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The Quaternion LMS Algorithm for Adaptive
Filtering of Hypercomplex Processes
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Abstract—The quaternion least mean square (QLMS) algo- of wind [8], [10] in this context; this was achieved by using
rithm is introduced for adaptive filtering of three- and four-  the so-called augmented statistics [11]. In many other gjeld
dimensional processes, such as those observed in atmospherigyg imyltaneous processing of the two dimensions of a kigna

modeling (wind, vector fields). These processes exhibit complex d lead t fficient si | .
nonlinear dynamics and coupling between the dimensions, which (radar, sonar) can lead to a more efficient signal processing

make their component-wise processing by multiple univariate @lgorithm than processing each dimension separately. &s th
LMS, bivariate complex LMS (CLMS), or multichannel LMS  quaternion domain represents an extension of the complex
(MLMS) algorithms inadequate. The QLMS accounts for these field, it is natural to ask whether we can extend the class of

problems naturally, as it is derived directly in the quaternion | \1g algorithms to cater for adaptive filtering of three- and
domain. The analysis shows that QLMS operates inherently f di . | (h | . |

based on the so called “augmented” statistics, that is, both the 10U'- dimensional (hyper-complex) signals. _
covariance E{xx"} and pseudocovarianceE{xx’} of the tap Quaternions can be regarded as a non-commutative exten-

input vector x are taken into account. In addition, the operation sion of complex numbers, and comprise at most four variables
in the quaternion domain facilitates fusion of heterogeneous data [12], [13]. A quaternion variabley € H which has a
sources, for instance, the three vector dimensions of the wind fi¢ o5 (/scalar parit{q} (denoted with subscript), and a vector
and air temperature. Simulations on both benchmark and real o S . . .
part ${q} comprising of three imaginary parts (denoted with

world data supports the approach. .
) ) ) o ) subscripts, ¢, d), can be expressed as
Index Terms—Quaternion signal processing, multidimensional

adaptive filters, adaptive multi-step ahead prediction, wind mod- - R o _ c H
eling, data fusion via vector spaces. a4 *{a}, S{a}] = [4a. o]
= [qa: @b+ 9c, qa)]
| INTRODUCTION = Gat+autt e+ qak {90 95, 4 g0 € R}(2)

Due to its simplicity and robustness, the Least Mean Squaaaternions have been used for more than 150 years (con-
(LMS) algorithm has been at the core of adaptive filteringeived by W. Hamilton in 1843), and have found applications
applications [1], [2], and its online adaptive mode of opiera in computer graphics, for the modeling of three-dimendiona
makes it suited for the processing of nonstationary realdvor(3D) rotations [14], in robotics [15], and molecular modeli
signals. These attractive properties have led to its agiidies [16]. Within the image and signal processing community, Pei
in noise reduction, radar/sonar signal processing, chanaed Cheng employed quaternions to process color images [17]
equalization for cellular mobile phones, echo cancelatioMoyoshima implemented efficient hyper-complex digitakfi
and low delay speech coding [3]. The LMS update can h&8], Bulow and Sommer used a hyper-complex representa-
expressed as: tion in texture segmentation [19], whereas Zarzoso utllize
guaternions to help solve source separation problems [20].

w(n +1) = w(n) + pe(n)x(n) (@) e Bihanet al. used quaternions in watermarking [21]; they
wherew(n), e(n), 11, x(n) denote respectively the adaptivealso proposed quaternion algorithms for spectrum estimati
weight vector, instantaneous output error, stepsize, aed such as a fast complexified quaternion Fourier transforrh [22
input data vector of lengtfi.. Extensions proposed to improvequaternion singular value decomposition (QSVD) and MUSIC

the performance of LMS include those based on the optimizalgorithm to process polarized waves [23], [24]. Although
tion of the stepsize [4], filtering of error gradients [5],danthe standard least squares problem has also been addressed
adaptive filter length [6]. in the quaternion domain [16], [25], [26], adaptive filtagin
To processhi-variate signals, such as those in digitalalgorithms for the processing of quaternion valued sigasgs
communications, chaotic maps [7], and vector fields [8], tHacking. _ _ .
LMS algorithm was extended to the complex domain [9]. The recent progress in technology, environmental sciences
Recently, Mandicet al. have exploited the bivariate modelrobotics, and biomedicine, has highlighted the need fopada
tive filtering of several important classes of multidimemsil
Copyright (c) 2008 IEEE. Personal use of this material is pemit- signals, for instance, 3D wind field measured by three-
ted. However, permission to use this material for any other ptposes . . . .
must be obtained from the IEEE by sending a request to pubs- @XiS anemometers. By processing those data directly in the
permissions@ieee.org. Manuscript received April 10, 2008evised July multidimensional domain where they reside, we can exploit
14, 2008. , _ __ the correlation and coupling between each dimension and
C. Cheong Took and D. P. Mandic are with the Dept. of Eledtraoad h f id h d deli To thi d
Electronic Engineering, Imperial College London, London S@AZ, UK. therefore provide enhanced modeling. To this end, we p®pos

(Email: {c.cheong-took, d.mandig@ic.ac.uk) the quaternion least mean square (QLMS) algorithm. To cater
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for noncircularly symmetric distributions itil, similarly to A. The Quaternion LMS

the widely linear model inC [27]’ z_;md augmented_ CLMS The same real-valued quadratic cost function (the quaterni
(ACLMS) [28] [29], we also investigate the benefits of Sc?worm) as in LMS and CLMS is used. that is
called augmented statistics. '

The organization of the paper is as follows; in the next Jn) = e
section we briefly review the elements of quaternion algebra
necessary for the development of QLMS adaptive filters. In
section 1ll, QLMS and its augmented version are deriveskhere the errdr e(n) = d(n) — wl(n)x(n), with
This is followed by a statistical analysis on both QLMSI(n), w(n), and x(n) denoting respectively the desired
and AQLMS algorithms in section IV. Section V comparesignal, the adaptive weight vector, and the filter input. Sym
the performances of the proposed approaches against tbés (-)7, (-)¥, and (-)* denote respectively the transpose,
univariate LMS, bivariate CLMS and multi-channel LMS [30]Hermitian, and quaternion conjugate operator. Based on the
Simulations are based on both benchmark data and real wartgst function (5), within the steepest descent optimizatibe
three-dimensional wind field data. Section VI concludes thellowing gradients need to be calculated

Paper Vw(e(n)e*(n)) = Vw,(e(n)e*(n)) + Vw, (e(n)e*(n))e +
Vuw, (e(n)e*(n))g+ Vw, (e(n)e* (n))x (7)

wherew = W, + Wy + W.7 + Wyk and

(n)e*(n
ea(n) + e (n) +eZ(n) + eg(n) (6)

II. QUATERNION ALGEBRA

The properties of the orthogonal unit vectors, 3, «

describing the three vector dimensions of a quaternion arev,,, (e(n)e*(n)) = e(n)Vw, (e*(n)) + Vw, (e(n))e*(n)
g o= kK Vw, (e(n)e*(n)) = e(n)Vw,(e"(n)) + Vw, (e(n))e*(n)
ko= 1 Vw, (e(n)e*(n)) = e(n)Vw,(e*(n)) + Vw, (e(n))e* (n)
W= Vw,(e(n)e*(n)) = e(n)Vw,(e*(n)) + Vw, (e(n))e*(n) (8)

yk = 1 = P2 =k = -1 (3) Subsequently, the update of the adaptive weight vector of
QLMS can be expressed as (the full derivation of the gradient
Due to the non-commutativity of the quaternion, for examplean be found in Appendix VIII-A)
1 # 1), insteadp = —k. Other elements of quaternion algebra
that are used in this work include the multiplication given b~ W(n + 1) = w(n) + p(2e(n)x*(n) — x*(n)e*(n))  (9)

Due to the non-commutativity of the quaternion productrehe

are two terms within the gradient of the cost function, tisat i

(01002 = A1 A2, Gan@e + da2qr A1 X 2] 500005 () andx*(n)e*(n). The QLMS update includes the
(4)  term pe(n)x*(n) which is similar to that within the complex

LMS [9], together with an additional term*(n)e*(n) which

is specific to the quaternion domain. To answer whether QLMS

simplify exactly into CLMS when quaternion-valued signals

are limited to two dimensions, let the imaginary parendx

‘of quaternionsx(n) ande(n) vanish. The QLMS for such a

q1q2 = [Qa717q1][Qa,27q2]

whereq = ¢, + gt +qct+qak = [¢a, q). Symbols *” and “x”
denote respectively the dot-product and the cross-prothet
conjugate of a quaterniog* = [¢,,q]* = [¢., —q], and the
norm ||q||3 = q¢*. Note, that quaternion conjugation is anti
involution, that is,(q1g2)* = ¢5qf. A quaternion is said to be
pure, if its real part vanishes. The quaternion vector sfiiCe 1, this work we use the formulation(n) = w7 (n)x(n) following on

forms a noncommutative normed division algebra, that is Widrow's CLMS [9], howevery(n) = xT(n)w(n) can also be used as a
starting point. Unlike the LMS and CLMS, due to the non-comrivitst of
quaternion product, the formulatiop(n) = x7 (n)w(n) requires separate
derivation of QLMS, and can be addressed similarly to theespondence
. . . between (9) and (39), when the cost function is writtetds ) = e* (n)e(n)
For an introduction to quaternions we refer to [31]; for a M0finstead of.7(n) = e(n)e* (n).

advanced reading, we recommend [32]. In this paper, unles&The non-commutativity of the quaternion product and the cgatjon
otherwise stated, all the quantities are quaternion-valfmr Properties are taken into account, that is

instancew(n) is a vector of quaternions, while(n) is a

guaternion variable.

©q2 #F @q

VwJ (n) = e(n) <Vwa (€*(n))+Vw, (e*(n))1+Vw, (" (n)) 7+ Vw, (e*(n)) n) +

+( Vw, (e(n)) + Vw, (e(n))r 4+ Vw, (e(n)) 1+ Vw, (e(n)) s | e*(n
I11. DERIVATION OF THE QLMS AND ITS VARIANT < (em) (er) (etm))s (e(m) ) ")

AQLMS
# () Free (€ )+ T, (67 (1)) 4 Vo, (67 00) 4 Ty (€7 () )

Based on the quaternion algebra, and standard stochastic

gradient approximation, we shall now derive the quaternion,

LMS (QLMS) algorithm for quaternion-valued linear adaptiv © (”)<VW“(6("))+Vwb(e("))l+vwc (e(”))]Jrvwd(e("))“) ©

finite impulse response (FIR) filters.
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case simplifies into the pseudo-covariance does not vanish even f@p-proper
signaf. Motivated by the augmented CLMS [28], augmented
wn+1) = w(n)+ ,u([ea(n)xa (n) + 3ep(n)xp(n)] +  CRTRL [40], and augmented statistics for wind profile [8], we
now investigate the benefits of including the pseudocoraga
1[—eq(n)xp(n) + 3eb(n)xa(n)]) Pxx into the QLMS algorithm. In order for QLMS to cater for
general quaternion processes, we employ a quaternion-valued
A comparison with the CLMS update widely linear model [37], given by
wn+1) = w(n)+ u([ea(n)xa(n) + ep(n)xp(n)] + y(n) = w' (n)x(n) +g" (n)x"(n) (11)
This model incorporates both the information containech t
1| —eq(n)xp(n) + eb(n)xa(n)}> covariance and pseudocovariance (for more detail, seg.[27]

For the quaternion scenario, the update for vegian (11)
shows that QLMS does not simplify exactly into CLMSgcan be found similarly to that for QLMS, and is given by (full
highlighting the direct multidimensional mode of operatio derivation can be found in Appendix VIII-B)

This is also the case if any other combination of two dimen-
sions of a quaternion are made to vanish, however, it can be g(n+1) = g(n) + p(2e(n)x(n) — x(n)e*(n)) (12)

shown that if the quaternion data are i2n thg “isgmorphic’&gain, the non-commutativity of the quaternion productssmu
form of ¢ = ¢ + Qir, Where Q@ = /q; +¢¢ +4qg, and o aren into account during the derivation of the update
ir = (vt +ge) + qar)/Q, the derivation of QLMS is identical (12). Finally, (9) and (12) can be combined into a compact

to that of CLMS. “augmented” form as

B. The Augmented QLMS (AQLMS) h'(n) = [w'(n) g"(n)]" (13)

Motivated by some recent developments in so-called augnd the weight update of the augmented QLMS (AQLMS),
mented complex statistics, we now derive the augmentedn be expressed as
QLMS algorithm, which is capable of dealing with the gener-
ality of quaternion data. Itis usually assumed that thestteé  h(n+1) = h®(n)+pu Qea(n)xa* (n)fxa* (n)ea* (n)| (14)
in C are a simple extension of the statistics®) obtained
by replacing the(-)” operator by the(-)” operator in the where the augmented error and input vector are given by
corresponding second order statistical moments. For ebeamp .
the covarianceE{xx”} in the real domain is replaced bye®(n) = d(n)—h® (n)x"(n) x%(n) = [x"(n) x"(n)]"
E{xx"} in the complex domain. This is, however, not ade- (15)
quate for non-circular data (for more detail, see [10], [3Be- In the complex domain, it has been shown that adaptive
cently, for the processing of real world data which can beenadlgorithms based on augmented statistics exhibit advastag
complex by convenience of representation, Goh and Mandi¢er standard algorithms, for data which are not circularly
(for wind processing [28], [10]), Novey and Adali (for soarc symmetric [40], [41].
separation applications [34], [35]) and, Schreier and 8cha
(for communication applications [11]) have highlightede th IV. PROPERTIES OFQLMS ALGORITHMS
need to adopt the so-called “augmented statistics”, a g@ince

introduced by Picinbono [36], [37]. The use of augmented The rjon-corpmutgtivity of qugternion product mgke their
statistics is crucially important when processing norder algebraic manipulation demanding. One way to circumvent

complex signals; non-circularity or improperness is a edcoth's problem is to treat the real/scal®{-} and the vector

order statistical property, which can be defined as ${-} part of a quaternion separately, similarly to [42]. The
analysis will be based on the following two observations

Cux = E{xx"} £0 Pex = E{xxT} # 0 (10) 1) Property 1:

that is, the pseudocovariancg., does not vanish for a y=—y* iff R{yl=0 (16)
non-circular complex sign@l In the context of quaternion

statistics, properness (known @sproperness) is defined as 2) Property 2:
the invariance of the probability density function (pdf)-un e x o _
der some special angle rotations [38], [39]. More recently, y=y iff 3{y}=0 17

Amblard and Le Bihan extended the definition of propernesg analyse the QLMS algorithms, we shall now make the stan-
by proposingC-propemess andl-propemess [39]. There is, dard assumption in adaptive filtering thétn) = w2 ,x(n)
however, no explicit mention of the role of pseudo-covaréan

in quantifying properness of quaternions. More specificall 4ror aQ-proper signal, the pseudo-covariar®ex does not vanish, that
is, E{xxT} = E{xaxT} — E{xpx]} — E{xcxI} — E{xqx1} +
SFor a complex circular signal, the pseudo-covariafsg vanishes, that 12E{xax} } + 12E{xax!} + k2E{xax}} # 0. This is because for a
is, E{xxT} = E{x,xI'} — E{x;xT} + 1E{x,x] } +1E{x;xI} = 0. Q-proper signal, the scalar/real pat} and the vector/imaginary pat, . q
This is because for a circular signal, the real partand the imaginary part have equal variances, but are uncorrelated. This folloas fconditions (4)
x; have the same covariance, but are uncorrelated. and (5) of Theorem 2 in [38].
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[43]. Following the standard analysis of the convergence in Subtractw,,; from both sides of Eq. (26) to give
the mean [43], the weight error vector is defined as ST+ = SV} = S{u@v? (n)x(n)xH (n)}
v(n) = w(n) — Wop (18) —S{uvT (n)x(n)xT (n)}

wherew,,; is the optimal weight vector, while the errefn) B T T i
between the desired signén) and its estimate(n) is given ~ — 51V (W I+ ux()x" () = 2x(n)x" ()] | ¢ (27)

by Vector QLMS statistics
e(n) = d(n)—y(n) Again, both the pseudocovariance and the covariance éegma
T T are involved in the weight update of QLMS. This indicated tha
= WopX(n) —w (n)x(n) the “augmented” statistics is inherent to the QLMS, which is

= (wi, —w'(n)x(n) = —v"(n)x(n) (19) a unique property of this class of algorithms. We next prdcee
to establish the extent to which AQLMS has advantages over
A. Analysis of QLMS QLMS.

From the QLMS update (9), the real part can be computed
as B. Analysis of AQLMS

. . . To investigate statistical properties of AQLMS, define the
R{w(n+1)} = R{w(n)}+R{p(2e(n)x" (n) =x"(n)e"(n))}  gpror e(n) in terms of the “augmented” weight error vectors

. . (20 . Vw(n) andvg(n) to give
By employing Property 2, it can be shown that (20) is

equivalent to e(n) = d(n)— [w"(n)x(n)+g" (n)x*(n)]
R{w(n+1)} = Rfw(n)}+2R{u(e(mx’ ()} —R{pe(x(n)y = Vo) + 8opx ()] = [w(m)x(n) + g7 ()x" (n)]
(21) = — [V‘,Tv(n)x(n) + Vg(n)x* (n)] (28)
Substitute (19) into (21) to yield Wherevy (1) = W(n) —Wop: andvg(n) = g(n) —gop:. Based
R{iwn+1)} = R{w(n)} —2R{uv’ (n)x(n)x*(n)} on Property 2, the real/scalar paft{-} of the AQLMS update
TR vT (n)x(n)x ( ) of w(n) (9) can now be written as
+R{p(vT (n)x(n)xT(n))T} Replace the errar(n) with its augmented counterpart, to give
(22) W{w(n+1)} = R{w(n)}+
Substractw,,,; from both sides of Eq. (22) to give —pR{ [ve, (n)x(n)+vg (n)x*(n)] [2x* (n)—x(n)]}
R{ivin+1)} = R{v(n)} —2R{u(v7 (n)x(n)x" (n))"} = R{w(n)}—pR{vy (n)x(n) [2x* (n)—x(n)] }+-
—l—%{u(vT(n)x(n)xT(n))T} — uR{vg (n)x*(n) [2x" (n) — x(n)]} (30)
Substractw,,:(n) from both sides of (30) to obtain

RO 1)) = R4 ) (T pe)x () — 2x)x )] ) |

Real QLMS statistics

R{ve(n+ 1)} = R{ve(n)[I - 2ux(n)x" (n) — px(n)x"(n)]}
(23) —uR{vg (n) [2x* (n)x" (n) — x*(n)x" (n)]}
From (23), we can see that in terms of statistics, QLMS (31)
) . T

includes both the pseudocovarian®g, = E{xx } and the Observe that the statistics of AQLMS include the covariance

covarianceCyxx = E{xxf}. This is a major difference as . . -
compared with CLMS, and therefore, it is expected that the( n)x"(n), the pseudocovariance(n)x” () and their con

QLMS and augmented QLMS will have similar performancéugates Similarly to the analysis of QTLMS we haveH
R{vg (n+1)} = R{vg (n) [I-2ux" (n)x" (n)—px* (n)x" (n)] }

The vector part3{-} of the QLMS update (9) can RV () 12 ()T () —xc ()% (m
be analyzed usingroperty 1 and (19), that is HR{v( )[2 (m)x" (n)—x(n) iézi]}
S{w(n+1)} = S{w(n)}+S{u2e(n)x” (n) =x*(n)e" (n)]}  H{ve (n+1)} = S{vy, (n) [I-2px(n)x" (n) —px(n)x" (n)] }
(24) —uS{vI(n)[2x* (n)x™ (n)+x*(n)xT (n
S{w(n)} + S{u2e(n)x*(n)} + S{pe(n)x(n)} H3{vg (m) [ 2" () () )(33() i
= S{w(n)} — S{ul2v” (n)x(n)x" (n)]"}+ S{vE(n+1)} = S{vE (m)[T-2px” (n)x" (n)—px* (m)x" ()]}
=S{ulvT (n)x(n)x" (n)]"} (25) —u%{VVTV(n)[2X(n)xT(n)+X(n)x};éZ;]}
yielding It is shown in the simulations that the use of augmented
Hwln+1)} = S{wl(n)} —{u@v’ (n)x(n)x(n)} + statistics provides minor improvement in the performance,
—%{uvT(n)x(n)xT(n)} (26) (due to thedeterministic relationship betweefi,x (Pxx) and

Cix (Pi))-
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C. Choice of Parameters of QLMS wherea, p, § > 0. Lorenz attractor, shown in Fig. 1, can be

The choice of parameters of QLMS is crucial to its pe,r_egarded as as a pure quaternion, and is used as a benchmark
formance, however, e.g. determining the range of stepsizesignal to test the performance of the QLMS algorithms. For
not trivial, as it requires eigendecomposition of the datien 2 chaotic behavior of Lorenz attractor, the parameters were
matrix. The difficulty arises from the non-commutativityte ~ Selected asy = 10, p = 28, and3 = 8/3. Fig. 2 demonstrates
guaternion product, which gives rise to the notion of the lethe performance of LMS, QLMS, and AQLMS, as a function
and right eigenvalue decomposition [13]. Furthermore Jéfie Of the prediction horizonV/ (with 4 = 10~° constant) and
eigenvalue decomposition of a quaternion is still an ongoithe stepsize X/ = 1 constant) for varying filter length.
research topic [44]. Variants of the proposed class of QLMS The strong correlation between dimensions of the Lorenz
algorithms are pretty much along those introduced for ttftractor explains the better performance of the QLMS ap-

LMS, this is however beyond the scope of this paper. proaches over multiple univariate LMS applied component-
wise, as shown in Fig. 2.
V. SIMULATIONS

Since prediction is at the core of adaptive filtering, ouB. Experiment 2: Wind Forecasting

simulation are conducted in the prediction setting, fdF  \ying forecasting at short scales plays an important role in
step.ahead prediction. For a quantitative as;e;sment of rIQﬁewable energy, air pollution modeling and aviation tyafe

prediction performance, we employ the prediction g&lp 46 |n the simulations, 3D wind speed data (a segment shown
[45], given by in Fig. 3) were useY together with air temperature measure-

_ o ments. In the first set of experiments, wind was considered as

Ity = 101og o2 (dB) (35) a pure quaternion, that is, the real part was zero. For a fair

whereo2 ando? denote respectively the estimated variancé@mparison between QLMS and CLMS, the prediction gain

of the input and the error. The prediction gain was measuréa Was calculated, based on two dimensions at a time and

at the steady state. Two input processes were considered, Q" @ range of the prediction horizodg and filter lengths

. : il
well-known atmospheric motion inspired, chaotic signahe t L+ kéeping the step size constant= 107*. Figs. 4, 5, and 6
Lorenz attractor, and a real world three dimensional winid fie lustrate the performances when the prediction gajpwas

For rigour, the performances of QLMS and AQLMS wer&omputed based on east-north, east-vertical, and nortivale

compared with multiple univariate LMS applied componengiréctions, respectively. In all cases, QLMS and AQLMS

wise, CLMS [9] and multi-channel LMS [30]. Within the outperformed standard CLMS. Fig;. _4, 5, and 6 iIIustrgte
four-channel LMS setting, theth output of the multi-channel that both QLMS and AQLMS have similar performance, with
adaptive filter is given by [30] AQLMS outperformmg QLMS, conformmg .Wlth the the anal-

ysis in sections IV-A and IV-B. The significant performance
advantage over CLMS is due to the fact that QLMS and
AQLMS fully exploit the information in the three dimensions

of the wind data. Another factor which contributes to the
enhanced performance of QLMS algorithms is that owing

- A — T ;
(s (:l)"'t"h”_(" B L+ 1] /?orresrz)ndi itpo tzel_m to their quaternionic nature, the so called the “augmented”
input vectorx;(n) = [zi(n),...,zi(n — L +1)] andj statistics is inherent to the weight updates.
outputy;(n) channel. The update for each coefficient vector

h;;(n) is given by [30] , ) ) )
C. Experiment 3: Data Fusion via Quaternion Spaces
hij(n+1) = hi;(n) + Ahyi(n) 7 1o demonstrate the ability of quaternion models in the
= hy;j(n) +pe;(n)xi(n) i,5=1,....4  fusion of heterogeneous data sources [47], the air temperat
The errore;(n) = d;(n) — y;(n) is a scalar instantaneousWas usc_ad as a spalar/real part of the quaternion, vyhereas the
output error corresponding to thigh channely; (n). three wind directions were the vector part. An experimerg wa
conducted to investigate whether the joint quaternioniceho
A. Experiment 1: Lorenz Attractor - Atmospheric Convection of the temperature and 3D wind vector would lead to improved
Rolls Prediction performance. Fig. 7 shows that the 4D quaternion model of

The Lorenz attractor is a three-dimensional nonlinear sy&ind provided enhanced performance for both the QLMS and
tem used originally to model atmospheric turbulence, bso alAQLMS. The next experiment comparing the performance of
to model lasers, dynamos, and the motion of waterwheel [0 CLMS (combined into a quaternion output) against QLMS
Mathematically, the Lorenz system can be expressed afpproaches is shown in Fig. 8. This was achieved for the best

2

4
yi(n) =Y hjj(n)xi(n) j=1,...,4 (36)
=1

where the adaptive weight vectorh;;(n) =

system of coupled differential equations empirical choice of the parameters of the QLMS and the pair
o of CLMS. The CLMS did not yield satisfactory prediction of
pril a(y — o) temperature dimension, whereas both the QLMS and AQLMS
Ay algorithms exhibited excellent performance. In the contéx
— = x(p—2)—y
ot (p ) 5The wind data were recorded by Prof. Kazuyuki Aihara and &ésrt at
0z the University of Tokyo, in an urban environment. The windedags initially
. xy — Pz (38) sampled at 50 Hz, but re-sampled at 5 Hz for simulation purposes.
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A. Derivation of the Sochastic Gradient Update within QLMS

To calculate the derivatives of the errefn) and its con-

- _ jugate with respect to the weight vectev(n), the terms
filtering a quartet of signals, another aspect that needs Q7 (,)x(n) andx* (n)w*(n) that appear in the calculations,

be addressed is the computational complexity, summarizgsh pe expanded as (for space limitation, the time index ‘n’
in Table I. The computational complexity of QLMS is seveRs gmjtted)

times that of LMS, three times that of CLMS, and less than two

T T T T
times that of multi-channel LMS [30]. For a fair comparison Wg Xa = Wy Xp = W, Xe = W Xd
in terms of computational complexity, the bottom plot of w? (n)x(n) = Wq Xp + Wj, Xq + We Xg — Wy Xc (40)
; wlixe +wlix, + wlxy, —wlix
Fig. 9 compares performances of QLI\/(E)(56L)) and the ge o 4 b b, d
combined CLMS(O(60L)), with the filter lengthZ of CLMS Wo Xd +WgXa + Wy Xe = We Xp
three times that of QLMS. The QLMS exhibited superior wlx, — wixy, — wixe, — wlxg
performance. In the next set of simulations, the perforraaric . —wlxy —wix, — wixg+wlx,
multi-channel LMS (MLMS) [30] was compared against the X Mw(n) = | _why, —wix, - Wiy + wixg
QLMS algonthms, as _sh_own in Fig. 10. The performances of —wlxy —whx, — wixe + wlx,
the algorithms were similar for small stepsizes, howeveth b 41)
QLMS and AQLMS outperformed MLMS with an increase irBased on (40) and (41), the derivatives from (8) can be
filter length. computed as
Vw, (e(n)e*(n)) = e(n)(—x*(n))+(—x(n))e*(n)
VI. CONCLUDING REMARKS
= —e(n)x"(n) —x(n)e"(n) (42)

A class of quaternion least mean square (QLMS) stochastic
gradient adaptive filtering algorithms has been designed 8w, (¢(n)e*(n))r = e(n) (xp+xa2—Xa)+Xck)?
adaptive filtering of hyper-complex processes. Such thaiad-
four- dimensional processes (e.g. the 3D Lorenz attractor,
and 4D wind modeling) exhibit complex nonlinear dynamics, =e
together with the coupling between their components, which n (
makes their processing by the multiple univariate LMS and a
pair of complex LMS (CLMS) inadequate. A rigorous analysi¥ ., (e(n)e*(n)); = e(n)(xc +Xat+Xa) — Xpk)J
has shown that QLMS incorporates both the covariance and
pseudocovariance terms within its update and can therefore

+ (xb — Xg1 + Xg] — Xc/@)e*(n)z
(n)( — Xg + Xpt + Xeg + xdm)
Xg + Xp? — X¢) — de) e*(n) (43)

+ (xc — Xgl — XoJ + xb/{)e*(n)j

cater for non-circularly symmetric quaternion data. Fgouir, =e(n)( — Xq + Xp1 + Xc) + XqK)
the augmented QLMS (AQLMS) has also been derived by .
taking into account the so-called augmented second order + (Xa = Xp0 +Xc) — Xgr)e () (44)

statistics. Further, it has been shown that the operation q’pwd (e(n)e*(n))k = e(n) (Xa—Xe+Xp)+XaK) K
the quaternion domain allows for the fusion of heterogenous

data sources. Simulation results on both the benchmark 3D + (%a + Xt — xp) — Xa5)€* (n)r
data (Lorenz attractor) and real world wind data support the = e(n)( = X + X2+ XoJ + Xar)
approach.

In this work, we have considered the cost functi@fn) = + (%o — Xp1 — XcJ + Xqk)€*(n)  (45)

lle(n)||3 = e(n)e*(n), however, the same cost function Ca%ubstituting (42), (43), (44), and (45) into (7), we obtdire t

i i i - 2 _
be expressed in a different way, that @(n) N He(n.)l'? — final expression for the gradient of the cost function (5)ha t
e*(n)e(n). Due to the non-commutativity of quaternion prod;

uct, this gives rise to a variant of QLMS given by form
Vwl(e(n)e*(n)) = Vyw, (e(n)e*(n))+
w(n+1) = w(n) + p(2x*(n)e(n) — e*(n)x*(n))  (39) ( ) ( )
Since the same cost function is being minimized, this resuft | ¥ we (e(n)e”(n) 14V, (e(n)e” (n) 14V, (e(”)e*(n))”}
in identical performance. Future work on the class of QLMS
algorithms will include algorithms with an optimal adagmtiv —
stepsize, infinite impulse response (IIR) adaptive filter#i
and algorithms with a time-varying filter length [6].

—e(n)x*(n)—x(n)e* (n)+

+ { — 3e(n)x*(n) + (3%a — Xpt — Xcj — Xd“)e*(”)]
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= —e(n)x*(n)—x(n)e*(n)+
+| —3e(n)x"(n) + x(n)e*(n) + 2?}%{x(n)}e*(n)}

= —de(n)x*(n)+x"(n)e*(n) —x(n)e*(n) + 2R{x(n)}e*(n)
= —de(n)x*(n)+[x*(n)—x(n)+2R{x(n)}|e*(n)
= —4e(n)x*(n)+2x*(n)e*(n)

(46)
whereR{x} denotes the real/scalar part of

B. Derivation of the Sochastic Gradient Update within
AQLMS

Similarly to the update fow in (9), the update fog is de-
rived by firstly expanding termg(n)”x*(n) andx” (n)g*(n),
to yield

84 Xa + &) Xp + 8, Xc + 8 Xa
~8, Xp + &) Xa — 8, Xa + 8 X,

T *
n)x*(n) = 47
g (n)x7(n) —gl'x. +gl'x, —glx, +gl'xq 47
—gl'xq + gl xa — gl xc +85'%p
glx, +glxy +glx. +glxq
To\ox gl'xy — glx, +gl'xq — glx,
xT(n)g*(n) = (48)

T T T T
8,Xc — 8. Xa +8yXp — 8, Xd
T T T T
gaxd_gdxa+gbxc_gcxb

From (47) and (48), the quaternion gradients of the codf]

function (5) with respect t@ are computed as

V. (e(n)e”(n)) = e(n)( —x(n)) + (= x"(n))e*(n)
= —e(n)x(n) —x*(n)e"(n) (49)
Ve, (e(n)e*(n))e = e(n)( — xp + Xat + Xa) — Xck)1
+ (= Xp — Xa2 — Xa) + X)€" ()
=e(n)( — Xq — Xpt — XcJ — Xak)
+ (%4 — Xp1 + Xc + xqr)€e*(n) (50)
V. (e(n)e*(n))g = e(n)(— xe — Xat + Xa) + Xpk) ]
+ (= X + Xqt — Xq) — Xpk)e*(n)7

(
e(n)( — Xa — Xp1 — XcJ — XqK)

+ (xa + Xpt — Xe) + Xdlﬁl) e*(n) (1)
V. (e(n)e”(n))k = e(n)( — Xa + Xt — Xp) + Xak) K
+ (= Xq — Xct + Xp) — Xok)e* (n)k
= e(n)( — Xgq — Xpt — X¢) — Xdli)

+ (%q + Xp1 + Xcy — X)€" (n) (52)
which yields
Ve(e(n)e*(n)) = Vg, (e(n)e”(n)) +
+| Ve, (e(n)e” (n))1+ Vg, (e(n)e”(n)) 3+ Vg, (e(n)e” (n))

= —e(n)x(n) —x"(n)e*(n) +

-
+ {— 3e(n)x(n)+ (3%q +Xp1+Xc)+XqkK) € (n)]
= —e(n)x(n) —x*(n)e"(n) +
+ [ —3e(n)x(n) + x(n)e*(n) + 2§R{X(n)}e*(n)}
= —de(n)x(n)+ [x(n)—x*(n)—i—Q%{x(n)}} e*(n)
= —de(n)x(n)+2x(n)e*(n)
(53)
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