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Abstract

The continuously growing number of applications competing for resources

in current communication networks highlights the necessity for efficient re-

source allocation mechanisms to maximize user satisfaction. Optimization

Theory can provide the necessary tools to develop such mechanisms that will

allocate network resources optimally and fairly among users. However, the

resource allocation problem in current networks has characteristics that turn

the respective optimization problem into a non-convex one. First, current

networks very often consist of a number of wireless links, whose capacity is

not constant but follows Shannon capacity formula, which is a non-convex

function. Second, the majority of the traffic in current networks is generated

by multimedia applications, which are non-concave functions of rate. Third,

current resource allocation methods follow the (bandwidth) proportional

fairness policy, which when applied to networks shared by both concave

and non-concave utilities leads to unfair resource allocations. These charac-

teristics make current convex optimization frameworks inefficient in several

aspects. This work aims to develop a non-convex optimization framework

that will be able to allocate resources efficiently for non-convex resource allo-

cation formulations. Towards this goal, a necessary and sufficient condition

for the convergence of any primal-dual optimization algorithm to the opti-

mal solution is proven. The wide applicability of this condition makes this
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a fundamental contribution for Optimization Theory in general. A number

of optimization formulations are proposed, cases where this condition is not

met are analysed and efficient alternative heuristics are provided to handle

these cases. Furthermore, a novel multi-sigmoidal utility shape is proposed

to model user satisfaction for multi-tiered multimedia applications more ac-

curately. The advantages of such non-convex utilities and their effect in the

optimization process are thoroughly examined. Alternative allocation poli-

cies are also investigated with respect to their ability to allocate resources

fairly and deal with the non-convexity of the resource allocation problem.

Specifically, the advantages of using Utility Proportional Fairness as an al-

location policy are examined with respect to the development of distributed

algorithms, their convergence to the optimal solution and their ability to

adapt to the Quality of Service requirements of each application.
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1. Introduction

1.1. Optimizing Communication Networks

Since the creation of ARPANET [1], the first packet switching communi-

cation network in 1969 that connected university laboratories, industrial

and government research centers in the US, there has been a tremendous

change in the extend and characteristics of communication networks, and

especially the internet, the amount of data that is shared through them and

the variety of applications that generate this traffic.

The initial ARPANET implementation involved the connection of four

computers using wired links which gradually were increased to a few hun-

dreds, while a satellite link was also utilized. Current communication net-

works however, are consisted of many interconnected sub-networks that con-

sist of both wired and wireless links and must be able to communicate with

each other despite any incompatibilities. The OSI Reference Model [2] and

particularity the Transport and Network layers assisted to overcome these

incompatibilities and allow the communication between heterogeneous net-

works. Moreover, the development of cellular networks since 1990 and their

continuous growth to support more users and provide more applications

to their users have led cellular companies to create unified high-capacity

IP-based networks that consist of both wireless and wired (backbone) links.
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Recent Cisco IP traffic studies [3][4] provide useful information and in-

sights regarding the traffic characteristics in current communication net-

works. The total internet traffic currently exceeds 31 Exa-bytes per month

and this amount is forecasted to increase to more than 40 Exa-bytes per

month by 2013. On the other hand, mobile traffic has seen an explosive in-

crease in the past years. While total mobile traffic in 2008 was no more than

33 Peta-bytes per month, mobile traffic is forecasted to reach 2.1 Exa-bytes

per month by the end of 2013. The reason causing this abrupt increase in

the traffic in both internet and mobile networks can be justified if one looks

carefully at these statistics from another perspective; that of the applica-

tions that generate the traffic. While in 2008 the majority of the traffic

was generated by “traditional” types of applications, such as web browsing,

email and file sharing applications, that accounted for 77% of the total traf-

fic in the internet, multimedia applications, such as VoIP, Video Streaming

etc., dominate the traffic nowadays exceeding 57% of the total traffic in the

internet. The statistics are similar in the mobile internet as well, where the

video traffic alone will account for two-thirds of the total mobile traffic by

2013.

This abrupt increase of the total traffic highlights the necessity for more

efficient methods of sharing the available bandwidth so that users are re-

ceiving the maximum possible satisfaction and the best possible experience

when using a communication network. In addition, taking into account that

users are being charged by the network providers for access, the more ef-

ficient the resource allocation is, the more satisfied the users will be and

consequently the more willing to continue paying the provider for the ser-

vice. The heterogeneity of the provided applications also shows that all

traffic does not have the same resource requirements. This strengthens the
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need for more sophisticated allocation methods that will be able to distin-

guish between different types of applications and try to allocate resources

in a way that maximizes user satisfaction for each application type.

Optimization Theory can provide a powerful tool towards the develop-

ment of such methods for various reasons. Optimization Theory has been

used successfully in many areas related to communication networks, such

as optimal routing, power control etc., but also in other applications, such

as chemical engineering [5], fleet management and inventory organization,

since it leads to the best possible solutions for a given problem. In addition,

there are techniques, such as the Langrangian Method that can lead to the

development of distributed algorithms. Distributed calculation of the opti-

mal solution is of significant importance in communication networks, which

consist of numerous network nodes and traffic sources that behave indepen-

dently and selfishly to achieve the maximum possible level of satisfaction

using the resources of the network. Moreover, optimization theory can also

be used to assure that the allocation of resources to each application will fol-

low its Quality of Service requirements and satisfy some notion of fairness.

This can be achieved by the appropriate formulation of the optimization

problem and the use of specific allocation policies according to the desired

type of fairness.

Optimization Theory has been also used in the past to optimize the re-

source allocation in communication networks but there are very important

research challenges that are yet to be answered. The work described in this

thesis attempts to answer some of these open research questions that relate

to both the fundamentals of Optimization Theory itself and the practical

considerations that one must make in order to design efficient resource al-

location protocols for current communication networks. To this purpose,
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the focus of the remaining of this Chapter will be threefold. First, a brief

overview of Optimization Theory will be provided in order to help the read-

ers familiarize themselves with the necessary optimization tools and meth-

ods that will be used in the remaining of this thesis to support our work.

Then, a literature review of the resource allocation research area will be

provided. This will allow us to describe the foundations on which our re-

search has been based upon, highlight the motivation behind our work and

the contribution of our research, which will be presented in the remainder

of this Thesis.

1.2. Optimization Theory Overview

This section provides a brief description of the basic notions in Optimization

Theory, based on textbooks [6] and [7]. The main focus of this overview is on

the areas of function and problem convexity, optimization problem formula-

tion, as well as on the advantages that distributed optimization techniques

can offer to solve such problems. The interested reader is referred to the

aforementioned textbooks for a complete presentation and analysis of Op-

timization Theory.

A set C is a convex set if it is a subset of <n and if αx+ (1− α) y ∈ C,

∀ x, y ∈ C and ∀ α ∈ [0, 1]. In accordance, a function f : C → <, where C

is a convex subset of <n, is convex if

f (αx+ (1− α) y) ≤ αf (x) + (1− α) f (y) , ∀x, y ∈ C,∀α ∈ [0, 1] .

(1.1)

An intuitive interpretation of (1.1) is that the line segment between (x, f (x))

and (y, f (y)), which is the chord from x to y, lies always above the graph
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(x, f(x))
(y, f(y))

(x, f(x))
(y, f(y))

(x, f(x))

(y, f(y))

(a) (b) (c)

Figure 1.1.: Examples of functions with respect to convexity

of f . On the other hand, a function f is called concave if

f (αx+ (1− α) y) ≥ αf (x) + (1− α) f (y) , ∀x, y ∈ C,∀α ∈ [0, 1] .

(1.2)

Relating convex and concave functions one can comment that if f is a convex

function, then −f is concave and vice versa. In addition, function f is called

strictly convex if inequality (1.1) is strict for all x, y ∈ C with x 6= y, and

for all α ∈ (0, 1) and equivalently there is a strictly concave function if

inequality (1.2) is strict. A function can be neither convex nor concave.

Figure 1.1 shows examples of a convex function, a concave function and a

function that is neither convex nor concave. In general, convex functions

are convenient for minimization problems since their local minima are also

global and equivalently concave functions are convenient for maximization

problems. However, functions whose convexity properties change, such as

the example in Figure 1.1c, is generally difficult to optimize since it can

have many local optima.

To represent an optimization problem, we use the notation

minimize f(x)

subject to hi(x) ≤ 0, i = 1, . . . ,m

fi(x) = 0, i = 1, . . . , p

(1.3)
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in order to describe the problem of finding the value of the optimization

variable x that will minimize the objective function f (x) among all possible

values of the variable so that the conditions hi (x) ≤ 0, i = 1, . . . ,m and

fi (x) = 0, i = 1, . . . , p are all satisfied. A general problem formulation such

as the one presented in (1.3) can have a number of locally and globally opti-

mal solutions. Global Optimization [8][9] is the area of Optimization Theory

interested in calculating the globally optimal solutions of an optimization

problem that will minimize the value of the objective function f (x) within

the feasible region. In addition, research in Global Optimization is also

interested in the feasibility characterization of optimization problems and

in determining upper and lower bounds of their objective functions [10].

Convex Optimization is a specific area of Global Optimization where lo-

cally optimal solutions are also globally optimal. An optimization problem

with such property is called a Convex Optimization problem. More specifi-

cally, an optimization problem such as (1.3) is called convex if the following

conditions hold:

• the objective function f (x) is a convex function of the optimization

variable x,

• the inequality constraint functions hi (x) are convex, and

• the equality constraint functions fi (x) are affine.

In order to solve an optimization problem, such as the one described in

(1.3), we can use Duality Theory. According to this, problem (1.3) is called

the primal problem and we need to create the so-called dual problem and

consequently solve both, primal and dual, problems at the same time in a

distributed way. In order to create the dual problem, we first need to define
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the Lagrangian function. This is a function L : R×Rm×Rp → R given by:

L (x,λ,µ) = f (x) +
m∑
i=0

λihi (x) +

p∑
i=0

µifi (x) . (1.4)

The idea behind the Lagrangian function is to take the constraints into

account by augmenting the objective function with a weighted sum of the

constraint functions. These weights are called Lagrange multipliers and we

refer to λi as the Lagrange multiplier associated with the ith inequality

constraint hi (x) ≤ 0 and to µi as the Lagrange multiplier associated with

the ith equality constraint fi (x) = 0. In addition, the vectors λ and µ are

called the dual variables or Lagrange multiplier vectors of problem (1.3)1.

Then, we define the Lagrange dual function D : Rm × Rp → R as the

minimum value of the Lagrangian over x or otherwise

D (λ,µ) = inf
x
L (x,λ,µ) = inf

x

(
f (x) +

m∑
i=0

λihi (x) +

p∑
i=0

µifi (x)

)
,

(1.5)

where inf is the greatest lower bound [6] and is used to handle the case where

the Lagrangian is unbounded below in x and hence the minimum cannot

be calculated. Note that the dual optimization problem is a maximization

problem. If the primal problem had been a maximization problem, then the

dual would have been a minimization problem. Moreover, the dual problem

is always convex even when the primal is not. This is because the dual

function is the point-wise infimum of a family of affine functions of λ and

1In network optimization problems, the dual variables often represent link prices and
therefore the vectors λ and µ are also called price vectors
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µ. The Lagrange dual problem2 associated with problem (1.3) is defined as

maximize D (λ,µ)

subject to λ ≥ 0.
(1.6)

Due to the sign of the inequality constraints, the positiveness of the La-

grange multipliers in (1.6) is necessary in order to avoid the dual variables

from going to −∞ while attempting to maximize the dual objective func-

tion. A formal proof of the sign of the dual variables can be found in [7].

The Lagrange dual problem gives a lower bound on the optimal value of

the primal problem and therefore we can write that the following inequality

shows the relationship between the optimal values of the primal, p∗, and

the dual problem, d∗,

d∗ ≤ p∗. (1.7)

This property is called Weak Duality and holds for every primal -dual pair

of problems if both d∗ and p∗ are finite. In case equality holds in (1.7), we

say that strong duality holds between these two problems and the Duality

Gap, p∗ − d∗, is zero. In general, if problem (1.3) is convex then strong

duality holds. However, as it will be shown in Chapter 2, strong duality is

possible to hold even for some non-convex optimization problems.

In case strong duality holds for a problem, then the complementary slack-

ness condition also holds. According to that, if the duality gap is zero, the

following holds at the optimal solutions

m∑
i=0

λ∗ihi (x∗) +

p∑
i=0

µ∗i fi (x∗) = 0 (1.8)

2or, simply, the dual problem
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and since each of these terms has the same sign it follows that

λ∗ihi (x∗) = 0, i = 1, . . . ,m

µ∗i fi (x∗) = 0, i = 1, . . . , p.
(1.9)

The complementary slackness condition for the first constraint can be also

written as:

λ∗i > 0⇒ hi (x∗) = 0 (1.10)

which means that the ith optimal Lagrange multiplier is zero unless the ith

constraint is active at the optimum.

For any optimization problem where the objective function and the con-

straint functions are differentiable and strong duality holds, any pair of

optimal primal and dual variables, x∗ and (λ∗,µ∗), must satisfy the Karush-

Kuhn-Tucker (KKT) conditions. These conditions stem from the fact that

the gradient of the Lagrangian function given by

∇L (x∗,λ∗,µ∗) = ∇f (x∗) +
m∑
i=0

λ∗i∇hi (x∗) +

p∑
i=0

µ∗i∇fi (x∗) (1.11)

must be equal to zero at the optimal points and thus

hi (x∗) ≤ 0, i = 1, . . . ,m

fi (x∗) = 0, i = 1, . . . , p

λ∗i ≥ 0, i = 1, . . . ,m

λ∗ihi (x∗) = 0, i = 1, . . . ,m

∇f (x∗) +
m∑
i=0

λ∗i∇hi (x∗) +

p∑
i=0

µ∗i∇fi (x∗) = 0,

(1.12)

which are called the KKT conditions. Note that for non-convex optimiza-

tion problems, these conditions are the necessary conditions for optimality,
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while in the case of convex problems, they are the necessary and sufficient

conditions for optimality.

Network optimization problems are in most cases consisted of independent

nodes and links and therefore centralized Global Optimization algorithms

[9][11] are often hard to be implemented. For this reason, distributed solu-

tions are always preferable. In order to solve an optimization problem in a

distributed way, we often use an iterative method called Gradient Method.

This method is applicable only for differentiable objective function f and

constraints. 3 At each iteration k of the algorithm the new value of the opti-

mization variable is determined based on the current value and the gradient

of Lagrangian function. Specifically, the iterative calculation is carried out

using the formula

xk+1 = xk − αkDk∇L
(
xk
)

(1.13)

where α is the step size and Dk is a positive definite symmetric matrix.

The term −Dk∇L
(
xk
)

is often referred as the direction dk of the gradient

method.

There are many variations of the gradient method that mainly differ in

the choice of the step size and the direction dk. Among others, there is

the Steepest Descent Method and Newton’s Method. At the former method,

matrix Dk is a n × n identity matrix. This is the simplest choice and

the choice of least complexity but often leads to slow convergence. In the

latter method, we select Dk =
(
∇2L

(
xk
))−1

, provided that ∇2L
(
xk
)

is a

positive definite matrix. The idea behind Newton’s Method is that at each

iteration the quadratic approximation of the Lagrangian function L should

be optimized. Newton’s Method is one of the fastest gradient methods but

3In case of non-differentiable objective functions other iterative methods can be used,
such as the Subgradient Method, for which a complete description and analysis is
presented in [7].
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also of relatively high complexity since at each iteration the Hessian matrix

of the objective function, and its inverse, must be calculated in order to

determine the direction of movement at the next iteration.

Regarding the step size αk of the gradient method, there are a number of

options for its value. The most common of them are:

• Constant step size, where αk = α is a positive constant,

• Constant step length, where αk = α
‖∇L(xk)‖

, and

• Square summable but not summable, which actually implies that αk ≥

0,
∑∞

k=1 α
2
k ≤ 0 and

∑∞
k=1 αk =∞.

Concerning the convergence of the gradient method for each of the choices

of step size, it has been proven that the first two force the gradient method

to converge to a solution very close to the actual optimal solution, as long as

the step size has sufficiently small value, while for square summable but not

summable step sizes the gradient algorithm will converge to the theoretical

optimal value.

Since the gradient method is an iterative method, it is necessary to de-

termine the stopping criteria of the algorithm. A usual stopping criterion

is when the norm of the gradient becomes sufficiently close to zero, which

can be written as:

‖∇L
(
xk
)
‖ ≤ ε. (1.14)

Even though the exact value of ε is not known a priori for a solution suf-

ficiently close to the optimal, however the distance from the optimal given

the positive scalar ε is given by:

f (x)− f (x∗) ≤ ε2

m
(1.15)
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where m is positive scalar.

It is very common in network optimization applications that the opti-

mization variables take values within a closed interval rather than <, i.e. if

x is the optimization variable x ∈ [xmin, xmax]. An example of such vari-

able that takes values within an interval would be the transmission rate of

a node, which is a positive quantity and is restricted by the maximum data

generation rate of the source. The Gradient Descent Method as described

above can not force the optimization variables to stay within this range.

Therefore, a variation of the gradient method, called Gradient Projection

Method, is used instead. The idea behind this method is that as soon as

the values of the optimization variable leave the feasible range, the algo-

rithm maps its value to the closest feasible value. Formally, equation (1.13)

becomes:

xk+1 =
[
xk − αkDk∇L

(
xk
)]xmax

xmin
, (1.16)

where Dk is a diagonal matrix.

The strict convexity of f (x) and the continuity of the constraint functions

in problem (1.3) also implies the differentiability of the objective function of

the dual problem (1.5). However, for the cases that the objective function

is not strictly convex, there are methods to transform the primal objective

function into a strictly convex function and hence to convexify the opti-

mization problem. The Proximal Minimization Algorithm [12] is such an

algorithm to assure that the dual objective function is differentiable. Ac-

cording to it, a new variable y ∈ <n is introduced and the optimization
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problem (1.3) takes now the form:

minimize f(x) + 1
2c‖x− y‖

2
2

subject to hi(x) ≤ 0, i = 1, . . . ,m

fi(x) = 0, i = 1, . . . , p

(1.17)

where c is positive scalar parameter and ‖.‖2 is the Euclidean norm. Prob-

lem (1.17) is now strictly convex and it can be proven that its solution is the

same as that of problem (1.3), i.e x = x∗ and y = x∗. The Proximal Min-

imization Algorithm is applied in various network optimization scenarios

where the objective function is convex but not strictly convex.

Other convexification methods for specific families of optimization prob-

lems that have found significant applications to network optimization are

the Semidefinite Relaxation (SDR) technique [13][14], which can be used

to provide a convex approximation of non-convex quadratically constrained

quadratic problems (QCQPs), the Sum-of-squares (SOS) method [15] that

can be used to calculate a tight bound of the optimal solution in polyno-

mial time, and the method described in [16] that can be used to convexify

optimization problems with certain monotone properties and is used mostly

in reliability optimization applications.

Optimization Theory has found extensive use in network optimization

applications. Moreover, it consists the corner stone of the Network Utility

Maximization framework which has been used extensively to optimize the

resource allocation in current communication networks and evaluate the

performance of various transport layer protocols. The resource allocation

problem, the Network Utility Maximization (NUM) framework and other

pieces of work that deal with the optimal allocation of network resources

are presented in the next section.
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1.3. Literature Review

Modern communication networks must encompass and simultaneously sup-

port multiple users, services and applications with diverse demands and

requirements that push networks performance closer to their limit. There-

fore, optimum resource allocation between users and/or applications is of

paramount importance in order to assure efficient utilization of the network.

The resource allocation problem is one of the numerous research areas in

which Optimization Theory has found extensive use, since it can lead to

the development of distributed algorithms to assure optimal allocation of

resources in a network. This section provides an overview of prior research

in the area.

1.3.1. The Network Utility Maximization Framework

In 1998, Kelly et al. formulated the Resource Allocation Problem for wired

networks in an innovative way that led to many research activities ever since.

In this seminal paper [17], they introduce the notion of Network Utility Max-

imization (NUM) and formulate the resource allocation as an optimization

problem for the first time. The authors assume a system consisting of fixed

capacity links and a set of users that want to transmit data to a set of

destination nodes. The path that the traffic follows to reach the destina-

tion nodes is known a priori and does not change during the optimization

process. The resource allocation problem for the system is formulated as:

max
∑
r∈R

Ur (xr)

subject to Ax ≤ C

x ≥ 0,

(1.18)
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where a route r is associated with a user, the rate xr is the allocated rate

to user r and Ur (xr) is the utility that user r receives by the allocated rate

xr. In essence, the utility represents the degree of satisfaction of a user as

a function of the transmission rate. Moreover, the optimization variable

vector x = (xr, r ∈ R) is the vector with the allocated rates of all users and

C = (Cl, l ∈ J) is the vector containing the capacities of all links l. Finally,

A = (Alr,l∈J,r∈R) is a 0 − 1 routing matrix of the network with Alr = 1

denoting that route r contains link l and Alr = 0 otherwise4. The physical

interpretation of this formulation is the maximization of the total utility of

the system (objective function) while taking into account that the total rate

flowing through each link can be at most equal to the capacity of that link

(problem constraint).

The authors decompose problem (1.18) into two simpler problems that

can be solved distributedly by each user and the network with minimum

information exchange. The proposed problems can be solved optimally if

problem (1.18) is convex, i.e only under the assumption that the utility

functions Ur (xr) are increasing, strictly concave and continuously differen-

tiable functions of xr. Under these assumptions, the authors propose a set

of differential equations based on Lyapunov functions that solve the problem

optimally in a distributed way.

In 1999, Low et al. [18] proposed an alternative methodology to solve the

same resource allocation problem. Instead of using differential equations

they develop a methodology based on Duality Theory. Initially, they form

4J and R represent the sets of all links and all users in the system respectively.
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the Lagrangian function and consequently the dual optimization problem:

min
p

D (p)

subject to p ≥ 0

(1.19)

where p is the vector containing the dual variables and the dual objective

function D (p) is calculated as follows:

D (p) = max
xr

∑
r

Ur (xr)− xr
∑
l∈S(r)

pl

+
∑
l

plCl

 (1.20)

with pl being the dual variables and S (r) the set of links that user r is

using along its path and Cl the capacity of link l. Note that the summation

in the parenthesis includes only the dual variables that correspond to the

links along the path that user r is sending traffic. The authors propose two

distributed algorithms based on gradient projection method that can solve

the problem optimally under the assumption of concave utility functions.

The algorithms are based on the iterative gradient based equations:

xr (pr (t)) =
[
U
′
r

−1
(pr (t))

]Mr

mr
(1.21)

pl (t+ 1) =
[
pl (t) + γ

(
xl (t)− Cl

)]+
(1.22)

where pr (t) =
∑

l∈S(r) pl (t) is the aggregate price along the route that user r

is sending traffic at time t and xl (t) =
∑

r∈F (l) xr (t) is the aggregate traffic

passing through link l at time t. Moreover, mr and Mr are the minimum

and maximum feasible values of rate xr and [a]+ is the projection of a into

the positive plane. F (l) is the set of users that send their traffic through

link l.

30



An alternative approach for solving various formulations of the resource

allocation problem using duality theory was proposed by Palomar et al. in

[19] and [20]. The authors describe a detailed problem decomposition theory

that allows to develop the most appropriate distributed algorithm for each

convex problem formulation. The idea behind their work is to decompose

the original problem into smaller subproblems that can be solved distribut-

edly while the optimization process is coordinated by a master problem with

minimum signaling exchange.

More specifically, the authors identify two main types of decomposition;

primal and dual. The former is suitable for problems with coupling vari-

ables, while the latter for problems with coupling constraints. Additional

decomposition methods include indirect decomposition, where the problem

is transformed using auxiliary variables before applying a primal or dual

decomposition method, and hierarchical decomposition, where primal/dual

decomposition methods are used recursively in order to decompose the ini-

tial problem. Using these decompositions as building blocks, the authors

attempt to decouple some example optimization formulations and provide

distributed optimization algorithms, with a different trade-off among conver-

gence speed, message overhead and distributed computation architecture,

for some common optimization problems, such as problem (1.18) and the

Quality of Service (QoS) rate allocation problem. Analytical description of

the mathematical theory of decomposition as a tool to solve optimization

problems can also be found in [21] and [22].

1.3.2. TCP as an Application of NUM

The most popular resource allocation mechanism currently in the internet is

the Transmission Control Protocol (TCP) [23]. TCP was designed based on
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heuristic techniques and best practices that recently proved to be implicitly

solving a resource allocation problem. This section will present a brief

overview of TCP and the pieces of work that connect it with optimization

theory.

TCP is an end-to-end connection-oriented protocol. The former means

that it uses an end-to-end Acknowledgement - ACK scheme in order to guar-

antee reliability, while the latter implies that there is a three-way handshake

interactive process before any data transmission. Only when this connec-

tion has been established will the sender start transmitting packets to the

destination. TCP is designed to rely only on implicit information that it

can learn from the network, or in other words the protocol makes estimates

of the state of the network at every time instance in order to adjust the

transmission rate of a connection. The congestion control mechanism in

TCP relies on four algorithms; Slow Start, Congestion Avoidance, Fast Re-

transmit and Fast Recovery.

Slow Start is used by the sender in order to adjust its transmission rate ac-

cording to the rate of receipt of acknowledgements for the packets it sends.

When a new TCP connection starts, the algorithm specifies a congestion

window, which at the beginning of the TCP execution is equal to one seg-

ment5. Each time an acknowledgement is received, the congestion window

is doubled up to the maximum window size that the receiver has already

advertised. In the case where the transmission window becomes too large

for the network to handle and therefore there are packets dropped due to

congestion, the sender initiates the Congestion Avoidance Algorithm.

The Congestion Avoidance algorithm is used if one or more packets are

dropped due to congestion. The sender realizes that when the retransmis-

5A typical size for the maximum TCP segment is 536 bytes.
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sion timer expires without the receipt of an acknowledgement for a packet or

when a number of duplicate acknowledgement packets are received. Note,

that a duplicate ACK is an acknowledgement for a packet, while at least one

of the previous packets has not been acknowledged yet. In that case, the

sender sets the transmission window to half of the current window size with

a minimum of two segments. If congestion avoidance algorithm was invoked

because of a timeout, the congestion window is set to one segment and if

it was invoked because of duplicate ACKs, the Fast Retransmit and Fast

Recovery algorithms are evoked. For all the packets that are acknowledged

during this phase, the congestion window is increased using Slow Start but

up to half the congestion window that caused the lost packets initially. Af-

ter that point, the congestion window will start to be increased by one for

every acknowledged packet. This will force the transmission rate to increase

slowly towards the value that caused the congestion earlier.

The Fast Retransmit algorithm is invoked when duplicate ACKs are re-

ceived. This could have happened for two reasons. First, a TCP segment

was lost but the next one was transmitted and acknowledged successfully

or, second, the segment was delayed in the network and was received out

of order and therefore other packets were acknowledged before that one.

Normally, if three or more duplicate ACKs have been received, the sender

will assume that the packet was dropped somewhere in the network and will

immediately retransmit the dropped packet.

The Fast Recovery algorithm, which is actually a variation of the Slow

Start algorithm, is used so that the transmission rate recovers to relatively

high level faster when duplicate ACKs have been received. The idea behind

this algorithm is that since duplicate ACK packets have been received, the

packet was lost most probably not due to serious congestion in the network
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but due to an instantaneous network problem and should be treated as an

isolated event. The algorithm consists of a Fast Retransmit period followed

by a Congestion Avoidance period where the new congestion window is

larger than the default Slow Start value.

TCP was initially designed to operate efficiently in wired networks and

the most popular example of that is its use at the Internet. However, as

technology evolved and networks have migrated from cables to the wireless

medium, a major disadvantage of the protocol was revealed that prevents

it from operating efficiently on wireless networks. A wired link is generally

considered a reliable medium that packets almost never get lost for reasons

other than congestion. However this is not the case for wireless links, where

the interference among links can cause errors that are not related to con-

gestion and therefore must be treated differently. TCP can not distinguish

between these two causes of error. Therefore, if a packet is transmitted with

errors, while there is no congestion in the network, the receiver will not send

an ACK for that and the protocol will assume that there is congestion and

consequently will use the congestion avoidance algorithm leading to a re-

duction of the transmission rate. However, the optimal choice in that case

would be to retain the current rate and transmit the packet again.

There have been various attempts to improve TCP performance in such

lossy systems. Balakrishnan et al. [24] make a comparison between the

most important of these mechanisms, which make use of two different ap-

proaches. The first tries to hide any non-congestion related losses from the

congestion protocol and, therefore, requires no changes to existing trans-

mitter implementations. The intuition behind this approach is that TCP

does not need to be aware of the characteristics of individual links and any

losses that might occur due to the wireless medium and, therefore, tries to
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make the lossy links to appear as links of higher quality but of lower band-

width. The second approach attempts to make the transmitter aware of the

existence of wireless links in the network and realize when a packet loss is

not due to congestion with the use of Explicit Loss Notification (ELN) in

the acknowledgement packets.

The congestion control schemes described in [24] are classified in three

groups based on their fundamental philosophy: End-to-end methods, Split-

connection methods and Link-layer methods. End-to-end methods try

to improve TCP based on two techniques: Selective Acknowledgements -

SACKs [25] and Explicit Loss Notification - ELN [26]. The Selective Ac-

knowledgements allow the sender to recover from multiple packet losses

within a single window by receiving acknowledgement only for the pack-

ets that have been successfully received. The Explicit Loss Notification6

mechanism is used when a received packet is in damage. The receiver, then,

sets the ELN bit in the corresponding ACK header to inform the sender that

the packet was received damaged due to the bit-error rate of the channel

and not due to congestion in the network. This requires that the header of

the packet must have been received without any errors so that the receiver

can read its sequence number in order to send ACK for it.

The Split-connection protocols split every TCP connection into two sep-

arate connections, one between the base station and the receiver, and one

between the base station and the transmitter. Then, a wireless transmis-

sion protocol that lacks the disadvantages of TCP can be used over wireless

links. An example of such a Split-connection protocol is the Snoop Protocol

[28] that introduces the snoop agent at the base station. The snoop agent

monitors every packet that passes through a TCP connection and main-

6mentioned also in literature as Explicit Congestion Notification - ECN [27].
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tains a cache of the segments sent across the link and have not yet been

acknowledged. If duplicate ACKs are received for a segment the agent re-

transmits it and suppresses the duplicate acknowledgements. Most of the

Link-layer protocols use techniques such as Forward Error Correction and

retransmission of lost segments in response to Automatic Repeat Request -

ARQ messages. A link-layer protocol has the advantage that it can operate

independently of protocols in higher layers of the protocol stack. Typical ex-

amples of Link-layer protocols are CDMA [29], TDMA [30] and AIRMAIL

[31].

Over the years, different variations of the TCP protocol have been sug-

gested, such as TCP Reno [32], TCP Vegas [33] and TCP New-Reno [34]

that try to address disadvantages of the initial version of TCP, also known

as TCP OldTahoe, and propose improvements to it [35]. When, all these

variations of TCP were designed, there was no interest in looking at the

congestion control issue as an optimization problem but rather a number

of heuristic approaches were followed that proved to be working efficiently.

However, Low et al. [36][37][38] proved that TCP is achieving congestion

control by implicitly solving an optimization formulation of the resource

allocation problem.

Specifically, they show that the optimization problem in (1.18) is solved

implicitly using a primal/dual optimization algorithm. Similarly as in (1.18),

the source rates are the primal variables and the congestion measures are

the dual variables. Moreover, the primal iteration, which determines the

source rate, is carried out by TCP while the dual iteration is carried out

by an active queue management (AQM) algorithm, such as DropTail, RED

[39] or REM [40]. Moreover, it has been shown that the different TCP ver-

sions responsible for determining the source rates leads to a different utility
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TCP Version Utility Function

TCP Reno-1 U (xs) =

√
3
2

Ds
tan−1

(√
2
3
xsDs

)
TCP Reno-2 U (xs) =

1
Ds

log xsDs
2xsDs+3

TCP Vegas U (xs) = αsds log xs
Table 1.1.: TCP version and User Utility Function

function for the optimization problem. Table 1.1 shows three variations of

TCP along with the respective user utility functions. The difference be-

tween Reno-1 and Reno-2 is that the former halves the window every time

a mark by the AQM protocol is found on a packet, while the latter halves it

only once. Then, Ds is the equilibrium round trip time7, αs is a parameter

of TCP Vegas and ds is the round trip propagation delay.

Formulating TCP as a primal/dual algorithm that solves an optimization

problem allows researchers to compare TCP with other optimization-based

approaches with respect to how accurate the optimization problem they

solve is based on the characteristics of current communication networks.

Such comparison allows us to identify some of the shortcomings of TCP

and the original NUM framework and motivate us for further research in

the area.

1.3.3. Shortcomings of NUM

The NUM framework as proposed in [17] and [18] makes two restricting

assumptions. The first assumption is that all links in the network have

fixed capacity that does not change during the optimization process, and the

second is that all user utilities are concave functions of the transmission rate.

These assumptions are necessary to assure that the optimization formulation

is convex. Convexity of an optimization problem is considered the watershed

7i.e. propagation delay plus equilibrium queuing delay
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that differentiates an easy from a hard optimization problem [41]. The

reason is the fact that convex optimization problems have a number of

convenient mathematical properties. These include:

• Convex problems can be solved with gradient-based algorithms since

a local optimum is also a global optimum.

• Distributed algorithms can be developed to calculate the optimal solu-

tion. This property is particularly important for network applications

that consist of independent nodes whose behavior can not easily be

controlled centrally.

• Strong duality holds for convex problems, which allows the develop-

ment of algorithms solving the dual problem since both problems,

primal and dual, have the same solution.

However, despite the aforementioned advantages, these two assumptions are

responsible for a number of shortcomings of NUM when applied to current

networks.

Networks with links of fixed capacity can be only assumed when all links

are wired. However, current communication networks consist of a number of

wireless links, whose capacity is not constant but is affected by other wireless

transmissions in the neighborhood that interfere at the receivers. In other

words, modelling current communication networks should take into account

the interference among links and, therefore, the capacity of the wireless links

can not be assumed to be fixed for the duration of the optimization process.

Concave utilities are ideal to model applications that generate elastic

traffic [42]. Elasticity describes an application’s ability to adapt easily to

changes in the network conditions, such as delay, throughput etc., while
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still meeting the user’s Quality of Service (QoS) needs. Examples, of elas-

tic applications include FTP and HTTP, which used to be the majority of

the internet traffic until recently [43]. However, the majority of the traffic

in current communication networks is generated by real-time applications

which are considered inelastic. Such inelastic applications include VoIP,

video streaming etc. that can not be modelled using concave utilities. As

mentioned earlier, according to Cisco [3][4] the percentage of traffic gener-

ated by inelastic applications is expected to reach 57% of the Internet traffic

and 66% of the mobile traffic by 2015. Modelling those applications using

concave utilities can lead to significantly inefficient resource allocations.

As explained above, in practice, the resource allocation is carried out

nowadays mostly using TCP, which is implicitly solving an optimization

problem. However, this optimization formulation is not appropriate to

model current communication networks for a number of reasons. First,

similarly to the NUM framework, the formulation assumes that all links

have fixed capacity. Moreover, user satisfaction is not only modelled using

concave utilities independently of the type of application, elastic or inelas-

tic, but also the utility function is the same for all users, as shown in Table

1.1, not taking into account if the application is FTP, HTTP or VoIP. These

reasons make TCP operate suboptimally in current networks and highlights

the necessity for a new optimization-based resource allocation protocol8.

Designing new optimization-based resource allocation protocols is a re-

search direction that has become particularly popular lately. Authors in

[44] argue that instead of designing protocols based on heuristics that can

be tuned for particular applications, network designers should move towards

the direction of designing optimization-based protocols that operate opti-

8Quantitative results on the improvement that an optimization-based algorithm can
provide against current TCP implementations are presented in Section 2.2.
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mally for each particular application. Moreover, the authors provide a set

of guidelines on how optimization theory can be applied in traffic manage-

ment in current networks. Specifically, they suggest methods to convexify

the problem constraints, decouple them using auxiliary variables and com-

bine different objectives in order to derive optimization-based protocols.

1.3.4. Extending NUM for Current Communication

Networks

As explained in the previous paragraphs, the main assumptions in the initial

NUM framework were, first, that the utilities must be concave functions of

the transmission rate, and, second, that all links have fixed capacity. Re-

garding the former, Shenker [43] highlighted the differences between elastic

and inelastic traffic and the fact that concave functions can not model in-

elastic applications efficiently.

The utility function of a user represents the degree of satisfaction that a

user enjoys when sending at a specific rate. In other words, the user utility

function reflects the Quality of Experience (QoE) of a user when some data

content is delivered at a specific data rate. This QoE cannot be determined

precisely for each user, but prior work in the literature has identified ap-

proximate forms/shapes of QoE for various applications. The author in [43]

was the first to suggest various non-concave single-sigmoidal utility shapes

to model user satisfaction for applications that generate inelastic traffic,

such as multimedia applications. Within the context of resource allocation,

a single-sigmoidal utility is a shape that has one convex region followed by

a concave one. The intuition behind this utility shape is that low values

of rate offer very low degree of satisfaction to the user, and as the allo-

cated data rate increases, user satisfaction increases rapidly until a point

40



Application Utility Function

HTTP U (xs) = Umax
log

(
xs

xmins

)
log

(
xmaxs
xmins

) sgn(xs−xmins )+1

2 , 0 ≤ xs ≤ xmaxs

VoIP U (xs) = Umax
sgn(xs−xmins )+1

2 , 0 ≤ xs
IPTV U (xs) = Umax

1+ 1
ε−1

e−xs·α
, α =

2 ln( 1
ε−1)

xmaxs
and 0 ≤ xs ≤ xmaxs

Table 1.2.: Application Types and the Respective User Utility Functions

where saturation starts appearing and user satisfaction reaches its maxi-

mum value. These approximate shapes were later defined more accurately

based on several traffic investigations and measurements in [45].

Table 1.2 summarizes the proposed utility function for each application

type. Note that Umax is the maximum value of the utility function, which

is typically set to 1 and function sgn (x) is the sign function which takes

value −1 if x < 0, 0 if x = 0 and 1 otherwise. Finally, xmins and xmaxs

are the minimum and maximum data rates supported by the application.

For example, for HTTP applications these variables take the values xmins =

24Kbps and xmaxs = 10Mbps. For IPTV and generally video streaming

applications, the authors in [46] propose a slightly different utility function

that follows the shape:

U (xs) = c

(
1

1 + e−α(xs−b)
+ d

)
, (1.23)

where α, c and d are calibration parameters and b is the inflection point

of the sigmoidal shape, i.e. the point where the second derivative of the

utility function diminishes. Figure 1.2 shows a graphic representation of

these utilities. In the case of the Voice over IP (VoIP) utility function, the

threshold rate is xmins = 64Kb/s, whereas xmins = 24Kb/s for the utility

function of HTTP applications.
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Figure 1.2.: Utility Functions of Widely Used Application Types

Since these seminal pieces of work that introduced the NUM framework,

researchers have proposed extensions that address one or both of the initial

framework’s restricting assumptions. To the best of our knowledge, the first

significant attempt to remove the assumption of concave utility functions

was published by Fazel et al. in 2005 [15]. The authors are trying to solve

the resource allocation problem (1.18) when the utility functions can be

non-concave. Despite the fact that the problem they are trying to solve

is an NP hard problem, they make use of a family of convex semi-definite

programming techniques based on the Sum of Squares relaxation and the

Positivstellensatz Theorem in order to solve an approximation of the initial

problem. They develop a centralized algorithm that can offer a bound of

the maximum network utility in polynomial time along with a sufficiency

test that can reveal whether the bound is exact or not. This method was
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a significant step towards solving some non-convex optimization problems,

but it cannot be decomposed into a distributed algorithm and therefore does

not have much practical interest in the networking area.

Chiang et al. examined the case of resource allocation for applications

generating inelastic traffic, i.e applications such as video streaming, VoIP

etc. For the special case of sigmoidal utilities, they propose in [47] and

[48] a set of necessary and sufficient conditions so that the initial NUM

formulation in problem (1.18) can be solved distributedly using an itera-

tive gradient based algorithm despite the fact that the formulation is not

convex. To achieve that they express the optimal rate allocation xs as a

function of the dual variables and they prove that continuity of the rate

allocation function around at least one of the optimal prices is a necessary

condition so that the distributed algorithm proposed in [17] can converge

to the globally optimal solution. Note that the primal problem in this case

is solved using the gradient algorithm by restricting the possible rate values

within the concave region of the utility function. Moreover, the authors

argue that by appropriate capacity provisioning in modern networks, it is

possible to restrict the distributed algorithm to regions where the necessary

and sufficient conditions hold.

Regarding the continuity properties of the optimal rate allocation with

respect to the dual variables for the case of single-sigmoidal utilities, the

authors in [46][49] extend the NUM framework even further. Their work

examines the continuity properties of xs as a function of the dual variables

λ. Specifically, the optimal rate allocation depends on the aggregate price

for all the links that the traffic is using to reach the destination. The

authors prove that xs has the following properties when the utilities are

single-sigmoidal:
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• xs (λs) has two values (zero and positive) and is discontinuous at λsmax,

• xs (λs) is positive and decreasing function of λ, for λsmin ≤ λs < λsmax,

• xs (λs) is zero for λs > λsmax,

• xs (λs) is Mi for λs ≤ λsmin and

• Us (xs (λs)) is achieved at the concave region of Us.

Note that for single-sigmoidal utility functions Ms is the maximum trans-

mission rate, λsmin is the maximum non zero aggregate price for which user

s transmits at the maximum rate, i.e. Ms, and λsmax is the maximum ag-

gregate price the user s is willing to pay. For any aggregate price higher

than λsmax, user s will always select a zero optimal transmission rate.

According to the first property, function xs (λs) is discontinuous at only

one point. This discontinuity point can cause oscillations when trying to

solve the problem using a gradient iterative method. The authors also

propose a set of conditions with at least one of them to hold when a user

oscillates. These conditions, group the users that send traffic through a link

l in three subsets:

SH (l,λ) = {i|λsmax > λs, s ∈ S (l)}

SS (l,λ) = {i|λsmax = λs, s ∈ S (l)} (1.24)

SL (l,λ) = {i|λsmax < λs, s ∈ S (l)}

where λ is the vector containing the prices of all links in the network and

S (l) is the set containing the users that send traffic through link l. In other

words, subset SH includes the sources whose maximum willingness to pay is

higher than the aggregate price, SS those that the aggregate price is equal
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to their maximum willingness to pay, and, finally, subset SL includes the

sources whose maximum willingness to pay is lower than the aggregate price

along the path they are using. Based on these subsets, the authors in [46]

prove that for a link l∗ and when the Lagrangian is not differentiable for

price vector λo at least one of the the following conditions holds, and in this

case one or more users oscillate:

1.
∑

s∈SH(l∗,λo)

xs (λs) < Cl∗− ε1 and
∑

s∈SH(l∗,λo)∪SL(l∗,λo)

xs (λs) > Cl∗+ ε2

2.
∑

s∈SH(l∗,λo)

xs (λs) ≤ Cl∗ and
∑

s∈SH(l∗,λo)∪SL(l∗,λo)

xs (λs) > Cl∗ + ε3

3.
∑

s∈SH(l∗,λo)

xs (λs) < Cl∗ − ε4 and
∑

s∈SH(l∗,λo)∪SL(l∗,λo)

xs (λs) ≥ Cl∗

where ε1, ε2, ε3 and ε4 are positive constants.

To resolve these oscillations, the authors propose a heuristic, called Self-

Regulating Property of a user, that drives the user causing the oscillation in

the network to stop transmitting and allows the rest of the users to stabilize

to a finite solution. This approach has been shown to approach the optimal

solution as the number of users in the network tend to ∞. This approach,

however, is a form of admission control in the network, since it is excluding

some users from being allocated resources and, therefore, can be questioned

for its fairness.

Research in the area of resource allocation in wireless networks has not

been as extensive as in the case of wired networks. While the resource allo-

cation problem in wired networks requires a Transport layer mechanism to

adapt the transmission rates of the users, the problem in wireless networks

turns into a joint Transport and MAC layer optimization problem that op-

timizes both the transmission powers of the wireless links and the allocated

rates of the users. Therefore, any proposed approaches must rely on cross-
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layer algorithms. Nonetheless, various approaches have been proposed that

deal differently with this problem in wireless networks.

In [50] the authors examine the case of NUM in three wireless network

scenarios, a Single-Cell downlink scenario, a Multi-Cell downlink scenario

and a Hybrid network scenario with both wired and wireless links. The

main difference of the formulation proposed is the fact that the capacity

of a wireless link is no longer fixed and known a priori but it depends on

the transmission power of the transmitter. The authors examine both cases

of no interference between base stations and cases with interference while

making the necessary assumptions to preserve convexity of the problem and

therefore the distributed nature of the algorithm. More specifically, in the

single-cell downlink case, the authors assume that the resource allocation

problem is formulated as:

max
∑
i

Ui (Ri)

subject to Ri ≤ log (giPi) ,∀i,∑
i Pi ≤ Pmax,

P ≥ 0

(1.25)

where Ri, the rate of user i, and Pi, the transmission power of user i, are

the optimization variables, Pmax is the maximum transmission power of

the based station, gi is the channel gain and P is the vector containing all

transmission powers. Problem (1.25) is convex and therefore can be easily

solved distributedly. However, its applicability is limited and therefore the

authors proposed the multi-cell downlink problem formulation that takes

into account the interference among different cells and introduces the Signal-
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to-Interference Ratio (SIR) defined as:

SIRi (P ) =
GiiPi∑N

j 6=i PjGij +Ni

(1.26)

where Gij is the path loss coefficient from the transmitter of link i to the

receiver of link j. Consequently, the authors define the transmission rate as

a function of the SINR at the receiver according to:

Ri =
1

T
log (1 +K · SINRi) (1.27)

where T is the symbol time and K is a constant that depends on the mod-

ulation type and the desired bit error probability. However, in order to

preserve convexity of the problem formulation they assume that the SINR

at the receiver is always much larger than 1 and approximate (1.27) using:

Ri =
1

T
log (K · SINRi) . (1.28)

Based on this capacity function, the authors propose a distributed algo-

rithm to allow each node in the cellular network to determine the optimal

transmission power and rate.

A similar approach was followed in [51], where the author examines the

resource allocation problem in wireless multi-hop networks. The formula-

tion is similar with problem (1.18) with the main difference being the fact

that the capacity Cl of a link is not constant but is, instead, a function

of the SINR at the receiver, i.e Cl (P ) = 1
T log (1 +K · SINRl (P )). How-

ever, the channel capacity function makes the formulation non-convex and

therefore any distributed algorithm is possible to converge to a local but not

global optimum. To resolve this issue, the author assumes that the system
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operates in high SINR environment, which allows the channel capacity to

be approximated efficiently by

Cl (P ) =
1

T
log (K · SINRl (P )) . (1.29)

Consequently, it is proved that (1.29) is a strictly concave function of the

transmission powers. In order to prove this, a log-transformation of the ca-

pacity function is required. With the use of (1.29) to compute the channel

capacity at each iteration, the author proposes a joint rate and power alloca-

tion distributed algorithm based on the TCP congestion control mechanism

that can optimize the performance of the network under the presence, how-

ever, only of elastic applications. This algorithm consists of the following

iterative equations:

xs (t+ 1) =
ws (t+ 1)

Ds (t)

λl (t+ 1) =

λl (t) +
γ

cl (t)

 ∑
s:l∈L(s)

xs (t)− cl (t)

+

(1.30)

Pl (t+ 1) = Pl (t) +
κλl (t)

Pl (t)
− κ

∑
j 6=l

Gljmj (t) (1.31)

where γ and κ are positive step sizes, ws (t+ 1) is the TCP window size and

mj (t) is a message that is calculated using:

mj (t) =
λj (t)SINRj (t)

Pj (t)Gjj
. (1.32)

To assure convergence of the power control iterative algorithm, the author

assumes the existence of minimum and maximum power values, Pl,min and

Pl,max respectively.
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In [52] the authors examine the case of downlink power allocation in

CDMA cellular networks and remove the assumption for concave utility

functions. They show that the optimal power allocation occurs when the

base station is transmitting at full power and prove that the properties

of the transmission power, as a function of the dual prices λ, follow the

properties of xi (λs) as described in [46]. Their proposed algorithm allows

cooperation between the base station and the mobile nodes. At the first

stage of their proposed algorithm, called mobile selection stage, the base

station selects the mobiles that will be allocated some power and during the

second stage, called power allocation stage, the base station allocates power

to the selected mobile nodes.

Hou et al. in [53] extended the NUM framework for wireless multi-hop

sensor networks with explicit consideration in the sensors’ energy constraint.

This emphasizes the fact that a typical sensor is powered by a battery and

thus has limited lifetime. The authors are trying to maximize the amount of

traffic that will be transmitted in the life time of the network given that each

sensor has a battery of specific energy capacity. The problem formulation

proposed is shown to be convex under some assumptions and a distributed

gradient based algorithm is proposed.

In our previous work [54], we have extended the NUM framework in

order to take into account the interference among links while retaining the

convexity of the problem formulation. To achieve this, the formulation in

[17] was extended with an additional constraint to assure that there will

be a minimum SINR level for every wireless link in the network. In other

words, the traditional resource allocation formulation for the optimization

variables ri, representing the rates, and pj , representing the transmission
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powers, was extended as follows:

max

M∑
i=1

Ui (ri)−
L∑
j=1

Vj (pj)

subject to
∑
i∈Z(j)

ri ≤ Cj ∀ links j

Gjjpj∑
k=1,k 6=j Gjkpk + nj

≥ γj ∀ links j

(1.33)

where γj is the target SINR ratio for link j, Z (j) represents the set of traffic

flows that pass through link j, Gij is the path loss gain coefficient from the

transmitter or link i to the receiver of link j, Vj (pj) is a cost function

which represents the cost of using the limited power resources of a wireless

network and nj is the noise at the receiver of link j. In other words, the first

constraint of the formulation proposed is responsible for the rate allocation

and the second constraint is actually a power control problem. Under the

assumptions of concave utility functions Ui (ri) and convex cost functions

Vj (pj) the problem is convex and a distributed algorithm is proposed that

will converge to the optimal solution as long as the power control problem is

feasible. [55] provides a necessary and sufficient condition for the existence of

a feasible power vector. The intuition behind the use of the SINR threshold

in the second constraint is that the capacity Cj of link j will be guaranteed

if the threshold γj is satisfied and the following expression relates the two

quantities:

Cj = B · log2 (1 + γj) , (1.34)

where B is the channel bandwidth.

Recently, researchers have extended the wireless channel model in re-

source allocation problems by incorporating phenomena such as channel

fading and bit error probability. For example, the authors of [56] prove
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that the resource allocation problem in wireless networks, where nodes dis-

tributedly optimize transmission powers and rates, has zero duality gap if

the channel Cumulative Distribution Function (CDF) is continuous. More-

over, this continuity requirement is satisfied by several practical channel

models such as Rayleigh, Rice and Nakagami. The proof of zero duality

gap for some of the most widely used channel fading models is a significant

theoretical contribution. From a practical perspective, however, this result

will be applicable to communication networks only under the development

of distributed methods to solve non-convex optimization problems.

In the same context, Papandriopoulos et al. [57] propose a resource allo-

cation formulation that takes into account the rate-outage probability in slow

fading channels. Based on a target rate-outage probability, the authors pro-

pose a channel capacity formula, they scale the SINR of the channel so that

the resulting capacity satisfies the target rate-outage requirements. More

specifically, the authors suggest the following channel capacity formula:

Cl (P ) = B · log2
(
1 +Ml · SINR (P )

)
, (1.35)

where SINR (P ) is the average SINR, and Ml is a positive weighting

scalar, which is a function of the rate-outage probability, according to:

Ml = − log
(
1− Ωrate

l

)
(1.36)

where Ωrate
l is the maximum tolerable rate-outage probability. Moreover,

the authors prove that the capacity function (1.35) is quasiconcave and the

resulting resource allocation formulation is convex if the utility functions are

at least (log,x)-concave. This relaxes the requirement for concave utilities

and covers a number of common applications, such as the utility functions
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of TCP (TCP Vegas, TCP Reno etc).

Another research work that takes into account the time varying charac-

teristics of the wireless medium is described in [58]. The authors enhanced

the NUM framework so that the average performance of the wireless net-

work is optimized over time and the optimal control policy is selected to

anticipate with the existence of time varying interference conditions. The

authors use the so-called Full Resource Optimization with Expected Con-

straints (FROEC) method to solve the optimization problem, which takes

the sequence of channel states, as seen by the network, as its input and

produces estimates of the optimal Lagrange multipliers and optimal policy

values. The method samples the condition of the network periodically and

calculates stochastic gradients in order to calculate an estimate of the opti-

mal resource allocation. Therefore, this approach could be classified in the

area of Stochastic Optimization [59].

Despite the fact that this PhD thesis will remain focused on determinis-

tic resource allocation problem formulations and deterministic optimization

techniques, stochastic optimization techniques have been used, in order to

address the issues of the traditional NUM framework that relate to the

stochastic dynamics of modern networks, and therefore should be briefly

mentioned in this literature review. The authors in [60] group the chal-

lenges when dealing with the dynamics in networks in three categories:

session level, packet level and constraint level. The first category refers to

the issues that arise from the random arrival rates of sessions in the network

and the finite queue lengths at intermediate nodes. Research in this area

includes determining the stochastic stability region of a network based on

specific arrival and service models. Prior work in the session level research

area is presented in references [61], [62], [63] and the references therein.
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Stochastic network utility maximization at the packet level deals with

the burstiness of the incoming packets and the short-term dynamics that

include probabilistic marking and dropping of packets. Prior work in this

research area can be found in [64], [65], [66] and the references therein.

Finally, constraint level stochastic problems deal with the dynamic of the

wireless channel and try to maximize the network utility and assure stability

of the network under such phenomena. Recent work in this area includes

[67], [68], [69] and [70].

More specifically in [70], the author tries to solve an optimization for-

mulation that can be applied to the stochastic resource allocation problem

in communication networks. It is anticipated that the user utility function

can be single-sigmoidal to model real-time multimedia applications, which

turns the formulation into a non-convex problem. The solution proposed

calculates a local optimum of the problem based, on the drift-plus-penalty

approach [71] and Lyapunov optimization, while assuring the stability of

the queues in the network.

1.3.5. The Notion of Fairness in NUM

The resource allocation problem in communication networks describes the

problem of sharing the network resources to competing users so that we

maximize the satisfaction in the network. The notion of fairness plays a

very important role in the process of resource sharing and the attempt to

maximize satisfaction in the network.

There are a number of different fairness policies in research work that

relate to the Network Utility Maximization (NUM) framework. Kelly et al.

in their seminal work [17], which introduced the NUM framework, define the

notion of (bandwidth) proportional fairness and prove that the distributed
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algorithm that they propose to solve the resource allocation problem shares

bandwidth according to this. More specifically, they define a vector of rates

x to be proportionally fair if it is feasible and for any other feasible vector

x∗ we have that: ∑
r∈R

wr
x∗r − xr
xr

≤ 0, (1.37)

where wr is a positive weighting term that refers to user r and xr is the pro-

portionally fair rate of user r. In other words, a (bandwidth) proportionally

fair vector is a vector that maximizes the sum of a number of logarithmic

utility functions.

Another common fairness policy is the (bandwidth) max-min criterion

[72], which is also called the bottleneck optimality criterion [73]. According

to the definition, a feasible rate vector is (bandwidth) max-min fair if any

rate xi can not be increased without decreasing another rate xj which is

smaller or equal to xi. In essence, max-min fairness is the optimization of

the worst case. Most of the algorithms in literature that achieve max-min

fairness require significant amount of information exchange and therefore it

is difficult to implement a truly distributed algorithm for the resource allo-

cation problem. Moreover, the authors in [74] argue that max-min fairness

is not appropriate for wireless multi-hop networks as it leads to equal rates

and powers regardless of the network topology and routing, despite the fact

that modern networks are often asymmetric and such allocations might not

be feasible. The authors in [75] propose a simple water-filling procedure to

achieve (bandwidth) max-min fairness:

1. Start from a bit rate equal to zero for all flows in the network;

2. Increase the bit rate of all flows uniformly until the bit rate of some

flows is constrained by the capacity set; freeze the bit rate of these
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flows;

3. Repeat Step 2 for any non-frozen flows until all flows in the network

are constrained by the capacity set.

Tassiulas et al. in [76] propose a scheduling policy in wireless ad hoc

networks that achieves max-min fairness. The authors use the example

of bluetooth to create the wireless channel model for their analysis and

prove a necessary and sufficient condition regarding max-min fairness of a

bandwidth allocation. According to this, a bandwidth allocation is max-

min fair if and only if every flow satisfies at least one of the following

conditions: (a) the flow has at least one bottleneck node, (b) the bandwidth

allocated to the flow equals its long term arrival rate. The authors also

argue that the fact that max-min fairness gives by default priority to the

flows that receive the worst quality of service might not be desirable in

modern communication networks, which are shared by flows with different

quality needs that also follow different pricing schemes and, therefore, their

proposed max-min policy associates a priority weight to each flow.

Lately, Wang et al. [77] show that while (bandwidth) proportional fair-

ness is efficient when all users follow the same logarithmic utility functions,

it has some contradictory behavior in heterogeneous networks, i.e. in net-

works where users follow different utility functions and have different QoS

needs. This happens due to the fact that the (bandwidth) proportional

fairness policy allocates rates based on the value of the utility derivative.

Users with the largest derivative are allocated the most rate. However,

this seems unfair when dealing with heterogeneous networks because large

value of derivative means that this particular user is easily satisfied. For

instance, single-sigmoidal utility functions, such as the one presented in Fig-
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ure 1.2, are more difficult to satisfy compared to concave utilities because

their derivative is small for low rate regions. This causes a (bandwidth) pro-

portional fair algorithm to allocate rate first to concave applications, such

as browsing and file transfer, and allocate the remaining rate to the more

demanding multimedia ones. Therefore (bandwidth) proportional fairness

has the counter intuitive behavior that allocates less rate to users that need

it the most.

To resolve this contradictory behavior, the authors in [77] propose a novel

type of fairness, the so-called utility proportional fairness. Following the

same intuition as the initial (bandwidth) proportional fairness, a bandwidth

allocation vector x∗ is utility proportionally fair if it is feasible and for any

other feasible vector x we have that:

∑
s∈S

xs − x∗s
Us (x∗s)

≤ 0. (1.38)

Of course, when Us (xs) = xs, the utility proportional fairness policy re-

duces to the initial bandwidth proportional fairness one. Consequently, the

authors propose the following resource allocation formulation to allow the

development of a utility proportional fair distributed algorithm:

max

S∑
s=1

Us (xs)

subject to
∑
s∈Sl

xs ≤ cl, l=1, . . . , L

(1.39)

where Sl is the set of flows that use link l to send their traffic to the desti-

nation nodes and the transformed utility function Us (xs) is given by:

Us (xs) =

∫ xs

ms

1

Us (y)
dy, ms ≤ xs ≤Ms, (1.40)
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where ms and Ms are the minimum and maximum transmission rates for

user s respectively. This transformation of the utility function offers a num-

ber of advantages to problem (1.39) compared to problem (1.18). First,

problem (1.39) is convex even for non-concave utility functions. This means

that a distributed gradient-based algorithm will be able to calculate the op-

timal solution without any oscillations or local optimality problems. Then,

as the authors in [77] propose, a utility proportional fair policy can be im-

plemented using the following iterative equations:

x∗s (λs) = U−1s

(
1

λs

)
(1.41)

λl(t) = λl(t− 1)− γ(t)

∑
s∈Sl

xs − cl

 (1.42)

where γ(t) is a small positive step size and U−1s (·) is the inverse of the

user’s utility function. Moreover, the authors prove that the aforementioned

problem formulation can lead to utility max-min fair resource allocations if

the path price is defined as:

λs = max
l∈Ls

λs (t), (1.43)

where set Ls includes all the links along the path that user s is using. In

other words, by changing λs from the aggregate price of the path to be the

largest link price of the path the distributed algorithm achieves utility max-

min fairness. Note that utility max-min fairness was defined in [78] based

on the initial bandwidth max-min fairness following the same intuition as

definition of utility proportional fairness.
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1.4. Motivation and Contributions

Section 1.3 presented in detail the most significant prior work in literature

in the area of Network Utility Maximization. Despite the significant ad-

vancements and extensions since the initial NUM framework, there are a

number of remaining research challenges that motivated our work and on

which this thesis attempts to make some contributions.

As explained earlier, the initial NUM framework [17] made two restrict-

ing assumptions; all utilities must be concave and the capacity of all links

in the network is constant. There has been significant work in extending

the framework with respect to these two assumptions on either one or the

other direction. However, these extensions are restricted only to specific

resource allocation formulations and do not provide a general optimization

framework. Moreover, recent pieces of work that show that TCP is implic-

itly solving an optimization problem, where all applications are modelled

using the same concave utility, highlight the need for the development of

a novel optimization-based transport layer protocol that will be able to

optimize the allocation of resources in networks utilized by heterogeneous

applications and consisted of both wired and wireless links.

With this motivation, Chapter 2 makes the following contributions. First,

we show that current resource allocation protocols, such as TCP, that were

designed intuitively using heuristics, fail to allocate resource optimally in

current communication networks. Then, we propose a general non-convex

optimization framework that can be applied to any optimization problem

and prove a sufficient condition to identify the non-convex formulations that

can be solved optimally by the framework. This condition is also proven to

be necessary as well under mild conditions. This general framework can be
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the basis of a novel optimization-based resource allocation protocol. Con-

sequently, we discuss the phenomenon of user oscillations and propose an

efficient heuristic to resolve such oscillations and allow the distributed algo-

rithm to approximate the optimal solution. To illustrate the applicability

of the non-convex framework, we propose a non-convex resource allocation

problem formulation in wireless TDMA/CDMA ad-hoc networks and pro-

pose a specific distributed algorithm to jointly optimize transmission pow-

ers and data rates, which will be extensively simulated in various network

topologies.

All pieces of work in literature that extend the NUM framework by con-

sidering non-concave utilities use single-sigmoidal functions of the form de-

scribed in (1.23) to model inelastic applications. However, single sigmoidal

utilities may not be suitable to model current multimedia applications for

the following reason. Most video streaming applications used nowadays sup-

port service at different quality levels. Each one of these quality profiles has

different requirements and lead to different level of user satisfaction, which

can not be modeled satisfactorily by single sigmoidal utilities.

The work presented in Chapter 3 is motivated by the inability of single-

sigmoidal utilities to model multi-tiered inelastic applications. This chapter

introduces the concept of multi-sigmoidal utilities and explains the reasons

that make the incorporation of such utilities in NUM suitable. In addition,

we provide a detailed analysis on the implications of such a choice in the

continuity properties of the rate allocation function, a significant aspect

of the non-convex framework presented in Chapter 2. Consequently, we

propose a mathematical representation of such a multi-sigmoidal function

and discuss how the parameters of this function can be calibrated. The

non-convex problem formulation that results from the incorporation of such
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utilities is examined and a distributed algorithm is proposed to solve it

when possible. When a solution can not be obtained due to oscillations,

an extension of the oscillation resolving heuristic of the previous chapter is

proposed to approximate it.

As explained in the previous sections, the initial NUM framework and

most of the work proposed in literature allocates resources according to the

bandwidth proportional fairness policy. This policy however has some sig-

nificant drawbacks when dealing with heterogeneous networks, i.e. networks

that are used by both elastic and inelastic applications. These drawbacks

relate to the fact that applications that need more data rate, such as mul-

timedia applications, tend to receive less bitrate compared to applications

that as easily satisfied, such as FTP, HTTP etc. In addition, the absence of

convexity of the resulting optimization problem creates unwanted phenom-

ena such as users oscillating and preventing the distributed algorithm from

converging to the optimal solution. Utility Proportional Fairness seems to

be a promising alternative in allocating resources and assuring the convex-

ity of the optimization problem even with non-concave utilities. However,

prior work in utility proportional fairness is limited only to networks with

wired links and for a short range of utility functions.

In order to exploit the potential of the incorporation of Utility Propor-

tional Fairness (UPF) in NUM, the work presented in Chapter 4 makes the

following contributions. First, we discuss the advantages of UPF regarding

the convexity of the optimization problem, its ability to prevent user rate

oscillations and lead to closed form solutions for the optimal rate alloca-

tion function. Then, we propose a resource allocation problem formulation

for high-SINR wireless networks and propose a distributed utility propor-

tional fairness algorithm to solve it. Furthermore, we describe an analytical
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methodology to derive analytical solution of the most widely used types of

applications and show that UPF allows the utilization of the full range of the

feasible rates contrary to bandwidth proportional fairness where rate oscilla-

tions restrict users to only a small portion of it. The proposed methodology

is also simulated extensively in various wireless network topologies.

1.5. Thesis Organization

This PhD thesis is organized as follows. Chapter 2 describes a non-convex

optimization framework and proves the condition that allows a distributed

gradient-based algorithm to calculate the optimal solution of a non-convex

problem formulation. The advantage of this framework is its generality and

its applicability to a wide range of applications, such as the non-convex

resource allocation formulation that will be proposed and solved. then,

Chapter 3 introduces the notion of multi-sigmoidal utilities, proposes a

novel mathematical representation of such functions based on hyperbolic

tangent functions, provides arguments about the need of using such func-

tions in NUM and proves significant theoretical results regarding the conti-

nuity properties of the optimal rate allocation function under the presence of

multi-sigmoidal utilities. These functions are incorporated in a resource al-

location formulation in wired networks and the performance of the proposed

distributed algorithm is evaluated in a number of network topologies. Chap-

ter 4 proposes a utility proportionally fair distributed algorithm for wireless

networks, provides an analytical methodology to calculate closed form so-

lutions for the optimal rate allocation function for a number of widely used

utilities, including the multi-sigmoidal utility proposed in Chapter 3. The

algorithm is also evaluated for various wireless network topologies. Finally,
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Chapter 5 concludes our work and outlines our future research plans.
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2. A Non-convex Distributed

Optimization Framework and

its Application to Wireless

Ad-hoc Networks

2.1. Introduction

Modern communication networks must encompass and simultaneously sup-

port multiple users, services and applications with diverse demands and

requirements that push networks’ performance closer to their limit. There-

fore, optimum resource allocation between users and/or applications is of

paramount importance in order to assure efficient utilization of the network.

The resource allocation problem is one of the numerous research areas in

which Optimization Theory has found extensive use, since it can lead to

the development of distributed algorithms to assure optimal allocation of

resources in a network.

As described earlier in Chapter 1, Kelly et al. in their seminal paper

[17], and Low et al. [18] later using a different mathematical approach, in-

troduced the Network Utility Maximization (NUM) framework, where the

resource allocation problem is expressed as an optimization problem. This
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convex optimization framework has found numerous applications in network

resource allocation in wired and wireless networks. The main focus of these

pieces of work, however, are on modeling applications that generate elastic

traffic[42]. TCP is an example of a protocol designed to perform optimally

for this traffic in wired networks. However, modern internet traffic is dom-

inated by real-time applications, such as video and audio streaming, that

are considered inelastic[42].

The main challenge when attempting to optimize networks shared by in-

elastic applications is that they cannot be modeled using concave utility

functions and therefore the resulting problem turns into a non-convex one,

which is difficult to solve. This is because, contrary to what happens in

convex optimization, the gap between the primal and dual optimal solu-

tions in non-convex problems can be positive and then more sophisticated

techniques must be employed to solve them [7]. The lack of convexity due to

the existence of inelastic traffic in current communication networks, makes

TCP operate suboptimally. Recent work tries to relax the assumption for

concave utilities in the context of NUM by proposing the use of sigmoidal

or step functions to model such traffic.

Most of the aforementioned work is restricted only to specific non-concave

formulations and do not provide a general optimization framework. The

absence of alternative transport protocols to allow network optimization for

inelastic applications is the main motivation behind this work. This chapter

makes the following contributions:

• Demonstrates the inability of current resource allocation protocols,

such as TCP, to behave optimally in current communication networks.

• Proposes a non-convex optimization framework that removes the crit-
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ical assumptions for convexity of the problem formulation and proves

a sufficient (and in some cases necessary) condition so that the frame-

work can solve a non-convex optimization formulation. The signifi-

cance of this framework is its generality and, therefore, its suitability

to a wide range of applications.

• Proposes an efficient resource allocation heuristic to resolve user os-

cillations that occur when the condition does not hold.

• Presents an application of the aforementioned framework in wireless

TDMA/CDMA ad-hoc networks. The proposed resource allocation

formulation, firstly, incorporates the interference among links, and

secondly, introduces a power penalty term in the objective function

to ensure convergence and energy efficiency of the power control sub-

problem.

• Develops a distributed joint rate allocation and power control algo-

rithm, which enables network nodes to optimize their performance,

even for the case of inelastic traffic.

The rest of this chapter is organized as follows. Section 2.2 highlights the

shortcomings of the widely used TCP protocol in allocating bandwidth to

networks shared by various types of applications. Section 2.3 presents the

general optimization framework and proves a sufficient condition to assure

optimality of the solution. In Section 2.4, the framework is applied to the

resource allocation problem in wireless ad-hoc networks and a distributed

gradient-based algorithm is proposed. The case of source rate oscillation is

discussed and an efficient heuristic is proposed to resolve it efficiently. Then,

the performance of the method is evaluated by simulations in Section 2.5,

and, finally, Section 2.6 summarises the work presented in this chapter.
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2.2. TCP in Current Communication Networks

The Transmission Control Protocol - TCP [23] is currently the most pop-

ular resource allocation mechanism. As mentioned analytically in Chapter

1, TCP is an end-to-end connection-oriented protocol which relies only on

implicit information that is used to estimate the state of the network and

adjust the transmission rate of a connection. The congestion control in TCP

is implemented using a “window”, whose size varies based on an implicit

measurement of the congestion in the network; the more unacknowledged

packets, the more congestion in the network. The size of the window es-

sentially determines the transmission rate of the source with larger window

leading to higher bitrate. Over the years, a number of TCP variations have

been proposed in order to overcome some of the shortcomings of the initial

protocol with the most popular being TCP Reno [32] and TCP Vegas [33].

TCP was designed based on a set of practical algorithms to adjust the size

of the transmission window without any optimization theory considerations.

However, Low et. al [37][38] proved that TCP implicitly solves a resource

allocation optimization problem and that the various TCP variations differ

in the utilities comprising the objective function of the problem. More

specifically, TCP Reno solves Problem (1.18) with utility function Ur (xr) =

1
Dr

log xrDr
2xrDr+3 , where Dr is the round trip delay, and TCP Vegas solves the

same problem but with utility function Ur (xr) = αrdr log xr, where αr is

a positive calibration parameter and dr is the round trip propagation delay

of source r.

It is evident from the above that the resource allocation mechanism of

TCP assigns the same concave utility function to all flows in the network

independently of the nature of the application generating the traffic. When
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Figure 2.1.: Example of a Single-bottleneck Network

TCP was designed, the majority of the traffic over the Internet was elastic

but the capacity of current communication networks is mainly used for real-

time applications [3][4]. With such significant amount of traffic generated by

inelastic applications, the use of TCP can lead to significantly suboptimal

resource allocations.

An optimization-based algorithm, such as Algorithm 1 presented later in

this chapter, can allocate the resources of current networks more efficiently.

The use of such an algorithm to allocate network resources would have two

advantages over TCP. First, each application in the network will be modeled

using a different utility function based on the user quality perception for this

application. This implies that elastic applications will be modeled using

concave utilities and inelastic using non-concave ones.

To illustrate the performance improvement that can be achieved using an

optimization-based resource allocation algorithm, consider the single bot-

tleneck wired network topology of Figure 2.1, which consists of five traffic

flows that share the capacity of link 6. The capacity of links 1−5 and 7−11

is assumed to be sufficiently large to serve any transmission rate of source

nodes 1 − 5 while the capacity of link 6 is assumed to be insufficient to

accommodate all flows at their maximum transmission rate, thus creating
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a bottleneck in the network. For the comparison shown in this section the

bottleneck link was set to 28Mb/s. The applications sharing the network

included HTTP, FTP and video streaming.

The utilities that were used are shown in Figure 2.2. FTP and HTTP

applications have been proven [36]-[38] to follow concave utility shapes and

such application were assumed to dominate the traffic according to the

NUM framework. Video applications however for a single-sigmoidal utility

such as that shown with dashed line in Figure 2.2. The intuition behind

such as utility shape is the following: When the bitrate is very low (e.g.

0-4 Mb/s), the video quality is particularly low and hence the user is very

dissatisfied with the resulting video. As the bitrate increases (e.g. 4-7

Mb/s), however, quality is improved vastly and therefore user satisfaction

increases rapidly. This rapid increase in user satisfaction continues until

a point where the quality is already exceptional (e.g. for bitrates above
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7 Mb/s) and any further increase in the bitrate will not cause significant

increase in the perceived by the user quality of the video.

Figure 2.3 shows the improvement that can be achieved if the resource

allocation is carried out by an optimization-based algorithm as opposed to

the congestion control mechanism in TCP. The two methods were compared

while the number of real-time applications varied. The x-axis in both sub-

figures shows the number of real-time applications out of five applications

that compete for resources in the network. The rest were either HTTP

or FTP applications. For example, the performance comparison for two

real-time applications corresponds to a scenario with two sigmoidal utili-

ties, one FTP concave utility and two HTTP concave utilities. The red

and black lines at the top figure show the total network utility that each

method achieved, while the blue line at the bottom shows the percentage of

improvement that the optimization-based algorithm achieved.

It is evident that the more real-time applications share the network, the

worse TCP performs by modelling all applications with the same concave

utility. On the other hand, an optimization-based algorithm can allocate

network bandwidth efficiently since it uses a different utility for each ap-

plication. Moreover, the improvement in performance can be even larger

in networks with a number of wireless links since Algorithm 1 takes into

account the interference in order to calculate the link capacities while TCP

does not.

Motivated by these results, the next section will focus on the develop-

ment of an optimization framework that can offer the foundations of future

optimization-based resource allocation protocols.
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2.3. An Optimization Framework for Non-convex

Problems

The NUM framework as presented in [17] and [18] is restricted by the need

for concave utilities and the fact that the capacity of all links is fixed. How-

ever, as explained above, such assumptions are not valid for the majority of

current communication networks. Any prior work that attempts to remove

any of them refers to very specific applications, thus lacking generality. This

highlights the need for a general non-convex optimization framework that

will be able to solve optimization problems resulting from any non-convex

network application.

Not all non-convex optimization problems are difficult to solve. In fact,

there are cases that can be solved as easy as a convex optimization problem.

Therefore, our main consideration is to develop an optimization framework
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that can first identify such non-convex problems and then solve them in a

distributed way, while being generic enough in order to cover as many ap-

plications as possible. Towards the development of such a framework, first,

consider the following maximization problem over the vector of variables

x = [x1, x2, . . . , xn]:

max
x

f(x)

s. t. hi(x) ≤ 0, x ≥ 0. ∀ i ∈ [0,M ]
(2.1)

To form the dual problem, we first define the Langrangian function L (x,λ) =

f (x) +
∑M

i=0 λihi (x), where M is the number of constraints of the opti-

mization problem, λi is the dual variable associated with the ith constraint

and λ is the vector containing all dual variables. According to Duality

Theory, the dual objective function is defined as d (λ) = supx L (x,λ) =

supx

{
f (x) +

∑M
i=0 λihi (x)

}
and the dual optimization problem is:

min
λ

d(λ) = L(x∗(λ),λ)

s. t. λ ≥ 0,
(2.2)

where x∗ (λ) is a function that maximizes the Lagrangian for a given vector

λ, i.e.

x∗(λ) = arg max
x

L(x,λ). (2.3)

Each of the dual variables λi corresponds to a specific inequality constraint

that are often referred as shadow prices. In addition, x∗ (λ) is the optimal

solution of problem (2.1) for the particular price vector λ. The dual func-

tion d (λ) is always convex as a point-wise supremum of a family of affine

functions of λ and problem (2.2) is always convex even if the primal problem

(2.1) is not concave [6]. Therefore, it is possible to solve the dual problem
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using the iterative equation:

λi(t+ 1) = λi(t)− δλ
∂L(x,λ)

∂λi
(2.4)

where δλ is the step size and ∂L(x,λ)
∂λi

is the partial derivative of Lagrangian

function with respect to λi. The uniqueness of the optimal vector λ is not

guaranteed in all cases but prior work in literature can provide necessary

and sufficient condition for its uniqueness [79].

Equations (2.3) and (2.4) constitute an iterative primal-dual optimization

algorithm which would converge to the optimal solution if problem (2.1)

had been concave. However, convergence to the optimal is not guaranteed

otherwise. Nonetheless, there are non-concave problems where the duality

gap is zero and (2.3) and (2.4) can converge to the optimal solution. To

identify these cases, one can use the condition of Theorem 1.

Theorem 1 (Sufficient Condition). If the price based function x∗ (λ) is

continuous around at least one of the optimal Lagrange multiplier vectors λ∗

then the iterative algorithm consisting of equations (2.3) and (2.4) converges

to the globally optimal solution.

Proof. We start by showing that continuity of x∗ (λ) around the optimal

dual variables λ∗i implies that complementary slackness is satisfied for prob-

lem (2.1). Recall that the complementary slackness condition states that

λ∗ihi (x∗ (λ∗)) = 0, ∀i at the optimal solution x∗ (λ∗).

First, the case where λ∗i > 0 for an arbitrary chosen i is examined. A

very small positive constant ε > 0 and a new vector λ− are defined where

λ−j =

 λ∗j − ε , if j = i

λ∗j , if j 6= i
(2.5)
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In other words, vectors λ and λ− differ only at one element, which has been

reduced by the constant ε. Then, by definition of the sub-gradient, we have

that

d(λ∗) ≥ d(λ−) + (λ∗ − λ−)TΛ(λ−) ⇔ d(λ∗) ≥ d(λ−) + ε
∂L(x,λ−)

∂λi
⇔

d(λ∗)− d(λ−) ≥ εhi(x∗(λ−)). (2.6)

where Λ is a vector containing the partial derivatives of the Lagrangian

with respect to the dual variables, i.e. Λ = [∂L(x,λ)∂λi
, i ∈ [1,M ]]. But since

the dual problem is a minimization problem and λ∗ is its optimal solution,

it follows that d(λ∗) ≤ d(λ−) and hence by (2.6)

hi(x
∗(λ−)) ≤ 0. (2.7)

Working at the same way, a second vector λ+ is defined as

λ+j =

 λ∗j + ε , if j = i

λ∗j , if j 6= i
(2.8)

Again, by definition of the sub-gradient, it follows that

d(λ∗) ≥ d(λ+) + (λ∗ − λ+)TΛ(λ+)⇔ d(λ∗) ≥ d(λ+)− ε∂L(x,λ+)

∂λi
⇔

d(λ∗)− d(λ+) ≥ −εhi(x∗(λ+)). (2.9)

But for the same reason as before, d(λ∗) ≤ d(λ+) and hence by (2.9), we

conclude that

hi(x
∗(λ+)) ≥ 0. (2.10)

From (2.7) and (2.10) we get to the conclusion that as long as x∗(λ) is
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continuous around λ∗, then

hi(x
∗(λ−)) = hi(x

∗(λ+)) = hi(x
∗(λ∗)) = 0 (2.11)

and hence complementary slackness is satisfied and the solution x∗(λ∗) is

primal feasible.

Then, the case where λ∗i = 0 is examined. In this case, it is obvious that

complementary slackness is satisfied. Primal feasibility of the solution can

be shown using the positive constant ε and the price vector λ+ are defined as

before. Equation (2.10) is reached again and under the continuity condition

it follows that hi(x
∗(λ+)) ≥ 0. Hence, the complementary slackness condi-

tion is satisfied under the condition that the price-based function x∗(λ) is

continuous at the optimal price vector λ∗.

By definition of the dual problem, its optimal solution is given by d∗ =

f(x∗(λ∗)) +
∑m

i=0 λ
∗
ihi(x

∗(λ∗)), and since complementary slackness holds,

it reduces to d∗ = f (x∗ (λ∗)), which by definition of the primal problem is

f (x∗ (λ∗)) ≤ f∗ (x) and hence d∗ ≤ p∗. But by weak duality it is known

that d∗ ≥ p∗ and therefore it follows that d∗ = p∗, where p∗ and d∗ are the

optimal values of the primal and the dual problem respectively.

Therefore, it has been proven that continuity of the price based function

(2.3) around at least one of the optimal price vectors implies that the duality

gap is zero and that by solving the dual optimization problem the optimal

solution x∗ is also obtained.

The aforementioned condition is also a necessary condition for conver-

gence of the distributed gradient-based algorithm for some non-convex op-

timization problems as the following theorem suggests.
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Theorem 2. If at least one constraint of problem (2.1) is active at the

optimal solution, the condition in Theorem 1 is also a necessary condition.

Proof. According to Complementary Slackness, which is a necessary con-

dition for optimality, the fact that at least one constraint is active at the

optimal solution implies that at least one of the optimal Lagrange multi-

pliers is non-zero and therefore the algorithm cannot converge unless (2.11)

holds. Hence, continuity of x∗ (λ) around at least one of the optimal La-

grange multiplier vectors is a necessary condition.

Theorems 1 and 2 provide a condition for convergence to the globally op-

timal solution by the gradient-based algorithm consisted of equations (2.3)

and (2.4). Note that (2.3) represents the optimal rate for a given price

vector. In the case of non-concave utilities, the optimization problem de-

scribed in (2.3) is also non-convex. However, as shown in the remainder of

this thesis, this is a simpler problem that is in some cases easier to be solved,

especially for resource allocation formulations, such as the ones described

later, by taking advantage of the exact shape of the user utility function

and its continuity properties.

The condition in Theorem 1 constitutes a significant contribution to opti-

mization theory in general. Compared to other pieces of work, such as [47],

that refer to specific non-convex NUM formulations in wired networks, this

work provides a far more general optimization formulation and therefore can

be widely applicable. The applicability of the framework to a specific prob-

lem relies on the continuity properties of the price-based function x∗ (λ).

Even though the development of a general procedure to determine continu-

ity of x∗ (λ) for any optimization problem is an open research issue, there

are cases that either the calculation of a closed form solution is possible or
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the continuity properties of x∗ (λ) are known. Nonetheless, this is a signif-

icant result that shows that a family of non-convex problems can be solved

distributedly using a gradient based method.

2.4. Resource Allocation in Wireless Ad-hoc

Networks

The non-convex optimization framework presented in the previous section

can be applied to the resource allocation problem in wireless networks in

order to identify and solve non-convex problem formulations that stem from

the incorporation of inelastic traffic and the existence of wireless links in the

network. The analysis of such a non-convex formulation is the focus of this

section.

2.4.1. Problem Formulation

Consider a multi-hop wireless network where each node can operate either as

traffic source, destination or relay that just forwards traffic to its neighbors.

We define the transmission rate vector r = [r1, r2, . . . , rM ]T which includes

the transmission rates of all M source nodes in the wireless network. More-

over, we define the link l as the tuple (Tl, Rl), where Tl is the transmitting

and Rl the receiving node, respectively. We also define p = [p1, p2, . . . , pL]T

as the vector which includes the transmission powers of the L links. The

wireless channel is modelled as follows. Let G be a matrix of size L × L,

where Gkm, with k,m ∈ 1, 2, . . . , L, represents the path loss coefficient for

the path between the transmitter of link k and the receiver of link m. The

elements of the path loss matrix G depend on the physical characteristics

of the wireless links.
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The network performance optimization can be formulated as a maximiza-

tion problem of the form:

max
r,p

M∑
i=1

Ui(ri)− γ
L∑
l=1

Vl(pl)

s. t.

M∑
i=1

αilri ≤ Cl (p) , ∀ links l

(2.12)

where parameter αil is one if the traffic of user i is passing through link

l, and zero otherwise. The parameters αil, with i ∈ {1, 2, . . . ,M} and

l ∈ {1, 2, . . . , L}, form the routing matrix A of the network, which is con-

sidered to be fixed and known a priori for the duration of the optimization

process. The rates ri and powers pl are positive quantities and γ is a positive

weighting parameter.

In order to account for the half duplex limitations of wireless transceivers

and avoid excessive interference, a hybrid TDMA/CDMA scheme is assumed

to operate in the network. More specifically, we consider Orthogonal-CDMA

(OCDMA) for transmissions towards the same receiver, and pseudo-noise-

CDMA (PN-CDMA) between different receivers. This means that the trans-

mitted signal is first spread through multiplication by a Welsh-Hadamard

(WH) sequence with N chips per symbol. Then a PN sequence is overlayed

either without further spreading (i.e., with the same chip rate) or with fur-

ther spreading by a factor K (i.e., number of chips per WH chip). All users

transmitting towards the same receiver employ the same PN sequence, and

N orthogonal sequences are reused at each receiver. Moreover, TDMA is

employed throughout the multihop routes. This implies that time is di-

vided into frames, each of them comprises of two equally sized slots, where

transceivers alter from transmitting to receiving mode.

Based on this channel model, the capacity of a link follows Shannon’s
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capacity formula, Cl (p) = B · log2 (1 + SINRl) and is a function of the

Signal to Noise plus Interference Ratio (SINR) at the receiver of the link.

This formula is a non-concave function of powers and this might prevent

any gradient based algorithm from converging to the optimal power vec-

tor. However, under the assumption that SINRl � 1, the concave formula

Cl (p) = B log2 (SINRl) can provide a sufficiently accurate approximation

of link capacity [21]. Such a high SINR environment can be easily achievable

for the aforementioned TDMA/CDMA channel model. For the remainder

of this paper, the link capacity Cl (p) will be calculated using this approxi-

mation.

The choices for utility Ui(ri) in problem (2.12) are not restricted to con-

cave functions, as in the traditional NUM framework, so that the problem

formulation can be applied to networks with various types of traffic. This

makes problem (2.12) non-convex and therefore can be solved distributedly

only if Theorem 1 holds. Comparing Problem (2.12) with other pieces of

work in literature, this formulation extends NUM for wireless networks by

allowing non-concave utility functions while considering mutual interference

among links and by using a power penalty term to ensure energy efficiency

and convergence of the distributed power control algorithm.

2.4.2. Distributed Algorithm

Problem (2.12) optimizes the allocation of resources in an ad-hoc network

and therefore the applicability of any solution relies on the ability to develop

a distributed algorithm with minimum message overhead among nodes. Du-

ality Theory provides the means to develop such a distributed algorithm,
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and to this purpose, we first define the Lagrangian function as:

L(r,p,λ) =

M∑
i=1

{
Ui(ri)− ri ·

(
L∑
l=1

αilλl

)}

+

L∑
l=1

λlB log

 NKplGll∑
k 6=l

pkGkl + nl

− γ
L∑
l=1

Vl(pl). (2.13)

Regarding the physical meaning of the major terms on the Lagrangian

function, Ui (ri) is the “profit” that source i will make for sending its traf-

fic at rate ri and quantity ri ·
(∑L

l=1 αilλl

)
represents the total cost for

source i in order to send ri b/s of traffic through the network. Then,

term
∑L

l=1 λlB log
(

NKplGll∑
k 6=l pkGkl+nl

)
represents the total “profit” that the

links will make by charging each unit of their capacity with λl and term

γ
∑L

l=1 Vl(pl) represents the weighted cost for the links to achieve a capac-

ity of B · log
(

NKplGll∑
k 6=l pkGkl+nl

)
for l = 1, . . . , L. After a careful observation of

the Lagrangian function, one can see that the optimization process consists

of two subproblems of the primal variables r and p coupled by the dual

optimization variable vector λ. The first subproblem is the rate allocation,

maximizing the net revenue of each source, and the second is a power control

problem, determining the optimal transmission power of the links.

Based on the Lagrangian function, every source i can calculate its optimal

rate r∗i (λ) using:

r∗i (λ) = arg max
[
Ui(ri)− ri · λi

]
, (2.14)

where λi =
∑L

l=1 αilλl is the aggregate price for user i and it represents

the cost of sending a unit of traffic through the network. There are several

methods to solve the optimization problem of (2.14). First, it is known that
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the optimal solution will be at the point where the first derivative of the

objective function diminishes and therefore

r∗i (λ) = U ′
−1
i

(
λi
)
, (2.15)

where U ′−1i (·) is the inverse function of the first derivative of the utility

function. It is evident that (2.15) can be used if U ′i (·) is an one-to-one

function and its inverse can be calculated or if U ′i (·) can be broken to

invertible one-to-one parts. In cases, that this is not possible, one should

use alternative methods, such as the gradient based iterative equation:

ri(t+ 1) = ri(t) + δr(t)
∂L(r,p,λ)

∂ri
(2.16)

where δr(t) is a positive step size and the gradient of the Lagrangian function

is given by:

∂L(r,p,λ)

∂ri
= U

′
i (ri)−

L∑
l=1

αilλl. (2.17)

In general, iterative gradient-based equations such as (2.16) should be

used with care as they can converge to local optima instead of global. How-

ever, knowledge of the shape of the optimal rate allocation function can be

used in some cases, such as in the case of Problem (2.12) to assure that (2.16)

will converge to the globally optimal solution. Nonetheless, the distributed

Algorithm 1 uses the general equation (2.14) to allow the implementation

of the most appropriate method for rti .

A similar approach can be used to calculate the power and price variables,

pl and λl respectively:

λl(t) = λl(t− 1)− δλ(t)
∂L(r,p,λ)

∂λl
(2.18)
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pl(t) = pl(t− 1) + δp(t)
∂L(r,p,λ)

∂pl
, (2.19)

where δλ(t) and δp(t) are small positive step sizes and the gradients are

given by:

∂L(r,p,λ)

∂λl
= B · log2

 NKplGll∑
k 6=l

pkGkl + nl

−
M∑
i=1

αilri (2.20)

∂L(r,p,λ)

∂pl
= −γV ′l (pl) +

1

pl ln(2)

λl −∑
m6=l

λm
GlmPl∑

k 6=mGkmPk + nm

 .
(2.21)

Equations (2.14)1, (2.18) and (2.19) constitute an iterative distributed

algorithm, which is summarized in Algorithm 1. At every iteration, each

link and each source are updating their power, price and rate according to

the feedback they get from the network. Regarding the stopping criterion of

the algorithm, one could stop the optimization process when all derivatives

have diminished or when the value of the objective function has not changed

significantly for a number of consecutive iterations [7]. In any case, the

values of the step sizes δλ and δp constitute an important trade-off between

convergence speed and accuracy. The initial vectors of r, λ and p for t = 0

can be set to any feasible value.

Regarding the information exchange of the algorithm, users need to know

the aggregate link price λi. This can be either stored in the ACK packets

sent by the destination to the source node, or, if the link price is viewed as

the link delay, it can be implicitly measured by the packet queuing delay

in the network. In addition, the power calculation process requires that a

1or (2.15) if the inverse utility derivative can be calculated
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Algorithm 1 – Iterative Distributed Algorithm
1: t = 1;
2: repeat
3: Links calculate ptj using (2.19) based on λt−1 and channel state infor-

mation;
4: Links calculate λtj using (2.18), based on λt−1j , ptj , channel state in-

formation and aggregate rate traversing link j;
5: New prices λ are sent to sources;
6: Sources calculate rti using (2.14) based on received λi and rt−1i ;
7: t = t+ 1;
8: until algorithm converges

link knows the channel conditions of neighboring nodes. This information

can be easily obtained from the lower layers of the protocol stack with no

additional signaling overhead.

2.4.3. Convergence and Oscillation Resolving Heuristic

The cost function Vl (pl) assures that the optimization problem will have a

finite optimal power vector. In the absence of this cost function, i.e. when

γ = 0, it is possible to fall in a situation where equation (2.21) is always

positive, leading to infinite powers. On the other hand, when γ > 0, there

will be a finite power vector p′ at which any further increase would lead to

a decrease in the network utility and thus the algorithm will converge to a

finite power value. In literature, this case of infinitely increasing power is

often prevented by assuming a maximum transmission power value pmaxl .

Such an assumption, even though is reasonable in a practical system, causes

distortion in the theoretical analysis since it creates artificial convergence

points. Specifically, according to the Brouwer Fixed Point Theorem [80], a

continuous mapping of the power vector within a closed range
[
pminl , pmaxl

]
creates fixed points of an algorithm that might otherwise never converge.
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Therefore, the use of the penalty function Vl (pl) is a more natural way of

assuring both energy efficiency and convergence of the distributed power

control algorithm.

Algorithm 1 is an extension of the standard gradient algorithm to solve

any convex optimization problem and whose convergence properties have

been extensively studied in prior work [7]. According to theorems 1 and 2

the sufficient (and in some cases necessary as well) condition for optimality

is continuity of (2.14) around at least one of the optimal price vectors λ∗.

The continuity properties of (2.14) rely on the shape of the utility function

Ui (ri). More specifically, if Ui (ri) has a concave shape, i.e. it is modelling

an elastic application, (2.14) is a continuous function of the aggregate price

λi. If, however, Ui (ri) models an inelastic application, (2.14) can be dis-

continuous at one or more points and user oscillations can occur when the

optimal price vector λi leads to an aggregate price (for that specific user)

equal to a discontinuity point. While a generic procedure to determine the
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Algorithm 2 – Source Rate Calculation (Oscillation Resolving Heuristic)

1: if user takes part in optimization then
2: if user is oscillating (r, θi) then
3: rti = inflection point rate;
4: user takes part in optimization = false;
5: else
6: Calculate rti using (2.14);
7: end if
8: else
9: rti = rt−1i ;

10: end if

continuity properties of ri
(
λi
)

for any utility function is an open research

problem, these properties have been extensively studied for single-sigmoidal

utilities [46]. For such utility function, r∗i (λ) is discontinuous at only one

point, which represents the user’s maximum willingness to pay, λimax, and

there is an analytical methodology to be calculated. Figure 2.4 shows an

example of the rate allocation function ri
(
λi
)

for a single-sigmoidal util-

ity which is discontinuous for λi = λimax = 0.7385. In the remainder of

this chapter, we will assume that inelastic applications will be modelled by

single-sigmoidal utility shapes, such as the one in Figure 2.2, which is the

most widely used shape to model real-time multimedia applications.

The phenomenon of oscillation occurs when the optimal rate function

r∗i (λ) of a specific user i is a discontinuous function of the aggregate price

and the optimal price vector λi leads to an aggregate price (for that specific

user) equal to the discontinuity point. As explained earlier, the existence

of discontinuity points in r∗i (λ) depends only on the shape of the utility

function. Specifically, for sigmoidal utilities, r∗i (λ) is discontinuous only for

aggregate price λi = λimax and when the optimal price vector leads to that

aggregate price, the rate of user i oscillates and the distributed algorithm

can not converge.
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Practically, a user oscillation occurs when the user transmits at an ex-

cessive data rate (compared to the available capacity) in an iteration of the

algorithm, and in the next iteration, the user transmits at an exceedingly

low rate. An oscillation is formed as the repetition of these two events con-

tinues indefinitely, which prevents the user from converging to the optimal

transmission rate. In this case, user i needs to resolve this oscillation and

approximate the optimal solution. To this purpose, Algorithm 2 describes

an efficient heuristic that ensures convergence to the optimal solution, when

users do not oscillate, and stability when one or more users oscillate. Note

that Algorithm 2 is carried out distributedly by each source node to deter-

mine the most appropriate rate at time t after an updated aggregate price

is received and, in essence, replaces the initial rate update mechanism in

line 6 of Algorithm 1.

Algorithm 2 is based on the idea that an oscillating user will be allocated

some rate, and will be removed from the rest of the optimization process to

allow stability of the network. User oscillations indicate that the optimal

rate allocation is non-zero, but due to the discontinuity at λmaxs , the optimal

rate can not be calculated. More specifically, user i is associated with a

parameter θi, the maximum number of consecutive oscillations before the

oscillation resolving mechanism is evoked (line 2). As long as an oscillation

is not detected, user i calculates its rate based on the aggregate price (line

6). Once oscillations are detected, user i starts transmitting at rate equal

to the inflection point of its sigmoidal utility and leaves the optimization

process (lines 2-5 and 9).

Removing oscillating users from the optimization process is an obvious de-

cision to ensure stability of the network but the question lies in the allocated

rate to these users. Authors in [46] attempt to solve the oscillation problem
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by removing them without allocating any rate. However, such approaches

lack fairness because they unnecessarily prevent some users from accessing

the network resources. Algorithm 2 has the following advantages against

this approach. The self-regulating heuristic has been proven to be optimal

for wired networks with infinite number of users/data sources. If the num-

ber of users is finite though, by completely removing an oscillating user from

the optimization problem, there is a non-zero probability that the remain-

ing users will not be able to exploit the remaining available resources and

therefore the resulting resource allocation is significantly suboptimal. The

oscillation resolving heuristic presented in this chapter can accommodate

more users since it allocates some rate even to oscillating ones. In addi-

tion, allowing more users to transmit in a high SINR environment makes a

better use of the capacity of the wireless medium and ultimately leads to

higher aggregate utility in the network for practical applications. This will

be shown by an example in Section 2.5.

2.5. Numerical Results

Algorithms 1 and 2 were simulated in MATLAB for various network sce-

narios. For illustration purposes, in this section let us consider the network

topology shown in Figure 2.5. The wireless network consists of four source

nodes, four intermediate nodes and one destination node. Source nodes 1

and 4 serve real-time applications with single-sigmoidal utilities while source

nodes 2 and 3 serve HTTP applications with concave utilities.

In the topology example of Figure 2.5, the two time slots are designated

with blue and red color. In other words, nodes 1 − 4, 7 and 8 transmit

only at the first time slot while nodes 5 and 6 only during time slot 2. The
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hybrid TDMA/CDMA scheme described in Section 2.4 was deployed with

N = 2 chips per symbol, a spreading gain K = 4 and channel bandwidth

of B = 2MHz. Finally, the utility functions of the four sources where

defined as Ui (ri) = 1

1+e−α(ri−β)
[46], with α = 1.38 and β = 5 for i ∈ {1, 4},

U2 (r2) = log(r2+1)
log(α+1) [45], with α = 6, and U3 (r3) = α · log(β ·r2+γ) [46], with

α = 0.417, β = 0.417 and γ = 1. Regarding the feasible power vectors, it is

assumed that there is a feasible power vector to achieve capacity adequate

to accommodate the non-concave utilities when transmitting at rate equal

to their inflection point.

The performance of Algorithms 1 and 2 is compared against that of the

standard gradient algorithm when the self-regulating heuristic [46] is applied

to resolve oscillations. Figures 2.6, 2.7 and 2.8 illustrate their performance.

Soon after the optimization process starts, the aggregate price for users 1

and 4 exceeds their maximum “willingness to pay” and they start oscillating.

As shown clearly in Figure 2.6, the rate oscillation of users 1 and 4 cause
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Figure 2.6.: Convergence of Rate Allocation

oscillations of smaller degree to other users as well. This happens since

oscillations cause abrupt changes in the competition for resources in the

network. When such an oscillation is observed, a heuristic is evoked to

resolve it. Algorithm 2 sets the rate to the non-zero value of the inflection

point (in this case to 5 Mb/s) and continues the optimization process. In

the self-regulating heuristic case the rate is set to zero.

As illustrated in Figure 2.7, the decision for non zero rate for the os-

cillating users yields higher value of the objective function compared to

the self-regulating heuristic, for the reasons explained earlier. Note that,

as Theorem 1 states, when the optimal vector λ does not lead to oscilla-

tions, the optimization process comprised of Algorithms 1 and 2 converges

to the globally optimal solution. Figure 2.8 shows the convergence of the

transmission powers allocation of the first 4 links in the network, the ones

initiated from the 4 source nodes. The difference in dealing with oscilla-
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tions between the two heuristics is illustrated in the power vectors as well.

The self-regulating heuristic leads to zero powers for the oscillating users

while Algorithm 2 gives non zero powers to achieve the necessary channel

capacity. Finally, since we have assumed the operation at a high SINR envi-

ronment, we should mention that the SINR ranges from 7dB to 18dB, and

therefore the error introduced by our capacity approximation in the worst

case is less than 10% (note that for SINR > 10dB the error is less than

4%). It is important to mention here that the approximation provides an

underestimation of the link capacity, and therefore the upper bound of the

Shannon capacity formula is not violated. This justifies the valid use of the

approximated capacity formula.

2.6. Concluding Remarks

Motivated by the non-convex resource allocation problems in Network Util-

ity Maximization and the necessity for a novel optimization-based resource

allocation protocol, this chapter presents a general optimization framework
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Figure 2.8.: Convergence of Transmission Power Allocation

for non-convex problems and provides a condition to assure that a dis-

tributed gradient-based algorithm converges to the optimal solution. The

optimization framework is applied on an optimization problem formulation

in wireless ad-hoc networks. This formulation includes a power penalty func-

tion to assure convergence and energy efficiency of the power allocation.

Consequently, a distributed algorithm to solve this problem is developed

and an oscillation resolving heuristic is presented to assure network stabil-

ity in non-convex problems whose optimal solution can not be calculated

distributedly.

The focus of the next chapters will be twofold. First, in Chapter 3, we will

examine the applicability of the optimization framework to a wider range

of utility functions and problem formulations. To that purpose, we will

describe the motivation behind the use of a novel family of multi-sigmoidal
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utility functions to model multi-tiered multimedia applications and, then,

will propose means to overcome the research challenges that such utilities

impose to the application of the non-convex framework presented in this

chapter.

Secondly, in Chapter 4 we will work towards an alternative policy of al-

locating bandwidth towards a more fair resource allocation. We will show

that Utility proportional fairness can be an efficient way to convexify the

problem formulations that result from the incorporation of non-concave util-

ities and, moreover, offer a more fair method to allocate resources with a

priority of applications that need them the most.
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3. Non-convex Resource

Allocation for Multi-tiered

Multimedia Applications

3.1. Introduction

The end-to-end communication and resource allocation services in current

communication networks are provided by Transport Layer protocols such

as TCP. As shown earlier, the various TCP Algorithms proposed during

the last decades have been shown to implicitly solve a resource allocation

optimization problem [38] where all applications have been modeled using

concave utility functions. Although this was a valid assumption in the past,

the network traffic generated by modern applications has such Quality of

Service (QoS) requirements that need to be modeled by non-concave func-

tions. Therefore, as we showed in Chapter 2, existing resource allocation

schemes provide suboptimal solutions that may significantly affect both net-

work performance and user experience.

Network Utility Maximization (NUM) [17], contrary to the resource allo-

cation algorithm in TCP, can distinguish between elastic and inelastic ap-

plications by choosing different utility functions for each one. This clearly

highlights the important role that NUM can play towards the development
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of new transport layer protocols that would optimize the allocation of re-

sources in heterogeneous networks, where elastic and inelastic applications

compete for resources. Recall the distinction between elastic and inelas-

tic traffic described in the previous chapters. Elastic applications include

file transfer (FTP), email, network management (SNMP) and Web access

(HTTP), while inelasticity usually characterizes real-time applications such

as Video Streaming, Teleconferencing, Voice over IP (VoIP), Stock Trading

etc., that have some minimum requirements in throughput and/or delay.

Since the seminal work of Kelly et al. [17], there have been several pieces

of work that cultivated a deep understanding in the ways that optimization

theory can be utilized in solving various convex resource allocation formu-

lations in a distributed way.

The fast growing number of multimedia applications in current networks

led the research community to work towards the incorporation of a more

accurate modeling of the “inelasticity” of such applications in the NUM

framework. The authors in [49] and [52] first discuss the properties of a

single sigmoidal utility function and the implications of such a utility shape

in the convergence of a gradient based algorithm to the optimal solution.

Despite the aforementioned extensions of the NUM framework, single

sigmoidal utility functions may not be suitable to model many state of

the art multimedia applications. Several video streaming applications used

nowadays offer services at different quality levels with each level having

different bit-rate requirements and offering different Quality of Experience

(QoE) for the user. For example, assume that an online video content

provider offers four distinct levels of video quality (e.g. low, medium, high,

ultra high) based on the video resolution and bitrate. Each quality option

represents a different level of user satisfaction. Moreover, for a specific video
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Figure 3.1.: Example of Multi-tiered Utility Functions

resolution the allocated bitrate affects user satisfaction. For example, if low

resolution is chosen, the increase of bitrate above a certain level will not

result in significantly better visual results since the resolution is too low for

a visible improvement. Therefore, user satisfaction at this quality level is

saturated and further increase can only be a result of the transition to a

higher resolution profile. Such multi-tiered multimedia applications can not

be modeled satisfactorily well by single sigmoidal utilities.

The most intuitive, yet very challenging, solution to this problem is the

use of multi-sigmoidal utilities. Multi-sigmoidal utility functions, such as

the one shown in Figure 3.1, are capable of capturing the step-like behav-

ior of user satisfaction with respect to the various quality levels of modern

video applications. The development of appropriate multi-sigmoidal utility

functions that can capture the QoS/QoE characteristics of the underlying

applications and the extension of NUM framework to incorporate such util-

ities are the main motivation behind the work presented in this chapter.
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More specifically, this chapter attempts to provide answers to the following

questions:

• Which are the properties that a multi-sigmoidal utility function must

possess in order to be appropriate to model multi-tiered multimedia

applications?

• Can the existing NUM framework be used to solve the resource allo-

cation problem under the existence of such utility functions?

• What would be the implications of such a utility shape in the conti-

nuity of the optimal rate allocation function?

• What would be an appropriate mathematical formulation of a multi-

sigmoidal utility function?

To the best of our knowledge this is the first work in literature that tries

to provide answers to these questions. In an attempt to answer them, this

chapter makes the following contributions:

• Introduces the concept of multi-sigmoidal utility function to express

user experience/satisfaction in multi-tiered multimedia applications.

• Examines the incorporation of multi-sigmoidal utility functions to the

existing NUM framework, gives an insight into the impact of such

a choice on the continuity properties of the optimal rate allocation

function and describes a detailed procedure to determine all these

discontinuity points.

• Proposes an efficient heuristic algorithm in order to resolve network

oscillations, caused by these discontinuities, while preserving fairness.
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• Proposes a novel mathematical representation of a multi-sigmoidal

utility function and provides a thorough discussion on how the func-

tion’s parameters can be calibrated.

• Proposes a distributed gradient based algorithm for this specific fam-

ily of multi-sigmoidal functions to solve the resulting NUM problem

optimally, when possible.

The rest of the chapter is organized as follows. First, Section 3.2 dis-

cusses the properties that a multi-sigmoidal function must possess in order

to be in accordance with the physical interpretation of a utility function

and highlights the research challenges that arise when such utilities are ap-

plied to NUM. Section 3.3 reveals the direct connection between the utility

function and the discontinuities in the rate calculation mechanism, presents

a detailed procedure to determine these discontinuities and discusses the

network oscillations that these discontinuities might cause during the opti-

mization process. Consequently, Section 3.4 proposes an efficient, low com-

plexity, distributed heuristic that allows users to resolve these oscillations

when they occur. Then, Section 3.5 presents a novel mathematical rep-

resentation of a multi-sigmoidal function, discusses the reasons that make

it appropriate for NUM, and presents in detail an efficient approximation

method to the optimal resource allocation that leads to the development

of a joint primal-dual distributed algorithm. Section 3.6 presents extended

simulation results of the proposed algorithms in various network topologies

that illustrate their efficiency, and, finally, Section 3.7 concludes the work

presented in this chapter.

96



3.2. Network Utility Maximization with

Multi-sigmoidal Utilities

3.2.1. Properties of a Multi-sigmoidal Utility Function

The heterogeneity of the applications competing for resources in current

communication networks dictates the use of application-specific utility func-

tions to capture user satisfaction efficiently. The introduction of single-

sigmoidal utility functions was the first step towards the development of a

generic non-convex resource allocation framework to optimize multimedia

applications but they are not always the most suitable choice for modelling

real-time applications.

The need for a new family of utilities originates from the fact that most

multimedia content providers (either video or audio) offer content at a num-

ber of discrete quality levels (low, medium, high etc.), each of them having

different bandwidth requirements. Therefore, the gradations of user QoE

according to the selected quality level must be depicted in the utility func-

tions that model such applications. It is evident from the above that the

most appropriate utility function is a multi-sigmoidal function with multi-

ple inflection points, or else, multiple sigmoidal components. In addition,

this family of functions possesses some additional properties necessary to

support the physical meaning of a utility function as a user satisfaction in-

dicator with respect to the allocated transmission rate. Therefore we are

interested in functions that:

P1) take positive values in the range [0, 1];

P2) are increasing functions of the transmission rate,

P3) are zero when no rate is allocated to a particular user;
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P4) have a maximum rate, rmax, above which its value is always 1;

P5) are continuous in the range (0, rmax).

One could argue that a potential sixth property could be added as well.

This describes the need that all quality levels, i.e. all concave parts, of

the utility to be reachable by a NUM algorithm. In other words, a multi-

sigmoidal utility can indeed model multi-tiered applications only if all dis-

tinct utility levels can be optimal selections under some conditions. While

this will be explained in more detail later, in Section 3.3, it is not considered

a requirement for a multi-sigmoidal utility since the exact shape of a utility

function is determined by each user depending on the user’s appreciation

of the allocated bitrate without having in mind the operational character-

istics of NUM. Moreover, this chapter provides a detailed methodology to

determine which of the levels of a multi-sigmoidal utility are reachable by a

NUM algorithm and which not.

The incorporation of multi-sigmoidal utilities in the existing NUM frame-

work is not as straightforward as someone may think due to the convexity

properties of such utilities. The next section describes the NUM framework

in detail and discusses the research challenges that multi-sigmoidal utilities

raise.

3.2.2. Network Resource Allocation with Multi-sigmoidal

Utilities

The Network Utility Maximization (NUM) framework [17][18] expresses the

bandwidth allocation in communication networks as an optimization prob-

lem under the assumption that all utilities are concave (and most commonly

logarithmic) functions of rate in order to assure convergence of the dis-
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tributed algorithm. This section will present a generalized NUM framework

where the utilities can be multi-sigmoidal, i.e. non-concave, and discuss the

research challenges that this imposes to the distributed algorithm. These

challenges will be answered later in this chapter.

Consider a multi-hop network where M nodes act as sources sending

streams of traffic to a set of destination nodes using a set of J links. A

single node can operate as a source, destination or even as a relay node

that just forwards traffic to its neighbors. It is assumed that all links in the

network are wired, vector C = [C1, C2, · · · , CJ ]T contains the capacity of

each link1 and vector r = [r1, r2, · · · , rM ]T includes the transmission rates

of all sources. The optimization problem describing the Network Resource

Allocation (NRA) problem is:

max
r

M∑
i=1

Ui(ri)

s. t.
M∑
i=1

αi,jri ≤ Cj , ∀ links j

(3.1)

where routing coefficient αi,j is 1 if user i sends traffic through link j and

0 otherwise. We assume that the routing matrix A, containing all routing

coefficients αi,j , is known a priori and considered fixed throughout the op-

timization process. The rates ri, i ∈ [1,M ], in r are positive variables since

they represent the transmission rates of the respective source nodes.

Problem (3.1) can be solved distributedly using Duality Theory. For this

purpose, we first construct its dual. The langrangian function can be written

as:

L (r,λ) =
M∑
i=1

{
Ui (ri)− riλi

}
+

J∑
j=1

λjCj (3.2)

1Links are assumed to have fixed capacity, i.e. they model wired links. The case of
multi-sigmoidal utilities in wireless networks will be examined in Chapter 4.

99



where λj are the “Lagrange multipliers”, which represent the “price” that

user i has to pay in order to send each of the ri units of traffic through

link j and λi =
∑J

j=1 αi,jλj is the aggregate price to send its traffic to the

destination node. Vector λ = [λ1, λ2, . . . , λJ ]T contains the dual optimiza-

tion variables with each one of them corresponding to a constraint of the

primal problem and, therefore, to a link in the network. Based on (3.2), the

objective function of the dual problem will be d(λ) = supr L(r,λ) and the

resulting dual problem:

min
λ
d(λ) s. t. λ ≥ 0. (3.3)

As explained in Chapter 1, problem (3.3) is a convex problem as a point-wise

supremum of a family of affine functions [6]. It is clear from (3.2) that each

user is trying to maximize their Net Utility, i.e. NUi (ri) = Ui (ri) − ri · λi

and thus the optimal resource allocation for user i will be:

r∗i (λ) = argmax {NUi (ri)} . (3.4)

Equation (3.4) can be used to calculate the optimal rate of user i for a

given price vector λ. The optimal value of the dual variables λj , j ∈ [1, J ],

can be calculated iteratively using a gradient method, such as the Gradient

Projection2 [7],

λj(t+ 1) = λj(t)− sλ(t)
∂L(r,λ)

∂λj
, (3.5)

to assure that any λj will take non-negative values. sλ(t) is the step size of

the method at time t and affects the convergence speed and distance from

the true optimum [7]. The partial derivative of L(r,λ) with respect to λj

2A projection method to the feasible set of values is necessary in this case to assure that
all λj , j ∈ [1, J ], take non-negative values.
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is:

∂L(r,λ)

∂λj
= Cj −

M∑
i=1

αi,jri. (3.6)

Equations (3.4) and (3.5) constitute a joint primal-dual distributed al-

gorithm of NUM, which can converge to an optimal solution, even in the

case of non-concave utilities (such as single-sigmoidal), as long as (3.4) is

continuous around the optimal price vector λ∗ [52]-[48]. In fact, Theorem 1

in Chapter 2 shows that any gradient based algorithm will converge to the

optimal solution for any non-convex optimization problem as long as the

primal variables are continuous functions of the dual variables around their

optimal values. Regarding equations (3.4) and (3.5), the following research

questions emerge regarding the use of multi-sigmoidal utilities in NUM:

• Is (3.4) a continuous function of the dual variables?

• If not, is it possible to develop an analytical methodology to identify

the points of discontinuity?

• Is it possible to calculate or approximate a closed form solution for

(3.4) in the case of multi-sigmoidal utilities?

• Is there a fair and efficient method to resolve possible network oscil-

lations due to the discontinuity of (3.4)?

Taking into account that (3.4) is discontinuous at one point for single-

sigmoidal utilities [49], we expect to have at least one point of discontinuity

at the multi-sigmoidal case as well. Answers to these questions will be

provided in the rest of this chapter.
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3.3. The Price-based Rate Allocation Function

The price-based rate allocation function (3.4) is the solution of an optimiza-

tion problem that calculates the rate to maximize the net utility of user i for

a specific price vector λ. This section will, initially, discuss the difficulties

in calculating a closed form solution for non-concave utilities, and then, will

examine the important role that its continuity plays in the convergence of

the distributed algorithm.

3.3.1. Calculation

According to the NUM framework, all users in the network are acting self-

ishly and try to optimize their individual net utility. In other words, user i

tries to solve the following optimization problem at each time instant and

for the current price vector λ:

max
ri

Ui(ri)− ri · λi

s. t. ri ≥ 0,

(3.7)

where λi =
∑J

j=1 αi,jλj . In essence, this is the optimization problem that

must be solved in (3.4). The optimal solution of Problem (3.7) is also the

optimal rate for user i for Problem (3.1). This rate is at a point where the

derivative of the objective function diminishes [7], which leads to:

r∗i (λ) = U ′i
(
λi
)−1

, (3.8)

where U ′i (·)−1 is the inverse first derivative function. The calculation of

the inverse of the first derivative is possible for concave functions, such as

the widely used Ui (ri) = log ri function, used to model applications such as

FTP, HTTP, etc. In addition, for concave utilities it is also possible to use
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the following gradient based iterative equation

ri(t+ 1) = ri(t)− sr(t)
∂L(r,λ)

∂ri
, (3.9)

where sr(t) is the step size of the update at time t, much like sλ(t) in

(3.5). However, the calculation of the inverse derivative of non-concave

utilities is not possible because their derivatives are not one-to-one functions.

In essence, the fact that U ′i (·) is not a one-to-one function implies that

there might be more than one optimal rates for a single aggregate price λi.

Moreover, an iterative equation such as (3.9) is impractical in many cases,

since it may converge to local rather than global optima. This difficulty

to calculate a general closed form solution for Problem (3.7) highlights the

need for developing methods to approximate r∗i (λ) efficiently for specific

non-concave utility shapes. With this motivation, Section 3.5 will present

analytically an efficient approximation technique of the optimal rate for

a novel mathematical representation of multi-sigmoidal utility functions.

In essence, Algorithm 4 presented in Section 3.5 will provide a detailed

procedure to solve the optimization problem in (3.4) for a specific family of

multi-sigmoidal utilities.

The continuity properties of (3.4) are important for the convergence of any

gradient based algorithm to the optimal resource rate allocation. Therefore

the next section will shed some light on its discontinuity points and their

connection to the exact shape of the utility function.

3.3.2. Discontinuity

So far, we know that the price based rate function r∗i (λ) is continuous for all

price vectors if the utility is either concave or convex function of rates while
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it is discontinuous at only one point for single-sigmoidal utilities. Continuity

of r∗i (λ) is also important for convergence with multi-sigmoidal utilities and

therefore any discontinuity points must be identified. Equation (3.8) shows

that r∗i (λ) is in essence a function of the aggregate price per unit of traffic

and does not depend on the individual values of λj , j ∈ [1, J ]. Therefore,

we will also refer to r∗i (λ) as r∗i
(
λi
)
, where λi is the aggregate price for user

i.

It turns out that the shape of a utility function determines the discontinu-

ity points of the rate allocation function as well, and that the discontinuity

points correspond to jumps from one concave region to another or from

one concave region to zero. Moreover, we need to highlight the difference

between a candidate discontinuity point and an actual discontinuity point.

There are a number of candidate discontinuity points that may or may not

appear as actual discontinuities of r∗i
(
λi
)
. The methodology to identify

these points involves the use of tangent lines to the utility function Ui (ri).

Initially, we draw a tangent line y = αri + β that osculates the utility func-

tion at two or more points. Let rni , with n = 1, 2, ..., N , be the rates at

which the tangent line y osculates the utility function. We also name the

touching points in ascending order, i.e. r1i < r2i < · · · < rNi . Moreover, it

is assumed that Ui (ri) ≤ y, which implies that the tangent line is graphi-

cally always above the utility function and therefore points rni are all in the

concave parts of the utility, i.e.

∂2Ui (ri)

(∂rni )2
< 0, at all points rni , n = 1, 2, . . . , N. (3.10)

In multi-sigmoidal utilities, a tangent line such as y can osculate the utility

function at most at N = K points, where K is the number of inflection
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Figure 3.2.: Example of a multi-sigmoidal utility with four discontinuity
points

points in the utility shape, and there can be at most K(K−1)
2 distinct tan-

gents, in the case where each one of them osculates the utility function at

exactly two points. Using the example of tangent y we can prove that the

candidate discontinuity points are aggregate prices equal to the slopes of

these tangent lines. To show that, we initially examine the properties of

the points rni , n = 1, 2, . . . , N , where line y osculates the utility function.

The next theorem proves that these points are all optimal rates of Problem

(3.7) for aggregate price equal to the slope of line y, i.e. α.

Theorem 3. If λi = α then the rates rni , n = 1, 2, . . . , N are all globally

optimal rates for user i and aggregate price λi.

Proof. As explained in Section 3.3, user i is trying to maximize its Net

Utility NUi (ri) according to Problem (3.7).
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The Lagrangian function of Problem Πi
NU (λ) is:

LNUi (ri) = Ui (ri)− λi · ri, (3.11)

and its first derivative

dLNUi (ri)

dri
=
dUi (ri)

dri
− λi. (3.12)

Since, all points rni , n = 1, 2, . . . , N , belong to the same line, the derivative

of the utility function at those points will have the same value. In other

words,

dUi (ri)

dri
= α, for all points rni , n = 1, 2, . . . , N. (3.13)

Based on (3.12), (3.13) and the fact that λi = α, we find that:

dLNUi (ri)

dri
= 0, for all points rni , n = 1, 2, . . . , N, (3.14)

which is the First Order Sufficient Condition for optimality. Then, from

(3.10) and (3.14) we find that points rni , n = 1, 2, . . . , N satisfy the Second

Order Sufficient Condition for optimality as well and therefore they are all

locally optimal points.

In addition, since rates rni , n = 1, 2, . . . , N are all points of the tangent

line y = α · ri + β, we know that:

Ui (rni ) = α · rni + β ⇔

Ui (rni )− λi · rni = β ⇔

NUi (rni ) = β, for n = 1, 2, . . . , N. (3.15)

Hence, all locally optimal rates rni , n = 1, 2, . . . , N yield the same value at

106



the objective function of Problem (3.7) equal to β.

Global optimality of these points implies that there is no other rate that

leads to higher value of the objective function, i.e. there is not any other

rate that results in higher Net utility for user i. We will prove this part of

the theorem by contradiction.

Assume that there is a rate r′ that has higher net utility for user i than

the locally optimal rates rni , n = 1, 2, . . . , N for aggregate price λi = α. In

other words,

NUi
(
r′
)

= β′ > β. (3.16)

Then, for this point r′ we have that:

NUi
(
r′
)

= β′ ⇔ Ui
(
r′
)
− λi · r′ = β′ ⇔

Ui
(
r′
)

= α · r′ + β′. (3.17)

In other words, rate r′ belongs to the line y′ = α · ri + β′ which is also

a tangent at the utility function at point r′. This implies that there is a

second tangent at the utility function, other than y = α · ri +β with β′ > β

that is also tangent at a concave point of it. However, this means that two

different perpendicular lines are tangent to the same function which can not

be true because, since β′ > β, line y = α · ri + β can not be a tangent of

Ui (ri) as well. This contradicts to our definition of line y. Therefore, there

is no other point r′ that yields higher net utility to user i for aggregate price

λi = α and hence points rni , n = 1, 2, . . . , N are globally optimal rates.

Theorem 3 shows that the price based rate function r∗i
(
λi
)

has multiple

values for aggregate price λi equal to the slope of the tangent y and the

multiplicity of the function at that point is equal to the number of points
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N that the slope osculates the utility function. Examining the properties of

r∗i
(
λi
)

around point λi = α, it is possible to prove the following theorems

in order to justify the discontinuity and monotonicity properties of r∗i
(
λi
)
.

Theorem 4. If λi = α+ δ, where δ is a very small positive constant, then

the globally optimal rate r∗i
(
λi
)

is smaller than the smallest optimal rate for

λi = α, i.e r∗i
(
λi
)
< r1i .

Proof. According to the First Order Necessary Condition, at the optimal

rate r∗i , U
′
i (r∗i ) = λi. So, the candidate optimal points will be points where

the family of tangent lines, y = λi · ri + β, for various values of β and

λi = α + δ, touch the utility function. Assume that there are P such

tangents. Then, it is easy to see that tangent p, with p = 1, 2, . . . , P and

P ≤ K, touches the utility function at exactly one point, let ri,p. Without

loss of generality we can assume that ri,1 < ri,2 < · · · < ri,P . Then, we have

that:

Ui (ri,p) = λi · ri,p + β ⇒ Ui (ri,p)− λi · ri,p = β ⇒

NUi (ri,p) = β. (3.18)

Hence the rate that corresponds to the tangent with the largest value of β is

the globally optimal rate. It is easy to verify graphically that the minimum

of all ri,p points, i.e. ri,1, is the one that corresponds to the tangent line

with the larger constant β and using the concavity properties of the utility

function around the candidate optimal rates, it is also easy to conclude

ri,1 < r1i , where r1i is the smallest optimal rate for aggregate price λi = α

and hence r∗i < r1i .

Theorem 5. If λi = α− δ, where δ is a very small positive constant, then

the globally optimal rate r∗i is larger than the largest optimal rate for λi = α,
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i.e r∗i > rNi .

Proof. Working in the same way as for Theorem 4, we need to find the

corresponding rate for the tangent line with the largest constant β and

λi = α−δ. If the candidate points are again denoted by ri,p, p = 1, 2, · · · , P ,

with ri,p < ri,p < · · · < ri,P , it easy to understand that the largest, i.e.

ri,P , is the rate that corresponds to the largest Net Utility and due to the

concavity properties of the utility around the candidate rates ri,P > rNi .

This proves that the optimal rate r∗i will be larger than the largest optimal

value at λi = α, i.e. r∗i > rNi .

In addition, regarding the monotonicity of r∗i
(
λi
)

with respect to λi, it is

possible to prove the following theorem.

Theorem 6. The optimal rate function of user i, r∗i
(
λi
)
, is a decreasing

function of λi.

Proof. Let λi1 and λi2 be two aggregate prices with 0 ≤ λi1 < λi2 ≤ λimax

and let x1 = r∗i
(
λi1
)

and x2 = r∗i
(
λi2
)

the optimal rates for these aggregate

prices respectively. User i is trying to optimize Problem (3.7) and therefore

the First Order Necessary Condition must hold for the optimal rates x1 and

x2. In other words, if NU ′i (·) and U ′i (·) are the derivatives of the net utility

(i.e. the objective function of Problem (3.7)) and the utility function of user

i respectively

NU ′i (x1) = 0

NU ′i (x2) = 0
⇒

U ′i (x1)− λi1 = 0

U ′i (x2)− λi2 = 0
⇒

U ′i (x1) = λi1 < λi2 = U ′i (x2)⇒

U ′i (x1) < U ′i (x2) . (3.19)
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According to the Second Order Necessary Conditions, the optimal rates will

always be in concave regions of the multi-sigmoidal utility function. There-

fore, if points x1 and x2 are in the same concave region, then from (3.19) we

conclude that x2 < x1. Moreover, even if points x1 and x2 are in different

concave regions, theorems 4 and 5 imply that r∗i
(
λi
)

has decreasing “jump”

discontinuities, i.e x2 < x1. Therefore, r∗i
(
λi
)

is a decreasing function of

aggregate price λi.

Apart from the discontinuity of r∗i
(
λi
)

around the points determined by

the tangents at the utility function, these theorems imply that rates in the

range
(
r1i , r

N
i

)
, excluding points rni , n = 2, . . . , N − 1, can never be globally

optimal rates and therefore the price-based rate function will “jump” from

rNi to r1i . Another direct result from Theorem 6 is that there will be a

maximum value for λi, let λimax, above which the optimal rate will be zero.

In other words, r∗i
(
λi
)

has a positive value for 0 ≤ λi ≤ λimax and is zero

for aggregate prices λi ≥ λimax. This maximum non-zero aggregate price

λimax is called maximum willingness to pay for user i and is a discontinuity

point of r∗i
(
λi
)

for single-sigmoidal utilities [52][47]. The methodology to

calculate λimax in the multi-sigmoidal case shows that λimax is a discontinuity

point of r∗i
(
λi
)

for multi-sigmoidal utilities as well.

To calculate λimax, we start by the fact that an aggregate price λi = λimax

corresponds to two distinct values of rate, a positive one, let r̂i, and a zero

rate. For these two rates, the net utility must be equal, i.e.

NUi (r̂i) = NUi (0)⇔

Ui (r̂i)− λimax · r̂i = 0. (3.20)

Since r̂i is an optimal rate for aggregate price λimax, the First Order Opti-
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mality Conditions must be met. In other words, the first derivative of the

net utility function at point r̂i, NU
′
i (r̂i), must be zero, which leads to

U ′i (r̂i) = λimax. (3.21)

Substituting to (3.20), we get the differential equation:

Ui (r̂i)− U ′i (r̂i) · r̂i = 0 (3.22)

where U ′i (·) is the first derivative of the utility function. This differential

equation clearly has more than one solutions, a zero rate solution and one or

more positive ones, which shows that r∗i
(
λi
)

has multiple values for aggre-

gate price λimax. By solving (3.22) and calculating r̂i, it is also possible to

calculate λimax using (3.21) by selecting the largest of the positive solutions,

which is a discontinuity point of r∗i
(
λi
)
.

It is evident from the above that every tangent at two or more points of

the utility function represents a candidate discontinuity point of the price

based function ri (λ). Each one of these points represents a “jump” from

one hyperbolic tangent component to another, while the discontinuity point

around λimax represents a “jump” from a hyperbolic tangent component

to zero rate. The latter point will always appear in the rate function but

the rest depend on their relative value compared to λimax. For example, if

λimax is smaller than all the other candidate discontinuity aggregate prices,

then none of them will appear and there will be only one discontinuity

point. The maximum number of discontinuity points are K, as many as the

inflection points of the utility. This can happen if there are K − 1 distinct

tangent lines, each one touching the utility at two points that belong to two

consecutive hyperbolic tangent components. The Kth discontinuity point is
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for λi = λimax when “jumping” from the first concave region to zero rate,

and could graphically be represented by a tangent line that passes from

point (0, 0) and osculates the utility function at its first hyperbolic tangent

component.

Figure 3.2 shows an example of a utility function that has four discon-

tinuity points. The top sub-figure shows the utility function and the four

tangent lines responsible for the four discontinuity points while the bottom

one shows the optimal rate r∗i (λ) calculated exhaustively with the discon-

tinuity points clearly shown. This figure illustrates the connection between

the shape of the utility function and the discontinuity points of the price-

based rate function r∗i (λ). Moreover, it evidently verifies that r∗i (λ) is a

decreasing function of the aggregate price since it consists of decreasing

continuous parts and decreasing jump discontinuity points.

Commenting on the feasibility of all K sigmoidal components to be se-

lected as optimal choices, it is evident that this is possible only under the

existence of K distinct discontinuity points3. In any other case, there will be

at least one sigmoidal component that is unreachable during NUM, which

is one of the shortcomings of the NUM framework. This observation leads

to the interesting conclusion that the fully reachable multi-sigmoidal utili-

ties are those with the maximum possible number of discontinuity points.

Moreover, we can form the following theorem:

Theorem 7. A multi-sigmoidal utility will have all levels reachable, and

hence will have the maximum discontinuity points, iff the following condi-

3Such utility function is hereafter referred as fully reachable multi-sigmoidal utility.
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tions hold:

(1) λik,k−1 < λik,j , ∀j ∈ [1, . . . , k − 2] , k ∈ [3, . . . ,K]

(2) λik,k−1 < λimax, ∀k ∈ [2, . . . ,K] ,
(3.23)

where λik,l is the slope of the tangent that osculates the utility of user i at

the kth and lth sigmoidal component.

Proof. To prove its sufficiency, we assume a utility function for which con-

ditions (1) and (2) hold. This implies that as the aggregate price λi of that

user increases, it will first reach the discontinuity point λiK,K−1 and the

optimal rate will drop to the next concave region K − 1. As the aggregate

price increases further, λik,k−1 will always be reached before any discontinu-

ity point to non consecutive regions and, therefore, optimal rate will move

only to consecutive ones until it exceeds the user’s maximum willingness to

pay, λimax, and becomes zero. This leads to the conclusion that the utility

function is fully reachable.

To show that it is also a necessary condition, we assume first that con-

dition (1) does not hold for a specific utility. This implies that there is an

index m, with m ∈ [1, . . . , k− 2], for which λik,m < λik,k−1. Therefore, when

the aggregate price for user i exceeds λik,m, user i will drop from region k to

the non consecutive region m. Hence there will be at least k−m−1 unreach-

able concave regions in the utility function and, therefore, r∗i
(
λi
)

will have

at most K − (k −m− 1) discontinuity points. Now, assume that condition

(2) does not hold. In that case, there is an index m, with m ∈ [2, . . . , k], for

which λim,m−1 > λimax. This implies that when the aggregate price λi for

user i reaches or exceeds λimax, the optimal rate will drop to zero and the

concave regions 1 to m− 1 will be unreachable. Moreover, there can be at

most K −m+ 1 discontinuity points in r∗i
(
λi
)
. The aforementioned argu-
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ments lead to the conclusion that conditions (1) and (2) are also necessary

conditions to have the a fully reachable utility function.

Determining a detailed procedure to design such multi-sigmoidal utilities

is beyond the scope of this paper but always remains within our future

research plans.

For an arbitrary multi-sigmoidal utility function it is possible to determine

exactly the aggregate prices for which r∗i (λ) is discontinuous. The calcu-

lation of these points involves the calculation of λimax and all candidate

discontinuity points. The easiest way to calculate the candidate disconti-

nuity rates is by assuming that each tangent osculates the utility function

at exactly two points, let p1 and p2, and then to calculate the slope of this

tangent. More specifically, for points p1 and p2 it is known that:

U ′i (p1) = U ′i (p2) (3.24)

U ′i (p2) = αy, (3.25)

where αy is the slope of the tangent line. Substituting αy we reach the

following system of equations that can be used to calculate points p1 and

p2:

U ′i (p1)− U ′i (p2) = 0 (3.26)

U ′i (p2)−
Ui (p1)− Ui (p2)

p1 − p2
= 0. (3.27)

After calculating p1 and p2, it is possible to calculate the slope of the tangent

line, i.e. the aggregate price that is a candidate discontinuity point using:

λic =
Ui (p1)− Ui (p2)

p1 − p2
. (3.28)
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After calculating all the candidate discontinuity points by restricting the

range of point p1 and p2 within all possible sigmoidal components, we create

the symmetric matrix Si of size K×K, where Si (s1, s2) represents the slope

of the tangent that osculates the s1
th and s2

th concave region of the utility.

By convention, we assume that the elements of the main diagonal of matrix

Si contain some very large positive value. Consequently, Algorithm 3 can

be used to determine which of these candidate discontinuity points will

actually appear in ri (λ). Note that Si (ctr1, 1 : ctr1) denotes the first ctr1

elements of the ctr1
th row of matrix Si. The resulting vector disc contains

the discontinuity points of r∗i (λ). Algorithm 3 is an iterative algorithm that

depends only on the choice of the utility function of each source node and

therefore can be run independently by each node in order to determine the

discontinuity points of its price based rate allocation function r∗i (λ). Note

that in case that one of the tangents osculates the utility function at more

than two points, then two or more elements of matrix Si will be equal and

the discontinuity point will appear in vector disc as a multiple discontinuity

step for this aggregate price.

3.3.3. Oscillations

Equations (3.4) and (3.5) constitute a joint primal-dual distributed algo-

rithm of NUM, which can converge to an optimal solution, even in the case

of non-concave utilities, as long as (3.4) is continuous around the optimal

price vector λ∗. For instance, even though the optimal rate cannot be calcu-

lated for the general case, for the reasons explained earlier, it is possible to

be approximated efficiently for a specific family of multi-sigmoidal functions

presented in Section 3.5. The convergence of (3.5) to the optimal solution

of the dual problem relies on the selection of the step size sλ (t) at each
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Algorithm 3 – Calculation of discontinuity points of r∗i (λ)

1: ctr1 = K;
2: ctr2 = 1;
3: Calculate λimax using (3.21) and (3.22);
4: Calculate matrix Si by solving the system of equations (3.26) and (3.27);
5: while true do
6: index = argmin

{
Si (ctr1, 1 : ctr1)

}
;

7: λitmp = min
{
Si (ctr1, 1 : ctr1)

}
;

8: if λimax < λitmp then
9: break;

10: else
11: disc (ctr2) = λitmp;
12: ctr1 = index;
13: end if
14: ctr2 = ctr2 + 1;
15: end while
16: disc (ctr2) = λimax;

iteration t. Ref. [7] presents various methods for determining constant or

variable step sizes. In general, a method with diminishing step sizes, where

sλ (τ + 1) < sλ (τ), at any time t = τ , and values that converge to zero, are

suitable for most cases to converge to the optimal solution. Of course, the

trade-off between convergence speed and proximity to the optimal solution

should be taken into account in all practical applications and it is generally

true that large step sizes accelerate the algorithm’s convergence but increase

the distance from the optimal solution.

The discontinuity points calculated by Algorithm 3 also play an important

role in the convergence of the optimization method comprised of equations

(3.4) and (3.5), as specified by the condition proved by Theorem 1 in Chap-

ter 2. Specifically, the phenomenon of oscillation occurs when the optimal

rate function of a specific user is a discontinuous function of the aggregate

price λi and the optimal price vector λ∗ leads to an aggregate price (for

that specific user) equal to the discontinuity point. Moreover, as described

in Chapter 1, [49] provides specific conditions regarding the aggregate in-
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coming rate at a link that can lead to oscillations. This is the only case that

the algorithm will not converge to the optimal solution and is necessary to

apply an oscillation resolving technique such as the Oscillation Resolving

Heuristic - ORH presented in the next section.

3.4. Resolving User Oscillations

In case the optimal price vector λ leads to one of the discontinuity points

of some user, which can be calculated by Algorithm 3, then this user will

oscillate between multiple rates and the algorithm will not converge to any

solution.

As explained in Chapter 2, a user oscillation occurs when the user trans-

mits at an excessive data rate in an iteration of the optimization process,

and then in the next iteration, the user transmits at an exceedingly low rate.

Moreover, even though the notion of oscillation refers to a specific user, a

user oscillation affects other users as well and therefore leads to a network

oscillation.

There are in general two approaches in order to resolve this user oscil-

lation issue; an admission control mechanism, and a fixed rate allocation

method. The former removes the oscillating users from the optimization

process without allocating any rate to them [46], while the latter allocates a

positive rate, let rosci , to each oscillating user i before removing them from

the optimization. Allocating some rate to oscillating users leads towards

more fair resource allocations compared to an admission control technique

since all users have access to the network resources.

The oscillation rates of user i are in fact very close to the optimal rates for

the aggregate price λi for which the oscillation happens. More specifically,
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if the optimal price vector λ∗ leads to an aggregate price λi for user i, which

is a discontinuity point as well, the gradient algorithm will move between

aggregate prices λi + ε1 and λi − ε2, where ε1 and ε2 are small positive

constants. However, as theorems 4 and 5 show, the former will lead to a rate

smaller than (but very close to) the smallest touching point of the respective

tangent and the latter to a rate larger than (but again very close to) the

largest touching point. These rate values will lead to either underutilization

or overutilization of links respectively and hence to network oscillations. It

is therefore, evident that an efficient oscillation resolving heuristic should

allocate a rate within the oscillating range. Based on this observation, we

propose the Oscillation Resolving Heuristic (ORH), an enhanced version

of the heuristic proposed in Chapter 2, to assure the convergence of the

gradient based distributed algorithm.

The Oscillation Resolving Heuristic (ORH) allocates a fixed non-zero rate

to oscillating users and removes them from the rest of the optimization pro-

cess, which continues for the remaining users in the network. The allocated

rate rosci to oscillating user i is equal to the smallest touching point of the

tangent, r1i , with slope equal to the aggregate price λi for which the oscilla-

tion happens. In other words, user i is allocated rate equal to the smallest

of the rates that it oscillates at4. This approach has several advantages

over other methods in the literature. First, no users are restricted from

accessing network resources contrary to admission control approaches such

as [46]. Moreover, the allocated rate rosci = r1i satisfies the Necessary Con-

ditions for optimality since it is one of the optimal rates for aggregate price

λi. Finally, even though all touching points of the tangent with slope λi are

optimal rates, by selecting the smallest of them we assure that the rest of

4The smallest oscillation rate is at most εosc away from r1i , which corresponds to aggre-
gate price λi + ε1, where both ε1 and εosc are small positive constants.
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the users in the network will compete for largest amount of resources, thus

leading to higher total network utility.

The implementation of ORH is very simple and the algorithm runs inde-

pendently for each source node and requires a simple oscillation detection

mechanism. In addition, there is no need for any centralized coordination,

thus preserving the distributed nature of the algorithm consisted of (3.4)

and (3.5). Once user i detects an oscillation, it starts transmitting at the

smallest of the oscillation rates, instead of evaluating (3.4), while ignoring

the aggregate price included in the acknowledge packets coming back from

the destination node. All links continue updating their link prices according

to (3.5).

The Oscillation Resolving Heuristic (ORH) does not represent a complete

solution for solving Problem (3.1). In fact, equations (3.4) and (3.5), and

Algorithms 4 and 5 for the specific multi-sigmoidal utilities presented later,

are responsible for solving Problem (3.1) iteratively, while the ORH is merely

part of the process for resolving an oscillation that might occur during

the iterative optimization process. In addition, the use of ORH does not

affect the convergence properties of the algorithm for the following reason.

Assuming that there are initially M users in the network, if the heuristic is

evoked to prevent oscillations for one of them, the optimization process will

continue for the remaining M−1 users following the convergence properties

of a gradient-based optimization algorithm [7]. This process can be repeated

as long as there are oscillating users in the network. At the end, either no

more oscillations will occur and the algorithm will converge to the optimal

solution or, if oscillations keep occurring, we will end up with the trivial

case of only 1 user.

The ORH leads towards more fair resource allocations and higher utility
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for practical applications compared to an admission control mechanism such

as the self-regulating heuristic proposed in [46]. The heuristic in [46] lacks

fairness by unnecessarily preventing users from obtaining network resources,

while the ORH follows a different approach and allocates resources to as

many users as possible. Simulation comparison of ORH and the heuristic

proposed in [46] also shows that the ORH can lead to significantly higher

utility.

3.5. A Novel Multi-sigmoidal Function and its

Application to NUM

Solving the non-concave maximization problem (3.7) in the general case is

not possible for the reasons explained in Section 3.3. It is, however, possible

to derive an efficient approximation of the closed form solution by exploiting

the special structure of specific utility functions.

3.5.1. A Hyperbolic Tangent Based Utility Function

Based on the desired properties of a multi-sigmoidal utility, presented in

Section 3.2, we propose the use of the following family of multi-sigmoidal

functions:

U (r) =
1

2K

{
K∑
k=1

tanh

(
r − ck
bk

)
+K

}
, (3.29)

where r is the transmission rate, ck is the kth inflection point, with c1 > c2 >

· · · > cK , and bk is a positive design parameter that determines the steepness

of the kth component of the multi-sigmoidal function. K is the number of

single sigmoidal components consisting the multi-sigmoidal function, each

one of them having a single inflection point, which is the point where the
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second derivative changes sign, from positive to negative sign. For example,

the multi-sigmoidal function of Figure 3.1 consists of four hyperbolic tangent

components. It is evident from (3.29) that a multi-sigmoidal utility can be

characterized by two vectors; the inflection vector c = [c1, c2, . . . , cK ]T and

the steepness vector b = [b1, b2, . . . , bK ]T .

Hyperbolic tangent functions have been extensively used in neural net-

works research area [81] but their convenient properties make them also

applicable within the context of multi-tiered multimedia applications for

the following reasons:

• Hyperbolic tangent functions possess the five properties described in

Section 3.2.

• They can be combined together to create multi-sigmoidal shapes of

arbitrary number of rate levels. For example, the utility function in

(3.29) is consisted of K hyperbolic tangent components.

• They can be calibrated using the inflection vector c and the steepness

vector b to achieve the desired shape.

• Their first derivative can be easily inverted to calculate the optimal

rate allocation for a specific price vector.

The aforementioned advantages of hyperbolic tangent functions will be dis-

cussed in detail in the remainder of this chapter.

The hyperbolic tangent function, tanh (x), is a symmetric, continuous

(property P5), differentiable and increasing (property P2) function, which

is centered around its inflection point at r = 0 and has two horizontal

asymptotes, the lines5 y = −1 and y = 1. Each tangent component can

5We denote the values along the vertical and horizontal axes with y and x respectively.
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be scaled and shifted appropriately so that the resulting utility has val-

ues within the range [0, 1]. More specifically, the center of each hyperbolic

tangent component in (3.29) has been shifted around the respective inflec-

tion point ck, whereas the addition of K and the multiplication with 1
2K

restricts the utility’s range. The resulting multi-sigmoidal function has hor-

izontal asymptotes the lines y = 0 and y = 1 (property P1). Note that

inflection points ck can be used as design parameters to create the step-like

behaviour of the utility around the rate values of each application quality

level.

Parameters bk, k = 1, . . . ,K, can be used to calibrate the steepness of

the respective tangent components. In general, larger values for bk lead

to smoother shapes. In particular, they can be used to bring U (0) and

U (rmax) as close to the bounds (0 and 1 respectively) as necessary, where

rmax is the maximum rate above which the utility is equal to 1. Regarding

its physical meaning, rmax can be considered as the maximum transmission

rate of the source. Specifically, for the first case of U (0), equation (3.29),

for ri = 0 becomes:
K∑
k=1

tanh

(
−ck
bk

)
≈ −K. (3.30)

Moreover, since each tangent component is bounded within the range [0, 1],

(3.30) is equivalent to:

tanh
(
− ck
bk

)
≈ −1 , for k = 1, 2, . . . ,K. (3.31)

Since y = −1 is an asymptote, the above equation will never be satisfied

in the equality but we can select variables bk, k ∈ {1, 2, . . . ,K}, so that

the maximum error εk of the kth tangent component is bounded. More

specifically, it is possible to calculate an upper bound for each bk in order
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to meet property P3 according to

tanh

(
−ck
bk

)
≤ −1 + εk ⇒ bk ≤ −

ck

tanh−1 (εk − 1)
(3.32)

and since tanh−1 (·) is negative around r = −1,

bk ≤
ck

| tanh−1 (εk − 1)|
. (3.33)

By selecting the component bounds appropriately, it is possible to bound

the total error ε =
∑K

k=1 εk below a maximum threshold. In addition, due

to the relative position of the tangent components, it can be shown that the

effect of parameter b1, i.e. the sigmoidal component that is closer to the

point r = 0, is dominant over the rest and therefore the calculated bound

for b1 is expected to be much tighter for the same error εk.

Working in the same way, it is possible to calculate the upper bounds

for parameters bk to assure that property P4 is also satisfied and then,

by combining the two sets of inequalities, to calculate the final bounds

of the calibrating parameters bk in order to meet the required properties.

Additional bounds for parameters bk will be calculated later to minimize

the approximation error of the optimal rate.

3.5.2. Approximation of the Optimal Rate

The family of multi-sigmoidal utilities described in (3.29) is a non-concave

function with multiple concave and convex regions. Its first derivative is

given by

V (r) =
1

2K

{
K∑
k=1

1

bk
sech2

(
r − ck
bk

)}
, (3.34)
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which is not a one-to-one function since the same value V (·) corresponds to

more than one rates. Figure 3.3 shows the utility derivative for the multi-

sigmoidal example in Figure 3.16, in black solid line, which illustrates that a

single value of V (·) corresponds to at most 2×K distinct rates and therefore

it is not an invertible function. In addition, it is not possible to invert the

function by splitting its domain to one-to-one parts due to the complexity

of the calculations.

Despite the fact that these rates can not be calculated by inverting func-

tion V (·), it is possible to be approximated efficiently. The approximation

methodology relies on the structure of V (·) in (3.34), which is a summation

of a number of independent hyperbolic secant components. Moreover, those

components are symmetric, they can be inverted separately, and by taking

into account that the rate that maximizes Problem (3.7) can only be in a

concave region or at zero rate, it is possible to calculate a single rate for

each component. The hyperbolic secant components (depicted by coloured

dashed lines in Figure 3.3) of the derivative function have the form

fk (r) = 1
2Kbk

sech2
(
r−ck
bk

)
, k = {1, 2, . . .K}. (3.35)

Using (3.35), the utility derivative V (·) can be approximated by:

V a (r) =



sech2
(
r−c1
b1

)
2Kb1

, 0 ≤ r < x1

or

sech2
(
r−ck
bk

)
2Kbk

, xk−1 ≤ r < xk, k ∈ [2,K − 1]

or

sech2
(
r−cK
bK

)
2KbK

, r ≥ xK−1

(3.36)

6Neglect the individual hyperbolic secant components for the moment.
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Algorithm 4 – Net Utility Maximization

At time slot t, every source node i =
1, . . . ,M :

1: receives the aggregate price λi(t) for using the network resources;
2: if source i follows a multi-sigmoidal utility then
3: calculates the candidate optimal rates using (3.37);
4: chooses the optimal rate, r∗i (λ), as the rate that yields higher value

for Problem (3.7) using (3.38);
5: else if source i follows a concave utility then
6: chooses the optimal rate r∗i (λ) using (3.8);
7: end if
8: starts transmitting at the next time slot, t+ 1, at rate r∗i (λ);

where xk, k ∈ {1, . . . ,K − 1}, are the intersection points of the hyperbolic

secant components. For example, x1 in Figure 3.3 is the intersection point

between the first two components. If (3.36) is used to approximate the

utility derivative of user i in (3.8), for a specific vector λ, there will be K

candidate optimal points, one at each concave part of a hyperbolic secant

component. These candidate optimal rates are given by

rci (λ, k) = bik · sech−1
(√

2 ·K · bik · λi
)

+ cik, (3.37)

where sech−1 (·) is the inverse hyperbolic secant, bik, k = 1, 2, . . . ,K, form

steepness vector bi and inflection points cik, k = 1, 2, . . . ,K, form inflection

vector ci of user i. An additional candidate solution that can be an optimal

allocation is at zero rate and, therefore, the candidate rate rci (λ,K + 1) = 0

must also be taken into account. Consequently, the optimal rate of user i

for price vector λ will be the one that yields the maximum net utility, i.e.

r∗i (λ) = argmax {NUi (rci (λ, k)) |k = 1, 2, . . . ,K + 1} . (3.38)

The use of equation (3.38) to approximate the optimal rate for any price

vector λ, and therefore for the optimal vector λ∗ as well, leads to the de-
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Algorithm 5 – Link Price Calculation

At time slot t, every network link j =
1, . . . , L:

1: calculates the incoming aggregate rate;
2: calculates the new price using (3.5);
3: sends the new price λj (t+ 1) to all sources that are using link j;

velopment of a distributed gradient based algorithm to solve Problem (3.1).

The algorithm consists of two parts; one carried out by each source and

one by each link. Algorithm 4 is used by each source node in the network

to determine the transmission rate at each time slot based on the aggre-

gate price that a source node has to pay in order to send its traffic to the

destination node. At the same time, link j uses Algorithm 5 in order to

determine the value of the dual variable λj , i.e. the price that every unit of

traffic is charged, for the next iteration. The new prices are communicated

back to the interested source nodes. As with Algorithm 1 in Chapter 2, this

communication can be implemented efficiently by taking into account that

each source node is interested in the aggregate price of the used path and

not the price of each link individually. Therefore, every intermediate node

of a specific path can add its price to the already aggregated price of the

previous nodes in a specific field in the acknowledge (ACK) packets. When

an ACK packet reaches the source node, it will contain the aggregate price

of the path that can be used to calculate the optimal transmission rate for

the next iteration. Alternatively, if the link price is viewed as the link delay,

the aggregate price can be implicitly measured by the packet queuing delay

in the network. The set of distributed algorithms 4 and 5 behave similarly

to equations (3.4) and (3.5) regarding the discontinuity points of the opti-

mal rate allocation function. Therefore, the oscillations that are likely to

appear can be resolved using the heuristic presented in Section 3.4.

Algorithms 4 and 5 are extensions of the standard gradient-based iterative
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optimization algorithm and consist of low complexity operations. More

specifically, at each iteration the optimal rate is calculated after evaluating

(3.37) for each hyperbolic tangent component and choosing the rate that

yields the highest net utility, while the new price is calculated using simple

mathematical operations in (3.5). The convergence speed and optimality

properties of the proposed algorithms are also extensions of the standard

gradient algorithm. As explained earlier in Section 3.3.3, there is a trade-

off between convergence speed and proximity to the optimal solution, which

depends on the value of the step size sλ, with larger values to help the

method converge faster but at the expense of accuracy. In most practical

cases, a small positive constant step size is sufficient but alternative methods

of variable step size are also available in literature [7].
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The procedure described above has transformed (3.4), which involves the

solution of a non-convex optimization problem, into a simple selection (out

of K + 1 choices) of the rate that minimizes the net utility using (3.38).

However, since it is an approximation method, it is necessary to determine

the approximation error and propose methods to minimize it. It is easy

to verify from Figure 3.3 that the approximation error has its maximum

values at the intersection points xk, k = 1, 2, . . . ,K − 1 of two consecutive

components. Specifically, the utility derivative at any intersection point xk

is

V (xk) = fk (xk) + fk+1 (xk) +

K∑
l=1,l 6=k,l 6=k+1

fl (xk), (3.39)

where the intersecting secant components are equal, i.e. fk (xk) = fk+1 (xk) =

γk and the rest are almost negligible, i.e.
∑K

l=1,l 6=k,l 6=k+1 fl (xk)� γk. How-

ever, since V (xk) is approximated by fk (xk), it is clear that the approxi-

mation error is affected by the degree of overlap7 of the hyperbolic secant

components. In fact, the effects of this overlapping can be restricted effi-

ciently.

The inflection points of the utility’s sigmoidal components are determined

by the technology used at the source node and they are assumed that can not

be changed. However, there is often some freedom in selecting the steep-

ness parameters of a multi-sigmoidal utility. In such cases, the steepness

parameters bk, k = 1, 2, . . . ,K, can be used as design parameters to assure

that the approximation error is small. Recall that these parameters were

also used earlier to assure that the utility function will be as close to 0 and

1 at points r = 0 and r = rmax respectively as necessary. In this way, it is

possible to calculate some additional bounds for the values of the parame-

7We assume that two hyperbolic secant components c1 and c2 are not overlapping if
fc1 (xc) = fc2 (xc) ≈ 0 at their intersection point xc.
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ters bk of the utility function so that the hyperbolic secant components of

the utility derivative are non-overlapping. In general, the smaller the values

of bk are, the more concentrated the respective hyperbolic secant compo-

nent is around the inflection point. Clearly, the choice of bk for component

k affects the range of choices at the neighboring ones and therefore it is

not possible to determine analytically a single steepness vector b to assure

low approximation error. However, it is possible to formulate optimization

problems that calculate the optimal steepness vector b according to various

criteria that affect the objective function of the optimization problem. More

precisely, we formulate the following optimization problem:

max
x,b

g (x, b) , such that,

for k = 1, . . . ,K − 1 :

a)
1

bk
sech2

(
xk − ck
bk

)
≤ σ,

b)
1

bk+1
sech2

(
xk − ck+1

bk+1

)
≤ σ,

c) ck ≤ xk < ck+1, (3.40)

for k = 1, . . . ,K :

d) bk > 0.

The first two constraints assure that the values of the secant components,

and therefore the maximum approximation error as well, are below a max-

imum threshold σ at point xk. There is no explicit constraint that points

xk, k = 1, 2, . . . ,K−1, are the intersection points of the secant components

but the optimal solution for constraints a and b will always be at the in-

tersection points and therefore the role of points xk is implicitly defined.

The objective function g (x, b) can be any concave function that describes
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the optimization criteria. For example, during our simulations the function

g (x, b) =
∑K

k=1 bk was used in order to get the upper bound of the steep-

ness parameters. Constraint c makes sure that the intersection point of two

consecutive components is always between their inflection points. Finally,

constraint d assures that the optimization variables bk stay within their do-

mains. Note that one could also extend the set of constraints of Problem

(3.40) with the bounds obtained in in the previous section. The resulting

b∗ vector includes the maximum steepness parameters bmaxk , k = 1, . . . ,K

for which the maximum approximation error is below the threshold σ. Any

value smaller than that will result in smaller error. Problem (3.40) corre-

sponds to each source node’s utility function and can be solved indepen-

dently using any optimization method [7].

3.6. Simulation Results

The algorithms described in the previous sections were simulated in a MAT-

LAB environment in order to study their performance and compare against

other approaches. In addition, several examples where network oscillations

occurred were examined in order to evaluate the efficiency of the Oscilla-

tion Resolving Heuristic (ORH) to stabilize the network. For illustrative

purposes, the simulation results are organized in two sections; a single bot-

tleneck network case and a multiple bottleneck network one. There were

some common assumptions followed in all simulations with respect to the

following parameters. First, the simulation setup included a variety of types

of applications, including FTP, HTTP and multimedia applications. This

dictated the use of different utility functions, concave or multi-sigmoidal,

according to the type of application. All multimedia applications were mod-
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Figure 3.4.: Example of a network topology with a single bottleneck link

elled using multi-sigmoidal utilities according to (3.29) for different inflec-

tion and steepness vectors. Furthermore, the calculation of the steepness

parameter vector bi for each multi-sigmoidal utility was done by solving

Problem (3.40) for a maximum approximation error σ = 10−4 using the

Global Optimization Toolbox in MATLAB, and, last but not least, all utili-

ties where designed so that their maximum transmitted rate rmax is 10Mb/s

and Ui (rmax) = 1 for all source nodes i = 1, 2, . . . ,M .

3.6.1. Single bottleneck link

Figure 3.4 shows an example topology of a network that has a single bot-

tleneck link. It illustrates a network of ten nodes and nine links, where four

nodes act as sources generating traffic towards four destination nodes. The

traffic flows are designated by a different line style. The capacities of links

1 − 4 and 6 − 9 where selected to be 10Mb/s so that they do not restrict

the bit rate that the respective source nodes transmit. On the other hand,

the capacity of link 5 was chosen so that the capacity is inadequate for all

sources to transmit at their maximum rate rmax, thus creating a bottleneck.

Source nodes 2 and 4 have multi-sigmoidal utilities of four hyperbolic
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Figure 3.5.: Convergence of rate without oscillation

tangent components while sources 1 and 3 represent HTTP and FTP traf-

fic respectively and are modelled using logarithmic utility functions [45].

Several different values for the capacity of the bottleneck link were used in

order to examine cases of network oscillation or stability. In essence, by

increasing the bottleneck link capacity, one can decrease the optimal link

price due to the availability of more resources and the weakening of the

competition among users.

Figure 3.5 shows the convergence of the rates of the source nodes for

bottleneck capacity C5 = 30Mb/s. In this case, all links apart from link

5 have zero price and λ5 = 0.061444. The resulting aggregate price is not

one of the discontinuity points of the multi-sigmoidal utilities and therefore

the distributed algorithm converges to the optimal rates as expected. In

addition, the algorithm manages to converge to the optimal solution in

relatively small number of iterations, around 50, using a constant step size
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sλ = 5 · 10−4 at all iterations8.

Figures 3.6 and 3.7 show the convergence of rates and objective func-

tion respectively in the case of oscillations and compare the ORH with the

self-regulating heuristic presented in [46] in resolving oscillations. The bot-

tleneck link capacity in this case has been set to C5 = 22Mb/s. Once the

aggregate link price reaches 0.0722 user 4 starts oscillating. The ORH al-

gorithm then is used to set the rate of user 4 equal to the minimum of its

oscillation rates and the optimization continues for users 1 − 3. Later, in

iteration 77, the aggregate price reaches the discontinuity point of user 2

8Faster convergence is also possible with the use of other step methods [7] but the
performance evaluation of the standard gradient algorithm is beyond the scope of this
paper.
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Figure 3.7.: Convergence of the objective function with oscillation

and the ORH is again used to resolve the oscillations and allow the dis-

tributed algorithm to converge. The self-regulating heuristic sets both rates

to zero and removes these users from the rest of the optimization process,

which means that only half of the users in the network are allocated some

rate. On the other hand, ORH allocates rate to all users and, in addition,

the solution that ORH converges to is shown to be very close to the actual

optimal value and significantly higher than that achieved by the algorithm

proposed in [46] as shown in Figure 3.7.

3.6.2. Multiple bottleneck links

Figure 3.8 illustrates a network topology with three bottleneck links where

eight traffic flows are competing for network resources. The different traffic

flows are distinguished by a different line style and colour combination.

Links 5, 8 and 13 are the bottleneck links while the rest are sufficiently large
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Figure 3.8.: Example of a network topology with multiple bottleneck links

to accommodate traffic even at the maximum transmission rate rmax. A

combination of elastic and inelastic applications were selected to compete for

resources in the network corresponding to both concave and multi-sigmoidal

utility functions. Specifically, nodes 2, 3 and 6 measure user satisfaction

using concave utilities, while the remaining five flows model multi-tiered

multimedia applications.

Figures 3.9 and 3.10 show the convergence of the rate and objective func-

tion respectively of ORH, the self-regulating heuristic [46] and the case

where no oscillation resolving method is used. For brevity, only the con-

vergence of the first four users is shown. Soon after the initiation of the

optimization process, user 4 starts oscillating. ORH and the self-regulating

heuristic are then evoked to resolve this oscillation and allow the optimiza-

tion algorithm to converge. Again, the maximum value of the objective

function after the application of ORH is very close to the optimal one, as

calculated using the Global Optimization Toolbox in MATLAB, and sig-

nificantly higher than the one achieved by the self-regulating heuristic. In

addition, ORH allocates rate to all eight users while the self-regulating

heuristic to only six of them. Note that the values of the objective function

in Figures 3.7 and 3.10 that are larger than the global optimal, in the cases
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of ORH and when no oscillation resolving is attempted, correspond to infea-

sible rate allocations and should be neglected during the comparison of the

methods. Finally, the simulation results verify the fast convergence of the

algorithm in around 70 iterations. This can be further improved, depend-

ing on the application, by using more elaborate gradient update methods,

which however, would increase the complexity of the algorithm [7].

3.7. Concluding Remarks

This chapter studied the problem of efficient network resource allocation mo-

tivated by the fast growing number of multimedia applications in current

communications networks. We introduced the concept of multi-sigmoidal

utilities in the context of resource allocation and discussed in depth the

challenges that these utilities impose to network utility maximization and
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Figure 3.10.: Convergence of the objective function with oscillation

proposed efficient methods to overcome them. To this purpose we pro-

posed a novel mathematical representation of such utility functions and a

distributed gradient-based algorithm to optimize the allocation of network

bandwidth by exploiting the special structure of the utility function. Then,

an efficient heuristic was developed to assure network stability in all cases.

Finally, the performance and robustness of the proposed techniques were

evaluated through extensive simulations for various network topologies and

conditions.

This chapter can be the basis for further research that will consider the

foundations of a novel optimization-based Transport Layer protocol. Such

a protocol will be able to optimize network performance by taking into

account the heterogeneous QoS/QoE requirements of each user and assure

efficient use of resources even under the existence of wireless links in the

network.
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4. Utility-Proportional Fairness

for Multimedia Applications

in Wireless Networks

4.1. Introduction

As explained earlier in Chapter 1, the proposed Network Utility Maximiza-

tion (NUM) framework [17][18] has found numerous applications in com-

munication networks since it made clear that expressing the network re-

source allocation process as an optimization problem can be solved by low-

complexity distributed algorithms. Such algorithms optimize the resource

allocation under two major assumptions; the utilities are all concave func-

tions of rate and all links have fixed capacity, e.g. they model wired links.

As explained analytically in Chapters 2 and 3, these two assumptions are

responsible for a number of shortcomings of current NUM approaches.

Concave utilities are ideal to model applications that generate elastic

traffic [42] that relates to applications that can adapt easily to changes

in the network conditions. However, the majority of the traffic in current

networks is generated by real-time applications that are considered inelastic.

In practice until now, inelastic applications are handled in the same way as

elastic ones. For example, TCP [37][38], the most widely used resource
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Figure 4.1.: The feasible rate region of a sigmoidal utility function

allocation protocol, models all applications independently of their elasticity

properties using the same concave utility function, which varies depending

on the TCP version.

Existing research work models inelastic applications using non-concave

sigmoidal utility functions [46][48] that turn the resulting formulation into

a non-convex problem. In addition, in Chapter 3 we proposed a multi-

sigmoidal utility to model modern multimedia applications that support

multiple regions of data rate and create a step-like evolution of user Quality

of Experience (QoE) with respect to the data rate. An example of such

utility function is shown in blue at the top subplot in Figure 4.1.

Despite the existence of an analytic methodology to solve or approximate

the optimal solution for such problems in a distributed way, this approach

has significant disadvantages:
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• The optimal rate allocation function of a source node, r∗i
(
λi
)
1, is hard

to be calculated in a closed form and therefore numerical gradient-

based approaches must be used, which however increase convergence

time, don’t have guaranteed convergence and are less accurate.

• Function r∗i
(
λis
)

is discontinuous for some values of aggregate link

price. This causes oscillations in the network that can prevent the al-

gorithm from converging. An example of r∗i
(
λi
)

for a multi-sigmoidal

utility function is shown in blue at the bottom subplot of Figure 4.1.

The displayed r∗i
(
λi
)

has four discontinuity points.

• The heuristics proposed in literature to resolve these oscillations of-

fer approximations that in some cases can be far from the optimal

solution.

• Despite the fact that the utility function Ui (ri) is defined for rates

within the range
[
rmini , rmaxi

]
, only a small part of this range can

be achieved. This restricts the applicability of such approaches in

practical problems. For example, the rate for the utility of Figure

4.1 takes values within the range [0, 10] but the feasible range region

(shown in black) is restricted only to either zero or values within the

regions [1.12, 1.16], [3.02, 3.09], [5.79, 5.82] and [9.16, 10].

The traditional NUM formulation maximizes the aggregate utility in the

network. Moreover, it has been shown [17] that the resulting bandwidth

allocations follow the so-called (bandwidth) proportional fairness. While

this type of fairness seems to perform well when all users follow the same

utility, this approach is responsible for some contradictory behaviors in cases

that users have different QoS needs, i.e. when they follow different utilities.

1where λi is the aggregate price in the network
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In such cases, proportional fairness favors users which require low rate to

achieve high utility [77]. More specifically, a bandwidth proportional fair

optimization algorithm favors users with low demand, i.e. those with rapidly

increasing utility function. This happens because allocating a unit of rate

to a utility with large derivative leads to larger increase in the aggregate

utility than when allocating to users with high demand, i.e. with small

value of utility derivative. To resolve this contradictory behavior, authors

in [77] define a new type of fairness, called utility proportional fairness.

As mentioned in Chapter 1, a utility proportional fair allocation can be

achieved if the utility function of each user is transformed according to:

Ui (ri) =

∫ ri

mi

1

Ui (y)
dy, mi ≤ ri ≤Mi, (4.1)

where mi and Mi are the minimum and maximum transmission rates for

user i respectively, and the objective function of the resource allocation

problem2 is updated to include the summation of all transformed utility

functions.

Authors in [77] propose a distributed algorithm to solve the resource al-

location problem in order to achieve utility proportional fairness in wired

networks shared by various types of applications. However, current commu-

nication networks are often consisted of wireless networks, whose capacity

is not constant but depends on the interference of other links. This need

highlights the necessity of extending the current utility proportional fair-

ness framework to be able to adjust link powers according to the channel

conditions in the network.

Motivated by the aforementioned shortcomings of current bandwidth and

2See the problem formulation in (1.18) in Chapter 1.
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utility proportional fairness mechanisms in wireless networks, this chapter

proposes an alternative approach in allocating network resources and makes

the following contributions:

• Proposes a utility proportional fair optimization formulation for high-

SINR wireless networks. Utility proportional fairness can prevent the

oscillations caused when a utility function is non-concave, allow the

use of the full range of possible rate values and calculate the optimal

rate.

• Derives analytical solutions for the optimal rate allocation function for

a number of widely used application types including multi-sigmoidal

utilities used to model multi-tiered multimedia applications.

• Proposes a distributed utility proportional fair algorithm to jointly

optimize transmission powers and data rates in high-SINR wireless

networks.

The rest of this chapter is organized as follows. First, Section 4.2 presents

a utility proportional fair optimization formulation for high-SINR wireless

networks and gives and insight on a distributed algorithm to solve this prob-

lem. Consequently, Section 4.3 provides closed form solutions of the optimal

rate for a number of application types, discusses how these formulas can be

used to prevent oscillations and presents a distributed gradient-based algo-

rithm. Section 4.4 presents numerical results illustrating the convergence

and performance of the proposed approach compared to other approaches

in literature and, finally, Section 4.5 concludes the work presented in this

chapter.
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4.2. Problem Formulation

This section focuses on the development of an optimization formulation for

wireless networks that achieves utility proportional fairness while taking

into account the interference among wireless links and the different QoS

requirements of various applications.

4.2.1. Network Model

The system model of this work is similar to those used in the previous

chapters. However, we will describe it analytically again to facilitate the

reader. Consider a multi-hop wireless network where each node can operate

either as data traffic source, destination or relay that just forwards traffic to

its neighbors. We define the transmission rate vector r = [r1, r2, . . . , rM ]T ,

which includes the transmission rates of all M source nodes in the wireless

network, and the link l as the tuple (Tl, Rl), where Tl is the transmitting

and Rl the receiving node, respectively. We also define p = [p1, p2, . . . , pL]T

as the vector which includes the transmission powers of the L links. The

wireless channel is modelled as follows. Let G be a matrix of size L × L,

where Gkm, with k,m ∈ 1, 2, . . . , L, represents the path loss coefficient for

the path between the transmitter of link k and the receiver of link m. The

elements of the path loss matrix G depend on the physical characteristics

of the wireless links.

Similarly to the channel model in the previous chapters, a hybrid TDMA/

CDMA scheme is assumed to operate. More specifically, we consider Or-

thogonal - CDMA (OCDMA) for transmissions towards the same receiver,

and pseudo-noise-CDMA (PN-CDMA) between different receivers. This

means that the transmitted signal is first spread through multiplication by
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a Welsh-Hadamard (WH) sequence with N chips per symbol. Then a PN

sequence is overlayed either without further spreading, i.e., with the same

chip rate, or with further spreading by a factor S, i.e. number of chips per

WH chip. Note that, all users transmitting towards the same receiver em-

ploy the same PN sequence, and N orthogonal sequences are reused at each

receiver. Moreover, TDMA is employed throughout the multi-hop routes.

This implies that time is divided into frames, each of them comprises of two

equally sized slots, where transceivers alter from transmitting to receiving

mode.

As explained earlier, each source node i is associated with a utility func-

tion Ui(ri), which represents the degree of satisfaction that a user enjoys

when sending at a specific rate. In other words, the user utility function

reflects the QoE of a user when data content is delivered at a specific rate.

This QoE cannot be determined precisely for each user but prior work in

the literature [45][46] and our work in Chapter 3 has identified approxi-

mate forms/shapes for various applications, such as HTTP, FTP and video

streaming applications. Finally, we also associate each wireless link l with

a convex cost function Vl (pl). This function represents the cost of using

the limited power resources of the wireless channel. The incorporation of

this cost function leads towards more energy efficient resource allocations

for the reasons explained earlier in the previous chapters.
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4.2.2. Optimization Problem

The network performance optimization process of a multi-hop wireless net-

work is formulated as the following maximization problem:

max
r,p

M∑
i=1

Ui(ri)− γ
L∑
l=1

Vl(pl)

s. t.

M∑
i=1

αilri ≤ Cl (p) , ∀ links l

(4.2)

where Ui(ri) is the transformed utility function given by (4.1) for rate ri,

parameter αil is one if the traffic of user i is passing through link l, and zero

otherwise. Parameters ail, with i ∈ {1,M} and l ∈ 1, L, form the routing

matrixA which is known a priori and fixed throughout the optimization pro-

cess. The rates ri, with i ∈ 1, 2, . . . ,M , and powers pl, with l ∈ 1, 2, . . . , L,

are positive quantities and γ is a positive weighting parameter. Based on

the aforementioned channel model, the capacity of a link follows the Shan-

non’s capacity formula, Cl (p) = B · log2 (1 + SINRl) and is a function of

the Signal to Noise plus Interference Ratio (SINR) at the receiver of the

link. To avoid the non-concavity of the capacity function, we will restrict

ourselves, in this chapter as well, only to high SINR environments where

the approximation SINRl � 1, the formula Cl (p) = B log2 (SINRl) can

provide a sufficiently accurate approximation of link capacity [21].

Duality Theory [6] provides an efficient methodology to solve optimiza-

tion problems distributedly. For this reason, one should initially form the
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Lagrangian function as

L(r,p,λ) =
M∑
i=1

{
Ui(ri)− ri · λi

}
+

L∑
l=1

λlB log

 NSplGll∑
k 6=l

pkGkl + nl


− γ

L∑
l=1

Vl(pl),

where λi =
∑L

l=1 αilλl is the aggregate price of user i to send a unit of rate

through the network and N , S are the chip rate and spreading gain respec-

tively as explained earlier. Consequently, the dual optimization problem is

defined as:

min
λ

d(λ) = L(x∗,p∗,λ)

s. t. λ ≥ 0.
(4.3)

It is evident that Problem (4.2) consists of two subproblems coupled by

the dual variable vector λ. The first one determines the optimal rate to

maximize the net revenue of the source node, while the second determines

the transmission power of the links. Consequently, according to duality

theory every source i can calculate its optimal rate r∗i (λ) using

r∗i (λ) = arg max
[
Ui(ri)− ri · λi

]
. (4.4)

The power and dual variables can be calculated iteratively using:

λl(t) = λl(t− 1)− δλ(t)
∂L(r,p,λ)

∂λl
(4.5)

pl(t) = pl(t− 1) + δp(t)
∂L(r,p,λ)

∂pl
, (4.6)

146



where δλ(t) and δp(t) are small positive step sizes and

∂L(r,p,λ)

∂λl
= B · log2

 NSplGll∑
k 6=l

pkGkl + nl

−
M∑
i=1

αilri (4.7)

∂L(r,p,λ)

∂pl
=

1

pl ln(2)

[
λl −

∑
m6=l

λm
GlmPl∑

k 6=mGkmPk + nm

]
− γV ′l (pl). (4.8)

Equations (4.4)-(4.6) constitute a joint primal-dual distributed algorithm,

which will be described in detail in the next section along with how utility

proportional fairness can lead to the calculation of closed form solutions for

(4.4).

4.3. The Price-based Rate Allocation Function

Eq. (4.4) calculates the optimal rate of user i based on the aggregate price λi

of the path that user i is using to send its traffic. As we proved in Chapter

2, the convergence of any gradient based algorithm using (4.4) depends

on its continuity around the optimal price vector λ. Such continuity can

not be guaranteed for bandwidth proportional fair algorithms and heuristic

techniques such as the Oscillation Resolving Heuristics (ORH), or the self-

regulating heuristic proposed in [46], must be utilized to approximate the

optimal solution. However, the transformation of (4.1) to achieve utility

proportional fairness can also guarantee continuity of (4.4) and lead to

the calculation of analytical solutions. The derivation of such analytical

solutions and the development of a distributed optimization algorithm will
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be the focus of this section.

4.3.1. Calculating a general rate equation

According to optimization theory [7], the optimal rate will be at the point

where the first derivative of the objective function diminishes and therefore

r∗i (λ) = U ′−1i
(
λi
)
. (4.9)

In the traditional NUM framework Ui (·) = Ui (·), where Ui (·) is the utility

function of user i as defined earlier. The optimal rate can be calculated

using (4.9) only if the utility function is a concave function of rates. If

Ui (·) is partially convex and partially concave, as with sigmoidal utilities,

the first derivative cannot be inverted since it is not a one-to-one function.

For sigmoidal utilities, one should use alternative methods with a negative

impact on the algorithm convergence speed. Such an alternative could be a

gradient based iterative equation of the form:

ri(t) = ri(t− 1) + δr(t)
∂L(r,p,λ)

∂ri
(4.10)

where δr(t) is a positive step size and ∂L(r,p,λ)
∂ri

is the gradient of the La-

grangian function with respect to ri. However, such an approach will not

always converge to the global optimum. In fact, according to the condi-

tion we proved in Theorem 1, Chapter 2, the algorithm will converge only

if (4.4) is continuous around the optimal price vector λ. If this condition

does not hold, there can be oscillations in the network that will prevent the

algorithm from converging and an oscillation resolving heuristic is neces-

sary to ensure stability but at the cost of loosing optimality. In addition,

(4.10) is a gradient-based iterative equation that may get trapped in local
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optima in the case of utilities with multiple concave regions, such as the

multi-sigmoidal utility presented in Chapter 3 in (3.29).

Considering utility proportional fairness, however, by using the transfor-

mation of (4.1), the problem becomes convex even for sigmoidal utilities

and (4.4) always satisfies the condition in Theorem 1. More importantly,

this allows to calculate a closed form solution for (4.9) directly or, in some

cases, use the iterative equation in (4.10). In utility proportional fairness,

where the user utility function is transformed according to (4.1), the first

derivative can be easily calculated as:

U ′i (ri) =
1

Ui (ri)
. (4.11)

Eq. (4.11) is invertible as long as it is continuous and monotonic, which

are both true for any concave utility and any sigmoidal utility of arbitrary

number of inflection points following the shape shown in Figure 4.1. In this

case, the optimal rate is given by:

r∗i
(
λi
)

= U−1i

(
1

λi

)
. (4.12)

Based on (4.12), we can calculate a closed form solution for utilities that

satisfy these two properties. This is a significant advantage of the utility

proportional fairness approach which leads to the development of algorithms

that calculate the optimal solution even for non-concave utilities and con-

verge significantly faster than the traditional approach that uses (4.10).

4.3.2. Application specific forms

The existence of various types of user applications complicates the process

of calculating a general closed form solution for the optimal rate allocation
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Application Type Optimal Rate Allocation Function

HTTP r∗i (λ) = rmin ·
(
rmax

rmin

) 1

λi

FTP r∗i (λ) = (rmax + 1)
1

λi − 1

Single-tiered Video Application r∗i (λ) =
α·β−ln(λi−1)

α

Multi-tiered Video Application r∗i
(
λi
)

= bj · arctanh
(
2
(
K 1
λi
− j
)

+ 1
)

+ cj
Table 4.1.: The Optimal Resource Allocation Function for Widely Used

Types of Applications

function of a user. It is however possible to derive application-specific an-

alytical solutions for (4.4) that can be used in a distributed algorithm to

jointly optimize the transmission rates and powers.

Based on the analysis above, it is possible to derive the optimal rate

allocation for browsing, file transfer and video streaming applications using

the suggested utility functions in [45], [46] and the multi-sigmoidal utility

function we proposed in Chapter 3, when utility proportional fairness is

applied. These optimal rate allocation functions are demonstrated in Table

4.1. rmin and rmax represent the minimum and maximum transmission rate

of a user, and parameters α and β are calibration parameters of the single-

sigmoidal utility. The calculation of analytical solutions for concave and

single-sigmoidal utilities is relatively easy and is provided in Appendix A.

However, the calculation for multi-sigmoidal utilities such as those described

in (3.29) is more complicated and will be described in detail in the remainder

of this section.

A multi-sigmoidal utility consists of K hyperbolic tangent components.

As explained earlier, by definition, the hyperbolic tangent has values in the

range (−1, 1) but the components in (3.29) have been scaled and shifted so

that the resulting utility has values in the range [0, 1]. Therefore, each of the

scaled components is restricted in a different non overlapping region. For
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example, values in the range (0.5, 0.75) correspond to the third hyperbolic

tangent component of the utility in the top plot of Figure 4.1. This implies

that a value of utility corresponds to a single point3 and belongs to only

one of the hyperbolic tangent components, while the rest of the components

have value either 1 or −1. To calculate its inverse we write:

y =
1

2K

{
K∑
k=1

tanh

(
ri − ck
bk

)
+K

}
⇔ 2Ky −K =

K∑
k=1

tanh

(
ri − ck
bk

)
⇒

2Ky −K = µ+ tanh

(
ri − cj
bj

)
− ϕ. (4.13)

Index j represents the index of the hyperbolic tangent component that cor-

responds to the requested point. Term µ represents the components before

j that have value 1, i.e. µ = j − 1, and term ϕ represents the components

after j that have value −1, i.e. ϕ = K − j. Based on these, (4.13) becomes:

2 (Ky − j) + 1 = tanh

(
ri − ck
bk

)
, (4.14)

and by solving with respect to ri, we find that:

r∗i (y) = bj · arctanh (2 (Ky − j) + 1) + cj. (4.15)

Moreover, by combining (4.12) and (4.15) we calculate the optimal rate

allocation of user i with respect to the aggregate network price for i as

r∗i
(
λi
)

= bj · arctanh

(
2

(
K

1

λi
− j

)
+ 1

)
+ cj. (4.16)

Eq. (4.16) is a closed form of the optimal rate allocation for a specific

aggregate price λi when the utility function has multi-sigmoidal shape, i.e.

3i.e., it is a one-to-one function.
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Component Utility Value Region Aggregate Price Region

1
[
0, 1

4

]
(4,∞)

2
[
1
K
, 2
K

]
(2, 4)

3
[
2
K
, 3
K

] (
4
3
, 2
)

4
[
3
K
, 1
] [

0, 4
3

)
Table 4.2.: Tangent Components and the Respective Utility and Aggregate

Price Value Regions for a Utility with 4 sigmoidal components

when it models multi-tiered multimedia applications. In order to evaluate

(4.16), it is necessary to determine the hyperbolic tangent component that

the specific aggregate price λi corresponds to, i.e. determine the value of

j. According to the first order necessary condition for optimality [7], at the

optimal solution U ′i (r∗i ) = λi, which leads to

Ui (r∗i ) =
1

λi
. (4.17)

Eq. (4.17) shows that the regions of utility values can be easily mapped

to regions of aggregate price values. Specifically, for a multi-sigmoidal util-

ity with K inflection points, the hyperbolic component j is within region[
j−1
K , jK

]
, with j = 1, 2, . . . ,K, of the utility values and corresponds to

prices in the region
(
K
j ,

K
j−1

)
, with K

0 →∞. In other words, depending on

the value of the aggregate price λi, we can determine the component that

the optimal rate belongs to and specify j. For example, Table 4.2 shows the

utility value regions and their respective aggregate price regions in utility

proportional fairness for a multi-sigmoidal utility given by (3.29) for K = 4.

Note, that aggregate prices within [0, 1) correspond to Ui = 1 and therefore

to component j = K.

By splitting the summation of hyperbolic tangent components and calcu-

lating the inverse of only one of them, we create some discontinuities on the
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boundaries of the aggregate price regions. These discontinuities are caused

by the fact that arctanh(x)→ ±∞ when x→ ±1 respectively. Specifically

for (4.16) the discontinuities appear on the intermediate boundaries since,

by definition of the utility function, r∗i (0) = rmaxi and r∗i (∞) = 0. For exam-

ple, in the case of a multi-sigmoidal utility with K = 4, the discontinuities

exist for λi = 4
3 , λi = 2 and λi = 4. In order to handle these discontinuities

and assure continuity of the rate allocation function, one could assign an

approximation of the optimal rate for these boundary cases based on neigh-

boring rate values. In other words, the optimal rate r∗i
(
λi
)

for the boundary

aggregate prices can be calculated by a transformation of the form:

r∗i
(
λi
)

= f
(
r∗i
(
λi−
)
, r∗i
(
λi+
))
, (4.18)

where λi− = λi − ε, λi+ = λi + ε and ε is a very small positive constant. A

potential approach could be a weighted average of the rates for prices λi−

and λi+ according to:

r∗i (λ
i) =

w1 · r∗i (λi−) + w2 · r∗i (λi+)

w1 + w2
, (4.19)

where w1 and w2 are weighting parameters with wk > 0, k ∈ {1, 2}. The

relative values of the parameters w1 and w2 can be used to select a rate

value that is closer to one or the other discontinuity end. For example,

w1 > w2 implies that r∗i (λ
i) will be closer to r∗i (λ

i
−) than to r∗i (λ

i
+). For

the numerical results later in this paper, we will use (4.19) to calculate the

optimal rate for boundary aggregate prices with w1 = w2 = 1
2 and ε = 10−8.

This weighted averaging of neighboring points for the estimation of the

optimal rate assures that (4.16) is a continuous function of the aggregate

price. This continuity for all aggregate prices also implies that when us-
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Algorithm 6 – Optimal Rate Calculation

At time t, source i = 1, . . . ,M :

1: receives the aggregate price λi(t);
2: calculates the optimal rate, r∗i (λ), using (4.4) or the formulas in Table

4.1;
3: starts transmitting at time t+ 1 at rate r∗i (λ);

Algorithm 7 – Link Price and Power Calculation

At time t, a link l = 1, . . . , L:

1: calculates the incoming aggregate rate;
2: calculates the new price using (4.5);
3: calculates the new power using (4.6);
4: sends the new price λl (t+ 1) to all sources that are using link l and

starts transmitting using pl (t+ 1);

ing utility proportional fairness all rates within the range
[
rmin, rmax

]
are

feasible contrary to the bandwidth proportional fairness case, where only

a small part of the total rate range is feasible, as illustrated in Figure 4.1.

This shows that the rate allocation function has the robustness and elastic-

ity to adjust to any changes in the link prices and take advantage of the full

range of the available rate region in order to maximize user satisfaction in

the network.

4.3.3. Distributed Algorithm

Having formulated the proportional fair optimization problem for wireless

networks and derived analytical solutions of the optimal rate allocation

function for some of the most common applications, the next step is to

develop a distributed algorithm to jointly optimize transmission powers and

data rates in the aforementioned wireless network.

The iterative equations (4.4)-(4.6) and the application-specific results

summarized in Table 4.1 can be used to create a distributed algorithm

to jointly optimize rates, powers and prices with minimum information ex-
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change between users. This algorithm consists of two parts; Algorithm 6 is

carried out by each source node and Algorithm 7 in each link. This joint

algorithm is an extension of the standard gradient-based algorithm and will

converge to the optimal solution for sufficiently small values of the step sizes

δλ(t) and δp(t) [7], since Problem (4.2) has been convexified using the utility

transformation of (4.1) and the High-SINR Shannon capacity approxima-

tion formula. Regarding the information exchange of the algorithm, users

need to know the aggregate link price λi in order to determine the optimal

transmission rate for the next iteration of the algorithm execution. Simi-

larly to the information exchange of the proposed algorithms in the previous

chapters, the aggregate price can be either stored in the ACK packets sent

by the destination to the source node, or, if the link price is viewed as the

link delay, it can be implicitly measured by the packet queuing delay in the

network, which can be easily obtained from the lower layers of the protocol

stack with no additional signaling overhead. Finally, as with the distributed

algorithm in Chapter 2, using the cost function Vl (pl) is a natural way of

assuring both energy efficiency and convergence of the distributed power

control algorithm.

4.4. Numerical Results

The Utility Proportional Fairness (UPF) approach was applied to various

network scenarios in MATLAB where the network resources were being

used by a number of elastic and inelastic applications to send traffic to a

set of destination nodes. The goal of our simulations was twofold; first, to

quantify the improvement that a closed form solution for the optimal rate

allocation (such as those presented in Table 4.1) can offer compared to an
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Figure 4.2.: Simple Network Topology Example

iterative gradient based equation, such as (4.10), and, second, to compare

UPF against the widely used Bandwidth Proportional Fairness (BPF) re-

source allocation policy. Therefore, the simulation results presented in this

section are organized in two parts. In subsection 4.4.1, we compare the con-

vergence performance of the closed form rate allocation algorithm in UPF

against the respective iterative algorithm, and, then, the advantages of the

UPF approach against the BPF are highlighted in subsection 4.4.2.

4.4.1. Convergence Comparison of Iterative and Analytical

Solution Methods

Algorithms 6 and 7 describe an iterative approach to calculate the optimal

values of three sets of variables; the transmission rates of the sources, the

transmission powers of the wireless links and the link prices. To isolate

the performance of the rate allocation mechanism in these algorithms, we

simulated them in the simple symmetric wired network of Figure 4.2. This

implies that all links in the network have fixed capacity that is known a

priori, and Problem (4.2) reduces to a rate only allocation optimization
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Application Type User Utility Function

HTTP Ui (ri) =
log( ri

rmin
)

log( rmax
rmin

)

FTP Ui (ri) = log(ri+1)
log(rmax+1)

Single-tiered Video Appl. Ui (ri) = 1

1+e−α(ri−β)

Multi-tiered Video Appl. Ui (ri) = 1
2K

{∑K
k=1 tanh

(
xr−ck

bk

)
+K

}
Table 4.3.: The Utility functions of Some Widely Used Types of Applica-

tions

formulation of the form:

max
r

M∑
i=1

Ui(ri)

s. t.
M∑
i=1

αilri ≤ Cl, ∀ links l

(4.20)

that was covered extensively for the BPF approach in Chapter 3. This

allows us to evaluate the impact of using the closed form solutions summa-

rized in Table 4.1 without the effects in convergence of the power allocation

mechanism.

To solve this problem, we ran Algorithm 6 and Algorithm 7 after omit-

ting line 3. The link capacity vector during these simulations was C =

[15, 15, 15, 15, 25, 15, 15, 15, 15]T , source nodes 1 and 4 were assumed to have

multi-sigmoidal utilities, and source 2 and 3 to host elastic applications, i.e.

user satisfaction for these applications to be modelled using concave util-

ities. The two non-concave utilities followed the multi-sigmoidal shape of

(3.29) with the following parameters; b = [0.0722, 0.1957, 0.2237, 0.3980]T ,

c = [0.875, 2.675, 5.375, 8.575]T for the first user and parameter vectors

b = [0.1269, 0.2960, 0.1274, 0.3366]T , c = [1.25, 3.75, 6.25, 8.75]T for the sec-

ond one respectively. Finally, the concave utilities followed the FTP utility

function of Table 4.3 for rmax = 10. With this particular choices for utility

157



functions, link 5 turns into a bottleneck for the network and the rate allo-

cation of this link among the competing users will determine the final rate

vector. The convergence speed in both cases depends also on the selection

of the step size for the link price update equation, δλ(t), which was set as

δλ(t) = 0.03 in both cases. The step size for the iterative rate allocation

approach, described by (4.10), was also set to δr(t) = 0.03. These parame-

ters were set empirically to achieve fast converge according to the step size

limitations of the general gradient algorithm [7].

Figure 4.3 shows the convergence of the rate allocation of user 1, which

follows a multi-sigmoidal utility. Both methods converged to the same rate

allocation vector but the use of the analytical form of Table 4.1 is improving

the convergence speed of the algorithm significantly. Specifically, the purely

iterative approach needs in this example around 5800 iterations, while the

closed form solution needs less than 1/6 of these, around 900. These it-

erations are in essence the iterations needed by Algorithm 7 to calculate

iteratively the optimal link prices. Once this is done, a single evaluation

of the rate allocation function yields the optimal rate for a specific user.

Due to the significant improvement in convergence time of the analytical

approach, this method was used during the comparison of UPF and BPF

methods, the results of which are presented in the next subsection.

4.4.2. Comparison of Bandwidth and Utility Proportional

Fairness Methods

The two approaches were simulated in various network scenarios in a MAT-

LAB environment in order to compare their convergence properties, the

differences in the allocation mechanism and show that UPF can success-

fully avoid the occurrence of rate oscillations and can lead to fair allocation
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Figure 4.3.: Convergence Speed Comparison of Iterative and Analytical So-
lution Rate Allocation Methods

of resources when heterogeneous applications compete. For a more com-

plete comparison, this section is organized in two parts. In the first part,

the two approaches are compared in a wireless network scenario under the

existence of only concave and single-sigmoidal utilities, while, in the sec-

ond part, multi-sigmoidal utilities will be also used to model multi-tiered

multimedia applications.

Concave and Single-sigmoidal Utilities

The utility proportional fairness (UPF) approach was applied to various

network scenarios, an example of which is the network topology shown in

Figure 4.4 for illustration purposes. The wireless network consists of 6

source nodes, 3 intermediate nodes and a set of 3 destination nodes. The
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Figure 4.4.: Network Topology Example

simulation setup consisted of a variety of types of applications, including

FTP, HTTP and single-tiered multimedia applications. This dictated the

use of different utility functions, concave or sigmoidal, according to the type

of application. All applications were modelled using the utilities of Table

4.3 for various values of parameters. More specifically for the example of

Figure 4.4, source nodes 1-3 and 5 serve real-time applications, whereas

source nodes 4 and 6 serve elastic applications modelled by concave utilities.

The path loss coefficients Gll were significantly larger than these of the

interfering channels, i.e. terms Gkl for k = 1, . . . , L and k 6= l, in order

to allow the use of the high-SINR channel capacity approximation formula

with low approximation error.

The performance of the UPF approach is compared against the traditional

bandwidth proportional fairness (BPF) [46] approach used in prior work

in order to show that UPF can successfully avoid the occurrence of rate

oscillations and can lead to fair allocation of resources when heterogeneous

applications compete for them. During the BFP optimization process, the

self-regulating heuristic [46] was used in order to resolve any oscillations

that might occur.
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Figure 4.5.: Convergence of Utility and Objective Functions

Figure 4.5 shows the convergence of both the objective function of the

optimization problem and the utility functions of sources 1− 4. When BPF

is used, users 1 and 3 follow a sigmoidal utility and start to oscillate after

about 180 iterations, as the spikes indicate. The self-regulating heuristic

removes them from the optimization process and therefore their utility is 0.

The remaining users compete for all the network resources which leads to

higher individual utilities for these users. On the other hand, there are no

oscillations when UPF is used and the resulting rate allocation leads to the

same degree of satisfaction for all sources. In general, UPF gives priority to

users with higher rate requirements while BPF allocates more rate to users

that are satisfied easier in an attempt to achieve higher aggregate utility

in the network. For example, at the final rate allocation in BPF, all the
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Figure 4.6.: Convergence of Rate Allocation

elastic applications are allocated some rate while only two out of the four

multimedia applications are allowed to transmit.

The convergence of the rate allocation of the first four sources for both

UPF and BPF approaches is illustrated in Figure 4.6. It is evident that

for BPF the oscillations occurring at the rate allocation of sources 1 and

3 cause spikes in the allocations of the rest as well, while in UPF rate are

converging smoothly to the optimal solution. Finally, Figure 4.7 shows the

convergence of the power allocation for links 1 to 4. It is evident from the

peaks around iteration 190 that the existence of oscillations in the BPF

approach affects the convergence of powers as well, whereas in UPF the

powers converge smoothly to their optimal values. In addition, it is clear

that the different allocation policy between UPF and BPF also leads to
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different values of transmission powers due to the difference in the traffic

passing through each link.

Concave and Multi-sigmoidal Utilities

An example topology is shown in Figure 4.8 for illustration purposes. The

wireless network consists of 4 source nodes, 4 intermediate nodes and 1

destination node. As with the previous subsection, the simulation setup

consisted of a variety of types of applications, including FTP, HTTP and

multimedia applications. This dictated the use of different utility functions,

concave or sigmoidal, according to the type of application. All applications

were modelled using the utilities of Table 4.3 for various values of parame-

ters. More specifically for the example of Figure 4.8, we used the utilities

described in subsection 4.4.1. The hybrid TDMA/CDMA scheme described
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Figure 4.7.: Convergence of Transmission Power Allocation
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in Section 4.2 was deployed with N = 2 chips per symbol, a spreading gain

S = 4 and channel bandwidth of B = 2MHz. The path loss coefficients Gll

were significantly larger than these of the interfering channels, i.e. terms

Gkl for k = 1, . . . , L and k 6= l, in order to allow the use of the high-SINR

channel capacity approximation formula with low approximation error. For

the BPF approach, any oscillations that occurred during the optimization

process were resolved using the Oscillation Resolving heuristic (ORH) pre-

sented in Chapter 3. Another option would be to use the self-regulating

heuristic in [46]. Regarding the power vectors, it is assumed that there is

a feasible power vector to achieve capacity adequate to accommodate the

non-concave utilities when transmitting at rate equal to the minimum of

their oscillating rates.

Figure 4.9 shows the convergence of the aggregate utilities in the network

and the individual utility functions of sources 3 and 4. The convergence of
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Figure 4.9.: Convergence of User Utility Functions

utilities for users 1 and 2 were similar and omitted for clarity. When BPF

is used, users 1 and 4, who follow a multi-sigmoidal utility, start to oscillate

after around 25 iterations, as the spike indicate. The oscillation resolving

heuristic allocates to each one of them rate equal to the minimum of their

oscillating rates and, consequently, removes them from the optimization

process. Therefore, their utility remains constant from that point and until

the end of the optimization process. The remaining users compete for the

rest of the network resources. On the other hand, there are no oscillations

when UPF is used since the problem in this case is convex. In addition,

by comparing the individual utilities one can observe that the resulting rate

allocation leads to almost the same degree of satisfaction for all sources4. In

general, UPF gives priority to users with higher rate requirements, i.e. users

4If the wireless network topology had been exactly symmetric, the individual utilities
would have been identical
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Figure 4.10.: Convergence of Rate Allocation

that need larger amount of rate to achieve a specific value of satisfaction,

while BPF allocates more rate to users that are satisfied easier, i.e. users

with larger value of derivative. This stems from the fact that BPF tries to

achieve higher aggregate utility in the network while UPF tries to balance

the degree of satisfaction among users.

The convergence of the rate allocation for sources 3 and 4 for both UPF

and BPF approaches is illustrated in Figure 4.10. In the case of BPF,

the oscillations occurring at the rate allocation of source 4 affect also the

allocations of the concave users. Once these oscillations are resolved, the

BPF algorithm converges. On the other hand, in UPF, rates are converging

smoother since the optimization problem is convex and hence no oscillations

occur. As explained for the utility convergence, comparing the resulting rate

166



0 50 100 150 200 250 300 350 400 450
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Convergence of Power Allocation

Iterations

P
ow

er
 (

W
)

 

 

Link 3 with UPF
Link 3 with BPF
Link 4 with UPF
Link 4 with BPF

Figure 4.11.: Convergence of Transmission Power Allocation

allocations, it is evident that the UPF approach allocates more rate to the

two multi-tiered multimedia applications, i.e. to users 1 and 4, rather than

to concave applications.

Figure 4.11 shows the convergence of the power allocation for links 3 and

4. The algorithm behavior for the remaining links is similar and the respec-

tive plots where omitted for clarity. It is clear that the different allocation

policy between UPF and BPF also leads to different values of transmis-

sion powers due to the difference in the traffic passing through each link.

Moreover, the resulting power allocations for UPF are significantly higher

that in BPF in order to accommodate the increased total network capacity

achieved. Finally, power convergence in the case of UPF is smoother due to

the convexity of the problem and the absence of rate discontinuities.

167



4.5. Concluding Remarks

This chapter discussed how utility proportional fairness can be used to re-

solve many of the shortcomings of traditional NUM approaches in wireless

networks. More specifically, we proposed a utility proportional-fair opti-

mization formulation for high-SINR wireless networks and developed a joint

distributed rate and power allocation algorithm to solve this problem. In

addition, it was shown that the use of utility proportional fairness allows

the calculation of closed form solutions for the optimal rate allocation for a

wide range of popular applications, including multi-tiered multimedia appli-

cations, prevents oscillations in the network and assures that all applications

will be treated equally in terms of the rate allocation. Our approach was also

simulated and compared against the traditional bandwidth proportional fair

approach.
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5. Conclusion and Future Work

The aim of this chapter is twofold. First, it will provide a summary of the

research methodologies and results presented in the previous chapters and,

then, it will outline possible directions for future work in this very promising

research area.

5.1. Summary of the Results

The methodologies, algorithms and results that were presented in this PhD

Thesis contribute to both fundamentals of optimization theory in general

and to the development of efficient engineering techniques to solve practical

problems that occur in current communication problems.

Chapter 2 demonstrates the shortcomings of TCP, the most widely used

Transport layer protocol in the internet, when dealing with inelastic traffic

that is generated by multimedia applications. This inability of TCP to allo-

cate resources efficiently highlights the need to design a novel optimization-

based Transport layer protocol that can take into account the evolution

of user satisfaction for each type of application and be able to optimize

the resource allocation so that the total user satisfaction is maximized un-

der some well-defined objective. However, current optimization frameworks

cannot provide the foundations of such an optimization-based protocol since

the resulting non-convex formulations are difficult to be solved by in a dis-
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tributed way. However, there are cases of non-convex problems that can be

solved distributedly as easy as a convex one.

Towards the development of such a Transport layer protocol, Chapter 2

describes a non-convex optimization framework. At the core of this frame-

work, theorems 1 and 2 prove a sufficient (and in some cases necessary

as well) condition to identify the non-convex optimization problems that

can be solved distributedly. This theorem connects the convergence of the

distributed algorithm with the continuity properties of the rate allocation

function. The great advantage of this framework is its generality and its

wide applicability, which is demonstrated in solving the resource allocation

problem in TDMA/CDMA ad-hoc networks. The proposed distributed al-

gorithm is shown to converge to the optimal solution when Theorem 1 holds.

In the opposite case, the discontinuity of the rate allocation function of a

user might cause this user to oscillate between two rate values and con-

sequently prevent the distributed algorithm from converging. To stop this

oscillation behavior we proposed a simple oscillation resolving heuristic that

assures the convergence of the algorithm. Moreover, our simulations show

that this heuristic provides an efficient approximation of the optimal solu-

tion.

Chapter 3 provides significant contribution regarding the necessity for the

use of multi-sigmoidal utilities in resource allocation. First, we argue on the

reasons why single-sigmoidal utilities are not adequate to model modern

multi-tiered multimedia applications and provide analytical results on the

effect of a multi-sigmoidal utility on the continuity properties of the rate

allocation function. These results are necessary in order to investigate the

applicability of the non-convex framework provided in Chapter 2. There-

fore, we prove that the rate allocation function of a user can have as many
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discontinuities as the number of inflections points of its utility and that these

points can cause a distributed algorithm to oscillate similarly to the single-

sigmoidal case. Furthermore, these discontinuity points can be determined

efficiently using the detailed steps of the proposed algorithm. Moreover, we

propose a specific family of multi-sigmoidal utility functions that is appro-

priate to model user satisfaction for multi-tiered multimedia applications.

The efficient calibration of the parameters of this function is shown and the

development of a very efficient approximation method of the optimal rate

is described. Finally, the case of oscillations is thoroughly examined and an

efficient heuristic algorithm for oscillations with multi-sigmoidal utilities is

also proposed and applied to various network topologies.

Chapter 4 proposes an alternative allocation policy that can provide im-

provements in shortcomings of the traditional resource allocation methods.

These shortcomings can be summarized in the following two reasons; one

that relates to the fairness characteristics of the allocation policy applied

and one relating to the oscillations that occur and the range of feasible

rates. Traditional resource allocation methods, including those presented

in Chapters 2 and 3, despite the fact that lead to the maximum possible

aggregate rate, lead to some unfair behavior towards inelastic applications.

The applied Bandwidth Proportional Fairness policy applied gives priority

to users that are easier satisfied. This leads applications which need more

rate, such as multimedia applications, to receive less resources, thus creating

users that are very satisfied and users with almost zero utility. Moreover,

as explained analytically in Chapters 2 and 3, the discontinuity of the rate

allocation function can lead to cases of oscillations and restricts the range

of feasible rates that each user can be allocated, and thus removing most of

the elasticity of the proposed algorithms.
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The Utility Proportional Fairness approach presented in 4 can resolve

successfully the aforementioned problems since, with the appropriate util-

ity transformation, it can assure the convexity of the problem, and hence

the continuity of the rate allocation function, and, moreover, can lead to-

wards more fair resource allocations by giving priority to applications that

need resources the most. Therefore, we propose an analytic optimization

framework for resource allocation in wireless networks under the existence

of multi-sigmoidal utility functions and prove closed form solutions for the

rate allocation function of a number of widely used application types and

show that an optimization-based algorithm will converge to an optimal and

fair solution that will attempt to satisfy all applications at the same ex-

tend. Moreover, the continuity of the rate allocation function provides our

algorithm with the necessary robustness by allowing the use of the full rate

range and not just a small portion of it.

5.2. Future Work

Despite the aforementioned contributions of the current PhD work, there

are significant research challenges yet to be answered, which are also in our

future research plans and will be outlined in this section.

The non-convex optimization framework described in Chapter 2, can

identify the non-convex problems that can be solved distributedly using

a gradient-based algorithm. In addition, in case that the condition of Theo-

rem 1 does not hold and oscillations occur, the proposed heuristic can assure

stability of the system and provide an efficient approximation of the opti-

mal solution. However, at the moment, it is not possible to know whether

the condition of Theorem 1 holds for a problem before trying to solve it.
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Therefore, it is within our research plans to develop a detailed procedure

to evaluate whether a non-convex problem can be solved distributedly with

a gradient-based algorithm before attempting to solve it. This will pre-

vent cases of oscillation and will possibly lead to the development of more

sophisticated techniques to solve these problems distributedly.

The applicability of the proposed framework will be further improved if

more cases of utility function are examined. As our research showed, the

continuity properties of the rate allocation function depends solely on the

utility function of that user. This offers the opportunity to examine more

types of utilities in order to determine the discontinuity points and act faster

in case of oscillations. Moreover, this will lead to more accurate modelling

of the satisfaction of users with respect to the transmission rate and, hence,

to more efficient resource allocations.

Our work regarding Utility Proportional Fairness showed that an alloca-

tion policy apart from optimal can also be fair towards network users. In

addition, oscillation policies can act as an efficient convexification tool for

non-convex problem formulations. It is within our future plan to investigate

the effect of other fairness policies in the resource allocation. The incorpo-

ration of policies such as the Utility Max-min Fairness or the Bandwidth

Max-min Fairness will be further examined.

The problem formulations where the applicability of our optimization

techniques was demonstrated were mainly regarding wireless ad-hoc net-

works. Some aspects of energy efficiency were taken into account but en-

ergy efficiency is not the main consideration in wireless networks consisted of

non-battery powered hosts. Therefore, we plan to investigate novel problem

formulations that describe the resource allocation problem in wireless sensor

networks. The energy considerations in battery-operated sensor networks
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are of significant importance and can take the form of lifetime maximization

or selective operation of sensors based on the spatial characteristics of the

measured phenomena. In addition, alternative, and more accurate, channel

models will be considered that will allow the application of our research

even to low-SINR environment.

Another limitation of the work that relates to NUM is the fact that the

routing matrix of the network is considered fixed and known a priori. This is

supported by an implicit assumption that a routing algorithm is run before

the application of the resource allocation algorithm and that the network is

static enough to allow the distributed optimization-based algorithm to con-

verge to the optimal solution. However, there are cases, especially in wireless

networks, where links change and therefore the routing should be updated

during the optimization process. Therefore, other approaches should be

examined such as the case of joint rate, power and routing optimization.

Last but not least, our greatest motivation so far and our ultimate goal

of our future research is to combine all the previous items and work towards

the development of an optimization-based resource allocation protocol that

will substitute current suboptimal protocols, such as TCP, and will be able

to optimize the performance of a network while taking into account the

unique characteristics of the applications utilizing it.
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A. Appendix

A.1. Proof of Optimal Rate Allocation Function

for HTTP Application

Using the utility function for the HTTP application of Table 4.3, we have

that:

y · log

(
rmax

rmin

)
= log

( x

rmin

)
⇔ log

({
rmax

rmin

}y)
= log

( x

rmin

)
⇔

x = rmin ·
{
rmax

rmin

}y
. (A.1)

From (A.1) we conclude that the inverse of the utility function is:

U−1i (x) = rmin ·
{
rmax

rmin

}x
, (A.2)

and substituting in (4.12) we prove that:

r∗i (λ) = rmin ·
(
rmax

rmin

) 1

λi

. (A.3)
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A.2. Proof of Optimal Rate Allocation Function

for FTP Application

Working in a similar way for the utility function of the FTP application

according to Table 4.3, we have that:

log (x+ 1) = y · log (rmax + 1)⇔ log (x+ 1) = log ({rmax + 1}y)

x = {rmax + 1}y − 1. (A.4)

Consequently, from (A.4) we conclude that the inverse of the utility function

is:

U−1i (x) = {rmax + 1}x − 1, (A.5)

and substituting in (4.12) we prove that:

r∗i (λ) = (rmax + 1)
1

λi − 1. (A.6)

A.3. Proof of Optimal Rate Allocation Function

for Single-tiered Video Application

Similarly with the other two cases above, we have that:

y =
1

1 + e−α(ri−β)
⇔ 1− y

y
= e−α(ri−β) ⇔

x =
αβ − ln

(
1
y − 1

)
α

, (A.7)
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which leads to the following inverse utility function:

U−1i (x) =
αβ − ln

(
1
x − 1

)
α

(A.8)

Then, in combination with (4.12) we conclude that the optimal rate alloca-

tion function is:

r∗i (λ) =
α · β − ln

(
λi − 1

)
α

. (A.9)

177



Bibliography

[1] L. Kleinrock, “On communications and networks,” IEEE Transactions

on Computers, vol. C-25, no. 12, pp. 1326 –1335, December 1976.

[2] J. Day and H. Zimmermann, “The osi reference model,” Proceedings of

the IEEE, vol. 71, no. 12, pp. 1334 – 1340, December 1983.

[3] Cisco, “Cisco visual networking index: Global mo-

bile data traffic forecast update, 20102015,” Cisco Sys-

tems Inc., Tech. Rep., February 2011. [Online]. Avail-

able: http://www.cisco.com/en/US/solutions/collateral/ns341/

ns525/ns537/ns705/ns827/white paper c11-481360.pdf

[4] ——, “Cisco visual networking index: Forecast and methodology,

20102015,” Cisco Systems Inc., Tech. Rep., June 2011. [Online].

Available: http://www.cisco.com/en/US/solutions/collateral/ns341/

ns525/ns537/ns705/ns827/white paper c11-520862.pdf

[5] C. A. Floudas, I. G. Akrotirianakis, S. Caratzoulas, C. A. Meyer, and

J. Kallrath, “Global optimization in the 21st century: advances and

challenges,” Computers and Chemichal Engineering, vol. 29, pp. 1185–

1202, May 2005.

[6] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Uni-

versity Press, 2004.

178



[7] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.

[8] R. Horst, P. M. Pardalos, and N. V. Thoai, Introduction to Global

Optimization. Kluwer Academic Publishers, 1995.

[9] P. Pardalos and H. Romeijn, “Handbook of global optimization,”

Heuristic approaches, Kluwer, Dordrecht, 2002.

[10] C. A. Floudas and C. E. Gounaris, “A review of recent advances in

global optimization,” Journal of Global Optimization, vol. 45, pp. 3–

38, 2009.

[11] T. Weise, Global Optimization Algorithms Theory and Application.

it-weise.de (self-published), 2009, [Online]. Available: http://www.it-

weise.de/.

[12] D. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation:

Numerical Methods. Prentice Hall, 1989.

[13] Z. quan Luo, W. kin Ma, A.-C. So, Y. Ye, and S. Zhang, “Semidefinite

relaxation of quadratic optimization problems,” IEEE Signal Process-

ing Magazine, vol. 27, no. 3, pp. 20 –34, May 2010.

[14] J. B. Lasserre, “An explicit exact sdp relaxation for nonlinear 0-1 pro-

grams,” in Proceedings of the 8th International IPCO Conference on

Integer Programming and Combinatorial Optimization. London, UK,

UK: Springer-Verlag, 2001, pp. 293–303.

[15] M. Fazel and M. Chiang, “Network utility maximization with noncon-

cave utilities using sum-of-squares method,” in IEEE CDC-ECC 2005,

December 2005, pp. 1867 – 1874.

179



[16] X. L. Sun, K. McKinnon, and D. Li, “A convexification method for

a class of global optimization problems with applications to reliability

optimization,” Journal of Global Optimization, vol. 21, pp. 185–199,

2001.

[17] F. P. Kelly, A. Maulloo, and D. Tan, “Rate control in communication

networks: Shadow prices, proportional fairness and stability,” Journal

of the Operational Research Society, pp. 237–252, 1998.

[18] S. Low and D. Lapsley, “Optimization flow control. i. basic algorithm

and convergence,” IEEE/ACM Transactions on Networking, vol. 7,

no. 6, pp. 861 –874, December 1999.

[19] D. Palomar and M. Chiang, “A tutorial on decomposition methods

for network utility maximization,” IEEE Journal on Selected Areas in

Communications, vol. 24, no. 8, pp. 1439 –1451, August 2006.

[20] D. P. Palomar and M. Chiang, “Alternative distributed algorithms for

network utility maximization: Framework and applications,” IEEE

Transactions on Automatic Control, vol. 52, no. 12, pp. 2254 –2269,

December 2007.

[21] M. Chiang, “To layer or not to layer: balancing transport and physical

layers in wireless multihop networks,” in IEEE INFOCOM 2004, vol. 4,

March 2004, pp. 2525 – 2536.

[22] M. Chiang, S. Low, A. Calderbank, and J. Doyle, “Layering as opti-

mization decomposition: A mathematical theory of network architec-

tures,” Proceedings of the IEEE, vol. 95, no. 1, pp. 255 –312, January

2007.

180



[23] J. Postel, “Transmission control protocol,” Internet Engineering

Task Force, RFC 793, September 1981. [Online]. Available:

http://www.rfc-editor.org/rfc/rfc793.txt

[24] H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. Katz, “A com-

parison of mechanisms for improving tcp performance over wireless

links,” IEEE/ACM Transactions on Networking, vol. 5, no. 6, pp. 756

–769, December 1997.

[25] S. F. M. Mathis, J. Mahdavi and A. Romanow, “Selective

acknowledgement options,” Internet Engineering Task Force, RFC

2018, October 1996. [Online]. Available: http://www.rfc-editor.org/

rfc/rfc2018.txt

[26] H. Balakrishnan and R. Katz, “Explicit loss notification and wireless

web performance,” in IEEE GlobeCom mini-conference, Sydney, Aus-

tralia, November 1998.

[27] K. Ramakrishnan, S. Floyd, and D. Black, “The addition of

explicit congestion notification (ecn) to ip,” Internet Engineering

Task Force, RFC 3168, September 2001. [Online]. Available:

http://tools.ietf.org/html/rfc3168

[28] S. S. H. Balakrishnan and R. Katz, “Improving reliable transport and

handoff performance in cellular networks,” ACM Wireless Networking,

November 1995.

[29] P. Karn, “The qualcomm cdma digital cellular system,” in Mobile &

Location-Independent Computing Symposium on Mobile & Location-

Independent Computing Symposium, ser. MLCS. Berkeley, CA,

181



USA: USENIX Association, 1993, pp. 4–4. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1287073.1287077

[30] S. Nanda, R. Ejzak, and B. Doshi, “A retransmission scheme for circuit-

mode data on wireless links,” IEEE Journal on Selected Areas in Com-

munications, vol. 12, no. 8, pp. 1338 –1352, October 1994.

[31] E. Ayanoglu, S. Paul, T. F. LaPorta, K. K. Sabnani, and R. D. Gitlin,

“Airmail: a link-layer protocol for wireless networks,” Journal of Wire-

less Networks, vol. 1, no. 1, pp. 47–60, February 1995.

[32] V. Jacobson, “Congestion avoidance and control,” in Symposium

proceedings on Communications architectures and protocols, ser.

SIGCOMM ’88. New York, NY, USA: ACM, 1988, pp. 314–329.

[Online]. Available: http://doi.acm.org/10.1145/52324.52356

[33] L. S. Brakmo and L. L. Peterson, “Tcp vegas: End to end congestion

avoidance on a global internet,” IEEE Journal on selected Areas in

communications, vol. 13, pp. 1465–1480, 1995.

[34] T. H. S. Floyd and A. Gurtov, “The newreno modification to tcp’s fast

recovery algorithm,” Internet Engineering Task Force, RFC 3782, April

2004. [Online]. Available: http://www.rfc-editor.org/rfc/rfc3782.txt

[35] A. Kumar, “Comparative performance analysis of versions of tcp in

a local network with a lossy link,” IEEE/ACM Transactions on Net-

working, vol. 6, no. 4, pp. 485 –498, August 1998.

[36] S. H. Low, L. L. Peterson, and L. Wang, “Understanding

tcp vegas: Theory and practice,” Princeton University, Tech.

Rep. TR 616-00, November 2000. [Online]. Available: http:

//www.cs.princeton.edu/research/techreps/TR-616-00

182



[37] ——, “Understanding tcp vegas: a duality model,” Journal of the

ACM, vol. 49, no. 2, pp. 207–235, 2002.

[38] S. H. Low, “A duality model of tcp and queue management algorithms,”

IEEE/ACM Transactions on Networking, vol. 11, no. 4, pp. 525–536,

2003.

[39] S. Floyd and V. Jacobson, “Random early detection gateways for con-

gestion avoidance,” IEEE/ACM Transactions on Networking, vol. 1,

no. 4, pp. 397 –413, August 1993.

[40] D. Lapsley and S. Low, “Random early marking for internet congestion

control,” in Global Telecommunications Conference, 1999. GLOBE-

COM ’99, vol. 3, 1999, pp. 1747 –1752 vol.3.

[41] R. T. Rockafellar, “Lagrange multipliers and optimality,” SIAM Rev.,

vol. 35, pp. 183 –283, 1993.

[42] W. Stallings, Data and Computer Communications, 9th ed. Pearson

Custom Publishing, 2010.

[43] S. Shenker, “Fundamental design issues for the future internet,” IEEE

Journal on Selected Areas in Communications, vol. 13, no. 7, pp. 1176–

1188, September 1995.

[44] J. He, J. Rexford, and M. Chiang, “Don’t optimize existing protocols,

design optimizable protocols,” SIGCOMM Computer Communications

Review, vol. 37, no. 3, pp. 53–58, July 2007.

[45] C. Liu, L. Shi, and B. Liu, “Utility-based bandwidth allocation

for triple-play services,” in Universal Multiservice Networks, 2007.

ECUMN ’07. Fourth European Conference on, feb. 2007, pp. 327 –336.

183



[46] J.-W. Lee, R. R. Mazumdar, and N. B. Shroff, “Non-convex optimiza-

tion and rate control for multi-class services in the internet,” IEEE

Journal on Selected Areas in Communications, vol. 13, no. 4, pp. 827–

840, August 2005.

[47] M. Chiang, S. Zhang, and P. Hande, “Distributed rate allocation for

inelastic flows: optimization frameworks, optimality conditions, and

optimal algorithms,” in IEEE INFOCOM 2005, vol. 4, March 2005,

pp. 2679 – 2690 vol. 4.

[48] P. Hande, S. Zhang, and M. Chiang, “Distributed rate allocation for in-

elastic flows,” IEEE/ACM Transactions on Networking, vol. 15, no. 6,

pp. 1240 –1253, December 2007.

[49] J.-W. Lee, R. Mazumdar, and N. Shroff, “Nonconvexity issues for inter-

net rate control with multiclass services: stability and optimality,” in

INFOCOM 2004. Twenty-third Annual Joint Conference of the IEEE

Computer and Communications Societies, vol. 1, March 2004, pp. 24–

34.

[50] M. Chiang and J. Bell, “Balancing supply and demand of bandwidth in

wireless cellular networks: utility maximization over powers and rates,”

in INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE

Computer and Communications Societies, vol. 4, March 2004, pp. 2800

– 2811 vol.4.

[51] M. Chiang, “Balancing transport and physical layers in wireless multi-

hop networks: Jointly optimal congestion control and power control,”

IEEE Journal on Selected Areas in Communications, vol. 23, no. 1, pp.

104–116, January 2005.

184



[52] J. W. Lee, R. Mazumdar, and N. Shroff, “Downlink power allocation for

multi-class cdma wireless networks,” in IEEE INFOCOM 2002, vol. 3,

November 2002, pp. 1480 – 1489 vol.3.

[53] Y. Hou, K. K. Leung, and A. Misra, “Mission-based joint optimal

resource allocation in wireless multicast sensor networks,” in Annual

Conference of ITA, Maryland, USA, September 2009.

[54] G. Tychogiorgos, K. Leung, A. Misra, and T. LaPorta, “Distributed

network utility optimization in wireless sensor networks using power

control,” in IEEE PIMRC 2008, September 2008, pp. 1 –6.

[55] S. Ulukus and R. Yates, “Stochastic power control for cellular radio

systems,” IEEE Transactions on Communications, vol. 46, no. 6, pp.

784 –798, June 1998.

[56] A. Ribeiro and G. Giannakis, “Layer separability of wireless networks,”

in CISS 2008, March 2008, pp. 821 –826.

[57] J. Papandriopoulos, S. Dey, and J. S. Evans, “Optimal and distributed

protocols for cross-layer design of physical and transport layers in

manets,” IEEE/ACM Transactions on Networking, vol. 16, no. 6, pp.

1392–1405, 2008.

[58] D. O’Neill, A. Goldsmith, and S. Boyd, “Wireless network utility max-

imization,” in IEEE Military Communications Conference, MILCOM,

November 2008, pp. 1 –8.

[59] D. Fouskakis and D. Draper, “Stochastic optimization: A review,” In-

ternational Statistical Review, vol. 70, pp. 315–350, 2002.

185



[60] Y. Yi and M. Chiang, “Stochastic network utility maximization,” Eu-

ropean Transactions on Telecommunications, vol. 22, pp. 1–22, 2008.

[61] M. Chiang, D. Shah, and A. Tang, “Stochastic stability under network

utility maximization: General file size distribution,” in In Proceedings

of Allerton Conference, 2006, pp. 49–77.

[62] L. Massoulie, “Structural properties of proportional fairness: Stability

and insensitivity,” Annals of Applied Probability, vol. 17, no. 3, pp. 809

–839, 2007.

[63] R. Srikant, “On the positive recurrence of a markov chain describing file

arrivals and departures in a congestion-controlled network,” in IEEE

Computer Communications Workshop, 2005.

[64] F. Baccelli, D. R. McDonald, and J. Reynier, “A mean-field model for

multiple tcp connections through a buffer implementing red,” Perfor-

mance Evaluation, vol. 49, no. 1-4, pp. 77–97, September 2002.

[65] S. Shakkottai and R. Srikant, “Mean fde models for internet congestion

control under a many-flows regime,” IEEE Transactions on Informa-

tion Theory, vol. 50, no. 6, pp. 1050 – 1072, June 2004.

[66] S. Deb, S. Shakkottai, and R. Srikant, “Asymptotic behavior of in-

ternet congestion controllers in a many-flows regime,” Mathematics of

Operation Research, vol. 30, no. 2, pp. 420–440, May 2005.

[67] L. Tassiulas and A. Ephremides, “Stability properties of constrained

queueing systems and scheduling policies for maximum throughput in

multihop radio networks,” IEEE Transactions on Automatic Control,

vol. 37, no. 12, pp. 1936 –1948, December 1992.

186



[68] M. Neely, E. Modiano, and C.-P. Li, “Fairness and optimal stochas-

tic control for heterogeneous networks,” IEEE/ACM Transactions on

Networking, vol. 16, no. 2, pp. 396 –409, April 2008.

[69] M. Neely, “Delay-based network utility maximization,” in IEEE IN-

FOCOM, March 2010, pp. 1 –9.

[70] ——, “Stochastic network optimization with non-convex utilities and

costs,” in Proc. Information Theory and Applications Workshop (ITA),

February 2010, pp. 1 –9.

[71] L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource allocation and

cross-layer control in wireless networks,” Foundations and Trends in

Networking, vol. 1, no. 1, pp. 1–144, April 2006.

[72] D. P. Bertsekas and R. Gallager, Data Networks. Prentice-Hall, 1992.

[73] J. Mo and J. Walrand, “Fair end-to-end window-based congestion con-

trol,” IEEE/ACM Transactions on Networking, vol. 8, no. 5, pp. 556

–567, October 2000.

[74] B. Radunovic and J.-Y. L. Boudec, “Why max-min fairness is not suit-

able for multi-hop wireless networks,” Ecole Polytechnique Federale de

Lausanne (EPFL), Tech. Rep., 2003.
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