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Abstract—The quaternion least mean square (QLMS) algo-
rithm is introduced for adaptive filtering of three- and four-
dimensional processes, such as those observed in atmospheric
modeling (wind, vector fields). These processes exhibit complex
nonlinear dynamics and coupling between the dimensions, which
make their component-wise processing by multiple univariate
LMS, bivariate complex LMS (CLMS), or multichannel LMS
(MLMS) algorithms inadequate. The QLMS accounts for these
problems naturally, as it is derived directly in the quaternion
domain. The analysis shows that QLMS operates inherently
based on the so called “augmented” statistics, that is, both the
covariance E{xx

H} and pseudocovarianceE{xx
T } of the tap

input vector x are taken into account. In addition, the operation
in the quaternion domain facilitates fusion of heterogeneous data
sources, for instance, the three vector dimensions of the wind field
and air temperature. Simulations on both benchmark and real
world data supports the approach.

Index Terms—Quaternion signal processing, multidimensional
adaptive filters, adaptive multi-step ahead prediction, wind mod-
eling, data fusion via vector spaces.

I. I NTRODUCTION

Due to its simplicity and robustness, the Least Mean Square
(LMS) algorithm has been at the core of adaptive filtering
applications [1], [2], and its online adaptive mode of operation
makes it suited for the processing of nonstationary real world
signals. These attractive properties have led to its applications
in noise reduction, radar/sonar signal processing, channel
equalization for cellular mobile phones, echo cancelation,
and low delay speech coding [3]. The LMS update can be
expressed as:

w(n + 1) = w(n) + µe(n)x(n) (1)

wherew(n), e(n), µ, x(n) denote respectively the adaptive
weight vector, instantaneous output error, stepsize, and the
input data vector of lengthL. Extensions proposed to improve
the performance of LMS include those based on the optimiza-
tion of the stepsize [4], filtering of error gradients [5], and
adaptive filter length [6].

To processbi-variate signals, such as those in digital
communications, chaotic maps [7], and vector fields [8], the
LMS algorithm was extended to the complex domain [9].
Recently, Mandicet al. have exploited the bivariate model
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of wind [8], [10] in this context; this was achieved by using
the so-called augmented statistics [11]. In many other fields,
the simultaneous processing of the two dimensions of a signal
(radar, sonar) can lead to a more efficient signal processing
algorithm than processing each dimension separately. As the
quaternion domain represents an extension of the complex
field, it is natural to ask whether we can extend the class of
LMS algorithms to cater for adaptive filtering of three- and
four- dimensional (hyper-complex) signals.

Quaternions can be regarded as a non-commutative exten-
sion of complex numbers, and comprise at most four variables
[12], [13]. A quaternion variableq ∈ H which has a
real/scalar partℜ{q} (denoted with subscripta), and a vector
partℑ{q} comprising of three imaginary parts (denoted with
subscriptsb, c, d), can be expressed as

q = [ℜ{q},ℑ{q}] = [qa,q] ∈ H

= [qa, (qb, qc, qd)]

= qa + qbı + qc + qdκ {qa, qb, qc, qd ∈ R}(2)

Quaternions have been used for more than 150 years (con-
ceived by W. Hamilton in 1843), and have found applications
in computer graphics, for the modeling of three-dimensional
(3D) rotations [14], in robotics [15], and molecular modeling
[16]. Within the image and signal processing community, Pei
and Cheng employed quaternions to process color images [17],
Toyoshima implemented efficient hyper-complex digital filters
[18], Bülow and Sommer used a hyper-complex representa-
tion in texture segmentation [19], whereas Zarzoso utilized
quaternions to help solve source separation problems [20].
Le Bihan et al. used quaternions in watermarking [21]; they
also proposed quaternion algorithms for spectrum estimation,
such as a fast complexified quaternion Fourier transform [22],
quaternion singular value decomposition (QSVD) and MUSIC
algorithm to process polarized waves [23], [24]. Although
the standard least squares problem has also been addressed
in the quaternion domain [16], [25], [26], adaptive filtering
algorithms for the processing of quaternion valued signalsare
lacking.

The recent progress in technology, environmental sciences,
robotics, and biomedicine, has highlighted the need for adap-
tive filtering of several important classes of multidimensional
signals, for instance, 3D wind field measured by three-
axis anemometers. By processing those data directly in the
multidimensional domain where they reside, we can exploit
the correlation and coupling between each dimension and
therefore provide enhanced modeling. To this end, we propose
the quaternion least mean square (QLMS) algorithm. To cater
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for noncircularly symmetric distributions inH, similarly to
the widely linear model inC [27], and augmented CLMS
(ACLMS) [28] [29], we also investigate the benefits of so
called augmented statistics.

The organization of the paper is as follows; in the next
section we briefly review the elements of quaternion algebra
necessary for the development of QLMS adaptive filters. In
section III, QLMS and its augmented version are derived.
This is followed by a statistical analysis on both QLMS
and AQLMS algorithms in section IV. Section V compares
the performances of the proposed approaches against the
univariate LMS, bivariate CLMS and multi-channel LMS [30].
Simulations are based on both benchmark data and real world
three-dimensional wind field data. Section VI concludes the
paper.

II. QUATERNION ALGEBRA

The properties of the orthogonal unit vectors,ı, , κ
describing the three vector dimensions of a quaternion are

ı = κ

κ = ı

κı = 

ıκ = ı2 = 2 = κ2 = − 1 (3)

Due to the non-commutativity of the quaternion, for example,
ı 6= ı, insteadı = −κ. Other elements of quaternion algebra
that are used in this work include the multiplication given by

q1q2 = [qa,1,q1][qa,2,q2]

= [qa,1qa,2 − q1 · q2, qa,1q2 + qa,2q1 + q1 × q2]

(4)

whereq = qa+qbı+qcı+qdκ = [qa,q]. Symbols “·” and “×”
denote respectively the dot-product and the cross-product, the
conjugate of a quaternionq∗ = [qa,q]∗ = [qa,−q], and the
norm ||q||2

2
= qq∗. Note, that quaternion conjugation is anti-

involution, that is,(q1q2)
∗ = q∗

2
q∗
1
. A quaternion is said to be

pure, if its real part vanishes. The quaternion vector spaceH

forms a noncommutative normed division algebra, that is

q1q2 6= q2q1

For an introduction to quaternions we refer to [31]; for a more
advanced reading, we recommend [32]. In this paper, unless
otherwise stated, all the quantities are quaternion-valued, for
instancew(n) is a vector of quaternions, whilee(n) is a
quaternion variable.

III. D ERIVATION OF THE QLMS AND ITS VARIANT

AQLMS

Based on the quaternion algebra, and standard stochastic
gradient approximation, we shall now derive the quaternion
LMS (QLMS) algorithm for quaternion-valued linear adaptive
finite impulse response (FIR) filters.

A. The Quaternion LMS

The same real-valued quadratic cost function (the quaternion
norm) as in LMS and CLMS is used, that is

J (n) = e(n)e∗(n)

= e2

a(n) + e2

b(n) + e2

c(n) + e2

d(n) (5)

where the error1 e(n) = d(n) − wT (n)x(n), with
d(n), w(n), and x(n) denoting respectively the desired
signal, the adaptive weight vector, and the filter input. Sym-
bols (·)T , (·)H , and (·)∗ denote respectively the transpose,
Hermitian, and quaternion conjugate operator. Based on the
cost function (5), within the steepest descent optimization, the
following gradients need to be calculated2

∇w

(
e(n)e∗(n)

)
= ∇wa

(
e(n)e∗(n)

)
+ ∇wb

(
e(n)e∗(n)

)
ı +

∇wc

(
e(n)e∗(n)

)
 + ∇wd

(
e(n)e∗(n)

)
κ (7)

wherew = wa + wbı + wc + wdκ and

∇wa

(
e(n)e∗(n)

)
= e(n)∇wa

(
e∗(n)

)
+ ∇wa

(
e(n)

)
e∗(n)

∇wb

(
e(n)e∗(n)

)
= e(n)∇wb

(
e∗(n)

)
+ ∇wb

(
e(n)

)
e∗(n)

∇wc

(
e(n)e∗(n)

)
= e(n)∇wc

(
e∗(n)

)
+ ∇wc

(
e(n)

)
e∗(n)

∇wd

(
e(n)e∗(n)

)
= e(n)∇wd

(
e∗(n)

)
+ ∇wd

(
e(n)

)
e∗(n) (8)

Subsequently, the update of the adaptive weight vector of
QLMS can be expressed as (the full derivation of the gradient
can be found in Appendix VIII-A)

w(n + 1) = w(n) + µ
(
2e(n)x∗(n) − x∗(n)e∗(n)

)
(9)

Due to the non-commutativity of the quaternion product, there
are two terms within the gradient of the cost function, that is,
2e(n)x∗(n) andx∗(n)e∗(n). The QLMS update includes the
term µe(n)x∗(n) which is similar to that within the complex
LMS [9], together with an additional termx∗(n)e∗(n) which
is specific to the quaternion domain. To answer whether QLMS
simplify exactly into CLMS when quaternion-valued signals
are limited to two dimensions, let the imaginary parts andκ
of quaternionsx(n) and e(n) vanish. The QLMS for such a

1In this work we use the formulationy(n) = w
T (n)x(n) following on

Widrow’s CLMS [9], howevery(n) = x
T (n)w(n) can also be used as a

starting point. Unlike the LMS and CLMS, due to the non-commutativity of
quaternion product, the formulationy(n) = x

T (n)w(n) requires separate
derivation of QLMS, and can be addressed similarly to the correspondence
between (9) and (39), when the cost function is written asJ (n) = e∗(n)e(n)
instead ofJ (n) = e(n)e∗(n).

2The non-commutativity of the quaternion product and the conjugation
properties are taken into account, that is

∇wJ (n) = e(n)

(

∇wa

(
e∗(n)

)
+∇wb

(
e∗(n)

)
ı+∇wc

(
e∗(n)

)
+∇wd

(
e∗(n)

)
κ

)

+

+

(

∇wa

(
e(n)

)
+ ∇wb

(
e(n)

)
ı + ∇wc

(
e(n)

)
 + ∇wd

(
e(n)

)
κ

)

e∗(n)

6= e(n)

(

∇wa

(
e∗(n)

)
+∇wb

(
e∗(n)

)
ı+∇wc

(
e∗(n)

)
+∇wd

(
e∗(n)

)
κ

)

+

e∗(n)

(

∇wa

(
e(n)

)
+∇wb

(
e(n)

)
ı+∇wc

(
e(n)

)
+∇wd

(
e(n)

)
κ

)

(6)
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case simplifies into

w(n + 1) = w(n) + µ

(

[ea(n)xa(n) + 3eb(n)xb(n)] +

ı[−ea(n)xb(n) + 3eb(n)xa(n)]

)

A comparison with the CLMS update

w(n + 1) = w(n) + µ

(

[ea(n)xa(n) + eb(n)xb(n)] +

ı[−ea(n)xb(n) + eb(n)xa(n)]

)

shows that QLMS does not simplify exactly into CLMS,
highlighting the direct multidimensional mode of operation.
This is also the case if any other combination of two dimen-
sions of a quaternion are made to vanish, however, it can be
shown that if the quaternion data are in the “isomorphic”
form of q = qa + Qir, where Q =

√

q2

b + q2
c + q2

d, and
ir = (qbı+ qc+ qdκ)/Q, the derivation of QLMS is identical
to that of CLMS.

B. The Augmented QLMS (AQLMS)

Motivated by some recent developments in so-called aug-
mented complex statistics, we now derive the augmented
QLMS algorithm, which is capable of dealing with the gener-
ality of quaternion data. It is usually assumed that the statistics
in C are a simple extension of the statistics inR, obtained
by replacing the(·)T operator by the(·)H operator in the
corresponding second order statistical moments. For example,
the covarianceE{xxT } in the real domain is replaced by
E{xxH} in the complex domain. This is, however, not ade-
quate for non-circular data (for more detail, see [10], [33]). Re-
cently, for the processing of real world data which can be made
complex by convenience of representation, Goh and Mandic
(for wind processing [28], [10]), Novey and Adali (for source
separation applications [34], [35]) and, Schreier and Scharf
(for communication applications [11]) have highlighted the
need to adopt the so-called “augmented statistics”, a concept
introduced by Picinbono [36], [37]. The use of augmented
statistics is crucially important when processing non-circular
complex signals; non-circularity or improperness is a second
order statistical property, which can be defined as

Cxx = E{xxH} 6= 0 Pxx = E{xxT } 6= 0 (10)

that is, the pseudocovariancePxx does not vanish for a
non-circular complex signal3. In the context of quaternion
statistics, properness (known asQ-properness) is defined as
the invariance of the probability density function (pdf) un-
der some special angle rotations [38], [39]. More recently,
Amblard and Le Bihan extended the definition of properness
by proposingC-properness andH-properness [39]. There is,
however, no explicit mention of the role of pseudo-covariance
in quantifying properness of quaternions. More specifically,

3For a complex circular signal, the pseudo-covariancePxx vanishes, that
is, E{xx

T } = E{xrx
T
r } − E{xix

T
i } + ıE{xrx

T
i } + ıE{xix

T
r } = 0.

This is because for a circular signal, the real partxr and the imaginary part
xi have the same covariance, but are uncorrelated.

the pseudo-covariance does not vanish even for aQ-proper
signal4. Motivated by the augmented CLMS [28], augmented
CRTRL [40], and augmented statistics for wind profile [8], we
now investigate the benefits of including the pseudocovariance
Pxx into the QLMS algorithm. In order for QLMS to cater for
general quaternion processes, we employ a quaternion-valued
widely linear model [37], given by

y(n) = wT (n)x(n) + gT (n)x∗(n) (11)

This model incorporates both the information contained in the
covariance and pseudocovariance (for more detail, see [27]).
For the quaternion scenario, the update for vectorg in (11)
can be found similarly to that for QLMS, and is given by (full
derivation can be found in Appendix VIII-B)

g(n + 1) = g(n) + µ
(
2e(n)x(n) − x(n)e∗(n)

)
(12)

Again, the non-commutativity of the quaternion products must
be taken into account during the derivation of the update
(12). Finally, (9) and (12) can be combined into a compact
“augmented” form as

ha(n) = [wT (n) gT (n)]T (13)

and the weight update of the augmented QLMS (AQLMS),
can be expressed as

ha(n+1) = ha(n)+µ

[

2ea(n)xa∗

(n)−xa∗

(n)ea∗

(n)

]

(14)

where the augmented error and input vector are given by

ea(n) = d(n)−haT

(n)xa(n) xa(n) = [xT (n) xH(n)]T

(15)
In the complex domain, it has been shown that adaptive
algorithms based on augmented statistics exhibit advantages
over standard algorithms, for data which are not circularly
symmetric [40], [41].

IV. PROPERTIES OFQLMS ALGORITHMS

The non-commutativity of quaternion product make their
algebraic manipulation demanding. One way to circumvent
this problem is to treat the real/scalarℜ{·} and the vector
ℑ{·} part of a quaternion separately, similarly to [42]. The
analysis will be based on the following two observations

1) Property 1:

y = −y∗ iff ℜ{y} = 0 (16)

2) Property 2:

y = y∗ iff ℑ{y} = 0 (17)

To analyse the QLMS algorithms, we shall now make the stan-
dard assumption in adaptive filtering thatd(n) = wT

optx(n)

4For a Q-proper signal, the pseudo-covariancePxx does not vanish, that
is, E{xx

T } = E{xax
T
a } − E{xbx

T
b
} − E{xcx

T
c } − E{xdx

T
d
} +

ı2E{xax
T
b
} + 2E{xax

T
c } + κ2E{xax

T
d
} 6= 0. This is because for a

Q-proper signal, the scalar/real partxa and the vector/imaginary partxb,c,d

have equal variances, but are uncorrelated. This follows from conditions (4)
and (5) of Theorem 2 in [38].
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[43]. Following the standard analysis of the convergence in
the mean [43], the weight error vector is defined as

v(n) = w(n) − wopt (18)

wherewopt is the optimal weight vector, while the errore(n)
between the desired signald(n) and its estimatey(n) is given
by

e(n) = d(n) − y(n)

= wT
optx(n) − wT (n)x(n)

=
(
wT

opt − wT (n)
)
x(n) = −vT (n)x(n) (19)

A. Analysis of QLMS

From the QLMS update (9), the real part can be computed
as

ℜ{w(n+1)} = ℜ{w(n)}+ℜ{µ
(
2e(n)x∗(n)−x∗(n)e∗(n)

)
}

(20)
By employing Property 2, it can be shown that (20) is
equivalent to

ℜ{w(n+1)} = ℜ{w(n)}+2ℜ{µ(e(n)x∗(n)}−ℜ{µe(n)x(n)}
(21)

Substitute (19) into (21) to yield

ℜ{w(n + 1)} = ℜ{w(n)} − 2ℜ{µvT (n)x(n)x∗(n)}

+ℜ{µvT (n)x(n)x(n)}

= ℜ{w(n)} − 2ℜ{µ
(
vT (n)x(n)xH(n)

)T
}

+ℜ{µ
(
vT (n)x(n)xT (n)

)T
}

(22)

Substractwopt from both sides of Eq. (22) to give

ℜ{v(n + 1)} = ℜ{v(n)} − 2ℜ{µ
(
vT (n)x(n)xH(n)

)T
}

+ℜ{µ
(
vT (n)x(n)xT (n)

)T
}

ℜ{vT (n+1)} = ℜ

{

vT (n)

(

I+µ [x(n)xT (n) − 2x(n)xH(n)
︸ ︷︷ ︸

Real QLMS statistics

]

)}

(23)
From (23), we can see that in terms of statistics, QLMS
includes both the pseudocovariancePxx = E{xxT } and the
covarianceCxx = E{xxH}. This is a major difference as
compared with CLMS, and therefore, it is expected that the
QLMS and augmented QLMS will have similar performance.

The vector partℑ{·} of the QLMS update (9) can
be analyzed usingProperty 1 and (19), that is

ℑ{w(n+1)} = ℑ{w(n)}+ℑ{µ[2e(n)x∗(n)−x∗(n)e∗(n)]}
(24)

= ℑ{w(n)} + ℑ{µ2e(n)x∗(n)} + ℑ{µe(n)x(n)}

= ℑ{w(n)} − ℑ{µ[2vT (n)x(n)xH(n)]T }+

−ℑ{µ[vT (n)x(n)xT (n)]T } (25)

yielding

ℑ{wT (n + 1)} = ℑ{wT (n)} − ℑ{µ(2vT (n)x(n)xH(n)} +

−ℑ{µvT (n)x(n)xT (n)} (26)

Subtractwopt from both sides of Eq. (26) to give

ℑ{vT (n + 1)} = ℑ{vT (n)} − ℑ{µ(2vT (n)x(n)xH(n)}

−ℑ{µvT (n)x(n)xT (n)}

= ℑ

{

vT (n)

(

I + µ[−x(n)xT (n) − 2x(n)xH(n)
︸ ︷︷ ︸

Vector QLMS statistics

]

)}

(27)

Again, both the pseudocovariance and the covariance estimates
are involved in the weight update of QLMS. This indicates that
the “augmented” statistics is inherent to the QLMS, which is
a unique property of this class of algorithms. We next proceed
to establish the extent to which AQLMS has advantages over
QLMS.

B. Analysis of AQLMS

To investigate statistical properties of AQLMS, define the
error e(n) in terms of the “augmented” weight error vectors
vw(n) andvg(n) to give

e(n) = d(n) −
[
wT (n)x(n) + gT (n)x∗(n)

]

=
[
wT

optx(n) + gT
optx

∗(n)
]
−

[
wT (n)x(n) + gT (n)x∗(n)

]

= −
[
vT
w

(n)x(n) + vT
g
(n)x∗(n)

]
(28)

wherevw(n) = w(n)−wopt andvg(n) = g(n)−gopt. Based
on Property 2, the real/scalar partℜ{·} of the AQLMS update
of w(n) (9) can now be written as

ℜ{w(n+1)} = ℜ{w(n)}+µℜ{e(n)
[
2x∗(n)−x(n)

]
} (29)

Replace the errore(n) with its augmented counterpart, to give

ℜ{w(n+1)} = ℜ{w(n)}+

−µℜ{
[
vT
w

(n)x(n)+vT
g
(n)x∗(n)

][
2x∗(n)−x(n)

]
}

= ℜ{w(n)}−µℜ{vT
w

(n)x(n)
[
2x∗(n)−x(n)

]
}+

− µℜ{vT
g
(n)x∗(n)

[
2x∗(n) − x(n)

]
} (30)

Substractwopt(n) from both sides of (30) to obtain

ℜ{vT
w

(n + 1)} = ℜ{vT
w

(n)
[
I − 2µx(n)xH(n) − µx(n)xT (n)

]
}

−µℜ{vT
g
(n)

[
2x∗(n)xH(n) − x∗(n)xT (n)

]
}

(31)

Observe that the statistics of AQLMS include the covariance
x(n)xH(n), the pseudocovariancex(n)xT (n) and their con-
jugates. Similarly to the analysis of QLMS, we have

ℜ{vT
g
(n+1)} = ℜ{vT

g
(n)

[
I−2µx∗(n)xT (n)−µx∗(n)xH(n)

]
}

−µℜ{vT
w

(n)
[
2x(n)xT (n)−x(n)xH(n)

]
}

(32)
ℑ{vT

w
(n+1)} = ℑ{vT

w
(n)

[
I−2µx(n)xH(n)−µx(n)xT (n)

]
}

−µℑ{vT
g
(n)

[
2x∗(n)xH(n)+x∗(n)xT (n)

]
}

(33)
ℑ{vT

g
(n+1)} = ℑ{vT

g
(n)

[
I−2µx∗(n)xT (n)−µx∗(n)xH(n)

]
}

−µℑ{vT
w

(n)
[
2x(n)xT (n)+x(n)xH(n)

]
}

(34)
It is shown in the simulations that the use of augmented
statistics provides minor improvement in the performance,
(
due to thedeterministic relationship betweenCxx (Pxx) and
C∗

xx
(P∗

xx
)
)
.
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C. Choice of Parameters of QLMS

The choice of parameters of QLMS is crucial to its per-
formance, however, e.g. determining the range of stepsize is
not trivial, as it requires eigendecomposition of the correlation
matrix. The difficulty arises from the non-commutativity ofthe
quaternion product, which gives rise to the notion of the left
and right eigenvalue decomposition [13]. Furthermore, theleft
eigenvalue decomposition of a quaternion is still an ongoing
research topic [44]. Variants of the proposed class of QLMS
algorithms are pretty much along those introduced for the
LMS, this is however beyond the scope of this paper.

V. SIMULATIONS

Since prediction is at the core of adaptive filtering, our
simulation are conducted in the prediction setting, forM -
step ahead prediction. For a quantitative assessment of the
prediction performance, we employ the prediction gainRp

[45], given by

Rp = 10 log
σ2

x

σ2
e

(dB) (35)

whereσ2

x
andσ2

e denote respectively the estimated variances
of the input and the error. The prediction gain was measured
at the steady state. Two input processes were considered, the
well-known atmospheric motion inspired, chaotic signal - the
Lorenz attractor, and a real world three dimensional wind field.
For rigour, the performances of QLMS and AQLMS were
compared with multiple univariate LMS applied component-
wise, CLMS [9] and multi-channel LMS [30]. Within the
four-channel LMS setting, theqth output of the multi-channel
adaptive filter is given by [30]

yj(n) =
4∑

i=1

hT
ij(n)xi(n) j = 1, . . . , 4 (36)

where the adaptive weight vector hij(n) =
[hij(n), . . . , hij(n − L + 1)]T corresponds to theith
input vectorxi(n) = [xi(n), . . . , xi(n − L + 1)]T and jth
output yj(n) channel. The update for each coefficient vector
hij(n) is given by [30]

hij(n + 1) = hij(n) + ∆hij(n) (37)

= hij(n) + µej(n)xi(n) i, j = 1, . . . , 4

The errorej(n) = dj(n) − yj(n) is a scalar instantaneous
output error corresponding to thejth channelyj(n).

A. Experiment 1: Lorenz Attractor - Atmospheric Convection
Rolls Prediction

The Lorenz attractor is a three-dimensional nonlinear sys-
tem used originally to model atmospheric turbulence, but also
to model lasers, dynamos, and the motion of waterwheel [7].
Mathematically, the Lorenz system can be expressed as a
system of coupled differential equations

∂x

∂t
= α(y − x)

∂y

∂t
= x(ρ − z) − y

∂z

∂t
= xy − βz (38)

whereα, ρ, β > 0. Lorenz attractor, shown in Fig. 1, can be
regarded as as a pure quaternion, and is used as a benchmark
signal to test the performance of the QLMS algorithms. For
a chaotic behavior of Lorenz attractor, the parameters were
selected as:α = 10, ρ = 28, andβ = 8/3. Fig. 2 demonstrates
the performance of LMS, QLMS, and AQLMS, as a function
of the prediction horizonM (with µ = 10−6 constant) and
the stepsize (M = 1 constant) for varying filter length.

The strong correlation between dimensions of the Lorenz
attractor explains the better performance of the QLMS ap-
proaches over multiple univariate LMS applied component-
wise, as shown in Fig. 2.

B. Experiment 2: Wind Forecasting

Wind forecasting at short scales plays an important role in
renewable energy, air pollution modeling and aviation safety
[46]. In the simulations, 3D wind speed data (a segment shown
in Fig. 3) were used5, together with air temperature measure-
ments. In the first set of experiments, wind was considered as
a pure quaternion, that is, the real part was zero. For a fair
comparison between QLMS and CLMS, the prediction gain
Rp was calculated, based on two dimensions at a time and
over a range of the prediction horizonsM and filter lengths
L, keeping the step size constantµ = 10−3. Figs. 4, 5, and 6
illustrate the performances when the prediction gainRp was
computed based on east-north, east-vertical, and north-vertical
directions, respectively. In all cases, QLMS and AQLMS
outperformed standard CLMS. Figs. 4, 5, and 6 illustrate
that both QLMS and AQLMS have similar performance, with
AQLMS outperforming QLMS, conforming with the the anal-
ysis in sections IV-A and IV-B. The significant performance
advantage over CLMS is due to the fact that QLMS and
AQLMS fully exploit the information in the three dimensions
of the wind data. Another factor which contributes to the
enhanced performance of QLMS algorithms is that owing
to their quaternionic nature, the so called the “augmented”
statistics is inherent to the weight updates.

C. Experiment 3: Data Fusion via Quaternion Spaces

To demonstrate the ability of quaternion models in the
fusion of heterogeneous data sources [47], the air temperature
was used as a scalar/real part of the quaternion, whereas the
three wind directions were the vector part. An experiment was
conducted to investigate whether the joint quaternionic model
of the temperature and 3D wind vector would lead to improved
performance. Fig. 7 shows that the 4D quaternion model of
wind provided enhanced performance for both the QLMS and
AQLMS. The next experiment comparing the performance of
two CLMS (combined into a quaternion output) against QLMS
approaches is shown in Fig. 8. This was achieved for the best
empirical choice of the parameters of the QLMS and the pair
of CLMS. The CLMS did not yield satisfactory prediction of
temperature dimension, whereas both the QLMS and AQLMS
algorithms exhibited excellent performance. In the context of

5The wind data were recorded by Prof. Kazuyuki Aihara and his team at
the University of Tokyo, in an urban environment. The wind data was initially
sampled at 50 Hz, but re-sampled at 5 Hz for simulation purposes.
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TABLE I
COMPUTATIONAL COMPLEXITIES OF THE ALGORITHMS

Algorithms Additions Multiplications
4× LMS 8L 8L+4
2× CLMS 12L 20L
1× MLMS 32L 32L+16
1× QLMS 48L 56L
1× AQLMS 112L 96L

filtering a quartet of signals, another aspect that needs to
be addressed is the computational complexity, summarized
in Table I. The computational complexity of QLMS is seven
times that of LMS, three times that of CLMS, and less than two
times that of multi-channel LMS [30]. For a fair comparison
in terms of computational complexity, the bottom plot of
Fig. 9 compares performances of QLMS

(
O(56L)

)
and the

combined CLMS
(
O(60L)

)
, with the filter lengthL of CLMS

three times that of QLMS. The QLMS exhibited superior
performance. In the next set of simulations, the performance of
multi-channel LMS (MLMS) [30] was compared against the
QLMS algorithms, as shown in Fig. 10. The performances of
the algorithms were similar for small stepsizes, however, both
QLMS and AQLMS outperformed MLMS with an increase in
filter length.

VI. CONCLUDING REMARKS

A class of quaternion least mean square (QLMS) stochastic
gradient adaptive filtering algorithms has been designed for
adaptive filtering of hyper-complex processes. Such three-and
four- dimensional processes (e.g. the 3D Lorenz attractor,
and 4D wind modeling) exhibit complex nonlinear dynamics,
together with the coupling between their components, which
makes their processing by the multiple univariate LMS and a
pair of complex LMS (CLMS) inadequate. A rigorous analysis
has shown that QLMS incorporates both the covariance and
pseudocovariance terms within its update and can therefore
cater for non-circularly symmetric quaternion data. For rigour,
the augmented QLMS (AQLMS) has also been derived by
taking into account the so-called augmented second order
statistics. Further, it has been shown that the operation in
the quaternion domain allows for the fusion of heterogenous
data sources. Simulation results on both the benchmark 3D
data (Lorenz attractor) and real world wind data support the
approach.

In this work, we have considered the cost functionJ (n) =
||e(n)||2

2
= e(n)e∗(n), however, the same cost function can

be expressed in a different way, that is,J (n) = ||e(n)||2
2

=
e∗(n)e(n). Due to the non-commutativity of quaternion prod-
uct, this gives rise to a variant of QLMS given by

w(n + 1) = w(n) + µ
(
2x∗(n)e(n) − e∗(n)x∗(n)

)
(39)

Since the same cost function is being minimized, this results
in identical performance. Future work on the class of QLMS
algorithms will include algorithms with an optimal adaptive
stepsize, infinite impulse response (IIR) adaptive filters in H,
and algorithms with a time-varying filter length [6].
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VIII. A PPENDIX

A. Derivation of the Stochastic Gradient Update within QLMS

To calculate the derivatives of the errore(n) and its con-
jugate with respect to the weight vectorw(n), the terms
wT (n)x(n) andxH(n)w∗(n) that appear in the calculations,
can be expanded as (for space limitation, the time index ‘n’
is omitted)

wT (n)x(n) =







wT
a xa − wT

b xb − wT
c xc − wT

d xd

wT
a xb + wT

b xa + wT
c xd − wT

d xc

wT
a xc + wT

c xa + wT
d xb − wT

b xd

wT
a xd + wT

d xa + wT
b xc − wT

c xb







(40)

xH(n)w∗(n) =







wT
a xa − wT

b xb − wT
c xc − wT

d xd

−wT
a xb − wT

b xa − wT
c xd + wT

d xc

−wT
a xc − wT

c xa − wT
d xb + wT

b xd

−wT
a xd − wT

d xa − wT
b xc + wT

c xb







(41)
Based on (40) and (41), the derivatives from (8) can be
computed as

∇wa

(
e(n)e∗(n)

)
= e(n)

(
−x∗(n)

)
+

(
−x(n)

)
e∗(n)

= −e(n)x∗(n) − x(n)e∗(n) (42)

∇wb

(
e(n)e∗(n)

)
ı = e(n)

(
xb+xaı−xd+xcκ

)
ı

+
(
xb − xaı + xd − xcκ

)
e∗(n)ı

= e(n)
(
− xa + xbı + xc + xdκ

)

+
(
xa + xbı − xc − xdκ

)
e∗(n) (43)

∇wc
(e(n)e∗(n)) = e(n)

(
xc +xdı+xa−xbκ

)


+
(
xc − xdı − xa + xbκ

)
e∗(n)

= e(n)
(
− xa + xbı + xc + xdκ

)

+
(
xa − xbı + xc − xdκ

)
e∗(n) (44)

∇wd

(
e(n)e∗(n)

)
κ = e(n)

(
xd−xcı+xb+xaκ

)
κ

+
(
xd + xcı − xb − xaκ

)
e∗(n)κ

= e(n)
(
− xa + xbı + xc + xdκ

)

+
(
xa − xbı − xc + xdκ

)
e∗(n) (45)

Substituting (42), (43), (44), and (45) into (7), we obtain the
final expression for the gradient of the cost function (5) in the
form

∇w

(
e(n)e∗(n)

)
= ∇wa

(
e(n)e∗(n)

)
+

+

[

∇wb

(
e(n)e∗(n)

)
ı+∇wc

(
e(n)e∗(n)

)
+∇wd

(
e(n)e∗(n)

)
κ

]

= −e(n)x∗(n)−x(n)e∗(n)+

+

[

− 3e(n)x∗(n) +
(
3xa − xbı − xc − xdκ

)
e∗(n)

]
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= −e(n)x∗(n)−x(n)e∗(n)+

+

[

− 3e(n)x∗(n) + x(n)e∗(n) + 2ℜ{x(n)}e∗(n)

]

= −4e(n)x∗(n)+x∗(n)e∗(n)−x(n)e∗(n)+2ℜ{x(n)}e∗(n)

= −4e(n)x∗(n)+
[
x∗(n)−x(n)+2ℜ{x(n)}

]
e∗(n)

= −4e(n)x∗(n)+2x∗(n)e∗(n)
(46)

whereℜ{x} denotes the real/scalar part ofx.

B. Derivation of the Stochastic Gradient Update within
AQLMS

Similarly to the update forw in (9), the update forg is de-
rived by firstly expanding termsg(n)T x∗(n) andxT (n)g∗(n),
to yield

gT (n)x∗(n) =







gT
a xa + gT

b xb + gT
c xc + gT

d xd

−gT
a xb + gT

b xa − gT
c xd + gT

d xc

−gT
a xc + gT

c xa − gT
d xb + gT

b xd

−gT
a xd + gT

d xa − gT
b xc + gT

c xb







(47)

xT (n)g∗(n) =







gT
a xa + gT

b xb + gT
c xc + gT

d xd

gT
a xb − gT

b xa + gT
c xd − gT

d xc

gT
a xc − gT

c xa + gT
d xb − gT

b xd

gT
a xd − gT

d xa + gT
b xc − gT

c xb







(48)

From (47) and (48), the quaternion gradients of the cost
function (5) with respect tog are computed as

∇ga

(
e(n)e∗(n)

)
= e(n)

(
− x(n)

)
+

(
− x∗(n)

)
e∗(n)

= −e(n)x(n) − x∗(n)e∗(n) (49)

∇gb

(
e(n)e∗(n)

)
ı = e(n)

(
− xb + xaı + xd − xcκ

)
ı

+
(
− xb − xaı − xd + xcκ

)
e∗(n)ı

= e(n)
(
− xa − xbı − xc − xdκ

)

+
(
xa − xbı + xc + xdκ

)
e∗(n) (50)

∇gc

(
e(n)e∗(n)

)
 = e(n)

(
− xc − xdı + xa + xbκ

)


+
(
− xc + xdı − xa − xbκ

)
e∗(n)

= e(n)
(
− xa − xbı − xc − xdκ

)

+
(
xa + xbı − xc + xdκ

)
e∗(n) (51)

∇gd

(
e(n)e∗(n)

)
κ = e(n)

(
− xd + xcı − xb + xaκ

)
κ

+
(
− xd − xcı + xb − xaκ

)
e∗(n)κ

= e(n)
(
− xa − xbı − xc − xdκ

)

+
(
xa + xbı + xc − xdκ

)
e∗(n) (52)

which yields

∇g

(
e(n)e∗(n)

)
= ∇ga

(
e(n)e∗(n)

)
+

+

[

∇gb

(
e(n)e∗(n)

)
ı+∇gc

(
e(n)e∗(n)

)
+∇gd

(
e(n)e∗(n)

)
κ

]

= −e(n)x(n)− x∗(n)e∗(n) +

+

[

−3e(n)x(n)+
(
3xa+xbı+xc+xdκ

)
e∗(n)

]

= −e(n)x(n) − x∗(n)e∗(n) +

+

[

− 3e(n)x(n) + x(n)e∗(n) + 2ℜ{x(n)}e∗(n)

]

= −4e(n)x(n)+

[

x(n)−x∗(n)+2ℜ{x(n)}

]

e∗(n)

= −4e(n)x(n)+2x(n)e∗(n)
(53)
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Fig. 1. The 3D Lorenz attractor with parametersα = 10, ρ = 28, and
β = 8/3 in (38).
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Fig. 3. Three dimensional wind signal.
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