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Abstract—A nonlinear optimization framework is proposed in
this paper to automate exploration of the design space consisting
of data reuse (buffering) decisions and loop-level parallelization,
in the context of FPGA-targeted hardware compilation.

Buffering frequently accessed data in on-chip memories can
reduce off-chip memory accesses and open avenues for par-
allelization. However, the exploitation of both data reuse and
parallelization is limited by the memory resources available on-
chip. As a result, considering these two problems separately,
e.g. first exploring data reuse and then exploring data-level
parallelization, based on the data reuse options determined in
the first step, may not yield the performance-optimal designs for
limited on-chip memory resources. We consider both problems
at the same time, exposing the dependence between the two.
We show that this combined problem can be formulated as
a nonlinear program, and further show that efficient solution
techniques exist for this problem, based on recent advances in
optimization of so-called geometric programming problems.

Results from applying this framework to several real bench-
marks implemented on a Xilinx device demonstrate that given
different constraints on on-chip memory utilization, the corre-
sponding performance-optimal designs are automatically deter-
mined by the framework. We have also implemented designs
determined by a two-stage optimization method that first explores
data reuse and then explores parallelization on the same platform,
and by comparison the performance-optimal designs proposed
by our framework are faster than the designs determined by the
two-stage method by up to 5.7 times.

Index Terms—Data-level parallelization, data reuse, FPGA
hardware compilation, geometric programming, optimization.

I. INTRODUCTION

As modern FPGAs’ size, capabilities and speed increase,
FPGA-based reconfigurable systems have been applied to
an extensive range of applications, such as digital signal
processing, video and voice processing, and high performance
computing [1]. Meanwhile, the complex applications and
plurality of hardware resources increase the complexity of
FPGA-based system design. As a result, how to efficiently
exploit the flexibility provided by heterogeneous reconfig-
urable resources on FPGAs to achieve an optimal design while
shrinking the design cycle has become a serious issue faced by
designers. This paper introduces an optimization framework to
aid designers in exploration of the data reuse and data-level
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parallelization design space at compile time with the objective
of maximizing system performance while meeting constraints
on on-chip memory utilization.

An FPGA-based reconfigurable system is shown in
Fig. 1 (a). External RAMs are accessed by an FPGA as
main memories. It is well known that data transfers between
external memories and the processing unit (PU) are often
the bottleneck when trying to use reconfigurable logic as a
hardware accelerator. As a result, the use of on-chip RAMs to
buffer repeatedly accessed data, known as data reuse [2], has
been investigated in depth. In our previous work, a systematic
approach for data reuse exploration in applications involving
arrays accessed in loop nests has been proposed [3], [4], [5],
where the architecture exploiting a scratch-pad memory to load
and store reused data is shown in Fig. 1 (b).

Loop nests are the main source of potential parallelism, and
loop-level parallelization has been widely used for improving
performance [6]. However, the performance improvement is in
fact limited by the number of parallel data accesses to fetch
the operands. There are a number of embedded RAM blocks
on modern FPGAs, often with two independent read/write
ports. Therefore, buffering data in on-chip RAMs can increase
memory access bandwidth and open avenues for parallelism.

In this paper, we present an approach that buffers potentially
reused data on-chip and duplicates the data into different dual-
port memory banks embedded in modern FPGAs to reduce
off-chip memory accesses and increase loop-level parallelism.
The target hardware structure is shown in Fig. 1 (c). Each PU
executes a set of loop iterations and all PUs run in parallel.
Because different sets of loop iterations may access the same
data (data reuse), every dual-port RAM bank holds a copy
of buffered data, and is accessed by two PUs through its two
ports. In this work, registers are not used as on-chip data reuse
buffers, although the proposed framework could be combined
with register-oriented work [7]. Therefore, in this paper, the
on-chip memory cost is measured in units of atomic on-chip
embedded RAM blocks.

To our knowledge, there exist only few works exploiting
both data reuse and loop-level parallelization [3], [8], [9].
However, there is no prior design flow combining data reuse
exploration and loop-level parallelization within a single op-
timization step. In the context of this paper, the data-reuse
decision is to decide at which levels of a loop nest to insert new
on-chip arrays to buffer reused data for each array reference,
in line with [4]. We consider the code to have been pre-
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processed by a dependence analysis tool such as [10] and each
loop to have been marked as parallelizable or sequential. The
parallelization decision is to decide an appropriate strip-mining
for each loop level in the loop nest [11]. Performing these two
tasks separately may not lead to performance-optimal designs.
If parallelization decisions are made first without regard for
memory bandwidth, then a memory subsystem needs to be
designed around those parallelization decisions, typically re-
sulting in inefficiently large on-chip memory requirements to
hold all the operands, and large run-time penalties for loading
data, many of which may not be reused, from off-chip into
on-chip memories. A more sensible approach is to first make
data reuse design decisions to minimize off-chip accesses and
secondly improve the parallelism of the resulting code [2].
However, once the decision is made to fix the loop level
where on-chip buffers are inserted, sometimes only limited
parallelism can be extracted from the remaining code.

Thus, in this paper, we address the combined problem as
a single optimization step using a geometric programming
framework [12]. The overall optimization takes place while
respecting an on-chip RAM utilization constraint and the
dependence between the two problems. The main contributions
of this paper are thus:
• recognition of the link between data reuse and loop-level

parallelization and optimization of both problems within
a single step,

• an integer geometric programming formulation of the
exploration of data reuse and data-level parallelization
for performance optimization under an on-chip memory
constraint, revealing a computationally tractable lower-
bounding procedure, and thus allowing solution through
branch and bound,

• the application of the proposed framework to several
signal and video processing kernels, resulting in perfor-
mance improvements up to 5.7 times compared with a
two-stage method that first explores data reuse and then
performs loop parallelization.

The rest of the paper is organized as follows. Section II
describes related work. Section III presents a motivational
example and Section IV precisely states the targeted problem.
Section V formulates the problem in a naı̈ve way, and Sec-
tion VI shows that via a change of variables and re-ordering,
the problem can be re-formulated as an integer geometric pro-
gram. Section VII presents results from applying our proposed
framework to several real benchmarks. Section VIII concludes
the paper and suggests future work.

II. BACKGROUND

The two areas of optimizing memory architectures for data
reuse and techniques for automated parallelization have been
extensively investigated over the last decade.

A number of approaches for optimizing memory configura-
tions have been proposed for embedded systems. A systematic
methodology for data reuse exploration is proposed in [2],
where a cost function of power and area of the memory
system is evaluated, in order to decide promising data reuse
options and the corresponding memory hierarchy. In [13], [14]
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and [15], approaches for exploiting data reuse in scratch-pad
memory (SPM) have been presented. In [13] large arrays are
divided into data blocks and computations that access the same
data block are scheduled as close as possible in time slots
using a greedy heuristic to maximize data reuse with minimum
on-chip memory requirements. Approaches in [14] and [15]
determine which data should be transferred into SPM, and
when and where in a code these transfers happen to improve
the performance of the code, based on memory access cost
models. Research into buffering reused data in FPGA on-
chip RAMs and registers has been carried out in [16], [7],
[8] and [5]. In [16] applications speed up through pipelining
with high data throughput, which is obtained by storing reused
data in shift registers and shift on-chip RAMs. In [7] and [8],
arrays more beneficial to minimize the memory access time
are stored in either registers or on-chip RAMs if register is not
available. The work in [5] formulates the problem of data reuse
exploration aimed at low power as the Multi-Choice Knapsack
Problem.

Improvement of the parallelism of programs has been a hot
topic in the computing community. Loop transformations have
been used in [6] to enable loop parallelization for programs
with perfectly nested loops. Lefebvre et al. [17] propose an
approach for parallelizing static control programs, which intro-
duces memory reuse to the single assignment transformation
of the programs in order to reduce memory requirements for
parallelization. Gupta et al. [18] identify two objectives, in
conflict with each other, distribution of data on as many pro-
cessors as possible and reduction in the communication among
processors, in data distributions over multiple processors. They
propose a technique for performing data alignment and distri-
bution to determine data partitions suitable to the distributed
memory architecture. There is also significant work from the
systolic array community on mapping sequential programs
onto systolic arrays with unlimited and limited processors
[19]. A systematic description of hardware architectures and
software models of multiprocessor systems has been published
in [20].

However, exploration of both data reuse and parallelization
has been discussed in only a few previous works. Eckhardt
et al. [21] recursively apply the locally sequential globally
parallel and the locally parallel globally sequential partitioning
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schemes to mapping an algorithm onto a processor array
with a two-level memory hierarchy. Data reuse is considered
during the algorithm partitions in order to reduce accesses to
high memory levels. However, the purpose of this work is to
model the target architecture in order to partition the algorithm
and to improve memory utilization, rather than a system
design exploration. A greedy algorithm is proposed in [22] for
mapping array references resident in computation critical paths
onto FPGA on-chip memory resources to provide parallel data
accesses for instruction-level parallelism. The algorithm only
produces a locally optimal solution. Data access patterns of
arrays are considered and an array with reused data is mapped
on-chip as a whole and duplicated into different memory
banks, while in our approach reused data of an array could be
partially buffered and duplicated on-chip and on-chip buffers
are updated at run-time to improve efficiency of memory
usage. In [9] loop transformations, such as loop unrolling,
fusion and strip-mining, are performed before the exploitation
of data reuse. The work [3] focuses on a systematic approach
for the derivation of data reuse options and describes an
empirical experiment that demonstrates the potential for data
reuse and parallelization. However, no systematic formulation
is proposed for this combined optimization. In [23] and
[24], authors experiment with the effects of different data
reuse transformations and memory system architectures on the
system performance and power consumption. The results prove
the necessity of the exploration of data reuse and data-level
parallelization.

Previous research has not formulated the problem of ex-
ploring data reuse and loop parallelization at the same time.
The motivation of this work is to investigate this, in order
to improve system performance under an on-chip memory
utilization constraint in FPGA-based platforms. Specifically,
in the proposed framework, this problem is formulated as
an INLP problem exhibiting a convex relaxation and existing
solvers for NLP problems are applied to solve it. As a result,
this exploration problem is automated and system designs with
optimal performance are determined at compile time.

III. MOTIVATIONAL EXAMPLE

The general problem under consideration is how to design
a high performance FPGA-based processor from imperative
code annotated with potential loop-level parallelism using
constructs such as Cray Fortran’s ‘doall’ [25] or Handel-
C’s ‘replicated par’ [26]. In the target platform, the central
concern is that the off-chip RAMs only have few access ports.
Without loss of generality, this paper assumes for simplicity
that one port is available for off-chip memory accesses. In
this work, we obtain high performance by buffering frequently
accessed data on chip in scratch-pad memories to reduce off-
chip memory access, and by replicating these data in distinct
dual-port memory banks to allow multiple loop iterations to
execute in parallel.

To illustrate these two related design issues, an example,
matrix-matrix multiplication (MAT), is shown in Fig. 2. The
original code in Fig. 2 (a) consists of three regularly nested
loops. The matrices A, B, and C are stored in off-chip

Do i=0, N-1

  Do j=0, N-1

    s=0;

    Do m=0, N-1

       s=s+A[i][m] x B[m][j];

    Enddo;

    C[i][j]=s;

  Enddo;

Enddo;

          (a) Original code

Load(RLA0s, A); 

Load(RLB0s, B);     

Doall i1=1, ki

   Doall j1=1, kj

      Do i2= N/ki  (i1-1) to min(N-1,  N/ki i1-1)

         Do j2= N/kj  (j1-1) to min(N-1,  N/kj  j1-1)

            si1j1=0;

            Do m=0, N-1

               si1j1=si1j1 + RLA0             [i2][m] x RLB0             [m][j2];

            Enddo;

            Store(si1j1, C); 

         Enddo;

      Enddo;

   Enddoall;

Enddoall;

          (c) Two loops i and j could be parallelized

Load(RLB0s, B);     

Do i=0, N-1

   Load(RLA1s, A);

   Doall j1=1, kj

      Do j2=  N/kj  (j1-1) to min(N-1,  N/kj  j1-1)

        sj1=0;

        Do m=0, N-1

           sj1=sj1+RLA1      [m] x RLB0  [m][j2];

        Enddo;

        Store(sj1, C); 

      Enddo;

   Enddoall;

Enddo;

          (b) Loop j could be parallelized 

j1/2j1/2

j1/2i1/2 j1/2i1/2

Fig. 2. Matrix-matrix multiplication example.

memory. This code exhibits data reuse in accesses to the arrays
A and B; for example, for the same iterations of the loops
i and k, different iterations of loop j read the same array
element A[i][k]. Also, this code presents potential parallelism
in loop i or j, that can be revealed by [10]. However, despite
the apparent parallelism, the code can only be executed in
parallel in practice if an appropriate memory subsystem is
developed, otherwise the bandwidth to feed the datapath will
not be available.

Following the approach in [3] to exploit data reuse, a data
reuse array, stored in on-chip SPM, is introduced to buffer
elements of an array which is stored in off-chip memory and
frequently accessed in a loop nest. Before those elements are
used they are first loaded into the data reuse array in the
on-chip memory from the original array. Such a data reuse
array may be introduced at any level of the loop nest, forming
different data reuse options for the original array and giving
rise to different tradeoffs in on-chip memory size versus off-
chip access count [4]. To avoid redundant data copies, only
beneficial data reuse options, in which the number of off-
chip accesses to load the data reuse arrays is smaller than
the number of on-chip accesses to them, are considered.

With respect to these rules, the array A has two beneficial
data reuse options shown in Fig. 2 (b) and (c): loading the
data reuse array RLA between loops i and j, or outside loop
i, respectively. Assuming the matrices are 64 × 64 with 8-
bit entries, both options obtain a 64-fold reduction in off-
chip memory accesses, whereas they differ in on-chip RAM
requirements, needing one and two 18 kbits RAM blocks,
respectively, on our target platform with a Xilinx XC2v8000
FPGA. Similarly, the array B owns one beneficial data reuse
option, in which the data reuse array RLB is loaded outside
loop i, with 64 times reduction in off-chip memory accesses
and a memory requirement of two RAM blocks.

In prior work, the goal of data reuse has been to select
appropriate loop-levels to insert data reuse arrays for all array
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references, in order to minimize off-chip memory accesses
with the minimum on-chip memory utilization [3]. Following
this approach, if there are more than two on-chip RAM blocks
available, an optimal choice would be to select the first data
reuse option for A and the single data reuse option for B as
shown in Fig. 2 (b).

Since the data reuse arrays are stored on-chip, we use the
dual-port nature of the embedded RAMs and replicate the data
in different RAM banks to increase the parallel accesses to
the data. This is also illustrated in Fig. 2 (b), where loop
j is strip-mined and then partially parallelized, utilizing kj

distinct parallel processing units in the FPGA hardware. As
a result, dkj/2e copies of a row of matrix A and dkj/2e
copies of matrix B are held on-chip in arrays RLA1dj1/2e
and RLB0dj1/2e mapped onto dual-port RAM banks. The
parameter kj thus allows a tuning of the tradeoff between
on-chip memory and compute resources and execution time.
Note that for this selection of data-reuse options, loop i cannot
be parallelized because parallel access to the array A is not
available, given single port is available for off-chip memory
access. Had the alternative option, shown in Fig. 2 (c), been
chosen, we would have the option to strip-mine and parallelize
loop i as well.

Therefore, exploiting data-reuse to buffer reused data on-
chip and duplicating the data over multiple memory banks
make data-level parallelization possible, resulting in perfor-
mance improvements while the number of off-chip memory
accesses is reduced. However, if data-reuse decision is made
prior to exploring parallelization, then the potential parallelism
existing in the original code may not be completely explored.
Proceeding with the example, if we first explore data reuse,
then the data reuse option shown in Fig. 2 (b) will be chosen as
discussed above. Consequently, the opportunity of exploring
both parallelizable loops i and j is lost. In other words, the
optimal tradeoff between on-chip resources and execution time
may not be carried out. This observation leads the conclusion
that parallelism issues should be considered when making
data-reuse decisions.

The issue is further complicated by the impact of dynamic
single assignment form [27] on memory utilization. Notice
that the temporary variable s in Fig. 2 (a) storing intermediate
computation results has been modified in Fig. 2 (b) and
(c) so that each parallel processor writes to a distinct on-
chip memory location through independent ports, avoiding
contention. Final results are then output to off-chip memories
sequentially. For the MAT example, in Fig. 2 (b), for 64× 64
matrices with 8-bit entries, the on-chip memory requirement
after data-level parallelization is 4× dkj/2e RAM blocks, on
the target platform with a Xilinx XC2v8000 FPGA. Similarly,
the on-chip memory requirement in Fig. 2 (c) is 5×dkikj/2e
RAM blocks.

Therefore, greater parallelism requires more on-chip mem-
ory resources, because 1) reused data need to be replicated
into different on-chip memory banks to provide the parallel
accesses required; and 2) temporary variables need to be
expanded to ensure that different statements write to different
memory cells.

In the following section, we will generalize the discussion

Do I1 =0, U1-1

G1(I1);

     Do I2 =0, U2-1

G2(I1, I2);

             Do IN =0, UN-1

GN(I1, I2, …, IN);

             Enddo;

G2'(I1, I2);

     Enddo;

G1'(I1);

Enddo;

(a) Original loop structure

Do I1 =0, U1-1

G1(I1);

     Doall I21 =1, kI2

           Do I22 =ceil(U2/kI2)(I21-1),   

                         min(U2-1, ceil(U2/kI2)I21-1)

G2(I1, I21, I22);

                  Do IN =0, UN-1

GN(I1, I2, …, IN);

                  Enddo;

G2'(I1, I2);

           Enddo;

     Enddoall;

G1'(I1);

Endo;

(b) Loop structure with strip-mined loop I2.
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Fig. 3. Target loop structure.

above, before proposing a methodology to make such deci-
sions automatically.

IV. PROBLEM STATEMENT

In this paper, we target a N -level regularly nested loops
(I1, I2, . . . , IN ) with R references to off-chip arrays, where
I1 corresponds to the outer-most loop, IN corresponds to
the inner-most loop, Gj(I1, I2, . . . , Ij) and G′j(I1, I2, . . . , Ij)
are groups of sequential assignment statements inside loop Ij

but outside loop Ij+1, as shown in Fig 3 (a). Without loss
of generality, in line with Handel-C, we assume that each
assignment takes one clock cycle. When a data reuse array
is introduced at loop j for a reference which is accessed
within loop j, a code for loading buffered data from off-chip
memory into the on-chip array is inserted between loops j−1
and j within group Gj−1 and executes sequentially with other
statements. Inside the code, the off-chip memory accesses are
pipelined and a datum is loaded into the data reuse array in one
cycle after few initiation cycles. The data reuse array is then
accessed within loop j in stead of the original reference. When
a loop is strip-mined for parallelism, the loop that originally
executes sequentially is divided into two loops, a Doall
loop that executes in parallel and a new Do loop running
sequentially, with the latter inside the former. The iterations
of other untouched loops still run sequentially. For example,
Fig. 3 (b) shows the transformed loop structure when loop I2 is
strip-mined. In this situation, the inner loops (I22, I3, . . . , IN )
form a sequential segment, and for a fixed iteration of loop I1

and all iterations of loop I21 the corresponding kI2 segments
execute in parallel.

Given N nested loops and each loop l with kl parallel
partitions, the on-chip memory requirement for exploiting data
reuse and loop-level parallelization is d(∏N

l=1 kl)/2e(Btemp +
Breuse), where Btemp is the number of on-chip RAM blocks
required by expanding temporary variables, Breuse is the
number of on-chip RAM blocks required by buffering a single
copy of the reused data of all array references, and the divisor
2 is due to dual-port RAM. As the number of partitions
increases, the on-chip memory requirement increases quickly.
Therefore, we can adjust the number of partitions {kl} to
fit the design into the target platform with limited on-chip
memory.

Complete enumeration of the design space of data reuse
and data-level parallelization is expensive for applications with
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multiple loops and array references. Given N -level regularly
nested loops surrounding R array references, each array ref-
erence could have N data reuse options: to insert a data reuse
array before the entire nested loop structure or inside any
one of the N loops except the inner-most loop, and thus
there are NR data reuse options in total. Moreover, there
could be

∏N
l=1 Ll data-level parallelization options under each

data reuse option, where Ll is the number of iterations of
the loop l. As a result, the design space maximally consists
of NR

∏N
l=1 Ll design options, which increases exponentially

with the number of array references R and the number of loop
levels N . Therefore, we want to formulate this problem in a
manner that allows for an automatic and quick determination
of an optimal design at compile time.

V. PROBLEM FORMULATION

We formulate this problem as an Integer Non-Linear Pro-
gramming (INLP) problem and will show in the next section
that the INLP problem can be transformed to an integer geo-
metric program, which has a convex relaxation [12], allowing
efficient solution techniques.

For ease of description, we formulate the problem in this
paper for the case where a set of R references A1, A2, . . . , AR

to arrays is present inside the inner-most loop of a N -level
loop nest (the proposed framework can be extended to allow
array references to exist at any loop level). As only data reuse
options in which the number of off-chip accesses is smaller
the number of on-chip accesses are considered, reference Ai

could have a total of Ei (0 ≤ Ei ≤ N ) beneficial data reuse
options OPi1, OPi2, . . . , OPiEi . Ei equal to zero means that
there is no reason to buffer data on-chip. Option OPij occupies
Bij blocks of on-chip RAM and needs Cij cycles for loading
reused data from off-chip memories. Loop l (1 ≤ l ≤ N)
can be partitioned into kl (1 ≤ kl ≤ Ll) pieces. The kl

variables corresponding to those loops not parallelizable in the
original program are set to one. All notations used in this paper
are listed in Table I. Based on these notations, the problem
of exploration of data reuse and data-level parallelization is
defined in equation (1)–(6), described in detail below.

min :
S∑

s=1

Ws∏

l=1

dLl

kl
e+

R∑

i=1

Ei∑

j=1

ρijCij (1)

subject to

d1
2

N∏

l=1

kleBtemp + d1
2

N∏

l=1

kle
R∑

i=1

Ei∑

j=1

ρijBij ≤ B (2)

Ei∑

j=1

ρij = 1, 1 ≤ i ≤ R (3)

ρij ∈ {0, 1}, 1 ≤ j ≤ Ei, 1 ≤ i ≤ R (4)

kl ≥ 1, 1 ≤ l ≤ N (5)

kl − (Ll − 1)
∑l

j=1 ρij ≤ 1
1 ≤ l ≤ N, 1 ≤ j ≤ Ei, i ∈ Ql (6)

TABLE I
A LIST OF NOTATIONS FOR VARIABLES (V) AND PARAMETERS (P).

Notation Description
ρij binary data reuse variables
kl # partitions of loop l v
vl # iterations in one partition of loop l
d # duplications of reused data
S # statements in a program

Ws loop level of statement s in a loop nest
N # loops
R # array references
Ql the set of indices of array references within loop l
Ei # data reuse options of array reference i
Ll # iterations of loop l p

Btemp # on-chip RAM blocks for storing temporary variables
B # on-chip RAM blocks available

Bij # on-chip RAM blocks for the data reuse array
of option j of reference i

Cij # loading cycles of the data reuse array
of option j of reference i

In this formulation, all capitals are known parameters at
compile time, and all variables are integers. The objective
function (1) and the constraint function (2) are not linear
due to the ceil functions and the products, resulting in an
INLP (Integer Non-Linear Programming) problem. The INLP
minimizes the number of execution cycles of a program in the
expression (1), which is composed of two parts: the number of
cycles taken by the parallel execution of the original program
and the additional time required to load data into on-chip
buffers, given each statement takes one clock cycle. In the
first part, Ws = 1 means that statement s is located between
the first loop and the second loop and Ws = N means it
is located inside the innermost loop. The ceil function here
guarantees that all iterations of the loop l are executed after
parallelization. In the second part, the data reuse variables ρij

are binary variables, which is guaranteed by (4). ρij taking
value one means the data reuse option OPij is selected for the
reference Ai. Equality (3) ensures that exact one data reuse
option is chosen for each reference.

Inequality (2) defines the most important constraint on
the on-chip memory resources. B on the right hand side of
the inequality is the number of available blocks of on-chip
RAM. On the left hand side, the first addend is the on-
chip memory required by expanding temporary variables and
the second addend expresses the number of on-chip RAM
blocks taken by reused data of all array references. The ceil
function indicates the number of times the on-chip buffers are
duplicated. Note that each dual-port on-chip memory bank
is shared by two PUs, as shown in Fig. 1 (c). Hence, half
as many data duplications as the total number of parallelized
segments accommodate all PUs with data. This constraint also
implicitly defines the on-chip memory port constraint, because
the number of memory ports required is the double of the
number of on-chip RAM blocks required.

Inequalities (5) and (6) give the constraints on the number
of partitions of each loop, kl. Inequalities (6), where Ql ⊆
{1, 2, . . . , R} is a subset of array reference indices such that
if i ∈ Ql then array reference Ai is inside loop l, show the link
between data reuse variables ρij and loop partition variables
kl. The essence of this constraint is that a loop can only be
parallelized if the array references contained within its loop
body have been buffered in data reuse arrays prior to the
loop execution. For the example in Fig. 2 (b), loop j can be
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strip-mined and be executed in parallel, while loop i cannot.
It is this observation that is exploited within this framework
to remove redundant design options combing data reuse and
data-level parallelization.

The design exploration of data reuse options and data-level
parallelization is thus formulated as an INLP problem, by
means of at most RN data reuse variables {ρij} and N loop
partition variables {kl}. In this manner, N(R+1) variables are
used to explore the design space with NR

∏N
l=1 Ll options.

The enumeration of the design space can be avoided if
there is an efficient way to solve this INLP problem. In the
next section, it will be shown that how this formulation is
transformed into a geometric program.

VI. GEOMETRIC PROGRAMMING TRANSFORMATION

The problem of exploring data reuse and data-level paral-
lelization to achieve designs with optimal performance under
an on-chip memory constraint has been formulated in a naı̈ve
way as an INLP problem. However, there are no effective
methods to solve a general NLP problem because they may
have several locally optimal solutions [12]. Recently, the
geometric program has achieved much attention [12]. The
geometric program is the following optimization problem:

min : f0(x)
subject to fi(x) ≤ 1, i = 1, . . . , m

hi(x) = 1, i = 1, . . . , p

where the objective function and inequality constraint func-
tions are all in posynomial form, while the equality constraint
functions are monomial. A monomial hi(x) is a function
hi(x) = cxa1

1 xa2
2 . . . xan

n with x ∈ Rn, x > 0, c > 0 and
ai ∈ R, and a posynomial fi(x) is a sum of monomials.
The reason for posynomial requirement is that posynomial
functions can be transformed into convex functions, whereas
this is not the case for general polynomials. By replacing
variables xi = eyi and taking the logarithm of the objective
function and constraint functions, the geometric program can
be transformed to a convex form. The importance of this
observation is that unlike general NLPs, convex NLPs have
efficient solution algorithms with guaranteed convergence to a
global minimum [12].

The INLP given in Section V can be transformed into an
integer geometric program. We first remove the ceil functions
from the original problem by introducing two constraints
with auxiliary integer variables vl and d as shown below,
and variables vl and d take the least integers satisfying the
constraints. After that, we substitute variables ρ′ij = ρij + 1
for the variables ρij and perform expression transformations
by means of logarithm and exponential to reveal the geometric
programming characteristic of the original problem. Finally,
the INLP in Section V is transformed to the following:

min :
S∑

s=1

Ws∏

l=1

vl +
R∑

i=1

Ei∑

j=1

(ρ′ij − 1)Cij (7)

subject to

dBtemp + d

R∑

i=1

Ei∏

j=1

ρ
′ log2 Bij

ij ≤ B (8)

Ei∑

j=1

(ρ′ij − 1) = 1, 1 ≤ i ≤ R (9)

ρ′ij ∈ {1, 2}, 1 ≤ j ≤ Ei, 1 ≤ i ≤ R (10)

k−1
l ≤ 1, 1 ≤ l ≤ N (11)

kl

∏l
j=1 ρ

′ −log2 Ll

ij ≤ 1
1 ≤ l ≤ N, 1 ≤ j ≤ Ei, i ∈ Ql (12)

Llk
−1
l v−1

l ≤ 1, 1 ≤ l ≤ N (13)

1
2
d−1

N∏

l=1

kl ≤ 1 (14)

Now, we can see that the relaxation of this problem,
obtained by allowing kl to be real values, and replacing (10)
by 1 ≤ ρij ≤ 2, is exactly a geometric program. Note
that the transformation between the original formulation in
Section V and the convex geometric programming form just
involves variable substitution and expression reorganization,
rather then any approximation of the problem. As a result, the
two problems are the equivalent. Thus, the existing methods
for solving convex INLP problems can be applied to obtain
the optimal solution to the problem.

A branch and bound algorithm used in [28] is applied to
the framework to solve problem (7)–(14), using the geometric
programming relaxation as a lower bounding procedure. The
algorithm first solves the relaxation of the INLP problem, and
if there exists an integral solution to this relaxed problem then
the algorithm stops and the integral solution is the optimal
solution. Otherwise, solving the relaxed problem provides a
lower bound on the optimal solution and a tree search over the
integer variables of the original problem starts. The efficiency
of the branch and bound algorithm can be evaluated by the
gap between the initial lower bound at the root node and the
optimal solution and the number of search tree nodes. The
larger gap and the more search nodes mean more time to obtain
the optimal solution. We apply the proposed framework to
several benchmarks in the next section and use this algorithm
to obtain the optimal solutions. It shall be shown that our
geometric programming bounding procedure generates a small
gap.

VII. EXPERIMENTAL RESULTS

For demonstration of the ability of the proposed framework
to determine the performance-optimal designs within the data
reuse and data-level parallelization design space under the
FPGA on-chip memory constraint, we have applied the frame-
work to three kernels: full search motion estimation (FSME)
[29], matrix-matrix multiplication of two 64 × 64 matrices
(MAT64) and the Sobel edge detection algorithm (Sobel) [30].

On the target platform Celoxica RC300 used for our exper-
iments, on-chip memory takes one cycle and off-chip memory
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TABLE II
THE DETAILS OF THREE KERNELS.

Kernel kl Ref. Option Bij Cij

1 ≤ k1 ≤ 36 OP11 13 25344
1 ≤ k2 ≤ 44 current OP12 1 25344

FSME k3 = 1 OP13 1 25344
k4 = 1 OP21 13 25344
k5 = 1 previous OP22 2 76032
k6 = 1 OP23 1 228096

1 ≤ k1 ≤ 64 A OP11 2 4096
MAT64 1 ≤ k2 ≤ 64 OP12 1 4096

k3 = 1 B OP21 2 4096
1 ≤ k1 ≤ 144 OP11 13 25344

Sobel 1 ≤ k2 ≤ 176 image OP12 1 76032
k3 = 1 OP13 1 228096
k4 = 1 mask OP21 1 18

takes two cycles. We pipeline off-chip memory accesses to
obtain a throughput of one access per cycle. Reused elements
of each array reference in the kernels are buffered in on-chip
RAMs and are duplicated in different banks. For a temporary
variable, if it is an array, then the array is expanded in on-chip
RAM blocks; if it is a scalar, then the variable is expanded in
registers. The luminance component of QCIF image (144×176
pixels) is the typical frame size used in FSME and Sobel.

The benchmarks shown in Table II have been selected
for their regularly rectangularly nested loops and multiple
arrays. FSME is a classical algorithm of motion estimation in
video processing [29]. It has six regularly nested loops, which
is representative of the deepest loop nest seen in practice,
and two array references, corresponding to the current and
previous video frames. We consider three beneficial data reuse
options for each of two array references, and in total there
are 9 different data reuse designs, as shown in Table II.
Matrix-matrix multiplication is involved in many computations
and usually locates in the critical paths of the corresponding
hardware circuits [31]. It has two array references multiplied in
a 3-level loop nest, and there are 2 different data reuse designs.
The Sobel edge detection algorithm is a classic operator in
image processing [30]. It includes four loops, an image array
with three beneficial data reuse options and a 3 × 3 mask
array having one beneficial data reuse option. Similarly, there
are 3 data reuse designs for the Sobel kernel. Moreover, the
outermost two loops of these three kernels are parallelizable,
and all parallelization options kl are also presented in Table II.
The number of on-chip RAM blocks Bij and time for loading
reuse data Cij , listed in Table II, required by a data reuse
option of each array reference are determined by our previous
work [4].

Given all input parameters, the problem formulated in
Section VI can be solved by YALMIP [28], which is a
MATLAB toolbox for solving optimization problems. All
designs given by YALMIP have been implemented in Handel-
C [26] and mapped onto the Xilinx XC2v8000 FPGA with
168 on-chip RAM blocks to verify the proposed framework,
as shown in Figs. 4, 5 and 6. In this section, we use
(OP1j , OP2j , . . . , OPRj , k1, k2, . . . , kN ) to denote a design
with data reuse options {OPij} and parallelization options
{kl}.

In subfigures (a) of Figs. 4, 5 and 6, for every amount
of on-chip RAM blocks between 0 and 168, the designs
with the optimal performance estimated by the proposed

0 20 40 60 80 100 120 140 160

x 10
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# On−chip RAM blocks
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(b) Implementation results
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Designs proposed by the framework
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1.4 times improvement

Fig. 4. Experimental results of MAT64. (a) Design Pareto frontier proposed
by the framework. (b) Implementation of designs proposed by the framework
and the FRSP approach on an FPGA.
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Fig. 5. Experimental results of FSME. (a) Design Pareto frontier proposed
by the framework. (b) Implementation of designs proposed by the framework
and the FRSP approach on an FPGA.

framework are shown and are connected using bold lines to
form the performance-optimal Pareto frontier. For example, in
Fig. 4 (a), the proposed design using fewer than 6 on-chip
RAM blocks is (OP12, OP21, k1 = 1, k2 = 2, k3 = 1), the
leftmost one; for an on-chip RAM consisting of 80 blocks it
is (OP11, OP21, k1 = 6, k2 = 6, k3 = 1); and if the number
of on-chip RAM blocks is fewer than 3, then the proposed
design is the sequential code (k1 = 1, k2 = 1, k3 = 1)
without data reuse and data-level parallelization. It can be
seen in Figs. 4 (a), 5 (a) and 6 (a) that the number of
execution cycles decreases as the number of on-chip RAM
blocks increases, because the degree of parallelism increases.
To demonstrate the advantage of the optimization framework,
some other possible designs randomly sampled from the space
of feasible solutions in the design space of each benchmark,
i.e. other combinations of data reuse options {OPij} and
parallelization options {kl}, are also plotted in these figures.
These designs are all above the performance-optimal Pareto
frontier and have been automatically rejected by the proposed
framework. It is shown that when the on-chip RAM constraint
is tight, the optimization framework does a potentially good
job at selecting high speed solutions.

The actual execution times, after synthesis, placement and
routing effects are accounted for, are plotted in Figs. 4 (b),
5 (b) and 6 (b). In these figures, the designs proposed by
the framework are shown in dots and the corresponding
performance-optimal design Pareto frontiers are drawn using
bold lines. Clearly, there are the similar descending trends
of the frontiers in (a) and (b) over the number of on-chip
RAM blocks for three kernels. There exist a few exceptions
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Fig. 6. Experimental results of Sobel. (a) Design Pareto frontier proposed
by the framework. (b) Implementation of designs proposed by the framework
and the FRSP approach on an FPGA.

in Figs. 4 (b) and 6 (b), where the performance of some
designs, shown in dots above the Pareto frontier, become worse
as the on-chip memory increases. This is because on-chip
RAMs of the Virtex-II FPGA we have used are located in
columns across the chip and as the number of required RAMs
increases the delay of accessing data from the RAMs, which
are physically far from the datapath, is increased, degrading
the clock frequency. However, for most cases, the proposed
framework estimates the relative merits of different designs
and indicates the optimal designs for each kernel in the context
of different on-chip memory constraints.

In addition, the designs obtained by following the method
that first explores data reuse and then data-level paralleliza-
tion [2] (we denote this method as FRSP here) have been
implemented as well. These designs are plotted in Figs. 4 (b),
5 (b) and 6 (b) in circles and form performance Pareto frontier
in dashed lines. By comparing the performance-optimal Pareto
frontiers obtained by our framework and the FRSP method for
each kernel, we can see that the performance improvement up
to 1.4, 5.7 and 3.5 times, respectively, have been achieved by
using the proposed framework for three benchmarks. These
show the advantage of the proposed framework that explores
data reuse and data-level parallelization at the same time.
For the MAT64 case, the FRSP yields almost the same
performance-optimal designs as those our framework pro-
poses, because the different data reuse options of MAT64 have
similar effects on the on-chip memory requirement and the
execution time, as can be seen in Table II. In Fig. 7 the system
architectures of the performance-optimal design of FSME,
when there are 27 RAM blocks available on-chip, proposed by
the framework and the FRSP method are shown respectively.
The design in Fig. 7 (a) operates at the speed 5.7 times
faster than the design in Fig. 7 (b) by trading off the off-chip
memory access (two times more in former) and parallelism
under the same memory constraint. Note that in Figs. 4 (b),
5 (b) and 6 (b) as the number of RAMs available on-chip
increases the performance-optimal Pareto frontiers obtained
by both approaches converge. This is because data reuse and
data-level parallelization problems become decoupled when
there is no on-chip memory constraint. In other words, the
proposed optimization framework is particularly valuable in
the presence of tight on-chip memory constraints.

The number of slices, which are configured as control logics
and registers, used by the designs of the kernels also increases

Off-chip RAM

PU1

RAM bank1
(3 x 18kbits)

PU2

...

...

FPGA

PU3

RAM bank2
(3 x 18kbits)

PU4 PU15

RAM bank8
(3 x 18kbits)

(a) The design proposed by our framework

Off-chip RAM

PU1

RAM bank1
(14 x 18kbits)

PU2

FPGA

(b) The design proposed by FRSP

Fig. 7. The system architectures of the designs of FSME proposed by the
framework and the FRSP method. (a) The design with 15 parallel processing
units and 24 RAM blocks in 8 banks. (b) The design with 2 parallel processing
units and 14 RAM blocks in 1 bank.

TABLE III
THE AVERAGE PERFORMANCE OF THE FRAMEWORK AND THE FRSP

APPROACH.

The framework FRSP

Kernel Time (s) # nodes Gap rootnode (%) Time (s)

FSME 6.0 61 12.2 1.1

MAT64 5.0 96 25.3 0.8

Sobel 10.6 136 13.5 1.4

as the degree of parallelism increases. If slice logic is scarce, a
further constraint could be added to the framework. However,
for most reasonable design tradeoffs in Figs. 4, 5 and 6,
the slice utilization well below the RAM utilization, as a
proportion of device size. Thus we have not included such
a constraint in the present compilation framework.

The average execution time of the proposed framework
and the FRSP method to obtain a performance-optimized
design under different on-chip memory constraints for each
benchmark are shown in Table III. On average, for three
benchmarks, an optimal design under an on-chip memory
constraint is generated by the framework within 11 seconds.
This quick exploration is guaranteed by the quality of the
lower bounds provided by the geometric programming relax-
ation, with average differences within 25.3% over the optimal
solutions at the root node, resulting in an efficient branch-
and-bound tree search of fewer than 150 nodes for each
benchmark. The FRSP method is faster because the data reuse
variables and loop parallelization variables are determined
in two separate stages. However, the optimal solutions can
not be guaranteed. Given small problems, brute-force which
enumerates all candidate solutions is an alternative approach
to find the optimal solutions to the problems. Nevertheless,
this approach is not scalable as the problem size increases.
We illustrate this through the matrix-matrix multiplication in
Fig. 8. As the order of matrices increases, the time spent on
the full enumeration increases exponentially, and exceeds the
time required by the proposed framework.

VIII. CONCLUSIONS

A geometric programming framework for improving the
system performance by combining data reuse with data-level
parallelization in FPGA-based platforms has been presented
in this paper. We originally formulate the problem as an
INLP, reveal its geometric programming characteristic, and
apply an existing solver to solve it. A limited number of
variables are used to formulate the problem, fewer than 10
variables for each of the benchmarks used in this paper. Thus,
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Fig. 8. Comparison of the average performance of the proposed framework
and the brute-force method to obtain an optimal design for matrix-matrix
multiplication under on-chip memory constraints.

in combination with the novel bounding procedure based on
a convex geometric program, the exploration of the design
space is efficiently automated and can be applied to high level
hardware synthesis process. The framework has been applied
to three signal and video processing kernels, and the results
demonstrate that the proposed framework has the ability to
determine the performance-optimal design, among all possible
designs under the on-chip memory constraint. Performance
improvements up to 5.7 times have been achieved by the
framework compared with the two-stage method.

In this framework, the reused elements of an array reference
are duplicated for all parallel segments. For some memory
access patterns this may result in unnecessary duplication of
unaccessed data. The advantage of this simple data partition
method is that there are no additional overheads on logic
controls for the data partition. The disadvantage is that the data
duplication may cause redundant requirement of on-chip mem-
ories, resulting in suboptimal designs. Therefore, in the future,
we will extend the framework with an optimized data partition
method to copy reused data only to those segments where they
are accessed. Moreover, though the proposed framework is to
optimize system performance, it can be extended to energy by
multiplying the objective function (7) with a monomial power
model similar to one proposed in [3]. The resultant problem
formulation will be still an INLP with geometric programming
relaxation. In the future, we may also combine this work
with register-oriented work [7] and add a further constraint
on register utilization to the framework.
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