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Abstract

Discrete time models of portfolio optimisation and option pricing are studied under the

effects of proportional transaction costs. In a multi-period portfolio selection problem, an

investor maximises expected utility of terminal wealth by rebalancing the portfolio between

a risk-free and risky asset at the start of each time period. A general class of probability

distributions is assumed for the returns of the risky asset. The optimal strategy involves

trading to reach the boundaries of a no-transaction region if the investor’s holdings in the

risky asset fall outside this region. Dynamic programming is applied to determine the

optimal strategy, but it can be computationally intensive. In the limit of small transac-

tion costs, a two-stage perturbation method is developed to derive approximate solutions

for the exponential and power utility functions. The first stage involves ignoring the no-

transaction region and transacting to the optimal point corresponding to the zero transaction

costs case. Approximations of the resulting suboptimal value functions are obtained. In the

second stage, these suboptimal value functions are corrected to obtain approximations of

the optimal value functions and optimal boundaries at all time steps.

A discrete time option pricing model is developed based on the utility maximisation

approach. This model reduces to the binomial model in the special case where the risky

asset follows a binomial price process without transaction costs. Incorporating transaction

costs, the utility indifference price and marginal utility indifference price of the option are

observed to depend on the price of the underlying risky asset and the investor’s holdings

in the risky asset. The regions where these option prices do not vary with the investor’s

holdings in the risky asset are identified. An example illustrates how utility indifference

pricing or marginal utility indifference pricing enables one to determine the bid and ask

price of a European call option.
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Chapter 1

Introduction

Portfolio theory and option pricing theory, which are broadly two of the most active areas of

research in mathematical finance, typically involve the study of decision-making under un-

certainty. For instance, the following questions arise: How much of one’s wealth should be

utilised for consumption or allocated between investments in stocks and bonds? How does

one hedge away the risk and determine the valuation of an option? The ongoing research

in these areas aims to develop more realistic models that reflect the dynamics of financial

markets and accurately describe the strategies to be taken by decision-makers. The present

study concentrates on analysing the impact of transaction costs in portfolio theory and op-

tion pricing theory. Pioneering research in portfolio theory and option pricing theory, which

ignored the presence of transaction costs, derived exact closed-from solutions but may lead

to unrealistic investment or hedging strategies. On the other hand, the inclusion of trans-

action costs in subsequent financial market models often resulted in equations that did not

allow exact solutions. In order to solve these equations, one had to employ mathematical

analysis and techniques to obtain analytical, numerical or approximate solutions.

In the first part of the thesis, we consider a multi-period portfolio selection problem

where an investor chooses to allocate his wealth between a risky and risk-free asset. The

investor makes a sequence of investment decisions at the start of each time period with the

objective of maximising expected utility of terminal wealth. A cost that is proportional to

the value of the transaction is incurred each time the investor trades in the risky asset. In

order to determine the optimal investment strategy, we reduce the original problem to a
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sequence of more tractable sub-problems with the application of dynamic programming.

Nonetheless, an exact solution is generally unavailable and it is also computationally inten-

sive to evaluate a numerical solution. Therefore, in the limit of small transaction costs, we

derive an approximate solution to the optimal investment strategy via perturbation analysis.

We investigate the cases where the investor has an exponential or a power utility function.

The second part of the thesis focuses on developing and analysing a discrete time model

of option pricing that incorporates proportional transaction costs. In situations where it

might be impossible or unfavourable to replicate an option, we adopt an approach that

is based on the maximisation of expected utility of terminal wealth. In this approach,

the selling (buying) price of an option is defined as the amount of money that will make

the investor indifferent, in terms of expected utilities, between trading in the market with

and without a short (long) position in the option. In other words, to price the option,

one has to compare the aforementioned portfolio selection problem (from the first part

of the thesis) with one that incorporates the option position. An alternative approach is

also investigated, where the price of an option is determined by the requirement that an

infinitesimal diversion of funds into the option purchase or sale has a neutral effect on the

investor’s achievable utility. These approaches are generally known as utility indifference

pricing and marginal utility indifference pricing respectively. We also demonstrate that,

in the absence of transaction costs and with the risky asset following a binomial price

process, both the utility indifference price and marginal utility indifference price reduce to

the perfect replication price (from the binomial model).

In the next two sections, we review the existing literature in portfolio theory and option

pricing theory with a focus on transaction costs.

1.1 Review of Portfolio Theory

The mean-variance approach in modern portfolio theory was pioneered by the seminal work

of Markowitz (1952), who introduced the use of standard deviation of return as a measure

of risk. This theory provided an investor with a criterion to select portfolio combinations

efficiently from a given set of securities. An efficient portfolio was defined as one that

maximised its mean return given a pre-specified level of risk, or equivalently, one that
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minimised risk given a pre-specified level of mean return. The main disadvantage of the

mean-variance approach rested on it being a static one-period model. It was one in which

the investor would allocate his portfolio at the start of a period and wait for the return to

be realised at the end of the period without making intermediate changes to the portfolio

composition. Nonetheless, it remains a popular approach that is still widely used today in

asset allocation models.

1.1.1 Continuous Time Models

A more general approach to portfolio theory involved the development of dynamic or multi-

period models. In these models, the investor would make a sequence of decisions with the

objective of maximising expected utility. The portfolio selection and consumption problem

in a continuous time setting was first studied by Merton (1969). The investor’s objective

was to maximise expected utility from consumption, where the price of the risky asset

was assumed to be driven by a geometric Brownian motion in a frictionless market. For

the case of the power or logarithmic utility function, an explicit solution was obtained

using stochastic control theory. It was shown that the optimal investment strategy involved

continuously rebalancing the portfolio to maintain a constant proportion of the risky asset.

This constant proportion is commonly referred to as the Merton proportion.

However, continuous trading in financial markets would be prohibitively expensive due

to the impact of transaction costs. Transaction costs incorporated into subsequent research

were generally modelled as: a constant amount independent of the value of the transaction

(i.e. constant costs); an amount proportional to the value of the transaction (i.e. propor-

tional costs); or a fixed proportion of the entire portfolio value. Magill and Constantinides

(1976) were the first to extend Merton’s (1969) model to incorporate proportional trans-

action costs. Although their argument was heuristic, they provided the insight that “the

investor trades in securities when the variation in the underlying security prices forces his

portfolio proportions outside a certain region about the optimal proportions in the absence

of transactions costs”. Davis and Norman (1990) provided a rigorous formulation and anal-

ysis of the portfolio selection and consumption problem with proportional transaction costs

by applying the theory of stochastic singular control. Their work was further generalised
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by Shreve and Soner (1994) with less restrictive assumptions using the theory of viscosity

solutions. Taksar et al. (1988) analysed the portfolio selection problem with proportional

transaction costs, which involved applying stochastic singular control to maximise the long

run growth rate of the portfolio value. In the aforementioned models with transaction costs,

the typical optimal strategy was not to transact when the proportion of risky asset drifted

within a particular no-transaction region. When the proportion of risky asset exceeded the

boundary of this region, the investor would transact instantaneously to return to the bound-

ary. Akian et al. (1996) extended Davis and Norman’s (1990) model to study the case

where there was more than one risky asset. Morton and Pliska (1995) introduced a multi-

asset model where the investor paid a transaction cost equal to a fixed proportion of the

entire portfolio value. The investor’s objective was to maximise the long run growth rate

of the portfolio value and the optimal strategy was shown to be reduced to one that solved

a single stopping time problem.

In general, models that incorporated transaction costs did not allow exact analytical

solutions. Most of these models had to be solved by numerical methods that were often

computationally intensive, especially in the case of multiple risky assets. Nonetheless,

it was observed that transaction costs were small in practice relative to the value of the

transactions. In the limit of small transaction costs, Atkinson and Wilmott (1995) applied

the technique of perturbation analysis about the no transaction costs solution to derive

an approximate solution to the Morton and Pliska (1995) model with multiple risky as-

sets. Mokkhavesa and Atkinson (2002) derived an approximate solution to the portfolio

selection and consumption problem with small transaction costs via the use of perturba-

tion analysis for a single risky asset and an arbitrary utility function. Janecek and Shreve

(2004) provided a rigorous derivation of the asymptotic expansions of the optimal value

function and boundaries of the no-transaction region for an investor with the power utility

function. Their work was recently extended by Gerhold et al. (2011), who obtained power

series expansions of arbitrary order for the optimal value function and boundaries of the

no-transaction region by using duality theory. However, all the aforementioned perturba-

tion analyses were applied to continuous time models where the prices of the risky assets

were assumed to be geometric Brownian motions.
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1.1.2 Discrete Time Models

In a discrete time framework, Samuelson (1969) studied the portfolio selection and con-

sumption problem in a multi-period model using a dynamic programming approach, which

was analogous to the work of Merton (1969). He analysed the maximisation of expected

utility from consumption without transaction costs, where the return of the risky asset was

assumed to follow a general probability distribution. In the case of the power or logarithmic

utility function, he showed that the investor’s optimal strategy was to maintain a constant

proportion of wealth invested in the risky asset at each time step.

Mossin (1968) analysed the dynamic portfolio selection problem (without consump-

tion) in discrete time and considered a multi-period model without transaction costs. For

example, consider a N -period model in which an investor would rebalance the portfolio

between a risk-free and risky asset at the start of each time period. Suppose that Wn de-

notes the wealth of the portfolio and an denotes the dollar value invested in the risky asset

at time period n. Then, the investor’s wealth at time period n+ 1 is given by

Wn+1 = rnWn + (sn − rn) an, (1.1)

where rn is one plus the return of the risk-free asset and sn is one plus the return of the risky

asset from time period n to n+ 1. In this model, the investor would determine his optimal

investment in the risky asset an at the start of each time period n (n = 0, . . . , N − 1) with

the objective of maximising expected utility of terminal wealth

E [U(WN)] . (1.2)

He showed that, for an investor with the power or logarithmic utility function, the optimal

strategy involved making a series of single-period decisions without considering future

reinvestment opportunities. This was described as a myopic strategy and represented a

simplification of the problem. However, this was only a special case and it would generally

not be optimal for the investor to make a decision at each time step without looking ahead.

A more detailed description of this portfolio selection model is presented in Section 1.5.
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Bobryk and Stettner (1999) incorporated proportional transaction costs in a discrete

time model and studied the maximisation of expected utility from consumption. In the case

of the power or logarithmic utility function, the optimal investment strategy was shown

to be characterised by a cone shaped no-transaction region. They derived various bounds

on the no-transaction region by specifying upper and lower bounds on the support of the

probability measure for the returns of the risky asset. Sass (2005) embedded the Cox et al.

(1979) binomial model with a general transaction costs structure that included proportional

costs, constant costs and costs that were a fixed proportion of the portfolio value. He formu-

lated the objective of maximising expected utility of terminal wealth as a Markov control

problem and gave a multi-period existence result based on the solution of the dynamic

programming equation. Explicit results were provided for the one-period problem in the

case of a single risky asset with a binomial price process. Atkinson and Storey (2010) re-

cently analysed the discrete time portfolio selection problem by incorporating proportional

transaction costs in Mossin’s (1968) model. They assumed a general class of underlying

probability distributions for the returns of the risky asset and studied the problem of max-

imising expected utility of terminal wealth for the power utility function. Perturbation anal-

ysis was applied to obtain approximations of the optimal boundaries of the no-transaction

region in the limits of small and large transaction costs. However, the approximations of

the optimal boundaries were only derived up to two time steps. Atkinson and Quek (2012)

investigated the case of maximising expected utility of terminal wealth for the exponen-

tial utility function. In the limit of small transaction costs, they developed a perturbation

method to construct approximations of the optimal value function and optimal boundaries

of the no-transaction region at all time steps of the problem. A detailed description of the

multi-period portfolio selection model with proportional transaction costs will be presented

in Chapters 2 and 3.

1.2 Review of Option Pricing Theory

The seminal paper by Black and Scholes (1973) led to a major breakthrough in option

pricing theory. A continuous time model was developed to value a European option in a

frictionless market (without transaction costs), where the price of the underlying risky asset
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was assumed to follow a geometric Brownian motion. This is known as the Black-Scholes

option pricing model. They constructed a portfolio consisting of a long position in the

underlying risky asset and a short position in the European option. Adopting a dynamic

trading strategy, the portfolio was continuously rebalanced to maintain a perfectly hedged

position with zero risk. In the absence of arbitrage, it was concluded that the perfectly

hedged portfolio had a return that was equal to the risk-free rate of return. From this

hedging and no-arbitrage argument, they derived a simple formula for computing the price

of a European option, which is known as the Black-Scholes option pricing formula.

A discrete time model of option pricing by no-arbitrage methods was developed by

Cox et al. (1979) where the price of the underlying risky asset was assumed to follow a

multiplicative binomial tree. They constructed a portfolio consisting of the risky asset and

a risk-free asset, which replicated the payoff of a European call option at its expiration date.

As an illustration of this construction, consider a one-period model where the initial price

of the risky asset is X . Let u denote one plus the return of the risky asset with probability

q and let d denote one plus the return of the risky asset with probability 1− q over a single

time period. Furthermore, let r denote one plus the one-period return of the risk-free asset

and assume that d < r < u. The price of the risky asset at the end of the time period is

represented by the diagram

��
�
��
�

HHH
HHH

s
s

s
X

uX with probability q,

dX with probability 1− q.

Consider a European option expiring at the end of the time period with a general payoff

function c that depends on the price of the risky asset at expiry. LetC be its initial value, Cu
be its value at the end of the period if the price of the risky asset is uX and Cd be its value

at the end of the period if the price of the risky asset is dX . Since the option is expiring at

the end of the time period, its value will be equal to its payoff. In other words, Cu = c(uX)

and Cd = c(dX). Therefore,
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�
��

�
��

HH
HHHH

s
s

s
C

Cu = c(uX) with probability q,

Cd = c(dX) with probability 1− q.

Suppose that a portfolio comprising B dollars of the risk-free asset and ∆ shares of the

risky asset is constructed. This will cost B + ∆X initially and at the end of the period, its

value will be

��
��

��

H
HHH

HH

s
s

s
B + ∆X

rB + ∆uX with probability q,

rB + ∆dX with probability 1− q.

The unknownsB and ∆ are to be chosen so that the portfolio value replicates the option

payoff at the end of the period, which require

rB + ∆uX = Cu, (1.3)

rB + ∆dX = Cd. (1.4)

Solving these equations simultaneously,

∆ =
Cu − Cd

(u− d)X
, B =

uCd − dCu
(u− d) r

. (1.5)

The portfolio formed in this way is known as the replicating or hedging portfolio. In order

to ensure that there are no risk-free arbitrage opportunities, the initial value of the option

must be equal to the value of its replicating portfolio, which means that

C = B + ∆X. (1.6)

Substituting (1.5) into the above equation and simplifying, the price of the option is there-
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fore

C =
pCu + (1− p)Cd

r
, (1.7)

where p =
r − d
u− d

and 1− p =
u− r
u− d

. Note that p, which is strictly between 0 and 1, is

known as the risk neutral probability.

This one-period option pricing model can be easily extended to the N -period case.

Starting from the expiry date of the option and evaluating Equation (1.7) recursively back-

wards in time. Cox et al. (1979) showed that the price of the option is given by

C =
1

rN

N∑
i=0

(
N

i

)
pi (1− p)N−i c(uidN−iX), (1.8)

where
(
N

i

)
=

N !

i! (N − i)!
is the binomial coefficient. Furthermore, from Equation (1.5),

the hedge ratio can be written as

∆ =
1

rN−1 (u− d)X

×
N−1∑
i=0

(
N − 1

i

)
pi (1− p)N−1−i

[
c(ui+1dN−1−iX)− c(uidN−iX)

]
. (1.9)

This model, known as the binomial model, presented a simple and efficient numerical pro-

cedure for valuing options. In a special limiting case, it was also shown that the discrete

time binomial model converged to the continuous time Black-Scholes option pricing model.

In a continuous time framework with transaction costs, it could become ruinously ex-

pensive to continuously rebalance a portfolio in order to maintain a perfect hedge. There-

fore, in the presence of transaction costs, it was necessary to consider alternative criteria in

the pricing and hedging of an option. These criteria generally involved a trade-off between

the transaction costs incurred in portfolio rebalancing and the bounds on the option price

(i.e. the bid and ask price). For instance, reducing the hedging error through more frequent

trading would incur higher transaction costs and lead to wider bid-ask spreads. Therefore,

the problem became one of designing some form of an optimal pricing and hedging strat-

egy that would be consistent with an investor’s objectives. The two main approaches that

addressed the issue of transaction costs were based on the concepts of replication and utility
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maximisation.

1.2.1 Replication Approach

Approximate Replication Strategy

Leland (1985) was the first to incorporate transaction costs in the Black-Scholes model.

Rebalancing the portfolio at discrete time intervals instead of continuously, he constructed

a modified hedging strategy that approximately replicated the option return inclusive of

transaction costs. He also derived an explicit Black-Scholes type formula adjusted with a

modified volatility parameter, which provided upper and lower bounds on the price of a

European call option. Leland’s pricing methodology was of practical importance due to its

ease of implementation. In the limiting case where the length of the revision interval tends

to zero, Kabanov and Safarian (1997) showed that contrary to the claim in Leland (1985),

the hedging error in Leland’s strategy was non-zero when the level of transaction costs

was a constant. However, if the level of transaction costs decreased to zero as the revision

interval tends to zero, the limit of the hedging error would be equal to zero. Recently, Denis

(2010) extended Leland’s approach of approximate hedging to study a more general class

of option payoffs.

Perfect Replication Strategy

In a discrete time framework, unlike in continuous time, it was still possible to perfectly

replicate an option payoff in the presence of transaction costs. Merton (1990) and Boyle

and Vorst (1992) studied the replication of European call options in the binomial model

when there were proportional transaction costs on trades in the risky asset. Merton con-

sidered a two-period model while Boyle and Vorst extended the analysis to multiple time

periods. They constructed self financing strategies that perfectly replicated the option pay-

off at the expiration date. Using the usual no-arbitrage argument, the price of the option

corresponded to the initial cost of constructing the replicating portfolio. The cost of repli-

cating a long position in the option was shown to provide an upper bound for the option

price, while the (negative of the) cost of replicating a short position provided a lower bound.
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Palmer (2001) revisited Boyle and Vorst’s (1992) model and relaxed some of the conditions

imposed in their procedure to compute the lower bound. He developed an alternative algo-

rithm to compute the cost of replicating a short position in the option without the need for

those conditions.

Super-Replication Strategy

In the binomial model, Bensaid et al. (1992) investigated super-replication strategies that

dominated the payoff of an option at expiration under proportional transaction costs. Among

these strategies, they addressed the problem of finding the optimal (i.e. least costly) one

and derived bounds on the price of the option. The upper bound was defined as the min-

imum initial cost of constructing a super-replicating portfolio for a long position in the

option. Similarly, the lower bound was defined as the (negative of the) minimum initial

cost of super-replicating a short position in the option. In some instances, they showed that

the minimum cost super-replication strategy was in fact cheaper than the cost of the perfect

replication strategy. However, in the case of small transaction costs or for long positions

in options settled by delivery, they also showed that perfect replication was the optimal

strategy. The super-replication approach was further analysed by Edirsinghe et al. (1993),

who considered options with general non-convex payoffs, lot size constraints and transac-

tion cost structures that included proportional as well as constant costs. They showed that

in the presence of these trading frictions, it was no longer optimal to rebalance the port-

folio in every period. Recently, Roux et al. (2008) developed an algorithm based on the

super-replication approach, which they applied to the pricing and hedging of European op-

tions with arbitrary payoffs in a general discrete market model with arbitrary proportional

transaction costs.

The main disadvantage of the super-replication strategy was that the cost of hedging

would increase as the frequency of portfolio revisions was increased. Moreover, in the

continuous time limit, Soner et al. (1995) proved the conjecture by Davis and Clark (1994)

that the minimum cost super-replication strategy was the trivial buy and hold strategy. This

strategy, which involved buying one share of the underlying risky asset and holding it until

the expiration of the option, was of no interest to practitioners in the financial markets as it
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was considered too expensive.

1.2.2 Utility Maximisation Approach

Utility Indifference Pricing

Hodges and Neuberger (1989) proposed a utility maximisation approach to analyse the

problem of option pricing with proportional transaction costs. They recognised that the op-

timal hedging strategy for an option under transaction costs should depend on an investor’s

risk preferences. In this approach, the selling (buying) price of an option was defined as the

amount of money that would make the investor indifferent, in terms of expected utilities,

between trading in the market with and without a short (long) position in the option. The

resulting price of the option is known as the utility indifference price or reservation price.

Davis et al. (1993) developed this idea rigorously and demonstrated that the pricing defi-

nition would reduce to the Black-Scholes price in the absence of transaction costs. They

computed the option selling price for the case of the exponential utility function by solving

two stochastic singular control problems with different boundary conditions. Clewlow and

Hodges (1997) extended the utility maximisation approach to option pricing by incorpo-

rating a general cost function with constant and proportional costs. Constantinides and Za-

riphopoulou (1999) considered the case of proportional transaction costs with general risk

preferences and derived in closed form an upper bound to the utility indifference selling

price of a European call option. Andersen and Damgaard (1999) adopted the utility max-

imisation approach in a discrete time model with two risky assets, where the price vector

process was assumed to evolve in a trinomial tree. They considered utility functions within

the hyperbolic absolute risk aversion (HARA) class. Based on their numerical examples,

they found that the utility indifference buying price of a European call option was rela-

tively insensitive to the functional form of the HARA utility function if the initial level of

absolute risk aversion was identical. Zakamouline (2006) developed a numerical procedure

for computing option prices and optimal hedging strategies within the utility maximisation

framework of Davis et al. (1993) with proportional as well as constant transaction costs.

She carried out a comparative simulation study of various hedging strategies by comparing

the mean and standard deviation of the corresponding hedging errors and concluded that
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the utility-based hedging strategy outperformed the others.

Marginal Utility Indifference Pricing

Davis (1997) proposed embedding the option pricing problem within a utility maximisation

framework in situations where replication was either impossible or unfavourable. Using a

marginal rate of substitution argument, he defined the fair price of an option as one that had

a neutral effect on the investor’s utility when an infinitesimal amount of initial wealth was

diverted into the option at that price. This definition resulted in a unique price for the option,

which is known as the marginal utility indifference price. Using this approach, Monoyios

(2004) developed an efficient algorithm based on a Markov chain approximation to price

European options in the presence of proportional transaction costs. A detailed description

of utility indifference pricing and marginal utility indifference pricing in discrete time will

be presented in Chapters 4 and 5.

The utility maximisation approach to option pricing often resulted in equations that had

to be solved with computationally intensive numerical methods. In the case of small trans-

action costs, Whalley and Wilmott (1997) carried out a perturbation analysis of the utility

indifference pricing approach of Davis et al. (1993). They reduced a three dimensional free

boundary problem to an inhomogeneous diffusion equation in two independent variables.

This technique increased the speed at which the optimal hedging strategy was calculated

and also provided additional insights to the solution. Barles and Soner (1998) derived

an option pricing formula from the model of Hodges and Neuberger (1989) by applying an

asymptotic analysis of partial differential equations. Atkinson and Alexandropoulos (2006)

studied the case of multiple uncorrelated risky assets and approximated the price of basket

options by applying the method of perturbation analysis.

In addition to markets with transaction costs, the utility maximisation approach was also

widely used to price options in incomplete markets. Examples of market incompleteness

include the presence of non-traded assets or portfolio constraints. A recent reference on

the theory and applications of utility indifference pricing in incomplete markets could be

found in Carmona (2009).

Having presented a review of portfolio theory and option pricing theory, we now pro-
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ceed to introduce the mathematical tools that will be used in the thesis. In the next two

sections, we introduce the common classes of utility functions and the concept of dynamic

programming.

1.3 Utility Functions

A common approach to the dynamic portfolio selection problem is one that is based on

maximising expected utility. Suppose that an investor is given a number of investment as-

sets and is to make a choice in allocating his wealth among these various assets. Having

chosen an investment strategy, the investor’s wealth at the end of some time horizon is de-

termined by the random outcomes of these assets. In view of such uncertainty and risk,

expected utility theory provides a way for the investor to rank his choice of investment

strategy. Assume that the investor has a utility function of wealth U(W ) that is strictly

increasing (i.e. more wealth is preferred to less wealth) and strictly concave (i.e. risk aver-

sion). Figure 1.1 is an example of a risk averse investor’s utility function. The investor

will choose to allocate his wealth in a way that maximises his expected utility of terminal

wealth E [U(WN)]. An alternative to maximising utility of wealth is to maximise utility

from consumption, which arises in the study of portfolio consumption and selection prob-

lems. In the thesis, we assume that the investor has a pre-determined consumption plan and

our focus is on the portfolio selection problem.

There are commonly used utility functions that fall under the classes of constant abso-

lute risk aversion (CARA) and constant relative risk aversion (CRRA). First, we discuss

the notion of absolute risk aversion (due to Arrow (1971) and Pratt (1964)) and present the

class of utility functions with constant absolute risk aversion. This is followed by a discus-

sion of relative risk aversion and a description of the utility functions that exhibit constant

relative risk aversion.

1.3.1 Absolute Risk Aversion

Consider an investor with wealth W and utility function U(W ). Assume that U(W ) is

strictly increasing, strictly concave and twice continuously differentiable. Let ε denote a
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Figure 1.1: Utility Function of a Risk Averse Investor

fair gamble, where ε is a random outcome with E [ε] = 0 and E [ε2] = σ2. Suppose that π

is the risk premium that the investor will pay to avoid a fair gamble. In other words, the

investor is indifferent between receiving a (random) risk ε and paying a (non-random) risk

premium π. Thus, we have the relationship

U(W − π) = E [U(W + ε)] . (1.10)

The amount W − π is known as the certainty equivalent of the gamble W + ε. In order

to measure the investor’s aversion to risk, consider the investor’s risk premium for a small

risk ε. Assuming that ε is small, the Taylor expansion of Equation (1.10) about W is given

by

U(W )− πU ′(W ) +O(π2) = E
[
U(W ) + εU ′(W ) +

1

2
ε2U ′′(W ) +O(ε3)

]
. (1.11)
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This implies that

π ≈ 1

2
σ2A(W ), (1.12)

where

A(W ) = −U
′′(W )

U ′(W )
(1.13)

is known as the Arrow-Pratt coefficient of absolute risk aversion. In other words, the risk

premium is approximately proportional to the coefficient of absolute risk aversion for a

small risk. We wish to obtain the class of utility functions with constant absolute risk

aversion. Suppose that

− U ′′(W )

U ′(W )
= κ, (1.14)

where κ is a constant. We have assumed that the investor’s utility function is strictly in-

creasing so that U ′(W ) > 0. If κ < 0, then U ′′(W ) > 0 and the utility function is strictly

convex (i.e. risk seeking). If κ = 0, then U ′′(W ) = 0 and the utility function is linear

(i.e. risk neutral). Otherwise, if κ > 0, then U ′′(W ) < 0 and the utility function is strictly

concave (i.e. risk averse). Thus, we assume that κ > 0 as we are interested in studying the

behaviour of a risk averse investor. A class of utility functions that satisfies Equation (1.14)

for κ > 0 is given by

U(W ) = −α
κ
e−κW + β, (1.15)

where α > 0 and β are arbitrary constants. It is well known that the utility function is

defined up to a positive linear transformation U(W ) → aU(W ) + b for a positive scalar

a and a scalar b. Furthermore, the coefficient of absolute risk aversion is invariant under a

positive linear transformation of the utility function. Therefore, for the ease of presentation

in subsequent chapters, we assume that an investor with constant absolute risk aversion has

an exponential utility function of the form

U(W ) = −e−κW , (1.16)

where κ > 0 is the (constant) coefficient of absolute risk aversion.
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1.3.2 Relative Risk Aversion

We now discuss the related notion of relative risk aversion. Suppose that the risk and

risk premium are viewed as a fraction of the investor’s wealth. Let ε̃ = ε/W denote the

proportional risk and π̃ = π/W denote the proportional risk premium. In this case, we

have the certainty equivalence relationship

U((1− π̃)W ) = E [U((1 + ε̃)W )] . (1.17)

For a small proportional risk, the Taylor expansion of Equation (1.17) leads one to the

definition of the Arrow-Pratt coefficient of relative risk aversion

R(W ) = −WU ′′(W )

U ′(W )
. (1.18)

In order to determine the class of utility functions with constant relative risk aversion,

suppose that

− WU ′′(W )

U ′(W )
= 1− γ, (1.19)

where γ is a constant. Assuming that W > 0 and recalling that U ′(W ) > 0, the case of

γ > 1 corresponds to a risk seeking investor with U ′′(W ) > 0; γ = 1 corresponds to one

who is risk neutral with U ′′(W ) = 0; and γ < 1 corresponds to one who is risk averse with

U ′′(W ) < 0. Since our interest lies in studying the behaviour of a risk averse investor, we

assume that γ < 1. A class of utility functions that satisfies Equation (1.19) is given by

U(W ) =


α

γ
(W γ + β) if γ 6= 0,

α lnW + β if γ = 0,
(1.20)

where α > 0 and β are arbitrary constants. Recall that the utility function is unique up to

a positive linear transformation. Therefore, for the ease of presentation, we assume that an

investor with constant relative risk aversion has a power utility function of the form

U(W ) =
1

γ
W γ (1.21)
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for the case where γ < 1, γ 6= 0. In this case, the (constant) coefficient of relative risk

aversion is equal to (1 − γ). For the case where γ = 0, we assume a logarithmic utility

function of the form

U(W ) = lnW. (1.22)

It is noted that utility functions with constant absolute risk aversion or constant relative

risk aversion fall within a wider hyperbolic absolute risk aversion (HARA) class of utility

functions. This is a class of utility functions U(W ) whose coefficient of absolute risk

aversion is positive and inverse to a linear function of wealth (see Merton (1971)), that is,

− U ′′(W )

U ′(W )
=

(
W

1− η
+
µ

λ

)−1

(1.23)

and subject to the restrictions

η 6= 1, λ > 0,
λW

1− η
+ µ > 0, µ = 1 if η = −∞. (1.24)

All members of the HARA family can be expressed in the form

U(W ) =
1− η
η

(
λW

1− η
+ µ

)η
. (1.25)

By a suitable choice of the parameters, one can obtain a utility function with absolute or

relative risk aversion that is increasing, decreasing or constant.

1.4 Dynamic Programming

In this section, we give a slightly abbreviated description of dynamic programming as de-

scribed in the book by Bertsekas (2005). The multi-period portfolio selection problem is

an example of a situation where decisions are made in stages under uncertainty. The out-

come of each decision, which may not be completely predictable, can be anticipated to

some extent before the next decision is made. The objective is to maximise a certain value

or desirable outcome. Dynamic programming is often used to deal with such a situation.

A key aspect is that decisions cannot be viewed in isolation as one seeks to strike a bal-
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ance between the desire for high present value and the undesirability of low future values.

At each stage, the dynamic programming technique ranks decisions (via utility functions)

based on the sum of the present value and the expected future value, assuming that the deci-

sion maker behaves optimally at subsequent stages. We illustrate the technique of dynamic

programming with a basic optimisation model in discrete time (see Bertsekas (2005) for

the full technical details).

Consider a model that comprises a discrete time dynamic system and a value function

that is additive over time. The dynamic system is of the form

xn+1 = fn(xn, an, sn), n = 0, 1, . . . , N − 1, (1.26)

where

n indexes discrete time,

xn is the state of the system at time period n,

an is the control or decision variable to be selected at time period n,

sn is a random parameter characterised by a probability distribution that may depend on xn
and an but not on values of the prior random parameters sn−1, . . . , s0,

fn is a function that describes the system, and

N is the number of time periods or number of times control can be applied.

Let gn(xn, an, sn) be the value that is gained at time period n. Assuming that the value

accumulates over time, the total value is

gN(xN) +
N−1∑
n=0

gn(xn, an, sn), (1.27)

where gN(xN) is the terminal value at the end of the process. This value is generally a

random variable due to the presence of sn. Therefore, the problem is formulated as one of

maximising the expected total value

E

[
gN(xN) +

N−1∑
n=0

gn(xn, an, sn)

]
. (1.28)

We now define the optimal policy and the optimal value function of the problem. Con-



1.4 Dynamic Programming 30

sider the class Π of admissible policies that consists of a sequence of functions π =

{α0, . . . , αN−1}, where αn maps the states xn into controls an = αn(xn). Given an initial

state x0 and policy π ∈ Π, the parameters sn and the states xn are random variables with

distributions defined through the system equation

xn+1 = fn(xn, αn(xn), sn), n = 0, 1, . . . , N − 1. (1.29)

Thus, the expected total value of policy π starting at state x0 is denoted by

Jπ(x0) = E

[
gN(xN) +

N−1∑
n=0

gn(xn, αn(xn), sn)

]
, (1.30)

where the expectation E is taken over the joint distribution of the random variables sn and

xn. An optimal policy π∗ is defined to be one that maximises this value, that is,

Jπ∗(x0) = max
π∈Π

Jπ(x0). (1.31)

The corresponding optimal value function J∗ is a function that assigns to each initial state

x0 the optimal value J∗(x0) given by

J∗(x0) = max
π∈Π

Jπ(x0). (1.32)

In order to obtain the optimal policy π∗ and the optimal value function J∗, we apply the

technique of dynamic programming. This technique is based on Bellman’s (1957) principle

of optimality, which states that

An optimal policy has the property that whatever the initial state and decision

are, the remaining decisions must constitute an optimal policy with regard to

the state resulting from the first decision.

The dynamic programming algorithm, which allows one to systematically solve the

problem for π∗ and J∗, is stated in the following proposition.

Proposition 1.4.1. The dynamic programming algorithm, which proceeds backward in time
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from period N-1 to period 0, is given by

JN(xN) = gN(xN) (1.33)

and

Jn(xn) = max
an

E
sn

[
gn(xn, an, sn) + Jn+1 (fn(xn, an, sn))

]
(1.34)

for n = 0, . . . , N − 1, where the expectation is taken with respect to the probability dis-

tribution of sn. For every initial state x0, the optimal value J∗(x0) of the problem is equal

to J0(x0) given by the above algorithm. Furthermore, if a∗n = α∗n(xn) maximises the right

hand side of the algorithm (1.34) for each xn and n, the policy π∗ =
{
α∗0, . . . , α

∗
N−1

}
is

optimal.

Proof. The main ideas behind the proof of the proposition rest on the principle of op-

timality and an application of mathematical induction. For n = 0, . . . , N − 1, denote

πn = {αn, . . . , αN−1} and let J∗n(xn) be the optimal value for the (N − n)-stage problem

that starts at time period n with state xn and ends at time period N , so that

J∗n(xn) = max
πn

E
sn,...,sN−1

[
gN(xN) +

N−1∑
i=n

gi(xi, αi(xi), si)

]
. (1.35)

For n = N , define J∗N(xN) = gN(xN). We use mathematical induction to show that

the functions J∗n are equal to the functions Jn generated by the dynamic programming

algorithm.

By definition, we have J∗N = gN = JN . Assume that for some n and all xn+1, we have

J∗n+1(xn+1) = Jn+1(xn+1). For all xn, since πn = {αn, πn+1}, we can express

J∗n(xn) = max
{αn,πn+1}

E
sn,...,sN−1

[
gn(xn, αn(xn), sn) + gN(xN) +

N−1∑
i=n+1

gi(xi, αi(xi), si)

]
.

(1.36)

The principle of optimality, which states that the tail portion (i.e. πn+1) of an optimal policy
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is optimal for the tail problem (i.e. the (N − n− 1)-stage problem), implies that

J∗n(xn) = max
αn

E
sn

[
gn(xn, αn(xn), sn)

+max
πn+1

E
sn+1,...,sN−1

{
gN(xN) +

N−1∑
i=n+1

gi(xi, αi(xi), si)

}]
. (1.37)

From the definition of J∗n+1(xn+1), we have

J∗n(xn) = max
αn

E
sn

[
gn(xn, αn(xn), sn) + J∗n+1(xn+1)

]
. (1.38)

Using the induction hypothesis, we conclude that

J∗n(xn) = max
αn

E
sn

[
gn(xn, αn(xn), sn) + Jn+1(xn+1)

]
= max

an
E
sn

[
gn(xn, an, sn) + Jn+1 (fn(xn, an, sn))

]
= Jn(xn), (1.39)

which completes the induction. Setting n = 0 gives us the desired result.

The dynamic programming algorithm thus provides one with a systematic approach to

solve sequential optimisation problems under uncertainty. In special cases, this algorithm

may provide exact analytical solutions for the optimal value function and optimal policy.

However, in most practical cases, exact solutions are often not available and one has to

rely on numerical computations of the dynamic programming algorithm. In the next sec-

tion, we present an example that illustrates the application of utility functions and dynamic

programming.

1.5 Portfolio Optimisation without Transaction Costs

Consider the multi-period portfolio selection model in which an investor rebalances the

portfolio at successive time periods with the objective of maximising expected utility of

terminal wealth. This model was studied by Mossin (1968) for a portfolio with a single risk-
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free and risky asset and extended in Bertsekas (2005) to include multiple risky assets. They

assumed that the rebalancing of the portfolio at each time period did not incur transaction

costs. We review this portfolio selection model and consider investors with the exponential

and power utility functions. In each case, we start with an analysis of the one-period model

before extending the results to the multi-period model via dynamic programming.

1.5.1 One-Period Model with Exponential Utility Function

LetW0 be the initial wealth of the investor and assume that the investor’s wealth is allocated

among one risk-free asset and M risky assets. Let ai be the dollar value invested in the ith

risky asset. The dollar value invested in the risk-free asset is thus W0 −
∑M

i=1 a
i. Suppose

that si denotes one plus the one-period return of the ith risky asset and r denotes one plus

the one-period return of the risk-free asset. Then, the wealth at the end of the period is

given by

W1 = rW0 +
M∑
i=1

(
si − r

)
ai. (1.40)

The investor’s objective is to maximise the expected utility of terminal (end-of-period)

wealth

E [U(W1)] (1.41)

over the investments in the risky assets ai, where the expectation E is taken with respect to

the random variables si. Assume that the investor has an exponential utility function of the

form

U(W ) = −e−κW , (1.42)

where κ > 0 is the coefficient of absolute risk aversion.

In this problem, the aim is to obtain the optimal investment in each risky asset so that

the investor’s expected utility of terminal wealth is maximised. Let J(W0) be the optimal

value function defined as

J(W0) = max
ai

E [U(W1)] . (1.43)
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Substituting in Equations (1.40) and (1.42),

J(W0) = e−κrW0max
ai

E
[
−e−κ

∑M
i=1(si−r)ai

]
. (1.44)

Here, the term in W0 is taken out of the expectation operator E since it is given at the initial

time. The problem may now be reduced to one of maximising

V = E
[
−e−κ

∑M
i=1(si−r)ai

]
(1.45)

with respect to ai. The optimality conditions
∂V

∂ai
= 0 for i = 1, . . . ,M give us

E
[(
si − r

)
e−κ

∑M
j=1(sj−r)aj

]
= 0, (1.46)

a system of M equations in the M unknowns a1, . . . , aM . In general, one will be required

to solve this system of equations numerically. Suppose that an optimal investment strategy

exists. Since the equations do not depend on the initial wealthW0, the optimal investment in

the ith risky asset is independent of W0 and assumed to be of the form ai = ai
∗. Therefore,

the optimal value function is given by

J(W0) = −e−κrW0E
[
e−κ

∑M
i=1(si−r)ai

∗]
. (1.47)

Having determined the form of the optimal strategy and optimal value function in the

one-period model, we extend the analysis to the multi-period case.

1.5.2 Multi-Period Model with Exponential Utility Function

Consider a model with N periods and M risky assets, where the investor rebalances the

portfolio at the start of each time period. Let Wn denote the wealth of the portfolio and ain
denote the dollar value invested in the ith risky asset at time period n. Let sin denote one

plus the return of the ith risky asset and rn denote one plus the return of the risk-free asset

from time period n to n+ 1. Therefore, the investor’s wealth at time period n+ 1 is given
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by

Wn+1 = rnWn +
M∑
i=1

(
sin − rn

)
ain (1.48)

for n = 0, . . . , N − 1. The objective is to maximise the expected utility of terminal wealth

E [U(WN)], where the utility function is given in Equation (1.42). Thus, the optimal value

function for the multi-period problem is defined as

J(W0) = maxE [U(WN)] , (1.49)

where the maximisation is over ai0, . . . , a
i
N−1 and E is taken with respect to the random

variables si0, . . . , s
i
N−1. The dynamic programming algorithm for this problem, which pro-

ceeds backwards in time from period N − 1 to period 0, is given by

JN(WN) = U(WN) (1.50)

and

Jn(Wn) = max En

[
Jn+1

(
rnWn +

M∑
i=1

(
sin − rn

)
ain

)]
(1.51)

for n = 0, . . . , N − 1. Here, the maximisation is over the investments in the risky assets ain
and En is the conditional expectation operator taken with respect to the random variables

sin given the information at time period n.

At time period N − 1, using the results from the one-period model, the optimal invest-

ment strategy for the ith risky asset is of the form

aiN−1 = ai
∗
N−1 (1.52)

and the optimal value function is

JN−1(WN−1) = −e−κrN−1WN−1EN−1

[
e−κ

∑M
i=1(siN−1−rN−1)ai

∗
N−1

]
. (1.53)

Observe that, up to a constant, JN−1(WN−1) has a functional form that is similar to JN(WN) =

−e−κWN . Therefore, one can apply the results from the one-period model (with the appro-
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priate modification) to the analysis at time period N − 2.

Thus, at time period N − 2, the optimal investment strategy for the ith risky asset is

given by

aiN−2 =
ai
∗
N−2

rN−1

(1.54)

and the optimal value function is

JN−2(WN−2) = −e−κrN−1rN−2WN−2EN−1

[
e−κ

∑M
i=1(siN−1−rN−1)ai

∗
N−1

]
×EN−2

[
e−κ

∑M
i=1(siN−2−rN−2)ai

∗
N−2

]
. (1.55)

Proceeding in a similar way, we deduce that at time period n (n = 0, . . . , N − 2), the

optimal investment in the ith risky asset is of the form

ain =
ain
∗

rN−1 · · · rn+1

, (1.56)

where ain
∗ satisfies the system of M equations given by

En
[(
sin − rn

)
e−κ

∑M
j=1(s

j
n−rn)ajn

∗]
= 0 (1.57)

for i = 1, . . . ,M . Furthermore, the optimal value function is

Jn(Wn) = −e−κrN−1rN−2···rnWnEN−1

[
e−κ

∑M
i=1(siN−1−rN−1)ai

∗
N−1

]
×EN−2

[
e−κ

∑M
i=1(siN−2−rN−2)ai

∗
N−2

]
· · ·En

[
e−κ

∑M
i=1(sin−rn)ain

∗]
. (1.58)

If we make a comparison with Equations (1.51), (1.56) and (1.58), it can be seen that

the optimal investment strategy at time period n is equivalent to one that an investor will

use in a single-period model to maximise E [U(rN−1 · · · rn+1Wn+1)] over ain, subject to

Wn+1 = rnWn +
∑M

i=1 (sin − rn) ain. In other words, using this strategy, the investor will

maximise the expected utility of wealth that arises from investing ain in the risky assets at

time period n and reinvesting the resulting wealth Wn+1 entirely in the risk-free asset at the

subsequent time periods. This is described as a partially myopic strategy and is one that

only requires the investor to have a modest amount of foresight.
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We now proceed to consider the case of an investor with the power utility function,

starting with a one-period analysis.

1.5.3 One-Period Model with Power Utility Function

Consider the one-period model as described in Section 1.5.1. In this model, the investor

aims to maximise E [U(W1)] over the investments in the risky assets ai, subject to W1 =

rW0 +
∑M

i=1 (si − r) ai.
Assume that the investor has a power utility function of the form

U(W ) =
1

γ
W γ, (1.59)

where γ < 1, γ 6= 0. The optimal value function J(W0) is defined as

J(W0) = max
ai

E

[
U

(
rW0 +

M∑
i=1

(
si − r

)
ai

)]
. (1.60)

Substituting in Equation (1.59),

J(W0) = max
ai

E

[
1

γ

{
rW0 +

M∑
i=1

(
si − r

)
ai

}γ]
. (1.61)

It is convenient to re-parametrise the problem by expressing the variable ai as a proportion

of the wealth W0. We introduce the variable Ai = ai/W0, which represents the proportion

of wealth invested in the ith risky asset. In terms of Ai, the optimal value function becomes

J(W0) = W γ
0 max

Ai
E

[
1

γ

{
r +

M∑
i=1

(
si − r

)
Ai

}γ]
, (1.62)

which is now a maximisation over the proportional investments in the risky assets Ai. Ob-

serve that with this new parametrisation, the term in W0 is taken out of the expectation

operator E since it is known at the initial time. The problem is now reduced to one of
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maximising

V = E

[
1

γ

{
r +

M∑
i=1

(
si − r

)
Ai

}γ]
(1.63)

with respect to Ai. The optimality conditions
∂V

∂Ai
= 0 for i = 1, . . . ,M give us a system

of M equations

E

(si − r){r +
M∑
j=1

(
sj − r

)
Aj

}γ−1
 = 0 (1.64)

with M unknowns A1, . . . , AM . Assuming that an optimal investment strategy exists, the

optimal proportion of wealth invested in the ith risky asset is of the form Ai = Ai
∗, which

is independent of the initial wealth W0. Therefore, the optimal value function is

J(W0) =
1

γ
W γ

0 E

[{
r +

M∑
i=1

(
si − r

)
Ai
∗
}γ]

. (1.65)

Having obtained the form of the optimal strategy and optimal value function in the one-

period model, we now consider the multi-period case.

1.5.4 Multi-Period Model with Power Utility Function

Recall the multi-period model as described in Section 1.5.2. The investor’s objective is to

maximise E [U(WN)] by rebalancing the portfolio at the start of each time period, subject

to Wn+1 = rnWn +
∑M

i=1 (sin − rn) ain for n = 0, . . . , N − 1. Assume that the investor

has a power utility function given by Equation (1.59). Similar to the one-period analy-

sis, we re-parametrise the problem by expressing the variable ain as a proportion of the

wealth Wn. We introduce the variable Ain = ain/Wn, which represents the proportion

of wealth invested in the ith risky asset at time period n. In terms of Ain, we now have

Wn+1 = Wn

{
rn +

∑M
i=1 (sin − rn)Ain

}
. In this case, the optimal value function for the

multi-period problem is defined as

J(W0) = maxE [U(WN)] , (1.66)
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where the maximisation is over Ai0, . . . , A
i
N−1. The dynamic programming algorithm for

this problem, which proceeds backwards in time, is given by

JN(WN) = U(WN) (1.67)

and

Jn(Wn) = max En

[
Jn+1

(
Wn

{
rn +

M∑
i=1

(
sin − rn

)
Ain

})]
(1.68)

for n = 0, . . . , N − 1. Here, the maximisation is over the proportions of wealth invested in

the risky assets Ain at time period n.

At time period N − 1, using the results from the one-period model, the optimal invest-

ment strategy for the ith risky asset is given by

AiN−1 = Ai
∗
N−1 (1.69)

and the optimal value function is

JN−1(WN−1) =
1

γ
W γ
N−1EN−1

[{
rN−1 +

M∑
i=1

(
siN−1 − rN−1

)
Ai
∗
N−1

}γ]
. (1.70)

Observe that JN−1(WN−1) has the same functional form as JN(WN) =
1

γ
W γ
N (up to a

constant).

Therefore, at time period N − 2, applying the results from the one-period model, the

optimal investment strategy for the ith risky asset is given by

AiN−2 = Ai
∗
N−2 (1.71)

and the optimal value function is

JN−2(WN−2) =
1

γ
W γ
N−2EN−1

[{
rN−1 +

M∑
i=1

(
siN−1 − rN−1

)
Ai
∗
N−1

}γ]

×EN−2

[{
rN−2 +

M∑
i=1

(
siN−2 − rN−2

)
Ai
∗
N−2

}γ]
. (1.72)
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In general, we deduce that at time period n (n = 0, . . . , N − 1), the optimal proportion

of wealth invested in the ith risky asset is given by

Ain = Ain
∗
, (1.73)

where Ain
∗ satisfies the system of M equations

En

(sin − rn)
{
rn +

M∑
j=1

(
sjn − rn

)
Ajn
∗
}γ−1

 = 0 (1.74)

for i = 1, . . . ,M . In addition, the optimal value function is

Jn(Wn) =
1

γ
W γ
nEN−1

[{
rN−1 +

M∑
i=1

(
siN−1 − rN−1

)
Ai
∗
N−1

}γ]

×EN−2

[{
rN−2 +

M∑
i=1

(
siN−2 − rN−2

)
Ai
∗
N−2

}γ]

× · · · × En

[{
rn +

M∑
i=1

(
sin − rn

)
Ain
∗
}γ]

. (1.75)

It follows from the optimal strategy (Equation (1.73)) that, at each time period n, the

investor behaves as if it was a one-period investment characterised by the returns rn and

sin with the objective of maximising E [U(Wn+1)]. In other words, the investor’s optimal

investment strategy is obtained as a sequence of single-period decisions, with each period

being treated as if it was the last one. This is known as a myopic strategy. With a my-

opic strategy, the investor makes his current investment decision without considering the

reinvestment opportunities in the future.

In this section, we have analysed the portfolio selection problem in discrete time with-

out transaction costs. We considered investors with the exponential utility function (i.e.

constant absolute risk aversion) and the power utility function (i.e. constant relative risk

aversion). In the multi-period model where the portfolio’s wealth is reinvested at the start

of each time period, it is observed that the investor adopts an optimal strategy similar to

the one-period case. The investor with an exponential utility function follows a partially
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myopic strategy, which assumes that he will reinvest his subsequent wealth entirely in the

risk-free asset. The investor with a power utility function adopts a myopic strategy, which

ignores the fact that he will have the opportunity to reinvest his wealth in the future. Thus,

in the absence of transaction costs, the solution to the portfolio selection problem is of a

relatively simple form.

In the subsequent chapters, we will investigate the effects of transaction costs on the

portfolio selection problem and the associated option pricing problem. We now present an

overview of the thesis and the main contributions of our research, which are as follows:

1.6 Overview

In Chapter 2, we analyse the multi-period portfolio selection problem with proportional

transaction costs. An investor with the exponential utility function aims to maximise his

utility of terminal wealth by optimally rebalancing his portfolio among a single risk-free

and risky asset at the start of each time period. The optimal strategy involves trading to

reach the boundaries of a no-transaction region if the investor’s risky asset holdings fall

outside this region. Dynamic programming is used to compute the optimal value func-

tion and optimal boundaries of the no-transaction region, which can be computationally

intensive. Previous work by Atkinson and Storey (2010) applied perturbation analysis to

approximate the optimal boundaries in the limit of small transaction costs. However, they

only obtained approximations for two time steps and it is not obvious whether their method

can be extended to an arbitrary number of time steps.

We devise a method that allows one to systematically obtain approximations of the

optimal boundaries as well as the optimal value functions at all time steps. This method

consists of two stages, the first of which assumes that the investor trades to reach the Merton

point at each time step when transaction costs are small. Recall that the Merton point

is the optimal investment in the risky asset when there are no transaction costs. This is

clearly a suboptimal strategy as the investor has ignored the presence of the no-transaction

region. Nonetheless, an approximation of the suboptimal value function is derived at each

time step. The second stage assumes that the investor behaves optimally by transacting to

the boundaries of the no-transaction region. A sequence of corrections is then applied to
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the suboptimal value functions to give us the desired approximations to the optimal value

functions. The approximate optimal boundaries are then derived from the condition that

the first derivative of the optimal value function is continuous across the boundaries. The

details of this method can be found in Chapter 2.

A feature of using the exponential utility function is that it resulted in optimal bound-

aries that are independent of the investor’s wealth, which is often not the case in practice.

A more realistic description of the investor’s optimal strategy is provided by using the

power utility function. In Chapter 3, we investigate the multi-period portfolio selection

model with proportional transaction costs for an investor with the power utility function.

We adopt a similar two-stage perturbation method to obtain approximations of the optimal

value function and optimal boundaries at each time step in the rebalancing of the portfolio.

However, it is more challenging to apply the perturbation analysis in this situation as the

proportion of risky asset inherited at each time step depends on variations in both the return

of the risky asset as well as the investor’s wealth.

In Chapter 4, we present a discrete time model of option pricing that is based on the

utility maximisation approach. We investigate both utility indifference pricing as well as

marginal utility indifference pricing in the case without transaction costs. One advantage

of this discrete time model is that the underlying risky asset is assumed to follow a general

price process. Investors with the exponential and power utility functions are considered.

In the special case where the risky asset follows a binomial price process, we demonstrate

that both the utility indifference price and marginal utility indifference price of the option

reduce to the perfect replication price from the binomial model. The binomial model is the

only discrete time model where perfect replication is possible. In the case where the price

of the risky asset follows a trinomial tree, we illustrate how the price of the option may

be determined via an approximate replication approach. This approach values the option

by constructing an approximately replicating portfolio that minimises the variance of the

replication error. Finally, a comparison is made between the utility maximisation approach

and the approximate replication approach.

In Chapter 5, we extend the discrete time option pricing model (based on the utility

maximisation approach) by incorporating proportional transaction costs. We consider the

case of an investor with the exponential utility function. With the application of dynamic
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programming and using some of the results from Chapter 2, we determine the utility indif-

ference price and marginal utility indifference price of a European option. In the presence

of transaction costs, the utility indifference price and the marginal utility indifference price

of the option depend on the price of the underlying risky asset as well as on the investor’s

holdings in the risky asset. We also identify the regions where the option prices do not vary

with the investor’s holdings in the risky asset. Numerical results are presented for the case

of a European call option, where the underlying risky asset is assumed to follow a binomial

price process. We examine how utility indifference pricing and marginal utility indiffer-

ence pricing allow us to obtain the bid and ask price of the option. Moreover, the utility

indifference pricing approach also provides one with a natural definition of the hedging

strategy.
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Chapter 2

Portfolio Optimisation with Transaction

Costs and Exponential Utility Function

In Chapter 1, we studied the multi-period portfolio selection problem in discrete time with-

out transaction costs. The investor would rebalance the portfolio at successive time periods

with the objective of maximising expected utility of terminal wealth. In this chapter, we

incorporate proportional transaction costs in the multi-period portfolio selection problem

and consider the case of a single risk-free and risky asset. A general class of underlying

probability distributions is assumed for the returns of the risky asset. Assuming that the

investor has an exponential utility function, we determine the optimal value function and

optimal boundaries of the no-transaction region via the application of dynamic program-

ming. In the limit of small transaction costs, a two-stage perturbation method is developed

and used to derive approximations of the optimal value function and optimal boundaries

at each time step of the investment process. This chapter is based on Atkinson and Quek

(2012), which is forthcoming in the journal of Applied Mathematical Finance.

2.1 Market Model

Consider an investor holding a portfolio which is divided between an investment in a risk-

free asset (i.e. bond) and an investment in a risky asset (i.e. stock). A financial market is

considered where the prices of the assets evolve in a discrete time model with N periods.
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2.1.1 Evolution of Wealth and Risky Asset

At time period n, let Wn denote the wealth of the investor and let an denote the dollar value

of the risky asset inherited from the previous period. The investor rebalances the portfolio

at time period n by buying ln or selling mn dollars of the risky asset. The value of the

position in the risky asset, an + ln−mn, is assumed to grow at a random rate between time

period n and n+1. Let sn denote one plus the return of the risky asset between time period

n and n + 1. Therefore, the value of the risky asset at time period n + 1, inherited from

period n, is given by

an+1 = sn(an + ln −mn) (2.1)

for n = 0, . . . , N − 1.

Furthermore, let λn and µn denote the proportional costs of buying and selling the risky

asset at time period n respectively. The costs of transaction reduce the wealth invested in

the risk-free asset, which is equal to Wn− (an+ ln−mn)−λnln−µnmn. Assume that the

investment in the risk-free asset grows at a sure rate between time period n and n+ 1. Let

rn denote one plus the return of the risk-free asset between time period n and n+ 1. Thus,

the evolution of the investor’s wealth (also known as the budget equation) at time period

n+ 1 is given by

Wn+1 = rnWn + (sn − rn)(an + ln −mn)− rnλnln − rnµnmn (2.2)

for n = 0, . . . , N − 1. It is convenient to write

Wn+1 = rnWn + Fn, (2.3)

where

Fn = (sn − rn)(an + ln −mn)− rnλnln − rnµnmn. (2.4)

At all time steps in the rebalancing of the portfolio, observe that it will not be optimal

for the investor to simultaneously buy and sell the risky asset, due to the higher costs

incurred as compared to only buying or selling the asset. Therefore, it is assumed that

simultaneously buying and selling of the risky asset is not allowed. The investor is then left
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with three possible choices, namely to buy, to sell or not to transact the risky asset. The

investor’s decision will affect the wealth and risky asset inherited at the next time step.

2.1.2 Risk Preference and Objective

Assume that the investor has a risk preference of the constant absolute risk aversion class.

Specifically, suppose that the investor has an exponential utility function of wealth given

by

U(W ) = −e−κW , (2.5)

where κ > 0 is the coefficient of absolute risk aversion.

Given an initial wealthW0 and initial holding of risky asset a0, the investor’s objective is

to maximise the expected utility of terminal wealthWN by choosing the optimal investment

strategy at each stage of the investment process. In general, the investor’s optimal value

function at time period n (n = 0, . . . , N − 1), given a wealth of Wn and an dollars of risky

asset, is defined to be

Jn(Wn, an) = maxE[U(WN)]. (2.6)

The maximisation is over the investments (ln,mn), . . . , (lN−1,mN−1) in the risky asset,

and E is the conditional expectation (given Wn and an) with respect to sn, . . . , sN−1. At

terminal time, the value function is given by

JN(WN , aN) = U(WN), (2.7)

which constitutes the terminal condition of the problem. The investor aims to determine

the optimal investment strategy (l0,m0), . . . , (lN−1,mN−1) which maximises J0(W0, a0).

In order to simplify this multi-period decision problem, it is re-written into the dynamic

programming form.
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2.2 Dynamic Programming

The dynamic programming algorithm for the problem, which proceeds recursively back-

wards in time from period N − 1 to period 0, is given by

JN(WN , aN) = U(WN) (2.8)

and

JN−k(WN−k, aN−k) = maxEN−k[JN−k+1(WN−k+1, aN−k+1)] (2.9)

for k = 1, . . . , N . Here, the maximisation is taken over the investment (lN−k,mN−k) in the

risky asset at time period N − k, while EN−k represents the conditional expectation (given

WN−k and aN−k) with respect to sN−k between time period N − k and N − k + 1.

In principle, the dynamic programming algorithm allows the investor to systematically

determine the optimal strategy and value function starting from period N−1 and, proceed-

ing backwards in time, to obtain the optimal solution recursively at period N − 2 all the

way to the initial time. As an illustration, consider one step before the terminal time.

Time Period N − 1

The investor determines the optimal strategy at time period N − 1 by considering the value

function

JN−1(WN−1, aN−1) = maxEN−1[JN(WN , aN)] = maxEN−1

[
−e−κWN

]
. (2.10)

Using Equation (2.3),

JN−1(WN−1, aN−1) = maxEN−1

[
−e−κ{rN−1WN−1+FN−1}

]
= max e−κrN−1WN−1EN−1

[
−e−κFN−1

]
. (2.11)

The term in WN−1 is taken out of the expectation EN−1 since it is conditional upon knowl-

edge of WN−1. Furthermore, WN−1 does not depend on the investment decision at time

period N − 1, unlike FN−1 that depends on the investor’s decision at period N − 1. There-
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fore, express

JN−1(WN−1, aN−1) = max e−κrN−1WN−1VN−1(aN−1), (2.12)

where

VN−1(aN−1) = −EN−1

[
e−κFN−1

]
. (2.13)

The problem can now be reduced to one of maximising VN−1(aN−1) with respect to the

investment strategy (lN−1,mN−1).

The investor has a choice of three different strategies, each of which affects the defini-

tion of FN−1.

1. If the investor buys lN−1 > 0 of the risky asset (i.e. mN−1 = 0),

F
(B)
N−1 = (sN−1 − rN−1)(aN−1 + lN−1)− rN−1λN−1lN−1. (2.14)

2. If the investor sells mN−1 > 0 of the risky asset (i.e. lN−1 = 0),

F
(S)
N−1 = (sN−1 − rN−1)(aN−1 −mN−1)− rN−1µN−1mN−1. (2.15)

3. If the investor does not transact in the risky asset (i.e. lN−1 = 0 = mN−1),

F
(N)
N−1 = (sN−1 − rN−1)aN−1. (2.16)

We have used the superscripts “B”, “S” and “N” to denote the investor buying, selling and

not transacting in the risky asset respectively.

The problem is equivalent to finding a region where it is optimal for the investor not to

transact in the risky asset. The no-transaction region is denoted by a−N−1 ≤ aN−1 ≤ a+
N−1,

which represents the region between the optimal buy boundary a−N−1 and the optimal sell

boundary a+
N−1. The buy region, where buying is optimal, is the region to the left of a−N−1.

The sell region, where selling is optimal, is the region to the right of a+
N−1. In order to find

a−N−1 and a+
N−1, the value function VN−1 is maximised with respect to the variables lN−1
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and mN−1 respectively. Therefore, a−N−1 and a+
N−1 are the solutions to the equations

∂VN−1

∂lN−1

= EN−1

[
κ{sN−1 − (1 + λN−1)rN−1}e−κFN−1

]
= 0 (2.17)

and
∂VN−1

∂mN−1

= EN−1

[
κ{(1− µN−1)rN−1 − sN−1}e−κFN−1

]
= 0, (2.18)

respectively. It is noted that in Equations (2.17) and (2.18), FN−1 = (sN−1 − rN−1)aN−1

as aN−1 = a−N−1, lN−1 = 0 on the buy boundary and aN−1 = a+
N−1, mN−1 = 0 on the sell

boundary.

Having obtained the optimal buy and sell boundaries, and depending on the region

which the value of the risky asset lies, the investor can optimise the strategies by choosing

lN−1 and mN−1 in the following way.

1. In the buy region aN−1 < a−N−1, the investor buys lN−1 = a−N−1 − aN−1 of the risky

asset to reach the optimal buy boundary, which results in

F
(B)
N−1 = (sN−1 − rN−1)a−N−1 − rN−1λN−1(a−N−1 − aN−1). (2.19)

2. In the sell region aN−1 > a+
N−1, the investor sells mN−1 = aN−1− a+

N−1 of the risky

asset to reach the optimal sell boundary, which leads to

F
(S)
N−1 = (sN−1 − rN−1)a+

N−1 − rN−1µN−1(aN−1 − a+
N−1). (2.20)

It is observed that VN−1 is maximised by these strategies as

∂2VN−1

∂l2N−1

= −EN−1

[
κ2{sN−1 − (1 + λN−1)rN−1}2e−κF

(B)
N−1

]
< 0 (2.21)

and
∂2VN−1

∂m2
N−1

= −EN−1

[
κ2{(1− µN−1)rN−1 − sN−1}2e−κF

(S)
N−1

]
< 0 (2.22)

in the buy and sell regions respectively.

These strategies show that FN−1 as given by Equations (2.16), (2.19) and (2.20) is con-
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tinuous across the buy and sell boundaries at aN−1 = a−N−1 and aN−1 = a+
N−1 respectively.

Hence, the optimal value function VN−1 in the buy, sell and no-transaction regions, as de-

noted by

V
(B)
N−1 = −EN−1

[
e−κF

(B)
N−1

]
, (2.23)

V
(S)
N−1 = −EN−1

[
e−κF

(S)
N−1

]
and (2.24)

V
(N)
N−1 = −EN−1

[
e−κF

(N)
N−1

]
, (2.25)

respectively, is also continuous across the boundaries. Furthermore, the derivative of VN−1

with respect to aN−1 in the buy, sell and no-transaction regions is given by

∂V
(B)
N−1

∂aN−1

= EN−1

[
κrN−1λN−1e

−κF (B)
N−1

]
, (2.26)

∂V
(S)
N−1

∂aN−1

= −EN−1

[
κrN−1µN−1e

−κF (S)
N−1

]
and (2.27)

∂V
(N)
N−1

∂aN−1

= EN−1

[
κ(sN−1 − rN−1)e−κF

(N)
N−1

]
, (2.28)

respectively. A consequence of Equations (2.17) and (2.18) is that the derivative of VN−1

with respect to aN−1 is continuous across the buy and sell boundaries, that is,

∂V
(B)
N−1

∂aN−1

=
∂V

(N)
N−1

∂aN−1

(2.29)

at aN−1 = a−N−1, and
∂V

(S)
N−1

∂aN−1

=
∂V

(N)
N−1

∂aN−1

(2.30)

at aN−1 = a+
N−1. It is noted that this observation provides one with another approach to

solve for the optimal boundaries.

In conclusion, the optimal strategies chosen provide continuity of the value function

and its derivative across the buy and sell boundaries. It is noted that the analysis at time

period N − 1 is a special case as the investor does not have the opportunity to rebalance

the portfolio at period N when the investment process is terminated.
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Time Period N − k

Applying the dynamic programming algorithm, the problem is considered after taking a

step back to time period N − 2 and assuming that the steps ahead are optimal. Having ob-

tained the optimal strategies and value function at period N − 2, the problem is considered

by taking another step back in time to period N − 3. Implementing the dynamic program-

ming algorithm recursively backwards in time, the optimal strategies and value function at

period N − k (k = 2, . . . , N ) are given by the following analysis.

The value function at time period N − k is given by Equation (2.9) as

JN−k(WN−k, aN−k) = maxEN−k[JN−k+1(WN−k+1, aN−k+1)]

= maxEN−k
[
e−κrN−1···rN−k+1WN−k+1VN−k+1(aN−k+1)

]
, (2.31)

where VN−k+1(aN−k+1) is optimal. Using Equation (2.3), the value function is expressed

as

JN−k(WN−k, aN−k)

= maxEN−k
[
e−κrN−1···rN−k+1{rN−kWN−k+FN−k}VN−k+1(aN−k+1)

]
= max e−κrN−1···rN−kWN−kEN−k

[
e−κrN−1···rN−k+1FN−kVN−k+1(aN−k+1)

]
, (2.32)

where the term in WN−k is taken out of the expectation EN−k since it is conditional on

WN−k. Since WN−k does not depend on the investment decision at time period N − k, the

problem can be reduced to one of maximising the value function defined as

VN−k(aN−k) = EN−k
[
e−κrN−1···rN−k+1FN−kVN−k+1(aN−k+1)

]
(2.33)

with respect to the variables lN−k and mN−k, as

JN−k(WN−k, aN−k) = max e−κrN−1···rN−kWN−kVN−k(aN−k). (2.34)

The choice of the investment strategy at time periodN−k affects the definition of FN−k
and also affects the value of the risky asset aN−k+1 inherited at the next period N − k + 1.
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1. If the investor buys lN−k > 0 of the risky asset (i.e. mN−k = 0),

F
(B)
N−k = (sN−k − rN−k)(aN−k + lN−k)− rN−kλN−klN−k (2.35)

and

aN−k+1 = sN−k(aN−k + lN−k). (2.36)

2. If the investor sells mN−k > 0 of the risky asset (i.e. lN−k = 0),

F
(S)
N−k = (sN−k − rN−k)(aN−k −mN−k)− rN−kµN−kmN−k (2.37)

and

aN−k+1 = sN−k(aN−k −mN−k). (2.38)

3. If the investor does not transact in the risky asset (i.e. lN−k = 0 = mN−k),

F
(N)
N−k = (sN−k − rN−k)aN−k (2.39)

and

aN−k+1 = sN−kaN−k. (2.40)

In order to find the optimal buy boundary a−N−k and optimal sell boundary a+
N−k, the

value function VN−k is maximised with respect to the variables lN−k and mN−k respec-

tively. The derivative of VN−k with respect to lN−k is given by

∂VN−k
∂lN−k

= EN−k

[
∂e−κrN−1···rN−k+1F

(B)
N−k

∂lN−k
VN−k+1 + e−κrN−1···rN−k+1F

(B)
N−k

∂VN−k+1

∂lN−k

]

= EN−k
[
−κrN−1 · · · rN−k+1{sN−k − (1 + λN−k)rN−k}

× e−κrN−1···rN−k+1F
(B)
N−kVN−k+1 + sN−ke

−κrN−1···rN−k+1F
(B)
N−k

∂VN−k+1

∂aN−k+1

]
, (2.41)
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and the derivative of VN−k with respect to mN−k is given by

∂VN−k
∂mN−k

= EN−k

[
∂e−κrN−1···rN−k+1F

(S)
N−k

∂mN−k
VN−k+1 + e−κrN−1···rN−k+1F

(S)
N−k

∂VN−k+1

∂mN−k

]

= EN−k
[
κrN−1 · · · rN−k+1{sN−k − (1− µN−k)rN−k}

× e−κrN−1···rN−k+1F
(S)
N−kVN−k+1 − sN−ke−κrN−1···rN−k+1F

(S)
N−k

∂VN−k+1

∂aN−k+1

]
.(2.42)

Therefore, a−N−k and a+
N−k are the solutions to the equations

EN−k
[
−κrN−1 · · · rN−k+1{sN−k − (1 + λN−k)rN−k}

× e−κrN−1···rN−k+1FN−kVN−k+1 + sN−ke
−κrN−1···rN−k+1FN−k

∂VN−k+1

∂aN−k+1

]
= 0 (2.43)

and

EN−k
[
κrN−1 · · · rN−k+1{sN−k − (1− µN−k)rN−k}

× e−κrN−1···rN−k+1FN−kVN−k+1 − sN−ke−κrN−1···rN−k+1FN−k
∂VN−k+1

∂aN−k+1

]
= 0, (2.44)

respectively. In Equations (2.43) and (2.44), it is noted that FN−k = (sN−k − rN−k)aN−k
as aN−k = a−N−k, lN−k = 0 on the buy boundary and aN−k = a+

N−k, mN−k = 0 on the sell

boundary. Having solved for the buy and sell boundaries, the investor’s optimal strategy is

as follows.

In the buy region aN−k < a−N−k, the investor buys lN−k = a−N−k − aN−k of the risky

asset to reach the optimal buy boundary, which results in

F
(B)
N−k = (sN−k − rN−k)a−N−k − rN−kλN−k(a

−
N−k − aN−k) (2.45)

and

aN−k+1 = sN−ka
−
N−k. (2.46)

At time periodN−k, having chosen the optimal strategy and allowing the wealth and risky
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asset to evolve to the next time step, the investor has the opportunity to optimally rebalance

the portfolio at period N − k+ 1. At time period N − k+ 1, the investor has three optimal

strategies for each of the three different regions delimited by the buy boundary a−N−k+1

and the sell boundary a+
N−k+1. Therefore, re-writing Equation (2.33) as an integral over

sN−k will take into account the three different regions at time period N − k + 1 and the

corresponding optimal value functions VN−k+1, so that the optimal value function at period

N − k is expressed as

V
(B)
N−k(aN−k) = EN−k

[
e−κrN−1···rN−k+1F

(B)
N−kVN−k+1

]
=

∫ s−N−k

0

e−κrN−1···rN−k+1F
(B)
N−kV

(B)
N−k+1p(sN−k) dsN−k

+

∫ s+N−k

s−N−k

e−κrN−1···rN−k+1F
(B)
N−kV

(N)
N−k+1p(sN−k) dsN−k

+

∫ ∞
s+N−k

e−κrN−1···rN−k+1F
(B)
N−kV

(S)
N−k+1p(sN−k) dsN−k. (2.47)

The function p(sN−k) is the probability density function of the random term sN−k. It is

noted that VN−k+1 is a function of aN−k+1. Furthermore, the value of the inherited risky

asset aN−k+1 depends on sN−k and a−N−k as seen in Equation (2.46), which implies that

s−N−k =
a−N−k+1

a−N−k
and s+

N−k =
a+
N−k+1

a−N−k
.

In the sell region aN−k > a+
N−k, the investor sells mN−k = aN−k − a+

N−k of the risky

asset to reach the optimal sell boundary, which leads to

F
(S)
N−k = (sN−k − rN−k)a+

N−k − rN−kµN−k(aN−k − a
+
N−k) (2.48)

and

aN−k+1 = sN−ka
+
N−k. (2.49)
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Similar to the buy region, the optimal value function at time period N − k is written as

V
(S)
N−k(aN−k) = EN−k

[
e−κrN−1···rN−k+1F

(S)
N−kVN−k+1

]
=

∫ s−N−k

0

e−κrN−1···rN−k+1F
(S)
N−kV

(B)
N−k+1p(sN−k) dsN−k

+

∫ s+N−k

s−N−k

e−κrN−1···rN−k+1F
(S)
N−kV

(N)
N−k+1p(sN−k) dsN−k

+

∫ ∞
s+N−k

e−κrN−1···rN−k+1F
(S)
N−kV

(S)
N−k+1p(sN−k) dsN−k. (2.50)

Here, aN−k+1 depends on sN−k and a+
N−k as seen in Equation (2.49), which means that

s−N−k =
a−N−k+1

a+
N−k

and s+
N−k =

a+
N−k+1

a+
N−k

.

In the no-transaction region a−N−k ≤ aN−k ≤ a+
N−k, the investor does not transact in

the risky asset (lN−k = 0 = mN−k) so that

F
(N)
N−k = (sN−k − rN−k)aN−k (2.51)

and

aN−k+1 = sN−kaN−k. (2.52)

Similar to the buy and sell regions, the optimal value function at time period N − k is

written as

V
(N)
N−k(aN−k) = EN−k

[
e−κrN−1···rN−k+1F

(N)
N−kVN−k+1

]
=

∫ s−N−k

0

e−κrN−1···rN−k+1F
(N)
N−kV

(B)
N−k+1p(sN−k) dsN−k

+

∫ s+N−k

s−N−k

e−κrN−1···rN−k+1F
(N)
N−kV

(N)
N−k+1p(sN−k) dsN−k

+

∫ ∞
s+N−k

e−κrN−1···rN−k+1F
(N)
N−kV

(S)
N−k+1p(sN−k) dsN−k. (2.53)

Here, aN−k+1 depends on sN−k and aN−k as seen in Equation (2.52), which means that

s−N−k =
a−N−k+1

aN−k
and s+

N−k =
a+
N−k+1

aN−k
.
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The optimal strategies show that FN−k as given by Equations (2.45), (2.48) and (2.51)

is continuous across the buy and sell boundaries where aN−k = a−N−k and aN−k = a+
N−k

respectively. Hence, the optimal value function VN−k as given by Equations (2.47), (2.50)

and (2.53) is continuous across the buy and sell boundaries. In addition, the derivative of

VN−k with respect to aN−k in the buy, sell and no-transaction regions is given by

∂V
(B)
N−k

∂aN−k
= EN−k

[
−κrN−1 · · · rN−kλN−ke−κrN−1···rN−k+1F

(B)
N−kVN−k+1

]
, (2.54)

∂V
(S)
N−k

∂aN−k
= EN−k

[
κrN−1 · · · rN−kµN−ke−κrN−1···rN−k+1F

(S)
N−kVN−k+1

]
and (2.55)

∂V
(N)
N−k

∂aN−k
= EN−k

[
−κrN−1 · · · rN−k+1(sN−k − rN−k)

× e−κrN−1···rN−k+1F
(N)
N−kVN−k+1 + sN−ke

−κrN−1···rN−k+1F
(N)
N−k

∂VN−k+1

∂aN−k+1

]
, (2.56)

respectively. A consequence of Equations (2.43) and (2.44) is that the derivative of VN−k
with respect to aN−k is continuous across the buy and sell boundaries, that is,

∂V
(B)
N−k

∂aN−k
=
∂V

(N)
N−k

∂aN−k
(2.57)

at aN−k = a−N−k, and
∂V

(S)
N−k

∂aN−k
=
∂V

(N)
N−k

∂aN−k
(2.58)

at aN−k = a+
N−k. Therefore, the optimal strategies chosen provide continuity of the value

function and its derivative across the buy and sell boundaries. Moreover, the latter con-

tinuity condition allows one to obtain the optimal buy and sell boundaries. In principle,

by applying the dynamic programming algorithm, it should be possible to solve for the

optimal strategies and value function recursively. However, numerical solutions are usu-

ally obtained and implementing the dynamic programming algorithm is computationally

intensive.

In financial markets, proportional transaction costs are usually small. Therefore, by ap-

plying a perturbation analysis in the limit of small transaction costs in the model, analytical

estimates of the optimal value function and strategies will be derived at any time period
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N − k (k = 1, . . . , N ) whatever the number of steps considered. First of all, consider the

special case where transaction costs are zero at all time periods.

2.3 Zero Transaction Costs

Assume that there are no transaction costs at all time periods so that λN−k = 0 = µN−k.

The budget equation (Equation (2.3)) becomes

WN−k+1 = rN−kWN−k + FN−k, (2.59)

where

FN−k = (sN−k − rN−k)(aN−k + lN−k −mN−k) (2.60)

for k = 1, . . . , N . The investor applies the dynamic programming algorithm to solve for

the optimal strategies and value function when there are no transaction costs, starting at

one step before terminal time.

Time Period N − 1

With λN−1 = 0 = µN−1, FN−1 is now defined as

F
(B)
N−1 = (sN−1 − rN−1)(aN−1 + lN−1), (2.61)

F
(S)
N−1 = (sN−1 − rN−1)(aN−1 −mN−1), (2.62)

F
(N)
N−1 = (sN−1 − rN−1)aN−1. (2.63)

Consequently, from Equation (2.17), the buy boundary a−N−1 is the solution to the equa-

tion

EN−1

[
(sN−1 − rN−1)e−κF

(B)
N−1

]
= 0, (2.64)

where aN−1 = a−N−1 and lN−1 = 0. Similarly, from Equation (2.18), the sell boundary

a+
N−1 is the solution to the equation

EN−1

[
(rN−1 − sN−1)e−κF

(S)
N−1

]
= 0, (2.65)
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where aN−1 = a+
N−1 and mN−1 = 0.

It is observed from Equations (2.64) and (2.65) that the optimal buy boundary a−N−1

and optimal sell boundary a+
N−1 coincide to the same optimal point, which is to be denoted

by ãN−1 and generally known as the Merton point. It can be seen that ãN−1 satisfies the

condition

EN−1

[
(sN−1 − rN−1)e−κF̃N−1

]
= 0, (2.66)

where

F̃N−1 = (sN−1 − rN−1)ãN−1. (2.67)

Therefore, in the absence of transaction costs, the investor’s optimal strategy is to buy or

sell to reach the optimal point ãN−1. Moreover, if the investor is already at the point ãN−1,

the optimal strategy is not to transact. These optimal strategies result in

F
(B)
N−1 = F

(S)
N−1 = F

(N)
N−1 = F̃N−1, (2.68)

and from Equations (2.23) to (2.25) the optimal value function when there are no transac-

tion costs is denoted by

ṼN−1 = −EN−1

[
e−κF̃N−1

]
. (2.69)

Time Period N − k

Applying the dynamic programming algorithm recursively backwards in time and carrying

out an analysis similar to the one at periodN−1, the optimal strategies and value functions

are easily obtained for the reduced portfolio management problem with zero transaction

costs. In summary, it can be shown that at each time period N − k (k = 2, . . . , N ),

the investor’s strategy is to transact to reach the optimal point ãN−k, which satisfies the

condition

EN−k
[
(sN−k − rN−k)e−κrN−1···rN−k+1F̃N−k

]
= 0, (2.70)

where

F̃N−k = (sN−k − rN−k)ãN−k. (2.71)
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The optimal value function at time period N − k is then given by

ṼN−k = −EN−1

[
e−κF̃N−1

]
EN−2

[
e−κrN−1F̃N−2

]
· · ·EN−k

[
e−κrN−1···rN−k+1F̃N−k

]
.

(2.72)

It is observed that ṼN−k does not vary with aN−k, essentially because there is no cost in-

curred in buying or selling the risky asset to reach ãN−k from aN−k. The optimal Mer-

ton point ãN−k and the condition that it satisfies will be used in deriving estimates of

the optimal value function and strategies when transaction costs are small. It is also

noted that if one makes the assumption that sN−k are independent and identically dis-

tributed, and rN−k = r for all k = 1, . . . , N , it is deduced from Equations (2.66) and

(2.70) that rk−1ãN−k = ãN−1. Moreover, from Equation (2.72), ṼN−k is simplified to

ṼN−k = −
{
EN−1

[
e−κ(sN−1−r)ãN−1

]}k.

2.4 Small Transaction Costs

Assume that the costs of buying and selling are small so that λN−k = O(ε) and µN−k =

O(ε) where ε � 1 for k = 1, . . . , N . Here, O(.) is the usual asymptotic order symbol so

that λN−k and µN−k are said to be “of the order” ε (see Appendix A for its definition). In

the limit of small transaction costs, a two-stage perturbation method is developed to obtain

approximations of the optimal value function and the optimal buy and sell boundaries at

each time step.

From the analysis in Section 2.3, the buy and sell boundaries are observed to be equal to

the Merton point at each time step when transaction costs are zero. Therefore, in the limit

of small transaction costs, it is expected that the buy and sell boundaries are ‘close’ to the

Merton point. However, in the first stage of our perturbation analysis, it shall be assumed

that the investor buys or sells to reach the Merton point when transaction costs are small

and the corresponding (suboptimal) value function is approximated. In the second stage, a

sequence of corrections are derived to eventually provide an approximation to the (optimal)

value function in the buy, sell and no-transaction regions, which then allows one to obtain

an estimate of the optimal buy and sell boundaries.



2.4 Small Transaction Costs 60

2.4.1 Stage One: Transacting to the Merton Point

In order to obtain an intermediate approximation of the value function in the buy and sell

regions, suppose that the buy and sell boundaries are equal to the Merton point in the

limit of small transaction costs. This is an approximation because transaction costs, though

small, are not equal to zero. In other words, the investor is assumed to adopt the suboptimal

strategy of buying or selling to reach the Merton point at each time step.

In general, at time period N−k (k = 1, . . . , N ), the investor’s suboptimal strategy is to

buy lN−k or sell mN−k dollars of the risky asset to reach the point a−N−k = a+
N−k = ãN−k.

Therefore, the budget equation (2.3) is now given by

WN−k+1 = rN−kWN−k + F̂N−k, (2.73)

where

F̂N−k = (sN−k − rN−k)ãN−k − rN−kλN−klN−k − rN−kµN−kmN−k. (2.74)

Since F̃N−k = (sN−k − rN−k)ãN−k, it is convenient to write

F̂N−k = F̃N−k − rN−kλN−klN−k − rN−kµN−kmN−k. (2.75)

Furthermore, recall from Equation (2.1) that the value of the risky asset inherited in the

next time step is given by

aN−k+1 = sN−kãN−k, (2.76)

since the investor buys or sells to reach the same point ãN−k. Specifically, the investor

adopts the following (suboptimal) strategy.

In the buy region aN−k < ãN−k, the investor buys lN−k = ãN−k − aN−k of the risky

asset to reach the Merton point, which results in

F̂
(B)
N−k = F̃N−k − rN−kλN−k(ãN−k − aN−k). (2.77)
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The value function at time period N − 1, from Equation (2.23), is denoted by

V̂
(B)
N−1 = −EN−1

[
e−κF̂

(B)
N−1

]
, (2.78)

and the value function at time period N − k (k = 2, . . . , N ), from Equation (2.47), is

denoted by

V̂
(B)
N−k(aN−k) =

∫ s̃N−k

0

e−κrN−1···rN−k+1F̂
(B)
N−k V̂

(B)
N−k+1p(sN−k) dsN−k

+

∫ ∞
s̃N−k

e−κrN−1···rN−k+1F̂
(B)
N−k V̂

(S)
N−k+1p(sN−k) dsN−k. (2.79)

It is noted that V̂N−k+1 is a function of aN−k+1, which depends on sN−k and ãN−k via

Equation (2.76). Furthermore, V̂ (B)
N−k+1 and V̂ (S)

N−k+1 are delineated by the point aN−k+1 =

ãN−k+1. Therefore, s̃N−k =
ãN−k+1

ãN−k
. Using Equation (2.77), Equations (2.78) and (2.79)

can be expressed as

V̂
(B)
N−1 = −eκrN−1λN−1(ãN−1−aN−1)EN−1

[
e−κF̃N−1

]
(2.80)

and

V̂
(B)
N−k = eκrN−1···rN−kλN−k(ãN−k−aN−k)

×
{∫ s̃N−k

0

e−κrN−1···rN−k+1F̃N−k V̂
(B)
N−k+1p(sN−k) dsN−k

+

∫ ∞
s̃N−k

e−κrN−1···rN−k+1F̃N−k V̂
(S)
N−k+1p(sN−k) dsN−k

}
, (2.81)

respectively.

In the sell region aN−k > ãN−k, the investor sells mN−k = aN−k − ãN−k of the risky

asset to reach the Merton point, which leads to

F̂
(S)
N−k = F̃N−k − rN−kµN−k(aN−k − ãN−k). (2.82)
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The value function at time period N − 1, from Equation (2.24), is given by

V̂
(S)
N−1 = −EN−1

[
e−κF̂

(S)
N−1

]
, (2.83)

and the value function at time period N −k (k = 2, . . . , N ), from Equation (2.50), is given

by

V̂
(S)
N−k(aN−k) =

∫ s̃N−k

0

e−κrN−1···rN−k+1F̂
(S)
N−k V̂

(B)
N−k+1p(sN−k) dsN−k

+

∫ ∞
s̃N−k

e−κrN−1···rN−k+1F̂
(S)
N−k V̂

(S)
N−k+1p(sN−k) dsN−k. (2.84)

Similar to the buy region, s̃N−k =
ãN−k+1

ãN−k
. Using Equation (2.82), Equations (2.83) and

(2.84) can be expressed as

V̂
(S)
N−1 = −eκrN−1µN−1(aN−1−ãN−1)EN−1

[
e−κF̃N−1

]
(2.85)

and

V̂
(S)
N−k = eκrN−1···rN−kµN−k(aN−k−ãN−k)

×
{∫ s̃N−k

0

e−κrN−1···rN−k+1F̃N−k V̂
(B)
N−k+1p(sN−k) dsN−k

+

∫ ∞
s̃N−k

e−κrN−1···rN−k+1F̃N−k V̂
(S)
N−k+1p(sN−k) dsN−k

}
, (2.86)

respectively.

One observes from Equations (2.80), (2.81), (2.85) and (2.86) that the value function

in the buy and sell regions at any time period N − k (k = 1, . . . , N ) is an exponential

function of aN−k, with a coefficient that is independent of aN−k. When transaction costs

are of O(ε), this coefficient will be approximated by a series expansion up to O(ε2), with

the analysis starting at period N − 1 and proceeding backwards in time. The results of this

approximation are hereby presented.
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Time Period N − 1

In the buy region aN−1 < ãN−1, the value function is given by Equation (2.80). Recall

from the zero transaction costs case that ṼN−1 = −EN−1

[
e−κF̃N−1

]
. Therefore, the value

function can be expressed as

V̂
(B)
N−1 = eκrN−1λN−1(ãN−1−aN−1)ṼN−1. (2.87)

Similarly, in the sell region aN−1 > ãN−1, the value function is given by Equation

(2.85), which can be expressed as

V̂
(S)
N−1 = eκrN−1µN−1(aN−1−ãN−1)ṼN−1. (2.88)

The value function at time period N − 1 is exact, which is a special case since it is one

step before termination of the investment process.

Time Period N − k

Applying the dynamic programming algorithm by taking one step backwards in time from

periodN−1, an approximation of the value function in the buy and sell regions is obtained

at periodN−2. The analysis at periodN−3 and subsequent time steps will proceed in the

same way as the analysis at period N −2. In general, at time period N −k (k = 2, . . . , N ),

the coefficient of the value function in the buy and sell regions is approximated up to O(ε2)

as follows.

In the buy region aN−k < ãN−k, the value function is given by Equation (2.81). Ex-

panding, simplifying and collecting terms of the same order up to O(ε2) in the coefficient
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of eκrN−1···rN−kλN−k(ãN−k−aN−k), the value function in the buy region is approximated by

V̂
(B)
N−k = eκrN−1···rN−kλN−k(ãN−k−aN−k)ṼN−k

×

{
1 +

k∑
i=2

ζN−i

EN−i
[
e−κrN−1···rN−i+1F̃N−i

] +
k∑
i=2

ηN−i

EN−i
[
e−κrN−1···rN−i+1F̃N−i

]
+

k∑
i,j=2
i<j

ζN−iζN−j

EN−i
[
e−κrN−1···rN−i+1F̃N−i

]
EN−j

[
e−κrN−1···rN−j+1F̃N−j

] +O(ε3)

}
, (2.89)

where ṼN−k is given by Equation (2.72) from the zero transaction costs case, and the terms

ζN−i = κrN−1 · · · rN−i+1λN−i+1ãN−i

×
∫ s̃N−i

0

(s̃N−i − sN−i)e−κrN−1···rN−i+1F̃N−ip(sN−i) dsN−i

−κrN−1 · · · rN−i+1µN−i+1ãN−i

×
∫ ∞
s̃N−i

(s̃N−i − sN−i)e−κrN−1···rN−i+1F̃N−ip(sN−i) dsN−i (2.90)

is of O(ε), and

ηN−i =
1

2
(κrN−1 · · · rN−i+1λN−i+1ãN−i)

2

×
∫ s̃N−i

0

(s̃N−i − sN−i)2e−κrN−1···rN−i+1F̃N−ip(sN−i) dsN−i

+
1

2
(κrN−1 · · · rN−i+1µN−i+1ãN−i)

2

×
∫ ∞
s̃N−i

(s̃N−i − sN−i)2e−κrN−1···rN−i+1F̃N−ip(sN−i) dsN−i (2.91)

is of O(ε2). Recall that s̃N−i =
ãN−i+1

ãN−i
. An estimate of the remainder term in the above

expansion is presented and shown to be bounded in Appendix B.1. It is noted that the

remainder terms in subsequent expansions are similarly bounded and thus will not be pre-

sented.

In the sell region aN−k > ãN−k, the value function is given by Equation (2.86), which

is essentially the same as Equation (2.81) in the buy region with λN−k replaced by −µN−k.
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Thus, one can immediately deduce that the value function in the sell region is approximated

by

V̂
(S)
N−k = eκrN−1···rN−kµN−k(aN−k−ãN−k)ṼN−k

×

{
1 +

k∑
i=2

ζN−i

EN−i
[
e−κrN−1···rN−i+1F̃N−i

] +
k∑
i=2

ηN−i

EN−i
[
e−κrN−1···rN−i+1F̃N−i

]
+

k∑
i,j=2
i<j

ζN−iζN−j

EN−i
[
e−κrN−1···rN−i+1F̃N−i

]
EN−j

[
e−κrN−1···rN−j+1F̃N−j

] +O(ε3)

}
. (2.92)

A key feature here is the transmission of information from the buy and sell regions to

the next step through the boundaries of these buy and sell regions, as seen in Equations

(2.46) and (2.49), that is, aN−k+1 = sN−ka
−
N−k and aN−k+1 = sN−ka

+
N−k. Even though

a−N−i and a+
N−i (i = 1, . . . , k) are as yet unknown, replacing them by ãN−i enables one

to remove any dependence on aN−k+j (j = 1, . . . , k − 1) except for ãN−k+j throughout

Equations (2.89) and (2.92). Corrections to the approximation a−N−i = ãN−i = a+
N−i will

be assessed later.

This strategy of transacting to the Merton point is suboptimal in the sense of maximising

utility of terminal wealth, as the investor has ignored the presence of the no-transaction

region. This region exists when transaction costs are non-zero, even if they are assumed to

be small. However, for small transaction costs, it is expected that the no-transaction region

is small. Therefore, the optimal value functions V (B)
N−k and V (S)

N−kare expected to be ‘close’

perturbations about the suboptimal value functions V̂ (B)
N−k and V̂ (S)

N−k respectively. But how

close are these perturbations, that is, what are the correction terms? And how should the

optimal value function for the no-transaction region be approximated? These questions are

addressed in the second stage of our perturbation analysis.

2.4.2 Stage Two: Estimating the Optimal Value Function and Boundaries

Recall from Section 2.3 that the buy and sell boundaries coincide to the Merton point at

each time step when transaction costs are equated to zero. Therefore, one would assume

that the problem in Section 2.2 with small transaction costs is a perturbation of the problem
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in Section 2.3 with zero transaction costs. In other words, when λN−k = O(ε) and µN−k =

O(ε) where ε � 1 for k = 1, . . . , N , the optimal buy and sell boundaries are assumed to

be ‘close’ to the Merton point so that

a−N−k = ãN−k + ω−N−k (2.93)

and

a+
N−k = ãN−k + ω+

N−k, (2.94)

where ω−N−k = O(ε) and ω+
N−k = O(ε) are unknown and yet to be determined. Therefore,

in the no-transaction region where a−N−k ≤ aN−k ≤ a+
N−k, aN−k is expressed as

aN−k = ãN−k + ωN−k, (2.95)

where ω−N−k ≤ ωN−k ≤ ω+
N−k and ωN−k = O(ε). It is noted that ω−N−k and ω+

N−k are

assumed to be of O(ε) as one would expect them to depend on the transaction costs, which

are of O(ε). It will be shown subsequently that this assumption is indeed self-consistent

with the results that follow from the perturbation analysis.

An estimate of the optimal value function will be obtained by carrying out a perturba-

tion analysis about the intermediate approximation derived in Section 2.4.1. The optimal

value function will be approximated up to O(ε2) so as to ensure continuity of the value

function and continuity of its first derivative across the boundaries. The approximation

of the optimal value functions will be achieved by implementing the following procedure,

starting from period N − 1 and proceeding backwards in time.

1. Estimate the correction term between the optimal value function and its intermediate

approximation in the buy and sell regions, defined as

δ
(B)
N−k = V

(B)
N−k − V̂

(B)
N−k (2.96)

and

δ
(S)
N−k = V

(S)
N−k − V̂

(S)
N−k, (2.97)

respectively.
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2. Estimate the optimal value function V (N)
N−k in the no-transaction region.

3. Repeat the procedure by taking a step backwards in time and using the previous

estimates obtained in the time steps ahead.

The above procedure provides one with a systematic methodology to generate an esti-

mate of the optimal value function at any time step in the rebalancing of the portfolio. It can

also be verified that the optimal value function thus obtained is continuous across the buy

and sell boundaries. Moreover, continuity of the optimal value function’s derivative across

the boundaries will enable one to obtain estimates of the optimal buy and sell boundaries.

An illustration of the above method to estimate the optimal value functions and boundaries

is hereby presented, starting from time period N − 1.

Time Period N − 1

In the buy region aN−1 < a−N−1, from Equations (2.23), (2.78) and (2.96), the correction

term is given by

δ
(B)
N−1 = −EN−1

[
e−κF

(B)
N−1 − e−κF̂

(B)
N−1

]
. (2.98)

Recall that F (B)
N−1 and F̂

(B)
N−1 are given by Equations (2.19) and (2.77) respectively, and

that a−N−1 = ãN−1 + ω−N−1. Factorising eκrN−1λN−1(ãN−1−aN−1) from the right-hand side

of Equation (2.98), expanding its coefficient up to terms in O(ε2) and simplifying with

Equation (2.66), it can be shown that

δ
(B)
N−1 = eκrN−1λN−1(ãN−1−aN−1)

{
ξ

(B)
N−1 +O(ε3)

}
, (2.99)

where

ξ
(B)
N−1 = κrN−1λN−1ω

−
N−1ṼN−1 −

1

2
κ2(ω−N−1)2EN−1

[
(sN−1 − rN−1)2e−κF̃N−1

]
(2.100)

is ofO(ε2) and independent of aN−1. Therefore, the optimal value function V (B)
N−1 = V̂

(B)
N−1+

δ
(B)
N−1is approximated by

V
(B)
N−1 = eκrN−1λN−1(ãN−1−aN−1)

{
ṼN−1 + ξ

(B)
N−1 +O(ε3)

}
. (2.101)
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In the sell region aN−1 > a+
N−1, from Equations (2.24), (2.83) and (2.97), the correction

term is given by

δ
(S)
N−1 = −EN−1

[
e−κF

(S)
N−1 − e−κF̂

(S)
N−1

]
. (2.102)

Recall that F (S)
N−1 and F̂ (S)

N−1 are given by Equations (2.20) and (2.82) respectively, and that

a+
N−1 = ãN−1 +ω+

N−1. One observes that Equation (2.102) is equivalent to Equation (2.98)

with λN−1 replaced by−µN−1, and ω−N−1 replaced by ω+
N−1. Therefore, the correction term

in the sell region is estimated by

δ
(S)
N−1 = eκrN−1µN−1(aN−1−ãN−1)

{
ξ

(S)
N−1 +O(ε3)

}
, (2.103)

where

ξ
(S)
N−1 = −κrN−1µN−1ω

+
N−1ṼN−1−

1

2
κ2(ω+

N−1)2EN−1

[
(sN−1 − rN−1)2e−κF̃N−1

]
(2.104)

is ofO(ε2) and independent of aN−1. Therefore, the optimal value function V (S)
N−1 = V̂

(S)
N−1+

δ
(S)
N−1is approximated by

V
(S)
N−1 = eκrN−1µN−1(aN−1−ãN−1)

{
ṼN−1 + ξ

(S)
N−1 +O(ε3)

}
. (2.105)

In the no-transaction region a−N−1 ≤ aN−1 ≤ a+
N−1, from Equation (2.25), the optimal

value function is given by

V
(N)
N−1 = −EN−1

[
e−κF

(N)
N−1

]
, (2.106)

where F (N)
N−1 is given by Equation (2.16), and aN−1 = ãN−1 +ωN−1. Recall that ωN−1 is of

O(ε) in the no-transaction region. Expanding Equation (2.106) up toO(ε2) and simplifying

with Equation (2.66), it can be shown that

V
(N)
N−1 = ṼN−1 −

1

2
κ2(aN−1 − ãN−1)2EN−1

[
(sN−1 − rN−1)2e−κF̃N−1

]
+O(ε3). (2.107)

Having obtained an approximation of the optimal value function in the buy, sell and

no-transaction regions as given by Equations (2.101), (2.105) and (2.107) respectively, it

is easily verified that it is continuous across the boundaries at aN−1 = a−N−1 and aN−1 =
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a+
N−1. In order to obtain an estimate of the optimal buy and sell boundaries, one applies

continuity of the optimal value function’s first derivative across the boundaries as seen in

Equations (2.29) and (2.30), which lead to the following results.

1. At the buy boundary aN−1 = a−N−1, the condition
∂V

(B)
N−1

∂aN−1

=
∂V

(N)
N−1

∂aN−1

implies that

ω−N−1 =
rN−1λN−1ṼN−1

κEN−1

[
(sN−1 − rN−1)2e−κF̃N−1

] +O(ε2). (2.108)

2. At the sell boundary aN−1 = a+
N−1, the condition

∂V
(S)
N−1

∂aN−1

=
∂V

(N)
N−1

∂aN−1

implies that

ω+
N−1 =

−rN−1µN−1ṼN−1

κEN−1

[
(sN−1 − rN−1)2e−κF̃N−1

] +O(ε2). (2.109)

It is noted that the leading order terms of ω−N−1 and ω+
N−1 depend linearly on λN−1 and

µN−1 respectively, which is self-consistent with the initial assumption that they are ofO(ε).

Therefore, one can estimate the optimal buy and sell boundaries by a−N−1 = ãN−1 + ω−N−1

and a+
N−1 = ãN−1 + ω+

N−1 respectively.

Time Period N − k

Taking one step back in time and using the optimal value functions that are estimated at time

period N − 1, an approximation of the optimal value functions at period N − 2 is derived

via the correction terms about the suboptimal value functions. Applying the procedure

recursively backwards in time, one will be able to generate an estimate of the optimal value

functions at any period N − k (k = 2, . . . , N ). A general description of the perturbation

analysis and the results that follow is hereby presented.

In the buy region aN−k < a−N−k, an estimate of the correction term δ
(B)
N−k = V

(B)
N−k−V̂

(B)
N−k
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is obtained via the following analysis. Recall from Equation (2.79) that

V̂
(B)
N−k =

∫ s̃N−k

0

e−κrN−1···rN−k+1F̂
(B)
N−k V̂

(B)
N−k+1p(sN−k) dsN−k

+

∫ ∞
s̃N−k

e−κrN−1···rN−k+1F̂
(B)
N−k V̂

(S)
N−k+1p(sN−k) dsN−k, (2.110)

where F̂ (B)
N−k is given by Equation (2.77). It is noted that V̂N−k+1 is a function of aN−k+1 =

sN−kãN−k since by definition, the investor buys to reach the Merton point ãN−k.

Consider V (B)
N−k from Equation (2.47), where F (B)

N−k is given by Equation (2.45). Here,

VN−k+1 is a function of aN−k+1 = sN−ka
−
N−k since the investor buys to reach the boundary

a−N−k = ãN−k + ω−N−k. Since the procedure is implemented backwards in time, one would

have obtained an estimate of the optimal value function in the time step ahead, given by

VN−k+1 = V̂N−k+1 + δN−k+1. It can be verified that at each time period N − k, Proposition

B.2.1 in Appendix B.2 is valid. Therefore, it is estimated that, up to O(ε2),

V
(B)
N−k =

∫ s̃N−k

0

e−κrN−1···rN−k+1F
(B)
N−k

[
V̂

(B)
N−k+1 + δ

(B)
N−k+1

]
p(sN−k) dsN−k

+

∫ ∞
s̃N−k

e−κrN−1···rN−k+1F
(B)
N−k

[
V̂

(S)
N−k+1 + δ

(S)
N−k+1

]
p(sN−k) dsN−k +O(ε3), (2.111)

which one observes is of a similar form as Equation (2.110). Here, it is noted that V̂N−k+1

and δN−k+1 are functions of aN−k+1 = sN−ka
−
N−k where a−N−k = ãN−k + ω−N−k.

Lastly, recall that V̂ (B)
N−k+1 is given by Equation (2.87) or (2.89), δ(B)

N−1 by Equation

(2.99), V̂ (S)
N−k+1 by Equation (2.88) or (2.92) and δ(S)

N−1 by Equation (2.103). Factorising

eκrN−1···rN−kλN−k(ãN−k−aN−k) from the right-hand side of δ(B)
N−k = V

(B)
N−k − V̂

(B)
N−k, expanding

its coefficient up to terms of O(ε2) and simplifying with Equation (2.70), it can be shown

after some algebra that

δ
(B)
N−k = eκrN−1···rN−kλN−k(ãN−k−aN−k)

{
ξ

(B)
N−k +O(ε3)

}
, (2.112)
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where

ξ
(B)
N−k = κrN−1 · · · rN−kλN−kω−N−kṼN−k +

[
αN−kω

−
N−k + βN−k(ω

−
N−k)

2
]
ṼN−k+1

+ξ
(B)
N−k+1

∫ s̃N−k

0

e−κrN−1···rN−k+1F̃N−kp(sN−k) dsN−k

+ξ
(S)
N−k+1

∫ ∞
s̃N−k

e−κrN−1···rN−k+1F̃N−kp(sN−k) dsN−k (2.113)

is of O(ε2);

αN−k = −κrN−1 · · · rN−k+1λN−k+1

×
∫ s̃N−k

0

{κrN−1 · · · rN−k+1ãN−k(s̃N−k − sN−k)(sN−k − rN−k) + sN−k}

×e−κrN−1···rN−k+1F̃N−kp(sN−k) dsN−k

+κrN−1 · · · rN−k+1µN−k+1

×
∫ ∞
s̃N−k

{κrN−1 · · · rN−k+1ãN−k(s̃N−k − sN−k)(sN−k − rN−k) + sN−k}

×e−κrN−1···rN−k+1F̃N−kp(sN−k) dsN−k (2.114)

is of O(ε); and

βN−k =
1

2
(κrN−1 · · · rN−k+1)2EN−k

[
(sN−k − rN−k)2e−κrN−1···rN−k+1F̃N−k

]
(2.115)

is of O(ε0).

In the sell region aN−k > a+
N−k, one obtains an estimate of the correction term δ

(S)
N−k =

V
(S)
N−k − V̂

(S)
N−k by following a similar analysis as the buy region. Recall from Equation

(2.84) that

V̂
(S)
N−k =

∫ s̃N−k

0

e−κrN−1···rN−k+1F̂
(S)
N−k V̂

(B)
N−k+1p(sN−k) dsN−k

+

∫ ∞
s̃N−k

e−κrN−1···rN−k+1F̂
(S)
N−k V̂

(S)
N−k+1p(sN−k) dsN−k, (2.116)

where F̂ (S)
N−k is given by Equation (2.82). Similar to the buy region, V̂N−k+1 is a function of
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aN−k+1 = sN−kãN−k since by definition, the investor sells to reach the Merton point ãN−k.

Recall that V (S)
N−k is from Equation (2.50), where F (S)

N−k is given by Equation (2.48).

Here, VN−k+1 is a function of aN−k+1 = sN−ka
+
N−k since the investor sells to reach the

boundary a+
N−k = ãN−k+ω+

N−k. Similar to the analysis in the buy region, it can be verified

that Proposition B.2.2 in Appendix B.2 is valid at any time period N − k. Therefore, up to

O(ε2),

V
(S)
N−k =

∫ s̃N−k

0

e−κrN−1···rN−k+1F
(S)
N−k

[
V̂

(B)
N−k+1 + δ

(B)
N−k+1

]
p(sN−k) dsN−k

+

∫ ∞
s̃N−k

e−κrN−1···rN−k+1F
(S)
N−k

[
V̂

(S)
N−k+1 + δ

(S)
N−k+1

]
p(sN−k) dsN−k +O(ε3). (2.117)

Here, it is noted that V̂N−k+1 and δN−k+1 are functions of aN−k+1 = sN−ka
+
N−k where

a+
N−k = ãN−k + ω+

N−k.

At this stage, one observes that essentially the same analysis as the buy region follows

through with λN−2 replaced by −µN−2, and ω−N−2 replaced by ω+
N−2. Therefore, it can be

deduced that an estimate of the correction term in the sell region is given by

δ
(S)
N−k = eκrN−1···rN−kµN−k(aN−k−ãN−k)

{
ξ

(S)
N−k +O(ε3)

}
, (2.118)

where

ξ
(S)
N−k = −κrN−1 · · · rN−kµN−kω+

N−kṼN−k +
[
αN−kω

+
N−k + βN−k(ω

+
N−k)

2
]
ṼN−k+1

+ξ
(B)
N−k+1

∫ s̃N−k

0

e−κrN−1···rN−k+1F̃N−kp(sN−k) dsN−k

+ξ
(S)
N−k+1

∫ ∞
s̃N−k

e−κrN−1···rN−k+1F̃N−kp(sN−k) dsN−k (2.119)

is of O(ε2), and αN−k and βN−k are given by Equations (2.114) and (2.115) respectively.

In the no-transaction region a−N−k ≤ aN−k ≤ a+
N−k, an estimate of the optimal value

function is derived. Consider V (N)
N−k from Equation (2.53), where F (N)

N−k is given by Equation

(2.51). In this case, VN−k+1 is a function of aN−k+1 = sN−kaN−k as the investor does

not transact in the risky asset. Since aN−k lies within the no-transaction region, aN−k =
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ãN−k + ωN−k where ωN−k is of O(ε). Similar to the analysis in the buy and sell regions, it

can be verified that Proposition B.2.3 in Appendix B.2 is valid at any time period N − k so

that, up to O(ε2),

V
(N)
N−k =

∫ s̃N−k

0

e−κrN−1···rN−k+1F
(N)
N−k

[
V̂

(B)
N−k+1 + δ

(B)
N−k+1

]
p(sN−k) dsN−k

+

∫ ∞
s̃N−k

e−κrN−1···rN−k+1F
(N)
N−k

[
V̂

(S)
N−k+1 + δ

(S)
N−k+1

]
p(sN−k) dsN−k +O(ε3). (2.120)

It is noted that V̂N−k+1 and δN−k+1 are functions of aN−k+1 = sN−kaN−k where aN−k =

ãN−k + ωN−k.

It is convenient to adopt a notation that is consistent with the buy and sell regions, and

to write

V
(N)
N−k = V̂

(N)
N−k + δ

(N)
N−k +O(ε3), (2.121)

where V̂ (N)
N−k denotes

V̂
(N)
N−k =

∫ s̃N−k

0

e−κrN−1···rN−k+1F
(N)
N−k V̂

(B)
N−k+1p(sN−k) dsN−k

+

∫ ∞
s̃N−k

e−κrN−1···rN−k+1F
(N)
N−k V̂

(S)
N−k+1p(sN−k) dsN−k. (2.122)

Using V̂ (B)
N−k+1 as given by Equation (2.80) or (2.89), V̂ (S)

N−k+1 as given by Equation (2.85)

or (2.92), expanding up to O(ε2) and simplifying with the Equation (2.70), it is estimated

that

V̂
(N)
N−k = ṼN−k

{
1 +

k∑
i=2

ζN−i

EN−i
[
e−κrN−1···rN−i+1F̃N−i

] +
k∑
i=2

ηN−i

EN−i
[
e−κrN−1···rN−i+1F̃N−i

]
+

k∑
i,j=2
i<j

ζN−iζN−j

EN−i
[
e−κrN−1···rN−i+1F̃N−i

]
EN−j

[
e−κrN−1···rN−j+1F̃N−j

]}

+
[
αN−k(aN−k − ãN−k) + βN−k(aN−k − ãN−k)2

]
ṼN−k+1 +O(ε3), (2.123)

where the terms ζN−i, ηN−i, αN−k and βN−k are given by Equations (2.90), (2.91), (2.114)



2.4 Small Transaction Costs 74

and (2.115) respectively. In addition, δ(N)
N−k denotes

δ
(N)
N−k =

∫ s̃N−k

0

e−κrN−1···rN−k+1F
(N)
N−kδ

(B)
N−k+1p(sN−k) dsN−k

+

∫ ∞
s̃N−k

e−κrN−1···rN−k+1F
(N)
N−kδ

(S)
N−k+1p(sN−k) dsN−k. (2.124)

where δ(B)
N−k+1 is given by Equation (2.99) or (2.112), and δ(S)

N−k+1 is given by Equation

(2.103) or (2.118). Expanding the terms up toO(ε2) and observing that ξ(B)
N−k+1 and ξ(S)

N−k+1

are of O(ε2), it is estimated that

δ
(N)
N−k = ξ

(B)
N−k+1

∫ s̃N−k

0

e−κrN−1···rN−k+1F̃N−kp(sN−k) dsN−k

+ξ
(S)
N−k+1

∫ ∞
s̃N−k

e−κrN−1···rN−k+1F̃N−kp(sN−k) dsN−k +O(ε3). (2.125)

Consolidating the results of our analysis, the optimal value function in the buy, sell and

no-transaction regions at time period N − k (k = 2, . . . , N ) is approximated up to O(ε2)

by

V
(B)
N−k = eκrN−1···rN−kλN−k(ãN−k−aN−k)

×

[
ṼN−k

{
1 +

k∑
i=2

ζN−i

EN−i
[
e−κrN−1···rN−i+1F̃N−i

] +
k∑
i=2

ηN−i

EN−i
[
e−κrN−1···rN−i+1F̃N−i

]
+

k∑
i,j=2
i<j

ζN−iζN−j

EN−i
[
e−κrN−1···rN−i+1F̃N−i

]
EN−j

[
e−κrN−1···rN−j+1F̃N−j

]}

+κrN−1 · · · rN−kλN−kω−N−kṼN−k +
[
αN−kω

−
N−k + βN−k(ω

−
N−k)

2
]
ṼN−k+1

+ξ
(B)
N−k+1

∫ s̃N−k

0

e−κrN−1···rN−k+1F̃N−kp(sN−k) dsN−k

+ξ
(S)
N−k+1

∫ ∞
s̃N−k

e−κrN−1···rN−k+1F̃N−kp(sN−k) dsN−k +O(ε3)

]
, (2.126)
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V
(S)
N−k = eκrN−1···rN−kµN−k(aN−k−ãN−k)

×

[
ṼN−k

{
1 +

k∑
i=2

ζN−i

EN−i
[
e−κrN−1···rN−i+1F̃N−i

] +
k∑
i=2

ηN−i

EN−i
[
e−κrN−1···rN−i+1F̃N−i

]
+

k∑
i,j=2
i<j

ζN−iζN−j

EN−i
[
e−κrN−1···rN−i+1F̃N−i

]
EN−j

[
e−κrN−1···rN−j+1F̃N−j

]}

−κrN−1 · · · rN−kµN−kω+
N−kṼN−k +

[
αN−kω

+
N−k + βN−k(ω

+
N−k)

2
]
ṼN−k+1

+ξ
(B)
N−k+1

∫ s̃N−k

0

e−κrN−1···rN−k+1F̃N−kp(sN−k) dsN−k

+ξ
(S)
N−k+1

∫ ∞
s̃N−k

e−κrN−1···rN−k+1F̃N−kp(sN−k) dsN−k +O(ε3)

]
(2.127)

and

V
(N)
N−k =

[
αN−k(aN−k − ãN−k) + βN−k(aN−k − ãN−k)2

]
ṼN−k+1

+ṼN−k

{
1 +

k∑
i=2

ζN−i

EN−i
[
e−κrN−1···rN−i+1F̃N−i

] +
k∑
i=2

ηN−i

EN−i
[
e−κrN−1···rN−i+1F̃N−i

]
+

k∑
i,j=2
i<j

ζN−iζN−j

EN−i
[
e−κrN−1···rN−i+1F̃N−i

]
EN−j

[
e−κrN−1···rN−j+1F̃N−j

]}

+ξ
(B)
N−k+1

∫ s̃N−k

0

e−κrN−1···rN−k+1F̃N−kp(sN−k) dsN−k

+ξ
(S)
N−k+1

∫ ∞
s̃N−k

e−κrN−1···rN−k+1F̃N−kp(sN−k) dsN−k +O(ε3), (2.128)

respectively. The terms ζN−i, ηN−i, αN−k and βN−k are given by Equations (2.90), (2.91),

(2.114) and (2.115) respectively. The recursive terms ξ(B)
N−k+1 and ξ

(S)
N−k+1 are given by

Equations (2.113) and (2.119) respectively.

It is observed from the above expressions that the optimal value functions at time period

N − k are dependent on the time steps ahead up to period N − 1, essentially via the zero

transaction costs solutions ãN−k+j (j = 1, . . . , k− 1). Furthermore, they are dependent on

ξ
(B)
N−k+1 and ξ(S)

N−k+1, which implies by recursion that they depend on ω−N−k+j and ω+
N−k+j

(j = 1, . . . , k − 1). Therefore, in order to estimate the optimal value function at time
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period N − k, one will also require the optimal boundaries from the time steps ahead up to

period N − 1, as given by a−N−k+j = ãN−k+j + ω−N−k+j and a+
N−k+j = ãN−k+j + ω+

N−k+j

(j = 1, . . . , k − 1).

Using the estimates of the optimal value functions as provided by Equations (2.126) to

(2.128), it is easily verified that they are continuous across the buy and sell boundaries at

aN−k = a−N−k and aN−k = a+
N−k respectively. In addition, the first derivative of the optimal

value function is also continuous across the boundaries as seen in Equations (2.57) and

(2.58). Applying this condition allows one to obtain estimates of the optimal boundaries.

1. At the buy boundary aN−k = a−N−k, the condition
∂V

(B)
N−k

∂aN−k
=
∂V

(N)
N−k

∂aN−k
implies that, up

to O(ε),

ω−N−k =
−κrN−1 · · · rN−kλN−kEN−k

[
e−κrN−1···rN−k+1F̃N−k

]
− αN−k

2βN−k
+O(ε2).

(2.129)

2. At the sell boundary aN−k = a+
N−k, the condition

∂V
(S)
N−k

∂aN−k
=
∂V

(N)
N−k

∂aN−k
implies that, up

to O(ε),

ω+
N−k =

κrN−1 · · · rN−kµN−kEN−k
[
e−κrN−1···rN−k+1F̃N−k

]
− αN−k

2βN−k
+O(ε2).

(2.130)

Recall that F̃N−k, αN−k and βN−k are defined in Equations (2.71), (2.114) and (2.115)

respectively. It is noted that the leading order terms of ω−N−k and ω+
N−k are linear in trans-

action costs, which is self-consistent with the initial assumption that they are of O(ε).

Therefore, the optimal buy and sell boundaries are estimated by a−N−k = ãN−k +ω−N−k and

a+
N−k = ãN−k + ω+

N−k.

These approximations at time period N − k depend on the time steps ahead only via

the terms rN−1, . . . , rN−k+1, λN−k+1, µN−k+1 and ãN−k+1, which are easily determined.

As can be seen from the expressions above for ω−N−k and ω+
N−k, and the expressions for

αN−k and βN−k, one requires the solutions ãN−k+1 and ãN−k of Equation (2.70) for the

zero transaction costs case. This is the partially myopic case and each of these solutions
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satisfies its own version of Equation (2.70) depending on the probability distribution ap-

propriate to that time step in the discrete process. Therefore, the results for ω−N−k and

ω+
N−k depend on p(sN−k+1) to determine ãN−k+1, p(sN−k) to determine ãN−k, αN−k from

Equation (2.114) and βN−k from Equation (2.115). Having obtained estimates of the op-

timal buy and sell boundaries, one can therefore apply these estimates to approximate the

optimal value function at any time step.

It has been shown that, in the limit of small transaction costs, perturbation analysis is

successfully applied to obtain explicit approximations of the optimal value function and

optimal boundaries at any time step in the rebalancing of the portfolio. Furthermore, these

approximations are valid for a general class of underlying probability distributions for the

returns of the asset prices.

2.5 Results

A simple example is considered, where the returns of the risky asset are assumed to be

independent and identical Bernoulli distributions and the returns of the risk-free asset are

constant at each time period, that is,

sN−k =

{
u with probability q,

d with probability 1− q,
(2.131)

and

rN−k = r. (2.132)

The probability density function of sN−k can be written as

p(sN−k) = qδ(sN−k − u) + (1− q)δ(sN−k − d), (2.133)

where δ(.) is the Dirac delta function. In addition, assume that the costs of buying and

selling are equal and constant at each time period, i.e.

λN−k = µN−k = λ. (2.134)
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Suppose that the values of the underlying parameters are chosen to be

N = 4, κ = 0.1, u = 1.5, d = 0.5, q = 0.7, r = 1.05

and λ is allowed to vary from 0 to 0.02.
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Figure 2.1: Exact Optimal Boundaries

Fig. 2.1 shows the evolution of the buy, sell and no-transaction regions with respect

to transaction cost at the initial time. The horizontal axis represents the level of trans-

action cost, while the vertical axis represents the value of the risky asset. The lines that

delineate the buy, sell and no-transaction regions are the exact optimal boundaries, which

are obtained by applying the dynamic programming algorithm as described in Section 2.2.

When transaction cost is zero, the optimal buy and sell boundaries converge to the Merton
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point ã0 = 5.59. In this case, the investor’s optimal strategy is to transact to reach this

point. When transaction cost is non-zero, there exists a region where it is optimal not to

transact in the risky asset. As expected, the no-transaction region increases as the level of

transaction cost increases.
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Figure 2.2: Comparison of Exact and Approximate Optimal Boundaries

Fig. 2.2 shows a comparison of the exact boundaries and the approximate boundaries as

depicted by the dashed lines. The approximate boundaries are linear perturbations, given by

Equations (2.129) and (2.130), about the Merton point ã0. In the limit of small transaction

costs, it can be seen in this example that the approximate buy and sell boundaries are good

estimates of the exact boundaries. It is also observed that the absolute error between the

exact and approximate boundaries decreases with decreasing transaction cost.
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Chapter 3

Portfolio Optimisation with Transaction

Costs and Power Utility Function

In the previous chapter, we studied the discrete time portfolio selection problem with pro-

portional transaction costs. We considered the case of an investor with the exponential

utility function (i.e. constant absolute risk aversion), which resulted in optimal buy and

sell boundaries that were independent of wealth. However in practice, one would expect

the optimal boundaries to vary with the wealth of the investor. In this chapter, we assume

the more realistic case of the power utility function and carry out a perturbation analysis

(in the limit of small transaction costs) to an arbitrary number of time steps. We present a

method for explicitly constructing the approximations of both the optimal value function

and optimal boundaries of the no-transaction region.

3.1 Market Model

Recall the market model that was described in Section 2.1. Consider a multi-period portfo-

lio selection model with N periods. An investor holds a portfolio that is divided between

one risk-free asset (i.e. bond) and one risky asset (i.e. stock), where the price of each asset

evolves in discrete time. The investor is assumed to have a risk preference of the constant

relative risk aversion class (i.e. power utility function). A cost that is proportional to the

value of the transaction is incurred each time the investor buys or sells the risky asset. The
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investor’s objective is to maximise the expected utility of terminal wealth by rebalancing

the portfolio optimally at each step of the investment process.

At time period n, letWn denote the wealth of the portfolio and let an be the dollar value

of the risky asset inherited from the previous period. Therefore, the corresponding value

of the risk-free asset is Wn − an. The investor rebalances the portfolio at time period n

by buying ln or selling mn dollars of the risky asset. Suppose that sn denotes one plus the

(random) return of the risky asset from time period n to n+ 1. Thus, the value of the risky

asset at time period n+ 1 inherited from period n is

an+1 = sn (an + ln −mn) . (3.1)

Furthermore, let λn and µn be the proportion costs of buying and selling the risky asset

respectively at time period n. These costs reduce the wealth invested in the risk-free asset,

resulting in a value of Wn − (an + ln −mn)− λnln − µnmn. Suppose that rn denotes one

plus the (sure) return of the risk-free asset from time period n to n + 1. The investor’s

wealth at time period n+ 1 is then given by

Wn+1 = rnWn + (sn − rn) (an + ln −mn)− rnλnln − rnµnmn. (3.2)

Assume that simultaneous buying and selling of the risky asset is not allowed, since it will

not be optimal due to the higher costs as compared to only buying or selling the asset. The

investor is thus left with three possible choices, which is to buy, to sell or not to transact the

risky asset. The investor’s decision at each time step will affect the wealth and risky asset

inherited at the next time step.

Suppose that the investor has a risk preference of the power utility type. Let the in-

vestor’s utility of wealth be

U(W ) =
1

γ
W γ, (3.3)

where γ < 1 and γ 6= 0. In this case, it is convenient to parametrise the problem by

expressing the original variables in terms of fractions of wealth. Introduce the variables

An = an/Wn (i.e. fraction of wealth held in the risky asset), Ln = ln/Wn (i.e. fraction of

wealth in buying the risky asset) and Mn = mn/Wn (i.e. fraction of wealth in selling the



3.2 Dynamic Programming 82

risky asset). Using these variables, Equations (3.1) and (3.2) can be rewritten as

An+1 =
sn (An + Ln −Mn)

Fn
(3.4)

and

Wn+1 = WnFn, (3.5)

respectively, where

Fn = rn + (sn − rn) (An + Ln −Mn)− rnλnLn − rnµnMn. (3.6)

Assume that 0 < An + Ln −Mn < 1 and 0 < 1− An − (1 + λn)Ln + (1− µn)Mn < 1,

which ensure that the investor’s wealth Wn > 0.

The investor’s objective is to maximise the expected utility of terminal wealth WN

given an initial wealth W0 and initial proportion of risky asset A0, by choosing the optimal

strategy at each step of the investment process. The optimal value function at time period

n (n = 0, . . . , N − 1) is defined to be

Jn(Wn, An) = maxE [U(WN)] , (3.7)

where E is the conditional expectation operator taken with respect to the random variables

sn, . . . , sN−1 given Wn and An. The maximisation is over the sequence of investments

(Ln,Mn), . . . , (LN−1,MN−1) in the risky asset. In order to obtain the investor’s optimal

value function J0(W0, A0) and corresponding optimal strategy given an initial wealth W0

and initial proportion of risky asset A0, we first simplify the problem by applying the prin-

ciple of dynamic programming.

3.2 Dynamic Programming

The dynamic programming algorithm for the problem, which starts at period N − 1 and

proceeds recursively backwards in time, is given by

JN(WN , AN) = U(WN) (3.8)
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and

JN−k(WN−k, AN−k) = maxEN−k [JN−k+1(WN−k+1, AN−k+1)] (3.9)

for k = 1, . . . , N . At time period N − k, EN−k is the conditional expectation operator

with respect to the random variable sN−k given WN−k and AN−k, while the maximisation

is over the investment (LN−k,MN−k) in the risky asset. A detailed description of the

construction of the optimal portfolio via dynamic programming can be found in Atkinson

and Storey (2010). We shall only present the relevant results of this construction that will be

subsequently required for our perturbation analysis in the limit of small transaction costs.

Time Period N − 1

This is a special case as it is one step before termination of the investment process, which

means that there is no further rebalancing opportunity for the investor. Using Equation

(3.5), the value function at time period N − 1 is written as

JN−1(WN−1, AN−1) = maxEN−1

[
1

γ
W γ
N

]
= W γ

N−1 maxVN−1(AN−1), (3.10)

where

VN−1(AN−1) = EN−1

[
1

γ
F γ
N−1

]
. (3.11)

In Equation (3.10), WN−1 is taken out of EN−1, which is the expectation operator condi-

tional onWN−1 andAN−1. In addition, WN−1 does not depend on the investor’s decision at

time period N − 1. Therefore, the problem is reduced to one of maximising VN−1(AN−1)

with respect to the investment strategy (LN−1,MN−1). The investor’s choice to buy (i.e.

MN−1 = 0), to sell (i.e. LN−1 = 0) or not to transact (i.e. MN−1 = 0 and LN−1 = 0) in

the risky asset affects the definition of FN−1 as given in Equation (3.6).

The problem is one of finding the optimal no-transaction region delineated by A−N−1 ≤
AN−1 ≤ A+

N−1, where A−N−1 and A+
N−1 are the optimal buy and sell boundaries respec-

tively. The region to the left of A−N−1 is the optimal buy region while the region to the right

of A+
N−1 is the optimal sell region. The optimal boundaries A−N−1 and A+

N−1 are given by
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the first order optimality conditions

∂VN−1

∂LN−1

= EN−1

[
{sN−1 − (1 + λN−1) rN−1}F γ−1

N−1

]
= 0 (3.12)

and
∂VN−1

∂MN−1

= EN−1

[
{(1− µN−1) rN−1 − sN−1}F γ−1

N−1

]
= 0, (3.13)

respectively. In Equations (3.12) and (3.13), note that FN−1 = rN−1+(sN−1 − rN−1)AN−1

because we have AN−1 = A−N−1, LN−1 = 0 on the buy boundary and AN−1 = A+
N−1,

MN−1 = 0 on the sell boundary. Furthermore, it can be shown that the second order

conditions
∂2VN−1

∂L2
N−1

< 0 and
∂2VN−1

∂M2
N−1

< 0 are satisfied, which ensure that these boundaries

are optimal. In general, one will solve for A−N−1 and A+
N−1 numerically.

Having determined the optimal boundaries A−N−1 and A+
N−1, the investor’s optimal

strategy and value function are as follows:

1. In the buy region AN−1 < A−N−1, the investor’s optimal strategy is to buy LN−1 =

A−N−1 − AN−1 of the risky asset to reach the optimal buy boundary A−N−1. The

corresponding optimal value function VN−1 and its first derivative
∂VN−1

∂AN−1

are thus

given by

V
(B)
N−1 = EN−1

[
1

γ
F

(B)γ
N−1

]
(3.14)

and
∂V

(B)
N−1

∂AN−1

= EN−1

[
rN−1λN−1F

(B)γ−1
N−1

]
, (3.15)

where

F
(B)
N−1 = rN−1 + (sN−1 − rN−1)A−N−1 − rN−1λN−1

(
A−N−1 − AN−1

)
. (3.16)

2. In the sell region AN−1 > A+
N−1, the investor sells MN−1 = AN−1 − A+

N−1 of the

risky asset to reach the optimal sell boundary, so that VN−1 and
∂VN−1

∂AN−1

are given by

V
(S)
N−1 = EN−1

[
1

γ
F

(S)γ
N−1

]
(3.17)
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and
∂V

(S)
N−1

∂AN−1

= −EN−1

[
rN−1µN−1F

(S)γ−1
N−1

]
, (3.18)

where

F
(S)
N−1 = rN−1 + (sN−1 − rN−1)A+

N−1 − rN−1µN−1

(
AN−1 − A+

N−1

)
. (3.19)

3. In the no-transaction region A−N−1 ≤ AN−1 ≤ A+
N−1, where LN−1 = 0 and MN−1 =

0 as the investor does not trade in the risky asset, VN−1 and
∂VN−1

∂AN−1

are given by

V
(N)
N−1 = EN−1

[
1

γ
F

(N)γ
N−1

]
(3.20)

and
∂V

(N)
N−1

∂AN−1

= EN−1

[
{sN−1 − rN−1}F (N)γ−1

N−1

]
, (3.21)

where

F
(N)
N−1 = rN−1 + (sN−1 − rN−1)AN−1. (3.22)

It is noted that VN−1 and
∂VN−1

∂AN−1

are continuous across the optimal buy and sell boundaries.

At the optimal boundaries AN−1 = A−N−1 and AN−1 = A+
N−1, continuity of the former

is simply observed from Equations (3.14), (3.17) and (3.20), while the latter is a direct

consequence of the first order optimality conditions (Equations (3.12) and (3.13)). We

have used the superscripts “B”, “S” and “N” to denote the buy, sell and no-transaction

regions respectively.

Time Period N − k

Applying the dynamic programming algorithm recursively backwards in time allows one

to construct the optimal strategy and value function at period N −k (k = 2, . . . , N ). Using
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Equation (3.5), the optimal value function given by Equation (3.9) is expressed as

JN−k(WN−k, AN−k) = maxEN−k
[
W γ
N−k+1VN−k+1(AN−k+1)

]
= W γ

N−k maxVN−k(AN−k), (3.23)

where

VN−k(AN−k) = EN−k
[
F γ
N−kVN−k+1(AN−k+1)

]
. (3.24)

The problem is effectively reduced to one of maximising VN−k(AN−k) with respect to

LN−k and MN−k, assuming that VN−k+1(AN−k+1) is optimal by the principle of dynamic

programming. The definitions of FN−k from Equation (3.6) and AN−k+1 from Equation

(3.4) depend on the investor’s decision to buy (i.e. MN−k = 0), to sell (i.e. LN−k = 0) or

not to transact (i.e. LN−k = 0 and MN−k = 0) the risky asset.

The optimal buy boundary AN−k = A−N−k and sell boundary AN−k = A+
N−k satisfy the

corresponding first order optimality conditions

∂VN−k
∂LN−k

= EN−k
[
γ {sN−k − (1 + λN−k) rN−k}F γ−1

N−kVN−k+1

+sN−krN−k (1 + λN−kAN−k)F
γ−2
N−k

∂VN−k+1

∂AN−k+1

]
= 0 (3.25)

and

∂VN−k
∂MN−k

= EN−k
[
γ {(1− µN−k) rN−k − sN−k}F γ−1

N−kVN−k+1

−sN−krN−k (1− µN−kAN−k)F γ−2
N−k

∂VN−k+1

∂AN−k+1

]
= 0, (3.26)

respectively. Note that FN−k = rN−k + (sN−k − rN−k)AN−k in Equations (3.25) and

(3.26). Compared to the first order optimality conditions at time period N − 1, there is an

additional
∂VN−k+1

∂AN−k+1

term due to the opportunities for the investor to rebalance the portfolio

at the time steps ahead. Moreover, unlike the case where there are no transaction costs, the

investor is not myopic and will take into account future rebalancing opportunities when he

determines his current investment strategy. In general, one will obtain A−N−k and A+
N−k by

solving the dynamic programming algorithm numerically.
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Having determined the optimal buy and sell boundaries, the investor’s optimal strategy

and value function are as follows:

In the buy region AN−k < A−N−k, the investor’s optimal strategy is to buy LN−k =

A−N−k −AN−k of the risky asset to reach the optimal buy boundary A−N−k. In this case, the

optimal value function VN−k and its first derivative
∂VN−k
∂AN−k

are given by

V
(B)
N−k = EN−k

[
F

(B)γ
N−kVN−k+1

]
(3.27)

and

∂V
(B)
N−k

∂AN−k
= EN−k

[
γrN−kλN−kF

(B)γ−1
N−k VN−k+1

−sN−krN−kλN−kA−N−kF
(B)γ−2
N−k

∂VN−k+1

∂AN−k+1

]
, (3.28)

where

F
(B)
N−k = rN−k + (sN−k − rN−k)A−N−k − rN−kλN−k

(
A−N−k − AN−k

)
. (3.29)

Note that the optimal value function at the time step ahead VN−k+1 is a function ofAN−k+1.

From Equation (3.4), we know that AN−k+1 depends on sN−k, AN−k and A−N−k via the

equation AN−k+1 =
sN−kA

−
N−k

F
(B)
N−k

. Define s−N−k and s+
N−k as the values of sN−k that corre-

spond to the optimal buy boundary A−N−k+1 and optimal sell boundary A+
N−k+1 at the time

step ahead respectively. After rearranging the equations, they are explicitly given by

s−N−k =
rN−kA

−
N−k+1

{(
1− A−N−k

)
− λN−k

(
A−N−k − AN−k

)}
A−N−k

(
1− A−N−k+1

) (3.30)

and

s+
N−k =

rN−kA
+
N−k+1

{(
1− A−N−k

)
− λN−k

(
A−N−k − AN−k

)}
A−N−k

(
1− A+

N−k+1

) . (3.31)

Since the expectation operator EN−k is taken with respect to the random variable sN−k,

Equation (3.27) can thus be written in its integral form delineated by s−N−k and s+
N−k, to
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give

V
(B)
N−k =

∫ s−N−k

0

F
(B)γ
N−kV

(B)
N−k+1p(sN−k) dsN−k

+

∫ s+N−k

s−N−k

F
(B)γ
N−kV

(N)
N−k+1p(sN−k) dsN−k

+

∫ ∞
s+N−k

F
(B)γ
N−kV

(S)
N−k+1p(sN−k) dsN−k, (3.32)

where p(sN−k) is the probability density function of the random variable sN−k. We will be

using Equation (3.32) in the perturbation analysis that follows subsequently.

In the sell region AN−k > A+
N−k, the investor sells MN−k = AN−k−A+

N−k of the risky

asset to reach the optimal sell boundary. Thus, VN−k and
∂VN−k
∂AN−k

are given by

V
(S)
N−k = EN−k

[
F

(S)γ
N−kVN−k+1

]
(3.33)

and

∂V
(S)
N−k

∂AN−k
= EN−k

[
−γrN−kµN−kF (S)γ−1

N−k VN−k+1

+sN−krN−kµN−kA
+
N−kF

(S)γ−2
N−k

∂VN−k+1

∂AN−k+1

]
, (3.34)

where

F
(S)
N−k = rN−k + (sN−k − rN−k)A+

N−k − rN−kµN−k
(
AN−k − A+

N−k
)
. (3.35)

Similar to the buy region, AN−k+1 depends on sN−k, AN−k and A+
N−k via the equation

AN−k+1 =
sN−kA

+
N−k

F
(S)
N−k

. In this case, s−N−k (corresponding to A−N−k+1) and s+
N−k (corre-

sponding to A+
N−k+1) are explicitly given by

s−N−k =
rN−kA

−
N−k+1

{(
1− A+

N−k
)
− µN−k

(
AN−k − A+

N−k
)}

A+
N−k

(
1− A−N−k+1

) (3.36)
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and

s+
N−k =

rN−kA
+
N−k+1

{(
1− A+

N−k
)
− µN−k

(
AN−k − A+

N−k
)}

A+
N−k

(
1− A+

N−k+1

) . (3.37)

We can similarly express Equation (3.33) in its integral form delineated by s−N−k and s+
N−k

as given above.

In the no-transaction region A−N−k ≤ AN−k ≤ A+
N−k where LN−k = 0 and MN−k = 0,

the optimal value function VN−k and its derivative
∂VN−k
∂AN−k

are given by

V
(N)
N−k = EN−k

[
F

(N)γ
N−k VN−k+1

]
(3.38)

and

∂V
(N)
N−k

∂AN−k
= EN−k

[
γ (sN−k − rN−k)F (N)γ−1

N−k VN−k+1

+sN−krN−kF
(N)γ−2
N−k

∂VN−k+1

∂AN−k+1

]
, (3.39)

where

F
(N)
N−k = rN−k + (sN−k − rN−k)AN−k. (3.40)

Here, AN−k+1 depends on sN−k and AN−k via AN−k+1 =
sN−kAN−k

F
(N)
N−k

, which means that

s−N−k =
rN−kA

−
N−k+1 (1− AN−k)

AN−k
(
1− A−N−k+1

) (3.41)

and

s+
N−k =

rN−kA
+
N−k+1 (1− AN−k)

AN−k
(
1− A+

N−k+1

) . (3.42)

Similarly, we can write Equation (3.38) in its integral form delineated by s−N−k and s+
N−k

as given above.

It is noted that VN−k and
∂VN−k
∂AN−k

are continuous across the optimal boundaries. The

former is observable from Equations (3.32), (3.33) and (3.38) while the latter is a direct

consequence of the first order optimality conditions (Equations (3.25) and (3.26)). Gener-

ally, one will need to implement the dynamic programming algorithm recursively to obtain
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numerical solutions of the optimal boundaries A−N−k and A+
N−k and the optimal value func-

tion VN−k(AN−k). However, this implementation is computationally intensive particularly

when the number of time steps is large. Therefore, this has motivated us to investigate

an alternative method of approximating the solutions of A−N−k, A+
N−k and VN−k(AN−k).

Moreover, in the case where there are no transaction costs, the solution to the portfolio

selection problem is easily obtained as the optimal strategy is essentially myopic in nature.

Coupled with the knowledge that transaction costs are small in practice, we therefore carry

out a perturbation analysis of the small transaction costs case about the no transaction costs

case. In addition to deriving more tractable approximations to the solutions, a perturbation

analysis may also provide some qualitative insights to the nature of the solutions.

3.3 No Transaction Costs

Prior to the perturbation analysis in the limit of small transaction costs, we first consider

the special case where there are no transaction costs incurred in buying or selling the risky

asset. Setting λN−k = 0 = µN−k and repeating the construction of the optimal portfolio as

seen in Section 3.2, we obtain the following results.

In general (k = 1, . . . , N ), the optimal buy boundary A−N−k and sell boundary A+
N−k

coincide to the same point, which is denoted by ÃN−k and given by the first order condition

EN−k
[
(sN−k − rN−k) F̃ γ−1

N−k

]
= 0, (3.43)

where

F̃N−k = rN−k + (sN−k − rN−k) ÃN−k. (3.44)

This optimal point is commonly known as the Merton proportion (or point). Generally, one

has to solve Equation (3.43) numerically for ÃN−k, which can be easily done by using stan-

dard root finding techniques. Moreover, for the case where the risky asset has a binomial

price process, one will be able to obtain an explicit solution for ÃN−k. The investor’s opti-

mal strategy is thus to transact to the Merton proportion at each time step of the investment
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process. In addition, the optimal value function ṼN−k is given by

ṼN−k =
1

γ
EN−1

[
F̃ γ
N−1

]
· · ·EN−k+1

[
F̃ γ
N−k+1

]
EN−k

[
F̃ γ
N−k

]
. (3.45)

It is observed that the optimal value function at time period N − k does not vary with

the proportion AN−k of risky asset inherited from the previous period, since there is no

cost incurred in buying or selling the risky asset to reach the Merton proportion ÃN−k. The

optimal strategy is a myopic one as the investor does not need to consider future rebalancing

opportunities at the time steps ahead. If one further assumes that sN−k are independent

and identically distributed random variables and that rN−k is a constant independent of k,

then the Merton proportion ÃN−k simplifies to a constant independent of k and the optimal

value function becomes ṼN−k = 1
γ

{
EN−k

[
F̃ γ
N−k

]}k
. The relatively simple solution of the

Merton proportion and the optimal value function motivates one to carry out a perturbation

analysis about the no transaction costs solution, in the limit of small transaction costs.

Before proceeding further, it is useful to state the following results that

EN−k
[
F̃ γ
N−k

]
= EN−k

[
rN−kF̃

γ−1
N−k

]
(3.46)

and

EN−k
[
rN−k (sN−k − rN−k) F̃ γ−2

N−k

]
= −EN−k

[
ÃN−k (sN−k − rN−k)2 F̃ γ−2

N−k

]
. (3.47)

The above results are direct consequences of Equation (3.43) and will be used extensively

to simplify the approximations of the value functions in the next section.

3.4 Small Transaction Costs

In practice, transaction costs are usually small compared to the value of the transactions.

As observed in Section 3.3, the no transaction costs problem admits a relatively simple

myopic solution. Therefore, one is motivated to analyse the small transaction costs so-

lution as a perturbation about the no transaction costs solution. In Atkinson and Storey

(2010), they obtained the leading order approximations to the optimal buy and sell bound-
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aries for two time steps via the expansion of Equations (3.12), (3.13), (3.25) and (3.26) in

the limit of small transaction costs. However, it was not obvious that a direct expansion

of the first order conditions will enable one to easily obtain leading order approximations

to an arbitrary number of time steps. In this section, we develop an approach to apply

perturbation analysis about the no transaction costs solution in the limit of small transac-

tion costs. The advantages of this approach over the direct expansion approach is that it

allows one to systematically obtain approximations of both the optimal value function and

optimal boundaries for an arbitrary number of time steps. A similar approach had been

adopted in Atkinson and Quek (2012) for an investor with the exponential utility function.

A feature of the exponential utility function was that it resulted in optimal boundaries that

were independent of the investor’s wealth, which is not usually the case in practice. A more

realistic description of the investor’s optimal strategy is provided by using the power utility

function. Moreover, it is also more challenging to carry out the perturbation analysis in this

context as the proportion of risky asset inherited at each time step depends on variations in

both the return of the risky asset and the investor’s wealth.

We start with approximating the optimal value function. In order to approximate the

optimal value function for an arbitrary number of time steps, we adopt an approach that

consists of two stages. The first stage involves making the assumption that the investor

buys or sells to reach the Merton proportion at each time step when transaction costs are

small. This is clearly a suboptimal strategy as the investor has ignored the presence of the

no-transaction region. Consequently, an approximation of the suboptimal value function

is derived at each time step. In the second stage, we assume that the investor behaves

optimally by taking into account the no-transaction region. A sequence of corrections is

then applied to the suboptimal value function to give us the desired approximation to the

optimal value function. After approximating the optimal value function at each time step,

the optimal boundaries are then estimated by imposing the condition that the first derivative

of the value function is continuous across the boundaries.

Suppose that transaction costs are small such that λN−k = ελ̄N−k and µN−k = εµ̄N−k

(k = 1, . . . , N ), where ε � 1, λ̄N−k = O(1) and µ̄N−k = O(1). Here, O(.) is the usual

asymptotic order symbol so that λ̄N−k and µ̄N−k are said to be “of the order” one (see

Appendix A for its definition). Equivalently, λN−k and µN−k are said to be of the order ε.
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We now apply a perturbation analysis in the following two stages.

3.4.1 Stage One: Transacting to the Merton Proportion

In the first stage, assume that the investor follows the suboptimal strategy of transacting to

the Merton proportion. This is equivalent to assuming that both the optimal buy and sell

boundaries are equal to the Merton proportion, which is suboptimal as we have effectively

removed one of the investor’s possible choices of not transacting in the risky asset.

In general, at time period N − k (k = 1, . . . , N ), the investor is assumed to adopt the

suboptimal strategy of buying LN−k or selling MN−k of the risky asset to reach the Merton

proportion ÃN−k = A−N−k = A+
N−k. Therefore, Equation (3.5) becomes

WN−k+1 = WN−kF̂N−k, (3.48)

where

F̂N−k = F̃N−k − ελ̄N−krN−kLN−k − εµ̄N−krN−kMN−k. (3.49)

Recall that F̃N−k = rN−k + (sN−k − rN−k) ÃN−k, from our analysis of the no transaction

costs solution. The proportion of risky asset inherited in the next time step is now given by

AN−k+1 =
sN−kÃN−k

F̂N−k
. (3.50)

In particular, the investor’s suboptimal strategy of transacting to the Merton proportion

and corresponding value function in the buy and sell regions (compare with Section 3.2)

are as follows:

In the buy region AN−k < ÃN−k, the investor buys LN−k = ÃN−k −AN−k of the risky

asset so that

F̂
(B)
N−k = F̃N−k − ελ̄N−krN−k

(
ÃN−k − AN−k

)
. (3.51)

The value function now becomes

V̂
(B)
N−1 =

1

γ
EN−1

[
F̂

(B)γ
N−1

]
(3.52)
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at time period N − 1, and

V̂
(B)
N−k = EN−k

[
F̂

(B)γ
N−k V̂N−k+1

]
=

∫ ŝN−k

0

F̂
(B)γ
N−k V̂

(B)
N−k+1p(sN−k) dsN−k

+

∫ ∞
ŝN−k

F̂
(B)γ
N−k V̂

(S)
N−k+1p(sN−k) dsN−k, (3.53)

at time periodN−k (k = 2, . . . , N ). Here, ŝN−k is defined as the value of sN−k that results

in an inherited proportion of risky asset given by ÃN−k+1 (i.e. the Merton proportion).

From Equation (3.50) with sN−k = ŝN−k and AN−k+1 = ÃN−k+1, we have

ŝN−k =
rN−kÃN−k+1

{(
1− ÃN−k

)
− ελ̄N−k

(
ÃN−k − AN−k

)}
ÃN−k

(
1− ÃN−k+1

) . (3.54)

It is convenient to define

s̃N−k =
rN−kÃN−k+1

(
1− ÃN−k

)
ÃN−k

(
1− ÃN−k+1

) (3.55)

and express

ŝN−k = s̃N−k

1−
ελ̄N−k

(
ÃN−k − AN−k

)
(

1− ÃN−k
)

 . (3.56)

Therefore, note that s̃N−k is the leading order term of ŝN−k. It is observed that in the

special case where sN−k are independent and identically distributed random variables and

rN−k are constant in time, then ÃN−k are constant in time and s̃N−k reduces to rN−k.

In the sell region AN−k > ÃN−k, the investor sells MN−k = AN−k− ÃN−k of the risky

asset so that

F̂
(S)
N−k = F̃N−k − εµ̄N−krN−k

(
AN−k − ÃN−k

)
. (3.57)

The value function now becomes

V̂
(S)
N−1 =

1

γ
EN−1

[
F̂

(S)γ
N−1

]
(3.58)
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at time period N − 1, and

V̂
(S)
N−k = EN−k

[
F̂

(S)γ
N−kV̂N−k+1

]
=

∫ ŝN−k

0

F̂
(S)γ
N−kV̂

(B)
N−k+1p(sN−k) dsN−k

+

∫ ∞
ŝN−k

F̂
(S)γ
N−kV̂

(S)
N−k+1p(sN−k) dsN−k (3.59)

at time period N − k (k = 2, . . . , N ). In this case,

ŝN−k = s̃N−k

1−
εµ̄N−k

(
AN−k − ÃN−k

)
(

1− ÃN−k
)

 . (3.60)

It is of interest to note that the (suboptimal) value function in the buy and sell regions

differ by only a change of the transaction cost variable from λ̄N−k to −µ̄N−k. Essentially,

we will exploit this observation to deduce the approximation of the value function in the

sell region from that in the buy region.

3.4.2 Stage One: Perturbation about the No Transaction Costs Solution

Since the parameter ε � 1 (in the limit of small transaction costs), we will derive an

approximation of the suboptimal value function as a power series in terms of ε, starting

from time periodN−1 before proceeding to the general periodN−k case. We achieve this

by perturbing the suboptimal value function about the no transaction costs solution. Recall

that the no transaction costs solution is of a relatively simple form since it is characterised

by a myopic investment strategy. This perturbation is carried out recursively, starting from

period N − 1 and proceeding backwards in time. In general, the perturbation at period

N − k depends on the perturbations from the time steps ahead. The exception is period

N − 1, since it is one step before termination of the investment process.
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Time Period N − 1

The value function in the buy region, from Equations (3.51) and (3.52), is given by

V̂
(B)
N−1 =

1

γ
EN−1

[{
F̃N−1 − ελ̄N−1rN−1

(
ÃN−1 − AN−1

)}γ]
. (3.61)

Expanding it as a power series in ε and using Equation (3.46), we approximate

V̂
(B)
N−1 = ṼN−1

{
1− ελ̄N−1γ

(
ÃN−1 − AN−1

)
+

1

2
ε2λ̄2

N−1αN−1

(
ÃN−1 − AN−1

)2
}

+O(ε3), (3.62)

where

αN−1 =
γ (γ − 1) r2

N−1EN−1

[
F̃ γ−2
N−1

]
EN−1

[
F̃ γ
N−1

] . (3.63)

Note that the leading order term of the expansion is ṼN−1 =
1

γ
EN−1

[
F̃ γ
N−1

]
, which we

recall is the no transaction costs solution given by Equation (3.45). An analysis of the

remainder term in the above expansion, which is shown to be bounded, can be found in

Appendix C.1. The remainder terms for subsequent expansions will not be provided but

are otherwise similar.

Similarly, the value function in the sell region is given by Equations (3.57) and (3.58),

which differs from the value function in the buy region by a change of variable from λ̄N−1

to −µ̄N−1. Therefore, it can be immediately deduced from Equation (3.62) that

V̂
(S)
N−1 = ṼN−1

{
1− εµ̄N−1γ

(
AN−1 − ÃN−1

)
+

1

2
ε2µ̄2

N−1αN−1

(
AN−1 − ÃN−1

)2
}

+O(ε3). (3.64)

Time Period N − k

Taking one step back to time period N − 2, the value function in the buy region is given by

Equation (3.53). Our aim is to delineate the integrals of V̂ (B)
N−2 by s̃N−2 rather than ŝN−2,
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since s̃N−2 is the leading order term of ŝN−2. Therefore, it is rewritten as

V̂
(B)
N−2 =

∫ s̃N−2

0

F̂
(B)γ
N−2 V̂

(B)
N−1p(sN−2) dsN−2 +

∫ ∞
s̃N−2

F̂
(B)γ
N−2 V̂

(S)
N−1p(sN−2) dsN−2

+

∫ s̃N−2

ŝN−2

F̂
(B)γ
N−2

{
V̂

(S)
N−1 − V̂

(B)
N−1

}
p(sN−2) dsN−2, (3.65)

where ŝN−2 = s̃N−2 +O(ε) from Equation (3.56). Recall that V̂ (B)
N−1 and V̂ (S)

N−1 are functions

of AN−1, where AN−1 =
sN−2ÃN−2

F̂
(B)
N−2

from Equation (3.50). Also, when sN−2 = ŝN−2, we

have AN−1 = ÃN−1 by definition. We now derive an estimate of the third integral in the

above equation. Applying the Mean Value Theorem for an integral,

∫ s̃N−2

ŝN−2

F̂
(B)γ
N−2

{
V̂

(S)
N−1 − V̂

(B)
N−1

}
p(sN−2) dsN−2

= (s̃N−2 − ŝN−2) F̂
(B)γ
N−2

{
V̂

(S)
N−1 − V̂

(B)
N−1

}
p(sN−2) (3.66)

evaluated at a point sN−2 ∈ (ŝN−2, s̃N−2), that is, sN−2 = ŝN−2 + O(ε). At this point,

AN−1 = ÃN−1 + O(ε) as a value of sN−2 that is close to ŝN−2 results in an inherited

proportion of risky asset that is close to ÃN−1. This implies that

V̂
(S)
N−1 − V̂

(B)
N−1 = −ε

(
µ̄N−1 + λ̄N−1

)
γṼN−1

(
AN−1 − ÃN−1

)
+O(ε2) (3.67)

is of O(ε2). Since s̃N−2 − ŝN−2 is of O(ε), we conclude that Equation (3.66) is of O(ε3).

Therefore, the value function in the buy region is approximated by

V̂
(B)
N−2 =

∫ s̃N−2

0

F̂
(B)γ
N−2 V̂

(B)
N−1p(sN−2) dsN−2 +

∫ ∞
s̃N−2

F̂
(B)γ
N−2 V̂

(S)
N−1p(sN−2) dsN−2 +O(ε3).

(3.68)

We now substitute the expressions for F̂ (B)
N−2, V̂ (B)

N−1 and V̂ (S)
N−1 from Equations (3.51), (3.62)

and (3.64) into Equation (3.68). Expanding in powers of ε, simplifying with Equation

(3.46) and collecting the common terms together, it can be shown after some algebra that

V̂
(B)
N−2 is given by Equation (3.69) below. In order to approximate the value function in the

sell region, recall that it differs from the value function in the buy region by a change of
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variable from λ̄N−2 to−µ̄N−2. Therefore, with this change of variable, we can immediately

deduce the approximation of V̂ (S)
N−2, which is given below by Equation (3.70).

Using Equations (3.53) and (3.59), the above analysis for the time period N − 2 case is

repeated recursively at period N − 3, period N − 4 and so on. In general, the suboptimal

value function in the buy and sell regions at time period N − k (k = 2, . . . , N ) can be

inductively shown to be approximated by

V̂
(B)
N−k = ṼN−k

{
1− ελ̄N−kγ

(
ÃN−k − AN−k

)
+

1

2
ε2λ̄2

N−kαN−k

(
ÃN−k − AN−k

)2

+ε2λ̄N−k

(
βN−k − γ

k∑
i=3

ζN−i+1

)(
ÃN−k − AN−k

)
+ ε

k∑
i=2

ζN−i

+ε2

(
1

2

k∑
i=2

ηN−iαN−i+1 −
1

γ

k∑
i=3

ζN−iβN−i+1 +
k∑
i=4

i∑
j=4

ζN−iζN−j+2

)}
+O(ε3), (3.69)

and with a change of variable from λ̄N−k to −µ̄N−k, by

V̂
(S)
N−k = ṼN−k

{
1− εµ̄N−kγ

(
AN−k − ÃN−k

)
+

1

2
ε2µ̄2

N−kαN−k

(
AN−k − ÃN−k

)2

+ε2µ̄N−k

(
βN−k − γ

k∑
i=3

ζN−i+1

)(
AN−k − ÃN−k

)
+ ε

k∑
i=2

ζN−i

+ε2

(
1

2

k∑
i=2

ηN−iαN−i+1 −
1

γ

k∑
i=3

ζN−iβN−i+1 +
k∑
i=4

i∑
j=4

ζN−iζN−j+2

)}
+O(ε3). (3.70)

Note that in Equations (3.69) and (3.70), the summation terms are only valid in instances

where the upper limit is at least as large as the lower limit. For example, when k = 2,
k∑
i=3

ζN−i+1 is not valid and assumed to be zero while
k∑
i=2

ηN−i = ηN−2. The corresponding
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definitions of αN−k, βN−k, ζN−k and ηN−k are as follows:

αN−k =
γ(γ − 1)r2

N−kEN−k
[
F̃ γ−2
N−k

]
EN−k

[
F̃ γ
N−k

] , (3.71)

βN−k =
γrN−k

EN−k
[
F̃ γ
N−k

]
×
{
λ̄N−k+1

∫ s̃N−k

0

F̃ γ−2
N−k

[
sN−kÃN−k − γ

(
sN−kÃN−k − F̃N−kÃN−k+1

)]
×p(sN−k) dsN−k

−µ̄N−k+1

∫ ∞
s̃N−k

F̃ γ−2
N−k

[
sN−kÃN−k − γ

(
sN−kÃN−k − F̃N−kÃN−k+1

)]
×p(sN−k) dsN−k

}
, (3.72)

ζN−k =
γ

EN−k
[
F̃ γ
N−k

]
×
{
λ̄N−k+1

∫ s̃N−k

0

F̃ γ−1
N−k

(
sN−kÃN−k − F̃N−kÃN−k+1

)
p(sN−k) dsN−k

−µ̄N−k+1

∫ ∞
s̃N−k

F̃ γ−1
N−k

(
sN−kÃN−k − F̃N−kÃN−k+1

)
p(sN−k) dsN−k

}
, (3.73)

and

ηN−k =
1

EN−k
[
F̃ γ
N−k

]
×
{
λ̄2
N−k+1

∫ s̃N−k

0

F̃ γ−2
N−k

(
sN−kÃN−k − F̃N−kÃN−k+1

)2

p(sN−k) dsN−k

+µ̄2
N−k+1

∫ ∞
s̃N−k

F̃ γ−2
N−k

(
sN−kÃN−k − F̃N−kÃN−k+1

)2

p(sN−k) dsN−k

}
.(3.74)

In the first stage of the perturbation analysis, we have obtained approximations for

the suboptimal value functions V̂ (B)
N−k and V̂

(S)
N−k in the buy and sell regions by ignoring
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the no-transaction region and perturbing about the no transaction costs solution. The main

advantage is that we have derived the approximations, albeit suboptimal, at any time step of

the investment process. However, we do not know how the no-transaction region will affect

the terms in these approximations and the corrections that may be required. In the second

stage of our analysis, we improve on these preliminary approximations by correcting them

as we incorporate the no-transaction region.

3.4.3 Stage Two: Perturbation about the Suboptimal Value Function

In the second stage of the perturbation analysis, we reintroduce the no-transaction region

in our approximation of the optimal value function. So instead of transacting to the Merton

proportion at all times, the investor will buy to reach the optimal buy boundary when he

falls in the buy region. Correspondingly, the investor will sell to reach the optimal sell

boundary in the sell region and will choose not to trade in the no-transaction region. In the

limit of small transaction costs, one would expect the optimal buy and sell boundaries to

be close to the Merton proportion. Suppose that the optimal value function in the case of

small transaction costs is a perturbation about the no transaction costs solution and assume

that

A−N−k = ÃN−k + εω−N−k (3.75)

and

A+
N−k = ÃN−k + εω+

N−k, (3.76)

where ω−N−k and ω+
N−k are of O(1) and yet to be determined. Therefore, in the no-

transaction region A−N−k ≤ AN−k ≤ A+
N−k, we have

AN−k = ÃN−k + εωN−k, (3.77)

where ω−N−k ≤ ωN−k ≤ ω+
N−k. We subsequently demonstrate in our perturbation analysis

that these assumptions are indeed self-consistent in this model.

At each time step, we first perturb the optimal value function about the suboptimal

value function in the corresponding buy and sell regions, followed by a further perturbation

about the no transaction costs solution. The aim is to correct the suboptimal value function
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for the terms that were left out when we assumed a strategy of transacting to the Merton

proportion. Recall that for the optimal value function, F (B)
N−k, F (S)

N−k and F (N)
N−k are given by

Equations (3.29), (3.35) and (3.40) respectively. Since we are first perturbing the optimal

value function about the suboptimal value function, using Equations (3.75), (3.76) and

(3.77), they are rewritten as

F
(B)
N−k = F̂

(B)
N−k + εω−N−k (sN−k − rN−k)− ε2λ̄N−kω

−
N−krN−k, (3.78)

F
(S)
N−k = F̂

(S)
N−k + εω+

N−k (sN−k − rN−k) + ε2µ̄N−kω
+
N−krN−k (3.79)

and

F
(N)
N−k = F̃N−k + εωN−k (sN−k − rN−k) . (3.80)

Define the correction term in the buy and sell regions as

δ
(B)
N−k = V

(B)
N−k − V̂

(B)
N−k (3.81)

and

δ
(S)
N−k = V

(S)
N−k − V̂

(S)
N−k, (3.82)

respectively. After correcting for the optimal value function in the buy and sell regions,

we proceed to obtain an approximation of the optimal value function V
(N)
N−k in the no-

transaction region, which will be a perturbation about the no transaction costs solution.

Applying the dynamic programming principle, this sequence of corrections and approxi-

mations is achieved recursively backwards in time by using the estimates of the optimal

value functions from the time steps ahead. As before, the analysis starts at time period

N − 1 before proceeding to the general period N − k case.
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Time Period N − 1

In the buy region, recall that V̂ (B)
N−1 is given by Equation (3.52) and that V (B)

N−1 is given by

Equations (3.14) and (3.78) as

V̂
(B)
N−1 =

1

γ
EN−1

[
F̂

(B)γ
N−1

]
(3.83)

and

V
(B)
N−1 =

1

γ
EN−1

[{
F̂

(B)
N−1 + εω−N−1 (sN−1 − rN−1)− ε2λ̄N−1ω

−
N−1rN−1

}γ]
, (3.84)

respectively. First, we perturb about the suboptimal solution as the correction term is given

by δ(B)
N−1 = V

(B)
N−1 − V̂

(B)
N−1. Expanding Equation (3.84) in powers of ε up to O(ε2) and

subtracting Equation (3.83), we obtain

δ
(B)
N−1 =

1

γ
EN−1

[
γF̂

(B)γ−1
N−1

{
εω−N−1 (sN−1 − rN−1)− ε2λ̄N−1ω

−
N−1rN−1

}
+

1

2
γ (γ − 1) F̂

(B)γ−2
N−1 ε2ω−2

N−1 (sN−1 − rN−1)2

]
+O(ε3). (3.85)

Next, we perturb about the no transaction costs solution. Substituting F̂ (B)
N−1 = F̃N−1 −

ελ̄N−1rN−1

(
ÃN−1 − AN−1

)
into Equation (3.85), expanding further in powers of ε and

simplifying with Equations (3.43), (3.46) and (3.47), the correction term is found to be

δ
(B)
N−1 = ṼN−1ε

2

{[
λ̄N−1ω

−
N−1ÃN−1

(
ÃN−1 − AN−1

)
+

1

2
ω−2
N−1

]
φN−1

−λ̄N−1ω
−
N−1γ

}
+O(ε3), (3.86)

where

φN−1 =
γ (γ − 1)EN−1

[
(sN−1 − rN−1)2 F̃ γ−2

N−1

]
EN−1

[
F̃ γ
N−1

] . (3.87)
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In the sell region, note that V (S)
N−1 is given by Equations (3.17) and (3.79) as

V
(S)
N−1 =

1

γ
EN−1

[{
F̂

(S)
N−1 + εω+

N−1 (sN−1 − rN−1) + ε2µ̄N−1ω
+
N−1rN−1

}γ]
, (3.88)

which is equivalent to V (B)
N−1 with a change of variables from µ̄N−1 to −λ̄N−1 and from

ω+
N−1 to ω−N−1. Therefore, the correction term in the sell region is immediately deduced

from Equation (3.86) to be

δ
(S)
N−1 = ṼN−1ε

2

{[
µ̄N−1ω

+
N−1ÃN−1

(
AN−1 − ÃN−1

)
+

1

2
ω+2
N−1

]
φN−1

+µ̄N−1ω
+
N−1γ

}
+O(ε3). (3.89)

In the no-transaction region, V (N)
N−1 is given by Equation (3.20) and (3.80) as

V
(N)
N−1 =

1

γ
EN−1

[{
F̃N−1 + εωN−1 (sN−1 − rN−1)

}γ]
. (3.90)

Expanding in powers of ε up to O(ε2) and simplifying with Equation (3.43),

V
(N)
N−1 = ṼN−1

{
1 +

1

2
ε2ω2

N−1φN−1

}
+O(ε3). (3.91)

Note that time period N − 1 is a special case as it is one step before termination of

the investment process. We now take one step back to time period N − 2 and describe the

analysis that is required, followed by the results for the general case.

Time Period N − k

Here, we describe the key ideas in deriving the correction and approximation of the optimal

value function at time period N − 2. The details of this perturbation analysis is provided

in Appendix C.2. One of the key observations is that the analysis in the sell region differs

from that in the buy region only by a suitable change of variables. This reduces the analysis

that is required for the problem, since one can immediately deduce the result for the sell

region from the buy region by a simple change of variables.
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Therefore, we focus our attention to the perturbation analysis in the buy region. From

Equation (3.32), V (B)
N−2 is expressed in its integral form as a sum of integrals delineated by

s−N−2 and s+
N−2. We note that s̃N−2 is the leading order term of s−N−2 and s+

N−2. Thus, our

first objective is to rewrite V (B)
N−2 as a sum of integrals delineated by s̃N−2, which is achieved

by applying the mean value theorem for integrals. This makes it directly comparable with

V̂
(B)
N−2 from Equation (3.68), which we have also expressed as a sum of integrals delineated

by s̃N−2. In order to estimate the correction δ(B)
N−2 = V

(B)
N−2 − V̂

(B)
N−2, we first perturb the

optimal value function V
(B)
N−2 about the suboptimal value function V̂

(B)
N−2 by taking their

difference and using the approximation of the optimal value function from the time step

ahead (i.e. period N − 1 in this case). This is followed by a perturbation about the no

transaction costs solution. After some long algebra and simplification, we will be able

to derive the approximation of the correction δ(B)
N−2 in the buy region. The corresponding

approximation of the correction term in the sell region δ(S)
N−2 = V

(S)
N−2 − V̂

(S)
N−2 can then be

immediately deduced from the buy region by a change of variables from λ̄N−2 to −µ̄N−2

and ω−N−2 to ω+
N−2.

After deriving the correction in the buy and sell regions, we proceed to estimate the op-

timal value function V (N)
N−2 in the no-transaction region, which is given by Equation (3.38).

Once again, by applying the mean value theorem for integrals, we can rewrite V (N)
N−2 as a

sum of integrals delineated by s̃N−2. Substituting in estimates of the optimal value func-

tion from the time step ahead, expanding in powers of ε and simplifying, we will be able

to derive the approximation for the optimal value function in the no-transaction region.

Having approximated the optimal value function in the buy, sell and no-transaction

regions at period N − 2, we then proceed to the next time step. Applying the dynamic

programming principle, the above analysis for the periodN−2 case is repeated recursively

backwards in time at period N − 3 using the results from period N − 2, at period N − 4

using the results from period N − 3 and so on. By induction, we are thus able to derive

the results for the general period N − k (k = 2, . . . , N ) case, which are stated below. The
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correction in the buy and sell regions are found to be given by

δ
(B)
N−k = ṼN−kε

2

{[
λ̄N−kω

−
N−kÃN−k

(
ÃN−k − AN−k

)
+

1

2
ω−2
N−k

]
φN−k

−λ̄N−kω−N−kγ + ω−N−kψN−k +
k∑
i=2

θN−i

}
+O(ε3) (3.92)

and

δ
(S)
N−k = ṼN−kε

2

{[
µ̄N−kω

+
N−kÃN−k

(
AN−k − ÃN−k

)
+

1

2
ω+2
N−k

]
φN−k

+µ̄N−kω
+
N−kγ + ω+

N−kψN−k +
k∑
i=2

θN−i

}
+O(ε3). (3.93)

The optimal value function in the no-transaction region is given by

V
(N)
N−k = V̂

(N)
N−k + δ

(N)
N−k, (3.94)

where

V̂
(N)
N−k = ṼN−k

{
1 + ε2ωN−kψN−k +

1

2
ε2ω2

N−kφN−k + ε
k∑
i=2

ζN−i

+ε2

(
1

2

k∑
i=2

ηN−iαN−i+1 −
1

γ

k∑
i=3

ζN−iβN−i+1 +
k∑
i=4

i∑
j=4

ζN−iζN−j+2

)}
+O(ε3) (3.95)

and

δ
(N)
N−k = ṼN−kε

2

k∑
i=2

θN−i +O(ε3). (3.96)

Recall that αN−k, βN−k, ζN−k and ηN−k are previously defined in Equations (3.71) to

(3.74). The definitions of φN−k, ψN−k and θN−k in the above equations are as follows:

φN−k =
γ (γ − 1)EN−k

[
(sN−k − rN−k)2 F̃ γ−2

N−k

]
EN−k

[
F̃ γ
N−k

] , (3.97)
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ψN−k =
γ

EN−k
[
F̃ γ
N−k

]
×
{
λ̄N−k+1

∫ s̃N−k

0

F̃ γ−2
N−k

[
sN−krN−k + γ (sN−k − rN−k)

×
(
sN−kÃN−k − F̃N−kÃN−k+1

)]
p(sN−k) dsN−k

−µ̄N−k+1

∫ ∞
s̃N−k

F̃ γ−2
N−k

[
sN−krN−k + γ (sN−k − rN−k)

×
(
sN−kÃN−k − F̃N−kÃN−k+1

)]
p(sN−k) dsN−k

}
, (3.98)

and

θN−k =
1

EN−k
[
F̃ γ
N−k

]
×

{∫ s̃N−k

0

[
−F̃ γ−1

N−kλ̄N−k+1ω
−
N−k+1ÃN−k+1

(
sN−kÃN−k − F̃N−kÃN−k+1

)
φN−k+1

+F̃ γ
N−k

(
1

2
ω−2
N−k+1φN−k+1 − λ̄N−k+1ω

−
N−k+1γ + ω−N−k+1ψN−k+11I{k 6=2}

)]
×p(sN−k) dsN−k

+

∫ ∞
s̃N−k

[
F̃ γ−1
N−kµ̄N−k+1ω

+
N−k+1ÃN−k+1

(
sN−kÃN−k − F̃N−kÃN−k+1

)
φN−k+1

+F̃ γ
N−k

(
1

2
ω+2
N−k+1φN−k+1 + µ̄N−k+1ω

+
N−k+1γ + ω+

N−k+1ψN−k+11I{k 6=2}

)]
×p(sN−k) dsN−k

}
, (3.99)

where 1I{k 6=2} denotes an indicator function with respect to the index k.

In conclusion, we have devised a systematic method to approximate the optimal value

function in the buy, sell and no-transaction regions at any time step. In this method, we

initially assume that the investor adopts a suboptimal strategy of transacting to the Merton

proportion in the limit of small transaction costs. The second order approximation of the

suboptimal value function in the buy and sell regions is derived by perturbing about the

no transaction costs solution. However, by ignoring the no-transaction region, we have

missed out on some second order terms in our preliminary approximation. In order to
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correct our initial approximation in the buy and sell regions, we perturb the optimal value

function about the suboptimal value function. This is followed by a perturbation about

the no transaction costs solution. We also derive the approximation for the optimal value

function in the no-transaction region by perturbing about the no transaction costs solution.

This perturbation scheme is achieved by backwards recursion starting from time period

N − 1. Nonetheless, the optimal buy and sell boundaries are as yet unknown, which we

determine in the next section.

3.4.4 Stage Two: Approximation of the Optimal Buy and Sell Boundaries

In Sections 3.4.1 to 3.4.3, we have derived the approximation of the optimal value function

in the buy, sell and no-transaction regions at each time step. In this section, we verify that

the optimal value function is continuous across the buy and sell boundaries. We further

recall that the first derivative of the optimal value function should also be continuous across

the optimal boundaries. An application of this condition allows us to derive estimates

for the optimal buy and sell boundaries. In addition, the results that we obtain serve to

demonstrate that our perturbation analysis is indeed self-consistent.

We start by considering the case at time period N − 1. Collecting the previous results

from Equations (3.62), (3.64), (3.86), (3.89) and (3.91), the optimal value function in the

buy, sell and no-transaction regions at time period N −1 is given by V (B)
N−1 = V̂

(B)
N−1 + δ

(B)
N−1,

V
(S)
N−1 = V̂

(S)
N−1 + δ

(S)
N−1 and V (N)

N−1 respectively. Recall that AN−1 = ÃN−1 + εωN−1 in the

no-transaction region. At the optimal buy boundary, AN−1 = A−N−1 and ωN−1 = ω−N−1.

Thus, we can verify that

V
(B)
N−1 = ṼN−1

{
1 +

1

2
ε2ω−2

N−1φN−1

}
+O(ε3) = V

(N)
N−1. (3.100)

Similarly, at the optimal sell boundary, where AN−1 = A+
N−1 and ωN−1 = ω+

N−1, we can

also verify that V (S)
N−1 = V

(N)
N−1. Therefore, the optimal value function is continuous across

the buy and sell boundaries up to O(ε2).

Note that we have obtained the approximation of the optimal value function up toO(ε2).

This is so that we can match the first derivative of the optimal value function at the optimal
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buy and sell boundaries up to O(ε). If we wish to obtain higher order estimates of the

optimal boundaries, we will need to estimate the optimal value function beyond O(ε2). By

matching the first derivative of the optimal value function at the buy and sell boundaries,

we are able to derive the first order approximation of these boundaries. Therefore, in order

to determine the optimal boundaries, differentiate V (B)
N−1, V (S)

N−1 and V (N)
N−1 with respect to

AN−1 to give

∂V
(B)
N−1

∂AN−1

= ṼN−1

{
ελ̄N−1γ − ε2λ̄2

N−1αN−1

(
ÃN−1 − AN−1

)
−ε2λ̄N−1ω

−
N−1ÃN−1φN−1

}
+O(ε3), (3.101)

∂V
(S)
N−1

∂AN−1

= ṼN−1

{
−εµ̄N−1γ + ε2µ̄2

N−1αN−1

(
AN−1 − ÃN−1

)
+ε2µ̄N−1ω

+
N−1ÃN−1φN−1

}
+O(ε3) (3.102)

and
∂V

(N)
N−1

∂AN−1

= ṼN−1εωN−1φN−1 +O(ε2). (3.103)

Note that the first derivative of the optimal value function in the no-transaction region is

obtained by recalling that AN−1 and ωN−1 are related via AN−1 = ÃN−1 + εωN−1.

At the buy boundary (i.e. AN−1 = A−N−1 and ωN−1 = ω−N−1), by equating the coeffi-

cients of ε for
∂V

(B)
N−1

∂AN−1

and
∂V

(N)
N−1

∂AN−1

, we obtain

ω−N−1 =
λ̄N−1γ

φN−1

. (3.104)

Similarly at the sell boundary (i.e. AN−1 = A+
N−1 and ωN−1 = ω+

N−1), by equating the

coefficients of ε for
∂V

(S)
N−1

∂AN−1

and
∂V

(N)
N−1

∂AN−1

, we obtain

ω+
N−1 =

−µ̄N−1γ

φN−1

. (3.105)
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Recall that φN−1 is given by Equation (3.87). In addition, the corresponding buy and sell

boundaries are estimated by A−N−1 = ÃN−1 + εω−N−1 and A+
N−1 = ÃN−1 + εω+

N−1 up to

O(ε).

For the general case at time period N − k (k = 2, . . . , N ), collecting the results from

Equations (3.69), (3.70), (3.92),(3.93),(3.95) and (3.96),the optimal value function in the

three regions is given by V
(B)
N−k = V̂

(B)
N−k + δ

(B)
N−k, V (S)

N−k = V̂
(S)
N−k + δ

(S)
N−k and V

(N)
N−k =

V̂
(N)
N−k + δ

(N)
N−k. At the optimal buy boundary, AN−k = A−N−k and ωN−k = ω−N−k. Thus, it

can be verified that

V
(B)
N−k = ṼN−k

{
1 + ε

k∑
i=2

ζN−i + ε2

k∑
i=2

θN−i

+ε2

(
1

2

k∑
i=2

ηN−iαN−i+1 −
1

γ

k∑
i=3

ζN−iβN−i+1 +
k∑
i=4

i∑
j=4

ζN−iζN−j+2

)

+
1

2
ε2ω−2

N−kφN−k + ε2ω−N−kψN−k

}
+O(ε3) = V

(N)
N−k. (3.106)

At the optimal sell boundary, AN−k = A+
N−k and ωN−k = ω+

N−k. Similarly, it can also be

verified that V (S)
N−k = V

(N)
N−k up to O(ε2).

In order to estimate the buy and sell boundaries, we differentiate V (B)
N−k, V

(S)
N−k and V (N)

N−k

with respect to AN−k, which give us

∂V
(B)
N−k

∂AN−k
= ṼN−k

{
ελ̄N−kγ − ε2λ̄2

N−kαN−k

(
ÃN−k − AN−k

)
−ε2λ̄N−k

(
βN−k − γ

k∑
i=3

ζN−i+1

)
− ε2λ̄N−kω

−
N−kÃN−kφN−k

}
+O(ε3), (3.107)

∂V
(S)
N−k

∂AN−k
= ṼN−k

{
−εµ̄N−kγ + ε2µ̄2

N−kαN−k

(
AN−k − ÃN−k

)
+ε2µ̄N−k

(
βN−k − γ

k∑
i=3

ζN−i+1

)
+ ε2µ̄N−kω

+
N−kÃN−kφN−k

}
+O(ε3) (3.108)
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and
∂V

(N)
N−k

∂AN−k
= ṼN−k {εψN−k + εωN−kφN−k}+O(ε2). (3.109)

At the buy boundary (i.e. AN−k = A−N−k and ωN−k = ω−N−k), equating the coefficients of

ε for
∂V

(B)
N−k

∂AN−k
and

∂V
(N)
N−k

∂AN−k
gives us

ω−N−k =
λ̄N−kγ − ψN−k

φN−k
. (3.110)

Similarly at the sell boundary (i.e. AN−k = A+
N−k and ωN−k = ω+

N−k), equating the

coefficients of ε for
∂V

(S)
N−k

∂AN−k
and

∂V
(N)
N−k

∂AN−k
gives us

ω+
N−k =

−µ̄N−kγ − ψN−k
φN−k

. (3.111)

Recall that φN−k and ψN−k are defined in Equations (3.97) and (3.98) respectively.

The corresponding optimal buy and sell boundaries are thus given by A−N−k = ÃN−k +

εω−N−k and A+
N−k = ÃN−k +εω+

N−k up to O(ε). Therefore, in the limit of small transaction

costs, we have obtained the first order approximation of the optimal boundaries at any time

period N − k. Observe that φN−k is determined by the variables rN−k, sN−k and ÃN−k
at period N − k. The variable rN−k is non-random while the random variable sN−k is

characterised by its probability density function p(sN−k). Observe that in addition to the

variables at periodN−k, ψN−k also depends on the variables λ̄N−k+1, µ̄N−k+1 and ÃN−k+1

at the time step ahead. Moreover, the Merton proportion ÃN−k at any time period N − k
is determined by the specification of rN−k and p(sN−k) via Equation (3.43). Therefore,

one concludes that the first order approximation of the optimal buy and sell boundaries at

each time step essentially depends on the transaction costs, returns of the risk-free asset

and returns of the risky asset at the current time step and one time step ahead.

In the next section, we make a few assumptions that allow us to simplify the expressions

for the optimal boundaries and present a numerical example.
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3.5 Results

In order to illustrate our main results with a numerical example, we make the following

assumptions:

1. Assume that rN−k is constant in time and say that rN−k = r for all k.

2. Assume that sN−k are independent and identically distributed to the random variable

s for all k.

3. Assume that the costs of buying and selling the risky assets are equal and constant in

time and say that λ̄N−k = µ̄N−k = λ̄ for all k.

We focus on the results in the general case of time period N − k (k = 2, . . . , N ) as the

period N − 1 case is trivial. With these assumptions, we deduce from Equation (3.43) that

the Merton proportion ÃN−k = Ã is a constant, where Ã satisfies the equation

E
[
(s− r)

{
r + (s− r) Ã

}γ−1
]

= 0. (3.112)

Here, the expectation E is taken with respect to the random variable s. From Equa-

tion (3.55), we simplify the term s̃N−k = r. Furthermore, we simplify the expression

sN−kÃN−k − F̃N−kÃN−k+1 = (s− r) Ã
(

1− Ã
)

that appears in Equation (3.98). There-

fore, we observe that φN−k = φ and ψN−k = ψ are constants, where

φ =

γ (γ − 1)E
[
(s− r)2

{
r + (s− r) Ã

}γ−2
]

E
[{
r + (s− r) Ã

}γ] (3.113)
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and

ψ =
γλ̄

E
[{
r + (s− r) Ã

}γ]
×

{∫ r

0

{
r + (s− r) Ã

}γ−2 {
sr + γ (s− r)2 Ã

(
1− Ã

)}
p(s) ds

−
∫ ∞
r

{
r + (s− r) Ã

}γ−2 {
sr + γ (s− r)2 Ã

(
1− Ã

)}
p(s) ds

}
. (3.114)

Consequently, the first order approximations of the optimal boundaries

A−N−k = Ã+ ε
λ̄γ − ψ
φ

(3.115)

and

A+
N−k = Ã− ελ̄γ + ψ

φ
(3.116)

are also constants over time. This is not a surprising observation as the Merton proportion,

which corresponds to the no transaction costs case, is also a constant. Thus, in the limit

of small transaction costs, one would expect the optimal buy and sell boundaries (being

close to the Merton point) to be constants as well. However, note that these results only

hold under the given assumptions in this example. One advantage of this portfolio selection

model is that a general probability distribution is assumed for the return of the risky asset at

each time step. In general, if the returns of the risky asset are not assumed to be identically

distributed, then one will not expect the optimal boundaries to be constants over time.

In order to study the behaviour of the optimal boundaries numerically, we consider a

simple case and assume that the parameters in our model take the values N = 6, γ = 0.1

and r = 1.05. The random variable s is assumed to have the probability density function

p(s) = 0.7× δ(s− 1.5) + 0.3× δ(s− 0.5), where δ(.) is the Dirac delta function.

In Figure 3.1, the transaction costs are allowed to vary from 0 to 0.03. This figure

shows the relationship between the optimal boundaries at the initial time and transaction

costs. The exact boundaries are obtained by implementing the dynamic programming al-

gorithm numerically while the approximate boundaries are given by Equations (3.115) and
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(3.116). When transaction costs are zero, the boundaries converge to the Merton proportion

and the no-transaction region disappears. Therefore, in the absence of transaction costs, the

investor will always trade in the risky asset to reach the Merton proportion. When trans-

action costs increase, the width of the no-transaction region (i.e. difference between the

buy and sell boundaries) increases and the investor is less likely to trade in the risky asset.

From this example, it can be observed that the approximate boundaries are good estimates

of the exact boundaries in the limiting case of small transaction costs.
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Figure 3.1: Comparison of Exact and Approximate Optimal Boundaries

In Figure 3.2, we assume that the transaction costs are fixed at 0.004 and we vary γ

from 0.1 to 0.3. The level of risk aversion of the investor, which is given by (1− γ) for

the power utility function, therefore varies from 0.7 to 0.9. In this figure, we investigate

how the investor’s risk aversion affects the Merton proportion and the optimal boundaries
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at the initial time as approximated by Equations (3.115) and (3.116). It is observed that

the Merton proportion and the optimal boundaries are inversely related to the level of risk

aversion of the investor. As the investor becomes increasingly risk averse, he would prefer

to hold less of the risky asset and more of the risk-free asset, which explains the decrease in

the Merton proportion. Although the width of the no-transaction region appears to remain

the same, the effects of increasing the investor’s risk aversion are seen by the sell region

that is widening and the buy region that is narrowing. This means that there is a greater

tendency for the investor to sell rather than to buy the risky asset when his level of risk

aversion is high.
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Figure 3.2: Optimal Boundaries vs Risk Aversion

In Figure 3.3, we assume that transaction costs are 0.004 and γ = 0.1. This figure

shows the linear relationship between the optimal holdings in the risky asset and the wealth
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of the investor. Recall the parametrisation aN−k = AN−kWN−k, where aN−k is the dollar

value invested in the risky asset, AN−k is the proportion of wealth invested in the risky

asset and WN−k is the wealth of the investor. The Merton line a0 = Ã0W0 corresponds to

the optimal value to be invested in the risky asset when there are no transaction costs. The

buy boundary a0 = A−0 W0 and the sell boundary a0 = A+
0 W0 delineate the no-transaction

region, which in this case is narrow since the transaction costs are small. As the investor’s

wealth increases, observe that the optimal holdings in the risky asset (in dollar value terms)

also increase as depicted by the increasing buy and sell boundaries, which is what one

would expect in practice. Therefore, this observation represents a more realistic description

of an investor’s behaviour as compared to the exponential utility function, where the Merton

line, buy and sell boundaries are found to be independent of the investor’s wealth.
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In conclusion, we have devised a perturbation method that allows one to obtain approx-

imations of the optimal value function and optimal boundaries to an arbitrary number of

time steps in the portfolio selection model. Therefore, when transaction costs are small,

one does not need to compute the optimal value function and optimal boundaries via the

dynamic programming algorithm, which becomes computationally intensive as the num-

ber of time steps increases. Furthermore, one has the flexibility to specify the probability

distribution of the returns of the risky asset as we have kept it generic in the model.
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Chapter 4

Indifference Option Pricing without

Transaction Costs

In this chapter, we present two closely related approaches to option pricing that are based on

the maximisation of expected utility of terminal wealth. The first of these approaches was

developed by Hodges and Neuberger (1989) in a continuous time setting to price options

with transaction costs. In this approach, the selling (buying) price of an option is defined as

the amount of money that will make the investor indifferent, in terms of expected utilities,

between trading in the market with and without a short (long) position in the option. The

resulting price of the option is known as the utility indifference price. An alternative utility-

based approach was proposed by Davis (1997) for a general setting in which the replication

of an option was either impossible or unfavourable. In this approach, the price of an option

is determined by the requirement that an infinitesimal diversion of funds into the option

purchase or sale has a neutral effect on the investor’s achievable utility. This definition re-

sults in a unique price for the option, which is described as the marginal utility indifference

price. After defining the utility indifference price and marginal utility indifference price of

an option within a discrete time framework, we specify a market model without transaction

costs. The underlying risky asset is assumed to follow a general price process. We consider

separately the case where the investor has an exponential utility function and a power util-

ity function. When the price of the risky asset follows a multiplicative binomial tree, we

demonstrate that both the utility indifference price and marginal utility indifference price
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are equivalent to the perfect replication price (from the Cox et al. (1979) binomial model).

In the case where the risky asset is assumed to follow a trinomial price process, we present

an approximate replication approach that may be used to price the option. A comparison is

made between this approach and the utility maximisation approach.

4.1 Definitions

In this section, we provide the definitions of the utility indifference price and marginal

utility indifference price of an option. Consider the discrete time portfolio selection model

with N periods. Suppose that time period n (n = 0, 1, . . . , N − 1, N ) indexes discrete

time t0 < t1 < . . . < tN−1 < tN , where t0 = 0 is the initial time and tN = T is the

terminal time. The investor rebalances the portfolio among a risk-free asset and a risky

asset at the start of each time period so as to maximise expected utility of wealth at the

end of the investment horizon. Suppose that the investor’s utility function U is strictly

increasing and strictly concave. The investor starts with an initial wealth of W0 = z and

uses the investment strategy π to form a dynamic portfolio whose value at time period n

(n = 1, . . . , N ) is denoted by W z,π
n . Given an initial wealth z, the investor’s optimal value

function J(z) is defined to be

J(z) = max
π∈Π

E [U(W z,π
N )] , (4.1)

where the maximisation is over the set Π of admissible investment strategies. The invest-

ment strategies will be described in greater details when we specify the market model in

the later part of this chapter (for the case without transaction costs) and in the next chap-

ter (for the case with transaction costs). Introduce a European option, expiring at the end

of N periods (at time T ) and yielding a random payoff CN at expiry. Suppose that the

investor takes a position in the option at the initial time and prices the option via utility

maximisation.
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4.1.1 Utility Indifference Price

In the utility indifference pricing approach first suggested by Hodges and Neuberger (1989),

the selling (buying) price of an option is the amount of money that will make the investor

indifferent, in terms of expected utilities, between trading in the market with and without a

short (long) position in the option.

Specifically, suppose that the investor sells one European option at the initial time and

proceeds to maximise expected utility of terminal wealth. In this case, the optimal value

function for the portfolio with a short position in the option is defined to be

J (so)(z) = max
π∈Π

E [U(W z,π
N − CN)] . (4.2)

The superscript “so” denotes the case of the investor selling an option at the initial time.

The indifference selling price of the option with payoff CN is defined to be the value ν(s)

that satisfies

J (so)(z + ν(s)) = J(z) (4.3)

for an initial wealth z. In other words, ν(s) is the value at which the two optimal value

functions J and J (so), defined in Equations (4.1) and (4.2) respectively, coincide.

On the other hand, suppose that the investor buys one European option at the initial

time, in which case the investor’s optimal value function with a long position in the option

is defined as

J (bo)(z) = max
π∈Π

E [U(W z,π
N + CN)] . (4.4)

Here, the superscript “bo” denotes the case of the investor buying an option at the initial

time. Analogous to the definition of the selling price, the indifference buying price of the

option with payoff CN is defined to be the value ν(b) that satisfies

J (bo)(z − ν(b)) = J(z) (4.5)

for an initial wealth z.

In general, note that ν(s) and ν(b) depend on the level of initial wealth z. However, we

will see subsequently that for an investor with the exponential utility function, ν(s) and ν(b)
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are independent of z.

4.1.2 Marginal Utility Indifference Price

An alternative utility-based approach was proposed by Davis (1997), where the price of an

option is determined by the requirement that an infinitesimal diversion of funds into the

option purchase or sale has a neutral effect on the investor’s achievable utility.

Suppose that a small amount of initial wealth z is diverted to the purchase or sale of a

European option with payoff CN . To be precise, assume that δ dollars of wealth is diverted

into the option with a price of ν at the initial time. The optimal value function for the

portfolio with an infinitesimal position in the option is defined to be

J (o)(z, ν, δ) = max
π∈Π

E
[
U

(
W z−δ,π
N +

δ

ν
CN

)]
. (4.6)

Here, the superscript “o” denotes the case of the investor having a position in the option at

the initial time. The investor has a long (short) position in the option if δ > 0 (δ < 0). The

price of the option is defined to be the value ν̃ that satisfies the equation

∂J (o)

∂δ
(z, ν̃, 0) = 0. (4.7)

From this pricing definition, one is able to derive a formula for the price of the option

ν̃ as follows. Expanding Equation (4.6) for a small δ,

J (o)(z, ν, δ) = max
π∈Π

{
E
[
U(W z−δ,π

N )
]

+
δ

ν
E
[
U ′(W z−δ,π

N )CN

]
+O(δ2)

}
. (4.8)

Taking the partial derivative of J (o) with respect to δ, setting δ = 0 and using Equation

(4.7), the price of the option ν̃ is given by

ν̃ =
G(z)

J ′(z)
, (4.9)



Chapter 4. Indifference Option Pricing without Transaction Costs 121

where G(z) is defined to be

G(z) = E
[
U ′(W z,π∗

N )CN

]
. (4.10)

Note that π∗ is the optimal investment strategy for the portfolio selection problem without

a position in the option and J(z) is the corresponding optimal value function as defined in

Equation (4.1).

Having defined the utility indifference price and marginal utility indifference price, we

proceed to develop a utility-based option pricing model in discrete time without transaction

costs.

4.2 Market Model without Transaction Costs

Consider the discrete time portfolio selection model with N periods where the investor

rebalances the portfolio among a risk-free asset and a risky asset at the start of each time

period. Assume that trading in the risky asset does not incur any transaction costs. Let Wn

be the wealth of the portfolio and an be the dollar value invested in the risky asset at time

period n. Therefore, Wn − an dollars are invested in the risk-free asset at time period n.

Suppose that sn denotes one plus the return of the risky asset and rn denotes one plus the

return of the risk-free asset from time period n to n+ 1. Thus, the investor’s wealth at time

period n+ 1 is given by

Wn+1 = rnWn + (sn − rn) an (4.11)

for n = 0, . . . , N − 1. Given an initial wealth W0, the investor aims to maximise expected

utility of terminal wealth by choosing the investments in the risky asset a0, . . . , aN−1 opti-

mally.

Let Xn be the price of one unit of the risky asset at time period n. The price of the risky

asset at time period n+ 1 is given by

Xn+1 = snXn (4.12)

for n = 0, . . . , N − 1. Consider a European option, expiring at the end of N periods (at
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time T ) and yielding a payoff CN = c(XN) that depends on the price of the risky asset XN

at expiry.

Suppose that the investor takes a position in the option at the initial time. So the question

arises: What is the price at which the investor will value the option? In a complete market

without transaction costs, if the price of the risky asset is assumed to follow a binomial tree,

one can construct a portfolio that perfectly replicates the option payoff as demonstrated in

Cox et al. (1979). This results in a unique universal price for the option that is independent

of investors’ risk preferences. The continuous time analogue of the binomial model is the

Black-Scholes model. However, if the price of the risky asset does not follow a binomial

tree, it is generally not possible to perfectly replicate the option payoff. As an example, we

will consider the case where the price of the risky asset follows a trinomial tree. Therefore,

there remains an element of risk that cannot be hedged away when one takes on a position

in the option. So, it follows that the valuation of the option should take into account an

investor’s aversion to risk. In order to incorporate the investor’s level of risk aversion in

pricing the option, we adopt the utility maximisation approach. Moreover, in the next

chapter, we will extend this approach to a market model with transaction costs.

We proceed to illustrate, using the definitions from Section 4.1, how one could deter-

mine the utility indifference price and marginal utility indifference price of a European

option in the context of the exponential and power utility functions.

4.3 Exponential Utility Function

Assume that the investor has an exponential utility function of the form

U(W ) = −e−κW , (4.13)

where κ > 0. In order to obtain the utility indifference price of the option, we need to

determine the optimal value functions for the portfolios with and without a position in the

option.
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4.3.1 Portfolio Selection without Option Position

Consider first the portfolio without a position in the option. Given an initial wealth W0, the

investor’s optimal value function J(W0) is defined to be

J(W0) = maxE [U(WN)] . (4.14)

In this market model without transaction costs, the maximisation is over the investments

a0, . . . , aN−1 in the risky asset and the expectation is taken with respect to the random

variables s0, . . . , sN−1. This is a special case of the portfolio selection problem (with one

risky asset) that we previously analysed in Section 1.5.2. The optimal value function J(W0)

defined above is equivalent to Equation (1.49) with M = 1. Therefore, we quote directly

from the results of the analysis found in Equations (1.56) and (1.58). At time period n

(n = 0, . . . , N − 2), the optimal investment in the risky asset is

an =
a∗n

rN−1 · · · rn+1

(4.15)

and the optimal value function is

Jn(Wn) = −e−κrN−1rN−2···rnWnEN−1

[
e−κ(sN−1−rN−1)a∗N−1

]
×EN−2

[
e−κ(sN−2−rN−2)a∗N−2

]
· · ·En

[
e−κ(sn−rn)a∗n

]
, (4.16)

where a∗n satisfies the equation

En
[
(sn − rn) e−κ(sn−rn)a∗n

]
= 0. (4.17)

We obtain J(W0) by setting n = 0 in Equation (4.16).

4.3.2 Portfolio Selection with Option Position

In the discussion that follows, we focus on deriving the utility indifference selling price of

the option. The derivation of the buying price of the option is similar. Consider now the

investor with a short position in an option with payoff CN = c(XN). The optimal value
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function (adapting from Equation (4.2)) is defined to be

J (so)(W0, X0) = maxE [U(WN − CN)] , (4.18)

where the maximisation is over the investments a0, . . . , aN−1 in the risky asset and the

expectation is taken with respect to the random variables s0, . . . , sN−1. In addition to W0,

the optimal value function also depends on X0 as the option payoff CN is a function of the

price of the risky asset XN .

In order to determine the optimal investment strategy and optimal value function, we

apply the principle of dynamic programming. The dynamic programming algorithm for the

portfolio selection problem with a short position in the option, which starts at period N −1

and proceeds backwards recursively in time is

J
(so)
N (WN , XN) = U(WN − CN) (4.19)

and

J
(so)
N−k(WN−k, XN−k) = maxEN−k

[
J

(so)
N−k+1(WN−k+1, XN−k+1)

]
(4.20)

for k = 1, . . . , N . The conditional expectation operator EN−k is taken with respect to the

random variable sN−k given the information at time period N − k and the maximisation is

over the investment aN−k in the risky asset.

Time Period N − 1

From Equations (4.11) and (4.20), the optimal value function at time period N − 1 is

J
(so)
N−1(WN−1, XN−1) = maxEN−1

[
−e−κ{WN−CN}

]
= e−κrN−1WN−1 maxEN−1

[
−e−κ{(sN−1−rN−1)aN−1−c(sN−1XN−1)}] . (4.21)

The term in WN−1 is taken out of the conditional expectation EN−1 since it is given at

time period N − 1. In addition, the option payoff is CN = c(XN) = c(sN−1XN−1). The
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problem is now reduced to one of maximising V (so)
N−1(XN−1) over aN−1, where

V
(so)
N−1(XN−1) = EN−1

[
−e−κ{(sN−1−rN−1)aN−1−c(sN−1XN−1)}] . (4.22)

Taking the partial derivative of V (so)
N−1 with respect to aN−1 (of course with XN−1 held

constant), the first order optimality condition
∂V

(so)
N−1

∂aN−1

= 0 is given by

EN−1

[
(sN−1 − rN−1) e−κ{(sN−1−rN−1)aN−1−c(sN−1XN−1)}] = 0. (4.23)

In general, one will solve this equation numerically. Observe that the optimal investment in

the risky asset is independent of the wealth WN−1. However, unlike the portfolio selection

problem without a position in the option, the optimal investment in the risky asset depends

on the price of the risky asset XN−1. Suppose that a solution exists and is of the form

aN−1 = a
(so)∗
N−1(XN−1), where a(so)∗

N−1 denotes the optimal investment strategy for the portfo-

lio selection problem in which the investor has sold an option. Consequently, the optimal

value function is

V
(so)
N−1(XN−1) = −EN−1

[
e
−κ

{
(sN−1−rN−1)a

(so)∗
N−1 (XN−1)−c(sN−1XN−1)

}]
. (4.24)

Time Period N − 2

Similarly at time period N − 2, the optimal value function is

J
(so)
N−2(WN−2, XN−2) = maxEN−2

[
e−κrN−1WN−1V

(so)
N−1(XN−1)

]
= e−κrN−1rN−2WN−2 maxEN−2

[
e−κrN−1(sN−2−rN−2)aN−2V

(so)
N−1(sN−2XN−2)

]
. (4.25)

The problem is reduced to one of maximising V (so)
N−2(XN−2) over aN−2, where we define

V
(so)
N−2(XN−2) = EN−2

[
e−κrN−1(sN−2−rN−2)aN−2V

(so)
N−1(sN−2XN−2)

]
. (4.26)
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The first order optimality condition
∂V

(so)
N−2

∂aN−2

= 0 gives us the equation

EN−2

[
(sN−2 − rN−2) e−κrN−1(sN−2−rN−2)aN−2V

(so)
N−1(sN−2XN−2)

]
= 0. (4.27)

Assuming that the optimal investment strategy satisfying the above equation is of the form

aN−2 = a
(so)∗
N−2(XN−2), the optimal value function is

V
(so)
N−2(XN−2) = EN−2

[
e−κrN−1(sN−2−rN−2)a

(so)∗
N−2 (XN−2)V

(so)
N−1(sN−2XN−2)

]
. (4.28)

Time Period N − k

Proceeding in a similar way, we deduce that at time period N − k (k = 2, . . . , N ), the

optimal investment in the risky asset aN−k = a
(so)∗
N−k(XN−k) satisfies the equation

EN−k
[
(sN−k − rN−k) e−κrN−1···rN−k+1(sN−k−rN−k)aN−kV

(so)
N−k+1(sN−kXN−k)

]
= 0. (4.29)

Furthermore, the optimal value function is given by

V
(so)
N−k(XN−k) = EN−k

[
e−κrN−1···rN−k+1(sN−k−rN−k)a

(so)∗
N−k (XN−k)V

(so)
N−k+1(sN−kXN−k)

]
(4.30)

or

J
(so)
N−k(WN−k, XN−k) = e−κrN−1···rN−kWN−kV

(so)
N−k(XN−k). (4.31)

Therefore, via solving the dynamic programming algorithm from k = 1 up to k = N ,

we obtain the optimal investment in the risky asset

a0 = a
(so)∗
0 (X0) (4.32)

and the optimal value function

J (so)(W0, X0) = e−κrN−1rN−2···r0W0V
(so)

0 (X0) (4.33)

at the initial time.
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4.3.3 Utility Indifference Price and Hedge

From the definition in Equation (4.3), the utility indifference selling price ν(s) of the option

satisfies

J (so)
(
W0 + ν(s), X0

)
= J(W0). (4.34)

Using the optimal value functions given by Equations (4.16) and (4.33), the utility indiffer-

ence selling price ν(s)(X0) of the option is given by

ν(s)(X0) =
1

κrN−1 · · · r0

ln

{
−V (so)

0 (X0)

EN−1

[
e−κ(sN−1−rN−1)a∗N−1

]
· · ·E0

[
e−κ(s0−r0)a∗0

]} . (4.35)

In addition to pricing an option, the utility indifference approach also provides a natural

definition of a hedging strategy. A portion of the proceeds received from selling an option

at the start of the investment process would have been diverted to incremental investments

in the risky asset. Therefore, by comparing the optimal investments in the risky asset for

the portfolio without a position in the option
a∗0

rN−1 · · · r1

and with a short position in the

option a(so)∗
0 (X0), one is naturally led to define the hedge ratio ∆(s)(X0) of the option as

∆(s)(X0) =
1

X0

{
a

(so)∗
0 (X0)− a∗0

rN−1 · · · r1

}
. (4.36)

Recall that a∗0 and a(so)∗
0 (X0) correspond to Equations (4.17) and (4.29) respectively. Ob-

serve that, for an investor with the exponential utility function, both the utility indifference

price and hedge ratio are independent of the investor’s wealth.

4.3.4 Marginal Utility Indifference Price

Using the formula given by Equation (4.9), the marginal utility indifference price of an

option with payoff CN = c(XN) is

ν̃ =
G(W0, X0)

J ′(W0)
. (4.37)
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Consider the function

G(W0, X0) = E [U ′(WN)CN ] , (4.38)

where the expectation is taken with respect to the random variables s0, . . . , sN−1. Recall

that the wealth evolves according to Wn+1 = rnWn + (sn − rn) an. Moreover, note that

an =
a∗n

rN−1 · · · rn+1

is the optimal investment strategy for the portfolio selection problem

without an option, where a∗n satisfies Equation (4.17). In addition, the price of the risky as-

set is given byXn+1 = snXn. We evaluateG(W0, X0) by applying the following algorithm

backwards in time from period N − 1, which is given by

GN(WN , XN) = U ′(WN)CN (4.39)

and

GN−k(WN−k, XN−k) = EN−k [GN−k+1(WN−k+1, XN−k+1)] (4.40)

for k = 1, . . . , N .

Time Period N − 1

From Equation (4.40) at time period N − 1, we have

GN−1(WN−1, XN−1) = EN−1

[
κe−κWN c(XN)

]
= EN−1

[
κe−κ{rN−1WN−1+(sN−1−rN−1)aN−1}c(sN−1XN−1)

]
. (4.41)

Observe that the term in WN−1 can be taken out of the conditional expectation EN−1 and

that aN−1 = a∗N−1, where a∗N−1 satisfies Equation (4.17). Therefore, we shall express

GN−1(WN−1, XN−1) as

GN−1(WN−1, XN−1) = κe−κrN−1WN−1HN−1(XN−1), (4.42)

where

HN−1(XN−1) = EN−1

[
e−κ(sN−1−rN−1)a∗N−1c(sN−1XN−1)

]
. (4.43)
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Time Period N − k

Applying the algorithm (Equation (4.40)) recursively, we deduce that for the time period

N − k case in general,

GN−k(WN−k, XN−k) = κe−κrN−1···rN−kWN−kHN−k(XN−k), (4.44)

where

HN−k(XN−k) = EN−k
[
e−κ(sN−k−rN−k)a∗N−kHN−k+1(sN−kXN−k)

]
. (4.45)

Therefore, by applying the algorithm from k = 1 up to k = N , we obtain the function

G(W0, X0) = κe−κrN−1···r0W0H0(X0). (4.46)

In order to obtain J ′(W0), we set n = 0 in Equation (4.16) and differentiate it with respect

to W0. From Equation (4.37), the price of the option is thus given by

ν̃(X0) =
H0(X0)

rN−1 · · · r0EN−1

[
e−κ(sN−1−rN−1)a∗N−1

]
· · ·E0

[
e−κ(s0−r0)a∗0

] . (4.47)

Similar to the utility indifference price, observe that the marginal utility indifference price is

also independent of the investor’s wealth. However in this case, we do not have a definition

of the hedge ratio of the option.

4.3.5 Special Case of Binomial Price Process

Any good option pricing model must necessarily converge to the perfect replication model

under the appropriate assumptions. In our case, the benchmark for comparison is Cox

et al.’s (1979) binomial model. We make the following assumptions and show that the

utility indifference pricing model reduces to the binomial model. Assume that the price

of the risky asset follows a multiplicative binomial tree, that is, sn are independent and
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identically distributed random variables such that

sn =

{
u with probability q,

d with probability 1− q,
(4.48)

for n = 0, . . . , N − 1. Assume that the return of the risk-free asset is a constant, that is,

rn = r, (4.49)

where d < r < u. With these assumptions, we are able to solve for the optimal investments

and optimal value functions exactly. Consequently, explicit expressions for the utility in-

difference price and hedge ratio of the option are obtained and compared with those from

the binomial model.

Consider first the portfolio selection problem without the option position. From Equa-

tion (4.17), we obtain

q (u− r) e−κ(u−r)a∗n + (1− q) (d− r) e−κ(d−r)a∗n = 0 (4.50)

for n = 0, . . . , N − 1. Rearranging the above equation gives us

a∗n =
1

κ (u− d)
ln

{
q (1− p)
(1− q) p

}
, (4.51)

where

p =
r − d
u− d

and 1− p =
u− r
u− d

. (4.52)

It follows from Equation (4.15) that the optimal investment in the risky asset at the initial

time is

a0 =
1

rN−1κ (u− d)
ln

{
q (1− p)
(1− q) p

}
. (4.53)

Moreover, for all n = 0, . . . , N − 1,

En
[
e−κ(sn−rn)a∗n

]
= qe−κ(u−r)a∗n + (1− q) e−κ(d−r)a∗n . (4.54)
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Substituting Equation (4.51) into the above equation and simplifying,

En
[
e−κ(sn−rn)a∗n

]
=

(
1− q
1− p

)1−p(
q

p

)p
. (4.55)

Therefore, it follows from Equation (4.16) that the optimal value function at the initial time

is

J(W0) = −e−κrNW0

{(
1− q
1− p

)1−p(
q

p

)p}N

. (4.56)

Next, consider the portfolio selection problem with the option position. Solving this

problem requires the application of dynamic programming. The optimal investment a(so)∗
N−1

in the risky asset at time period N − 1 satisfies Equation (4.23), which is given by

q (u− r) e−κ
{

(u−r)a(so)∗N−1−Cu
}

+ (1− q) (d− r) e−κ
{

(d−r)a(so)∗N−1−Cd
}

= 0, (4.57)

where the option payoff is denoted by Cu = c(uXN−1) and Cd = c(dXN−1) corresponding

to an “up” and “down” movement in the price of the risky asset respectively. Note that

a
(so)∗
N−1 is dependent on XN−1, although we have written a(so)∗

N−1 instead of a(so)∗
N−1(XN−1) for

convenience. Rearranging the above equation gives us

a
(so)∗
N−1 =

1

κ (u− d)
ln

{
q (1− p)
(1− q) p

}
+
Cu − Cd
u− d

. (4.58)

Consequently, from Equation (4.24), the optimal value function at time period N − 1 is

V
(so)
N−1(XN−1) = −

[
qe
−κ

{
(u−r)a(so)∗N−1−Cu

}
+ (1− q) e−κ

{
(d−r)a(so)∗N−1−Cd

}]
= −eκ{pCu+(1−p)Cd}

(
1− q
1− p

)1−p(
q

p

)p
. (4.59)

At time period N − 2, substituting the above equation for V (so)
N−1(XN−1) into Equation

(4.27), the first order optimality condition for the optimal investment aN−2 = a
(so)∗
N−2 in the

risky asset becomes

EN−2

[
(sN−2 − rN−2) e−κ

{
rN−1(sN−2−rN−2)aN−2−[pCu+(1−p)Cd]

}]
= 0. (4.60)
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Here, Cu = c(uXN−1) = c(usN−2XN−2) and Cd = c(dXN−1) = c(dsN−2XN−2) depend

on sN−2 and XN−2. Observe that the above equation is equivalent to Equation (4.23) with

a change of variables from rN−1aN−2 to aN−1 and from pCu+(1− p)Cd to c(sN−1XN−1).

Therefore, we can deduce from our periodN−1 solution in Equation (4.58) that the period

N − 2 solution is

a
(so)∗
N−2 =

1

rκ (u− d)
ln

{
q (1− p)
(1− q) p

}
+

[pCuu + (1− p)Cdu]− [pCud + (1− p)Cdd]
r (u− d)

,

(4.61)

where Cuu = c(u2XN−2), Cdd = c(d2XN−2) and Cud = Cdu = c(udXN−2). In order

to determine the optimal value function, substitute Equation (4.59) into Equation (4.28) to

obtain

V
(so)
N−2(XN−2) = −EN−2

[
e−κ
{
rN−1(sN−2−rN−2)a

(so)∗
N−2−[pCu+(1−p)Cd]

}](
1− q
1− p

)1−p(
q

p

)p
.

(4.62)

We observe again that the above equation is equivalent to Equation (4.24), up to a constant

coefficient, with a change of variables from rN−1a
(so)∗
N−2 to a(so)∗

N−1 and from pCu + (1− p)Cd
to c(sN−1XN−1). Therefore, we deduce from Equation (4.59) that

V
(so)
N−2(XN−2) = −eκ

{
p[pCuu+(1−p)Cdu]+(1−p)[pCud+(1−p)Cdd]

} {(
1− q
1− p

)1−p(
q

p

)p}2

.

(4.63)

Proceeding recursively backwards in time, we are then able to deduce (similar to the

period N − 2 case) the optimal investment and optimal value function at any time period.

We state the following results. At the initial time, the optimal investment in the risky asset

is given explicitly as

a
(so)∗
0 (X0) =

1

rN−1κ (u− d)
ln

{
q (1− p)
(1− q) p

}
+

1

rN−1 (u− d)

×
N−1∑
i=0

(
N − 1

i

)
pi (1− p)N−1−i

[
c(ui+1dN−1−iX0)− c(uidN−iX0)

]
,(4.64)

where
(
N − 1

i

)
=

(N − 1)!

i! (N − 1− i)!
is the binomial coefficient. Moreover, the optimal
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value function is

V
(so)

0 (X0) = − exp

{
κ

N∑
i=0

(
N

i

)
pi (1− p)N−i c(uidN−iX0)

}{(
1− q
1− p

)1−p(
q

p

)p}N

(4.65)

or

J (so)(W0, X0) = e−κr
NW0V

(so)
0 (X0). (4.66)

Using the definitions of the utility indifference price and hedge from Equations (4.35)

and (4.36) respectively, we show that

ν(s)(X0) =
1

rN

N∑
i=0

(
N

i

)
pi (1− p)N−i c(uidN−iX0) (4.67)

and

∆(s)(X0) =
1

rN−1 (u− d)X0

×
N−1∑
i=0

(
N − 1

i

)
pi (1− p)N−1−i

[
c(ui+1dN−1−iX0)− c(uidN−iX0)

]
. (4.68)

In this special case where the price of the risky asset follows a binomial tree and the risk-

free asset provides a constant return, we note that the utility indifference selling price and

hedge do not depend on the level of risk aversion κ of the investor. This observation is con-

sistent with the binomial model where it is possible to perfectly replicate the payoff of the

option. Since the risk associated with the option can be perfectly hedged away, the investor

is not risk averse to holding a position in the option. Therefore, as one would expect, the

utility indifference selling price and hedge are equivalent to the perfect replication price

(Equation (1.8)) and hedge (Equation (1.9)) from the binomial model. In addition, it can

be shown that the utility indifference buying price and hedge are also equal to the perfect

replication price and hedge.

We now proceed to show that the marginal utility indifference price is also equivalent

to the perfect replication price. Recall that the pricing formula is given by Equation (4.47).

We need to determine H0(X0) via the recursive algorithm in Equation (4.45). Starting at
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time period N − 1, from Equation (4.43), we have

HN−1(XN−1) = qe−κ(u−r)a∗N−1Cu + (1− q) e−κ(d−r)a∗N−1Cd, (4.69)

where Cu = c(uXN−1) and Cd = c(dXN−1). Recall that a∗N−1 corresponds to the optimal

investment strategy for the portfolio without an option position. Substituting in a∗N−1 from

Equation (4.51) and simplifying,

HN−1(XN−1) = {pCu + (1− p)Cd}
(

1− q
1− p

)1−p(
q

p

)p
. (4.70)

Proceeding to time period N − 2 and comparing Equation (4.45) with Equation (4.43), we

note that HN−2(XN−2) is of the same form as HN−1(XN−1) up to a constant coefficient.

In general, HN−k(XN−k) is of the same form as HN−k+1(XN−k+1), which allows us to

immediately deduce that

H0(X0) =

{
N∑
i=0

(
N

i

)
pi (1− p)N−i c(uidN−iX0)

}{(
1− q
1− p

)1−p(
q

p

)p}N

. (4.71)

Substituting the above expression for H0(X0) and Equation (4.55) into the pricing formula

given by Equation (4.47), we obtain

ν̃(X0) =
1

rN

N∑
i=0

(
N

i

)
pi (1− p)N−i c(uidN−iX0), (4.72)

which is as required.

4.4 Power Utility Function

Consider an investor with a power utility function of the form

U(W ) =
1

γ
W γ, (4.73)
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where γ < 1, γ 6= 0. In this case, it is convenient to express the investment in the risky asset

as a fraction of wealth. More specifically, let an = AnWn, whereAn denotes the proportion

of wealth invested in the risky asset at time period n. Therefore, Equation (4.11) becomes

Wn+1 = {rn + (sn − rn)An}Wn (4.74)

for n = 0, . . . , N − 1. With this parametrisation, the investor aims to maximise expected

utility of terminal wealth by choosing the proportions of wealth invested in the risky asset

A0, . . . , AN−1 optimally.

4.4.1 Portfolio Selection without Option Position

Consider the portfolio selection problem without a position in the option. Given an initial

wealth W0, the investor’s optimal value function J(W0) is defined to be

J(W0) = maxE [U(WN)] , (4.75)

where the maximisation is over the proportions of wealth A0, . . . , AN−1 invested in the

risky asset and the expectation is taken with respect to the random variables s0, . . . , sN−1.

Recall that this is a special case of the portfolio selection problem (with one risky asset) that

we previously analysed in Section 1.5.4. The optimal value function J(W0) defined above

is equivalent to Equation (1.66) with M = 1. Therefore, we quote directly from the results

of the analysis found in Equations (1.73) and (1.75). At time period n (n = 0, . . . , N − 1),

the optimal proportion of wealth invested in the risky asset is

An = A∗n (4.76)

and the optimal value function is

Jn(Wn) =
1

γ
W γ
nEN−1

[{
rN−1 + (sN−1 − rN−1)A∗N−1

}γ]
×EN−2

[{
rN−2 + (sN−2 − rN−2)A∗N−2

}γ]
× · · · × En [{rn + (sn − rn)A∗n}

γ] , (4.77)
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where A∗n satisfies the equation

En
[
(sn − rn) {rn + (sn − rn)A∗n}

γ−1] = 0. (4.78)

We obtain J(W0) by setting n = 0 in Equation (4.77).

4.4.2 Portfolio Selection with Option Position

Consider now the investor with a short position in the option with payoff CN = c(XN).

The optimal value function is defined to be

J (so)(W0, X0) = maxE [U(WN − CN)] , (4.79)

where the maximisation is over the proportions of wealth A0, . . . , AN−1 invested in the

risky asset and the expectation is taken with respect to the random variables s0, . . . , sN−1.

The dynamic programming algorithm for the portfolio selection problem with a short

position in the option, which starts at period N − 1 and proceeds backwards recursively in

time, is

J
(so)
N (WN , XN) = U(WN − CN) (4.80)

and

J
(so)
N−k(WN−k, XN−k) = maxEN−k

[
J

(so)
N−k+1(WN−k+1, XN−k+1)

]
, (4.81)

for k = 1, . . . , N . The conditional expectation operator EN−k is taken with respect to the

random variable sN−k given the information at time period N − k and the maximisation is

over the proportion of wealth AN−k invested in the risky asset.

Time Period N − 1

From Equations (4.74) and (4.81), the optimal value function at time period N − 1 is

J
(so)
N−1(WN−1, XN−1) = maxEN−1

[
1

γ
{WN − CN}γ

]
= maxEN−1

[
1

γ

{
[rN−1 + (sN−1 − rN−1)AN−1]WN−1 − c(sN−1XN−1)

}γ]
. (4.82)
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Note that, unlike the case of the exponential utility function, the wealth WN−1 does not

factorise out of the conditional expectation EN−1 and so it is not possible to reduce the

problem by one dimension. Taking the partial derivative of J (so)
N−1 with respect to AN−1, the

first order optimality condition
∂J

(so)
N−1

∂AN−1

= 0 is given by

EN−1

[
(sN−1 − rN−1)

{
[rN−1 + (sN−1 − rN−1)AN−1]WN−1 − c(sN−1XN−1)

}γ−1
]

= 0.

(4.83)

In general, one will solve this equation numerically. In this case, observe that the optimal

proportion invested in the risky asset depends on both the wealth WN−1 and price of the

risky asset XN−1. Since the solution depends on two state variables instead of one, it will

typically be more difficult to solve this equation numerically as compared to the case of

the exponential utility function (see Equation(4.23)). Suppose that a solution to the above

equation exists and is of the form AN−1 = A
(so)∗
N−1(WN−1, XN−1), where A(so)∗

N−1 denotes the

optimal investment strategy for the portfolio selection problem with a short position in the

option. Consequently, the optimal value function is

J
(so)
N−1(WN−1, XN−1) = EN−1

[
1

γ

{[
rN−1 + (sN−1 − rN−1)A

(so)∗
N−1

]
WN−1

−c(sN−1XN−1)
}γ]

. (4.84)

For convenience, we have written A(so)∗
N−1 instead of A(so)∗

N−1(WN−1, XN−1).

Time Period N − 2

At time period N − 2, the optimal value function is

J
(so)
N−2(WN−2, XN−2) = maxEN−2

[
J

(so)
N−1(WN−1, XN−1)

]
. (4.85)
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Since WN−1 = {rN−2 + (sN−2 − rN−2)AN−2}WN−2, the first order optimality condition
∂J

(so)
N−2

∂AN−2

= 0 gives us the equation

EN−2

[
(sN−2 − rN−2)

∂J
(so)
N−1(WN−1, XN−1)

∂WN−1

]
= 0. (4.86)

Assuming that the optimal investment strategy satisfying the above equation is of the form

AN−2 = A
(so)∗
N−2(WN−2, XN−2), the optimal value function is

J
(so)
N−2(WN−2, XN−2)

= EN−2

[
J

(so)
N−1

({
rN−2 + (sN−2 − rN−2)A

(so)∗
N−2

}
WN−2, sN−2XN−2

)]
. (4.87)

Time Period N − k

Proceeding in a similar way, we deduce that at time period N − k (k = 2, . . . , N ), the

optimal proportion invested in the risky asset AN−k = A
(so)∗
N−k(WN−k, XN−k) satisfies the

equation

EN−k

[
(sN−k − rN−k)

∂J
(so)
N−k+1(WN−k+1, XN−k+1)

∂WN−k+1

]
= 0. (4.88)

Furthermore, the optimal value function is given by

J
(so)
N−k(WN−k, XN−k)

= EN−k
[
J

(so)
N−k+1

({
rN−k + (sN−k − rN−k)A(so)∗

N−k

}
WN−k, sN−kXN−k

)]
. (4.89)

Therefore, at k = N , we obtain via dynamic programming the optimal proportion invested

in the risky asset A0 = A
(so)∗
0 (W0, X0) and the optimal value function J (so)(W0, X0) =

J
(so)
0 (W0, X0) at the initial time.
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4.4.3 Utility Indifference Price and Hedge

From the definition in Equation (4.3), the utility indifference selling price ν(s)(W0, X0) of

the option satisfies the equation

J (so)
(
W0 + ν(s), X0

)
= J(W0), (4.90)

where the optimal value functions J and J (so) are given by Equations (4.77) and (4.89)

respectively.

In addition to the option price, the utility indifference approach also provides a natural

hedging strategy. By comparing the optimal proportionals invested in the risky asset for the

portfolio selection problem without a position in the option A∗0 and with a short position in

the option A(so)∗
0 (W0 + ν(s), X0), one is led to a natural definition of a hedge ∆(s)(W0, X0)

for the option, which is defined to be

∆(s)(W0, X0) =
1

X0

{(
W0 + ν(s)

)
A

(so)∗
0 (W0 + ν(s), X0)−W0A

∗
0

}
. (4.91)

In other words, the hedge ratio is given by the incremental holdings in the risky asset

between the portfolio selection problem with and without a position in the option. Recall

that A∗0 and A(so)∗
0 (W0, X0) correspond to Equations (4.78) and (4.88) respectively. Note

that, unlike the case of the exponential utility function, the option price and hedge ratio

generally depend on both the price of the risky asset as well as the wealth of the investor.

4.4.4 Marginal Utility Indifference Price

Recall from Equation (4.9) that the marginal utility indifference price of an option with

payoff CN = c(XN) is given by

ν̃ =
G(W0, X0)

J ′(W0)
, (4.92)

where

G(W0, X0) = E [U ′(WN)CN ] . (4.93)
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Recall that the wealth evolves according to Wn+1 = {rn + (sn − rn)An}Wn. In this case,

An = A∗n is the optimal investment strategy for the portfolio without an option position,

where A∗n satisfies Equation (4.78). Moreover, the price of the risky asset is given by

Xn+1 = snXn. In order to obtain G(W0, X0), we work backwards in time from period

N − 1 using the following algorithm:

GN(WN , XN) = U ′(WN)CN (4.94)

and

GN−k(WN−k, XN−k) = EN−k [GN−k+1(WN−k+1, XN−k+1)] (4.95)

for k = 1, . . . , N .

Time Period N − 1

From Equation (4.95) at time period N − 1, we have

GN−1(WN−1, XN−1) = EN−1

[
W γ−1
N c(XN)

]
= EN−1

[
{rN−1 + (sN−1 − rN−1)AN−1}γ−1W γ−1

N−1c(sN−1XN−1)
]
. (4.96)

Observe that the term in WN−1 can be taken out of the conditional expectation EN−1 and

that AN−1 = A∗N−1, where A∗N−1 satisfies Equation (4.78). Therefore, we shall express

GN−1(WN−1, XN−1) as

GN−1(WN−1, XN−1) = W γ−1
N−1HN−1(XN−1), (4.97)

where

HN−1(XN−1) = EN−1

[{
rN−1 + (sN−1 − rN−1)A∗N−1

}γ−1
c(sN−1XN−1)

]
. (4.98)
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Time Period N − k

Applying the algorithm (Equation (4.95)) recursively, we deduce that for the time period

N − k case in general,

GN−k(WN−k, XN−k) = W γ−1
N−kHN−k(XN−k), (4.99)

where

HN−k(XN−k) = EN−k
[{
rN−k + (sN−k − rN−k)A∗N−k

}γ−1
HN−k+1(sN−kXN−k)

]
.

(4.100)

Therefore, by applying the algorithm from k = 1 up to k = N , we obtain the function

G(W0, X0) = W γ−1
0 H0(X0). (4.101)

In order to obtain J ′(W0), we set n = 0 in Equation (4.77) and differentiate it with respect

to W0. From Equation (4.92), the price of the option is

ν̃(X0) =
H0(X0)

EN−1

[{
rN−1 + (sN−1 − rN−1)A∗N−1

}γ] · · ·E0

[
{r0 + (s0 − r0)A∗0}

γ] .
(4.102)

Observe that, unlike the utility indifference price, the marginal utility indifference price of

the option is independent of the investor’s wealth.

4.4.5 Special Case of Binomial Price Process

Similar to Section 4.3.5, assume that the risky asset follows a binomial price process and

the risk-free asset has a constant return. Under these assumptions, consider the portfolio

selection problem without a position in the option. From Equation (4.78), we obtain

q (u− r) {r + (u− r)A∗n}
γ−1 + (1− q) (d− r) {r + (d− r)A∗n}

γ−1 = 0 (4.103)
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for n = 0, . . . , N − 1. Simplifying the above equation, the optimal investment strategy is

A∗n =
r (β − 1)

(u− d) (1− p+ pβ)
, (4.104)

where we have defined

p =
r − d
u− d

, 1− p =
u− r
u− d

and β =

{
q(1− p)
(1− q)p

} 1
1−γ

. (4.105)

From Equation (4.77), we consider the general expression

En [{rn + (sn − rn)A∗n}
γ] = q {r + (u− r)A∗n}

γ + (1− q) {r + (d− r)A∗n}
γ . (4.106)

Using A∗n from Equation (4.104), we simplify

En [{rn + (sn − rn)A∗n}
γ] = rγ (1− p+ pβ)1−γ

(
1− q
1− p

)
(4.107)

and conclude that the optimal value function is

J(W0) =
1

γ
W γ

0

{
rγ (1− p+ pβ)1−γ

(
1− q
1− p

)}N
. (4.108)

Next, we consider the portfolio selection problem with a short position in the option.

At time period N − 1, the optimal proportion invested in the risky asset A(so)∗
N−1 satisfies

Equation (4.83), which is given by

q (u− r)
{[
r + (u− r)A(so)∗

N−1

]
WN−1 − Cu

}γ−1

+ (1− q) (d− r)
{[
r + (d− r)A(so)∗

N−1

]
WN−1 − Cd

}γ−1

= 0, (4.109)

where Cu = c(uXN−1) and Cd = c(dXN−1). Rearranging the above equation,

A
(so)∗
N−1 =

r (β − 1)WN−1 + Cu − βCd
(u− d) (1− p+ pβ)WN−1

(4.110)
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Substituting the above expression for A(so)∗
N−1 into Equation (4.84) and simplifying, the opti-

mal value function is

J
(so)
N−1(WN−1, XN−1) =

1

γ

{
WN−1 −

pCu + (1− p)Cd
r

}γ
rγ (1− p+ pβ)1−γ

(
1− q
1− p

)
.

(4.111)

Comparing J (so)
N−1(WN−1, XN−1) with J (so)

N (WN , XN) =
1

γ
{WN − CN}γ , we note that they

are equivalent (up to a constant coefficient) with a change of variables from WN to WN−1

and fromCN to
pCu + (1− p)Cd

r
. Therefore, as we apply the dynamic programming algo-

rithm to determine the optimal value function recursively, we are in fact solving a problem

at each time step that is equivalent (up to a constant coefficient) to the one at period N − 1

with an appropriate change of variables. Thus, we immediately deduce that the optimal

value function at the initial time is

J
(so)
0 (W0, X0) =

1

γ

{
W0 −

1

rN

N∑
i=0

(
N

i

)
pi (1− p)N−i c(uidN−iX0)

}γ

×
{
rγ (1− p+ pβ)1−γ

(
1− q
1− p

)}N
. (4.112)

In addition, the optimal proportion invested in the risky asset is

A
(so)∗
0 (W0, X0) =

1

(u− d) (1− p+ pβ)W0

{
r (β − 1)W0

+
1

rN−1

N−1∑
i=0

(
N − 1

i

)
pi (1− p)N−1−i c(ui+1dN−1−iX0)

− β

rN−1

N−1∑
i=0

(
N − 1

i

)
pi (1− p)N−1−i c(uidN−iX0)

}
. (4.113)

Using the definition of the utility indifference price and hedge as given in Equations

(4.90) and (4.91) respectively, we show that

ν(s)(X0) =
1

rN

N∑
i=0

(
N

i

)
pi (1− p)N−i c(uidN−iX0) (4.114)
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and

∆(s)(X0) =
1

rN−1 (u− d)X0

×
N−1∑
i=0

(
N − 1

i

)
pi (1− p)N−1−i

[
c(ui+1dN−1−iX0)− c(uidN−iX0)

]
. (4.115)

In this special case, since it is possible to perfectly replicate the option, observe that the

utility indifference selling price and hedge are no longer dependent on the investor’s wealth

and level of risk aversion. As expected, the results that we obtain are consistent with the

option price and hedge from the binomial model. Note that we will achieve the same results

for the utility indifference buying price and hedge.

We now proceed to show that the marginal utility indifference price is also equivalent to

the perfect replication price. Recall that the pricing formula is given by Equation (4.102).

We need to determine H0(X0) via the recursive algorithm in Equation (4.100). Starting at

time period N − 1, from Equation (4.98), we have

HN−1(XN−1) = q
{
r + (u− r)A∗N−1

}γ−1
Cu + (1− q)

{
r + (d− r)A∗N−1

}γ−1
Cd,

(4.116)

where Cu = c(uXN−1) and Cd = c(dXN−1). Substituting in A∗N−1 from Equation (4.104)

and simplifying,

HN−1(XN−1) =

{
pCu + (1− p)Cd

r

}
rγ (1− p+ pβ)1−γ

(
1− q
1− p

)
. (4.117)

Proceeding to time periodN−2 and comparing Equation (4.100) with Equation (4.98), we

note that HN−2(XN−2) is of the same form as HN−1(XN−1) up to a constant coefficient.

In general, HN−k(XN−k) is of the same form as HN−k+1(XN−k+1), which allows us to

immediately deduce that

H0(X0) =

{
1

rN

N∑
i=0

(
N

i

)
pi (1− p)N−i c(uidN−iX0)

}

×
{
rγ (1− p+ pβ)1−γ

(
1− q
1− p

)}N
. (4.118)
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Substituting the above expression forH0(X0) and Equation (4.107) into the pricing formula

given by Equation (4.102), we obtain

ν̃(X0) =
1

rN

N∑
i=0

(
N

i

)
pi (1− p)N−i c(uidN−iX0), (4.119)

which is as required.

In the special case where the risky asset follows a binomial price process, we have

shown that the utility indifference price and marginal utility indifference price reduce to

the perfect replication price. The advantage of utility indifference pricing and marginal

utility indifference pricing in our discrete time model is that they are valid for an underlying

risky asset with a general price process. In the next section, we consider an example where

the price of the risky asset follows a multiplicative trinomial tree and perfect replication

is no longer possible. We present an approximate replication approach to pricing options

in the trinomial tree. Comparisons are then made between the prices of a European call

option computed from this approximate replication approach and the utility maximisation

approach (for an investor with the exponential utility function).

4.5 Trinomial Price Process

Recall that sn and rn denote one plus the returns of the risky and risk-free assets from time

period n to n + 1 respectively. Assume that sn (n = 0, . . . , N − 1) are independent and

identically distributed random variables such that

sn =


u with probability qu,

h with probability qh,

d with probability qd.

(4.120)

In other words, the price of the risky asset is assumed to follow a multiplicative trinomial

tree. We also assume that ud = h in order to obtain a re-combining tree. In addition,

assume that

rn = r (4.121)



4.5 Trinomial Price Process 146

for n = 0, . . . , N − 1, where d < r < u. In other words, the risk-free asset is assumed

to have a constant return. For a comparison with utility indifference pricing and marginal

utility indifference pricing, we present an alternative pricing and hedging strategy that ap-

proximately replicates the option payoff.

4.5.1 Approximate Replication with Minimum Variance

We start by considering a one-period model, where the initial price of the risky asset is X .

The price of the risky asset at the end of the time period is represented by the diagram

�
�
�
�
�
�

@
@
@
@
@
@

s

s

s

s

X

uX with probability qu,

hX with probability qh,

dX with probability qd.

Consider a European option with initial value C, which is to be determined. Let Cu, Ch
and Cd be its end-of-period value when the corresponding price of the risky asset is uX ,

hX and dX respectively. Assuming that the option expires at the end of the period with a

payoff function c that depends on the price of the underlying risky asset, we have

�
�
�
�
�
�

@
@
@
@
@
@

s

s

s

s

C

Cu = c(uX) with probability qu,

Ch = c(hX) with probability qh,

Cd = c(dX) with probability qd.

Construct a portfolio consisting of B dollars of the risk-free asset and ∆ shares of the
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risky asset. The initial cost of setting up this portfolio is B + ∆X . At the end of the time

period, its value will be

�
�
�
�
�
�

@
@
@
@
@
@

s

s

s

s

B + ∆X

rB + ∆uX with probability qu,

rB + ∆hX with probability qh,

rB + ∆dX with probability qd.

Unlike the binomial model, it is not possible to form a portfolio that perfectly replicates

the option payoff at expiration as it involves solving a system of three equations with only

two unknowns B and ∆. Any choice of B and ∆ inevitably results in a replication error

ε, which we define as the difference between the end-of-period values of the portfolio and

the option. A natural alternative strategy will be to construct an approximately replicating

portfolio such that Var [ε] is minimised together with the constraint E [ε] = 0. Equivalently,

we will choose B and ∆ such that E [ε2] is minimised. Consider

E
[
ε2
]

= qu (rB + ∆uX − Cu)2 + qh (rB + ∆hX − Ch)2 + qd (rB + ∆dX − Cd)2 .

(4.122)

From the first order conditions
∂E [ε2]

∂B
= 0 and

∂E [ε2]

∂∆
= 0, we obtain the equations

rB + (quu+ qhh+ qdd) ∆X = (quCu + qhCh + qdCd) (4.123)

and

(quu+ qhh+ qdd) rB +
(
quu

2 + qhh
2 + qdd

2
)

∆X = (quuCu + qhhCh + qddCd) .

(4.124)

For convenience, we define the constant ζ = quqh (u− h)2 +quqd (u− d)2 +qhqd (h− d)2.
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Solving Equations (4.123) and (4.124) simultaneously, we find that

∆ =
quαuCu + qhαhCh + qdαdCd

X
, (4.125)

where

αu =
{
qh (u− h) + qd (u− d)

}
/ζ, (4.126)

αh =
{
−qu (u− h) + qd (h− d)

}
/ζ, (4.127)

αd =
{
−qu (u− d)− qh (h− d)

}
/ζ. (4.128)

In addition, we have

B =
quβuCu + qhβhCh + qdβdCd

r
, (4.129)

where

βu =
{
−qhh (u− h)− qdd (u− d)

}
/ζ, (4.130)

βh =
{
quu (u− h)− qdd (h− d)

}
/ζ, (4.131)

βd =
{
quu (u− d) + qhh (h− d)

}
/ζ. (4.132)

It can be shown that E [ε2] is a minimum at these values of ∆ and B. Moreover, it

can also be verified that the constraint E [ε] = 0 is satisfied. This constraint implies that

the expected end-of-period values of the portfolio and the option are equal. Therefore, we

assume that one will expect the initial values of the portfolio and the option to be equal,

that is,

C = B + ∆X. (4.133)

Substituting in Equations (4.125) and (4.129), we obtain

C =
quηuCu + qhηhCh + qdηdCd

r
, (4.134)
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where

ηu =
{
qh (u− h) (r − h) + qd (u− d) (r − d)

}
/ζ, (4.135)

ηh =
{
qu (u− h) (u− r) + qd (h− d) (r − d)

}
/ζ, (4.136)

ηd =
{
qu (u− d) (u− r) + qh (h− d) (h− r)

}
/ζ. (4.137)

Note that if we set qh = 0, the trinomial tree reduces to the binomial tree and our results

for B, ∆ and C are consistent with the binomial model.

This one-period model can be easily extended to the multi-period case (similar to the

standard computation of the binomial model). Suppose we have a N -period model and

an option that expires at the end of N periods. At the expiration date, the price of the

option will be equal to its payoff. Therefore, starting from period N − 1 and working

recursively backwards in time, the price of the option can be computed from repeated

applications of Equation (4.134). In addition, the hedge ratio is obtained from Equation

(4.125). Having presented an approximate replication approach that minimises the variance

of the replication error with zero mean error, we proceed to compare this approach with the

utility maximisation approach in a numerical example.

First, we recall that the utility indifference selling price and hedge are given by Equa-

tions (4.35) and (4.36) respectively. For the portfolio with a short position in the option, we

are required to determine the optimal investment in the risky asset a(so)∗
0 (X0) and the opti-

mal value function V (so)
0 (X0). They are obtained by solving Equations (4.23) and (4.24) at

periodN−1, followed by Equations (4.29) and (4.30) recursively backwards in time. Note

that a straightforward modification to the aforementioned equations will give us the utility

indifference buying price and hedge. We also recall that the marginal utility indifference

price is given by Equation (4.47), where H0(X0) is obtained by solving Equations (4.43)

and (4.45) recursively backwards in time.

4.5.2 Results

Consider aN -period option pricing model and an investor with the exponential utility func-

tion U(W ) = −e−κW , κ > 0. We wish to value a European call option expiring at the
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end of N periods (at time T ) with a strike price of K. The payoff function is given by

c(XN) = max(XN −K, 0). Assume that the price of the risky asset follows a multiplica-

tive trinomial tree with an initial price of X0. Recall that the parameters of the trinomial

tree are u, h, d, qu, qh, qd (see Equation (4.120)) and one plus the return of the risk-free asset

is a constant r (see Equation (4.121)), where d < r < u.

In order to specify the parameters of the trinomial tree, we assume that the trinomial

price process approximates the geometric Brownian motion

dX(t) = αX(t)dt+ σX(t)dZ(t) (4.138)

with constant drift α and volatility σ, where X(t) is the price of the risky asset and Z(t) is

a standard Brownian motion. Suppose that each time period between n and n + 1 has an

interval of δt =
T

N
. Then, we have

ln

[
X(t+ δt)

X(t)

]
=

(
α− 1

2
σ2

)
δt+ σ {Z(t+ δt)− Z(t)} , (4.139)

which is a normal random variable with mean
(
α− 1

2
σ2

)
δt and variance σ2δt. The

parameters of the trinomial tree are chosen so that

E [ln sn] = qu lnu+ qh lnh+ qd ln d =

(
α− 1

2
σ2

)
δt (4.140)

and

Var [ln sn] = qu (lnu)2 + qh (lnh)2 + qd (ln d)2 + o(δt) = σ2δt (4.141)

for a small δt. Recall that ud = h for a re-combining tree and qu + qh + qd = 1. We use

the parametrisation by Kamrad and Ritchken (1991), who proposed that:

u = eθσ
√
δt, h = 1, d =

1

u
,

qu =
1

2θ2
+

1

2θσ

(
α− 1

2
σ2

)√
δt, qh = 1− 1

θ2
, qd =

1

2θ2
− 1

2θσ

(
α− 1

2
σ2

)√
δt,

where θ ≥ 1 is a stretch parameter that can be chosen to determine the jump sizes and
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probabilities of the trinomial tree. Observe that when θ = 1, qh = 0 and the trinomial tree

reduces to a binomial tree. In addition, let r = eRδt, where R is the annualised risk-free

rate. Choose the following parameter values:

T = 1 (year), N = 6, X0 = 100, α = 0.15, σ = 0.25, R = 0.1, θ =

√
3

2
.

We compute and compare the option prices from the utility maximisation approach

and the approximate replication approach for various values of the investor’s risk aversion

κ (= 0.01, 0.1, 1) and the strike K (= 80, 90, 100, 110, 120). The results are presented

in Table 4.1. The minimum variance price is observed to be just slightly lower than the

marginal utility indifference price. Moreover, both of these prices lie between the utility

indifference buying (i.e. bid) and selling (i.e. ask) price. When the investor has low risk

aversion (κ = 0.01), the utility indifference bid-ask spread is small. As the level of risk

aversion increases, the utility indifference bid price decreases, the ask price increases and

the bid-ask spread widens. This result is intuitive since one would expect an investor who is

more risk averse to purchase the option at a lower price and sell at a higher price. However,

we also observe that the marginal utility indifference price does not vary with the level of

risk aversion. An explanation for this observation is to recognise that the source of risk to

the investor arises from an option position that cannot be perfectly replicated. Furthermore,

marginal utility indifference pricing corresponds to holding an infinitesimal position in the

option, which implies that the investor faces an infinitesimal level of risk. Therefore, in this

case, the marginal utility indifference price is not influenced by the investor’s aversion to

risk. By construction, the minimum variance price is independent of the investor’s level of

risk aversion.

In this chapter, we have developed utility indifference pricing and marginal utility in-

difference pricing in a discrete time model without transaction costs. We showed that both

the utility indifference price and marginal utility indifference price reduce to the perfect

replication price when the underlying risky asset is assumed to follow a binomial price

process. In the case where the price of the risky asset is assumed to follow a trinomial tree,

we compared the utility maximisation approach with an approximate replication approach

that minimised the variance of the replication error. In the next chapter, we will investi-
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Table 4.1: Option Prices in a Trinomial Tree

Utility Bid=Utility indifference buying price; Utility Ask=Utility indifference sell-
ing price; Marginal Utility=Marginal utility indifference price; Minimum Vari-
ance=Price from minimising variance of replication error.

Strike Utility Bid Utility Ask Marginal Utility Minimum Variance

κ = 0.01
80 28.593 28.601 28.597 28.594
90 21.144 21.162 21.153 21.148

100 14.774 14.809 14.792 14.784
110 10.105 10.141 10.123 10.115
120 6.601 6.635 6.618 6.610

κ = 0.1
80 28.557 28.635 28.597 28.594
90 21.058 21.242 21.153 21.148

100 14.604 14.959 14.792 14.784
110 9.934 10.294 10.123 10.115
120 6.442 6.778 6.618 6.610

κ = 1
80 28.209 28.890 28.597 28.594
90 20.092 21.814 21.153 21.148

100 12.378 15.783 14.792 14.784
110 7.745 11.288 10.123 10.115
120 4.506 7.689 6.618 6.610

gate utility indifference pricing and marginal utility indifference pricing with proportional

transaction costs.
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Chapter 5

Indifference Option Pricing with

Transaction Costs

In this chapter, we extend the utility indifference pricing and marginal utility indifference

pricing approach from Chapter 4 to incorporate proportional transaction costs. We focus

on an investor with the exponential utility function and use some of the results from our

previous analysis of the portfolio selection problem (without an option position) in Chapter

2. A numerical example is presented for the case where the underlying risky asset follows

a binomial price process.

Recall that the general definitions of the utility indifference selling price ν(s), utility

indifference buying price ν(b) and marginal utility indifference price ν̃ are given by Equa-

tions (4.3), (4.5) and (4.9) respectively. In order to obtain the utility indifference price of

an option, we are required to determine the optimal value functions for the portfolios with

and without a position in the option. On the other hand, we only need to consider the port-

folio without an option position for the marginal utility indifference price. Therefore, let us

recall the market model with proportional transaction costs as described in Section 2.1.

5.1 Market Model with Transaction Costs

Consider a multi-period portfolio selection model withN periods. Suppose that time period

n (n = 0, 1, . . . , N −1, N ) indexes discrete time t0 < t1 < . . . < tN−1 < tN , where t0 = 0
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is the initial time and tN = T is the terminal time. Assume an investor who holds a

portfolio that is divided between one risk-free asset and one risky asset, where the price of

each asset evolves in discrete time. A cost that is proportional to the value of the transaction

is incurred each time the investor buys or sells the risky asset. The investor’s objective is to

maximise the expected utility of terminal wealth by rebalancing the portfolio optimally at

each step of the investment process.

At time period n, letWn denote the wealth of the portfolio and let an be the dollar value

of the risky asset inherited from the previous period. Therefore, the corresponding value

of the risk-free asset is Wn − an. The investor rebalances the portfolio at time period n

by buying ln or selling mn dollars of the risky asset. Suppose that sn denotes one plus the

(random) return of the risky asset from time period n to n+ 1. Thus, the value of the risky

asset at time period n+ 1 inherited from period n is

an+1 = sn (an + ln −mn) (5.1)

for n = 0, . . . , N − 1.

Furthermore, let λn and µn be the proportion costs of buying and selling the risky asset

respectively at time period n. These costs reduce the wealth invested in the risk-free asset,

resulting in a value of Wn − (an + ln −mn)− λnln − µnmn. Suppose that rn denotes one

plus the (sure) return of the risk-free asset from time period n to n + 1. The investor’s

wealth at time period n+ 1 is then given by

Wn+1 = rnWn + (sn − rn) (an + ln −mn)− rnλnln − rnµnmn (5.2)

for n = 0, . . . , N − 1. It is convenient to write

Wn+1 = rnWn + Fn, (5.3)

where

Fn = (sn − rn)(an + ln −mn)− rnλnln − rnµnmn. (5.4)

Assume that simultaneous buying and selling of the risky asset is not allowed, since
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it will not be optimal due to the higher costs as compared to only buying or selling the

asset. The investor is thus left with three possible choices, which is to buy, to sell or not to

transact the risky asset. The investor’s decision at each time step will affect the wealth and

risky asset inherited at the next time step.

Let Xn be the price of one unit of the risky asset at time period n. The price of the risky

asset at period n+ 1 is given by

Xn+1 = snXn (5.5)

for n = 0, . . . , N − 1. Consider a European option, expiring at the end of N periods

(at time T ) and yielding a payoff CN = c(XN) that depends on the price of the risky

asset XN at expiry. Suppose that the investor takes a position in the option at the initial

time and wishes to determine its value. In the presence of transaction costs, we adopt

the utility maximisation approach to price the option. This is an extension of the utility

indifference pricing and marginal utility indifference pricing approach from Chapter 4, with

the inclusion of proportional transaction costs. In order to determine the option prices, we

are required to solve the portfolio selection problem with and without a position in the

option.

We focus on the case of an investor with constant absolute risk aversion (i.e. exponential

utility function). Assume that the investor’s utility of wealth is

U(W ) = −e−κW , (5.6)

where κ > 0 is the coefficient of absolute risk aversion.

5.2 Portfolio Selection with Option Position

Consider the portfolio selection problem where the investor sells a European option at the

initial time. The option expires at the end of N periods with payoff CN = c(XN). The

optimal value function is defined as

J (so)(W0, a0, X0) = maxE [U(WN − CN)] , (5.7)
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where the maximisation is over the investments (l0,m0), . . . , (lN−1,mN−1) in the risky

asset and the expectation is taken with respect to the random variables s0, . . . , sN−1. Recall

that the superscript “so” denotes selling an option at the initial time.

The method that we adopt to solve for the optimal investment strategy and optimal

value function is similar to the portfolio selection problem without the option position (see

Section 2.2). Specifically, dynamic programming is again applied to reduce the original

problem to a sequence of more manageable sub-problems. However, compared to the case

of the portfolio without a position in the option, the optimal value function now depends

additionally on the price of the risky asset due to the option payoff. This additional state

variable generally makes the dynamic programming algorithm more difficult to solve. The

dynamic programming algorithm, which starts at period N − 1 and proceeds backwards in

time, is given as

J
(so)
N (WN , aN , XN) = U(WN − CN) (5.8)

and

J
(so)
N−k(WN−k, aN−k, XN−k) = maxEN−k

[
J

(so)
N−k+1(WN−k+1, aN−k+1, XN−k+1)

]
(5.9)

for k = 1, . . . , N . Here, the maximisation is over the investment (lN−k,mN−k) in the risky

asset and EN−k is the conditional expectation with respect to the random variable sN−k
given WN−k, aN−k and XN−k.

Time Period N − 1

The optimal value function at time period N − 1 is

J
(so)
N−1(WN−1, aN−1, XN−1) = maxEN−1 [U(WN − c(XN))]

= maxEN−1

[
−e−κ{WN−c(XN )}] . (5.10)
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Using Equations (5.3) and (5.5), we have

J
(so)
N−1(WN−1, aN−1, XN−1) = e−κrN−1WN−1 maxEN−1

[
−e−κ{FN−1−c(sN−1XN−1)}] .

(5.11)

The term in WN−1 is taken out of the conditional expectation EN−1 as it is assumed to

be given at time period N − 1. Furthermore unlike FN−1, WN−1 does not depend on the

investor’s decision to buy, sell or not to transact. Therefore, we have reduced the problem

to one of maximising

V
(so)
N−1(aN−1, XN−1) = EN−1

[
−e−κ{FN−1−c(sN−1XN−1)}] (5.12)

with respect to (lN−1,mN−1). This represents a reduction from three to two state vari-

ables as we have factored out the wealth variable WN−1. Nonetheless, in comparison with

the portfolio selection problem without the option position (see Equation (2.13)), we now

need to take into account an additional price variable XN−1. Our subsequent analysis of

the optimal investment strategy and optimal value function is analogous to that found in

Section 2.2, which corresponds to the case without the option position. Therefore, instead

of repeating the analysis in its entirety, we will only present the essential equations and

highlight the differences between the two cases.

The investor has the choice of buying, selling or not transacting in the risky asset, which

affects the definition of FN−1. Obtaining the optimal investment strategy is equivalent to

solving for the no-transaction region denoted by a(so)−
N−1 ≤ aN−1 ≤ a

(so)+
N−1 . The optimal

buy boundary a(so)−
N−1 delineates the buy and no-transaction regions while the optimal sell

boundary a(so)+
N−1 delineates the sell and no-transaction regions. Therefore, a(so)−

N−1 is given

by the condition
∂V

(so)
N−1

∂lN−1

= 0 in the buy region and similarly, a(so)+
N−1 is given by the condi-

tion
∂V

(so)
N−1

∂mN−1

= 0 in the sell region. Specifically, a(so)−
N−1 and a(so)+

N−1 are the solutions to the

equations

EN−1

[
{sN−1 − (1 + λN−1)rN−1} e

−κ
{

(sN−1−rN−1)a
(so)−
N−1 −c(sN−1XN−1)

}]
= 0 (5.13)
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and

EN−1

[
{sN−1 − (1− µN−1)rN−1} e

−κ
{

(sN−1−rN−1)a
(so)+
N−1 −c(sN−1XN−1)

}]
= 0, (5.14)

respectively. Compared to Equations (2.17) and (2.18), the above equations contain the

additional option payoff c(sN−1XN−1) that depends on the price of the risky asset XN−1.

Therefore, the optimal buy and sell boundaries will also depend on the price of the risky

asset, which we denote as a(so)−
N−1 (XN−1) and a(so)+

N−1 (XN−1) to emphasise this dependence

on XN−1. In contrast, the optimal buy and sell boundaries for the case without the option

position are independent of the price of the risky asset. Having determined the form of the

optimal boundaries, we proceed to state the optimal value function and its first derivative

in the three regions.

In the buy region aN−1 < a
(so)−
N−1 (XN−1), the investor buys lN−1 = a

(so)−
N−1 (XN−1)−aN−1

of the risky asset. So we have

F
(B)
N−1 = (sN−1 − rN−1) a

(so)−
N−1 (XN−1)− rN−1λN−1

[
a

(so)−
N−1 (XN−1)− aN−1

]
, (5.15)

V
(so,B)
N−1 (aN−1, XN−1) = EN−1

[
−e−κ

{
F

(B)
N−1−c(sN−1XN−1)

}]
, (5.16)

and

∂V
(so,B)
N−1

∂aN−1

(aN−1, XN−1) = EN−1

[
κrN−1λN−1e

−κ
{
F

(B)
N−1−c(sN−1XN−1)

}]
. (5.17)

In the sell region where aN−1 > a
(so)+
N−1 (XN−1), the investor sells mN−1 = aN−1 −

a
(so)+
N−1 (XN−1) of the risky asset so that

F
(S)
N−1 = (sN−1 − rN−1) a

(so)+
N−1 (XN−1)− rN−1µN−1

[
aN−1 − a(so)+

N−1 (XN−1)
]
, (5.18)

V
(so,S)
N−1 (aN−1, XN−1) = EN−1

[
−e−κ

{
F

(S)
N−1−c(sN−1XN−1)

}]
, (5.19)
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and

∂V
(so,S)
N−1

∂aN−1

(aN−1, XN−1) = EN−1

[
−κrN−1µN−1e

−κ
{
F

(S)
N−1−c(sN−1XN−1)

}]
. (5.20)

Finally, in the no-transaction region where a(so)−
N−1 (XN−1) ≤ aN−1 ≤ a

(so)+
N−1 (XN−1), we

have

F
(N)
N−1 = (sN−1 − rN−1) aN−1, (5.21)

V
(so,N)
N−1 (aN−1, XN−1) = EN−1

[
−e−κ

{
F

(N)
N−1−c(sN−1XN−1)

}]
, (5.22)

and

∂V
(so,N)
N−1

∂aN−1

(aN−1, XN−1) = EN−1

[
κ (sN−1 − rN−1) e

−κ
{
F

(N)
N−1−c(sN−1XN−1)

}]
. (5.23)

Once again, we use the superscripts “B”, “S” and “N” to denote the buy, sell and no-

transaction regions respectively.

Having obtained the optimal boundaries and the optimal value function at time period

N − 1, we apply the principle of dynamic programming to solve the problem at period

N − 2. In general, working recursively backwards in time, one is thus able to solve the

problem at period N −k (k = 2, . . . , N ) by using the optimal solutions from the time steps

ahead.

Time Period N − k

In general, the optimal value function at time period N − k (k = 2, . . . , N ) is given by

J
(so)
N−k(WN−k, aN−k, XN−k) = maxEN−k

[
J

(so)
N−k+1(WN−k+1, aN−k+1, XN−k+1)

]
= maxEN−k

[
e−κrN−1···rN−k+1WN−k+1V

(so)
N−k+1(aN−k+1, XN−k+1)

]
, (5.24)
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where V (so)
N−k+1(aN−k+1, XN−k+1) is the optimal value function from the time step ahead.

Recall that WN−k+1 = rN−kWN−k + FN−k. Thus, we can write

J
(so)
N−k(WN−k, aN−k, XN−k) = e−κrN−1···rN−kWN−k maxEN−k

[
e−κrN−1···rN−k+1FN−k

×V (so)
N−k+1(aN−k+1, XN−k+1)

]
. (5.25)

Having taken the term in WN−k out of the conditional expectation EN−k, the problem is

reduced to one of maximising

V
(so)
N−k(aN−k, XN−k) = EN−k

[
e−κrN−1···rN−k+1FN−kV

(so)
N−k+1(aN−k+1, XN−k+1)

]
(5.26)

with respect to (lN−k,mN−k). Recall that aN−k+1, FN−k and XN−k+1 are given by Equa-

tions (5.1), (5.4) and (5.5) respectively. The optimal boundaries are found to satisfy equa-

tions that are similar to Equations (2.43) and (2.44), with the difference being having an

additional dependence on the price of the risky asset XN−k. Therefore, the optimal buy

boundary a(so)−
N−k (XN−k) is the solution to the equation

EN−k

[{
−κrN−1 · · · rN−k+1

[
sN−k − (1 + λN−k) rN−k

]
VN−k+1(aN−k+1, XN−k+1)

+sN−k
∂VN−k+1

∂aN−k+1

(aN−k+1, XN−k+1)

}
e−κrN−1···rN−k+1FN−k

]
= 0 (5.27)

with FN−k = (sN−k − rN−k) a(so)−
N−k , aN−k+1 = sN−ka

(so)−
N−k and XN−k+1 = sN−kXN−k.

Meanwhile, the optimal sell boundary a(so)+
N−k (XN−k) is the solution to the equation

EN−k

[{
κrN−1 · · · rN−k+1

[
sN−k − (1− µN−k) rN−k

]
VN−k+1(aN−k+1, XN−k+1)

−sN−k
∂VN−k+1

∂aN−k+1

(aN−k+1, XN−k+1)

}
e−κrN−1···rN−k+1FN−k

]
= 0 (5.28)

with FN−k = (sN−k − rN−k) a(so)+
N−k , aN−k+1 = sN−ka

(so)+
N−k and XN−k+1 = sN−kXN−k.

Having determined the form of the optimal boundaries, we proceed to state the optimal
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value function and its first derivative in the three regions.

In the buy region aN−k < a
(so)−
N−k (XN−k), the investor buys lN−k = a

(so)−
N−k (XN−k) −

aN−k of the risky asset. So we have

F
(B)
N−k = (sN−k − rN−k) a(so)−

N−k (XN−k)− rN−kλN−k
[
a

(so)−
N−k (XN−k)− aN−k

]
, (5.29)

V
(so,B)
N−k (aN−k, XN−k) = EN−k

[
e−κrN−1···rN−k+1F

(B)
N−k

×V (so)
N−k+1

(
sN−ka

(so)−
N−k (XN−k), sN−kXN−k

)]
, (5.30)

and

∂V
(so,B)
N−k

∂aN−k
(aN−k, XN−k) = EN−k

[
−κrN−1 · · · rN−kλN−ke−κrN−1···rN−k+1F

(B)
N−k

×V (so)
N−k+1

(
sN−ka

(so)−
N−k (XN−k), sN−kXN−k

)]
. (5.31)

In the sell region where aN−k > a
(so)+
N−k (XN−k), the investor sells mN−k = aN−k −

a
(so)+
N−k (XN−k) of the risky asset so that

F
(S)
N−k = (sN−k − rN−k) a(so)+

N−k (XN−k)− rN−kµN−k
[
aN−k − a(so)+

N−k (XN−k)
]
, (5.32)

V
(so,S)
N−k (aN−k, XN−k) = EN−k

[
e−κrN−1···rN−k+1F

(S)
N−k

×V (so)
N−k+1

(
sN−ka

(so)+
N−k (XN−k), sN−kXN−k

)]
, (5.33)

and

∂V
(so,S)
N−k

∂aN−k
(aN−k, XN−k) = EN−k

[
κrN−1 · · · rN−kµN−ke−κrN−1···rN−k+1F

(S)
N−k

×V (so)
N−k+1

(
sN−ka

(so)+
N−k (XN−k), sN−kXN−k

)]
. (5.34)
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Finally, in the no-transaction region where a(so)−
N−k (XN−k) ≤ aN−k ≤ a

(so)+
N−k (XN−k), we

have

F
(N)
N−k = (sN−k − rN−k) aN−k, (5.35)

V
(so,N)
N−k (aN−k, XN−k) = EN−k

[
e−κrN−1···rN−k+1F

(N)
N−k

×V (so)
N−k+1(sN−kaN−k, sN−kXN−k)

]
, (5.36)

and

∂V
(so,N)
N−k

∂aN−k
(aN−k, XN−k) (5.37)

= EN−k

[{
−κrN−1 · · · rN−k+1 (sN−k − rN−k)V (so)

N−k+1(sN−kaN−k, sN−kXN−k)

+sN−k
∂V

(so)
N−k+1

∂aN−k+1

(sN−kaN−k, sN−kXN−k)

}
e−κrN−1···rN−k+1F

(N)
N−k

]
. (5.38)

Furthermore, the optimal value function of the original problem is given by

J
(so)
N−k(WN−k, aN−k, XN−k) = e−κrN−1···rN−kWN−kV

(so)
N−k(aN−k, XN−k). (5.39)

Applying the dynamic programming algorithm up to k = N , we obtain the optimal value

function

J
(so)
0 (W0, a0, X0) = e−κrN−1···r0W0V

(so)
0 (a0, X0) (5.40)

and the optimal boundaries a(so)−
0 (X0) and a(so)+

0 (X0) at the initial time. Thus, we have

determined the solution to the portfolio selection problem with a short position in the op-

tion.

In the case where the investor buys an option at the initial time, the optimal value

function is defined as

J (bo)(W0, a0, X0) = maxE [U(WN + CN)] , (5.41)
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where the maximisation is over the investments (l0,m0), . . . , (lN−1,mN−1) in the risky as-

set and the expectation is taken with respect to the random variables s0, . . . , sN−1. The

superscript “bo” denotes buying an option at the initial time. A straightforward modifica-

tion of the aforementioned dynamic programming algorithm will enable us to obtain the

solution to the portfolio selection problem with a long position in the option. Specifically,

replace CN with −CN in Equation (5.8). Applying the dynamic programming algorithm

with this modified terminal condition will give us the optimal value function

J
(bo)
0 (W0, a0, X0) = e−κrN−1···r0W0V

(bo)
0 (a0, X0) (5.42)

and the optimal boundaries a(bo)−
0 (X0) and a(bo)+

0 (X0) at the initial time.

Moreover, if we consider the portfolio without a position in the option, the optimal

value function is defined as

J(W0, a0) = maxE [U(WN)] , (5.43)

where the maximisation is over the investments (l0,m0), . . . , (lN−1,mN−1) in the risky

asset and the expectation is taken with respect to the random variables s0, . . . , sN−1. In

this case, by setting CN = 0 in Equation (5.8), the optimal boundaries and optimal value

function no longer depend on the price of the risky asset and (as expected) we obtain the

dynamic programming algorithm from Section 2.2. Therefore, solving this algorithm gives

us the optimal value function

J0(W0, a0) = e−κrN−1···r0W0V0(a0) (5.44)

and the optimal boundaries a−0 and a+
0 at the initial time.

Having determined the optimal value functions of the portfolio selection problems with

and without a position in the option, one is thus able to obtain the utility indifference price

of the option.
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5.3 Utility Indifference Price and Hedge

Recall from Section 4.1 that the utility indifference selling price of an option is defined to

be the value ν(s) that satisfies the equation

J (so)(W0 + ν(s), a0, X0) = J(W0, a0) (5.45)

for an initial W0, a0 and X0. Applying the dynamic programming algorithm recursively

backwards in time from period N − 1 to period 0, J (so)(W0 + ν(s), a0, X0) is given by

Equation (5.40) and J(W0, a0) by Equation (5.44). From the above pricing definition, we

thus have

e−κrN−1···r0{W0+ν(s)}V (so)
0 (a0, X0) = e−κrN−1···r0W0V0(a0). (5.46)

Simplifying, we obtain

ν(s)(a0, X0) =
1

κrN−1 · · · r0

ln

[
V

(so)
0 (a0, X0)

V0(a0)

]
. (5.47)

We have written the utility indifference selling price of the option as ν(s)(a0, X0) to empha-

sise its dependence on a0 and X0. Not only does the utility indifference price of the option

depend on the price of the underlying risky asset, it also depends on the investor’s holdings

in the risky asset. Similarly, the utility indifference buying price of the option is given by

ν(b)(a0, X0) =
−1

κrN−1 · · · r0

ln

[
V

(bo)
0 (a0, X0)

V0(a0)

]
. (5.48)

Let us investigate further the behaviour of ν(s)(a0, X0) and ν(b)(a0, X0) for a certain

range of values of a0. For instance, consider the utility indifference selling price ν(s)(a0, X0)

in the intersection of the buy regions of the portfolios with and without a position in the

option. This intersection is given by the region a0 < min
(
a−0 , a

(so)−
0 (X0)

)
and we have

ν(s)(a0, X0) =
1

κrN−1 · · · r0

ln

[
V

(so,B)
0 (a0, X0)

V
(B)

0 (a0)

]
. (5.49)
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Recall that a−0 is the optimal buy boundary and V (B)
0 (a0) is the optimal value function in the

buy region corresponding to the portfolio without an option position. Similarly, a(so)−
0 (X0)

is the optimal buy boundary and V (so,B)
0 (a0, X0) is the optimal value function in the buy

region corresponding to the portfolio with a short position in the option.

From Equations (5.29) and (5.30) with k = N , we have

V
(so,B)

0 (a0, X0) = e
κrN−1···r1r0λ0

{
a
(so)−
0 (X0)−a0

}

×E0

[
e−κrN−1···r1(s0−r0)a

(so)−
0 (X0)V

(so)
1

(
s0a

(so)−
0 (X0), s0X0

)]
. (5.50)

Similar to the above equation, we have

V
(B)

0 (a0) = eκrN−1···r1r0λ0{a−0 −a0}E0

[
e−κrN−1···r1(s0−r0)a−0 V1(s0a

−
0 )
]
. (5.51)

Dividing Equation (5.50) by Equation (5.51), we observe that
V

(so,B)
0 (a0, X0)

V
(B)

0 (a0)
is indepen-

dent of a0 as the terms in a0 cancel out. Therefore, in the region a0 < min
(
a−0 , a

(so)−
0 (X0)

)
,

we have shown that ν(s)(a0, X0) does not vary with a0. Moreover, it can also be shown that

ν(s)(a0, X0) does not vary with a0 in the region a0 > max
(
a+

0 , a
(so)+
0 (X0)

)
, which corre-

sponds to the intersection of the sell regions of the portfolios with and without a position in

the option. An analogous set of results is also applicable to the utility indifference buying

price of the option ν(b)(a0, X0).

In general, we conclude that the utility indifference price does not vary with a0 in the

intersection of the buy regions (or sell regions) of the portfolios with and without a position

in the option. This observation will be illustrated in the numerical example that follows.

5.4 Marginal Utility Indifference Price

In this section, we investigate the marginal utility indifference pricing approach in the pres-

ence of proportional transaction costs. Using the formula from Equation (4.9), the marginal
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utility indifference price of an option with payoff CN = c(XN) is

ν̃ =
G(W0, a0, X0)

J ′(W0, a0)
, (5.52)

where

G(W0, a0, X0) = E [U ′(WN)CN ] . (5.53)

Recall that J(W0, a0) corresponds to the optimal value function for the portfolio with-

out a position in the option and is given by Equation (5.44). Therefore,

J(W0, a0) = e−κrN−1···r0W0V0(a0). (5.54)

Differentiating J with respect to W0, we obtain

J ′(W0, a0) = −κrN−1 · · · r0e
−κrN−1···r0W0V0(a0). (5.55)

Now, consider

G(W0, a0, X0) = E [U ′(WN)CN ] , (5.56)

where the expectation is taken with respect to the random variables s0, . . . , sN−1. Recall

that the wealth evolves like Wn+1 = rnWn + Fn, with Fn = (sn − rn)(an + ln −mn) −
rnλnln − rnµnmn depending on the investor’s decision to buy, sell or not to transact in

the risky asset. Moreover, the inherited holdings in the risky asset evolves like an+1 =

sn (an + ln −mn) and the price of the risky assetXn+1 = snXn. In this case, the investor’s

strategy corresponds to the optimal strategy for the portfolio selection problem without an

option position from Section 2.2. In summary,

(ln,mn) =


(a−n − an, 0) if an < a−n ,

(0, an − a+
n ) if an > a+

n ,

(0, 0) otherwise,

(5.57)

where a−n and a+
n are the optimal buy and sell boundaries that satisfy Equations (2.43) and
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(2.44). Consequently,

Fn =


(sn − rn) a−n − rnλn (a−n − an) if an < a−n ,

(sn − rn) a+
n − rnµn (an − a+

n ) if an > a+
n ,

(sn − rn) an otherwise.

(5.58)

We also have

an+1 =


sna

−
n if an < a−n ,

sna
+
n if an > a+

n ,

snan otherwise.

(5.59)

In order to evaluate G(W0, a0, X0), we apply the following algorithm backwards in

time starting from period N − 1:

GN(WN , aN , XN) = U ′(WN)CN (5.60)

and

GN−k(WN−k, aN−k, XN−k) = EN−k [GN−k+1(WN−k+1, aN−k+1, XN−k+1)] (5.61)

for k = 1, . . . , N .

Time Period N − 1

At time period N − 1, we have

GN−1(WN−1, aN−1, XN−1) = EN−1

[
κe−κWN c(XN)

]
= EN−1

[
κe−κ{rN−1WN−1+FN−1}c(sN−1XN−1)

]
. (5.62)

Observe that the term in WN−1 is taken out of the conditional expectation EN−1 so we can

write

GN−1(WN−1, aN−1, XN−1) = κe−κrN−1WN−1HN−1(aN−1, XN−1), (5.63)
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where

HN−1(aN−1, XN−1) = EN−1

[
e−κFN−1c(sN−1XN−1)

]
. (5.64)

In terms of the buy, sell and no-transaction regions, we have

HN−1(aN−1, XN−1) =


EN−1

[
e−κF

(B)
N−1c(sN−1XN−1)

]
if aN−1 < a−N−1,

EN−1

[
e−κF

(S)
N−1c(sN−1XN−1)

]
if aN−1 > a+

N−1,

EN−1

[
e−κF

(N)
N−1c(sN−1XN−1)

]
otherwise.

(5.65)

Recall that F (B)
N−1, F (S)

N−1 and F (N)
N−1 correspond to FN−1 in the buy, sell and no-transaction

regions of Equation (5.58) respectively. Note thatHN−1(aN−1, XN−1) is continuous across

the buy and sell boundaries for a given XN−1.

Time Period N − k

Applying the algorithm (Equation (5.61)) recursively, at the general time period N − k

(k = 2, . . . , N ), we have

GN−k(WN−k, aN−k, XN−k) = EN−k
[
κe−κrN−1···rN−k+1WN−k+1

×HN−k+1(aN−k+1, XN−k+1)
]

= EN−k
[
κe−κrN−1···rN−k+1{rN−kWN−k+FN−k}

×HN−k+1(aN−k+1, XN−k+1)
]
. (5.66)

Taking the term in WN−k out of the conditional expectation EN−k, we write

GN−k(WN−k, aN−k, XN−k) = κe−κrN−1···rN−kWN−kHN−k(aN−k, XN−k), (5.67)

where

HN−k(aN−k, XN−k) = EN−k
[
e−κrN−1···rN−k+1FN−kHN−k+1(aN−k+1, XN−k+1)

]
. (5.68)
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Recall that FN−k and aN−k+1 are given by Equations (5.58) and (5.59) respectively. In

addition, XN−k+1 = sN−kXN−k.

Therefore, in the buy region where aN−k < a−N−k,

H
(B)
N−k(aN−k, XN−k) = EN−k

[
e−κrN−1···rN−k+1F

(B)
N−kHN−k+1(sN−ka

−
N−k, sN−kXN−k)

]
.

(5.69)

In the sell region where aN−k > a+
N−k,

H
(S)
N−k(aN−k, XN−k) = EN−k

[
e−κrN−1···rN−k+1F

(S)
N−kHN−k+1(sN−ka

+
N−k, sN−kXN−k)

]
.

(5.70)

In the no-transaction region where a−N−k ≤ aN−k ≤ a+
N−k,

H
(N)
N−k(aN−k, XN−k) = EN−k

[
e−κrN−1···rN−k+1F

(N)
N−kHN−k+1(sN−kaN−k, sN−kXN−k)

]
.

(5.71)

Note that HN−k(aN−k, XN−k) is continuous across the buy and sell boundaries. Evalu-

ating Equation (5.68) recursively from k = 2 up to k = N , we obtain H0(a0, X0) and

consequently

G(W0, a0, X0) = κe−κrN−1···r0W0H0(a0, X0). (5.72)

Substituting Equations (5.55) and (5.72) into Equation (5.52), the marginal utility in-

difference price of the option is thus given by

ν̃(a0, X0) = − H0(a0, X0)

rN−1 · · · r0V0(a0)
. (5.73)

Similar to the utility indifference price, observe that this price is independent of the in-

vestor’s wealth but dependent on the investor’s holdings in the risky asset. In addition, it

can also be shown that ν̃(a0, X0) does not vary with a0 in the buy region a0 < a−0 or sell

region a0 < a+
0 of the portfolio selection problem without a position in the option.
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5.5 Results

In this section, we illustrate the use of utility indifference pricing and marginal utility in-

difference pricing to value a European call option with payoff c(XN) = max(XN −K, 0),

where K is the strike price. Assume that at each time period n,

sn =

{
u with probability q,

d with probability 1− q,
(5.74)

and

rn = r, (5.75)

where d < r < u. In other words, we assume that the price of the risky asset follows a

binomial tree and the risk-free asset has constant returns. Suppose that the binomial price

process approximates the geometric Brownian motion dX(t) = αX(t)dt + σX(t)dZ(t)

with constant drift α and volatility σ, where X(t) is the price of the risky asset and Z(t)

is a standard Brownian motion. Let R be the annualised risk-free rate. The time interval

between successive periods is δt =
T

N
, where T is the terminal time at the end ofN periods.

Using the parametrisation by Cox et al. (1979), we have

u = eσ
√
δt, d =

1

u
, q =

1

2
+

1

2σ

(
α− 1

2
σ2

)√
δt, r = eRδt.

In addition, assume that the costs of buying and selling the risky asset are equal and constant

(i.e. λn = µn = λ) at each time period n. We specify the following parameter values:

T = 1 (year), N = 6, X0 = 20, K = 20, α = 0.15, σ = 0.25, R = 0.1, λ = 0.02.

Using the above values with risk aversion κ = 0.05, we compute the utility indifference

selling price, the utility indifference buying price and the marginal utility indifference price

of the option from Equations (5.47), (5.48) and (5.73) respectively. Recall that the option

prices depend on both the initial price of the underlying risky asset X0 as well as on the

initial holdings of the risky asset a0 in the portfolios. In order to study the dependence

of the option prices on a0, we have fixed the value of X0. For the ease of presentation,
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our subsequent notations of the option prices and optimal boundaries will not include their

explicit dependence on X0.

In Figure 5.1, we plot the (European call) option prices ν(s)(a0), ν(b)(a0) and ν̃(a0)

with respect to the initial holdings of risky asset a0. Observe that the marginal utility

indifference price lies between the utility indifference buying price and selling price, since

it corresponds to the case of the portfolio having an infinitesimal position in the option. In

addition, the option prices are non-increasing functions of the initial holdings of the risky

asset. Within certain regions (to be described in the following discussion), recall that the

option prices do not vary with the initial holdings of the risky asset (see Sections 5.3 and

5.4). Otherwise, the prices are observed to decrease as the initial holdings of the risky asset

increase.

Consider the marginal utility indifference price and recall that it is determined from the

optimal strategy of the portfolio selection problem without a position in the option. This

strategy involves not transacting when the holdings of the risky asset fall within the no-

transaction region a−0 ≤ a0 ≤ a+
0 . Otherwise, the investor will buy to reach a−0 in the buy

region a0 < a−0 or sell to reach a+
0 in the sell region a0 > a+

0 . It is observed from Figure

5.1 that the option price ν̃(a0) does not vary with a0 in the buy or sell region. However,

in the no-transaction region, the option price ν̃(a0) decreases as the value of a0 increases.

Moreover, the option has a maximum price given by ν̃max = ν̃(a−0 ) (in the buy region)

and a minimum price given by ν̃min = ν̃(a+
0 ) (in the sell region) over all initial holdings

a0. Therefore, if the marginal utility indifference pricing approach is adopted to value an

option, the bid and ask price of the option will be defined as ν̃min and ν̃max respectively.

On the other hand, the utility indifference selling price is obtained from maximising

the expected utility of a portfolio with and without a position in the option. Recall that

the no-transaction region for the portfolio with a short position in the option is denoted

by a(so)−
0 ≤ a0 ≤ a

(so)+
0 . In this case, the utility indifference selling price ν(s)(a0) does

not vary with a0 in the intersection of the buy regions of the portfolios with and without

a position in the option, which is the region a0 < a−0 as seen in Figure 5.1. In addition,

ν(s)(a0) also does not vary with a0 in the intersection of the sell regions, which is the region

a0 > a
(so)+
0 . The seller of an option will be interested in the maximum utility indifference

selling price over all initial holdings a0, which is given by ν(s)
max = ν(s)(a−0 ). At this price, an
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Figure 5.1: Option Price vs Initial Holdings of Risky Asset (κ = 0.05)
No-transaction region of portfolio without option = [8.477, 21.351],

ν̃min = 2.591, ν̃max = 3.174, ν
(b)
min = 2.556, ν

(s)
max = 3.222.

investor will be willing to sell the option regardless of his initial holdings in the risky asset.

Unlike marginal utility indifference pricing, this approach also leads to a natural definition

of the hedge ratio as the incremental investment in the risky asset due to the additional

proceeds received from selling the option. For example, the hedge ratio corresponding to

the maximum selling price ν(s)
max is given by ∆(s)(a−0 ) =

(
a

(so)−
0 − a−0

)
/X0.

Similarly, for the utility indifference buying price, the no-transaction region for the port-

folio with a long position in the option is given by a(bo)−
0 ≤ a0 ≤ a

(bo)+
0 . Here, as observed

in Figure 5.1, the utility indifference buying price ν(b)(a0) does not vary with a0 in the

intersection of the buy regions (i.e. a0 < a
(bo)−
0 ) and the intersection of the sell regions (i.e.
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a0 > a+
0 ). From the perspective of a buyer of the option, one will be interested in achieving

the minimum utility indifference buying price over all initial holdings a0, which is given by

ν
(b)
min = ν(b)(a+

0 ). At this price, an investor will be willing to buy the option regardless of

his initial holdings in the risky asset. Therefore, in the utility indifference pricing approach,

the bid and ask price of the option are defined as ν(b)
min and ν(s)

max respectively.

Suppose that the coefficient of risk aversion is increased from κ = 0.05 to κ = 0.1. The

results are presented in Figure 5.2. Comparing the marginal utility indifference prices, ob-

serve that the no-transaction region becomes narrower and shifts to the left. In other words,

the boundaries and the width of the no-transaction region decrease in value as the investor’s

risk aversion increases. However, the minimum ν̃min and maximum ν̃max marginal utility

indifference prices remain the same and is not influenced by the level of risk aversion. On

the other hand, the minimum utility indifference buying price ν(b)
min decreases while the

maximum utility indifference selling price ν(s)
max increases. In utility indifference pricing,

an investor who is more risk averse would require a lower bid price and a higher ask price.

Therefore, as the level of risk aversion increases, the bid-ask spread widens in the utility

indifference pricing approach but it does not change in marginal utility indifference pricing.

In this chapter, we extended the utility indifference pricing and marginal utility indif-

ference pricing approach to incorporate proportional transaction costs in a discrete time

model. In the presence of transaction costs, the utility indifference price and marginal util-

ity indifference price are shown to depend on the price of the underlying risky asset as well

as on the investor’s holdings in the risky asset. Moreover, we identified the regions where

the option prices do not vary with the investor’s holdings in the risky asset. We considered

an example where the price of the risky asset follows a binomial tree and illustrated how

one could determine the bid and ask price of a European call option. We also discussed the

differences between utility indifference pricing and marginal utility indifference pricing.
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Figure 5.2: Option Price vs Initial Holdings of Risky Asset (κ = 0.05 and κ = 0.1)
κ = 0.05: No-transaction region of portfolio without option = [8.477, 21.351],

ν̃min = 2.591, ν̃max = 3.174, ν
(b)
min = 2.556, ν

(s)
max = 3.222.

κ = 0.1: No-transaction region of portfolio without option = [4.238, 10.675],
ν̃min = 2.591, ν̃max = 3.174, ν

(b)
min = 2.525, ν

(s)
max = 3.262.
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Chapter 6

Conclusion

In this thesis, our study is focused on analysing the impact of transaction costs in portfolio

theory and option pricing theory. In the first part of the thesis, we considered a multi-

period portfolio selection problem where an investor allocates his wealth between a risky

and risk-free asset. A general class of underlying probability distributions is assumed for

the returns of the risky asset. At the start of successive time periods, the investor rebalances

the portfolio with the objective of maximising expected utility of terminal wealth. A cost

that is proportional to the value of the transaction is incurred each time the investor trades

in the risky asset. In order to determine the investor’s optimal investment strategy, dynamic

programming is applied to reduce the original problem to a sequence of more manageable

sub-problems. Nonetheless, an exact solution is generally not available and solving the

dynamic programming algorithm numerically is computationally intensive. Therefore, in

the limit of small transaction costs, perturbation analysis is applied to derive an approximate

solution to the optimal investment strategy.

In Chapter 2, we analysed the case of an investor with the exponential utility function.

The optimal strategy involves trading to reach the boundaries of a no-transaction region

if the investor’s holdings of the risky asset fall outside this region. We developed a two-

stage perturbation method that enabled us to systematically obtain approximations of the

optimal value functions and the optimal boundaries at all time steps. In the first stage,

the investor is assumed to trade to the Merton point at each time step when transaction

costs are small. The Merton point corresponds to the optimal investment in the risky asset
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for the portfolio selection problem without transaction costs. This is clearly a suboptimal

strategy since one has ignored the presence of the no-transaction region. Nonetheless, we

managed to derive an approximation of the suboptimal value function at each time step

by perturbing about the zero transaction costs solution. In the second stage, the investor

is assumed to behave optimally by trading to reach the boundaries of the no-transaction

region. Applying a sequence of corrections to the suboptimal value functions allowed us

to determine the desired approximations to the optimal value functions at all time steps.

Consequently, the approximate optimal boundaries are obtained from the condition that the

derivative of the optimal value function is continuous across the boundaries. It is observed

that the approximate boundaries at each time step depend on the (random) returns of the

risky asset at the current time step and one step ahead. In addition, they are also observed

to depend on the (non-random) returns of the risk-free asset at the current time step and all

the steps ahead.

In Chapter 3, we considered the case of an investor with the power utility function. A

more realistic description of the optimal strategy is provided by the power utility function as

compared to the exponential utility function, which resulted in optimal boundaries that are

independent of the investor’s wealth. We adopted a similar two-stage perturbation method

to obtain approximations of the optimal value function and optimal boundaries at each time

step in the rebalancing of the portfolio. In this case, it is found to be more challenging to

apply the perturbation analysis, as the proportion of risky asset inherited at each time step

from the previous step depends on variations in both the return of the risky asset as well as

the investor’s wealth. We also observed that the approximate boundaries at each time step

depend on the returns of the risky and risk-free assets at the current time step and one step

ahead.

In the second part of the thesis, our study is concentrated on developing and analysing

a discrete time model of option pricing that incorporates proportional transaction costs.

The underlying risky asset is assumed to follow a general price process. We adopted an

option pricing approach that is based on the maximisation of expected utility of terminal

wealth. Using the definition by Hodges and Neuberger (1989), the utility indifference

selling (buying) price of an option is defined as the amount of money that will make the

investor indifferent, in terms of expected utilities, between trading in the market with and
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without a short (long) position in the option. An alternative definition by Davis (1997) is

also investigated, where the marginal utility indifference price of an option is determined

by the requirement that an infinitesimal diversion of funds into the option purchase or sale

has a neutral effect on the investor’s achievable utility.

In Chapter 4, we developed an option pricing model in discrete time without trans-

action costs, which is based on the utility maximisation approach. We considered utility

indifference pricing and marginal utility indifference pricing in the context of the exponen-

tial and power utility functions. An advantage of this model is that the underlying risky

asset is assumed to follow a general price process. When the risky asset is assumed to

follow a binomial price process, we established that both the utility indifference price and

marginal utility indifference price of the option reduce to the perfect replication price from

Cox et al.’s (1979) binomial model. In the case where the underlying risky asset follows a

trinomial price process, perfect replication of the option is no longer possible and we illus-

trated how the option price may be determined via an approximate replication approach. In

this approach, the option is valued by constructing an approximately replicating portfolio

that minimises the variance of the replication error with a mean error of zero. Using the

exponential utility function, we also obtained the utility indifference price and marginal

utility indifference price of the option in this case. A comparison is then made between the

utility maximisation approach and the approximate replication approach.

In Chapter 5, we extended the discrete time option pricing model from Chapter 4 by

incorporating proportional transaction costs. We focused on the case of an investor with the

exponential utility function. Applying dynamic programming and using some of the results

from Chapter 2, we obtained the utility indifference price and marginal utility indifference

price of a European option. In the presence of transaction costs, the utility indifference price

and marginal utility indifference price of the option are shown to depend on the price of the

underlying risky asset as well as on the investor’s holdings in the risky asset. Moreover, we

identified the regions where the option prices do not vary with the investor’s holdings in the

risky asset. Numerical results are presented for the case of a European call option, where

the underlying risky asset is assumed to follow a binomial price process. We examined how

one is able to determine the bid and ask price of the option. In the utility indifference pricing

approach, the bid price is given by the minimum utility indifference buying price over the
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investor’s holdings in the risky asset. On the other hand, the ask price corresponds to the

maximum of the utility indifference selling price. It is observed that the bid-ask spread

widens as the investor becomes more risk averse. Moreover, this approach also provides

one with a natural definition of the hedging strategy. In marginal utility indifference pricing,

the bid and ask price is given by the minimum and maximum marginal utility indifference

price over the investor’s holdings in the risky asset, respectively. In this case, we observed

that the bid-ask spread is not influenced by the investor’s level of risk aversion.

There are a number of possible extensions to the work that has been presented in this

thesis. In the limit of small transaction costs, we applied perturbation analysis to obtain

approximate solutions to the portfolio selection problem. It might also be useful to apply

perturbation analysis to derive approximate solutions to our option pricing model since it

is based on the utility maximisation approach.

In the portfolio selection and option pricing models with transaction costs, we consid-

ered the case of a single risky asset. It will be interesting to analyse the case of multiple

risky assets, which allows for a richer level of interaction via the correlation between these

assets. In the context of option pricing, the case of multiple risky assets potentially enables

one to obtain the value of a basket option.

Instead of proportional transaction costs, one might choose to formulate a model with a

more general structure of transaction costs. A general costs structure could include constant

costs, proportional costs or a combination of both constant and proportional costs.

In the option pricing model, we focused on the pricing and hedging of a European

option with a payoff that depends on the price of the risky asset at the expiration date.

A possible area of research is to investigate the pricing and hedging of a European path

dependent option (such as a Barrier option or an Asian option) by adopting the utility

maximisation approach. It will also be interesting to consider the valuation of an American

option, which may be exercised at any time before and up to its expiration date.
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Appendix A

Notations and Definitions in

Perturbation Analysis

In this appendix, we introduce the notations and definitions of order symbols, asymptotic

sequences and asymptotic expansions (as found in Nayfeh (2004)). Perturbation analysis

is widely used to approximate the solutions of problems when one is not able to obtain

exact analytical solutions. In perturbation analysis, the solution to a problem is usually

represented by the first few terms of an asymptotic expansion. The expansion may be

carried out in terms of a (small or large) parameter that appears naturally in the equation or

in terms of a (small or large) coordinate.

In perturbation analysis, one frequently has to compare the order of magnitude of two

functions in a certain limit. For instance, suppose that the behaviour of a function f(ε)

is compared to a function g(ε) in the limit ε → 0. It is convenient to employ the order

symbols of O or o.

One says that f(ε) is of the order g(ε) and writes

f(ε) = O [g(ε)] as ε→ 0 (A.1)

if there exists a k > 0 independent of ε and an ε0 > 0 such that

|f(ε)| ≤ k |g(ε)| for all |ε| ≤ ε0. (A.2)
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Alternatively, this condition can be replaced by

lim
ε→0

∣∣∣∣f(ε)

g(ε)

∣∣∣∣ <∞. (A.3)

Moreover, one says that f(ε) is much smaller than g(ε) and writes

f(ε) = o [g(ε)] as ε→ 0 (A.4)

if for every δ > 0 independent of ε, there exists an ε0 such that

|f(ε)| ≤ δ |g(ε)| for |ε| ≤ ε0. (A.5)

Alternatively, this condition can be replaced by

lim
ε→0

∣∣∣∣f(ε)

g(ε)

∣∣∣∣ = 0. (A.6)

A sequence of functions {φn(ε)} (n = 0, 1, 2, . . .) is called an asymptotic sequence if

φn+1(ε) = o [φn(ε)] as ε→ 0. (A.7)

An example of an asymptotic sequence is {εn}. In terms of asymptotic sequences, one can

define asymptotic expansions. Given the expression
N−1∑
n=0

anφn(ε) where an is independent

of ε and {φn(ε)} is an asymptotic sequence, one says that this is an asymptotic expansion

of f(ε) to N terms if

f(ε) =
N−1∑
n=0

anφn(ε) +O [φN(ε)] as ε→ 0. (A.8)
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Appendix B

Perturbation Analysis with Exponential

Utility Function

B.1 Remainder Term of Suboptimal Value Function

In this appendix, an estimate of the remainder term in the approximation of the suboptimal

value function V̂ (B)
N−k in Section 2.4.1 is presented and shown to be bounded. In order to

estimate the remainder term, it is noted that to obtain Equation (2.89) from Equation (2.81),

the expression

∫ s̃N−k

0

eκrN−1···rN−k+1λN−k+1ãN−k(s̃N−k−sN−k)

×e−κrN−1···rN−k+1F̃N−kp(sN−k) dsN−k

+

∫ ∞
s̃N−k

e−κrN−1···rN−k+1µN−k+1ãN−k(s̃N−k−sN−k)

×e−κrN−1···rN−k+1F̃N−kp(sN−k) dsN−k (B.1)

is expanded as a power series in terms of λN−k+1 and µN−k+1. Applying Taylor’s Theorem

and collecting together terms of the same order, the above expression is written as

EN−k
[
e−κrN−1···rN−k+1F̃N−k

]
+ ζN−k + ηN−k +RN−k, (B.2)
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where ζN−k is given by Equation (2.90), ηN−k by Equation (2.91) and RN−k by the follow-

ing equation:

RN−k =
1

6
(κrN−1 · · · rN−k+1λN−k+1)3

×
∫ s̃N−k

0

(s̃N−k − sN−k)3ã3
N−ke

κrN−1···rN−k+1ε
(B)
N−k+1ãN−k(s̃N−k−sN−k)

×e−κrN−1···rN−k+1F̃N−kp(sN−k) dsN−k

−1

6
(κrN−1 · · · rN−k+1µN−k+1)3

×
∫ ∞
s̃N−k

(s̃N−k − sN−k)3ã3
N−ke

−κrN−1···rN−k+1ε
(S)
N−k+1ãN−k(s̃N−k−sN−k)

×e−κrN−1···rN−k+1F̃N−kp(sN−k) dsN−k, (B.3)

where 0 < ε
(B)
N−k+1 < λN−k+1 and 0 < ε

(S)
N−k+1 < µN−k+1. Recalling that F̃N−k =

(sN−k − rN−k)ãN−k, each of the two integrals can be shown to be bounded by∣∣∣∣∫ s̃N−k

0

(s̃N−k − sN−k)3ã3
N−ke

κrN−1···rN−k+1ε
(B)
N−k+1ãN−k(s̃N−k−sN−k)

×e−κrN−1···rN−k+1F̃N−kp(sN−k) dsN−k

∣∣∣∣
< (s̃N−kãN−k)

3eκrN−1···rN−k+1ãN−k(rN−k+λN−k+1s̃N−k) (B.4)

and ∣∣∣∣∫ ∞
s̃N−k

(s̃N−k − sN−k)3ã3
N−ke

−κrN−1···rN−k+1ε
(S)
N−k+1ãN−k(s̃N−k−sN−k)

×e−κrN−1···rN−k+1F̃N−kp(sN−k) dsN−k

∣∣∣∣
<

[
3

κrN−1 · · · rN−k+1(1− µN−k+1)

]3

eκrN−1···rN−k+1rN−kãN−k . (B.5)
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Therefore, by the triangle inequality, the remainder term RN−k is bounded by

|RN−k| <
1

6
eκrN−1···rN−k+1rN−kãN−k

×

{
(κrN−1 · · · rN−k+1λN−k+1s̃N−kãN−k)

3eκrN−1···rN−k+1λN−k+1s̃N−kãN−k

+

(
3µN−k+1

1− µN−k+1

)3
}
. (B.6)

B.2 Preliminary Estimate of Optimal Value Function

In this appendix, we obtain a preliminary estimate of the optimal value function VN−k in

the buy, sell and no-transaction regions in Section 2.4.2 via the following propositions.

Proposition B.2.1. If

(i) V (B)
N−k+1 − V

(N)
N−k+1 = O(ε2) at sN−k = θ−N−k, where θ−N−k lies between s̃N−k and

s−N−k =
a−N−k+1

a−N−k
, and

(ii) V (S)
N−k+1 − V

(N)
N−k+1 = O(ε2) at sN−k = θ+

N−k, where θ+
N−k lies between s̃N−k and

s+
N−k =

a+
N−k+1

a−N−k
, then

V
(B)
N−k =

∫ s̃N−k

0

e−κrN−1···rN−k+1F
(B)
N−kV

(B)
N−k+1p(sN−k) dsN−k

+

∫ ∞
s̃N−k

e−κrN−1···rN−k+1F
(B)
N−kV

(S)
N−k+1p(sN−k) dsN−k +O(ε3). (B.7)

Proof. Recall that V (B)
N−k is given by Equation (2.47) for k = 2, . . . , N , which can be re-
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written as

V
(B)
N−k =

∫ s̃N−k

0

e−κrN−1···rN−k+1F
(B)
N−kV

(B)
N−k+1p(sN−k) dsN−k

+

∫ s−N−k

s̃N−k

e−κrN−1···rN−k+1F
(B)
N−k

[
V

(B)
N−k+1 − V

(N)
N−k+1

]
p(sN−k) dsN−k

+

∫ s+N−k

s̃N−k

e−κrN−1···rN−k+1F
(B)
N−k

[
V

(N)
N−k+1 − V

(S)
N−k+1

]
p(sN−k) dsN−k

+

∫ ∞
s̃N−k

e−κrN−1···rN−k+1F
(B)
N−kV

(S)
N−k+1p(sN−k) dsN−k, (B.8)

where s±N−k =
a±N−k+1

a−N−k
. Since a±N−k = ãN−k + ω±N−k and ω±N−k = O(ε), s±N−k can be

approximated by

s±N−k = s̃N−k + φ±N−k +O(ε2), (B.9)

where

φ±N−k = s̃N−k

[
ω±N−k+1

ãN−k+1

−
ω−N−k
ãN−k

]
(B.10)

is of O(ε). Applying the Mean Value Theorem for the second and third integrals,

V
(B)
N−k =

∫ s̃N−k

0

e−κrN−1···rN−k+1F
(B)
N−kV

(B)
N−k+1p(sN−k) dsN−k

+
{[
s−N−k − s̃N−k

] [
V

(B)
N−k+1 − V

(N)
N−k+1

]
e−κrN−1···rN−k+1F

(B)
N−kp(sN−k)

} ∣∣∣
sN−k=θ−N−k

+
{[
s+
N−k − s̃N−k

] [
V

(N)
N−k+1 − V

(S)
N−k+1

]
e−κrN−1···rN−k+1F

(B)
N−kp(sN−k)

} ∣∣∣
sN−k=θ+N−k

+

∫ ∞
s̃N−k

e−κrN−1···rN−k+1F
(B)
N−kV

(S)
N−k+1p(sN−k) dsN−k, (B.11)

where θ−N−k lies between s̃N−k and s−N−k, and θ+
N−k lies between s̃N−k and s+

N−k. Apply-

ing the assumptions from Proposition B.2.1(i), B.2.1(ii) and Equation (B.9) leads to the

required result (Equation (B.7)).

Similar results are obtained for the optimal value functions in the sell and no-transaction

regions at time period N − k, which are stated as follow. The proofs, which will not be

provided, are similar to the proof of Proposition B.2.1.
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Proposition B.2.2. If

(i) V (B)
N−k+1 − V

(N)
N−k+1 = O(ε2) at sN−k = θ−N−k, where θ−N−k lies between s̃N−k and

s−N−k =
a−N−k+1

a+
N−k

, and

(ii) V (S)
N−k+1 − V

(N)
N−k+1 = O(ε2) at sN−k = θ+

N−k, where θ+
N−k lies between s̃N−k and

s+
N−k =

a+
N−k+1

a+
N−k

, then

V
(S)
N−k =

∫ s̃N−k

0

e−κrN−1···rN−k+1F
(S)
N−kV

(B)
N−k+1p(sN−k) dsN−k

+

∫ ∞
s̃N−k

e−κrN−1···rN−k+1F
(S)
N−kV

(S)
N−k+1p(sN−k) dsN−k +O(ε3). (B.12)

Proposition B.2.3. If

(i) V (B)
N−k+1 − V

(N)
N−k+1 = O(ε2) at sN−k = θ−N−k, where θ−N−k lies between s̃N−k and

s−N−k =
a−N−k+1

aN−k
, and

(ii) V (S)
N−k+1 − V

(N)
N−k+1 = O(ε2) at sN−k = θ+

N−k, where θ+
N−k lies between s̃N−k and

s+
N−k =

a+
N−k+1

aN−k
, then

V
(N)
N−k =

∫ s̃N−k

0

e−κrN−1···rN−k+1F
(N)
N−kV

(B)
N−k+1p(sN−k) dsN−k

+

∫ ∞
s̃N−k

e−κrN−1···rN−k+1F
(N)
N−kV

(S)
N−k+1p(sN−k) dsN−k +O(ε3). (B.13)
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Appendix C

Perturbation Analysis with Power Utility

Function

C.1 Remainder Term of Suboptimal Value Function

In this appendix, we derive a bound on the remainder term in the approximation of the

suboptimal value function V̂ (B)
N−1 in Section 3.4.2. Applying Taylor’s Theorem to Equation

(3.61),

V̂
(B)
N−1 =

1

γ
EN−1

[
F̃ γ
N−1 − γF̃

γ−1
N−1ελ̄N−1rN−1

(
ÃN−1 − AN−1

)
+

1

2
γ (γ − 1) F̃ γ−2

N−1ε
2λ̄2

N−1r
2
N−1

(
ÃN−1 − AN−1

)2

−1

6
γ (γ − 1) (γ − 2) ε3λ̄3

N−1r
3
N−1

(
ÃN−1 − AN−1

)3

×
{
F̃N−1 − ξλ̄N−1rN−1

(
ÃN−1 − AN−1

)}γ−3
]
, (C.1)

where 0 < ξ < ε. Therefore, the absolute value of the remainder term is given by

∣∣∣R̂(B)
N−1

∣∣∣ =
1

6
(γ − 1) (γ − 2) ε3λ̄3

N−1r
3
N−1

(
ÃN−1 − AN−1

)3

×EN−1

[{
F̃N−1 − ξλ̄N−1rN−1

(
ÃN−1 − AN−1

)}γ−3
]
. (C.2)
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Since F̃N−1 = rN−1 + (sN−1 − rN−1) ÃN−1, we have

EN−1

[{
F̃N−1 − ξλ̄N−1rN−1

(
ÃN−1 − AN−1

)}γ−3
]

=

∫ ∞
0

{
rN−1 + (sN−1 − rN−1) ÃN−1 − ξλ̄N−1rN−1

(
ÃN−1 − AN−1

)}γ−3

×p(sN−1) dsN−1. (C.3)

For γ < 1, note that the expression

{
rN−1 + (sN−1 − rN−1) ÃN−1 − ξλ̄N−1rN−1

(
ÃN−1 − AN−1

)}γ−3

(C.4)

is a decreasing function of sN−1 and has a maximum at sN−1 = 0. Hence,

EN−1

[{
F̃N−1 − ξλ̄N−1rN−1

(
ÃN−1 − AN−1

)}γ−3
]

< rγ−3
N−1

{(
1− ÃN−1

)
− ξλ̄N−1

(
ÃN−1 − AN−1

)}γ−3

. (C.5)

Since 0 < ξ < ε, we obtain a bound for

∣∣∣R̂(B)
N−1

∣∣∣ <
1

6
(γ − 1) (γ − 2) ε3λ̄3

N−1r
γ
N−1

(
ÃN−1 − AN−1

)3

×
{(

1− ÃN−1

)
− ελ̄N−1

(
ÃN−1 − AN−1

)}γ−3

. (C.6)

Note that this bound is finite since we have assumed that

0 <
(

1− ÃN−1

)
− ελ̄N−1

(
ÃN−1 − AN−1

)
< 1. (C.7)

C.2 Approximation of Optimal Value Function

In this appendix, we present the details of the perturbation analysis that derives the correc-

tion and approximation of the optimal value function VN−2 in Section 3.4.3.

In the buy region at time period N − 2, recall that V (B)
N−2 is given by Equation (3.32).
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We observe that

s−N−2 =
rN−2A

−
N−1

{(
1− A−N−2

)
− λN−2

(
A−N−2 − AN−2

)}
A−N−2

(
1− A−N−1

) = s̃N−2 +O(ε) (C.8)

and

s+
N−2 =

rN−2A
+
N−1

{(
1− A−N−2

)
− λN−2

(
A−N−2 − AN−2

)}
A−N−2

(
1− A+

N−1

) = s̃N−2 +O(ε). (C.9)

Therefore, s̃N−2 is the leading order term of s−N−2 and s+
N−2. which motivates us to rewrite

V
(B)
N−2 in terms of integrals delineated by s̃N−2. Thus, we have

V
(B)
N−2 =

∫ s̃N−2

0

F
(B)γ
N−2V

(B)
N−1p(sN−2) dsN−2

+

∫ ∞
s̃N−2

F
(B)γ
N−2V

(S)
N−1p(sN−2) dsN−2

+

∫ s̃N−2

s−N−2

F
(B)γ
N−2

{
V

(N)
N−1 − V

(B)
N−1

}
p(sN−2) dsN−2

+

∫ s+N−2

s̃N−2

F
(B)γ
N−2

{
V

(N)
N−1 − V

(S)
N−1

}
p(sN−2) dsN−2. (C.10)

Applying the Mean Value Theorem to the third integral of the above equation,

∫ s̃N−2

s−N−2

F
(B)γ
N−2

{
V

(N)
N−1 − V

(B)
N−1

}
p(sN−2) dsN−2

=
(
s̃N−2 − s−N−2

)
F

(B)γ
N−2

{
V

(N)
N−1 − V

(B)
N−1

}
p(sN−2) (C.11)

evaluated at a point sN−2 ∈
(
s−N−2, s̃N−2

)
, that is, sN−2 = s−N−2 + O(ε). Recall that when

sN−2 = s−N−2, we haveAN−1 = A−N−1 by definition. Therefore, when sN−2 = s−N−2+O(ε),

we haveAN−1 = A−N−1 +O(ε) = ÃN−1 +O(ε). This implies that the term V
(N)
N−1−V

(B)
N−1 =

ελ̄N−1

(
ÃN−1 − AN−1

)
EN−1

[
F̃ γ
N−1

]
+O(ε2) = O(ε2). Since s̃N−2 − s−N−2 = O(ε), we

thus conclude that Equation (C.11) is of O(ε3). Similarly, by applying the Mean Value

Theorem to the fourth integral of Equation (C.10), we can also show that it is of O(ε3). In
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conclusion, Equation (C.10) can be simplified to

V
(B)
N−2 =

∫ s̃N−2

0

F
(B)γ
N−2V

(B)
N−1p(sN−2) dsN−2

+

∫ ∞
s̃N−2

F
(B)γ
N−2V

(S)
N−1p(sN−2) dsN−2 +O(ε3). (C.12)

Expressing V (B)
N−2 in this form allows us to perturb it about the suboptimal value function

V̂
(B)
N−2, which is also in terms of integrals delineated by s̃N−2. Using Equation (3.78) and

the approximation of the optimal value function from time period N − 1, express V (B)
N−2 as

V
(B)
N−2 =

∫ s̃N−2

0

{
F̂

(B)
N−2 + εω−N−2 (sN−2 − rN−2)− ε2λ̄N−2ω

−
N−2rN−2

}γ
{
V̂

(B)
N−1 + δ

(B)
N−1

}
p(sN−2) dsN−2

+

∫ ∞
s̃N−2

{
F̂

(B)
N−2 + εω−N−2 (sN−2 − rN−2)− ε2λ̄N−2ω

−
N−2rN−2

}γ
{
V̂

(S)
N−1 + δ

(S)
N−1

}
p(sN−2) dsN−2 +O(ε3). (C.13)

Here, we note that V̂ (B)
N−1, V̂ (S)

N−1, δ(B)
N−1 and δ(S)

N−1 are functions of AN−1 =
sN−2A

−
N−2

F
(B)
N−2

since

the investor buys to reach the optimal buy boundary A−N−2.

In addition, recall that the suboptimal value function given by Equation (3.68) is

V̂
(B)
N−2 =

∫ s̃N−2

0

F̂
(B)γ
N−2 V̂

(B)
N−1p(sN−2) dsN−2 +

∫ ∞
s̃N−2

F̂
(B)γ
N−2 V̂

(S)
N−1p(sN−2) dsN−2 +O(ε3).

(C.14)

In this case, V̂ (B)
N−1 and V̂ (S)

N−1 are functions of AN−1 =
sN−2ÃN−2

F̂
(B)
N−2

since the investor buys

to reach the Merton proportion ÃN−2. Adopting a similar approach as the derivation of the

correction δ(B)
N−1 at time period N − 1, we first perturb the optimal value function about

the suboptimal value function, followed by a perturbation about the no transaction costs

solution. Subtracting Equation (C.14) from Equation (C.13), expanding in powers of ε and

simplifying with Equations (3.43), (3.46) and (3.47), it can be shown after much algebra
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that

δ
(B)
N−2 = ṼN−2ε

2

{[
λ̄N−2ω

−
N−2ÃN−2

(
ÃN−2 − AN−2

)
+

1

2
ω−2
N−2

]
φN−2

−λ̄N−2ω
−
N−2γ + ω−N−2ψN−2 + θN−2

}
+O(ε3), (C.15)

where φN−2, ψN−2 and θN−2 are defined in Equations (3.97), (3.98) and (3.99) respectively.

In the sell region, the correction term can be immediately deduced from that in the buy

region by a change of variables from λ̄N−2 to −µ̄N−2 and from ω−N−2 to ω+
N−2 to give us

δ
(S)
N−2 = ṼN−2ε

2

{[
µ̄N−2ω

+
N−2ÃN−2

(
AN−2 − ÃN−2

)
+

1

2
ω+2
N−2

]
φN−2

+µ̄N−2ω
+
N−2γ + ω+

N−2ψN−2 + θN−2

}
+O(ε3). (C.16)

In the no-transaction region, recall that V (N)
N−2 is given by Equation (3.38). Following

the same line of argument as in the buy region, we can show that similar to Equation (C.12),

V
(N)
N−2 =

∫ s̃N−2

0

F
(N)γ
N−2 V

(B)
N−1p(sN−2) dsN−2

+

∫ ∞
s̃N−2

F
(N)γ
N−2 V

(S)
N−1p(sN−2) dsN−2 +O(ε3). (C.17)

Using Equation (3.80) and the approximation of the optimal value function from time pe-

riod N − 1,

V
(N)
N−2 =

∫ s̃N−2

0

{
F̃N−2 + εωN−2 (sN−2 − rN−2)

}γ
{
V̂

(B)
N−1 + δ

(B)
N−1

}
p(sN−2) dsN−2

+

∫ ∞
s̃N−2

{
F̃N−2 + εωN−2 (sN−2 − rN−2)

}γ
{
V̂

(S)
N−1 + δ

(S)
N−1

}
p(sN−2) dsN−2 +O(ε3), (C.18)

where V̂ (B)
N−1, V̂ (S)

N−1, δ(B)
N−1 and δ(S)

N−1 are functions of AN−1 =
sN−2AN−2

F
(N)
N−2

since the investor
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does not transact in this region where A−N−2 ≤ AN−2 ≤ A+
N−2. Let us denote

V
(N)
N−2 = V̂

(N)
N−2 + δ

(N)
N−2, (C.19)

where

V̂
(N)
N−2 =

∫ s̃N−2

0

{
F̃N−2 + εωN−2 (sN−2 − rN−2)

}γ
V̂

(B)
N−1p(sN−2) dsN−2

+

∫ ∞
s̃N−2

{
F̃N−2 + εωN−2 (sN−2 − rN−2)

}γ
V̂

(S)
N−1p(sN−2) dsN−2 (C.20)

and

δ
(N)
N−2 =

∫ s̃N−2

0

{
F̃N−2 + εωN−2 (sN−2 − rN−2)

}γ
δ

(B)
N−1p(sN−2) dsN−2

+

∫ ∞
s̃N−2

{
F̃N−2 + εωN−2 (sN−2 − rN−2)

}γ
δ

(S)
N−1p(sN−2) dsN−2. (C.21)

Expanding in powers of ε and simplifying with Equation (3.43), it can be shown after some

algebra that

V̂
(N)
N−2 = ṼN−2

{
1 + ε2ωN−2ψN−2 +

1

2
ε2ω2

N−2φN−2

+εζN−2 +
1

2
ε2ηN−2αN−1

}
+O(ε3) (C.22)

and

δ
(N)
N−2 = ṼN−2ε

2θN−2 +O(ε3). (C.23)

Recall that αN−1, ζN−2, ηN−2, φN−2, ψN−2 and θN−2 are defined in Equations (3.63),

(3.73), (3.74), (3.97), (3.98) and (3.99) respectively. Thus, this concludes our derivation of

δ
(B)
N−2, δ(S)

N−2 and V (N)
N−2 at time period N − 2.
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