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Abstract: Clostridium difficile, a leading cause of hospital-acquired infection, possesses a dense 

surface layer (S-layer) that mediates host-pathogen interactions. The key structural components of the 

S-layer result from proteolytic cleavage of a precursor protein, SlpA, into high- and low-molecular-

weight components. Here we report the discovery and optimization of the first inhibitors of this 

process in live bacteria, and their application for probing S-layer processing. We also describe the 

design and in vivo application of activity-based probes that identify the protein Cwp84 as the cysteine 

protease that mediates SlpA cleavage. This work provides novel chemical tools for the analysis of S-

layer biogenesis, and for the potential identification of novel drug targets within clostridia and related 

bacterial pathogens. 

INTRODUCTION 

Clostridium difficile is a Gram-positive antibiotic-resistant anaerobe that can cause severe 

gastrointestinal disease in humans (1, 2) and livestock (3), and is a leading cause of hospital-acquired 

infection (4). The C. difficile cell is completely coated by the surface layer (S-layer), a paracrystalline 

proteinacious array that mediates host-pathogen interactions (5, 6). Previously we have shown that the 

key structural components of the S-layer are the result of proteolytic cleavage of a precursor protein, 

SlpA, into high- and low-molecular-weight components, namely the HMW and LMW S-layer 

proteins (SLPs) (5). These proteins reassemble to form the hexagonal S-layer lattice, and recently we 

reported the structure of the resultant HMW/LMW SLP complex (7). It is estimated that during 

exponential growth up to 400 molecules of SlpA per cell per second are synthesized, translocated to 

the S-layer and cleaved (8), indicating an acute demand for LMW and HMW SLPs in the expanding 

S-layer. The cleavage site in SlpA is widely conserved across many clinical strains of C. difficile, 

suggesting a similarly conserved protease is responsible for the processing event. Whilst constitutive 

gene knockouts can be achieved in C. difficile using the elegant ClosTron system (9), there is no 

reliable technique for achieving conditional knockouts, and despite widespread efforts it has not 

proven possible to generate a SlpA knockout strain to date. We hypothesized that a chemical genetic 

approach exploiting specific protease inhibitors and activity-based probes (ABPs) could be a powerful 



approach for the study of SlpA processing in vivo. Here we report the discovery of the first inhibitors 

of S-layer processing in live C. difficile cells, and the development of activity-based probes that 

enable detection and identification of the protease responsible for S-layer processing. 

^ SCHEME 1 

RESULTS AND DISCUSSION 

The cleavage products of SlpA may be observed directly by sodium dodecyl sulfate polyacrylamide 

gel electrophoresis (SDS-PAGE) followed by Western blot analysis of the total S-layer fraction 

against an anti-LMW SLP antibody (7). Screening a panel of commercially-available protease 

inhibitors in this in vivo assay against the C. difficile reference strain 630 revealed that E-64 (Fig. 1A) 

has a modest inhibitory effect on SlpA processing at 100 µM, as shown by the appearance of 

unprocessed SlpA at 74 kDa apparent molecular weight (Fig. 1B). E-64 represents the first known 

inhibitor of S-layer processing in C. difficile; it is a natural product first isolated from Aspergillus 

japonicas, and is a broad-spectrum irreversible inhibitor of papain cysteine proteases (10). Further 

investigations demanded facile access to inhibitor analogues, and a flexible solid-phase synthetic 

route (Scheme S1) was therefore used to generate epoxide 1, a peptidic analogue of E-64 (11). 1 

retains the N-terminal trans-(S,S)-epoxysuccinyl moiety, which was appended to a Leu-Arg dipeptide 

amide, recapitulating the key stereochemistry and functionality of the natural product (Fig. 1A). 1 was 

found to possess identical activity to E-64 in the in vivo assay (Fig. 1B), as does ethyl ester 2, the 

synthetic precursor to 1. Analogues in which the warhead epoxide is in the (R,R) configuration or in 

which the epoxysuccinyl group is replaced with an acetyl group are inactive in vivo (data not shown), 

demonstrating a highly stereoselective mode of action and confirming the requirement for the 

electrophilic warhead. The activity of 1 was further measured across a panel of seven clinical C. 

difficile strains in addition to 630 with a broad range of sequence variation around the cleavage site of 

SlpA (Table S1). Activity was closely comparable (Fig. S1A), strongly suggesting a conserved mode 

of action across all these strains. 

^ FIGURE 1 

With this evidence in hand we sought to explore the structure-activity relationship for this 

class of inhibitors, as a precursor to identifying the target enzyme. Little is known about expression 

and activity of proteases in C. difficile and to date only a handful has been characterized to any 

degree. Activity based probes (ABPs) are a powerful tool for the de novo identification of enzymes, 

particularly in organisms that lack facile genetic tools (12, 13). However, there are relatively few 

examples of the application of ABPs to bacterial systems (14-19), and their use in C. difficile is 

without precedent to date. A series of ABPs based on 1 were designed by appending L-propargyl 

glycine (Pra) to an expanded library of inhibitors with the objective of identifying their target and, by 



extension, the protease that mediates S-layer processing. The alkyne motif in Pra provides a small 

chemical tag that is expected to have minimal effect on distribution and binding to the target enzyme, 

and can be addressed by a selective bioorthogonal ligation reaction to enable subsequent addition of 

labels for detection (12, 20-22). A panel of probes 3-17 was synthesized, each featuring a different 

amino acid motif in the targeting element (Fig. 1A), and tested in vivo against 630 at 100 µM, 

revealing a striking pattern of inhibitory activity (Fig. 2A). 3 (LR) had identical activity to E-64 and 

the parent inhibitor 1, as expected. However, 5 (F) had equal activity, whilst 9 (Y) and 13 (R) showed 

significantly improved potency over E-64 and 1; the remaining analogues 4, 6-8, 10-12 and 14-16 (A, 

I, L, V, S, H, K, E, G, P) had no detectable activity under the conditions tested. This interesting 

structure-activity relationship in which both positively charged and large aromatic residues are 

permitted can be rationalized by examining the conservation of the SlpA cleavage site across C. 

difficile strains (Table S1). On the basis of our previously published data (23, 24), the P2 position (i.e. 

the second residue upstream of the cleavage site) is either Y or K, and we conjecture that these 

inhibitors target a papain class cysteine protease in the canonical mode for E-64 (25, 26), whereby the 

epoxide warhead occupies the P1 position (S or G in most known cleavage sites) and the first amino 

acid in the inhibitor occupies P2. Further testing of 4 (A) and 12 (K) supports this hypothesis, with no 

activity observed for 4 up to 500 µM, and moderate activity at concentrations of 12 above 250 µM 

(Fig. S2). 

We next investigated the dependence of in vivo inhibition on inhibitor concentration (Fig. 

2B). For 3, little effect on S-layer processing was observed below 50 µM. However, 9 (Y) retains 

significant inhibition down to a concentration of 10 µM, indicating an order of magnitude 

improvement in in vivo activity over E-64 and 3. Full-length SlpA continues to accumulate in the S-

layer with increasing concentration of 3, but reaches a plateau at around 500 µM (Fig. 2B). This 

puzzling result was readily rationalized upon examination of the supernatant of inhibited cultures: at 

inhibitor concentrations of 250 µM and above SlpA is shed from cells, eventually reaching levels in 

excess of the total S-layer protein retained on the cell wall (Fig. 2B). This remarkable result indicates 

that unprocessed SlpA is not well-tolerated within the tight matrix of the S-layer, and that inhibited 

cultures upregulate production of SlpA. This may be related to a general stress response, as increased 

slpA expression has been reported in C. difficile exposed to a variety of stresses (27, 28). Notably, 

although inhibition of S-layer processing does not appear to have a direct impact on growth rate in the 

rich media used in these experiments, it has a dramatic effect on cell wall integrity. The cell wall of C. 

difficile grown under normal culture conditions is exceptionally stable, highlighted by the fact that 

boiling cells in a strong anionic detergent (0.7% SDS, 100 °C) does not induce lysis; however, 

inhibited cells are highly sensitive to lysis under these conditions (Fig. S3). 

^ FIGURE 2 



 As shown in Scheme 1, at least two proteases are expected to be involved in the maturation of 

SlpA – the signal peptidase that cleaves the signal sequence responsible for directing translocation to 

the cell surface, and the putative protease that separates the LMW and HMW SLPs. If translocation is 

a prerequisite for subsequent processing, in principle inhibition of either of these proteases could 

result in accumulation of full-length SlpA. However, full-length SlpA is found in the S-layer and 

supernatant fractions in inhibited cells, strongly suggesting that translocation precedes inhibition and 

that the inhibitors described here target the downstream processing step (step B in Scheme 1). We 

next sought to determine the target labeled by these ABPs in live cells, with the aim of identifying the 

protease specific to S-layer processing in C. difficile. Samples from each of the inhibition experiments 

above were visualized by direct in-gel fluorescence following bioorthogonal ligation to a fluorescent 

reporter (Fig. S4). This reagent bears an azide for bioorthogonal ligation using 3+2 copper catalyzed 

azide-alkyne cycloaddition (CuAAC) and a TAMRA fluorophore for sensitive detection of labeled 

proteins by in-gel fluorescence (29, 30). The results from this experiment are striking (Fig. 2C): a 

strongly labeled fluorescent band is observed in direct correlation with ABP activity. A second band 

is observed at slightly higher apparent molecular weight, and is particularly strongly labeled by 13 

(R). Interestingly, weak bands were observed for 6 (I), 8 (V), 11 (H) and 12 (K), suggesting large 

hydrophobic and positivity charged residues may be tolerated to some extent. A number of lower 

molecular-weight bands were more weakly labeled in an inhibition-independent manner, presumably 

due to background CuAAC ligation (Fig. S5). 

Having established that putative targets of these probes reside in the S-layer of C. difficile and 

should be readily accessible to ABPs in the medium we considered that ABPs directly incorporating a 

biotin label would simplify the process of target identification, removing the requirement for two-step 

labeling and eliminating any interference from background CuAAC ligation. Biotin was appended to 

the C-terminus via a short PEG linker by performing solid phase synthesis on Biotin NovaTag resin, 

providing PEG-Biotin labeled ABPs 17 (LR) and 18 (R) (Fig. 1A). These ABPs were found to 

possess identical activity to the parent inhibitors in live cell assays (Fig. 2D), and NeutrAvidin-HRP 

blot of S-layer fractions showed the same strong bands for labeled protein (Fig. 2E). The activity and 

labeling properties of 17 were also conserved across multiple strains of C. difficile (Fig. S1B). 

Labeling experiments on strain 630 were scaled up to provide sufficient protein for identification, and 

affinity purification on NeutrAvidin-agarose followed by elution into loading buffer and SDS PAGE 

enabled the direct visualization of bands by coomassie staining (Fig. 2E). Whilst the labeled bands 

were not visible by coomassie staining prior to enrichment, they were readily identified after pull-

down. The highly abundant LMW and HMW SLPs remain largely in the supernatant, whilst the 

labeled protein co-purifies with a number of unlabelled proteins that have markedly increased 

abundance in enriched samples from cells treated with 17 or 18. 



MALDI-ToF fingerprint analysis against the C. difficile 630 genome revealed that the labeled 

proteins are all members of the cell wall protein family of which the cysteine protease Cwp84 is a 

member. Cwp84 is one of the few proteases previously characterized in C. difficile, and was 

previously reported to have proteolytic activity against various matrix proteins (31, 32). Genomic 

analysis reveals that Cwp84 is encoded in the same genomic region as SlpA (33, 34), and shows 

strong secondary structural homology to papain class cysteine proteases (35), consistent with the 

results described above. Recombinant Cwp84 is known to self-process (31), and the two labeled 

proteins may be intermediates on this pathway. CD1751 is a close homolog of Cwp84 (63% identity 

at the amino acid level), but the high sequence coverage achieved in these analyses (45%) rules out 

this protease as a candidate target. Three bands that are not labeled but that co-purify with labeled 

Cwp84 were identified as Cwp66, CD2767 and CD2797. cwp66 and CD2797  are part of the same 

gene cluster as slpA; Cwp66 has previously been described as a temperature-dependent adhesin (36), 

whilst CD2767 and CD2797 have no known function. 

The data described above provide convincing evidence that Cwp84 is the key target of the 

inhibitors and ABPs described herein. Furthermore, the close linkage between inhibition activity and 

labeling supports the hypothesis that Cwp84 is the protease responsible for S-layer processing in C. 

difficile. To confirm the on-target specificity of Cwp84 for SlpA we designed a construct (‘LHG’) 

containing SlpA residues 1-362 fused to a C-terminal GST tag (Fig. 3A). SlpA[1-362] includes the 

LMW SLP and the N-terminal part of the HMW SLP sufficient for interaction with the LMW SLP 

(termed the HMW interaction domain, HID, Fig. S6A) (7), and thus encompasses the SlpA cleavage 

site. Co-expression of His-tagged Cwp84 and LHG in E. coli on a dual expression plasmid resulted in 

cleavage of LHG to the LMW SLP and a GST-tagged fragment. These bands are not produced when 

LHG is co-expressed in the presence of a Cwp84 mutant in which the active site Cys identified by 

sequence homology was mutated to Ala (C116A) (Fig. 3B and Fig. S6B). N-terminal sequencing of 

each fragment demonstrated that Cwp84 cleaves this substrate at Ser321, i.e. at ...ETKS↓AND..., the 

same location observed in vivo in C. difficile strain 630 (Table S1) (33). The substrate selectivity of 

Cwp84 was then probed directly using this assay: seven LHG constructs bearing an alanine point 

mutation at the P6’ to P1’ or A322G at the P1 positions flanking the cleavage site were co-expressed in 

the presence of Cwp84 and tested for cleavage (Fig. 3C). A clear trend was observed: the only mutant 

that completely lacks cleavage is K320A (the P2’ position), confirming the key importance of this site 

for substrate recognition. Interestingly, T319A appears to reduce cleavage efficiency relative to the 

wild type site, and E318A appears to enhance it somewhat. Cwp84 was expressed at equivalent levels 

across these experiments (Fig. S7), strongly suggesting that these effects are directly due to 

differences in substrate affinity rather than variations in Cwp84 activity. 

^ FIGURE 3 



CONCLUSION 

Starting from the observation that SlpA is cleaved in vivo to generate the major structural components 

of the C. difficile surface layer, we have identified E-64 and 1 as the first inhibitors of this process, 

and reported the development of improved inhibitors 5, 9 and 13 with in vivo activity ranging down to 

low-µM concentration. These chemical genetic probes of S-layer formation have been used to 

demonstrate that full-length SlpA is poorly tolerated in the S-layer, leading to a marked reduction in 

cell integrity. Our results also point to a regulatory mechanism that drives increased SlpA expression 

in response to chemical inhibition of Cwp84, a remarkable observation in view of the already very 

high rate of S-layer synthesis in uninhibited cells. On the basis of the results presented here it is 

plausible that S-layer processing is regulated and concerted, and we speculate that it may be 

coordinated by a conserved protein complex. Alkyne-tagged and directly-labeled activity-based 

probes have been developed, enabling the target of these inhibitors to be identified as Cwp84 and 

providing the first reported example of the application of ABPs in C. difficile; the SlpA cleavage site 

has also been confirmed by an in vivo assay reconstituted in E. coli. The lack of a direct effect on cell 

growth even at high inhibitor concentrations suggests that Cwp84 may not be an essential gene under 

optimal growth conditions, and by extension that S-layer processing might not be essential for 

viability, at least in rich media. This hypothesis has recently been confirmed by a Cwp84 knockout 

strain of C. difficile, reported whilst this paper was in preparation (37). C. difficile 630 Δcwp84 is 

indeed viable in rich medium, but grows more slowly than wild-type 630 and displays significantly 

different colony morphology. Furthermore, the S-layer of this strain contains significant quantities of 

unprocessed SlpA, and the LMW and HMW SLPs are not observed. Taken together with the results 

we report here these data provide very strong evidence that the major role for Cwp84 in vivo lies in 

cleavage of SlpA during surface layer biogenesis, though our data do not preclude possible co-activity 

against extracellular matrix proteins (31). We have recently shown that another S-layer protein, 

CwpV, is cleaved post-translationally in strain 630 (38), but it is currently unknown whether Cwp84 

or another as yet unidentified protease is responsible for this processing. 

Cwp84 is highly conserved in C. difficile (39, 40), and our studies across multiple clinical 

strains demonstrate that Cwp84 expression, activity and function also appear to be highly conserved. 

However, CD1751, a homologue of Cwp84, was not detected in labeled samples, and does not appear 

to play a role in S-layer processing under standard culture conditions. The apparently canonical 

binding mode of E-64 derivatives for Cwp84 and our substrate specificity analyses provide in vivo 

evidence for classification of Cwp84 as a papain-class cysteine protease that possesses a key substrate 

recognition determinant at the P2’ position. It is interesting to note that this enzyme appears to accept 

substrates with residues of contrasting chemical character (either aromatic or charged) at P2 (23, 24), 

whilst most other residues are excluded on the basis of our inhibition and labeling data. Furthermore, 

certain ABPs described here (13 and 18) appear to intercept Cwp84 at multiple stages of self-



processing in a structure-dependent fashion, presenting a potential tool for analysis of Cwp84 

activation in vivo.  

The marked effect of Cwp84 inhibition on cell integrity as judged by susceptibility to lysis 

might be expected to lead to strong effects on viability under conditions of stress (e.g. antibiotic 

treatment, attack by the host immune system), and warrants further investigation of S-layer processing 

as a potential therapeutic target. The data presented here also demonstrate that Cwp84 is readily 

accessible to inhibitors in the medium, circumventing issues of intracellular uptake through the dense 

S-layer. Weakening of the S-layer by this mechanism might also result in improved penetration of co-

administered antibiotics, and it will be interesting to see whether Cwp84 inhibitors can act 

synergistically with such agents. The inhibitors and ABPs described here represent useful and novel 

tools for studying cell wall biogenesis in C. difficile, and provide a unique approach for the detection 

of active Cwp84 in live cells. Work is ongoing in our labs to exploit these probes for the further 

investigation of these processes, and their extension to related pathogenic organisms. 

METHODS 

C. difficile strains. C. difficile 630 has been fully sequenced (35). R8366, R7404, Y, CDKK167 and 

CDKK959 have been described previously (23, 33). R13541 was obtained from De´ irdre Nı´ Eidhin 

(Trinity College, Dublin) and SE528 from Dr Michelle Delemee, Universite´ Catholique de Louvain, 

Brussels. 

C. difficile culture conditions. C. difficile was routinely cultured either on blood agar base II (Oxoid 

Ltd, Basingstoke, UK) supplemented with 7% horse blood (TCS Biosciences, Botolph Claydon, UK); 

or in brain-heart infusion (BHI) broth (Oxoid). Culture was undertaken in an anaerobic cabinet (Don 

Whitley Scientific, Shipley, UK) at 37 ºC in a reducing anaerobic atmosphere (10% CO2, 10% H2, 

80% N2). Glycine extracts were prepared as described previously (33). 

In vivo inhibition assay.  A single colony of C. difficile was inoculated in BHI broth and grown 

anaerobically for 1 hour.  The culture was aliquoted, and bacteria were grown in the presence of each 

inhibitor overnight (16-18 hours). The cells were harvested by centrifugation, resuspended in SDS-

PAGE loading buffer, boiled and analyzed by SDS-PAGE and western blotting. All assays used strain 

630, unless otherwise specified. 

SlpA cleavage assay in E. coli. A derivative of SlpA was co-expressed in E. coli with Cwp84 to 

assay cleavage activity. Residues 1-362 of SlpA were cloned as a fusion with glutathione-S-

transferase in MCS2 of pACYCDuet-1 (Novagen). Residues 30-803 of Cwp84 were then cloned in 

the MCS1 of the same plasmid to form the co-expression plasmid. Derivatives of Cwp84 and LHG 

containing amino acid substitutions were created using inverse PCR.  E. coli cells were grown in LB-



broth with chloramphenicol (30 µg ml-1) and glucose (0.5%) to OD 0.7, IPTG added to 120 µM and 

induction continued for 24 hours. Cell lysates were prepared and analyzed by SDS-PAGE and western 

blotting using anti-LMW SLP (1 in 400,000) and anti-GST antibodies (1 in 4,000). Pull-downs using 

glutathione sepharose 4B matrix was performed according to the manufacturer’s protocol 

(Amersham). 
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Scheme 1. Overview of the three-stage maturation of SlpA in C. difficile to generate the S-layer 
protein complex. A: removal of the signal peptide by signal peptidase; B: cleavage by a protease 
(identified herein as Cwp84), to generate the high and low molecular weight surface layer proteins 
(HMW and LMW SLPs); C: re-association of LMW and HMW SLPs to form the S-layer matrix. 
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Fig. 1 Structures of inhibitors and ABPs synthesized in this study 

A: structures of E-64, synthetic inhibitors and ABPs 1-18 used in this study; B: activity of E-64, 1 and 

2, as measured by Western blot of S-layer fractions using anti-LMW SLP. C. difficile 630 cultures 

were treated with compound at 100 µM during overnight growth under anaerobic conditions in Brain 

Heart Infusion (BHI) medium, followed by isolation of the S-layer fraction as described (7). 
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Fig. 2 In vivo activity and labeling by ABPs in C. difficile S-layer processing 

A: activity across ABP series 3-16, visualized by Western blot using anti-LMW SLP; 
B: concentration series for 3 (S-layer and culture supernatant) and 9 (S-layer), SlpA visualized as for 
A; C: labeling across ABP series 3-16, as revealed by in-gel fluorescence after CuAAC ligation to a 
fluorescent reporter; D: activity of biotinylated ABPs 17 and 18; E: NeutrAvidin-HRP blots (NB) and 
coomassie-stained gels (C) of glycine extracts labeled by 17 and 18, showing proteins after  affinity-
purification (pull-down) with NeutrAvidin-agarose; a representative supernatant after pull-down 
following treatment of cells with 17 is also shown. The marked bands were identified as: 1, SlpA; 2, 
CD2791; 3, HMW SLP; 4. LMW SLP; 5. CD2797; 6. Cwp84; 7. Cwp66; 8. CD2767. See supporting 
information for further details. 
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Fig. 3 Model cleavage assay for SlpA reconstituted in E. coli.  

A: LHG construct; B: LHG processing in E. coli co-expressing LHG (all lanes) and either Cwp84 
(lanes 1, 3, 5) or Cwp84[C116A] (lanes 2, 4); cells were lysed 24 hours post-induction, and soluble 
protein visualized by Western blot using anti- αLMW SLP (lanes 1, 2) or anti-GST (lanes 3, 4). Lane 
5 shows coomassie-stained proteins following affinity purification by pull-down onto glutathione 
sepharose beads; N-terminal sequencing of the HID-GST band excised from the gel shown in lane 5 
confirmed the cleavage site as ...ETKS↓ANDTIA...; C: in vivo cleavage assay for LHG constructs by 
Cwp84 containing a point mutations at the P6’ to P1 sites flanking the scissile bond.  
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