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Abstract

In this paper, we investigate the problem of nonlinearity (and non-convexity) typically associated with linear state-feedback pa-
rameterizations in the Robust Model Predictive Control (RMPC) for uncertain systems. In particular, we propose two tractable
approaches to compute an RMPC controller - consisting of both a causal, state-feedback gain and a control-perturbation com-
ponent - for linear, discrete-time systems involving bounded disturbances and norm-bounded structured model-uncertainties
along with hard constraints on the input and state. Both the state-feedback gain and the control-perturbation are explicitly
considered as decision variables in the online optimization while avoiding nonlinearity and non-convexity in the formulation.
The proposed RMPC controller - computed through LMI optimizations - is responsible for steering the uncertain system state
to a terminal invariant set. Numerical examples from the literature demonstrate the advantages of the proposed scheme.
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1 Introduction

Robust Model Predictive Control (RMPC) strategies
have received considerable amount of attention over the
past decade. These refer to a class of algorithms which
involve optimization to compute control action whilst
taking account of system uncertainty/disturbances [9].

Most of the RMPC schemes proposed in the literature
can be classified into two categories (or their combina-
tions/variations): open-loop MPC and feedback MPC.
Open-loop schemes consider the future input profile
as a function of the current state only which, though
computationally efficient, is generally too conservative
and may cause infeasibility [9]. On the other hand,
feedback RMPC schemes consider future inputs as
(linear/nonlinear) functions of future predicted states
and, therefore, have the advantage of mitigating the
effect of uncertainties while potentially avoiding the
aforementioned infeasibility problems. Within this cat-
egory, nonlinear feedback schemes (see e.g. [12]) enjoy
reduced conservatism; however, their main drawback is
the excessive online computational burden due to the
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combinatorial nature of the optimization. Therefore,
much of the research has been focused towards linear
state-feedback RMPC schemes which we discuss next.

To reduce conservatism, a desirable approach in linear
state-feedback RMPC is to directly consider the feed-
back gains as decision variables in the online optimiza-
tion. However, as noted in [4], the problem with this
approach is that formulating such an RMPC problem
in the standard way leads to sequences of predicted
states and inputs which are nonlinear functions of the
state-feedback gains. Therefore, the resulting problem
becomes non-convex. A solution to this problem has been
proposed in [14] where the state-feedback gains are com-
puted through sequential online optimization based, in
part, on the principles of Dynamic Programming. The
same approach has been extended, in [15], to systems
with scalar uncertainties in their dynamics. The alter-
native approach involves the use of Q-parameterization-
like methods - sometimes also called Youla parameteri-
zation - to obtain convexity [17]. The application of such
methods in the context of min-max RMPC was intro-
duced in [7]. These results were extended in [4], where
the authors showed that for systems involving bounded
disturbances, under suitable assumptions, affine state-
feedback becomes equivalent to a disturbance-feedback
parametrization. Recently, a similar method - based on
Q-parameterization - has been proposed in the context
of RMPC for systems with stochastic disturbances [13].



In much of the work described above, the focus has
been on systems that involve only disturbances/noise
or simple scalar uncertainties. However, as we show
in Section 2, in the presence of both general model-
uncertainties and disturbances (along with state/input
constraints), even the state-feedback RMPC formula-
tion employing the aforementionedQ-parameterization-
like methods results in nonlinearities and non-convexity.
This problem is the main focus of this paper. In particu-
lar, we propose two approaches - for systems affected by
norm-bounded structured uncertainties as well as dis-
turbances - which both circumvent the aforementioned
nonlinearity to yield a state-feedback RMPC scheme
based on convex LMI optimizations. The first approach
consists of recasting the disturbance as an uncertainty,
followed by relaxing the problem using the S-procedure
and subsequently using a slack-variable method. In the
second approach - which can be considered to be a ‘dual’
of the first - we re-parameterize the model-uncertainty
as a polytopic disturbance to obtain convexity.

This paper is organized as follows. Section 2 provides a
description of the system, formulates the general causal
RMPC problem subject to uncertainties/disturbances
and highlights the associated nonlinearities and compu-
tational intractability. In Section 3, we provide an in-
depth analysis of the nature of the nonlinearity and sub-
sequently propose an LMI optimization solution based
on the use of a slack-variable procedure with system dis-
turbance recast as an uncertainty (approach 1). In Sec-
tion 4, we provide an alternative solution to the RMPC
problem based on the re-parameterization of the uncer-
tainty as a disturbance (approach 2). In Section 5, we
illustrate the effectiveness of our algorithms through ex-
amples from the literature. We conclude in Section 6.

Notation and background material: The notation
we use is fairly standard. R denotes the set of real num-
bers, Rn denotes the space of n-dimensional (column)
vectors whose entries are inR,Rn×m denotes the space of
all n×mmatrices whose entries are in R and D

n denotes
the space of diagonal matrices in R

n×n. For A ∈ R
n×m,

AT denotes the transpose of A. If A ∈ R
n×n is sym-

metric, λ(A) denotes the smallest eigenvalue of A and
we write A � 0 if λ(A) ≥ 0 and A � 0 if λ(A) > 0.
Analogous definitions apply to λ(A), A � 0 and A ≺ 0.

We define the norm of A ∈ R
n×m as ‖A‖ =

√
λ(AAT ).

For x, y ∈ R
n, x < y (and similarly ≤, > and ≥) is in-

terpreted element-wise. The identity matrix is denoted
by I with the dimension inferred from the context. Let
z ∈ R

n and denote the i-th element of z by zi. Then,
diag(z) is the diagonal matrix whose (i, i) entry is zi. For
square matrices A1, . . . , Am, diag(A1, . . . , Am) denotes
a block diagonal matrix whose i-th diagonal block is Ai.
The symbol ei denotes the ith column of an appropriate
identity matrix. If U ⊆ R

p×q is a set, then operator B is
such that BU denotes the unit ball of U . For matrices
A and B, A⊗B denotes the Kronecker product.

In the formulation, we make use of the Schur comple-
ment argument. This refers to the result that if A=AT

and C = CT � 0 then

[
A B

BT C

]
� 0 if and only if

A − BC−1BT � 0. To deal with norm-bounded struc-
tured uncertainties (usually having repeated and/or full
blocks on the diagonal entries), we use the following
lemma based on the results in [2].

Lemma 1 Let R = RT , F, E,H be real matrices of ap-

propriate dimensions. Let Δ̂ be a linear subspace and
define the associated linear subspace

Ψ̂ = {(S, T,G) : S = ST � 0, T = TT �0, SΔ=ΔT,

ΔG+GTΔT=0, ∀Δ∈Δ̂}.

Then,R+FΔ(I−HΔ)−1E+ET (I−ΔTHT )−1ΔTFT �0

and det(I −HΔ) 
= 0 for every Δ ∈ BΔ̂ if there exists

a triple (S, T,G) ∈ Ψ̂ such that⎡⎢⎢⎣
R ET + FGT FS

� T +HGT +GHT HS

� � S

⎤⎥⎥⎦ � 0 (1)

where � denotes a term easily inferred from symmetry.

Finally, we refer to the S-procedure which is used to
derive simple sufficient LMI conditions (occasionally
necessary and sufficient) for the non-negativity or non-
positivity of a quadratic function on a set described by
quadratic inequality constraints [3,8].

2 Robust MPC problem

In this section, we give a description of the system and
the constraints followed by the cost function.We also de-
rive an algebraic formulation of the causal RMPC prob-
lem and highlight the associated nonlinearities.

2.1 System Description and Constraints

We consider the following linear discrete-time uncertain
system, see e.g. [5],⎡⎢⎢⎢⎢⎢⎣
xk+1

qk

fk

zk

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
A Bu Bw Bp

Cq Dqu Dqw 0

Cf Dfu Dfw Dfp

Cz Dzu Dzw Dzp

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
xk

uk

wk

pk

⎤⎥⎥⎥⎥⎥⎦, pk=Δqk,

⎡⎢⎢⎣
qN

fN

zN

⎤⎥⎥⎦ =

⎡⎢⎢⎣
Ĉq 0

Ĉf D̂fp

Ĉz D̂zp

⎤⎥⎥⎦
[
xN

pN

]
, pN = ΔqN

(2)
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where Δ ∈ BΔ. Furthermore, xk ∈ R
n, uk ∈ R

nu ,
wk ∈ R

nw , fk ∈ R
nf , zk ∈ R

nz , pk ∈ R
np and qk ∈ R

nq

are the state, input, disturbance, constrained signal, cost
signal and input and output uncertainty vectors, respec-
tively, at prediction step k; all other symbols denote
the appropriate distribution matrices. We assume that
the pair (A,Bu) is stabilizable. The state xk is assumed
measured and prediction step k belongs to the time set
TN = {0, 1, · · · , N − 1} where N > 0 is the prediction
horizon. We consider a disturbance of the form

wk ∈ Wk :=
{
w ∈ R

nw : −dk ≤ w ≤ dk

}
(3)

where dk > 0, k ∈ TN are given. Furthermore, we con-
sider a norm-bounded structured uncertainty Δ ∈ BΔ
where Δ ⊆ R

np×nq is a structured subspace. Note that
we allow uncertainties in all the problem data in (2).

It is required, for all k ∈ TN , to find uk such that the
future constrained outputs satisfy fk ≤ f̄k, fN ≤ f̄N for
all wk ∈ Wk and Δ ∈ BΔ , and the cost function

J = max
wk∈Wk, Δ∈BΔ

N∑
k=0

(zk − zk)
T (zk − zk)

is minimized, where zk, k ∈ TN , representing a reference
trajectory, is given. Note that fk may be chosen to rep-
resent polytopic constraints on state, output and input.

2.2 Algebraic formulation

As part of our first approach, in order to help linearize
the RMPC problem and simplify the presentation, we
propose to re-parameterize the disturbance as uncer-
tainty by writing Wk in (3) as Wk={Δw

k dk : Δw
k ∈Δw}

where Δw is a structured subspace.

Combining the disturbance and uncertainty yields the
state dynamics in (2) - but without the entries corre-
sponding to wk - with the re-definitions, for all k ∈ TN

Bp := [Bp Bw], Δk := diag(Δ,Δw
k ),

qk :=

[
qk

dk

]
=

[
Cq

0

]
︸ ︷︷ ︸
Cq

xk +

[
Dqu

0

]
︸ ︷︷ ︸

Dqu

uk +

[
0

dk

]
︸ ︷︷ ︸
dk

· (4)

Let ξ stand for f, f , p, q, z or z, and define vectors
x = [xT

1 · · ·xT
N ]T∈ R

Nn , u = [uT
0 · · ·uT

N−1]
T∈ R

Nu and

ξ = [ξT1 · · · ξTN ]T∈RNξ , whereNn = n×N ,Nu = nu×N
and Nξ = nξ× (N+1). Then, by iterating the dynamics

in (2), with re-definitions in (4), it can be verified that

⎡⎢⎢⎢⎢⎢⎣
x

q

f

z

⎤⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎣
A 0 Bp Bu

Cq I Dqp Dqu

Cf 0 Dfp Dfu

Cz 0 Dzp Dzu

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
x0

d

p

u

⎤⎥⎥⎥⎥⎥⎦ , d=

⎡⎢⎢⎢⎣
d0
...

dN−1

⎤⎥⎥⎥⎦ (5)

where p = Δq, with Δ ∈ BΔ̂,

Δ̂ :={diag(Δ,Δw
0 , . . . ,Δ,Δw

N−1,Δ):Δ ∈ Δ,Δw
k ∈Δw}

and where all the matrices in (5) can easily be computed
by iterating the dynamics in (2).

As mentioned above, we consider a causal state-feedback
structure on the RMPC controller (that is, ui depends
only on xj , j = 0, . . . , i, see e.g. [13]). Therefore, we set

u=K0x0+Kx+v (6)

where K0 ∈ R
Nu×n, K ∈ R

Nu×Nn are the current and
future state-feedback gain matrices and v ∈ R

Nu is the
control-perturbation sequence, and where causality is
captured by the constraint that the matrix [K0 K ] is
block lower triangular (with nu × n blocks). We denote
structures of K0, K, v as K0, K and υ, respectively.

Remark 2 Note that the state dynamics in (2) can be
written as xk+1 =(A+BpΔCq)xk+(Bu+BpΔDqu)uk+
(Bw+BpΔDqw)wk. Hence, we allow uncertainty in all
parts of the dynamics as well as in the cost and con-
straints. Furthermore, the proposed control structure (6)
provides flexibility in that the designer may choose to
use any combination of the three control terms (for ei-
ther feedback or open-loop RMPC control). Therefore,
the RMPC algorithms proposed in this paper can be read-
ily applied to a broad class of systems.

Substituting the expression of x in (5) into (6) yields the
following expression for u

u=K̂0x0+K̂Bpp+v̂, (7)

where [K̂0 K̂ v̂] := (I−KBu)
−1[K0 K v+KAx0].

Note that u is affine in the new variables (K̂0, K̂, v̂) which
have the same structure as (K0,K, v), and which in turn
can be recovered as

[K0 K v ] := (I + K̂Bu)
−1[ K̂0 K̂ v̂−K̂Ax0 ]
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Eliminating u from (5) using (7) gives⎡⎢⎢⎣
q

f

z−z

⎤⎥⎥⎦=
⎡⎢⎢⎣
DK̂

qp DK̂0,v̂
q0

DK̂
fp DK̂0,v̂

f0

DK̂
zp DK̂0,v̂

z0

⎤⎥⎥⎦
[
p

1

]
(8)

⎡⎢⎢⎣
DK̂

qp DK̂0,v̂
q0

DK̂
fp DK̂0,v̂

f0

DK̂
zp DK̂0,v̂

z0

⎤⎥⎥⎦:=
⎡⎢⎢⎣
Dqp+DquK̂Bp Dquv̂+(Cq+DquK̂0)x0+d

Dfp+DfuK̂Bp Dfuv̂+(Cf+DfuK̂0)x0

Dzp+DzuK̂Bp Dzuv̂+(Cz+DzuK̂0)x0−z

⎤⎥⎥⎦
where z denotes the stacked reference trajectory. Finally,
eliminating p using p = Δq, gives the constraint and cost
function signals as [fT (z − z)T ]T =⎡⎢⎣DK̂

fpΔ(I−DK̂
qpΔ)−1DK̂0,v̂

q0 +DK̂0,v̂
f0

DK̂
zpΔ(I−DK̂

qpΔ)−1DK̂0,v̂
q0 +DK̂0,v̂

z0

⎤⎥⎦=:

⎡⎢⎣DK̂0,K̂,v̂,Δ
f0

DK̂0,K̂,v̂,Δ
z0

⎤⎥⎦·

2.3 Minmax formulation

We now formulate the RMPC problem and investigate
the associated nonlinearities. Note that the constraint
and cost function can respectively be written as

f(K̂0, K̂, v̂,Δ)=DK̂0,K̂,v̂,Δ
f0 (9)

fc(K̂0, K̂, v̂,Δ)= (DK̂0,K̂,v̂,Δ
z0 )T (DK̂0,K̂,v̂,Δ

z0 ). (10)

Using (9), define the set of all feasible control variables

U={(K̂0, K̂, v̂) : eTi DK̂0,K̂,v̂,Δ
f0 ≤eTi f̄ , ∀i∈Nf , ∀Δ}. (11)

with Nf ={1, . . . , Nf}. The RMPC problem is to find

φ = min
(K̂0,K̂,v̂) ∈U

max
Δ ∈BΔ

fc(K̂0, K̂, v̂,Δ) (12)

and a feasible triple (K̂0, K̂, v̂) that achieves the mini-
mum. Since the problem is nonconvex, we use a relax-
ation procedure based on Lemma 1 to minimize an up-
per bound on the cost function as shown next.

2.4 A semidefinite relaxation of the RMPC problem

The next result uses Lemma 1 to derive sufficient condi-
tions for (K̂0, K̂, v̂)∈U and an upper bound, call it f c,
on the cost function in (12).

Theorem 3 Let all variables be as defined above. Then,
fc(K̂0, K̂, v̂,Δ) ≤ f c and (K̂0, K̂, v̂) ∈ U for all Δ ∈

BΔ̂, if there exist solutions (S, T,G), (Si, Ti, Gi) ∈ Ψ̂,
∀i ∈ Nf , to the following matrix inequalities⎡⎢⎢⎢⎢⎢⎣

I DK̂0,v̂
z0 DK̂

zpG
T DK̂

zpS

� f c (DK̂0,v̂
q0 )T 0

� � T+DK̂
qpG

T +G(DK̂
qp)

T DK̂
qpS

� � � S

⎤⎥⎥⎥⎥⎥⎦�0 (13)

⎡⎢⎢⎢⎢⎣
eTi (f−DK̂0,v̂

f0 ) −(DK̂0,v̂
q0 )T+ 1

2e
T
i DK̂

fpG
T
i

1
2e

T
i DK̂

fpSi

� Ti+DK̂
qpG

T
i +Gi(DK̂

qp)
T DK̂

qpSi

� � Si

⎤⎥⎥⎥⎥⎦�0

(14)
PROOF. Using the definitions above, the constraints
in (11) can be rearranged in the form, ∀i ∈ Nf ,

Ri+FiΔ(I−HΔ)−1E+ET (I−ΔTHT )−1ΔTFT
i �0, (15)⎡⎣Ri Fi

E H

⎤⎦ :=

⎡⎣ eTi (f −DK̂0,v̂
f0 ) 1

2e
T
i DK̂

fp

−DK̂0,v̂
q0 DK̂

qp

⎤⎦·
Using Lemma 1 on (15) yields the inequality (14).

Next, we consider the cost function. Let f c be an upper
bound on the cost such that

fc(K̂0, K̂, v̂,Δ) ≤ f c. (16)

Using (10), as well as a Schur complement argument on
(16) yields the equivalent requirement⎡⎣ I DK̂0,K̂,v̂,Δ

z0

� f c

⎤⎦�0. (17)

Then, using the definition for DK̂0,K̂,v̂,Δ
z0 , the matrix in-

equality (17) can be written in the form

R0+F0Δ(I−HΔ)−1E0+E
T
0 (I−ΔTHT )−1ΔTFT

0 �0, (18)

⎡⎣R0 F0

E0 H

⎤⎦ :=

⎡⎢⎢⎣
I DK̂0,v̂

z0 DK̂
zp

(DK̂0,v̂
z0 )T f c 0

0 DK̂0,v̂
q0 DK̂

qp

⎤⎥⎥⎦·
An application of Lemma 1 on (18) yields (13). �

Theorem 3 then defines an upper-bound on φ in (12) as

φ̄=min{f c : (K̂0, K̂, v̂)∈(K0,K, υ), (S, T,G), (Si, Ti, Gi)

∈Ψ̂, i∈Nf s.t. (13), (14) are satisfied}. (19)
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We will call a triple (K̂0, K̂, v̂) achieving the bound
in (19) an optimal control law for the relaxed Robust
MPC (RRMPC) problem. Note that the RRMPC prob-

lem (19) is nonlinear in K̂ - while being linear in K̂0

and v̂. Furthermore, the terms involving K̂ are diffused
throughout the matrix inequalities of (19) (i.e. (13),
(14)). Therefore, the optimal solution requires the use
of nonlinear optimization techniques. It can be verified
that, in the existing form, the nonlinearity can only be
avoided if K is fixed or in the limiting case when the
system has no model uncertainty and is subject only to
disturbances (see Remark 4). We next propose our first
approach to remedy this nonlinearity and hence trans-
form the RRMPC problem into an LMI optimization.

Remark 4 When the system is subject only to addi-
tive disturbance (and no model-uncertainty), the matrix
inequalities (13), (14) become linear. To see this, note
that for this case, Cq, Dqu become zero and therefore,

DK̂
qp = Dqp and DK̂0,v̂

q0 = Cqx0 + d in (8). The vari-
ables G, Gi also become zero since Δ is now diagonal.
Furthermore, S = T and Si = Ti. Then, effecting the
congruence transformation diag(I, I, S−1, S−1) on (13),
and considering S−1 as a variable, renders (13) linear in

K̂. A similar procedure can be adopted to linearize (14).

Remark 5 It is worth mentioning here that a simple
procedure for linearizing the inequalities (13) and (14) is
to set S = Si = λINp

, T = Ti = λINq
and G = Gi = 0,

∀i, for a variable λ ∈ R, and subsequently take λK̂ as the
variable. Though this may be attractive from a computa-
tional point of view, the problem is the excessive conser-
vativeness potentially associated with such a restriction
which, in turn, may render the problem infeasible (see
also the numerical example in Section 5.1).

3 A linearization procedure for the RRMPC
problem - Approach 1

As can be seen from (13) and (14) (which follow from

(1)), the terms that include K̂ have the form K̂BpX
where X stands for S, Si, G, Gi, i ∈ Nf . To deal with
this issue, in Section 3.1 we propose to extend Lemma 1
by introducing slack variables that will allow us to keep
only one term in the form K̂BpS0, for a free S0 and for
all the matrix inequalities, without excessive loss of the
degrees of freedom. Then, in Section 3.2, we propose
to treat K(:= K̂BpS0) as one decision variable of the
optimization, thus linearizing the problem, and allowing
us to extract the desired variable K̂ from K.

3.1 An extended S-procedure

In this section, We propose an extended version of
Lemma 1 using an approach similar to that used in e.g.
[1]. This will enable us to give equivalent necessary and

sufficient conditions for (1) in a form that allows us to

separate the terms multiplying K̂ from other variables.

Theorem 6 Let all variables be as defined in Lemma 1.
Then the following two statements are equivalent:

(i) There exist (S, T,G) ∈ Ψ̂ such that (1) is satisfied.

(ii) There exist (S, T,G) ∈ Ψ̂, Y = Y T , S0 andG0 such

that (S0, T,G0) ∈ Ψ̂0 ⊇ Ψ̂ and L1 :=⎡⎢⎢⎢⎢⎢⎢⎢⎣

R ET FS0 −FGT
0

� T+Y HS0−R0 −HGT
0 +Y0

� � S0+ST
0 −S −GT

0 −RT
0 +GT

� � � Y0+Y T
0 −Y

⎤⎥⎥⎥⎥⎥⎥⎥⎦
�0,

P :=

[
S −GT

−G Y

]
� 0.

If S0, G0, R0 or Y0 are constrained, then (ii)→(i).

PROOF. Note first that, for any Y = Y T , we have

(1)⇔
[
R ET

E T + Y

]
−
[
F 0

H I

][
S −GT

−G Y

][
FT HT

0 I

]
�0 (20)

• (ii) → (i): Taking a Schur complement on (20) yields

(1) ⇔ L2 :=

⎡⎢⎢⎣
[
R ET

� T+Y

] [
F 0

H I

]
� P−1

⎤⎥⎥⎦�0. (21)

Define

P0 =

[
S0 −GT

0

−R0 Y0

]
·

Then, the following identity can be verified

PT
0 P−1P0=PT

0 +P0−P+(PT
0 −P )P−1(P0−P ). (22)

Effecting the congruence transformation diag(I, P0)
on L2, followed by the use of identity (22) shows that

L1+

[
0

I

]
(PT

0 −P )P−1(P0−P )
[
0 I

]
�0 ⇒ (1)

since the last term in (22) is nonnegative.
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• (i) → (ii): Since S � 0, there exists Y such that
P � 0, e.g. we can take any Y � GS−1GT . Therefore,
(21) is satisfied. Now let S0 = S and G0 = G so that

(S0, T,G0) ∈ Ψ̂0. Then L1 � 0 from (21). �

Remark 7 Theorem 6 introduces slack variables which
provide extra degrees of freedom to allow a less conserva-
tive change of variables to overcome nonlinearity in (19).

3.2 Final linearized RRMPC problem

By using Theorem 6 on inequalities (15) and (18) (in-
stead of Lemma 1 as above), it can be seen that the non-

linearities now only have the form K̂BpS0 and K̂BpG0

for unconstrained S0 and G0. Furthermore, no other
terms include K̂. It follows that by e.g. restricting S0 ∈
S0 = {λ0I : λ0 ∈ R} and G0 ∈ G0 = {0}, we immedi-

ately ensure linearity by defining λ0K̂ as a new decision
variable. However, the ‘least-conservative’ choice for sets
S0 and G0 is problem dependent and follows from the
fine structure of K̂ and Bp. For the sake of clarity of ex-
position, we we do not go into the details here.

We now propose the following theorem to compute a so-
lution for RRMPC problem through LMI optimization.

Theorem 8 Let everything be as defined above. Then,
(K̂0, K̂, v̂) ∈ U and fc(K̂0, K̂, v̂,Δ) ≤ f c, for all

Δ ∈ BΔ̂, if there exist solutions (S, T,G), (Si, Ti, Gi) ∈
Ψ̂, Y = Y T , Yi = Y T

i , Y0 ∈ R
Nq×Nq , S0 ∈ S0,

G0 ∈ G0, R0 ∈ R
Nq×Np , ∀i ∈ Nf to following LMIs:[

S �

−G Y

]
� 0,

[
Si �

−Gi Yi

]
� 0 (23)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I � � � �

(DK̂0,v̂
z0 )T f c � � �

0 DK̂0,v̂
q0 T+Y � �

(DzpS0+DzuK)T 0 ZT
0 S̃ �

−G0DT
zp 0 Y T

0 −G0DT
qp G̃ Ỹ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�0 (24)

⎡⎢⎢⎢⎢⎢⎣
eTi (f−DK̂0,v̂

f0 ) � � �

−DK̂0,v̂
q0 Ti+Yi � �

1
2 (DfpS0+DfuK)Tei ZT

0 S̃i �

− 1
2G0DT

fpei Y T
0 −G0DT

qp G̃i Ỹi

⎤⎥⎥⎥⎥⎥⎦�0 (25)

where S̃i :=ST
0+S0−Si, G̃i:=−G0−R0+Gi, Ỹi:=Y0+Y

T
0 −

Yi, S̃ :=ST
0+S0−S, G̃:=−G0−R0+G, Ỹ :=Y0+Y

T
0 −Y, Z0:=

DqpS0+DquK−R0 with DK̂0,v̂
q0 ,DK̂0,v̂

f0 and DK̂0,v̂
z0 defined

in (8) and where K := K̂BpS0 (so that K̂, and therefore

K, can be recovered from K).

PROOF. The LMIs (25) and (24), along with (23), re-
sult from the application of Theorem 6 on (15) and (18),
respectively, and the use of definitions given above. �

It follows that the RRMPC control law (K̂0, K̂, v̂) can
now be computed online - by solving the (convex) prob-
lem of minimizing f c subject to the LMI constraints of
Theorem 8 - and subsequently applied in a receding hori-
zon manner. Note that the conservatism introduced due
to the use of S0, G0, R0 and Y0 for all thematrix inequal-
ities is potentially much less than that introduced for the
case when the same (complete) set of variables is used for
all the inequalities (as given in Remark 5). This is also
illustrated through a numerical example (Section 5.1).

Remark 9 In case the considered problem has no feasi-
ble solution, then by noting that (25) is linear in f , an
LMI procedure can be adopted for minimally relaxing the
constraints so that a control law may be computed.

4 Causal RMPC - Approach 2

In this section, we formulate our second, computation-
ally less demanding, solution to overcome the nonlin-
earity in the considered feedback RMPC problem. This
scheme can be considered as a ‘dual’ of Approach 1
(Section 3) in that it involves the re-parameterization
of the uncertainty set as a polytopic set similar to the
disturbance in (3). It is also inspired from some of
the stochastic MPC schemes which, in the interest of
tractability, compute bounds on stochastic disturbances
and therefore approximate chance constraints with hard
constraints (see e.g. [10]). In particular, we propose to
compute hard bounds on uncertainty which helps to
convexify the RMPC problem and enables computation
of optimal K̂0, K̂ and v̂ through an LMI optimization.

Throughout this section, in the interest of clarity of ex-
position, we will make the following notational simplifi-
cations. Instead of f , we will consider the constraints on
state and the input separately. Moreover, a conventional
combination of state/input penalty will be considered
in the cost function and, without loss of generality, only
the regulation problemwill be formulated [5]. Finally, we
consider disturbance to be uncertainty-free (Dqw = 0).

Due to the presence of persistent uncertainty and dis-
turbances, the system in (2) cannot be controlled to the
origin. The uncertain system state can, at best, be con-
fined to an RPI set Z. Many RMPC schemes incorpo-
rate the idea of such RPI terminal sets (see e.g. [12],[6])
since it helps to establish recursive feasibility and stabil-
ity (see Remarks 14,15). To promote state convergence
to Z, we include in our formulation, the terminal state
constraint xN ∈ Z together with other hard constraints
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on the input and state. All these are summarized below.
The problem-defined state constraints are given by

xk ∈ Xk :=
{
x ∈ R

n : xk ≤ Cx ≤ xk

}
, ∀k ∈ TI (26)

where TI := {1, 2, · · · , N − 1} and C ∈ R
m×n can be

chosen to represent constraints on linear combinations
of the state. Furthermore, we define the terminal state
(see Remark 10 below) and input constraints as

xN ∈ Z :=
{
x ∈ R

n : xN ≤ Cx ≤ xN

}
(27)

uk ∈ Uk :=
{
u ∈ R

nu : uk ≤ u ≤ uk

}
, ∀k ∈ TN . (28)

Remark 10 There exist many algorithms in the litera-
ture for the computation of a suitable polyhedral RPI set
Z. See e.g. [11], [16] and the references therein.

4.1 Uncertainty re-parameterization

We first propose to re-parameterize the uncertainty as a
disturbance in the following theorem. Subsequently, in
Section 4.2, the (re-parameterized) uncertainty is com-
bined with the disturbance and the RMPC scheme is
formulated.

Theorem 11 Let Dm denote the set of all real m × m
diagonal matrices and let D

m
+ := {D ∈ D

m : D � 0}.
ConsiderΔ∈BΔ := {diag(δ1, · · · , δn) :δi ∈ R, |δi| ≤ 1}.
Then, uncertainty vector pk, in (2), is such that pik ≤ pik
for all i ∈ Np := {1, · · · , np} and k = 0, . . . , N , if there
exist Xi

k ∈ D
m
+ , U i

k ∈ D
nu
+ and 0 ≤ Di

k ∈ R such that

Li
k(X

i
k,U

i
k,D

i
k,p

i
k):=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

CTXi
kC � � �

0 U i
k � �

−1
2e

T
iCq −1

2e
T
iDqu Di

k �

−xT
kX

i
kC −uT

kU
i
k 0 p̂ik

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
�0 (29)

Li
N (Xi

N , Di
N , piN ) :=

⎡⎢⎢⎢⎢⎣
CTXi

NC � �

− 1
2e

T
i Ĉq Di

N �

−xT
NX

i
kC 0 p̂iN

⎤⎥⎥⎥⎥⎦ � 0 (30)

Li
0(U

i
0,D

i
0, p

i
0) :=

⎡⎢⎢⎢⎢⎣
U i
0 � �

− 1
2e

T
i Dqu Di

0 �

−uT
0U

i
0 − 1

2x
T
0 C

T
q ei p̂i0

⎤⎥⎥⎥⎥⎦�0 (31)

∀k∈TI , where we have p̂
i
k :=pik+xT

kX
i
kxk+uT

k U
i
kuk−Di

k,
p̂iN := piN +xT

NXi
NxN −Di

N , p̂i0 := pi0 +uT
0 U

i
0u0 −Di

0,
xk :=

1
2 (xk+xk), uk :=

1
2 (uk+uk) and xN := 1

2 (xN+xN ).

Similarly, pik≥pi
k
, ∀i∈Np and k=0, . . . , N , if there exist

Xi
k ∈D

m
+ , U i

k ∈D
nu
+ , 0≤Di

k ∈R such that (29)-(31) are

satisfied with pik replaced by −pi
k
.

PROOF. Using the definition of pk in (2) (withDqw =
0) and an S-procedure, it can be shown that for all k ∈ TI

pik=pik−(xk−Cxk)
TXi

k(Cxk−xk)−(uk−uk)
TU i

k(uk−uk)

− (1− δi)
TDi

k(δi + 1)− yTk Li
k(X

i
k, U

i
k, D

i
k, p

i
k)yk

where yTk := [ xT
k uT

k δTi 1 ], Xi
k ∈ D

n
+, U i

k ∈ D
nu
+ ,

0 ≤ Di
k ∈ R and Li

k(X
i
k, U

i
k, D

i
k, p

i
k) given in (29). Thus

Xi
k � 0, U i

k � 0, Di
k � 0, Li

k(X
i
k, U

i
k, D

i
k, p

i
k) � 0

⇒ pik ≤ pik, ∀i ∈ Np, ∀k ∈ TI .

The LMIs (30) and (31) can analogously be derived for
k = N and k = 0, respectively. Finally, for the lower
bounds the result follows by noting that pik≥pi

k
is equiv-

alent to −pik≤−pi
k
. �

Define the vectors pT := [ (p�0)
T (p�1)

T · · · (p�N )T ] and

pT := [ (p�
0
)T (p�

1
)T · · · (p�

N
)T ]. Using Theorem 11, the

model uncertainty can then be re-parameterized as:

p ∈ P :=
{
p ∈ R

Np : p ≤ p ≤ p
}

(32)

where, for each k ∈ TN , we can compute the bounds for
each i∈Np through the following optimizations:

pi�k =min{ pik : (29)/(30)/(31) is satisfied for correspo−
nding k, for Xi

k∈D
m
+ , U i

k∈D
nu
+ , Di

k≥0}
−pi�

k
=min{−pi

k
: (29)/(30)/(31) is satisfied with pik rep−

laced by −pi
k
for Xi

k∈D
m
+ , U i

k∈D
nu
+ , Di

k≥0}· (33)

Remark 12 Note that for the case of full block uncer-
tainty elements, we have: piTk pik ≤ qiTk qik where (.)i de-
notes the ith block. Hence, the polytopic bounds for full
block uncertainty elements can be computed, in a man-
ner similar to Theorem 11, by relaxing the following op-
timization problems, ∀i ∈ Np , ∀k ∈ {0, 1, · · · , N} :

pi
k

≤ min
xk∈Xk, uk∈Uk

qiTk qik ≤ max
xk∈Xk, uk∈Uk

qiTk qik ≤ pik·

4.2 Computation of K̂0, K̂ and v̂

In this subsection, we first combine the re-parameterized
uncertainty with the disturbance and then derive suf-
ficient conditions (on K̂0, K̂, v̂) for the satisfaction of
constraints and minimization of the cost function.
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Using (32), let us introduce the re-definitions:

Bw := [Bw Bp],

wT
k︷ ︸︸ ︷

[−dTk pT
k
] ≤

wT
k︷ ︸︸ ︷

[wT
k pTk ] ≤

wT
k︷ ︸︸ ︷

[dTk pTk ] .

Therefore, it can be verified that the stacked state-
dynamics in (5) can now be written as:

x = Ax0 + Buu+ Bww (34)

where w ∈ W := {w ∈ R
Nw : w ≤ w ≤ w} and all

matrices/vectors are appropriately re-defined.

Theorem 13 Define the cost function

J(x0, u, w) :=xT
NPNxN +

N−1∑
k=0

xT
kQxk + uT

kRuk (35)

and let AK̂0 := A+BuK̂0, w := 1
2 (w+w), C̃ := IN ⊗

C, R̃ := IN ⊗ R, K̂B := (I+BuK̂), Q̃ := diag(IN−1 ⊗
Q,PN ), x = [xT

1 · · · xT
N ]T , u = [uT

0 · · · uT
N−1]

T (and

analogously for x, u). Then, there exist feasible K̂0,

K̂ and v̂ satisfying constraints (26)-(28) and such that
J(x0, u, w) ≤ f c for all w ∈ W if there exist diago-

nal solutions Dw, D
i

wx, D
i
wx, i ∈ Nx := {1, · · · ,mN},

D
j

wu, D
j
wu, j∈Nu :={1, · · · , Nu} to the following LMIs⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dw � � �

wTDw f c+wTDww−xT
0 Qx0 � �

K̂BBw Buv̂+AK̂0x0 Q̃−1 �

K̂Bw K̂0x0+v̂ 0 R̃−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
�0 (36)

Li
x(D

i

wx, K̂, K̂0, v̂, x, ei) :=⎡⎢⎣D
i

wx −D
i

wxw− 1
2BT

wK̂
T
B C̃

T ei

� eTi (x−C̃AK̂0x0−C̃Buv̂)+wTD
i

wxw

⎤⎥⎦�0 (37)

Lj
u(D

j

wu, K̂, K̂0, v̂, u, ej) :=⎡⎢⎣D
j

wu −D
j

wuw− 1
2BT

wK̂
T ej

� eTj (u−K̂0x0−v̂)+wTD
j

wuw

⎤⎥⎦�0, (38)

Li
x(D

i
wx, K̂, K̂0, v̂, x,−ei)�0, (39)

Lj
u(D

j
wu, K̂, K̂0, v̂, u,−ej)�0. (40)

PROOF. Using (34) and (7), the upper state con-
straints (26)-(27) can be written as, ∀w ∈ W :

eTi C̃K̂BBww ≤ eTi (x− C̃(A+ BuK̂0)x0− C̃Buv̂).

Using the S-procedure, it can be shown that

eTi C̃K̂BBww − eTi (x− C̃(A+ BuK̂0)x0− C̃Buv̂) =

−(w − w)TD
i

wx(w − w)− yTLi
x(D

i

wx, K̂, K̂0, v̂, x, ei)y

where yT := [wT 1 ], D
i

wx, Di
wx, D

j

wu, Dj
wu are di-

agonal, positive semidefinite matrices and the matrix

Li
x(D

i

wx, K̂, K̂0, v̂, x, ei) is given in (37). It follows that
(37) is a sufficient condition for upper state constraints.

Similarly, through application of the S-procedure, it can
be shown that (39), (38) and (40) are sufficient for lower
state and upper/lower input constraints, respectively.
Now, the cost function (35) can be written as:

J(x0, u, w) = yTXT
c Q̃Xcy+yTUT

c R̃Ucy+xT
0 Qx0 (41)

where matrix Xc := [K̂BBw (Buv̂+(A+ BuK̂0)x0) ],

Uc := [K̂Bw K̂0x0+v̂ ] and yT := [wT 1]. In a manner

similar to above, using the S-procedure on (41) followed
by a Schur complement argument yields LMI (36). �

It follows from Theorem 13 that the procedure for com-
puting an RMPC controller (i.e. K̂0, K̂, v̂) which satis-
fies state and input constraints and minimizes the cost
function can be summarized as follows

φ=min{ f c : (36)− (40) are satisfied for diagonal

Dw, D
i

wx, D
i
wx, D

j

wu, D
j
wu, j∈Nu, i∈Nx}. (42)

Note that problem (42) is linear in the variables

(K̂0, K̂, v̂) due to the uncertainty re-parameterization
proposed in this algorithm. We can now summarize the
Approach 2 RMPC algorithm as follows:

Algorithm 1 Causal RMPC controller - Approach 2

(1) Read the current state x0.
(2) Compute polytopic bounds on the uncertainty

through LMI problems (33).
(3) ComputeK0,K, v by solving the LMI problem (42).
(4) Apply the first control.
(5) If the computed state xt ∈ Z, apply the terminal

control law κZ(x) for all time, else loop back to (1).

Remark 14 Stability analysis of MPC schemes has been
the subject of extensive research (see [9] for an excellent
survey). The common components to establish RMPC
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stability include a terminal set which is invariant and a
terminal cost which serves as a control Lyapunov func-
tion. Using an S-procedure, conditions on matrix PN can
readily be derived to ensure that the proposed terminal
cost xT

NPNxN is a Lyapunov function over the designed
RPI set Z. However, due to space limitations, we do not
pursue this here. Instead, the reader is referred to [15, Sec
4.4] for a similar RMPC stability treatment on systems
subject to scalar (polytopic) uncertainties.

Remark 15 Recursive feasibility of the proposed
schemes can be ensured due to the incorporation of the
invariant terminal set Z. In particular note that, under
the conditions given in [15, Sec 4.4], the optimal control
sequence computed at time t can be shifted and subse-
quently appended with the terminal control law κZ(x) to
yield: {u(t+1|t), · · · , u(t+N |t), κZ(x)} which remains
feasible at next time step t+1. See [9] for further details.

5 Numerical examples

We now consider two examples from the literature to
illustrate the effectiveness of the proposed algorithms.

5.1 Example 1

We consider an uncertain version of the unstable process
from [14,15]. In particular, we have the system in (2)
with:

A =

[
1 0.8

0.5 1

]
, Bu =

[
1

1

]
, Bw =

[
0.1

0.1

]
, Bp =

[
0.1 0

0 0.1

]
,

Dqu = Bu, Cq = Ĉq = A

Furthermore, we consider the uncertainty of the form:
BΔ := {diag(δ1, δ2) : δi ∈ R, |δi| ≤ 1}, and the distur-
bance set is taken to be W :={w∈R

nw : −1≤w≤1}.
The prediction horizon N = 4 and the parameters in
the cost function (35) are Q = I, R = I, and PN =I.
The constraints on the input and state are given by:

uk=−uk=3.8 ∀k, and x = −x = [3 3]
T
, respectively.

We linearly tighten constraints down the horizon. More-
over, we set the initial state x0=x. Computing the RPI
set and the terminal control law (using the algorithm in
[16]) with input constraints−0.95≤uk≤0.95 and termi-

nal state constraints |xN |≤ [1.6 1]
T
, yields the polytopes

xN =−xN =[1.55 0.89]
T
and κZ(x)=−[0.34 0.46]x.

First of all, applying the proposed algorithm in the open-
loop mode (by setting the feedback gain K to zero in
(6)) gives infeasibility. Moreover, the feedback algorithm
given by Problem (19) (linearized using Remark 5) on
the above example also gives infeasibility due to the
conservative nature of linearization. Now applying both
the proposed schemes - as given by Theorem 8 (with
S0 = λ0I, S = Si = λI, G0 = G = Gi = 0 for all i) and

Fig. 1. Results for Approach 1 (left) and Approach 2 with
wt = wcos(t) and Δ = diag(1, 1), ∀t

problem (42), respectively - give the simulation results
shown in Fig. 1. We note that even with the initial state
on the constraint boundary and persistent worst-case
uncertainty and disturbances, the proposed algorithms
are able to steer the system state to RPI set such that
x2 ∈ Z. The computed control input sequences for Ap-
proach 1 and 2 are given by ut = [−3.37, − 2.62] and
ut = [−3.79, − 2.15], respectively.

5.2 Example 2

We consider the coupled spring-mass system example
from [5]. The mechanical system, shown in Fig. 2, is un-
stable and has uncertainty in the spring constant value
k such that kmin ≤ k ≤ kmax. The system has four
states: x1 and x2 are the positions of mass 1 and 2 re-
spectively, and x3 and x4 are their respective velocities.
The discrete-time dynamics, sampled at 0.1s, are [5]:

A=

⎡⎢⎢⎢⎢⎢⎣
1 0 0.1 0

0 1 0 0.1

−0.1kn 0.1kn 1 0

0.1kn −0.1kn 0 1

⎤⎥⎥⎥⎥⎥⎦, Bu=

⎡⎢⎢⎢⎢⎢⎣
0

0

0.1

0

⎤⎥⎥⎥⎥⎥⎦, Bp=

⎡⎢⎢⎢⎢⎢⎣
0

0

−0.1

0.1

⎤⎥⎥⎥⎥⎥⎦
Cq =

[
kdev −kdev 0 0

]
, Dqu = 0

where δ = k−kn

kdev
, kn = 1

2 (kmax + kmin), and kdev =
1
2 (kmax − kmin). The spring constant is known to vary
between kmin = 0.5 and kmax = 10. For the cost, we
have Q = 5, R = 1 and prediction horizon N = 6.

The control objective is to make the output (state x2)
track a unit step while providing robustness against per-
sistent variation in spring constant k and respecting the
input constraint: −1 ≤ uk ≤ 1. Fig. 3 shows the simula-
tion results when the system is subjected to a sinusoidal

Fig. 2. Coupled spring-mass system
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Fig. 3. Results for output step-tracking

uncertainty in the spring constant. We see that the pro-
posed RMPC controller is able to first steer and then
maintain the system-output at the desired set-point de-
spite the presence of a persistent uncertainty. The 5%
settling time for the output, with the proposed algo-
rithm, is approximately 6.3 sec. For comparison, Fig. 3
also shows the response for infinite horizon RMPC con-
troller proposed in [5] for the same example (red line). Al-
though this algorithm also yields output tracking, how-
ever, the response is slower with a 5% settling time of ap-
proximately 16.1 sec. Fig. 4 also shows a comparitively
faster response in control input for the proposed scheme.

6 Conclusion

We have proposed two algorithms for the (feedback)
Robust Model Predictive Control of linear discrete-time
systems subject to norm-bounded model-uncertainties
and disturbances. The algorithms compute online,
through LMI optimization, a constraint-admissible con-
trol law (K0,K,v) that minimizes a cost function.

As shown in Section 2, even with the use of Q-
parameterization-like method, the RMPC problem is
nonlinear in feedback gain K due to the presence of
model-uncertainty. To obtain computational tractabil-
ity, we have proposed two methods. In the first method,
the disturbance is recast as an uncertainty and a slack-
variable approach is employed which helps to remove
the nonlinearity through a ‘less-conservative’ change
of variables. The second method involves the (online)

Fig. 4. Control input for Example 2

re-parameterization of the uncertainty as a polytopic
disturbance which subsequently leads to convexity. The
effectiveness of the proposed schemes has been demon-
strated through numerical examples from the literature.
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