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Graphical contents entry. The effect of hydrostatic pressure on an inverse micelllar Fd3m cubic phase is studied by small-angle 20 

synchrotron diffraction. 

 
 
Over a range of hydration, unsaturated diacylglycerol / phosphatidylcholine mixtures adopt an 
inverse micellar cubic phase, of crystallographic space group Fd3m. In this study hydrated DOPC: 25 

DOG mixtures with a molar ratio close to 1:2 were examined as a function of hydrostatic pressure, 
using synchrotron x-ray diffraction. The small-angle diffraction pattern at atmospheric pressure 
was used to calculate 2-D sections through the electron density map. Pressure initially has very 
little effect on the structure of the Fd3m cubic phase, in contrast to its effect on hydrated inverse 
bicontinuous cubic phases. At close to 2 kbar, a sharp transition occurs from the Fd3m phase to a 30 

pair of coexisting phases, an inverse hexagonal HII phase plus an (ordered) lamellar phase. Upon 
increasing the pressure to 3 kbar, a further sharp transition occurs from the HII phase to a (fluid) 
lamellar phase, in coexistence with the ordered lamellar phase. These transitions are fully 
reversible, but show hysteresis. Remarkably, the lattice parameter of the Fd3m phase is practically 
independent of pressure. These results show that these two lipids are miscible at low pressure, 35 

adopting a single lyotropic phase (Fd3m); they then become immiscible above a critical pressure, 
phase separating into DOPC-rich and DOG-rich phases. 

1 Introduction 

Lipids are amphiphilic molecules which can self-assemble 
into a wide range of liquid-crystalline phases in aqueous 40 

solution, depending on the balance between the polar 
headgroup packing, and the hydrocarbon chain packing. 
Lipids with small, weakly polar headgroups and multiple, 
long alkyl chains have a tendency to adopt inverse phases 
with increasing temperature. In such phases, the polar-45 

nonpolar interface adopts a negative mean curvature, in the 
sense that the interface curves towards the water and away 
from the hydrocarbon chain region. Starting from the flat fluid 
lipid bilayer (zero mean curvature), which forms the basis of 
the structure of nearly all biological membranes, first inverse 50 

bicontinuous cubic, then inverse hexagonal HII phases may be 
observed upon varying any parameter that tends to favour 
inverse curvature (such as increasing temperature, increasing 
number or degree of unsaturation of the lipid hydrocarbon 
chains, etc)1. In extreme cases, some very weakly amphiphilic 55 

lipids may adopt even more highly negatively-curved phases, 
such as the inverse micellar cubic phase of spacegroup Fd3m 
(Fig.1). 
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