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Abstract—FPGA-optimised Random Number Generators
(RNGs) are more resource efficient than software-optimised
RNGs, as they can take advantage of bit-wise operations and
FPGA-specific features. However, it is difficult to concisely
describe FPGA-optimised RNGs, so they are not commonly used
in real-world designs. This paper describes a type of FPGA RNG
called a LUT-SR RNG, which takes advantage of bit-wise XOR
operations and the ability to turn LUTs into shift-registers of
varying lengths. This provides a good resource-quality balance
compared to previous FPGA-optimised generators, between the
previous high-resource high-period LUT-FIFO RNGs and low-
resource low-quality LUT-OPT RNGs, with quality comparable
to the best software generators. The LUT-SR generators can also
be expressed using a simple C++ algorithm contained within the
paper, allowing 60 fully-specified LUT-SR RNGs with different
characteristics to be embedded in the paper, backed up by an
online set of VHDL generators and test-benches.

Index Terms—FPGA, Uniform Random Number Generator,
Equidistribution

I. INTRODUCTION

MONTE Carlo applications are ideally suited to FPGAs,
due to the highly parallel nature of the applications,

and because it is possible to take advantage of hardware
features to create very efficient random number generators.
In particular, uniform random bits are extremely cheap to
generate in an FPGA, as large numbers of bits can be generated
per cycle at high clock-rates using LUT-OPT [1] or LUT-FIFO
generators [2]. In addition, these generators can be customised
to meet the exact requirements of the application, both in terms
of the number of bits required per cycle, and for the FPGA
architecture of the target platform.

Despite these advantages, FPGA-optimised generators are
not widely used in practise, as the process of constructing a
generator for a given parametrisation is time-consuming, in
terms of both developer man-hours and CPU-time. While it
is possible to construct all possible generators ahead of time,
the resulting set of cores would require many megabytes, and
be difficult to integrate into existing tools and design-flows.
Faced with these unpalatable choices, engineers under time
constraints understandably choose less efficient methods, such
as Combined Tausworthe generators [3], or parallel LFSRs.

This paper describes a family of generators which makes
it easier to use FPGA-optimised generators, by providing a
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simple method for engineers to instantiate an RNG which
meets the specific needs of their application. Specifically, it
shows how to create a family of generators called LUT-SR
RNGs, which use LUTs as shift-registers to achieve high-
quality and long periods, while requiring very few resources.
The main contributions are:
• A type of FPGA-optimised uniform RNG called a LUT-

SR generator, which uses LUT-based shift-registers to
implement generators with periods of 21024− 1 or more,
using two LUTs and two FFs per generated random bit.

• An algorithm for describing LUT-SR RNGs using five
integers, and a set of open-source test-benches and tools.

• Tables of 60 LUT-SR RNGs covering output widths from
32 up to 624, with periods from 21024−1 up to 219937−1.

• A theoretical quality analysis of the given RNGs in terms
of equidistribution, and a comparison with other software
and hardware RNGs.

The LUT-SR family was first presented in a conference
paper [4], which concentrated on the practical aspects of
constructing and using these generators. This paper adds
Section V which describes the method used to find maximum
period generators, Section VI describing the process used to
select the highest quality generators, and a rigorous theoretical
quality analysis in terms of equidistribution in Section VIII.

II. OVERVIEW OF BINARY LINEAR RNGS

The LUT-SR RNGs are part of a large family of RNGs, all
of which are based on binary linear recurrences. This family
includes many of the most popular contemporary software
generators, such as the Mersenne Twister (MT-19937) [5], the
Combined Tausworthe (TAUS-113) [3], SFMT [6], WELL [7],
and TT-800 [8]. This section gives an overview of the under-
lying maths, and describes existing binary linear RNGs used
in FPGAs.

A. Binary Linear RNGs

Binary linear recurrences operate on bits (binary digits),
where addition and multiplication of bits is implemented using
exclusive-or (⊕) and bitwise-and (⊗). 1 The recurrence of an
RNG with n-bit state and r-bit outputs is defined as:

xi+1 = Axi (1)
yi+1 = Bxi+1 (2)

where xi = (xi,1, xi,2, ..., xi,n)T is the n-bit state of the
generator; yi = (yi,1, yi,2, ..., yi,r)T is the r-bit output of the

1This is the same as operating modulo-2, or in the Galois field GF(2).
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generator; A is an n × n binary transition matrix; and B is
an r×n binary output matrix. Because the state is finite, and
the recurrence is deterministic, eventually the state sequence
x0,x1,x2, ... must start to repeat.

The minimum value p such that xi+p = xi is called the
period of the generator, and one goal in designing random
number generators is to achieve the maximum period of
p = 2n − 1; a period of 2n cannot be achieved because
it is impossible to choose A such that x0 = 0 maps to
anything other than x1 = 0. This leads to two sequences in a
maximum period generator: a degenerate sequence of length
one which contains only zero, and the main sequence which
iterates through every possible non-zero n-bit pattern before
repeating. A necessary and sufficient condition for a generator
to have maximum period is that the characteristic polynomial
P (z) of the transition matrix A must be primitive [1].

The matrix B is used to transform the internal RNG state
into the random output bits produced by the generator. In the
simplest case we have r = n and B = I, which means the
state bits are used directly as random output bits, but in many
generators most of the internal state bits are not sufficiently
random. In these cases r < n, and either some state bits are
not propagated through to the output, or multiple state bits are
XOR’d together to produce each output bit.

The quality of a generators is measured in two ways:
empirical tests, which look at generated sequences of numbers;
and theoretical tests, which considered mathematical proper-
ties of the entire number sequence. Examples of empirical
tests are to track the distribution of ones versus zeros, or to
examine the Fourier transform of the uniform sequence, and
to see if the observed behaviour deviates significantly from
the behaviour of an ideal uniform source. Many such tests are
gathered into batteries such as TestU01 [9], which examine
long output sequences from a given RNG to find evidence of
non-randomness.

Theoretical randomness of binary linear generators is mea-
sured using equidistribution [3], which describes how evenly
distributed the output sequence is in multiple dimensions.
Equidistribution is defined in terms of a resolution l, which is
the number of most-significant bits considered from the output,
and a dimension d, which is the number of consecutive output
samples. If a generator is (d, l)-distributed then every possible
length d sequence will be observed in the output sequence the
same number of times. For example, if a 32-bit generator is
(3, 16)-distributed then all possible 16-bit output triples will be
equally likely. Alternatively, if a generator is (d, r)-distributed,
i.e. it is equidistributed to d dimensions over the output bit-
width, and it is initialised to an unknown random state x0,
then observing y1..yd−1 gives no information at all about what
yd will be. However, observing y1..yd may allow us to make
predictions about the value of yd+1, or in some cases allow
us to predict it precisely.

There are three stages when designing such a generator:
1) Describe a family of generators GF , such that each

member of GF can be efficiently implemented in the
target architecture. However, only some members of GF

will have the maximum period property.
2) Extract a maximum period subset GM ⊂ GF , such

that all members of GM implement a matrix A with
a primitive characteristic polynomial. This is achieved
either by randomly selecting and testing members of
GF , or by exhaustive enumeration if |GF | is small.

3) Find the generator gI ∈ GM which produces the
output stream with highest statistical quality, either by
considering multiple members with different A matrices,
or by trying many different B matrices for a single
transition matrix.

The selected RNG instance gI ∈ GF can then be expressed
as code (e.g. C or VHDL) and used in the target architecture.

B. LUT-Optimised RNGs

LUT-optimised (LUT-OPT) generators [1] are a family of
generators with a matrix A where each row and column
contains t − 1 or t ones. In hardware terms this means that
each row maps to a t − 1 or t-input XOR gate, and so can
be implemented in a single t-input LUT. Thus if the current
vector state is held in a register, each bit of the new vector
state can be calculated in a single LUT, and an r-bit generator
can be implemented in r fully-utilised LUT-FFs. The basic
structure of a LUT-OPT generator is shown in Figure 1 (a).

A simple example of a maximum period LUT-OPT gener-
ator with r = 6 and t = 3 is given by the recurrence:

A =


0 1 1 0 0 0
0 1 1 0 0 1
0 1 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
1 0 0 1 1 0

 ,


xi+1,1

xi+1,2

xi+1,3

xi+1,4

xi+1,5

xi+1,6

 =


xi,2 ⊕ xi,3

xi,2 ⊕ xi,3 ⊕ xi,6

xi,2 ⊕ xi,4

xi,1 ⊕ xi,5

xi,1 ⊕ xi,6

xi,1 ⊕ xi,4 ⊕ xi,5


Such matrices can be found for all t ≥ 3 and r ≥ 4, and are

practical for generating up to ∼ 1000 uniform bits per cycle.
LUT-OPT generators have two key advantages:
• Resource efficiency: each additional bit requires one

additional LUT and FF, so resource usage scales linearly
- generating r bits per cycle requires r LUT-FFs.

• Performance: the critical path in terms of logic is a single
LUT delay, so the generators are extremely fast: usually
the clock net is the limiting factor, with routing delay and
congestion only becoming a factor for large n.

However, these advantages are balanced by a number of
disadvantages:

1) Complexity: Each (r, t) combination requires a unique
matrix of connections, which must be found using
specialised software. If these matrices are randomly
constructed (as in previous work), then it is difficult to
compactly encode these matrices, so it is difficult for
FPGA engineers to make use of the RNGs.

2) Quality: The random bits are formed as a linear combi-
nation of random bits produced in the previous cycle -
when t = 3 some of the new bits will be a simple 2-
input XOR of bits from the previous cycle. The impact
of this lag-1 linear dependence is minimal in modern
FPGAs where t ≥ 5, and also diminishes quickly as r
is increased, but remains a source of concern.

3) Period: In order to achieve a period of 2n − 1 it is
necessary to choose r = n, even if far fewer than n bits
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Fig. 1. Connection characteristics of four different types of FPGA optimised binary linear RNG.

are needed per cycle. An absolute minimum safe period
for a hardware generator is 264 − 1, but it is preferable
to have much larger periods of 21000 − 1 or more.

4) Seeding: It is necessary to initialise RNGs with a chosen
state at run-time, so that different hardware instances of
the same RNG algorithm will generate different random
streams. In a LUT optimised generator it is possible to
implement serial loading of state using one LUT input
per RNG bit to select between RNG and load mode, but
in practice for a randomly chosen matrix A only parallel
loading is possible.

C. LUT-FIFO RNGs

One way of removing the quality and period problems is
provided by LUT-FIFO generators [2]. These augment the r
bits of state held in FFs with an additional depth-k width-w
FIFO, for a total period of 2n−1, where n = r+wk, shown in
Figure 1 (b). LUT-FIFO generators can provide long periods
such as 211213−1 and 219937−1, but also have disadvantages:

1) For reasonable efficiency the FIFO needs to be imple-
mented using a block RAM, a relatively expensive re-
source which one would usually prefer to use elsewhere
in a design.

2) The word-wise granularity of block-RAM based FIFOs
reduces the flexibility in the choice of r, as it can only
be varied in multiples of k.

These are mild disadvantages when compared to the quality
and period problems of LUT optimised generators that have
been eliminated, but LUT-FIFO generators also make the
problems of complexity and efficient initialisation slightly
worse. If extremely high quality and period are needed then
LUT-FIFO generators present the fastest and most efficient
solution, but few applications actually require such high levels
of quality, particularly given the need for expensive block-
RAM resources.

D. Software RNGs

In addition to the hardware-optimised LUT-OPT and LUT-
FIFO generators, a number of generators designed for software

architectures have been ported to FPGA architectures:

Combined Tausworthe [3] - Software generators which use
word-level shift, XOR, and AND operations to construct sim-
ple recurrences with distinct periods, which are then combined
using XOR to produce a much longer period generator.

Mersenne Twister [5] - This uses the same word-level
operators as the Combined Tausworthe, combined with a
large RAM-based queue, to create a software generator with
fairly good equidistribution and the extremely long period of
219937 − 1.

WELL [10] - This generator uses similar techiques to the
Mersenne Twister, but uses a more complex recurrence step
involving multiple memory accesses per sample, to achieve
the maximum possible equidistribution at the same period as
the Mersenne Twister.

All the software generators are designed with word-level
instructions in mind, and so tend to be inefficient in terms of
resources consumed per bit generated. In this paper we show
the LUT-SR generator, which sits between the LUT optimised
and LUT-FIFO generators: it fixes all problems related to
complexity and serial seeding found with both generators, and
provides much higher periods than LUT-OPT generators for a
cost of 1 extra LUT-FF per bit, while eliminating the block-
RAM resource needed for a LUT-FIFO RNG.

III. THE LUT-SR RNG

Modern FPGAs allow LUTs to be configured in a number
of different ways, such as basic ROMs, RAMs, and shift-
registers. Configuring LUTs as shift-registers provides an
attractive means of adding more storage bits to a binary linear
generator: for example, adding one Xilinx SRL32 to a LUT-
optimised r bit generator allows the state size to be increased
to n = r + 32. This represents a degenerate form of a LUT-
FIFO generator, with k = 32 and w = 1.

However, while the FIFO in a LUT-FIFO RNG is usually
an expensive block-RAM, LUT-based shift-registers are very
cheap - almost as cheap as the LUTs used to build the XOR
gates. So it now becomes economical to use r shift registers,
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one per output bit, increasing the potential state to n = r(1 +
k). If we assume k = 32 (as found in modern FPGAs), and a
modest RNG output width of r = 32, the state size increases
to n = 1056. This provides a potential period of 21056− 1 for
a cost of 64 LUTs, as compared to a period of 264 − 1 for a
LUT optimised generator with the same resource usage.

It might be tempting to simply configure all shift-registers
with the same length, in an attempt to maximise the period
for a given number of resources, but this cannot provide a
maximum period generator. Instead it would result in 1 + k
independent r-bit generators, with a sample taken from each
on successive cycles, shown in Figure 1 (c). In LUT-FIFO
generators this problem is avoided by making each new output
bit dependent on one bit from the previous cycle, with the
remaining t − 1 or t − 2 bits provided by the FIFO output.
This lag-1 dependency is not ideal, but is generally benign as
the LUT-FIFO uses deep block-RAM based FIFOs.

Bit-wide shift-registers enable a different solution which
allows large periods to be achieved, while also improving
the rate of mixing within the generator state. Each of the r
shift-registers can be assigned some specific length ki ≤ k,
reducing the state size to n =

∑r
i=1(1 + ki). One solution

would be to randomly configure each shift-register as ki = k
or ki = k−1, giving a period rk < n < r(1+k). But a much
more interesting solution is to randomly choose 1 < ki ≤ k,
subject to the constraint ∃i, j : i 6= j∧gcd(ki +1, kj +1) = 1.
This allows for much more rapid mixing between bits within
the state, while still providing necessary (but not sufficient)
conditions for mixing within the state.

Part (d) of Figure 1 shows the new LUT-SR style of
generator. All four generators shown in the figure may seem
superficially similar, but actually provide quite different trade-
offs in terms of quality vs. resource usage.

Both the LUT-OPT and LUT-FIFO RNGs were originally
developed and presented without much consideration of how
to initialise the generator state. Initialisation is very important,
as it is common to instantiate multiple parallel RNGs imple-
menting the same algorithm, and each must be initialised with
a distinct seed (initial state vector).

Given an l-input LUTs, we can implement a t = l LUT-
optimised RNG, but there is no way to read or write the RNG
state. 2 Loading the state in parallel only allows a t = l − 2
RNG, as one LUT input is needed to select when to load,
and the other is needed to provide the new 1-bit value. In a
4-LUT architecture, this implies t = 2, which is not possible
(some bits would be direct copies of bits from the previous
cycle), so two LUTs per bit would be needed. Parallel loading
also means that the RNG initialisation circuitry (which is only
needed at the start of simulations, and so should be as small as
possible) must contain O(r) resources, so even in the best-case
the resources per RNG have doubled.

A better approach is to find a cycle through the matrix A,
and use this to implement a 1-bit shift-register through the
RNG. This only requires one bit per LUT (to select between
RNG and load mode), so allows t = l − 1, requiring only
one LUT per bit in a 4-LUT architecture, and allowing an

2Excluding device-specific FF read/write chains, such as provided in Stratix.
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Fig. 2. Normal versus load paths for serial seeding of RNGs.

efficient serial initialisation circuit, no matter how large r is.
This approach can be extended to the LUT-FIFO RNG as well,
as in any maximum period generator there must exist a cycle
running through all state bits in the RNG.

However, if the matrix A is randomly chosen, we must find
a Hamiltonian cycle through a sparse graph of n points to
determine the shift-register path. The original LUT-OPT paper
correctly notes that this is possible, but even for reasonable
values of n it can become computationally infeasible. In
defining the LUT-SR generators, the provision of a serial load
chain is explicitly taken into account, by embedding a chosen
cycle into the matrix A from the start.

Specifically, we embed a very simply cycle of the form
i← (i+1) mod r through the XOR bits, shown in Figure 2.
This simple cycle trivially extends through the shift-registers,
and allows switching between the RNG and load modes using
one input bit per LUT.

Including such a simple cycle in the generators could cause
statistical problems for generators when t = 3, as there will
be a simple linear dependence between adjacent output bits in
cycles at a fixed lag. In an attempt to minimise this effect, an
output permutation can be applied, to mix up the bits.

IV. ALGORITHM FOR DESCRIBING LUT-SR GENERATORS

The broad class of LUT-SR generators as described is
very general, and it is possible to construct a huge number
of candidate LUT-SR RNGs by randomly generating binary
matrices which meet the requirements. However, this presents
the problem of communicating and disseminating RNGs expe-
rienced with LUT-OPT and LUT-FIFO papers: the matrices are
far too large and complicated to be included in a publication,
so must be provided separately from the paper. Instead the
LUT-SR generator family uses a short but precise algorithm for
expanding a tuple of five integers into the full RNG structure.

The algorithm takes as input a 5-tuple (n, r, t, k, s):
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n Number of state bits in the RNG (period is 2n − 1).
r Number of random output bits generated per cycle.
t XOR gate input count.
k Maximum shift-register length.
s Free parameter used to select a specific generator.

The first four parameters (n, r, t, k) describe the properties
of the generator in terms of application requirements and
architectural restrictions. The final parameter s is used to select
from amongst one of 232 candidates that the algorithm can
produce with the chosen values of (n, r, t, k).

Note: arbitrary values of s will not result in a valid RNG;
the choice of s is critically dependent on (n, r, t, k), and
modifying one or more components will break the generator.
Please only use the tuples listed later in the paper.

Listing 1 gives the expansion algorithm and RNG as a C++
class - the constructor takes a 5-tuple of RNG parameters
and expands them into a complete description of the RNG,
the “PrintConnections” function can then print an RTL style
description of the RNG, while the “Step” function provides a
software reference implementation.

The constructor expands the RNG using five stages:
1) Create initial seed cycle: A cycle of length r is created

through the r XOR-gates at the output of the RNG. At
this stage there are no FIFO bits, or equivalently there
are r FIFOs of length 0.

2) FIFO extension: the cycle is randomly extended until a
total cycle length of n is reached, by randomly selecting
a FIFO and increasing its length by 1, while maintaining
the known cycle.

3) Add loading connections: the known cycle is added to
the graph “taps”, which describes the matrix A. The
cycle describes the FIFO connections completely, and
also describes the first input to each of the r XOR gates.

4) Add XOR connections: the cycle provides one input for
each of the XOR gates, so now the additional t − 1
random inputs are added over t− 1 rounds. Each round
is constructed from a permutation of the FIFO outputs,
which ensures that at the end each FIFO output is used
at most t times. Some bits will be assigned the same
FIFO bit in multiple rounds, and so will have fewer than
t inputs: this is critical to achieve a maximum period
generator, and also provides us with an entry point into
the cycle for seed loading.

5) Output permutation: the simple dependency between
adjacent bits is masked using a final output permutation.

After construction, the RNG structure can be printed as
RTL-style C using the function “PrintConnections”. For exam-
ple, the input tuple (n = 12, r = 4, t = 3, k = 3, s = 0x4d)
describes a generator with period 212−1, producing 4 random
bits per cycle, with a maximum of 3 inputs per XOR gate,
and a maximum FIFO depth of 3. The re-formatted and
commented output is shown in Figure 3;

Due to the very simple printing code the format is not very
pretty, but this describes a generator in terms of six variables:

ns,cs : cs is the current state of the generator, and ns is
the next state of the generator. Both are n bit vectors,
and describe both the FF and FIFO state.

Listing 1. Source code for decoding generators
struct rng{
static int LCG(uint32_t &s) // Simple LCG RNG
{ return (s=1664525UL*s+1013904223UL)>>16; }

static void Permute(uint32_t &s, vector<int> &p)
{ for(int j=p.size();j>1;j--) swap(p[j-1],p[LCG(s)%j]); }

int n, r, t, maxk; // rng parameters
uint32_t s; // Seed for generator
vector<set<int> > taps; // connections
vector<int> cycle; // cycle through bits
vector<int> perm; // output permutation
int seedTap; // Entry point to cycle

rng(int _n, int _r, int _t, int _maxk, uint32_t _s)
: n(_n), r(_r), t(_t), maxk(_maxk), s(_s)
, taps(n), cycle(n), perm(r), seedTap(0)
{ // Construct an rng using (n,r,t,maxk,s) tuple
vector<int> outputs(r), len(r,0); int bit;

// 1: Create cycle through bits for seed loading
for(int i=0;i<r;i++){ cycle[i]=perm[i]=(i+1)%r; }
outputs=perm; // current output of each fifo

for(int i=r;i<n;i++){ // 2: Extend bit-wide FIFOs
do{ bit=LCG(_s)%r; }while(len[bit]>=maxk) ;
cycle[i]=i; swap(cycle[i], cycle[bit]);
outputs[bit]=i; len[bit]++;
}

for(int i=0;i<n;i++) // 3: Loading connections
taps[i].insert(cycle[i]);

for(int j=1;j<t;j++){ // 4: XOR connections
Permute(_s, outputs);
for(int i=0;i<r;i++){
taps[i].insert(outputs[i]);
if(taps[i].size()<taps[seedTap].size())
seedTap=i;

}}

Permute(_s, perm); // 5: Output permutation
}

void PrintConnections() const
{ // Dump transition function in "C" format
for(int i=0;i<n;i++){
// Create connections for load mode
if(i==seedTap) printf("ns[%u]=m?s_in:(0", i);
else printf("ns[%u]=m?cs[%u]:(0",i,cycle[i]);

// Create XOR tree for RNG mode
set<int>::iterator it=taps[i].begin();
while(it!=taps[i].end()) printf("ˆcs[%u]",*it++);
printf(");\n");
}
printf("s_out=cs[%u];\n", cycle[seedTap]);

for(int i=0;i<r;i++) // output permutation
printf("ro[%u]=ns[%u];\n", i, perm[i]);

}

pair<vector<int>,int> // returns (ro[0:r-1],s_out)
Step(vector<int> &cs, int m, int s_in) const
{ // Advance state cs[0:n-1] using inputs (m,s_in)
vector<int> ns(n, 0), ro(r);

for(int i=0;i<n;i++){ // Do XOR tree and FIFOs
if(m==0){ // RNG mode
std::set<int>::iterator it=taps[i].begin();
while(it!=taps[i].end()) ns[i] ˆ= cs[*it++];

}else{ // load mode
ns[i]= (i==seedTap) ? s_in : cs[cycle[i]];

} }

// capture permuted output signals
int s_out=cs[cycle[seedTap]]; // output of load chain

cs=ns; // "clock-edge", so FFs toggle
for(int i=0;i<r;i++) ro[i]=cs[perm[i]];
return make_pair(ro,s_out);
}

};
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// Sequential update of registers using XOR gates
ns[0]= m?s_in :(0ˆcs[9]ˆcs[10]); // Load chain input
ns[1]= m?cs[6] :(0ˆcs[6]ˆcs[11]);
ns[2]= m?cs[11]:(0ˆcs[6]ˆcs[10]ˆcs[11]);
ns[3]= m?cs[9] :(0ˆcs[9]ˆcs[10]ˆcs[11]);
// Sequential update of internal Shift-Register bits
ns[4]= m?cs[3] :(0ˆcs[3]);
ns[5]= m?cs[1] :(0ˆcs[1]);
ns[6]= m?cs[2] :(0ˆcs[2]);
ns[7]= m?cs[0] :(0ˆcs[0]);
ns[8]= m?cs[5] :(0ˆcs[5]);
ns[9]= m?cs[7] :(0ˆcs[7]);
ns[10]=m?cs[8] :(0ˆcs[8]);
ns[11]=m?cs[4] :(0ˆcs[4]);
// Combinatorial outputs
s_out =cs[10]; // Output of serial load chain
ro[0] =ns[3]; // Permuted output bits.
ro[1] =ns[2];
ro[2] =ns[0];
ro[3] =ns[1];

Fig. 3. Pseudo-RTL output from “PrintConnections” function for tuple
(n = 12, r = 4, t = 3, k = 3, s = 0x4d).

m,s in : These are the RNG inputs, with m choosing be-
tween RNG mode (m=0), and load mode (m=1); s in
provides the serial load input in load mode.

ro : This is the r-bit random output of the generator,
which is simply a permutation of the first r bits of
the generator state.

s out : While loading a new state using m=1, this signal
can be used to read the current state.

The function “Step” implements the same transition function
directly in C++, and can operate in both RNG and load mode.

The aim of this algorithm is to provide a precise speci-
fication that can be included in the paper. A more complete
package of tools is available at http://www.doc.ic.ac.uk/∼dt10/
research/rngs-fpga-lut sr.html.This includes functions for gen-
erating platform-independent VHDL code, which also extract
the logical shifters to improve compilation performance. 3

In addition, the package provides test-bench generation tools,
which verify the VHDL code against the reference software,
and demonstrate how to use the serial load capability.

V. LUT-SR SEARCH PROCESS

Algorithm 1 can expand any given tuple into a candidate
generator, but only specific parametrisations produce maxi-
mum length generators, and even amongst maximum length
generators some have better quality than others.

A given 4-tuple (n, r, t, k) defines a set of 232 candidate
5-tuples (as s is 32-bit) which can be explored by varying
s exhaustively or randomly, but there is no guarantee that a
valid s can be found for any given 4-tuple - we might look
at all 232 tuples and find none which are maximum period.
For a given n, there exist ϕ(2n − 1)/n distinct degree-n
primitive polynomials, where ϕ(.) is Euler’s totient function.
Given there are 2n possible polynomials (including those of
degree less than n), this means the probability of a random

3Synthesis tools can extract the shifters from the output of “PrintConnec-
tions”, but take a long time for large n.
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Fig. 4. Expected number of primitive generators for increase generator state
size.

polynomial being primitive is:

ϕ(2n − 1)2−n−1 (3)

While the algorithm may generate 232 candidates, there is
no guarantee that the candidates all have distinct random
polynomials. Assuming each candidate samples represents a
random sample from the set of 2n possible polynomials, the
expected number of distinct candidate polynomials is:

2n

(
1−

[
2n − 1

2n

]232)
> 0.6 min(2n, 232) (4)

The expected primitive generators per 4-tuple is then simply
the probability of any polynomial being primitive times the
expected number of distinct polynomials in the 4-tuple’s
candidate set.

Figure 4 shows the number of expected primitive generators
for a given n, within both the LUT-SR candidate set and the
set of all possible n × n transition matrices. For n < 32
the number of generators is limited by the small number of
possible polynomials, and many values of s will lead to the
same polynomial. As n exceeds 32, the number of possible
primitive polynomials increases greatly, but the number in the
candidate set slowly decreases. 4 However, the rate of decline
is slow enough that there are plenty of candidates in the set:
when n = 103 there are over a million primitive candidates,
and when n = 104 there are still hundreds of thousands.

Having established there are plenty of primitive generators
within the candidate set, the problem is now how to find
them, i.e. to implement Stage 2 of the process described in
Section II-A. Practically, this means we must check whether
a given concrete 5-tuple has a primitive characteristic poly-
nomial. One approach is to build the set of feed-back taps
using the LUT-SR algorithm and use them to create the matrix
A, from which we can then extract the characteristic polyno-
mial. However, calculating the characteristic polynomial of an
arbitrary matrix is an O(n3) operation, so for large n this
becomes impractical given the need to check thousands of
random matrices.

4The trend continues in the same way beyond n = 1000, but is not shown
to simplify the graph.

http://www.doc.ic.ac.uk/~dt10/research/rngs-fpga-lut_sr.html
http://www.doc.ic.ac.uk/~dt10/research/rngs-fpga-lut_sr.html
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Instead of using the matrix form, it is more efficient to
extract the characteristic polynomial from the output sequence.
After building the candidate generator, the generator is put
into an arbitrary non-zero state and the “Step” function is
used to generate a sequence of 2n consecutive outputs. The
Berlekamp-Massey algorithm is then used to extract the min-
imal polynomial from this sequence - while there are some
differences between the minimal and characteristic polyno-
mial, for the purposes of testing whether a given generator
is maximum period they can be used in the same way.

For the generator to be full-period the characteristic P (z)
must be a degree-n primitive polynomial. Primitive poly-
nomials must be irreducible, that is they should not factor
into smaller polynomials (a similar concept to primality for
integers). If 2n− 1 is a Mersenne prime, then irreducibility is
sufficient to prove primitivity. However, if 2n−1 is composite,
then it is also necessary to show for all prime factors f of
2n−1 that P (z)(2

n−1)/f 6= P (z). This places limits on which
specific values of n can be chosen: if the factorisation of 2n−1
is not currently known, then it cannot be used to create a
maximum period generator.

The process for testing whether a given 5-tuple is a primitive
generator then becomes:

1) Expand the 5-tuple into the set of feedback taps.
2) Choose a random starting state, and generate a sequence

of 2n successive outputs from the generator.
3) Use the Berlekamp-Massey algorithm to extract the

minimal polynomial P (z) from the sequence.
4) If P (z) has degree less than n then reject.
5) If P (z) is reducible, then reject.
6) For each prime factor f of 2n − 1, if P (z)(2

n−1)/f =
P (z) then reject.

7) The polynomial is primitive, so accept.
Any 5-tuple which completes this process has a known maxi-
mum period of 2n−1, so now we need to select the best from
amongst this set.

VI. QUALITY SELECTION PROCESS

The quality criterion we use to select the best value of s
is based on equidistribution (see Section II-A). If a generator
is (d, l)-distributed, then it is also (d − 1, l)-distributed and
(d, l − 1)-distributed, where d ≥ 1 and l ≥ 1. The maximum
dimension to which a generator is distributed to l-bits is dl,
with an upper bound of d∗l = bn/lc. This leads to two common
quality measures [3] based on the dimension gap δl = d∗l −dl:

∆1 =

r∑
i=1

δl, ∆∞ = max
i=1..r

δl (5)

When a generator has ∆1 = ∆∞ = 0 it is maximally equidis-
tributed, as it has achieved the best possible equidistribution
for any generator with the same n and r.

However, these metrics suffer from problems due to the
reliance on absolute dimension differences. For example, if
n = 64 then the dimension gap δ2 = 1 means that the
generator achieved a dimension of 31 rather than 32, but
the same size gap at δ32 = 1 means that the generator
has a dimension of 1 rather than 2. The first gap is not

that significant, but the second gap means the quality has
effectively halved, making it difficult to use dimension gaps
to compare generators with the same n. Similarly, one cannot
easily compare generators with different n: a value of ∆∞ = 1
is very good for a generator with n = 19937, but is very bad
for a generator with n = 32.

The metric we used when selecting from amongst the
maximum period generators found is a metric called Q:

Ql = l

√√√√i=l∏
i=1

dl
d∗l

(6)

This metric produces a value in the range (0, 1], with Qr =
1 occurring only for maximally equidistributed generators. It
also takes into account relative changes in dimension: for {n =
64, r = 32,∆1 = 1}, if δ2 = 1 then Q32 = 0.999, while if
δ32 = 1 then Q32 = 0.978, making it clear which one is better.

There are two main ways of calculating equidistribution,
either by using lattice reductions in terms of the output
sequence [7], or by using matrix operations on the state se-
quence [3]. The lattice methods are often faster for evaluating
software generators, as they work well when r � n, and
the software generators are able to generate output samples
efficiently. However, generating samples from a generator op-
timised for hardware is relatively slow due to the complicated
bit-wise recurrence, while the larger r values reduce efficiency.

The matrix based methods operate by creating a matrix
which relates the dl bits of the d-tuple to the current state
of the generator. The tuple we are measuring is:

ei,d,l = (yi,1..l,yi+1,1..l, ...,yi+d,1..l) (7)

= (SlBxi,SlBAxi,SlBA2xi, ...,SlBAd−1xi) (8)

where Sl is an l × n matrix containing the first l rows of the
identity matrix. A dl × n matrix E can be constructed which
maps the bits of xi to the dl bits of ei:

Ed,l =
[
(SlB)T (SlBA)T ... (SlBAd−1)T

]T
(9)

If and only if the matrix Ed,l has full-rank then the generator
is (d, l)-distributed.

In principle the matrix-based method requires O(n4) time,
due to the need to perform O(n) matrix multiplications, but in
practise A is extremely sparse for LUT-SR generators, so the
matrix-multiply cost is O(n2) and the actual cost of forming
Ed,l is effectively O(n3). The matrix rank calculation can also
be performed progressively, so the echelon form of Ed,l can
be used as the starting point for echelonising Ed+1,l, allowing
dl to be iteratively determined starting from dimension 1.

The generator search and equidistribution calculations were
performed using a combination of NTL [11] and M4RI [12]
for dense matrix and polynomial operations; a customised
version of PPSearch [13] for primitivity testing; a custom
sparse-matrix library optimised for random number generator
operations; and a custom progressive rank library for equidis-
tribution calculations.
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n r t = 3 t = 4 t = 5 t = 6
1024 32 1a5eb 1562cd6 1c48 2999b26
1280 40 c51b5 4ffa6a 3453f 171013
1536 48 76010 c2dc4a 4b2be0 811a15
1788 56 a2aae 23f5fd 1dde4b 129b8
2048 64 5f81cb 456881 bfbaac 21955e
2556 80 755bac 7454a5 8a0c78 cc7516
3060 96 79e56 9a7cd 41a62 1603e
3540 112 78d9df 7737bf 870295 b850c9
3900 128 10023 197bf8 cc71 14959e
5064 160 42f017 3d31e4 43c621 51249a
5064 192 48a92 439d3 4637 577ce
6120 224 3e2834 3ca4af 401dfd 42d8f2
8033 256 437c26 439995 43664f 427ba2
11213 384 a6847 92228 a4afa afd67
19937 624 209eb 2e5fa 2fffb 25c7d

TABLE I
TABLES OF s FOR RNGS OF FORM (n, r, t, k = 32, s).

VII. TABLES OF LUT-SR GENERATORS

Table I provides a list of generator tuples for a variety of
useful parametrisations. To provide maximum real-world ben-
efit, we have chosen to examine the situation where k = 32.
This works well in modern FPGAs, requiring one LUT per
shift-register, and means that each generator needs 2r LUTs
and r FFs. Using the shift-register output directly frees up the
associated FF, but reduces clock rate slightly. For maximum
speed the final output of the shift-register can be placed in a FF,
increasing the resource usage to 2r LUT-FFs, while allowing
600MHz+ performance in Virtex-6 without any manual tuning.

We choose n ∼ rk, as this means that the period increases
with the number of output bits, and results in a similar equidis-
tribution, even when large numbers of bits are generated per
cycle. Note that because we need to know the factorisation of
2n − 1 (see Section V) we cannot choose n = rk when rk
becomes large, so instead choose the closest pair for which
the factorisation is known.

Input taps for t = 3..6 are considered, as it may be
preferable to use more or less taps depending on the situation.
For example, a Virtex-4 generator could be implemented using
t = 3 and two SRL16s per shift-register, or an RNG that
doesn’t need to be explicitly seeded could be implemented
using t = 6 in a Virtex-6. In general t = 5 is recommended, as
this provides a high-level of state mixing, while still allowing
an efficient implementation in modern architectures.

The generators listed in the table have been tested us-
ing the Crush and BigCrush empirical test batteries from
the TestU01 package [9]. These batteries perform extremely
stringent statistical tests, and the LUT-SR generators pass
all of them convincingly, except the matrix rank and linear
complexity tests. This is a known problem with all binary
linear generators, including the Mersenne Twister, WELL,
LFSRs, and Combined Tausworthe generators, all of which
will fail such tests. However, in practise these specific flaws
rarely affect simulations: the Mersenne Twister has been used
in thousands of applications without problems, so the same
should be true of the LUT-SR generators.

Generator Failed
n r w(Pz)

n
RAM LUT FF r

LUTTests
TAUS-113 [3] 6 113 32 0.43 0 87 208 0.37
TT-800 [14] 14 800 32 0.33 2 162 162 0.26
MT-19937 [15] 2 19937 32 0.01 2 278 - 0.12
WELL-19937 [16] 2 19937 32 0.43 4 633 537 0.05
LFSR-160 [1] 13 160 32 0.03 0 448 384 0.07
LUT-OPT [1] 4 1024 1024 0.23 0 1024 1024 1.00
LUT-FIFO [2] 2 11213 521 0.50 1 539 611 0.97
LUT-SR (t=5) 4 1024 32 0.45 0 64 64 0.50
LUT-SR (t=5) 2 19937 624 0.50 0 1248 1248 0.50

TABLE II
COMPARISON OF GENERATORS BY QUALITY AND RESOURCE USAGE.

VIII. EVALUATION OF LUT-SR GENERATORS

Table II provides a comparison of a number of random
number generators suggested for FPGAs. The TAUS-113 [3],
TT-800 [14], MT-19937 (Mersenne Twister) [15], and WELL-
19937 [16] generators are all software generators ported to
hardware, while the LUT-OPT [1], LUT-FIFO [2], and LUT-
SR are all designed specifically for FPGAs. The LFSR-160
uses 32 bit-wide LFSRs in parallel, which has an efficient
implementation in both hardware and software.

The table includes three quality metrics: “Failed Tests” is
the number of tests from the BigCrush battery that are failed;
“n” gives the period of the generators; and w(Pz)/n is the
ratio of ones to zeros in the characteristic polynomial. All else
being equal, larger n implies higher quality, while w(Pz)/n
should be relatively close to 0.5, but these are only relative
metrics which are difficult to interpret on an absolute scale.

The number of tests failed in BigCrush is a more useful
absolute metric of quality, as the tests detect specific quality
problems in the generator. TT-800 and LFSR-160 do particu-
larly badly, failing multiple tests, including those which do not
depend on the linear structure of the generator – that is, non-
randomness beyond that required by the generation method.
All the other methods only fail the Linear-Complexity and
Matrix-Rank tests, with the difference in numbers of failures
due to the differences in periods: BigCrush uses a number
of different parametrisations of the tests, and longer period
generators are able to pass tests that look for predictable linear
complexity in smaller sub-sequences.

Figure 5 compares the equidistribution of the different
generators over the first 32 bits. Looking at the long period
generators, WELL-19937 and LUT-SR-19937 have effectively
the same equidistribution, although LUT-SR-19937 does not
quite achieve the Maximally Equidistributed property – it
achieves ∆∞ = 1 and ∆1 = 3 over the first 32 MSBs; con-
sidering greater resolutions, δ4 = δ8 = δ15 = δ66 = δ89 = 1,
and for the first 128 bits we have ∆∞ = 1 and ∆1 = 5. This
equidistribution is considerable better than MT-19937, which
develops large enough dimension gaps at 16 bits to drop to
the quality of the much lower period LUT-FIFO-11213.

In the lower-period group, the LUT-OPT-1024 generator
doesn’t quite achieve the ME property but still has ∆∞ = 1
over the first 32 bits, while the LUT-SR-1024 generator does
not do as well. For the first 10 bits it is ME, but then develops
a small dimension gap at 10 bits followed by a steeper drop at
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Fig. 5. Number of equidistributed dimensions (quality) for increasing
resolution (number of MSBs).

15 bits. However, it is distributed to 22 dimensions at 32-bit
resolution, an order of magnitude more than TAUS-113.

The FPGA-optimised generators all provide the best per-
formance in terms of quality vs resources: amongst the lower
period generators the LUT-OPT generator uses the absolute
minimum resources of one LUT per generated bit, but unless
one wishes to use all 1024 generated bits it is far less efficient
than the LUT-SR-1024; the LUT-FIFO generator can provide
very long periods to match those of the Mersenne Twister, but
requires the use of a block RAM; and now the new LUT-SR
generator provides a useful mid-point between the two, with
a good balance between resource utilisation and good quality.

The software RNGs provide the best equidistribution, but it
is difficult to justify the small improvement in quality over the
LUT-SR RNGs given the cost in resources; the WELL-19937
generator requires four block-RAMs to remove a dimension
gap of ∆1 = 3, and only achieves 1/19th of the throughput.
The ability to customise the number of generated bits is also
a particular advantage in FPGA applications, as it is rare that
precisely 32-bits are needed.

In terms of performance, all the FPGA-optimised generators
are also intrinsically fast: both the LUT-OPT and LUT-SR
generators have a LUT-FF-LUT critical path, and provide post-
place-and-route clock rates of 600MHz+ in Virtex-6 without
any optimisation, even for large values of r. The LUT-FIFO
generators are typically limited by the clock rate of the block-
RAM providing the FIFOs, and so can achieve 550MHz+.

IX. CONCLUSION

This paper presents a family of FPGA-optimised uniform
random number generators, called LUT-SR RNGs. These
RNGs takes advantage of the ability to configure LUTs as
independent shift-registers, allowing high-quality long period
generators to be implemented using only a small amount of
logic. In addition the period and quality scale with the number
of output bits, unlike generators adapted from software.

A key advantage of the LUT-SR generators over previous
FPGA-optimised uniform random number generators is that

they can be reconstructed using a simple algorithm, contained
in the paper. In concert with the tables of maximum period
generators, this allows FPGA engineers to use the new RNGs
without needing to find generator instances themselves.
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