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Damping and Relative Mode-shape Estimation in
Near Real-time through Phasor Approach
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Abstract— A technique for estimating damping and electro-
mechanical mode-shape in near real-time as oscillations develop
under transient condition is presented. At each sampling instant
measured signals are expressed as phasors using corrected values
of modal frequencies. Damping is obtained from the exponential
variation of estimated phasor magnitude using a moving win-
dow Least Squares (LS) algorithm. The relative mode-shape is
computed directly from the magnitude and phase angle of the
phasors. Random variations in loads are considered to examine
possible impact on phasor estimation especially, the frequency
correction loop. Accuracy and speed of convergence is validated
by comparing the time variation of estimated dampings and
relative mode-shapes against the actual values obtained from the
linearized models under respective operating conditions. Besides
the well-known 4-machine, 2-area test system, a 16-machine, 5-
area system is considered for illustration of the concept. Monte-
Carlo simulations are used to capture the statistical variability
in estimation as a result of persistent disturbances (e.g.random
fluctuations in loads) leading to different signal-to-noise ratios
(SNRs). Results from a commercial real-time simulator illustrate
the practical feasibility of the proposed approach.

Index Terms— Damping, frequency, mode-shape, phasor,
Kalman filtering, least squares, Monte-Carlo.

I. INTRODUCTION

S INCE the 1996 blackout in Western Electricity Coordinat-
ing Council (WECC) system, there has been renewed em-

phasis on continuous measurement-based system monitoring
to avoid or restrict the spread of such a collapse [1]. Several
events of abrupt line-tripping, load and generation shedding
took place during this breakup leading to changes in modal
behavior of the system [2], [3]. The spread could possibly have
been avoided following appropriate operator intervention with
accurate and near real-time knowledge of system frequency
and damping which are vital indicators of system stress and
stability [4], [5]. Relative mode-shapes estimated in near real-
time could also provide crucial information about oscillation
interaction paths and in turn might become critical for correc-
tive actions like generator and load tripping.

Estimation of damping ratio and frequency from measured
signals is widely reported in the literature. Standard techniques
for ringdown/transient response are primarily block-processing
algorithms like Prony analysis [6], Minimal Realization Al-
gorithm [7], Steiglitz-McBride Algorithm, Eigensystem Re-
alization Algorithm [8], Matrix-Pencil, Hankel Total Least
Squares (HTLS) [9] and Hilbert-Huang transformation (HHT)
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[10]. Under ambient condition block-processing techniques
including spectral analysis [11], Frequency Domain Decom-
position (FDD) [3], versions of Yule-Walker (YW) algorithm
[12], numerical sub-space system identification (N4SID) tech-
nique [13] and recursive techniques like Least Mean Squares
(LMS) adaptive filtering [14], Robust Recursive Least Squares
(RRLS) [15] and Regularized RRLS (R3LS) [5] are reported.
Some of the block processing algorithms mentioned in [4] and
recursive techniques like RRLS and R3LS can be applied to
ringdown response as well. It has been shown recently that
versions of YW [4] and recursive methods like RRLS and
R3LS can be applied for near real-time applications.

Although a lot of research attention has been focused on
damping and frequency estimation, not many papers exist
on mode-shape estimation especially, in near real-time [16].
Identification of mode-shapes in ringdown scenario has been
carried out with Matrix Pencil [17], Prony [18], moment-
matching [19] and principal component analysis (PCA) [20]
techniques. Small-signal continuous modal parameter estima-
tion technique was used in [21]. Spectral correlation analysis
[22], [16] and FDD [3] have been proposed for relative mode-
shape estimation from ambient data. In [23] a communication
method and a channel-matching approach were compared
against the spectral technique. Improvements were proposed
for the channel-matching approach in [24] by eliminating the
Narrow Bandpass Filter (NBF) and a similar technique was
employed in [25] using a Least-Squares (LS) algorithm based
transfer-function (TF) approach. The TF approach was shown
to be more accurate compared to the spectral technique [25]
for ringdown/transient response.

In TF approach the transfer-function between two output
signals is estimated which in effect is the ratio of the numer-
ators of individual output-input TFs. Accurate estimation of
numerator is not always straightforward. Moreover, the esti-
mated TF might be non-causal [25] requiring the knowledge of
channel delay - which could be an issue for a near real-time
realization. The communication approach [23] on the other
hand is non-parametric and seems to be more appropriate.
However a Narrow Band Filter (NBF) is required to pre-
process the signal as it is suitable for handling only one
mode at a time. NBFs need the precise knowledge of center
frequency and are typically high-order filters causing delays.
For practical applications the modal frequencies can change
with operating conditions requiring online adjustment of the
center frequency.

In this paper a phasor approach is proposed for estimation
of damping and relative mode-shape in near real-time during
transient conditions. The proposed technique is in line with
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the communication approach [23] but eliminates its above-
mentioned drawbacks by using Recursive Kalman Filtering
algorithm along with online correction of modal frequencies.
The measured signal is decomposed into an average value and
a number of oscillatory components expressed as phasors in
rotating d-q reference frames. The time-varying magnitudes
of the phasors capture the oscillation amplitudes at every
sampling instant which allows computation of damping ratios
through a moving window least squares error (LSE) approach.
Relative magnitudes and phase angles of the mode-shape are
directly estimated from the variation of amplitudes and phase
angles of the phasors with respect to a reference.

The phasor estimation algorithm is initialized with frequen-
cies obtained during ambient condition. These frequencies
are corrected online with changes in operating conditions.
Moreover, de-trending of the measured signal is automatically
achieved in near real-time with time-varying dc offset captured
in the average part. Unlike parametric approaches (e.g. TF),
which suffer from over-sampling due to extrapolation effects
[26], the phasor approach works satisfactorily with any sam-
pling rate above a minimum value.

Case studies on the well-known 4-machine 2-area system
and the 16-machine 5-area system demonstrate the effective-
ness of the methodology. Monte-Carlo simulations are carried
out to investigate the statistical variability in estimations
due to random variations in loads. Real-time simulation is
also performed to ascertain the practical feasibility due to
computational burden.

The contribution of this paper can be summarized as fol-
lows:

• A phasor approach is proposed for relative mode-shape
estimation in near real-time during transient/ringdown
conditions

• The proposed technique is also shown to be very effective
for estimation of damping ratio and modal frequency in
near real-time

• Extensive simulation studies are carried out on two test
systems under different scenarios to prove the effective-
ness under transient condition

• The feasibility of the proposed method for near real-time
applications is illustrated through real-time simulation

II. PHASOR APPROACH

Measured signals during transient condition consists of two
components: constant or slowly time-varying average and
oscillatory components with one or more modal frequencies.
The idea of the phasor approach is to extract the oscillatory
component(s) as space-phasor(s) in synchronously rotating d-
q reference frame(s) [27]. Thus the measured signal S(t) can
be expressed as:

S(t) = Sav(t) + Re
m∑

i=1

{
~Sph(i)e

jωit
}

(1)

where m is the number of modes in the signal. The space pha-
sor is decomposed into d and q components in the individual

rotating reference frame as follows:

S(t) = Sav(t) +
m∑

i=1

{
Sd(i)(t) cos ϕi(t)− Sq(i)(t) sin ϕi(t)

}

(2)
Here, ϕi(t) = ωit + ϕ0(i) and ϕ0(i) is the angle at which
each estimated space-phasor gets locked with its d-q frame of
reference.

Recursive Kalman filter estimation approach is
adopted to estimate the parameter vector Θ =
[Sav(t)Sd(1)(t)...Sd(m)(t)Sq(1)(t)...Sq(m)(t)]T following
the standard steps [28], [29] shown below:

Step I: Calculate the prediction error:

ε(t) = S(t)− φ(t)Θ(t− 1) (3)

where, φ(t) is the regressor expressed as:

φ(t) = [1 cos ϕ1(t)... cos ϕm(t)− sinϕ1(t)...− sin ϕm(t)]
(4)

Step II: Compute the Kalman gain vector Kd(t):

Kd(t) =
℘(t− 1)φT (t)

R2 + φ(t)℘(t− 1)φT (t)
(5)

Step III: Update the covariance matrix ℘(t):

℘(t) = [I −Kd(t)φ(t)]℘(t− 1) + R1 (6)

Step IV: Update parameter vector Θ(t):

Θ(t) = Θ(t− 1) + Kd(t)ε(t) (7)

The parameter vector Θ(t) is initialized with zeros while the
covariance matrix ℘(t) with a high value (104I). R1 is a
diagonal matrix normalized with respect to R2 which results
in R2 being an unity matrix. Choice of R1 depends on the
process noise covariance which is difficult to know a-priori.
Hence, R1 is tuned to attain a proper balance between the filter
convergence speed and tranquillity in parameter estimates [28],
[29]. Here the elements of R1 were chosen to be 0.5 [28].

The basic concept of phasor extraction is illustrated in
Fig. 1. The modal frequencies can be initialized with their

Fig. 1. Extraction of oscillatory components in phasor approach
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nominal values obtained from linear analysis which might
not always be straightforward for large practical systems. To
avoid this a self-initialization method is employed where the
estimation algorithms appropriate for ambient conditions are
used to obtain the frequency spectrum of the measured data to
initialize the frequencies. It should be mentioned that historical
data or operator experience might also play a key role in this
process [16]. This initial frequency is then updated with time
depending on the actual measurements.

Changes in frequencies with varying operating condition is
tracked online through frequency correction loops for indi-
vidual modes wherein PI compensators minimize the error
between the phase angles in consecutive samples, see the
dotted box in Fig. 1. The frequency corrections are limited
to ±0.1 Hz to avoid overlap between adjacent frequencies
present in a multi-modal signal. If more than one mode with
same or very close frequencies exist, the algorithm interprets
the signal as a superposition of identical oscillatory modes
and fails to identify them individually. This happens as there
can be different interpretations of the same signal [30] which
could be challenging. A free-running oscillator (e.g. a VCO)
can be employed for integrating the frequencies ωi to generate
the angles ϕi(t).

A. Estimation of Damping and Frequency

In phasor approach, the oscillatory component of the mea-
sured signal is transformed into a set of phasors containing
the amplitudes of individual modes. The ith estimated phasor
in time domain can be expressed as:

∣∣∣~Sph(i)

∣∣∣ =
√

S2
d(i)

(t) + S2
q(i)

(t) = S0(i)e
− ξ√

1−ξ2
ωit

(8)

where, ξ is the damping ratio, S0(i) is the amplitude of the
phasor at t = 0 s and ωi is the corrected frequency for the ith

mode. Assuming χ(t) = ξ√
1−ξ2

t, natural logarithm on both

sides of (8) give:

χ(t) = − 1
ωi

ln





∣∣∣~Sph(i)

∣∣∣
S0(i)



 = p1t + p0 (9)

As a result, χ(t) can be expressed as a linear function of time
t. The coefficients p1 and p0 can be estimated using a moving
window least squares error (LSE) approach as follows:

P = (ΓT Γ)−1ΓT X(t) (10)

P =
(

p̂1

p̂0

)
,Γ =

[
0 Ts . . (M − 1)Ts

1 1 . . 1

]T

(11)

where X(t) =
[

χ(t1) χ(t2) . . χ(tM )
]T

is the mea-
surement vector.

It is important to note the following points:
1) The most recent sample χ(t) is included in the window

and the oldest one is discarded
2) Closer observation of (8) reveals that a data window at

any particular time instant will have the time reference
i.e. t = 0 s corresponding to the first sample in the

window. As a result S0(i) is the first sample of
∣∣∣~Sph(i)

∣∣∣
in the window

3) Following point (2) above, the regression matrix Γ
becomes a constant (see (11)) and thus the pseudo-
inverse of Γ can be calculated off-line - thereby reducing
the computational burden

4) ωi is updated at each sampling instant by the frequency
correction loop

5) p0 is included in the formulation of LSE to account for
any time-independent component present - normally this
will be zero

The damping-ratio can be calculated in terms of the esti-
mated parameters P as:

ξ =
p̂1√

1 + p̂2
1

(12)

B. Estimation of Mode-shape

Dynamic behavior of power systems around a nominal
condition can be expressed in state-space form as:

∆ẋ = A∆x + B∆u (13)

Here, ∆x is the power system state-vector including generator
angles, speeds etc. The eigenvalues λi , i = 1, 2, ..., n are the
roots of the characteristic equation:

|A− λiI| = 0 (14)

The right eigenvector φi corresponding to the eigenvalue λi

satisfies the following equation:

Aiφi = λiφi (15)

where φi is also the mode-shape which is a complex vector
representing the participation of state variables in the ith mode.
The mode-shape vector can be normalized with respect to any
of the state variables and expressed as relative mode-shape as
is done throughout the rest of the paper. For each mode, the
relative mode-shape is the normalized magnitude and phase-
shift between the state trajectories in time-domain which can
be represented as phasors.

For validating signal based mode-shape estimation algo-
rithms, generator speeds/internal angles (state-variables) could
be used. Since it is difficult to measure internal angles of
generators, speed signals were considered in this work. During
phasor extraction and frequency correction the estimated pha-
sor ~Sph(i) changes its position dynamically and finally locks
itself at an angle ϕ0(i) with the d-q frame. Relative mode-
shape can thus be estimated using the following steps:

1) Express the speed of the reference generator in phasor
form considering the particular mode of interest

2) Use the output of the frequency correction loop of the
reference phasor to estimate the corresponding phasors
from other speed signals. This would ensure that the
other phasors are locked with respect to the reference

3) Finally, compute the relative phasor magnitudes and
angles with respect to the reference phasor

This concept is illustrated in Fig. 2 for the estimation of
relative mode-shape of ith state variable in jth mode.
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Fig. 2. Estimation of relative mode-shape for the ith state variable in the
jth mode with phasor approach

C. Switching Strategy

Satisfactory performance under both ambient and transient
condition is ensured with the switching strategy shown in
Fig. 3. As the proposed phasor approach is more effective

Fig. 3. Switching strategy for the proposed technique using an event detection
logic

under ringdown/transient conditions, an event detection logic
with an appropriate dead-band is used to switch to the output
of the phasor estimator. Transient condition is detected when
the phasor magnitude exceeds a threshold Ahi. Below a
certain threshold Alo (see Fig. 3), other algorithms effective
for ambient condition [4], [3] are used. Similar logic based
arrangement was applied in a prototype Oscillation Monitoring
System (OMS) at Tennessee Valley Authority (TVA) [31].

III. CASE STUDY I: 4-MACHINE, 2-AREA SYSTEM

The first case study is based on the well known 4-machine,
2-area system shown in Fig. 4 [32]. In steady state, approx-
imately 400 MW flows from area 1 to area 2. To control
this tie-line power flow, a thyristor controlled series capacitor
(TCSC) is installed to provide 10% compensation in steady
state. Further details of the system can be found in [32].
Integrated Gaussian noise is injected at the load buses to
emulate random variations in loads. Monte-Carlo simulation

Fig. 4. Test system I: 4-machine, 2-area system with a TCSC

study based on 100 trials was carried out to investigate the
statistical variability in estimation.

For all the case studies, estimated d and q components of
the phasor as well as the output of frequency correction loop
were low-pass filtered to minimize the impact of system noise.
The accuracy of the estimates are compared against the actual
values obtained from linear analysis. Also a comparison with
the dampings and frequencies estimated by Prony analysis
is presented in the Appendix. For damping estimation the
difference between phase angles of voltages at buses 5 and
11 was considered, whereas mode-shape was estimated using
generator speed measurements (typical traces are shown in
Fig. 5).

self−clearing fault: 400 MW tie−flow
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Fig. 5. Upper traces: Typical variation of difference between phase angles
of voltage at buses 5 and 11 and speed of generator G2 (see Fig. 4) under
ambient and transient conditions. Lower traces: zoomed view of sections of
the transient parts

To illustrate the feasibility of the switching strategy de-
scribed in Section II-C the evolution of estimated phasor
magnitude from ambient to transient is shown in Fig. 6.
Estimated dampings, frequencies and mode-shapes from pha-
sor algorithm would be used only when the phasor magnitude
exceeds a pre-specified threshold indicating onset of transient
condition.

A. Estimation of Damping and Frequency

The modal frequency of the inter-area modes could be
initialized with their nominal values obtained from eigen
analysis. However, due to the reasons mentioned in Section II,
the ambient spectrum of measured phase angle difference be-
tween buses 5 and 11, see Fig. 7 was used to obtain the initial
guess of the frequency. Frequency correction is initiated once
the estimated phasor magnitude exceeds a certain threshold. A
5 s moving-window was chosen for damping estimation with
LSE algorithm.

The estimated damping and frequency are shown in Fig. 8.
Following a self-clearing fault for 80 ms near bus 8 under
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Fig. 6. Upper trace: Typical variation of difference between phase angles of
voltage at buses 5 and 11 (see Fig. 4) under ambient and transient conditions.
Lower traces: zoomed view of sections of the oscillatory component under
ambient and transient along with the estimated phasor magnitude
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Fig. 7. Ambient spectrum of the measured phase angle difference between
buses 5 and 11, see Fig. 4

nominal operating condition (400 MW tie-flow), the estimated
frequency settles to the pre-fault value after initial variations
due to convergence of Kalman Filter algorithm. The damping
estimation also converges to the accurate value within 10-12
s after the disturbance.

Similar trend is observed under heavy loading condition
(825 MW tie-flow) following the same fault, see Fig. 8. As
expected, damping of the inter-area mode becomes poorer
with heavier loading. Moreover, the frequency of oscillation
changes by about 0.07 Hz from the nominal condition which
is reasonably tracked by the frequency correction loop. Results
with a three-phase fault near bus 8 followed by line 8-9 outage
also illustrates satisfactory convergence, see Fig. 8.

B. Estimation of Mode-shapes

The compass plot of the relative mode-shapes (obtained
from linear analysis) of generator speeds under two operating
conditions is shown in Fig. 9. For this case study the speed
of generator 3 is taken as reference. Under transient condition
the speed signal contains exponentially decaying dc compo-
nent which is estimated as the average value thus achieving
effective de-trending in near real-time. In Figs. 10 and 11 the
estimated relative mode-shapes are plotted.

estimation of frequency and damping
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Fig. 8. Estimated damping-ratio and frequency across different operating
conditions: a three-phase fault of 5-cycle duration occurs at t = 5 s.

relative mode shapes: compass plots
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Fig. 9. Compass plot of relative mode-shapes obtained from linear analysis

Consecutive disturbances were simulated to illustrate the
speed and accuracy of convergence. A representative result
considering a three-phase fault near bus 8 cleared by line
7-8 outage at t = 40 s and subsequent line reclosure at
t = 80 s is presented here. Fig. 10 shows that the changes in
system damping and relative mode-shape from one operating
condition to the other is tracked with reasonable speed and
accuracy. This figure also shows continuous frequency tracking
under different operating scenarios starting with the nominal
value.

Under heavy loading condition with 825 MW tie-flow,
mode-shape of the system changes significantly from nominal
condition (as estimated during line reclosure in Fig. 10) where
all the generators swing nearly in phase [32], see Fig. 9.
In Fig. 11 little variations in estimates are observed around
the actual values perhaps due to higher system non-linearities
under heavy loading.

Fig. 12 shows the mean and standard deviation of estimated
damping ratio and mode-shape magnitudes obtained from
100 Monte-Carlo trials. Due to space restrictions, statistical
variability of relative mode-shape is presented only for one
operating condition. As oscillations settle, ambient condition
with higher influence of noise is approached moving away
from the ringdown situation - hence the standard deviation is
increased. It is to be noted that the onset of ambient condition
will be reflected in estimated phasor magnitude based on
which an algorithm suited for ambient condition will take over
from the phasor algorithm following the switching scheme in
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line 7−8 outage followed by reclosure
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Fig. 3.
To illustrate the effect of signal to noise ratio (SNR) on

the estimation, Monte-Carlo simulations with different values
of SNR were done. In Fig. 13 the boxes show the statistical
spread (median, lower and upper quartile) of the estimated
damping, frequency and relative mode-shape in comparison
with their actual values (dotted line). For obvious reason the
estimation is more consistent across different Monte-Carlo
trials for higher values of SNR. However, in all cases the
estimated quantities are quite close to their actual values
indicating the effectiveness of the proposed algorithm. Mode-
shape magnitude and phase angle of only one generator, G4
is shown here due to space restrictions.

IV. CASE STUDY II: 16-MACHINE, 5-AREA SYSTEM

Following basic understanding with the 4-machine 2-area
system, a 16-machine, 5-area test system, shown in Fig. 14
was considered. A detailed description of the study system

Monte Carlo simulation
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including machine, excitation system and network parameters
can be found in [33]. A TCSC is installed on the tie-line
connecting buses 18 and 50. There are three critical inter-area
modes with nominal frequencies: 0.398 Hz (mode # 1), 0.525
Hz (mode # 2) and 0.623 Hz (mode # 3).

Integrated Gaussian noise is injected at all load buses to
simulate random load fluctuations. Similar to the previous case
study, Monte-Carlo simulation based on 100 trials was carried
out to investigate the statistical variations. Although both mean
and standard deviations of the estimated parameters were
monitored for all scenarios, only the results for a particular
trial are shown here for clarity. Phase angle difference between
voltages at buses 45 and 51 was used for damping estimation,
whereas generator speeds were considered for mode-shape
estimation (typical traces are shown in Fig. 15).

A. Estimation of Damping and Frequency

The ambient spectrum of the real power flow from bus 16
to 18, see Fig. 16 was used to obtain the initial guess of
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Fig. 14. Test system II: 16-machine, 5-area system with a TCSC.
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Fig. 15. Upper traces: Typical variation of difference between voltage angles
at bus 45 and 51 and speed of generator G14. Lower traces: zoomed view of
sections of the transient parts

the frequencies. The performance of the algorithm was tested
exhaustively across a wide range of scenarios. Only a few
representative cases, as shown in Fig. 17, are reported here
due to space restriction. Besides a self-clearing fault near bus
60, three critical tie-line outages (lines 60-61, 54-53 and 18-
42) following three-phase faults at t = 5 s near one of the
respective terminal buses are presented.

Damping estimation for mode #1 takes about 10-12 s to
converge following the first three disturbances. For line 18-
42 outage, estimation of damping of mode #2 is illustrated
as it is the most critical one - note the performance of the
corresponding frequency correction loop in Fig. 17.

B. Estimation of Mode-shapes

Out of several scenarios considered, only two representative
cases following a self-clearing fault near bus 60 and line 54-53
outage are presented here. Compass plots of the relative mode-
shapes under these conditions obtained from linear analysis are
shown in Fig. 18.

Fig. 19 shows the variation of estimated relative mode-
shapes for mode # 1 considering one generator from each of
the five areas. Angular speed of generator # 5 is considered as
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Fig. 17. Estimated damping and frequency across different operating
conditions: transient begins at t = 5 s.

the reference for this mode. The relative mode-shape estimates
converge to acceptable accuracy within 10-12 s following
the disturbance. The estimated mode-shapes reveal that the
generators in NETS and NYPS (see Fig. 14) oscillates against
those in area # 3, # 4 and #5 which is consistent with Fig. 18.
As shown in Fig. 20, estimated mode-shapes following the
outage of a tie-line connecting NETS and NYPS (see Fig. 14)
also matches the swing patterns obtained from linear analysis,
see Fig. 18. Similar trends of convergence were observed for
other outage scenarios which could not be presented here due
to space restrictions.

A comparison between the two case studies in Sections III
and IV shows that in general, the convergence is better for the
case study I. For case study II, there are more variations in
estimated damping and relative mode-shape about their actual
values. This is due to the fact that the test system used for case
study II has multiple inter-area modes resulting in multi-modal
signals unlike the test system for case study I which has only
one inter-area mode. Estimating modal behavior from multi-
modal signals is challenging especially, when the frequencies
are very close to each other. Proper choice of signals with one
dominant modal content helps in such situations [16].

Results of Monte-Carlo simulations with different values of
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relative mode shapes : compass plots
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Fig. 19. Estimated relative mode-shapes after a self-clearing fault near bus
60 at t = 5 s. Reference generator: G5.

SNR were are shown in the form of boxplots in Fig. 21. The
statistical spread in estimated damping, frequency and relative
mode-shape is shown in terms of the median, lower and upper
quartiles) with their actual values (dotted line) in the backdrop.
Estimation is more consistent across different Monte-Carlo
trials for higher values of SNR. However, in all cases the
estimated quantities are quite close the respective actual values
indicating the effectiveness of the proposed algorithm. Mode-
shape magnitude and phase angle of only one generator G8,
is shown due to space restrictions.

C. Real-time Simulation

Damping and relative mode-shape estimation algorithm
involve significant mathematical computation (see Section II),
within each sampling interval of 20 ms. Real-time simulations
were carried out to detect possible overruns in computation
and confirm practical feasibility of the proposed approach.
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Fig. 20. Estimated relative mode-shapes for mode # 1 after a three-phase fault
near bus 54 followed by line 54-53 outage at t = 5 s. Reference generator:
G5.
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The dynamic behavior of the test system shown in Fig. 14
was emulated using an Opal-RT real-time simulator [34].
Analog signals out of the real-time simulator were captured
in an oscilloscope and passed on to an oscillation monitor
platform for estimation of damping and relative mode-shape in
near real-time. Fig. 22 shows the damping and relative mode-
shape estimation following line 54-53 outage. The oscilloscope
traces of the measured signals are shown here for the phase
angle difference between buses 45 and 51 along with generator
speed deviations of generator # 5, # 8 and # 15. Very close
similarity with the computer simulation results, see Figs. 17
and 20, confirm that the computations could be successfully
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Fig. 22. Oscilloscope traces of measured signals and corresponding damping
and mode-shape estimation with phasor approach for line 54-53 outage.

completed within each sampling interval. Not a single instance
of overrun was detected in the real-time simulator.

The oscilloscope trace in the middle (see Fig. 22) shows that
the speed deviation of generator #8 initially contains higher
frequencies due to local mode, which is clipped by +/- 13.5
V limits of the DAC. Hence, there is noticeable difference
between the estimated mode-shape of this generator for the
real-time study and the simulation study during the time-
span of 5 - 10 s, compare Figs. 20 and 22. However, the
patterns match closely once the initial transients (period of
DAC limit violations) are over. No such problem is there
for speed deviation of generator #15 resulting in very similar
computer and real-time simulation results.

Although the presence of multiple modes is visible from
the traces of generator speeds, mode #1 is dominant and
oscillation pattern of generator #8 speed deviation shows
that it is similar in magnitude and almost in phase with the
reference generator. On the other hand, bottom signal shows
that oscillation amplitude of the speed of generator #15 is
much lesser and almost out of phase with respect to the
reference generator. The same information is reflected in the
estimated relative mode-shape magnitudes and phase angles,
see Fig. 22. The proposed phasor approach is general and
applicable to system of any size. Rather than the size of the

system itself, the number of critical modes would influence
the computational burden and could be a limiting factor.

V. CONCLUSION

A phasor approach based on Recursive Kalman Filtering is
presented in this paper for estimating the damping and relative
mode-shape in near real-time under transient condition. At
each sampling instant measured signals are expressed as pha-
sors using corrected values of modal frequencies. Damping is
obtained from the estimated phasor magnitude using a moving
window LS curve-fitting approach while the magnitude and
phase angle of the phasors directly provide the relative mode-
shape. Besides the well-known 4-machine, 2-area test system,
a 16-machine, 5-area system is considered to demonstrate
the methodology. Simulation results across a wide range of
operating conditions show that the relative mode-shapes are
estimated with acceptable accuracy in transient conditions.
Monte-Carlo simulations show that the statistical variability
in estimation as a result of random load variations and differ-
ent signal-to-noise ratios (SNRs) is within acceptable limits.
Results from a real-time simulator confirms the practical
feasibility of the approach.
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APPENDIX

A. Comparison With Prony Analysis

Prony analysis is a block-processing algorithm and has
mostly been used for off-line analysis [6] whereas the pro-
posed method is a recursive suitable for a near real-time
application. A comparison of the damping and frequency
estimated from Prony analysis (with a 30 s time window)
against the linear analysis for the case studies in Section III
and IV is shown below:

TABLE I
COMPARISON AGAINST PRONY ANALYSIS: CASE STUDY I

damping, % frequency, Hz
Scenario Prony Linear Prony Linear
400 MW 1.28 1.3 0.636 0.636
8-9 out 0.92 0.90 0.5928 0.590
7-8 out 0.77 0.80 0.588 0.585

825 MW 0.83 0.84 0.562 0.563

TABLE II
COMPARISON AGAINST PRONY ANALYSIS: CASE STUDY II

damping, % frequency, Hz
Scenario Prony Linear Prony Linear
nominal 6.83 7.0 0.397 0.398

60-61 out 5.08 5.20 0.383 0.381
54-53 out 5.57 5.70 0.379 0.378
18-42 out 5.47 5.50 0.447 0.453
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