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Abstract 

The brain relies on glucose as a source of energy. Mechanisms that promote the taste-

independent intake of glucose have been proposed but not demonstrated. The arcuate 

nucleus (ARC) of the hypothalamus plays a critical role in regulating energy homoeostasis. It 

acts as a metabolic sensing unit responding to diverse signals, including glucose, to regulate 

appetite. Glucokinase is a glucose-sensing enzyme expressed in the ARC. The work in this 

thesis aims to investigate the physiological role of ARC glucokinase in energy homoeostasis.  

Recombinant adeno-associated virus (rAAV) expressing the pancreatic form of rat 

glucokinase mRNA (rAAV-GKS) was stereotactically delivered to the ARC of male Wistar rats 

(iARC-GKS). This approach specifically increased glucokinase activity in the ARC as compared 

to control rats (iARC-GFP). Pharmacological and genetic increase in ARC glucokinase activity 

resulted in a significant increase in food intake. Longitudinal experiments demonstrated that 

this food intake resulted in a significant increase in body weight and adiposity on normal 

chow and high-energy diets. Further work demonstrated that ARC glucokinase specifically 

promotes the intake of glucose, but not of fructose, and that the orexigenic effect of ARC 

glucokinase is driven by specific increase in appetite for glucose. 

Similar changes in glucose appetite and food intake were demonstrated to occur with 

alterations in ARC ATP-sensitive potassium (KATP) channel activation. Glucose-stimulated 

NPY release was increased with increased ARC glucokinase activity. This suggests that ARC 

glucokinase mediates its orexigenic glucose appetite promoting effects in part via altered 

KATP
 channel activation and NPY release, which is consistent with previous work. 

This work identifies ARC glucokinase as a regulator of glucose appetite and glucose appetite 

as an important driver of food intake. ARC glucokinase may represent the brain mechanism 

regulating the taste-independent intake of glucose and may underlie the phenomena of 

‘sweet tooth’ and ‘carbohydrate craving’.  
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1.1 The obesity pandemic  

Obesity is a pandemic with myriad medical complications that shorten lifespan and decrease 

quality of life in humans (Hussain and Bloom, 2011b, Levin et al., 2004). Obesity increases 

the risk of developing a number of medical conditions, including type 2 diabetes mellitus 

(T2DM), hypertension, dyslipidaemia, coronary heart disease, stroke, osteoarthritis and 

cancer (Bray, 2004). The last few decades has seen a steep rise in the worldwide prevalence 

of obesity. The WHO projects that by 2015 approximately 2.5 billion adults will be 

overweight and 700 million adults will be obese (WHO, 2006). This has enormous health 

implications but also impacts on societal disease burden and healthcare costs. Treatment 

options at present are limited (Hussain and Bloom, 2011a). Therefore, a better 

understanding of the mechanisms governing energy homeostasis is urgently needed in 

order to develop safe and effective treatment options for this growing problem.  

1.2 Energy homeostasis and obesity 

Energy homeostasis or energy balance involves coordinated resposes that allow food intake, 

energy expenditure, and body adiposity to be homeostatically regulated. The aim of energy 

homeostasis is to achieve a balance between promoting hunger, satiety, efficient digestion 

and nutrient absorption and augmenting energy stores whilst food is available. This balance 

is dependant on a number of factors and involves integrating neural, nutrient and hormonal 

signals from various parts of the body invovled in energy intake or expenditure. The primary 

cause for the current rise in obesity is an imbalance between energy intake, e.g. excessive 

calorie intake due to increased access to calorie dense foods, and decreased energy 

expenditure, e.g. sedentary lifestyle (James, 2008, Friedman, 2003).   

1.3 Role of the hypothalamus in energy homeostasis 

The hypothalamus is considered as the ‘gate-keeper’ in the control of energy homeostasis. 

Neural, nutrient and endocrine signals converge directly and indirectly on the 

hypothalamus. These signals emanate from various peripheral organs such as the gut, 

pancreas, liver and other parts of the CNS, such as the brainstem (Hussain and Bloom, 

2012). The hypothalamus can integrate the signals and generate homeostatic responses 
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such as hunger and satiety. The hypothalamus also has a number of important anatomical 

and functional links between a number of important central and peripheral nervous system 

regions regulating energy homoeostasis. Through these connections, the hypothalamus may 

be able to communicate with higher cortical centres influencing memory and reward and 

the brainstem which influences the sympathetic and parasympathetic nervous system that 

can regulate a number of other important homeostatic processes.  

The hypothalamus is located at the base of the brain and in between the cerebral cortex and 

the midbrain. It can be subdivided into four regions in the anteroposterior axis each 

containing discrete neuronal populations or nuclei (Swanson, 1999). It is thought that 

several different nuclei are important in the homeostatic regulation of different processes.  

1.3.1 Lateral hypothalamus 

Historically, the lateral hypothalamus was thought of as the ‘hunger centre’. This was based 

on lesioning experiments in animals where damage to the lateral hypothalamus produced 

anorexia (Anand and Brobeck, 1951). Whilst this view still largely holds true, it has been 

recently refined by our enhanced understanding of the role of individual nuclei within the 

hypothalamus and communication between them. In relation to energy homeostasis, there 

are two well established populations of neurons in the LH; those expressing orexin and 

another expressing melanin concentrating hormone (MCH) (de Lecea et al., 1998, Broberger 

et al., 1998). Activation of NPYergic neurons, which project from the ARC to the LH, causes 

the release of orexin A and B from orexin neurons (Horvath et al., 1999).  Orexins are 

orexigenic neuropeptides which increase arousal and food searching behaviour (Sakurai et 

al., 1998). Evidence from mice with targeted deletion of either MCH or the MCH receptor, 

and intracerebroventricular injection of MCH suggest that MCH may play an opposing role 

to that of the orexins (Qu et al., 1996, Rossi et al., 1997). 

1.3.2 Arcuate Nucleus 

The arcuate nucleus (ARC) is one of the main hypothalamic nuclei regulating appetite 

(Konner et al., 2009). It is situated adjacent to the third ventricle and close to the median 
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eminence. A semi-permeable blood-brain barrier resulting from a highly fenestrated local 

capillary network is thought to allow peripheral signals, such as hormones and nutrients, to 

gain access to the central nervous system (Broadwell et al., 1983). Lesions of the ARC in 

mice result in hyperphagia and obesity (Olney, 1969). The ARC is responsive to a wide range 

of hormones and nutrients. The importance of ARC was highlighted when it it was 

demonstrated as a potent site of leptin action (Cone et al., 2001).  

Two well characterized groups of arcuate neurons have been shown to regulate food intake 

and energy homeostasis. These are the orexigenic neuropeptide Y (NPY)/ agouti-related 

peptide (AgRP) neurons and anorexigenic  neurons containing pro-opiomelanocortin 

(POMC)/ cocaine- and amphetamine-regulated transcript (CART) neurons (Cone et al., 

2001). These neuronal populations have been shown to contain the necessary cellular 

apparatus to sense nutrients and hormones. For example, these neuronal populations have 

been shown to contain a high density of insulin receptor, ghrelin receptor and leptin 

receptor. This allows ARC neuronal populations to be activated and inhibited by peripheral 

signals. NPY neurones are activated by ghrelin and inhibited by leptin. POMC neuronal 

populations are activated by leptin and insulin (Cone et al., 2001, Konner et al., 2009).  

The ARC neuronal populations communicate with other hypothalamic nuclei implicated in 

the control of food intake, such as paraventricular nucleus (PVN), dorsomedial nucleus 

(DMN), lateral hypothalamus (LH), and ventromedial nucleus (VMN) (Kalra et al., 1999, 

Bouret et al., 2004). The POMC and NPY neuronal populations have efferent projections to 

other hypothalamic nuclei and other extra-hypothalamic regions of the brain implicated in 

energy homeostasis (Cone et al., 2001). NPY/AgRP neurons project to the LH and the PVN. 

POMC/CART neurons project to numerous hypothalamic and extra-hypothalamic regions 

(Cone et al., 2001). The presence of key neuronal populations that are capable of sensing 

and responding to peripheral signals and that have neuro-anatomical connections to other 

brain regions important in energy homeostasis allows the ARC to act as a critical regulator of 

energy homeostasis. 
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1.3.3 Ventromedial hypothalamic nucleus  

Historically the VMN was considered to be the ‘satiety centre’. Lesions of the medial 

hypothalamus led to hyperphagia (Mayer and Thomas, 1967). The VMN receives input from 

hypothalamic nuclei including the PVN, DMN and LH and returns projections to the LH and 

DMN.  Unlike the ARC and LH, the neuropeptide expression of the VMN is less well 

characterised. Recent work suggests that brain-derived neurotrophic factor and 

steroidogenic factor-1 both play important roles in regulating energy homoeostasis 

downstream of melanocortin-4 and leptin receptors, respectively (Xu et al., 2003, Dhillon et 

al., 2006).  

1.4 Other central pathways controlling energy homoeostasis 

1.4.1 Role of the brainstem in energy homoeostasis 

The caudal brainstem also plays an important role in controlling energy homoeostasis (Grill 

and Kaplan, 2002). The dorsal vagal complex in the caudal brainstem enables 

communication between the periphery and hypothalamus to control energy homoeostasis. 

Neural, nutrient and hormonal signals from the periphery, especially the gastrointestinal 

tract, are sensed in the brainstem by mechanisms similar to those in the hypothalamus 

(Blevins and Baskin, 2010, Grill et al., 2002, Lebrun et al., 2006). These signals converge in 

the brainstem and are relayed to the hypothalamus (Schwartz, 2000, Price et al., 2008, ter 

Horst et al., 1984). The hypothalamus integrates these and other signals to generate an 

efferent signal which is transmitted via the brainstem to modulate appetite and 

gastrointestinal function (Blevins and Baskin, 2010, ter Horst et al., 1984, Grijalva and Novin, 

1990). The vagus plays an important role in the transmission of afferent and efferent neural 

signals between gastrointestinal system and nucleus of the tractus solitarus in the dorsal 

vagal complex (Schwartz, 2000).  

1.4.2 Role of the cortico-limbic system in energy homoeostasis 

Hedonism, reward and mnemonic representations of food experiences strongly affect the 

homeostatic control of food intake (Berthoud, 2006). These non-homeostatic factors are 

influenced by the environment and processed via the corticolimbic system. The 
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corticolimbic system consists of structures including prefrontal cortex, nucleus accumbens, 

ventral striatum, hippocampus and amygdala. The importance of communication between 

homeostatic and non-homeostatic centres in altering food intake is highlighted by 

histochemical and pharmacological studies demonstrating connections and influences from 

the corticolimbic system to the hypothalamic centres controlling appetite (Berthoud, 2006). 

Recent data suggests that non-homeostatic systems are modulated by homeostatic signals 

(Grill et al., 2007, De Silva et al., 2011). It has also been postulated that altered sensing of 

homeostatic signals in common obesity may alter the desire to consume calorie dense foods 

(Page et al., 2011a).  

1.5 Glucose-sensing by the hypothalamus and regulation of energy homeostasis 

1.5.1 Hypothalamic glucose-sensing and food intake 

The brain uses glucose as its predominant energy substrate for its metabolic needs during 

normal physiology (Amiel, 1995). The idea of food intake regulation by the brain in response 

to changes in plasma glucose levels was first proposed by Jean Mayer more than 50 years 

ago as the ‘glucostatic theory of feeding’ (Mayer, 1952). Mayer hypothesized the presence 

of hypothalamic glucoreceptors that altered their electrical activity in response to changes 

in their rate of glucose utilisation, i.e. glucose-sensitive neurons. He proposed that feelings 

of hunger, when plasma glucose was reduced, and satiety, when plasma glucose was 

sufficient, were conveyed by these neurons (Mayer, 1953). In keeping with this hypothesis, 

it has been demonstrated that marked peripheral and central glucoprivation can stimulate 

feeding, as seen during hypoglycaemia (Miselis and Epstein, 1975, Biggers et al., 1989, Tsujii 

and Bray, 1990, Dunn-Meynell et al., 2009) In the same way, acute and chronic central 

glucose infusions reduce feeding in rodents (Kurata et al., 1986, Davis et al., 1981). The VMH 

was shown to have a central role in this, as chronic glucose infusions directly into the VMH 

reduced feeding by 27% (Panksepp and Rossi, 1981). Mayer’s hypothesis was further 

strengthened by the identification of glucose-sensitive neurons in the hypothalamus 

(Oomura et al., 1964, Anand and Pillai, 1967).  However, the precise role of central glucose-

sensing in day to day food intake in normal physiology still remains to be addressed. 
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1.5.2 Hypothalamic glucose-sensing and glucose homoeostasis 

Glucose-sensing by the hypothalamus is also an essential component of the 

counterregulatory response (CRR) to hypoglycaemia.  The role of the VMH in this response 

has been well characterised using in-vivo rodent models. Peripheral hypoglycaemia with 

central euglycaemia, maintained via bilateral carotid and vertebral glucose infusions, results 

in a markedly reduced CRR (Biggers et al., 1989). Furthermore, direct VMH glucose infusions 

abolish the CRR to hypoglycaemia and VMH infusion of 2-deoxyglucose (2DG), a glucose 

anti-metabolite, in the setting of peripheral euglycaemia initiates a CRR (Borg et al., 1995, 

Borg et al., 1997).  Therefore, the VMH plays a key role in detecting glucose and mediating 

the CRR in response to glucoprivation. Other nuclei, such as DMH and PVN, have also been 

shown to modulate CRR (Evans et al., 2003, Evans et al., 2004).   

More recently it has also been demonstrated that disruption of glucose-sensing mechanisms 

in neuronal pathways implicated in the melanocortin system alters glucose homoeostasis 

possibly via changes to hepatic glucose output (Parton et al., 2007b, Kong et al., 2010, Rossi 

et al., 2011). Transgenic mice expressing mutant form of the ATP-sensitive K+ channel (KATP) 

subunit Kir6.2 under the transcriptional control of the POMC promoter demonstrate 

disrupted glucose-sensing in the POMC neurons, as well as impaired glucose homoeostasis 

(Parton et al., 2007b). A similar approach in MCH neurons of the lateral hypothalamus 

impaired glucose homoeostasis (Kong et al., 2010). Re-expression of melanocortin-4 

receptors (MC4R) in cholinergic neurons of MC4R knockout mice improves glucose 

homoeostasis (Rossi et al., 2011). Preliminary evidence also suggests a role for hypothalamic 

glucose-sensing in modulating insulin secretion, however further work is needed to confirm 

this (Osundiji et al., 2012).   

1.5.3 Glucose-Sensitive Neurons  

The identification of glucose-sensitive neurons in regions of the hypothalamus involved in 

the regulation of appetite and glucose points towards a physiological role for these neurons 
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in allowing the hypothalamus to detect changes in glucose and respond accordingly (Levin 

et al., 2004). Apart from the hypothalamus, glucose-sensitive neurons have also been found 

in the hindbrain, motor cortex, amygdala and septum (Ishihara et al., 2003, McCrimmon, 

2008). In the amygdala, these neurons may also be involved in modulating the CRR to 

hypoglycaemia (Zhou et al., 2010) . In other parts of the CNS, the precise function of these 

neurons requires further investigation.  

Hypothalamic glucose-sensing neurons are divided into two groups based on their 

electrophysiological response to glucose. Glucose-excited (GE) neurons increase their 

activity as glucose levels rise, and glucose-inhibited (GI) neurons increase their activity as 

glucose levels fall (Levin et al., 2004, Routh, 2002). As in β cells, glucokinase has a prominent 

role in the glucose-sensing mechanism and acts as a neuronal glucose-sensor (Levin et al., 

2004).  

1.5.4 Glucokinase and glucose-sensing 

The first step in glycolysis involves phosphorylation of glucose to form glucose-6-phosphate. 

In majority of the cells in the body this first step is catalysed by hexokinase (also known as 

hexokinase I). Hexokinase is saturated by glucose at physiological levels and is inhibited by 

its own product, glucose-6-phosphate. However, in the pancreatic β-cells this is also 

catalysed by glucokinase (also known as hexokinase IV) (Iynedjian et al., 1989). Glucokinase 

is a 50kDa hexokinase isoenzyme. It differs from other hexokinases because it has high Km 

for glucose and is not inhibited by its product (glucose-6-phosphate). This allows the rate of 

glycolysis to be dependent on cellular glucose rather than enzymatic capacity (Matschinsky 

et al., 2006). Therefore by catalysing this first step in glycolysis, pancreatic glucokinase 

allows coupling of insulin secretion to changes in plasma glucose and acts as a ‘glucose-

sensor’.  

A point worth mentioning in relation to the glucose-sensing role of glucokinase is that intra-

cellular ATP is very well buffered even with fluctuations in utilisation of glucose (Levin et al., 

2004). Glucokinase is unlikely to have a significant effect on cellular ATP in cells expressing 

this enzyme. This makes its role in mediating the effects of glucose via altered ATP 
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generation from altered glycolytic flux difficult to understand. In the islet cell, glucokinase 

has been shown to directly alter the activity of KATP
 channels and this is very well 

established. It has been suggested that subcellular localisation and mobility patterns of 

glucokinase may influence the location of ATP generation (Levin et al., 2004, Ashcroft, 

1988). The close proximity of glucokinase to membrane bound KATP
 channels may result in 

local changes in ATP near the channel and alter their activity. Direct evidence for this is 

lacking, however specific localisation patterns have been seen with glucokinase in 

hepatocytes (Mukhtar et al., 1999). Therefore, glucokinase’s effects on KATP channels are 

less likely to be influenced by hexokinase, which may control the cells overall glucose 

metabolism and ATP levels.  

Glucokinase is expressed in, liver and pancreatic forms in the pancreas, liver and 

hypothalamus. Although the enzymatic activity of the liver and pancreatic isoforms is 

identical, they perform different functions in each tissue and are differentially regulated. In 

the liver, glucokinase allows rapid take up of glucose following feeding, and expression 

varies between the fed and fasted states (Massa et al., 2011). In the hypothalamus, the 

precise physiological role of glucokinase is unclear; however, as discussed earlier, it acts as a 

glucose-sensor in glucose-sensitive neurons. 

1.5.5 Mechanism of hypothalamic glucose-sensing 

The mechanisms used by GE neurons to detect a decrease in glucose are analogous to the 

glucose-sensing mechanism of the pancreatic β-cells. A rise in glucose results in increased 

ATP/ADP production via glycolysis and causes closure of ATP sensitive K+ channels, leading 

to neuronal membrane depolarisation, action potential and neurotransmitter release (Levin 

et al., 2004).  Glucokinase plays a key role in the glucose-sensing mechanism in these 

neurons (Levin et al., 2004) (figure 1.1). In keeping with this, 70% of GE neurons express 

glucokinase (Kang et al., 2006). POMC neuron-specific mutation in the KATP channel subunit 

Kir.2 impairs glucose-sensing in mouse POMC (Parton et al., 2007b). This suggests that 

glucose-sensing in anorexigenic POMC neurons occurs via a similar mechanism to β-cell. KATP 

channels are also present in NPY/AgRP expressing neurons of the ARC and their response to 
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glucose is blunted in Kir6.2 knockout mice (Van den Top et al., 2007, Park et al., 2011, Lynch 

et al., 2000). 

 

 

 

 

 

 

 

 

Figure 1.1 Glucose excited neuron: Mechanism for glucose-sensing in the GE neurons. 

Glucokinase allows glycolytic flux to be coupled with glucose entry. Therefore, increased 

glucose entry leads to increased ATP/ADP ratio. This results in closure of ATP sensitive K+ 

channel leading to subsequent membrane depolarisation and neurotransmitter release. 

Adapted from (Diggs-Andrews et al., 2009). 

It is thought that GI neurons also utilise a mechanism involving glucokinase, as well as nitric 

oxide and adenosine 5’-monophosphate-activated protein kinase  (AMPK) to depolarize in 

response to low glucose levels (Canabal et al., 2007, Fioramonti et al., 2010, Kang et al., 

2006). In keeping with this, approximately 45% of GI neurons express glucokinase. (Kang et 

al., 2004). Furthermore, AMPK knockout in AgRP neurons, which are thought to be GI 

neurons, impairs glucose-sensing in these neurons (Claret et al., 2007). Activation of AMPK 

GE neuron 

Neurotrasmitter 
release 
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may phosphorylate, and inhibit membrane chloride channels, leading to depolarisation 

(Mountjoy and Rutter, 2007) (figure 1.2).  

 

Figure 1.2 Glucose inhibited neuron: Potential mechanism for glucose-sensing in GI neurons. 

Glucokinase allows glycolytic flux to be coupled with glucose entry. In response to reduced 

glucose entry, reduced rate of glycolysis results in reduced cellular ATP and increased 

activation of AMPK. Increased AMPK activity inhibits membrane Cl- channels leading to 

membrane depolarisation and neurotransmitter release. Adapted from (Mountjoy and 

Rutter, 2007). 

GE neurones may also utilise AMPK to enable them to respond to glucose. In support of this, 

AMPK knockout in POMC neurons impairs glucose-sensing in POMC neurons (Claret et al., 

2007). It is currently not clear as to how AMPK allows POMC neurons to sense glucose. It is 

possible that AMPK may regulate expression of GLUT family members or may affect KATP
 

channel  opening (Belgardt et al., 2009).  

Taken together, above postulated mechanisms and current evidence suggest that glycolytic 

flux is influenced by glucokinase activity and glucose entry into neuronal cells. Both KATP 

Neurotrasmitter 
release 
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channels and AMPK activity may provide mechanisms which allow neuronal cells to alter 

their depolarisation in response to changes in glycolytic flux. Both mechanisms may operate 

in NPY and POMC neurons and these mechanisms are not exclusive to a particular cell type. 

1.5.6 Hypothalamic distribution of glucose-sensing neurons 

Hypothalamic glucose-sensing neurons are located in the PVN, LHA, VMN and ARC; the 

latter two nuclei are collectively referred to as the VMH  (Lynch et al., 2000). Most of the 

evidence regarding the functional role and neurotransmitter identity of these glucose-

sensing neurons relates to the VMH and LHA.  

1.5.6.1 The arcuate nucleus (ARC) 

The ARC contains a large number of glucose-sensing neurons, which overlap with both 

orexigenic NPY/AgRP and anorexigenic POMC/CART neurons suggesting a role in appetite 

(Mountjoy and Rutter, 2007). 94% of GI neurons isolated from the rat ARC have been shown 

to be  immunoreactive for NPY (Muroya et al., 1999). The identity of the NPY neuron as a GI 

neuron has been consistently repeated by other investigators (Mountjoy and Rutter, 2007). 

Following electrophysiological studies of POMC neurons in mice, it was considered that 

POMC neurons are GE neurons (Ibrahim et al., 2003). Disruption of KATP channels in POMC 

neurons impairs glucose-induced excitation, supporting the identity of POMC neurons as GE 

neurons.(Parton et al., 2007b). 

1.5.6.2 The Ventromedial Nucleus  

As discussed earlier, the VMH, consisting of the VMN as well as the ARC, has been shown to 

have a very important role in the regulation of glucose homeostasis. Despite the extensive 

work on the physiological role of the VMN glucose-sensing neurons, their neuropeptide 

expression has not been well characterised (Burdakov et al., 2005b). 

1.5.6.3 The Lateral Hypothalamic Area (LH)  
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In the LH, a majority of the orexin neurons have been shown to be inhibited by glucose (GI 

neurons) (Burdakov et al., 2005a, Burdakov et al., 2005b).  It has been postulated that these 

glucose-sensing neurons may regulate alertness and arousal patterns in response to glucose 

in the LH. A majority of the MCH neurons in the lateral hypothalamus have been shown to 

be excited by glucose (GE neurons) (Burdakov et al., 2005b). Recent work highlights that 

glucose induced excitability in MCH neurons is mediated by KATP channels and is involved in 

regulating glucose homoeostasis (Kong et al., 2010).  

1.5.7 Glucokinase and neuronal glucose-sensing 

The presence of the pancreatic form of glucokinase, the glucose sensor in pancreatic β-cells, 

in regions of the brain where glucose responsive neurons are present and functionally 

important supports an important role for glucokinase in the detection of glucose (Levin et 

al., 2004).  Pharmacological activation of glucokinase increases GE neuronal activity and 

decreases GI neuronal activity to low glucose (Kang et al., 2006). Reduction of glucokinase 

mRNA by 90% in cultured VMH neurons abolishes glucose sensitivity in GE and GI neurons 

(Kang et al 2006). For this reason glucokinase is considered as the primary regulator of 

neuronal glucose-sensing (Levin et al., 2004).   

Despite the strong evidence for its role as a glucose sensor, doubts over its ability to sense 

glucose in the brain have been raised. Blood glucose in the brain is lower than plasma 

glucose and may not exceed 5 mmol/L (Routh, 2002) (Roncero et al., 2000, Silver and 

Erecinska, 1994). Therefore, the inflection point of glucokinase, considered to be 

3.5mmol/L,  is likely to be higher than glucose in the brain (Matschinsky et al., 2006). If this 

prediction is correct, glucokinase may not be able to sense glucose in the brain, especially as 

GE neurons appear to be most sensitive to changes in glucose concentrations of <2mmol/l 

(Wang et al., 2006). However, changes in glucokinase lead to changes in glucose sensitivity 

in GE neurons (Kang et al., 2006). Reasons for this discrepancy between predictions and 

observed results are not clear. It is possible that glucose levels in regions where blood brain 

barrier is not complete, e.g. the ARC, may be high enough to permit glucose-sensing via 

glucokinase. Alternatively, the in vitro assessment of glucokinase’s inflection point in 
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relation to glucose may not be applicable to in vivo settings, where other factor such as 

regulatory proteins alter glucokinase’s activity (Postic et al., 2001, Matschinsky et al., 2006). 

As mentioned earlier, glucokinase is not expressed in all GE and GI neurons and supports the 

presence of alternative mechanisms for neuronal glucose-sensing.  Such mechanisms have 

been proposed, one of which involves an astrocyte-neuron lactate shuttle (Pellerin et al., 

1998, Lam et al., 2005a). This mechanism involves lactate in the brain, which is released 

primarily from astrocytes, and is taken up by neurons via the monocarboxylate transporter 

(MCT1). Once transported across the cell membrane, lactate is converted to pyruvate by 

lactate dehydrogenase (LDH). Metabolism of pyruvate results in an increase in ATP/ADP 

ratio, closing ATP-sensitive K+ channels (Penicaud et al., 2006).   Specific pharmacological 

inhibition of lactate dehydrogenase results in loss of central glucose-sensing following 

glucose infusion (Lam et al., 2008). 

The mechanism of neuronal glucose-sensing is under considerable debate. The current 

evidence implicates glucokinase as one of the main glucose-sensors in the hypothalamus. 

However, it is likely that other neuronal mechanisms such as the lactate shuttle play an 

important role in altering neuronal excitability in response to changes in glucose. Despite 

evidence indicating that glucokinase has an important role in glucose-sensing and that 

glucose-sensing is likely to have important roles in appetite, the physiological role of 

hypothalamic glucokinase  in appetite has not been conclusively demonstrated (Levin et al., 

2011).  

1.5.8 Glucose-sensing neurons as metabolic sensors 

Although glucose is an important energy signal, other metabolic signals also play an 

important role in coordinating energy homoeostasis. Glucose-sensitive neurons also 

respond to other hormonal and metabolic signals, such as insulin, leptin, lactate, ketone 

bodies, and long chain fatty acids (LCFA) (Levin, 2006). The observation that lipid 

administration to the basomedial hypothalamus results in decreased feeding and decreased 

glucose production by the liver suggests an important role for lipids in the control of 

appetite and glucose homeostasis (Lam et al., 2005c). The excitability and inhibition of ARC 
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neuronal populations to oleic acid, the most  abundant fatty acid in human adipose tissue, is 

influenced by glucose (Kokatnur et al., 1979, Wang et al., 2006). This suggests an interaction 

between glucose and fatty acid metabolism regulates neuronal excitability in the ARC. 

Neurophysiological studies demonstrate that glucose regulates leptin's effects on neurons in 

the ARC (Ma et al., 2008b). Thus, glucose sensitive neurons may represent focal points 

where signals converge to alter appetite and allow various signals to act in concert to 

influence the initiation and termination of meals. The mechanisms by which signals from 

different metabolites are integrated to generate a net physiological output from neuronal 

populations regulating energy homoeostasis are still under investigation. Current hypothesis 

suggests that key cellular processes relevant to energy homoeostasis are altered by the 

cellular influx of a variety of metabolites and provide a unifying mechanism for neuronal 

cells to integrate a variety of signals (Jordan et al., 2010). One such pathway which may 

integrate alterations in cellular biochemistry resulting from LCFA, glucose, insulin, ghrelin 

and leptin is the malonyl-CoA/ LCFA-CoA/AMPK pathway (fig 1.3) (Lam et al., 2005c, Lam et 

al., 2009, Loftus et al., 2000, Andersson et al., 2004, Minokoshi et al., 2004). This may 

provide a common metabolic pathway to alter ATP production and lipid accumulation in 

neuronal cells, leading to altered neuronal depolarisation in response to different 

metabolites and nutrients. (Penicaud et al, 2006) 
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Figure 1.3 A possible integrated mechanism for neuronal metabolic sensing: In the 

presence of LCFA, LCFA-CoA is formed which can be used for  ß-oxidation by the 

mitochondria or intracellular lipid biosynthesis. Influx of glucose leads to inhibition of ß-

oxidation by malonyl-CoA, leading to increased intracellular lipid biosynthesis and 

accumulation of lipid in the cytoplasm. The termination of lipid in the cytoplasm activates 

Protein kinase C and causes membrane depolarisation. Influx of glucose also leads to ATP 

generation via glycolysis the Krebs cycle resulting in increased ATP synthesis and altered 

membrane depolarisation via KATP channels. The effect of ghrelin, leptin and insulin may 

converge on this pathway via their influences on AMPK activity.The net effect is altered 

neuronal membrane depolarisation in response to varied nutrients and metabolites leading 

to hunger or satiety. Adapted from (Lam et al, 2005)    
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1.6 Approaches to study neural circuits controlling energy homoeostasis in 

rodents 

1.6.1 Direct administration of compounds 

Direct administration of compounds to specific neuroanatomical areas in the brain via 

cannulation has greatly enhanced our understanding of the neural control of energy 

homoeostasis (Zarjevski et al., 1993, Davis et al., 1981). This approach allows precise 

delivery of neuropeptides, pharmacological agents and nutrients to regions of the brain 

involved in control of energy homoeostasis, such as specific hypothalamic nuclei. However, 

there are certain technical and practical limitations of these techniques. Direct injection of 

compounds can only be used for short-term studies due to the short duration of action of 

most pharmacological agents. Furthermore, direct injections should only be repeated for a 

limited number of times as repeated injections result in inflammation and destruction of 

brain tissue at the injection site. Therefore, this approach is useful for the study of the acute 

effects of administered compounds but may not be feasible for chronic studies. 

1.6.2 Genetic modification 

The limitations of direct administration of compounds can be overcome by the use of 

genetic modification of rodents. The aim of this technique is to selectively alter the 

expression of genes, implicated in energy homoeostasis, and compare the resulting 

phenotype with appropriate controls. Several different approaches are possible, each 

having their own advantages and disadvantages.  

1.6.2.1 Transgenic mice 

Since the description of a method to produce transgenic mice, genetically manipulated or 

'knockout' mice have been widely used and have provided great insight into the field of 

energy homoeostasis (Gordon et al., 1980). However, problems related to developmental 

compensation to genes knocked out, embryonic lethality of global genetic knockouts and 

widespread alterations of the gene being studied in all cell types of knockout animals have 

made it difficult to fully assess the role and impact of individual genes.  For example, 
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AgRP/NPY knockout mice do not display any alterations in food intake and body weight, 

whereas mice with post-embryonic ablation of AgRP using an alternative approach were 

lean and hypophagic (Qian et al., 2002, Bewick et al., 2005). Another example includes 

glucokinase knockout mice. Homozygous glucokinase knockout mice die within the first 

week of birth owing to the lethal effects of global glucokinase knockout (Yang et al., 2007). 

Heterozygous glucokinase knockout mice are described as hyperphagic (Orban et al., 1992) 

but also have impaired glucose homoeostasis as glucokinase expression is altered in the 

pancreas and liver, making it difficult to assess the involvement of neuronal glucokinase on 

appetite in this model. Therefore knockout mice have their limitations. These limitations 

have prompted the use tissue-specific targeting strategies for gene modification to study 

the neural control of appetite. 

1.6.2.2 Cre-lox mice 

By using tissue-specific promoters, gene expression can be altered in specific cell types. Cre-

recombinase (Cre) is an enzyme that removes or inverts DNA that is found between lox-p 

sites (Hoess and Abremski, 1985). By crossing a mouse in which Cre expression is driven by a 

specific promoter with a mouse that has lox-P sites intersecting the gene of interest, the 

gene of interest is removed only in those cells where the specific promoter is expressed 

(Orban et al., 1992). This approach has been used successfully in a number of mouse models 

that have allowed production of cell type or tissue-specific genetic ablation. Unfortunately, 

specific promoters do not always exist for regions or cells of interest and this technique has 

its limitation in the settings. For example, the ARC does not have any specific promoters. 

This strategy would therefore not be particularly suitable for specifically targeting the ARC. 

1.6.2.3 Gene delivery vectors 

Gene transfer via vectors allows direct targeting of genes to a specific region of interest. The 

gene delivered can also be expressed specific promoter to allow more precise targeting. 

These strategies allow spatial and temporal control of gene expression, preventing problems 

related to global alterations in gene expression and developmental compensation. They also 

have the advantage of manipulating gene expression in larger animals such as rats, as well 

as mice. Furthermore, long breeding times typically incurred when using transgenic mice 
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can be avoided and large groups of animals can be studied at one particular time point. 

There are some limitations for the study of neural control of energy homoeostasis. Precise 

delivery of the vector to specific hypothalamic nuclei requires accurate stereotaxic 

injections in adult rodents. This is currently possible using stereotaxic methods for smaller 

nuclei (e.g. ARC) in larger animals (e.g adult rats) or larger regions (e.g. VMH) in smaller 

animals (e.g. mice). The consistent accuracy of small nuclei such as the ARC may be difficult 

to achieve in smaller animals such as mice. Adequate time must be allowed for maximal 

stable gene expression to be achieved. This varies on the type of vector used but can be up 

to four weeks. 

An ideal vector should achieve efficient, long-term transduction and desired expression 

levels in the tissue or cell being studied. It also should be safe, simple to produce, non-toxic 

and non-immunogenic. Nonviral and viral vectors can be used to deliver genetic 

information, each having certain advantages and disadvantages as described in the section 

below. 

Non-viral vectors 

Non-viral transfection methods include naked vector DNA, liposomes, cationic polymers, 

electroporation of cells, etc. The efficiency of cell transfection with non-viral vectors is 

lower, more variable and short-term compared to viral vectors, however they have the 

potential to carry larger amounts of DNA (Gardlik et al., 2005). Non-viral vectors are 

generally used for in vitro gene transfer. 

Viral vectors 

Vectors utilise the properties of viruses to insert their genome into the host cell nucleus and 

produce transgene expression. A number of different viruses have been adapted for use as 

viral vectors. These include adenoviruses, retroviruses, lentiviruses, herpesviruses, and 

adeno-associated viruses. These viruses differ in their toxicity, immunogenicity, safety, 

complexity, abilities to produce sustained transgene expression for a desired length of time, 

target specific tissues and carry certain sizes of DNA. 
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Adenoviruses are double-stranded DNA viruses capable of carrying large transgenes. They 

achieve high levels of infectivity and infect a wide range of tissues. Immunity to previously 

exposed adenoviruses severely reduces the duration of transgene expression, making this a 

less favourable vector (Kaplan et al., 1997). Furthermore, due to its size manipulation of the 

genome is difficult. It is also not selective to neuronal cells and also co-infects glial cells. 

(Duale et al., 2005) 

Retroviruses are single-stranded RNA viruses. They require conversion to double-stranded 

DNA in the host cell and integration of this double-stranded DNA into the host genome. This 

integration occurs randomly and introduces a possibility of insertional mutagenesis of host 

genes (Temin and Baltimore, 1972). Retroviruses are also only capable of transducing their 

genetic material into actively replicating cells (Miller et al., 1990). These problems limit the 

utility of retroviruses as a gene transfer vector.  

Lentiviruses are a subfamily of retroviruses. They overcome the problems associated with 

retroviruses. They are used as vectors for gene transfers into a number of different tissues 

and especially as vectors for delivery of short-interfering RNA (Naldini et al., 1996, Miyoshi 

et al., 1997, Sachdeva et al., 2007). Their safety is a concern, especially in the laboratory 

setting, as these viruses can be pathogenic in humans. They also have a tendency to spread 

which is a problem for stereotaxic injections.  

Herpesviruses are double-stranded DNA viruses. They display neuronal tropism and have 

the ability to carry large transgenes. Replication defective herpes viruses are an attractive 

choice as a vector. However, problems related to its size, immunogenicity, cytotoxicity limit 

their potential use.  

Adeno-associated virus 

Adeno-associated virus (AAV) is a small (20-25 nm), single stranded, non-enveloped, virus, 

which has been widely used as a gene transfer vehicle (Daly, 2004b). The single-stranded 

genome is approximately 4.7kb and can be packaged into as positive-sense (5'-3') or 

negative-sense (3'-5’) (Berns and Adler, 1972). AAV viruses are dependoviruses and 
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therefore replication defective. They require the presence of a helper virus (adenovirus or 

herpes simplex virus) to replicate and complete their life cycle. When a cell is infected with 

AAV the viral genome is conveyed to the nucleus and converted to a double-stranded form; 

however the virus cannot synthesise capsid proteins or be packaged without a helper virus. 

AAV also possesses no lytic capability and relies on the helper virus to liberate newly formed 

viral particles making it safe to work with and modify (Atchison et al., 1965). AAV has not 

been linked to any disease or immunological response (Blacklow et al., 1968, Samulski et al., 

1989). 12 human serotypes and more than 100 primate serotypes have been described. 

Each of these displays tropism for specific cell type (Palomeque et al., 2007). AAV-2 is one of 

the best studied serotypes. It displays neuronal tropism and maintains stable gene 

expression in neurones for over one year (Klein et al., 2002, Daly, 2004b). It also does not 

induce any immunological responses in transfected organs (Ponnazhagan et al., 1997). 

These properties of AAV-2 make it particularly useful for the study of energy homoeostasis. 

AAV genome consists of two open reading frames (ORF) that are flanked on either side by 

two 145 base pair palindromic sequences known as inverted terminal repeats (ITRs) 

(Srivastava et al., 1983). ITRs are necessary for viral DNA replication, packaging and 

integration into the host genome. The palindromic sequences form a hairpin structure, 

which contributes to self-priming or primer independent second strand DNA synthesis 

(Lusby et al., 1980, Bohenzky et al., 1988). The AAV genome contains Rep gene in its 5’ ORF. 

This gene produces for proteins Rep 78, Rep 68, Rep 52, and Rep 40 (Kyostio et al., 1994). 

Rep 78 and 68 are large regulatory proteins transcribed via the p5 promoter. Rep 52 and 40 

are smaller proteins transcribed via the p19 promoter and have roles in viral DNA packaging 

(Im and Muzyczka, 1990). The Rep proteins suppress AAV gene expression when the helper 

virus is not present (Trempe and Carter, 1988). The AAV genome also contains the Cap gene 

in its 3’ ORF. This gene produces VP1, VP2, and VP3 viral capsid proteins which are 

transduced via the p40 promoter. These proteins form the icosahedral viral protein coat of 

the AAV with VP3, accounting for 85% of the protein mass (Rose et al., 1971, Jay et al., 

1981).  
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Figure 2.1 Diagram of wild-type AAV-2 serotype genome. ITRs flank the Rep and Cap genes and 

their promoters (p5, p19 and p40). Adapted from (Daya and Berns, 2008). 

Recombinant AAV 

Recombinant AAV (rAAV) differs from AAV in that the two genes necessary for producing 

structural and non-structural proteins (cap and rep) have been removed. The removal of 

these genes ensures that rAAV cannot form viral packages in the presence of a helper virus. 

During the production of rAAV, the rep and cap genes are provided in cis- along with 

necessary helper functions. Recombinant AAV contains the two inverted terminal repeats 

(ITRs) necessary for the production and function of the virus. The ITRs frame the expression 

cassette, which can be modified to include genes and promoters of choice, with the 

packaging capacity of approximately 4.5kb. After infecting the host cell, single-stranded viral 

genome of rAAV is converted to double-stranded DNA. This is considered as the rate-

limiting step in allowing transgene expression (Afione et al., 1999, Ferrari et al., 1996). 

Hence, the steady-state for gene expression can takes up to three weeks to achieve. The 

rAAV genome can integrate randomly into the host genome or may be present episomally in 

the host cell nucleus (Duan et al., 1998). rAAV does not produce any viral proteins, and, 

since ITRs are not translated (Samulski et al., 1989). It is therefore less immunogenic, which 

allows sustained transgene expression. Like AAV serotype-2, rAAV serotype-2 also displays 

strong neuronal tropism and lack tropism for glial cells, which is useful for studying the 
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neural control of energy homoeostasis (Summerford and Samulski, 1998, Bartlett et al., 

1998).  

There are some limitations to rAAV. Although it is neurotropic, rAAV is relatively non-

specific in which neurons it infects. Within a hypothalamic nucleus there may be different 

neuron types with different functions co-localised in one area. For example, in the ARC 

there are NPY and POMC neurons. rAAV would infect all neurons indiscriminately (Daly, 

2004a). rAAV is also fairly difficult to produce. However, rAAV technology allows high level 

and stable transgene expression to be induced in animals. This, combined with neuronal 

tropism, nonpathogenic nature, lack of cytotoxicity and ease of manipulation make it a 

suitable vector for manipulating gene expression in neuronal cells. In this regard it has been 

successfully used to increase and decrease specific gene expression within the 

hypothalamus (Tiesjema et al., 2009, Gardiner et al., 2005). Therefore, this technology is 

particularly well-suited for studying the effects of altering glucokinase expression in specific 

hypothalamic nuclei on energy homoeostasis. 
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1.7 Summary 

The hypothalamus plays an integral role in the integration of a variety of neural, nutrient 

and hormonal signals to coordinate energy homoeostasis. Recent work has identified the 

arcuate nucleus as having a pivotal role in this regard. Glucose is the primary energy source 

in mammals and essential to neuronal metabolism. Therefore it is not surprising that 

hypothalamic nuclei, which play a critical role in regulating energy homoeostasis, also 

respond to changes in glucose. The exact mechanism by which this occurs and is integrated 

with sensing of other signals is currently under investigation. However, current evidence 

supports that glucokinase has a prominent role in glucose-sensing glucokinase is expressed 

in hypothalamic nuclei, such as the ARC, which have important roles in controlling energy 

homoeostasis. The physiological role of ARC glucokinase and glucose-sensing in regulating 

appetite has not been investigated. Modulating glucokinase activity in the ARC may help 

elucidate this. The use of stereotaxically delivered pharmacological agents and rAAV in 

rodents provides a suitable approach to investigate this and forms the basis of this thesis. 
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2 Materials and Methods 

All reagents were supplied by Sigma, Poole, Dorset, UK, unless otherwise stated. 
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2.1 Molecular and In-Vitro Techniques 

2.1.1 Production of GKS (glucokinase-sense) using RT and PCR 

2.1.1.1 Tri reagent method for hypothalamic RNA extraction 

Materials  

Tri-reagent (Helena Biosciences, Tyne and Wear, UK)  

Absolute ethanol  

Isopropanol 

1-Bromo-chloro-propane  

Glass distilled water (GDW)  

Methods  

Total RNA was extracted from tissues using Tri-reagent according to the manufacturer’s 

protocol. Up to 100 mg hypothalamic tissue was ground under liquid nitrogen with a mortar 

and pestle before being homogenised in 1 ml Tri-reagent. The homogenised product was 

transferred to 1.5 ml eppendorf tubes and incubated at room temperature for 5 minutes. 

One hundred microlitres of bromo-chloro-propane was added to the homogenised product, 

vigorously mixed for 15 seconds, and incubated at room temperature for a further 5 

minutes. RNA was separated by centrifugation at 4˚C for 15 minutes at 12,000xg (centrifuge 

5417 C/R, Eppendorf, Hamburg, Germany) with the brake off. The upper aqueous phase was 

transferred to a 1.5 ml eppendorf tube, precipitated using 500μl of room temperature 

isopropanol for 10 minutes at room temperature, and subjected to centrifugation for 10 

minutes at 12,000xg and 4˚C. The supernatant was discarded and the resulting pellet 

washed with one volume (1 ml) of 75 % (v/v) ethanol in GDW and subjected to 

centrifugation for a further 10 minutes at 12,000xg and 4˚C. The pellet was then air dried, 

and dissolved in 400μl of autoclaved GDW. RNA concentration was determined 

spectrophotometrically. RNA was diluted 1:100 in GDW and 1 ml transferred into a quartz 

cuvette. Absorbance was read at 260 and 280 nm on a UV 1101 spectrophotometer (WPA, 

Cambridgeshire, UK). The concentration was calculated using the following formula: 

concentration (μg/ml) = (A260 x dilution factor) x 40. Following quantification, RNA samples 

were ethanol precipitated using 0.1 volumes of sodium acetate (pH 5.2) and 2.5 volumes of 
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ice cold absolute ethanol. Samples were incubated at -20°C for a minimum of 1 hour and the 

RNA recovered by centrifugation for 20 minutes at 12,000xg and room temperature (F45-

12-11 microfuge, Eppendorf, Hamburg, Germany). The supernatant was discarded and the 

pellet air dried under vacuum for 5 minutes. RNA was dissolved in the appropriate volume 

of GDW to give a 5 mg/ml solution.  

2.1.1.2 Formaldehyde gel to confirm RNA integrity 

Materials  

Agarose, type II-A medium EEO  

Formaldehyde  

20x MOPS, pH 7.0 (appendix I)  

0.4 M 3-(N-Morpholin) propanesulphonic acid (MOPS)  

0.1 M sodium acetate  

70 % (v/v) Formamide (appendix I)  

3.5 % (v/v) Formaldehyde  

1.5x MOPS  

Gel loading buffer (appendix I)  

0.02 M EDTA  

0.04 % formaldehyde  

10 mg/ml Ethidium bromide 70  

DENAT  

25 % (v/v) glycerol  

0.1% orange G  

25 mM EDTA  

100x TE, pH 7.5 (appendix I)  

1 M Tris base  

0.1 M EDTA  

2 M Sodium acetate, pH 5.2  

GDW  
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Methods  

RNA integrity was confirmed using a formaldehyde gel. A 1 % agarose denaturing gel was 

made in 7.5 % (v/v) formaldehyde and 1x MOPS buffer. 1μl RNA was added to 12μl of 

DENAT. Samples were incubated at 65°C for 5 minutes. 3μl of gel loading buffer was added 

thereafter. The samples were loaded onto the gel and electrophoresed in 1x MOPS and 

7.5% formaldehyde (v/v) at 15 V/cm for 10 cm. The gel was stained for 30 minutes in 1x TE 

containing 0.01 mg/ml ethidium bromide on a shaking platform. The gel was destained in 1x 

TE overnight. The presence of 18 S and 28S ribosomal bands visualised under UV light (300 

nm) confirmed RNA integrity. 

2.1.1.3  Reverse transcription 

Materials  

Rat hypothalamic RNA (5mg/ml)  

10mM dNTPs (GE Healthcare, Buckinghamshire, UK)  

Oligo dT (12-18) 200ng/μl (GE Healthcare)  

5x Reverse transcriptase buffer (Promega, Madison, WI)  

Avian myoblastoma virus reverse transcriptase (RT) 10U/μl (Promega)  

Methods  

One milligram per millilitre RNA, 1x reverse transcriptase buffer, 1mM dNTPs and 10mg/ml 

oligo dT were made up to a final volume of 20 µl. This reaction mixture was heated to 65°C 

for 5 minutes and then cooled to room temperature for 30 minutes. 10U RT was then added 

and the reaction was incubated at 42°C for 1 hour. This reaction was then used in the 

polymerase chain reaction (PCR) as detailed below. 

2.1.1.4 PCR  

Materials  

10x Taq buffer  

10mM dNTPs (GE Healthcare)  

Taq DNA polymerase (5U/μl)  
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For GKS: pCMV4.GKB1 encoding full length glucokinase (gift from M.Magnuson, Vanderbilt 

University)  

20μM oligonucleotide primers (Oswel DNA service, Southampton, UK): 

 

Primer  Sequence  

GKS forward  5‟-ACGTACCGGTATTCACATCTGGTACCTGGG-3‟  

GKS reverse  5‟-AGCTCGTACGTATTAGGACAAGGCTGGTGG-3‟  

Figure 2.2 PCR primers used for amplification of GKS gene sequences 

Methods  

One microlitre pCMV4.GKB1 was added to 1x taq buffer, 0.2mM dNTPs, 200nM 

oligonucleotide primers (nucleotides 787-2247, figure 2.2). The reaction was heated to 95°C 

for 5 minutes. 5U taq DNA polymerase was then added. The reaction was then cycled as 

follows: 95°C for thirty seconds, 55°C for thirty seconds and 72°C for thirty seconds.  

After completion of the reaction, 10μl of the PCR products were visualised by gel 

electrophoresis on a 1% TAE/agarose gel. 

2.1.1.5 Visualisation of PCR products  

Materials  

Agarose, type II-A medium EEO  

0.05M EDTA pH 8.0  

Ethidium Bromide (10mg/ml) (VWR International Ltd, Poole, UK)  

2M Tris-Acetate pH 8.5  

50x TAE: (appendix I)  
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DNA marker (BRL 1Kb plus ladder, Invitrogen , Paisley, UK)  

Gel loading buffer (appendix I)  

Methods  

Agarose was dissolved in in 1x TAE using a microwave oven to prepare a 1% (w/v) agarose 

gel. Ethidium bromide was added to the agarose gel to a final concentration of 0.5μg/ml 

after the gel was cooled to 45°C. The gel was placed into an electrophoresis tank containing 

0.5 TAE with 0.5μg/ml ethidium bromide after the gel was set. 3 µL of gel loading buffer was 

added to 10μl PCR product and to a mixture of 1μl of DNA marker and 9μl GDW. The 

samples were loaded onto the gel and electrophoresed at 10V/cm. DNA was visualised by 

illumination with UV light (300nm). 

2.1.2 Cloning of GK DNA into pTR-CGW  

Restriction endonucleases are enzymes isolated from bacteria that recognise and cleave 

specific target sites within double-stranded DNA. These cut fragments can be ligated using a 

viral enzyme that catalyses the formation of phosphodiester bonds between a free 5‟ 

phosphate and a free 3‟ hydroxyl group (Sambrook et al., 1989). 

2.1.2.1 Restriction endonuclease digestion of PCR products and pTR-CGW  

Materials  

PCR products  

pTR-CGW (rAAV plasmid) (gift from Dr. Verhaggen, Amsterdam)  

Restriction endonucleases: BamHI, BsrGI, BsiWI, AgeI (New England Biolabs, Hitchin, 

Hertfordshire, UK)  

10x Restriction buffer (as supplied) (appendix I)  

10x Bovine serum albumin (BSA) (New England Biolabs)  

Shrimp alkali phosphatase (SAP) 4U/μl (GE Healthcare)  

Phenol/Chloroform pH8 (VWR)  

5M Sodium acetate, pH 5.2 (appendix I)  

Autoclaved glass distilled water (GDW) 
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Methods  

The PCR products and pTR-CGW were diluted in GDW separately. Restriction buffer and BSA 

were added to give a final concentration of 1x. Forty units of AgeI and BsiWI were added. 

The total volume of enzyme added was kept less than 10% of the final volume. The reaction 

was incubated at 37° C for at least one hour. 8U SAP was added 30 minutes before the end 

of the incubation for the digestion of pTR-CGW. SAP removes 5‟ phosphate groups 

preventing self-ligation of the plasmid. The reactions were extracted and phase separated 

with an equal volume of phenol/chloroform by centrifugation at 13,000xg for 3 minutes. 

The DNA was ethanol precipitated with 0.1 volumes sodium acetate pH5.2 and 2.5 volumes 

absolute ethanol at -20°C for at least one hour. The DNA was recovered by centrifugation at 

13,000xg for 7 minutes (F45-12-11 microfuge, Eppendorf, Hamburg, Germany).  

2.1.2.2 Electroelution of DNA fragments 

In order to purify the DNA and remove contaminating fragments, DNA from the restriction 

dissection was size fractionated by electrophoresis on an agarose gel and the bands of 

interest were electroeluted.  

Materials 

50x TAE 

Gel loading buffer (appendix I) 

DNA marker (Invitrogen) 

Dialysis tubing (VWR) 

Methods 

The DNA product from restriction digestion was dissolved in 20 µL GDW. 6 µL loading buffer 

was added. 1 µL DNA marker was dissolved in 9μl GDW and 3μl loading buffer. Samples 

were electrophoresed after loading onto a 1% agarose gel (prepared as described in section 

2.1.1.5) at 10V/cm. DNA was visualised under UV light at 300 nm. The band of interest was 

cut from the gel using a scalpel. The band was put into dialysis tubing sealed at one end 

using a clip. 400 µL of 0.5x TAE was added to the dialysis tubing containing the cut band. The 
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air was excluded from the end of keeping by pressing firmly after which the open and was 

sealed using a clip. TAE was removed from the tubing after this. DNA was extracted by 

phenol/chloroform extraction and ethanol precipitation (as described in section 2.1.2.1) and 

quantified visually by running 1μl dissolved in GDW on a 1% agarose gel, as described 

earlier. 

2.1.2.3 Ligation of PCR product into pTR-CGW 

Materials 

T4 DNA ligase, 6U/μl (New England Biolabs) 

10x Ligase buffer (New England Biolabs) 

PCR products* 

pTR-CGW* 

*products of restriction digestion purified as above 

Methods 

GK were inserted into pTR-CGW plasmid using DNA ligation. 20 ng of digested plasmid DNA 

was dissolved in GDW. Digested PCR product was added in x4 molar excess. 1 µL ligase 

buffer and 6U T4 DNA ligase added to result in a final volume of 10μl. The reaction was 

incubated overnight at 16°C. This product was then used to transform bacteria. 

2.1.2.4 Preparation of GKS-pTR-CGW-plasmid 

Transformation of competent JC811 bacteria by electroporation 

The plasmid is induced into the bacterial cell by a process known as electroporation. This 

involves passing a voltage across the bacteria to open its membrane pores transiently, thus 

allowing the plasmid to enter into the bacterial cell. This transformed product can then be 

incubated. The pTR-GCW plasmid contains an ampillicin resistance gene. Ampicillin 

antibiotics can be incorporated into an agar plate used to grow the bacteria. This allows the 

selection of bacteria carrying the plasmid of interest. 

Materials 

Ligation reaction 
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LB (appendix I) 

LB(amp) plates 

JC811 bacteria (ATCC, Middlesex, UK) 

Glyercol (VWR) 

Methods 

All salts must be removed from the reaction mixture prior to transforming the bacteria as 

otherwise this could lead to arcing during electroporation. The reaction was ethanol 

precipitated for at least one hour (as described earlier) after adding 1 µL of glycogen, which 

acts as a carrier. DNA was recovered as described earlier using centrifugation for 7 minutes 

at 13000xg. The DNA was dissolved in 10μl of GDW.  

An aliquot of frozen JC811 bacteria was thawed on ice. 10ng of plasmid (5μl ligation 

reaction) was added. The mixture transferred to an electrocuvette with an intra-electrode 

distance of 1mm. A 1.4 kilovolts voltage was passed across the cuvette to electroporate the 

bacteria. 200µl of warmed LB was then added and the reaction incubated at 37°C for an 

hour. Agar plates (with 100μg/ml ampicillin) were warmed and 150μl of the transformed 

bacteria added to the plate. The bacteria were spread over the surface of the agar plate. 

The agar plate was then inverted and incubated at 37°C overnight. 

Small scale preparation of plasmid 

Initially plasmids were isolated on a small scale culture (Sambrook et al., 1989). This allowed 

several clones to be analysed simultaneously. In order to isolate the plasmid from bacteria, 

the cell wall of the bacteria is disrupted using alkaline SDS. Contaminants such as bacterial 

debris, proteins, genomic DNA and RNA are precipitated using potassium acetate and 

treated with RNaseA. This removes most of the contaminants. 

Materials 
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LB(amp) 

GTE (appendix I) 

0.2M sodium hydroxide 1% SDS (v/v) (appendix I) 

5M potassium acetate (appendix I) 

5M sodium acetate (appendix I) 

Phenol/Chloroform 

Propan-2-ol (VWR) 

Methods 

Two millilitres of LB (supplemented with 0.05 mg/ml ampicillin, LB(amp)) was inoculated 

with a single bacterial colony. This was incubated overnight at 37°C with vigorous shaking. 

1.5ml of this mixture was removed into a clean to and centrifuged for 3 minutes at 

13,000xg. The remaining mixture was stored at 4°C to enable it to be used later. The 

supernatant was removed and the bacterial pellet was resuspended in 100μl GTE. 200 µL 

alkaline SDS was added to the bacteria and the mixture left for 5 minutes on ice. 150μl 5M 

KAc was then added and the mixture was left on ice for a further 5 minutes. The mixture 

was then centrifuged at 13,000xg for 5 minutes and 350μl supernatant was removed into a 

fresh tube. Phenol chloroform extraction was carried out as described previously. DNA was 

precipitated by the addition of 0.6 volume propan-2-ol and incubation at room temperature 

for 10 minutes. This was centrifuged again at 13,000xg for 7 minutes to pellet the DNA. DNA 

was recovered by removing the supernatant and dissolved in 100μl GDW. The DNA was 

ethanol precipitated with 0.1 volumes sodium acetate pH5.2 and 2.5 volumes absolute 

ethanol and was incubated at -20°C for at least one hour. Restriction endonuclease 

digestion was carried out (as described earlier) in order to identify which clones contained 

an insert of the correct size. Purified DNA was dissolved in 10μl GDW; AgeI and BsiWI was 

used to digest the GKS plasmid. Both plasmids were also digested by XmaI to confirm the 

presence of ITRs. The products were visualised by gel electrophoresis. Clones containing the 

correct insert and ITRs were selected for large scale preparation. 
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Large scale preparation of plasmid 

Materials 

LB(amp) 

GTE 

50,000 U/mg Lysozyme 

0.2M sodium hydroxide/1% (w/v) SDS 

5M potassium acetate (KAc) 

Propan-2-ol 

100x TE (appendix I) 

DNase free RNase A 10mg/ml in GDW (GE Healthcare) 

Phenol/Chloroform (VWR) 

Methods 

A small quantity of bacteria containing pTR-CGW with the correct size insert was inoculated 

into 500ml LB(amp) and incubated at 37°C overnight with vigorous shaking. The bacteria 

were recovered by centrifugation for 8 minutes at 3000xg (4000rpm in HS-4 rotor in RC-5B 

superspeed centrifuge, Du Pont, Bristol, UK) and at 4°C. The pellet was resuspended in 25ml 

GTE supplemented with 2mg/ml lysozyme and the sample was then incubated at room 

temperature for 5 minutes. Fifty millilitres of SDS/NaOH were added, the sample mixed by 

inversion and incubated on ice for 5 minutes. 38ml 5M KAc was then added. The sample 

mixed by inversion and incubated on ice for 10 minutes. Bacterial debris was removed by 

centrifugation for 15 minutes at 9000xg (7000rpm in HS-4 rotor in RC-5B superspeed 

centrifuge, Du Pont) at 4°C. The supernatant was transferred to a clean tube and 0.6 

volumes propan-2-ol added. The sample was incubated on ice for 15 minutes and the DNA 

recovered by centrifugation for 15 minutes at 9000xg at 4°C. The pellet was dissolved in 

10ml GDW to which 100μl 100x TE was added. RNase A was added at a concentration of 

0.1mg/ml and the reaction incubated at 37°C for 30 minutes. The reaction was extracted 

with an equal volume of phenol/chloroform and the phases separated by centrifugation for 

20 minutes at 10000xg and 4°C. The DNA was recovered by addition of 0.1 volumes 2M 

sodium acetate pH 5.2 and one volume propan-2-ol and incubation at -20°C for at least one 

hour. The DNA was then purified by caesium chloride gradient as detailed below. 
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Caesium chloride gradient purification 

A caesium chloride gradient was used to purify the large-scale plasmid preparation. This 

purification method depends on the decrease in density of nucleic acids when bound to 

ethidium bromide, which binds by intercalation into DNA and causes its helix to unwind. In 

closed circular DNA such as plasmids, due to increased supercoiling, binding of ethidium 

bromide is limited and the plasmid has a higher buoyant density than linear or cut plasmids. 

This difference in buoyant density allows separation of the plasmid on a caesium chloride 

density gradient. 

Materials 

TES: 

50mM Tris-HCL, pH 8.0 (appendix I) 

50mM sodium chloride 

5 mM EDTA 

Caesium chloride (Boehringer, Berkshire, UK) 

10mg/ml ethidium bromide 

Caesium chloride-saturated propan-2-ol (appendix I) 

Methods 

DNA obtained from large scale plasmid purification was recovered by centrifugation for 20 

minutes at 24,000xg (12,000rpm in HBS rotor in RC5B superspeed centrifuge, Du Pont) and 

4°C. The DNA was then dissolved in 8.25ml TES. 8.4 grams of caesium chloride was dissolved 

in the DNA solution and 150μl of ethidium bromide was added and the solution mixed. The 

sample was divided into two polyallomer tubes (Ultracrimp, Du Pont), balanced, and 

overlaid with mineral oil. The tubes were sealed and centrifuged for 16 hours at 20°C and 

216,518xg (60,000rpm in a T-8100 rotor in a Sorvall 100SE centrifuge, Fisher Scientific, 

Loughborough, UK). After centrifugation, DNA bands were visualised by UV illumination and 

the band containing the closed pTR-CGW DNA removed using a 20-gauge needle and a 2ml 

syringe. Ethidium bromide was removed from the plasmid by repeated extraction with an 

equal volume of caesium chloride saturated propan-2-ol, until both phases were colourless. 
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The DNA was precipitated by addition of two volumes of GDW and six volumes of room 

temperature absolute ethanol. DNA was recovered by centrifugation at 24,000xg and 20°C 

for 15minutes. The DNA pellet was dissolved in 0.4ml GDW, ethanol precipitated and 

recovered by centrifugation for 7 minutes at 13,000xg. The DNA was then dissolved in 1ml 

GDW. pTR-CGW was then quantified spectrophotometrically, 10μl DNA was diluted 1:100 

and placed into a quartz cuvette. Absorbance was read at 260 and 280nm UV 1101 

spectrophotometer (WPA, Cambridgeshire, UK). The reading at 280nm gives an indication of 

the purity of the sample as phenol absorbs more strongly at 280nm than DNA. The 

concentration of the DNA was calculated using the following formula: 

Concentration (μg/ml) = (A260 x dilution factor) x 50 

Samples were subjected to endonuclease digestion. GKS-pTR-CGW was digested AgeI and 

BsiWI. Both plasmids were digested by XmaI to confirm the presence of ITRs. 

Insert sequences were confirmed by DNA sequencing (Genomics Core Laboratory, Imperial 

College London, UK). Briefly, 200 ng of each respective plasmid was diluted and mixed with 

3.2 pmole of either the forward or reverse primer used in the PCR reaction in section 

2.1.1.4. Samples were cycle sequenced using BigDye v3.1 (Applied Biosystems Ltd, 

Warrington, UK). Sequencing results were analysed for homology to known rat glucokinase 

gene sequences using the Basic Local Alignment Search Tool (BLAST) on the National Centre 

for Biotechnology Information (NCBI) internet site. 

2.1.2.5 Cell Culture 

Maintenance of cells 

Materials  

All cell-culture materials were purchased from Invitrogen unless stated otherwise 

Human embryonic kidney cells (HEK293T. ATCC) 

Human hepatocellular carcinoma (HEPG2. ATCC) 

Dulbeccos modified eagle medium (DMEM) 
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Foetal Bovine Serum, heat inactivated (FBS) 

2.5% Trypsin in hanks balanced salt solution 

Versene: (appendix I) 

0.14M sodium chloride 

2.7mM potassium chloride 

8mM di-sodium hydrogen orthophosphate 

3mM EDTA 

1.5mM potassium di-hydrogen orthophosphate 

0.1%(v/v) phenol red 

Methods 

Human embryonic kidney cells (HEK 293T) and human hepatocellular carcinoma cells 

(HEPG2) were cultured in DMEM containing 4.5mg/ml glucose and 1mM sodium pyruvate 

supplemented with 10% (v/v) FBS at 37C in a 5% carbon dioxide atmosphere. Medium was 

changed every three days and the cells sub-cultured when 70-80% confluent using 0.25% 

trypsin in versene. The medium was aspirated and the cells incubated at 37C with fresh 

versene/trypsin until they detached from the flask. The trypsin was inactivated by the 

addition of 10ml of fresh medium and the cells recovered by centrifugation for 5 minutes at 

100xg. The cells were resuspended in fresh medium and transferred to a new flask at a 1:10 

dilution. 

Transfection of cells with GKS pTR-CGW plasmids 

Exogenous naked DNA can be absorbed by untreated mammalian cells, however the rate of 

absorption is slow and the efficiency can be poor. Therefore, large quantities of exogenous 

naked DNA need to be used. Calcium phosphate co-precipitation can improve the 

transfection efficiency. HEK293T cells, which do not express glucokinase, were transfected 

with GKS plasmid. pTR-CGW was transfected as a control. 

Materials 

2x HEPES-buffered saline (HBS) (appendix I) 

280mM sodium chloride 
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10mM potassium chloride 

1.5mM di-sodium hydrogen orthophosphate 

12mM dextrose 

50mM HEPES, pH7.05 

2M calcium chloride (appendix I) 

0.1xTE: 

1mM Tris-HCl, pH 8.0 

0.1mM EDTA, pH 8.0 

DNA in 0.1 x TE: 

40μg/ml plasmid DNA 

DMEM 

Methods 

Twenty-four hours before transfection, cells at approximately 60% confluence were sub-

cultured and plated at a density of 1x104cells/cm in 90mm Petri dishes. The following day 

media was replaced with fresh media. A co-precipitate was formed by mixing 300μl 10xHBS 

with 28μg plasmid DNA in 2.5ml of GDW and then slowly adding 180μl 2M calcium chloride, 

while gently mixing using air expelled from a pipette aid. The solution was incubated at 

room temperature for 5 minutes to allow formation of the precipitate. The precipitate was 

added to the cells and they were incubated at 37°C in 5% carbon dioxide for 18 hours. The 

medium containing the precipitate was replaced with fresh media, cells were incubated for 

48 hours after which time cells were lysed in glucokinase extraction buffer and enzymatic 

assay was performed for glucokinase activity as described in section 2.3.2. 

2.1.2.6 Production of recombinant adeno-associated virus (rAAV) particles 

rAAV can be produced using several different methods. The method employed and detailed 

below is based on the 'two-plasmid system' that does not require the use of an adenovirus 

(Grimm et al., 1998) (figure 2.3). This system uses a packaging plasmid containing the 

transgene of interest and a helper plasmid containing Rep, Cap as well as other adenovirus 

genes required to propagate the virus. In this study pTRCGW and pDG were used as 

packaging and helper plasmids respectively (figure 2.4 and 2.5).  
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Figure 2.3 Two plasmid system for rAAV production (Grimm et al., 1998). Cells are transfected 

with the vector plasmid and a pDG hybrid helper plasmid. X, transgene; ITR, inverted terminal 

repeats; Ad5, adenovirus helper genes. 

  

X 
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Figure 2.4 Diagram of rAAV plasmid pTRCGW with transgene insert. ITRs flank the expression 

cassette which contains the cDNA insert and CMV promoter. Outside of the expression cassette 

the gene for ampicillin resistance is included to aid selection of rAAV positive bacterial colonies. 

 

Figure 2.5 Diagram of helper-plasmid pDG structure. AAV and adenovirus genes required for 

amplification and packaging of rAAV are contained within this plasmid. Right terminal repeat 

(RTR) and MMTV-Rep-Cap includes a promoter region encoding Rep and Cap proteins. 

Expression is driven by mouse mammary tumour virus (MMTV).  Long terminal repeat (LTR), VA, 

E2A and E4 are adenovirus helper genes required for replication. 
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Production of rAAV 

Adeno-associated virus was produced by Dr. J. Gardiner (Division for Diabetes, 

Endocrinology and Metabolism) using the two plasmid system. Briefly, host cells (HEK293) 

are co-transfected with the rAAV plasmid pTR-CGW and a helper plasmid pDG using calcium 

phosphate. There is no homology between the two plasmids so they cannot recombine and 

form wild-type virus. This results in the production of rAAV particles. To release the particles 

cells are lysed by freeze thawing and the rAAV produced is purified. 

HEK293 cells were maintained in DMEM containing 4500μg/ml glucose and 1mM sodium 

pyruvate supplemented with 10% (v/v) FBS. 

Calcium phosphate transfection 

Materials 

HEK293 cells 

Plasmids 

pTR-CGW (containing transgene) 

pDG 

10x HEBS buffer: 

1.36M NaCl 

0.05M KCl 

0.007M Na2HPO4.2H20 

0.2M HEPES 

0.125M glucose 

2M CaCl2 

Methods 

Cells were plated into a 10 chamber cell factory (L x W x H (mm): 335 x 205 x 190, culture 

area: 6320cm2). Cells were incubated in 2000ml DMEM with 10% FBS. After 24 hours, when 
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cells were 50% confluent, the culture medium was replaced (250ml culture medium was 

retained for transfection) and transfection performed 2 hours later. 

Transfection mix was prepared for the cell factory, consisting of 560μg pTRCGW, 1.68mg 

pDG, 7.2ml 2M CaCl2 and 52ml GDW. Immediately before transfection 12ml 10x HEBS 

buffer in 48ml GDW was added and mixed gently. After standing at room temperature for 1 

minute the mixture was added slowly to 250ml DMEM supplemented with 10% FBS and 

added to the cell factory. 

Recovery and purification of rAAV 

Materials 

0.01M PBS 

DNaseI 

Sepharoes column (GE Healthcare) 

Iodixanol (Life Sciences Technology, Eggenstein, Germany) 

0.3x PBS/0.1M NaCl 

0.3x PBS/2mM EDTA 

2M MgCl2 

Benzonase (Novagen, Nottingham, UK) 

Lysis buffer (appendix I) 

Methods 

Forty-eight hours after transfection, cell medium was removed and cells were washed using 

500ml PBS and then harvested using 1 L PBS/2mM EDTA. Cells were then recovered by 

centrifugation at 5000xg for 10 minutes, washed in 150ml PBS and recovered by 

centrifugation at 5000xg for 10 minutes. Cells were then resuspended in 60ml lysis buffer 

and aliquoted into four falcon tubes. Cells were subjected to three cycles of 10 minutes in 

dry ice/ethanol followed by 10 minutes in a 37°C waterbath. Seven point three microlitres of 

2M MgCl2 and 1.2μl Benzonase were then added to each falcon tube and incubated at 37°C 

for 30 minutes. The reactions were then centrifuged at 2000xg for 10 minutes to pellet cell 

debris. The supernatant was removed and loaded into four 50ml polyallomer tubes 



60 
 

(Beckman Coulter (U.K.), Buckinghamshire, UK) under layered with 100ml iodixanol 

gradient. The tubes were then topped up with lysis buffer, heat sealed and subjected to 

centrifugation at 69,000xg for 1 hour at 18°C (in a Type 70 Ti rotor in a Sorvall 100SE 

centrifuge, Fisher Scientific). The top of each tube was punctured with an 18G needle and 

rAAV collected by puncturing the bottom of the tube and collecting 5ml of iodixanol 

gradient from the 60/40% interface. The fractions from the four tubes were pooled, added 

to 20ml PBS and loaded onto a Sepharose column which had been pre-washed with 25ml 

0.1M NaCl/0.3x PBS and 50ml 0.3x PBS. The column was then washed with 50ml 0.3x PBS 

and the virus was eluted using 15ml 350mM NaCl/0.3xPBS. The elutant was transferred to 

an Apollo Concentrator containing 10ml PBS and subjected to centrifugation at 4000xg for 5 

minutes. The flow through was discarded and 5ml PBS was added below the filter and 

19.5ml PBS above. The tube was then subjected to centrifugation at 4000xg for 5 minutes 

and the 0.5ml remaining in the filter (which contained the rAAV) was aliquoted into 

eppendorf tubes. The viral titre was quantified by dot blot analysis. 

2.1.2.7 Determination of Total Viral Titre by Dot Blot Analysis  

The level of trangene expression is affected by the rAAV titre so total viral particle number 

was determined by dot blot analysis. Dot blot analysis is based on similar principles to 

Southern and Northern blots; a specific probe can be used to quantify a specific DNA or RNA 

species in a sample. Rather than being separated by size and transferred to a membrane, 

the sample being analysed is placed directly onto a membrane. The DNA or RNA species 

present in the sample can be detected and quantified using radiolabelled probes.  

Materials  

rAAV viral preparation  

Solution A (appendix I)  

Solution B (appendix I)  

1mg/ml proteinase K  

Phenol/chloroform  

3M sodium acetate (appendix I)  

Ethanol (VWR International Ltd, Poole, UK)  

Glycogen  
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Denaturing solution: 1.5M NaCl 0.5M NaOH  

Neutralising solution: 1M Tris/HCl pH7.4 1.5M NaCl  

pTRCGW  

Hybridisation buffer (appendix I)  

Amasino wash buffer (appendix I)  

Universal wash buffer (appendix I)  

Methods  

Forty-five microlitres of solution A was added to 5μl rAAV virus stock and incubated for 30 

minutes at 37°C. Two hundred microlitres of solution B was added and the sample was 

incubated at 55°C for 1 hour. DNA was extracted by adding an equal volume of 

phenol/chloroform. Ethanol precipitation of the DNA was performed by adding 1/10 volume 

3M sodium acetate pH 5.2, 40μg glycogen and 2.5 volumes ice cold ethanol. After 1 hour at -

20°C the solution was centrifuged at 8000g at 4°C, the supernatant removed, the pellet 

washed in 75% cold ethanol and air-dried. The pellet was dissolved in 10μl GDW and 1μl 

applied to a nylon membrane (Hybond-N). A series of dilutions of pTRCGW (50 to 0.1ng) 

were also applied to the membrane to act as a standard curve. The membrane washed for 5 

minutes in denaturing solution, then washed twice for 5 minutes in neutralising solution. The 

membrane was then baked at 80°C for 2 hours.  

A cDNA fragment of WPRE was used as a probe for rAAV transgenes. The probe was radio 

labelled with 32P dCTP as described in section 2.4.6.4. Half of the labelled probe was boiled and 

added to 10ml hybridisation buffer. Hybridisation was carried out overnight at 60°C. The 

following day the membrane was washed as described in section 2.3.5.2. The membrane was 

then placed on a phosphorimager screen overnight. Radiolabelled areas were visualised and 

quantified by image densitometry using ImageQuant software (Molecular Dynamics). 

Quantification was performed by comparing viral DNA to known amounts of pTR-CGW in the 

standard curve.  
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2.2 In vivo methods 

2.2.1 Animals  

Male Wistar rats (specific pathogen free, Charles River UK Ltd, Margate, Kent, UK) were 

maintained under a controlled environment (temperature 21-23°C, 12 hour light-dark cycle, 

lights on at 07:00) with ad libitum access to food (RM1 diet, Special Diet Services UK Ltd, 

Witham, Essex, UK) , except where stated, and water. All animal procedures were approved 

under the British Home Office Animals (Scientific Procedures) Act 1986 (Project licence no. 

70/6377). Prior to all experiments animals were acclimatised to the Imperial College animal 

unit for 7 days. Animals were randomised to treatment and control groups of approximately 

equal mean and standard error of mean bodyweight. 

2.2.2 Intra-arcuate AAV microinjections 

Rats were anaesthetised with 2L/minute oxygen and 4% inhaled isoflurane (Abbott 

Laboratories Ltd, Queenborough, Kent, UK). Animals were placed in the induction chamber 

until they lost the pedal reflex. Once anaesthetised, animals were administered intra-

peritoneal prophylactic antibiotics (amoxycillin (37.5mg/kg) and flucloxacillin (37.5mg/kg)) 

to prevent post-operative infection. Rats were immobilised on a stereotaxic frame (David 

Kopf Instraments, California, USA). The incisor bar was set at 3.0mm below the interaural 

plane. The surgical area was shaved, and cleaned with 10% w/v povidine-iodine solution 

(Betadine). A small (<2cm) rostro-caudal incision was made in the scalp. Animals were 

injected bilaterally into the ARC using coordinates -3.4mm caudal, +/-0.5mm lateral to the 

bregma, and 10.5mm below the skull, determined from the rat brain atlas of Paxinos and 

Watson and previous studies in similar strain and weight rats (Paxinos and Watson, 2009, 

Patterson et al., 2009). A stereotaxically mounted drill was used to make a 0.65mm burr 

hole in the skull. Each animal was injected via a 33 gauge steel injector (Plastics-One, 

Roanoke, Virginia, USA) inserted into and projecting 1mm below, the tip of a guide cannula. 

Animals received either 1μl rAAV-GKS at a titre of 2.96x1012
 genome particles/ml or 1μl 

rAAV-eGFP at a titre of 5.04x1012 genome particles/ml injected bilaterally into the ARC. The 

pressure was removed from the injector and the cannula/injector unit was maintained in 

situ for 5 minutes before being slowly extracted to minimise backflow. The incision was 
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sutured with two mattress sutures with 6.0 proline thread. Animals were administered 

subcutaneous buprenorphine (45mg/kg, Schering-Plough Corp, Welwyn Garden City, 

Hertfordshire, UK) for post-operative analgesia and rehydrated with 0.9% sodium chloride 

(3ml/rat). The animal was removed from the frame and placed in a heated box for recovery. 

Once the rat had regained the righting reflex it was housed individually and monitored for a 

recovery period of 7 days. The animals were given ad libitum access to food (unless 

otherwise stated) and food intake and body weight were measured at least 3 times per 

week following the 7 day post-operative recovery period. 

2.2.3 Intra-arcuate cannulations 

Rats were anaesthetised with 2L/minute oxygen and 4% inhaled isoflurane (Abbott 

Laboratories Ltd, Queenborough, Kent, UK). Animals were placed in the induction chamber 

until they lost the pedal reflex. Once anaesthetised, animals were administered intra-

peritoneal prophylactic antibiotics (amoxycillin (37.5mg/kg) and flucloxacillin (37.5mg/kg)) 

to prevent post-operative infection. Rats were immobilised on a stereotaxic frame (David 

Kopf Instraments, California, USA). The incisor bar was set at 3.0mm below the interaural 

plane. The surgical area was shaved, and cleaned with 10% w/v povidine-iodine solution 

(Betadine). A small (<2cm) rostro-caudal incision was made in the scalp. Animals were 

cannulated with a permanent 22-gauge stainless steel cannula (Plastics One Inc., Roanoke, 

Virginia, USA) projecting 9.5 mm below the skull unilaterally into the ARC using coordinates -

3.4mm caudal, +0.5mm lateral to the bregma, and 9.5mm below the skull, determined from 

the rat brain atlas of Paxinos and Watson (Paxinos and Watson, 2009). A stereotaxically 

mounted drill, was used to make a 0.65mm burr hole in the skull. Dental cement (Associated 

Dental Products Ltd, Swindon, Wiltshire, UK) was used to hold the cannula in position and 

seal the wound; this was anchored by three stainless steel screws inserted into the skull. 

Animals were administered subcutaneous buprenorphine (45mg/kg, Schering-Plough Corp, 

Welwyn Garden City, Hertfordshire, UK) for post-operative analgesia and rehydrated with 

0.9% sodium chloride (3ml/rat). A plastic-topped wire cap (Plastics One Inc.) was inserted 

into the cannula to prevent blockage. Animals were administered subcutaneous 

buprenorphine (45mg/kg, Schering-Plough Corp, Welwyn Garden City, Hertfordshire, UK) for 
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post-operative analgesia and rehydrated with 0.9% sodium chloride (3ml/rat). The animal 

was removed from the frame and placed in a heated box for recovery. Once the rat had 

regained the righting reflex it was housed individually and monitored for a recovery period 

of 7 days. The animals were given ad libitum access to food (unless otherwise stated) and 

food intake and body weight were measured at least 3 times per week following the 7 day 

post-operative recovery period. Each animal was injected via a 33 gauge steel injector 

(Plastics-One, Roanoke, Virginia, USA) inserted into and projecting 1mm below, the tip of 

the permanent guide cannula. After the 7 day recovery period, animals were handled daily 

and acclimatised to the injection procedure by two sham injections of 1µL normal saline.  

2.2.4 Feeding studies 

Studies with a high-energy diet involved using a diet containing 32% kcal from fat and 25% 

kcal from sugars (Research Diets, Inc.; D12266B) (Appendix III). Acute twenty-four hour 

normal chow and sugar intake feeding studies with AAV injected animals commenced at 

lights out (1900 hours). Fasts for studies involving twenty-four hour fasts commenced at 

0900 hours. Fasts for studies involving fourteen hour fasts commenced at lights out (1900 

hours). Caloric content was calculated as 3.523kcal/g for RM1 diet and 4kcal/g for glucose.  

2.2.5 Intra-arcuate cannulation 

Rats received intra-arcuate injections between 0930 and 1030h with either drug or vehicle 

control on 2 separate days, 72 hours apart, as part of a cross-over study. Rats were 

subjected to a fourteen hour overnight fast for studies with diazoxide only. All compounds 

were administered in a 1-μl volume over a period of 1 min via a stainless steel injector 

(Plastics One) projecting 1 mm beyond the tip of the cannula. Drug dosages per rat were 0.5 

nmol Cpd A (2-Amino-5-(4-methyl-4H-(1,2,4)-triazole-3-yl-sulfanyl)-N-(4-methyl-thiazole-2-

yl)benzamide, Merck)  in 1% DMSO; 2 nmol glibenclamide (Sigma) and 1nmol diazoxide 

(Sigma), both in 1% DMSO and 5mM NaOH. The dosages chosen were based on experiments 

reported previously (Levin et al., 2008a, Zhang et al., 2004, Chan et al., 2007). 24 hour 

feeding studies were undertaken with measurements of food and glucose intake at 0, 0.5, 1, 
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2, 4, 8 and 24 hours after injection. Cannula placement was confirmed using ink injection 

and cresyl violet staining at the end of the studies. Each animal was injected unilaterally via 

a stainless steel injector (Plastics One) inserted into the guide cannula after decapitation 

with 10% dilution of India ink in water. Following injection, brains were rapidly dissected. 

Brains were fixed in a 4% formaldehyde solution (Appendix I) at 4°C overnight, and then 

dehydrated in a 30% sucrose solution at room temperature for five days. Brains were frozen 

and sliced to 30µm thickness using a Shandon microtome. Cresyl violet was carried out as 

described in section 1.3.2. Only animals that had cannula positioned correctly for the 

arcuate nucleus were used in subsequent analysis of feeding studies. 

2.2.6 Collection of tissue samples 

Fasting plasma was collected by tail vein sampling following a fourteen hour fast in EDTA-

chelated microtubes (Starstedt microvette) containing 3μl aprotinin, and was immediately 

placed on ice before centrifugation at 4°C to obtain plasma. Rats were killed by decapitation 

in the early light phase. Brains are rapidly removed and lateral sections cut away using a 

razor blade to isolate hypothalami, which were frozen in liquid nitrogen before storage at -

80° C. Blood was collected in heparinised or EDTA-chelated tubes containing 100μl 

aprotinin, and was immediately placed on ice before centrifugation at 4°C to obtain plasma. 

An aliquot of plasma was separated and 1μl 1 M HCl was added was added for every 20μl of 

plasma. All plasma samples were stored at -80°C immediately until assay. Interscapular BAT 

was dissected, weighed, frozen in liquid nitrogen and stored at -80°C until RNA extraction. 

The contents of rat gastrointestinal tracts were removed before storing carcasses at -20°C 

until body content analysis.  

2.3 In vitro methods 

2.3.1 In situ hybridisation for glucokinase mRNA 

In situ hybridisation is a method for the detection and quantification of mRNA whilst 

maintaining the structural integrity of the tissue. It relies on the hybridisation of a 
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complementary probe, usually radiolabelled RNA, to the target mRNA in tissue mounted on 

poly-lysine slides.  

Following rAAV-GKS injections transgene expression was confirmed in brains taken from 

three animals using a 35S labelled riboprobe specific for glucokinase. The 35S glucokinase 

riboprobe was labelled as described below using pBluescript-GK as a template. The 

pBluescript-GK plasmid was created by endonuclease digestions of pBluescript and full 

length glucokinase cDNA using BamHI and PstI (as described in 2.1.2.1). Following 

endonuclease digestion pBluescript and GK were ligated and the plasmid was amplified and 

purified (as described in section 2.1.2.4.2 and 2.1.2.4.3).  

Production of radiolabelled RNA probe for in situ hybridisation  

Materials  

Linearised template (pBluescript-GK (200ng/μl) linearised by digestion with BamHI for 

antisense probe)  

100M DTT  

RNase inhibitor, 30U/μl  

10x nucleotide mix: 10mM of each ATP, UTP, GTP;  

T7 RNA polymerase, 20U/μl (Promega)  

10x RNApolymerase buffer (Promega)  

DNase I, 7.5 U/μl (GE Healthcare)  

10x DNase buffer  

5M Ammonium acetate (appendix I)  

[35S+CTPαS, 30TBq/mmol, 1.5GBq/ml (GE Healthcare)  

Methods  

Radioactively labelled RNA was produced using an in vitro transcription reaction. Two 

hundred nanograms of template were added to a reaction buffer containing 10mM DTT, 1x 

nucleotide mix, 1x polymerase buffer, 30U RNase inhibitor and 3.75MBq [35S+CTPαS in a 

total volume of 9μl. To this 20U of T7 RNA polymerase was added and the reaction 

incubated for at least 2 hours at 37°C. After incubation, 6μl GDW, 1μl DNase I and 3μl DNase 
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buffer was added. This was followed by a 15-minute incubation at 37°C. Ammonium acetate 

was added to a final concentration of 2M and 2.5volumes ice cold absolute ethanol was 

added and the mixture left at -20°C for at least an hour for the RNA to precipitate. RNA was 

recovered by centrifugation at 8,000xg for 7 minutes and the pellet was dissolved in 100μl 

GDW. To measure the activity or the radiolabelled probe, 1μl was counted on a microbeta 

counter (Wallace, Waltham, MA).  

2.3.1.1 In situ hybridisation  

Materials  

4% (v/v) formaldehyde in 0.1M phosphate buffered solution (PBS)  

100% acetic anhydride (VWR)  

0.1M triethanolamine pH 8.0  

20x SSC (appendix I)  

70% ethanol in distilled water  

Chloroform (VWR)  

Hybridisation buffer (appendix I)  

50% (v/v) Formamide  

600mM sodium chloride  

80mM Tris-HCl, pH 7.5  

4mM EDTA  

100mM DTT  

0.1 mg/ml yeast tRNA  

2% (w/v) Dextran sulphate, mw ~500,000  

1x RNase buffer  

10mM Tris pH 8  

1mM EDTA  

0.5M sodium chloride  

Methods  

Twelve micrometre brain sections were cut on a cryostat at -25°C (Bright instrument 

Company, Huntingdon, Cambridgeshire, UK). The sections were mounted onto poly-lysine 
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coated slides and stored at -20°C until hybridisation. In situ hybridisation was carried out on 

every third slide. The sections were fixed in 4% (v/v) formaldehyde in 0.1M PBS for 20 

minutes. Slides were washed twice in 0.1MPBS, for 5 minutes. Sections were then incubated 

in 0.1M TEA for 2 minutes and acetylated in 0.25% (v/v) acetic acid anhydride in 0.1M TEA 

for 10 minutes. Sections were washed twice in 0.01M PBS for 2 minutes and then 

dehydrated by immersion in 70% ethanol for 3 minutes. Finally, slides were delipidated in 

chloroform for 5 minutes and allowed to air dry. All steps were performed at room temperature 

unless otherwise stated.  

Hybridisation buffer was supplemented with the 35S labelled probe (1 x 106 Bq) and 80μl added 

to each slide. A coverslip was placed over each slide and the slides were hybridised at 60°C 

overnight. Next, the slides were washed in 4x SSC with gentle agitation to remove coverslips and 

then washed four times in 4x SSC for 5 minutes. Slides were then RNase treated by incubation 

for 30 minutes at 37°C in 1x RNase buffer containing 100μg/ml RNase A. This was followed by 

two 5 minute washes in 10mM DTT/2x SSC at room temperature. Slides were washed in 10mM 

DTT/1x SSC followed by 10mM DTT/0.5x SSC for 10 minutes each. Slides were then washed in 

10mM DTT/0.1x SSC at 60°C for 30 minutes. Finally, slides were rinsed in 10mM DTT/0.1x SSC 

and dehydrated in 70% ethanol for 3 minutes before being allowed to air dry. After washing and 

dehydration, the slides were exposed to Bio-Max film (Kodak, Hemel Hempstead, Herts, UK) at 

room temperature. After three days exposure the film was developed and transgene expression 

determined by observation of specific hybridisation. 

2.3.2 Cresyl violet staining of ink injected rat brains 

Materials 

Acetic acid (VWR) 

Ethanol (VWR) 

Cresyl violet stain (Mix 2g cresyl violet, 300ml GDW, 30ml 1M NaAc and 170ml acetic acid, 

and pH to 3.7-3.9. Filter before use.) 

Xylene (VWR) 

DPX (Thermo Fisher Scientific, Epsom, Surrey, UK) 

Method 
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Once mounted onto slides, brain sections containing India ink were allowed to dry for at 

least four hours. Slides were fixed in a solution of 5% acetic acid in 100% ethanol, and then 

stained in cresyl violet for 15 minutes. Slides were washed twice in GDW, dehydrated in 70% 

ethanol and delipidated in xylene overnight. The following morning, slides were mounted 

with DPX and coverslips. Animals with ink more than 0.2mm outside the ARC when viewed 

under the microscope (Nikon, Eclipse 50i) were removed from subsequent analysis. 

2.3.3 Glucokinase activity assays 

2.3.3.1 Isolation of hypothalamic nuclei by micro-punch 

Rats were killed by decapitation, and brains removed. Hypothalamic nuclei were isolated 

using a micro-punch technique (Palkovits, 1983). Brains were then placed on filter paper 

with the ventral surface facing upwards so that the hypothalamus was visible, and sections 

lateral to the hypothalamus on either side were cut away using a razorblade. The remaining 

block of brain was then frozen using isopentane cooled on dry ice. Frozen brains were 

mounted upon a freezing sled microtome (Shandon Southern Products Ltd). Sagittal sections 

of 1.2mm containing the ARC, VMH and PVN were then cut and mounted on slides. Slides 

were kept on dry ice to re-freeze sections and nuclei were identified and removed using a 

22 gauge neuropunch (Fine Science Tools). 

2.3.3.2 Glucokinase activity assay 

Glucokinase activity can be determined spectrophotometrically using an NADP+-coupled 

assay with glucose-6-phosphate dehydrogenase (Goward et al., 1986). Glucokinase catalyses 

the phosphorylation of glucose to form glucose -6-phosphate (G-6-P) in the presence of ATP. 

G-6-P is converted to 6–phospho-D-gluconate by glucose-6-phosphate dehydrogenase. The 

generation of NADPH is proportional to glucokinase activity and can be quantified by 

measuring the change in absorbance at 340 nm using a spectrophotometer. The principles 

of this assay are summarised below. 
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Glucokinase and hexokinase both phosphorylate glucose. However, glucokinase has a low 

affinity and high Km for glucose compared to hexokinase. Therefore, at low concentrations 

of glucose, hexokinase activity is near maximal whereas that of glucokinase is low and vice 

versa for high concentrations of glucose. Hence, to differentiate glucokinase from 

hexokinase the assay can be performed in a reaction containing either 100mM or 0.5mM 

glucose as a substrate. Glucokinase activity for each sample can be calculated as:   

A(100mM glucose) – A(0.5mM glucose) = Glucokinase activity 

Alternatively, to differentiate glucokinase from hexokinase addition of 5-thio-d-glucose-6-

phosphate (5TG) (at a final concentration of 45 μM) and 3-O-methyl-N-acetylglucosamine 

(3OMG) (at a final concentration of 0.5mM) can be used. 5TG inhibits hexokinase activity 

without effecting glucokinase, while 3OMG inhibits N-acetylglucosamine kinase, which 

phosphorylates glucose at high glucose concentrations (Miwa et al., 1994, Fenner et al., 

2011). This method is preferred as it increases the accuracy of the assay and avoids the 

assay being carried out with 0.01M D-glucose as the substrate as well. Hence, this method 

was used to determine glucose is activity as detailed below. 

Materials 

Glucose-6-Phosphate Dehydrogenase 

Glucokinase extraction buffer (appendix I)  

Glucokinase from Bacillus stearothermophilus (0.25μg/ml) 

   Glucose 
Glucose-6-
Phosphate 

6-Phospho-
D-Gluconate   

  

ATP ADP NADP NADPH 

Glucokinase Glucose-6-Phosphate 
Dehydrogenase 
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100mM adenosine trisphosphate 

2M D-glucose 

100mM Gly-Gly, pH8 

12.5mM NADP 

1M MgCl2 

2U glucose-6-phosphate dehydrogenase (type IX, from Baker’s yeast) 

3-O-methyl-N-acetylglucosamine 

5-thio-d-glucose-6-phosphate 

100mM Gly-Gly, pH8 (appendix I)  

1M MgCl2 (appendix I)  

Methods 

Tissue samples or cells were homogenised in 200μl glucokinase extraction buffer using a 

handheld homogeniser. The homogenate was centrifuged for 40 minutes at 13000xg at 4°C. 

The supernatant was then removed. In order to calculate glucokinase activity in samples a 

standard curve for glucokinase activity was used containing: 0.025μg glucokinase, 0.02μg, 

0.0175μg, 0.015μg, 0.01μg, 0.0075μg, 0.005μg and 0.001μg of glucokinase. 

Assay reactions were set up in a total volume of 1ml, containing: 500μl 100mM Gly-Gly, 

7.5μl 1M MgCl2, 50μl 100mM ATP, 60μl 12.5mM NADP, 0.002μg glucose-6-phosphate 

dehydrogenase, and 50μl of either 2M or 10mM glucose. 3-O-methyl-N-acetylglucosamine 

and 5-thio-d-glucose-6-phosphate are added to the reaction mixture prior to the addition of 

the glucokinase standard or cell/hypothalamic homogenate. The reaction was initiated by 

the addition of either glucokinase standard or hypothalamus homogenate.  

The reaction was incubated at 37˚C for 1 hour. Assays were performed in triplicate. 

Absorbance at 340nm was measured for each sample using a UV 1101 spectrophotometer 

(WPA, UK). 

NADPH production was calculated using the millimolar extinction coefficient 6.27 (ξmM) at 

340nm using the following equation 
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A340nm/6.27ξmM= mM concentration of NADPH 

Glucokinase activity was expressed as units (of glucokinase from Bacillus 

stearothermophilus) per milligram protein. Sample protein concentration was determined 

by BCA protein assay (Pierce) as detailed below. 

2.3.3.3 Protein assay on punch biopsy samples  

Due to the variability in the amount of hypothalamic tissue collected by punch biopsy, the 

protein content of the punch biopsy homogenate must be calculated in order to standardise 

the results of the glucokinase activity assay.  

Homogenate protein content was measured using a well-established modified Lowry 

protein assay. This method involves reaction of proteins with cupric sulphate and tartrate in 

an alkaline solution to form tetradentate copper-protein complexes. These copper-protein 

complexes produce a peak in absorbance at 750nm and can be measured 

spectrophotometrically to quantify the amount of protein in a sample.  

Materials  

Lowry protein assay kit (Pierce, Rockford, IL, USA)  

Bovine serum albumin (BSA) stock solution  

2X Folin-Ciocalteu reagent 

Methods  

BSA stock solution was diluted in GDW to make up nine standard solutions of 1, 5, 25, 125, 

250, 500, 750, 1,000, and 1,500 μg/ml. One times Folin-Ciocalteu reagent was prepared by 

diluting the supplied 2X reagent 1:1 with ultra-pure water. All other reagents were supplied 

ready to use.  

Fifty microlitres of BSA standard and 50μl of sample were added to microfuge tubes. One 

millilitre of modified Lowry reagent was then added to each tube at 15 second intervals, 
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mixed, and incubated for 10 minutes. One hundred microlitres of the prepared 1X Folin-

Ciocalteu reagent was then added and the solution was vortexed. The tubes were covered 

and incubated at room temperature for 30 minutes. The A750 of the samples was then 

measured in a spectrophotometer. Absorbance values of the blank readings were 

subtracted from the absorbance readings of all samples and a standard curve plotted. The 

protein concentration of each of the unknown samples was determined by comparison to 

the standard. 

2.3.4 Quantification of mRNA by qPCR  

Quantitative PCR (qPCR) was used to analyse the expression of a range of mRNA sequences 

in dissected hypothalami using TaqMan® gene expression assays. Total RNA was extracted 

from tissue samples. From this RNA, mRNA was amplified by reverse transcription and used 

for qPCR analysis. All materials for qPCR were supplied by Applied Biosystems, Warrington, 

UK, unless otherwise stated.  

2.3.4.1 RNA Extraction for qPCR 

Materials  

Tri-reagent (Helena Biosciences, Sunderland, Tyne and Wear, UK)  

Purelink RNA Mini kit  

Chloroform (VWR International Ltd, Poole, UK)  

Purelink DNase  

Methods  

RNA was extracted from hypothalami using the Tri-reagent method according to the 

manufacturer’s protocol. Hypothalamic tissue was homogenised in 1ml Tri-reagent before 

subsequent transfer to a 1.5ml eppendorf and incubation at room temperature for five 

minutes. Sample RNA needed to be devoid of any genomic DNA contamination in order to 

accurately analyse mRNA levels by TaqMan® probe assay. This was achieved by treating the 

RNA samples with DNase solution. Following nucleoprotein dissolution with Tri-reagent, 

nucleic acids were extracted by adding 200μl of chloroform per 1ml of Tri-reagent used. 
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RNA samples were processed for DNA removal using the Purelink RNA mini kit according to 

the manufacturer’s protocol.  

The RNA was then dissolved and stored in RNase-free water before its yield was determined 

spectrophotometrically according to the following equation:  

RNA (μg) = dilution factor x 40 x OD260 x sample volume (ml)  

2.3.4.2 Reverse Transcription of Hypothalamic mRNA  

Messenger RNA was converted into its complementary cDNA sequence by reverse 

transcription in order to allow its amplification by PCR. The High Capacity cDNA Reverse 

Transcription Kit uses the random primer scheme for initiating cDNA synthesis.  

Materials  

High Capacity cDNA Reverse Transcription Kit  

96 Well Assay Plate  

Methods  

500ng of each RNA sample was added in triplicate to reaction wells containing 1X RT buffer, 

4mM dNTP mix, 1X RT random primers, and Multiscribe reverse transcriptase. The plate was 

then foil-sealed before its incubation in a thermal cycler programmed to the following 

conditions: 25°C for 10 minutes, 37°C for 120 minutes, 85°C for 5 minutes. Following cycle 

completion, cDNA templates were stored at -20°C.  

Endogenous control cDNA templates were prepared by adding 50ng of each RNA sample 

before following the above procedure.  

2.3.4.3 qPCR Assays from Hypothalamic cDNA  

Each qPCR TaqMan® assay allows accurate quantification of gene expression by 

incorporating a reporter-tagged probe, which is complementary to part of the targeted 

cDNA sequence, into the amplification process. Probes were designed to cross exon-exon 

junctions to ensure amplification was limited to mRNA only. During PCR, the minor-groove 

binding probe anneals specifically to a complementary sequence between the forward and 
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reverse primer sites. When the probe is intact, the proximity of the reporter dye to the 

quencher dye results in suppression of the reporter fluorescence, primarily by Förster-type 

energy transfer. The DNA polymerase cleaves only probes that are hybridized to the target. 

Cleavage separates the reporter dye from the quencher dye to allow fluorescence of the 

reporter.  

Materials  

Sample cDNA template (25μg/ml)  

Endogenous control cDNA template (2.5μg/ml)  

TaqMan® Gene Expression Assay  

TaqMan® Gene Expression Master Mix  

384 Well Assay Plate  

Methods  

The following constituents were mixed in each well for each qPCR reaction: 1μl of cDNA 

template (25ng), 10μl master mix, and GDW to give a 20μl reaction volume. For total RNA 

quantification, a gene expression assay targeting the 18S ribosomal subunit and 2μl of cDNA 

template (5ng) were used. Each reaction was mixed before the plate was sealed.  

The sealed plate was loaded onto a 7900HT Fast Real-Time PCR System (Applied Biosystems, 

Warrington, UK) thermal cycler, on the ΔΔCt programme, under the following conditions: 

Held at 50°C for 2 minutes before 95°C for 10 minutes. Thermal cycling then proceeded 

where 15 seconds incubation at 95°C followed by 1 minute incubation at 60°C was repeated 

for 40 cycles. The amplification data for the target gene was normalised to the expression of 

the 18S endogenous control and expressed relative to an internal calibrator (control group 

sample), using the 2−∆∆CT method (Livak and Schmittgen, 2001).  

2.3.4.4 Validation of qPCR Assays  

Each qPCR assay was validated for use in a particular tissue prior to analysis, to assess 

suitability of 18S as an endogenous control target. This involved generating standard curves 

from hypothalamic RNA (at concentrations covering 3 logs) using both the 18S assay and 

target assay.  
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Materials  

High Capacity cDNA Reverse Transcription Kit  

96 Well Assay Plate  

TaqMan® Gene Expression Assay  

TaqMan® Gene Expression Master Mix  

384 Well Assay Plate  

Methods   

Standard curves of RNA mouse were prepared in triplicate for reverse transcription in the 

following manner: 

Assay  Standards (ng/μl) 

18S  50  25  10  5  1  0.5  0.1  

Target  100  75  50  25  10  -  -  

2.3.5 Northern Blot Analysis of mRNA  

Northern blotting was used to analyse the size and quantity of UCP-1 RNA in BAT. The RNA 

is size fractioned on a denaturing agarose gel by electrophoresis, transferred by capillary 

action to a nylon filter and covalently linked to it by baking. The RNA is denatured to remove 

secondary structure ensuring the rate of migration of the RNA is proportional to its total 

length.  
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2.3.5.1 Total RNA Extraction  

Materials  

Tri-reagent (Helena Biosciences, Sunderland, Tyne and Wear, UK)  

Bromo-Chloro-Propane (Sigma-Aldrich, Poole, UK) 77  

Isopropanol (VWR International Ltd, Poole, UK)  

Ethanol (VWR International Ltd, Poole, UK)  

GDW  

Methods  

Total RNA was extracted from brown adipose tissue ground under liquid nitrogen with a 

pestle and mortar using the Tri-reagent method according to the manufacturer’s protocol, 

as described in Section 2.3.4.1. One hundred microlitres of bromo-chloro-propane were 

then added, mixed vigorously for 15 seconds, and then incubated for a further five minutes 

at room temperature. The emulsion was then centrifuged at 4˚C, for 15 minutes, at 12000g, 

with the brake off. The upper aqueous phase was transferred to a clean eppendorf, 

precipitated with a half volume (300μl) room temperature isopropanol for five minutes at 

room temperature, and then centrifuged at 12000g for ten minutes at 4˚C. This resulted in a 

pellet which was washed with 1 volume (1ml) 75% ethanol in GDW, centrifuged at 12000g 

for a further 10 minutes at 4˚C, the pellet was then air dried, and dissolved in 400μl 

autoclaved GDW.  RNA concentration was determined spectrophotometrically as described 

in Section 2.3.4.2.  

Following quantification on the spectrophotometer the RNA samples were ethanol 

precipitated with 0.1 volumes sodium acetate pH 5.2 and 2.5 volumes ice cold absolute 

ethanol. The samples were precipitated at -20°C for a minimum of one hour and centrifuged 

at 12000g for 20 minutes, the supernatant was discarded and the pellet vacuum dried for 

five minutes. The pellets were re-suspended in the appropriate volume of GDW to give a 

5mg/ml solution.  
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2.3.5.2 Integrity Analysis of the Total RNA  

Materials  

Agarose, type II-A medium EEO 78  

Formaldehyde (VWR International Ltd, Poole, UK)  

20x MOPS pH 7.0 (appendix 1)  

Ethidium bromide (VWR International Ltd, Poole, UK)  

DENAT (appendix I)  

Gel loading buffer (appendix I)  

100x TE pH 7.5 (appendix 1)  

2M Sodium acetate pH 5.2  

GDW  

Methods  

The RNA secondary structure was denatured before confirming the integrity of the samples 

using a formaldehyde gel. One microlitre of this solution was added to 12μl DENAT. The 

samples were denatured at 65°C for five minutes and 3μl gel loading buffer added. The 

samples were loaded onto the gel and run in 1x MOPS buffer with 7.5 % formaldehyde (v/v) 

at 10 V/cm. The gel was stained in 1x TE with 0.1 mg/ml ethidium bromide on a shaking 

platform for thirty minutes and de-stained overnight in 1x TE to allow visualisation of the 

18S and 28S ribosomal bands under UV light. The presence of intact ribosomal bands 

indicated the RNA was not degraded.  

2.3.6 Transfer of RNA to Nylon Filters  

Materials  

Formaldehyde (VWR International Ltd, Poole, UK)  

20x MOPS pH 7.0 (appendix 1)  

Hybond-N (GE Healthcare, Little Chalfont, Buckinghamshire, UK)  
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Methods  

An agarose gel was made by dissolving 1g agarose in GDW, 20x MOPS was added to a final 

concentration of 1x and formaldehyde added to 3% (v/v). Once set, the gel was transferred 

to an electrophoresis tank containing 1x MOPS, and 3% formaldehyde (v/v). Before loading, 

50μg of total RNA was denatured by addition of 10μl denaturing buffer and incubation at 

60˚C for 5 minutes. After denaturation, 3μl loading buffer was added and the samples 

loaded onto the gel. The gel was electrophoresed at a constant voltage of 10V/cm. After 

electrophoresis, the RNA in the gel was transferred to Hybond-N by capillary action. 

2.3.6.1 Random Primer Labelling of DNA Fragments  

Materials  

DNA fragment  

5x ABC Buffer (appendix I)  

12.5mM magnesium chloride  

125mM Tris-HCl, pH8.0  

23μM 2-mercaptoethanol  

50μM dATP (GE Healthcare, Little Chalfont, Buckinghamshire, UK)  

20x SSC (appendix I)  

Filter paper  

Saran wrap  

Inverted gel  

Hybond-N (GE Healthcare, Little Chalfont, Buckinghamshire, UK)  

Paper towels  

Glass plate  

Weight (approx. 200g)  

50μM dGTP (GE Healthcare, Little Chalfont, Buckinghamshire, UK)  

50μM dTTP (GE Healthcare, Little Chalfont, Buckinghamshire, UK)  

1M N-2-hydroxyethylpiperazine-N‟-2-ethanesulphonic acid (HEPES) (Sigma Aldrich, Poole, 

UK)  

34μg/ml random deoxynucleotide hexamers (GE Healthcare, Little Chalfont, 

Buckinghamshire, UK)  
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10mg/ml BSA, fraction V (Sigma Aldrich, Poole, UK)  

*α-32P]-dCTP: 10Ci/ml, 3000Ci/mmol (GE Healthcare, Little Chalfont, Buckinghamshire, UK)  

DNA polymerase I, Klenow fragment 9U/μl (GE Healthcare, Little Chalfont, Buckinghamshire, 

UK)  

Sephadex G50 (appendix I)  

1x TE (appendix I)  

Methods 

20ng DNA in a total volume of 15μl GDW was boiled for five minutes. After boiling, the 

solution was made up to a total volume of 25μl containing 1x ABC buffer, 5mg/ml BSA, 

10μCi dCTP and 1U Klenow. The reaction was incubated at 37˚C for one hour and 

incorporation calculated. Incorporation of radionucleotide into the oligonucleotide was 

measured using a mini Sephadex G50 column. The column was prepared by plugging a glass 

Pasteur pipette with glass wool and adding Sephadex G50. The labelling reaction volume was 

made up to 200μl with 1x TE and this was loaded onto the column. The column was eluted with 

1x TE and 200μl fractions collected. The fractions were counted and the percentage 

incorporation calculated. The hottest two fractions were pooled and half added to the 

hybridisation mix.  

2.3.6.2 Hybridisation of Northern Filters  

Materials  

Hybridisation/pre-hybridisation buffer (appendix I)  

Amasino wash (appendix I)  

Universal wash buffer (appendix I)  

Methods  

The baked nylon filter was pre-hybridised in a clean plastic bag with 20ml of pre-

hybridisation buffer at a 60°C for at least two hours. Before hybridisation of the nylon filter, 

the radio-labelled probe was denatured for five minutes in a boiling water bath. The pre-

hybridisation mix was then removed and replaced with 20ml fresh hybridisation buffer and 

200μl probe was added to this and sealed. The sealed filter was then left to hybridise with 

the radio-labelled probe overnight at 60˚C. The following day, the filter was washed to 
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remove any non-specifically bound probe. The filter was washed three times in 50ml 

Amasino wash buffer for 20 minutes each time at 60˚C. The filter was washed a further 

three times in Universal wash; each wash lasted for 20 minutes at 60˚C. Finally the filter was 

exposed to a phosphor screen for two days and quantified using the ImageQuant computer 

package (GE Healthcare, Little Chalfont, UK).  

2.3.6.3 Filter Stripping  

Following hybridisation with a radiolabelled probe, northern filters can be stripped of 

radioactivity and re-used with minimal loss of RNA. Most northern filters can be stripped 

and re-probed five or six times depending on the abundance of the transcript of interest.  

Materials  

100 x TE (appendix I)  

20% SDS  

Methods  

The filter was stripped in 100-200 ml of 1xTE/0.5% SDS for 30 minutes in an 80°C water bath. 

The filter was then exposed overnight to a phosphoimager plate to ensure that all 

radioactive probe had been removed.  

2.3.6.4 Oligo dT Correction   

To correct for variation in gel loading and RNA transfer when performing northern analysis, 

total mRNA on filters was quantified by oligo dT probing. The radiolabelled oligo dT probe 

hybridises with the poly A tail of mRNA species.  

Materials  

20ng Oligo dT template  

5x Reaction buffer:  

500mM cacodylate, pH6.8  

5mM cobalt (II) chloride  

0.5mM dithiothreitol (DTT)  

0.5mg/ml Bovine serum albumin (BSA)  
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Terminal deoxytransferase, 20U/μl (Promega, Madison, WI, USA)  

*α-32P]-dATP: 10ci/ml (GE Healthcare, Little Chalfont, Buckinghamshire, UK)  

20x SSPE: (appendix 1)  

3.6M sodium chloride  

120mM di-sodium hydrogen orthophosphate  

20mM EDTA  

Sephadex G50 (appendix 1)  

1x TE (appendix 1)  

Methods  

Twenty nanograms of oligonucleotide were added to 1x reaction buffer that contained 

70μCi of dATP and 20U of terminal transferase, in a final volume of 20μl. The reaction was 

incubated for one hour at 37˚C. Incorporation of nucleotide into the oligonucleotide was 

measured using a mini Sephadex G50 column. The column was prepared by plugging a glass 

Pasteur pipette, with glass wool, and adding Sephadex G50. The labelling reaction volume 

was made up to 200μl with TE and this was loaded onto the column. The column was eluted 

with 1x TE and 200μl fractions collected. The fractions were counted and the percentage 

incorporation calculated. The hottest two fractions were pooled and one tenth added to the 

hybridisation mix. Filters were prehybridised in 20ml of prehybridisation buffer (5x SSPE, 

0.2% (w/w) milk powder, 0.2% (v/v) nonidet) for a minimum of two hours at room 

temperature in a polythene bag on a shaking platform. Hybridisation solution was made by 

adding one tenth of the labelled probe to 10ml of the prehybridisation buffer. The 

prehybridisation solution was removed and replaced with the hybridisation solution. 

Hybridisation was carried out overnight at room temperature. Non-specifically bound probe 

was removed by increasingly stringent washes. All wash steps were performed at room 

temperature. The first washes were carried out in; 5x SSPE; 0.2% SDS. The hybridisation 

solution was removed and replaced with 20ml of washing buffer and washed for five 

minutes at room temperature. This was repeated and then followed by two washes for 

thirty minutes each in 2x SSPE/0.2% SDS. Following this, the filter was exposed to a 

phosphoimager screen and radiolabelled bands quantified by image densitometry using 

ImageQuant software (Molecular Dynamics, Sunnyvale, CA, U.S.A.) 
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2.3.7 AMPK activity (SAMS peptide) assay 

AMPK assay was carried out according to a published protocol in collaboration with Mr.Huza 

Zhang under the supervision of Professor David Carling (Davies et al., 1989). This assay relies 

on the precipitation of AMPK using an antibody generated against the β subunit of AMPK on 

hypothalamic protein extract. In order to preserve the activity of AMPK, hypothalamic 

protein extract must be treated with appropriate phosphorylation inhibitors at the time of 

protein extraction. AMPK activity was assessed by incorporation of radiolabelled [32P+γ-ATP into 

the SAMS peptide, HMRSAMSGLHLVKR+R+, a synthetic peptide based on the 13-residue 

sequence around the unique AMPK phosphorylation site of rat acetyl-CoA carboxylase (ser79, S) 

(Davies et al., 1989). The site for cyclic-AMP-dependant protein kinase phosphorylation (ser77) 

is replaced by an alanine (A) to allow specific phosphorylation by AMPK and two C-terminal 

arginine residues (positively charged) to facilitate binding to phosphocellulose P-81 paper.  

Materials 

HEPES 

Sodium fluoride 

Sodium pyrophosphate (NaPP) 

Sucrose 

EDTA 

Dithiothreitol 

Benzamidine 

Trypsin inhibitor (Roche applied science, Indianapolis, USA) 

Phenylmethylsulfonyl fluoride 

Anti- AMPK (β subunit) antibody (generated and provided by Prof David Carling) 

SAMS peptide (HMRSAMSGLVLKRR) (Tocris bioscience, Bristol, UK) 

AMP 

Triton 

32P-ATP (Perkin Elmer, Massachusetts, USA) 

p81 cellulose phosphate paper (Whatman) 
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Methods 

Frozen tissues (∼100 mg) were homogenized in 0.2 ml of ice-cold 50 mM HEPES, pH 7.4, 50 

mM sodium flouride (NaF), 5 mM sodium pyrophosphate (NaPP), 250 mM sucrose, 1 mM 

EDTA, 1 mM dithiothreitol, 1 mM benzamidine, 1 mm trypsin inhibitor, 0.1% (w/v) 

phenylmethylsulfonyl fluoride using an UltraTurax homogenizer (3 × 30-s bursts). Insoluble 

material was removed by centrifugation and the resulting supernatant used for 

immunoprecipitation of AMPK. AMPK was immunopreciptated using the pan- β subunit 

antibody against AMPK from 100ug of cell lysate in the presence of Protein A (Sigma). The 

resin was washed twice with lysis buffer. The assay was conducted in duplicate. 5ul resin 

sample was incubated at 37°C whilst shaking for 30 minutes with 200 μM AMP, 200 μM 

SAMS peptide (HMRSAMSGLVLKRR), 10mM Hepes, 0.2 % Triton, and 200 μM 32P-ATP in a 

total volume of 25 µL.  The reaction was terminated by spotting aliquots (20μl) onto P-81 

paper and unincorporated [32P+γ-ATP removed by washing with 1% (v/v) phosphoric acid 

until blank samples reached background levels as assessed with a Geiger counter. Following 

drying of the sample papers, phosphate incorporation was determined via liquid scintillation 

counting for 30 seconds. Specific activity was calculated by subtraction of the background 

level (lacking SAMS peptide) from the averaged duplicates. AMPK activity was expressed as 

fold activity as compared to controls. 

2.3.8 Hypothalamic explant static incubation system  

The static incubation system used was a modification of the method previously described 

and has been used previously in to measure glucose-stimulated neurotransmitter release 

from hypothalamic (Beak et al., 1998, Parton et al., 2007b). 20 male Wistar rats (10 iARC-

GKS rats and 10 iARC-GFP rats) were killed by decapitation 28 days after intranuclear AAV 

injection and whole brains were removed immediately. The brain was mounted with ventral 

surface uppermost and placed in a vibrating microtome (Microfield Scientific Ltd., 

Dartmouth, UK). A 1.7-mm slice was taken from the basal hypothalamus and incubated in 

individual tubes containing 1 ml of artificial cerebrospinal fluid (aCSF) (20 mM NaHCO3, 126 

mM NaCl, 0.09 mM Na2HPO4, 6 mM KCl, 1.4 mM CaCl2, 0.09 mM MgSO4, 5 mM glucose, 

0.18 mg/ml ascorbic acid, and 100 µg/ml aprotinin), equilibrated with 95% O2 and 5% CO2. 

The tubes were placed on a shaking platform in a water bath maintained at 37 C. After an 
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initial 2 hour equilibration period, the hypothalamic explants were incubated for three 45 

min periods in 600 µl aCSF containing 3, 8 (baseline) and 15 mM glucose in randomised 

order. Finally, the viability of the tissue was verified by 45-minute incubation in aCSF 

containing 56 mM KCl. At the end of each incubation period, supernatants were removed 

and tested for NPY release by radioimmunoassay as mentioned in section 1.3.10.5.3. Only 

hypothalami that showed a 100% secretion over baseline in response to 56 mM KCl were 

used in the analysis.  

2.3.9 Body composition analysis  

Body composition was analysed to establish the ratio of fat mass to lean body mass. Rat 

carcasses were dissolved (saponified) in a strong organic solvent before glycerol and protein 

concentrations were measured using standard assay procedures.  

2.3.9.1 Saponification of Carcass  

Materials  

3M KOH 65% ethanol (v/v) (Appendix I)  

Ethanol (VWR International Ltd, Poole, UK)  

Methods  

Animals were weighed and placed in separate 1L plastic containers. Carcasses were 

dissolved using 3M KOH in 65% ethanol in equal volume to carcass weight (1ml/g). Vessels 

were then incubated at 70°C for one hour to initiate liquefaction. Following this, the 

containers were placed in an oven at 70°C for 5 days. The resultant liquid was made up to 

1.7L with absolute ethanol and stored at room temperature until required.  

2.3.9.2 Glycerol Assay  

In order to determine total fat content in rats, a glycerol assay was used. Whole carcass 

glycerol concentrations were determined using reagents and methods from Randox 

laboratories Ltd, Crumlin, Co. Antrim.  
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Materials  

1M Glycerol (VWR International Ltd, Poole, UK)  

Glycerol Assay Kit (Randox Laboratories Ltd, Crumlin, Co. Antrim)  

Buffer R (appendix 1)  

Reagent R (appendix 1)  

Methods  

In order to determine the total fat content per rat a glycerol assay was used. All buffers 

were supplied ready to use and one vial of reagent R was reconstituted with 15 ml of buffer 

R. One molar glycerol stock solution was diluted in GDW to provide standard glycerol 

concentrations of 5mM, 2mM, 1mM, 0.5mM, 0.2mM, 0.1mM, and 0.05mM. Ten microlitres 

of dissolved carcass sample was diluted 1:100 with GDW in separate mictrotubes ready for 

use in the assay. To begin the assay 1 ml reagent R was added to a new set of tubes. To this 

30μl of sample, standard, or buffer R (for blank value) was added and left to incubate at 

room temperature for 10 minutes. Each tube was then read using a spectrophotometer at 

an absorbance of 520 nm. The carcass fat content was calculated from the glycerol reading 

by assuming a molecular weight of 885 per triglyceride molecule (Bergmeyer and Gawehn, 

1974).  

2.3.9.3 Lowry Protein Assay 

The Lowry protein assay was performed on 10 µL of dissolved carcass sample diluted in 1 mL 

GDW as described in section 2.3.2.3. 

2.3.10 Analysis of plasma metabolites and hormones 

2.3.10.1 Glucose assay  

Materials  

Glucose assay kit (Randox Laboratories Ltd. UK)  

Methods  

Plasma glucose concentrations were determined using reagents and methods from Randox 

Laboratories Ltd. This assay involves two linked reactions which are shown below. In the 
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first reaction glucose is oxidised by glucose oxidase (GOD) to give gluconic acid and 

hydrogen peroxide. In the second reaction hydrogen peroxide reacts with 4-

aminophenazone and phenol under catalysis of peroxidise (POD). The products of the 

second reaction are water and quinoneimine.  

GOD  

Glucose + O2 + H2O gluconic acid + H2O2  

POD  

2 H2O2+ 4-aminophenazone+phenol quinoneimine + 4 H2O  

All buffers were supplied ready to use and the GOD-PAP reagent was reconstituted using 

one vial R1b buffer. Plasma samples were thawed on wet ice and diluted 1:5 in GDW. 

Standard glucose concentrations were produced using standard glucose solution and 

methods provided by Randox. On a 96 well plate 5μl of sample or standard was mixed with 

280μl of reconstituted GOD-PAP reagent and incubated for 10 minutes at 37˚C. The A500 of 

the samples was then measured in a spectrophotometer. Absorbance values of the blank 

readings were subtracted from the absorbance readings of all samples and standards, and a 

standard curve plotted. The glucose concentration of each of the unknown samples was 

determined by comparison to the standard curve.  

2.3.10.2 Plasma insulin ELISA  

Material  

Rat ultra-sensitive insulin ELISA kit (Crystal Chem, Illinois, USA)  

Methods  

Plasma insulin concentrations were determined using reagents and methods as described in 

the manufacturer's protocol. 10X wash buffer was diluted 1:10 in GDW. Five microlitres of 

sample, premixed rat insulin standard or quality control were added to wells containing 95 

µL sampled diluent. Plates were sealed and incubated at 4˚C for 2 hours on a plate shaker at 

400rpm. Following incubation, solution was decanted from wells as previously described 

and wells washed five times with 300μl wash buffer. Next, 100 µL anti-insulin enzyme 
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conjugate (conjugated with streptavidin-horseradish peroxidise) was added to each well and 

was incubated for 30 min at room temperature on a plate shaker at 400 rpm. Following 

incubation, solution was decanted from wells as previously described and wells washed 

seven times with 300μl wash buffer. One hundred microlitres of enzyme substrate reagent 

was added, containing 3,3‟,5,5‟-tetramethylbenzidine, and was incubated for 40 min at 

room temperature or plate shaker at 400 rpm and covered to prevent exposure to light. 100 

µL of enzyme reaction stop solution were added to each well. The A450 and A630 of the 

samples was then measured in a spectrophotometer. Absorbance values of A450 were 

subtracted by absorbance values at A630. These values of all samples and standards were 

subtracted from the values of the blank readings, and a standard curve plotted. The insulin 

concentration of each of the unknown samples was determined by comparison to the 

standard curve. 

2.3.10.3 Plasma leptin ELISA  

Material  

Rat leptin ELISA kit (Crystal Chem, Illinois, USA)  

Methods  

Plasma leptin concentrations were determined using reagents and methods as described in 

the manufacturer's protocol. 10X wash buffer was diluted 1:10 in GDW. Five microlitres of 

sample, premixed standard or quality control were added to wells containing 45 µL sampled 

diluent. 50 µL of guinea pig anti-mouse leptin serum were added to each well. Plates were 

sealed and incubated at 4˚C for 16-20 hours (overnight). Following incubation, solution was 

decanted from wells as previously described and wells washed five times with 300μl wash 

buffer. Next, 100 µL anti-pig IgG enzyme conjugate was added to each well and was 

incubated for three hours at 4° C. Following incubation, solution was decanted from wells as 

previously described and wells washed seven times with 300μl wash buffer. Next, 100μl of 

enzyme substrate, containing 3,3‟,5,5‟-tetramethylbenzidine, and was incubated for 30 min 

at room temperature or plate shaker at 400 rpm and covered to prevent exposure to light. 

100 µL of enzyme reaction stop solution were added to each well. The A450 and A620 of the 

samples was then measured in a spectrophotometer. Absorbance values of A450 were 
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subtracted by absorbance values at A620. These values of all samples and standards were 

subtracted from the values of the blank readings, and a standard curve plotted. The insulin 

concentration of each of the unknown samples was determined by comparison to the 

standard curve. A high and low quality control (provided by the manufacturer) was used to 

validate the assay. 

2.3.10.4 Plasma active glucagon-like peptide-1 ELISA  

Material  

Rat Glucagon-like Peptide-1 (Active) ELISA kit (Millpore, Missouri, USA)  

Methods  

Plasma active glucagon-like peptide-1 (GLP-1) concentrations were determined using 

reagents and methods as described in the manufacturer's protocol. Biologically active forms 

of GLP-1 are inactivated by peptidases and enzyme such as dipeptidyl peptidase IV. This kit 

allows non-radioactive quantification of biologically active forms of GLP-1 i.e. GLP-1 (7-36 

amide) and GLP-1 (7-37) in plasma. It is highly specific for the immunologic measurement of 

active GLP-1 and will not detect other forms of inactive GLP-1 (e.g., 1-36 amide, 1-37, 9-36 

amide, or 9-37), providing a more reliable measure of biologically important GLP-1 levels. 

This assay is based, capture of active GLP-1 from sample by a monoclonal antibody, 

immobilized in the wells of a microwell plate, that binds specifically to the N-terminal region 

of active GLP-1 molecule, washing to remove unbound materials, binding of an anti GLP-1-

alkaline phosphatase detection conjugate to the immobilized GLP-1, washing off unbound 

conjugate, and quantification of bound detection conjugate by adding methyl umbelliferyl 

phosphate which in the presence of alkaline phosphatase forms the fluorescent product 

umbelliferone. Since the amount of fluorescence generated is directly proportional to the 

concentration of active GLP-1 in the unknown sample, the amount of GLP-1 can be derived 

by reference to the standard curve of known concentrations of active GLP-1.  

10X wash buffer was diluted 1:10 in GDW. 300 µL wash buffer was added to each well and 

the plate was incubated at room temperature for 5 min. The residual buffer was removed 

by gently tapping on absorbent towels. 100 µL of assay buffer was added to each well 
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thereafter. 100 µL of sample or standard or quality control were added to wells. Plates were 

sealed and incubated at 4˚C for 16-20 hours (overnight). Following incubation, solution was 

decanted from wells as previously described and wells washed five times with 300μl wash 

buffer. Next, 200 µL detection conjugate was added to each well and was incubated for two 

hours at room temperature. Following incubation, solution was decanted from wells as 

previously described and wells washed three times with 300μl wash buffer. Next, 200μl of 

substrate and was incubated for 20 min at room temperature or plate shaker at 400 rpm 

and covered to prevent exposure to light. 50 µL of enzyme reaction stop solution were 

added to each well. Fluorescence at 355 nm/460 nm was read on a fluorescence microplate 

reader (Gemini™ XPS Fluorescence Microplate Reader). A high and low quality control 

(provided by the manufacturer) was used to validate the assay.  

2.3.10.5 Radioimmunoassays  

Radioimmunassay (RIA) was used to determine the concentrations of plasma hormones. The 

principle of RIA is based on the competitive nature of the binding of radiolabelled ligand and 

cold ligand for limited antibody binding sites.  

Plasma gut hormones peptide tyrosine tyrosine (PYY) and ghrelin were calculated using in-

house RIA methods. Human PYY, αMSH and neuropeptide Y (NPY) were iodinated using the 

iodogen  or Bolter and Hunter method by Professor Mohammed Ghatei and purified by 

HPLC (Wood et al., 1981, Adrian et al., 1985). All assays were performed using 0.06M 

phosphate buffer (Appendix I). Standard curves for each assay were prepared using 

synthetic peptide. 

PYY radioimmunoassay 

Materials 

Phosphate Buffer (appendix I) 

125I labelled PYY 

Rabbit anti-PYY (1:50,000 dilution) 

Sheep anti-rabbit antibody (Pharmacia & Upjohn, Sweden) 

PPY standard peptide (Bachem, UK) 
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Methods 

PYY-like IR was measured using a specific and sensitive RIA (Adrian et al., 1985). The assay 

measured the hormone fragment, PYY3-36, and the full length hormone, PYY1-36, both of 

which are biologically active. The antiserum (Y21) was produced in rabbits against synthetic 

porcine PYY coupled to BSA by glutaraldehyde and used at a final dilution of 1:50,000. This 

antibody cross-reacts fully with the biologically active circulating forms of PYY, but not with 

PP or other known gastrointestinal hormones. The 125I-PYY was prepared by the iodogen 

method and purified by high pressure liquid chromatography. The assay was performed in 

duplicate in a total volume of 0.7 ml of 0.06 M phosphate buffer PH 7.2 containing 0.3% 

BSA. The assay was incubated for three days at 4°C before separation of the free from 

antibody bound label by sheep anti-rabbit antibody. These free and bound fractions were 

counted for 180 seconds in a gamma scintillation counter and sample concentrations were 

calculated using a data reduction program (NE1600, NE Technology, UK). Sample 

concentrations were calculated using a data reduction program (NE1600, NE Technology, 

UK). The detection limit of the assay was 2.5 pmol/l, with an intra-assay coefficient of 

variation of 5.8 %. All samples were assayed in one assay to avoid inter-assay variation. 

Ghrelin radioimmunoassay 

Materials 

Phosphate Buffer (appendix I) 

125I labelled ghrelin (Bolton & Hunter reagent, Amersham International UK) 

Rabbit anti-ghrelin (1:70,000 dilution) (G0 antibody, Bachem UK) 

Rabbit anti-ghrelin (1:50,000 dilution) (SC10368, Santa Cruz) 

Sheep anti-rabbit antibody (Pharmacia & Upjohn, Sweden) 

Ghrelin standard peptide (Bachem, UK) 

Methods 

Ghrelin-like IR was measured using a specific and sensitive RIA (Patterson et al., 2005). The 

G0 antiserum was produced in rabbits against synthetic human ghrelin (Bachem, UK) 

coupled to BSA by glutaraldehyde and used at a final dilution of 1:70,000. This antibody 

cross-reacts fully with the biologically active circulating forms of ghrelin (acylated ghrelin), 
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but not with other known gastrointestinal hormones or des-acylated ghrelin.  The SC10368 

antiserum was produced in rabbits against synthetic human ghrelin (Santa Cruz, USA) and 

used at a final dilution of 1:50,000. This antibody cross-reacts fully with all circulating forms 

of ghrelin, but not with other known gastrointestinal hormones. The 125I-ghrelin was 

prepared by the iodogen method and purified by high pressure liquid chromatography using 

a linear gradient from 10 to 40% acetonitrile (AcN), 0.05% Tri-fluroacetic acid (TFA) over 90 

mins. The assay was performed in duplicate in a total volume of 0.7 ml of 0.06 M phosphate 

buffer PH 7.2 containing 0.3% BSA on acidified plasma samples. The assay was incubated for 

three days at 4°C before separation of the free from antibody bound label by sheep anti-

rabbit antibody. These free and bound fractions were counted for 180 seconds in a gamma 

scintillation counter and sample concentrations were calculated using a data reduction 

program (NE1600, NE Technology, UK). Sample concentrations were calculated using a data 

reduction program (NE1600, NE Technology, UK). The assay detected changes of 15 pmol/l 

of plasma ghrelin with 95% confidence limit. The intra and inter-assay coefficients of 

variation were 6.2% and 9.5% respectively. All samples were assayed in one assay to avoid 

inter-assay variation. 

NPY radioimmunoassay 

Materials 

Phosphate Buffer (appendix I) 

125I labelled NPY 

Rabbit anti-NPY (1:50,000 dilution) 

Sheep anti-rabbit antibody (Pharmacia & Upjohn, Sweden) 

NPY standard peptide (Bachem, UK) 

Methods 

NPY-like IR was measured using a specific and sensitive RIA (Allen et al., 1984). The 

antiserum (YN7) was produced in rabbits against synthetic porcine NPY coupled to BSA by 

glutaraldehyde and used at a final dilution of 1:50,000. This antibody cross-reacts fully with 

NPY, but not with other peptides, including PYY. The 125I-NPY was prepared by the iodogen 

method and purified by high pressure liquid chromatography. The assay was performed in 
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duplicate in a total volume of 0.35 ml of 0.06 M phosphate buffer PH 7.2 containing 0.3% 

BSA. The assay was incubated for three days at 4°C before separation of the free from 

antibody bound label by sheep anti-rabbit antibody. These free and bound fractions were 

counted for 180 seconds in a gamma scintillation counter and sample concentrations were 

calculated using a data reduction program (NE1600, NE Technology, UK). Sample 

concentrations were calculated using a data reduction program (NE1600, NE Technology, 

UK). The sensitivity of the assay was 1000 pmol/ml. The intra- and inter-assay variation was 

7% and 8% respectively. All samples were assayed in one assay to avoid inter-assay variation. 

αMSH radioimmunoassay 

Materials 

Phosphate Buffer (appendix I) 

125I labelled α-MSH 

Rabbit anti- α-MSH (1:120,000 dilution) (Chemicon International Inc., USA) 

Sheep anti-rabbit antibody (Pharmacia & Upjohn, Sweden) 

α-MSH standard peptide (Bachem, UK) 

Methods 

α-MSH -like IR was measured using a specific and sensitive RIA (Kim et al., 2000). The anti-

serum cross-reacts fully with α-MSH, but not with other POMC products. The assay was 

performed in duplicate with 0.06 M phosphate buffer PH 7.2 containing 0.3% BSA. The assay 

was incubated for three days at 4°C before separation of the free from antibody bound label 

by sheep anti-rabbit antibody. These free and bound fractions were counted for 180 

seconds in a gamma scintillation counter and sample concentrations were calculated using a 

data reduction program (NE1600, NE Technology, UK). Sample concentrations were 

calculated using a data reduction program (NE1600, NE Technology, UK). All samples were 

assayed in one assay to avoid inter-assay variation. 

2.4 Statistical analysis 

Results are shown as mean and s.e.m unless indicated. Generalized estimating equation 

(GEE) was used to compare cumulative data between control and treatment groups. GEE is 
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used to analyse longitudinal data (for example food intake, bodyweight, glucose intake or 

caloric intake during chronic studies). Data from multiple groups for glucokinase activity 

assays and hypothalamic explant studies were analysed using one-way statistical analysis of 

variance (ANOVA) followed by post-hoc Holm-Sidak test. A paired Student’s t-test was used 

to compare absolute food and glucose intake data from cross-over studies. An unpaired 

Student’s t-test was used to compare all other data. Significance was set at P < 0.05 for all 

analysis. Data analysis was performed using Graphpad Prism 5 software except for GEE, 

which was performed using Stata 9 software (Stata, Stata Corp LP, USA). 
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3 Effect of increased arcuate glucokinase activity on 

food intake and body weight 
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3.1 Introduction 

The brain responds to circulating nutrient signals, such as glucose, and regulates energy 

balance accordingly (Schwartz et al., 2000). Recent evidence suggests a strong interaction 

between peripheral and central nutrient sensing neurons in the regulation of energy 

homeostasis (Jordan et al., 2010). Glucose-sensing neurons play a significant role in allowing 

the brain to detect glucose. Hypothalamic glucose-sensing neurons are anatomically and 

functionally capable of playing an important integrative role in energy balance and glucose 

homeostasis. Glucokinase acts as part of the glucose sensing mechanism in these neurons 

(Dunn-Meynell et al., 2002b, Levin et al., 2004, Kang et al., 2006). It is now well accepted 

that the brain not only responds to these signals and adjusts food intake, but also changes 

peripheral functions such as glucose homeostasis (Levin, 2006, Lam et al., 2009). However, 

the precise role that glucose-sensing and alterations in glucose-sensing machinery play on 

influencing day-to-day food intake remained unaddressed. 

3.1.1 Evidence for the glucostatic control of food intake  

In 1953, Jean Mayer first proposed the “glucostatic theory”, which suggested that changes 

in blood glucose were sensed by “glucoreceptors” in the hypothalamus leading to 

alterations in hunger and satiety (Mayer, 1953). The discovery of glucose-sensing neurons 

provided support for this theory (Oomura et al., 1964). Since then, a number of approaches 

have been attempted to confirm the existence of the glucostatic control of food intake 

(Levin et al., 2004). Alteration of glucose levels in the general circulation of rodents and 

primates and portal circulation of rodents leads to changes in feeding behaviour (Smith and 

Epstein, 1969, Tordoff et al., 1989). Furthermore in rodents and humans, spontaneous 

feeding is preceded by a fall in plasma glucose levels (Campfield et al., 1985, Melanson et 

al., 1999, Dunn-Meynell et al., 2002a). ICV infusion of glucose in rodents dose dependently 

decreases subsequent food intake (Kurata et al., 1986). Repeated infusion of glucose into 

the VMH decreases food intake and body weight gain (Panksepp and Rossi, 1981). ICV and 

VMH infusion of a glucose antimetabolite, 2-deoxyglucose, increases food intake (Tsujii and 

Bray, 1990, Lenin Kamatchi et al., 1986). Glucoprivation has been shown to increase mRNA 

levels of orexigenic NPY in the ARC (Sergeyev et al., 2000, Akabayashi et al., 1993). 

Attenuation of glucoprivic feeding has been demonstrated in NPY KO and rats treated with 
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NPY-antiserum in the hypothalamus (Sindelar et al., 2004, He et al., 1998). Glucose results in 

a dose-dependent increase in anorexigenic POMC release from the hypothalamus in 

hypothalamic explants of lean mice (Parton et al., 2007a). In obese mice, this increase is 

disrupted suggesting alterations in glucose-sensing with altered anorexigenic POMC release 

in obesity. The effect of leptin on POMC release has also been shown to be modulated by 

glucose levels in neurons from the ARC (Ma et al., 2008a). Glut 2 null mice with pancreatic 

re-expression of glut 2 demonstrate hyperphagia and altered leptin  sensitivity in NPY and 

POMC neurons suggesting that altered brain glucose-sensing may alter food intake (Bady et 

al., 2006, Mounien et al., 2010).  

Although the above observations support a role for glucose-sensing in the hypothalamus, 

particularly the VMH, and the regulation of food intake; other observations do not support 

this. Intravenous or intragastric glucose infusion did not alter food intake and appetite 

compared with intravenous or intragastric saline treatment in normal humans in a crossover 

study (Bernstein and Grossman, 1956). Unlike the infusion of 2-deoxyglucose, the infusion 

of glucose epimers such as D- mannose, D-galactose and D-allose in rodents does not need 

to altered food intake. Although the disruption of KATP channels in POMC neurons of mice 

altered glucose-sensing in hypothalamic neurons, it did not alter food intake and body 

weight in these mice (Parton et al., 2007a). It has also been argued that supraphysiological 

levels of glucose have been used in most central nervous system infusion studies. Brain 

glucose levels are much lower than systemic glucose levels with a narrow range of variation 

(de Vries et al., 2005).  

Therefore approaches so far have not conclusively demonstrated the existence of 

glucostatic control of food intake, with some observations being in contrast to others. The 

exact role of glucostatic regulation in modulating food intake via the hypothalamus in 

normal physiology, as opposed to experimentally induced glucoprivation, is not clear. 

 

3.1.2 Glucokinase and food intake 

Diet-induced obese (DIO) and DIO-prone rats have increased ARC glucokinase mRNA 

expression, suggesting that ARC glucokinase may play a role in energy homoeostasis and 
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that this system is altered in obesity (Dunn-Meynell et al., 2002b). Assessing the precise role 

of hypothalamic glucokinase on food intake has been difficult since global alterations of 

glucokinase disrupt glucose homoeostasis (Yang et al., 2007). Pharmacological studies 

suggest that hypothalamic glucokinase played a role in modulating food intake. ICV infusions 

of glucosamine, a non-selective inhibitor of glucokinase, at 15nmol/min in rats increases 

glucoprivic feeding (Osundiji et al., 2010). ICV infusions of glucosamine at a much larger 

dose of 150 nmol/min during the mid-light cycle in overnight fed rats increase food intake 

and is associated with increased c-fos, a marker of neuronal activation, in NPY neurons of 

the ARC and orexin neurons of the LH (Zhou et al., 2011). Glucosamine also inhibits 

hexokinase (Bertoni, 1981). Therefore, its infusion at high doses into the ICV is likely to 

cause marked non-specific effects leading to altered appetite. Using alloxan and short-

interfering RNA mediated knockdown of glucokinase with an adenoviral vector, Levin and 

colleagues were unable to demonstrate a role for VMH glucokinase in feeding over twenty-

four hours and fourteen days, respectively (Dunn-Meynell et al., 2009). Alloxan is a toxic 

glucose analogue that generates reactive oxygen species and is likely to have detrimental 

effects in neurons (Salkovic-Petrisic and Lackovic, 2003). Adenoviral vectors generate 

immune responses which lead to inflammation and compromise the efficacy of gene 

transfer (Kaplan et al., 1997). Therefore, none of these short studies have satisfactorily 

addressed the role of glucokinase on appetite.  

3.1.3 Role of the ARC in modulating food intake in response to changes in glucose 

The ARC is positioned at the base of the hypothalamus and possesses a highly fenestrated 

blood brain barrier. Circulating factors such as glucose, fatty acids, leptin and ghrelin can 

access neurons situated in the ARC (Cone et al., 2001). The supply of glucose is likely to be 

greater in the ARC, and possibly the VMN than in the deeper regions of the brain (Mountjoy 

and Rutter, 2007). Furthermore, the ARC contains the orexigenic NPY/ AgRP neurons and 

the anorexic POMC/CART neurons, some of which are believed to be glucose sensitive and 

express glucokinase.  Therefore, ARC glucose-sensing neurons are well placed to act as 

primary central “metabolic sensors” that respond to glucose, as well as other metabolic 

signals such as insulin, leptin, lactate and fatty acids. Their location and co-localisation with 

NPY/ AgRP and POMC/CART neurons may allow them to act as “metabolic effectors” by 

influencing the desire to feed. Taken together, the above data suggests that ARC nucleus is 
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likely to play an important role in altering food intake in response to changes in glucose via 

glucose-sensing. Altering the components involved in glucose-sensing specifically in these 

nuclei may lead to alterations in food intake and provide insight into the role of glucose-

sensing in energy homoeostasis. 

Glucose-sensing in the hypothalamus has been implicated in the regulation of food intake. 

Glucokinase has a prominent role in glucose-sensing and is expressed in hypothalamic 

nuclei, such as the ARC, which have important roles in controlling energy homoeostasis. 

However, the role of glucokinase and glucose-sensing on the physiological regulation of 

food intake has not been conclusively demonstrated. This chapter attempts to address this 

by altering glucokinase expression in the ARC using two different approaches. The first 

involves pharmacological activation of glucokinase by direct administration of 

glucokinaseactivator compound A (CpdA) into the ARC. CpdA is an allosteric activator of 

glucokinase (Kamata et al., 2004, Iino et al., 2009). It has previously been used in vitro and in 

vivo to alter glucokinase activity (Kang et al., 2006, Levin et al., 2008a). The second involves 

chronically increasing glucokinase mRNA expression in the ARC by developing and delivering 

rAAV-2 encoding the pancreatic form of glucokinase to the ARC.  
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3.2 Hypothesis and Aims 

3.2.1 Hypothesis 

Selectively altering glucokinase activity in the ARC of the hypothalamus, using stereotactic 

injections of pharmacological glucokinase activators and rAAV encoding glucokinase mRNA , 

will alter food intake and bodyweight regulation in male Wistar rats. 

3.2.2 Aims and Objectives 

To investigate this, I will: 

1. Determine whether glucokinase activity is altered by nutritional state by measuring 

glucokinase activity in hypothalamic nuclei of fed and fasted male Wistar rats. 

2. Investigate the effect of increased glucokinase activity on short-term food intake by 

delivering the pharmacological glucokinase activator, compound A, into the ARC. 

3. Produce rAAV encoding rat pancreatic glucokinase (rAAV-GKS) and confirm ability of 

this construct to alter glucokinase activity in vitro. 

4. Stereotactically inject rAAV-GKS into the ARC and confirm increased glucokinase 

mRNA expression and activity in the ARC. 

5. Investigate the effect of chronically increased arcuate glucokinase activity on food 

intake and bodyweight using a standard chow diet and a high-energy, obesogenic 

diet. 
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3.3 Results  

3.3.1 Effect of nutritional state on glucokinase activity in hypothalamic nuclei 

Glucokinase activity in the ARC was significantly increased following a twenty-four hour fast 

compared to fed controls (fold change, 1.71±0.13; mean±s.e.m, n=8, p<0.01) (figure 3.1a). 

There was no difference in the glucokinase activity between fed and fasted state in either 

the VMN (fold change 0.88±0.08; mean±s.e.m, n=10) or PVN (fold change 0.94±0.07; 

mean±s.e.m, n=8-9) (figure 3.1b and c). 
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a) 

 

 

 

 

 

b)       c) 

 

 

 

 

 

 

Figure 3.1 Effect of nutritional state on glucokinase activity in hypothalamic nuclei. 

Glucokinase activity in fed and twenty-four hour fasted rats in the ARC, VMN and PVN. Data 

are expressed as mean +/- SEM for all groups, n= 8-11. Statistical significance was analysed 

by student's t test: **=p<0.01 
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3.3.2 Effect of acutely increasing ARC glucokinase activity on food intake 

ARC glucokinase activation was increased acutely using the glucokinase activator CpdA, 

injected via cannulas stereotactically implanted into the ARC. Acute arcuate glucokinase 

activation increased food intake during the first hour after injection, as compared to vehicle 

injected controls (control, 0.38±0.13g; CpdA, 1.07±0.27g; n=10, p<0.05) (figure 3.3). 

Although there was an increase in food intake at later time points, including 24 hours, this 

was not significant (control, 24.0±1.80g; CpdA, 26.3±1.52g; n=10) (figure 3.3). Cannula 

placement in an area corresponding to the ARC and VMN boundary using cresyl violet 

staining (figure 3.2 for representative image). Animals that did not have correct placement 

of cannula were removed from subsequent analysis of feeding studies. 

 

Figure 3.2 Confirmation of cannula placement in rats cannulated into the ARC. Cresyl violet 

staining of brain section representing the ARC of the hypothalamus and demonstrating 

correct placement of cannula in the ARC and VMN boundary.  Dark blue staining corresponds 

to Indian ink and indicates the point of cannula insertion with surrounding gliosis. Injections 

were delivered 1 mm below this to the area corresponding to the ARC. 
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Figure 3.3 Effect of increasing ARC glucokinase activity on food intake. (a) Food intake one 

hour after ARC glucokinase activation using stereotactic injection of 0.5 nmol CpdA as 

compared to the vehicle injected controls during a crossover study. (b) Twenty-four-hour 

food intake after ARC glucokinase activation using stereotactic injection of 0.5 nmol  CpdA 

as compared to the vehicle injected controls during a crossover study. Data are expressed as 

mean +/- SEM for all groups, n= 10. Statistical significance was analysed by student's t test: 

*=p<0.05.  
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3.3.3 Production of rAAV-GKS 

3.3.3.1 PCR products  

GKS  

Following PCR, 10ul of GKS PCR product was visualised by gel electrophoresis. Comparison 

of the PCR product with a 1kb DNA ladder (Invitrogen) confirmed the presence of a band of 

between 1400-1500bp. The expected product size of this reaction was 1460bp.The presence 

of this band suggests that the reaction was successful.      

Restriction endonuclease digestion of small scale plasmid preparation 

DNA from small scale plasmid preparation was subjected to restriction endonuclease 

analysis to identify which clones contained the correct plasmid insert and retained their 

ITR’s. GKS plasmid was digested by AgeI and BsiWI which should yield two bands; the cut 

plasmid of 4912bp and the GKS insert of 1460bp). The plasmids were also digested by XmaI 

to check for presence of ITR’s. All products were visualised by gel electrophoresis. GKS 

samples with the correct sized bands and strong ITR's were selected and used for large-scale 

plasmid preparation. 

3.3.3.2 Restriction endonuclease digestion of large scale plasmid preparation 

GKS  

Restriction endonuclease digestion of purified DNA from large scale GKS plasmid 

preparation using Age1 and BsiW1 produced a band of ~1450bp. Digestion with Xma1 

showed strong ITR’s (figure 3.4).Taken together this indicates that the plasmid contains the 

correct insert and the ITR’s to allow integration of the viral DNA to the host genome. 
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Figure 3.4 Visualisation of GKS plasmid production using gel electrophoresis: (a) Digestion 

with XmaI revealed bands consistent with ITR. (b) Purified GKS plasmid DNA was digestive 

by AgeI and Bsiw1 to produce the expected ~1450 BP band indicating the correct insert. (c) 

Size of band compared to Invitrogen one kb ladder. 
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DNA sequencing  

GKS 

Sequencing results produced by the Imperial College Genomics Core laboratory were 

analysed using the nucleotide BLAST tool on the NCBI internet site. BLAST analysis of the 

GKS-pTR-CGW sequencing data revealed that the plasmid contained a full length copy of 

glucokinase gene with 100% homology to pCMV4.GKB1 plasmid gifted from Vanderbilt 

University (figure 3.5).  

Query  1     CTGGGCTGGTGGCTGCGCAGATGCTGGATGACAGAGCCAGGATGGAGGCCACCAAGAAGG  60   

             ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||                                                

Sbjct  1     CTGGGCTGGTGGCTGCGCAGATGCTGGATGACAGAGCCAGGATGGAGGCCACCAAGAAGG  60 

 

 

Query  61    AAAAGGTCGAGCAGATCCTGGCAGAGTTCCAGCTGCAGGAGGAAGACCTGAAGAAGGTGA  120 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  61    AAAAGGTCGAGCAGATCCTGGCAGAGTTCCAGCTGCAGGAGGAAGACCTGAAGAAGGTGA  120 

 

 

Query  121   TGAGCCGGATGCAGAAGGAGATGGACCGTGGCCTGAGGCTGGAGACCCACGAGGAGGCCA  180 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  121   TGAGCCGGATGCAGAAGGAGATGGACCGTGGCCTGAGGCTGGAGACCCACGAGGAGGCCA  180 

 

 

Query  181   GTGTAAAGATGTTACCCACCTACGTGCGTTCCACCCCAGAAGGCTCAGAAGTCGGAGACT  240 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  181   GTGTAAAGATGTTACCCACCTACGTGCGTTCCACCCCAGAAGGCTCAGAAGTCGGAGACT  240 

 

 

Query  241   TTCTCTCCTTAGACCTGGGAGGAACCAACTTCAGRGTGATGCTGGTCAAAGTGGGAGAGG  300 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  241   TTCTCTCCTTAGACCTGGGAGGAACCAACTTCAGRGTGATGCTGGTCAAAGTGGGAGAGG  300 

 

 

Query  301   GGGAGGCAGGGCAGTGGAGCGTGAAGACAAAACACCAGATGTACTCCATCCCCGAGGACG  360 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  301   GGGAGGCAGGGCAGTGGAGCGTGAAGACAAAACACCAGATGTACTCCATCCCCGAGGACG  360 

 

 

Query  361   CCATGACGGGCACTGCCGAGATGCTCTTTGACTACATCTCTGAATGCATCTCTGACTTCC  420 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  361   CCATGACGGGCACTGCCGAGATGCTCTTTGACTACATCTCTGAATGCATCTCTGACTTCC  420 

 

 

Query  421   TTGACAAGCATCAGATGAAGCACAAGAAACTGCCCCTGGGCTTCACCTTCTCCTTCCCTG  480 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  421   TTGACAAGCATCAGATGAAGCACAAGAAACTGCCCCTGGGCTTCACCTTCTCCTTCCCTG  480 

 

 

Query  481   TGAGGCACGAAGACCTAGACAAGGGCATCCTCCTCAATTGGACCAAGGGCTTCAAGGCCT  540 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  481   TGAGGCACGAAGACCTAGACAAGGGCATCCTCCTCAATTGGACCAAGGGCTTCAAGGCCT  540 

 

 

 

Query  541   CTGGAGCAGAAGGGAACAACATCGTAGGACTTCTCCGAGATGCTATCAAGAGGAGAGGGG  600 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  541   CTGGAGCAGAAGGGAACAACATCGTAGGACTTCTCCGAGATGCTATCAAGAGGAGAGGGG  600 
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Query  601   ACTTTGAGATGGATGTGGTGGCAATGGTGAACGACACAGTGGCCACAATGATCTCCTGCT  660 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  601   ACTTTGAGATGGATGTGGTGGCAATGGTGAACGACACAGTGGCCACAATGATCTCCTGCT  660 

 

 

Query  661   ACTATGAAGACCGCCAATGTGAGGTCGGCATGATTGTGGGCACTGGCTGCAATGCCTGCT  720 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  661   ACTATGAAGACCGCCAATGTGAGGTCGGCATGATTGTGGGCACTGGCTGCAATGCCTGCT  720 

 

 

Query  721   ACATGGAGGAAATGCAGAATGTGGAGCTGGTGGAAGGGGATGAGGGACGCATGTGCGTCA  780 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  721   ACATGGAGGAAATGCAGAATGTGGAGCTGGTGGAAGGGGATGAGGGACGCATGTGCGTCA  780 

 

 

Query  781   ACACGGAGTGGGGCGCCTTCGGGGACTCGGGCGAGCTGGATGAGTTCCTACTGGAGTATG  840 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  781   ACACGGAGTGGGGCGCCTTCGGGGACTCGGGCGAGCTGGATGAGTTCCTACTGGAGTATG  840 

 

 

Query  841   ACCGGATGGTGGATGAAAGCTCAGCGAACCCCGGTCAGCAGCTGTACGAGAAGATCATCG  900 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  841   ACCGGATGGTGGATGAAAGCTCAGCGAACCCCGGTCAGCAGCTGTACGAGAAGATCATCG  900 

 

 

 

Query  901   GTGGGAAGTATATGGGCGAGCTGGTACGACTTGTGCTGCTTAAGCTGGTGGACGAGAACC  960 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  901   GTGGGAAGTATATGGGCGAGCTGGTACGACTTGTGCTGCTTAAGCTGGTGGACGAGAACC  960 

 

 

Query  961   TTCTGTTCCACGGAGAGGCCTCGGAGCAGCTGCGCACGCGTGGTGCTTTTGAGACCCGTT  1020 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  961   TTCTGTTCCACGGAGAGGCCTCGGAGCAGCTGCGCACGCGTGGTGCTTTTGAGACCCGTT  1020 

 

 

Query  1021  TCGTGTCACAAGTGGAGAGCGACTCCGGGGACCGAAAGCAGATCCACAACATCCTAAGCA  1080 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1021  TCGTGTCACAAGTGGAGAGCGACTCCGGGGACCGAAAGCAGATCCACAACATCCTAAGCA  1080 

 

 

Query  1081  CTCTGGGGCTTCGACCCTCTGTCACCGACTGCGACATTGTGCGCCGTGCCTGTGAAAGCG  1140 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1081  CTCTGGGGCTTCGACCCTCTGTCACCGACTGCGACATTGTGCGCCGTGCCTGTGAAAGCG  1140 

 

 

Query  1141  TGTCCACTCGCGCCGCCCATATGTGCTCCGCAGGACTAGCTGGGGTCATAAATCGCATGC  1200 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1141  TGTCCACTCGCGCCGCCCATATGTGCTCCGCAGGACTAGCTGGGGTCATAAATCGCATGC  1200 

 

 

Query  1201  GCGAAAGCCGCAGTGAGGACGTGATGCGCATCACTGTGGGCGTGGATGGCTCCGTGTACA  1260 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1201  GCGAAAGCCGCAGTGAGGACGTGATGCGCATCACTGTGGGCGTGGATGGCTCCGTGTACA  1260 

 

 

Query  1261  AGCTGCACCCGAGCTTCAAGGAGCGGTTTCACGCCAGTGTGCGCAGGCTGACACCCAACT  1320 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1261  AGCTGCACCCGAGCTTCAAGGAGCGGTTTCACGCCAGTGTGCGCAGGCTGACACCCAACT  1320 

 

 

 

 

Query  1321  GCGAAATCACCTTTCATCGAATCAGAGGAGGGCAGCGGCAGGGGAGCCGCRCTGGTCTCT  1380 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1321  GCGAAATCACCTTTCATCGAATCAGAGGAGGGCAGCGGCAGGGGAGCCGCRCTGGTCTCT  1380 
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Query  1381  GCGGTGGCCTGCAAGAAGGCTTGCATGCTGGCCCAGTGAAATCCAGGTCATATGGACCGG  1440 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1381  GCGGTGGCCTGCAAGAAGGCTTGCATGCTGGCCCAGTGAAATCCAGGTCATATGGACCGG  1440 

 

 

Query  1441  GACCTCTAG  1449 

             ||||||||| 

Sbjct  1441  GACCTCTAG  1449 

Figure 3.5: BLAST analysis of GKS-pTR-CGW and pCMV4.GKB1 sequences. 100% homology 

demonstrated and the sequence in GKS-pTR-CGW contained start and stop codons 

(highlighted in red).  
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3.3.4 Confirmation of altered glucokinase activity following transfection of GKS-pTR-

CGW plasmid 

3.3.4.1 GKS 

Transfection of HEK293T cells with GKS-pTR-CGW plasmid resulted in significantly increased 

glucokinase activity as compared to GFP-pTRCGW controls (controls 0.11 +/- 0.048 vs. GKS 

0.34 +/-0.02 arbitrary units, n=4, P<0.05) (figure 3.6). 

                                                                        

 

 

 

 

 

 

Figure 3.6In vitro validation of GKS-pTR-CGW plasmid. Glucokinase activity in HEK293 cell 

lysates after transfection with either GFP-pTR-CGW plasmid or GKS-pTR-CGW plasmid. Data 

are expressed as mean +/- SEM for all groups, n= 4. Statistical significance was analysed by 

student's t test: *=p<0.05. 
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3.3.5 rAAV production  

Recombinant AAV encoding GK (rAAV-GKS), or enhanced green fluorescent protein (rAAV-

eGFP) was produced, isolated and purified as described in chapter 2. The titre for rAAV-

eGFP was 5.04 x 1012 genome particles/ml and the titre for rAAV-GKS was 2.96 x 1012 

genome particles/ml.  

3.3.6 Effect of chronically increased arcuate glucokinase activity on food intake and body 

weight on a standard chow diet 

rAAV-GKS was stereotactically injected into the arcuate nucleus of male Wistar rats (iARC-

GKS). rAAV-GFP was stereotactically injected into the arcuate nucleus of control male Wistar 

rats (iARC-GFP). 

3.3.6.1 Confirmation of gene transfer by in situ hybridisation 

In situ hybridisation was used to demonstrate glucokinase mRNA expression in iARC-GKS 

and iARC-GFP rats four weeks after stereotactic injection. Increased glucokinase mRNA 

expression was localised to the ARC in iARC-GKS rats (figure 3.7). 

a)                                                                     b) 

  

 

 

 

 

Figure 3.7 Confirmation of gene transfer by in situ hybridisation: Glucokinase mRNA 

expression in coronal sections of brains from male Wistar rats a) endogenous expression in 

the ARC 4 weeks post injection with rAAV-GFP b) increased expression in the ARC 4 weeks 

after injection with rAAV-GKS 
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3.3.6.2 Effect on food intake 

Thirty-three days after recovery from rAAV injections, there was a significant increase in 

cumulative food intake (iARC-GFP, 1094.3±22.39g vs. iARC-GKS, 1194.1±24.92g, n=12-15, 

p<0.01) in iARC-GKS rats, as compared to controls, on a standard chow diet (figure 3.8). 

 

 

 

 

 

 

 

 

Figure 3.8 Effect of iARC rAAV-GKS on food intake: Food intake following bilateral injection 

of 1ul rAAV-eGFP (green line, n=12) or 1ul rAAV-GKS (blue line, n=15) in male Wistar rats fed 

on normal chow.  Data are expressed as mean +/- SEM for both groups. Statistical 

significance was analysed by GEE: *=p<0.05, **=p<0.01. 
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3.3.6.3 Effect of iARC rAAV-GKS on 24hr standard chow food intake and bodyweight 

following 24hr fast   

Food intake was not different between the groups until 8-24hr period following re-feeding 

when the iARC-GKS group ate significantly more compared to the iARC-GFP control group 

(iARC-GFP 9.6+/-0.82g vs. iARC-GKS 12.5+/- 0.64g, n=10-14, P=<0.05) (figure 3.9). 

Cumulative 24hr food intake was similar between the 2 groups (iARC-GFP 35.5+/- 0.59g vs. 

iARC-GKS 36.7+/- 0.75g, n=10-14, P=>0.05) (figure 3.9).  
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Figure 3.9 Effect of iARC rAAV-GKS on 24hr food intake following 24hr fast: 24hr food 

intake of male Wistar rats injected with 1ul rAAV-eGFP (green bars) and 1ul rAAV-GKS (blue 

bars). Both groups were fasted for 24hr and allowed ad libitum access to standard chow for 

a 24hr period at the start of the dark phase.  Data are expressed as mean +/- SEM for all 

groups, n=10-14. Statistical significance was analysed by student's t test: *=p<0.05.  
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3.3.6.4 Effect on body weight and body weight gain 

Thirty-three days after recovery from rAAV injections, there was a significant increase in 

body weight gain (iARC-GFP, 151.67±8.86g vs. iARC-GKS, 175.33±4.87g, n=12-15, p<0.01) in 

iARC-GKS rats, as compared to controls, on a standard chow diet (figure 3.10) (initial body 

weight: iARC-GFP, 270.08±3.04g; iARC-GKS 273.60±2.75g). 

 

 

 

 

 

 

 

 

Figure 3.10 Effect of iARC rAAV-GKS on bodyweight gain: Weight gain following bilateral 

injection of 1ul rAAV-eGFP (green line, n=12) or 1ul rAAV-GKS (blue line, n=15) Male Wistar 

rats were fed normal chow. Data are expressed as mean +/- SEM for groups. Statistical 

significance was analysed by GEE: *=p<0.05, **=p<0.01.   
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3.3.6.5 Effect on body composition 

Percentage body fat 

Thirty-three days after recovery from rAAV injections, there was a significant increase in 

percentage body fat (iARC-GFP, 22.12±1.73; iARC-GKS 28.0±1.62, n=12-15, p<0.05) in iARC-

GKS rats, as compared to controls, on a standard chow diet (figure 3.11).  

Lean body mass 

There was no difference in percentage lean body mass (iARC-GFP, 16.99±0.37; iARC-GKS 

16.7±0.49, n=12-15, p<0.05) (figure 3.12).  
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Figure 3.11 Effect of iARC rAAV-GKS on percentage body fat: Percentage body fat measured 

using body composition analysis thirty-three days after intra-arcuate injection with rAAV-

GKS (n=15) or rAAV-GFP (n=12) in rats. Data are expressed as mean +/- SEM for all groups. 

Statistical significance was analysed by student's t test: *=p<0.05. 

 

 

 

 

 

 

Figure 3.12 Effect of iARC rAAV-GKS on percentage bodyweight protein: Percentage 

bodyweight protein measured using body composition analysis thirty-three days after intra-

arcuate injection with rAAV-GKS (n=15) or rAAV-GFP (n=12) in rats. Data are expressed as 

mean +/- SEM for all groups.  
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BAT and BAT UCP-1 expression 

BAT weight (iARC-GFP, 1.14±0.05 g/kg; iARC-GKS 1.22±0.07 g/kg, n=10-13) was similar in 

both groups (figure 3.13a). BAT UCP1 mRNA expression was similar in both groups. (iARC-

GFP, 4.67 +/- 0.4 arbitrary units vs iARC-GKS 4.87 +/- 0.9 arbitrary units, n=6-11) (figure 

3.13b).  

 

                                                                                   

 

 

 

 

Figure 3.13 Effect of iARC rAAV-GKS on BAT: a) BAT weight corrected to bodyweight thirty-

three days after intra-arcuate injection with rAAV-GKS (n=15) or rAAV-GFP (n=12) in rats. (b) 

BAT UCP1 mRNA expression from overnight fed intra-arcuate injected rAAV-GKS (n=11) or 

rAAV-GFP (n=6) rats. Data are expressed as mean +/- SEM for all groups. Statistical 

significance was analyzed by student's t test: *=P<0.05. 
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3.3.6.6 Effect on glucose and plasma hormones in standard chow diet fed animals 

Glucose 

Fasting glucose (iARC-GFP, 3.88±0.09 mmol/L; iARC-GKS 3.92±0.17 mmol/L, n=9-11) and fed 

glucose (iARC-GFP, 5.39±0.13 mmol/L; iARC-GKS 5.50±0.13 mmol/L, n=9-11) was similar in 

both groups (figure 3.14a and b). 

Insulin 

Fasting insulin (iARC-GFP, 1.12±0.22 ng/ml; iARC-GKS 1.19±0.11 ng/ml, n=9-11) and fed 

insulin (iARC-GFP, 1.77±0.10 ng/ml;  iARC-GKS 2.15±0.19 ng/ml, n=9-11) was similar in both 

groups (figure 3.14c and d). 

Active GLP-1 

Fasting active GLP-1 (iARC-GFP, 9.47±1.89 pmol/L; iARC-GKS 7.00±0.92 pmol/L, n=9-10) and 

fed active GLP-1 (iARC-GFP, 16.11±2.79 pmol/L; iARC-GKS 15.5±1.89 pmol/L, n=9-10) was 

similar in both groups (figure 3.14e and f). 
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Figure 3.14 Effect iARC-GKS on glucose homeostasis: (a) Fasting glucose levels, (b) fed 

glucose levels, (c) fasting insulin levels, (d) fed insulin levels, (e) fasting active GLP-1 levels 

and (f) fed active GLP-1 levels in iARC-GKS rats as compared to controls. Data are expressed 

as mean +/- SEM for all groups, n= 9-11. Statistical significance was analysed by student's t 

test: *=p<0.05. 
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Leptin 

Fasting leptin was non-significantly elevated in iARC-GKS rats versus controls (iARC-GFP, 

6.55±0.87 ng/ml; iARC-GKS 7.35±0.72 ng/ml, n=10-13) (figure 3.15a). Fed leptin was 

significantly elevated in iARC-GKS rats versus controls (iARC-GFP, 9.94±1.36 ng/ml; iARC-GKS 

15.2±2.05 ng/ml, n=10-13) (figure 3.15b). 

Ghrelin 

Fasting total ghrelin was similar in both groups (iARC-GFP, 664.4±46.9 fmol/ml; iARC-GKS 

565.8±36.4 fmol/ml, n=10-11) (figure 3.15c). However, fed acyl-ghrelin was significantly 

reduced in iARC-GKS rats versus controls (iARC-GFP, 106.4±15.5 fmol/ml; iARC-GKS 66.4±8.6 

fmol/ml, n=11-12) (figure 3.15d). 

PYY 

Fasting and fed PYY were similar in both groups (Fasting: iARC-GFP, 32.3±3.0 fmol/ml; iARC-

GKS 32.5±3.9 fmol/ml, n=10) (figure 3.15e). (Fed: iARC-GFP, 53.4±2.95 fmol/ml; iARC-GKS 

60.8±4.97 fmol/L, n=9-11) (figure 3.15f). 
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Figure 3.15 Effect of iARC GKS on hormones involved in appetite regulation: (a) Fasting 

leptin, (b) fed leptin, (c) fasting ghrelin, (d) fed acyl-ghrelin, (e) fasting PYY and (f) fed PYY in 

iARC-GKS rats as compared to controls. Data are expressed as mean +/- SEM for all groups, 

n= 9-13. Statistical significance was analysed by student's t test: *=p<0.05. 
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3.3.7 Effect of chronically increased arcuate glucokinase activity on food intake and body 

weight on a high-energy diet 

3.3.7.1 Effect on food intake 

Thirty-three days after being placed on a high-energy diet, there was a significant increase in 

cumulative food intake (iARC-GFP, 803.49 ±14.64g vs. iARC-GKS, 886.91±25.84g, n=10, 

p<0.01) in iARC-GKS rats, as compared to controls (figure 3.16). 

 

 

 

 

 

 

 

 

Figure 3.16 Effect of iARC rAAV-GKS on food intake: Food intake following bilateral injection 

of 1ul rAAV-eGFP (green line, n=10) or 1ul rAAV-GKS (blue line, n=10) in male Wistar rats fed 

on high-energy diet.  Data are expressed as mean +/- SEM for both groups. Statistical 

significance was analysed by GEE: **=p<0.01. 

  



124 
 

3.3.7.2 Effect on body weight and body weight gain 

Thirty-three days after being placed on a high-energy diet, there was a significant increase in 

body weight gain (iARC-GFP, 81.80 ±5.46g vs. iARC-GKS 102.73±7.17g, n=10, p<0.05) in iARC-

GKS rats, as compared to controls, on a standard chow diet (figure 3.17) (initial body weight: 

iARC-GFP, 441.30±9.73g; iARC-GKS 447.09±9.14g).  

 

 

 

 

 

 

 

 

Figure 3.17 Effect of iARC rAAV-GKS on bodyweight gain with high-energy diet: Weight 

gain following bilateral injection of 1ul rAAV-eGFP (green line, n=10) or 1ul rAAV-GKS (blue 

line, n=10) in male Wistar rats fed on a high-energy diet. Data are expressed as mean +/- 

SEM for both groups. Statistical significance was analysed by GEE: *=p<0.05. 
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3.3.8 Confirmation of increased glucokinase activity in the ARC 

Glucokinase activity was measured in hypothalamic nuclei of iARC-GKS and iARC-GFP rats. 

Glucokinase activity in the ARC was significantly increased in iARC-GKS rats compared to 

controls (fold change, 2.03±0.30; mean±s.e.m, n=10-11, p<0.001) (figure 3.18). Glucokinase 

activity was not altered in the VMN (fold change, 0.98±0.17; mean±s.e.m, n=10-11) or PVN 

(fold change, 0.87±0.08; mean±s.e.m, n=7-10) (figure 3.18). 

 

 

 

 

 

 

 

Figure 3.18 Glucokinase activity in hypothalamic nuclei of iARC-GKS and iARC-GFP rats: 

Glucokinase activity in homogenate supernatants from ARC, VMN and PVN micro-punches in 

iARC-GFP and iARC-GKS rats. Data are expressed as mean +/- SEM for all groups, n= 8-11. 

Statistical significance was analysed using one-way statistical analysis of variance followed 

by post-hoc Holm-Sidak test. ***p<0.001 versus corresponding control values. #p<0.0001 

versus all other groups. 
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3.4 Discussion 

3.4.1 ARC glucokinase is involved in the regulation of food intake 

Glucokinase activity in the ARC is significantly increased by fasting and decreased by 

feeding, suggesting that the glucokinase in this nucleus may have a role in regulating energy 

homeostasis. This is in keeping with previous work demonstrating that glucokinase mRNA is 

increased with fasting (Kang et al., 2008).  Insulin-induced hypoglycaemia, associated with 

increased drive to its feeding, also results in increased glucokinase mRNA expression and 

activity in the VMH (Dunn-Meynell et al., 2002b, Kang et al., 2008, Tkacs et al., 2000) . This 

result supports that ARC glucokinase plays a physiological role in the regulation of or 

response to food intake. To investigate this further and determine the physiological role of 

ARC glucokinase on energy homeostasis, glucokinase activity was altered in the ARC. 

3.4.2 ARC glucokinase exerts orexigenic role 

To investigate the effect of glucokinase on food intake, glucokinase activity was increased 

pharmacologically using a selective glucokinase activator (Kamata et al., 2004, Kang et al., 

2006). The glucokinase activator, CpdA, was stereotactically injected into the ARC to achieve 

this. Stereotactic delivery of CpdA has been used in previous studies to investigate the role 

of VMH glucokinase on counterregulatory responses to hypoglycaemia (Levin et al., 2008b). 

The dose used was shown to increase glucokinase activity. A similar dose and approach was 

used in this study. Acute arcuate glucokinase activation significantly increased food intake 

during the first hour after injection. Although there is no data on the pharmacokinetics of 

CpdA injected stereotactically in the brain, pharmacokinetic studies in rats revealed a half-

life of 1.3 hours for an analog of CpdA (Iino et al., 2009). It is possible that long duration 

effects of stereotactically injected CpdA are limited due to this, as well as habituation of 

neuronal responses. Food intake was not significant at later time points; however the 

difference in food intake between the two groups at one hour was preserved up to 24 hours 

post injection, suggesting that there is no compensatory decrease in food intake at 

subsequent time points in the CpdA treated animals.  
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Although these results are consistent with increased glucokinase activity during fasting, they 

are not entirely consistent with previous short-term studies on glucose and glucokinase 

alterations in the brain.  Glucose infusion into the VMH, which includes the ARC, reduces 

food intake acutely (Kurata et al, 1986).  ICV infusion of 2DG , an anti-metabolite of glucose, 

into the 3rd cerebral ventricle results increases food intake (Tsujii and Bray, 1990). Glucose 

and 2-DG are likely to have non-specific effects on non-glucose sensing neurons due to 

osmotic effects and effects on energy production. They are also likely to change glucose to 

non-physiological levels which may severely affect activation and inhibition of a wide range 

of neurons. Glut 2 null mice with pancreatic re-expression of glut 2 demonstrate reduced 

food intake (Bady et al., 2006). However, Glut 2 is expressed widely in the brain, liver, 

kidney and intestine. Therefore, replacing glut 2 only in the pancreas is likely to lead to non-

specific effects in other organs which may produce the phenotype described and make 

these results difficult to interpret. However, if the above studies are correct, it could 

therefore be hypothesized that increasing glucokinase expression in the ARC should 

increase glucose-sensing and this would result in a reduction of food intake. 

VMH knockdown of glucokinase activity using alloxan and short-hairpin RNA, delivered via 

an adenoviral vector, did not change appetite regulation at twenty-four hours and fourteen 

days, respectively (Dunn-Meynell et al., 2009). As discussed earlier, this study also has 

severe limitations. Alloxan is a betacytotoxic glucose analogue that alters antioxidant 

defences in the brain and can lead to changes in neural gene expression and behaviour 

when injected into the brain in very small doses (Salkovic-Petrisic and Lackovic, 2003). 

Furthermore, adenoviral gene transfer generates immunogenic responses leading to 

inflammation and limit gene expression, as discussed previously in Chapter 1 (Kaplan et al., 

1997). Another study demonstrated that injection of high-dose glucosamine, a non-specific 

glucokinase inhibitor, into the third cerebral ventricle (icv) of rats stimulates food intake 

(Zhou et al., 2011). This study also has considerable limitations. Glucosamine inhibits 

hexokinase and therefore would have a widespread effect on glycolysis in neurons (Bertoni, 

1981). ICV injection can spread throughout the brain; hence ICV injection of agents causing 

widespread disturbances in neuronal function may have led to non-specific CNS effects on 

food intake.  
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In order to test this further and confirm the above observations, we produced a rat model of 

chronically increased ARC glucokinase activity using rAAV-2 and studied the effects on food 

intake and body weight in this model. This vector is non-immunogenic and allows chronic, 

sustained gene expression in neural populations (Gardiner et al., 2005, Ponnazhagan et al., 

1997, Daly, 2004a). 

3.4.3 Production of rAAV encoding glucokinase 

In order to produce rAAV particles capable of altering glucokinase activity, the efficacy of 

the GKS-pTR-CGW (encoding pancreatic glucokinase mRNA) plasmid to alter glucokinase 

activity was tested in vitro. To do this, glucokinase activity was determined 

spectrophotometrically using an NADP+-coupled assay with glucose-6-phosphate 

dehydrogenase (Goward et al., 1986). This glucokinase assay uses 5-thio-D- glucose, a 

structural analogue of glucose, that inhibits other hexokinases, especially hexokinase I, but 

does not affect glucokinase 3-O-methyl-N-acetylglucosamine was incorporated in all assays 

to inhibit N-acetylglucosamine kinase which phosphorylates glucose at high glucose 

concentrations (Fenner et al., 2011, Miwa et al., 1994).  

HEK293T cells, a commonly used cell line for transfecting plasmids and producing rAAV, 

were used to investigate the efficacy of GKS-pTR-CGW. The cells were transiently 

transfected with the plasmid and pTR-CGW control and lysed after 48 hours after which 

glucokinase activity was assessed. The results demonstrated a threefold increase in 

glucokinase activity as compared to controls confirming the efficacy of GKS-pTR-CGW 

plasmid in vitro. 

After the plasmid efficacy in altering in vitro glucokinase activity was confirmed, AAV viral 

particles were produced using the plasmid. The titre of the plasmid was confirmed and 

found to be within acceptable levels for in vivo use and compared well with levels used in 

previous studies utilising AAV injected stereotactically into hypothalamic nuclei (Gardiner et 

al., 2005).  

3.4.4 Stereotactic injection of rAAV-GKS into the ARC increases glucokinase activity 

specifically in the ARC 
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In situ hybridisation confirmed increased glucokinase mRNA expression specifically in the 

ARC of iARC-GKS rats, which are injected with rAAV-GKS, as compared to iARC-GFP rats. The 

main purpose of stereotactically injecting rAAV-GKS in rats is to selectively increase ARC 

glucokinase activity. Although the efficacy of the construct to increase glucokinase activity 

has been tested in vitro and increased glucokinase mRNA expression has been confirmed in 

the ARC using in situ hybridisation, ex vivo confirmation of increased glucokinase activity in 

the ARC is required. 

In order to achieve this, micro-punches of hypothalamic nuclei were taken from iARC-GKS 

and iARC-GFP rats. Glucokinase activity was assessed using the glucokinase activity assay. 

The results confirm significant increase in glucokinase activity specifically in the ARC 

nucleus, with no increase in neighbouring VMN and PVN nuclei. The increase in ARC 

glucokinase activity is of similar magnitude to that produced by a twenty-four hour fast. This 

result confirmed the validity of the rat model of increased ARC glucokinase activity. 

3.4.5 Effect of glucokinase activity on energy homoeostasis on a normal chow diet 

In the feeding study with standard chow diet, injection of rAAV-GKS into the ARC resulted in 

a significant increase in cumulative food intake accompanied by significantly increased 

bodyweight.  The divergence of food intake between the two groups began early 

(approximately 9 days post injection of AAV) and continued until the end of the study (33 

days post injection). The increase in bodyweight gain in the iARC-GKS group also began early 

but plateaued by day 22, after which, the iARC-GKS group remained 6 % heavier than the 

controls. Percentage bodyweight fat and fed leptin was increased in the iARC-GKS group in 

keeping with the difference in bodyweight and food intake. Disassociation between stored 

fat and leptin release during fasting may account for the non-significantly elevated fasting 

leptin levels despite significant differences in body fat between the two groups (Benoit et 

al., 2004). 

The results of the 24hr fasted food intake study reveal an altered feeding pattern in the 

iARC-GKS group.  The iARC-GKS group ate significantly more chow in the 8-24hr period than 

the controls. This corresponds to the latter half of the dark phase and light phase, when 

food intake is usually reduced in rats. Increasing ARC glucokinase activity may augment food 

intake during times when food intake is usually low, for example after a recent meal or 
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during the light phase. This effect is not noted when food intake is usually high, for example 

in the early part of the dark phase and after a prolonged fast. It is possible that the 

cumulative effect of this slight increase in food intake in the iARC-GKS group, at times when 

food intake is usually reduced in controls, may account for the significantly increased 

cumulative food intake in the initial feeding study.  This may also explain the increased 

bodyweight and percentage body fat in iARC-GKS animals, as compared to controls.  

Although formal investigations of energy expenditure have not been undertaken, the data 

suggests that bodyweight differences are due to altered food intake in iARC-GKS animals, 

rather than energy expenditure. In keeping with this BAT weight and BAT UCP-1 mRNA 

expression is similar in both groups. However, further studies involving pair-feeding of iARC-

GKS animals with controls and CLAMS (Comprehensive Laboratary Animal Monitoring 

System) are needed to formally investigate the contribution of energy expenditure. 

Glucose and insulin in both fasted and fed states were similar in both groups suggesting that 

glucose homoeostasis may not be significantly altered in iARC-GKS rats as compared to 

controls despite significantly increased weight gain. Active GLP-1 levels are also similar in 

both groups and therefore alterations in GLP-1 are unlikely to be causing changes in satiety 

and glucose handling in iARC-GKS. Similar total ghrelin levels in the fasted state and reduced 

acyl-ghrelin levels in the fed state in iARC-GKS rats suggest that ghrelin is unlikely to be 

mediating the increased food intake noted in our studies and is in keeping with iARC-GKS 

rats having a more obese phenotype, since ghrelin levels are reduced in obesity (Rosicka et 

al., 2003). Further work with glucose tolerance tests and insulin tolerance tests are needed 

to investigate glucose homoeostasis. 

Taken together, this chronic feeding study on a standard chow diet suggests that increased 

ARC glucokinase activity alters feeding behaviour resulting in increased food intake. This 

increased energy intake results in increased bodyweight in the iARC-GKS rats. Although the 

role of energy expenditure has not been comprehensively evaluated, it is likely that the 

increase in food intake in these animals is causing an increase in weight gain rather than 

alterations in energy expenditure. 

 



131 
 

3.4.6 Effect of increasing ARC glucokinase activity on energy homoeostasis on a high 

energy diet 

We studied the effect of increasing ARC glucokinase activity on a high-sugar and high fat 

diet. In this study iARC-GKS rats also consumed more high energy diet and gained more 

weight as compared to controls. This further confirms our previous findings and also 

demonstrates that the obesogenic effects of increased ARC glucokinase activity extends to a 

calorie dense diet used in rodents to replicate the effects of modern obesogenic diets 

implicated in the development of human obesity (Levin et al., 1983, Lauterio et al., 1994). 

3.4.7 Conclusion 

The findings from glucokinase activity assays fed and fasted animals, pharmacological 

studies using a glucokinase activator injected into the ARC and a validated rat model of 

increased ARC glucokinase activity suggest that ARC glucokinase exerts an orexigenic effect 

on energy homoeostasis. These findings are in contrast to previous suggestions but 

consistent with the observation that hypothalamic glucokinase mRNA expression is 

increased following insulin-induced hypoglycaemia and ARC glucokinase mRNA expression is 

increased in DIO-prone and DIO rats (Dunn-Meynell et al., 2002b). The mechanism by which 

ARC glucokinase promotes the intake of food requires further investigation.  
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4 Effect of increased arcuate glucokinase activity on 

selection of macronutrients 
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4.1 Introduction 

Over the last few decades significant progress has been made in our understanding of the 

neural mechanisms controlling food intake. Neuronal populations in the hypothalamus, 

brainstem, and reward centres have been shown to play a prominent role in this. Despite 

considerable advances in our understanding, less is known about the neurobiology 

controlling food preference and selectivity of nutrients. Unbalanced and unhealthy diets, 

with increased consumption of sugars and fats, are one of the major factors promoting the 

development of obesity (Berthoud et al., 2012, Wurtman, 1985). Our current understanding 

of food selectivity suggests that neuronal nutrient-sensing may allow sensing of a particular 

nutrient. In response to changes in levels of the nutrient, altered sensing may lead to 

altered responses within hypothalamic or brainstem feeding circuits and altered 

consumption of that nutrient either via direct homeostatic effects or interaction with 

reward centres (Berthoud et al., 2012, Berthoud and Morrison, 2008, Levin et al., 2011, 

Kelley and Berridge, 2002, Berridge, 1996). This may change the drive to consume particular 

foods. In support of this, data from vertebrate and invertebrate studies suggests that 

appetite consumption regulates intake around a fixed macronutrient ratio (Simpson and 

Raubenheimer, 1997, Emmans, 1991, Raubenheimer and Simpson, 1997, Sorensen et al., 

2008, Abraham et al., 1975, United States. Department of Health et al., 1972). This has led 

to the development of a ‘Geometric framework’ governing food intake, where the ratios of 

macronutrients are kept constant (Cheng et al., 2008, Simpson and Raubenheimer, 1997, 

Simpson and Raubenheimer, 2005). Following this theory, the decrease in one 

macronutrient prioritises intake of the deficient macronutrient over other macronutrients 

independent of caloric intake. In keeping with this, alterations in the drive to consume 

selective nutrients occurs in response to changes in physiological states, such as fasting 

associated glucoprivation which leads to increased consumption of glucose and calorie rich 

foods (Thompson and Campbell, 1977, Goldstone et al., 2009). Therefore, altered 

preference to consume foods may arise from taste, temperature, texture and appearance 

independent mechanisms that are based on promoting the intake of a nutrient that is 

required by the body for metabolic processes. In relation to the development of obesity, 

nutrient sensing and reward mechanisms have been shown to be altered in obese states, 

where increased calorie-dense food consumption is noted (Parton et al., 2007a, Page et al., 
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2011a). It has been postulated that altered nutrient-sensing may alter the reward value of 

foods in obesity (Domingos et al., 2011). 

The results described in chapter 3 demonstrate that increasing glucokinase activity in the 

arcuate nucleus results in increased consumption of food and adiposity. In this chapter, I 

describe the neuronal mechanisms by which food selectivity and preference may operate 

and test the hypothesis that arcuate glucokinase may alter macronutrient selection. 

4.1.1 Neuronal mechanisms leading to nutrient selectivity and preference 

Studying altered selectivity and preference for complex foods has been challenging due to 

alterations in food texture and taste that are caused by providing different foods. The 

presence of other components in complex foods is also likely to influence overall intake and 

selectivity. Furthermore, metabolic responses and post-ingestive influences following intake 

of foods, e.g. insulin and gut hormone release, complicate the scenario further. The study of 

energy homoeostasis and sodium appetite has given useful clues with regards to the likely 

mechanism for nutrient selection. Mice demonstrate molecular changes in hypothalamic 

orexin neurons as a consequence of sodium depletion (Liedtke et al., 2011). Prevention of 

these changes selectively reduces sodium appetite (Liedtke et al., 2011). In another study, 

the mesolimbic dopamine, implicated in reward, has been shown to mediate sodium 

appetite (Lucas et al., 1999). Hypothalamic orexin neurons project to reward centres, raising 

the possibility of a two-step neural processing for sodium appetite involving detection at the 

level of hypothalamic orexin neurons in response to sodium depletion which then acts on 

reward pathways to influence motivation to consume sodium from food (Liedtke et al., 

2011).   

It is likely that this two-step neural processing model occurs for homeostatic-like regulation 

of nutrients (Berthoud et al., 2012). The first step involved in regulating nutrient selectivity 

and preference involves nutrient sensing by neural circuits involved in mediating appetite, 

such as the hypothalamus and brainstem. The second step involves increasing hunger and 

motivation to consume the required nutrient. This signal may be generated in the 

hypothalamus as well but is likely to involve cortical limbic structures implicated in reward 

processing leading to increased motivation to consume the desired nutrient. Evidence 

supporting this model is outlined below. 



135 
 

4.1.1.1 Reward mechanisms influencing food selectivity 

The modulation of reward value of sugars by the meso-limbic dopaminergic system has 

been demonstrated in a number of studies (Lenoir et al., 2007, Hajnal et al., 2004, Sclafani 

et al., 2011, Ren et al., 2010, Domingos et al., 2011). Two recent studies demonstrate that 

sugar preference is linked with dopamine release in reward centres. In the first study taste 

receptor knockout mice (Trpm -/-), which lacked the cellular mechanisms for sweet taste 

transduction, display preference for glucose as compared to iso-caloric L-serine (Ren et al., 

2010). Dopaminergic responses in the nucleus accumbens and dorsal striatum increased 

following intragastric glucose infusion. In another study, optogenetic stimulation of VTA 

dopaminergic neurons increased the reward value of nutrients (Domingos et al., 2011). Food 

restriction and central leptin treatment modulated this reward value, suggesting that leptin 

may change the reward value of a nutrient via a central mechanism and in keeping with the 

observation that leptin deficient humans have altered drive and motivation to consume 

calorie dense foods (Farooqi et al., 2007). These recent studies build on work from previous 

studies looking at dopaminergic neuronal activity and pharmacological manipulation of the 

dopaminergic system (Lenoir et al., 2007, Hajnal et al., 2004, Sclafani et al., 2011). The 

neurotransmitter serotonin, also implicated in reward pathways, has been shown to reduce 

the consumption of a high carbohydrate diet (Wurtman and Wurtman, 1979). 

Amphetamines, which modulate dopamine, serotonin and norepinephrine 

neurotransmitters in the brain, lead to reduced sucrose and fat consumption (Kanarek et al., 

1996). Amphetamine derivatives have been used in the treatment of obesity, however due 

to their side effects, their clinical use has been very limited (Hussain and Bloom, 2011a).  

It is thought the pathways similar to drug addiction may also operate in mediating the 

reward mechanisms of palatable foods (Lutter and Nestler, 2009). The neurotransmitters 

mentioned above provide some evidence for this. In keeping with this link, the anti-obesity 

drug rimonanbant is also used in the management of smoking and cocaine seeking. The 

side-effects in relation to psychiatric problems and suicide, presumably via altering reward 

pathways, let to withdrawal of this drug from European and US drug markets (Hussain and 

Bloom, 2012).  
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Learned responses to previous experiences can promote consumption of foods, with high 

reward value, or lead to avoidance of foods, which lead to unpleasant responses. The 

amygdala is thought to control mnemonic representations of food in relation to reward and 

preference. Pharmacological treatment of opiate receptor blockers naloxone into the 

amygdala leads to reduced intake of preferred foods (Glass et al., 2000). 

4.1.1.2 Homeostatic mechanisms influencing food selectivity 

Less is known about the homeostatic mechanisms in the hypothalamus and brainstem that 

influence food selectivity, as most of the work to date relates to energy balance. It is likely 

that homeostatic mechanisms operate indirectly via reward pathways to influence the food 

selectivity (Berridge, 1996). Manipulation of hypothalamic neurotransmitters has provided 

some insight into the role of the hypothalamus in food preference. 

For example, the role of hypothalamic NPY in food preference has been studied using ICV 

injections of NPY. These studies reveal that NPY treatment leads to a similar pattern of food 

preference seen during food deprivation with increased high-sucrose carbohydrate diet 

preference over fat and increased high-fat diet preference over corn starch diet (Levine et 

al., 2003, Cleary et al., 1996, Welch et al., 1994). 

Opioid receptor blockade in the PVN is more effective in reducing fat consumption as 

compared to carbohydrate consumption (Marks-Kaufman and Kanarek, 1981, Marks-

Kaufman and Kanarek, 1990). Again, variations in this occurred with changes in the 

carbohydrate source with opioid receptor blockade with naloxone being more effective in 

decreasing high sucrose diet intake as compared to cornstarch or polycose diet (Weldon et 

al., 1996). 

These results suggest that the carbohydrate source of food seems to have a more profound 

impact than the neurotransmitter used. However, these studies have a number of 

limitations due to use of injection techniques that are not limited to defined anatomical 

area, pharmacological agents that are likely to have non-specific effects, variations in 

feeding protocols and compositions of diet. This has made it difficult to relate studies to 

each other and to normal physiology. With precise molecular techniques that can be 

delivered or expressed specifically in defined neuronal and neuroanatomical populations, it 
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is likely that we will be able to understand more about the direct role of these hypothalamic 

neurotransmitters in food selectivity. Furthermore, as discussed later, these refined 

strategies may also allow us to uncover the role of hypothalamic nutrient sensing in food 

selection. 

4.1.1.3 Interplay between homeostatic and reward pathways linking nutrient-sensing 

with desire and motivation to consume foods 

The hypothalamus, as well as the brainstem, is able to respond to nutrients and hormones, 

secreted in response to ingestion of certain macronutrients. It is likely that nutrient and 

hormone sensing information are processed by the hypothalamus and brainstem. This 

information influences reward centres. This may alter the reward value of nutrients via 

hedonic pathways. Current evidence, mainly from histochemical and pharmacological 

studies, links LH orexin and MCH neurons with reward seeking, hedonic pleasure and 

cognition centres of the brain (Berthoud, 2011, Berthoud, 2006, DeFalco et al., 2001, 

Borgland et al., 2006, Boutrel et al., 2005, Harris et al., 2005).  Several studies provide 

evidence that gut hormones and leptin, considered as peripheral homeostatic signals, 

influence reward pathways. It is not clear if these hormones are acting directly on reward 

centres or are working indirectly via acting on homeostatic pathways such, as the arcuate, 

where majority of their action has been previously demonstrated (Grill et al., 2007, De Silva 

et al., 2011). Strategies to investigate this further, especially in relation to other 

hypothalamic nuclei, are currently underway. Evidence so far fits with a two-step neural 

pathway with sensing and processing of metabolites via homeostatic centres that influence 

hedonic pathways and motivation to consume a particular nutrient.  

4.1.1.4 Hypothalamic Glucose-sensing and food selectivity 

The presence of metabolite sensing pathways in the hypothalamus raises the possibility that 

the brain can detect the presence or absence of specific nutrients and respond by altering 

food preference accordingly via a two-step neural pathway described above. This has not 

yet been satisfactorily demonstrated. In relation to glucose-sensing, it is widely accepted 

that animals and humans can adjust glucose intake according to their physiological state 

(Thompson and Campbell, 1977). The presence of glucose-sensing pathways in the 

hypothalamus provides a likely mechanism to enable food selectivity and glucose 
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preference in certain states (Berthoud et al., 2012). Unfortunately, although counter-

regulatory responses to hypoglycaemia and total food intake have been studied in relation 

to altered hypothalamic glucose-sensing, food selectivity remains unexplored. Our model of 

increased arcuate glucokinase activity provides an opportunity to study this.   
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4.2 Hypothesis and Aims 

4.2.1 Hypothesis 

Selectively altering glucokinase activity in the ARC of the hypothalamus, using stereotactic 

injections of rAAV encoding glucokinase mRNA and glucokinase activators, alters 

consumption of glucose. 

4.2.2 Aims and Objectives 

To investigate this, I will study the effect of increased ARC glucokinase activity on glucose 

intake and glucose preference over other foods. 
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4.3 Results 

4.3.1 Effect of increasing ARC glucokinase activity on glucose intake 

4.3.1.1 Effect of pharmacologically increasing ARC glucokinase activity on glucose 

intake 

Acute arcuate glucokinase activation increased glucose intake during the first hour after 

injection, as compared to vehicle injected controls (control, 4.56±0.99ml; CpdA, 

8.36±1.25ml; n=8, p<0.05) (figure 4.1a). This effect was significant for up to eight hours 

(control, 5.83±1.16ml; CpdA, 11.23±1.64ml; n=8, p<0.05) (figure 4.1b). Although there was 

an increase in glucose intake at later time points, including 24 hours, this was not significant 

(control, 62.8±9.34ml; CpdA, 73.8±8.66ml; n=8) (figure 4.1c). 
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c) 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Effect of increasing ARC glucokinase activity on glucose intake. 2% w/v glucose 

solution intake (a) one hour and (b) eight hours after ARC glucokinase activation using 

stereotactic injection of  0.5 nmol CpdA as compared to the vehicle injected controls during a 

crossover study. (c) Twenty-four hour 2% w/v glucose intake after ARC glucokinase 

activation using stereotactic injection of  0.5 nmol CpdA as compared to the vehicle injected 

controls during a crossover study. Data are expressed as mean +/- SEM for all groups, n=7. 

Statistical significance was analysed by student's t test: *=p<0.05. 
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4.3.1.2 Effect of chronic ARC glucokinase activation on glucose and fructose intake 

Effect on intake of 2% glucose and 2% fructose solutions 

Cumulative glucose intake was significantly different between the groups at two, four, eight 

and twenty-four hours (at twenty-four hours: iARC-GFP 56.2+/-8.8ml vs. iARC-GKS 81.2+/-

11.2ml, n=8, p=<0.05) (figure 4.2). Cumulative fructose intake was similar between the 2 

groups at all time points (at twenty-four hours: iARC-GFP 61.3+/-7.2ml vs. iARC-GKS 61.5+/-

12.2 ml, n=8) (figure 4.2) 

Effect on intake of 10% glucose and 10% fructose solutions 

Cumulative glucose intake was significantly different between the groups at two, four, eight 

and twenty-four hours (at twenty-four hours: iARC-GFP 135+/-4.6ml vs. iARC-GKS 154.1+/-

5.3ml, n=8, p=<0.05) (figure 4.3). Cumulative fructose intake was similar between the 2 

groups at all time points (at twenty-four hours: iARC-GFP 86.5+/-7.4ml vs. iARC-GKS 87.9+/- 

6.7 ml, n=8) (figure 4.3) 
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Figure 4.2 Effect of increasing ARC glucokinase activity on twenty-four hour intake of 2% 

w/v sugar solutions: Cumulative twenty-four hour 2% w/v glucose intake (solid line) and 2% 

w/v fructose intake (dotted line) following bilateral injection of 1ul rAAV-eGFP (green line, 

n=8) or 1ul rAAV-GKS (blue line, n=8) in male Wistar rats fed on normal chow.  Data are 

expressed as mean +/- SEM for all groups, n=8. Statistical significance was analysed by 

student's t test: *=p<0.05. 
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Figure 4.3 Effect of increasing ARC glucokinase activity on twenty-four hour intake of 10% 

w/v sugar solutions: Cumulative twenty-four hour 10% w/v glucose intake (solid line) and 

10% w/v fructose intake (dotted line) following bilateral injection of 1ul rAAV-eGFP (green 

line, n=8) or 1ul rAAV-GKS (blue line, n=8) in male Wistar rats fed on normal chow.  Data are 

expressed as mean +/- SEM for all groups, n=8. Statistical significance was analysed by 

student's t test: *=p<0.05. 
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4.3.2 Effect of increasing ARC glucokinase activity on preference of glucose over other 

foods 

Acute arcuate glucokinase activation increased glucose intake during the first hour after 

injection, as compared to vehicle injected controls when 2% w/v glucose was given with 

normal chow (control, 3.06±1.13ml; CpdA, 4.11±1.55ml; n=7, p<0.05) (figure 4.4a). There 

was no difference in food intake at this time point (control, 1.69±0.43g; CpdA, 1.43±0.70g; 

n=7, p<0.05) (figure 4.4b). Although there was an increase in glucose intake at later time 

points, including twenty-four hours, this was not significant (at twenty-four hours: control, 

52.1±9.82ml; CpdA, 57.11±9.57ml; n=7) (figure 4.4c). There was no significant difference in 

food intake at any of the time points during the twenty-four hours study (control, 

27.23±1.00g; CpdA, 26.3±2.15g; n=7, p<0.05) (figure 4.4d). 
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Figure 4.4 Effect of increasing ARC glucokinase activity on glucose and food intake with ad 

libitum access to 2% w/v glucose solution and normal chow. (a) 2% w/v glucose solution 

intake and (b) normal chow intake one hour after ARC glucokinase activation using 

stereotactic injection of 0.5 nmol CpdA as compared to the vehicle injected controls during a 

crossover study. (c) Twenty-four hour 2% w/v glucose intake and (d) after ARC glucokinase 

activation using stereotactic injection of 0.5 nmol CpdA as compared to the vehicle injected 

controls during a crossover study. Data are expressed as mean +/- SEM for all groups, n=7. 

Statistical significance was analysed by student's t test: *=p<0.05. 
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4.3.2.1 Effect of increasing ARC glucokinase activity on 24 hour intake of food, 

glucose and total caloric intake with ad libitum access to 2% w/v glucose and 

normal chow 

24 hour food intake was similar in both groups at all time points with ad libitum access to a 

2% glucose solution with normal chow (figure 4.5a), however cumulative 2% glucose intake 

was significantly increased in the iARC-GKS group, as compared to the iARC-GFP group, 

between 2 to 24 hours (at 24 hours: iARC-GFP 86.3 +/- 12.1 ml vs. iARC-GKS 145.4 +/- 11.6, 

n=7, P=<0.05) (figure 4.5b). Total caloric intake, from normal chow and glucose, was similar 

in both groups at all time points (figure 4.5c).  
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Figure 4.5 Effect of chronically increasing ARC glucokinase activity on twenty-four hour 

glucose, food and caloric intake with ad libitum access to 2% w/v glucose solution and 

normal chow. Cumulative twenty-four hour a) food intake, b) 2% w/v glucose intake and c) 

total caloric intake following bilateral injection of 1ul rAAV-eGFP (green line, n=7) or 1ul 

rAAV-GKS (blue line, n=7) in male Wistar rats fed on normal chow.  Data are expressed as 

mean +/- SEM for all groups, n=7. Statistical significance was analysed by student's t test: 

*=p<0.05, **=p<0.01, ***=p<0.001  
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4.3.2.2 Effect of increasing ARC glucokinase activity on 24 hour intake of food, 

glucose and total caloric intake with ad libitum access to 10% w/v glucose and 

normal chow 

24 hour food intake was similar in both groups at all time points with ad libitum access to a 

10% glucose solution and normal chow (figure 4.6a), however cumulative 10% glucose 

intake was significantly increased in the iARC-GKS group, as compared to the iARC-GFP 

group, at 8 and 24 hours (at 24 hours: iARC-GFP 88.0 +/- 6.4 ml vs. iARC-GKS 107.6 +/- 4.4, 

n=8, p=<0.05) (figure 4.6b). Total caloric intake, from normal chow and glucose, was similar 

in both groups at all time points (figure 4.6c).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



152 
 

0 4 8 12 16 20 24
0

50

100

150

iARC-GFP

iARC-GKS

Time (hours)

C
a
lo

ri
e
 i
n

ta
k
e
 (

k
c
a
l)

0 4 8 12 16 20 24
0

5

10

15

20

25

iARC-GFP

iARC-GKS

Time (hours)

F
o

o
d

 i
n

ta
k
e
 (

g
)

0 4 8 12 16 20 24
0

50

100

150

iARC-GFP

iARC-GKS

*

*

Time (hours)

1
0
%

 g
lu

c
o

s
e
 i
n

ta
k
e
 (

m
l)

 

 

  

 

 

  

 

 

 

 

 

 

 

 

Figure 4.6 Effect of chronically increasing ARC glucokinase activity on twenty-four hour 

glucose, food and caloric intake with ad libitum access to 10% w/v glucose solution and 

normal chow. Cumulative twenty-four hour a) food intake, b) 10% w/v glucose intake and c) 

total caloric intake following bilateral injection of 1ul rAAV-eGFP (green line, n=8) or 1ul 

rAAV-GKS (blue line, n=8) in male Wistar rats fed on normal chow.  Data are expressed as 

mean +/- SEM for all groups, n=8. Statistical significance was analysed by student's t test: 

*=p<0.05, **=p<0.01, ***=p<0.001   

a b) 
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4.3.2.3 Effect of increasing ARC glucokinase activity on 24 hour intake of food, 

glucose and total caloric intake with ad libitum access to 20% glucose and 

normal chow 

24 hour food intake was similar in both groups at all time points with ad libitum access to a 

20% glucose solution and normal chow (figure 4.7a), however cumulative 20% glucose 

intake was significantly increased in the iARC-GKS group, as compared to the iARC-GFP 

group, at 18 and 24 hours (at 24 hours: iARC-GFP 75.3 +/- 3.8 ml vs. iARC-GKS 88.5 +/- 3.6, 

n=8, p=<0.05) (figure 4.7b). Total caloric intake, from normal chow and glucose, was similar 

in both groups at all time points (figure 4.7c).  
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Figure 4.7 Effect of chronically increasing ARC glucokinase activity on twenty-four hour 

glucose, food and caloric intake with ad libitum access to 20% w/v glucose solution and 

normal chow. Cumulative twenty-four hour a) food intake, b) 20% w/v glucose intake and c) 

total caloric intake following bilateral injection of 1ul rAAV-eGFP (green line, n=8) or 1ul 

rAAV-GKS (blue line, n=8) in male Wistar rats fed on normal chow.  Data are expressed as 

mean +/- SEM for all groups, n=8. Statistical significance was analysed by student's t test: 

*=p<0.05, **=p<0.01, ***=p<0.001 
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4.3.2.4 Effect of increasing ARC glucokinase activity on twenty-four hour normal 

chow food intake in iARC-GKS and iARC-GFP cohort previously given sugar 

solutions 

Cumulative food intake was different between the groups at 8, 12, 16 and 24 hours, when 

the iARC-GKS group ate significantly more compared to the iARC-GFP control group (iARC-

GFP 25.9 +/- 1.01g vs. iARC-GKS 29.5 +/- 1.27g, n=8) (figure 4.8).  

 

 

 

 

 

 

 

 

  

 

 

 

Figure 4.8 Effect of increasing ARC glucokinase activity on twenty-four hour intake of food. 

Cumulative twenty-four hour food intake following bilateral injection of 1ul rAAV-eGFP 

(green line, n=8) or 1ul rAAV-GKS (blue line, n=8) in male Wistar rats fed on normal chow.  

Data are expressed as mean +/- SEM for all groups, n=8. Statistical significance was analysed 

by student's t test: *=p<0.05.  
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4.3.2.5 Comparison of twenty-four hour caloric intake from chow, glucose and total 

caloric intake in studies with iARC-GKS and iARC-GFP rats 

Twenty-four hour caloric intake from chow during studies with ad libitum access to normal 

chow supplemented with no glucose, 2% glucose, 10% glucose or 20% glucose in iARC-GKS 

and iARC-GFP rats is shown in figure 4.9a. Percentage calories from glucose over twenty-

four hours in studies with ad libitum access to normal chow and 2% glucose, 10% glucose or 

20% glucose in iARC-GKS and iARC-GFP rats is shown in figure 4.9b. Twenty-four hour total 

caloric intake during these studies is shown in the figure 4.9c.   
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Figure 4.9 Comparison of the effects of increasing ARC glucokinase activity on twenty-four 

hour caloric intake during studies with ad libitum access to chow and glucose solutions. 

Twenty-four hour (a) caloric intake from chow, (b) percentage calories from glucose and (c) 

total caloric intake during studies during studies with ad libitum access to normal chow and 

glucose of varying concentrations following bilateral injection of 1ul rAAV-eGFP (green line, 

n=7-8) or 1ul rAAV-GKS (blue line, n=7-8) in male Wistar rats.  Data are expressed as mean 

+/- SEM for all groups, n=7-8. Statistical significance was analysed by student's t test on 

absolute caloric intake values: *=p<0.05.  
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4.3.3 Effect of increasing ARC glucokinase activity on long-term food, glucose and total 

caloric intake with ad libitum access to 10% glucose and standard chow 

4.3.3.1 Effect on food intake   

At day 31 after injection, when the experiment was terminated, there was no significant 

difference between the food intake of the iARC-GFP group (699.4 +/- 19.4, n=8) and the 

iARC-GKS group (682.1 +/- 22.8g, n=8) (figure 4.10).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 Effect of increasing ARC glucokinase activity on food intake with long-term ad 

libitum access to 10% w/v glucose and standard chow. Food intake with ad libitum access 

to 10% glucose following bilateral injection of 1ul rAAV-eGFP (green line, n=8) or 1ul rAAV-

GKS (blue line, n=8) in male Wistar rats fed on normal chow over thirty-one days.  Data are 

expressed as mean +/- SEM for both groups. Statistical significance was analysed by GEE. 
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4.3.4 Effect on glucose intake  

At the termination of the experiment (day 31), the glucose intake was significantly increased 

in the iARC-GKS group, as compared to the iARC-GFP group (iARC-GFP 2812.9 +/- 91.9ml vs. 

iARC-GKS 3337.1 +/- 131.4ml, n=8, P=<0.05) (figure 4.11). 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 4.11 Effect of increasing ARC glucokinase activity on glucose intake with long-term 

ad libitum access to 10% w/v glucose and standard chow. 10% w/v glucose intake with ad 

libitum access to 10% w/v glucose and standard chow following bilateral injection of 1ul 

rAAV-eGFP (green line, n=8) or 1ul rAAV-GKS (blue line, n=8) in male Wistar rats fed on 

normal chow over thirty-one days.  Data are expressed as mean +/- SEM for both groups. 

Statistical significance was analysed by GEE. *=p<0.05 
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4.3.5 Effect of increasing ARC glucokinase activity on caloric intake with ad libitum 

access to 10% glucose and normal chow 

At the termination of the experiment (day 31), there was no significant difference between 

the caloric intake of the iARC-GFP group (3456.9 +/- 78.5kcal, n=8) and the iARC- GKS group 

(3615.32 +/- 100.4kcal, n=8) (figure 4.12).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Effect of increasing ARC glucokinase activity on caloric intake with long-term 

ad libitum access to 10% w/v glucose and standard chow. Caloric intake with ad libitum 

access to 10% w/v glucose and standard chow following bilateral injection of 1ul rAAV-eGFP 

(green line, n=8) or 1ul rAAV-GKS (blue line, n=8) in male Wistar rats fed on normal chow 

over thirty-one days.  Data are expressed as mean +/- SEM for both groups. Statistical 

significance was analysed by GEE.  
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4.3.6 Effect on bodyweight gain    

At the termination of the experiment (day 31), there was no significant difference between 

the bodyweight gain of the iARC-GFP group (61.0 +/- 4.2g, n=8) and the iARC-GKS group 

(71.8 +- 4.5g, n=8) (figure 4.13) (initial body weight: iARC-GFP, 428.63±11.58g; iARC-GKS 

449.25±5.60g).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 Effect of increasing ARC glucokinase activity on bodyweight gain with long-

term ad libitum access to 10% w/v glucose and standard chow. Bodyweight gain with ad 

libitum access to 10% w/v glucose and standard chow following bilateral injection of 1ul 

rAAV-eGFP (green line, n=8) or 1ul rAAV-GKS (blue line, n=8) in male Wistar rats fed on 

normal chow over thirty-one days.  Data are expressed as mean +/- SEM for both groups. 

Statistical significance was analysed by GEE.  
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4.4 Discussion 

4.4.1 ARC glucokinase selectively alters glucose intake but does not alter fructose intake 

Increasing arcuate glucokinase should enhance glucose flux and metabolism and may alter 

appetite via arcuate glucose-sensing neurons. This effect via glucokinase may be more 

pronounced in response to glucose consumption as compared to other non-glucose based 

hexose sugars. Fructose, a sweeter sugar than glucose, is not expected to be directly sensed 

via the glucokinase pathway and is unlikely to affect appetite via glucokinase since it is not 

metabolised by glucokinase and does not cross the blood-brain barrier (Printz et al., 1993, 

Oldendorf, 1971). Consistent with the above, we found that pharmacological increase in 

ARC glucokinase activity increased short-term glucose intake. To investigate the effect of 

glucose intake on increased ARC glucokinase activity further, we studied 24 hour glucose 

intake and 24 hour fructose intake in iARC-GKS animals using both 2% w/v and 10% w/v 

solutions. 2% and 10% w/v glucose intake was significantly increased in the iARC-GKS group 

versus the controls. Fructose intake was similar for both 2% and 10% w/v fructose between 

the two groups. These results supported the hypothesis that increased ARC glucokinase 

activity selectively alters glucose intake.  

4.4.2 ARC glucokinase selectively alters glucose intake over other foods 

We further tested our hypothesis and examined the effect of increasing ARC glucokinase 

activity on promoting the intake of glucose over other foods. Ad libitum access to glucose 

solutions of varying concentrations in addition to standard chow in animals with both 

pharmacologically and genetically increased ARC glucokinase activity resulted in significantly 

increase glucose intake compared to controls. Intake of standard chow and total caloric 

intake was similar in these studies, unlike studies with single mixed diet described in chapter 

3. Twenty-four hour intake of standard chow alone in this cohort of iARC-GKS rats was 

increased as compared to controls, consistent with results from chapter 3. Thus, the 

addition of a glucose solution to standard chow diet resulted in an increased consumption 

of the glucose solution in animals with increased ARC glucokinase activity and normalisation 

of standard chow intake and calorie intake as compared to controls. We hypothesised that 

increased ARC glucokinase activity resulted in a selective increase in glucose appetite over 
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other foods. When this appetite is satisfied it results in normalisation of food intake and 

caloric intake.  

To investigate this further iARC-GKS and iARC-GFP rats were given libitum access to a 10% 

glucose solution and normal chow for a period of 31 days. As was observed in the 24hr 

studies, there was a significant increase in the glucose intake in the GKS group, as compared 

to the controls. Standard chow intake, total calorie intake and bodyweight gain were similar 

between the groups in the study. This is in keeping with our above hypothesis. When 

glucose is provided separately its intake is selectively increased and that of chow and 

calories remained similar. Increased ARC glucokinase activity selectively increases glucose 

appetite. When this appetite is satisfied with a pure glucose diet, intake of chow and total 

calories is similar to controls.  

The likely mechanism for this effect could be an interaction between homeostatic 

hypothalamic and reward centres. As discussed in the introduction, our current 

understanding is that hypothalamic centres 'sense' alterations in metabolites. This 

information is processed and leads to alterations in reward processing and increased 

'incentive salience' to glucose consumption, promoting approach towards and consumption 

of glucose by enhancing reward (Berridge et al., 2009, Berthoud et al., 2012). ARC 

glucokinase may alter glucose-sensing leading to increase glucose consumption by altering 

the 'hedonic set-point' for glucose consumption (Egecioglu et al., 2011). In the absence of 

glucose, this is met by increased mixed diet consumption to achieve similar reward.  

This effect could also be an independent homeostatic system by which glucose intake is 

regulated, such as those noted in invertebrates (Dus et al., 2011). Therefore, ARC 

glucokinase may alter the 'homeostatic set point' for glucose consumption. One potential 

flaw for this mechanism is that most homeostatic mechanisms tend to be negative feedback 

mechanisms. Reward mechanisms tend to have a positive feedback affect and enhance the 

consumption of a substance that is causing reward (Berthoud and Morrison, 2008). 

Therefore, it seems more likely that an interaction with reward pathways is mediating the 

effect of ARC glucokinase on increased glucose consumption via enhanced glucose-sensing, 

rather than a direct homeostatic effect on glucose appetite.  
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Another possibility is that suppression of food intake with glucose is enhanced in animals 

with increased ARC glucokinase activity. Manipulation of glucose levels alters feeding 

behaviour (Kanarek et al., 1996). This may explain the increased reduction in chow intake 

with normalisation of total caloric intake and bodyweight. However this does not explain 

the increased glucose intake and preference over chow and fructose in iARC-GKS animals. 

4.4.3 Conclusion 

In summary the results in this chapter show that glucose intake and glucose preference over 

other foods is specifically increased with increased ARC glucokinase activity. Possible 

mechanisms for this are via interaction with reward pathways, such as those in previous 

studies, or via a separate homeostatic system analogous to that recently described in 

invertebrates (Domingos et al., 2011, Ren et al., 2010, Dus et al., 2011). Nevertheless, this 

work demonstrates that alterations in hypothalamic metabolic pathways alter glucose 

intake. It is possible that increased drive for glucose may have led to increase food intake on 

single diets in Chapter 3. When this appetite for glucose is satisfied, food intake, caloric 

intake and body weight is similar to that of controls. 

 

  



165 
 

5 Investigating the cellular mechanisms by which 

arcuate glucokinase may mediate its effect on 

appetite 

 

  



166 
 

5.1 Introduction 

Results from chapter 3 demonstrate that rats with increased ARC glucokinase activity have 

increased food intake and adiposity on a normal chow and high-energy diet. In chapter 4, 

increased ARC glucokinase activity in rats was shown to selectively increase glucose intake. 

The following chapter attempts to identify the cellular mechanisms involved in mediating 

these effects. Current evidence and techniques to investigate how glucokinase may alter 

neuronal depolarisation and ARC neuropeptide release are discussed.  

5.1.1 Mechanisms by which ARC glucokinase may influence neuronal activity 

5.1.1.1 Energy-sensing enzymes involved in nutrient-sensing and alterations in 

hypothalamic neuronal activity 

As illustrated in figure 1.3 and discussed in chapter 1, energy-sensing enzymes have been 

implicated in nutrient-sensing, and provide an integrated model for the neuronal sensing of 

different metabolites, including glucose. Using this model, changes in the activity of 

enzymes leads to the formation of altered cellular metabolism intermediates. This can alter 

the flux of cellular metabolic reactions due to increased generation of precursor metabolites 

or alter enzyme activity. The net result of these changes in cellular biochemistry is to alter 

neuronal depolarisation. For example, increased generation of ATP via increased glucose 

entry and glycolytic flux (e.g. via glucokinase or hexokinase) results in a reduction of AMPK 

activity (Routh, 2010, Mountjoy and Rutter, 2007). Reduced AMPK activity has a number of 

effects including reduced inhibition of ACC (acetyl-CoA carboxylase) leading to changes in 

neuronal depolarization and energy homeostasis (Carling, 2004). Current thinking is that 

increased glucokinase activity would lead to a reduction of AMPK activity (Mountjoy and 

Rutter, 2007, Routh, 2010). This has not been conclusively demonstrated. If this is correct, a 

reduction in AMPK activity in the ARC should lead to reduced food intake, which is in 

contrast to our results in previous chapters (Andersson et al., 2004). The net effect of 

glucokinase on cellular biochemistry and neuronal activity is likely to be complex given the 

multiple interactions of metabolic pathways with each other (figure 1.3). Investigating 

alterations in expression and activity of energy-sensing enzymes, especially AMPK, which 

has a prominent role in energy sensing, is likely to provide important insights into the 

cellular biochemistry and mechanism of altered appetite in our model. Quantitative PCR can 
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be used to determine alterations in hypothalamic enzyme expression and provide a useful 

method to investigate this. Alterations in hypothalamic enzyme activity require more 

precise and sensitive biochemical enzyme activity assays. Enzyme activity assay for 

hypothalamic AMPK have been used previously to investigate changes in energy 

homoeostasis in collaboration with Professor David Carling (Andersson et al., 2004). This 

assay can provide a suitable method to investigate the hypothalamic enzyme activity of 

AMPK in our model of altered ARC glucokinase activity. 

5.1.1.2 Involvement of hypothalamic ATP-sensitive potassium channel in mediating 

the effect of glucokinase on neuronal activity and energy homeostasis  

Glucose-induced excitation of glucose-sensitive hypothalamic neurons is linked to changes 

in activity of the ATP-sensitive potassium channels (KATP) (Ashford et al., 1990a). Glucokinase 

acts as a glucose sensor in hypothalamic neurons (Dunn-Meynell et al., 2002b, Kang et al., 

2006). Presence of the KATP channel with glucokinase has been demonstrated in ARC 

neurons (Lynch et al., 2000, Van den Top et al., 2007). Therefore, glucokinase activity may  

be coupled with alterations in KATP channels with increased glucokinase activity resulting in 

closure of KATP channels in glucose-sensitive neurons (Mountjoy and Rutter, 2007). It is 

possible that KATP channels may mediate the effect of ARC glucokinase on food intake and 

glucose appetite. In keeping with this, alterations in KATP channels can lead to altered NPY 

expression, but not POMC expression, in response to glucose, suggesting that these 

channels play a prominent role in coupling effects of glucose to alterations in orexigenic NPY 

release (Park et al., 2011). Neurophysiological techniques, such as patch clamping, have 

been extensively used to determine alterations in neuronal activity with KATP channel 

inhibitors and activators (Ashford et al., 1990a, Ashford et al., 1990b, Spanswick et al., 

1997). Given practical limitations and lack of a suitable neuronal tag in our model, 

neurophysiological techniques cannot be used. The use of pharmacological agents to 

activate and inhibit KATP channels in the hypothalamus of rats provides a strategy to 

investigate this (Zhang et al., 2004, Chan et al., 2007). Although this may not provide direct 

neurophysiological evidence, similar phenotypes produced by KATP channel inhibition to that 

of increased ARC glucokinase activity would support their combined involvement on energy 

homeostasis. Feeding study protocols similar to those used in chapter 2 and 3 can be 

adopted in iARC cannulated rats to investigate this. 
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Modulation of ARC KATP channel activity using stereotactically delivered pharmacological 

agents 

The KATP channel consists of an octameric complex of four pore forming inwardly rectifying 

potassium channels (Kir) subunit and four regulatory sulphonylurea receptor (SUR) subunits 

(Dabrowski et al., 2002, Akrouh et al., 2009).  

The Kir subunit acts as the channel pore. In most tissues, including the pancreas and brain, 

the pore consists of the Kir6.2 subunit (Dabrowski et al., 2002). In smooth muscles Kir6.1 is 

mainly expressed. 

Kir subunits associate with different types of SUR. The SUR is an ATP binding cassette 

protein, which uses energy from ATP hydrolysis to mediate functions. It acts as an ion 

channel regulator and regulates the pore forming Kir subunits. The mechanism of this 

regulation is not fully understood. It endows channel with sensitivity to drugs, including 

sulphonylureas and magnesium nucleotides. Two main sub-types of SUR have been 

characterised (Hambrock et al., 2002). SUR1 is expressed in pancreatic beta cells and 

neurones. SUR2 is expressed in muscle, with SUR2A in skeletal muscle and SUR2B in smooth 

muscle.   

The SUR subunits confer sensitivity to sulphonylureas, which inhibits and close KATP 

channels. Most sulphonylureas, used as hypoglycaemic's in the treatment of diabetes, show 

a high affinity to SUR1 and a low affinity to SUR2 (Nagashima et al., 2004). There are two 

binding sites for sulphonylurea drugs on SUR1, one a tolbutamide-binding site and the other 

a benzamide-binding site (Nagashima et al., 2004). Glibenclamide binds to both sites and 

this may contribute to its increased half-life (Nagashima et al., 2004). At low doses 

glibenclamide is highly-specific to Kir6.2/SUR1 KATP channels, the KATP channel expressed in 

neuronal tissue. Stereotactic delivery of glibenclamide has been previously used to deliver 

this agent to specific brain regions using low doses (Zhang et al., 2004, Chan et al., 2007). 

Therefore, given its previous stereotactic use with dosing protocols already established, 

specificity to Kir6.2/SUR1 and long duration of action, glibenclamide is the agent of choice 

to stereotactically inhibit KATP channels in the ARC. 
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Potassium channel openers also interact with the SUR to modulate KATP channel activity 

resulting in opening of the channel. A number of different potassium channel openers with 

different sensitivities and specificities have been described. Diazoxide, is the best described 

activator of Kir6.2/SUR1 channels, which are expressed in neuronal tissue (Dabrowski et al., 

2002). It also has stimulatory effects on Kir6.2/SUR2b expressed in smooth muscle and weak 

stimulatory effects on Kir6.2/SUR2a expressed in skeletal muscle. More selective analogues 

of diazoxide are being developed however none have been used to alter neuronal 

activation, since they have mainly been tested in islet cells (Hansen, 2006). Diazoxide has 

been stereotactically delivered at low doses (Chan et al., 2007). Given its previous 

stereotactic use with established dosing protocols and the lack of a specific neuronal 

Kir6.2/SUR1 potassium channel opener, diazoxide is the agent of choice as the potassium 

channel opener. 

5.1.2 Neurotransmitters likely to be involved in mediating the effects of ARC glucokinase 

in energy homeostasis 

As mentioned in chapter 1.3.2, ARC neuropeptides NPY, AgRP, POMC and CART play a key 

role in energy homoeostasis (Konner et al., 2009, Cone et al., 2001). Therefore, ARC 

glucokinase activity may lead to changes in ARC neuropeptide expression and release, 

resulting in changes to energy homeostasis. Increased NPY expression has been shown to 

occur in response to glucose in Kir6.2 KO mice, where KATP channels and therefore glucose-

sensing was disrupted (Park et al., 2011, Ashford et al., 1990a). Alterations in glucose-

sensing have been shown to change neurotransmitter release from glucose-sensing neurons 

(Routh, 2010). Therefore, investigating hypothalamic neurotransmitter expression, 

neurotransmitter release or neurophysiological activity of specific neurons may provide 

insights into the mechanisms of altered energy homoeostasis in our rat model. 

Quantitative PCR is a well-established method that can be used on hypothalamic samples to 

investigate neuropeptide expression. Depolarisation or neurotransmitter release in 

response to glucose can be assessed using ex-vivo techniques such as patch-clamp or 

hypothalamic explant incubations. Neurophysiological techniques such as patch-clamp have 

been used extensively to determine alterations in depolarisation of neuronal populations in 

response to glucose (Ashford et al., 1990a, Routh, 2010). As mentioned earlier, 
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neurophysiological approaches are not technically or practically feasible at present. Parton, 

et al used an alternative technique which relied on incubating freshly dissected 

hypothalamic slices in variable concentrations of glucose dissolved in artificial CSF (Parton et 

al., 2007b). This allowed neurotransmitter release in response to glucose to be assessed by 

collecting the artificial CSF after a designated incubation period and performing an assay for 

the neurotransmitter. This technique has been used previously in this lab (Abbott et al., 

2003). Given this, and the availability of a suitable in-house radioimmunoassay to detect 

NPY, this technique can be modified to investigate changes in hypothalamic NPY and αMSH 

release in response to glucose. 

As discussed above, several possible approaches can be taken to investigate the cellular 

mechanisms of glucokinase’s effects in ARC neurons. In the remaining chapter I will present 

results from studies conducted to investigate this. 
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5.2 Hypothesis and Aims 

5.2.1 Hypothesis 

Altered ARC energy-sensing enzyme activity and KATP channel activation may account for 

differences in appetite regulation of rats with increased ARC glucokinase activity. Altered 

ARC KATP channel activation leads to similar effects on food intake and glucose appetite as 

that seen in rats with increased ARC glucokinase activity, supporting their involvement in 

mediating the effects of ARC glucokinase on energy homeostasis. These effects lead to 

altered ARC neuropeptide release.  

5.2.2 Aims and Objectives 

To investigate this, I will: 

6. Investigate the mechanisms by which ARC glucokinase may alter neuronal activity. 

a. Determine whether hypothalamic energy-sensing enzyme expression (AMPK, 

ACC, FAS) is altered by increased ARC glucokinase activity using quantitative 

PCR. 

b. Reconfirm that glucokinase expression is altered in the hypothalamus of 

iARC-GKS rats, using quantitative PCR. 

c. Specifically determine whether hypothalamic AMPK activity is altered by 

increased ARC glucokinase activity, using a specific and sensitive biochemical 

assay.  

d. Determine the effect of altering ARC KATP channel activation on food intake 

and glucose appetite, by stereotactically delivering KATP
 channel activators 

and inhibitors to the ARC of rats. 

7. Investigate altered neurotransmitter release in animals with increased ARC 

glucokinase activity.  
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a. Determine whether hypothalamic NPY, POMC, AgRP and CART neuropeptide 

expression is altered by increased ARC glucokinase activity using quantitative 

PCR.  

b. Determine the effect of increased arcuate glucokinase activity on glucose 

stimulated NPY-release from hypothalamic explants from iARC-GKS and iARC-

GFP, incubated in varying concentrations of glucose. 

 

5.3 Results 

5.3.1 Effect of increasing arcuate glucokinase activity on enzyme expression in chow-fed 

animals 

 

There was a significant 19.3 fold increase in relative hypothalamic glucokinase mRNA 

expression (iARC-GFP 1.00+/-0.18 arbitrary units vs. iARC-GKS 19.4 +/- 4.54 arbitrary units, 

n=9-12, p=<0.01) (figure 5.1a). There was a significant 1.5 fold increase in relative 

hypothalamic FAS expression (iARC-GFP 1.00 +/- 0.125 arbitrary units vs. iARC-GKS 1.50+/- 

0.17 arbitrary units, n=9-12, p=<0.01) (figure 5.1c) in the iARC-GKS group, as compared to 

the iARC-GFP group. Expression of other energy sensing enzymes was not altered between 

the groups.  
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Figure 5.1 Effect of increased arcuate glucokinase activity on energy-sensing enzymes (a) 

Relative hypothalamic glucokinase mRNA expression in iARC-GFP and iARC-GKS rats. (b) 

Relative hypothalamic AMPK, ACC and FAS expression in iARC-GFP and iARC-GKS rats on 

normal chow diet. Data are expressed as mean +/- SEM for all groups, n=9-12. Statistical 

significance was analysed by student's t test: *=p<0.05. 
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5.3.2 Effect of increasing arcuate glucokinase activity on hypothalamic AMPK activity 

 

There was no change in hypothalamic AMPK activity between the two groups (iARC-GFP 

100+/-8.18 % control vs. iARC-GKS 110 +/- 8.18 % control, n=10) (figure 5.2). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Effect of increased arcuate glucokinase activity on hypothalamic AMPK activity. 

Hypothalamic AMPK activity measured using a SAMS peptide assay on hypothalami from 

iARC-GFP and iARC-GKS rats on normal chow diet. Data are expressed as mean +/- SEM for 

all groups, n=10. Statistical significance was analysed by student's t test. 
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5.3.3 Effect of inhibiting KATP channels in the arcuate nucleus on food intake, glucose 

intake and glucose preference 

5.3.3.1 Effect on food intake 

ARC KATP channels were inhibited acutely using glibenclamide, injected via cannulas 

stereotactically implanted into the ARC. Acute arcuate KATP channel inhibition increased 

food intake at four hours after injection, as compared to vehicle injected controls using a 

cross-over study protocol, where each animal acted as their own control (Glibenclamide, 

2.22±0.77 fold change relative to control; n=12, p<0.05) (figure 5.3 a). This increase in food 

intake was not significant at later time points (At 24 hours: Glibenclamide, 1.28±0.27 fold 

change relative to control; n=12) (figure 5.3 b). 

5.3.3.2 Effect on glucose intake 

ARC KATP channels were inhibited acutely using glibenclamide, injected via cannulas 

stereotactically implanted into the ARC. Acute KATP channel inhibition increased glucose 

intake at four hours after injection, as compared to vehicle injected controls using a cross-

over study protocol (Glibenclamide, 2.63±0.99 fold change relative to control; n=11, p<0.05) 

(figure 5.4 a). There was a significant increase in glucose intake at 8 hours, however this was 

not significant at 24hours (At 24 hours: Glibenclamide, 1.26±0.28 fold change relative to 

control; n=11) (figure 5.4 b and c). 
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Figure 5.3 Effect of inhibiting arcuate nucleus KATP channels on food intake. Normal chow 

intake (a) four hours (b) twenty-four hours after ARC KATP
 channel inhibition using 

stereotactic injection of glibenclamide as compared to vehicle injected controls during a 

crossover study. Data are expressed as mean +/- SEM fold change relative to controls, n=12. 

Statistical significance was analysed by student's t test: *=p<0.05. 
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a) 

 

 

 

 

 

 

 

b)      c) 

 

 

 

 

 

 

 

 

Figure 5.4 Effect of inhibiting arcuate nucleus KATP
 channels on glucose intake. (a) 2% w/v 

glucose intake (a) four hours, (b) eight hours and (c) twenty-four hours after ARC KATP
 

channel inhibition using stereotactic injection of glibenclamide as compared to vehicle 

injected controls during a crossover study. Data are expressed as mean +/- SEM fold change 

relative to control, n=11. Statistical significance was analysed by student's t test: *=p<0.05. 
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5.3.3.3 Effect on food and glucose intake when normal chow and 2% w/v glucose 

were given ad libitum 

When normal chow food and 2% w/v glucose were given together during a cross-over study, 

acute arcuate KATP channel inhibition resulted in similar food intake but increased glucose 

intake at four hours after injection, as compared to vehicle injected controls (glucose intake: 

Glibenclamide, 1.93±0.57 fold change relative to control; food intake: Glibenclamide, 

0.97±0.19 fold change relative to control, n=10, p<0.05 for glucose intake) (figure 5.5 a & b).  

Glucose intake and food intake were similar at twenty-four hours (figure 5.5 c & d)  
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a)                                                                                  b) 

 

 

 

 

 

 

 

 

c)                                                         d) 

 

 

 

 

 

 

 

Figure 5.5 Effect of inhibiting arcuate nucleus KATP
 channels on glucose appetite. (a) 2% w/v 

glucose intake and (b) food intake four hours after ARC KATP
 channel inhibition using 

stereotactic injection of glibenclamide as compared to vehicle injected controls during a 

crossover study. (c) Cumulative 2% w/v glucose intake and (d) food intake twenty-four hours 

after ARC KATP channel inhibition using stereotactic injection of glibenclamide as compared 

to vehicle injected controls during a crossover study. Data are expressed as mean +/- SEM 

relative to control, n=11. Statistical significance was analysed by student's t test: *=p<0.05. 
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5.3.4 Effect of activating ATP sensitive potassium channels in the arcuate nucleus on 

food intake, glucose intake and glucose preference 

5.3.4.1 Effect on food intake 

ARC KATP channels were activated acutely using diazoxide, injected via cannulas 

stereotactically implanted into the ARC during a cross-over study. Acute arcuate KATP 

channel activation decreased food intake at thirty minutes  after injection, as compared to 

vehicle injected controls (Diazoxide, 0.79±0.04 fold change relative to control; n=9, p<0.05) 

(figure 5.6 a). There was a no significant decrease in food intake at 24 hours (Diazoxide, 

0.99±0.18 fold change relative to control; n=9) (figure 5.6 b). 

5.3.4.2 Effect on glucose intake 

Acute arcuate KATP channel activation decreased glucose intake at two and four hours after 

injection, as compared to vehicle injected controls (At 2 hours: Diazoxide, 0.74±0.08 fold 

change relative to control; n=9, p<0.05) (figure 5.7 a & b). This effect was not significant at 

24 hours (Diazoxide, 0.99±0.14 fold change relative to control; n=9) (figure 5.7 c). 
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Figure 5.6 Effect of activating arcuate nucleus KATP
 channels on food intake. (a) Normal 

chow intake thirty minutes and (b) twenty-four hours after ARC KATP
 channel activation using 

stereotactic injection of diazoxide as compared to vehicle injected controls during a 

crossover study. Data are expressed as mean +/- SEM fold change relative to control, n=10. 

Statistical significance was analysed by student's t test: *=p<0.05. 
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Figure 5.7 Effect of activating arcuate nucleus KATP channels on glucose intake. 2% w/v 

glucose intake (a) two hours, (b) eight hours and (c) twenty-four hours after ARC KATP
 channel 

activation using stereotactic injection of diazoxide as compared to vehicle injected controls 

during a crossover study. Data are expressed as mean +/- SEM fold change relative to 

control, n=9. Statistical significance was analysed by student's t test: *=p<0.05.  

a) 

b)  c) 
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5.3.4.3 Effect on food and glucose intake when normal chow and 2% w/v glucose 

were given ad libitum 

When normal chow food and 2% w/v glucose were given together, acute arcuate KATP 

channel activation resulted in similar food intake but decreased glucose intake at two hours 

after injection, as compared to vehicle injected controls (glucose intake at two hours: 

Diazoxide, 0.79±0.11 fold change relative to control; food intake at thirty minutes: 

Diazoxide, 1.28±0.22 fold change relative to control; food intake at two hours: Diazoxide, 

1.09±0.07 fold change relative to control, n=9, p<0.05 for glucose intake) (figure 5.8 a, b & 

c).  Glucose intake and food intake were similar at later time points (figure 5.9 a & b)  
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Figure 5.8 Effect of activating arcuate nucleus KATP channels on glucose appetite. (a) 2% 

w/v glucose intake two hours after and food intake (b) thirty minutes and (c) two hours after 

ARC KATP channel activation using stereotactic injection of diazoxide as compared to vehicle 

injected controls during a crossover study. Data are expressed as mean +/- SEM fold change 

relative to control, n=9. Statistical significance was analysed by student's t test: *=p<0.05. 
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Figure 5.9 Effect of activating arcuate nucleus KATP
 channels on glucose appetite. (a) 

Cumulative glucose intake and (b) cumulative food intake twenty-four hours after ARC KATP
 

channel activation using stereotactic injection of diazoxide as compared to vehicle injected 

controls during a crossover study. Data are expressed as mean +/- SEM fold change relative 

to control, n=9. Statistical significance was analysed by student's t test: *=p<0.05. 

Control Diazoxide
0.0

0.5

1.0

1.5

Glucose intake during 0 to 24 hour

G
lu

c
o

s
e

 i
n

ta
k
e

(r
e

la
ti

v
e

 t
o

 c
o

n
tr

o
l)

Control Diazoxide
0.0

0.5

1.0

1.5

Food intake during 0 to 24 hour

F
o

o
d

 i
n

ta
k
e

 (
g

)

a) 

b) 



186 
 

5.3.5 Effect of increasing arcuate glucokinase activity on hypothalamic neuropeptide 

expression in chow-fed animals 

Relative hypothalamic expression of NPY, POMC and CART was similar in both groups (figure 

5.10). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 Effect of increased arcuate glucokinase activity on energy-sensing enzymes. 

Relative hypothalamic NPY, POMC and CART expression in iARC-GFP and iARC-GKS rats on 

normal chow diet. Data are expressed as mean +/- SEM for all groups, n=9-12. Statistical 

significance was analysed by student's t test: *=p<0.05. 
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5.3.6 Effect of increased arcuate glucokinase activity on glucose-stimulated NPY-release 

from hypothalamic neurons 

 

NPY release from hypothalamic explant slices was similar between the two groups at 3 mM 

glucose (iARC-GFP: 13.75±2.55 fmol/hypothalamic slice; iARC-GKS: 13.57±2.31 

fmol/hypothalamic slice) (figure 5.11). NPY release from hypothalamic explant slices was 

increased in iARC-GKS rats versus controls at both 8mM and 15mM glucose (For 8mM 

glucose: iARC-GFP: 6.91±0.53 fmol/hypothalamic slice; iARC-GKS: 13.74±2.88 

fmol/hypothalamic slice; for 15mM glucose: iARC-GFP: 6.86±1.07 fmol/hypothalamic slice; 

iARC-GKS: 12.29±1.95 fmol/hypothalamic slice) (figure 5.11).  
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Figure 5.11 Effect of increased arcuate glucokinase activity on glucose-stimulated NPY-

release from hypothalamic neurons. NPY release from hypothalamic explant slices in 

response to changes in artificial CSF glucose levels. Data are expressed as mean +/- SEM for 

all groups, n=7-8. Statistical significance was analysed by one-way ANOVA followed by post-

hoc Holms-Sidak test: *=p<0.05. 
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5.3.7 Effect of increased arcuate glucokinase activity on glucose-stimulated α-MSH 

release from hypothalamic neurons 

 

α-MSH release from hypothalamic explant slices was similar between the two groups at 3 

mM, 8mM and 15mM glucose (For 3mM glucose: iARC-GFP: 9.04±1.08 fmol/hypothalamic 

slice; iARC-GKS: 12.54±3.49 fmol/hypothalamic slice; for 8mM glucose: iARC-GFP: 8.03±1.18 

fmol/hypothalamic slice; iARC-GKS: 9.60±2.75 fmol/hypothalamic slice; for 15mM glucose: 

iARC-GFP: 14.97±3.62 fmol/hypothalamic slice; iARC-GKS: 14.41±2.02 fmol/hypothalamic 

slice) (figure 5.12).  
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Figure 5.12 Effect of increased arcuate glucokinase activity on glucose-stimulated α-

MSH release from hypothalamic neurons. α-MSH release from hypothalamic explant slices 

in response to changes in artificial CSF glucose levels. Data are expressed as mean +/- SEM 

for all groups, n=7-8. Statistical significance was analysed by student's t test against 

corresponding control values: *=p<0.05. 
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5.4 Discussion 

5.4.1 Changes in hypothalamic energy-sensing enzymes with increased ARC glucokinase 

activity 

In keeping with the results of increased ARC glucokinase activity and in-situ hybridisation in 

chapter 3, results from quantitative PCR demonstrated significantly increased hypothalamic 

glucokinase activity. Results from qPCR do not reveal any differences in any of the other 

energy sensing enzymes, except FAS. Changes in activity of hypothalamic enzymes due to 

altered biochemistry may not always be reflected by gene expression. Therefore AMPK 

activity assays were undertaken. No difference in AMPK activity was found between the two 

groups. This is in contrast to previous observations and theories with respect to AMPK 

activity and glucose-sensing by glucokinase (Mountjoy and Rutter, 2007, Claret et al., 2007). 

It is possible that ARC glucokinase does not reduce AMPK activity as previously suggested or 

that this occurs only in a small proportion of neurons. Therefore, changes in AMPK are 

unlikely to be of significance in our model of increased ARC glucokinase activity. Our 

phenotypic findings of increased food intake and glucose intake with increased ARC 

glucokinase activity are also in keeping with a non-AMPK mediated effect on neuronal 

activity and energy homeostasis. 

The slight increase in FAS expression may provide a possible explanation for altered 

neuronal depolarization and an orexigenic affect in our rat model. FAS is an enzyme that 

catalyses the synthesis of LCFA-CoA from acetyl-CoA and malonyl-CoA (Loftus et al., 2000). 

The accumulation of acetyl-CoA and malonyl-CoA following increase glycolytic flux in iARC-

GKS animals may result in upregulation of FAS expression the ARC (figure 1.3). This increase 

in FAS expression may increase food intake by effecting neuronal nutrient sensing and 

activity (Loftus et al., 2000). This mechanism also provides a possible explanation for the 

similar insulin sensitivity, despite alterations in adiposity, between our model and controls. 

Increased hypothalamic LCFA-CoA reduces hepatic gluconeogenesis, improving insulin 

sensitivity (Lam et al., 2005b). One caveat with this mechanism is that an up-regulation in 

FAS and increase glycolytic flux should increase fatty acid production and lipid accumulation 

in the cytoplasm of hypothalamic neurons. Lipid administration in the VMH reduces feeding 

and therefore increased lipid accumulation in the hypothalamus should have an 

anorexigenic effect (Lam et al., 2005c). Therefore, it is unlikely that increased FAS 
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expression is the dominant mechanism of altered ARC neuronal activity and energy 

homeostasis in our model given the slight increase and variable consequences that may 

generate from this. 

5.4.2 KATP
 channels play a part in transducing the effects of ARC glucokinase 

The involvement of KATP channels in mediating effect of ARC glucokinase on neuronal 

activity and energy homoeostasis was investigated by injecting a pharmacological inhibitor 

(glibenclamide) or activator (diazoxide) into the ARC. Food intake and glucose intake were 

significantly increased four hours after injection with glibenclamide. Furthermore, when 

chow diet and 2% w/v the glucose were provided, only glucose intake was increased in 

glibenclamide injected rats, suggesting a specific intake on increase in glucose appetite. 

Conversely, injection of diazoxide into the ARC inhibited food intake and glucose intake 

when each was available separately. However, only glucose intake was inhibited when both 

were available. Hence, both alterations in glucokinase activity and KATP channels have an 

effect on glucose appetite in a manner that is consistent with previous suggestions. 

Although this work does not provide direct neurophysiological evidence, these results and 

those from previous studies support the possibility that KATP channels play a part in 

transducing the effects of glucokinase in the ARC(Routh, 2010).  

Previous investigations on the effects of KATP channel inhibition on food intake have been 

conducted in rats cannulated in the lateral hypothalamus (Plum et al., 2006). The results 

suggested that there was no alteration in feeding behaviour in rats treated with tolbutamide 

KATP channel inhibitor. These rats were anaesthetised daily prior to injection of the 

medication. This is likely to severely affect appetite. Hence the results suggested in the 

study are confounded by limitations of the technique.  

5.4.3 Changes in neuropeptide expression and NPY release with increased ARC 

glucokinase activity 

Our phenotype suggests that increasing ARC glucokinase in rats has an orexigenic effect 

resulting in increased food intake and body weight. Subsets of orexigenic NPY/ AgRP and 

anorexigenic POMC/ CART neurons in the ARC are glucose-sensing neurons and express 

glucokinase. Therefore, changes in NPY and POMC/ α-MSH expression may play a role in the 

altered feeding behaviour of rat model. However, qPCR on hypothalami from animals killed 
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after overnight feeding, reveals similar NPY, POMC and CART expression to controls. There 

may be several reasons why a change in expression was not noted in this study.  

Firstly, the mRNA extracted is from whole hypothalami, as opposed to the ARC. Although 

POMC is only expressed in the ARC and NPY is predominantly expressed in the ARC, gene 

expression quantified by qPCR is expressed as a ratio to a control gene in the whole 

hypothalamus. It is possible that a subtle difference could be masked by inaccuracies caused 

due to this. Micro-punches of the ARC may allow more precise dissection of the individual 

nuclei but also carry the risk of introducing inaccuracies from punching incorrect areas and 

contamination from other nuclei. Laser capture microdissection can improve quality of 

dissection but requires significant technical expertise and specialised equipment. Single cell 

qPCR may allow detection of gene expression in specific neuronal subtypes, e.g. NPY/CART 

or POMC/ α-MSH, but the neurons of interest need to be tagged and considerable expertise 

is needed to select and extract RNA from the individual neuron. Secondly, the feeding status 

and time at which the animals are killed is likely to influence differences in anorexic or 

orexigenic neuropeptide signalling.  NPY or POMC/ α-MSH signalling may be different in 

response to changes in glucose or other metabolites, such as leptin. Changes in expression 

of neuropeptides in the hypothalamus may mirror these transient alterations in 

neuropeptide release in response to small and brief fluctuations in glucose. The stimulus 

from glucose change may only lead to transient alterations in neuropeptide expression.  

As discussed previously, electrophysiological studies on ARC neurons and hypothalamic 

explant incubation studies may provide further insight into neuropeptide release. Results 

from ex-vivo hypothalamic explant suggest that NPY release is increased in iARC-GKS rats as 

compared to controls, especially at higher aCSF glucose levels. α-MSH release is similar 

between iARC-GKS rats and controls. This may explain the increased orexigenic drive in 

these animals and could also explain increased drive to consume glucose. One potential 

caveat with this work is that glucose level used in our study was 2, 8 and 15 mmol per litre. 

These levels are the same as in previous published work using the same technique (Parton 

et al., 2007b). CSF glucose is normally half of that of plasma (Routh, 2002, de Vries et al., 

2003). Therefore the glucose levels used here could be higher than what would be expected 

in vivo. However, if the neurons in the ARC lack a complete blood-brain barrier, brain 

glucose levels may reach plasma glucose levels in these neurons. Nevertheless, this ex-vivo 



192 
 

technique illustrates the principle of altered hypothalamic neurotransmitter release in 

response to glucose in our rat model. These results are in line with the co-localisation of KATP 

channels and glucokinase in NPY neurons and augmented NPY release in response to 

glucose infusions in mice with disrupted KATP channels (Lynch et al., 2000, Van den Top et al., 

2007, Park et al., 2011). Furthermore, increase in NPY release has also been demonstrated 

to increase carbohydrate craving in preference to other foods in line with our work (Morley 

et al., 1987). Our phenotypic and explant results are in accord with these links between KATP 

channels and glucokinase in NPY neurons and NPY and food selectivity.  

5.4.4 Conclusion 

Results from this chapter suggest that ARC glucokinase inhibits KATP channels. This may 

cause membrane depolarisation and neurotransmitter release in the ARC. Results from our 

phenotype, suggest that ARC glucokinase may have an effect on increasing orexigenic NPY 

release in response to glucose. Altered NPY release may account for the increased food 

intake and glucose appetite in our model. These suggestions linking ARC glucokinase with 

KATP channel inhibition, NPY release and increased glucose appetite are in accord with 

previous studies.  
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6 Discussion 
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6.1 Summary of results and mechanisms involved 

The ARC of the hypothalamus plays an important role in energy homoeostasis. The enzyme 

glucokinase is expressed in the ARC where it can act as a neuronal glucose sensor. This work 

addresses the role of ARC glucokinase in energy homoeostasis. 

In order to confirm the involvement of ARC glucokinase in the control of energy 

homoeostasis, I demonstrated that ARC glucokinase activity is increased after a twenty-four 

hour fast in rats. In line with this, pharmacological increase of ARC glucokinase activity in 

rats resulted in an acute increase of food intake. To further investigate this, rAAV encoding 

rat pancreatic glucokinase mRNA was made (rAAV-GKS). In vitro testing of this confirmed 

that the construct for rAAV-GKS increased ARC glucokinase activity. rAAV-GKS and rAAV-GFP 

were injected stereotactically into the ARC of rats. This resulted in a significant increase in 

ARC glucokinase activity in the ARC, with in situ hybridisation confirming increased ARC 

glucokinase mRNA expression in rAAV-GKS injected rats (iARC-GKS) as compared to controls 

(iARC-GFP). On a normal chow diet, chronic increase of ARC glucokinase activity in rats 

resulted in an increase of food intake, body weight gain and percentage fat, as compared to 

controls. These results were replicated using a high-energy diet, similar to modern day 

obesogenic diets, in a second cohort of animals. These results confirmed that manipulating 

ARC glucokinase alters energy homoeostasis with increased glucokinase activity resulting in 

an obesogenic effect on appetite. 

ARC glucokinase increased intake of glucose, but not of fructose, a closely related sugar that 

is not metabolised by glucokinase and does not cross the blood-brain barrier. Both 

pharmacological and genetic increase of ARC glucokinase selectively increased glucose 

consumption in rats given both glucose and normal chow separately during short-term 

studies. In this setting, normal chow consumption, which was previously increased when 

given alone to rats with increased ARC glucokinase activity, was similar to that of controls. 

These effects were replicated and confirmed in a longitudinal 31-day study, where rats were 

offered 10% w/v glucose with normal chow ad libitum. Glucose intake was significantly 

increased. Chow intake, body weight and total caloric intake was similar to that of controls. 

These results confirmed that increased ARC glucokinase alters glucose intake by increasing 

glucose appetite. When glucose is given separately in addition to the mixed diet, glucose 
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intake is selectively increased and that of the mixed diet is not altered. When a single mixed 

diet is given alone, the increase in glucose appetite in iARC-GKS rats results in an increased 

consumption of the single mixed diet. This leads to an increase in food intake and body 

weight. 

Results from activation and inhibition of KATP channels in the ARC of rats suggest that 

glucokinase is mediating its effect on energy homoeostasis and glucose appetite in the ARC 

via KATP channels. There were no changes in the expression or activity of AMPK suggesting 

that the effects of glucokinase in our model are not mediated via AMPK. There were no 

changes in the expression of ARC neuropeptides involved in energy homoeostasis. However, 

NPY release was increased in iARC-GKS rats.  

These results suggest that the mechanism by which ARC glucokinase alters appetite in our 

model involves increased glycolytic flux in the ARC via increased glucokinase activity 

(Iynedjian, 2009). This leads to increased local ATP generation and inhibition of KATP channel 

activity with subsequent neuronal depolarisation. This leads to altered neurotransmitter 

release in the ARC. In keeping with this, NPY release is increased in our model. NPY is 

implicated in regulating carbohydrate preference, further supporting its potential 

involvement in phenotype of iARC-GKS rats(Morley et al., 1987). It is therefore possible that 

ARC glucokinase and KATP channels mediate glucose preference and have an orexigenic 

effect via altered NPY signalling. Further mechanisms by which ARC neuronal activity may 

increase glucose preference are not clear but may involve interaction between homeostatic 

and non-homeostatic centres. The figure below (figure 6.1) summarises the mechanism by 

which ARC glucokinase may lead to altered food and glucose intake in rats. 
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Figure 6.1 Proposed mechanism for the effects of ARC glucokinase on energy 

homoeostasis: Increased ARC glucokinase alters glycolytic flux and ATP generation resulting 

in KATP channel inhibition. This leads to altered neuronal activity in response to metabolites, 

such as glucose. Release of the orexigenic NPY neurotransmitter is enhanced whereas that of 

α-MSH is not affected. The release of other neurotransmitters, such as GABA, may also be 

altered. The net effect of these changes is to increase glucose appetite either by a direct 

homeostatic affect or by interactions between hedonic and homeostatic appetite centres. 

Glucose appetite partially drives food intake. In the absence of a separate source of glucose, 

increased glucose appetite results in increased food intake and body weight, as that seen on 

a mixed diet.When a separate glucose source is present, glucose intake is selectively 

increased, whereas food intake is not altered. 
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6.2 Implications for current understanding of energy homoeostasis 

This work demonstrates that ARC glucokinase is an important regulator of food and glucose 

intake. This is in line with previous work demonstrating that glucokinase mRNA expression is 

increased in diet-induced obese and obese-prone rats and that obesity leads to a bias 

towards calorie dense foods (Dunn-Meynell et al., 2002b, Page et al., 2011b). This is also in 

keeping with our observations of increased ARC glucokinase activity in the fasting state 

where drive to consume calorigenic food is enhanced (Goldstone et al., 2009). However, as 

detailed in chapter 3, this work is different from the results of two previous groups which 

used non-specific, potentially toxic or immunogenic agents to reduce glucokinase activity in 

cannulated animals (Dunn-Meynell et al., 2009, Zhou et al., 2011). Furthermore, these 

studies were not specific to the ARC and did not demonstrate alterations in ARC glucokinase 

activity. This work improves on their studies by using a strategy that encompasses a non-

immunogenic, non-toxic, neuronal specific vector to achieve sustained increase in 

glucokinase expression specifically in the ARC (Daly, 2004b, Ponnazhagan et al., 1997, 

Gardiner et al., 2005). This work also confirmed a specific increase in ARC glucokinase 

activity to levels comparable to those seen in fasting. Hence, it is likely that the previous 

studies failed to demonstrate similar effects due to severe limitations imposed by their 

methods. 

It has also been postulated that glucose may exert a negative feedback on the 

hypothalamus to alter appetite via neuronal glucose-sensing. Glucokinase is an important 

part of the glucose-sensing mechanism in the hypothalamus. Therefore, based on this, an 

increase in glucokinase activity is likely to increase the sensitivity of neuronal glucose-

sensing and enhance negative feedback effect from glucose to diminish appetite. Although 

this work is not directly assessing glucose-sensing, it suggests that the opposite occurs since 

increased ARC glucokinase activity has an orexigenic effect. It is possible that a feed forward 

mechanism in relation to appetite and glucose-sensing is occurring, possibly in conjunction 

with reward pathways or via a direct hypothalamic effect to promote consumption of 

nutrient rich foods when they are available. This has the biological advantage of maximising 

gain in energy stores while energy rich foods are present. Hence in rats with increased ARC 

glucokinase activity and increased glucose-sensing, this feed forward mechanism results in 

increased food intake and glucose intake. Therefore this work may relate glucose-sensing to 
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physiological, day-to-day food intake as well as modern-day obesity in a manner that has 

not been previously demonstrated. 

This work also supports the involvement of KATP channels in mediating the effect of 

glucokinase in the hypothalamus (Ashford et al., 1990c). The results on food intake and 

glucose appetite noted are also in keeping with leptin activating KATP channels to inhibit food 

intake (Spanswick et al., 1997, Mirshamsi et al., 2004). However, selective ablation of KATP 

channels in POMC neurons have no effect on food intake and body weight (Parton et al., 

2007b). It is possible that KATP channels on NPY neurons have a more prominent role on food 

intake and body weight. This is in keeping with glucokinase altering NPY release in response 

to glucose, demonstrated in this work. Increased food intake and increased preference to 

glucose rich carbohydrates is noted with work augmentation of NPY signalling in the 

hypothalamus (Morley et al., 1987). These data further support the involvement of KATP
 

channels and NPY in mediating the effect of ARC glucokinase on appetite. Glucokinase and 

KATP channels co-localise in NPY neurons (Lynch et al., 2000, Van den Top et al., 2007).  

The brain relies mainly on glucose for energy (Amiel, 1995). Taste-independent mechanisms 

that enable the brain to obtain a steady intake of glucose have been postulated but not 

conclusively demonstrated in mammals. In invertebrates such mechanisms have been 

recently found (Dus et al., 2011). In mammals, modulation of hedonic centres increases the 

reward value and consumption of nutrient by taste independent pathways (Domingos et al., 

2011, Ren et al., 2010). Work in this thesis highlights that ARC glucokinase activity can 

regulate glucose appetite. In animals with increased ARC glucokinase activity, if glucose is 

available as an independent source it restores appetite and food intake. Otherwise it leads 

to an increased drive to consume food leading to increased weight gain (fig 6.1). Its 

relevance to human obesity is further strengthened by increased food intake and body 

weight gain in iARC-GKS rats on a high energy diet, similar to current Western obesogenic 

diets. It suggests that maintenance of a glucose source in the diet of obese individuals is 

important to satiate glucose appetite given that hypothalamic glucokinase expression is 

likely to be elevated in obese individuals. It is possible that the recent rise in fructose 

consumption may not satiate the glucose appetite, resulting in increased consumption of 

further foods (Bray, 2008). In other words, suggestions that all calories are not equal are 

further strengthened by this work. 
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The findings of this work also have important implications for the use of sulphonylureas and 

potential use of glucokinase activators in the treatment of type II diabetes (Matschinsky and 

Porte, 2010). These agents may enhance glucose appetite and food intake which may have 

detrimental effects on body weight in patients with type II diabetes. This also may, in part, 

explain the increase in body weight in patients treated with sulphonylureas (UKPDS, 1998).  

6.3 Limitations, unresolved questions and future work  

Possible limitations of the current work include that iARC-GKS rats may be influenced by a 

gain of function in ARC glucokinase expression in neurones that do not normally express 

glucokinase. AAV expresses in neurons indiscriminately and a constitutively active promoter 

was used in our construct. Nevertheless, the use of pharmacological agents to increase ARC 

glucokinase activity produced similar effects on food intake and glucose appetite as that 

seen in iARC-GKS rats. Pharmacological activators of glucokinase will only influence 

glucokinase activity in neurons that normally express glucokinase. Furthermore, neuronal 

glucokinase require the presence of certain other cellular components to regulate its activity 

or subcellular localisation in response to glucose, as seen in hepatocytes (Stubbs et al., 2000, 

de la Iglesia et al., 2000, Farrelly et al., 1999). If this is true, increasing the glucokinase 

expression in cells that do not normally express glucokinase may not have a significant 

effect on their function. Nevertheless, similar results with both pharmacological and genetic 

activation of glucokinase suggest a physiologically relevant effect on food intake and glucose 

appetite.  To further confirm the physiological relevance of findings in this study, anti-sense 

for glucokinase mRNA could be injected stereotactically into the ARC. Knock-down of 

glucokinase expression will only occur in neurons that normally express glucokinase and will 

have no biological effect in neurons that do not express glucokinase.  

Another limitation includes the use of glibenclamide and diazoxide to alter the activity of 

KATP channels. These agents were injected stereotactically and are likely to influence KATP 

channels in non-glucokinase expressing neurons as well. Although this may lead to 

unwanted effects, this strategy supported our hypothesis that KATP channels are involved in 

mediating the effects of glucokinase. Similar food intake and glucose appetite effects are 

seen with both glucokinase and KATP channel modulation. This reinforces the suggestion that 

glucokinase is mediating its effects on energy homoeostasis via KATP channels and is in line 
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with previous work. More specific strategies to alter KATP
 channel activity can be considered 

by using Cre-Lox or specific promoters to drive gene expression on AAV. 

This work investigated the release of NPY and α-MSH from hypothalamic explants in 

response to glucose. The significant alterations noted in NPY are in keeping with our 

phenotype. However it is possible that the picture could be complicated by the effect of 

other neurotransmitters such as GABA. The influence of other metabolites, such as leptin 

and fatty acids, have not been investigated either due to practical limitations. The net effect 

of these neurotransmitters and metabolites leads to the phenotype of increased glucose 

appetite in our model of increased ARC glucokinase activity. The mechanism presented 

above may be over simplistic and other factors may be involved in regulating glucose 

appetite. The influence of leptin and fatty acids can be tested in animals with increased ARC 

glucokinase by stereotactically delivering leptin or fatty acids into the ARC and studying the 

effect on appetite. More selective models of altered glucokinase activity may allow precise 

determination of neuronal subtypes involved in mediating the phenotype in this work. Mice 

with loxp-sites inserted into the glucokinase mRNA are commercially available. Crossing 

such mice with POMC-Cre and NPY-Cre mice would be useful to understand the precise role 

of neuronal subtypes. 

Energy expenditure has not been directly measured in this work. Given our results it is very 

likely that the increased body weight is due to increased appetite. In line with this, BAT 

weight and BAT UCP-1 mRNA expression was similar in iARC-GKS and controls. Nevertheless 

more extensive investigations on this can be performed using a Comprehensive Laboratory 

Animal Monitoring System and pair-fed animals.  

This work demonstrated that insulin sensitivity is not significantly altered despite increased 

adiposity in iARC-GKS rats versus controls. Increased ARC glucokinase activity may prevent 

deteriorations in insulin resistance noted in obesity. In this regard, it has been 

demonstrated that increased hypothalamic LCFA-CoA concentrations results in reduced 

hepatic glucose output (Lam et al., 2005b). This work indicated an increase in FAS 

expression in iARC-GKS rats. As discussed in chapter 5, this may indicate increased 

conversion of malonyL-CoA and acetyl-CoA to long-chain fatty acids. Increased presence of 

long-chain fatty acids in iARC-GKS rats may lead to reduced hepatic glucose output and 
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improved insulin sensitivity despite increased adiposity. It is also possible that altered ARC 

neurotransmitter release may influence glucose homeostasis (Parton et al., 2007b, Thorens, 

2011). Further work on confirming similar insulin sensitivity can be done using an insulin 

tolerancetes . Techniques such as glycaemic clamps with tracer glucose may help define this 

better, however due to practical limitations this technique is not currently feasible. 

Nevertheless, glucose homeostasis assessments warrant more extensive assessment and 

glucose tolerance tests and insulin tolerance tests should be considered to assess this.  

The increase in drive to consume glucose in iARC-GKS rats may be occurring via augmenting 

a post-ingestive, taste independent reward pathway or form a separate homeostatic 

regulatory mechanism, similar to those seen in lower order animals (Dus et al., 2011). 

Further work is needed to elucidate the precise mechanism. Work on reward pathways is 

technically difficult. Possible ways of studying reward pathways in our model could be via 

measuring dopamine levels, dopamine mRNA expression or neuronal activity via c-fos in the 

ventral tegmental area of the brain in response to glucose. This timing of sample collection 

with respect to glucose stimulus will be difficult to predict. Delivering dopamine inhibitors to 

the VTA of iARC-GKS rats to determine if this diminishes the increased glucose appetite 

provides an alternative approach. Functional MRI also provides a strategy to assess activity 

of neuronal pathways in reward centres. Unfortunately current setups are mainly applicable 

to mice rather than rats. A number of other strategies are possible in mice including 

methods encompassing optogenetics to develop reference assays for reward mediated 

preference in mice (Domingos et al., 2011). Such strategies could be applied to different 

mouse models but are outside the scope of this particular study. 

The relevance of this to modern obesity needs to be investigated further especially in 

relation to increase fructose consumption and obesity, discussed above. This can be tested 

by giving both iARC-GKS and control animals fructose in addition to normal chow. Given our 

postulated mechanism, we would expect similar fructose consumption between the groups 

but increased chow consumption in iARC-GKS rats. It is also unclear if the effect of increased 

ARC glucokinase on glucose appetite extends to other hexose based carbohydrates that can 

be rapidly metabolised. Further work on this can be done using different carbohydrate 

solutions, such as maltodextrin. This will be important as it may demonstrate that ARC 

glucokinase regulates carbohydrate craving and not just glucose appetite. 
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Conclusion 

The primary aim of this work was to investigate the physiological role of ARC glucokinase in 

energy homoeostasis. This work reveals that increasing ARC glucokinase activity has an 

orexigenic effect that leads to increased glucose appetite and can drive food intake resulting 

in increased adiposity. Inhibition of KATP channels and altered NPY release may play in role in 

mediating this effect of ARC glucokinase on energy homeostasis. This work further clarifies 

the role of ARC glucokinase and KATP channels in energy homoeostasis and has implications 

for the use of glucokinase activators and sulphonylureas in the management of type II 

diabetes. However it raises a number of questions. Further work will increase our 

understanding of energy homoeostasis and macronutrient preference and hopefully 

improve our currently futile efforts at curbing the obesity epidemic.  

 

 

 

  



203 
 

7 References 

ABBOTT, C. R., KENNEDY, A. R., WREN, A. M., ROSSI, M., MURPHY, K. G., SEAL, L. J., TODD, J. 
F., GHATEI, M. A., SMALL, C. J. & BLOOM, S. R. 2003. Identification of hypothalamic 
nuclei involved in the orexigenic effect of melanin-concentrating hormone. 
Endocrinology, 144, 3943-9. 

ABRAHAM, S., LOWENSTEIN, F. W., O'CONNELL, D. E., NATIONAL CENTER FOR HEALTH 
STATISTICS (U.S.) & NATIONAL HEALTH AND NUTRITION EXAMINATION SURVEY 
(U.S.) 1975. Preliminary findings of the first Health and Nutrition Examination Survey, 
1971-72 : anthropometric and clinical findings, U.S. Dept. of Health, Education, and 
Welfare, Public Health Service, Health Resources Administration. 

ADRIAN, T. E., FERRI, G. L., BACARESE-HAMILTON, A. J., FUESSL, H. S., POLAK, J. M. & 
BLOOM, S. R. 1985. Human distribution and release of a putative new gut hormone, 
peptide YY. Gastroenterology, 89, 1070-7. 

AFIONE, S. A., WANG, J., WALSH, S., GUGGINO, W. B. & FLOTTE, T. R. 1999. Delayed 
expression of adeno-associated virus vector DNA. Intervirology, 42, 213-20. 

AKABAYASHI, A., ZAIA, C. T., SILVA, I., CHAE, H. J. & LEIBOWITZ, S. F. 1993. Neuropeptide Y in 
the arcuate nucleus is modulated by alterations in glucose utilization. Brain Res, 621, 
343-8. 

ALLEN, J. M., YEATS, J. C., ADRIAN, T. E. & BLOOM, S. R. 1984. Radioimmunoassay of 
neuropeptide Y. Regul Pept, 8, 61-70. 

AMIEL, S. A. 1995. Organ fuel selection: brain. Proc Nutr Soc, 54, 151-5. 
ANAND, B. K. & BROBECK, J. R. 1951. Localization of a "feeding center" in the hypothalamus 

of the rat. Proc Soc Exp Biol Med, 77, 323-4. 
ANAND, B. K. & PILLAI, R. V. 1967. Activity of single neurones in the hypothalamic feeding 

centres: effect of gastric distension. J Physiol, 192, 63-77. 
ANDERSSON, U., FILIPSSON, K., ABBOTT, C. R., WOODS, A., SMITH, K., BLOOM, S. R., 

CARLING, D. & SMALL, C. J. 2004. AMP-activated protein kinase plays a role in the 
control of food intake. J Biol Chem, 279, 12005-8. 

ASHCROFT, F. M. 1988. Adenosine 5'-triphosphate-sensitive potassium channels. Annu Rev 
Neurosci, 11, 97-118. 

ASHFORD, M. L., BODEN, P. R. & TREHERNE, J. M. 1990a. Glucose-induced excitation of 
hypothalamic neurones is mediated by ATP-sensitive K+ channels. Pflugers Arch, 415, 
479-83. 

ASHFORD, M. L., BODEN, P. R. & TREHERNE, J. M. 1990b. Tolbutamide excites rat 
glucoreceptive ventromedial hypothalamic neurones by indirect inhibition of ATP-K+ 
channels. Br J Pharmacol, 101, 531-40. 

ASHFORD, M. L. J., BODEN, P. R. & TREHERNE, J. M. 1990c. Glucose-Induced Excitation of 
Hypothalamic Neurons Is Mediated by Atp-Sensitive K+ Channels. Pflugers Archiv-
European Journal of Physiology, 415, 479-483. 

ATCHISON, R. W., CASTO, B. C. & HAMMON, W. M. 1965. Adenovirus-Associated Defective 
Virus Particles. Science, 149, 754-6. 

BADY, I., MARTY, N., DALLAPORTA, M., EMERY, M., GYGER, J., TARUSSIO, D., FORETZ, M. & 
THORENS, B. 2006. Evidence from glut2-null mice that glucose is a critical 
physiological regulator of feeding. Diabetes, 55, 988-95. 



204 
 

BARTLETT, J. S., SAMULSKI, R. J. & MCCOWN, T. J. 1998. Selective and rapid uptake of 
adeno-associated virus type 2 in brain. Hum Gene Ther, 9, 1181-6. 

BEAK, S. A., HEATH, M. M., SMALL, C. J., MORGAN, D. G., GHATEI, M. A., TAYLOR, A. D., 
BUCKINGHAM, J. C., BLOOM, S. R. & SMITH, D. M. 1998. Glucagon-like peptide-1 
stimulates luteinizing hormone-releasing hormone secretion in a rodent 
hypothalamic neuronal cell line. J Clin Invest, 101, 1334-41. 

BELGARDT, B. F., OKAMURA, T. & BRUNING, J. C. 2009. Hormone and glucose signalling in 
POMC and AgRP neurons. Journal of Physiology-London, 587, 5305-5314. 

BENOIT, S. C., CLEGG, D. J., SEELEY, R. J. & WOODS, S. C. 2004. Insulin and leptin as adiposity 
signals. Recent Prog Horm Res, 59, 267-85. 

BERGMEYER, H. U. & GAWEHN, K. 1974. Methods of enzymatic analysis, Weinheim, Verlag 
Chemie ; New York ; London : Academic Press. 

BERNS, K. I. & ADLER, S. 1972. Separation of two types of adeno-associated virus particles 
containing complementary polynucleotide chains. J Virol, 9, 394-6. 

BERNSTEIN, L. M. & GROSSMAN, M. I. 1956. An experimental test of the glucostatic theory 
of regulation of food intake. J Clin Invest, 35, 627-33. 

BERRIDGE, K. C. 1996. Food reward: brain substrates of wanting and liking. Neurosci 
Biobehav Rev, 20, 1-25. 

BERRIDGE, K. C., ROBINSON, T. E. & ALDRIDGE, J. W. 2009. Dissecting components of 
reward: 'liking', 'wanting', and learning. Curr Opin Pharmacol, 9, 65-73. 

BERTHOUD, H. R. 2006. Homeostatic and non-homeostatic pathways involved in the control 
of food intake and energy balance. Obesity, 14, 197-200. 

BERTHOUD, H. R. 2011. Metabolic and hedonic drives in the neural control of appetite: who 
is the boss? Curr Opin Neurobiol, 21, 888-96. 

BERTHOUD, H. R. & MORRISON, C. 2008. The brain, appetite, and obesity. Annu Rev Psychol, 
59, 55-92. 

BERTHOUD, H. R., MUNZBERG, H., RICHARDS, B. K. & MORRISON, C. D. 2012. Neural and 
metabolic regulation of macronutrient intake and selection. Proc Nutr Soc, 71, 390-
400. 

BERTONI, J. M. 1981. Competitive-Inhibition of Rat-Brain Hexokinase by 2-Deoxyglucose, 
Glucosamine, and Metrizamide. Journal of Neurochemistry, 37, 1523-1528. 

BEWICK, G. A., GARDINER, J. V., DHILLO, W. S., KENT, A. S., WHITE, N. E., WEBSTER, Z., 
GHATEI, M. A. & BLOOM, S. R. 2005. Post-embryonic ablation of AgRP neurons in 
mice leads to a lean, hypophagic phenotype. FASEB J, 19, 1680-2. 

BIGGERS, D. W., MYERS, S. R., NEAL, D., STINSON, R., COOPER, N. B., JASPAN, J. B., 
WILLIAMS, P. E., CHERRINGTON, A. D. & FRIZZELL, R. T. 1989. Role of brain in 
counterregulation of insulin-induced hypoglycemia in dogs. Diabetes, 38, 7-16. 

BLACKLOW, N. R., HOGGAN, M. D., KAPIKIAN, A. Z., AUSTIN, J. B. & ROWE, W. P. 1968. 
Epidemiology of adenovirus-associated virus infection in a nursery population. Am J 
Epidemiol, 88, 368-78. 

BLEVINS, J. E. & BASKIN, D. G. 2010. Hypothalamic-Brainstem Circuits Controlling Eating. 
Frontiers in Eating and Weight Regulation, 63, 133-140. 

BOHENZKY, R. A., LEFEBVRE, R. B. & BERNS, K. I. 1988. Sequence and symmetry 
requirements within the internal palindromic sequences of the adeno-associated 
virus terminal repeat. Virology, 166, 316-27. 



205 
 

BORG, M. A., SHERWIN, R. S., BORG, W. P., TAMBORLANE, W. V. & SHULMAN, G. I. 1997. 
Local ventromedial hypothalamus glucose perfusion blocks counterregulation during 
systemic hypoglycemia in awake rats. J Clin Invest, 99, 361-5. 

BORG, W. P., SHERWIN, R. S., DURING, M. J., BORG, M. A. & SHULMAN, G. I. 1995. Local 
ventromedial hypothalamus glucopenia triggers counterregulatory hormone release. 
Diabetes, 44, 180-4. 

BORGLAND, S. L., TAHA, S. A., SARTI, F., FIELDS, H. L. & BONCI, A. 2006. Orexin A in the VTA 
is critical for the induction of synaptic plasticity and behavioral sensitization to 
cocaine. Neuron, 49, 589-601. 

BOURET, S. G., DRAPER, S. J. & SIMERLY, R. B. 2004. Formation of projection pathways from 
the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the 
neural control of feeding behavior in mice. Journal of Neuroscience, 24, 2797-2805. 

BOUTREL, B., KENNY, P. J., SPECIO, S. E., MARTIN-FARDON, R., MARKOU, A., KOOB, G. F. & 
DE LECEA, L. 2005. Role for hypocretin in mediating stress-induced reinstatement of 
cocaine-seeking behavior. Proc Natl Acad Sci U S A, 102, 19168-73. 

BRAY, G. A. 2004. Medical consequences of obesity. Journal of Clinical Endocrinology & 
Metabolism, 89, 2583-2589. 

BRAY, G. A. 2008. Fructose: should we worry? Int J Obes (Lond), 32 Suppl 7, S127-31. 
BROADWELL, R. D., BALIN, B. J., SALCMAN, M. & KAPLAN, R. S. 1983. Brain-blood barrier? 

Yes and no. Proc Natl Acad Sci U S A, 80, 7352-6. 
BROBERGER, C., DE LECEA, L., SUTCLIFFE, J. G. & HOKFELT, T. 1998. Hypocretin/orexin- and 

melanin-concentrating hormone-expressing cells form distinct populations in the 
rodent lateral hypothalamus: relationship to the neuropeptide Y and agouti gene-
related protein systems. J Comp Neurol, 402, 460-74. 

BURDAKOV, D., GERASIMENKO, O. & VERKHRATSKY, A. 2005a. Physiological changes in 
glucose differentially modulate the excitability of hypothalamic melanin-
concentrating hormone and orexin neurons in situ. J Neurosci, 25, 2429-33. 

BURDAKOV, D., LUCKMAN, S. M. & VERKHRATSKY, A. 2005b. Glucose-sensing neurons of the 
hypothalamus. Philos Trans R Soc Lond B Biol Sci, 360, 2227-35. 

CAMPFIELD, L. A., BRANDON, P. & SMITH, F. J. 1985. On-line continuous measurement of 
blood glucose and meal pattern in free-feeding rats: the role of glucose in meal 
initiation. Brain Res Bull, 14, 605-16. 

CANABAL, D. D., SONG, Z., POTIAN, J. G., BEUVE, A., MCARDLE, J. J. & ROUTH, V. H. 2007. 
Glucose, insulin, and leptin signaling pathways modulate nitric oxide synthesis in 
glucose-inhibited neurons in the ventromedial hypothalamus. Am J Physiol Regul 
Integr Comp Physiol, 292, R1418-28. 

CARLING, D. 2004. The AMP-activated protein kinase cascade--a unifying system for energy 
control. Trends Biochem Sci, 29, 18-24. 

CHAN, O., LAWSON, M., ZHU, W., BEVERLY, J. L. & SHERWIN, R. S. 2007. ATP-sensitive K(+) 
channels regulate the release of GABA in the ventromedial hypothalamus during 
hypoglycemia. Diabetes, 56, 1120-6. 

CHENG, K., SIMPSON, S. J. & RAUBENHEIMER, D. 2008. A geometry of regulatory scaling. Am 
Nat, 172, 681-93. 

CLARET, M., SMITH, M. A., BATTERHAM, R. L., SELMAN, C., CHOUDHURY, A. I., FRYER, L. G. 
D., CLEMENTS, M., AL-QASSAB, H., HEFFRON, H., XU, A. W., SPEAKMAN, J. R., BARSH, 
G. S., VIOLLET, B., VAULONT, S., ASHFORD, M. L. J., CARLING, D. & WITHERS, D. J. 



206 
 

2007. AMPK is essential for energy homeostasis regulation and glucose sensing by 
POMC and AgRP neurons. Journal of Clinical Investigation, 117, 2325-2336. 

CLEARY, J., WELDON, D. T., O'HARE, E., BILLINGTON, C. & LEVINE, A. S. 1996. Naloxone 
effects on sucrose-motivated behavior. Psychopharmacology (Berl), 126, 110-4. 

CONE, R. D., COWLEY, M. A., BUTLER, A. A., FAN, W., MARKS, D. L. & LOW, M. J. 2001. The 
arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis. Int J 
Obes Relat Metab Disord, 25 Suppl 5, S63-7. 

DALY, T. M. 2004a. AAV-mediated gene transfer to the liver. Methods Mol Biol, 246, 195-9. 
DALY, T. M. 2004b. Overview of adeno-associated viral vectors. Methods Mol Biol, 246, 157-

65. 
DAVIES, S. P., CARLING, D. & HARDIE, D. G. 1989. Tissue distribution of the AMP-activated 

protein kinase, and lack of activation by cyclic-AMP-dependent protein kinase, 
studied using a specific and sensitive peptide assay. Eur J Biochem, 186, 123-8. 

DAVIS, J. D., WIRTSHAFTER, D., ASIN, K. E. & BRIEF, D. 1981. Sustained 
intracerebroventricular infusion of brain fuels reduces body weight and food intake 
in rats. Science, 212, 81-3. 

DAYA, S. & BERNS, K. I. 2008. Gene therapy using adeno-associated virus vectors. Clin 
Microbiol Rev, 21, 583-93. 

DE LA IGLESIA, N., MUKHTAR, M., SEOANE, J., GUINOVART, J. J. & AGIUS, L. 2000. The role of 
the regulatory protein of glucokinase in the glucose sensory mechanism of the 
hepatocyte. J Biol Chem, 275, 10597-603. 

DE LECEA, L., KILDUFF, T. S., PEYRON, C., GAO, X., FOYE, P. E., DANIELSON, P. E., FUKUHARA, 
C., BATTENBERG, E. L., GAUTVIK, V. T., BARTLETT, F. S., 2ND, FRANKEL, W. N., VAN 
DEN POL, A. N., BLOOM, F. E., GAUTVIK, K. M. & SUTCLIFFE, J. G. 1998. The 
hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl 
Acad Sci U S A, 95, 322-7. 

DE SILVA, A., SALEM, V., LONG, C. J., MAKWANA, A., NEWBOULD, R. D., RABINER, E. A., 
GHATEI, M. A., BLOOM, S. R., MATTHEWS, P. M., BEAVER, J. D. & DHILLO, W. S. 2011. 
The Gut Hormones PYY3-36 and GLP-1(7-36) amide Reduce Food Intake and 
Modulate Brain Activity in Appetite Centers in Humans. Cell Metabolism, 14, 700-
706. 

DE VRIES, M. G., ARSENEAU, L. M., LAWSON, M. E. & BEVERLY, J. L. 2003. Extracellular 
glucose in rat ventromedial hypothalamus during acute and recurrent hypoglycemia. 
Diabetes, 52, 2767-73. 

DE VRIES, M. G., LAWSON, M. A. & BEVERLY, J. L. 2005. Hypoglycemia-induced 
noradrenergic activation in the VMH is a result of decreased ambient glucose. Am J 
Physiol Regul Integr Comp Physiol, 289, R977-81. 

DEFALCO, J., TOMISHIMA, M., LIU, H., ZHAO, C., CAI, X., MARTH, J. D., ENQUIST, L. & 
FRIEDMAN, J. M. 2001. Virus-assisted mapping of neural inputs to a feeding center in 
the hypothalamus. Science, 291, 2608-13. 

DHILLON, H., ZIGMAN, J. M., YE, C. P., LEE, C. E., MCGOVERN, R. A., TANG, V. S., KENNY, C. 
D., CHRISTIANSEN, L. M., WHITE, R. D., EDELSTEIN, E. A., COPPARI, R., BALTHASAR, 
N., COWLEY, M. A., CHUA, S., ELMQUIST, J. K. & LOWELLL, B. B. 2006. Leptin directly 
activates SF1 neurons in the VMH, and this action by leptin is required for normal 
body-weight homeostasis. Neuron, 49, 191-203. 

DIGGS-ANDREWS, K. A., SILVERSTEIN, J. M. & FISHER, S. J. 2009. Glucose Sensing in the 
Central Nervous System  



207 
 

DOMINGOS, A. I., VAYNSHTEYN, J., VOSS, H. U., REN, X., GRADINARU, V., ZANG, F., 
DEISSEROTH, K., DE ARAUJO, I. E. & FRIEDMAN, J. 2011. Leptin regulates the reward 
value of nutrient. Nat Neurosci, 14, 1562-8. 

DUALE, H., KASPAROV, S., PATON, J. F. & TESCHEMACHER, A. G. 2005. Differences in 
transductional tropism of adenoviral and lentiviral vectors in the rat brainstem. Exp 
Physiol, 90, 71-8. 

DUAN, D., SHARMA, P., YANG, J., YUE, Y., DUDUS, L., ZHANG, Y., FISHER, K. J. & 
ENGELHARDT, J. F. 1998. Circular intermediates of recombinant adeno-associated 
virus have defined structural characteristics responsible for long-term episomal 
persistence in muscle tissue. J Virol, 72, 8568-77. 

DUNN-MEYNELL, A. A., ROUTH, V. H., KANG, L., GASPERS, L. & LEVIN, B. E. 2002a. 
Glucokinase is the likely mediator of glucosensing in both glucose-excited and 
glucose-inhibited central neurons. Diabetes, 51, 2056-2065. 

DUNN-MEYNELL, A. A., ROUTH, V. H., KANG, L., GASPERS, L. & LEVIN, B. E. 2002b. 
Glucokinase is the likely mediator of glucosensing in both glucose-excited and 
glucose-inhibited central neurons. Diabetes, 51, 2056-65. 

DUNN-MEYNELL, A. A., SANDERS, N. M., COMPTON, D., BECKER, T. C., EIKI, J., ZHANG, B. B. 
& LEVIN, B. E. 2009. Relationship among brain and blood glucose levels and 
spontaneous and glucoprivic feeding. J Neurosci, 29, 7015-22. 

DUS, M., MIN, S., KEENE, A. C., LEE, G. Y. & SUH, G. S. 2011. Taste-independent detection of 
the caloric content of sugar in Drosophila. Proc Natl Acad Sci U S A, 108, 11644-9. 

EGECIOGLU, E., SKIBICKA, K. P., HANSSON, C., ALVAREZ-CRESPO, M., FRIBERG, P. A., 
JERLHAG, E., ENGEL, J. A. & DICKSON, S. L. 2011. Hedonic and incentive signals for 
body weight control. Rev Endocr Metab Disord, 12, 141-51. 

EMMANS, G. C. 1991. Diet selection by animals: theory and experimental design. Proc Nutr 
Soc, 50, 59-64. 

EVANS, S. B., WILKINSON, C. W., GRONBECK, P., BENNETT, J. L., TABORSKY, G. J., JR. & 
FIGLEWICZ, D. P. 2003. Inactivation of the PVN during hypoglycemia partially 
simulates hypoglycemia-associated autonomic failure. Am J Physiol Regul Integr 
Comp Physiol, 284, R57-65. 

EVANS, S. B., WILKINSON, C. W., GRONBECK, P., BENNETT, J. L., ZAVOSH, A., TABORSKY, G. J., 
JR. & FIGLEWICZ, D. P. 2004. Inactivation of the DMH selectively inhibits the ACTH 
and corticosterone responses to hypoglycemia. Am J Physiol Regul Integr Comp 
Physiol, 286, R123-8. 

FAROOQI, I. S., BULLMORE, E., KEOGH, J., GILLARD, J., O'RAHILLY, S. & FLETCHER, P. C. 2007. 
Leptin regulates striatal regions and human eating behavior. Science, 317, 1355. 

FARRELLY, D., BROWN, K. S., TIEMAN, A., REN, J., LIRA, S. A., HAGAN, D., GREGG, R., 
MOOKHTIAR, K. A. & HARIHARAN, N. 1999. Mice mutant for glucokinase regulatory 
protein exhibit decreased liver glucokinase: a sequestration mechanism in metabolic 
regulation. Proc Natl Acad Sci U S A, 96, 14511-6. 

FENNER, D., ODILI, S., HONG, H. K., KOBAYASHI, Y., KOHSAKA, A., SIEPKA, S. M., VITATERNA, 
M. H., CHEN, P., ZELENT, B., GRIMSBY, J., TAKAHASHI, J. S., MATSCHINSKY, F. M. & 
BASS, J. 2011. Generation of N-ethyl-N-nitrosourea (ENU) diabetes models in mice 
demonstrates genotype-specific action of glucokinase activators. J Biol Chem, 286, 
39560-72. 



208 
 

FERRARI, F. K., SAMULSKI, T., SHENK, T. & SAMULSKI, R. J. 1996. Second-strand synthesis is a 
rate-limiting step for efficient transduction by recombinant adeno-associated virus 
vectors. J Virol, 70, 3227-34. 

FIORAMONTI, X., MARSOLLIER, N., SONG, Z., FAKIRA, K. A., PATEL, R. M., BROWN, S., 
DUPARC, T., PICA-MENDEZ, A., SANDERS, N. M., KNAUF, C., VALET, P., MCCRIMMON, 
R. J., BEUVE, A., MAGNAN, C. & ROUTH, V. H. 2010. Ventromedial hypothalamic 
nitric oxide production is necessary for hypoglycemia detection and 
counterregulation. Diabetes, 59, 519-28. 

FRIEDMAN, J. M. 2003. A war on obesity, not the obese. Science, 299, 856-8. 
GARDINER, J. V., KONG, W. M., WARD, H., MURPHY, K. G., DHILLO, W. S. & BLOOM, S. R. 

2005. AAV mediated expression of anti-sense neuropeptide Y cRNA in the arcuate 
nucleus of rats results in decreased weight gain and food intake. Biochem Biophys 
Res Commun, 327, 1088-93. 

GARDLIK, R., PALFFY, R., HODOSY, J., LUKACS, J., TURNA, J. & CELEC, P. 2005. Vectors and 
delivery systems in gene therapy. Med Sci Monit, 11, RA110-21. 

GLASS, M. J., BILLINGTON, C. J. & LEVINE, A. S. 2000. Naltrexone administered to central 
nucleus of amygdala or PVN: neural dissociation of diet and energy. Am J Physiol 
Regul Integr Comp Physiol, 279, R86-92. 

GOLDSTONE, A. P., PRECHTL DE HERNANDEZ, C. G., BEAVER, J. D., MUHAMMED, K., CROESE, 
C., BELL, G., DURIGHEL, G., HUGHES, E., WALDMAN, A. D., FROST, G. & BELL, J. D. 
2009. Fasting biases brain reward systems towards high-calorie foods. Eur J Neurosci, 
30, 1625-35. 

GORDON, J. W., SCANGOS, G. A., PLOTKIN, D. J., BARBOSA, J. A. & RUDDLE, F. H. 1980. 
Genetic-Transformation of Mouse Embryos by Micro-Injection of Purified DNA. 
Proceedings of the National Academy of Sciences of the United States of America-
Biological Sciences, 77, 7380-7384. 

GOWARD, C. R., HARTWELL, R., ATKINSON, T. & SCAWEN, M. D. 1986. The purification and 
characterization of glucokinase from the thermophile Bacillus stearothermophilus. 
Biochem J, 237, 415-20. 

GRIJALVA, C. V. & NOVIN, D. 1990. The Role of the Hypothalamus and Dorsal Vagal Complex 
in Gastrointestinal Function and Pathophysiology. Neurobiology of Stress Ulcers, 597, 
207-222. 

GRILL, H. J. & KAPLAN, J. M. 2002. The neuroanatomical axis for control of energy balance. 
Frontiers in Neuroendocrinology, 23, 2-40. 

GRILL, H. J., SCHWARTZ, M. W., KAPLAN, J. M., FOXHALL, J. S., BREININGER, J. & BASKIN, D. 
G. 2002. Evidence that the caudal brainstem is a target for the inhibitory effect of 
leptin on food intake. Endocrinology, 143, 239-246. 

GRILL, H. J., SKIBICKA, K. P. & HAYES, M. R. 2007. Imaging obesity: fMRI, food reward, and 
feeding. Cell Metabolism, 6, 423-425. 

GRIMM, D., KERN, A., RITTNER, K. & KLEINSCHMIDT, J. A. 1998. Novel tools for production 
and purification of recombinant adenoassociated virus vectors. Hum Gene Ther, 9, 
2745-60. 

HAJNAL, A., SMITH, G. P. & NORGREN, R. 2004. Oral sucrose stimulation increases 
accumbens dopamine in the rat. Am J Physiol Regul Integr Comp Physiol, 286, R31-7. 

HARRIS, G. C., WIMMER, M. & ASTON-JONES, G. 2005. A role for lateral hypothalamic orexin 
neurons in reward seeking. Nature, 437, 556-9. 



209 
 

HE, B., WHITE, B. D., EDWARDS, G. L. & MARTIN, R. J. 1998. Neuropeptide Y antibody 
attenuates 2-deoxy-D-glucose induced feeding in rats. Brain Res, 781, 348-50. 

HOESS, R. H. & ABREMSKI, K. 1985. Mechanism of Strand Cleavage and Exchange in the Cre-
Lox Site-Specific Recombination System. Journal of Molecular Biology, 181, 351-362. 

HORVATH, T. L., DIANO, S. & VAN DEN POL, A. N. 1999. Synaptic interaction between 
hypocretin (orexin) and neuropeptide Y cells in the rodent and primate 
hypothalamus: a novel circuit implicated in metabolic and endocrine regulations. J 
Neurosci, 19, 1072-87. 

HUSSAIN, S. S. & BLOOM, S. R. 2011a. The pharmacological treatment and management of 
obesity. Postgrad Med. 2011 Feb (accepted for publication). 

HUSSAIN, S. S. & BLOOM, S. R. 2011b. The pharmacological treatment and management of 
obesity. Postgrad Med, 123, 34-44. 

HUSSAIN, S. S. & BLOOM, S. R. 2012. The regulation of food intake by the gut-brain axis: 
implications for obesity. Int J Obes (Lond). 

IBRAHIM, N., BOSCH, M. A., SMART, J. L., QIU, J., RUBINSTEIN, M., RONNEKLEIV, O. K., LOW, 
M. J. & KELLY, M. J. 2003. Hypothalamic proopiomelanocortin neurons are glucose 
responsive and express K(ATP) channels. Endocrinology, 144, 1331-40. 

IINO, T., HASHIMOTO, N., SASAKI, K., OHYAMA, S., YOSHIMOTO, R., HOSAKA, H., 
HASEGAWA, T., CHIBA, M., NAGATA, Y., EIKI, J. & NISHIMURA, T. 2009. Structure-
activity relationships of 3,5-disubstituted benzamides as glucokinase activators with 
potent in vivo efficacy. Bioorg Med Chem, 17, 3800-9. 

IM, D. S. & MUZYCZKA, N. 1990. The AAV origin binding protein Rep68 is an ATP-dependent 
site-specific endonuclease with DNA helicase activity. Cell, 61, 447-57. 

ISHIHARA, H., MAECHLER, P., GJINOVCI, A., HERRERA, P. L. & WOLLHEIM, C. B. 2003. Islet 
beta-cell secretion determines glucagon release from neighbouring alpha-cells. Nat 
Cell Biol, 5, 330-5. 

IYNEDJIAN, P. B. 2009. Molecular physiology of mammalian glucokinase. Cell Mol Life Sci, 66, 
27-42. 

IYNEDJIAN, P. B., PILOT, P. R., NOUSPIKEL, T., MILBURN, J. L., QUAADE, C., HUGHES, S., UCLA, 
C. & NEWGARD, C. B. 1989. Differential expression and regulation of the glucokinase 
gene in liver and islets of Langerhans. Proc Natl Acad Sci U S A, 86, 7838-42. 

JAMES, W. P. 2008. The fundamental drivers of the obesity epidemic. Obes Rev, 9 Suppl 1, 6-
13. 

JAY, F. T., LAUGHLIN, C. A. & CARTER, B. J. 1981. Eukaryotic translational control: adeno-
associated virus protein synthesis is affected by a mutation in the adenovirus DNA-
binding protein. Proc Natl Acad Sci U S A, 78, 2927-31. 

JORDAN, S. D., KONNER, A. C. & BRUNING, J. C. 2010. Sensing the fuels: glucose and lipid 
signaling in the CNS controlling energy homeostasis. Cell Mol Life Sci, 67, 3255-73. 

KALRA, S. P., DUBE, M. G., PU, S. Y., XU, B., HORVATH, T. L. & KALRA, P. S. 1999. Interacting 
appetite-regulating pathways in the hypothalamic regulation of body weight. 
Endocrine Reviews, 20, 68-100. 

KAMATA, K., MITSUYA, M., NISHIMURA, T., EIKI, J. & NAGATA, Y. 2004. Structural basis for 
allosteric regulation of the monomeric allosteric enzyme human glucokinase. 
Structure, 12, 429-38. 

KANAREK, R. B., MATHES, W. F. & PRZYPEK, J. 1996. Intake of dietary sucrose or fat reduces 
amphetamine drinking in rats. Pharmacol Biochem Behav, 54, 719-23. 



210 
 

KANG, L., DUNN-MEYNELL, A. A., ROUTH, V. H., GASPERS, L. D., NAGATA, Y., NISHIMURA, T., 
EIKI, J., ZHANG, B. B. & LEVIN, B. E. 2006. Glucokinase is a critical regulator of 
ventromedial hypothalamic neuronal glucosensing. Diabetes, 55, 412-20. 

KANG, L., ROUTH, V. H., KUZHIKANDATHIL, E. V., GASPERS, L. D. & LEVIN, B. E. 2004. 
Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus 
glucosensing neurons. Diabetes, 53, 549-59. 

KANG, L., SANDERS, N. M., DUNN-MEYNELL, A. A., GASPERS, L. D., ROUTH, V. H., THOMAS, 
A. P. & LEVIN, B. E. 2008. Prior hypoglycemia enhances glucose responsiveness in 
some ventromedial hypothalamic glucosensing neurons. Am J Physiol Regul Integr 
Comp Physiol, 294, R784-92. 

KAPLAN, J. M., ARMENTANO, D., SPARER, T. E., WYNN, S. G., PETERSON, P. A., 
WADSWORTH, S. C., COUTURE, K. K., PENNINGTON, S. E., ST GEORGE, J. A., 
GOODING, L. R. & SMITH, A. E. 1997. Characterization of factors involved in 
modulating persistence of transgene expression from recombinant adenovirus in the 
mouse lung. Hum Gene Ther, 8, 45-56. 

KELLEY, A. E. & BERRIDGE, K. C. 2002. The neuroscience of natural rewards: relevance to 
addictive drugs. J Neurosci, 22, 3306-11. 

KIM, M. S., SMALL, C. J., STANLEY, S. A., MORGAN, D. G., SEAL, L. J., KONG, W. M., 
EDWARDS, C. M., ABUSNANA, S., SUNTER, D., GHATEI, M. A. & BLOOM, S. R. 2000. 
The central melanocortin system affects the hypothalamo-pituitary thyroid axis and 
may mediate the effect of leptin. J Clin Invest, 105, 1005-11. 

KLEIN, R. L., HAMBY, M. E., GONG, Y., HIRKO, A. C., WANG, S., HUGHES, J. A., KING, M. A. & 
MEYER, E. M. 2002. Dose and promoter effects of adeno-associated viral vector for 
green fluorescent protein expression in the rat brain. Exp Neurol, 176, 66-74. 

KOKATNUR, M. G., OALMANN, M. C., JOHNSON, W. D., MALCOM, G. T. & STRONG, J. P. 
1979. Fatty acid composition of human adipose tissue from two anatomical sites in a 
biracial community. Am J Clin Nutr, 32, 2198-205. 

KONG, D., VONG, L., PARTON, L. E., YE, C. P., TONG, Q. C., HU, X. X., CHOI, B., BRUNING, J. C. 
& LOWELL, B. B. 2010. Glucose Stimulation of Hypothalamic MCH Neurons Involves 
K-ATP Channels, Is Modulated by UCP2, and Regulates Peripheral Glucose 
Homeostasis. Cell Metabolism, 12, 545-552. 

KONNER, A. C., KLOCKENER, T. & BRUNING, J. C. 2009. Control of energy homeostasis by 
insulin and leptin: targeting the arcuate nucleus and beyond. Physiol Behav, 97, 632-
8. 

KURATA, K., FUJIMOTO, K., SAKATA, T., ETOU, H. & FUKAGAWA, K. 1986. D-glucose 
suppression of eating after intra-third ventricle infusion in rat. Physiol Behav, 37, 
615-20. 

KYOSTIO, S. R., OWENS, R. A., WEITZMAN, M. D., ANTONI, B. A., CHEJANOVSKY, N. & 
CARTER, B. J. 1994. Analysis of adeno-associated virus (AAV) wild-type and mutant 
Rep proteins for their abilities to negatively regulate AAV p5 and p19 mRNA levels. J 
Virol, 68, 2947-57. 

LAM, C. K., CHARI, M. & LAM, T. K. 2009. CNS regulation of glucose homeostasis. Physiology 
(Bethesda), 24, 159-70. 

LAM, C. K., CHARI, M., WANG, P. Y. & LAM, T. K. 2008. Central lactate metabolism regulates 
food intake. Am J Physiol Endocrinol Metab, 295, E491-6. 

LAM, T. K., GUTIERREZ-JUAREZ, R., POCAI, A. & ROSSETTI, L. 2005a. Regulation of blood 
glucose by hypothalamic pyruvate metabolism. Science, 309, 943-7. 



211 
 

LAM, T. K., POCAI, A., GUTIERREZ-JUAREZ, R., OBICI, S., BRYAN, J., AGUILAR-BRYAN, L., 
SCHWARTZ, G. J. & ROSSETTI, L. 2005b. Hypothalamic sensing of circulating fatty 
acids is required for glucose homeostasis. Nat Med, 11, 320-7. 

LAM, T. K., SCHWARTZ, G. J. & ROSSETTI, L. 2005c. Hypothalamic sensing of fatty acids. Nat 
Neurosci, 8, 579-84. 

LAUTERIO, T. J., BOND, J. P. & ULMAN, E. A. 1994. Development and characterization of a 
purified diet to identify obesity-susceptible and resistant rat populations. J Nutr, 124, 
2172-8. 

LEBRUN, B., BARIOHAY, B., MOYSE, E. & JEAN, A. 2006. Brain-derived neurotrophic factor 
(BDNF) and food intake regulation: A minireview. Autonomic Neuroscience-Basic & 
Clinical, 126, 30-38. 

LENIN KAMATCHI, G., VEERARAGAVAN, K., CHANDRA, D. & BAPNA, J. S. 1986. Antagonism of 
acute feeding response to 2-deoxyglucose and 5-thioglucose by GABA antagonists: 
the relative role of ventromedial and lateral hypothalamus. Pharmacol Biochem 
Behav, 25, 59-62. 

LENOIR, M., SERRE, F., CANTIN, L. & AHMED, S. H. 2007. Intense sweetness surpasses 
cocaine reward. PLoS One, 2, e698. 

LEVIN, B. E. 2006. Metabolic sensing neurons and the control of energy homeostasis. Physiol 
Behav, 89, 486-9. 

LEVIN, B. E., BECKER, T. C., EIKI, J., ZHANG, B. B. & DUNN-MEYNELL, A. A. 2008a. 
Ventromedial hypothalamic glucokinase is an important mediator of the 
counterregulatory response to insulin-induced hypoglycemia. Diabetes, 57, 1371-9. 

LEVIN, B. E., BECKER, T. C., EIKI, J., ZHANG, B. B. & DUNN-MEYNELL, A. A. 2008b. 
Ventromedial hypothalamic glucokinase is an important mediator of the 
counterregulatory response to insulin-induced hypoglycemia. Diabetes, 57, 1371-
1379. 

LEVIN, B. E., MAGNAN, C., DUNN-MEYNELL, A. & LE FOLL, C. 2011. Metabolic sensing and 
the brain: who, what, where, and how? Endocrinology, 152, 2552-7. 

LEVIN, B. E., ROUTH, V. H., KANG, L., SANDERS, N. M. & DUNN-MEYNELL, A. A. 2004. 
Neuronal glucosensing: what do we know after 50 years? Diabetes, 53, 2521-8. 

LEVIN, B. E., TRISCARI, J. & SULLIVAN, A. C. 1983. Relationship between sympathetic activity 
and diet-induced obesity in two rat strains. Am J Physiol, 245, R364-71. 

LEVINE, A. S., KOTZ, C. M. & GOSNELL, B. A. 2003. Sugars and fats: the neurobiology of 
preference. J Nutr, 133, 831S-834S. 

LIEDTKE, W. B., MCKINLEY, M. J., WALKER, L. L., ZHANG, H., PFENNING, A. R., DRAGO, J., 
HOCHENDONER, S. J., HILTON, D. L., LAWRENCE, A. J. & DENTON, D. A. 2011. 
Relation of addiction genes to hypothalamic gene changes subserving genesis and 
gratification of a classic instinct, sodium appetite. Proc Natl Acad Sci U S A, 108, 
12509-14. 

LIVAK, K. J. & SCHMITTGEN, T. D. 2001. Analysis of relative gene expression data using real-
time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods, 25, 402-408. 

LOFTUS, T. M., JAWORSKY, D. E., FREHYWOT, G. L., TOWNSEND, C. A., RONNETT, G. V., 
LANE, M. D. & KUHAJDA, F. P. 2000. Reduced food intake and body weight in mice 
treated with fatty acid synthase inhibitors. Science, 288, 2379-81. 

LUCAS, L. R., POMPEI, P. & MCEWEN, B. S. 1999. Correlates of deoxycorticosterone-induced 
salt appetite behavior and basal ganglia neurochemistry. Ann N Y Acad Sci, 897, 423-
8. 



212 
 

LUSBY, E., FIFE, K. H. & BERNS, K. I. 1980. Nucleotide sequence of the inverted terminal 
repetition in adeno-associated virus DNA. J Virol, 34, 402-9. 

LUTTER, M. & NESTLER, E. J. 2009. Homeostatic and hedonic signals interact in the 
regulation of food intake. J Nutr, 139, 629-32. 

LYNCH, R. M., TOMPKINS, L. S., BROOKS, H. L., DUNN-MEYNELL, A. A. & LEVIN, B. E. 2000. 
Localization of glucokinase gene expression in the rat brain. Diabetes, 49, 693-700. 

MA, X., ZUBCEVIC, L. & ASHCROFT, F. M. 2008a. Glucose regulates the effects of leptin on 
hypothalamic POMC neurons. Proc Natl Acad Sci U S A, 105, 9811-6. 

MA, X., ZUBCEVIC, L. & ASHCROFT, F. M. 2008b. Glucose regulates the effects of leptin on 
hypothalamic POMC neurons (Retracted article. See vol. 106, pg 7263, 2009). 
Proceedings of the National Academy of Sciences of the United States of America, 
105, 9811-9816. 

MARKS-KAUFMAN, R. & KANAREK, R. B. 1981. Modifications of nutrient selection induced by 
naloxone in rats. Psychopharmacology (Berl), 74, 321-4. 

MARKS-KAUFMAN, R. & KANAREK, R. B. 1990. Diet selection following a chronic morphine 
and naloxone regimen. Pharmacol Biochem Behav, 35, 665-9. 

MASSA, M. L., GAGLIARDINO, J. J. & FRANCINI, F. 2011. Liver glucokinase: An overview on 
the regulatory mechanisms of its activity. IUBMB Life, 63, 1-6. 

MATSCHINSKY, F. M., MAGNUSON, M. A., ZELENT, D., JETTON, T. L., DOLIBA, N., HAN, Y., 
TAUB, R. & GRIMSBY, J. 2006. The network of glucokinase-expressing cells in glucose 
homeostasis and the potential of glucokinase activators for diabetes therapy. 
Diabetes, 55, 1-12. 

MATSCHINSKY, F. M. & PORTE, D. 2010. Glucokinase activators (GKAs) promise a new 
pharmacotherapy for diabetics. F1000 Med Rep, 2. 

MAYER, J. 1952. The glucostatic theory of regulation of food intake and the problem of 
obesity. Bull New Engl Med Cent, 14, 43-9. 

MAYER, J. 1953. Glucostatic mechanism of regulation of food intake. N Engl J Med, 249, 13-
6. 

MAYER, J. & THOMAS, D. W. 1967. Regulation of food intake and obesity. Science, 156, 328-
37. 

MCCRIMMON, R. 2008. The mechanisms that underlie glucose sensing during 
hypoglycaemia in diabetes. Diabet Med, 25, 513-22. 

MELANSON, K. J., WESTERTERP-PLANTENGA, M. S., SARIS, W. H., SMITH, F. J. & CAMPFIELD, 
L. A. 1999. Blood glucose patterns and appetite in time-blinded humans: 
carbohydrate versus fat. Am J Physiol, 277, R337-45. 

MILLER, D. G., ADAM, M. A. & MILLER, A. D. 1990. Gene transfer by retrovirus vectors occurs 
only in cells that are actively replicating at the time of infection. Mol Cell Biol, 10, 
4239-42. 

MIRSHAMSI, S., LAIDLAW, H. A., NING, K., ANDERSON, E., BURGESS, L. A., GRAY, A., 
SUTHERLAND, C. & ASHFORD, M. L. 2004. Leptin and insulin stimulation of signalling 
pathways in arcuate nucleus neurones: PI3K dependent actin reorganization and 
KATP channel activation. BMC Neurosci, 5, 54. 

MISELIS, R. R. & EPSTEIN, A. N. 1975. Feeding induced by intracerebroventricular 2-deoxy-D-
glucose in the rat. Am J Physiol, 229, 1438-47. 

MIWA, I., MITA, Y., MURATA, T., OKUDA, J., SUGIURA, M., HAMADA, Y. & CHIBA, T. 1994. 
Utility of 3-O-methyl-N-acetyl-D-glucosamine, an N-acetylglucosamine kinase 



213 
 

inhibitor, for accurate assay of glucokinase in pancreatic islets and liver. Enzyme 
Protein, 48, 135-42. 

MIYOSHI, H., TAKAHASHI, M., GAGE, F. H. & VERMA, I. M. 1997. Stable and efficient gene 
transfer into the retina using an HIV-based lentiviral vector. Proc Natl Acad Sci U S A, 
94, 10319-23. 

MORLEY, J. E., LEVINE, A. S., GOSNELL, B. A., KNEIP, J. & GRACE, M. 1987. Effect of 
neuropeptide Y on ingestive behaviors in the rat. Am J Physiol, 252, R599-609. 

MOUNIEN, L., MARTY, N., TARUSSIO, D., METREF, S., GENOUX, D., PREITNER, F., FORETZ, M. 
& THORENS, B. 2010. Glut2-dependent glucose-sensing controls thermoregulation by 
enhancing the leptin sensitivity of NPY and POMC neurons. FASEB J, 24, 1747-58. 

MOUNTJOY, P. D. & RUTTER, G. A. 2007. Glucose sensing by hypothalamic neurones and 
pancreatic islet cells: AMPle evidence for common mechanisms? Exp Physiol, 92, 
311-9. 

MUKHTAR, M., STUBBS, M. & AGIUS, L. 1999. Evidence for glucose and sorbitol-induced 
nuclear export of glucokinase regulatory protein in hepatocytes. FEBS Lett, 462, 453-
8. 

MUROYA, S., YADA, T., SHIODA, S. & TAKIGAWA, M. 1999. Glucose-sensitive neurons in the 
rat arcuate nucleus contain neuropeptide Y. Neurosci Lett, 264, 113-6. 

NALDINI, L., BLOMER, U., GALLAY, P., ORY, D., MULLIGAN, R., GAGE, F. H., VERMA, I. M. & 
TRONO, D. 1996. In vivo gene delivery and stable transduction of nondividing cells by 
a lentiviral vector. Science, 272, 263-7. 

OLDENDORF, W. H. 1971. Brain uptake of radiolabeled amino acids, amines, and hexoses 
after arterial injection. Am J Physiol, 221, 1629-39. 

OLNEY, J. W. 1969. Brain lesions, obesity, and other disturbances in mice treated with 
monosodium glutamate. Science, 164, 719-21. 

OOMURA, Y., KIMURA, K., OOYAMA, H., MAENO, T., IKI, M. & KUNIYOSHI, M. 1964. 
Reciprocal Activities of the Ventromedial and Lateral Hypothalamic Areas of Cats. 
Science, 143, 484-5. 

ORBAN, P. C., CHUI, D. & MARTH, J. D. 1992. Tissue-Specific and Site-Specific DNA 
Recombination in Transgenic Mice. Proceedings of the National Academy of Sciences 
of the United States of America, 89, 6861-6865. 

OSUNDIJI, M. A., LAM, D. D., SHAW, J., YUEH, C. Y., MARKKULA, S. P., HURST, P., COLLIVA, C., 
RODA, A., HEISLER, L. K. & EVANS, M. L. 2012. Brain Glucose Sensors Play a 
Significant Role in the Regulation of Pancreatic Glucose-Stimulated Insulin Secretion. 
Diabetes, 61, 321-328. 

OSUNDIJI, M. A., ZHOU, L., SHAW, J., MOORE, S. P., YUEH, C. Y., SHERWIN, R., HEISLER, L. K. 
& EVANS, M. L. 2010. Brain glucosamine boosts protective glucoprivic feeding. 
Endocrinology, 151, 1499-508. 

PAGE, K. A., SEO, D., BELFORT-DEAGUIAR, R., LACADIE, C., DZUIRA, J., NAIK, S., AMARNATH, 
S., CONSTABLE, R. T., SHERWIN, R. S. & SINHA, R. 2011a. Circulating glucose levels 
modulate neural control of desire for high-calorie foods in humans. J Clin Invest. 

PAGE, K. A., SEO, D., BELFORT-DEAGUIAR, R., LACADIE, C., DZUIRA, J., NAIK, S., AMARNATH, 
S., CONSTABLE, R. T., SHERWIN, R. S. & SINHA, R. 2011b. Circulating glucose levels 
modulate neural control of desire for high-calorie foods in humans. Journal of 
Clinical Investigation, 121, 4161-4169. 

PALKOVITS, M. 1983. Punch sampling biopsy technique. Methods Enzymol, 103, 368-76. 



214 
 

PALOMEQUE, J., CHEMALY, E. R., COLOSI, P., WELLMAN, J. A., ZHOU, S., DEL MONTE, F. & 
HAJJAR, R. J. 2007. Efficiency of eight different AAV serotypes in transducing rat 
myocardium in vivo. Gene Ther, 14, 989-97. 

PANKSEPP, J. & ROSSI, J., 3RD 1981. D-glucose infusions into the basal ventromedial 
hypothalamus and feeding. Behav Brain Res, 3, 381-92. 

PARK, Y. B., CHOI, Y. J., PARK, S. Y., KIM, J. Y., KIM, S. H., SONG, D. K., WON, K. C. & KIM, Y. 
W. 2011. ATP-Sensitive Potassium Channel-Deficient Mice Show Hyperphagia but 
Are Resistant to Obesity. Diabetes Metab J, 35, 219-25. 

PARTON, L. E., YE, C. P., COPPARI, R., ENRIORI, P. J., CHOI, B., ZHANG, C. Y., XU, C., VIANNA, 
C. R., BALTHASAR, N., LEE, C. E., ELMQUIST, J. K., COWLEY, M. A. & LOWELL, B. B. 
2007a. Glucose sensing by POMC neurons regulates glucose homeostasis and is 
impaired in obesity. Nature, 449, 228-U7. 

PARTON, L. E., YE, C. P., COPPARI, R., ENRIORI, P. J., CHOI, B., ZHANG, C. Y., XU, C., VIANNA, 
C. R., BALTHASAR, N., LEE, C. E., ELMQUIST, J. K., COWLEY, M. A. & LOWELL, B. B. 
2007b. Glucose sensing by POMC neurons regulates glucose homeostasis and is 
impaired in obesity. Nature, 449, 228-32. 

PATTERSON, M., MURPHY, K. G., LE ROUX, C. W., GHATEI, M. A. & BLOOM, S. R. 2005. 
Characterization of ghrelin-like immunoreactivity in human plasma. J Clin Endocrinol 
Metab, 90, 2205-11. 

PATTERSON, M., MURPHY, K. G., PATEL, S. R., PATEL, N. A., GREENWOOD, H. C., COOKE, J. 
H., CAMPBELL, D., BEWICK, G. A., GHATEI, M. A. & BLOOM, S. R. 2009. Hypothalamic 
injection of oxyntomodulin suppresses circulating ghrelin-like immunoreactivity. 
Endocrinology, 150, 3513-20. 

PAXINOS, G. & WATSON, C. 2009. The rat brain in stereotaxic coordinates, London, 
Academic. 

PELLERIN, L., PELLEGRI, G., BITTAR, P. G., CHARNAY, Y., BOURAS, C., MARTIN, J. L., STELLA, N. 
& MAGISTRETTI, P. J. 1998. Evidence supporting the existence of an activity-
dependent astrocyte-neuron lactate shuttle. Dev Neurosci, 20, 291-9. 

PENICAUD, L., LELOUP, C., FIORAMONTI, X., LORSIGNOL, A. & BENANI, A. 2006. Brain 
glucose sensing: a subtle mechanism. Curr Opin Clin Nutr Metab Care, 9, 458-62. 

PLUM, L., MA, X., HAMPEL, B., BALTHASAR, N., COPPARI, R., MUNZBERG, H., 
SHANABROUGH, M., BURDAKOV, D., ROTHER, E., JANOSCHEK, R., ALBER, J., 
BELGARDT, B. F., KOCH, L., SEIBLER, J., SCHWENK, F., FEKETE, C., SUZUKI, A., MAK, T. 
W., KRONE, W., HORVATH, T. L., ASHCROFT, F. M. & BRUNING, J. C. 2006. Enhanced 
PIP3 signaling in POMC neurons causes KATP channel activation and leads to diet-
sensitive obesity. J Clin Invest, 116, 1886-901. 

PONNAZHAGAN, S., MUKHERJEE, P., YODER, M. C., WANG, X. S., ZHOU, S. Z., KAPLAN, J., 
WADSWORTH, S. & SRIVASTAVA, A. 1997. Adeno-associated virus 2-mediated gene 
transfer in vivo: organ-tropism and expression of transduced sequences in mice. 
Gene, 190, 203-10. 

POSTIC, C., SHIOTA, M. & MAGNUSON, M. A. 2001. Cell-specific roles of glucokinase in 
glucose homeostasis. Recent Prog Horm Res, 56, 195-217. 

PRICE, C. J., HOYDA, T. D. & FERGUSON, A. V. 2008. The area postrema: A brain monitor and 
integrator of systemic autonomic state. Neuroscientist, 14, 182-194. 

PRINTZ, R. L., MAGNUSON, M. A. & GRANNER, D. K. 1993. Mammalian glucokinase. Annu 
Rev Nutr, 13, 463-96. 



215 
 

QIAN, S., CHEN, H., WEINGARTH, D., TRUMBAUER, M. E., NOVI, D. E., GUAN, X. M., YU, H., 
SHEN, Z., FENG, Y., FRAZIER, E., CHEN, A. R., CAMACHO, R. E., SHEARMAN, L. P., 
GOPAL-TRUTER, S., MACNEIL, D. J., VAN DER PLOEG, L. H. T. & MARSH, D. J. 2002. 
Neither agouti-related protein nor neuropeptide Y is critically required for the 
regulation of energy homeostasis in mice. Molecular and Cellular Biology, 22, 5027-
5035. 

QU, D. Q., LUDWIG, D. S., GAMMELTOFT, S., PIPER, M., PELLEYMOUNTER, M. A., CULLEN, M. 
J., MATHES, W. F., PRZYPEK, J., KANAREK, R. & MARATOSFLIER, E. 1996. A role for 
melanin-concentrating hormone in the central regulation of feeding behaviour. 
Nature, 380, 243-247. 

RAUBENHEIMER, D. & SIMPSON, S. J. 1997. Integrative models of nutrient balancing: 
application to insects and vertebrates. Nutr Res Rev, 10, 151-79. 

REN, X. Y., FERREIRA, J. G., ZHOU, L. G., SHAMMAH-LAGNADO, S. J., YECKEL, C. W. & DE 
ARAUJO, I. E. 2010. Nutrient Selection in the Absence of Taste Receptor Signaling. 
Journal of Neuroscience, 30, 8012-8023. 

RONCERO, I., ALVAREZ, E., VAZQUEZ, P. & BLAZQUEZ, E. 2000. Functional glucokinase 
isoforms are expressed in rat brain. J Neurochem, 74, 1848-57. 

ROSE, J. A., MAIZEL, J. V., JR., INMAN, J. K. & SHATKIN, A. J. 1971. Structural proteins of 
adenovirus-associated viruses. J Virol, 8, 766-70. 

ROSICKA, M., KRSEK, M., MATOULEK, M., JARKOVSKA, Z., MAREK, J., JUSTOVA, V. & 
LACINOVA, Z. 2003. Serum ghrelin levels in obese patients: The relationship to serum 
leptin levels and soluble leptin receptors levels. Physiological Research, 52, 61-66. 

ROSSI, J., BALTHASAR, N., OLSON, D., SCOTT, M., BERGLUND, E., LEE, C. E., CHOI, M. J., 
LAUZON, D., LOWELL, B. B. & ELMQUIST, J. K. 2011. Melanocortin-4 Receptors 
Expressed by Cholinergic Neurons Regulate Energy Balance and Glucose 
Homeostasis. Cell Metabolism, 13, 195-204. 

ROSSI, M., CHOI, S. J., OSHEA, D., MIYOSHI, T., GHATEI, M. A. & BLOOM, S. R. 1997. Melanin-
Concentrating hormone acutely stimulates feeding, but chronic administration has 
no effect on body weight. Endocrinology, 138, 351-355. 

ROUTH, V. H. 2002. Glucose-sensing neurons: are they physiologically relevant? Physiol 
Behav, 76, 403-13. 

ROUTH, V. H. 2010. Glucose sensing neurons in the ventromedial hypothalamus. Sensors 
(Basel), 10, 9002-25. 

SACHDEVA, G., D'COSTA, J., CHO, J. E., KACHAPATI, K., CHOUDHRY, V. & ARYA, S. K. 2007. 
Chimeric HIV-1 and HIV-2 lentiviral vectors with added safety insurance. Journal of 
Medical Virology, 79, 118-126. 

SAKURAI, T., AMEMIYA, A., ISHII, M., MATSUZAKI, I., CHEMELLI, R. M., TANAKA, H., 
WILLIAMS, S. C., RICHARDSON, J. A., KOZLOWSKI, G. P., WILSON, S., ARCH, J. R. S., 
BUCKINGHAM, R. E., HAYNES, A. C., CARR, S. A., ANNAN, R. S., MCNULTY, D. E., LIU, 
W. S., TERRETT, J. A., ELSHOURBAGY, N. A., BERGSMA, D. J. & YANAGISAWA, M. 
1998. Orexins and orexin receptors: A family of hypothalamic neuropeptides and G 
protein-coupled receptors that regulate feeding behavior (vol 92, pg 573, 1998). Cell, 
92, U29-U29. 

SALKOVIC-PETRISIC, M. & LACKOVIC, Z. 2003. Intracerebroventricular administration of 
betacytotoxics alters expression of brain monoamine transporter genes. J Neural 
Transm, 110, 15-29. 



216 
 

SAMBROOK, J., FRITSCH, E. F. & MANIATIS, T. 1989. Molecular cloning : a laboratory manual, 
Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory. 

SAMULSKI, R. J., CHANG, L. S. & SHENK, T. 1989. Helper-free stocks of recombinant adeno-
associated viruses: normal integration does not require viral gene expression. J Virol, 
63, 3822-8. 

SCHWARTZ, G. J. 2000. The role of gastrointestinal vagal afferents in the control of food 
intake: current prospects. Nutrition, 16, 866-73. 

SCHWARTZ, M. W., WOODS, S. C., PORTE, D., JR., SEELEY, R. J. & BASKIN, D. G. 2000. Central 
nervous system control of food intake. Nature, 404, 661-71. 

SCLAFANI, A., TOUZANI, K. & BODNAR, R. J. 2011. Dopamine and learned food preferences. 
Physiol Behav, 104, 64-8. 

SERGEYEV, V., BROBERGER, C., GORBATYUK, O. & HOKFELT, T. 2000. Effect of 2-
mercaptoacetate and 2-deoxy-D-glucose administration on the expression of NPY, 
AGRP, POMC, MCH and hypocretin/orexin in the rat hypothalamus. Neuroreport, 11, 
117-21. 

SILVER, I. A. & ERECINSKA, M. 1994. Extracellular glucose concentration in mammalian 
brain: continuous monitoring of changes during increased neuronal activity and upon 
limitation in oxygen supply in normo-, hypo-, and hyperglycemic animals. J Neurosci, 
14, 5068-76. 

SIMPSON, S. J. & RAUBENHEIMER, D. 1997. Geometric analysis of macronutrient selection in 
the rat. Appetite, 28, 201-213. 

SIMPSON, S. J. & RAUBENHEIMER, D. 2005. Obesity: the protein leverage hypothesis. Obes 
Rev, 6, 133-42. 

SINDELAR, D. K., STE MARIE, L., MIURA, G. I., PALMITER, R. D., MCMINN, J. E., MORTON, G. J. 
& SCHWARTZ, M. W. 2004. Neuropeptide Y is required for hyperphagic feeding in 
response to neuroglucopenia. Endocrinology, 145, 3363-8. 

SMITH, G. P. & EPSTEIN, A. N. 1969. Increased feeding in response to decreased glucose 
utilization in the rat and monkey. Am J Physiol, 217, 1083-7. 

SORENSEN, A., MAYNTZ, D., RAUBENHEIMER, D. & SIMPSON, S. J. 2008. Protein-leverage in 
mice: the geometry of macronutrient balancing and consequences for fat deposition. 
Obesity (Silver Spring), 16, 566-71. 

SPANSWICK, D., SMITH, M. A., GROPPI, V. E., LOGAN, S. D. & ASHFORD, M. L. 1997. Leptin 
inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. 
Nature, 390, 521-5. 

SRIVASTAVA, A., LUSBY, E. W. & BERNS, K. I. 1983. Nucleotide sequence and organization of 
the adeno-associated virus 2 genome. J Virol, 45, 555-64. 

STUBBS, M., AISTON, S. & AGIUS, L. 2000. Subcellular localization, mobility, and kinetic 
activity of glucokinase in glucose-responsive insulin-secreting cells. Diabetes, 49, 
2048-55. 

SUMMERFORD, C. & SAMULSKI, R. J. 1998. Membrane-associated heparan sulfate 
proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol, 72, 1438-
45. 

SWANSON, L. W. 1999. The neuroanatomy revolution of the 1970s and the hypothalamus. 
Brain Res Bull, 50, 397. 

TEMIN, H. M. & BALTIMORE, D. 1972. RNA-directed DNA synthesis and RNA tumor viruses. 
Adv Virus Res, 17, 129-86. 



217 
 

TER HORST, G. J., LUITEN, P. G. & KUIPERS, F. 1984. Descending pathways from 
hypothalamus to dorsal motor vagus and ambiguus nuclei in the rat. J Auton Nerv 
Syst, 11, 59-75. 

THOMPSON, D. A. & CAMPBELL, R. G. 1977. Hunger in humans induced by 2-deoxy-D-
glucose: glucoprivic control of taste preference and food intake. Science, 198, 1065-
8. 

THORENS, B. 2011. Brain glucose sensing and neural regulation of insulin and glucagon 
secretion. Diabetes Obes Metab, 13 Suppl 1, 82-8. 

TIESJEMA, B., LA FLEUR, S. E., LUIJENDIJK, M. C. & ADAN, R. A. 2009. Sustained NPY 
overexpression in the PVN results in obesity via temporarily increasing food intake. 
Obesity (Silver Spring), 17, 1448-50. 

TKACS, N. C., DUNN-MEYNELL, A. A. & LEVIN, B. E. 2000. Presumed apoptosis and reduced 
arcuate nucleus neuropeptide Y and pro-opiomelanocortin mRNA in non-coma 
hypoglycemia. Diabetes, 49, 820-6. 

TORDOFF, M. G., TLUCZEK, J. P. & FRIEDMAN, M. I. 1989. Effect of hepatic portal glucose 
concentration on food intake and metabolism. Am J Physiol, 257, R1474-80. 

TREMPE, J. P. & CARTER, B. J. 1988. Regulation of adeno-associated virus gene expression in 
293 cells: control of mRNA abundance and translation. J Virol, 62, 68-74. 

TSUJII, S. & BRAY, G. A. 1990. Effects of glucose, 2-deoxyglucose, phlorizin, and insulin on 
food intake of lean and fatty rats. Am J Physiol, 258, E476-81. 

UKPDS 1998. Intensive blood-glucose control with sulphonylureas or insulin compared with 
conventional treatment and risk of complications in patients with type 2 diabetes 
(UKPDS 33). . Lancet, 352, 837-53. 

UNITED STATES. DEPARTMENT OF HEALTH, E., WELFARE. HEALTH, S. & MENTAL HEALTH 
ADMINISTRATION. CENTER FOR DISEASE, C. 1972. Ten-state nutrition survey : 1968-
1970, Atlanta, [Ga], DHEW. 

VAN DEN TOP, M., LYONS, D. J., LEE, K., CODERRE, E., RENAUD, L. P. & SPANSWICK, D. 2007. 
Pharmacological and molecular characterization of ATP-sensitive K+ conductances in 
cart and NPY/AgRP expressing neurons of the hypothalamic arcuate nucleus. 
Neuroscience, 144, 815-824. 

WANG, R., CRUCIANI-GUGLIELMACCI, C., MIGRENNE, S., MAGNAN, C., COTERO, V. E. & 
ROUTH, V. H. 2006. Effects of oleic acid on distinct populations of neurons in the 
hypothalamic arcuate nucleus are dependent on extracellular glucose levels. J 
Neurophysiol, 95, 1491-8. 

WELCH, C. C., GRACE, M. K., BILLINGTON, C. J. & LEVINE, A. S. 1994. Preference and diet type 
affect macronutrient selection after morphine, NPY, norepinephrine, and 
deprivation. Am J Physiol, 266, R426-33. 

WELDON, D. T., O'HARE, E., CLEARY, J., BILLINGTON, C. J. & LEVINE, A. S. 1996. Effect of 
naloxone on intake of cornstarch, sucrose, and polycose diets in restricted and 
nonrestricted rats. Am J Physiol, 270, R1183-8. 

WHO. 2006. Obesity and overweight factsheet [Online]. Available: 
http://www.who.int/mediacentre/factsheets/fs311/en/index.html [Accessed 2nd 
January 2011]. 

WOOD, S. M., WOOD, J. R., GHATEI, M. A., LEE, Y. C., O'SHAUGHNESSY, D. & BLOOM, S. R. 
1981. Bombesin, somatostatin and neurotensin-like immunoreactivity in bronchial 
carcinoma. J Clin Endocrinol Metab, 53, 1310-2. 

http://www.who.int/mediacentre/factsheets/fs311/en/index.html


218 
 

WURTMAN, J. J. 1985. Neurotransmitter control of carbohydrate consumption. Ann N Y 
Acad Sci, 443, 145-51. 

WURTMAN, J. J. & WURTMAN, R. J. 1979. Drugs that enhance central serotoninergic 
transmission diminish elective carbohydrate consumption by rats. Life Sci, 24, 895-
903. 

XU, B. J., GOULDING, E. H., ZANG, K. L., CEPOI, D., CONE, R. D., JONES, K. R., TECOTT, L. H. & 
REICHARDT, L. F. 2003. Brain-derived neurotrophic factor regulates energy balance 
downstream of melanocortin-4 receptor. Nature Neuroscience, 6, 736-742. 

YANG, X. J., MASTAITIS, J., MIZUNO, T. & MOBBS, C. V. 2007. Glucokinase regulates 
reproductive function, glucocorticoid secretion, food intake, and hypothalamic gene 
expression. Endocrinology, 148, 1928-32. 

ZARJEVSKI, N., CUSIN, I., VETTOR, R., ROHNERJEANRENAUD, F. & JEANRENAUD, B. 1993. 
Chronic Intracerebroventricular Neuropeptide-Y Administration to Normal Rats 
Mimics Hormonal and Metabolic Changes of Obesity. Endocrinology, 133, 1753-
1758. 

ZHANG, Y., ZHOU, J., CORLL, C., PORTER, J. R., MARTIN, R. J. & ROANE, D. S. 2004. Evidence 
for hypothalamic K+(ATP) channels in the modulation of glucose homeostasis. Eur J 
Pharmacol, 492, 71-9. 

ZHOU, L., PODOLSKY, N., SANG, Z., DING, Y., FAN, X., TONG, Q., LEVIN, B. E. & MCCRIMMON, 
R. J. 2010. The medial amygdalar nucleus: a novel glucose-sensing region that 
modulates the counterregulatory response to hypoglycemia. Diabetes, 59, 2646-52. 

ZHOU, L. G., YUEH, C. Y., LAM, D. D., SHAW, J., OSUNDIJI, M., GARFIELD, A. S., EVANS, M. & 
HEISLER, L. K. 2011. Glucokinase inhibitor glucosamine stimulates feeding and 
activates hypothalamic neuropeptide Y and orexin neurons. Behavioural Brain 
Research, 222, 274-278. 

 

 

  



219 
 

8 APPENDIX 

8.1 Appendix I – Solutions  

3M Alcoholic KOH solution:  

Add 39g KOH pastels to 200 ml 65% ethanol  

 

5M ammonium acetate  

Dissolve 385g CH3.COONH4 in 600ml autoclaved distilled water, then make 

up to 1l. 

 

Buffer R 

 40mM Pipes buffer pH 7.6, 1.5mM DCHBS, 17.5mM magnesium-ions. 

 

2M Calcium chloride:  

10.8g CaCl2.6H2O was dissolved in 20ml GDW and sterilise by filtration through 

0.22μm filter and store in 1ml aliquots at -20˚C  

 

Caesium chloride-saturated propan-2-ol:  

Mix 100g CsCl2, 100ml GDW and 100ml propan-2-ol and leave to settle.  

 

0.5M ethylenediaminetetra-acetic acid (EDTA):  
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In 800ml autoclaved water dissolve 186.1g C10H14H2O8Na2.2H2O and adjust to pH 

8.0 with 1M NaOH. Make up to 1L with water  

 

 

Gel loading buffer:  

Mix 3.125ml 80% glycerol, 50μl 0.5M EDTA, and 10mg orange G in 6.075ml  

of autoclaved distilled water.  

 

Glucokinase extraction buffer:  

Dissolve 0.508g MgCl2, 0.913g Sodium ethylenediamine tetraacetate, 5.591g KCl 

and 0.35ml 2-mercaptoethanol in 500ml GDW. Use 1M KOH to alter the pH of the 

solution to 7.3.  

 

Gly- Gly:  

Dissolve 6.6g Gly –gly in 500ml. Use 5M KOH to alter pH to 8.  

 

GTE  

Mix 2.5ml 1M Tris-HCl, pH 8.0, 2ml 0.5M C10H14H2O8Na2.2H2O and 5ml 18% 

glucose and top up to 100ml. Sterilise by passing through a 0.2μm filter.  

 

HEPES-buffered saline (HBS)  
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280mM NaCl, 10mM KCl, 1.5mM Na2HPO4, 12mM dextrose, 50mM HEPES (Sigma) 

pH7.07. Sterilise by filtration through 0.22μm filter and store in 5ml aliquots at -

20˚C  

 

Hybridisation buffer  

Dissolve 0.5g dried milk powder in 48ml GDW and 0.5ml 500mM EDTA. Add 25ml 

1M Na phosphate, 25 ml 20 % SDS, 2.5mM ATA.  

 

LB culture media  

Dissolve 5g sodium chloride, 10g tryptone and 5g yeast extract to 1l of  

distilled water. Adjust to pH 7.5 with 10M sodium hydroxide and sterilise by  

autoclaving.  

 

Lysis buffer  

Add 8.765g NaCl, 6.055g Tris, make up to 1l with GDW and adjust to pH8.5.  

 

1M magnesium chloride  

Dissolve 203.3g MgCl2 in 1L GDW.  

 

0.06M Phosphate buffer 
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Dissolve 48g Na2HPO4.2H2O, 4.13g KHPO4, 18.61g C10H14H2ONa2.2H2O and 2.5g 

NaN3 in 5l. GDW that has been boiled and allowed to cool. Adjust pH to 7.4 and 

store at 4°C. 

 

3M potassium acetate  

Dissolve 294.4g CH3COOK in 500ml water, add 115ml glacial acetic acid and water 

up to 1L.  

 

Reagent R 

0.4mM aminophenazonel, 1mM ATP, glycerol-kinase > 0.4 U/ml, glycerol-3-

phosphate oxidase > 1.5 U/ml, peroxidase > 0.5 U/ml. ascorbic acid oxidase > 7.0 

KU/l. 

 

2M sodium acetate  

pH 5.2: Dissolve 164.1g CH3COONa in 800ml a/c water, adjust to pH 5.2 with glacial 

acetic acid and make up to 1L with water  

 

5M sodium chloride  

Dissolve 292.2 g NaCl in 1L GDW.  

 

20% sodium dodecyl sulphate (SDS)  

Add 200g SDS to 800ml a/c water, heat to 60˚C while stirring. Allow to cool and 

make up to 1L with water.  
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0.2% sodium hydroxide 1% SDS  

Add 3ml 10M NaOH to 140ml GDW, mix and add 7.5ml 20% SDS.  

 

20xSSC  

Dissolve 1.753g NaCl, 14.2g Na2HPO4 and 7.4g C10H14H2O8Na2.2H2O in 700ml 

GDW, adjust to pH 7.7 with 10M NaOH and make up to 1L with GDW.  

 

50 x TAE  

Dissolve 242g Trizma base in 843ml water and mix in 57ml glacial acetic acid and 

100ml 0.5M C10H14H2O8Na2.2H2O.  

 

0.1 x TE  

1mM Tris-HCl, pH 0.8 and 0.1mM EDTA, pH 0.8  

2M Tris-HCl, pH 8.0:  

dissolve 121.1g Trizma base in 450ml GDW and adjust to pH 8.0 with HCl. Make 

up to 500ml.  

 

Versene  

2.7mM KCl, 0.14M NaCl 1.5mM KH2PO4, 8mM Na2HPO4.2H2O, 3mM EDTA, 0.1% 

phenol red. 230  
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8.2 Appendix II – Coronal section of rat brain 

 

Figure Appendix 1: Coronal section of the rat brain 

Schematic showing 3.36mm posterior to bregma of the rat brain, which approximately 

corresponds to the co-ordinates used to target the arcuate nucleus in this work (-3.4 from 

bregma). The arcuate nucleus is highlighted in red. Reproduced from “The Rat Brain in 

Stereotaxic Co-ordinates” (Paxinos & Watson C, 2007).  
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8.3 Appendix III – Nutritional information for RM1 normal chow diet 

 

Figure Appendix 2: Nutritional information for RM1 normal chow diet 
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8.4 Appendix IV – Nutritional information for high energy diet (Research Diets 

Inc, USA)  

 

Figure Appendix 3: Nutritional information for high-energy diet (D12266B, Research Diets 

Inc, USA) 
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8.5 Appendix V – List of suppliers  

Advanced Biotechnology Centre, Imperial College, London, UK  

Animalcare Limited, Dunnington, York, UK  

Applied Biosystems, Warrington, UK  

ATCC, Middlesex, UK  

Bayer UK Ltd, Bury St Edmunds, UK  

Beckman Coulter (U.K.), Buckinghamshire, UK  

Bright Instrument Company, Huntingdon, Cambridgeshire, UK  

Boehringer Ingelheim, Berkshire, UK  

Charles River, Bicester, UK  

Clintech, Dublin, Ireland 

CrystalChem, Illinois, USA 

David Kofp Instruments, Tujunga, CA, USA  

Du Pont, Bristol, UK  

Eli Lilly & Co.Ltd, Basingstoke, UK  

Eppendorf, Hamburg, Germany  

Fine Science Tools, Linton, UK  

Fisher Scientific UK, Loughborough, Leicestershire, UK  

GE Healthcare, Buckinghamshire, UK  

Genomics Core Laboratory, Imperial College London, UK  

Graphpad Prism, Graphpad Sorfware, San Diego, CA, USA  
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Helena biosciences, Sunderland, UK  

Invitrogen Life Technologies, Paisley, UK  

Kodak, Hemel Hempstead, Hertfordshire, UK  

LEO Pharma, Buckinghamshire, UK  

L.E West, Barking, UK  

Life Sciences Technology, Eggenstein, Germany  

Linco Research, Missouri, USA 

Merck4Biosciences, UK 

Microvette, Sarstedt, Numbrecht, Germany  

Millipore, Watford, Hertfordshire, UK  

Millpledge Veterinary, Nottinghamshire, UK  

New England Biolabs (UK) Ltd, Hitchin, Hertfordshire, UK  

Novagen, Nottingham, UK  

Oswell DNA Services, Southampton, UK 236  

Parke-Davis, Pontypool, UK  

Plastics-One, Roanoke, Virginia, USA  

Pierce, Rockford, IL, USA  

Promega, Madison, WI, USA  

Randox Laboratories Ltd, County Antrim, UK  

Research Diets Inc, New Brunswick, NJ, USA  

Shandon Southern Products Ltd, Runcorn, UK  
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Sigma Ltd, Poole, Dorset, UK  

Special Diet Services, Witham, Essex, UK  

ThermoFisher Leicestershire, UK  

Tyco Healthcare, Hampshire, UK  

Vet Tech Solutions Ltd, Cheshire, UK  

VWR International Ltd, Poole, UK  

Wallac, Waltham, MA, USA  

WPA, Cambridgeshire, UK 

 


