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Abstract

The main purpose of optimisation in image processing is to compensate for missing, corrupted

image data, or to find good correspondences between input images. We note that image data

essentially has infinite dimensionality that needs to be discretised at certain levels of resolution.

Most image processing methods find a suboptimal solution, given the characteristics of the

problem. While the general optimisation literature is vast, there does not seem to be an

accepted universal method for all image problems. In this thesis, we consider three interrelated

optimisation approaches to exploit problem structures of various relaxations to three common

image processing problems:

1. The first approach to the image registration problem is based on the nonlinear program-

ming model. Image registration is an ill-posed problem and su↵ers from many undesired

local optima. In order to remove these unwanted solutions, certain regularisers or con-

straints are needed. In this thesis, prior knowledge of rigid structures of the images is

included in the problem using linear and bilinear constraints. The aim is to match two

images while maintaining the rigid structure of certain parts of the images. A sequential

quadratic programming algorithm is used, employing dimensional reduction, to solve the

resulting discretised constrained optimisation problem. We show that pre-processing of

the constraints can reduce problem dimensionality. Experimental results demonstrate

better performance of our proposed algorithm compare to the current methods.

2. The second approach is based on discrete Markov Random Fields (MRF). MRF has been

successfully used in machine learning, artificial intelligence, image processing, including

the image registration problem. In the discrete MRF model, the domain of the image

problem is fixed (relaxed) to a certain range. Therefore, the optimal solution to the relaxed

problem could be found in the predefined domain. The original discrete MRF is NP hard

and relaxations are needed to obtain a suboptimal solution in polynomial time. One

popular approach is the linear programming (LP) relaxation. However, the LP relaxation

of MRF (LP-MRF) is excessively high dimensional and contains sophisticated constraints.

Therefore, even one iteration of a standard LP solver (e.g. interior-point algorithm), may

take too long to terminate. Dual decomposition technique has been used to formulate

a convex-nondi↵erentiable dual LP-MRF that has geometrical advantages. This has led
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to the development of first order methods that take into account the MRF structure.

The methods considered in this thesis for solving the dual LP-MRF are the projected

subgradient and mirror descent using nonlinear weighted distance functions. An analysis

of the convergence properties of the method is provided, along with improved convergence

rate estimates. The experiments on synthetic data and an image segmentation problem

show promising results.

3. The third approach employs a hierarchy of problem’s models for computing the search

directions. The first two approaches are specialised methods for image problems at a

certain level of discretisation. As input images are infinite-dimensional, all computational

methods require their discretisation at some levels. Clearly, high resolution images carry

more information but they lead to very large scale and ill-posed optimisation problems.

By contrast, although low level discretisation su↵ers from the loss of information, it

benefits from low computational cost. In addition, a coarser representation of a fine

image problem could be treated as a relaxation to the problem, i.e. the coarse problem

is less ill-conditioned. Therefore, propagating a solution of a good coarse approximation

to the fine problem could potentially improve the fine level. With the aim of utilising

low level information within the high level process, we propose a multilevel optimisation

method to solve the convex composite optimisation problem. This problem consists of the

minimisation of the sum of a smooth convex function and a simple non-smooth convex

function. The method iterates between fine and coarse levels of discretisation in the sense

that the search direction is computed using information from either the gradient or a

solution of the coarse model. We show that the proposed algorithm is a contraction on

the optimal solution and demonstrate excellent performance on experiments with image

restoration problems.
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Chapter 1

Introduction

The importance of image processing is due to the need for extracting as much information

as possible from available image data. The rapid development in technology has resulted in

increased volumes of image data. Processing this data requires increased computational e↵ort.

To maintain adequate performance, e�cient techniques are needed for image processing. This

has received substantial attention in recent decades. Many methods have been developed, based

on optimisation algorithms and their e�cient software implementation. The basic approach in

each case is based on the explicit or implicit optimisation of a specified criterion. The aim is

always to e�ciently extract useful information from the images, such as patterns, noise and

similarities.

This thesis focuses on gradient-based optimisation methods for image processing. Three interre-

lated optimisation approaches are considered to solve three common computer vision problems.

Image problems are generally ill-conditioned and su↵er from undesirable local optimal solutions.

While there is a vast literature on the topic of optimisation methods, it is di�cult to solve an

image problem without taking into account prior knowledge, image structure, or its relaxation

model. Thus for particular applications, specialised methods are essential to obtain meaningful

image information. The methods considered in this thesis take into account three type of re-

laxations to ill-posed image processing problem: in Chapters 2 and 3, relaxation based on prior

knowledge of image objects; in Chaters 4 and 5, convex relaxation via Markov Random Fields

and e�cient solvers for optimisation subproblems ; and, in Chapter 6, the hierarchy of image

resolutions where the coarser model is a smoother version of a fine and ill-posed problem. The
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24 Chapter 1. Introduction

final Chapter presents the thesis conclusions, and discusses some shortcomings of the proposed

methods. Current and future directions that are directly related or have been motivated by

some of the issues raised in this thesis are summarised.

1.1 Image Registration

Chapter 2 reviews the background of image registration, a popular procedure in various appli-

cations of computer vision, especially in medical imaging. Image registration is the process of

aligning two or more images of the same scene. This process involves designating one image

as the reference (also called the reference image or the fixed image), and applying geometric

transformations to the other images (referred as templates or moving images) so that they align

with the reference. Images can be misaligned for a variety of reasons. Commonly, the images

are captured under variable conditions that can change camera perspective. Misalignment can

also be the result of lens and sensor distortions or di↵erences between capture devices.

Image registration is often used as a preliminary step in other image processing applications.

For example, you can use image registration to align satellite images or to align medical images

captured with di↵erent diagnostic modalities (MRI and SPECT). Image registration allows

you to compare common features in di↵erent images. For example, you might discover how

a river has migrated, how an area became flooded, or whether a tumor is visible in an MRI

or SPECT image. In general, the process of image registration involves finding the optimal

Figure 1.1: Image registration framework
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geometric transformation which maximises the correspondences across the images. A geometric

transformation maps locations in one image to new locations in another image. The step of

determining the correct geometric transformation parameters is key to the image registration

process. This involves several components (see Figure 1.1):

• Transformation model defines a geometric transformation between the images. In sim-

ple applications, such as linear, rigid, a�ne registration, the transformation can be defined

by a matrix. In general automatic registration problems, non-rigid transformations are

employed for improved accuracy of image alignment. In this case, for any initial location

x in the image domain ⌦, one needs to seek for a location mapping u(x) : ⌦! ⌦ to apply

on the template image. The image template T is indeed a constant image interpolation

function [69], which compute image intensity given pixel locations, i.e. T (u) : ⌦! R.

• Similarity criterionmeasures the satisfaction of alignment between the images. In cases

where features such as landmarks, edges or surfaces are available, the distances between

corresponding features can be used to measure the alignment. In other cases the image

intensities can be directly used to measure the alignment. Various mathematical models

[69] can be used to define the distance between images in the form D(T (u), R), where D

denotes the distance function. Recent registration models incorporate the regularisation

function S(u) and constraints C(u) in order to remove undesirable transformations and

improve the registration quality.

• Optimisation strategy maximises the similarity criterion. Given that a transforma-

tion model and a similarity criterion have been defined, non-rigid registration can be

formulated as an optimisation problem whose goal is to find the optimal geometric trans-

formation to match the template to the reference:

minimise
u

D(T (u), R) + S(u)

subject to C(u) = 0

Figure 1.2 shows a simple visual illustration of an image registration problem. In this example,

we are given a reference image R and a template image T ; and the task is to investigate

the movement of the template pixels in order to align the template with the reference. Non-

rigid transformation model is chosen for this example, where x represents initial location of
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(a) Template T (b) Template T (x) (c) D(T (x), R)

(d) Reference R (e) Template T (u) (f) D(T (u), R)

Figure 1.2: Visual illustration of an image registration problem

template pixels and u is the desired location mapping, corresponding to the movement of

pixels. The goal is to find a geometric transformation u to apply on T so that T (u) should

look as similar as possible to R. A similarity criterion D(T,R) is designed by considering the

intensity di↵erences between image. Figure 1.2(b) and Figure 1.2(c) illustrate the location

vector x and the dissimilarity measure prior to registration. Figure 1.2(e) and Figure 1.2(f)

illustrate the location mapping u (the desired transformation) and the dissimilarity measure in

the post-registration. In order to obtain the latter, a gradient descent method is employed in

the optimisation strategy.

In some clinical applications, certain local characteristics of objects in the image should be

preserved. For example, any deformation of human organs should preserve the volume of soft

tissues. Another example is a transformation of a bony object is required to maintain its rigid

structure. In this thesis, a registration problem with local rigidity constraints is examined,

as it also includes the popular volume preservation requirement. The continuous problem

formulation and the development of constraints are described for infinite dimensional input
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images.

There are two technical issues to address in solving this problem, discretisation (for the trans-

formation model) and optimisation, and are discussed in Chapter 3. The initial input image

data is infinite dimensional. Therefore, it needs to be discretised in order to transcribe it as

a finite optimisation problem. Choosing a discretisation method is a delicate matter that can

a↵ect the performance of the infinite problem. Since local rigidity is only applicable to certain

pixels that correspond to bony objects, while other parts of the image can deform freely, it is

necessary to control the displacement of every pixel. We employ the staggered grid discreti-

sation technique that enables the explicit imposition of the constraints on every pixel. The

resulting finite optimisation problem has linear and bilinear constraints:

minimise
u

F (u)

subject to Au = 0

C(u) = 0

A dimensional reduction technique is applied to obtain a reduced dimensional nonlinear pro-

gramming problem:

minimise
uz

F (Zuz)

subject to C(Zuz) = 0

In Chapter 3, a sequential quadratic programming (SQP) algorithm is developed to solve the

constrained registration problem. The e↵ectiveness of the proposed method is demonstrated

on both synthetic and real Magnetic Resonance image registration problems, with promising

results. The method is also compared against the penalty method [70]. The latter requires a

judicious choice of the penalty parameter in order to provide a balance between the constraints

and the objective function. The proposed SQP method reduces problem dimensionality, avoids

sensitivity to penalty parameter choice and guarantees good feasibility (rigid movement of bony

structures). The rigid movement of bony structures are important because a meaningful rigid

transformation should contiuously maintain the structure. This work has been published in

2011 [67]:

Luong, D.V.N., Rueckert, D., and Rustem, B. Incorporating hard constraints into non-rigid

registration via nonlinear programming. Proc. SPIE. Medical Imaging: Image Processing

(2011).
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1.2 Markov Random Fields minimisation

SQP algorithm is developed to solve an ill-conditioned image registration problem that should

not admit solutions violating rigid properties of certain parts in the image. The approach

illustrates that adding constraints in image processing is one way to reduce the non-uniqueness

of solutions to the problem. Another way to relax an image problem is using convex relaxation

technique via Markov Random Fields (MRF) [65]. MRF is a popular framework in image

and signal processing, machine learning and artificial intelligence. Recently, the registration

problem has been sucessfully solved using MRF model [31]. In their study, a MRF model of

image registration is formulated utilising the parametric transformation framework [90]. MRF

is applicable to problems with finite dimensionality, for example image registration with a finite

number of pixels or control points, and image segmentation with a finite number of pixels or

features. In the recent years, MRF model and its corresponding optimisation problem have

been considered in numerous studies (see [102] and references therein). This thesis considers

the MRF minimisation approach based on the first order (gradient based) optimisation method.

In Chapter 4, MRF background and its application in image processing are described. MRF

is originated from the probabilistic theory, however, as we shall see, MRF is equivalent to the

multi-labelling problem on an undirected graph G = (V,E), where V,E denote a set of nodes

and a set of edges respectively. Multi-labelling on a graph is a very popular model in image

processing. In general, most image processing problems aim to reveal some hidden quantities

x based on some visual observations. Every hidden quantity corresponds to a feature, or a

pixel, or an object of the observed image; and it belongs to a set of nodes V that made up

the graph G. Each hidden quantity xa, for all a 2 V , can be assigned a value from a set of

discrete labels L, where each label represents a feasible solution for the corresponding hidden

quantity. Each label assignment is subject to a cost of labelling ✓a(xa), which encodes how

much the assignment of label xa 2 L to node a disagrees with the observed image data at node

a. Furthermore, the labelling at a node a also has influences on its neighbouring nodes. The

term neighbouring defines the edges E of the graph G . The neighbouring influence is often

known a priori, and encoded into the pairwise cost ✓ab(xa, xb). One way to achieve the optimal

labelling for G is to minimise the cost of all possible combinations of hidden quantities and
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observed image data:

minimise
xa2L

X

a2V

✓a(xa) +
X

ab2E

✓ab(xa, xb)

This optimisation problem is known to be NP-hard and has exessively large dimensionality.

Therefore e�cient optimisers are essential for this commonly used MRF model for solving

image problems. A simple example of MRF model, or multilabelling prolem, is illustrated

in Figure 1.3. In this example, each node a corresponds to an image pixel, whilst a pair of

neighbouring pixels form an edge ab. Each node associates with a hidden quantity xa 2 L,

where the label set L contains 4 possible colours {white, red, green, blue}. In addition, there

are given unary cost ✓a(xa) and pairwise cost ✓ab(xa, xb) for each label assignment for a node and

for a pair of neighbouring nodes respectively. The cost function is designed in such a way that it

is less expensive for a more likely label assignment. The objective of the multilabelling problem

is to obtain a label assignment for all nodes such that the total cost is minimised. Chapter 4

(a) Corrupted image (b) Segmented image

Figure 1.3: MRF model / Multilabelling for an image segmentation problem

presents a review of various MRF optimisation approaches based on dynamic programming and

combinatorial optimisation. A large part of Chapter 4 focuses on the dual decomposition of the

linear programming (LP) relaxation of the MRF model (LP-MRF). The final problem described

in Chapter 4 turns out to be a nonmooth optimisation problem. Chapter 5 develops first order

methods for the convex nonsmooth LP-MRF. First, the standard subgradient projection is

considered. Subsequently, the model is reparameterised to obtain the augmented optimisation
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problem:

maximise
{⇢2�},{�2⇤}

X

t2T

min
xt2Xt

h⇢t.✓ + �t, xti

where � =
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⇢

�

�

�

�

�

8i 2 I :
X

t

⇢ti = 1, ⇢ti � 0

)

⇤ =

(

�

�

�

�

�

�

8i 2 I :
X

t

�ti = 0

)

This leads to the development of a nonlinear weighted projection method to solve the augmented

problem. The newly proposed projection is based on the theory of mirror descent [4, 48, 76]. The

method employs proximal Bregman distance concepts, where a weighted Entropy distance and

a weighted Euclidean distance for nonlinear projection is developed. Apart from the weighted

distances, another novel development is the adoption of a weighted norm and weighted Lipschitz

constant. The convergence properties of both methods are analysed, establishing the superiority

of the proposed method. Furthermore, convergence analysis is performed to identify the optimal

step-size strategy for the entropy projection and the adaptive step-size for euclidean projection.

Some popular examples for MRF problems are used in the experiments to study the empirical

performance of the weighted projection method (mirror descent) and the standard subgradient

projection. This work has been published in Lecture Notes in Computer Science [66] and is

under reviewed for a journal.

Luong, D.V.N., Parpas, P., Rueckert, D., and Rustem, B. Solving MRF minimization by Mirror

Descent. In Advances in Visual Computing, Lecture Notes in Computer Science. 2012.

1.3 Multilevel Optimisation

The first two approaches are developed to solve finite optimisation problems in image processing.

Clearly, these finite problems arise from a certain level of discretisation as the original image

domain is infinite dimensional. A finer discretisation will have more information about the

images but requires more computational resources. In Chapter 6, a new algorithm is developed

to employ di↵erent levels of discretisation. The expectation is that, low cost steps, based on the

coarse discretised problem, can be used within the high cost iterations of the finer discretisation,

while maintaining the convergence properties of the original problem. At each iteration of

the finely discretised level, the algorithm computes either direct search, using the gradient

at current level, or a coarse correction. The coarse correction is generated from the solution
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of a surrogate optimisation problem at the lower (coarse) resolution. This correction step can

significantly improve progress towards the optimal point as long as the coarse problem maintains

the character of the fine problem. The relationship between levels of discretisation is defined by

the first order coherence property in the sense that there is a local equivalence of the gradient

mapping between levels of discretisation. This has a crucial role in the development of multilevel

algorithms and their convergence. Based on the initial multilevel scheme [73] for unconstrained

optimisation, a novel multilevel proximal method is developed for composite convex problems

that consists of a convex Lipschitz-gradient function f(x) and a simple nonsmooth function

g(x) with simple constraints ⌦,

minimise
x2⌦

f(x) + g(x)

The above problem is very popular in image processing where f(x) often represents matching

criteria and g(x) penalises unwanted solutions x 2 ⌦. Composite convex optimisation has

received a lot of attention in inverse problems and imaging in recent years. Its special case of

defining g(x) as a simple norm function has been used extensively to solve the following seminal

model of image deterioration:

b = Ax+ ✏

where x 2 Rn is the true (unknown) image, A : Rn ! Rm is a known image transformation,

✏ 2 Rm is a perturbation vector and b 2 Rm is an observed input image. For instance, A can

be an identity matrix, and the image model becomes a denoising problem. If A is constructed

from a Point Spread Function [41], then the model becomes a deblurring and denoising problem

(image restoration). When A is an irregular sampling and a convolution, the model represents

a super-resolution problem [26]. In the case where A contains an image dictionary, then the

model becomes classsification or recognition problems [115]. Other applications include image

inpainting, compression noise reduction, texture and cartoon decomposition, ... Finding x from

the observation b is an inverse problem. Due to various structures of A and the noise ✏, closed-

form solutions hardly exist. There are many specialised techniques to solve each particular

problem. However, the following special formulation of composite convex optimisation is often

considered as a promising candidate to solve for such an inverse problem:

minimise
x2⌦

kAx� bk2
2

+ kWxk
1



32 Chapter 1. Introduction

In this special composite convex optimisation model, the first term is a smooth convex Lipschitz

function, the second term is a simple nonsmooth convex function. The additional linear operator

W defines a type of regularisation to impose on the solution. For example, if W is a discrete

gradient, then it corresponds to the total variation regularisation [5]. In image processing, the

total variation penalty is popular for its ability to maintain sharp edges. When W is a type

of wavelet transform, it is equivalent to a Besov semi-norm [22]. The underlying philosophy in

using the latter regularisation is that most images have a sparse representation in the wavelet

domain, and l
1

norm promotes sparsity. The aim of the composite convex problem is to look

for an image x which minimises kWxk
1

such that the transformation Ax is close to b.

In Chapter 6, we show various techniques to construct a hierarchy of general composite convex

models, and establish the relationship between them. A novel multilevel method is then pro-

posed and its global convergence is proved. We demonstrate the e↵ectiveness of our methods

by excellent performance for the image restoration problem. This work has been submitted for

publication. The paper and associated code can be found at:

http://www.doc.ic.ac.uk/ pp500/mista.html



Chapter 2

Image registration

Image registration is a fundamental task in image processing in general and in medical

imaging in particular[39]. Given two images taken at di↵erent times, on di↵erent devices or

from di↵erent perspectives, the goal is to determine a reasonable spatial transformation, such

that a transformed version of one image is similar to the other image. A simple registration is

illustrated in Figure 2.1: (a) and (b) show slices of Magnetic Resonance scans of a human knee

taken at two di↵erent times. The objective is to find a transformation grid (c) that minimise

the dissimilarities due to the di↵erent positions of the knee. From the example, we can see

an improvement in the alignment of the images when the transformation u is applied on the

template image T , i.e. there is less di↵erence in the post-registration (|T [u]�R|) compared to

pre-registration (|T �R|).

Image registration has become an essential tool in many scientific topics, including biology,

chemistry, criminology, genetics, and medicine. More specific examples include remote sensing,

motion correction, verification of pre- and post-intervention images, and the study of tem-

poral series of cardiac images. Image acquisition techniques, such as computer tomography

(CT), magnetic resonance imaging (MRI), positron emission tomography (PET), single-photon

emission computer tomography (SPECT), or ultrasound, have been the subject of significant

development in recent years. This in turn has led to a remarkable increase in the demand for

visuallisation and analysis techniques for clinical applications.

33
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Figure 2.1: Modified slices from CT scans of human knees; imaged by Thomas
Netsch, Philips Research Hamburg.

Optimisation is a key component of any image registration framework. Most registration

methods can be explained from an optimisation point of view, implicitly or explicitly. In gen-

eral, image registration problems are nonconvex and often solved by gradient-based optimisation

methods. Rueckert et al. [90] introduce a well-known parametric model based on a B-spline

basis function and use a gradient descent method to solve the problem. Pennec et al. [85]

establish the relationship between vector-force algorithms and gradient descent methods. Ver-

cauteren et al. [108] provide theoretical justifications on the equivalence between vector-force

variants and various gradient based optimisers. In addition, Haber and Modersitzki [38, 69] de-

velop a general variational framework that can tackle the registration problem from a complete

optimisation perspective. In their framework, hierarchical resolutions, with a sequence of coarse

to fine discretised images, are employed in the solver. The method has two advantages: firstly,

the low resolution image problem benefits from low computational cost; secondly, a solution

of a coarse problem provides a good initial starting point for a finer problem. While the use
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of multi-resolution optimisation is very popular in image registration, it is often used without

principled justifications. A more rigorous theory of multi-resolution is presented in Chapter 6

in terms of multilevel methods.

Unlike nonconvex optimisations, there have been several studies on convex optimisation meth-

ods for the registration problem. Taylor et al. [104] introduce a convex approximation of the

original objective function. Their method restricts the displacements of grid points to a fixed

range and utilises the interior point method to solve the linear programming problem. Glocker

et al. [31] reformulate the parametric registration problem as a Markov Random Field (MRF)

minimisation problem. They associate each displacement with a discrete label, and construct

a discrete multi-labelling problem. The discrete problem belongs to the popular MRF model

in computer vision. Although the method produces a globally optimal solution, the solution is

only optimal within the defined discrete search space. E↵ectively, fine local displacements are

not covered.

In the first approach, we consider the image registration problem with local rigid constraints

to penalise undesirable solutions where rigid structures of the image are not preserved. This

requires the explicit control of fine, local displacements. To address this, a nonlinear program-

ming method is developed to solve the nonconvex registration problem in the continuous search

space.

2.1 Constrained registration

Nonrigid registration is a common technique in medical image processing. The registration

problem is ill-posed: several possible transformations exist that will result in perfect image

alignment. One method to approach this is to add a regulariser, which penalises non-smooth

solutions. However, the problem may still remain ill-posed. More recent approaches incorpo-

rate additional prior knowledge, for instance, regularisers such as elastic, curvature, folding

constraints or those such as volume preservation and local rigidity. This additional informa-

tion reduces the level of non-uniqueness significantly and therefore produces a more realistic,

meaningful transformation. Figure 2.2 illustrates an example of registration results using prior

information. All transformations lead to the same target image and the transformed images

look similar visually. However the registration in (d) with local rigid constraints produces a
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(a) Original Image (b) Elastic Regulariser (c) Curvature Regulariser (d) Elastic + Rigid Con-
straints

Figure 2.2: Registration with prior knowledges: Elastic, Curvature, Elastic and
Local Rigid Constraints.

more plausible transformation since it locally preserves the internal structure of the original

image.

Methods to solve constrained registration are important in medical imaging, due to the need

for reliable and biologically meaningful transformations. In [88], Rohlfing et al. apply volume

preservation constraints to the B-spline model framework. They use a mutual information cost

function with additional penalty terms for incompressibility (using the absolute value of the

log of the Jacobian of the transformation, computed by finite di↵erences), and smoothness

(computed by the second order derivatives of the deformation). The model is posed as an

unconstrained minimisation problem. Staring et al. [99] add constraints to penalise the cost

function to maintain the structure of rigid objects in the B-spline framework. These constraints

include: linearity, orthogonality and volume preservation. They evaluate the rigidity constraints

over the control points, which can be expensive when many control points needed for small rigid

regions.

Modersitzki [70] incorporates rigidity constraints into his variational framework. The con-

strained terms are similar to Staring et al. [99] and are also used to penalise the cost function.

He computes the penalty on all pixels and uses a weighted di↵erentiable function. The method

has been shown to work well-chosen values for the penalty parameters, but the need for such

a choice is a disadvantage of the technique. Without prior experience or extensive testing,

it is di�cult to select an appropriate penalty parameter. In addition, since the constraints

are penalised in the cost function, there is no guarantee of producing a feasible solution. In

the contrast, Haber and Modersitzki [37] propose a SQP method to solve the incompressible

registration problem which maintains the feasibility of the solution.
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This chapter studies registration with local rigidity constraints using the variational framework

[70]. The model is general enough to utilise a large class of optimisers and it controls rigid

characteristic of every pixel explicitly. Unlike volume preservation, which only has quadratic

constraints, rigidity requires both linear constraints and quadratic constraints. Thus, QR

decomposition is employed, in order to seek a solution in the null space of the linear constraints.

2.2 Mathematical model

The method considered here is strongly connected with variational methods used to solve the

continuous registration problem [108]. The information obtained from image data is modelled

in a continuous setting. This includes the distance function D(., .) to quantify the dissimilaritiy

between images, the regulariser S(.) to smooth the transformation and the constraints C(.) to

enforce meaningful solutions. Let ⌦ be the image domain, i.e. feasible locations of an image

pixel. Let x 2 ⌦ be the initial location of every image pixel and x is unchanged. In 2D image,

a pixel location consists of 2 components x = (x1, x2), in 3D image, a voxel location consists

of 3 components x = (x1, x2, x3). In this thesis, we consider 2D image problems, however, it is

straightforward to extend for 3D images. For every pixel with initial location x 2 ⌦, there is a

corresponding location mapping u ⌘ u(x) : ⌦! ⌦. The problem is formulated as a constrained

minimisation problem to find a new location u:

minimise D (T (u),R) + ↵S(u)

subject to C(u) = 0
(2.1)

The template image function T (u) : ⌦! R evaluates pixel intensity for every feasible location.

For infeasible location, i.e. 8u /2 ⌦, we set T (u) = 0. The reference image R ⌘ R(x) is

unchanged and holds intensity values for every pixels. In addition, ↵ is a constant to balance

the relative importance of the dissimilarity D(., .) and the smoothness S(.). In the continuous

setting, we have an infinite number of image pixels (with an infinite number of locations x) in

the domain ⌦.
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Distance function is defined as the sum-of-square di↵erences between the intensities of image

pixels:

D (T (u),R) =
1

2

Z

⌦

(T (u(x))�R(x))2 dx

Regulariser is chosen based on the application requirements. In the following sections,

three basic regularisers are described: di↵usion, elastic and curvature. Each regulariser can be

reformulated to the form of a Euclidean norm of a partial derivative operator:

S(u) = 1

2

Z

⌦

kB(du(x))k2dx (2.2)

where du(x) = u(x) � x holds feasible spatial displacements. For the ease of presentation, we

use u, du instead of u(x), du(x) in the rest of this chapter and Chapter 3. In 2D image problem,

du = (du1, du2) represents displacements in horizontal and vertical directions.

• Di↵usion regulariser damps the displacement between neighbourhood pixels. It was first

proposed for optical flow and was the main ideas of Thirion’s demon algorithm [106]:

SDiff =
1

2

Z

⌦

�

(@
1

du1)2 + (@
2

du1)2 + (@
1

du2)2 + (@
2

du2)2
�

dx

It can be written in form of (2.2) with a di↵usion operator B defined by a collection of

partial derivatives about du:

BDiff =

2
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• Curvature regulariser penalises oscillations and implicitly allows a�ne transformation

[27]:

SCurv =
1

2

Z

⌦

�

(�du1)2 + (�du2)2
�

dx

where �v = @
1,1v + @

2,2v. The curvature regulariser can be written in a compact norm
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penalty with partial derivative operator:

B =

2

4

� 0

0 �

3

5

• Elastic regulariser is adapted to the elastic potential measuring the engergy when an

elastic material is deformed. It was first used in image registration by Broit [21]. Let the

divergence r · du = @
1

du1 + @
2

du2, then the elastic regulariser is formulated as:

SElas =
1

2

Z

⌦

�

µkrduk2 + (�+ µ)(r · du)2
�

dx

where � and µ are Lamé constants [69]. The partial derivative operator is then given by:

B =

2
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Constraints Assuming rigid objects have been identified, constraints can be explicitly ap-

plied on every rigid pixel to allow for only rotation and translation. Pixels outside these regions

are free to deform non-rigidly. The rigid movement of pixels is guaranteed by local neighbour-

hood displacements, which allows for only rotation, translation and volume preservation in the

transformation.

Definition 2.2.1 A transformation u(x) 2 C2(⌦,R2), i.e. u(x) 2 ⌦ is a two dimensional

vector and twice-continuously di↵erentiable, is rigid if and only if there exist a rotation matrix

R and a translation vector t such that u(x) = Rx+ t.

Lemma 2.2.2 A transformation u(x) 2 C2(⌦,R2) is rigid if the following properties are sat-

isfied:

• Linearity: @i,juk = 0 ; i, j, k = 1, 2; i  j

@
1,1u

1 = 0, @
1,2u

1 = 0, @
2,2u

1 = 0; @
1,1u

2 = 0, @
1,2u

2 = 0, @
2,2u

2 = 0 (2.3a)
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• Orthogonality: ruru> = I, i.e.

@
1

u1 � @
1

u1 + @
2

u1 � @
2

u1 = e

@
1

u1 � @
1

u2 + @
2

u1 � @
2

u2 = 0

@
1

u2 � @
1

u2 + @
2

u2 � @
2

u2 = e (2.3b)

• Volume Preserving: det(ru) = 1, i.e.

@
1

u1 � @
2

u2 � @
2

u1 � @
1

u2 = e (2.3c)

where e = (1, ..., 1)> and � denotes the Hadamard - pointwise product, i.e. x�y = (x
1

y
1

, ..., xnyn)>

Proof By definition 2.2.1, a rigid transformation can be written as u(x) = Rx + t for some

rotation matrixR and translation matrix t. Taking the second order derivative givesr2u(x) = 0

which returns condition (2.3a). Since ru(x) = R, and R is a rotation matrix, i.e. R is

orthogonal, it follows simply that RR> = I and det(R) = 1, which are precisely the properties

(2.3b) and (2.3c).

The constraints in Lemma 2.2.2 can be collected in a nonlinear function, for i, j, k = 1, 2; i  j:

C(u) =

2

6

6

6

4

@i,juk

ruru> � I

det(ru)� 1

3

7

7

7

5

= 0

yields the continuous model (2.1).

Discretisation of the continuous model (2.1) is essential because a continuous image contains

infinite number of pixels. Some finite number of image pixels must be chosen in a discrete

setting. There are two approaches for discretisation: optimise-then-discretise or discretise-then-

optimise. In this work, the latter approach is chosen. To justify this, consider the optimality
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condition of (2.1) where an elastic regulariser is used:

0 = ru;v D (T (u),R) + ↵ru;v S(u) + �>ru;v C(u)

=

Z

⌦

D

�

T (u(x))�R(x)
�

rT (u(x)), v(x)
E

⌦

dx

+↵

Z

⌦

⌦

(�+ µ)(r·)>r · du(x) + µ�du(x), v(x)
↵

⌦

dx (2.4)

+�>ru;v C(u)

where ru;v is Gâteaux derivative with respect to some pertubation v(x) [69]. We skip the

derivative of constraints due to its tedious formulation which includes third order on the trans-

formation. Literature on the optimise-then-discretise technique [85, 108] discretise the Euler-

Lagrange equation (2.4) without constraints. The discretisation must mimic the continuous

setting and di�culties lie in computing complicated partial derivatives of displacements. In our

system, the derivates of constraints go even beyond the second order, therefore the discretise-

then-optimise technique is chosen to avoid error on discretisation of higher-order derivatives.

Choosing a discretisation method with mixed derivatives is a delicate matter. It is natural to

use finite di↵erences in most applications involving a di↵erential operator. However, in this

case, using finite central di↵erences will lead to large errors resulting from the complication

of partial derivatives in the constraints. In this thesis, a discretise-then-optimise technique is

chosen. In particular, a staggered grid discretisation scheme is used. This has previously been

succesfully applied to the stable discretisation of fluid flow and electromagnetics [36, 42], where

operators such as the gradient, curl and divergence are involved.

The next chapter describes the staggered grid discretisation scheme and develops a novel opti-

misation framework to solve the discretised constrained registration problem.



Chapter 3

Discretisation and Optimisation

The continuous constrained registration problem was set up in the previous chapter as:

minimise D (T (u),R) + ↵S(u)

subject to C(u) = 0

As already mentioned in the previous chapter, a discretisation is required for the continuous

model. In a discrete model, the image contains a finite number of image pixels with pixel

width h. Clearly, varying pixel width h will change the number of pixels, i.e. image resolution.

Denoting the width and height of the discrete image as n1

h and n2

h, the problem dimension

becomes nh = n1

h ⇥ n2

h. For any discrete resolution h, we have a finite number of image

locations u
def

= uh(x) = (u1

h(x), u
2

h(x)) 2 C2(⌦h,R2). The discretised version of the continuous

model takes the finite number of pixels in the distance, regulariser and constrained functions,

and approximates nonlinear partial derivatives by linear di↵erential operators. The discretised

optimisation problem is given in a general form (3.1) and is discussed in details in Section 3.1

minimise
u

D (T (u), R) + ↵S(u)

subject to C(u) = 0
(3.1)

42
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3.1 Discretisation

3.1.1 Discretising u

We use staggered grid to discretise u at a certain image resolution h. At a resolution h,

the images have n := nh = n1

h ⇥ n2

h pixels, each pixel being a squared-cell of lengths h.

Normally, in image processing, pixels are identified by cell-centred grid points. However, in

the staggered grid approach, we identify them by cell-edges. Given every pixel (i, j) with

cell-centred xi+ 1
2h,j+

1
2h
, u(x) is discretised by its edges where u1(x) = {xi,j+ 1

2h
, xi+h,j+ 1

2h
} and

u2(x) = {xi+ 1
2h,j

, xi+ 1
2h,j+h}, see Figure 3.1.

Figure 3.1: Staggered grid for 4⇥ 3 image: cell-centred •, cell-corner ⇤, cell-edges
[u1(I), u2(N)]

The registration problem now aims to find a desired transformation (new location) of the

staggered grid u
def

= (u1(I), u2(N)). Upon obtaining a staggered grid transformation, it can be

converted to cell-centred grid by a shifting function (3.2). A shifting to cell-centre is required by

the image interpolation function T (u) to obtain a pixel intensity values based on the cell-centred

position of the pixel.

Let band(a�k, ..., ak; k1, k2) denote a k
1

⇥ k
2

matrix with diagonal bands a�k, ..., ak where a
0

is
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on the main diagonal and ⌦ is the Kronecker product. For example:

band(1, 2, 3; 3, 4) =

0

B

B

B

@

2 3 0 0

1 2 3 0

0 1 2 3

1

C

C

C

A

then, let Pj = band(0, 1, 1;nj, nj + 1)/2 ⌦ Inini
with i, j = 1, 2; i 6= j. The shifting function is

defined as:

P =

0

@

P
1

0

0 P
2

1

A (3.2)

hence, a shifting to cell-centred grid, see Figure 3.1, is given by:

u(•) = Pu = P

2

4

u1(I)

u2(N)

3

5

3.1.2 Discretising C(u)

Discretising the constraints C(u) requires discretised versions of first order derivatives @i and

second order derivatives @i,j. An appropriate discretisation of the constraints is enough to

cover all types of regularisers, therefore it is described here for a basis of functions containing

partial derivatives. We use finite-di↵erences between cell-edges to approximate the derivatives

at the cell-centre of a pixel. By doing this, there is explicit control of the charateristics of

the pixel. For each nonlinear partial derivatives @i, @i,j, linear discretised di↵erential operators

@ki , @
k
i,j are defined, where k identifies a vector uk which the operators apply to. For example,

@1i,j only applies to u1(I) . It is essential to apply the correct di↵erential operators to mimic

the continuous setting: @ki,ju
k.

Since all partial derivatives are defined at the centre of the pixel in the continuous setting, it

is also necessary to define all discreted di↵erential operators at the cell-centred u(•). Consider

first-order derivatives @1i on the staggered grid u1(I) : The normal direction (direction I)

derivatives @1
1

u1(I) are straightforward to compute, because their short di↵erence lies on the

cell-centred position. The tangential (direction N) short di↵erences, @1
2

of u1(I), are located

on the cell-corners ⇤ of the square pixel. Therefore, we approximate @1
2

u1(I) at the cell-centre

u(•) by averaging its short di↵erences on the 4 cell-corners ⇤, as shown in Figure 3.2. Similarly,
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the same arguments can be applied to @2i u
2(N).

Figure 3.2: Normal and tangential direction derivatives.

Second-order derivatives are more complicated to illustrate graphically. However, one can think

of them as taking normal and tangential short di↵erences again on the definitions of first order

derivatives. Explicit formulations of linear discretised derivatives are given by:

@1
1

= In2 ⌦Dl
1

@2
1

=
BC

P
2

⌦Ds
1

@1
2

=
BC

Ds
2

⌦ P
1

@2
2

= Dl
2

⌦ In1

@1
1,1 =

BC
In2 ⌦Dl2

1

@2
1,1 =

BC
P
2

⌦Ds2
1

@1
1,2 =

BC
Ds

2

⌦Dl
1

@2
1,2 =

BC
Dl

2

⌦Ds
1

@1
2,2 =

BC
Ds2

2

⌦ P
1

@2
2,2 =

BC
Dl2

2

⌦ In1

(3.3)

where =
BC

subjects to Neumann boundary condition where necessary and the supported band

diagonal matrices are defined as follows:

Pj = band(0, 1, 1;nj, nj + 1)/2

Ds
j = band(�1, 0, 1;nj, nj)/(2hj)

Dl
j = band(0,�1, 1;nj, nj + 1)/(hj)

Ds2
j = band(1,�2, 1;nj, nj)/(h

2

j)

Dl2
j = band(0, 1,�1,�1, 1;nj, nj + 1)/(2h2

j)
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The defined di↵erential operators (3.3) contain very few non-zero elements on each row (only

non-zeros are at the neighbours involved in the normal or tangential di↵erences). The number

of rows is equivalent to the number of pixels in the image, thus the size of the di↵erential

operators are very large. However, not every pixel of the image is rigid, therefore the rows

that correspond to non-rigid pixels can be removed from the operators (3.3). The continuous

nonlinear constraints in Lemma 2.2.2 can be approximated in a discretised version as:

C(u) =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

Au = 0

C1

1

u� C1

1

u+ C1

2

u� C1

2

u� e = 0

C1

1

u� C2

1

u+ C1

2

u� C2

2

u = 0

C2

1

u� C2

1

u+ C2

2

u� C2

2

u� e = 0

C1

1

u� C2

2

u� C1

2

u� C2

1

u� e = 0

(3.4)

where A and C i
j are collections of linear di↵erential operators (3.3). These di↵erential operators

have been preprocessed to remove the rows associated with non-rigid pixels.

A =
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C1
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=
⇥

@1
1

, 0
⇤

C1

2

= [@1
2

, 0] C2

1

= [0 , @2
1

] C2

2

= [0 , @2
2

] (3.5)

Note that, the dimensionality of A can be furtherly reduced by removing linearly dependent

rows via QR decomposition [81]. The Jacobian of C(u) given by:

rC(u) =

2

6

6

6

6

6

6

6

6

6

4

A

2diag(C1

1

u)C1

1

+ 2diag(C1
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diag(C2
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2
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2
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7

7
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(3.6)

The second-derivative of C(u) is used in conjunction with Lagrange multipliers � when com-
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puting the Hessian (Section 3.2). For completeness, it is defined by:

r2C(�) = HC
2

(�
2

) +HC
3

(�
3

) +HC
4

(�
4

) +HC
5

(�
5

) (3.7)

where � = [�
2

;�
3

;�
4

;�
5

] and:
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2
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The constraint Hessian (3.7) does not depend on variable u and only involves sparse matrix

multiplication.

3.1.3 Discretising S(u)

The continuous regularisers can be approximated by using suitable linear di↵erential operators

to build a discretised block matrix B for every instance of its continuous definition B:

BDiff =

2
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Thus, the discretised regulariser function is given as follows:

S(u) =
↵

2
kBduk2

2

(3.8)

and its derivatives are:

rS(u) = ↵B>Bdu r2S = ↵B>B (3.9)
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3.1.4 Discretising D(u)

Distance function D(T (u), R) uses the image interpolation function T (u) to evaluate pixel

intensities at the locations of pixels. Linear or spline interpolations can be used [69] where the

degree of nonlinearity balances the quality against computational cost. As the pixel location is

decided by its cell-centre, the staggered grid u = (u1(I), u2(N)) is shifted to cell-centred grid

u(•) for image interpolation function T (u(•)):

D(u) =
1

2
kT (Pu)�Rk2

2

(3.10)

and the derivatives are given by:

rD(u) = P>rT (Pu)>(T (Pu)�R) r2D = P>rT (Pu)>rT (Pu)P (3.11)

where the image gradient rT (Pu) is computed by the finite di↵erences technique in discretised

image analysis [69]. The Hessian r2D is defined without the second order image gradient r2T

in order to ensure that it is positive-definite.

3.2 Optimisation

Let F (u) = D(u) + S(u), the discretised constrained registration (3.1) can be written as a

nonlinear constrained optimisation problem:

minimise
u

F (u)

subject to Au = 0 , C(u) = 0
(3.12)

One popular approach to solve this nonlinear programming system is the SQP algorithm [81].

The SQP algorithm generates an iterative sequence:

2

4

uk+1

�k+1

3

5 =

2

4

uk

�k

3

5+ ⌧k

2

4

pk

p�

3

5 (3.13)
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where pk is a direction of search and �k is the Lagrangian multipliers. pk and p� are the solutions

of the Newton-KKT system:
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(3.14)

where Hk is the approximated Hessian of the Lagrangian: Hk = r2F (u) + r2C(�). The

Newton-KKT system (3.14) needs an inversion of matrix size mn⇥mn. The updates generated

should be feasible in the descent direction. One can take advantage of this observation to reduce

the problem dimension. If uk is feasible, then one of the conditions is Auk = 0 and the search

direction should satisfy:

Apk = 0 (3.15)

Any vector pk that satisfies (3.15) must be a linear combination of the columns of Z 2 <n⇥(n�t),

a null-space of A. Therefore, the following equivalence holds:

Apk = 0 () pk = Zpz (3.16)

for some pz 2 <n�t. Since A 2 <t⇥n, t < n, has full row rank, one can compute Z e�ciently

by QR decomposition [81]: A> = QR. Q is an orthogonal matrix and can be partitioned to

Q = [Y Z], where Y 2 <n⇥t and Z 2 <n⇥(n�t) denote the range space and null space of A

respectively. If an initial feasible point which lies in the null space of A is chosen, then it follows

that:

Auk+1

= Auk + ⌧kApk = 0

AZuz
k+1

= AZuz
k + ⌧kAZpzk = 0 8pz 2 <n�t

The constrained optimisation problem (3.12) thus only needs to solve for a reduced variable

uz 2 <n�t:

minimise
uz

F (Zuz)

subject to C(Zuz) = 0
(3.17)
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The iterative update (3.13) becomes:

2

4

uz
k+1

�k+1

3

5 =

2

4

uz
k

�k

3

5+ ⌧k

2

4

pzk

p�

3

5 (3.18)

which requires solving the reduced Newton-KKT system for pzk and p�:

2
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Z>HkZ Z>rC(Zuz
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>

rC(Zuz
k)Z 0

3

5

2

4

pzk

p�

3

5 =
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�Z>rF (Zuz
k) + Z>rC(Zuz

k)
>�k

�C(Zuz
k)

3

5 (3.19)

The solution (pzk, p�) is unique if the Newton system (3.19) is well defined. In other words, if

the following assumption is satisfied:

Assumption 3.2.1 Assume the problem has the following properties:

• The reduced constraint Jacobian rC(Zuz)Z has full row rank;

• The reduced Hessian Z>HZ is positive definite on the tangent space of the constraints:

pz >Z>HZpz > 0 8pz 6= 0,rC(Zuz)pz = 0.

The Newton-KKT system enables the derivation of a practical framework based on a quadratic

subproblem:

minimise
pz

rF (Zuz
k)

>Zpz + 1

2

pz >Z>HkZpz

subject to rC(Zuz
k)Zp

z + C(Zuz
k) = 0

(3.20)

If the assumption 3.2.1 holds then the solutions of problem (3.20) can be uniquely computed

by the modified Newton system:
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Solving the system (3.21) for large scales is an active research area. Here, the state of the art

MINRES algorithm [82] with a preconditioner is used:
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Z>HkZ Z>rC(Zuz
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>
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k)Z(Z

>HkZ)�1Z>rC(Zuz
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MINRES is an iterative Krylov subspace method that generates a solution of a linear system,

Lx = y, with minumum Euclidean residual kLx⇤ � yk. The reduced update pzk obtained from

(3.21) should form a descent direction for the full update pk and the stepsize ⌧k should be

accepted if su�cient decrease in a merit function is satisfied. In this case, a popular l
1

merit

function is chosen:

�(u, µ) = F (u) + µ|C(u)| (3.22)

A line search is then used to find a ⌧k which su�ciently satisfies the decrease condition:

�(uk + ⌧kZp
z
k, µk)  �(uk, µk) + ⌘⌧k�(�(uk, µk); p

z
k), ⌘ 2 (0, 1) (3.23)

where �(�(uk, µk); pzk) denotes a directional derivative of � in the direction pzk. It has been

shown in [81, Theorem 18.2] that this search direction is a descent direction if the assumption

3.2.1 holds and the merit penalty parameter is su�ciently large. The method terminates when

the change in u is less than a threshold ✏u. Algorithm 3.1 describes the method in detail.

Algorithm 3.1: SQP Constrained Registration u SQP(D(T,R), S, C,↵, K, u
0

)

Set u u
0

, � 0;
Compute Z as in (3.16);
for k = 0, ..., K do

Compute D(T (u), R), S(u), C(u),rF (u),rC(u), H;
Set uold  u, �old  �, Zuz  uold;
Solve the system (3.21) for pz,�;
Set µ k�k1 + ✏;
⌧  LS(u

old

, Zpz,rF (uold)>Zpz � µ|C(uold)|,(3.23));
Set u uold + ⌧Zpz, � �

old

+ ⌧(�� �
old

);
if ku� u

old

k < ✏u then
break;

Return u;

Function LS(u, �u, �, condition)

⌧  0.25, ⌘  10�5;
for i = 0, ..., MaxIter do

Set u u+ ⌧ i�u;
if condition = true then

break;

Return ⌧ i;
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3.3 Multilevel registration

In order to speed up the registration problem, Algorithm 3.1 is performed on a hierarchy

of image data discretisation h 2 {20, 21, ..., 2H}. Starting with the coarsest level, l = H or

h = 2H , we perform SQP to obtain a coarsest grid displacement uH and compute a prolongation

ul�1 = Prolong(ul), where this prolongation serves as the initial point for level l�1. We repeat

this process until we reach the finest level, h = 20. The advantages of this scheme are two folds:

• Image registration is a highly nonlinear problem, sometimes ill-conditioned. Solving such

a problem at a large scale is computational expensive and may fall into local minima. By

using coarser levels, not only is the size of the problem reduced, but the nonlinearity of

the problem is also relaxed. Multilevel representations of image data can be regarded as

a di↵erent approach to smooth the image. Suppose that the measurement of an image

pixel is the average light intensity on the corresponding cell plus some noise. The coarser

image pixel is a smoothed measurement obtained by averaging adjacent cells. The result

of this is to represent the image with fewer pixels, and thus solve a registration problem

with fewer variables.

• A coarse registration often provides a good starting guess which is close the the local

minimum of the finer level. Therefore, the convergence is accelerated by using Newton-

type methods.

As the coarse registration smooths the problem, the regulariser parameter ↵ increases as image

data gets finer. The scheme is described in Algorithm 3.2 and the prolongation process is

illustrated in Figure 3.3.

Algorithm 3.2: Multilevel Registration u MLV(H,↵, K)

Set l  H, ul
0

 0,  > 1;
while l � 0 do

Compute images T,R with resolution h = 2l;
ul  SQP(D(T,R), S, C,↵, K, ul

0

);
if l > 0 then

ul�1

0

 Prolong(ul, l � 1);
l  l � 1, ↵ ↵;
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(a) Coarse Grid (b) Fine Grid

Figure 3.3: Grid Prolongation: FineGrid
Prolong ����� CoarseGrid

3.4 Experimental results

In this section, the proposed SQP is compared against the Penalty method of Modersitzki [70],

where the constrained registration is described as an unconstrained optimisation problem:

(Penalty) : minimise
u

D (T (u), R) + S(u) + ⇢kW (Pu)� C(u)k2

In [70], the constraints are applied everywhere in the image subject to a predefined weighting

function W (Pu), i.e. at a rigid pixel, the weight is set to a higher value than at nonrigid pixel.

One disadvantage of this method is the importance of a good estimate for the penalty parameter

⇢. A large value of ⇢ guarantees rigid constraints, however it may result in less similarity between

images. On the other hand, a small value of ⇢ encourages similarity of images but may fail

to preserve the constraint. In contrast, in the method proposed, feasibility is enforced as hard

constraints. As a result, solving the Newton system guarantees the feasibility at every iteration.

This observation is benefitial for clinical applications. For instance, the movement of a bone

should always be rigid. The proposed method is competitive in term of performance as we solve

a reduced dimensionality problem.
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(a) R (b) T (c) SQP

(d) Penalty : ⇢ = 0.1 (e) Penalty : ⇢ = 10 (f) Penalty : ⇢ = 100

Figure 3.4: One Square: Transformations of SQP and Penalty with various param-
eters ⇢

In order to set up some benchmarks for comparison, define a ratio of reduction:

|D⇤/D0| = D(T (u⇤), R)

D(T,R)

and constraint qualifications for SQP and Penalty:

C = |C(u)| and C = |W (Pu)� C(u)|

3.4.1 One square

Figure 3.4 illustrates the transformations produced by SQP and Penalty with various values

for the penalty parameter ⇢. It can be seen that for a small penalty weight, the constrained

qualification C is too large. However, with larger ⇢, the Penalty method favours the constraint

and results in a reduction in registration accuracy (higher ratio |D⇤/D0|).
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(a) R (b) T (c) SQP (d) Penalty : ⇢ = 100

Figure 3.5: Two Squares: Transformations of SQP and Penalty with various pa-
rameters ⇢

(a) Penalty : level 2,
iter 2

(b) level 2, iter 10 (c) level 1, iter 5 (d) level 0, iter 10

(e) SQP : level 2, iter
2

(f) level 2, iter 5 (g) level 1, iter 2 (h) level 0, iter 5

Figure 3.6: Two Squares: Image grid transforming during the registration by SQP

and Penalty

3.4.2 Two squares

This experiment also shows similar patterns as the previous example, as shown in Figure 3.5

and Table 3.1. Figure 3.6 shows how the transformation grid looks like during the iterations

at di↵erent levels. It demonstrates that the proposed method preserves feasibility at every

iterations. Additionally, at a finer level, SQP produces smooth transformations within a few

iterations. This is because very good results are obtained in the coarser levels.
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Problem Method |D⇤/D0| C Iterations Time (s)
One Square SQP 0.47% 0.0006 24 9.3

Penalty : ⇢ = 0.1 2.03% 239 21 8.7
Penalty : ⇢ = 10 2.67% 9.4 26 10.2
Penalty : ⇢ = 100 5.61% 0.4 28 10.5

Two Squares SQP 1.12% 2.1 30 20.2
Penalty : ⇢ = 1 1.25% 3000 25 18.4
Penalty : ⇢ = 10 3.89% 261 40 37.2
Penalty : ⇢ = 100 5.79% 4.5 32 24.6

Table 3.1: Performance of SQP and Penalty with various ⇢

(a) R (b) T (c) SQP (d) Penalty : ⇢ = 100

Figure 3.7: MR Knee: Transformations of knee joint motion by SQP and Penalty

SQP : |D⇤
/D

0| = 16.93% C = 2.9
Penalty : ⇢ = 100 |D⇤

/D

0| = 17.12% C = 4.5

3.4.3 Knee joint

In this example, the e↵ectiveness of the proposed SQP algorithm is demonstrated on a real

image slice of the knee. The reference image R is in a bent position and the template image T

is in an almost straight position. The knee has soft tissues that are free to deform and bones

which must move rigidly. SQP produces a reduction ratio of 16.93%, a good figure compared

to 17.12% of the Penalty method [70]. In addition, it does not require the estimation of the

penalty parameter, maintain a low feasibility qualification, and performs within a competitive

time compared with the Penalty method.



Chapter 4

Markov Random Fields (MRF) in

image processing

In Chapters 2 and 3, we consider the image registration problem and its discretised model using

the staggered grid discretisation method. A constrained optimisation problem is formulated

and solved by the sequential quadratic programming (SQP) algorithm to obtain the optimal

image transformation. The approach benefits from explicit controls of pixel movement and

has good performance for problems with local rigid constraints. However, the SQP method

becomes computationally impractical for high resolution input images because a fine discreti-

sation for high resolution images results in extremely large scale constrained problem. As a

result, the computation time of SQP may be too long and beyond the acceptable time for a

medical application. Rueckert et. al. [90] have proposed a parametric framework that uses a

few control points to coordinate pixel displacements. Figure 4.1 shows an example of an image

transformed by moving the control points. The framework leads to a highly nonlinear problem

that can be solved by continuous optimisation methods [52]. Although the approach over-

comes the dimensionality problem, it still has some drawbacks, including convergence to local

optima and expensive computational cost for certain justifiable choices for the objective func-

tion. Recently, Glocker et. al. [31] have employed discrete optimisation for solving the image

registration problem. This is a discrete registration model based on on the parametric trans-

formation [90] and Markov Random Fields (MRF). A discrete domain is defined with discrete

displacements of the control points. Each control point displacement corresponds to a corre-

sponding energy value. Each control point must admit one unique displacement. The objective

57
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(a) Original Grid. (b) Moving Grid.

Figure 4.1: Pixel displacement by control points.

function aims to minimise the total energy of all control points. This allows the interpretation

of the registration problem as a discrete labelling problem. Interestingly, the discrete labelling

problem is equivalent to an instance of MRF which is a powerful model in image processing.

In this chaper, we introduce the probabilistic framework of random fields which is the basis of

many mathematical models of image processing. The background discussion in this chapter is

based on [11, 32, 56, 60, 65]. At first, we show that many problems in computer vision (such

as image restoration, image segmentation, image stereo and image registration) can be seen as

discrete labelling problems. It turns out that these discrete labelling problems belong to the

discrete Markov Random Field (MRF) model. MRF has been used extensively in modelling

for computer vision, artificial intelligence and machine learning. We provide a background to

MRF and the Bayesian justification underlying the MRF model. We present the Maximum

a posteriori principle, which is the objective in developing MRF minimisation methods. In

addition, state-of-the-art algorithms for MRF minimisation are briefly reviewed focusing on its

linear programming (LP) relaxation. The contribution of this chapter commences from the

development of the dual decomposition technique for solving the LP relaxation. This leads to

the development of proposed algorithms in Chapter 5.

4.1 Discrete labelling and Markov Random Fields

Many common image processing tasks require the inference of some hidden quantities x based

on some observations d from the visual input data. One way to achieve the hidden quantities

is to define a measure of goodness based on possible combinations of hidden quantities x and
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input data d:

F : (x, d)! F (x, d)

This measurement represents how well a solution x fits into a given image processing problem

with visual input data d. For any given instance of the image processing problem, the obser-

vations d remain fixed. Therefore, the problem is fully supported from an optimisation point

of view, which chooses an optimal x̄ that satisfies:

x̄ = argmin
x

F (x)

where d is unchanged and implicitly attached in the function F (x). The extensive use of the

optimisation paradigm in vision is favoured by the fact that image data are often incomplete

or some hidden information needs to be discovered. For instance, the sources of uncertainties

can be image noise (due to imperfect sensors or quantisation errors), occlusions in the observed

image or ambiguities in the visual interpretation. Based on this fact, perfect or exact solutions

rarely exist. Instead, the true information can be approximated by inexact solutions which

optimally satisfy the goodness of the measurement F (x). In fact, it is due to the existence of

these uncertainties that principles from statistics or probability theory are often used as the

basis for deriving the exact form of the goodness measurement F (.). Furthermore, the optimi-

sation framework provides flexible spaces for additional quantisation measure and constraints

to satisfy the nature of images.

4.1.1 Discrete labelling

Two issues have been raised in the optimised-based technique for image processing:

• The modelling of the hidden quantities x: how do we represent it, what constraints we

need to impose on it, what is the expected accuracy of the model.

• The objective function F (x): what is the goodness of fit we want, how complex the

method can handle.

These two issues are interrelated and can have a great impact on how e↵ective the optimisation

process will be.
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In this thesis, we represent the hidden quantities by a discrete set of labels, and the objective

function by a graphical model. In this case, the problem is reduced to a discrete graph labelling

problem. More specifically, whenever we refer to the term MRF we will hereafter mean a

problem which is defined in terms of two basic entities: a graph G and a set of labels L.

The graph G = (V,E) consists of a discrete set of nodes V 1 and a set of edges E . The nodes

in V can represent:

• image features, e.g. a corner point or a line segment, on which a quantity must be

estimated,

• image pixels, e.g. a discretised cell in an image that needs to be assigned an intensity

value,

• image objects, e.g. predefined foreground, background, edges

while the edges E of the graph are used for encoding all relationships between the nodes of G.

From a computational aspect, we process images digitally, i.e. finite number of features, objects,

pixels in an image. Therefore, a graph with finite number of nodes and edges is su�cient to

model the problem.

In addition, digital images contain finite quantised ranges of intensity. For instance, a simple

gray-scale image allows intensity values within a discrete range of [0, 255]. These values can be

considered as labels of a finite label set L, and are to be assigned for every node of the graph.

The labels correspond to the hidden quantities that we want to estimate, e.g. intensities,

disparities, foreground/background, or any other quantity of interest. Under these settings, the

image procesing problem is reduced to a label assignment problem, that assign a unique label

from the label set L to every node in V . In other words, we need to define a mapping x with

domain V and range L, i.e. for every node a 2 V :

xa
def

= x(a) : V ! L

The next issue is to formalise the objective function, where the chosen F (x) should be able to

encode all contextual constraints between the graph nodes. It turns out that a very good (and

1we use the terms nodes, objects, vertex interchangeably to regards an element of the set V
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common) way for modeling these contextual constraints is by using discrete Markov Random

Fields (MRF) [65, 114]. MRFs are built from the context of probability and belong to a partic-

ular type of probabilistic graphical models. More specifically, they form a class of undirected

graphical models. A Markov Random Field model consists of two entities: a graph G and a set

of labels L; and an objective function F (x) that encodes the contextual information about the

images. We hereafter use MRF model and discrete graph labelling interchangeably. A more

rigorous background on MRFs is given in the next section along with justifications of the forms

of their associated objective functions. Let us consider an objective F (x) defined as follow:

F (x) = Funary(x) + Fpairwise(x)

The first term is known as unary term and is defined as a cost to assign a label l 2 L to a node

a 2 V :

Funary(x) =
X

a2V

✓a(xa)

The unary term encodes how much the assignment of label xa to node a disagrees with the

observed image data at that node. On the other hand, the pairwise term is used to describe

the contextual constraints between neighbouring nodes (the edges E) in the graph:

Fpairwise(x) =
X

ab2E

✓ab(xa, xb)

The pairwise terms ✓ab(xa, xb) express our a priori knowledge about the hidden quantities of the

nodes independently of the observation data. For instance, the assumption that neighbouring

pixels should have similar intensities is a so called prior. Such priors impose constraints on the

solution space of x. If no prior information is available, one assumes an uniform distribution,

where every labeling has equal prior probability. The general form of the objective function is

given by:

F (x) =
X

a2V

✓a(xa) +
X

ab2E

✓ab(xa, xb) (4.1)

Despite this seemingly simple formulation of the objective function associated to an MRF.

MRFs are capable of capturing numerous problems in computer vision, machine learning and

artificial intelligence. Such problems are discussed in the following illustrative examples:
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(a) Noisy Image (b) Restored Image

Figure 4.2: Image restoration: we are given an image corrupted with noise and try
to recover a smooth image that should be as similar as possible to the true original
image

Image restoration and inpainting [50, 68, 102]

Assume we have an input digital image with corrupted parts and noises (e.g. due to bad lighting

conditions at the time of capturing). Before trying to infer any higher level information from

that image, it would be necessary to remove the noise and restore the original content of

the image, as shown in Figure 4.2 and Figure 4.3. In other words, we seek to find the true

underlying pixel intensities (or colours if we are dealing with colour images). The first step

in MRF modelling is to define random variables x. Assuming the digital image I contains n

pixels, then our graph has n nodes, i.e. |V | = n. The edges ab 2 E represent the neighbouring

pixels in horizontal and vertical directions. Thus, the graph G = (V,E) coincides with the

image grid. The unknown quantities here are the true intensity of image pixels, corresponding

to the label set (for example, for 8-bit gray-scale images, L = {0, 1, ..., 255}). The unary terms

are defined so as to express the fact that the restored intensity xa at any pixel a 2 V should

be close to the observed intensity I(a):

✓a(xa = l) = |I(a)� l| 8l 2 L

The pairwise potential function reflects the prior knowledge that the neighbouring pixels should

have similar intensities. This seems valid everywhere in the image except for the boundary pixels

between di↵erent objects. It is common to use the truncated semimetric:

✓ab(xa = l, xb = k) = min(|l � k|,M) 8ab 2 E, 8l, k 2 L
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(a) Corrupted Image (b) Inpainted Image

Figure 4.3: Image restoration and inpainting: we are given an image corrupted with
noise and missing parts. We try to recover a smooth image and complete the missing
parts.

(a) Original Image (b) Binary Segmentation

Figure 4.4: Binary Segmenation: In the original image, a user has marked a white
line and a black line to distinguish between two regions.

where M is the maximum value to penalise the neighbouring relationships.

Image segmentation [15, 1, 53, 102]

In this example, we have the input image I and a similar graph model as in the previous

example, i.e. the graph G coincides with image grid. The aim of image segmentation is to

identify specific objects or regions of an image by their distinct features. From a low-level

perspective, this can be achieved by labelling individual image points to a set of predefined

features L. This task can be naturally formulated as a multilabelling problem, where the set

of labels is finite L = l
1

, l
2

, ..., lM and every pixel a 2 V is represented by one random variable

xa. As before, a common image grid can be used to describe the pairwise relationships between

neighbouring pixels. The cost to assign a label l 2 L to a point a 2 V is encoded in the unary
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(a) Original Image (b) Multilabel Segmentation

Figure 4.5: Multilabel Segmenation: Image segmentation using unsupervised method
with 4 labels: the field, the cow, trees and the sky.

potential function. For example:

✓a(xa = l) = � log ⇢(I(a)|a = l) 8a 2 V, 8l 2 L

The unary potential makes use of predertermined probability distribution. If we want to assign

a certain label xa to an image pixel a, the unary terms evaluate how likely that label is, with

respect to the intensity value I(a). In addition, prior constraints can be encoded on the pairwise

potential as:

✓ab(xa = l, xb = k) = exp

✓

� |I(a)� I(b)|
�2

◆

.
1

kl � kk .(l 6= k) 8ab 2 E, 8l, k 2 L

where (l 6= k) = {0, 1} and � corresponds to the level of noise in the image. The prior favours

the same label for neighbouring pixels by assigning these with zero cost, i.e. if xa = xb,

then ✓ab(xa, xb) = 0. The cost for assigning di↵erent labels, corresponding to a boundary

between pixels a and b, depends on the intensity di↵erence of these two pixels. A simple binary

segmentation can be computed exactly by a MRF model [15]. However, finding an exact

solution for multilabelling is known to be NP-hard. Instead, partially optimal solutions can be

computed by relaxation methods [53, 102]. Examples of binary segmentation and multilabel

segmentation are shown in Figure 4.4 and Figure 4.5.

Stereo matching [101, 102, 107]

Another classical example of MRF usage is the image stereo matching problem. We are given a

pair of two images, a left and a right image, captured by two digital cameras. Both images are

located at the same height and look towards the same direction. We want to find for each pixel
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(a) Left Image (b) Right Image (c) Disparity Map

Figure 4.6: Stereo Matching application.

of the left image its horizontal displacement, also known as disparity, in the right image (see

Figure 4.6). Stereo systems reveal three-dimensional information about a scence. The depth

or distance of an object to the observer is proportional to its disparity observable in the two

views. Through identification of point correspondences in the images, we can determine these

disparities and compute a dense depth map via triangulation. In order to formulate the stereo

matching as a discrete labeling problem, we assume a finite number of depth layers. A set of

labels can be defined as L = {l
1

, ..., lM}, i.e. a discrete set of potential disparities. Again, every

pixel is a random variable and the graph coincides with the image grid. Unary terms measure

the di↵erence between corresponding pixels in the left and right image:

✓a(xa = l) = |Ileft(a+ l)� Iright(a)|

If the disparity estimation is based only on the optimization of the data terms, then the result is

likely to be noisy. In order to avoid this, we need to impose a smoothness contextual constraint

via pairwise potential. Similar to the previous example, the same disparity for neighbouring

pixels, known as the Potts model, is used:

✓ab(xa = l, xb = k) = (l 6= k) 8ab 2 E, 8l, k 2 L

Image registration [31]

Image registration is one of the fundamental techniques in medical imaging whereby one tries

to match a template image T to a reference image R. In the previous chapters, we discussed the

dense image registration problem with constraints. However, for a large scale application, e.g.

3D image registration, computing dense displacements at every voxel (3D pixel) is prohibitively
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expensive. An elegant way of replacing dense displacements is by reparametersing them with

a set of control points V . Clearly, the number of control points is much fewer than the number

of image pixels, i.e. |V | ⌧ |T |. The dense displacement field can then be defined as a linear

combination of control point displacements (Figure 4.1):

�(p) =
X

a2N (p)

!a(p)xa

where �(p) represents dense displacement at image pixel p 2 I, xa denotes the displacement of

control point a 2 V , and !a(p) is some weighting functions. A popular concept in parametric

image registration is based on free-form deformation (FFD) [90] using cubic B-splines weighting

function !a. Here, !a determines the influence of a control point a to the image pixel p. In

the FFD model, only certain local control points around the neighbourhood of image pixel p

a↵ect its displacement. A benefit of this parametric model is a significant reduction in problem

size. We can compute a smooth dense displacement field for every pixel by manipulating a few

control points. To this end, the hidden quantities in the MRF model are the displacements of

control points, which are given by a set of discrete labels L. In this case, each label represents

an acceptable displacements, for examples, L = {1mm, 2mm, ..., 10mm} in a metric system.

For every displacement l 2 L of a control point a 2 V , we can compute the corresponding

dense displacement for the image pixels that belong to the image patch I(a), thus we obtain

a transformed image patch I(xa = l). This leads to a definition of unary terms for the MRF

model:

✓a(xa = l) =
X

p2I(a)

�(|a� p|).D(R, T (xa = l))

where D(., .) evaluates the dissimilarity between R and T , of the pixels belong to the image

patch I(a) with the patch centered at the control point a. The function �(.) denotes the

influence of the control point a on the image pixel p. A simple pairwise term penalises the large

displacement between neighbouring control points as given below:

✓ab(xa = l, xb = k) = �a,b|(xk�1

a + l)� (xk�1

b + k)|

This pairwise potential works similarly to the elastic regulariser that has been mentioned in

section 2.2. In [62], an approximated curvature regulariser, using the second order derivatives,

is proposed with higher order MRF model.
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4.1.2 Markov Random Fields (MRF)

It was shown earlier that many image processing problems can be modelled as a multilabelling

problem. As will be shown, the solution of multilabelling problem is exactly the maximum a

posteriori (MAP) estimation, an estimation that is based on likelihood criterion (unary term

in the objective function of multilabel problem) and prior information (pairwise term in the

multilabel problem). In order to estimate the MAP, one needs to find a model that describes

the prior probability e�ciently. This prior should encode all contextual constraints of the given

problem. As we shall see, Markov Random Fields provide an e�cient way to perform this

task. A MRF model coincides with the structure of an image processing problem in such a

manner that spatial interactions between objects are taken into account. The prior information

is encoded in the local neighbourhood of objects. Therefore, it is unsurprising that the objective

function of the MRF model contains basic probabilistic justifications for the objective of the

multilabelling problem.

Markov Random Fields is a particular case of undirected graphical models. Consider a discrete

set of labels L and an undirected graph G = (V,E) consisting of |V | nodes. A random field X

forms a set of |V | random variables x, where each variable xa 2 X corresponds to a node a 2 V

and can take a value from the label set L. Note that, in general each variable could have its own

predefined set of labels La. However, in many applications, where the variables represent the

same type of entity, they access a common label set L. Once every variable is assigned a label,

this is knowon as a labeling of the field (sometimes a labelling is refered to a configuration or

realisation of the field). A labelling, which can be seen as the occurence of a certain event, has

a certain probability p(x). This probability is often regarded as posterior distribution, which

is dependent on the likelihood distribution (which is encoded into the unary potential) and

the prior distribution (pairwise potential). A valid MRF distribution p(x) should respect the

probabilistic dependencies implied by the neighbourhood systems of the graph. The following

describes the neighbourhood relationships of a graph before presenting the properties of a valid

MRF model.

Neighbourhood systems Figure 4.7(a) gives a visual illustration of a first order random

field model. The graph nodes V correspond to the random variable set X. The edges E encode

the neighbourhood systems on a set of nodes. A clique is a subset of nodes C 2 V , where every
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(a) Regular grid (b) First Order (c) Second Order (d) Third Order

Figure 4.7: Undirected Graphical Models: neighbourhood system and order.

node is directly connected to all other nodes. So a clique is either a single node, or it constitutes

a fully-connected subgraph. The order of a random fields is defined as the maximum clique size

in a graph minus one. For instance, a regular grid imposes a maximum clique of size two and

order one. It is the most common random fields model in image processing.

Markov Random Fields properties A valid MRF model should respect the following

conditional independencies:

Definition 4.1.1 (Markov Random Field) A random field x is said to be a Markov Ran-

dom Field with respect to its neighbourhood system, if it satisfies:

• p(x) > 0, for all possible labelling.

• p(xa|xN(a)) = p(xa|xV�a), where N(a) represents all neighbouring nodes of a 2 V while

V�a denodes all nodes of V except a.

The first property ensures that the joint probability can be uniquely determined by requiring

that any labeling has a strictly positive probability. This property is usually satisfied in practice,

or can be easily ensured. The second condition simply states the fact that any node in the

graph G depends only on its immediate neighbours. The latter is exactly what allows Markov

Random Fields to model contextual constraints between objects in an e�cient manner, since all

contextual constraints are now enforced only through local interactions between neighbouring

nodes in G. This constitutes a very important property of MRF and is a key reason why MRFs

have gained much popularity.
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Maximum a posteriori (MAP) It was earlier mentioned that a labelling solution x̄ turns

out to be exactly the MAP estimation, which maximises the posterior distribution of x given

all distributions of d. This section justifies the argument via Bayes’s theorem. The rules

of probability allow us to derive a connection between the conditional probability and the

joint probability, i.e. p(x, d) = p(x|d)p(d). Thus, the probability of a distribution x given

observations d is given by p(x|d) = p(x, d)/(y). Using the symmetry property of the joint

distribution, Bayes Theorem gives:

p(x|d) = p(d|x)p(x)
p(d)

Since d is a constant, the term p(d) can be dropped, therefore we have the relationship:

p(x|d) / p(d|x)p(x)

In the Bayes’ terminology, p(x|d) is the posterior distribution, p(d|x) is called likelihood distri-

bution and p(x) is the prior distribution. According to MAP estimation, we choose to assign

the labels to the random variables x, which maximise the posterior distribution p(x|d) given

all the observations d, i.e.:

x̄ = argmax
x

p(x|d)

x̄ = argmax
x

p(d|x)p(x) (4.2)

So the MAP estimation is equivalent to the solution of the maximum probability of the product

of likelihood distribution and prior distribution. The prior distribution p(x) reflects a priori

knowledge about the hidden variables independently of the observation d, and it is encoded in

the MRF model. This knowledge is available before we obtain any observation. For instance,

the assumption that neighbouring pixels should have similar intensities is a prior. Such priors

impose constraints on the solution space of x. The likelihood distribution p(d|x) evaluates how

well a certain labeling of the hidden variables fits the observation. To this end, we can see that

the multilabel problem is equivalent to the MAP estimation that can be modeled by Markov

Random Fields. But what is the exact form of such distributions in the Markov Random Field

model? This question is addressed by incorporating an additional concept in the following

section.
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Markov-Gibbs equivalence Spatial, contextual interactions on lattice graphs have a broad

range of applications in various fields of statistical science. The origin of MRF framework can

be dated back to physics. In the early 1920s, Ernst Ising, a German physicist and student

of Wilhelm Lenz, developed a mathematical model for ferromagnetism in solid state bodies.

Ising defined a set of nodes equally distributed on a rectangular domain; each node corresponds

to a dipole which at any given moment is in one of two states, up or down. He derived the

probabilities for the configurations of the field to be given by a Gibbs distribution.

Definition 4.1.2 (Gibbs random field) A random field is said to be a Gibbs random field

if and only if its joint distribution p(x) is a Gibbs distribution, which has the following form:

p(x) =
1

Z
. exp

 

�
X

C2G

✓C(xC)

!

(4.3)

where Z (also known as the partition function) is a normalising constant to ensure the sum of

probabilities is equal to one:

Z =
X

C2G

exp

 

�
X

C2G

✓C(xC)

!

In the equation (4.3), C denotes a clique in the graph G. The symbol ✓C(xC) represents the

clique potential, where each ✓C(xC) is a real function that depends only on the random variables

contained in clique C. The clique potential ✓C is not restricted to any specification, and the

smaller the sum of all potentials, the higher the probability mass p(x). Thus, it leads to the

motivation to formulate ✓C as a cost of label assignment. Today, we know that the Gibbs

random field is equivalent to the Markov Random Field, thanks to the proof of Hammersley

and Cli↵ord [40, 10].

Markov-Gibbs equivalence [40, 10] A distribution p(x) over a discrete random field x is

a Gibbs distribution (4.3), if and only if the random variables x make up a Markov Random

Field with respect to the graph G.

The practical value of the Markov-Gibbs equivalence provides a tool to define the joint proba-

bility function of a Markov Random Field. It allows to define, determine, manipulate, and infer
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the underlying probability distributions in a convenient way. These functions encode all desired

contextual constraints between labels and choosing the proper form for these functions consti-

tutes the most important stage during MRF modeling. This thesis deals with the first order

MRFs, therefore potential functions for all cliques with more than 2 elements will be assumed

to be zero. Actually, the cliques of size 1 correspond to the nodes a 2 V , and the cliques of size

2 correspond to the edges ab 2 E of the graph G. Therefore, the joint probability distribution

(or Gibbs distribution) defined by the first order MRF model will have the following form:

p(x) =
1

Z
. exp

 

�
X

a2V

✓a(xa)�
X

ab2E

✓ab(xa, xb)

!

(4.4)

Clearly, the sum over node potentials ✓a corresponds to the unary terms in multilabel problem or

the likelihood distribution in the MAP estimation. The sum over edge potentials ✓ab corresponds

to the pairwise terms or prior distributions. Dropping the constant Z and substituting (4.4)

into (4.2) gives:

x̄ = argmax
x

exp

 

�
X

a2V

✓a(xa)�
X

ab2E

✓ab(xa, xb)

!

x̄ = argmax
x

log

"

exp

 

�
X

a2V

✓a(xa)�
X

ab2E

✓ab(xa, xb)

!#

x̄ = argmin
x

X

a2V

✓a(xa) +
X

ab2E

✓ab(xa, xb) (4.5)

showing that the objective function of the MRF model (4.5) is exactly equivalent to the discrete

multilabelling problem (4.1). Having defined the MRF models and the probabilistic justification

underlying the image processing problem, the next section turns to the matter of optimising

this model.

4.2 MRF optimisation techniques

The use of MRF has become increasingly popular in many kinds of imaging and vision applica-

tions. This can be attributed to its powerful characteristics in representing the image problem

and more importantly, the recent advances in MRF optimisation algorithms that allow e�cient

computation for very large scale problems. Recent research has shown that some of the top



72 Chapter 4. Markov Random Fields (MRF) in image processing

methods for image stereo matching, segmentation, registration utilise MRF minimisers. Cur-

rent state-of-the-art methods for MRF minimisation include graph-cut, belief propagation (BP)

and message-passing/linear programming (LP) relaxation. While graph-cut and belief propa-

gation are combinatorial-based optimisation, the message-passing algorithms rely on the theory

of continuous optimisation (BP can be seen as a special case of message-passing techniques).

Message-passing techniques are related to the dual of the linear programming (LP) relaxation

but they are built in the sense of dynamic programming. As a result, they do not have complete

convergent properties. This issue can be addressed via the dual decomposition technique. Dual

decomposition is a common method in optimisation and it guarantees to converge to the global

optinum of the primal problem.

In the following sections, we briefly describe graph-cut, BP, message-passing and LP relax-

ation. In particular, we focus on the dual decomposition of the LP relaxation, a technique that

reformulates the original MRF model to a nondi↵erentiable optimisation problem.

4.2.1 Graph-cut

Graph-cut works similarly to greedy iterative algorithms. Two popular graph-cut algorithms,

the swap-move algorithm and the expansion-move algorithm, were developed by Boykov et.

al. [17]. Both algorithms iteratively select the best solution in the inner loop via a binary

labeling problem which, in turn, is reduced into the problem of finding the minimum cut in an

appropriately constructed capacitated graph. This process converges rapidly and results in a

strong local minimum, in the sense that further moves will not produce a labeling with lower

energy. For a pair of labels {↵, �}, a swap move takes some subset of the pixels currently given

the label ↵ and assigns them the label � and vice versa. The swap-move algorithm finds a local

minimum such that there is no swap move, for any pair of labels {↵, �} that will produce a

lower energy labeling. Analogously, an expansion move for a label ↵ increases the set of pixels

that are given this label. The expansion-move algorithm finds a local minimum such that no

expansion move, for any label ↵, yields a labeling with lower energy. The main computational

cost of graph cuts lies in computing the minimum cut, which is done via the max-flow problem

[16]. The max-flow problem defines a graph with two distinguised vertices, the source and the

sink (in the binary graphcut problem, they are indeed the two labels). It then seeks to find

the maximum amount of flow that can leave the source and arrive at the sink, while passing
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s

t
a cut

Figure 4.8: A minimum cut that seperates nodes to either the source s or the sink t

through any of the edges of the graph. In this case, the weight of an edge is interpreted as

the edges capacity, i.e. it represents the maximum flow that can pass through that edge. It is

well-known that the maximum amount of flow from the source to the sink equals the cost of

the minimum cut that separates the source and the sink. This classification of nodes to either

the source or the sink is equivalent to the binary labelling. Figure 4.8 illustrates the minimum

cut problem.

Although graph-cut algorithms have shown superior performance in many computer vision

applications, their use is limited to a restricted class of MRF. In particular, the expansion-

move algorithm was shown to be applicable to any energy where ✓ab is a metric, i.e. it satisfies

the following properties for any triplet of labels {↵, �, �}:

✓ab(↵, �)  ✓ab(↵, �) + ✓ab(�, �)

✓ab(↵, �) = 0 () ↵ = �

✓ab(↵, �) = ✓ab(�,↵)

while the swap-move is only applicable to semi-metric energies (metrics where the triangle

inequality needs not hold). Kolmogorov and Zabih [55] subsequently relaxed these conditions

and showed that the expansion-move algorithm can be used as long as:

✓ab(↵,↵) + ✓ab(�, �)  ✓ab(↵, �) + ✓ab(�,↵)
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and the swap-move algorithm can be used if for all labels {↵, �}, it satisfies:

✓ab(↵,↵) + ✓ab(�, �)  ✓ab(↵, �) + ✓ab(�,↵)

If the energy does not obey these constraints, graph-cut algorithms can still be applied by

truncating the violating terms [89]. In this case, however, it is no longer guaranteed to find the

optimal labeling with respect to expansion or swap moves. In practice, this technique seems to

work well only when relatively few terms need to be truncated [102].

4.2.2 Message passing

Belief Propagation (BP) is an iterative algorithm, which works by continuously propa-

gating local messages between the nodes of the MRF model. There are two variants of BP:

max-product BP and sum-product BP. While max-product BP is designed to find the lowest en-

ergy solution, the sum-product BP does not directly search for a minimum energy but instead

computes the marginal probability distribution of each node in the graph. Both algorithms

utilise the same message-passing concepts. We focus on the the max-product BP as its solution

returns the labelling for the MRF problem. At every iteration, each node exchanges messages

with all neighbouring nodes. This process is repeated until all messages are stabilised. Within

the max-product class, there are di↵erent implementations available based on the schedules

for passing messages on the grids. For instance, in [103], messages are passed along rows and

then along columns. When a row or column is processed, the algorithm starts at the first node

and passes messages in one direction (similar to the forward-backward algorithm for Hidden

Markov Models). Once the algorithm reaches the end of a row or column, messages are passed

backward along the same row or column.

So, what are the messages and how are they computed? The set of messages sent from a node

a to a neighbouring node b will be denoted by {mab(xb)}xb2L. Therefore, the total number

of such messages is always |L| (i.e. there exists one message per label in L). Intuitively, the

meaning of the message mab(xb) is that it expresses how likely node a thinks that node b should
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be assigned label xb. Furthermore, the message mab(xb) is computed as:

mab(xb) min
xa2L

0

@✓a(xa) + ✓ab(xa, xb) +
X

c2N (a)�b

mca(xa)

1

A

In order to keep consistent notations, the above formulation takes a form of negative log updates

for messages mab instead of the original max-product message updates:

m̂ab(xb) max
xa2L

0

@⇢a(xa)⇢ab(xa, xb)
Y

c2N (a)�b

m̂ca(xa)

1

A

where ⇢a / exp(�✓a) and ⇢ab / exp(�✓ab) are based on likelihood and prior distribution

respectively. The aim of the message is that node a reveals what it thinks about the labeling

xb. There are three factors to be considered in the process:

• Assuming node b is assigned xb, node a has to consider what the best assignment xa for

itself. This is measured by the cost of pairwise function ✓ab(xa, xb).

• If label xa is the most compatible one, node a has also to consider what is the likelihood

of this label; this is measured by ✓a(xa).

• Finally, node a needs to consider what its neighbours think about the label xa. This is

evaluated by considering all incoming messages from neighbouring nodes (except of b).

Once every node has sent and received a su�cient amount of messages, based on the beliefs we

can compute the configuration of the field:

x̄a = arg min
xa2L

✓a(xa) +
X

b2N (a)

mab(xa)

The original BP proposed by Pearl [84] was intended to be used only for graphs without cycles,

such as Bayesian networks. On acyclic graphs, BP guarantees to find the global optimum

solution. Furthermore, it can be shown that this global optimum may be computed in just

one iteration. However, there is nothing in the formulation of BP that prevents it from being

used on graphs with loops. Indeed, BP has been successfully applied to cyclic graphs in quite

di↵erent problem domains such as early vision [28] and error-correcting codes [29]. In general,
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Loopy-BP is not guaranteed to converge and may go into an infinite loop switching between

two labelings. However, if Loopy-BP converges and there are no ties in the min-marginals for

nodes, it has a strong local minimum property that is somewhat analogous to that of graph

cuts [109, 111].

TreeReWeighted message passing (TRW) is similar to BP in term of message-passing.

However, the message-passing mechanism is based on the iterative solutions of the underlying

linear programming relaxation. The LP relaxation interpretation will be discussed in the next

section. Here, we discuss the message-passing properties of TRW. In TRW, the message update

rule is defined by:

mab(xb) min
xa2L

0

@

⇢ab
⇢a

0

@✓a(xa) +
X

c2N (a)

mca(xa)

1

A�mba(xa) + ✓ab(xa, xb)

1

A

In TRW, the graph is decomposed to a set of spanning trees. This decomposition is reflected

via the probability ⇢ab
⇢a
. The probability is defined by a chance that a tree (chosen randomly)

contains edge ab given that it contains a. Note that, in BP, this probability is simply set to

1. An interesting feature of the TRW algorithm is that it computes a lower bound on the

energy (thus, related to the dual of LP). However, the seminal TRW algorithm [110] does

not guarantee monotonic increase of the lower bound or convergence. This problem has been

addressed by the extended tree-reweighted sequence (TRW-S) algorithm [54], which results in

certain convergence properties. The TRW-S defines an arbitrary pixel ordering function S(a).

The messages are updated in order of increasing S(a), and at the next iteration, are updated

in the reverse order. At every iteration, the label configuration is done for every node by going

through pixels in the order S(a) and choose a label xa 2 L such that:

x̄a = arg min
xa2L

✓a(xa) +
X

S(b)<S(a)

✓ab(xa, xb) +
X

S(b)>S(a)

mba(xa)

The labelling update based on this heuristic rule does not guarantee monotonic decrease of

energy function (the primal objective function (4.5)) but only ensures that the lower bound

(the dual objective) does not decrease. In practice, one could keep track of the lowest energy

so far to determine the solution corresponding to the lowest energy.
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(a) Non-convex function (b) Convex relaxation

Figure 4.9: Convex relaxation of non-convex function. Non-convex function con-
tains several local minima, the approximated convex function only has one global
minimum.

4.2.3 Linear programming relaxation

In the last few years, many studies have considered the relationship between combinatorial

methods and continuous optimisation to establish the convergence properties of the combina-

torial methods. Most examine the Linear Programming Relaxation to the MRF model, as

the tightest relaxation within the class of convex relaxations. It is well-known that the MRF

minimisation problem (4.5) is NP-hard and the objective function is highly-noncovex. In order

to solve the problem, several aforementioned combinatorial methods have been proposed for

approximating the solutions. However, combinatorial methods cannot guarantee convergence

to optimality. Indeed, there are established examples that graph-cut or message-passing tech-

niques fail to produce a solution [54, 58]. Non-convex problems may have many local minima.

It is possible to overcome this limitation by applying convex relaxation techniques in order to

obtain an approximate convex model that has a unique (global) minimum. Figure 4.9 illustrates

a convex relaxation of a non-convex function. Convex relaxation is a common approximation

technique to transform a problem into a convex domain and is a powerful setting for continuous

optimisation. It has strong global convergence properties with numerous e�cient solvers. Sev-

eral approximation algorithms have been proposed in the literature such as linear programming

relaxation [23, 110], quadratic programming relaxation [87] and second order cone programming

relaxation [71, 61]. Amongst these relaxations, Kumar et. al. [60] have shown that LP relax-

ation provides the tightest bound to discrete MRF minimisation. There are numerous e�cient

algorithms for the LP relaxation of MRF, with established convergence properties. The LP

relaxations of MRFs are based on the linear integer programming formulation. Let us consider

the following binary variables and potential function:
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• xa,l 2 {0, 1} and xa,l = 1 () label l 2 L is assigned to node a 2 V .

• xab,lk 2 {0, 1} and xab,lk = 1 () label l, k are assigned to a pair of nodes a, b 2 V

respectively; and (a, b) 2 E.

• ✓a,l
def

= ✓a(xa = l) is a unary cost of setting label l to node a.

• ✓ab,lk
def

= ✓ab(xa = l, xb = k) is a pairwise cost of assigning label l to node a and label k to

node b.

Then the following integer programming (IP) can be shown to be equivalent to the task of

minimising the MRF energy (4.5) [23, 113]:

minimise
x

h✓, xi =
X

a2V

X

l2L

✓a,l.xa,l +
X

ab2E

X

l,k2L

✓ab,lk.xab,lk (4.6a)

such that x 2 XG =

8

>

>

>

<

>

>

>

:

x

�

�

�

�

�

�

�

�

�

P

l2L xa,l = 1, 8a 2 V
P

j2L xab,lk = xa,l, 8ab 2 E, 8l 2 L

xa,l 2 {0, 1}, 8a 2 V, xab,lk 2 {0, 1}, 8ab 2 E

9

>

>

>

=

>

>

>

;

(4.6b)

In the above formulation, ✓ and x are the full vectors that consist of all potential and binary

variable terms. XG is the feasible set, which was originally called the marginal polytope [110].

These encode the properties of the graph G and MRF model. In particular, the first set of con-

straints simply express the fact that each node must admit one unique label, while the second

set of constraints enforce consistency between the unary variables xa,l, xb,k and the pairwise

variables xab,lk, since they ensure that if xa,l = xb,k = 1 then xab,lk = 1 as well. Problem (4.6)

represents exactly the discrete MRF minimisation (4.5), and is known to be NP-hard. The

simplest and most common relaxation is the relaxation of the binary constraints, i.e. setting

xa,l � 0 and xab,lk � 0. The relaxation reduces the IP to an LP, the most common optimisation

problem, understood and solved by many e�cient optimisation solvers. The resulting polytope

with continuous constraints is known as the local polytope [110], which contains additional frac-

tional vertices, see Figure 4.10. Unfortunately, the large dimensionality of the image processing

problem is too expensive for standard LP solvers such as simplex or interior point algorithms.

It is possible to have a graph with hundreds of thousands of nodes and edges and multiplying

these with a finite number of labels will result in millions of unknown variables. Therefore, it

is neccesary to e�ciently exploit graph structures and MRF properties (e.g. utilising combina-
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Integer Vertex

Fractional Vertex

Local Polytope

Marginal Polytope

(Binary feasible set)

(Continuous feasible set)

Figure 4.10: Marginal polyopte only contains integer vertices, local polytope contains
fractional vertices

torial methods to solve the easy MRF problem in the inner loop [59], or using message-passing

techniques in the iterative updates [110, 54]). For the ease of presentation, we will hereafter

refer to (4.6) as the LP relaxation of MRF model (LP-MRF), subject to the local polytope, the

original integer program of MRF models will be denoted as IP.

As already mentioned, TRW methods are tightly related to the LP-MRF (4.6). Based on the

assumption that this relaxation provides a good approximation to the integer program [60],

TRW methods hope to obtain an approximately optimal solution to the labelling problem, by

solving the LP. However, TRW methods do not attempt to minimize the LP directly. Instead,

they focus on solving the dual of that relaxation:

max
✓2C(✓),

P
t2T ⇢t✓t=✓

X

t2T

⇢t min
xt2Xt

h✓t, xti (4.7)

In the LP dual formulation above, C(✓) is a convex combination of spanning trees, t denotes a

tree contained in a tree set T that covers all edges and nodes at least once. X t forms a marginal

polytope, which is similar to XG (4.6b), that reflects the structure of the corresponding tree

t 2 T . Dualising the LP provides the motivation underlying some other MAP estimation

algorithms such as the max-sum di↵usion algorithm [113, 30]. These methods operate on a

dual of LP, and can essentially be understood as block coordinate ascent procedures applied to

the dual. Obviously, the cost of any feasible solution to the dual LP yields a lower bound on the
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optimal MRF energy (i.e. the primal). Hence, solving the dual corresponds to a maximisation

of this lower bound, which is essentially the key idea behind all the above mentioned techniques.

Based on the dual solution, a solution to the original MRF IP can be extracted using basic

heuristics or simple rounding procedures. Moreover, the quality of the resulting MRF solution

depends critically on the quality of the estimated primal-dual gap (i.e, how large that gap

is). However, none of the combinatorial methods can be guaranteed to achieve the optimal

primal-dual gap (i.e. the gap goes to zero). In fact, as shown in [54], there exist examples that

illustrate this point.

In order to address these limitations, Komodakis et. al. [59] propose a dual decomposion scheme

to tackle the LP problem. The resulting optimisation is a generalisation of the dual problem

(4.7), which can be shown to converge globally. Sontag et. al. [97] have shown that specialised

algorithms for dual LP are equivalent to dual decomposion technique. In this thesis, we adopt

a complete optimisation point of view and employ the dual decomposion technique in [58], that

transforms the LP-MRF (4.6) to the maximisation of a large scale convex nondi↵erentiable

function. There are numerous approaches for solving the latter including the seminal works of

Nemirovski [48] and Nesterov [78] on First Order Methods (FOM). Recently, there have been

further studies of FOM for the MRF problem. Following the projected-subgradient method

[59], Jancsary et. al. [44] apply the incremental implementation, which is indeed a special

case of [58]. Jojic et. al. [46] and Savchynskyy et. al. [92] employ the smoothing technique

of Nesterov [78] to accelerate the theoretical convergence rate. Smoothing techniques benefit

from fast convergence rate. However, the global solution is only a smooth-approximation of the

lower bound. In addition, it is important to provide a good smoothing parameter to obtain a

corresponding suboptimal approximation. Recently, Luong et. al. [66] proposed a method to

solve the non-smooth optimisation problem of MRF using the weighted nonlinear projection

method. This method computes optimal entropy projection updates at early iterations, before

switching to standard subgradient updates when the entropy projection updates have become

stable. The method sharpens the convergence result of the standard projected subgradient

and has exhibited promising experimental results. Ravikumar et. al. [86] have also proposed

a method based on cyclic entropy projection. However, their method operates on the primal

domain, i.e. the LP-MRF (4.6), and has to perform an inner loop for every entropy projection.

The inner loop is not guaranteed to converge and may contain excessively number of iterations.
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4.3 Dual decomposition of LP-MRF

This section introduces the dual decomposition approach, also known as Lagrangian relaxation.

With dual decomposition, the original (master) problem is decomposed into smaller (slave) sub-

problems with additional Lagrange multipliers. There are various ways to define subproblems,

and the only requirement for a choice of decomposition is that a subproblem has to be a MRF

problem that can be solved exactly and e�ciently. In this thesis, we focus on acyclic struc-

ture MRF to define subproblems, i.e. a MRF problem on a graph without loop. It is well

known that a MRF problem on a graph without loop can be solved within one iteration by the

Belief Propagation algorithm [84]. The decomposition is subsequently optimised with respect

to the Lagrange multipliers by the master problem, which acts as a coordinator between the

subproblems, to encourage them to agree about the variables they share. Hereafter, we will

use subproblem and slave interchangeably reagarding the MRF subproblem, and acyclic graph

and tree are equivalently used for describing a graph without loop.

Tree decomposition. To this end, let T be a set of trees of the original graph G. The only

requirement for the set T is that all trees (together) must cover every node and edge of graph

G. For examples, T can be a collection of spanning trees where all trees (together) must cover

every edge at least once, and each node is covered |T | times, where |T | is the number of trees in

the set. A good tree decomposition for MRF subproblems is an interesting research topic, which

has been studied by a number of authors [2, 54, 43, 45]. A simple example, and the one that

we use in this thesis, is a collection of horizontal and vertical edges. This simple decomposition

technique is popular for developing specialised algorithms to improve theoretical convergence

properties from an optimisation point of view [92, 46, 72, 44]. By such a construction, each

edge ab 2 E is covered exactly once by the set T and each node a 2 V appears twice, once in

the horizontal tree and once in the vertical tree. Note that, for the 3D image problem, we have

an additional tree that represents the depth, thus each node will appear three times in the 3D

tree set. We do not consider the 3D case in this thesis, however the same framework for the 2D

problem can be applied to the 3D problem easily. For each tree t 2 T , there is a MRF problem

defined only on the nodes and edges of the tree, which contains a vector of MRF potentials ✓t,

as well as a vector of MRF variables xt. These vectors have similar structures to the original

MRF terms ✓ and x, except that the horizontal tree does not contain any terms that related
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to vertical edges and vice versa. As every edge is independently managed by one tree, there

is no additional parameterisation needed for the edges, i.e. the edge terms ✓ab,lk and xab,lk are

distributed into either the horizontal tree or the vertical tree accordingly. However, each node

a 2 V is shared by two trees, thus we need to define additional parameters for the tree nodes:

✓ta,l and xt
a,l, which can be vectorised into tree node vectors, denoted by ✓t and xt. When the

labellings (i.e. the solution x̄t) of two trees are combined into the original graph, it should hold

that the labellings of the two trees are the same, and equal to the original graph labelling. To

enforce this, the following constraint on the tree nodes is imposed:

xt
a,l = xa,l, 8a 2 V, 8l 2 L

In addition, the unary potentials of the two trees need to preserve the original energy, by

satisfying the following condition:

X

t2T

✓ta,l = ✓a,l, 8a 2 V, 8l 2 L

The constraints are sometimes written in vectorised form as xt = x or
X

t2T

✓t = ✓. For ease of

presentation, the index set is defined:

I = {i def

= (a, l), 8a 2 V, 8l 2 L} (4.8)

The tree unary potentials {✓t} are defined prior to the optimisation process, thus they act as

constants in the optimisation problem. Now, we have the following equivalence of original MRF

problem:

min
x2XG

h✓, xi ⌘

8

>

>

>

>

<

>

>

>

>

:

min
xt,x2XG

X

t2T

h✓t, xti

such that xt 2 X t, 8t 2 T

xt = x, 8t 2 T

⌘

8

>

<

>

:

min
x2XG

X

t2T

min
xt2Xt

h✓t, xti

such that xt = x, 8t 2 T

(4.9)
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Figure 4.11: MRF decomposition: the incomplete filled nodes in each tree represents
its partial potential energies satisfying: ✓

1 + ✓

2 = ✓. The variables to optimised
are x

1

, x

2

, x where x

1

, x

2 can be optimised independently in E

1

, E

2 if the coupling
constraints x

1 = x

2 = x are omitted.

Clearly, each summand h✓t, xti represents a tree-MRF problem, and can be optimised indepen-

dently thereby obtaining (4.9). Let E(✓, x) denotes the minimum energy of any arbitrary MRF

model, e.g. if x 2 XG then E(✓, x) represents the minimum potential energy of the original

MRF model; if xt 2 XT then Et(✓t, xt) is the minimum potential energy of the tree MRF

problem. This notation reduces the the form of (4.9) to:

E(✓, x) = min
x2XG

h✓, xi = min
x2XG,8t2T :xt

=x

X

t2T

Et(✓t, xt)

Figure 4.11 illustrates the above decomposion problem. It is clear that the coupling constraints

xt = x make the optimisation problem di�cult. Without it, one could optimise each small MRF

problems (one per tree t 2 T ) independently. Therefore, it is natural to relax these coupling

constraints via the Lagrangian dual function as:

E({�t, xt}) = min
x2XG

X

t2T

min
xt2Xt

h✓t, xti+
X

t2T

�t.(xt � x) (4.10)

=
X

t2T

min
xt2Xt

h✓t + �t, xti � min
x2XG

 

X

t2T

�t
!

.x

=

8

>

>

<

>

>

:

X

t2T

min
xt2Xt

h✓t + �t, xti , if
X

t2T

�t = 0

�1 , if
X

t2T

�t 6= 0

Clearly, we omit the case where the energy is �1 and each summand h✓t+�t, xti is optimised
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Figure 4.12: MRF dual decomposition: let F (✓t, xt) = E

1(✓1, x1) + E

2(✓2, x2). At
each iteration, the master problem distributes potential energies ✓1, ✓2 to the two MRF
trees. Each MRF tree is optimised by BP and returns information about its optimal
energies E1

, E

2 and labelling x

1

, x

2. The information is passed to the master problem
to coordinate the next distribution of potential energies.

independently thereby obtaining the final equality. Via the dual problem, we have eliminated

the coupled constraints xt = x, and obtained a new objective function which is a sum over

simple MRF problems (where smaller MRFs are defined on the trees). Thus, we now can set

up a dual problem, i.e. maximise the above dual function E({�t, xt}):

max
�t

X

t2T

min
xt2Xt

h✓t + �t, xti

such that
P

t2T �
t = 0

(4.11)

In order to avoid ambiguity, let the symbol ✓̂ denotes the (constant) original unary potentials.

Given that the following conditions always satisfied:

8

<

:

Predefined distribution:
P

t2T ✓
t = ✓̂

Dual fesibility:
P

t2T �
t = 0

The reparameterisation ✓t
def

= ✓t + �t leads to an equivalent optimisation problem to (4.11):

max
✓2⇥

X

t2T

min
xt2Xt

h✓t, xti = max
✓2⇥

X

t2T

Et(✓t, xt) (4.12)

where

⇥ =

(

{✓t}

�

�

�

�

�

X

t2T

✓t = ✓̂

)
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Problem (4.12) encodes the Lagrange multipliers into the energy potentials, and optimises over

the new potential terms, instead of the multipliers. The dual problem can be referred to a master

problem, while each slave problem Et(✓t, xt) simply amounts to optimising an MRF over a tree

t 2 T . In this setting, at every iteration, the slave MRF returns information about the objective

function Et and the labelling xt. The master problem takes this information and redistributes

the node potential energies ✓t to each tree t in order to encourage increased labelling agreement

between the trees. This process is repeated until no further improvement can be made on the

label agreement. Figure 4.12 illustrates one iteration of the process. Problem (4.12) can be

shown to be equivalent to the LP relaxation of the discrete MRF interger problem (4.6a). The

primal-dual equivalence via weak duality is known in the optimisation literature [9]. For the

completeness of the thesis, a concise proof of the primal-dual equivalence for MRFs follows.

Theorem 4.3.1 Problem (4.12) is equivalent to the LP problem (4.6a) where XG is a local

polytope (with relaxed constraints x � 0).

Proof Via reparameterisation and elimination of the coupling constraints xt = x, we obtain

problem (4.12). Thus, we have:

max
✓2⇥

X

t2T

min
xt2Xt

h✓t, xti = maxP
t2T �t

=0

X

t2T

min
xt2Xt

h✓t + �t, xti

= max
�t

min
x2XG

X

t2T

min
xt2Xt

h✓t, xti+
X

t2T

�t.(xt � x)

= max
�t

min
x2XG,{xt2Xt}

X

t2T

h✓t, xti+
X

t2T

�t.(xt � x)

= min
x2XG,{xt2Xt}

X

t2T

h✓t, xti+max
�t

X

t2T

�t.(xt � x)

=

8

>

<

>

:

min
x2XG,{xt2Xt}

X

t2T

h✓t, xti , if xt = x, 8t 2 T

1 , if xt 6= x, 8t 2 T

= min
x2XG,{xt2Xt},{xt

=x}

X

t2T

h✓t, xti

= min
x2XG,{xt2Xt},{xt

=x}

*

X

t2T

✓t, x

+

(4.13)

= min
x2XG,{xt2Xt},{xt

=x}
h✓̂, xi = min

x2XG
h✓̂, xi

The equality (4.13) comes from the fact that 8t 2 T : xt = x, therefore every xt cab be replaced



86 Chapter 4. Markov Random Fields (MRF) in image processing

with x accordingly. The final equality comes from the predefined distribution
P

t2T ✓
t = ✓̂. In

addition, the convex hull of all tree set {X t} coincides with the local marginal polytope XG,

therefore the constraints {xt 2 X t}, {xt = x} become redundant and can be omitted.

Remarks. At this point, there could be a false impression that theorem 4.3.1 only holds for

horizontal and vertical tree decomposition. However, the theorem is much more general than

that, and it is true as long as there exists a global optimiser for each subproblem.



Chapter 5

First Order Methods for LP-MRF

The primary goal of this chapter is to derive e�cient optimisation methods for solving the large

scale LP-MRF (4.6a). A common technique is to use polynomial time interior point methods

[80], that can produce high accuracy solutions in limited number of iterations. However, all

interior point methods share a common drawback: the computational e↵ort per iteration grows

rapidly with problem dimensionality. As a result, polynomial time methods eventually become

intractable, i.e. for a large scale problem, a single iteration may take a long time to compute.

Unfortunately, large scale problems often arise in image processing, in particular, for the LP-

MRF. In this chapter we propose a first order subgradient method (FOM) that takes into

account of the problem structure. In the final section of the previous chapter, we showed that

tree-structure MRFs can be solved exactly and e�ciently by the belief-propagation method.

In this chapter, the use of the dual decomposition technique is proposed to reformulate the

LP-MRF as a dual LP-MRF. It was also shown that, the LP-MRF and dual LP-MRF are

equivalent. Therefore, solving a dual LP-MRF is su�cient to derive a solution of LP-MRF.

Interestingly, the dual LP-MRF belongs to a class of nonsmooth convex optimisation problems.

In this chapter, we utilise FOM to solve the dual LP-MRF (4.12):

max
✓2⇥

X

t2T

Et(✓t, xt)

which belongs the a class of nonsmooth optimisation:

min
x2C

F (x)

87
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where F (x) is a nondi↵erentiable function and C is a simple convex set. One disadvantage of

FOM is that only a sublinear convergence rate is guaranteed, i.e. it requires O( 1

✏2
) iterations

to obtain a solution within O(✏) optimality. However, FOM benefits from low computational

cost per iteration. This is needed in large scale problems. In addition, for problems with

favourable geometry, a good FOM exhibits near dimensionality independence with respect to

its convergence properties. The computer memory requirement for FOM can be much smaller

than interior point methods for solving the primal problem, which is also an advantage for

large memory needed for image problems. In this chapter, we describe one standard FOM, the

subgradient projection method, before developing a novel nonlinear weighted projection method

to accelerate the performance. Competitive theoretical properties of the methods are analysed

and supported by experimental results.

5.1 Projected subgradient

One typical FOM is the subgradient projection method. In this section, we apply a dual

decomposition technique and use FOM with subgradient projection [9, Section 6.4] to develop

a simple and e�cient algorithm for our large scale problem. The work in this chapter addresses

the nondi↵erentiable dual LP-MRF probem:

max
✓2⇥

F (✓) = max
✓2⇥

X

t2T

min
xt2Xt

h✓t, xti = max
✓2⇥

X

t2T

Et(✓t, xt) (5.1a)

where ⇥ =

(

{✓t}

�

�

�

�

�

X

t2T

✓t = ✓̂

)

⌘
(

{✓ti}

�

�

�

�

�

X

t2T

✓ti = ✓̂i, 8i 2 I
)

(5.1b)

the potential preservation set ⇥ is an union of |V | ⇥ |L| disjoint sets ⇥i associated with each

index i 2 I = {(a, l), 8a 2 V, 8l 2 L}, i.e. ⇥ =⌦ ⇥i 8i 2 I, where:

⇥i =

(

✓ti

�

�

�

�

�

X

t2T

✓ti = ✓̂i

)

(5.1c)

The function F (✓) is concave and nonsmooth (maximising a concave function is a convex opti-

misation problem), therefore we use subgradients of the concave function F in our algorithms.

The subgradient method is specified in Algorithm 5.1 and is developed in detail below.
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Definition 5.1.1 A vector F 0(✓) 2 Rn is a subgradient of F : Rn ! R at ✓ 2 Domain(F ), if

8� 2 Domain(F ),

F (�)  F (✓) + hF 0(✓), � � ✓i (5.2)

Then, a projected subgradient method uses a simple update rule for the (k + 1)th iteration:

✓(k+1) = ⇡
⇥

�

✓(k) + ⌧kF
0(✓(k))

�

(5.3)

In the update (5.3), ⌧k denotes a positive multiplier, ⇡
⇥

(.) denotes the projection on to the set

⇥, while F 0(✓(k)) represents a subgradient of F (.) at ✓(k). In the projected subgradient method,

there is no restriction on choosing a subgradient. Here, a subgradient based on information

given by the slave problems, Et(✓t, xt) = min
xt2Xt

h✓t, xti, is used. Note that, F (✓) ⌘ F ({✓t}) is

defined as the linear combination of the functions corresponding to the disjoint trees. Therefore,

its subgradients (corresponding to each tree) can be computed independently.

Lemma 5.1.2 A subgradient of F (✓) can be chosen by:

F 0(✓)
def

= x̄ (5.4a)

where x̄
def

= {x̄t}, 8t 2 T : x̄t = arg min
xt2Xt

h✓t, xti (5.4b)

Proof From the definition (5.4b), we know x̄t is not the optimal solution of min
xt2Xt

h�t, xti, i.e.

8t 2 T : Et(�t, xt)
def

= min
xt2Xt

h�t, xti  h�t, x̄ti

In addition,

F (�) =
X

t2T

Et(�t, xt) 
X

t2T

h�t, x̄ti =
X

t2T

h✓t, x̄ti+ h�t � ✓t, x̄ti =
X

t2T

Et(✓t, xt) + h�t � ✓t, x̄ti

Therefore, F (�)  F (✓) + hF 0(✓), � � ✓i where F 0(✓) = x̄.

Using the chosen subgradients and solving the Lagrangian of (5.1a), a simple update rule for

the projected subgradient iteration is obtained.
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Proposition 5.1.3 The projected subgradient update (5.3) for the dual LP-MRF (5.1a) is given

by:

8 t 2 T, 8i 2 I : ✓t(k+1)

i = ✓t(k)i + ⌧k

 

x̄t(k)
i �

P

t2T x̄t(k)
i

|T |

!

(5.5)

Proof It is well-known that the projected subgradient update (5.3) comes from the proximal

iteration [9]:

✓(k+1) = ⇡
⇥

�

✓(k) + ⌧kF
0(✓(k))

�

⌘ argmax
✓2⇥

⌦

✓, F 0(✓(k))
↵

� 1

2⌧k

�

�✓ � ✓(k)
�

�

2

2

= argmax
✓2⇥

X

t2T

X

i2I

✓ti .F
0(✓t(k)i )� 1

2⌧k
(✓ti � ✓

t(k)
i )2

= argmax
8i2I:

P
t2T ✓ti=

ˆ✓i

X

t2T

X

i2I

✓ti .x̄
t(k)
i � 1

2⌧k
(✓ti � ✓

t(k)
i )2

The Lagrangian is given by:

L(✓,�) =
X

i2I

"

X

t2T

✓

✓ti .x̄
t(k)
i � 1

2⌧k
(✓ti � ✓

t(k)
i )2

◆

+ �i

 

X

t2T

✓ti � ✓̂i

!#

r✓ti
L = x̄t(k)

i � 1

⌧k
(✓ti � ✓

t(k)
i ) + �i = 0

) ✓ti = ✓t(k)i + ⌧k(x̄
t(k)
i + �i) (5.6a)

r�i
L =

X

t2T

✓ti � ✓̂i =
X

t2T

✓t(k)i + ⌧k(x̄
t(k)
i + �i)� ✓̂i = 0

) �i =
�
P

t2T x̄t(k)
i

|T | (5.6b)

(5.6a),(5.6b)�������! ✓t(k+1)

i = ✓t(k)i + ⌧k

 

x̄t(k)
i �

P

t2T x̄t(k)
i

|T |

!

The subgradient update (5.5) requires very few computations per iteration due to the use of

subgradients, as indicated by the following corollaries:

Corollary 5.1.4 The projected subgradient updates are only required at the nodes which are

not assigned the same label by all trees (disagreement nodes).
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For instance, the node ↵ 2 V is assigned the same label l↵ 2 L by all trees, i.e.

xt(k)
↵,l 6=l↵

= 0 and xt(k)
↵,l↵

= 1, 8t 2 T

Clearly, at the node ↵, the trees need to update the node’s potential by:

8t 2 T, 8l 2 L : ✓t(k+1)

↵,l = ✓t(k)↵,l + ⌧k

 

x̄t(k)
↵,l �

P

t2T x̄t(k)
↵,l

|T |

!

Now:

For l = l↵ : x̄t(k)
↵,l↵
�

P
t2T x̄

t(k)
↵,l↵

|T | = 1� |T |
|T | = 0

For l 6= l↵ : x̄t(k)
↵,l 6=l↵

�
P

t2T x̄
t(k)
↵,l 6=l↵

|T | = 0� 0

|T | = 0
(5.7)

Corollary 5.1.5 At the disagreement nodes, projected subgradient updates are only needed at

disagreeing labels.

The above results reduce further the computational cost per iteration. Let two trees t
1

, t
2

2 T

cover the node ↵ 2 V , and MRF slaves E1, E2 which assign labels l
1

, l
2

respectively to that

node. Then, it can be seen that the following potential updates will take place:

✓t1(k+1)

↵,l =

8

>

>

>

<

>

>

>

:

✓t1(k)↵,l + ⌧k/2 if l = l
1

✓t1(k)↵,l � ⌧k/2 if l = l
2

✓t1(k)↵,l if l 6= l
1

, l
2

, ✓t2(k+1)

↵,l =

8

>

>

>

<

>

>

>

:

✓t2(k)↵,l � ⌧k/2 if l = l
1

✓t2(k)↵,l + ⌧k/2 if l = l
2

✓t2(k)↵,l if l 6= l
1

, l
2

This straightforwardly extends to cases where three or more trees cover a node. When two

trees disagree over a node labelling, the updates only take places at disagreeing labels l
1

and

l
2

. The e↵ect of this is that the master problem tries to readjust the potentials of a node

with disagreement, so that a common label assignment to that node is more likely in the next

iteration. At this point, it is also worth noting the di↵erence between the subgradient method

and the TRW [110]. While TRW uses the tree min-marginals in order to update the unary

potentials ✓t, the subgradient method relies on the labelling of slave MRF (x̄t) for that task.

Furthermore, the computational cost per iteration of the subgradient method is much lower

than TRW as the algorithm converges towards an optimum. This is because the subgradient

method only updates disagreeing nodes and labels, comapared to the TRW update of all dual

variables.
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Algorithm 5.1: MRF Subgradient method x SG(✓̂)

Define a tree collection T contains horizontal and vertical trees;
Define the index set I (4.8);

Set ✓t(1)i = ✓̂i/|T |;
for k = 1, ..., K do

for t 2 T do
Compute x̄t(k) ! BeliefPropagation(✓t(k))

Update primal x(k) by (5.8);

Compute primal E(✓̂, x(k)) and dual F (✓(k));
Compute step-size ⌧k by (5.17);
for i 2 I do

Let update =
P

t2T x̄t(k)
i ;

if 0 < update < |T | then
Update the potentials ✓(k+1) by (5.5)

Return x(K);

5.1.1 Computing the primal solutions

Once the dual solutions are computed, the primal solution needs to be estimated. This topic

has attracted much attention in the optimisation literature. We utilise a popular procedure that

recovers the primal solutions via ergodic sequences of the dual subgradients. Ergodic primal

convergence analysis has been studied by many authors to bridge the primal-dual gap in linear

programming [95, 96] and constrained convex optimisation [63]. One of the simplest primal

approximation takes the weighted average of dual subgradients at the kth, of the form:

x(k) =

Pk
j=1

F 0(✓(k))

k
=

Pk
j=1

P

t2T x̄t(k)

k

In the above, it is necessary to keep track of all historical subgradients, which may be limited

by the amount of computer memory available. An e�cient way to do this is to set up a counter

for every node that counts the number of times a label is assigned to a node. The label with

the biggest count at a current time is chosen to be the current label of the node, i.e.

8i 2 I : counter(i) = counter(i) +
P

t2T x̄t(k)
i

8a 2 V : la = argmax
l

{counter(a, l)}

Primal Solution: x(k)
a,l = (l == la)

(5.8)
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where the index i ⌘ (a, l) can be extracted directly from the definition of the index set I (4.8).

In this setting, we obtain a feasible but suboptimal MRF labelling. In practice, the number

of feasible violations is very small and proportional to the number of inconsistent nodes, i.e.

the nodes that disagree on a common label assignment. As we maximise the dual problem,

we also minimise the number of nodes in disagreement. If there is no disagreement, we obtain

the true optimal labelling. It also follows that the number of feasibility violations is related to

the convergence properties of the primal solutions [75]. One important feature of computing

primal solutions is the information it provides regarding the primal-dual gap. Using the primal-

dual gap, we can develop an adaptive step-size that works much better than standard step-size

strategies.

5.1.2 Convergence results

Much literature [9, 76, 81] exists on the convergence of the projected subgradient method. This

section focuses on the nonasymtotic convergence rate, where the algorithm is guaranteed to

converge within some range of the optimal value. It is well known that this range is a function

of the number of iterations and is sensitive to the step-size strategy. In particular, we show that

the subgradient method finds an O( 1p
k
) suboptimal point within k iterations (in other words,

✏-suboptimal point within O( 1

✏2
) steps). The convergence proof relies on certain assumptions

described in the following. These assumptions are simple but su�ciently general to cover most

convex optimisation problems.

Assumption 5.1.6 The following assumptions are often satisfied by many problems:

• Problem (5.1a) is solvable, i.e. there exists an optimal ✓⇤ = argmin
✓2⇥

F (✓).

• Each set ⇥i ⇢ E, 8i 2 I, is a closed convex set in a finite dimensional Euclidean space

E with a known upper bound ⌦i on the distance between the initial point to the optimal

point: ⌦i = sup 1

2

k✓(1)i � ✓⇤i k22, then the domain bound is given by:

⌦ =
X

i2I

⌦i (5.9)
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• F : ⇥! R is a L-Lipschitz continuous convex function, i.e.

|F (✓)� F (�)|  Lk✓ � �k
2

8 ✓, � 2 ⇥

the Lipschitz condition also implies that the subgradients of F are bounded by L, i.e.

L = sup
✓2⇥
kF 0(✓)k

2

(5.10)

Theorem 5.1.7 Given that the assumptions 5.1.6 are satisfied and let {✓(k)} be the sequence

generated by (5.3) (explicitly by (5.5)), let ✓̄ = argmax{✓(k)} F (✓(k)), then for any k � 1:

F (✓⇤)� F (✓̄)  L
p
2⌦p
K

=

r

⇣

P

i2I sup k✓
(1)

i � ✓⇤i k22
⌘

|V ||T |
p
K

(5.11)

Proof

The key quantity in the proof is the distance to the optimal set. Let ✓⇤ be the optimal point,

we have:

k✓(k+1) � ✓⇤k2
2

= k⇡
⇥

�

✓(k) + ⌧kF
0(✓(k))

�

� ✓⇤k2
2

 k✓(k) + ⌧kF
0(✓(k))� ✓⇤k2

2

(5.12a)

= k✓(k) � ✓⇤k2
2

+ 2⌧khF 0(✓(k)), ✓(k) � ✓⇤i+ ⌧ 2kkF 0(✓(k))k2
2

 k✓(k) � ✓⇤k2
2

+ 2⌧k
�

F (✓(k))� F (✓⇤)
�

+ ⌧ 2kkF 0(✓(k))k2
2

(5.12b)

The inequality in (5.12a) comes from the fact that a projected point is closer to any feasible

point, and (5.12b) is based on the subgradient inequality of the concave function. Applying

the above inequality recursively, we have:

k✓(k+1) � ✓⇤k2
2

 k✓(1) � ✓⇤k2
2

+ 2
K
X

k=1

⌧k
�

F (✓(k))� F (✓⇤)
�

+
K
X

k=1

⌧ 2kkF 0(✓(k))k2
2

By definition of the subgradient F 0(✓(k)) = {x̄(k)}, where x̄t
i 2 {0, 1}, the Lipschitz constant is

equal to:

L = sup
✓2⇥
kF 0(✓)k

2

=
p

|V ||L||T | =
p

|I||T | (5.13)
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Using k✓(k+1) � ✓⇤k2
2

� 0 and k✓(1) � ✓⇤k2
2

 2⌦, we have:

2
K
X

k=1

⌧k
�

F (✓⇤)� F (✓(k))
�

 2⌦+ L2

K
X

k=1

⌧ 2k

However, 8k : F (✓⇤)� F (✓̄)  F (✓⇤)� F (✓(k))

So, F (✓⇤)� F (✓̄)  2⌦+ L2

PK
k=1

⌧ 2k
2
PK

k=1

⌧k
(5.14)

The suboptimality bound depends on the sequence of step-size {⌧k}, based on the assumption

that the upper bounds ⌦ and L are known. One therefore seeks the best sequence {⌧k} which

minimises the bound (5.14). This bound is a convex function of {⌧k} and minimising the RHS

of (5.14) with respect to {⌧k} reduces the suboptimality to:

F (✓⇤)� F (✓̄)  L
p
2⌦p
K

(5.15)

at the optimal stepsize:

8k = 1, .., K : ⌧k = ⌧ =

p
2⌦

L
p
K

(5.16)

Using assumption 5.1.6, we have:

F (✓⇤)� F (✓̄) 

r

⇣

P

i2I sup k✓
(1)

i � ✓⇤i k22
⌘

|I||T |
p
K

Remarks. The optimal step-size strategy ⌧ =
p
2⌦

L
p
K

requires the value of ⌦, to be known

a priori. This information may not always be available. However, there are various step-size

strategies which guarantee convergence of the optimality bound (5.14) that do not require prior

knowledge. For example:

• Constant step-size: setting ⌧k = ⌧ , gives:

F (✓⇤)� F (✓̄)  2⌦+KL2⌧ 2

2K⌧

The optimality bound converges to L2⌧/2 as K ! 1. If ⌦ is known, then ⌧ can be set

to the optimal step-size (5.16) to obtain the optimal bound.
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• Normalised subgradient with constant step length: set ⌧k = ⌘/kF 0(✓(k))k
2

, thus ⌧k � ⌘/L

and the suboptimality bound becomes:

F (✓⇤)� F (✓̄)  2⌦+K⌘2

2
PK

k=1

⌧k
 2⌦+K⌘2

2K⌘/L

The RHS converges to L⌘/2 as K !1. This is a general idea for subgradient methods;

however, in our choice of subgradient, the norm over the subgradients is a constant

(5.13) regardless of the value of the subgradients (the subgradients always contain the

same number of 0s and 1s, the di↵erence being their positions). Thus, the strategy for

our problem is basically similar to that of constant step-size, with addition of gradient

normalisation.

• Square summable but not summable: for example, let ⌧k = ⌘/k, then we have:

1
X

k=1

⌧ 2k <1,
1
X

k=1

⌧k =1

then as k !1, the numerator of (5.14) converges while the denominator diverges, thus

the bound converges.

• Diminishing step-size: if the sequence {⌧k} converges to zero and is nonsummable, eg.

⌧k = ⌘/k, then the RHS of (5.14) also converges to zero [9].

• Normalised gradient with square summable but not summable step length: using the

same properties as above. Now let ⌧k = ⌘k/kF 0(✓(k)k
2

, where (for example) ⌘k = 1/k.

Then the suboptimality bound reduces to:

F (✓⇤)� F (✓̄)  2⌦+
PK

k=1

⌘2k
2
PK

k=1

⌧k
 2⌦+

PK
k=1

⌘2k
2/L

PK
k=1

⌘k

As K !1, the RHS converges to zero.

5.1.3 Speeding up the subgradient methods

The above step-size rules are based on a deterministic choice, where the sequence of step-sizes

needs to be defined prior to gradient updates. On the other hand, one could use the information
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about current and historical information in order to adjust the step-size. This type of step-

size can be regarded as an adaptive or dynamic update. Interestingly, the key quantity to

proving convergence of the subgradient method is the distance ⌦ from the optimal solution.

Furthermore, this distance is proportional to the primal-dual gap, i.e. E(✓̂, x(k))�F (✓(k)); and

it is related directly to the optimal step-size strategy ⌧ =
p
2⌦

L
p
K
. This motivates an adaptive

step-size strategy for the projected subgradient method:

⌧k =
|E(✓̂, x(k))� F (✓(k))|

|I||T | (5.17)

The absolute value for the primal-dual gap is used as it is possible (but uncommon) that

subgradient methods may lead to outliers that make the dual greater than the estimated primal.

Using a dynamic step-size can be justified theoretically, by noting that as k !1, the primal-

dual gap ! 0. The defined sequence is therefore diminishing. From the MRF point of view,

at early iterations when there are still many inconsistent node labellings, large changes need to

be made on the nodes’ potentials. As the primal-dual gap becomes smaller, less modifications

is needed.

Other methods for improving speed include the cutting plane method, ellipsoid method,

conic combination of previous subgradients [9, 81]. While these methods generally improve the

convergence rate, they su↵er from expensive computational cost per iteration. In the particular

case of tree-labelling, subgradient updates occur only at a few disagreeing nodes and labels.

However, if the direction of search changes to be used in complex algorithms, it may lead to

updates being required everywhere. In the next section, a method is proposed to improve the

convergence rate while keeping the inexpensive computational cost per iteration.

5.2 Nonlinear projection (Mirror Descent)

Projected subgradient methods provide a very e�cient update per iteration for the MRF dual

problem. However, they su↵er from slow convergence rate and sensitivity to step-sizes. Al-

though the primal-dual gap is used as a mechanism to dynamically adjust the step-size, no im-

proved convergence results follow from this adaptive method. This section develops a weighted

nonlinear project method (as opposed to Euclidean-type projection method) to sharpen the
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theoretical convergence rate and improve practical performance. The method is summarised in

Algorithm 5.2 and its development is presented below.

5.2.1 Problem reparameterisation

The proposed method is an extension of the mirror descent (MD) algorithm introduced by

Nemirovski and Yudin [76], and generalised in [48]. After successfully solving the computer

tomography problem [8], mirror descent has attracted attention in the area of artificial intelli-

gence, machine learning [47] and online optimisation [25]. Beck and Teboulle [4] show that MD

can be viewed as a simple nonlinear subgradient projection, where the Bregman distance [24] is

used in the projection operator instead of the usual Euclidean distance. In this thesis, a method

is proposed based on the idea of nonlinear projection, where the log entropy distance function,

a special class of Bregman distance, is utilised. Furthermore, since the feasible domain of the

dual MRF consist of many disjoint sets, we use the average weighting parameters to combine

the disjoint distances.

Firstly, recall the formulation of the dual LP-MRF:

max
✓2⇥

X

t2T

Et(✓t, xt), where ⇥ =

(

{✓ti}

�

�

�

�

�

X

t2T

✓ti = ✓̂i, 8i 2 I
)

(5.18)

In the standard update (5.5), the subgradient is projected onto the entire feasible set ⇥. The

amount of change depends on a common step-size ⌧k and so is the same at every node in

disagreement. However, ⇥ is an intersection of |I| disjoint subsets. This motivates the spec-

ification of a subset-dependent projection for the disagreement nodes, reflecting the progress

needed for each subset. The expectation is to derive a new projection scheme that should

converge faster than the standard subgradient method. The new scheme allows the projection,

on the corresponding subset, of every disagreement node to have a subset-dependent step-size.

This can be achieved, with the weighted projection scheme, using the iterative updates (5.32)

and subset-dependent step-sizes (5.48) employing the weighting parameters (5.42).

In addition, the key condition for any projection is to maintain the original unary potentials.
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Consider the following reparameterisation that guarantees the feasibility of the unary potentials:

max
⇢2�,�2⇤

F (⇢,�) := max
⇢2�,�2⇤

X

t2T

Et(⇢t.✓̂ + �t, xt) (5.19)

The domains � and ⇤ are the union of the disjoint subsets:

8i 2 I : � :=⌦ �i, ⇤ :=⌦ ⇤i

where each subset is given by:

�i =

(

{⇢ti}

�

�

�

�

�

X

t2T

⇢ti = 1; ⇢ti � 0

)

(5.20a)

⇤i =

(

{�ti}

�

�

�

�

�

X

t2T

�ti = 0

)

(5.20b)

Without ⇢, problem (5.19) is exactly the dual LP-MRF (5.18). The motivation for using ⇢

comes from the fact that, if the exact bound of the search space is known, then the entropic

projection can be much more e�cient than the Euclidean projection [8, 4]. In practice, most

of the unary potentials were found to settle in the range [0, ✓̂]. Furthermore, it will be shown

in Theorem 5.2.9 that, in the worst case, the combination of entropic and Euclidean projection

is better than Euclidean projection alone.

Lemma 5.2.1 The reparameterised dual problem (5.19) is equivalent to the dual LP-MRF

(5.18), where:

• The problem (5.19) is a relaxation of (5.18) and the pair (�,⇤) preserve the original

unary potentials.

• The optimal solutions ✓⇤ of dual LP-MRF can be replaced by a pair of optimal (⇢⇤,�⇤)

that satisfies:
X

t2T

Et(✓t(⇤)) = F (⇢⇤,�⇤) �
X

t2T

Et(✓t)

Proof • First, let us show that the sets � and ⇤ preserve the unary potentials. For any
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arbitrary pair (⇢ 2 �,� 2 ⇤), let ✓ti = ⇢ti.✓̂i + �ti, 8i 2 I then:

8i 2 I :
X

t2T

✓ti =
X

t2T

⇢ti.✓̂i + �ti =

 

X

t2T

⇢ti

!

.✓̂i +

 

X

t2T

�ti

!

= ✓̂i

Therefore, {⇢t.✓̂ + �t} 2 ⇥. Problem (5.19) is a relaxation of (5.18) and is derived from

the fact that we can define a one-to-many mapping between the set ⇥ to the pair (�,⇤),

i.e. for any distribution {✓t} 2 ⇥, an infinite number of distributions {⇢t}k 2 � can be

defined. For each {⇢t}k 2 �, one can compute a corresponding {�t}k, such that:

{�t}k = {✓t}� {⇢t}k.✓̂ )
(

X

t2T

�t
)

k

=
X

t2T

✓t �
(

X

t2T

⇢t.✓̂

)

k

= 0) {�t}k 2 ⇤

Consequently, for any distribution {✓t} 2 ⇥, there exist many pairs ⇢k,�k such that

{✓t} = {⇢t.✓̂ + �t}k where {⇢t}k 2 � and {�t}k 2 ⇤.

• Assume that (⇢̃, �̃) are the optimal solutions of (5.19), i.e.

F (⇢̃, �̃) � F (⇢,�), 8(⇢ 2 �,� 2 ⇤)

Let:

✓̃t = ⇢̃t.✓̂ + �̃t )
X

t2T

✓̃t = ✓̂ ) {✓̃t} 2 ⇥

Since ✓⇤ is the optimal solution of dual LP-MRF, we have:

X

t2T

Et(✓t(⇤)) �
X

t2T

Et(✓̃t) = F (⇢̃, �̃)

However, as shown above, it is always possible to find at least one pair (⇢⇤ 2 �,�⇤ 2 ⇤)

such that:

{✓t(⇤)} = {⇢t(⇤).✓̂ + �t(⇤)}

Using the assumption that (⇢̃, �̃) are the optimal solutions of (5.19), gives:

X

t2T

Et(✓t(⇤)) �
X

t2T

Et(✓̃t) = F (⇢̃, �̃) � F (⇢⇤,�⇤) =
X

t2T

Et(✓t(⇤))

which requires all inequalities to be trictly equal.
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5.2.2 Mirror Descent (MD) setup

It has been shown in [4] that MD is a generalisation of the projected subgradient method,

where the projection is performed on some nonlinear distance functions. One can write the

MD updates as a sequence of the proximal algorithm:

2

4

⇢(k+1)

�(k+1)

3

5 = argmax
⇢2�,�2⇤

8

<

:

+

⌦

F 0(⇢(k)), ⇢
↵

� 1

⌧k
D

�

(⇢, ⇢(k))
⌦

F 0(�(k)),�
↵

� 1

⌘k
D

⇤

(�,�(k))

9

=

;

(5.21)

Since the function F is linear in both variables, and since ⇢ and � are decoupled, the subgradients

with respect to each vector ⇢,� are disjoint. The weighted distances D
�

, D
⇤

and step-sizes ⌧, ⌘

are defined independently to exploit the geometry of each set. Each distance function will be

equipped with a compatible pair of norm and dual norm. Based on the definitions of specialised

norms, one can derive subset-dependent Lipschitz and weighted Lipschitz. The key ingredients

required for the MD method are described next.

Subgradient. A subgradient is chosen such that the computational cost per iteration is as

low as the Euclidean projected subgradient method (5.5). Since F (⇢,�) is linear and the vectors

(⇢,�) are disjoint, the subgradient consists of two independent parts:

Lemma 5.2.2 Let us define a vector:

F 0(⇢,�)
def

= [✓̂.x̄ ; x̄] = [✓̂.{x̄t} ; {x̄t}] (5.22a)

where x̄t = arg min
xt2Xt

h⇢t.✓̂ + �t, xti (5.22b)

Then F 0(⇢,�) is a subgradient of F (⇢,�), i.e. it satisfies the subgradient inequality of concave

function:

8(⇢̃ 2 ��⇢, �̃ 2 ⇤��) : F (⇢̃, �̃)  F (⇢,�) + h✓̂.x̄, ⇢̃� ⇢i+ hx̄, �̃� �i
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Proof By the definition (5.22b), x̄t is not optimal for min
xt2Xt

h⇢̃t.✓̂ + �̃t, xti, i.e.

8t 2 T : min
xt2Xt

h⇢̃t.✓̂ + �̃t, xti  h⇢̃t.✓̂ + �̃t, x̄ti

In addition,

F (⇢̃, �̃) =
X

t2T

min
xt2Xt

h⇢̃t.✓̂ + �̃t, xti 
X

t2T

h⇢̃t.✓̂ + �̃t, x̄ti

F (⇢̃, �̃) 
X

t2T

h

h⇢t.✓̂ + �t, x̄ti+ h✓̂.x̄t, ⇢̃t � ⇢ti+ hx̄t, �̃t � �ti
i

= F (⇢,�) + h✓̂.x̄, ⇢̃� ⇢i+ hx̄, �̃� �i

Subset distance functions and subset norms. MD updates apply subgradient projection

on some nonlinear distance equipped with a compatible norm. The domain � and ⇤ have the

form of the direct product of non-overlapping subsets:

� = �
1

⇥�
2

⇥ ...⇥�|I| ⇤ = ⇤
1

⇥ ⇤
2

⇥ ...⇥ ⇤|I|

Instead of defining one distance measure over the whole domain, giving the same domain as

in the standard projection method, a combination of weighted subset distances is used. The

nonlinear distance functions associated with each subset are defined by:

Di
�

(ui, vi) =  i
�

(ui)�  i
�

(vi)� hr i
�

(vi), ui � vii

Di
⇤

(ui, vi) =  i
⇤

(ui)�  i
⇤

(vi)� hr i
⇤

(vi), ui � vii

The above definitions are based on the Bregman distance in proximal algorithms [51], where  

is a distance generating function (d.g.f) that is required to be 1-strongly convex with respect

to a compatible norm.

Lemma 5.2.3 For each subset, a distance function and its compatible norm are defined as:
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• For the simplex set �i, let:

 i
�

(⇢i) =
X

t2T

⇢ti log ⇢
t
i, if ⇢i 2 �i; else,+1 (5.23a)

In addition, adopting the convention 0 log 0 ⌘ 0,  i
�

is 1-strongly convex with respect to

the l
1

-norm k.k
1

• For the linear constraint ⇤i, let:

 i
⇤

(�i) =
1

2

X

t2T

(�ti)
2, if �i 2 ⇤i; else,+1 (5.23b)

then  i
⇤

is 1-strongly convex with respect to the l
2

-norm k.k
2

The 1-strongly convex proof for the log entropy d.g.f  i
�

can be found in [4, Proposition 5.1].

The proof for the latter statement, strongly convex of (5.23b), can be directly derived from the

strong convexity inequalities of the gradient of  i
⇤

. With the d.g.f defined above, each subset

�i is equipped with a log entropy distance Di
�

and k.k
1

; while the pair (Di
⇤

, k.k
2

) are just

Euclidean settings for each subset ⇤i.

Weighted distances and weighted norms. For each set � and ⇤, consider a weighted

average distance associated of the form:

D
�

(u, v) =
X

i2I

↵i
�

Di
�

(ui, vi) =
X

i2I

↵i
�

⇥

 i
�

(ui)�  i
�

(vi)� hr i
�

(vi), ui � vii
⇤

def

=  
�

(u)�  
�

(v)� hr 
�

(v), u� vi (5.24a)

D
⇤

(u, v) =
X

i2I

↵i
⇤

Di
⇤

(ui, vi) =
X

i2I

↵i
⇤

⇥

 i
⇤

(ui)�  i
⇤

(vi)� hr i
⇤

(vi), ui � vii
⇤

def

=  
⇤

(u)�  
⇤

(v)� hr 
⇤

(v), u� vi (5.24b)

where ↵i
�

,↵i
⇤

> 0 are the weighting parameters which will be optimised in (5.42). The above

weighted distances have the form of Bregman distance with weighted d.g.f:

 
�

(⇢) =
X

i2I

↵i
�

 i
�

(⇢i) and  
⇤

(�) =
X

i2I

↵i
⇤

 i
⇤

(�i) (5.25)
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Each weighted distance also requires a compatible norm, where its weighted d.g.f is 1-strongly

convex with the defined norm. To this end, consider the weighted norms associated with each

weighted d.g.f:

k⇢k
�

=

s

X

i2I

↵i
�

k⇢ik2
1

and k�k
⇤

=

s

X

i2I

↵i
⇤

k�ik2
2

(5.26)

Lemma 5.2.4 Strong Convexity of weighted d.g.f:

• Let  
�

: �! R be the weighted d.g.f defined in (5.25), then  
�

is 1-strongly convex w.r.t

the weighted norm k.k
�

.

• Let  
⇤

: ⇤! R be the weighted d.g.f defined in (5.25), then  
⇤

is 1-strongly convex w.r.t

the weighted norm k.k
⇤

.

Proof The proof works in the same way for both cases, so we omit the su�x � and ⇤ in all

symbols.

hr (u)�r (v), u� vi =
X

i2I

↵ihr i(ui)�r i(vi), ui � vii

�
X

i2I

↵ikui � vik2 (either k.k
1

or k.k
2

) (5.27)

= ku� vk2 (either k.k
�

or k.k
⇤

)

The inequality (5.27) comes from Lemma 5.2.3.

Dual Norm, local Lipschitz and weighted Lipschitz. For each weighted norm, a corre-

sponding conjugate norm can be derived [14]:

k⇢k
�⇤ =

s

X

i2I

k⇢ik21/↵i
�

and k�k
⇤⇤ =

s

X

i2I

k�ik2
2

/↵i
⇤

(5.28)

The definitions of dual norms suggest the forms of the weighted Lipschitz constants as a combi-

nation of the local Lipschitz constants associated with every disjoint subset. The local Lipschitz

constants can be easily computed given the input data:

L
�i

= sup
⇢i2�i

kF 0(⇢i)k1 = |✓̂i| (5.29a)

L
⇤i

= sup
�i2⇤i

kF 0(�i)k2 =
p

|T | (5.29b)
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The subgradient F 0(⇢ti) = ✓̂i.x̄t
i 2 {✓̂i, 0}, thus giving (5.29a). The subgradient F 0(�ti) = x̄t

i

admits binary values {1, 0}. The worst case, of every tree being assigned the same label, results

in (5.29b). With the definitions of local subset-dependent Lipschitz numbers, the average

Lipschitz constants are then given by:

L
�

= sup
⇢2�
kF 0(⇢)k

�⇤ =

s

X

i2I

L2

�i
/↵i

�

(5.30a)

L
⇤

= sup
�2⇤
kF 0(�)k

⇤⇤ =

s

X

i2I

L2

⇤i
/↵i

⇤

(5.30b)

The analytical forms of the average Lipschitz are surprisingly simple once the optimal weighting

parameters are derived. At this point, there are su�cient ingredients to set up the MD method

and examine its convergence properties.

5.2.3 Proximal updates

A subset-dependent step-size projection scheme was motivated in Section 5.2.1. As will be

described, this scheme is derived using the proximal updates with the weighted distance function

(5.24). The subset-dependent step-size arises as the weighting parameters ↵i are combined with

the common step-size ⌧ . The proximal update (5.21) is linear in both ⇢ and �, therefore ⇢(k+1)

and �(k+1) can be computed independently by:

⇢(k+1) = argmax
⇢2�

⇢

h⇢, F 0(⇢(k))i � 1

⌧k
D

�

(⇢, ⇢(k))

�

= argmax
⇢2�

�

⌧kh⇢, F 0(⇢(k))i �  
�

(⇢) + hr 
�

(⇢(k)), ⇢i
 

(5.31a)

�(k+1) = argmax
�2⇤

⇢

h�, F 0(�(k))i � 1

⌘k
D

⇤

(�,�(k))

�

= argmax
�2⇤

�

⌘kh⇢, F 0(�(k))i �  
⇤

(�) + hr 
⇤

(�(k)),�i
 

(5.31b)

Proposition 5.2.5 8i 2 I, the solutions of proximal sequences are given explicitly by:

⇢t(k+1)

i =
⇢t(k)i exp

⇣

F 0(⇢t(k)i ).⌧k/↵i
�

⌘

P

t2T
⇢t(k)i exp

⇣

F 0(⇢t(k)i ).⌧k/↵i
�

⌘ (5.32a)

�t(k+1)

i =
⌘k
↵i
⇤

 

F 0(�t(k)i )�
P

t2T F 0(�t(k)i

|T |

!

(5.32b)
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Proof In this proof, updates for ⇢ are shown, with � derived similarly. The Lagrangian of

(5.31a) is given by:

L(⇢, �) =
X

i2I

"

X

t2T

⇣

⌧k.⇢
t
i.F

0(⇢t(k)i )� ↵i
�

.
⇣

⇢ti log ⇢
t
i �r i

�

(⇢t(k)i ).⇢ti

⌘⌘

+ �i

 

X

t2T

⇢ti � 1

!#

r⇢ti
L = ⌧kF

0(⇢t(k)i )/↵i
�

�
⇣

log ⇢ti � log ⇢t(k)i

⌘

+ �i/↵
i
�

= 0

) log ⇢ti = log ⇢t(k)i + �i/↵
i
�

+ ⌧kF
0(⇢t(k)i )/↵i

�

) ⇢ti =
h

⇢t(k)i exp
⇣

⌧kF
0(⇢t(k)i )/↵i

�

⌘i

exp (�i/↵
i
�

)

r�iL =
X

t2T

⇢ti � 1 = 0

) 1 = exp (�i/↵
i
�

)
X

t2T

h

⇢t(k)i exp
⇣

⌧kF
0(⇢t(k)i )/↵i

�

⌘i

) exp (�i/↵
i
�

) =

"

X

t2T

⇢t(k)i exp
⇣

⌧kF
0(⇢t(k)i )/↵i

�

⌘

#�1

) ⇢ti =
⇢t(k)i exp

⇣

⌧kF 0(⇢t(k)i )/↵i
�

⌘

P

t2T ⇢
t(k)
i exp

⇣

⌧kF 0(⇢t(k)i )/↵i
�

⌘

Applying the same technique leads to the update for �ti in the form (5.32b).

5.2.4 Convergence analysis

The MD iterations (5.32) solve for ⇢ and � independently. Since the two variables are disjoint,

MD can either update them simultaneously or sequentially. By examining the convergence

properties a theoretical justification is provided, showing that sequential updates lead to a

faster convergence rate, i.e. MD updates ⇢ first, until there is no improvement in the dual, then

it switches to update �. In addition, via the optimality bound, the optimal step-size for the

weighted entropic projection on the set � can be computed, as well as an adaptive step-size

strategy for weighted Euclidean projection.

Theorem 5.2.6 The MD method provides a better optimality bound for sequential updates

than for parallel updates. Let F ⇤ def

= F (⇢⇤,�⇤) denote the optimal objective value, and let

F̄ j
i = maxk=i,..,j Fk, then the optimal bound is given by:

F ⇤ � F̄K
1

 L
�

p
2⌦

�

p
k
1

+ L
⇤

p
2⌦

⇤

p
k
2

K
(5.33)
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where ⌦
�

= supD
�

(⇢⇤, ⇢1) and ⌦
⇤

= supD
⇤

(�⇤,�k1+1), with ⇢1,�k1+1 being the starting points

of the entropic and Euclidean projections respectively; k
1

is the number of entropy proximal

updates, k
2

is the iterations count for Euclidean proximal updates; and K = k
1

+ k
2

is the total

number of iterations.

Proof As the sequences ⇢ and � can be computed independently by equations (5.31), the con-

vergence analysis is similar for both cases apart from the di↵erences in the distances, norms and

Lipschitz constants. Adapting the proof of [48, Proposition 1.1], we produce the convergence

estimate for the first sequence; the derivation of the latter sequence follows straightforwardly.

The optimality condition of (5.31a) is given by:

0  h⇢⇤ � ⇢k+1,�⌧kF 0(⇢k) +r k+1

�

�r k
�

i

⌧khF 0(⇢k), ⇢⇤ � ⇢ki  hr k+1

�

�r k
�

, ⇢⇤ � ⇢k+1i+ ⌧khF 0(⇢k), ⇢k+1 � ⇢ki

= D
�

(⇢⇤, ⇢k)�D
�

(⇢⇤, ⇢k+1) +



�D
�

(⇢k+1, ⇢k) + ⌧khF 0(⇢k), ⇢k+1 � ⇢ki
| {z }

�

�

From lemma 5.2.4,  
�

is 1-strongly convex w.r.t k.k
�

, i.e.

 
�

(⇢k+1) �  
�

(⇢k) + hr k
�

, ⇢k+1 � ⇢ki+ 1

2
k⇢k+1 � ⇢kk2

�

It follows that:

�  ⌧khF 0(⇢k), ⇢k+1 � ⇢ki � 1

2
k⇢k+1 � ⇢kk2

�

 ⌧kkF 0(⇢k)k
�⇤.k⇢k+1 � ⇢kk

�

� 1

2
k⇢k+1 � ⇢kk2

�

(5.34a)

 max
s

⇢

⌧kkF 0(⇢k)k
�⇤.s�

1

2
.s2
�

(5.34b)

=
⌧ 2kkF 0(⇢k)k2

�⇤
2

(5.34c)

Replacing k⇢k+1�⇢kk
�

in equation (5.34b) by s, and maximising over s, gives (5.34a)  (5.34b).

The maximum (5.34c) is obtained at s = ⌧kkF 0(⇢k)k
�⇤. In addition, the subgradient inequality

of the concave function F (⇢) gives:

⌧k
�

F (⇢⇤)� F (⇢k)
�

 ⌧khF 0(⇢k), ⇢⇤ � ⇢ki

⌧k(F
⇤ � F k)  D

�

(⇢⇤, ⇢k)�D
�

(⇢⇤, ⇢k+1) +
⌧ 2kkF 0(⇢k)k2

�⇤
2

(5.35)
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Summing up the inequality (5.35) over k = 1, ..., k
1

and taking into account the inequalities

D
�

(⇢⇤, ⇢k1+1) � 0 and F̄ k1
1

� F (⇢k), yields:

k1
X

k=1

⌧k
�

F ⇤ � F̄ k1
1

�

 D
�

(⇢⇤, ⇢1) +
1

2

k1
X

k=1

⌧ 2kkF 0(⇢k)k2
�⇤

F ⇤ � F̄ k1
1


2⌦

�

+ L2

�

⇣

Pk1
k=1

⌧ 2k

⌘

2
Pk1

k=1

⌧k
(5.36)

where L
�

is the average Lipschitz constant (5.30a). Minimising the RHS of (5.36) w.r.t. {⌧k},

leads to the optimal bound:

F ⇤ � F̄ k1
1


p
2⌦

�

L
�p

k
1

with the constant step-size:

⌧ =

p
2⌦

�

L
�

p
k
1

(5.37a)

Applying the same technique, leads to the following optimal constant step-size for the weighted

Euclidean:

⌘ =

p
2⌦

⇤

L
⇤

p
k
2

(5.37b)

Using the optimal constant step-sizes, the inequalities (5.35) can be shown to be valid for both

types of projected iteration:

F ⇤ � F k  D
�

(⇢⇤, ⇢k)

⌧
� D

�

(⇢⇤, ⇢k+1)

⌧
+
⌧kF 0(⇢k)k2

�⇤
2

for k = 1, ..., k
1

(5.38a)

F ⇤ � F k  D
⇤

(�⇤,�k)

�
� D

⇤

(�⇤,�k+1)

�
+
�kF 0(�k)k2

⇤⇤
2

for k = k
1

+ 1, ..., K (5.38b)

Summing up (5.38) over K iterations gives:

K(F ⇤ � F̄K
1

) 
K
X

k=1

(F ⇤ � Fk) 
D

�

(⇢⇤, ⇢1)

⌧
+

D
⇤

(�⇤,�k1+1)

⌘
+

k
1

⌧L2

�

+ k
2

⌘2L2

⇤

2

F ⇤ � F̄K
1

 ⌦
�

K⌧
+

⌦
⇤

K⌘
+

1

2

✓

k
1

K
⌧L2

�

+
k
2

K
⌘L2

⇤

◆

(5.39)

If the updates are done in parallel for both ⇢ and � at every iteration, then the convergence
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analysis is similar with the iteration count K = k
1

= k
2

. In such a case,

(5.39)
| {z }

sequential bound

<
⌦

�

K⌧
+

⌦
⇤

K⌘
+

1

2
(⌧L2

�

+ ⌘L2

⇤

)
| {z }

parallel bound

The above inequality shows that sequential updates provide a better optimality bound compared

to parallel updates. Substituting the optimal step-size strategies (5.37) into Equation (5.39)

results in (5.33):

F ⇤ � F̄K
1

 L
�

p
2⌦

�

p
k
1

+ L
⇤

p
2⌦

⇤

p
k
2

K

The unknown maximum weighted distances ⌦
�

,⌦
⇤

can be written as the weighted combinations

of the maximum distance of each disjoint subset:

⌦
�

=
X

i2I

↵i
�

⌦i
�

and ⌦
⇤

=
X

i2I

↵i
⇤

⌦i
⇤

where each distance quantity i 2 I denotes the maximum distance from the starting point to

the optimal point, i.e.

⌦i
�

= supDi
�

(⇢⇤i , ⇢
(1)

i ) and ⌦i
⇤

= supDi
⇤

(�⇤i ,�
(k1+1)

i )

Whilst the quantity

⌦i
⇤

= sup
1

2
k�⇤i � �

(k1+1)

i k2
2

(5.40a)

can only be estimated based on the primal-dual gap, the maximum simplex subset can be

computed analytically.

Lemma 5.2.7 For the choice of ⇢t(1)i = 1

|T | , the following simplex bound exists on the subset

�i:

⌦i
�

= log |T | (5.40b)

Proof Using the d.g.f definition (5.23a) for all ⇢ti 2 �i:

Di
�

(⇢⇤i , ⇢
(1)

i ) =
X

t2T

⇢t(⇤)i log
⇢t(⇤)i

⇢t(1)i

=
X

t2T

⇢t(⇤)i log ⇢t(⇤)i +

 

X

t2T

⇢t(⇤)i

!

log |T |  log |T |
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At this point, the information about the local Lipschitz (5.29) and the maximum subset distance

(5.40) is known, the remaining unknown quantities in the optimality bound are the weighting

parameters ↵i
�

and ↵i
⇤

. The optimal values of these weighting parameters are those which

minimise the RHS of (5.33).

Lemma 5.2.8 Let an arbitrary weighted Lipschitz constant be defined as L =
p

P

i2I L2

i /↵
i

and an arbitrary weighted distance defined by ⌦ =
P

i2I ↵
i⌦i. The quantity L

p
⌦ is then

minimised by:

min
{↵i}

L
p
⌦ =

X

i2I

Li

p

⌦i (5.41)

at

8i 2 I : ↵i =
Li

p
⌦i
h

P

i2I Li

p
⌦i
i (5.42)

Furthermore, at the optimal {↵i}, we have:

⌦ = 1 (5.43)

and

L =
X

i2I

Li

p
⌦i (5.44)

Proof Since all quantities are positive, it can be seen that:

argmin
{↵i}

L
p
⌦ = argmin

{↵i}
L2⌦

Minimising L2⌦, we obtain:

8i 2 I : ↵i =
Li

p
⌦

L
p
⌦i

(5.45a)
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Thus,

⌦ =
X

i2I

↵i⌦i =

p
⌦

L
X

i2I

Li

p

⌦i

)
p
⌦ =

1

L
X

i2I

Li

p

⌦i (5.45b)

) L =
1p
⌦

X

i2I

Li

p

⌦i (5.45c)

Substituting (5.45b) and (5.45c) into (5.45a), gives:

↵i =
Li

p
⌦i
h

P

i2I Li

p
⌦i
i , ⌦ = 1 , L =

X

i2I

Li

p
⌦i

then (5.41) is followed.

The next theorem states the explicit optimality bound and re-establishes the fact that sequential

updates are faster than parallel updates. In addition, it will be shown that the Mirror Descent

method with weighted projection provides a much lower optimality bound compared to the

standard projected subgradient method.

Theorem 5.2.9 8i 2 I, let ⇢t(1)i = 1

|T | ,�
t(k1+1)

i = 0 then we have the following optimality

bound:

F ⇤ � F̄ 
p
k
1

K

p
2
X

i2I

|✓̂i|
p

log |T |+
p
k
2

K

X

i2I

k�⇤i k2
p

|T | (5.46)

where F̄ = maxk=i,..,K Fk. Furthermore, this bound is smaller than:

1. Parallel Mirror Descent updates.

2. Weighted Euclidean Projection updates (without entropic projection).

3. Standard Euclidean Projection.

Proof From the Theorem 5.2.6 and Lemma 5.2.8, we have:

F ⇤ � F̄ 
p
k
1

K

p
2
X

i2I

L
�i

q

⌦i
�

+

p
k
2

K

p
2
X

i2I

L
⇤i

q

⌦i
⇤

(5.47a)
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1. If parallel updates were used, then k
1

= K and k
2

= K, resulting in:

(5.47a) <
1p
K

p
2
X

i2I

L
�i

q

⌦i
�

+
1p
K

p
2
X

i2I

L
⇤i

q

⌦i
⇤

Substituting the definitions of maximum distance (5.40) and Lipschitz (5.29) of individual

subsets into (5.47a) leads to the optimal bound (5.46):

F ⇤ � F̄ 
p
k
1

K

p
2
X

i2I

|✓̂i|
p

log |T |+
p
k
2

K

X

i2I

k�⇤i k2
p

|T |

2. If only weighted Euclidean projection was used, the optimality bound has the form:

F ⇤ � F̄  1p
K

X

i2I

k✓̂i + �⇤i k2
p

|T | (5.47b)

In the worst case, ✓t(⇤)i = ✓̂i + �t(⇤)i /2 [0, ✓̂i], i.e. �ti needs to search over the full domain

[0, ✓̂i] plus the additional domain [✓̂i, ✓̂i + �t(⇤)i ], giving:

(5.47b) ⌘ 1p
K

X

i2I

|T ||✓̂i|+
p

|T |k�⇤i k2 >
p
k
1

K

p
2
X

i2I

|✓̂i|
p

log |T |+
p
k
2

K

X

i2I

k�⇤i k2
p

|T |

3. In the worst case, the convergence rate of the standard Euclidean projection (5.11) is

given by:

F (✓⇤)� F (✓̄) 

r

⇣

P

i2I sup k✓
(1)

i � ✓⇤i k22
⌘

|I||T |
p
K

=

p

|T |p
K

v

u

u

t

 

X

i2I

k✓̂i + �⇤i k22

!

|I|

(5.47c)

This bound is greater than (5.47b) due to the Cauchy-Schwarz inequality:

 

X

i2I

k✓̂i + �⇤i k22

!

|I| �
 

X

i2I

k✓̂i + �⇤i k2

!

2

Therefore, in the worst case, the weighted MD method provides the fastest convergence

rate:

(5.46) < (5.47b)  (5.47c)
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5.2.5 Implementation

In addition to the improved convergence rate, the MD method also preserves the e�cient

implementation properties of the standard Euclidean projection method (Corollary 5.1.4 and

5.1.5). As before, it is only necessary to allocate the memory to store the tree collection

{✓t}, 8t 2 T , and the updates for the MD sequence are only required at a few disagreeing nodes

and labels. This section demonstrates this fact by deriving the explicit MD updates as stated

in Proposition 5.2.5. The remaining quantities needed to define in the updates (5.32a),(5.32b)

are ⌧k/↵i
�

and ⌘k/↵i
⇤

. Using Equations (5.29), (5.37), (5.40), (5.42), (5.43) and (5.44), we have:

⌧k
↵i
�

=

p
2⌦

�

↵i
�

L
�

p
k
=

p

2⌦i
�

L
�

L
�i
L

�

p
k
=

p

2 log |T |
|✓̂i|
p
k

(5.48a)

⌘k
↵i
⇤

=

p
2⌦

⇤

↵i
⇤

L
⇤

p
k
=

p

2⌦i
⇤

L
⇤

L
⇤i
L

⇤

p
k
=

p

2⌦i
⇤

p

|T |
p
k

def

=
|E(✓̂, x(k))� F (✓(k))|

Lk

p

|T |k
(5.48b)

For the entropic projection update, the exact step-size (5.48a) can be computed. However,

for the weighted Euclidean update, one needs a heuristic to estimate the distance between the

optimal �⇤ and the starting point �0. In this case, the current duality gap, as described in

Section 5.1.3, is used. Unlike the adaptive step-size of the standard subgradient method (5.16),

which depends on the whole distance, the weighted step-size (5.48b) only depends on the subset

distance ⌦i of the nodes in disagreement. The duality gap should therefore be distributed evenly

to all inconsistent nodes. At each iteration, if Lk denotes the number of inconsistent nodes,

then the weighted adaptive step-size is naturally defined in the final expression of (5.48b).

Substituting (5.48) into (5.32) gives the explicit MD updates:

⇢t =
✓t(k)i

X

t2T

✓t(k)i

, !t = sign(✓t(k)i .x̄t(k)
i )

p

2 log |T |/k , ⇢t =
⇢t exp(!t)

X

t2T

⇢t exp(!t)

✓t(k+1)

i = ⇢t
 

X

t2T

✓t(k)i

!

, for k < k
1

(5.49a)

⌘ =
|E(✓̂, x(k))� F (✓(k))|

Lk

p

|T |k

✓t(k+1)

i = ✓t(k)i + ⌘

 

x̄t(k)
i �

P

t2T x̄t(k)
i

|T |

!

, for k � k
1

(5.49b)
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Due to the special form of the binary solutions x̄t(k), it is straightforward to verify that the

above MD updates only take place at the inconsistent nodes and labels. Furthermore, the

memory requirement is no more than in the standard Euclidean updates (5.5). In the entropy

sequence (5.49a), since the tree potentials ✓ti are stored, and since each single variable ⇢t(k)i can

be derived from the potentials, i.e.
✓
t(k)
iP

t2T ✓
t(k)
i

, the full vector ⇢ need not be stored. As a result, it

is only necessary to store 2⇥ |T | additional temporary parameters ⇢t and !t in memory, which

requires a negligible amount of additional memory. In the weighted Euclidean sequence, �ti is

implicitly included in the potentials update (5.49b).

Switching criteria. An intuitive idea behind the switching criteria from entropy updates to

Euclidean updates is based on the stability of the primal dual gap. When the entropy projected

sequence finds a sub-optimal solution, the dual objective function will not improve further under

entropy updates. Thus, the duality gap becomes stable. One can define a switching point when

there is evidences of stability of the duality gap. However, subgradient type methods often

show fluctuations in the objective function values, and so the primal dual gap may exhibit

a corresponding zigzag behaviour. It may, therefore, take a substantial number of iterations

before one can detect the stability of the duality gap. On the other hand, an important feature

of the dual decomposition method for the MRF problem is that, as the method converges,

the number of nodes in disagreement decreases. This observation works well in practice as no

further decrease in the number of disagreement nodes after a number of iterations indicates

evidence of local convergence. We define a value � < 10 as a threshold after which to switch to

Euclidean updates if there is no decrease in the number of disagreement nodes after � iterations.

5.3 Experiments

In order to demonstrate the e↵ectiveness of our method, experimental results with synthetic

data on graph and an image segmentation problem are presented. We utilise the Undirected

Graphical Models (UGM) Matlab package [93] to implement the proposed methods. In all

experiments, we apply three methods: TreeReweighted Belief Propagation (TRBP), Mirror

Descent (MD) with weighted distance function and the standard projected SubGradient (SG).
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Algorithm 5.2: MRF Mirror Descent method x MD(✓̂)

Define a spanning tree collection {✓t}, t 2 T ; each edge is covered exactly once;
Define the index set I (4.8);
Set the switching threshold � < 10;
Set switch = false;

Set ✓t(1)i = ✓̂i/|T |;
for k = 1, ..., K do

for t 2 T do
Compute x̄t(k) ! BeliefPropagation(✓t(k))

Find the number of disagreement nodes Lk;
if Lk � Lk�1

then
no-improvement = no-improvement + 1

else
no-improvement = 0

if no-improvement > � then
switch = true

for i 2 I do

Let update =
P

t2T x̄t(k)
i ;

if 0 < update < |T | then
if switch = false then

Update the potentials ✓(k+1) by (5.49a)

else
Update the potentials ✓(k+1) by (5.49b)

Return x(K);
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Figure 5.1: Synthetic data

TRBP is a state-of-the-art method in MRF opitmisation however the global convergence are

not guaranteed. Nevertheless, it is a standard practice to compare TRBP with newly developed

method. In the provided UGM package, TRBP only returns the primal objective function value,

while our implemented MD and SG provide both primal and dual objective function values.

Synthetic data. In the synthetic experiments, we use a grid graph of size 100 ⇥ 100 and 5

labels. For the Potts model, ✓a,i was drawn from U(�1,+1), while ✓ab,ij = !ab ⇤ I(i = j) and

!ab = N (0, 1). For the uniform model, values from U(0, 1) were assigned to the unary potentials,

and values from N (0, 1) ⇤ U(0, 1) for the pairwise potentials. The switching threshold was set

to � = 5. Figures 5.1(a) shows the primal-dual gap as the algorithms progress. The TRBP
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(a) Corrupted image (b) Segmented image

Figure 5.2: Image segmentation

technique only computes a primal energy at each iteration and is shown for preference. The SG

and MD methods compute a dual value and approximate a corresponding primal energy at each

iteration. By duality theorem 4.3.1, the optimal energy is achieved when the primal-dual gap

vanishes. In addition, as the primal-dual gap decreases there are less disagreement nodes and

thus the number of disagreement nodes converges to zero, as shown in Figure 5.1(b). The switch

to Euclidean updates occurs between iterations 20 and 25. All presented methods converge

eventually, where MD outperforms SG significantly and obtains the optimal solution slightly

before the TRBP method. In the Uniform model (Figure 5.1(c)), the switch to Euclidean

updates does not occur as the entropy sequence is su�cient to compute the optimal labelling.

Segmentation problem. The segmentation problem aims to allocate every pixel to the best

corresponding label, see Figure 5.2. There are 4 input labels: white, blue, red and green. The

unary potentials are defined by the cost to assign a label l 2 L to a pixel I(a), for example,

one way of defining this cost is:

✓a(xa = l) = � log ⇢(I(a)|a = l) 8a 2 V, 8l 2 L

where ⇢(.) is a known probability distribution. The pairwise potentials are computed to penalise

the di↵ering label assignment of neighbouring pixels,

✓ab(xa = l, xb = k) = exp

✓

� |I(a)� I(b)|
�2

◆

.
1

kl � kk .(l 6= k) 8ab 2 E, 8l, k 2 L
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Figure 5.3: Image segmentation: convergence properties

where (l 6= k) = {0, 1} and � corresponds to the level of noise in the image. Figures 5.3(a) and

5.3(b) demonstrate the performance of the three methods. The switching step occurs between

the fifteenth and twentieth iteration. Using combination of entropy and Euclidean sequence of

the MD method to recover the optimal solution at around the twenty-fifth iteration.



Chapter 6

Multilevel optimisation for computer

vision

In the previous chapters, we have developed specialised algorithms to solve two types of relax-

ations in image processing. In the first, we solve the discretised constrained image registration

problem using the Sequential Quadratic Programming algorithm with a dimensional reduction

technique. Adding constraints is one approach to remove undesirable solutions to ill-posed

problems. The second type of relaxation is to convexify the registration problem using the

Markov Random Field (MRF) model [31]. MRF is a popular model in computer vision, image

and signal processing [65], machine learning and artificial intelligence. The original discrete

MRF problem is NP hard and approximations are essential for computing a suboptimal solu-

tion. One popular approach is based on the linear programming (LP) relaxation (LP-MRF).

However, due to the size of images, LP-MRF is intractable for standard LP solvers. This has

led to the dual decomposition of LP-MRF and the development of first order methods (FOM)

that exploit the structure of the dual LP-MRF. In Chapter 5, we propose a nonlinear weighted

projection method based on mirror descent to accelerate the performance of standard FOMs

for the dual LP-MRF. Experimental results on synthetic data and an segmentation problem

show promising performance.

The above two methods take into account the image structure at a certain level of discretisation.

Both the SQP algorithm (even incorporating dimensional reduction), and mirror descent (with

weighted projection) cease to be of practical use when considering applications to very high

119
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dimensional problems. To overcome this di�culty, we introduce a novel approach employing

di↵erent levels of discretisation for the optimisation solver. In order to reduce the computational

e↵ort needed for large problems, we propose to use low-cost steps (from a coarse discretised

version of the problem). These replace some of the high cost iterations needed by the finely (or,

more accurately) discretised version of the original problem, whilst ensuring global convergence.

Furthermore, a coarse approximation of a finely discretised image problem could be seen as a

relaxation to the problem, i.e. the coarse approximation smooths the ill-conditioned problem

and reduces the non-uniqueness of solutions to the problem. As the result, using a solution of a

coarse model in the fine model expects to yield an improvement step towards the true solution

of the original problem.

An image problem takes infinite-dimensional images as input data. It is a common practice

to discretise these images, then formulate and solve the corresponding finite-dimensional op-

timisation problem. The levels of discretisation lead to various finite-dimensional problems.

High-(accuracy)-level discretisation provides a (approximately) true representation of the im-

age problem but involves large data and, consequently, is computationally expensive and ill-

conditioned. Low-(accuracy)-level discretisation experiences a loss in details of the images.

However, it benefits from a low dimensional and smoother optimisation problem that can be

relatively inexpensive to compute.

The multilevel approach is not new in image processing. Indeed, multilevel techniques for dense

image registration [38], parametric registration [94] and Markov Random Fields [57] propose

hierarchical discretisations for the problem where every level preserves the original structure.

All these methods employ the solution of a coarse discretised problem as an initial guess for the

finer optimisation problem. However, there is no established result concerning the relationship

between levels of discretisation. The e↵ect of utilising coarse models on the convergence of the

overall algorithm have not been fully understood or studied.

In this chapter, we develop a general multilevel optimisation framework that employs hierarchi-

cal discretisations of an image problem. The proposed method iterates between fine and coarse

levels, we establish the inter-relationship between levels of discretisations using the definition

of first order coherence. The new algorithm is based on the proximal gradient method that can

handle convex problems with simple constraints and simple nonsmooth regularisers.
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6.1 Background

It is often possible to exploit the structure of large scale optimisation models to develop algo-

rithms with lower computational complexity. A noteworthy example is the composite convex

optimisation problem that consists of the minimisation of the sum of a smooth convex function

and a simple non-smooth convex function. For a general (in contrast to simple) non-smooth

convex function, the subgradient algorithm converges at a rate of O(1/
p
k), where k is the

iteration number. However, if one assumes that the non-smooth component is simple enough

such that the proximal projection step [6, 79] can be performed in closed form, then the con-

vergence rate for function values can be improved to O(1/k2). Composite convex optimisation

models arise often in a wide range of applications in computer science (e.g. machine learning),

statistics (e.g the lasso problem), and engineering (e.g. signal processing), to name a few.

In addition to the composition of the objective function, many of the applications described

above share another common structure. The fidelity in which the optimisation model captures

the underlying application can often be controlled. Typical examples include the discretisation

of partial di↵erential equations in computer vision and optimal control [12]; the number of

features in machine learning applications [105]; the number of states in a Markov Decision

Processes [83]. Indeed, whenever a finite dimensional optimisation model arises from an infinite

dimensional model, it is straightforward to define a hierarchy of optimisation models. In many

areas it is common to take advantage of this structure by solving a low fidelity (coarse) model

and using the solution as the starting point in the high fidelity (fine) model (see e.g. [38, 57] in

computer vision). In this chapter, we adopt an optimisation point of view to take advantage of

a hierarchy of models in a consistent manner for solving certain composite convex optimisation

problems. In contrast to most multilevel methods in computer vision, we do not use the coarse

model for the computation of promising starting points but rather for the computation of search

directions.

The algorithm we propose is similar to the Iterative Shrinkage Thresholding Algorithm (ISTA)

class of algorithms. There is a substantial amount of literature related to this class of algorithms

and we refer the reader to [6] for a review of recent developments. The main di↵erence between

ISTA and the algorithm we propose in this chapter, is that we use both gradient information

and a coarse model in order to compute a search direction. This modification of ISTA for the
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computation of the search direction is akin to multigrid algorithms developed recently by a

number of authors. There exists a considerable number of papers exploring the idea of using

multigrid methods in optimisation [12]. However the large majority of these are concerned

with solving the linear system of equations to compute a search direction using linear multigrid

methods (both geometric and algebraic). A di↵erent approach, and the one we adopt in this

chapter is the class of multigrid algorithms proposed in [73] and further developed in [64]. The

framework proposed in [73] was used for the design of a first order unconstrained line search

algorithm in [112], and also related to a trust region multilevel method in [35]. The trust region

approach was extended to deal with box constraints in [34]. The general constrained case was

discussed in [73], but no convergence proof was given. Numerical experiments with multigrid

are encouraging and a number of numerical studies have appeared so far, see e.g. [33, 74]. The

algorithm we develop combines elements from ISTA and the multigrid framework developed in

[73] and [112], and we call it Multilevel Iterative Shrinkage Thresholding Algorithm (MISTA).

We prefer the name multilevel to multigrid since there is no notion of grid in our algorithm.

Past work in multilevel optimisation is largely concerned with with models where the under-

lying dynamics are governed by di↵erential equations and convergence proofs exist only for

the smooth case and with simple box or equality constraints. Our main contribution is the

extension of the multigrid framework for convex but possibly non-smooth problems with cer-

tain types of constraints. In particular, we allow for general convex constraints, as long as the

proximal projection step is computationally feasible. Apart from the work in [34] that address

simple box constraints, the general case has not been addressed before. Existing approaches

assume that the objective function is twice continuously di↵erentiable, while the the proximal

framework we develop in this chapter allows for a large class of non-smooth optimisation mod-

els. In addition, our convergence proof is di↵erent from the one given in [73] and [13] in that we

do not assume that the algorithm used in the finest scale performs one gradient step after every

coarse correction. Furthermore, our proof is based on analysing the whole sequence generated

by the algorithm and does not rely on asymptotic results as in previous works [35, 112]. We

show that the multilevel method using ISTA steps and coarse corrections is a contraction on

the optimal vector with a linear convergence rate. This is the same convergence rate as ISTA.

An alternative convergence analysis for ISTA is based on the reduction of function values. It

has been studied in the development of FISTA [6], an accelerated version of ISTA. In term of

the function value convergence, ISTA has a rate of O(1/k), whilst FISTA has an improved rate
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of O(1/k2). The analysis of FISTA using the multilevel framework and fuction values reduction

is technically more challenging currently under investigation. However, we will describe both

variants of MISTA, namely MISTA-I (using ISTA steps with coarse correction) and MISTA-

F (using FISTA steps with coarse correction). Despite the potentially theoretical di↵erences

between MISTA-I and FISTA, our numerical experiments show that our methods outperform

both ISTA and FISTA.

6.2 Composite optimisation & quadratic approximations

In this Section we introduce our notation and the main assumptions of the proposed algorithm.

We also describe the role of quadratic approximations in the design of algorithms for composite

optimisation. The main di↵erence between MISTA and existing algorithms such as ISTA and

FISTA is that we do not use a quadratic approximation in all iterations. Instead we use a coarse

model approximation. We describe the construction of the coarse model in Section 6.3.2. In

Section 6.3.4 we provide a motivating example to explain why a quadratic approximation may

be inferior to a coarse approximation for certain classes of problems.

6.2.1 Notation and problem description

We will assume that the optimisation model can be formulated using only two levels of fidelity,

a fine model and a coarse model. We use h and H to indicate whether a particular quan-

tity/property is related to the fine and coarse model respectively. It is easy to generalize the

algorithm to more levels but with only two levels the notation is simpler. The fine model is the

convex composite optimisation model,

min
xh2⌦h

n

Fh(x) , fh(xh) + �gh(xh)
o

, (6.1)

where ⌦h ⇢ Rh is a closed convex set, fh is a smooth function with a Lipschitz continuous

gradient, and gh : Rh ! R is an extended value convex function that is possibly non-smooth.

When gh is a norm then the scalar � � 0 is a regularisation parameter, and so the non-smooth

term encourages solutions that are sparse. Sparsity is a desirable property in many applications.

The algorithm we propose does not only apply when gh is a norm. But if it is a norm, then
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some variants of our algorithm make use of the dual norm associated with gh and so without

loss of generality we assume that � is given (in general it can be taken to be 1). We use Lh

to denote the Lipschitz constant of the gradient of fh. The incumbent solution at iteration

k in resolution h is denoted by xh,k. We use fh,k and rfh,k to denote fh(xh,k) and rfh(xh,k)

respectively.

6.2.2 Quadratic approximation and ISTA

The prevailing way to update xh,k is to perform a quadratic approximation of the smooth

component of the objective function, and then solve the following proximal subproblem,

xh,k+1

= arg min
y2⌦h

fh,k + hrfh,k, y � xh,ki+
Lh

2
kxh,k � yk2 + g(y).

Note that the above can be rewritten as follows,

xh,k+1

= arg min
y2⌦h

Lh

2

�

�

�

�

y �
✓

xh,k �
1

Lh

rfh,k
◆

�

�

�

�

2

+ g(y).

When the Lipschitz constant is known, ISTA keeps updating the solution vector by solving

the optimisation problem above [6]. Another example is the classical gradient projection

algorithm[49], in this case the proximal projection step is given by,

min
y2Rh

Lh

2

�

�

�

�

y �
✓

xh,k �
1

Lh

rfh,k
◆

�

�

�

�

2

+ I
⌦h
(y),

where I
⌦h

is the indicator function on ⌦h. For later use we define the generalized proximal

operator as follows,

proxh(x) = arg min
y2⌦h

1

2
ky � xk2

2

+ g(y). (6.2)

Our algorithm uses the step-size di↵erently than ISTA/FISTA and so in proximal steps the

step-size does not appear explicitly in the definition of the proximal projection problem. Our

proximal update step is given by,

xh,k+1

= xh,k � sh,kDh,k (6.3)
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where the gradient mapping Dh,k is defined as follows,

Dh,k ,


xh,k � proxh(xh,k �
1

Lh

rfh,k)
�

(6.4)

Updating the incumbent solution in this manner is reminiscent of classical gradient projection

algorithms [91].

When gh is a norm we will also make use of the properties of the dual norm proximal operator

defined as follows,

proj⇤h(x) = argmax
y
� 1

2
ky � xk2

2

� kxk2

s.t. g⇤(y)  �,

where g⇤ is the dual norm of g. Using Fenchel duality (see Lemma 2.3 in [98]) it can be shown

that,

proxh(x) = x� proj⇤h(x). (6.5)

The relationship above is used to compute the proximal projection step e�ciently.

6.3 Multilevel ISTA (MISTA)

Rather than always construct a quadratic approximation, we propose to construct an approx-

imation with favorable computational characteristics for at least some iterations. Favorable

computational characteristics in the context of optimisation algorithms may mean reducing

the dimensions of the problem and possibly increasing the smoothness of the model. This

approach facilitates the use of non-linear (but still convex) approximations around the cur-

rent point. The motivation behind this class of approximations is that the global nature of

the approximation would reflect global properties of the model that would yield better search

directions. A motivating example that makes this idea concrete is given in Section 6.3.4.

There are three components to the construction of the proposed algorithm: (a) specification

of the restriction/prolongation operators that transfer information between di↵erent levels; (b)

construction of an appropriate hierarchy of models; (c) specification of the algorithm (smoother)

to be used in the coarse model. Below we address these three components in turn.
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6.3.1 Information transfer between levels

Multilevel algorithms require information to be transferred between levels. In the proposed

algorithm we need to transfer information about the incumbent solution, proximal projection

and gradient around the current point. At the fine level the design vector xh is a vector in Rh.

At the coarse level the design vector is a vector in RH and H < h. At iteration k, the proposed

algorithm projects the current solution xh,k from the fine level to coarse level to obtain an initial

point for the coarse model denoted by xH,0. This is achieved using a suitably designed matrix

(IHh ) as follows,

xH,0 = IHh xh,k.

The matrix IHh 2 RH⇥h, is called a restriction operator and its purpose is to transfer information

from the fine to the coarse model. There are many ways to define this operator and we will

discuss some possibilities for machine learning problems in Section 6.5. This is a standard

technique in multigrid methods both for solutions of linear and nonlinear equations and for

optimisation algorithms [20, 73]. In addition to the restriction operator we also need to transfer

information from the coarse model to the fine model. This is done using the prolongation

operator IhH 2 Rh⇥H . The standard assumption in multigrid literature [20] is to assume that

IHh = c(IhH)
>, where c is some positive scalar. With out loss of generality we will assume that

c = 1.

6.3.2 Coarse model construction

The construction of the coarse models in multilevel algorithms is a subtle process. It is this pro-

cess that sets apart rigorous multilevel algorithms with performance guarantees from heuristic

approaches (e.g. kriging methods) used in the engineering literature. A key property of the

coarse model is that locally (i.e. at the initial point of the coarse model, xH,0) the optimality

conditions of the two models match. In the unconstrained case this is achieved by adding a

linear term in the objective function of the coarse model [35, 73, 112]. In the constrained case

the linear term is used to match the gradient of the Lagrangian [73]. However, the theory for

the constrained case of multilevel algorithms is less developed. Here we propose an approach

that contains the unconstrained approach in [73] and the box-constrained case [34] as special

cases. In addition we are able to deal with the non–smooth case and through the proximal step
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we address the constrained case.

In the case where the optimisation model is non–smooth there many ways to construct a coarse

model. We propose three ways to address the non–smooth part of the problem. All three

approaches enjoy the same convergence properties, but depending on the application some

coarse models may be more appropriate since they make di↵erent assumptions regarding the

non–smooth function and the prolongation/restriction operators. The three approaches are:

(a) smoothing the non–smooth term, (b) a reformulation using dual norm projection, (c) non–

smooth model with a projection using the indicator function. The coarse model in all three

approaches has the following form,

FH(xH) , fH(xH) + gH(xH) + hvH , xHi. (6.6)

We assume that given the function fh, the construction of fH is easy (e.g. varying a descreti-

sation parameter or the resolution of an image etc.) and has Lipschitz continuous gradients.

The second term in (6.6) represents information regarding the non–smooth part of the original

objective function, and the third term ensures the fine and coarse model are coherent (in the

sense of Lemmas 6.3.1-6.3.3). We will denote the smooth part of the objective function with,

�H(xH) , fH(xH) + hvH , xHi.

Clearly, the di↵erentiable part of the objective has the same Lipschitz continuous gradient as

fH ,

kr�H(xH)�r�H(yH)k  LHkxH � yHk.

Apart from fH , the other two terms in (6.6) vary depending on which of the three approaches

is adopted. We discuss the three options in decreasing order of generality below.

The smooth coarse model.

The approach that requires the least assumptions about the model is to construct a coarse

model by smoothing the non–smooth part of the objective function. In other words, the second

term in (6.6) is again a reduced order version of gh but is also smooth. In the application

we consider the non-smooth term is usually a norm or an indicator function. It is therefore
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easy to construct a reduced order version of gh, and there exists many methods to smooth a

non–smooth function [7]. Our theoretical results do not depend on the choice of the smoothing

method. We construct the last term in (6.6) with,

vH = LHI
H
h Dh,k � (rfH,0 +rgH,0). (6.7)

When the coarse model is smooth, then LH corresponds to the Lipschitz constant of (6.6).

Lemma 6.3.1 Suppose that fH and gH have Lipschitz continuous gradients, and that the coarse

model associated with (6.1) is given by,

min
xH

fH(xH) + gH(xH) + hvH , xHi, (6.8)

where vH is given by (6.7), then,

DH,0 = IHh Dh,k. (6.9)

Proof Using the definitions of the gradient mapping in (6.4) and the projection operator

(instead of the prox operator) for the smooth objective function of the coarse level, we obtain:

DH,0 = xH,0 � proxH(xH,0 �
1

LH

rFH,0)

= xH,0 � arg min
z2RH

1

2
kz �

✓

xH,0 �
1

LH

rFH,0

◆

)k2

=
1

LH

rFH,0

=
1

LH

(rfH,0 +rgH,0 + vH)

= IHh Dh,k,

where in the second equality we used the fact that the objective function in (6.8) is smooth

and so any constraints in the form of xH 2 ⌦H can be incorporated in gH .

The condition in (6.9) is referred to as the first order coherent condition. It ensures that at

if xh,k is optimal in the fine level, then xH,0 = IHh xh,k is optimal in the coarse model. This

property is crucial in establishing convergence of multilevel algorithms. The smooth case was

discussed in [35, 73, 112], and the Lemma above extends the condition to the non-smooth case.
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(a) Linear interpolation restriction operator

(b) Coordinate wise restriction operator

Figure 6.1: (a) The linear interpolation operator widely used in the multigrid liter-
ature. (b) The coordinate wise restriction operator is reminiscent of the techniques
used in coordinate descent algorithms.

Next we discuss a di↵erent way to construct the coarse model (and hence a di↵erent vH term)

that makes a particular assumption about the restriction and interpolation operators.

A non-smooth coarse model with dual norm projection.

In the coarse construction method described above we imposed a restriction on the coarse

model but allowed arbitrary restriction/prolongation operators. In our second method for

constructing coarse models we allow for arbitrary coarse models (they can be non-smooth)

but make a specific assumption regarding the information transfer operators. In particular we

assume that,

xH(i) = (IHh xh)i = xh(2i), i = 1, . . . , H.

We refer to this operator as a coordinate wise restriction operator. The reason we discuss this

class of restriction operators is that in the applications we consider the non-smooth term is

usually a norm that satisfies the following,

proj⇤H(I
H
h xh) = IHh proj⇤h(xh), (6.10)

where proj⇤h and proj⇤H denote projection with respect to the dual norm associated with gh and

gH respectively. When the restriction operator is done coordinate wise then the preceding equa-



130 Chapter 6. Multilevel optimisation for computer vision

tion is satisfied for many frequently encountered norms including the l
1

, l
2

and l1 norms used

as regularisers. In our second coarse construction method the last term in (6.6) is constructed

with,

vH =
LH

Lh

IHh rfh,k �rfH,0. (6.11)

Lemma 6.3.2 Suppose that fH has a Lipschitz continuous gradient, condition (6.10) is satified,

and that both gh and gH are norms. For the coarse model associated with (6.1) given by,

min
xH

fH(xH) + gH(xH) + hvH , xHi, (6.12)

where vH is given by (6.11), then,

DH,0 = IHh Dh,k. (6.13)

Proof Since gh is a norm, we can compute the proximal term by (6.5) to obtain,

Dh,k =



xh,k � proxh

✓

xh,k �
1

Lh

rfh,k
◆�

=



xh,k �
✓

xh,k �
1

Lh

rfh,k � proj⇤h

✓

xh,k �
1

Lh

rfh,k
◆◆�

=
1

Lh

rfh,k + proj⇤h

✓

xh,k �
1

Lh

rfh,k
◆

.

Using the same argument for the coarse model and the definition in (6.11),

DH,0 =
1

LH

(rfH,0 + vH) + proj⇤H

✓

xH,0 �
1

LH

(rfH,0 + vH)

◆

= IHh

✓

1

Lh

rfh,k
◆

+ proj⇤H

✓

IHh

✓

xh,k �
1

Lh

rfh,k
◆◆

= IHh

✓

1

Lh

rfh,k + proj⇤h(xh,k �
1

Lh

rfh,k)
◆

= IHh Dh,k.

Where in the third equality we used (6.10).

Next we discuss a di↵erent way to construct the coarse model (and hence a di↵erent vH term)

that makes a particular assumption on the non-smooth component of the fine model.
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A non-smooth coarse model with constraint projection.

When the non-smooth term is a regularization term, the proximal term is computationally

tractable. In this case, the problem can equivalently be formulated using a constraint as

opposed to a penalty term. In this third method for constructing coarse models we assume

that the coarse non-smooth term is given by,

gH(xH) =

8

>

<

>

:

xH if xH 2 ⌦H ,

1 otherwise.

With this definition, the coarse model has the same form as in (6.6) where gH is an indicator

function on ⌦H , and the final term is constructed using the following definition for vH ,

vH = LHxH,0 �rfH,0 � LHI
H
h proxh(xh,k �

1

Lh

rfh,k). (6.14)

We also make the following assumption regarding the relationship between coarse and fine

feasible sets,

projH(I
H
h xh) = IHh xh, 8xh 2 ⌦h. (6.15)

The condition above is satisfied for many situations of interest, for example when ⌦h = Rh
+

and

⌦H = RH
+

. It also holds for box constraints and simple linear or convex quadratic constraints.

If the condition above is not possible to verify then the other two methods described in this

section can still be used. Note that we only make this assumption regarding the coarse model,

i.e. we do not require such a condition to hold when we prolong feasible coarse models to the

fine model.

Lemma 6.3.3 Suppose that that condition (6.15) is satisfied, fH has a Lipschitz continuous

gradient and that gH is an indicator function on ⌦H ⇢ RH . Assume that the coarse model

associated with (6.1) is given by,

min
xH

fH(xH) + gH(xH) + hvH , xHi, (6.16)

where vH is given by (6.14), then

DH,0 = IHh Dh,k. (6.17)
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Proof Using the fact that the proximal step in the coarse model reduces to an orthogonal

projection on ⌦H we obtain,

DH,0 = xH,0 � projH(xH,0 �
1

LH

(rfH,0 + vH))

= xH,0 � projH(I
H
h proxh(xh,k �

1

Lh

rfh,k))

= IHh



xx,k � proxh(xh,k �
1

Lh

rfh,k)
�

= IHh Dh,k,

where in the third equality we used assumption (6.15).

6.3.3 Algorithm description

In the previous section we described ways to construct a coarse model, and specified the infor-

mation transfer operators. Given these two components we are now in a position to describe

the algorithm in full. It does not matter how the coarse model or the information transfer

operators were constructed. The only requirement is that the first order coherence condition is

satisfied (Lemmas 6.3.1, 6.3.2, 6.3.3). It is important to impose this condition in order to be

able to prove that the algorithm converges. However, it does not matter how this condition is

imposed in the coarse mode. The prolongation/restriction operators are also satisfy assumed

to IHh = c(IhH)
> for some constant c > 0. The latter assumption is standard in the literature of

multigrid methods.

Given an initial point xH,0, the coarse model is solved in order to obtain a so called error

correction term. The error correction term is the vector that needs to be added to the initial

point of the coarse model in order to obtain an optimal solution xH,? in (6.6),

eH,? = xH,0 � xH,?.

In practice the error correction term is only approximately computed, and instead of eH,? we

will use eH,m, i.e. the error correction term after m iterations. After the coarse error correction
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Algorithm 6.1: Multilevel Iterative Shrinkage Thresholding Algorithm

if Condition to restrict current iterate xh,k to coarse model is satisfied then
Set xH,0 = IHh xh,k;
Compute m iterations of the coarse level

xH,m = xH,0 +
m
X

i=0

sH,iDH,i

Set dh,k = IhH(xH,0 � xH,m);
Find a suitable ⌧ that satisfies (6.44), compute:

x+ = proxh(xh,k � ⌧dh,k)

Choose a step-size s 2 (0, 1] that satisfies (6.41) to update:

xh,k+1

= xh,k � s(xh,k � x+

h ) (6.18)

else
Compute gradient mapping:

Dh,k = xh,k � proxh(xh,k �
1

Lh

rfh,k)

Choose a step-size s 2 (0, 1] to update:

xh,k+1

= xh,k � sDh,k (6.19)
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term is computed, it is projected to the fine level using the prolongation operator:

dh,k = IhHeH,m , IhH

m�1

X

i=0

sH,iDH,i

and used to update the current solution,

xh,k+1

= xh,k � sh,k(xh,k � x+

h ),

where sH,i, sh,k are appropriate stepsizes and,

x+

h = proxh(xh,k � ⌧dh,k)

Clearly, if dh,k = rfh,k, ⌧ = 1/LH , then the algorithm performs exactly the same step as

ISTA with the proximal update step given in (6.3). Below we specify a conceptual version of

the algorithm. Anticipating the generalization of MISTA to multiple levels we introduce the

notation,

�l(xl) = fl(xl) + hvl, xli, l = h,H.

to denote the smooth part of the objective function at level l. If l = h then vl = 0.

There are many choices we need to make before we can obtain a fully implementable algorithm,

including a parameter to choose when to perform a search in the coarse level, the stepsizes to

be used in the di↵erent levels, the number of iterations in the coarse level and so on. Most of

these parameters will be defined by the convergence analysis in Section 6.4. However, before we

discuss the theoretical properties of the algorithm we present a motivating example to illustrate

why we expect this algorithm to perform well.

6.3.4 Motivating example

There are two reasons why the algorithm described above could yield good results. Firstly, the

coarse model is a lower dimensional model which means that one could use an algorithm that

has superior convergence properties, e.g. one could use a first order algorithm in the fine level

and a second order algorithm in the coarse level. In addition coarsening in many applications

has the e↵ect of reducing the Lipschitz constant and therefore less iterations are required to
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obtain a solution. Thus for both theoretical and practical reasons one would expect to solve the

coarse model in fewer iterations than the coarse model. Secondly, the coarse model is in some

sense a global approximation of the original model one would expect the improvement due to

the correction term to have significant impact to the solution of the fine model. However this

latter benefit depends on how much information is lost due to coarsening. We illustrate these

two points using two simple examples.

Consider the following problem arising in linear inverse models,

min
x2Rn
kAx� bk2

2

+ µkxkp,

where b 2 Rm, A 2 Rm⇥n, p 2 {1, 2,1} and µ > 0 is the regularisation constant. This class of

models arise in computer vision, machine learning, and in numerous applications in statistics.

To illustrate the e↵ect of the number of dimensions to the Lipschitz constant and the conver-

gence rate of first order algorithms we randomly created 104 models for n = 25, 50, 100, 200,

and 400. The matrix A and b were created randomly, and we took m = n in our experiments.

We solved all models (using p = 1)within 1% of the optimal solution. We report average results

in Figure 6.2. The standard error associated with the average is very small for all cases (less

than 0.03% of the mean). In Figure 6.2(a) we plot the Lipschitz constant associated with the

model (for this application the Lipschitz constant is given by 2�
max

(A>A)). As is expected the

Lipschitz constant grows with the number of dimensions. The e↵ect of the Lipschitz constant is

to increase the number of iterations for both ISTA (Figure 6.2(b)) and FISTA (Figure 6.2(c)).

Secondly, a simple image restoration demonstrates the expected benefit due to the global nature

of the coarse approximation. The aim of the application is to recover an original image from

a corrupted blurry image. The application is not only used for images but also applicable for

video or audio signals, and is formulated as the following optimisation model,

min
x2⌦
kAx� bk2

2

+ �kW (x)k
1

, (6.20)

where b denotes the original image, and W (x) is wavelet transformation of the image. The first

term aims to find an image that is as close to the original image as possible, and the second term

enforces a relationship between the pixels and ensures the recovered image is smooth. Note

that the first term is convex and di↵erentiable, the second term is also convex but non-smooth.

This problem fits exactly the framework of convex composite optimisation. In addition it is
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(b) ISTA Performance
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(c) FISTA Performance

Figure 6.2: (a) Average Lipschitz constant for randomly generated linear inverse
models grows with the number of dimensions (b) Number of iterations for the ISTA.
(c) Number of iterations for the FISTA. When comparing the performance of ISTA
and FISTA note the change of scale in the y-axis. In both cases the number of
iterations required to reach within 1% of the optimal solution grows with the number
of dimensions.

easy to define a hierarchy of models by varying the resolution of the image. The restriction

operator to generate coarse models for the image restoration problem is discussed in Section

6.5. Consider the structured image in Figure 6.3(a), and note that not much information is

lost if its resolution is reduced. Indeed for this image, our algorithm clearly outperforms both

ISTA and the theoretically superior FISTA. In Figure 6.3(c) we plot the function value obtained

from the three algorithms and note that the MISTA algorithm obtains the optimal solution

from nearly the first iteration. It is also worth noting that all three algorithms were initialized

using the input corrupted image. At the first few iterations of ISTA/FISTA, proximal gradient

updates are used. These updates do not provide significant improvement compared to the first

coarse correction that is used by MISTA-I/F. From (6.3(d)) we see that in term of the optimal
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solution vector, MISTA-I/F are clearly superior to the other two. The reason why the algorithm

works so well in this case is obvious: coarsening this simple image does not change the image

in a substantial manner. Of course not all images are as simple as the one in this example

but still all images have some sort of structure that can be exploited. We will consider much

more complicated images and di↵erent computer vision applications in Section 6.5. While it is

unrealistic to expect the algorithm to be so much better in more complicated models, we still

show that there are clear advantages of MISTA compared to the state of the art.

(a) Corrupted image (b) Restored image
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Figure 6.3: (a) A simple image that does not loose any information by reducing its
resolution, (b) Same as the image in (a) but with noise, (c) Comparison of the three
algorithms in terms of function value, (d) Distance from optimum vector x

?.
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6.4 Global convergence rate analysis

The convergence of MISTA is studied in this section. We show that MISTA converges linearly

to the optimal solution. Let us denote by xh,⇤ the optimal solution of the composite function

(6.1). Since the objective function is strictly convex, xh,⇤ is unique. The convergence rate of

MISTA is derived by showing that it is a contraction algorithm on the optimal solution vector

xh,⇤. There are two issues to address, the contraction of gradient-mapping steps (6.19), and

the contraction of coarse correction steps (6.18). To this end, we provide a proof based on the

contraction principle:

kxh,k+1

� xh,⇤k2  �kxh,k � xh,⇤k2 (6.21)

where � < 1 is a contraction modulus, xh,k+1

is a result of an update from either the gradient

mapping (6.19), or the coarse correction (6.18). The contraction property of the gradient

mapping is similar to the Fejer-monotonicity of projection method, when setting s = 1. In

this section, we do not analyse the contraction property of proximal gradient update (6.19),

as that has been considered in [100, 19] and references therein. The following lemma follows

from Theorem 3.4 and section 3.3 in [100]; or Proposition 2 and Remark 7 in [19]. The lemma

establishes the contraction property when xh,k+1

is generated by the gradient mapping,

Lemma 6.4.1 Suppose s 2 (0, 1], then the gradient mapping iteration (6.19) is a contraction:

kxh,k+1

� xh,⇤k2  �ISTAkxh,k � xh,⇤k2 (6.22)

where �ISTA 2 (0, 1) is a contraction modulus.

We derive below the conditions ensuring the convergence of MISTA. The key considerations are

the contraction property of the gradient proximal step (Lemma 6.4.1) and the coarse correction

step.

For ease of presentation, we use k.k to denote k.k
2

in the rest of the chapter. The expansion of

the left side of inequality (6.21) leads to the following two terms:

hxh,k � xh,⇤, dh,k � dh,⇤i (6.23)

kdh,k � dh,⇤k2 (6.24)
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These two terms need to be related to the right side of (6.21). A fundamental property of

the coarse correction is based on the local equivalence between the coarse and fine levels of

the gradient mapping. This local equivalence is ensured by the first order coherence property

(Lemmas 6.3.1, 6.3.2, 6.3.3),

DH,0 = IHh Dh,k (6.25)

In addition to the convexity of the composite function, we invoke the following weak assump-

tions.

Assumption 6.4.2 For a given pair of restriction/prolongation operators, there exist two con-

stants !
1

� 1 and !
2

 1, such that:

kIHh yhk  !
1

kyhk (6.26a)

kIhHyHk  !
2

kyHk (6.26b)

for any vectors yh in the fine level, and yH in the coarse level.

The above assumptions are indeed satisfied by most common restriction/prolongation operators.

For example, let us consider two common restriction operators as illustrated graphically in

Figure 6.1. For the linear interpolation operator IHh , assume that we have a fine vector yh 2 R6

and a coarse vector yH 2 R2. The operator IHh groups c fine nodes for every corresponding

coarse node (in Fig 6.1(a), c = 3) as defined (in this case) by the matrix:

IHh =

2

4

1 1 1 0 0 0

0 0 0 1 1 1

3

5

then the prolongation operator is given by IhH = 1

c
(IHh )>. Clearly, we can set:

!
1

= kIHh k = max
yh 6=0

kIHh yhk
kyhk

=
p
c � 1, 8yh 6= 0

as, always, c � 1. On the other hand,

!
2

= kIhHk =
1p
c
max
yH 6=0

k(IHh )>yHk
kyHk

= 1, 8yH 6= 0
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For the coordinate wise operator, assume that we work with yh 2 R4 and yH 2 R2, and the

nodes with odd indices are omitted in the coarse vector. So, the restriction operator is defined

as,

IHh =

2

4

0 1 0 0

0 0 0 1

3

5

and the prolongation is simply given by IhH = (IHh )>. Then the upper bounds of !
1

,!
2

are:

!
1

= kIHh k = max
yh 6=0

kIHh yhk
kyhk

= 1 when yh(2i+ 1) = 0, i = 0, ..., h

!
2

= kIhHk = max
yH 6=0

k(IHh )>yHk
kyHk

= 1, 8yH 6= 0

Additionally, the optimality condition for the proximal type algorithm can be found in [9], and

given by the following lemma.

Lemma 6.4.3 At the optimal solution xh,⇤, we have:

xh,⇤ = xh,⇤ � sDh,⇤

for any s > 0. Indeed, the gradient mapping at the optimal solution satifies

Dh,⇤ = 0. (6.27)

The restriction of the optimal vector at a fine level leads to a stationary point at a coarse level.

This is straightforward to derive in the following corollary,

Corollary 6.4.4 Let x⇤
H,0 denote a coarse model of the optimal solution vector xh,⇤ at the fine

level (i.e x⇤
H,0 = Rxh,⇤). Then the coarse model satisfies

D⇤
H,i = 0 , 8i

.
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Based on the these stationary properties at the fine and the coarse levels, we can estabish the

conditions for e�cient coarse corrections,

kIHh Dh,kk > kDh,kk (6.28)

kxk
h � x̃hk > ⌘kx̃hk. (6.29)

As we see from the first order coherence property (6.25), IHh Dh,k equals to the gradient-mapping

of the coarse level. Therefore, the condition (6.28) prevents the method from solving the coarse

level when its first order optimality is almost achieved. The current iterate appears to be a

stationary point for the coarse model and it will not improve in the coarse subspace. Typically,

 is the tolerance on the norm of the first-order optimality condition of (the fine) level h or

alternatively  2 (0,min(1,min kIHh k)). In condition (6.29), x̃h is recorded as the latest point

generated by the corresponding coarse correction. A new coarse correction should not be used

when the current point is very close to x̃h. The motivation is that performing a coarse correction

at a point xk
h that satisfies both the above conditions will yield a new point close to the current

xk
h.

In order to establish the relationship between the two terms (6.23) and (6.24) with the right

side of inequality (6.21), we need the following key property of the gradient mapping [3, Lemma

2.3].

Lemma 6.4.5 Consider a discretised (coarse or fine) level. For two arbitrary vectors x, y 2 ⌦,

let the smooth function � have L-lipschitz continuous gradients, and Dx, Dy gradient mappings,

then:

hDx �Dy, x� yi � 3

4
kDx �Dyk2. (6.30)

Proof The proximal operator is known to be firmly nonexpansive, i.e.

⌧

prox(x� 1

L
r�x)� prox(y � 1

L
r�y), (x�

1

L
r�x)� (y � 1

L
r�y)

�

�
�

�

�

�

prox(x� 1

L
r�x)� prox(y � 1

L
r�y)

�

�

�

�

2

.
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Using the definition Dx = [x� prox(x� 1

L
r�x)] to get:

⌧

(x�Dx)� (y �Dy), (x�
1

L
r�x)� (y � 1

L
r�y)

�

� k(x�Dx)� (y �Dy)k2

which is equivalent to:

⌧

(x�Dx)� (y �Dy), (Dx �
1

L
r�x)� (Dy �

1

L
r�y)

�

� 0

Therefore:

hDx �Dy, x� yi � kDx �Dyk2 + 1

L
hr�x �r�y, x� yi

� 1

L
hDx �Dy,r�x �r�yi

(6.31)

Function � is convex with Lipschitz gradients, therefore [77]:

hr�(x)�r�(y), x� yi � 1

L
kr�(x)�r�(y)k2 (6.32)

Substituting (6.32) into (6.31) and using triangle inequality yields:

hDx �Dy, x� yi � kDx �Dyk2 + 1

L2kr�x �r�yk2

� 1

L
kr�x �r�ykkDx �Dyk

The above expression has the form a2 + b2 � ab, that satisfies:

a2 + b2 � ab = a2 +
1

4
b2 � ab+

3

4
b2 =

✓

a� 1

2
b

◆

2

+
3

4
b2 � 3

4
b2

where a = 1

L
kr�x �r�yk, b = kDx �Dyk. We obtain (6.30):

hDx �Dy, x� yi � 3

4
kDx �Dyk2

We establish the relationships between (6.23) and (6.24) in Lemma 6.4.6 and subsequently

between (6.24) and the right hand of (6.21) in Lemma 6.4.7.

Lemma 6.4.6 Consider two coarse corrections generated by taking m iterations from the coarse
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level at xh,k and xh,⇤:

dh,k = IhHeH,m = IhH

m�1

X

i=0

sH,iDH,i

dh,⇤ = IhH

m�1

X

i=0

sH,iD
⇤
H,i = 0 (from corollary 6.4.4)

(6.33)

then the following inequality holds:

hxh,k � xh,⇤, dh,k � dh,⇤i �
1 + 2m

4m!2

2

kdh,k � dh,⇤k2 (6.34)

Proof From corollary 6.4.4, we know D⇤
H,i = 0, 8i, therefore:

hxh,k � xh,⇤, dh,k � dh,⇤i =

*

xh,k � xh,⇤, I
h
H

m�1

X

i=0

sH,iDH,i � IhH

m�1

X

i=0

sH,iD
⇤
H,i

+

=

*

xH,0 � x⇤
H,0,

m�1

X

i=0

sH,i(DH,i �D⇤
H,0)

+

(6.35)

Consider the ith term of (6.35):

sH,i

⌦

xH,0 � x⇤
H,0, DH,i �D⇤

H,0

↵

=sH,ihxH,0 � xH,i + xH,i � x⇤
H,0, DH,i �D⇤

H,0i

�sH,ihxH,0 � xH,i, DH,ii+
3

4
sH,ikDH,i �D⇤

H,0k2 (lemma 6.4.5 and D⇤
H,0 = 0)

=hxH,0 � xH,i, xH,i � xH,i+1

i+ 3

4sH,i

kxH,i � xH,i+1

k2
✓

as DH,i =
xH,i � xH,i+1

sH,i

◆

�hxH,0 � xH,i, xH,i � xH,i+1

i+ 3

4
kxH,i � xH,i+1

k2 (as sH,i 2 (0, 1])

Substituting the above inequality in (6.35) yields:

hxh,k � xh,⇤, dh,k � dh,⇤i

�
m�1

X

i=0

hxH,0 � xH,i, xH,i � xH,i+1

i+ 3

4
kxH,i � xH,i+1

k2

= 3/4kxH,0 � xH,1k2 + hxH,0 � xH,1, xH,1 � xH,2i+ 3/4kxH,1 � xH,2k2
| {z }

�

+
m�1

X

i=2

hxH,0 � xH,i, xH,i � xH,i+1

i+ 3/4kxH,i � xH,i+1

k2 (6.36)
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The quantity � has the form:

3

4
a2 + ab+

3

4
b2 =

1

2
(a+ b)2 +

1

4
a2 +

1

4
b2 (6.37)

Utilising (6.37) in (6.36) we obtain:

hxh,k � xh,⇤, dh,k � dh,⇤i

=
1

4
kxH,0 � xH,1k2 +

1

4
kxH,1 � xH,2k2

+
1

2
kxH,0 � xH,2k2 + hxH,0 � xH,2, xH,2 � xH,3i+

1

2
kxH,2 � xH,3k2 +

1

4
kxH,2 � xH,3k2

+
m�1

X

i=3

hxH,0 � xH,i, xH,i � xH,i+1

i+ 1

2
kxH,i � xH,i+1

k2 + 1

4
kxH,i � xH,i+1

k2

=
1

4

m�1

X

i=0

kxH,i � xH,i+1

k2 + 1

2
kxH,0 � xH,mk2

� 1

4m

 

m�1

X

i=0

kxH,i � xH,i+1

k
!

2

+
1

2
kxH,0 � xH,mk2 (Cauchy-Schwarz)

� 1

4m
kxH,0 � xH,mk2 +

1

2
kxH,0 � xH,mk2 (triangle-inequality)

=
1 + 2m

4m
keH,mk2

� 1 + 2m

4m!2

2

�

�IhHeH,m

�

�

2

(assumption 6.4.2)

=
1 + 2m

4m!2

2

kdh,k � dh,⇤k2

Having shown the relationship between the cross term (6.23) and the norm of the coarse correc-

tions (6.24), we now establish the connection between (6.24) and the distance of xh,k to optimal

solution (the right side of (6.21)).

Lemma 6.4.7 Consider the coarse correction terms defined by (6.33). Then we have the fol-

lowing inequality:

kdh,k � dh,⇤k2 
16

9
m2!2

1

!2

2

s2H,0kxh,k � xh,⇤k2 (6.38)

where !
1

,!
2

are defined in assumption 6.4.2.

Proof At the coarse level H, assume the contraction algorithm is utilised on the level H.



6.4. Global convergence rate analysis 145

Therefore, we have:

kxH,k+1

� xH,kk  kxH,k � xH,k�1

k

or,

sH,kkDH,kk  sH,k�1

kD(xH,k�1

)k (6.39)

Now, we have:

kdh,k � dh,⇤k2

=

�

�

�

�

�

IhH

m�1

X

i=0

sH,iDH,i � 0

�

�

�

�

�

2

 !2

2

�

�

�

�

�

m�1

X

i=0

sH,iDH,i

�

�

�

�

�

2

(by assumption 6.4.2)

 !2

2

 

m�1

X

i=0

sH,ikDH,ik
!

2

(by triangle inequality)

 m2!2

2

s2H,0kDH,0k2 (using (6.39))

= m2!2

2

s2H,0kDH,0 �D⇤
H,0k2 (as D⇤

H,0 = 0)

= m2!2

2

s2H,0kIHh Dh,k � IHh Dh,⇤k2 (using (6.25))

 m2!2

1

!2

2

s2H,0kDh,k �Dh,⇤k2 (by assumption 6.4.2)

 4

3
m2!2

1

!2

2

s2H,0hDh,k �Dh,⇤, xh,k � xh,⇤i (by lemma 6.4.5)

 16

9
m2!2

1

!2

2

s2H,0kxh,k � xh,⇤k2

The contraction property of the coarse correction update at the step xh,k is established in the

following theorem.

Theorem 6.4.8 (Contraction for coarse correction update) For a coarse correction up-

date at iteration xh,k, suppose either the assumption 6.4.2 is satisfied, i.e. !
1

� 1 and !
2

 1,

or the number of coarse iterations m is su�ciently large, then,

kxh,k+1

� xh,⇤k2  �(s, ⌧)kxh,k � xh,⇤k2 (6.40)
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where �(⌧, s) = 2 +�(⌧)s2. There always exists ⌧ > 0 such that,

�(⌧) < �1

and,

1
p

��(⌧)
 s  min

(

2
p

��(⌧)
, 1

)

(6.41)

Consequently, we have,

�(⌧, s) < 1

.

Proof Consider the norm

kxh,k+1

� xh,⇤k2

= k[xh,k � s(xh,k � proxh(xh,k � ⌧dh,k))]� [xh,⇤ � s(xh,⇤ � proxh(xh,⇤ � ⌧dh,⇤))]k2

= k(1� s)(xh,k � xh,⇤) + s[proxh(xh,k � ⌧dh,k)� proxh(xh,⇤ � ⌧dh,⇤)]k2

 2(1� s)2kxh,k � xh,⇤k2 + 2s2kproxh(xh,k � ⌧dh,k)� proxh(xh,⇤ � ⌧dh,⇤)k2 (by Cauchy-Schwarz)

 2(1� s)2kxh,k � xh,⇤k2 + 2s2k(xh,k � ⌧dh,k)� (xh,⇤ � ⌧dh,⇤)k2 (by nonexpansive)

= (4s2 � 4s+ 2)kxh,k � xh,⇤k2 + 2s2(⌧ 2kdh,k � dh,⇤k2 � 2⌧hxh,k � xh,⇤, dh,k � dh,⇤i). (6.42)

As s 2 (0, 1]) 4s2 � 4s  0, and from lemma 6.4.6, we have:

(6.42)  2kxh,k � xh,⇤k2 +
4m!2

2

⌧ 2 � 2⌧(1 + 2m)

2m!2

2

s2kdh,k � dh,⇤k2 (6.43)

From Lemma 6.4.7, we have:

(6.43) 

0

B

B

@

2 +
8

9
m!2

1

s2H,0(4m!
2

2

⌧ 2 � 2⌧(1 + 2m))
| {z }

�(⌧)

.s2

1

C

C

A

kxh,k � xh,⇤k2

The contraction property requires,

0 < 2 +�(⌧)s2 < 1) �2 < �(⌧)s2 < �1.
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As s 2 (0, 1], it is essential that,

�(⌧) < �1

Therefore, we need to find a ⌧ that satisfies,

A2⌧ 2 � B⌧ + 1 < 0 (6.44)

where

A2 =
32

9
m2!2

1

!2

2

s2H,0 ) 2A =
8
p
2

3
m!

1

!
2

sH,0

B =
16

9
m(1 + 2m)!2

1

s2H,0.

Inequality (6.44) can be written as,

(A⌧ � 1)2 � (B � 2A) < 0

The above inequality is always satisfied for B > 2A. For example, we can set ⌧ = 1/A and if

the assumption 6.4.2 is satisfied, i.e. !
1

� 1 and !
2

 1, then 2A is always less than B. On

the other hand, when the assumption 6.4.2 is not satisfied, but the number of coarse iterations

m is su�ciently large, then B is also greater than 2A.

Once ⌧ is defined such that �(⌧) < �1, we can deduce:

1
p

��(⌧)
 s  min

(

2
p

��(⌧)
, 1

)

.

Finally, at any iteration of the fine level, regardless of updating by gradient proximal step

(6.19), or coarse correction step (6.18), we always have a contraction property due to Lemma

6.4.1 and Theorem 6.4.8. Let the worst contraction modulus be:

� =
p

max{�ISTA, �(⌧, s)} (6.45)

Obviously, � 2 (0, 1), and we can summarise the linear convergence rate for MISTA in the

following corollary,
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Corollary 6.4.9 The sequence generated by algorithm 6.1 converges linearly to the optinum

xh,⇤:

kxh,k+1

� xh,⇤k  �kxh,k � xh,⇤k (6.46)

where � 2 (0, 1) is a contraction modulus defined in (6.45).

6.5 Numerical examples

In this section we illustrate the numerical performance of the algorithm by the image restoration

problem. We report results on CPU time and convergence of objective function on a large set

of images. All images size are 1024 ⇥ 1024, the large image size requires more computational

resource for a fine model, and thus we can easily observe the advantage of utilising our multilevel

methods. We implemented the ISTA and FISTA algorithms from [6] using the same parameter

settings. We call an iteration an ISTA or FISTA step if the incumbent solution is updated using

ISTA or FISTA respectively. We tested two variants of the proposed MISTA algorithm. We

refer to the first variant as MISTA-I (Multilevel Iterative Thresholding Algorithm-I). MISTA-I

employs the updates of algorithm 6.1. We refer to the second variant as MISTA-F (Multilevel

Iterative Thresholding Algorithm-F). MISTA-F employs the updates of algorithm 6.2. Note

that the theory developed in this chapter does not cover the case where a FISTA step is

performed. We consider MISTA-F in this case because the performance of the algorithm in this

case is very promising and and we are currently investigating this line of research. The step-

size strategy for MISTA-I and MISTA-F was selected according the backtracking line search for

projection algorithm presented in Algorithm 6.3 [91]. The condition to use the coarse model to

compute a search direction is shown in Corollary 6.4.4, with  = 0.49 and ⌘ = 1. The lowest

resolution allowed for the coarse construction is 256 ⇥ 256. All algorithms were implemented

in MATLAB and run on a standard desktop PC.

Consider the image restoration problem described in Section 6.3.4. The fine model is defined

as the composite function:

min
xh2⌦h

kAhxh � bhk2 + �hkW (xh)k



6.5. Numerical examples 149

Algorithm 6.2: Fast Multilevel Iterative Shrinkage Thresholding Algorithm

if Condition to restrict current iterate xh,k to coarse model is satisfied then
Set xH,0 = IHh xh,k;
Compute m iterations of the coarse level

xH,m = xH,0 +
m
X

i=0

sH,iDH,i

Set dh,k = IhH(xH,0 � xH,m);
Find a suitable ⌧ that satisfies (6.44), compute:

x+ = proxh(xh,k � ⌧dh,k)

Choose a step-size s 2 (0, 1] that satisfies (6.41) to update:

xh,k+1

= xh,k � s(xh,k � x+

h ) (6.47)

else
Compute gradient mapping:

Dh,k = yh,k � proxh(yh,k �
1

Lh

rf(yh,k))

Choose a step-size s 2 (0, 1] to update:

xh,k+1

= yh,k � sDh,k (6.48)

tk+1

=

✓

1 +
q

1 + 4t2k

◆

/2

yk+1

= xh,k+1

+ (tk � 1)/(tk+1

)(xh,k+1

� xh,k)
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Algorithm 6.3: Backtracking linesearch for MISTA-{I,F}
Set � 2 (0, 1), i = 1, c 2 (0, 1);
Compute a coarse correction: � = xh,k � proxh(xh,k � ⌧dh,k) ;
Choose a step-size s that satisfies (6.41);
repeat

s = s ⇤ �i;
i = i+ 1;

until f(xh,k � s�)  f(xh,k)� cshrf(xh,k), �i;

while the coarse model is approximated by smoothing the l
1

-norm:

min
xH2⌦H

kAHxH � bHk2 + �H
X

i2xH

q

W (xi
H)

2 + µ2 � µ

where µ = 0.2 is a smoothing parameter, � is the regulariser parameter and initially set to

1e� 5. As the dimension gets lower, the coarse problem is smoother, therefore the regularising

levels should be reduced, e.g. �H = �h/2. In addition, bh and xh are the vectorised forms

of the input corrupted image Bh and variable Xh respectively. Ah is the blurring operator

based on the point spread function (PSF) and reflexive boundary condition. Utilising e�cient

implementation provided in the HNO package [41], we can rewrite the huge matrix computation

Ahxh � bh in a reduced form:

Ac
hXhA

r
h

0 � Bh

where Ac
h, A

r
h are the row/column blurring operators and Ah = Ar

h ⌦ Ac
h. The information

transfer between levels is done via a simple linear interpolation technique to group 4 finely

discretised pixels into 1 coarse pixel, as similar to the one mentioned in Assumption 6.4.2:

xH,0 = IHh xh,k , bH = IHh bh

The standard matrix restriction AH = IHh AhIHh
0 is not performed explicitly as we never need

to store the huge matrix Ah. Instead, only column and row operators Ac
h, A

r
h are stored in the

computer memory. As a decomposition of the restriction operator is available for our problem,

in particular IHh = R
1

⌦R
2

, we can obtain the coarse blurring matrix by:

AH = Ar
H ⌦ Ac

H

where Ac
H = R

2

Ac
hR

0
1

and Ar
H = R

1

Ar
hR

0
2

.
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We compare the performance of our methods with FISTA/ISTA using a large set of corrupted

images (blurred with 0.5% additive noise) including the famous cameraman image, see Figure

6.4(a), as a standard benchmark. The restored image is shown in Figure 6.4(b). In Figure 6.4(c)

we compare the four algorithms in terms of the progress they make in function value reduction.

In this case we see that both versions of MISTA clearly outperform ISTA. This result is not

surprising since MISTA is a more specialized algorithm with the same convergence properties.

However, what is surprising is that both MISTAs still outperform the theoretically superior

FISTA algorithm. Clearly, MISTA-F is always the best algorithm, while MISTA-I outperforms

FISTA in early iterations and is comparable in latter iterations. When we compare the distance

to the optimal vector in Figure 6.4(d) we again find both versions of MISTA outperform ISTA.

MISTA-F finds optimal solution after only 5 iterations while other still not converges after 100

iterations. However in this case FISTA and MISTA-I are comparable. We also observe that

there is a clear advantage of MISTA-I in early iterations. This may be important in applications

where an approximate solution is required but due to time limitations the number of iterations

has to be kept low. We performed similar experiments in a number of images and from these

we have come to the conclusion that both MISTA variants outperform ISTA. We found that

there is a clear advantage of using MISTA in early iterations.

Figure 6.4 gives some idea of the performance of the algorithm but of course what matters

most is the CPU time required to compute a solution. In order to shed more light into this

issue, we discuss the performance of the algorithms when we tested them on a benchmark suite

of images. Two experiments were performed on a set of 6 images as reported in this section.

The first experiment takes input blurred images with 0.5% additive Gussian noise and the

second experiment uses 1% additive noise. All these images and the MATLAB package are also

available from the project website. In order to make our results easier to read we divided the

CPU time required to find an optimum solution that is within 2% of the optimality conditions

with the CPU time taken by ISTA,

Improvement rate = ISTA CPU time / other method CPU time

ISTA was the slower algorithm from the ones we tried so we used it as a baseline. Since the plot

shows improvement over ISTA the higher the value the better the algorithm. We expect the

experiment with 1% additive noise is more di�cult to solve than 0.5% noise, as the corrupted
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(a) Corrupted image with 0.5% noise (b) Restored image
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Figure 6.4: (a) Corrupted cameraman image used as the input vector b in (6.20), (b)
Restored image, (c) Comparison of the three algorithms in terms of function value.
Both versions of MISTA outperform ISTA. When compared to FISTA there are clear
advantages in early iterations from using MISTA (d) Distance from optimum vector
x

?. The optimal solution x

? was computed with 104 iterations of the FISTA algorithm.
Note that in terms of distance to the optimum MISTA-F clearly outperforms the other
algorithms and converges in essentially 5 iterations, while others are not converged
even after 100 iterations.

image problem is more ill-conditioned with greater noise. Figure 6.5 shows the performance

of blurred images with 0.5% noise. We can see that both versions of MISTA outperform

ISTA/FISTA significantly. MISTA-I is at least 4.5 times faster than ISTA, and 1.5 times

faster than FISTA. MISTA-F is at least 6 times faster than ISTA, and twice as fast as FISTA.

However, on average, both variants of MISTA is 4 times faster than FISTA and 10 times faster

than ISTA. In figure 6.6, we see even greater improvement of MISTA-I/F over ISTA/FISTA.

This is expected since the problem is more ill-conditioned (with 1% noise as opposed to 0.5%

noise in Figure 6.5), and the fine level requires more iterations to converge. As the results,
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Figure 6.5: Comparison in terms of improvement of FISTA and MISTA-I/F when
compared to ISTA. A higher value means bigger improvement in terms of CPU time
required to find a solution within 2% of the optimum. Images are blurred with 0.5%
noise.

CPU time of ISTA/FISTA at the fine level increase. On the other hand, the convergence of

MISTA-I/F depends on how well the coarse correction impacts on the fine level and the CPU

time of MISTA depend mostly on solving the coarse model. And, the CPU time of MISTA-I/F

at the coarse level are only marginally increased because the greater ”ill-conditioned” of the

fine problem (with 1% noise) has less e↵ects on the coarse model.

6.6 Conclusions

In this section, we develop a novel multilevel optimisation framework that can handle prob-

lems with nondi↵erentiable objective function and simple constraints. The key components of

the framework are the good coarse approximations of the fine model and the local equivalence

between levels based on first order coherence. In this thesis, we consider the most basic pro-

longation and restriction operators in approximating the coarse model. The literature on the

construction of these operators is quite large and there exists more advanced operators that

adapt to the problem data and current solution (e.g. bootstrap AMG [18]). We expect that

the numerical performance of the algorithm can be improved if these advanced techniques are
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Figure 6.6: Comparison in terms of improvement of FISTA and MISTA-I/F when
compared to ISTA. A higher value means bigger improvement in terms of CPU time
required to find a solution within 2% of the optimum. Images are blurred with 1%
noise.

used instead of the naive approach proposed here.
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(a) Corrupted image (b) Restored image
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(c) Function value comparison

(d) Corrupted image (e) Restored image
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(f) Function value comparison

(g) Corrupted image (h) Restored image
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(i) Function value comparison

(j) Corrupted image (k) Restored image
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Chapter 7

Conclusions

This thesis considers solutions to three problems in image processing. All algorithms are con-

sidered for various common type of relaxations in image processing. We report progress in

each case, based on experimental and theoretical results. In this chapter, we summarise the

achievements and propose future directions of research.

7.1 Summary of thesis

In Chapters 2 and 3, we solve the image registration problem by nonlinear programming. Image

registration is an illed-posed problem and su↵ers from many undesired local optimal solutions.

A common approach to reduce the non-uniqueness of the problem is to add suitable regularisers

and constraints. In this work, various regularisers and rigidity constraints are incorporated

into the registration problem. Constrained image registration is an important problem in

medical imaging, where the addition of the constraints can improve the accuracy and feasibility

of registration in clinical applications. Rigid constraints ensure the rigid movement of rigid

objects (such as bone) in the images. The constraints are formulated by considering the first

and second order derivatives of the transformation vector at every rigid pixel. There are two

issues to consider in this problem: discretisation and optimisation. As input images are infinite

dimensional, discretisation is required to formulate a finite dimensional optimisation problem.

Due to the complexity of the constraints, staggered grid discretisation is used to address the first

issue. We develop and adapt the SQP algorithm with a dimensionality reduction technique to

156
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solve the finite constrained optimisation problem. Experimental results demonstrate significant

improvement over an unconstrained gradient method (FLIRT)[70] to solve the same constrained

registration problem, in terms of CPU performance and retaining feasibility. We believe that

the behaviour of the transformation grid (produced by our algorithm) on rigid objects is more

reliable for medical analysis.

Image registration is a typical image processing problem that requires relaxations to remove

undesirable solutions. Apart from the introduction of regularisers and constraints that reduces

the non-uniqueness of the suboptimal solutions, convex relaxation is also a common approach.

The relaxation su↵ers from the loss of accuracy but benefits from the availability of e�cient

convex optimisation solvers. One popular relaxation framework in image processing is to con-

struct a Markov Random Field (MRF) model. MRF has been successfully used for applications

in image and signal processing, machine learning and artificial intelligence. The original MRF

is a nonconvex integer linear programming problem. There exist many studies for solving the

MRF approximately by dynamic programming, combinatorial optimisation, or convex relax-

ation. In this thesis, we consider the dual of the LP relaxation of MRF (LP-MRF). The dual

LP-MRF is a large dimensional, convex-nondi↵erentiable optimisation problem with simple

linear constraints. We propose a nonlinear weighted projection algorithm based on the mir-

ror descent approach to solve the dual LP-MRF. We sharpen the convergence rate and show

promising experimental results via synthetic and an image segmentation problem. Further-

more, we believe that although our method does not have an accelerated convergence rate as

the smoothing approach [92], its computational cost per iteration is very low. As the result, the

proposed method provides a reasonable alternative to the state-of the art methods for solving

MRF models.

The above two methods (i.e. the SQP and mirror descent algorithms) solve two typical types

of relaxations to image processing problems. They take into account the image structure at

a certain level of discretisation. Both the SQP algorithm, and mirror descent (with weighted

projection) cease to be of practical use when considering applications to very high dimensional

problems. To overcome this di�culty, we introduce a novel approach employing di↵erent levels

of discretisation for the optimisation solver. The new algorithms are based on the gradient

proximal method (ISTA/FISTA) that can handle convex problems with simple constraints and

simple nonsmooth regularisers. In order to reduce the computational e↵ort needed for large
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problems, we propose to use low-cost steps, generated using a solution to a coarse discretised

version of the problem. These replace some of ine�cient gradient updates needed by the finely

(or, more accurately) discretised version of the original problem. The global convergence (at

the finest level) is guaranteed via the contraction property on a distance to the optimal solution.

The convergence analysis is based mainly on the first order coherence of the problem. First order

coherence establishes the local equivalence between the gradient mapping of the fine model and

the gradient mapping of the coarse model. Experimental results show excellent performance

of our methods compared to the state-of-the-art gradient proximal methods (ISTA/FISTA).

We believe that our method provides a broad framework for solving large image processing

problems. The experimental results suggest that it can be applicable for other real computer

vision problems. Therefore, there is considerable scope for further development of specialised

algorithms utilising the multilevel framework developed in this thesis.

7.2 Future work

The methods proposed in Chapters 2 and 3 can be directly extended to 3D images. In addi-

tion, some studies of constrained parametric registration framework [88, 99] consider similar

constraints as in this thesis. All these adopt the unconstrained penalty method for solving the

parametric constrained registration problem. An exciting direction of future work is to employ

the SQP algorithm with the dimensionality reduction technique (developed in this thesis) to

solve the constrained registration problem in a parametric framework[90, 94].

The dual formulation of MRF problem in Chapters 4 and 5 only considers the tree structures

for the simple MRF subproblems (the slave). However, our proposed method is su�ciently

general for employing alternative decompositions such as edges decomposition and loop de-

composition [58]. Extended experiments can be implemented to compare the performance of

various decompositions techniques applied to computer vision problems. Another possible line

of enquiry addresses the issue that the significant improvement of the proposed method results

from the weighted entropy projection. However, the improvement is no longer evident when

the method finds the optimal point in the bounded simplex sets. At this point, the algorithm

switches to the weighted Euclidean projection. One possible future work is to dynamically

adjust the bound of the simplex sets based on the primal-dual gap. Theoretical justification is
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the subject of ongoing work.

Chapter 6 provides a very general framework for multilevel optimisation for image processing.

There is considerable scope for future research in defining suitable coarse models, information

transformation between levels, or e�cient methods for solving the coarse model. In this thesis,

we consider the most basic restriction/prolongation operator that groups four pixels at the

fine level into one corresponding coarse pixel. There are more advanced techniques to define

operators that adapt to the problem and current solution, and it can reasonably be expected

that these will lead to greater improvement. Finally, the convergence analysis for the multilevel

framework using the Newton algorithm and accelerated proximal gradient (FISTA) are still

open issues on which we are working.

In conclusion, several ideas presented in this thesis are potentially applicable to real-world

problems. Ongoing work continues to extend some theoretical results, while, in collaboration

with computer vision experts, applies our ideas to improve the performance of large scale

practical computer vision problems.
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