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Abstract 

 

Lithium and magnesium-Grignard diorganocuprates incorporating the functionalised aryl 

group 2-methoxylphenyl have been prepared and structurally characterised in the solid state. 

[Cu4Li2(C6H4OMe-2)6(THF)2], 2, and [Cu(C6H4OCH3-2)2Mg(THF)2X] (X = Cl, Br), 3-X, all 

exhibit coordination of the s-block metal centre by the methoxy oxygen, resulting in the 

formation of novel aggregates and favouring contact ion pair structures. In contrast separate 

ion pair structures had previously been observed under similar conditions for non-

functionalised arylcuprates. The magnesium organocuprates 3-Cl and 3-Br are of particular 

interest being rare examples of structurally characterised Grignard-derived organocuprates, 

and the first examples of functionalised Grignard organocuprates. All reported 

organocuprates undergo oxidative aryl coupling in the presence of O2 or PhNO2 to give 2,2’-

dimethoxybiphenyl. 
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Introduction 

 

Organocuprates are excellent reagents for the formation of carbon-carbon bonds and have 

been extensively employed in synthetic methodology since the 1960s for a number of 

important reactions including conjugate addition, substitution reactions, coupling reactions, 

and carbocupration.
1,2 

However, it is only relatively recently that significant insights have 

been obtained into the mechanism of operation of these reagents and the origin of their 

unique reactivity,
3-5

 including recent evidence of the important role played by Cu(III) 

intermediates.
6
  

 

 

Figure 1. CIP (I) and SSIP (II) structures of lithium homocuprates 

 

One of the first key steps in building current understanding of organocuprates was 

identification of the structural forms adopted by these complex species.
3
 Thus the resting 

state and also reactive form of lithium organocuprates (“R2CuLi”, R = organo group) in non-

polar or weakly coordinating solvents such as diethyl ether is now commonly accepted to be 

a dimeric contact ion pair (CIP) species I (Figure 1). However in more strongly coordinating 

solvents, such as THF, a less reactive solvent separated ion pair (SSIP) species II is 

predominant. Studies on the structures of analogous magnesium-Grignard derived 

organocuprates (“R2CuMgX”, X = halide) are far less developed, despite the fact the heritage 
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and synthetic usage of these reagents rivals that of their lithium based analogs.
1
 We have 

recently reported the first structural characterizations of magnesium-Grignard 

organocuprates, revealing [Ph4Cu2(Mg(OEt2)I)2] to adopt a dimeric CIP structure in diethyl 

ether which is analogous to lithium diorganocuprate CIPs (I) but with MgI formally replacing 

Li in the ring.
7
 Larger “inverse crown” type aggregates

8
 were observed when employing the 

bulkier mesityl (C6H2Me3-2,4,6) aryl group, and similar to lithium organocuprates solvent 

separate species were discerned when more strongly coordinating THF solvent molecules 

were present.
7
 

 

Most structural studies on organocuprates to date have employed simple non-functionalised 

aryls (such as phenyl
9-14

 or mesityl
15-17

) as the organo R group. However, many 

organocuprate synthetic protocols employ aryl or alkyl groups with additional 

functionalization such as amine, ether, alkenyl or alkynyl groups
18

 and it is still unclear how 

closely the structures and behavior of these species match those of their unfunctionalised 

cousins. A small number of lithium organocuprates containing dimethylamino functionalized 

aryl groups have been studied, including the lithium homocuprate [Cu2Li2(C6H4CH2NMe2-

2)4] III which was shown to adopt a CIP structure with dimethylamino substituents 

coordinating to the lithium atoms via their nitrogen lone pairs (Figure 2).
19

 An additional 

advantage to studying such species is the demonstrated ability of intramolecular Lewis donor 

groups to stabilize reagents or aggregates which are otherwise too reactive or unstable to be 

isolated. Hence the aforementioned dimethylamino substituted aryl was also employed by 

van Koten and co-workers to prepare [(C6H4(CH2NMe2)-2)2CuLi2(CN)(THF)4]∞, IV, which 

proved key in understanding the chemistry of cyano-Gilman (Lipshultz) cuprates at a time 

when there was much controversy regarding the nature of these species.
20

 In addition, a 

diamine functionalized aryl was thought to play a large role in contributing to the 
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thermodynamic stability of the lithium diorganocuprate-lithium halide complex 

[Cu(C6H4(CH2N(Et)CH2CH2NEt2)-2)2Li2Br], V.
21

  Using similar principles Ribas et al. 

employed a triaza-macrocyclic ligand to yield the first example of an isolable Cu(III) mono-

aryl species.
22

 

 

       

Figure 2. Organocuprates containing amine functionalised aryl groups 

 

In this work we investigate the role of ether functionalized aryl groups in lithium and 

Grignard organocuprates. There are currently no structurally characterized examples of 

Grignard-derived organocuprates with functionalized aryls of any sort, and as discussed 

above studies on functionalized lithium diarylcuprates are currently limited to just those with 

one or more amine donor groups.  The 2-methoxyphenyl group has been selected as the 

organo group since organocuprates containing this ligand are readily accessible and have 

previously been employed in a number of synthetic protocols including the syntheses of 

dihydromultifidene,
23

 hallucinogenic amphetamine derivatives,
24

 and the anti-cancer natural 

product yomogin.
25
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Experimental Section 

 

General Considerations 

All experimental work was carried out under an inert atmosphere of nitrogen using standard 

Schlenk double manifold and glovebox techniques. Purification and drying of the solvents 

was carried out following standard methods or using an Innovative Technologies PureSolv 

Solvent Purification System with purification grade solvents. NMR spectra were recorded on 

a Bruker DPX400 spectrometer with internal standards. Melting points were measured in 

capillaries sealed under nitrogen and microanalytical data were obtained from the Science 

Technical Support Unit, London Metropolitan University.  

 

Synthesis of [Cu(C6H4OMe-2)]8·8THF (1) 

40 mmol of 2-bromoanisole (5.0 ml) were added drop-wise to a suspension of magnesium 

metal (44 mmol, 1.07 g) in THF (40 ml) at 0 °C. After complete addition the reaction was 

brought to room temperature and stirred for 1 h. The resultant Grignard reagent was then 

added to a suspension of copper(I) chloride (40 mmol, 3.94 g) in THF (40 ml) at 0 °C and the 

mixture was stirred overnight. 20 ml of 1,4-dioxane were added to aid the precipitation of 

MgBrCl, which was removed by filtration and the filtrate volume was concentrated under 

vacuum. Storage at -35 °C for 3 days yielded orange crystals (2.58 g, 38% yield relative to 2-

bromoanisole); m.p. 128 °C (decomp.). 
1
H-NMR (400 MHz, 25 °C, C6D6): δ = 9.2 - 6.1 (m, 

32 H, Ar-H), 3.70 (m, 32 H, CH2O-THF), 3.5 - 2.1 (s, 24 H, -OCH3), 1.52 (m, 32 H, CH2-

THF). Elemental analysis for C56H56Cu8O8 (FW = 1365.3): Calculated, %: C = 49.26, H = 

4.13. Found, %: C = 49.15; H = 4.19 (note that THF solvent of crystallisation was lost during 

the isolation procedure required to prepare the sample for analysis). 
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Synthesis of [Cu4Li2(C6H4OMe-2)6(THF)2] (2) 

A solution of nBuLi in hexane/cyclohexane (2.5 M, 1.06 mmol, 0.43 ml) was added dropwise 

to a solution of 2-bromoanisole (1.06 mmol, 0.13 ml) in hexane (5 ml) at 0 °C. The reaction 

mixture was allowed to warm to room temperature and stirred for 1 h. A solution of 2-

methoxylphenylcopper (1) (0.182 g, 1.06 mmol) in toluene (4.6 ml) was added to give a 

yellow precipitate, which was dissolved with the addition of THF (0.5 ml) and then filtered 

over celite. Storage at room temperature for 5 days yielded yellow blocks of 2 suitable for X-

ray crystallography (85 mg, 24% yield based on 2-bromoanisole). 
1
H-NMR (400 MHz, 25 

°C, C6D6): δ = 8.02 (m, 6H, H6), 7.23 (m, 6H, H4), 7.05 (m, 6H, H5), 6.69 (m, 6H, H3), 3.68 

(m, 8 H, CH2O-THF), 3.40 (s, 18H, -OCH3), 1.49 (m, 8 H, CH2-THF). 
7
Li NMR (155.6 

MHz, 25 °C, C6D6) δ = 1.46. 

Exposure of 2 to atmospheric oxygen over several days or treatment with PhNO2 at room 

temperature produced 2,2’-dimethoxybiphenyl. 
1
H NMR (400 MHz, 25 °C, C6D6) δ = 7.49 

(d, 2H, J = 7.4 Hz, H6); 7.28 (m, 2H, H4); 7.06 (m, 2H, H5); 6.78 (d, 2H, J = 8 Hz, H3); 3.39 

(s, 6H, -OCH3). 

 

Synthesis of [Cu(C6H4OCH3-2)2Mg(THF)2Br] (3-Br) 

A solution of 2-methoxylphenylcopper (1) (182 mg, 1.10 mmol) in toluene (2.6 ml) was 

added to a solution of (2-methoxyphenyl)magnesium bromide in THF (1 M, 1.10 ml, 1.10 

mmol) - previously prepared from the addition of 2-bromoanisole (20 mmol, 2.5 ml) to a 

suspension of magnesium metal (22 mmol, 0.48 g) in THF (20 ml).  In order to dissolve the 

yellow precipitate formed additional toluene (2 ml) and THF (2 ml) were added; the solution 

was stirred at room temperature for 15 min before filtration through celite. Storage at -35 °C 

for 19 days yielded colourless crystals suitable for X-ray analysis (142 mg, 25 %); m.p. 282 

°C (decomp.). 
1
H NMR (400 MHz, C6D6, 25 °C): δ = 7.48 (d, 2H, J = 8.0 Hz, H6), 7.22 (m, 
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2H, H4), 7.05 (m, 2H, H5), 6.93 (m, 2H, H3), 3.82 (m, 8H, CH2O-THF), 3.39 (s, 6H, -

OCH3), 1.45 (m, 8H, CH2-THF). 

 

Synthesis of [Cu(C6H4OCH3-2)2Mg(THF)2Cl] (3-Cl) 

A solution of 2-methoxylphenylcopper (1) (182 mg, 1.10 mmol) in toluene (2.6 ml) was 

added to a solution of (2-methoxyphenyl)magnesium chloride in THF (1 M, 1.10 ml, 1.10 

mmol) - previously prepared from the addition of 2-chloroanisole (20 mmol, 2.5 ml) to a 

suspension of magnesium metal (22 mmol, 0.48 g) in THF (20 ml). Toluene (2 ml) and THF 

(2 ml) were added to dissolve the solid and the solution was stirred at room temperature for 

15 min before filtration through celite. Storage at room temperature for 14 days yielded 

colourless crystals suitable for X-ray analysis (98 mg, 19 %); 
1
H NMR (400 MHz, C6D6, 25 

°C): δ = 7.48 (d, 2H, J = 7.2 Hz, H6), 7.22 (m, 2H, H4), 7.05 (m, 2H, H5), 6.93 (m, 2H, H3), 

3.69 (m, 8H, CH2O-THF), 3.39 (s, 6H, -OCH3), 1.52 (m, 8H, CH2-THF). 

 

Synthesis of [Cu(C6H4OCH3-2)2Mg(THF)2I] (3-I) 

A solution of 2-methoxylphenylcopper (182 mg, 1.10 mmol) in toluene (2.6 ml) was added to 

a solution of (2-methoxyphenyl)magnesium iodide in THF (0.5 M, 2.20 ml, 1.10 mmol) - 

previously prepared from the addition of 2-iodoanisole (20 mmol, 2.6 ml) to a suspension of 

magnesium metal (22 mmol, 0.48 g) in THF (20 ml). Toluene (2 ml) and THF (2 ml) were 

added and the mixture was heated to 50 °C before filtration through celite. Storage of the 

filtrate at room temperature for 12 h yielded a yellow solid, which was dried in vacuo (95 mg, 

yield = 16%). 
1
H-NMR (400 MHz, C6D6, 25 °C): δ = 7.48 (d, 2H, J = 7.6 Hz, H6), 7.22 (m, 

2H, H4); 7.05 (m, 2H, H5), 6.93 (m, 2H, H4), 3.71 (m, 8H, CH2O-THF), 3.39 (s, 6H, -

OCH3), 1.48 (m, 8H, CH2-THF). 
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X-ray Structure Determinations of 1, 2, 3-Cl and 3-Br 

The crystals were all taken directly from the mother liquor, covered with a perfluorinated 

ether, and mounted on the top of a glass capillary under a flow of cold gaseous nitrogen. The 

data were collected using a Oxford Diffraction Xcalibur PX Ultra diffractometer fitted with 

an Oxford Cryostream low-temperature device, and the structures were refined based on F
2
 

using the SHLEXTL and SHELX-97 program systems. Table 2 provides a summary of the 

crystallographic data for all compounds. Full details of the X-ray structure solutions, 

including the handling of any disorder present in the structures, is given in the Supporting 

Information. The absolute structure of 3-Br was determined by a combination of R-factor 

tests [R1
+
 = 0.0163, R1

–
 = 0.0294] and by use of the Flack parameter [χ

+
 = 0.000(10), χ

–
 = 

1.018(10)]. Similarly for 3-Cl R1
+
 = 0.0610, R1

–
 = 0.0687 and χ

+
 = 0.00(4), χ

–
 = 1.00(4). The 

crystal structure data have been deposited with the Cambridge Crystallographic Data Center 

under deposition numbers CCDC 882792 (1), 882793 (2), 882794 (3-Br) and 882795 (3-Cl). 

This material can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, by 

emailing data_request@ccdc.cam.ac.uk, or by contacting the Cambridge Crystallographic 

Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK. 
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Table. 1. Summary of Crystal Structure Data for 1, 2, 3-Br and 3-Cl 

 1 2 3-Br 3-Cl 

empirical formula 

C56H56Cu8O8·

8(C4H8O) 

C50H58Cu4Li2

O8 

C22H30BrCu

MgO4 

C22H30ClCu

MgO4 

fw 1942.16 1055.00 526.22 481.76 

temperature (K) 173 173 173 173 

wavelength 
Cu Κα 

1.54184 Å 

Mo Κα 

0.71073 Å 

Cu Κα 

1.54184 Å 

Cu Κα 

1.54184 Å 

crystal system tetragonal orthorhombic orthorhombic orthorhombic 

space group 
P4/n  

(no. 85) 

Pbca  

(no. 61) 

P212121  

(no. 19) 

P212121  

(no. 19) 

a (Å) 18.15205(9) 17.96778(17) 8.18331(6) 7.9461(15) 

b (Å) - 17.60950(18) 8.43100(6) 8.5104(7) 

c (Å) 13.48120(9) 30.1255(4) 33.1182(2) 33.255(3) 

V (Å
3
) 4442.01(4) 9531.82(18) 2284.94(3) 2248.9(5) 

Z 2 8 4 4 

ρcalc (gcm
-3

) 1.452 1.470 1.530 1.423 

θ range (deg) 3.44-72.46 3.72-32.46 2.67-71.32 2.66-72.30 

µ (mm
-1

) 2.549 1.813 3.868 2.941 

reflns collected  40837 119452 31950 5720 

reflns unique 

(Rint) 

4398 

(0.0345) 

15909 

(0.0494) 

4480 

(0.0217) 

3779 

(0.0391) 

parameters 165 617 282 264 

goodness-of-fit 

on F
2 1.148 1.131 1.101 1.179 

R1 [F>4σ(F)] 0.0577 0.0563 0.0163 0.0610 

wR2 0.2240 0.1410 0.0434 0.1467 

 

 

Results and Discussion 

 

2-Methoxyphenylcopper(I) 

 

The synthesis of 2-methoxylphenylcopper was first reported by Camus and Marsich in 1968, 

where it was observed that compared to phenylcopper and tolylcopper complexes it was less 

air and temperature sensitive and more soluble in organic solvents.
26

 The reported synthesis 

of this complex was from the reaction of 2-methoxyphenyllithium with copper(I) bromide, 

however reproducibility of the reaction was poor in part due to contamination from lithium 

(most likely in the form of co-complexed 2-methoxyphenyllithium). We therefore adopted an 
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alternative synthesis route via reaction of the Grignard (C6H4OMe-2)MgCl with copper(I) 

chloride in THF to give a reproducible and high purity yield of the orange crystalline product 

[Cu(C6H4OMe-2)]8·8THF, 1 (see Experimental Section). Though somewhat complicated due 

to the highly aggregated nature of the complex, the
 1

H NMR spectrum of 1 is fully consistent 

with Camus’s previously reported spectroscopic analysis of this compound.
27

 

 

A solid-state structure of 2-methoxylphenylcopper crystallised from toluene was previously 

reported in 1971, however the data were reported to be of poor quality due to “decomposition 

of the crystal” during the data collection and is consequently not published on the Cambridge 

Structural Database.
28

 Hence, in order to allow comparisons to be drawn with the novel 

lithium and Grignard-derived 2-methoxyphenylcuprates discussed below, a new structural 

analysis of 1 is briefly reported herein. Note that the crystals of 1 obtained in this work were 

from a THF solution and contain non-coordinating THF within the crystal lattice, whereas the 

1971 structural analysis by Camus contained toluene molecules with the lattice thus giving 

rise to very different crystallographic parameters. However in both cases octomeric 

[Cu(C6H4OMe-2)]8 aggregates are observed as shown in Figure 3 for 1.  

 

 



11 
 

a)  

 
b) 

 

 

Figure 3. a) Molecular structure of [Cu(C6H4OMe-2)]8·8THF, 1. Hydrogen atoms and solvent 

THF molecules are omitted for clarity. b) Simplified view of 1 showing the aryl ipso carbon 

atoms and just one of the methoxylphenyl groups. Thermal ellipsoids are displayed at 30% 

probability level. Symmetry transformations used to generate equivalent atoms:  y,-x+3/2,z ; -

y+3/2,x,z 
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The structure of 1 is best considered as consisting of two tetrameric rings which lie on top of 

one another in a staggered conformation, so that the aryl group in one ring lies above a 

copper atom in the ring below. The rings are held together via coordination from anisyl 

methoxy oxygens in one ring to the copper centres in the adjacent ring (Cu(1)-O(7), 2.350(3) 

Å; Cu(2)-O(17), 2.387(3) Å), and there is no evidence of any intra-ring Cu-O interactions. 

Cu-Cipso bond distances range from 2.013(4) to 2.051(4) Å, and are therefore comparable to 

analogous Cu-Cipso distances in tetrameric arylcuprates such as [Cu4Mes4] (Mes = C6H2Me3-

2,4,6), 1.986(10)-1.999(9) Å,
29,30

 and [Cu4(C6H4CH2NMe2-2)4], 1.994(2)−2.102(2) Å,
31

 and 

are indicative of Cu-C-Cu two-electron−three-centre (2e−3c) bonding. The Cu−C−Cu angles 

within the rings are acute (Cu(1)-C(12)-Cu(1A), 74.66(12)º; Cu(2)-C(2)-Cu(2A), 75.00(13)º) 

and are also typical for 2e−3c bonding of an aryl group to two copper atoms.
29-31

 There is no 

evidence for Cu-C interactions between the tetrameric rings in 1, the shortest Cu…C inter-

ring distance being 3.130 Å. The shortest inter-ring Cu…Cu distance of 2.690 Å is shorter 

than the combined van der Waals radii of two copper atoms, but is not thought to represent 

any significant bonding interaction:  computational studies have shown that solid-state 

Cu(d
10

)-Cu(d
10

) interactions are likely to be very weak in nature with Cu(I)...Cu(I) distances 

primarily governed by the presence of other supramolecular interactions within the crystal 

lattice.
32

 

 

 

Lithium 2-methoxyphenylcuprate 2 

 

Reaction of 2-methoxyphenylcopper (1) with 2-methoxyphenyllithium in toluene / THF gave 

a yellow solution from which crystals of [Cu4Li2(C6H4OMe-2)6(THF)2] 2 were grown, 
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Scheme 1. The solid-state structure for complex 2, as determined using single crystal X-ray 

diffraction, is shown in Figure 4 with key bond lengths and angles in Table 2. 

 

 

Scheme 1. Synthesis of lithium diarylcuprate 2 

a) 

 

b) 

 
Figure 4. a) Molecular structure of [Cu4Li2(C6H4OMe-2)6(THF)2], 2 with hydrogen atoms 

and disorder in the THF molecules omitted for clarity; b) Picture of the core connectivity in 2 

omitting all other atoms. Thermal ellipsoids are displayed at 40% probability level.  
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Table 2. Selected bond lengths (Å) and angles (º) in [Cu4Li2(C6H4OMe-2)6(THF)2], 2 

Cu(1)-C(11) 1.924(3)  Li(1)-O(7) 1.970(6) 

Cu(1)-C(1) 1.992(3)  Li(1)-O(17) 1.953(6) 

Cu(2)-C(1) 1.998(3)  Li(1)-O(27) 1.921(7) 

Cu(2)-C(41) 1.922(3)  Li(1)-O(60) 1.964(6) 

Cu(3)-C(21) 1.925(3)  Li(2)-O(37) 1.951(7) 

Cu(3)-C(31) 1.980(3)  Li(2)-O(47) 1.940(7) 

Cu(4)-C(31) 1.991(3)  Li(2)-O(57) 1.924(7) 

Cu(4)-C(51) 1.911(3)  Li(2)-O(70) 1.959(7) 

     

C(1)-Cu(1)-C(11) 141.39(13)  C(31)-Cu(4)-C(51) 139.57(14) 

C(1)-Cu(2)-C(41) 144.30(13)  Cu(1)-C(1)-Cu(2) 76.71(12) 

C(21)-Cu(3)-C(31) 145.05(13)  Cu(3)-C(31)-Cu(4) 77.26(12) 

 

 

Lithium organocuprate 2 possesses a copper to lithium ratio of two to one, despite the fact 

that it was formed from an equimolar mixture of its organocopper and organolithium 

precursors. Similar copper-rich lithium homocuprates with Cu:Li ratios greater than one are 

well known in the literature and include the anionic clusters [Cu4LiPh6]
- 12

 and [Cu3Li2Ph6]
- 13

 

and the neutral complex [Cu3LiMes4] 
15

. These species have been speculated to arise due to 

interaggregate exchange between Cu2Li2R4 and Cu4R4 molecules in solution.
33,34

 

 

Closer analysis of the structure of 2 reveals the aggregate to be constructed from two 

[Cu2(C6H4OMe-2)3]
-
 anionic organocuprate units joined together by two THF-solvated 

lithium cations. Within each of the [Cu2R3]
-
 units there are two different types of aryl groups: 

the first bridges the two copper(I) atoms symmetrically to give a 3c-2e bond with Cu-C 

distances in the range 1.980(3) to 1.998(3) Å (mean 1.990 Å). The second type of aryl group 

is terminal to just one Cu(I) atom, resulting in the formation of shorter Cu-C distances in the 

range 1.911(3) to 1.925(3) Å (mean 1.920 Å) and indicative of 2c-2e bonds. A similar but ion 

separate [Cu2Mes3]
-
 anion has previously been reported which adopts an equivalent motif in 
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which the two terminal mesityl groups form 2c-2e bonds with the Cu atoms (Cu-C range 

1.923(8) to 1.925(8) Å) and the central bridging mesityl group forms a longer 3c-2e bond 

(Cu-C range 2.003(8) to 2.020(7) Å).
7
 However, unique to 2 the two [Cu2R3]

-
 cuprate units 

are held together via coordination of lithium cations by the methoxy oxygen atoms with Li-

O(Me) distances  in the range 1.921(7) to 1.970(6) Å (mean 1.943 Å). The coordination 

sphere of the lithium is completed by a single THF molecule (Li-O 1.959(7), 1.964(6) Å).  

 

In contrast to previously reported amino substituted homocuprates such as III (Figure 2), 

there are no Li-Cipso interactions evident within the solid-state structure of 2. The bonding 

behaviour of the methoxyphenyl groups therefore also differs significantly from that 

observed for the parent homometallic 2-methoxyphenyllithium complex, which adopts a 

dimeric structure in THF solution exhibiting both Li-Cipso and Li-OMe coordination.
35

 In the 

case of 2 this can be rationalised by the strong carbophilicity of copper(I) when compared to 

lithium. However, despite the absence of any Li-Cipso bonding complex 2 still forms a CIP 

structure as opposed to a SSIP structure (Figure 1), which is rare for a lithium organocuprate 

in the presence of THF
17,36

 and can be attributed to the strong propensity of the anisyl oxygen 

atoms towards lithium cation coordination.  

 

At first glance the four copper atoms in 2 appear to from a central tetrahedron with Cu…Cu 

distances within the range  2.476(5) to 2.824(6) Å and C-Cu-C bond angles distorted from 

linearity and pointing towards the centre of the tetrahedron (mean C-Cu-C, 142.74 º). 

However, as discussed above for 1 and based on previous bonding studies
32

 this should not be 

automatically interpreted to support the existence of any significant copper(I)-copper(I) 

bonding. Nevertheless the Cu4 cluster does differ from previously reported Cu(I)4 clusters - 
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for example [Cu4I6]
2-

,
37

 [Cu4(SPh)6]
2-

,
38

 and [Cu4(SePh)6]
2-

 
39

 - in that in 2 only two of the six 

anionic ligands directly bridge copper atoms (these being the central aryl groups in the 

[Cu2R3]
-
 units), and instead it is the peripheral Li-O(anisyl) bonding which must therefore 

play a large part in the supramolecular assembly of the structure. 

 

  

Scheme 2. Oxidative homocoupling of 2-methoxylphenyl 

 

On exposure to atmospheric oxygen, lithium organocuprate 2 was observed to decompose via 

oxidative coupling of the aryl groups to give small quantities of 2,2’-dimethoxybiphenyl 

(Scheme 2). By using the controlled introduction of nitrobenzene as the oxidising agent in 

place of atmospheric dioxygen we have been able to improve the yield of this coupling 

reaction to close to quantitative (>95%). In addition and as noted in the introduction above 

the application of lithium 2-methoxylphenyl cuprate 2 in conjugate addition reactions is 

already well established in the organic chemistry literature.
23-25

 

 

 

Magnesium-Grignard 2-methoxyphenylcuprates 3-X (X = Cl, Br, I) 

 

Despite their widespread application in synthesis,
1
 studies on the structures of Grignard 

organocuprates (commonly prepared from the reaction of a copper(I) salt with two 
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equivalents of Grignard reagent) are sparse in the literature, even when compared to lithium 

organocuprates. We recently reported upon the first structurally characterised examples of 

Grignard organocuprates: an iodo-Grignard CIP organocuprate [Ph4Cu2(Mg(OEt2)I)2] and 

bromo-Grignard CIP and SSIP organocuprates [Cu4Mg2Mes6Br2] and [Cu2Mes3]
-

[MgBr(THF)5]
+
 respectively.

7
 Two related structures derived from diorgano-magnesium 

reagents have also been reported: [Cu4MgPh6(OEt2)]
12

 and [Cu4Mes4][μ-SAr]2[MgSAr]2 (SAr 

= SC6H4CH(Me)NMe2-2) .
40,41

 Expanding upon these previous studies, employment of the 2-

methoxyphenyl ligand has led to the first structural characterization of a functionalised 

Grignard organocuprate. Thus reaction of copper 2-methyoxylphenyl with the corresponding 

aryl Grignard (itself prepared form the reaction of the aryl halide with magnesium metal) in 

THF solution gave the magnesium Grignard organocuprate complexes 3-X (X = Cl, Br, I) as 

shown in Scheme 3.  

 

 

Scheme 3. Synthesis of Magnesium-Grignard diarylcuprates 3-X (X = Cl, Br, I) 

 

 

The preparation of 3-Br and 3-Cl gave crystalline products which were shown by X-ray 

diffraction to exist as isostructural complexes with similar crystallographic parameters (see 
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Table 1). The molecular structure of 3-Br is shown in Figure 5 and the selected bond lengths 

and angles for 3-Br and 3-Cl are compared in Table 3.  

 

Both 3-Br and 3-Cl are monomeric but dinuclear R2CuMgX complexes with a 1:1 

stoichiometric ratio of copper to magnesium halide. This ratio is therefore as expected from 

the original reaction stoichiometry, but differs from that observed in the homologous copper-

rich organocuprate 2, Cu:Li = 2:1 (vide supra). In addition, the structure of 3-X contrasts 

with previously reported Grignard organocuprates, being the first example of a monomeric 

CIP complex. Although the crystals of 3-Br and 3-Cl were obtained from a THF solution, the 

organocuprates do not form THF solvated SSIP structures as might be initially expected 

(Figure 1), but rather give CIP structures, albeit with no apparent Cipso-Mg bonding. Similar 

to lithium organocuprate 2, the formation of a CIP structure can be attributed to the strong 

coordination of the s-block metal by the anisole methoxy group. 
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Figure 5. Molecular structure of [Cu(C6H4OCH3-2)2Mg(THF)2Br] (3-Br). Hydrogen atoms 

are omitted for clarity and thermal ellipsoids are displayed at 40% probability level.  

 

Table 3. Selected bond lengths (Å) and angles (º) in 3-X (X = Cl, Br) 

 X = Br X = Cl 

Cu-C(1) 1.9176(15) 1.923(6) 

Cu-C(11) 1.9190(16) 1.919(6) 

Mg-O(7) 2.0756(13) 2.075(5) 

Mg-O(17) 2.0973(12) 2.091(5) 

Mg-O(20) 2.0771(12) 2.071(5) 

Mg-O(25) 2.0559(13) 2.061(5) 

Mg-X 2.5183(6) 2.352(3) 

   

C(1)-Cu-C(11) 172.57(7) 172.6(3) 

O(7)-Mg-O(17) 155.37(6) 154.1(2) 

O(7)-Mg-X 101.90(4) 101.94(16) 

O(17)-Mg-X 102.54(4) 103.77(16) 

 

 

 

Closer inspection of the make-up of 3-X reveals two key structural components: a RCuR 

anionic fragment and a MgX(THF)2 cationic fragment. The anionic RCuR organocuprate unit 

is close to linear at the copper centre (C-Cu-C, 172.57(7)° (3-Br), 172.6(3)° (3-Cl)) with 

mean Cu-C distances of 1.918 Å (3-Br) and 1.921 Å (3-Cl). These copper angles and 

distances are consistent with the presence of 2c-2e copper(I)-carbon bonds and are directly 

comparable in length to similar 2c-2e Cu-C bonds in 2 (mean 1.920 Å) as well as being 

significantly shorter than the 3c-2e bond lengths observed in 1 (mean 2.147 Å) and 2 (mean 

1.990 Å). The diarylcuprate unit is connected to the Mg centre via coordination of the two 

methoxy groups, with mean Mg-O distances of 2.086 Å (3-Br) and 2.083 Å (3-Cl). The 

magnesium metal centres are additionally complexed by two THF oxygens and a halide 

anion. The geometry at the magnesium is close to square based pyramid with the halide in the 
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apical position: the sum of cis O-Mg-O bond angles is 358.57° in 3-Br and 358.4° in 3-Cl. 

The position trans to the halide is effectively shielded by the copper atom thus preventing 

any additional donor coordination at this site (Cu…Mg distances are 2.7409(6) Å in 3-Br and 

2.765(2) Å in 3-Cl). The positioning of the methyl groups as well as twisting in the THF 

molecules results in a chiral configuration for the molecule in the solid state, although the 

bulk product is racemic. 

 

Although it was not possible to prepare crystals of the iodo-Grignard derivative 3-I suitable 

for X-ray diffraction analysis, the NMR data of this complex is almost identical to that 

observed for both 3-Br and 3-Cl suggesting a similar Grignard diarylcuprate structure (see 

Experimental Section). In addition all 3-X complexes exhibit aryl-aryl oxidative coupling, 

either slowly over several days in the presence of atmospheric oxygen or quantitatively over 

1 hour in the presence of nitrobenzene, to give 2,2’-dimethoxybiphenyl in an analogous 

reaction to that reported for 2 (Scheme 2). 

 

 

Summary and Conclusions 

Despite recent advances in the understanding of organocuprate chemistry, studies concerning 

the structures of organocuprates containing functionalised organo groups remain limited to a 

few examples of amino-functionalised diaryl lithium cuprates. Given the important role 

functionalised organocuprates can play in natural product and other organic synthesis 

protocols, we set out to explore the coordination chemistry of the 2-methoxyphenyl group in 

lithium and Grignard organocuprates.  
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In a re-visitation of early work by Camus,
27,28

 2-methoxyphenylcopper (1) was prepared and 

shown to exist in the solid state as an octameric aggregrate formed from two tetrameric 

copper(I)-aryl rings conjoined via copper-oxygen(OMe) bonding interactions. This 

organocopper species was subsequently used in the preparation of the novel lithium 

organocuprate 2, [Cu4Li2(C6H4OMe-2)6(THF)2], and the Grignard organocuprates 3-X, 

[Cu(C6H4OCH3-2)2Mg(THF)2X] X = Cl, Br, I. Solid-state structural studies show the donor 

methoxy group to play a large role in determining the structures adopted by these 

organocuprate species, coordinating in each case to the s-block metal centre with no copper-

oxygen bonding present. Most notably this intramolecular methoxy coordination to lithium or 

magnesium is preferred over coordination of solvent THF, thus giving contact ion pair (CIP) 

structures rather than THF-solvated separated ion pairs (SSIPs) as observed for non-

functionalised arylcuprates. Previous studies have shown how have organocuprates structure 

can be key to understanding the reactivity and mechanism of reaction of these species,
3
 with 

the balance between CIP and SSIP species particularly important in this respect
36

. In the past 

such structural studies have predominately concentrated upon the role of the solvent or the 

steric size of the organo group. However, from this work it is apparent how the presence of 

additional functional groups on the organo group can also play a key role in determining the 

overall structure and aggregation of these reagents. It is through such studies that we are able 

to build a more thorough understanding of these important and widely-used reagents. 
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