in three-dimensional (X,Y, and T) input space is still

computationally demanding because every possible position and scale of the input space needs

to be scanned. By observing that the joint-shared-mode TCCA does not require iterations of the

solutions and delivers sufficient discriminative power (See Table 3), time-efficient action detection

is proposed by applying joint-shared-mode TCCA, which may be followed by the TCCA method

15



using both joint and single-shared-mode. For e.g. the joint-shared-mode TCCA can effectively

filter out the majority of samples which are far from a query sample then the single-shared-mode

TCCA is applied with the joint mode to only few candidates. In this section, we mainly explain

the method to further speed up the joint-shared-mode TCCA for action detection by incrementally

learning the required subspaces.

5.1 Incremental PCA

An efficient update scheme of eigensubspaces has been developed when a new set of vectors is

added to an existing data set [36, 37]. Given two data sets (an existing and a new set) represented

by eigenspace models {µi,Mi,Pi,Λi}i=1,2, where µi is the mean, Mi the number of samples,

Pi the matrix of eigenvectors and Λi the eigenvalue matrix of the i-th data set, the combined

eigenspace model {µ3,M3,P3,Λ3} is efficiently computed. The eigenvector matrix P3 can be

represented by P3 = ΦR = h([P1,P2,µ1 − µ2])R, where Φ is the orthonormal column matrix

spanning the entire combined data space, R is a rotation matrix, and h is a vector orthonormaliza-

tion function. Using this representation, an original eigenproblem for P3,Λ3 is converted into a

smaller eigenproblem as

ST,3 = P3Λ3P
T
3 ⇒ ΦTST,3Φ = RΛ3R, (11)

where ST,3 is the scatter matrix of the combined data. Note that the matrix ΦTST,3Φ has the

reduced size dT,1 + dT,2 + 1, where dT,1, dT,2 are the number of eigenvectors in P1 and P2 respec-

tively. Thus the eigenanalysis here only takes O((dT,1 + dT,2 + 1)3) computations, whereas the

eigenanalysis in the l.h.s. (11) requires O(min(N,M3)
3), where N is the input data dimension and

M3 is the total number of data points. Usually, N,M3 � dT,1 + dT,2 + 1.

5.2 Dynamic subspace learning for TCCA

Computational complexity of the joint-shared-mode TCCA in (6) depends on the computation of

eigenvector matrices P1,P2 and the Singular Value Decomposition (SVD) of (P1)
TP2 (See (5)
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Figure 5: Detection scheme. A query video is searched in a large volume input video. TCCA
between the query and every possible volume (cuboids) of the input video can be speeded-up by
dynamically learning the three subspaces of cuboids for the IJ, IK, JK joint-shared-mode TCCA.
While moving the initial slices along one axis, subspaces of cuboids are dynamically computed
from those of the initial slices. See Section 5.2 for further explanation.

and (2)). The total complexity trebles this computation for the IJ, IK and JK joint-shared-modes.

If P1,P2 ∈ R
N×d where d is the number of the first few eigenvectors corresponding to most data

energy (usually a small number), the complexity of the SVD of (P1)
TP2 taking O(d3) is negligi-

ble. Time-efficient detection is achieved by incrementally learning the three sets of eigenvectors,

corresponding to the mode vector matrices XT
(k),X

T
(j),X

T
(i), of every possible volume X (cuboid)

of an input video for the IJ, IK, JK joint-shared-modes respectively. See Figure 5 for the con-

cept. There are three separate steps which are carried out in the same fashion, each of which is to

compute one of three eigenvector matrices of every possible volume of an input video. First, the

subspaces of every cuboid of the initial slices of the input video are learnt, then the subspaces of

all remaining cuboids are incrementally computed while moving the slices along one of the axes.

For the IJ joint-shared-mode TCCA, as an example, the subspace P of every possible cuboid,

represented by the transposed k-mode vector matrix XT
(k), in the initial IJ-slice of the input video

is computed. Then, the subspaces of all next cuboids are dynamically computed, while pushing

the cuboids in the initial slice along the K axis to the end as follows (for simplicity, the size of a

query video and input video set to be R
m×m×m, RM×M×M where M � m):

Any cuboid at z on the K axis, X z is represented by the k-mode vector matrix XT
(k) =

{xz, ...,xz+m−1}. The scatter matrix Sz = (XT
(k))(X

T
(k))

T is written w.r.t. the scatter matrix of

the previous cuboid at z − 1 as Sz = Sz−1 + (xz+m−1)(xz+m−1)T − (xz−1)(xz−1)T . This involves
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both incremental and decremental learning. A new vector xz+m−1 is added and an existing vector

xz−1 is removed from the (z − 1)-th cuboid. The sufficient spanning set 1 of the current scatter

matrix can be Υ = h([Pz−1,xz+m−1]) where h is a vector orthogonalization function and Pz−1 is

the eigenvector matrix of the previous cuboid. The current eigenvector matrix can be the product

of the sufficient spanning set by an arbitrary rotation matrix R as Pz = ΥR. Therefore the original

eigen-problem to solve is reduced to a much smaller eigenproblem as

Sz = PzΛz(Pz)T ⇒ ΥTSzΥ = RΛzR. (12)

The matrices Λz,R are computed as the eigenvalue and eigenvector matrix of ΥTSzΥ. The final

eigenvectors are obtained as Pz = ΥR after removing the components in R corresponding to the

least eigenvalues in Λz, keeping the dimension of Pz be Rm2×d.

Computational cost. Similarly, the subspaces for XT
(j),X

T
(i) for the IK, JK joint-shared-mode

TCCA are computed by moving the all cuboids of the slices along the I, J axes respectively.

By this way, the total complexity of learning the three kinds of the subspaces of every cuboid is

significantly reduced s.t.

O(M3 × m3) −→ O(M2 × m3 + M3 × d3) (13)

as M � m � d. O(m3), O(d3) are the complexity for solving eigen-problems in a batch (i.e. the

l.h.s. of (12)) and the proposed way (the r.h.s. of (12)). Efficient multi-scale search, as a future

work, may be performed by merging two or more subspaces of smaller cuboids by the incremental

learning.
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(a)

(b)

(c)

Figure 6: Hand-Gesture database. (a) 9 gestures generated by 3 primitive shapes and motions.
(b) 5 illumination conditions in the database. (c) 3 sample sequences of the contraction motion.

6 Experimental results

6.1 Hand-gesture recognition

We acquired Cambridge-Gesture data base 2 consisting of 900 image sequences of 9 hand gesture

classes, which are defined by 3 primitive hand shapes and 3 primitive motions (see Figure 6). Each

class contains 100 image sequences (5 illuminations×10 arbitrary motions of 2 subjects). Each

sequence was recorded in front of a fixed camera having roughly isolated gestures in space and

time. All training was performed on the data acquired in the single plain illumination setting (the

leftmost in Figure 6 (b)) while testing was done on the data acquired in the remaining settings. The

20 sequences per class in the training set were randomly partitioned into 10 sequences for training

and the other 10 sequences for validation.

All video sequences were uniformly resized into 20 × 20 × 20 in our method. The proposed

1The sufficient spanning set is an economical set of bases which spans most data energy. This helps obtaining a
small eigen-problem to solve [36, 37].

2The database is publicly available at http://mi.eng.cam.ac.uk/∼tkk22
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Figure 7: Feature selection. (left) Convergence graph of the alternating method. (mid) The
weights of TCCA features learnt by boosting. (right) The number of features chosen for the differ-
ent TCCA modes.

Joint-shared-mode Single-shared-mode Dual-mode
Number of features 01 05 20 - 60 60 60

Accuracy (%) 52 72 76 - 76 52 81

Table 3: Accuracy comparison of the joint-shared-mode TCCA and dual-mode TCCA (using
both joint and single-shared-mode).

alternating solution in Section 3.3 was performed to obtain the TCCA features of every pairwise

training sequences. The iterative method stably converged as shown in the left of Figure 7. Feature

selection was performed for the TCCA features based on the weights and the feature list learnt

from the AdaBoost method in Section 4. NN classification was performed for a new test sequence

based on the selected TCCA features. In the middle of Figure 7, it is shown that about the first 60

features contained most of the discriminatory information. Of the first 60 features, the number of

features is shown for the different TCCA modes in the right of Figure 7. The joint-shared-mode

(IJ, IK, JK) contributed more than the single-shared-mode (I, J,K) but both still kept many

features in the selected feature set. From Table 3, the best accuracy of the joint-shared-mode was

obtained by 20 - 60 features. This is easily reasoned when looking at the weight curve of the joint-

shared-mode in Figure 7 where the weights of more than 20 features are non-significant. Note

that the accuracy monotonically increased delivering the best accuracy at 60 even without feature

selection. The single-shared-mode alone gave relatively poor accuracy, which is yet meaningful

compared with those of other methods in Table 4. The dual-mode TCCA (using both joint and

single-shared mode) improved the accuracy of the joint-shared mode by 5%. Figure 8 shows the

example of canonical tensors computed from the two lighting sequences of the same hand gesture
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Figure 8: Example of canonical tensors.Given two lighting sequences of the same hand gesture
class (the left two rows), the first three canonical tensors of the IJ ,IK,JK joint-shared-mode are
shown in the top, middle, bottom rows respectively.

Methods set1 set2 set3 set4 total Methods total
TCCA 81 81 78 86 82±3.5 MGO/SVM [18] 30

CCA [21] 63 61 65 69 65±3.2 NN-ED 29.44
pLSA [5] 70 57 68 71 66±6.1 NN-NC 29.03

MGO/RVM [18] - - - - 44 SVM 41.25

Table 4: Hand-gesture recognition accuracy(%) of the four illumination sets.

class. One of each pair of canonical tensors is only shown here, as the other looks similar.

Table 4 shows the recognition rates of the proposed TCCA method (exploiting both joint and

single-shared-mode features), the simple CCA method [21], Niebles et al.’s method [5] (the proba-

bilistic Latent Semantic Analysis (pLSA) with the space-time descriptors, which exhibited the best

action recognition accuracy among the state-of-the-arts in [5]), Wong et al.’s method (Support Vec-

tor Machine/or Relevance Vector Machine (RVM) with the Motion Gradient Orientation images

(MGO) [18]), Nearest Neighbor classifier in the sense of Euclidean Distance (NN-ED) and Nor-

malized Correlation (NN-NC) of video vectors (all pixels in a video are concatenated into a column

vector), and SVM of the video vectors. The original codes and the best settings of the parameters

(e.g. the size parameters of the space-time descriptors and the size of the code book) were used

in the evaluation for the previous works. The two methods of SVM/or RVM on the MGO images

turned far worse. As observed in [18], using RVM improved the accuracy of SVM by about 10%.

However, both methods often failed to discriminate the gestures, which have the same motion of

the different shapes, as the methods are mainly based on motion information of gestures. The two

methods, NN-ED and NN-NC, which exploit vector-distance and vector-correlation respectively
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Figure 9: Confusion matrix of the TCCA method for hand gesture recognition.

as a similarity between two gesture videos, were also far poorer than the proposed method. The

SVM applied to the vector representation enhanced the accuracy of the NN-ED/NC methods, but

is again much worse than the proposed method. Although the vector representation of videos en-

codes space-time shape information, its high dimension interrupts obtaining good generalization on

novel data under small sample size. The unsupervised learning method pLSA with the space-time

interest points and the simple CCA method achieved the second-rank accuracy by either a flex-

ible representation or matching: the pLSA method is based on distribution of local patterns and

CCA provides the affine-invariance in matching. Note, however, that the accuracy of the pLSA

method is highly compromised with good parameter setting (of the space-time descriptors), which

is difficult in practice. Both methods do not make use of full video information: pLSA does not en-

code global shape information while CCA does not consider temporal information. The proposed

method, TCCA significantly outperformed all compared methods. The proposed method improved

the simple CCA method by around 17%. By matching both spatial and temporal information with

the affine-invariance, the proposed method is far better in correct identifications of the sequences

of distinct shapes subject to similar motion as well as the similar shape sequences having different

motions. See Figure 9 for the confusion matrix of our method.
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6.2 Action categorization on KTH data set

We followed the experimental protocol of Niebles et al.’s work [5] on the KTH action data set,

which is the largest public action data base [16]. The data set contains six types (boxing, hand

clapping, hand waving, jogging, running and walking) of human actions performed by 25 subjects

in 4 different scenarios. The original input videos contain actions which are not space-time aligned

and are repeated several times. Leave-one-out cross-validation was performed to test the methods,

i.e. for each run the videos of 24 subjects are exploited for training and the videos of the remaining

subject is for testing. Some sample videos are shown in Figure 10 with the indication of the action

alignment (or cropping). This space-time alignment of actions was manually done for accuracy

comparison but can also be automatically achieved by the proposed detection scheme as shown

below. The defined aligned actions contain unit atomic motions without repetitions. Most compet-

ing methods are based on the histogram representations with Support Vector Machine (ST/SVM)

(Dollar et al [15], Schuldt et al. [16]) or pLSA (Niebles et al. [5]). Ke et al. applied the spatio-

temporal volumetric features [17]. Note that all these methods do not require action alignment in

nature because they do not consider global space-time shape information. These methods were,

therefore, applied to the original input videos. For comparison, we quoted the accuracy of the

methods reported in [5] and further performed the simple CCA method, the pLSA method [5] and

the proposed TCCA method (exploiting both joint and single-shared mode features) on the aligned

videos. In the TCCA method, the aligned video sequences were uniformly resized to 20×20×20 by

nearest neighbor interpolation (See Table 7 for the original volume size). See Table 5 for accuracy

comparison of several methods and Figure 11 for the confusion matrices of the TCCA method and

CCA method. The pLSA method on the cropped videos dropped the accuracy of the same method

on the original input videos by about 10%, maybe due to insufficient amount of interest points

detected in the cropped videos. Note that the original sequences contain several repetitions of the

actions giving fluent interest points. The SVM applied to the same histogram representation as

that of the pLSA method [15] delivered the similar accuracy. While most of the histogram-based

methods showed the accuracy around 60-80%, the proposed TCCA method and the CCA method

achieved the impressive accuracy at 95% and 89% respectively. From the good accuracy of the
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CCA method that does not consider temporal information, we infer that the six action classes of

the KTH data set are well discriminative in spatial domain. The histogram-based methods lost

important information in the global space-time shapes of actions resulting in ambiguity for spatial

variations of the different action classes. The TCCA method improved the CCA method by using

joint spatial-temporal information, particularly being better in discrimination between the jogging

and running actions, which is shown in Figure 11.

There have been recent attempts to incorporate the global space-time shape information based

on the histogram representation [19, 40]. As shown in the last row of Table 5, they achieved rea-

sonable improvements over the previous histogram methods, but were still inferior to the method

proposed.

Discussions.We have tried two different regularization methods. Each image in videos is Gaussian-

smoothed with histogram equalization or is just Gaussian-smoothed. We achieved 92.00% and

95.33% recognition accuracy by Gaussian-smoothing with/or without histogram equalization re-

spectively.

The volume size of 20x20x20 gave a good compromise between the recognition accuracy and

computational resource. We set the volume size as 10x10x10, 20x20x20 and 40x40x20, obtaining

90.67%, 95.33%, 96.00% recognition accuracy respectively.

To check the sensitivity of the proposed method on temporal misalignment, we added Gaussian

noise ε to both start and end time of actions, s.t. t′ = t + ε. The Gaussian noise had zero mean and

10% of the average volume size in T as standard deviation. For example, the standard deviation

set to be 3.2 for the boxing videos that have 32 pixel temporal duration on average (See Table 7).

The TCCA method exhibited reasonable degradation in performance for temporal misalignment,

showing 90% accuracy for the noisy data.

We have also performed an experiment for background change. We used only outdoor samples

in training and indoor samples in testing. Despite the quite different backgrounds in the indoor

and outdoor videos (See Figure 10), the TCCA method obtained the same accuracy (95%) as that

reported in Table 5. Segmentation or any better representation method (rather than raw pixels) may

further improve the TCCA method for significant background changes and clutters.
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Figure 10: Example action videos in KTH data set. The bounding boxes indicate the spatial
alignment and the superimposed images of the initial, intermediate and the last frames of each
action show the temporal segmentation of action classes.

Methods (%) Methods (%)
TCCA 95.33 ST/SVM [15] 81.17

CCA [21] 89.50 ST/SVM [16] 71.72
pLSA [5] 81.50 Ke et al. [17] 62.96
pLSA* [5] 68.53

pLSA-ISM [19] 83.92 Savarese et al. [40] 86.83

Table 5: Recognition accuracy (%) on the KTH action data set. pLSA* denotes the pLSA
method applied to the cropped videos.
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Figure 11: Confusion matrix of CCA (left) and TCCA (right) method for the KTH data set.
TCCA improved CCA especially by better discriminating the jogging from the running actions.

25



6.3 Action detection on KTH data set

The action detection was performed by the exemplar set consisting of the sequences of five persons

that are not contained in the testing sequences. Every possible volume (for both fixed scale and

multi-scale search) in an input video is scanned and is matched with the example sequences by

TCCA (the joint-shared-mode).

For the fixed scale search, detection results are shown in Figure 12 for the continuous hand

clapping video, which comprises of the three correct unit clapping actions. The maximum canon-

ical correlation is shown along time. All three correct hand clapping actions are detected at the

three highest peaks, with the three intermediate actions at the three lower peaks. The three highest

peaks correspond to the video volumes that are synchronized to the query video in both spatial

and temporal domain. When it goes far from the peaks, a video volume is less synchronized to

the query, having less correlations in both spatial and temporal aspects. However, at certain point,

it starts recovering correlations in spatial domain by containing most but permuted frames of the

query video, exhibiting local maxima between any two correct hand-clapping actions. Note that

the IJ joint-shared-mode TCCA is invariant to permutation of frames.

The detection time of the proposed method (using the joint-shared-mode TCCA) is reported in

Table 6 on a Pentium 3 GHz PC using non-optimized Matlab codes. The proposed incremental

subspace learning reduced the detection time of the batch computation. The detection time differs

for the size of input volume with respect to the size of query volume. For example, the input and

query volume sizes of the hand clapping actions are 120×160×102 and 92×64×19 respectively.

The dimension of the input video and query video was reduced by the factors 4.6, 3.2, 1 (for the

respective three dimensions). In the reduced dimension, the size of the query video, m in (13) was

20. The dimension of the subspaces, d in (13) were set to be 5 as the number that reflects most

data energy from the eigenvalue plot (See Figure 13). When the search area M and the size of the

query video m are larger, the computational saving by the proposed method over the batch method

would be greater. The obtained speed seems to be comparable to that of the state-of-the-art [1].

Video processing techniques such as moving area segmentation may be conveniently incorporated

into the proposed method for further speed-up.
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Figure 12: Action detection result. (a) An example input video sequence of continuous hand
clapping actions. (b) The detection result: all three correct hand clapping actions are detected at
the highest three peaks, with the three intermediate actions at the three lower peaks. The thin line
(joint-shared-mode TCCA) was smoothed using a 5-point moving average to yield the bold line.

action class box hclp hwav jog run walk
dynamic subspace learning 43.01 35.42 19.27 12.60 5.16 10.70
or batch subspace learning 240.26 245.45 47.62 64.10 19.72 40.34

+ TCCA 9.96 8.43 2.26 3.09 1.14 2.21

Table 6: Action detection time (seconds)for fixed scale search by a single query sequence. The
detection speed differs for the size of input volume with respect to the size of query volume.
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Figure 13: Eigenvalue plot. Averaged eigenvalue plot of the three kinds of subspaces of action
videos.

(pixels) box hclp hwav jog run walk
X 48±8 60±11 68±10 80±20 101±26 71±18
Y 91±10 87±10 92±12 86±12 82±13 84±13
T 32±8 22±6 19±4 11±2 9±1 15±1

Table 7: Average volume size of action classes.The mean and the standard deviation along each
axis.

Figure 14 shows the example action detection results with scale variations, which are obtained

by three steps in each axis. We set the three steps as the mean and mean plus/minus the standard

deviation of the scales of video volumes (See Table 7). The detection results show the best response

space-time region in each input sequence. Despite the small training samples (of only five persons

as afore mentioned) and the coarse three-step scale search, the alignments look close to the manual

settings shown in Figure 10. Efficient multi-scale search would help obtaining more accurate and

yet time-efficient action detection.
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Figure 14: Automatic multi-scale action detection result.
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7 Conclusions

We have proposed a novel method called Tensor Canonical Correlation Analysis (TCCA),

which extracts pairwise flexible and yet descriptive correlation features of videos in joint space-

time domain. The proposed features combined with NN classifier significantly improved the ac-

curacy of state-of-the-art action recognition methods. The proposed method is also practically

appealing as it does not require any significant tuning parameters. Additionally, the proposed de-

tection method for TCCA could yield time-efficient action detection in large-volume input videos.

In spite of the proposed detection method, the method may require further time-efficiency for

the scenarios that have a much larger search space and require multi-scale search in real-time. One

may try a hierarchical approach that applies simpler but less accurate methods to filter out majority

of candidates and then to apply our method, which has the benefit of high accuracy. Efficient

multi-scale search by merging the space-time subspaces of TCCA would constitute useful future

work. For further enhancement in accuracy, the proposed method as a general meta-algorithm may

be combined with other task-specific representations or segmentation methods. As an example, the

raw pixel representation in the TCCA method has been replaced with the Scale-Invariant-Feature-

Transform (SIFT) vectors in [42]. Although we have exploited a naive Nearest Neighbor classifier

for the purpose of demonstrating the power of new features and matching, use of a more modern

classifier is remained as future work.
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