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Abstract

Climate change affects many statistical descriptions of the environment. The impact

of changes in mean environmental conditions on animal populations has been widely

reported. The variability and autocorrelation of environmental variables are also

changing over time, yet less research has focussed on what impact these changes may

have on populations. Is the research focus on changes in mean conditions justified?

How do changes in different statistical descriptions of climate change affect populations,

and how do the impacts compare? To answer these questions, we developed a simple

stochastic population model, explicitly linked to the environment, and compared the

impacts of changes in environmental mean and variability. We found, using both the

long-term stochastic growth rate and extinction risk as proxies for population fitness,

that changes in variability have a significant impact on population dynamics. The

main gradient along which the relative importance of changes in environmental mean

and variability varied was the population’s distance from its ideal environment. We

also re-analysed existing population models to yield the sensitivity of the population to

changes in environmental mean and variability. Results support the findings from our

model, and confirm the importance of changes in variability for population dynamics.

Previous theoretical and laboratory studies concluded that the autocorrelation in the

environment in part affects the autocorrelation in population time series. So far, this

hypothesis has not been tested using empirical data. We used a database of population

time series to find that the autocorrelation in mean summer temperature is significantly

correlated with the autocorrelation in population time series. Results also show that

environmental variables have become less autocorrelated in most geographical regions,

suggesting that populations’ autocorrelation may also be changing. Autocorrelation in

population time series has been linked to extinction; these results may therefore have

important implications for animal populations.
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providing essential information for Chapter 5, and Tim Coulson and Tom Ezard for

help with the Soay sheep model.

The Reuman lab, i.e., Lawrence Hudson, Lisa Signorile, Julieta Decarre, Georgina

Adams, Emma Defriez, and Lawrence Sheppard for all the chats, help, venting

sessions, and surely patience during my multilingual arguments with my computer.

Ana Bento, the first Silwoodian I met, for making my life at Silwood better, and for

her help and support throughout the project. Ana has also been my go-to reference

for those pesky biological questions. Also Lola Bento, for keeping my sanity in check

by taking me on walks and humouring me by fetching any cylindrical or spherical

object I dared to throw.

My family, for their patience and unconditional support, without which this thesis

would have been much harder to complete.

6



Contents

List of Figures 10

List of Tables 13

1 Introduction 14

2 Background 16

2.1 Population dynamics in stochastic environments . . . . . . . . . . . . . 16

2.1.1 The Lewontin-Cohen model . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Matrix population models . . . . . . . . . . . . . . . . . . . . . . 18

2.1.3 Extinction risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.4 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.5 The link between environment & populations . . . . . . . . . . . 21

2.2 Spectral colours & population dynamics . . . . . . . . . . . . . . . . . . 23

2.2.1 The colour of the environment . . . . . . . . . . . . . . . . . . . 23

2.2.2 Animal populations . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.3 How the environment affects populations . . . . . . . . . . . . . 27

2.2.4 Extinction risk & noise colour . . . . . . . . . . . . . . . . . . . . 29

3 Are changes in the mean or variability of climate signals more

important for long-term stochastic growth rate? 32

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.2 Analysis of climate data . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Theoretically predicted sensitivities . . . . . . . . . . . . . . . . . 38

3.3.2 Results of climate data analysis . . . . . . . . . . . . . . . . . . . 40

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Are changes in the mean or variability of climate signals more

important for extinction risk? 46

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7



4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Are changes in the mean or variability of climate more important for

populations? 58

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Selected studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.1 Dippers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.2 Soay sheep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.3 Eurasian oystercatchers . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.4 Red kangaroos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.5 Emperor penguins . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 An empirical link between the spectral colour of climate and the

spectral colour of field populations in the context of climate change 73

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.1 Data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.2 Preprocessing of weather data . . . . . . . . . . . . . . . . . . . . 78

6.2.3 General methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.4 Testing for correlation between climate and population spectral

exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.5 Testing for change in climate spectral exponent . . . . . . . . . . 79

6.2.6 Correcting for spatial autocorrelation . . . . . . . . . . . . . . . 80

6.2.7 Setup of models . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.4.1 Why summer? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4.2 Extinction risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7 Conclusion 87

7.1 Recommendations for future work . . . . . . . . . . . . . . . . . . . . . 88

7.1.1 Extending the theoretical population model & simulations . . . . 88

7.1.2 Further analyses of empirical data . . . . . . . . . . . . . . . . . 89

7.2 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Appendices 92

8



A Overview of methods 93

B Are changes in the mean or variability of climate signals more

important for long-term stochastic growth rate? 99

B.1 Transforming the environmental variable . . . . . . . . . . . . . . . . . . 99

B.2 Derivation of lnλs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B.3 Derivation of ∂ lnλs/∂µ . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B.4 Derivation of ∂ lnλs/∂σ . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

B.5 Analysis of climate data . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

B.6 Special case with α = 2 and a1 = a2 = a . . . . . . . . . . . . . . . . . . 103

B.7 Additional climate data analysis results . . . . . . . . . . . . . . . . . . 106

B.8 Semelparous populations . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

C Are changes in the mean or variability of climate signals more

important for extinction risk? 107

C.1 Derivation of σ2r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

C.2 Transforming the environmental variable . . . . . . . . . . . . . . . . . . 108

C.3 Derivation of ∂σ2r/∂µ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

C.4 Derivation of ∂σ2r/∂σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

C.5 Sensitivity of G to changes in lnλs and σ2r . . . . . . . . . . . . . . . . . 112

C.6 Additional results for ∂G/∂µ and ∂G/∂σ . . . . . . . . . . . . . . . . . 113

C.7 Additional results for ∂G/∂ lnλs and ∂G/∂σ2r . . . . . . . . . . . . . . . 118

D Are changes in the mean or variability of climate more important for

populations? 120

D.1 Tables of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

E An empirical link between the spectral colour of climate and the

spectral colour of field populations in the context of climate change122

E.1 Effect of noise on univariate models . . . . . . . . . . . . . . . . . . . . . 123

E.2 Validation of the CRU data set with GHCN data . . . . . . . . . . . . . 127

E.3 GPDD filtering process and filtered list of species . . . . . . . . . . . . . 128

E.3.1 List of filtered GPDD populations . . . . . . . . . . . . . . . . . 130

E.4 Additional methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

E.5 Spatial autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

E.6 Results for all climate variables . . . . . . . . . . . . . . . . . . . . . . . 138

E.7 Why summer? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

E.8 Extinction risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

References 145

9



List of Figures

2.1 Stochastic realisations of the Lewontin-Cohen model . . . . . . . . . . . 17

3.1 Example response functions . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Signs of sensitivities of lnλs to changes in µ and σ . . . . . . . . . . . . 39

3.3 Comparison of magnitudes of sensitivities of lnλs to changes in µ and σ 40

3.4 Comparison of change in mean and variability of winter mean

temperature and total spring precipitation in the US . . . . . . . . . . . 41

4.1 Example response functions . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Comparison of the sensitivity of extinction risk to changes in mean and

variability of environment . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Comparison of the sensitivity of extinction risk to changes in mean and

variability of environment, fs = 3 . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Comparison of the sensitivity of log variance to changes in mean and

variability of environment . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5 Comparison of the sensitivity of extinction risk to changes in lnλs and σ2r 56

5.1 Distribution of population size when changing environmental mean and

variability for the dipper population of Sæther et al. (2000) . . . . . . . 62

5.2 Distribution of mean population sizes when changing environmental

mean and variability for the dipper population of Sæther et al. (2000) . 63

5.3 The effect of a change in mean NAO (solid line) and a change in the

standard deviation of NAO (dashed line) on mean population size (a)

and standard deviation of population size (b) of Soay sheep. . . . . . . . 65

5.4 Distribution of population size when changing the mean and variability

of NAO for the Soay sheep population of Coulson et al. (2008) . . . . . 66

5.5 Analysis of the penguin population of Jenouvrier et al. (2012) . . . . . . 68

5.6 Information on how vital rates vary with the environmental variable is

lost in a Markov chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

10



6.1 The impact of environmental spectral colour on population spectral

colour in a stochastic formulation of the Ricker model . . . . . . . . . . 76

6.2 Change in the spectral exponents of mean summer temperature time

series from 1911-1950 to 1951-1990 . . . . . . . . . . . . . . . . . . . . . 82

6.3 Other examples of changes in climate spectral exponents . . . . . . . . . 83

6.4 The effect of winter and summer environmental spectral colour on

population spectral colour . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.5 The relationship between noise and population spectral colour and

extinction risk in the stochastic Ricker model . . . . . . . . . . . . . . . 86

7.1 The change in spectral exponent gives no indication as to the change in

total variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.1 Example time series and power spectrum for mean monthly temperature

between 1950 and 2000 for Montreal, Canada . . . . . . . . . . . . . . . 94

A.2 Examples of time series and their spectra . . . . . . . . . . . . . . . . . 94

A.3 Examples of log-log spectra . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.4 The spectral exponent does not provide information on the structure of

the spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.5 Variance per time series length for brown and AR noise . . . . . . . . . 97

B.1 Comparison of change in mean and variability of summer mean

temperature, winter minimum temperature, and summer maximum

temperature in the US . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

C.1 α = 0.5, fs = 1, a2 = −0.5, t = 10. . . . . . . . . . . . . . . . . . . . . . 113

C.2 α = 0.75, fs = 1, a2 = −0.5, t = 10. . . . . . . . . . . . . . . . . . . . . . 114

C.3 α = 1, fs = 1, a2 = −0.5, t = 10. . . . . . . . . . . . . . . . . . . . . . . 114

C.4 α = 1.5, fs = 1, a2 = −0.5, t = 10. . . . . . . . . . . . . . . . . . . . . . 115

C.5 α = 2, fs = 1/3, a2 = −0.5, t = 10. . . . . . . . . . . . . . . . . . . . . . 115

C.6 α = 2, fs = 1, a2 = −0.1, t = 10. . . . . . . . . . . . . . . . . . . . . . . 116

C.7 α = 2, fs = 1, a2 = −1, t = 10. . . . . . . . . . . . . . . . . . . . . . . . 116

C.8 α = 2, fs = 1, a2 = −1.5, t = 10. . . . . . . . . . . . . . . . . . . . . . . 117

C.9 α = 1, fs = 1, a2 = −0.5, t = 10. . . . . . . . . . . . . . . . . . . . . . . 118

C.10 α = 2, fs = 1/3, a2 = −0.5, t = 10. . . . . . . . . . . . . . . . . . . . . . 119

C.11 α = 2, fs = 1, a2 = −1.5, t = 10. . . . . . . . . . . . . . . . . . . . . . . 119

11



E.1 The impact of environmental spectral colour on population spectral

colour in a stochastic formulation of the Hassell model . . . . . . . . . . 123

E.2 The impact of environmental spectral colour on population spectral

colour in a stochastic formulation of the Hassell model, with b = 20 . . . 124

E.3 The impact of environmental spectral colour on population spectral

colour in a stochastic formulation of the Maynard Smith model . . . . . 125

E.4 The impact of environmental spectral colour on population spectral

colour in a stochastic formulation of the Maynard Smith model with

b = 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

E.5 Value of R, the Pearson correlation coefficient, between weather station

and gridded data, plotted against the mean number of weather stations 127

E.6 Change in the spectral exponents of GHCN temperature time series

from 1911-1950 to 1951-1990 . . . . . . . . . . . . . . . . . . . . . . . . 138

E.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

E.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

E.7 Diagram explaining the main assumptions of the conceptual model

proposed in the text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

E.8 The relationship between noise and population spectral colour and

extinction risk in the stochastic formulation of the Hassell model . . . . 143

E.9 The relationship between noise and population spectral colour and

extinction risk in the stochastic formulation of the Maynard Smith model144

12



List of Tables

5.1 Summary of results of the meta-analysis . . . . . . . . . . . . . . . . . . 72

6.1 Correlations between the spectral exponents of animal populations and

the spectral exponents of mean temperature, for seasonal and annual

averages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

D.1 Posterior mean values and standard deviations from Sæther et al. (2000) 120

D.2 Parameter estimates for the Soay sheep model . . . . . . . . . . . . . . . 121

E.1 The GPDD populations left after completing the filtering process. The

species name is that provided by the GPDD database. . . . . . . . . . . 130

E.2 Definition of the geographical regions used. . . . . . . . . . . . . . . . . 135

13



1 Introduction

Ongoing climate change presents unprecedented opportunities to understand how

a population’s environment affects its dynamics. Rapid changes in climate can

directly affect the distribution and dynamics of populations through physiological stress

(Hughes, 2000), changes in reproductive and survival rates (Walther et al., 2002), and

shifts in phenology (McCarty, 2001; Walther et al., 2002; Parmesan, 2006). Other

indirect consequences, such as habitat fragmentation or loss, introduction of invasive

species, and a change to the competitive interactions between species can also feed

back into local abundance and geographic range size (Hughes, 2000). It follows that

climate change has been identified as a factor threatening the persistence of populations

(Parmesan, 1996; Hughes, 2000; Parmesan, 2006), and both local (Parmesan, 1996;

McLaughlin et al., 2002) and global (Pounds et al., 1999; Stuart et al., 2004) extinctions

can be expected as a consequence. Significant shifts in range towards higher latitudes

and altitudes have been widely documented (Parmesan, 1996; Thomas & Lennon, 1999;

Hughes, 2000; McLaughlin et al., 2002; Parmesan & Yohe, 2003; Parmesan, 2006),

indicating a pattern of nonrandom local extinctions particularly at lower altitudes and

southern borders of populations’ ranges (Parmesan, 1996; McCarty, 2001).

Many of these studies focus on the impacts of changes in mean environmental

conditions (e.g., Parmesan, 1996; Pounds et al., 1999; Parmesan & Yohe, 2003). This is

unsurprising, given that the most commonly measured consequence of climate change

is the change in mean state of climate variables (e.g., increases in mean temperature;

IPCC, 2007). However, rising levels of greenhouse gases may also alter other statistical

moments and descriptions of climate, such as variance and autocorrelation. Changes

in variability of climate have received less attention than changes in mean conditions,

although they have been studied at various temporal resolutions (e.g., daily: Karl

et al., 1995; monthly: Räisänen, 2002; Sun et al., 2010; seasonal: Parker et al., 1994;

annual: Vinnikov & Robock, 2002; Boer, 2010), using both empirical data (Michaels

et al., 1998; Svoma & Balling, 2010) and forecasts from a range of models (Hunt &

Elliott, 2004; Stouffer & Wetherald, 2007; Sakai et al., 2009). Changes in variability

have been shown to potentially affect populations’ fitness (Schoener & Spiller, 1992;

McLaughlin et al., 2002; Tuljapurkar et al., 2003; Tews & Jeltsch, 2004; Altwegg et al.,

2006; Chaves et al., 2011). Climate change may also be altering the autocorrelation in

14



Chapter 1. Introduction

environmental variables (Wigley et al., 1998). Both laboratory experiments (Petchey,

2000; Laakso et al., 2003b) and theoretical studies (Roughgarden, 1975; May, 1981;

Kaitala et al., 1997b; Laakso et al., 2003a; Greenman & Benton, 2005) conclude

that autocorrelation in climate variables at least in part affects autocorrelation in

population time series, although empirical support for this hypothesis in the field has

so far been lacking. The autocorrelation in population time series has been linked to

extinction risk (Lawton, 1988; Halley, 1996; Inchausti & Halley, 2003). Therefore,

were the link between autocorrelation in the environment and in population time

series to be empirically corroborated, climate change could be affecting extinction risk

through changes in autocorrelation of climate variables. Changes in these statistical

descriptions of climate (mean, variance, and autocorrelation) may potentially affect

populations’ dynamics and extinction risk. How do changes in environmental mean,

variability, and autocorrelation affect populations, and how do the magnitudes of these

effects compare? Is the research bias towards changes in mean conditions justified?

To answer these questions, in Chapters 3 and 4 we develop a simple theoretical

framework, where the population is explicitly linked to the environment. This

framework is used to compare the effects of changes in different statistical descriptions

of climate (specifically mean and variability) on population dynamics. We analyse

the sensitivity of two different proxies for population fitness to changes in mean

and variability of the environment. In Chapter 3 we use the long-term stochastic

growth rate as a measure of population fitness. The model is then extended to

estimate extinction risk and its sensitivities to changes in mean and variability of

the environment in Chapter 4. The objective of these analyses is to determine how

important changes in environmental variability are relative to changes in the mean,

and what populations the changes in variability are most likely to affect. We analyse

this model applying a suite of tools and methods often applied to matrix population

models. These are introduced and described in Section 2.1. There are few empirical

studies that aim to compare the sensitivity of a population to changes in environmental

mean and variability. In Chapter 5 we re-analyse some existing population models

to yield sensitivities to changes in environmental mean and variability, and provide

further points of comparison against which to validate the model of Chapters 3 and

4. In Chapter 6, we investigate whether there is a link between the autocorrelation of

climate and the autocorrelation of populations by analysing field data of a wide range

of species, and a climate data set. Weather station data is also analysed to confirm

the hypothesis that climate change is affecting the spectral colour of climate variables

likely to be important for populations. Each chapter is presented as a self-sufficient

unit, and any supplementary information is provided in the Appendices. Chapter 7

summarises the main results and conclusions.

15



2 Background

2.1 Population dynamics in stochastic environments

Chapters 3 and 4 develop a theoretical approach for the purpose of comparing the

effects of different statistical changes in the environment, such as changes in its

mean and variability, on a population. This Section aims to provide the necessary

background to the models used in these Chapters. Caswell (2001) provides an excellent

introduction to matrix population models; some of the most salient and relevant aspects

are summarised in this Section. Many of the tools used to analyse these models, such

as approximations to the long-term stochastic growth rate (defined below), are derived

in Tuljapurkar (1990).

2.1.1 The Lewontin-Cohen model

The so-called Lewontin-Cohen model (Lewontin & Cohen, 1969) is one of the simplest

stochastic population models; it is also frequently used in population dynamics.

The reason for its popularity is that there are many tools available to analyse this

model (some are used below), and it is analytically tractable. For nt representing

the population in year t, the univariate formulation of the Lewontin-Cohen model

(Lewontin & Cohen, 1969) is

nt+1 = λt nt, (2.1)

where λt is the net growth rate of the population in year t. The growth rate λt can

be averaged over time to obtain the growth rate ln E(λt) of the deterministic skeleton

model, nt+1 = E(λt)nt. For the stochastic model, population size asymptotically

approaches a lognormal distribution, with mean t times a quantity denoted lnλs (a

in Tuljapurkar (1982); “infinitesimal mean” µ in Lande & Orzack (1988); r̄ in Lande

et al. (2003)). This mean divided by t (i.e., lnλs) is the long-term stochastic growth

rate (Tuljapurkar, 1982, 1990; Caswell, 2001) and is defined as E(lnλt) (Tuljapurkar,

1990; Lande et al., 2003), and the variance divided by t (σ2r ; “infinitesimal variance” σ

in Lande & Orzack, 1988) is the log variance, which quantifies the variability around

the estimate of lnλs.
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2.1 Population dynamics in stochastic environments Chapter 2. Background

The growth rates ln E(λt) and lnλs can differ significantly, and can sometimes predict

opposite trends (Figure 2.1). The reason lies in the fact that the lognormal distribution

of population size becomes more skewed over time, such that ln E(λt) is increasingly

dominated by rare but very large populations (Caswell, 2001). Mathematically, the

difference between the two growth rates can be explained through Jensen’s inequality,

which states that f(E(X)) ≥ E(f(X)) if f is a concave function (Ruel & Ayres, 1999;

Boyce et al., 2006). In this case f is the log function, so lnλs ≤ ln E(λt). The

long-term stochastic growth rate represents the rate at which almost every realisation

of the population grows (Caswell, 2001; Tuljapurkar et al., 2003; Ezard et al., 2008)

and is widely studied as a fitness parameter (Boyce et al., 2006). A second-order

approximation of lnλs for the model of equation (2.1) is

lnλs ≈ ln E(λt)−
Var(λt)

2 E(λt)2
(2.2)

(Tuljapurkar, 1982; Caswell, 2001). This approximation clearly shows how variability

in λt reduces the population growth rate. Whether the same can be said for variability

in the environment will depend on the concavity of the function that links λt to the

environment (see Section 2.1.5 and Chapter 3).

0 200 400 600 800 1000

2
4

6
8

10

Time

ln
(p

op
ul

at
io

n 
de

ns
ity

)

(a)

ln(population density at t=1000)

F
re

qu
en

cy

2 4 6 8 10

0
20

40
60

80
10

0
12

0
14

0

(b)

Figure 2.1: (a) 300 stochastic realisations of the Lewontin-Cohen model, with λt
uniformly distributed between 0.92 and 1.081. The slope of the solid line is lnλs,
and the slope of the dashed line is ln E(λt). (b) Histogram of log-population density
at t = 1000, for 1000 realisations of the Lewontin-Cohen model. The solid line is
t lnλs, and the dashed line is t ln E(λt).
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2.1.2 Matrix population models

As is apparent from equation (2.2), autocorrelation in the growth rate has no effect on

lnλs, and only becomes relevant once population structure is introduced to the model.

For a population with k age-classes, the matrix equivalent of equation (2.1) is

nt+1 = Λt nt, (2.3)

where

Λt =



g0(t) g1(t) g2(t) · · · gk−1(t)

s0(t) 0 0 · · · 0

0 s1(t) 0 · · · 0
... 0

. . .
. . .

...

0 0 0 sk−2(t) 0


, (2.4)

is a k x k matrix called the Leslie matrix, and where gi(t) is the fecundity of age-class

i, and si(t) is the probability of survival of an individual in age class i (Caswell, 2001).

The dominant eigenvalue λ1 is the deterministic growth rate. It is the long-term growth

rate if the environment is assumed to be constant, and is analogous to E(λt) in the

univariate case above. The right and left eigenvectors wi and vi, correspond to the

stable age distribution and age-specific reproductive value respectively, and are scaled

such that 〈wi,vi〉 = 1 for all i (Caswell, 2001). Let

Λt = Λ̄ + Dt. (2.5)

Λ̄ is the average matrix, and Dt is the deviation from the mean. Then,

Ci = E(Dt+i ⊗Dt) i = 0, 1, . . . (2.6)

contains the lag-i autocorrelations of the vital rates (Caswell, 2001). The Kronecker

product, denoted ⊗, is the product of all possible combinations of the two matrices.

C0 therefore refers to the autocovariances of the elements of Λt. Tuljapurkar (1990)

provides a second-order approximation for lnλs, analogous to equation (2.2), but for

a structured population:

lnλs ≈ lnλ1 −
τ2

2λ21
+

θ

λ21
, (2.7)

where

τ2 = (v1 ⊗ v1)T C0 (w1 ⊗w1) (2.8)
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θ =
m∑
j=2

(v1 ⊗ vj)
T

( ∞∑
h=1

(
λj
λ1

)h−1
Ch

)
(wj ⊗w1) (2.9)

(Tuljapurkar, 1990; Caswell, 2001). The two terms τ2 and θ, are the autocovariances

(variation within years) and lag-i autocorrelations (variation between years) of the

vital rates respectively. The information on the spectral colour of the vital rates is

contained within θ. If the vital rates are independent and identically distributed (iid),

θ = 0. The univariate model discussed at the beginning of this Section is a special

case, where k = 1, θ = 0, and C0 = Var(λt).

The impact of autocorrelation on the lnλs of a structured population has been

shown to be limited (Tuljapurkar, 1982), but its effect on σ2r can be more substantial

(Tuljapurkar & Orzack, 1980; Tuljapurkar, 1982; Runge & Moen, 1998).

2.1.3 Extinction risk

Populations with lnλs ≤ 0 are bound to go extinct with probability 1, whereas for

those with lnλs > 0, extinction is still possible but not certain (Lande & Orzack,

1988). The long-term stochastic growth rate does, a priori, have some limitations as

a proxy for population fitness, as it is difficult to quantify the actual extinction risk

faced by a population from lnλs alone. In fact, extinction risk changes very rapidly

with lnλs (Dennis et al., 1991; Fieberg & Ellner, 2000). Populations described only by

equation (2.1) never go extinct, but at most decay exponentially, only asymptotically

reaching zero (Caswell, 2001). Lande & Orzack (1988) used a diffusion approximation

to derive extinction risk G as

G(t|x0) ≈ Φ

[
−x0 − lnλs t√

σ2r t

]
+ exp

(
−2 lnλs x0

σ2r

)
Φ

[
−x0 + lnλs t√

σ2r t

]
, (2.10)

(Morris & Doak, 2002), where Φ[·] is the cumulative distribution function (cdf) of a

standard normal, and where G(t|x0) is the cumulative probability that the population

becomes extinct before time t, given an initial population size x0 = lnn0. Implicit in

equation (2.10) is an extinction threshold of a population size of one individual (Lande

& Orzack, 1988). The probability of ultimate extinction is

G(t =∞|x0) =


1 if lnλs ≤ 0

exp

(
−2 lnλs x0

σ2r

)
if lnλs > 0

(2.11)

(Lande & Orzack, 1988; Caswell, 2001). As equation (2.11) shows, the uncertainty

around lnλs, σ
2
r , has important implications for the viability of a population; a
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population may be expected to grow in the long run (lnλs > 0), but if the uncertainty

around the measure of lnλs is large enough, its viability may not be guaranteed. Both

lnλs and σ2r are therefore necessary inputs to estimate extinction risk (Tuljapurkar &

Orzack, 1980).

Extinction risk is important in population viability analysis and conservation biology,

where it is a vital statistic. It has the further advantage of being more intuitive to

understand than lnλs. However, the practical use of predicting extinction risk has

been questioned, particularly with regards to the amounts of data typically available

in ecology (Fieberg & Ellner, 2000). Fieberg & Ellner (2000) point out that reasonably

accurate predictions of extinction probabilities can only be made for a short-time

horizon (typically 10-20% of the time the population has been monitored). However, in

the context of theoretical exploration, extinction risk has advantages: the information

contained in σ2r is ignored when using lnλs as the sole fitness parameter. How

important is σ2r in determining how changes in the vital rates and the environment

affect a population? This question is addressed in Chapter 4.

2.1.4 Sensitivity analysis

Often, the objective of studying or parameterising models such as those described

in Sections 2.1.1 and 2.1.2 is to perform a sensitivity analysis. A sensitivity analysis

provides information on what demographic rates have the largest impact on population

fitness, typically as measured by lnλs (although extinction risk can also be used, e.g.,

van de Pol et al., 2010, 2011), and is useful to determine what action is required

to protect a population of conservation concern or to control a pest. It consists of

perturbing a vital rate to see how the population fitness responds. For example, using

the univariate approximation of equation (2.2), one could determine how lnλs would

respond given a change in the variance of λt. More typically, a matrix model could be

used to quantify the change in lnλs were a vital rate, for instance juveniles’ survival,

to be perturbed. Mathematically, a sensitivity is the partial derivative of the fitness

parameter with respect to the vital rate of interest. For example, ∂ lnλs/∂aij gives

the amount by which lnλs changes if element aij of a Leslie matrix is perturbed.

The sensitivity is therefore the local slope of lnλs as a function of aij ; it is a linear

approximation (Caswell, 2001). The sign and magnitude of sensitivities are also

indicative of the selection gradient, given that natural selection favours changes in

the phenotype that increase fitness (Haridas & Tuljapurkar, 2005).

Elasticities are also often calculated. They are the proportional change in the

fitness parameter, for a proportional change in a vital rate, e.g., EDij = ∂ lnλ1/∂ ln aij ,

and ESij = ∂ lnλs/∂ ln aij , where ‘D’ and ‘S’ stand for deterministic and stochastic

respectively (Caswell, 2001; Tuljapurkar et al., 2003). Equations (2.1) and (2.3)
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show that selection will favour traits that reduce variability in the vital rates and

increase their means (Pfister, 1998; Morris & Doak, 2004; Haridas & Tuljapurkar,

2005). However, ESij perturbs the distribution of aij uniformly, changing both the

mean and variance of aij while keeping the coefficient of variation constant (Tuljapurkar

et al., 2003). To investigate the separate effects of changes in the mean and variability

of the vital rates on lnλs, different elasticities are required. ESµij is the elasticity of

lnλs to changes in the mean of vital rate aij , denoted µij . E
Sµ
ij keeps the variance of

aij constant. Likewise, ESσij perturbs the variability of aij , denoted σij , while keeping

µij constant (Tuljapurkar et al., 2003; Ezard & Coulson, 2010). These elasticities are

dependent:

ESij = ESµij + ESσij

(Tuljapurkar et al., 2003; Haridas & Tuljapurkar, 2005). ESµij is always positive, while

the sign of ESσij is often negative (Haridas & Tuljapurkar, 2005), which is consistent

with the idea that variability in vital rates is detrimental to populations. Using

empirical data, several studies (e.g., Tuljapurkar et al., 2003; Haridas & Tuljapurkar,

2005; Ezard et al., 2008; Ezard & Coulson, 2010; Jonzén et al., 2010) have shown that

in most cases, ESµij ≥ |ESσij |, so changes in mean vital rates have a bigger impact on

lnλs than changes in their variability. Do changes in mean environment analogously

have a bigger impact on population fitness than changes in variability? This question

is explored in Chapters 3 and 4.

2.1.5 The link between environment & populations

Environmental variables affect population vital rates such as survival probabilities

and fecundity rates; it is through vital rates that climate change can affect population

growth rates and risks of extinction. Determining the consequences of climatic changes

on population growth therefore requires understanding the relationship between

environment and vital rates, i.e., how an environmental signal is translated into

biological processes (Laakso et al., 2001; Morris et al., 2008).

For some populations, the environment can be simplified down to a discrete set of

states which largely determines what the population vital rates will be. For example,

a population’s vital rates may depend on whether it is a ‘good’ or ‘bad’ year (e.g.,

Jenouvrier et al., 2009; Hunter et al., 2010). Similarly, disturbance-prone populations’

response to the environment may mainly depend on events. For these populations,

the environment can be modelled as a Markov chain, by ascribing a Leslie matrix to

each state and setting the probability of switching from one state to another (e.g.,

fires: Caswell & Kaye, 2001; Morris et al., 2006; floods: Smith et al., 2005; hurricanes:

Tuljapurkar et al., 2003; Horvitz et al., 2005; Morris et al., 2006). If the environment
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cannot be described as a discrete set of states, it is necessary to understand how the

vital rates will vary across the population’s environmental range.

For ectotherms, which comprise over 99% of all species (Atkinson & Sibly, 1997),

temperature alters the speed at which individuals pass through life stages, thereby

influencing population growth rate (Forster et al., 2011). Some studies argue, citing

Arrhenius’ equation, that the vital rate increases exponentially with temperature (e.g.,

Drake, 2005). In this case, due to Jensen’s inequality, variability in temperature could

be interpreted to have a positive effect (Ruel & Ayres, 1999). This view is nevertheless

often supported by studies that only record thermal responses for a limited range in

temperature, for which the response may indeed be exponential. However, beyond this

range, the response is likely to reach an optimum, followed by a monotonic fall (Dell

et al., 2011). Therefore, the relationship between temperature and net population

growth rate (henceforth called the response function) has typically been shown to

have a single peak; there is an ideal temperature that maximises the population’s

performance (Huey & Stevenson, 1979; Begon et al., 1996; Laakso et al., 2001; Karlsson

& Wiklund, 2005; Frazier et al., 2006; Deutsch et al., 2008; Pörtner & Farrell, 2008;

Dell et al., 2011). An argument for a single-peaked response function can also be

made for endotherms (Boyles et al., 2011) and other environmental variables such

as precipitation (Begon et al., 1996). Other than a probable common feature of

having one peak, response functions can take different forms depending on species

and local environmental conditions. The shape of a response function may determine

how variability in temperature or another environmental variable affects the population

growth rate (Ruel & Ayres, 1999; Drake, 2005; Boyce et al., 2006; van de Pol et al.,

2010). If a response function is log-convex (the log of the function opens up) for

the range of an environmental variable that pertains in a locale, then an increase in

variability may in fact benefit the population; if the function is log-concave (its log

opens down) for the pertinent range of the variable, then variability is detrimental for

the population (Ruel & Ayres, 1999; Drake, 2005).

The response function therefore plays an important role in determining the impacts

of climate change on populations. There are several important studies that compare

the effects of changes in mean and variability of vital rates on population growth

rate (e.g., Haridas & Tuljapurkar, 2005; Morris et al., 2008; Ezard & Coulson, 2010;

Coulson et al., 2011). However, changes in the mean environment can modify both the

mean and standard deviation of vital rates, as can changes in the standard deviation

of the environment; understanding the relative importance of changes in means

and variabilities of vital rates does not necessarily translate directly to the relative

importance of changes in the means and variabilities of environmental variables.

A priori, the translation from environments to vital rates may affect the relative
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importance of means and standard deviations. Furthermore, as shown by Jonzén

et al. (2010), the importance of changes in the variability of the vital rates is not

necessarily indicative of the importance of changes in the variability of the environment.

It therefore seems necessary to explicitly consider response functions. How important

are our assumptions on how climate affects a population’s vital rates, in establishing

the effect climate change may have on populations? The role of response functions is

further investigated in Chapters 3 and 4.

2.2 Spectral colours & population dynamics

Weather and animal population numbers continuously change over time. These

fluctuations have been studied with respect to time, but an increasing body of work

has focussed on describing the characteristics of these variations in greater detail by

analysing the signals with respect to frequency. Concentrating on the oscillations

can reveal features that would otherwise have passed unobserved. Furthermore,

relationships or correlations could come to light by investigating from this different

point of view. This subject is of particular relevance in the context of a changing

climate. A change in how the climate fluctuates could lead to the oscillations of

populations changing too, so increasing understanding of how the two are related is

of vital importance for informing conservation and management policies. The aim of

this Section is to review this body of work. Appendix A contains an introduction to

spectral analysis and a description of the main statistical tool discussed in this Section:

the spectral exponent.

2.2.1 The colour of the environment

The environment is a complex system that fluctuates naturally due to physical

processes that are internal to the Earth and its atmosphere (such as ocean circulation

and changes in the relative quantities of atmospheric gases) and external factors (such

as variation in sunlight intensity). Because of this, climate variables are usually both

temporally and spatially autocorrelated, i.e., they are likely to be more similar when

close in both space and time than would be expected if they were purely independent.

Environmental noise was, for some time, assumed to be white (Vasseur & Yodzis,

2004). Although this assumption may, according to Steele (1985), hold for shorter

terrestrial time series, the consensus is that many climate time series are red:

longer-term climatic patterns contribute more to the time series variance than do

shorter-term weather fluctuations (Steele & Henderson, 1994; Pelletier & Turcotte,

1997; Cyr & Cyr, 2003; Vasseur & Yodzis, 2004). Possible phenomena that may

contribute to redness include inter-annual periodic events such as El Niño-Southern
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Oscillation and inter-decadal phenomena such as the North Atlantic Oscillation, the

Pacific Decadal Oscillation, or the Atlantic multidecadal oscillation (e.g., see Stenseth

et al., 2003). On a longer time-scale yet, climate change over the past century

superimposes a longer-term trend.

Whether or not climate spectra are better described by 1/fβ or autoregressive (AR)

noise is less clear (see Appendix A for a comparison between the two). Several studies

indicate that they are better approximated by 1/fβ noise (e.g., Mandelbrot, 1982;

Halley, 1996; Halley & Kunin, 1999). However, the recurring presence of a plateaux at

low frequencies in the power spectra of temperature time series may be more indicative

of an AR process (Talkner & Weber, 2000; Cyr & Cyr, 2003; Vasseur & Yodzis, 2004).

Spanning a wide range of time scales (from days to thousands of years), the spectral

exponent can vary quite significantly for different frequencies (Pelletier, 1998, 2002),

which may suggest that on such a wide range of scales no single, simple 1/fβ or AR

model may suffice.

The spectral colour of mean temperature fluctuations is not only of interest per

se. How spectral colour is distributed and structured geographically can also provide

useful insights not only on how the environment varies in different areas, but also

on how that spatial structure may affect other systems (such as animal populations)

that to some extent depend on it. Most studies agree that there is indeed a clear

spatial distribution of environmental noise colours (Steele, 1985; Steele & Henderson,

1994; Blender & Fraedrich, 2003; Cyr & Cyr, 2003; Fraedrich & Blender, 2003;

Vasseur & Yodzis, 2004). Their results show that terrestrial temperature spectra

tend to be whiter, and then become systematically redder closer to bodies of water

of increasing size. This can be explained by the high heat capacity of water that

damps out high-frequency temperature oscillations (Cohen, 1995), thereby increasing

autocorrelation. There are, in any case, disagreements. Eichner et al. (2003) and

Bunde et al. (2004), for instance, do not find that the scaling exponent (obtained

from Detrended fluctuation analysis (DFA); see Appendix A) depends on the distance

of the location from the coastline. In other studies (Koscielny-Bunde et al., 1996,

1998), universal scaling laws were found (also using DFA). In terms of 1/fβ spectral

exponents, they found β ∼ −0.3 to be prevalent. In the latter studies, though,

the weather stations used by the authors are relatively coastal. Vasseur & Yodzis

(2004) also found a latitudinal pattern, with redder noise found at high latitudes.

These findings give rise to an interesting question: does the spectral colour of animal

populations exhibit similar patterns?
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2.2.2 Animal populations

There has been a lot of interest in the variability of population time series and how

this depends on the length of the time series used to measure the variance. Studies

using field populations have been constrained by the amount of data available. Pimm

& Redfearn (1988), for instance, examined data from four species of insects and a total

of 22 species of birds and mammals (no indication as to how many of each is given) from

censuses taken annually for over 50 years, and information on 42 species of farmland

birds and 32 species of woodland birds spanning 24 years (gathered by the British Trust

of Ornithology), and found that in all cases, irrespective of the duration of the census

season, the variation in the populations (measured as the standard deviation of the

logarithms of annual densities) increased with the number of data points included in

calculating this quantity. These conclusions were supported by Lawton (1988), Halley

(1996), and Cyr (1997). Cyr (1997) also used the same measure of variability as Pimm

& Redfearn (1988) on 70 populations of phytoplankton, zooplankton, and fish sampled

over 10 to 51 consecutive years in lakes around the world. The results showed only a

moderate increase in variability, although the rate at which this measure changed over

time was prone to substantial changes.

Pimm & Redfearn (1988) considered the increase in variability as a surrogate for

spectral reddening, arguing that if the spectra of the time series analysed were to

be red, its variance would increase over time, as is seen in 1/fβ models. These

conclusions were notionally questioned by McArdle et al. (1990), who on theoretical

grounds argued that these results could be artefactual. Pimm & Redfearn’s (1988)

conjecture was later supported by Inchausti & Halley (2001, 2002). Inchausti &

Halley (2001, 2002) analysed the spectral colour of 544 populations of 123 species

(including mammals, insects, birds, bony fish, crustaceans and molluscs) from the

Global Population Dynamics Database (GPDD; NERC Centre for Population Biology

& Imperial College, 1999) that had been censused for more than 30 years, and found red

spectra to be strongly correlated with increase in variance, thereby lending support to

the theory that spectral reddening could be the cause of the ‘more time-more variation’

effect noted by Lawton (1988) and Pimm & Redfearn (1988).

In the studies by Inchausti & Halley (2001, 2002), the mean spectral exponent

was -1.022 (SE=0.025), and therefore red. Using the same data, Inchausti & Halley

(2002) refined the analysis by looking at trends in different subsets by taxa, body

size, trophic level and geographical distribution. They found spectral reddening to

be universally prevalent. The results of Ariño & Pimm (1995) also supported this

trend, after analysing data of 115 populations comprising 57 different species (including

terrestrial birds, birds, mammals, plants, insects, freshwater diatoms, fish, and marine

fish) and that had been censused for at least 25 years. They calculated the Hurst
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exponents for these populations, and found them to range between 0.25 and over 1.3,

with a mean of ∼ 0.76, corresponding to a spectral exponent range of -1.5 to below

-3.6 with a mean of -2.52. The authors furthermore found marine species to be redder

than terrestrial species, and terrestrial vertebrates to be redder than insects.

In order to explain the cause of the spectral reddening in populations, Cohen (1995)

investigated several simple deterministic population models, and surprisingly found

that dynamics predicted by these models tended to be blue. The models he examined

were deterministic single-population models (e.g., the Moran-Ricker, the Verhulst, the

Hassell, and the Maynard Smith models), many of which have been used in applied

contexts, but most of which are now often regarded as mathematical idealisations

most useful for simple, general theory. Cohen’s (1995) study started a debate as

to the suitability and predictive power of the models he chose, and into the reason

for this apparent discrepancy between theory and practice (Blarer & Doebeli, 1996;

Kaitala & Ranta, 1996; Sugihara, 1996; White et al., 1996b). Some studies misleadingly

generalised Cohen’s (1995) results stating that “simple population dynamic models are

mostly dominated by short-term fluctuations” (Kaitala et al., 1997a). In fact, Cohen

(1995) somewhat arbitrarily only investigated single points in the parameter space

of each of the selected models, tuned to be in the chaotic regime. Several studies

subsequently focussed on specific models and larger parameter ranges, finding that

red spectra can also be reproduced (Chapter 6; Blarer & Doebeli, 1996; White et al.,

1996a). Unfortunately, most of these studies were formulated as a response to Cohen

(1995), and therefore overlooked the need for a comprehensive and systematic approach

in order to understand the effect of noise colour over more substantial ranges of the

parameter space in the different models.

According to Sugihara (1995), Cohen’s (1995) results and the subsequent debate

that developed around it prompted three possible explanations that could account

for the discrepancy between theory and ‘practice’: either natural populations are

not chaotic, models are fundamentally flawed (or over-simplistic), or there is some

extrinsic forcing (most likely climatic), that is the cause of the observed reddening. A

further alternative was offered by Akçakaya et al. (2003), who used several models with

different proportions of density dependence, measurement error, and natural variability

(modelled as white noise). Their conclusion was that red population spectra can

be explained solely as the effect of a combination of measurement error and natural

variability (their results were confirmed by Gao et al. (2007) on a spatially structured

model). It is important to note, however, that the degree of density dependence is

vital in reaching this conclusion. No density dependence gave rise to random walk,

whereas when populations were tightly regulated by strong density dependence, the

time series were closer to white noise, regardless of the nature of variation. Other
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explanations were also postulated for populations’ red spectra, including the fact that

adding a spatial component (White et al., 1996b; but see Gao et al., 2007) and delayed

stochastic density dependence (Kaitala & Ranta, 1996) had a reddening effect.

2.2.3 How the environment affects populations

Out of the three alternatives proposed by Sugihara (1995), attention turned to the

possible impact that environmental forcing could have on simple population models

(Lawton, 1988; Sugihara, 1995, 1996; Ranta et al., 2000). As Roughgarden (1975)

and Kaitala et al. (1997b) state, population dynamics should be redder in reddened

environments than in white environments, if environmental colour were to have any

influence on population spectral colour.

Roughgarden (1975) and May (1981) found that population models with a low

growth rate (r) are unable to track high-frequency oscillations in the environmental

noise, and average these out following only the low-frequency components. Conversely,

higher growth-rate populations are capable of tracking all or more components of

the noise. Consequently, as Roughgarden (1975) states, for highly autocorrelated

environmental noise, the variance of the population tends to equal that of the

environment for most values of r. In terms of spectra this would translate to low r

populations acquiring the low frequency variance of the environment (thereby becoming

red in the process), and high r population spectra more closely mimicking the spectra

of the relevant climate variables. Kaitala et al. (1997b), on the other hand, found

that model-population sensitivity to differences in the noise colour decreases with

large growth rates and ultimately disappears in the chaotic range, results largely

confirmed in Chapter 6. Kaitala et al.’s (1997b) results seem to contradict the

aforementioned studies. Roughgarden (1975) and May (1981) concluded that high

growth rate populations track noise better, which implies that these populations are

likely to be increasingly sensitive to differences in noise. However, Roughgarden (1975)

only looked at models that went to equilibrium in the absence of stochasticity (May,

1981 does not state the range of growth rates for which his results hold), whereas

Kaitala et al. (1997b) went beyond, into the high growth rate and chaos ranges. This

distinction could reconcile the apparent differences between their results.

The analysis can be extended by adding complexity and details. The levels of

complexity in a field population system can be envisioned as a series of filters between

the input environmental signal and the output observed population time series: the

environment affects the vital rates of a population; which in turn has a potentially

complex impact on the population dynamics; and finally, as discussed by Akçakaya

et al. (2003), measurement error separates the true and observed population signals.

Models investigating the effects of environmental variability on population dynamics
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can, correspondingly, also be formulated at varying degrees of complexity. In its

simplest form, this involves a single-species model. In theory, environmental noise

can affect many, or all of the parameters in the model. Furthermore, the dependence

of vital rates on environmental variables is likely nonlinear (Vasseur & Yodzis, 2004),

an issue that has been addressed using filters describing a range of different functions

between climate and vital rates (Laakso et al., 2001, 2003a). Finally, some components,

such as density dependence, may also have lags (Kaitala & Ranta, 1996). The single

species can then be considered in greater detail, by using a stage structured model,

in which the vital rates of different stages can be affected separately (Greenman &

Benton, 2005), or by adding a spatial component to the model (White et al., 1996b).

Otherwise, two or more species models can be used, to study, for instance, the effects of

species interactions (Ripa et al., 1998), or more indirect effects such as perturbations

in other parts of the food web (Ruokolainen et al., 2007). The level of potential

complexity of the population systems and their interaction with changes in their

physical environment has led some researchers to issue a word of warning with respect

to seeking generalisations in relation to the cause of reddened spectra (Laakso et al.,

2001, 2003a).

Petchey (2000) and Laakso et al. (2003b) conducted experimental studies on ciliates

to investigate the effect of environmental noise colour on the colour of population

spectra. Their results largely confirmed the results obtained by Roughgarden (1975)

and May (1981): populations tracked reddened noise more closely than white noise,

and populations with higher values of r tracked the noise better than those with low

r. Both studies found all populations to be red. According to Petchey (2000), this last

result contradicted theory, as the result was independent of environmental noise colour.

The author found the contention to be sensible, due to the likely undercompensatory

nature of the dynamics of the species studied. This led Petchey (2000) to conclude that

spectral reddening was caused by internal population mechanisms, and not by extrinsic

factors. The results presented in Petchey (2000) are, however, far from clarifying.

Whether or not population spectra are red does not indicate if and how the level of

redness, or autocorrelation, changes with different noise colour inputs. On the other

hand, Laakso et al. (2003b) found the reddest populations, highest variability, and

strongest correlation between environment and population in red environments. The

results in Petchey (2000) and Laakso et al. (2003b) might appear to be contradictory.

However, it is not clear from Petchey’s (2000) results, whether the populations were

affected by noise colour. As shown in Chapter 6 using a stochastic Ricker model,

undercompensatory populations can be found to be red regardless of the input noise

colour. These are nonetheless clearly affected, given that the redder the noise, the

redder the population. Consequently, Petchey’s (2000) and Laakso et al.’s (2003b)
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results are not necessarily at odds.

There are several studies that have correlated individual populations with climate

using spectra (e.g., Jillson, 1980; Aebischer et al., 1990), but few (if any) have done so

on a global scale using multiple populations species, and none on the basis of spectral

colour. In their study, Inchausti & Halley (2002) argue that population spectra average

-1.022 whereas climate spectra average about -0.5, indicating that the population

redness cannot be entirely attributed to climate. They state that evidence shows

that on scales of ecological interest, terrestrial populations redden themselves rather

than reflect the colour of their environment. This affirmation is nevertheless speculative

and unfounded. Their observations, at most, show that the populations do not linearly

track the environment. It may even suggest, but not prove, that reddening could be

partly caused by internal mechanisms, and not solely due to environmental noise colour.

In any case, population redness is likely to occur due to the environment interacting

with intrinsic mechanisms in complex ways. There have, to our knowledge, been no

studies that explicitly look for correlations between real population spectral exponents

with the spectral exponents of climate variables from the same locations. This gap in

the literature warrants further investigation, given that large scale correlations using

real population data and climate variables could shed some light on the above debate.

2.2.4 Extinction risk & noise colour

Understanding and assessing extinction risk is imperative for conservation and

management. For this reason, many of the studies that attempt to elucidate the

basic mechanisms by which noise colour can impact populations have been related to

extinction risk or persistence time of populations. Some researchers have expressed

the intuitive expectation that reddening increases extinction risk (Lawton, 1988;

Halley, 1996; Inchausti & Halley, 2003). The reasoning is based on the fact that

an autocorrelated environmental time series would have longer runs of unfavourable

conditions. This hypothesis is supported by Inchausti & Halley (2003), who found,

using the aforementioned 544 populations from the GPDD, that quasi-extinction time

(defined as a 90% decline in the population level) was shorter for populations with

higher temporal variability and redder dynamics. Similarly, the same conclusion is

reached by Pike et al. (2004) in an experimental study using springtail (Folsomia

candida). In this case, the environmental autocorrelation was simulated by regular

culling events (the sequence of the magnitude of these events determining the

autocorrelation). Results showed that the time to extinction was shortened with

increased autocorrelation.

Results from theoretical studies have been ambiguous or have contradicted each

other (Heino et al., 2000). In apparent contradiction to the original intuition of
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Lawton, Halley, and Inchausti & Halley, Ripa & Lundberg (1996) claimed that red

noise decreases extinction risk. Subsequent studies (Petchey et al., 1997; Heino, 1998)

were more indecisive on this matter. However, it is unlikely that any general results

can be obtained from theoretical studies. How noise affects extinction risk very much

depends on several factors, and seemingly subtle differences in the model can result

in qualitatively different understandings of how noise colour affects extinction risk

(Cuddington & Yodzis, 1999; Ripa & Lundberg, 2000). These factors have been

analysed in the literature, and are summarised here.

Model and parameter choice can determine the outcome extinction risk (Heino, 1998;

Morales, 1999; Ripa & Heino, 1999; Ripa & Lundberg, 2000). The aforementioned

study by Ripa & Lundberg (1996), for example, reached the somewhat surprising

conclusion that red noise decreases extinction risk. However, the authors only

studied single-species models with parameters chosen so that the models would exhibit

overcompensating decay to a stable equilibrium in the absence of stochasticity. Further

research showed that reddened noise increased persistence where dynamics were

overcompensatory, and decreased it for undercompensatory dynamics (Petchey et al.,

1997; Heino, 1998; Cuddington & Yodzis, 1999; Ripa & Heino, 1999; Ruokolainen

et al., 2007). Schwager et al. (2006) generalised these observations by suggesting

that extinction risk depends on the strength of environmental fluctuations and the

sensitivity of population dynamics to these fluctuations. Hence, if extreme events

can occur (implying strong noise), or the sensitivity of the population is high

(overcompensatory dynamics), then temporal correlation decreases extinction risk.

These studies examined single-species models that came to equilibrium in the absence

of stochasticity.

How and what kind of noise is incorporated into the model can also affect extinction

risk (Heino, 1998; Halley & Kunin, 1999; Morales, 1999). For example, choosing a

pink or brown noise (of the 1/fβ family, with β ≥ 1) could result in an inherently

non-stationary time series, where populations are allowed to wander to invulnerable

population sizes (Halley & Kunin, 1999). This would have the effect of offsetting the

increased risk presumed in higher variability. This observation may explain the results

obtained by Cuddington & Yodzis (1999), who found that the ‘blacker’ the noise, the

greater the probability of persisting for a very long time (> 100, 000 generations).

Cuddington & Yodzis (1999) furthermore conclude that the probability of a short

persistence time in blacker noise is either similar (in strong undercompensation) or far

less (strong overcompensation) when compared to red noise.

The choice of noise model is also important. For instance, Cuddington & Yodzis

(1999) found that AR processes do not capture the unpredictability of pink or brown

(1/fβ) noise. This, according to them, suggested that using AR noise in models may
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lead to an overly optimistic view of our ability to predict the effects of environmental

noise on populations.

Because of the premise that higher variability will increase extinction risk, the time

scale in which the extinctions are scored also requires attention (Halley & Kunin, 1999;

Heino et al., 2000). The variance of white and red noise for a given length of time series

used to measure the variance are likely to be different, even if the true variances of the

underlying stochastic processes are the same, so when making comparisons, Heino et al.

(2000) emphasise that the variance of noise has to be independent of colour. Heino

et al. (2000) and Wichmann et al. (2005) suggest scaling methods to address this issue.

However, according to Heino et al. (2000) the need to scale variance depending on the

chosen time scale excludes the possibility of achieving any general results.

Most studies mentioned above investigated the impact of environmental noise colour

on extinction risk. However, environmental noise does not necessarily affect extinction

risk directly, but rather could do so by affecting population spectral colour. This

intermediate ‘step’ is implicitly ignored in the above studies: environmental noise

of different kinds and colours is introduced into the population model by varying

one or more of its parameters, and the probability of extinction is then analysed.

The omission of the intermediate step, population spectral colour, adds to the

complexity of the problem and furthermore contributes to creating confusion. In

fact, most or all of the aforementioned problems are more likely to relate to how

the environment affects populations. Inchausti & Halley (2002) is one of the few

exceptions, given that they studied how population spectral colour is correlated

with quasi-extinction. Understanding how spectral colour of both environment and

population affect extinction risk requires a more systematic approach that explicitly

analyses all intermediate steps of the problem.
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3 Are changes in the mean or

variability of climate signals more

important for long-term stochastic

growth rate?

Abstract

Population dynamics are affected by changes in both the mean and variability of

climate. The impacts of increases in average temperature are extensively researched,

while the impacts of changes in climate variability are less studied. Is the greater

attention given to changes in mean environment justified? To answer this question

we developed a simple population model explicitly linked to an environmental process.

We used this model to compare the sensitivities of a population’s long-term stochastic

growth rate, a measure of fitness, to changes in the mean and standard deviation of

the environment. We interpret results in light of a comparative analysis of the relative

magnitudes of change in means and standard deviations of biologically relevant climate

variables. Results show that changes in variability can be more important for many

populations. Changes in mean conditions are likely to have a greater impact than

changes in variability on populations far from their ideal environment, e.g., populations

near species range boundaries and potentially of conservation concern. Populations

near range centres and close to their ideal environment are more affected by changes

in variability. Populations of interest in this category include pests and disease vectors;

observed changes in variability may benefit these populations.

N. B.: This chapter has been submitted to PLoS ONE as: Garćıa-Carreras, B. &

Reuman, D. C. Are changes in the mean or variability of climate signals more important

for long-term stochastic growth rate? Its corresponding supplementary information can be

found in Appendix B.
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3.1 Introduction

Ongoing climate change is most readily characterised by changes in the mean state of

climate variables (e.g., increases in mean temperature; IPCC, 2007), and the impacts

on ecosystems of changes in mean environmental state are studied closely (Parmesan

et al., 1999; Morris et al., 2008). However, rising levels of greenhouse gases may also

affect climate variability (Boer, 2010). An increase in variability could also affect

populations’ fitness (Schoener & Spiller, 1992; McLaughlin et al., 2002; Tuljapurkar

et al., 2003; Tews & Jeltsch, 2004; Chaves et al., 2011). How do changes in the

variability of climate compare to changes in the mean values of climate variables

in terms of the importance of their impacts on populations? To help answer this

question, we here consider the simplest possible population model that can be linked

to an environmental process.

Changes in mean climate have been well documented (e.g., IPCC, 2007), and while

changes in variability have received less attention, they have been studied at different

temporal resolutions (e.g., daily: Karl et al., 1995; monthly: Räisänen, 2002; Sun et al.,

2010; seasonal: Parker et al., 1994; annual: Vinnikov & Robock, 2002; Boer, 2010),

using both empirical data (Michaels et al., 1998; Svoma & Balling, 2010) and forecasts

from a range of models (Hunt & Elliott, 2004; Stouffer & Wetherald, 2007; Sakai et al.,

2009). These studies show that for some temporal resolutions, the variability of climate

is changing.

Environmental variables affect population vital rates such as survival probabilities

and fecundity rates; it is through vital rates that changes in the mean or variability of

climate can affect population growth rates. Determining the consequences of climatic

changes on population growth therefore requires understanding the relationship

between environment and vital rates, i.e., how an environmental signal is translated

into biological processes (Laakso et al., 2001; Morris et al., 2008). For ectotherms,

which comprise over 99% of all species (Atkinson & Sibly, 1997), temperature alters

the speed at which individuals pass through life stages, thereby influencing population

growth rate (Forster et al., 2011). In ectotherms, the relationship between temperature

and net population growth rate (henceforth called the response function) typically

has a single peak; there is an ideal temperature that maximises the population’s

performance (Huey & Stevenson, 1979; Begon et al., 1996; Laakso et al., 2001; Deutsch

et al., 2008; Dell et al., 2011). An argument for a single-peaked response function can

also be made for endotherms (Boyles et al., 2011) and other environmental variables

such as precipitation (Begon et al., 1996). Other than a probable common feature of

having one peak, response functions can take different forms depending on species and

local environmental conditions. The shape of a response function may determine how

33



Chapter 3. Sensitivity of the long-term stochastic growth rate 3.1 Introduction

variability in temperature or another environmental variable affects the population

growth rate (Ruel & Ayres, 1999; Drake, 2005; Boyce et al., 2006; van de Pol et al.,

2010). If a response function is log-convex (the log of the function opens up) for

the range of an environmental variable that pertains in a locale, then an increase in

variability may in fact benefit the population; if the function is log-concave (its log

opens down) for the pertinent range of the variable, then variability is detrimental for

the population (Ruel & Ayres, 1999; Drake, 2005).

The response function therefore plays an important role in determining the impacts

of climate change on populations. There are several important studies that compare

the effects of changes in mean and variability of vital rates on population growth

rate (e.g., Haridas & Tuljapurkar, 2005; Morris et al., 2008; Ezard & Coulson, 2010;

Coulson et al., 2011). However, changes in the mean environment can modify both the

mean and standard deviation of vital rates, as can changes in the standard deviation

of the environment; understanding the relative importance of changes in means

and variabilities of vital rates does not necessarily translate directly to the relative

importance of changes in the means and variabilities of environmental variables.

A priori, the translation from environments to vital rates may affect the relative

importance of means and standard deviations. This possibility can be investigated

by explicitly considering response functions.

We know of only two studies that incorporate response functions and compare the

effects of changes in mean and variability of the environment, as opposed to vital rates,

on a population. Van de Pol et al. (2010) and Jonzén et al. (2010) parameterised

stage-structured stochastic population models using populations of oystercatchers in

the Netherlands and red kangaroos in South Australia, respectively. Van de Pol et

al. (2010) concluded that time to extinction is more sensitive to changes in the

environment’s mean than its standard deviation, a result further magnified by the

fact that climate models predict greater changes in mean temperature than in its

standard deviation in the Netherlands. Jonzén et al. (2010) also found sensitivity of

population growth to be greater to changes in mean rainfall than to changes in the

standard deviation of rainfall, although the two sensitivities were similar enough that

changes in standard deviation were still important.

In this study we aim to compare the effects of changes in mean and variability of

inter-annual environmental conditions on population growth rate, which we use as a

measure of fitness, adopting a simple, strategic approach rather than parameterising a

complex model of a single population as in Jonzén et al. (2010) and van de Pol et al.

(2010). Both approaches are valuable. We provide a theoretical approach based on

an unstructured, annually censused population, which we assume is explicitly linked

to an annual environmental variable via a response function. We first derive the
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population long-term stochastic growth rate as a function of the environment and

the response function. We then derive the sensitivity of growth rate to changes in

environmental mean and variability. We provide answers based on the model to the

following three questions: (1) Given an increase in the mean or standard deviation of

the environment, does the growth rate increase or decrease? (2) If mean and standard

deviation are perturbed by the same small amount, which causes the greater impact

on the growth rate? (3) What are the relative magnitudes of observed changes in

mean and standard deviation of climate variables and how do these relate to the

sensitivities computed in (2) to yield an overall idea of whether changes in climate

means or standard deviations are more important for population dynamics? We discuss

results in view of currently ongoing climate change, and identify potential consequences

for populations of conservation concern as well as pests, disease vectors, and exploited

populations.

3.2 Methods

3.2.1 Theory

For nt representing the population in year t, the base model (Lewontin & Cohen, 1969)

is

nt+1 = λt nt, (3.1)

where λt is the net growth rate of the population in year t. We assume λt = f(wt),

where wt is the environmental variable and f is the response function. Let p(wt) =

ln f(wt) be the log of the response function. The growth rate λt can be averaged

over time to obtain the growth rate ln E(λt) of the deterministic skeleton model,

nt+1 = E(λt)nt. For the stochastic model, population size asymptotically approaches

a lognormal distribution, with mean t times a quantity denoted lnλs (a in Tuljapurkar,

1982; “infinitesimal mean” µ in Lande & Orzack, 1988; r̄ in Lande et al., 2003); lnλs

is the long-term stochastic growth rate (Tuljapurkar, 1982, 1990; Caswell, 2001),

lnλs = E(lnλt) =

∫ ∞
−∞

p(wt)ϕµ,σ(wt) dwt, (3.2)

where ϕµ,σ is the probability density function (pdf) of wt, with mean parameter µ and

standard deviation parameter σ (Tuljapurkar, 1990; Lande et al., 2003). Second-order

approximations to lnλs (Tuljapurkar, 1982, 1990) are used, but equation (3.2) is an

exact formula that applies in the case of an unstructured population. The growth

rates ln E(λt) and lnλs can differ significantly, but lnλs represents the rate at which

almost every realisation of the population grows (Caswell, 2001; Tuljapurkar et al.,
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2003; Ezard et al., 2008) and is widely studied as a fitness parameter (Boyce et al.,

2006). The sensitivities of lnλs to changes in mean and standard deviation of the

environment are obtained simply by taking the partial derivatives of equation (3.2)

with respect to µ and σ, moving the partial derivatives under the integral symbol and

applying them to ϕµ,σ(wt). This approach applies generally, for any p(wt).

For concreteness, we adopt a flexible parameterisation for p. Without loss of

generality we transform wt such that its distribution in the focal location is N (0, 1)

(see Section B.1 in the Appendix). If h(wt) = wαt for some α > 0, p(wt) is taken to

be a1 h(−wt + b) + c for wt ≤ b and a2 h(wt − b) + c for wt ≥ b (Figure 3.1). This

function is single peaked with maximum height c occurring at the ideal environment,

b. The rate of falloff of p as wt decreases (respectively, increases) from the ideal

environment is controlled by a1 (respectively, a2); both are taken to be negative. The

ratio fs = a1/a2 is a measure of asymmetry of the response function around b. The

examples of Figure 3.1 are similar to reported response functions (Huey & Stevenson,

1979; Begon et al., 1996; Deutsch et al., 2008; Dell et al., 2011). The value of b is

the difference between the local environment and the population’s ideal environment,

measured in units equal to the standard deviation of the local environment because

we re-scaled wt to make it standard normally distributed. Larger values of |b|
describe populations living in a suboptimal environment (for example, those living

in environmental range margins or struggling to adapt to climate change), whereas

|b| ∼ 0 represents populations living in a close-to-ideal environment.

Substituting the above parameterisation of p(wt) into equation (3.2), we get lnλs as

a function of the parameters that define the log response function,

lnλs = a1

∫ b

−∞
(−wt + b)α ϕµ,σ(wt) dwt + a2

∫ ∞
b

(wt − b)α ϕµ,σ(wt) dwt + c (3.3)

(Section B.2 in the Appendix), where ϕµ,σ now represents the pdf of the normal

distribution with mean µ and standard deviation σ. It is straightforward to compute

the partial derivatives of lnλs with respect to µ and σ at µ = 0 and σ = 1 (Sections B.3

and B.4 in the Appendix). These are the instantaneous rates of change of lnλs per unit

change in µ and σ respectively, where the unit of change in µ and σ is one standard

deviation of wt. The signs of these sensitivities indicate whether a small increase in

mean or standard deviation of the environment increases or decreases lnλs. Following

the rationale of van de Pol et al. (2010), the relative magnitudes of these sensitivities

provide an estimate of whether small changes in environmental mean or standard

deviation have a bigger influence on lnλs.
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Figure 3.1: A log response function p(wt) (a) and corresponding linear-scale response
function f(wt) (b) for α = 2, a1 = a2 = −0.05, b = 1, and c = ln 2. Region
(i) represents a suboptimal environment and region (ii) represents an optimal
environment. Examples are also shown for asymmetric response functions with
fs = 1/3 (a1 = −0.05, a2 = −0.15) (c, d) and fs = 3 (a1 = −0.15, a2 = −0.05) (e,
f), on the log (c, e) and linear (d, f) scales, for b = 0, c = ln 2, and α = 2. Standard
normal distributions (b, d, f) represent the population’s local environment wt. In
(b), the population is in a suboptimal environment, for instance at the periphery
of the species’ range. In (d, f) the population is close to its ideal environment.

3.2.2 Analysis of climate data

To analyse changes in environmental variables, we downloaded Version 2 of the

United States Historical Climatology Network database (USHCN; Menne et al., 2009;

National Climatic Data Center, National Oceanic and Atmospheric Administration,

2011) and extracted annual time series of mean summer temperatures, minimum

winter temperatures, maximum summer temperatures, and total spring precipitation

for locations in the conterminous United States (Section B.5 in the Appendix). Annual

time series were used because our model is more consistent with annually measured

populations and environmental variables. We chose weather variables that are likely to

be biologically meaningful to populations living in temperate latitudes. The USHCN

data were filtered to include only time series that covered the entire 1911-2010 period.

Each time series was then split into two periods (1911-1945 and 1976-2010), each

of 35 years length. We calculated the mean and standard deviation of the climate

variables listed above, for the two periods separately. Prior to calculating the standard
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deviation, each time period was detrended to remove quadratic and linear trends that

could otherwise inflate the amount of variability measured. To approximate normality,

the square root of the precipitation data was used.

3.3 Results

3.3.1 Theoretically predicted sensitivities

We now provide answers to questions (1) and (2) posed in the Introduction by

considering a simple special case and then by showing the general case produces largely

the same results. The special case is α = 2 (so h(wt) = w2
t ) and a1 = a2 = a (so fs = 1).

For this special case, the log response function is symmetric (Figure 3.1a and b) and

lnλs and sensitivities can be calculated entirely analytically:

lnλs = a (b2 + 1) + c (3.4)

∂ lnλs
∂µ

∣∣∣∣µ=0
σ=1

= −2 a b (3.5)

∂ lnλs
∂σ

∣∣∣∣µ=0
σ=1

= 2 a (3.6)

(Section B.6 in the Appendix). The signs of the sensitivities of lnλs to changes in

µ and σ provide an answer to the first question posed in the Introduction: given a

change in the mean or standard deviation of the environment, does the growth rate

increase or decrease? The sign of the sensitivity of lnλs to changes in µ is the same

as the sign of b, since a < 0; hence any change in the mean environment toward a

population’s optimum will increase lnλs, as expected. The sensitivity to changes in σ

is always negative; hence any increase in σ is detrimental to the population. Analysis

of the ratio of the two sensitivities, which is −b, answers our second question: if mean

and standard deviation are perturbed by the same amount, which causes the greater

impact on the growth rate? For |b| < 1, changes in σ have a greater effect, whereas for

|b| > 1, changes in mean environment are more important. For fixed values of a and

c, larger lnλs happens only through smaller |b|, which means the absolute ratio of the

two sensitivities is smaller; so larger growth rates mean greater relative sensitivity of

the growth rate to changes in environmental variability.

Log response functions may often be asymmetric and α may differ from 2, so how

contingent are the above results on the assumptions made by the special case? We

numerically analysed the sensitivities of lnλs for a range of values of fs and for α =

1/2, 1 and 2 and results remain largely the same. Figure 3.2a-c shows that ∂ lnλs/∂µ,
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plotted against b, changes sign from negative to positive at a value of b close to 0, with

some small variation in the value of b at which the sign changes, depending on the values

of fs and α. Figure 3.2d-f illustrates that for α ≥ 1, ∂ lnλs/∂σ is always negative.

For α < 1, this sensitivity can be positive for larger values of |b|. Figure 3.3 compares

the absolute magnitudes of the sensitivities. For b close to 0, the sensitivity of lnλs to

changes in σ is generally comparable in magnitude to or larger in magnitude than the

sensitivity to changes in µ. The specific interval of b in which the sensitivity of lnλs

to changes in σ is larger varies depending on fs and α. But regardless of this variation

the conclusion holds that for |b| . 2, changes in environmental standard deviation are

expected to be comparably or more important for long-term stochastic growth rate

than changes of the same magnitude in the mean environment. Figure 3.3g-i shows

that for given c and a, larger values of lnλs are within the range for which |∂ lnλs/∂σ| >
|∂ lnλs/∂µ|, i.e., across a species environmental range, populations with comparatively

higher growth rates are likely to be more affected by changes in variability of the

environment than changes in mean.
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Figure 3.2: The quotients −∂ lnλs/∂µ/a2 (a-c) and −∂ lnλs/∂σ/a2 (d-f), which have
the same signs as the sensitivities ∂ lnλs/∂µ and ∂ lnλs/∂σ, respectively, and which
were calculated numerically (Sections B.3 and B.4 in the Appendix). Here, a2 = −1,
and α = 1/2 (a, d), α = 1 (b, e), and α = 2 (c, f). Sensitivities did not depend on
c.
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Figure 3.3: (a-c) Absolute values of the sensitivities of Figure 3.2. Solid lines are
|∂ lnλs/∂µ/a2| and dotted lines are |∂ lnλs/∂σ/a2|. Dots indicate points at which
solid and dotted lines of the same color cross; dots line up with the endpoints of
the ranges below each plot and indicate the b for which |∂ lnλs/∂σ| > |∂ lnλs/∂µ|.
(d-f) The ratio of the two sensitivities, (∂ lnλs/∂µ)/(∂ lnλs/∂σ). Horizontal lines at
absolute ratios equal to one and two are for reference and correspond, respectively,
to changes in mean environment being as important and doubly as important,
respectively, for long-term stochastic growth rate, compared to changes in the
standard deviation of the environment. (g-i) The quotient −(lnλs − c)/a2, which
shows how lnλs depends on b. Dots line up with those in panels (a-c). Vertical
lines indicate maxima. (a, d, g) is for α = 1/2, (b, e, h) is for α = 1, and (c, f,
i) is for α = 2.

3.3.2 Results of climate data analysis

The third question posed in the Introduction was what are the relative magnitudes of

observed changes in mean and standard deviation of climate variables? Results are

shown for winter mean temperature and total spring precipitation in Figure 3.4, and

for summer mean temperature, winter minimum temperature, and summer maximum

temperature in Figure B.1 in the Appendix. The magnitudes of changes in the

means of all variables, except total spring precipitation, were generally slightly but

not markedly larger than those of standard deviations. For total spring precipitation,

changes in mean and standard deviation were of almost the same magnitude. Results

are also spatially heterogeneous. The only variable for which changes in standard

deviation are of the same sign throughout most of the United States is minimum

winter temperature (Figure B.1e in the Appendix), where variability decreased from
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3.4 Discussion Chapter 3. Sensitivity of the long-term stochastic growth rate

1911-1945 to 1976-2010. For all other variables, the sign and magnitude of changes

depend on location. Changes in mean were generally slightly but not markedly bigger

in magnitude than changes in standard deviation at local scales, too (Figure 3.4e-f),

although there are many locations and weather variables where the reverse is true

(e.g., for summer mean temperature and precipitation). Although changes in means

were more often larger than changes in standard deviation, both types of changes were

similar in size, so results comparing relative sensitivities of long-term stochastic growth

rate can also be interpreted as approximately reflecting the relative importance of the

two types of change for population dynamics.
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Figure 3.4: Mean (a, b) and standard deviation (c, d) values for 1976-2010 minus
values for 1911-1945, and absolute values of changes in mean minus absolute values
of changes in standard deviation (e, f), for winter mean temperature (a, c, e) and
total spring precipitation (b, d, f). For instance, if m1 and sd1 are the mean and
standard deviation of winter temperature in a location for the period 1911-1945,
and m2 and sd2 are the mean and standard deviation of winter temperature in the
same location for the period 1976-2010, then panel (a) shows m2 −m1, panel (c)
shows sd2 − sd1, and panel (e) shows |m2 −m1| − |sd2 − sd1|. White corresponds
to no change. Mean and standard deviation of total spring precipitation (b, d, f)
use the square root of the precipitation values (Methods). Other weather variables
are shown in Figure B.1 in the Appendix.

3.4 Discussion

We showed for a simple model how the effects on population dynamics of changes in the

mean and variability of an environmental variable compare. Our results show that for

|b| . 2, changes in the standard deviation of the environment are at least comparably

important to changes in the mean environment. The units of b are equal to the standard

deviation of the local environment. Hence results suggest that whenever the ideal
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environment is within two standard deviations of the local mean environment, changes

in environmental variability will be comparably or more important than changes

in environmental mean for a population’s growth rate. We discuss the contrasting

implications of these results for two different kinds of populations: those living close

to their ideal environment and those far from it.

Populations living close to their ideal environment, such as those in the centre of

the species environmental range, are interpreted in our model as those having |b| . 2.

Populations of interest that live close to their ideal environment include populations

of pests and disease vectors (Reuman et al., 2006, 2008; Chaves et al., 2011). The

regions of most concern for pests and disease vectors are those near the centre of

the range of the species, where growth rates are highest and associated economic

and health problems are worst. Other populations of interest that may fall into this

category include exploited populations (e.g., fish) or populations which provide a major

food supply for exploited populations (e.g., copepods), for which centres of species

environmental ranges are also of most economic importance. For these species, our

results show that any increase in variability of the environment is detrimental, and

that furthermore, changes in variability are more important than changes in mean.

Given that the variability of temperature has decreased in many locations of the United

States over the past 100 years, our model suggests that pests and disease vectors, but

also potentially some exploited species, may stand to benefit from ongoing climate

change.

Climate change has led to shifts and contractions in range size (Parmesan et al.,

1999; Thomas & Lennon, 1999) compounded by habitat loss and fragmentation (Sala

et al., 2000). Populations struggling to adapt to rapid climate changes are also likely

to be those living on the periphery of species ranges, where environmental conditions

are suboptimal. Such populations may be of conservation interest; they are interpreted

in our model as having |b| & 2. For these populations, environmental variability can,

for the larger values of |b|, be beneficial if the log response function is described by

α < 1. This result may seem surprising, given that variability in net growth rate or

in vital rates reduces lnλs (McLaughlin et al., 2002; Lande et al., 2003; Tuljapurkar

et al., 2003; Tews & Jeltsch, 2004; Haridas & Tuljapurkar, 2005). However, the effect

of a change in environmental variability on lnλs is contingent on the concavity of

the response function (Ruel & Ayres, 1999; Drake, 2005; Boyce et al., 2006; van de

Pol et al., 2010). Our results also show that for these populations, changes in mean

environmental conditions have a greater effect than changes in variability.

Prior studies have compared the impacts of changes in mean and variability of vital

rates on lnλs. For instance, Haridas & Tuljapurkar (2005) and Ezard & Coulson

(2010) found that perturbations in mean vital rates cause a greater change in lnλs than
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perturbations in the variance of vital rates. Coulson et al. (2011) reached a similar

conclusion using an integral projection model of wolves in Yellowstone National Park,

USA. Morris et al. (2008) concluded that although all species they examined were

more sensitive to changes in vital rate means than variance, the greater importance of

changes in means was reduced for shorter-lived, faster growing species.

The above results may appear to be directly comparable to our results; however,

as pointed out by Jonzén et al. (2010), the importance of changes in the variability

of vital rates need not be indicative of the importance of changes in environmental

variability. The crucial difference between our study and the above results is that we

link to the environment via a biologically reasonable response function, considering

sensitivities to changes in environmental means and variances rather than vital rate

means and variances. The key parameters in our model turned out to be the response

function parameters b, the distance from the ideal environment, and α, the shape of the

function h(wt); response functions are not considered in the earlier studies. Our result

that populations for which the ideal environment is within two standard deviations of

the local mean environment are likely to be more sensitive to changes in environmental

variability than to changes in environmental mean in some ways parallels part of the

result of Morris et al. (2008) described above. However, whereas the populations of

Morris et al. were all more sensitive to changes in vital rate means than variances,

our results show that changes in environmental variability can sometimes be more

important than changes in environmental mean. Comparing the results of Morris et

al. with ours illustrates that the relative importance of changes in mean and variability

can differ depending on whether one considers environments or vital rates.

Only two empirical studies currently exist that can be directly compared to our

theoretical predictions, and they provide some support for our conclusions; a principle

value of our model is in guiding future work. The only prior studies we know of

that have directly compared the importance of changes in mean and variability of the

environment for populations are those of van de Pol et al. (2010) and Jonzén et al.

(2010). They used structured population models, parameterised for a population of

oystercatchers (van de Pol et al., 2010) and a population of red kangaroos (Jonzén

et al., 2010). The oystercatcher population has been declining at a rate of ∼ 5% per

year (van de Pol et al., 2010); it therefore lives in less than ideal conditions. Van de

Pol et al. conclude, as our model would suggest, that changes in mean environmental

conditions will have a greater effect on this population than do changes in variability.

The red kangaroo population of Jonzén et al. (2010) probably lives in a closer-to-ideal

environment for the species, as it has a substantially positive lnλs: the authors

estimate that growth rate will be greater than 1 even with annual harvesting up to

20%. Consistent with our model, the sensitivity of lnλs to changes in mean rainfall
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(after converting the elasticities provided in Jonzén et al. (2010) to sensitivities) is

only ∼ 2.4 times greater in magnitude than that to changes in the standard deviation

of rainfall: sensitivity to changes in standard deviation is important for the kangaroo

population. More insight can be gained in future work by replicating these efforts

for other populations. This is a non-trivial effort. Many years worth of data are

necessary for each population (e.g., 25 years of data were used in van de Pol et al.,

2010). Each monitored population would correspond to a single point in parameter

space of a general theoretical analysis. Our findings help inform what populations may

be of interest to compare. We suggest the comparison of populations thought to be

living in close-to-ideal conditions with those far from ideal conditions. For example,

one could replicate the study of van de Pol et al. with other oystercatcher populations

across a gradient of environmental conditions, including expanding populations.

Insight might also be gained by introducing more biological detail into our model in

future work, for instance by including age or stage structure. For a stage-structured

model, n vital rates or stochastic matrix elements would be linked to n potentially

different environmental variables wi(t) (i = 1, . . . , n) by different response functions,

each with its own αi, a1,i, a2,i, bi, and ci, resulting in n sensitivities of lnλs to

changes in µi and σi. It is realistic to expect the n response functions to differ

in concavity and other respects (van de Pol et al., 2010). In addition, the wi may

be correlated and this correlation structure may be affected in unknown ways by

climate change. Managing this complexity is a challenge. Alternative modelling

frameworks (e.g., Runge & Moen, 1998; Steinsaltz et al., 2011) face similar problems.

If a general model proves too complicated to immediately provide insight, a sensible

next step may be a 2 x 2 matrix model of a population with juveniles and adults

(non-semelparous, as semelparous populations are covered by our model; Section B.8

in the Appendix). Such a model would make it possible to study the differing impacts of

climate change on fecundity and survival rates, as well as effects that may only emerge

when some stage structure is present. For an age or stage structured model, the exact

formulation of lnλs used in this study would no longer be valid, but Tuljapurkar’s

(Tuljapurkar, 1982, 1990) approximation could be used. For the unstructured case,

the approximation yields qualitatively similar results to the ones presented here

(results not shown). The long-term stochastic growth rate for a stage-structured

model is also affected by autocorrelation in the environment (Tuljapurkar, 1982, 1990;

Caswell, 2001). The autocorrelation of environmental variables is also changing due

to climate change (Garćıa-Carreras & Reuman, 2011). It would be possible, using a

stage-structured model, to compare the relative effects of changes in mean, variance,

and autocorrelation of the environment on population dynamics (as done for a single

oystercatcher population in van de Pol et al., 2011). Finally, the sensitivities of lnλs
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are linear approximations of the functions that relate lnλs to µ and σ, and therefore

assume small changes in the environment. More substantial environmental changes

may entail nonlinearities for which a linear approximation is no longer sufficient.

An examination of such nonlinear effects may be analytically intractable, though

simulations and numeric work may provide insights.
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4 Are changes in the mean or

variability of climate signals more

important for extinction risk?

Abstract

Climate change affects the extinction risk faced by animal populations by altering

their dynamics. While greater attention has been devoted to the impacts of readily

measured changes in the means of environmental variables such as temperature, climate

change also entails changes in the variability of environmental variables. Is the

greater attention given to changes in mean environment justified? To help answer

this question we formulated a simple stochastic population model explicitly linked to

an environmental process, and used it to compare the sensitivities of a population’s

extinction risk to changes in mean and standard deviation of the environment. Results

show that changes in environmental standard deviation can be more important than

changes in the mean of the environment for populations living close to their ideal

environment, but that still face the threat of extinction. Changes in mean conditions

are more important than changes in environmental standard deviation for populations

living further from their ideal environment.

N. B.: This chapter is in preparation for PLoS ONE. Its corresponding supplementary

information can be found in Appendix C.
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4.1 Introduction

Extinction risk is a vital statistic in population viability analysis and conservation

biology (Lande & Orzack, 1988; Caswell, 2001; Morris & Doak, 2002). Ongoing climate

change, among other factors, has been shown to increase current rates of extinction

(Hassan et al., 2005). Rapid changes in climate can directly affect the distribution

and dynamics of populations through physiological stress (Hughes, 2000), changes

in reproductive and survival rates (Walther et al., 2002), and shifts in phenology

(McCarty, 2001; Walther et al., 2002; Parmesan, 2006). Other indirect consequences,

such as habitat fragmentation or loss, introduction of invasive species, and a change to

the competitive interactions between species can also feed back into local abundance

and geographic range size (Hughes, 2000). It follows that climate change has been

identified as a factor threatening the persistence of populations (Parmesan, 1996;

Hughes, 2000; Parmesan, 2006), and both local (Parmesan, 1996; McLaughlin et al.,

2002) and global (Pounds et al., 1999; Stuart et al., 2004) extinctions can be expected as

a consequence. Significant shifts in range towards higher latitudes and altitudes have

been widely documented (Parmesan, 1996; Thomas & Lennon, 1999; Hughes, 2000;

McLaughlin et al., 2002; Parmesan & Yohe, 2003; Parmesan, 2006), indicating a pattern

of nonrandom local extinctions particularly at lower altitudes and southern borders of

populations’ ranges (Parmesan, 1996; McCarty, 2001). Although risk of extinction

is faced by populations of every continent and ocean and of most major taxonomic

groups (Parmesan, 2006), high extinction risk has been associated with populations

possessing a number of attributes: high-trophic level; low population density; slow life

history; and particularly a small or restricted range (Purvis et al., 2000; Parmesan,

2006).

Many of these studies focus on the impacts of changes in mean conditions (e.g.,

Parmesan, 1996; Pounds et al., 1999; Hughes, 2000; Parmesan & Yohe, 2003).

Yet, climate change also manifests itself as changes in other statistical descriptions

(Chapters 3 and 6). Changes in the variability of temperature and precipitation have

also been reported (Michaels et al., 1998; Svoma & Balling, 2010, Chapter 3) and

forecast (Hunt & Elliott, 2004; Stouffer & Wetherald, 2007; Sakai et al., 2009), and

have been shown to potentially affect populations’ fitness (Schoener & Spiller, 1992;

McLaughlin et al., 2002; Tuljapurkar et al., 2003). In order to compare the impacts

of changes in mean and variability of environmental conditions on a population, in

Chapter 3 we proposed a simple population model linked to an environmental variable

via a response function, which translated the environmental signal into a biological

process. We found that changes in mean conditions are likely to have a greater

impact than changes in variability on populations near species environmental range

boundaries or of conservation concern, whereas faster-growing populations such as
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pests and disease vectors, and other populations near range centres are more likely to

be affected by changes in climate variability.

Our proxy for population fitness in Chapter 3, the long-term stochastic growth

rate lnλs, is a common choice in population dynamics (e.g., Tuljapurkar et al., 2003;

Haridas & Tuljapurkar, 2005; Ezard & Coulson, 2010). It is an estimate of the most

likely rate at which the population will grow in the long run. In the context of

extinction risk, populations with lnλs ≤ 0 are bound to go extinct with probability

1, whereas for those with lnλs > 0, extinction is possible but not a certainty (Lande

& Orzack, 1988). It does however have, a priori, some limitations, as it is difficult to

quantify the actual extinction risk faced by a population from lnλs alone. There is also

uncertainty around lnλs, referred to as the log variance (denoted σ2r henceforth, but

frequently σ2 in the literature, e.g., Caswell, 2001 and infinitesimal variance in Lande

& Orzack, 1988). This uncertainty may have important implications for the viability

of a population; a population may be expected to grow in the long run (lnλs > 0),

but if the uncertainty around the measure of lnλs is large enough, its persistence may

not be guaranteed. This information is ignored when using lnλs as the sole fitness

parameter. Both lnλs and σ2r are therefore necessary inputs to estimate extinction

risk (Tuljapurkar & Orzack, 1980).

In this study we compare the effects of changes in mean and variability of

environmental conditions on population extinction risk. We build on the theoretical

approach developed in Chapter 3 by deriving σ2r and extinction risk as a function of

the environment and the response function. We then derive the sensitivity of σ2r and

extinction risk to changes in environmental mean and variability. We provide answers

to the following questions: (1) Given an increase in the mean or standard deviation of

the environment, does extinction risk increase or decrease? (2) If mean and standard

deviation are perturbed by the same small amount, which causes the greater impact

on extinction risk? We also compare the results to those in Chapter 3 to assess the

merits of using extinction risk as a population fitness parameter in comparison to lnλs,

and discuss results in view of currently ongoing climate change.

4.2 Methods

For nt representing the population in year t, the base model (Lewontin & Cohen, 1969)

is

nt+1 = λt nt, (4.1)

where λt is the net growth rate of the population in year t. We assume λt = f(wt),

where wt is the environmental variable and f is the response function. The response

function describes how an environmental variable is translated into a biological process
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(Laakso et al., 2001; Morris et al., 2008, Chapter 3). The function typically has a single

peak. Let p(wt) = ln f(wt) be the log of the response function.

For the stochastic model, log population size asymptotically approaches a normal

distribution with mean t lnλs and standard deviation t σ2r . The mean divided by t

(i.e., lnλs) is the long-term stochastic growth rate (Tuljapurkar, 1982, 1990; Caswell,

2001), and the variance divided by t (σ2r ) is the log variance, which quantifies the

variability around the estimate of lnλs. For our model, these are

lnλs = E(lnλt) =

∫ ∞
−∞

p(wt)ϕµ,σ(wt) dwt, (4.2)

and

σ2r = Var(lnλt) =

∫ ∞
−∞

p(wt)
2 ϕµ,σ(wt) dwt − (lnλs)

2, (4.3)

(Section C.1 in the Appendix), where ϕµ,σ is the probability density function (pdf) of

wt, with mean parameter µ and standard deviation parameter σ (Tuljapurkar, 1990;

Lande et al., 2003). Second-order approximations are often used to estimate lnλs

and σ2r (Tuljapurkar, 1982, 1990), but equations (4.2) and (4.3) are exact formulae

that apply in the case of an unstructured population. Populations described only by

equation (4.1) never go extinct, but at most decay exponentially, only asymptotically

reaching zero (Caswell, 2001). We consider extinction to have occurred when the

population goes below the threshold of one. Lande & Orzack (1988) used a diffusion

approximation to derive extinction risk G as

G(t|x0) ≈ Φ

[
−x0 − lnλs t√

σ2r t

]
+ exp

(
−2 lnλs x0

σ2r

)
Φ

[
−x0 + lnλs t√

σ2r t

]
, (4.4)

(Morris & Doak, 2002), where Φ[·] is the cumulative distribution function (cdf) of a

standard normal random variable, and where G(t|x0) is the cumulative probability that

the population becomes extinct before time t, given an initial positive log population

size x0 = lnn0. All results are substantially the same for any other choice of extinction

threshold. The sensitivities of extinction risk to changes in mean and standard

deviation of the environment are

∂G(t|x0)
∂µ

=
∂G(t|x0)
∂ lnλs

∂ lnλs
∂µ

+
∂G(t|x0)
∂σ2r

∂σ2r
∂µ

(4.5)

∂G(t|x0)
∂σ

=
∂G(t|x0)
∂ lnλs

∂ lnλs
∂σ

+
∂G(t|x0)
∂σ2r

∂σ2r
∂σ

. (4.6)

The sensitivities of lnλs and σ2r can be calculated by taking the partial derivatives

of equations (4.2) and (4.3) with respect to µ and σ. We do this by moving the
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partial derivatives under the integral symbol and applying them to ϕµ,σ(wt). The

other derivatives that appear in equations (4.5) and (4.6) are straightforward to

calculate. This approach applies generally, for any specified p(wt), yielding sensitivities

expressible as integrals which can easily be calculated numerically.

For concreteness, we adopt a flexible parameterisation for p. Without loss of

generality we transform wt such that its distribution in the focal location is N (0, 1)

(see Section C.2 in the Appendix). If h(wt) = wαt for some α > 0, p(wt) is taken to be

a1 h(−wt+b)+c for wt ≤ b and a2 h(wt−b)+c for wt ≥ b (Figure 4.1). This function is

single peaked with maximum height c occurring at the ideal environment, b. The rate

of falloff of p as wt decreases (respectively, increases) from the ideal environment is

controlled by a1 (respectively, a2); both are taken to be negative. The ratio fs = a1/a2

is a measure of asymmetry of the response function around b. The examples shown

in Figure 4.1 are similar to response functions reported in the literature (Chapter 3).

The value of b is the difference between the local environment and the population’s

ideal environment, measured in units equal to the standard deviation of the local

environment because we re-scaled wt to make it standard-normally distributed. Larger

values of |b| describe populations living in a suboptimal environment (for example,

those living in environmental range margins or struggling to adapt to ongoing climate

change), whereas |b| ∼ 0 is more indicative of populations living in a close-to-ideal

environment.

Substituting the above parameterization of p(wt) into equation (4.2), we get lnλs

and σ2r as functions of the parameters that define the log response function,

lnλs = a1

∫ b

−∞
(−wt + b)α ϕµ,σ(wt) dwt + a2

∫ ∞
b

(wt − b)α ϕµ,σ(wt) dwt + c (4.7)

σ2r = a21

∫ b

−∞
(−wt + b)2α ϕµ,σ(wt) dwt

+ a22

∫ ∞
b

(wt − b)2α ϕµ,σ(wt) dwt − (lnλs − c)2 (4.8)

(Chapter 3 and Section C.1 in the Appendix), where ϕµ,σ now represents the pdf of

the normal distribution with mean µ and standard deviation σ. It is straightforward

to compute the partial derivatives of lnλs and σ2r with respect to µ and σ and the

partial derivatives of G with respect to lnλs and σ2r at µ = 0 and σ = 1 (Chapter 3,

Sections C.3, C.4, and C.5 in the Appendix). These partial derivatives allow us to

calculate the sensitivity of extinction risk to changes in µ and σ using equations (4.5)

and (4.6). These are the instantaneous rates of change of G per unit change in µ and

σ respectively, where the unit of change in µ and σ is one standard deviation of wt.
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Figure 4.1: A log response function p(wt) (a) and corresponding linear-scale response
function f(wt) (b) for α = 2, a1 = a2 = −0.05, b = 1, and c = ln 2. Region
(i) represents a suboptimal environment and region (ii) represents an optimal
environment. An example is also shown for an asymmetric response function with
fs = 1/3 (a1 = −0.05, a2 = −0.15) (c, d) on the log (c) and linear (d) scales,
for b = 0, c = ln 2, and α = 2. Standard normal distributions (b, d, f) represent
the population’s local environment wt. In (b), the population is in a suboptimal
environment, for instance at the periphery of the species’ range. In (d, f) the
population is close to its ideal environment. Response functions on the linear scale
for different values of α (e), ranging from α = 2 for the black line, to α = 0.5 for
the light grey line, for fs = 1, and a1 = a2 = −0.5. The intermediate values of α
are 1.5, 1, and 0.75.

The signs of these sensitivities indicate whether a small increase in mean or standard

deviation of the environment increases or decreases extinction risk. Following the

rationale of van de Pol et al. (2010), the relative magnitudes of these sensitivities

provide an estimate of whether small changes in environmental mean or standard

deviation have a bigger influence on G.

4.3 Results

We now provide answers to the questions posed in the Introduction by analysing a

specific, representative case, and then examining deviations from this special case. For

this representative case, α = 2 and fs = 1, so the log response function is symmetric

(and qualitatively similar to Figure 4.1a and b). The signs of the sensitivities of
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extinction risk to changes in µ and σ provide an answer to the first question posed in

the Introduction: given a change in the mean or standard deviation of the environment,

does the extinction risk increase or decrease? Panels (a) and (c) in Figure 4.2 show

∂G/∂µ and its sign respectively for the representative case. The sign of the sensitivity

of extinction risk to changes in µ is the opposite sign of b; hence any change in the

mean environment toward a population’s optimum will decrease extinction risk, as

expected. Panels (b) and (e) in Figure 4.2 shows ∂G/∂σ and its sign respectively.

The sensitivity to changes in σ is negative over most of parameter space; hence any

increase in σ is detrimental to the population. For populations with G(t = 5) & 0.9,

particularly those with higher values of c and |b|, ∂G/∂σ can be positive, albeit small

in magnitude, but this is of little consequence since these populations have such high

near-term extinction risk that climate change will not have time to affect them before

they disappear.
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Figure 4.2: (a) ∂G/∂µ, (b) ∂G/∂σ, (c) the sign of the sensitivity shown in
panel (a), (d) the relative importance of the sensitivity to changes in µ, i.e.
|∂G/∂µ|/(|∂G/∂µ| + |∂G/∂σ|), (e) the sign of the sensitivity shown in panel (b),
for α = 2, a2 = −0.5, fs = 1, t = 10, and x0 = ln 10. The red contour line
is G(t = 5) = 0.9, so populations below this line are doomed to extinction. Blue
contour lines are forG(t = 10) = 0.1, 0.9. The green area corresponds to populations
with G(t = 100) ≤ 0.1 that are relatively safe from extinction.

Analysis of the magnitude of absolute sensitivities answers the second question posed

in the Introduction: if mean and standard deviation are perturbed by the same amount,

which causes the greater impact on the extinction risk? Panel (d) in Figure 4.2 shows
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the value of Pµ

Pµ =

∣∣∣∣∣∂G(t|x0)
∂µ

∣∣∣∣µ=0
σ=1

∣∣∣∣∣∣∣∣∣∣∂G(t|x0)
∂µ

∣∣∣∣µ=0
σ=1

∣∣∣∣∣+

∣∣∣∣∣∂G(t|x0)
∂σ

∣∣∣∣µ=0
σ=1

∣∣∣∣∣
(4.9)

For Pµ < 0.5, the sensitivity of G to changes in σ is bigger in magnitude than its

sensitivity to changes in µ, and for Pµ > 0.5, the sensitivity of G to changes in µ is

bigger in magnitude than its sensitivity to changes in σ. For |b| . 1, changes in σ

have a greater effect on extinction risk. For a fixed value of b, as c increases, changes

in environmental variability become progressively more important. Changes in mean

environment become more important when |b| increases while holding c constant, and

as |b| increases while holding extinction risk constant.

We numerically examined deviations from the above special case by analysing the

sensitivities of extinction risk for all combinations of the following parameters: α =

0.5, 0.75, 1, 1.5, 2, fs = 1/3, 1, 3, and a2 = −0.1,−0.5,−1,−1.5. Some additional results

are shown in Section C.6 in the Appendix. The main observations remain largely

the same. The main effect of altering the value of α and a2 is to change the size

of parameter space. As α is decreased, parameter space becomes progressively larger,

because populations are capable of surviving further away from their ideal environment

(Figure 4.1(e)). Similarly, for large values of |a2|, the fall-off in population fitness from

the ideal environment is steep, and therefore populations cannot survive far from their

ideal environment, whereas when |a2| is small, populations can persist in locations far

from their ideal environment. Changing the value of fs such that fs 6= 1 means that

the sensitivities of G to changes in µ and σ are no longer symmetric along the b = 0

line, as would be expected (Figure 4.3). Therefore, the sign of ∂G/∂µ in the example

shown in Figure 4.3 no longer changes at b = 0, but at values between ∼ −0.2 and

−0.5. Similarly, for fs = 1/3, the sign of the sensitivity of G to changes in µ changes

at values close to b = 0 (Section C.6 in the Appendix).

To understand the contributions of the different partial derivatives that compose the

sensitivity of G to changes in µ and σ (equations (4.5) and (4.6)), and to inform the

Discussion, we also analysed the sensitivity of σ2r to changes in µ and σ, as well as the

sensitivity of G to changes in lnλs and σ2r . Figure 4.4 shows ∂σ2r/∂µ and ∂σ2r/∂σ, for

the specific case considered above (α = 2, fs = 1). The log variance is always more

sensitive to changes in σ than to changes in µ. An increase in σ always increases σ2r .

The sensitivity of extinction risk to changes in lnλs and σ2r is shown in Figure 4.5.

Extinction risk is more sensitive to changes in lnλs than to changes in σ2r , although

changes in log variance become increasingly important as α decreases (Section C.7 in
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Figure 4.3: (a) ∂G/∂µ, (b) ∂G/∂σ, (c) the sign of the sensitivity shown in
panel (a), (d) the relative importance of the sensitivity to changes in µ, i.e.
|∂G/∂µ|/(|∂G/∂µ| + |∂G/∂σ|), (e) the sign of the sensitivity shown in panel (b),
for α = 2, a2 = −0.5, fs = 3, t = 10, and x0 = ln 10. The red contour line
is G(t = 5) = 0.9, so populations below this line are doomed to extinction. Blue
contour lines are forG(t = 10) = 0.1, 0.9. The green area corresponds to populations
with G(t = 100) ≤ 0.1 that are relatively safe from extinction.

the Appendix). The effect of increasing lnλs is to decrease extinction risk, as would be

expected, whereas ∂G/∂σ2r is mostly positive, except at higher extinction risk, when

the sensitivity can be negative, albeit small in magnitude.

4.4 Discussion

Our results show how the effects of changes in the mean and the variability of an

environmental variable on extinction risk compare. For populations living close to

their ideal environment (|b| . 1), changes in the standard deviation of the environment

are at least comparable, although usually more important than changes in the mean

environment. On the other hand, populations living further away from their ideal

environment, particularly those with higher values of c and high extinction risk, are

more affected by changes in mean conditions. The units of b are equal to the standard

deviation of the local environment. Hence, results suggest that whenever the ideal

environment is within a standard deviation of the local mean environment, changes

in environmental variability will be comparably or more important than changes in
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Figure 4.4: ∂σ2r/∂µ (a-c) and ∂σ2r/∂σ (d-f), which were calculated numerically
(Sections C.3 and C.4 in the Appendix). Here a2 = −1, α = 1/2 (a, d), α = 1
(b, e), and α = 2 (c, f). Sensitivities did not depend on c.

environmental mean for extinction risk. We discuss the contrasting implications of

these results for two different kinds of populations: those living close to their ideal

environment, and those living further from it and typically characterised by higher

maximum population growth rates.

Populations described by |b| . 1 in our model are populations living close to their

ideal environment but that yet have a non-zero extinction risk in the long run. These

combination of features – living in an ideal environment but yet risking extinction

– would seem to suggest an unviable population. However, these populations may

still be of conservation concern. Populations recently object of conservation programs

living in protected habitats may only recently be experiencing their ideal environment,

and would still be described in our model by |b| . 1. The relatively low growth

rate at their ideal environment suggests these populations may be characterised by

a slow life history and larger body size (Blueweiss et al., 1978), coinciding with

several of the attributes associated with higher extinction risk (Purvis et al., 2000).

Alternatively, factors extrinsic to the population, such as competition from recently

introduced species, shrinking or fragmentation of habitat, or unmanaged exploitation

or fishing, may be increasing mortality rates and threatening viability. Any change in

the mean environmental conditions is likely to be detrimental for these populations.

However, changes in the variability of climate will cause a larger change in extinction

risk. Given that the variability of temperature has decreased in many locations of
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Figure 4.5: (a) ∂G/∂ lnλs, (b) ∂G/∂σ2r , (c) the sign of the sensitivity shown in
panel (a), (d) the relative importance of the sensitivity to changes in lnλs, i.e.
|∂G/∂ lnλs|/(|∂G/∂ lnλs|+ |∂G/∂σ2r |), (e) the sign of the sensitivity shown in panel
(b), for α = 2, a2 = −0.5, fs = 1, t = 10, and x0 = ln 10. The red contour line
is G(t = 5) = 0.9, so populations below this line are doomed to extinction. Blue
contour lines are forG(t = 10) = 0.1, 0.9. The green area corresponds to populations
with G(t = 100) ≤ 0.1 that are relatively safe from extinction.

the United States over the past century (Chapter 3), our model suggests that these

populations may stand to benefit from ongoing climate change.

The second group of populations is endangered and is characterised by a high

maximum intrinsic growth rate (value of exp(c)), an unrealised potential because

these populations live further away from their ideal environment (|b| & 1). Maximum

intrinsic growth rate is negatively correlated with body size (Blueweiss et al., 1978),

therefore, populations that are more likely to fit in this group are those smaller

in size but also with faster life histories. Specific relevant examples may include

lower trophic level fish of commercial interest (for example anchovies or sardines:

Chavez et al., 2003) and their food supply (e.g., plankton: Hays et al., 2005), and

endangered small mammals (e.g., lagomorphs: Beever et al., 2003; Anderson et al.,

2009), amphibians (e.g., frogs: Pounds et al., 1999; Stuart et al., 2004), and arthropods

(e.g., butterflies: Parmesan, 1996; Thomas & Lennon, 1999; McLaughlin et al., 2002

and spiders: Schoener & Spiller, 1992). The only attribute these species are likely to

possess that may predispose them to a higher extinction risk of those listed in Purvis

et al. (2000) is that of a small range size. For these populations, changes in mean
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environmental conditions are more important than changes in variability.

The above results resemble those in Chapter 3, where we used lnλs as a fitness

indicator. Both when using lnλs and G as fitness parameters, the distance from the

ideal environment b was identified as the most important gradient along which the

relative contributions of changes in µ and σ changed. Extinction risk is more sensitive

to changes in lnλs than to changes in σ2r , so the sensitivities of lnλs to changes in µ and

σ have a greater weight on the sensitivity of extinction risk than do the sensitivities

of σ2r . Chapter 3 showed that lnλs of populations populations of conservation concern

was more affected by changes in µ. When using extinction risk as a proxy for fitness,

we necessarily focus on populations of conservation concern, which might explain why

the area of parameter space for which changes in σ are more important, is smaller

(|b| . 1) when using G, than when using lnλs (|b| . 2; Chapter 3).

Our results in part justify the use of lnλs as a fitness parameter; it requires fewer

assumptions than the estimation of extinction risk, and produces qualitatively similar

results. Using extinction risk as a fitness measure is, however, advantageous when

analysing populations of conservation concern. It allows to distinguish between groups

of populations, such as the two considered above, that would not have been possible

by using lnλs alone.
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5 Are changes in the mean or

variability of climate more important

for populations?

Abstract

Changes in the variability of climate are likely to impact the dynamics of populations,

yet have received less attention than changes in mean conditions. To what extent is this

imbalance in research focus justified? Results from a theoretical model explicitly linked

to the environment developed in Chapters 3 and 4 show that changes in environmental

variability can be more important than changes in mean, particularly for populations

living close to their ideal environment. However, there are few empirical studies we

can use to validate our model with. We extend the number of studies we can use

for validation by re-analysing existing population models linked to the environment,

and comparing the relative effects of a change in mean environment on the population

with the impact of a change in variability. Results show that across different taxa and

modelling approaches, changes in variability are important for population dynamics.

For one of the studies analysed, changes in variability had a clearly greater effect on

the population than changes in mean. The main conclusion from Chapters 3 and 4

was that changes in variability deserve greater attention because of the impact these

changes can have on animal populations. This conclusion is supported by the empirical

studies analysed here.
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5.1 Introduction

Climate change entails not only changes in mean conditions of climate (IPCC,

2007), but also changes in other statistical descriptions of climate change, such as

variability (Michaels et al., 1998; Räisänen, 2002; Boer, 2010) and autocorrelation

(Garćıa-Carreras & Reuman, 2011). While changes in mean environment have garnered

widespread attention, changes in variability have been the focus of fewer studies. To

address whether the imbalance in research efforts is justified, we developed a simple

theoretical model to compare the impacts of changes in mean environment to those due

to changes in variability, and showed that changes in variability may in fact be more

important for some populations (Chapters 3 and 4). However, do these results find

support in existing empirical studies? There are only three studies which can be used to

directly validate our predictions. We here re-analyse a selection of population models

that are linked to the environment, to provide further empirical points of comparison

for our model’s results.

To elucidate how changes in the mean and standard deviation of the environment

affect populations, and how their impacts compare, in Chapters 3 and 4 we used a

simple, strategic approach, based on an unstructured population explicitly linked to

an environmental variable via a flexible formulation of a response function. The results

showed that changes in variability can be expected to be important for populations,

even when compared to the impacts of changes in mean conditions. We furthermore

offered insight into what populations are likely to be more vulnerable to changes in

variability. The main gradient along which the relative importance of changes in

mean and variability of environment varied was the population’s distance from its

ideal environment. Populations living close to their ideal environment are predicted

to be more susceptible to changes in environmental variability, whereas those living

in suboptimal conditions are expected to be more vulnerable to changes in mean

conditions.

The credibility of any theoretical model depends on empirical validation. Without

support from laboratory and field studies, it is very difficult to establish whether the

approach taken and the assumptions made are appropriate. We know of only three

empirical studies that compared the population’s sensitivity to changes in mean and

variability of the environment. They are those by van de Pol et al. (2010), Jonzén

et al. (2010), and more indirectly, Jenouvrier et al. (2012); they are described below.

While their findings broadly provide support for our theoretical predictions, they

represent only three data points against which to validate our model. In Chapter 3

we encouraged replicating these efforts, preferably across environmental ranges (from

ideal to suboptimal). However, this requires a non-trivial effort, with a substantial
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investment in both time and money.

Climate change has motivated a wealth of studies on how climate affects population

dynamics. Most empirical studies focus on single populations, often of conservation

concern. These studies often perform a sensitivity analysis, to see how different

vital rates contribute to population fitness (e.g., Haridas & Tuljapurkar, 2005; Morris

et al., 2008; Ezard & Coulson, 2010; Coulson et al., 2011). These sensitivities can

provide indirect information on what climatic changes could be detrimental for a

population. For example, short-lived plants were found to be very susceptible to

variability in reproductive rates (Morris et al., 2008), so they are probably sensitive

to changes in climate that increase variation in these vital rates. However, changes

in mean and variability of climate have the potential to change both the mean and

variability of vital rates. To gain a better understanding of how climate change

affects a population requires understanding the relationship between environment and

vital rates (see Chapter 3). Some studies explicitly link vital rates to environmental

variables, and estimate the impact of a predicted climatic change (e.g., an increase in

mean temperature: Sæther et al., 2000, or a change in variability: Lawler et al., 2009)

on the population. While these studies do not compare the effects of a change in mean

and variability of the environment, they often provide a parameterised model set up to

calculate at least one of these two sensitivities. It should therefore be possible, given

the necessary information, to calculate the second sensitivity.

In this study we aim to re-analyse a select number of studies, to provide direct

comparisons between the effects of changes in mean environment with changes in

variability. The studies chosen needed to be fully parameterised, explicitly linked

to an environmental variable, provide information on how the environment affects

population vital rates, and preferably have originally estimated the sensitivity of the

population to changes in mean and/or variability of climate. The results from this

meta-analysis will provide further data points against which to validate the theoretical

model developed in Chapters 3 and 4.

5.2 Selected studies

The studies chosen (Sæther et al., 2000; Coulson et al., 2008; van de Pol et al., 2010;

Jonzén et al., 2010; Jenouvrier et al., 2012) are described below. We summarise their

model and original conclusions, and where necessary use the model to obtain the

missing sensitivities to changes in climate.
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5.2.1 Dippers

Sæther et al. (2000) conducted a study on a population of a small songbird, and one

of their main objectives was to predict the impact of climate change. They studied a

population of dippers (Cinclus cinclus) in southern Norway for 20 years, and developed

a stochastic population model that included density dependence and climate effects

(mediated through winter temperature) to model the dynamics of the population.

They found that the predicted increase in mean winter temperature of 2.5◦C would

increase the carrying capacity and expected value of the distribution of population size

by over 50%. How would the dynamics of the population be affected by a change in

the variability of mean winter temperature?

Their model can be summarised as follows: the log growth rate of the population is

drawn from a normal distribution:

ln

(
Xt+1 −Mt+1

Xt

)
∼ N

(
r − αXt + β Ct, σ

′2
e +

σ2d
Xt

)
, (5.1)

where Xt is the number of breeding pairs in year t, Mt is the number of immigrants, r

is the population growth rate, α is the strength of density dependence, and σ2d is the

demographic variance. Ct is the climatic variable, β alters the strength of the effect of

the climatic variable, and σ
′2
e is the residual variance not accounted for by variation in

Ct. The environmental variance is

σ2e = σ
′2
e + β2 Var(Ct). (5.2)

The number of immigrants Mt is drawn from a Poisson distribution with parameter

λt, where

lnλt ∼ N (µ0 + µ1Ct, σ
2
λ). (5.3)

Here, σ2λ is the variance of lnMt, µ0 is the mean log immigration rate at Ct = 0, and

µ1 measures the dependence of the immigration rate on Ct. The climatic variable Ct

is modelled as a first-order autoregressive process

Ct+1 − c ∼ N (a (Ct − c), σ2c ), (5.4)

where c and σ2c are the mean and variance respectively, and a determines the return

time of the process. The posterior distribution of the parameters of equations (5.1) and

(5.3) were estimated using Markov Chain Monte Carlo methods (Sæther et al., 2000).

A sample of 1000 points from the distribution was provided to us by the authors.

Parameter point estimates are in Table D.1 in Appendix D; most, but not all of these

values reproduce values given by Sæther et al. (2000) in their Table 1.
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Sæther et al. (2000) estimated the effect of a change in mean winter temperature on

the population by changing the value of c (initially set to zero). To compare the effect of

a change in mean winter temperature with a change in variability, we change the values

of c and σc in equation (5.4) separately by 2.5◦C, using the point estimates provided

in Table D.1. The population was simulated for 50,000 time steps starting with the

number of breeding pairs counted in 1978. The last 10,000 population counts were

used to produce a distribution. Results show that a change of 2.5◦C in mean winter

temperature has a ∼ 14 times greater impact on the mean log population size than a

change of 2.5◦C in the standard deviation of mean winter temperature (Figure 5.1).

Increasing variability of mean winter temperature has a greater impact on the variance

of the distribution of log population size (Figure 5.1).
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Figure 5.1: Distribution of population size, with no change to mean or variability
(solid line), a change in mean (c = 2.5; dashed line) and a change in variability
(∆σc = 2.5; dotted line). The legend shows the mean values and standard
deviations of the log population distributions. The solid and dashed lines are the
same as the curves shown in Figure 3A of Sæther et al. (2000).

To assess the robustness of the results shown in Figure 5.1, we simulated

the population as described above, but using the 1000 points from the posterior

distribution. One parameter combination produced non-finite population counts

with no change in the environment, and a total of two parameter combinations

produced non-finite population counts given a change in mean or standard deviation of

winter temperature. These two parameter combinations were left out of the analysis.

Figure 5.2 shows the distribution of mean population size for the 998 combinations,

given no change in climate, a change in climate mean, and a change in variability. For

∼ 3% of these combinations, changes in environmental variability had a greater impact

on mean population size than changes in the mean of the environment. Changes in the

variability of winter temperature had a greater impact on the standard deviation of

log population size for all parameter combinations. These results support the findings

of Figure 5.1.
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Figure 5.2: The distribution of mean lnnt (a) and standard deviation of lnnt (b)
for the 998 parameter combinations of the posterior distribution, with no change
in mean or variability (solid line), a 2.5◦C change in mean (dashed line) and a
2.5◦C change in variability (dotted line). (c) The change in mean lnnt caused by a
2.5◦C change in mean winter temperature versus the change in mean lnnt caused
by a 2.5◦C change in the standard deviation of winter temperature. For 28 of the
parameter combinations, a 2.5◦C change in standard deviation caused a greater
impact on mean lnnt. (d) The change in the standard deviation of lnnt caused by
a 2.5◦C change in mean winter temperature versus that caused by a 2.5◦C change in
the standard deviation of winter temperature. For all 998 parameter combinations,
an increase of 2.5◦C in the standard deviation of winter temperature had a greater
impact on the standard deviation of lnnt than the same change in mean winter
temperature. The dashed line in (c) and (d) is the y=x line.

5.2.2 Soay sheep

The Soay sheep (Ovis aries) population on the Island of Hirta in the St. Kilda

archipelago, Scotland, are a food-limited population free of interspecific competition

and predation, and for this reason represent an ideal setting to study the cause

of fluctuations in population numbers (Clutton-Brock & Pemberton, 2004). They

have been annually censused since 1955, and their dynamics are characterised by

quasiperiodic population crashes, a product of the interaction between weather effects

and density dependence (Grenfell et al., 1998; Coulson et al., 2001; Stenseth et al.,

2004). Several studies have used different approaches to model the population and

characterise its dynamics (Grenfell et al., 1998; Coulson et al., 2001; Stenseth et al.,
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2004; Coulson et al., 2008). The North Atlantic Oscillation (NAO) has often been used

as the environmental variable (Coulson et al., 2001; Stenseth et al., 2004; Coulson et al.,

2008; Ezard & Coulson, 2010), together with proxies for local weather (Coulson et al.,

2001), and sward height (Ezard & Coulson, 2010). Coulson et al. (2008) parameterised

a two sex model with seven age classes. The purpose of the study was to compare

the relative contributions of the environment (NAO), density dependence, and their

interaction to the variability explained by the model.

We use the model in Coulson et al. (2008) to compare the sensitivity of the

population to changes in mean and variability of NAO. Survival and fecundity are

functions of density and NAO. Parameter estimates for the effects of density, NAO,

and their interaction are given in Table D.2 in Appendix D, reproduced from Coulson

et al. (2008). The models were linear on the logit scale, so they can be transformed

using
1

1 + 1/ exp(a+ b x1 + c x2 + d x3)
, (5.5)

where a is the value for the intercept given in Table D.2, b, c, and d are the parameters

corresponding to density, NAO, and their interaction respectively, and x1, x2, and x3

are the time series of density, NAO, and their interaction respectively. Recruitment

is given by the product of fecundity, litter size (values provided in the caption of

Table D.2), and neonatal survival. New recruits have equal chance of being male or

female, therefore recruitment is divided by two in the 11 by 11 projection matrices for

the two sexes. The initial population size is arbitrarily set at 1000, with equal numbers

allocated to each age class.

Coulson et al. (2001) simulated NAO by drawing values from a normal distribution

with mean and standard deviation equal to the observed values over the study

period. Following Coulson et al. (2001, 2008), data for station-based winter

(December to March) NAO, defined as the difference of normalised sea level

pressure between Lisbon, Portugal and Stykkisholmur, Iceland, were downloaded

on 02/06/2012 from The National Center for Atmospheric Research website

(https://climatedataguide.ucar.edu/sites/default/files/cas_data_files/

asphilli/nao_station_djfm_0.txt). The data since 1864 were visually inspected

for normality. NAO was then modelled as a first-order autoregressive process:

xt+1 ∼ N (a (xt − c), σ2n) + c, (5.6)

with mean c and standard deviation σn equivalent to the observed mean and standard

deviation of NAO for the time period 1985–2006 (c = 1.006 and σn = 2.135), and

a = 0.15 being the return time of the process estimated using the time series since

1864. To change the mean and standard deviation of NAO, we increased the values
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of c and σn respectively. We ran the population model for 50,000 time steps, and

calculated the mean of the distribution of population size for the last 10,000 time steps.

The process was repeated by increasing the mean NAO and separately increasing its

standard deviation.

Figure 5.3a shows the mean population size for the last 10,000 time steps for a

change in mean and standard deviation of NAO. The effect of a change in mean NAO

on mean population size is similar to that caused by a change in standard deviation

of NAO. Changes in the variability of NAO have a more substantial impact on the

variability of population size (Figure 5.3b), whereas an increase in mean NAO reduces

the variability of the population. Coulson et al. (2001) found that changing both the

mean and variability of NAO affected the strength of the density dependence of the

population; the effect of changes in NAO shown here may be caused by the same

mechanism.

It is notoriously complicated to predict future trends in mean and variability of NAO

(Osborn, 2004). A group of seven GCMs analysed by Osborn (2004) predict a value

of NAO for 2050 ranging between ∼ −2 and ∼ 6. Figure 5.4 shows the population

distributions when increasing c and σn by two, and confirms the results observed in

Figure 5.3.
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Figure 5.3: The effect of a change in mean NAO (solid line) and a change in the
standard deviation of NAO (dashed line) on mean population size (a) and standard
deviation of population size (b) of Soay sheep.

5.2.3 Eurasian oystercatchers

The objective of the studies by van de Pol et al. was to compare the impact of

changes in variability (van de Pol et al., 2010) and autocorrelation (van de Pol et al.,

2011) of mean winter temperature to changes in the mean, on a declining population

of resident Eurasian oystercatchers (Haematopus ostralegus) in the Netherlands.

Oystercathers are long-lived, territorial, shore birds, with a demography that exhibits

distinct age-structure (van de Pol et al., 2010). They parameterised a density
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Figure 5.4: Distribution of population size, with no change to mean or variability
(solid line), increasing the mean (by two; dashed line) and increasing the variability
(also by two; dotted line) of NAO. The legend shows the mean values and standard
deviations of the population distributions.

dependent stochastic structured population model (given in equation (2) of van de

Pol et al., 2010) which also incorporates movement between breeding habitats of

different quality. Fecundity and survival were assumed to be Poisson-distributed and

binomial respectively, and movement between habitats was modelled as a function of

population density in the two kinds of breeding habitats. The authors estimate how

survival, movement, and fecundity vary with winter temperature, identified as the

most important environmental variable for this population. Winter temperature was

modelled as an independent and identically distributed (iid) lognormal process. They

then observed how changes in mean and variability of winter temperature affected

these vital rates, and how the changes affected median time to extinction, which they

used as a proxy for population fitness. Median time to extinction was defined as the

number of time steps it took for 50% of 300,000 simulated populations to go extinct.

Van de Pol et al. (2010) found that a 0.1◦C change in mean temperature had

a 1.5 times greater effect on median time to extinction than a 0.1◦C change in

standard deviation. Although the oystercatcher population is more sensitive to mean

temperature, changes in variability are nevertheless still evidently important. However,

when this result is considered together with the projected changes in mean and

variability of local winter temperature, the authors conclude that changes in mean

temperature are likely to overwhelm the effects of changes in variability. They also

conclude that the concavity of the functions linking vital rates and environment largely

determines the effect that changes in environmental variability have on the population.

In a subsequent study, van de Pol et al. (2011) also added changes in the autocorrelation

structure of winter temperature to the comparison, coming to the conclusion that these

have an even smaller effect on the population than changes in variability.
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5.2.4 Red kangaroos

Jonzén et al. (2010) studied a population of South Australian red kangaroos (Macropus

rufus, Desmarest) living in arid and semi-arid environments, to compare the effects

of changes in the mean of an environmental variably with the effects of changes

in standard deviation. The population of kangaroos live in an arid environment

characterised by unpredictable and highly variable rainfall, and are harvested annually

for meat and skins. The authors modelled vital rates as functions of rainfall, using a

logistic function for survival, and determining probability of reproduction for each age

class using logistic regressions. Annual rainfall was sampled from a 123-year-long time

series of local rainfall data. With these vital rates, the authors parameterised a density

independent stochastic matrix population model with three age classes, and following

the methods described in Haridas & Tuljapurkar (2005), calculated the elasticities of

lnλs to changes in mean and variability of both the vital rates and rainfall.

Changes in the variability of the kangaroo population vital rates had a very weak

effect on lnλs: almost 40 times smaller than the impact caused by changes in mean

vital rates. It may be tempting to conclude that the impact of changes in environmental

variability are probably of little relevance (see, e.g., Coulson et al., 2011). In fact, the

elasticity of lnλs to changes in mean rainfall turned out to be only ∼ 5 times greater

than the elasticity to changes in variability. This was further reduced to a factor of 2.4

if comparing sensitivities instead of elasticities. A change in the variability of rainfall

may alter both the mean and the standard deviation of vital rates, and therefore, a

low elasticity to changes in vital rate variability does not presuppose that a population

is insensitive to environmental variability (Jonzén et al., 2010; Tuljapurkar, 2010).

5.2.5 Emperor penguins

Using data from 1962 onwards on a population of emperor penguins (Aptenodytes

forsteri) in Terre Adélie, Antarctica, Jenouvrier et al. (2009) developed a two-state

Markov chain density independent matrix model. Sea-ice concentration, defined as

the fraction of area covered by ice, drives the emperor penguin life-cycle, so the two

states represented years where sea ice concentration (SIC) was ‘normal’ and ‘warm’.

Jenouvrier et al. (2010) then added males to the model, and partitioned the annual

projection matrix into four seasonal steps. Finally, the effects of SIC on the vital rates

was explicitly incorporated into the model in Jenouvrier et al. (2012).

Amongst the objectives of the study by Jenouvrier et al. (2012) was to compare

the impact of changes in mean annual SICa (anomalies of SIC relative to the mean

annual SIC value from 1979 to 2007) and variability of SICa on the lnλs of the

population. The current mean annual SICa is close to its optimum level for the
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penguin population, as shown by Figure 6(a) in Jenouvrier et al. (2012). Both an

absence of sea ice, and heavy, persistent sea ice (i.e., higher values of |SICa|), reduce

the lnλs of the population (Jenouvrier et al., 2012). They also analysed the impact of

doubling the observed variance of SICa on lnλs, and find that while at intermediate

values of mean SICa, increasing variability reduces lnλs, at extreme values of SICa,

variability can in fact benefit the population (Figure 6(a) in Jenouvrier et al., 2012).

Jenouvrier et al. (2012) provide the necessary information to compare the relative

impacts of changes in mean and variability of SICa on the penguin population, but do

not make the comparison explicitly. To make the direct comparison, we first digitised

Figure 6(a) (Figure 5.5(a)). The observed standard deviation of mean annual SICa

(provided by Stéphanie Jenouvrier) is 1.4970. Doubling the variance of SICa therefore

corresponds to an increase of (
√

2 − 1) sd(SICa) ≈ 0.62 in the standard deviation of

SICa. We calculated the change in lnλs due to a ∼ 0.6 increase in the variability of

SICa by taking the difference between the two curves of Figure 5.5(a) at each mean

annual SICa value. We then estimated the impact of an increase in mean annual SICa

on the population by calculating the change in lnλs given an increase of ∼ 0.6 in mean

annual SICa, at the observed variability (Figure 5.5(b)). The ratios of the changes in

lnλs due to an increase in mean SICa, over the changes in lnλs due to an increase in

the variability of SICa, are shown in Figure 5.5(c). Results show that for intermediate

(|SICa| . 2) and extreme values of SICa (|SICa| & 5), changes in variability of SICa

have a greater impact on lnλs than do changes in mean values of SICa.
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Figure 5.5: (a) Digitised reproduction of Figure 6(a) in Jenouvrier et al. (2012),
where black points correspond to observed variance, and white points to twice
the observed variance. (b) Change in lnλs given a 0.6 change in mean SICa (black
points) and given a 0.6 increase (approximately equivalent to doubling the variance)
in the standard deviation of SICa (white points). The white points in this panel
correspond to the difference between white and black points in panel (a). (c) The
ratio of the absolute change in lnλs due to an increase in mean SICa over the
absolute change in lnλs due to an increase in variability of SICa. The line at Ratio
= 1 denotes where the effect due to changes in mean is of the same magnitude as
that due to changes in variability of SICa.
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5.3 Discussion

The main findings are summarised in Table 5.1. Results confirm the general conclusion

of Chapters 3 and 4: changes in environmental variability are similarly important

for the dynamics of populations when compared to changes in mean conditions, for

most populations. Support for this conclusion is strengthened by the fact that all

five populations analysed here cover a wide range of taxa, include thriving (e.g., red

kangaroos) and declining (e.g., oystercatchers) populations, and use different models

and assumptions. In two of the five populations (Soay sheep, emperor penguins),

changes in variability were at least as important as changes mean conditions. The

ratio of the impact of changes in mean conditions to impact of changes in variability

on the population ranged from close to 0 (emperor penguins) to 14 (dippers). However,

changes in the variability of the environment had a greater effect on the variability of

population size (dippers, Soay sheep), which affects the dynamics of the population

(Chapter 4). Therefore, for all studies analysed here, changes in environmental

variability had a significant effect on the dynamics of the populations.

Chapters 3 and 4 also made more specific predictions: changes in environmental

variability are more likely to affect populations closer to their ideal environment, and

changes in mean conditions are expected to affect populations closer to the periphery

of their environmental range. The only study that provides an environmental range

across which to compare the effects of changes in environmental mean and variability

is that by Jenouvrier et al. (2012). Results show that close to ideal conditions (i.e., for

|SICa| . 2), changes in variability have a far greater effect on the emperor penguin

population than changes in mean conditions. Changes in mean conditions become

progressively more important as |SICa| increases. At extreme values of SICa, however,

changes in variability once again have a greater effect on lnλs than changes in mean

values of SICa. These results closely resemble and support the predictions made by

the model in Chapters 3 and 4, except for the ratio at extreme values of SICa. This

may be due to the fact that the extreme values of SICa considered are very unlikely.

The five Global Circulation Models (GCMs) analysed by Jenouvrier et al. (2012) show

a likely decline in future trends of SICa, but values remain well within ±1 range (as

shown in Figure 7 of their study).

The results from these studies could also be compared to see whether populations

presumed to be living closer to their ideal environment are more affected by changes

in variability than those living further away from it. However, no clear pattern

emerges. Direct comparisons between these studies is complicated by the idiosyncrasies

specific to each population. A wide range of modelling approaches is used, including

structured and unstructured models, some incorporating density dependence. These
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choices entail the use of different proxies for population fitness. For example, lnλs = 0

for density-dependent populations, making it unsuitable as a measure of fitness. The

studies by Sæther et al. (2000) and Coulson et al. (2008) were furthermore designed

and conducted with aims that did not include the comparison of sensitivities of the

population to changes in mean and variability.

A greater number of studies could be added to this analysis, if those that use

a Markov chain to simulate the environment were to be included. However, there

are two separate issues to contend with that complicate re-analysis of these studies.

Markov chains require the environment to be split into a discrete number of states. A

projection matrix is then parameterised for each state. The probability of staying in

the current state or changing to any of the other states is then defined in a transition

matrix, which is used to generate a sequence of projection matrices and an estimate of

lnλs. While it is not possible to explicitly change the mean and standard deviation of

the environment, it is possible to simulate their effect by altering the vital rates of the

projection matrices. For example, in a two-state Markov chain the environment is split

into good and bad years. An increase in mean environment would then be analogous

to increasing the values of all vital rates in both projection matrices, assuming that

increasing the values benefits the population (an exception could be plant populations

that can revert to a smaller size class). Likewise, environmental variability could

be increased by reducing the vital rates for the projection matrix representing bad

years, and increasing the vital rates for the matrix standing for good years (taking the

aforementioned caveat into account). The amount by which each vital rate is changed

would necessarily be a function of the transition probabilities. The first issue arises

from the fact that Markov chains are particularly useful for modelling populations

prone to disturbances such as hurricanes (e.g., Tuljapurkar et al., 2003; Horvitz et al.,

2005), fires (e.g., Gross et al., 1998; Caswell & Kaye, 2001), and floods (e.g., Smith

et al., 2005). In these cases, it would make little biological sense to reduce the vital

rates for a population that has just suffered, for instance, a hurricane. However,

Markov chains are also used to model continuous environmental variables, such as

sea ice concentration (Jenouvrier et al., 2009, 2010; Hunter et al., 2010), NAO, and

sward height (Ezard & Coulson, 2010). For these, another issue arises. Taking the

same two-state Markov chain as an example, changing the vital rates to simulate an

increase in environmental mean and variance ignores the function that connects the

vital rate in a good year with that in a bad year (Figure 5.6). Therefore, although the

environment is simplified down to a discrete set of states, more detailed information on

how each vital rate changes with the environmental variable is necessary. Specifically,

information on the slope of the function at the two points shown in Figure 5.6 would

be required. Re-analysing studies using Markov chains therefore requires a more
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substantial effort.
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Figure 5.6: Information on how the vital rates vary with the environment is lost
when the environment is split into good and bad years in a two-state Markov
chain. Altering vital rates to simulate an increase in environmental mean and
variability requires information on the gradient of the function linking vital rate to
the environment at the points defined as good and bad years. The function could
have different shapes (e.g., solid and dotted lines), so ignoring this information
would be a mistake.

It should be straightforward to add changes in autocorrelation of the environment to

the analysis, in order to compare its effects on populations to those caused by changes in

mean and variance of the environment. The models analysed so far use autoregressive

processes to simulate the environment, therefore changing the term defining the return

time (e.g., a in equation (5.6)) would change the autocorrelation of the environmental

variable.

One of the recommendations of Chapters 3 and 4 was to encourage the comparison

of populations thought to be living in close-to-ideal conditions with those far from

ideal conditions. For example, it would be interesting to replicate the study of van de

Pol et al. (2010) with an expanding oystercatcher population. The recommendation

still holds, because the same population model and assumptions would be used, and

a direct comparison would be fair. For a meta-analysis to prove useful for validating

the more specific predictions of our theoretical model, more studies need to be added

to the analysis.

In Chapter 3 we suggested that more biological detail could be introduced to the

model, for instance by adding age-structure. An age-structured model would not only

allow us to investigate how survival and fecundity are affected by changes in mean

and variability of the environment, but also how age-structure affects the predictions

made with the univariate model. Similarly, it would be interesting to investigate how

density dependence and its form would alter the predictions made. Adding density

dependence, however, would most likely make the model analytically intractable, and

would therefore probably need to be done through simulations.
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6 An empirical link between the

spectral colour of climate and the

spectral colour of field populations in

the context of climate change

Abstract

The spectral colour of population dynamics and its causes have attracted much

interest. The spectral colour of a time series can be determined from its power

spectrum, which shows what proportion of the total variance in the time series occurs

at each frequency. A time series with a red spectrum (a negative spectral exponent)

is dominated by low-frequency oscillations, and a time series with a blue spectrum (a

positive spectral exponent) is dominated by high-frequency oscillations. Both climate

variables and population time series are characterised by red spectra, suggesting

that a population’s environment might be partly responsible for its spectral colour.

Laboratory experiments and models have been used to investigate this potential link.

However, no study using field data has directly tested whether populations in redder

environments are redder. This study uses the Global Population Dynamics Database

together with climate data to test for this effect. We found that the spectral exponent

of mean summer temperatures correlates positively and significantly with population

spectral exponent. We also found that over the last century, temperature climate

variables on most continents have become bluer. Although population time series

are not long or abundant enough to judge directly whether their spectral colours are

changing, our two results taken together suggest that population spectral colour may

be affected by the changing spectral colour of climate variables. Population spectral

colour has been linked to extinction; we discuss the potential implications of our results

for extinction probability.

N. B.: This chapter has been published as: Garćıa-Carreras, B. & Reuman, D. C. (2011). An

empirical link between the spectral colour of climate and the spectral colour of field populations in

the context of climate change. The Journal of Animal Ecology, 80(5), 1042–1048. The corresponding

supplementary information is provided in Appendix E.
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6.1 Introduction

The positive autocorrelation typical in animal population dynamics and its causes have

stimulated substantial interest over the past 30 years (Roughgarden, 1975; Lawton,

1988; Cohen, 1995; Akçakaya et al., 2003; Schwager et al., 2006; Ruokolainen et al.,

2009). Many climatic variables are also positively autocorrelated, suggesting that a

population’s environment might be partly responsible for the positive autocorrelation

seen in its dynamics. However, no study using field data has directly tested whether

more positively autocorrelated populations live in more positively autocorrelated

environments. Also, insufficient work in the ecological literature has addressed the

related question of how the autocorrelation of environmental variables may be affected

by climate change and what the population consequences of these changes may be.

These questions have practical implications because the level of autocorrelation in

population dynamics affects population extinction probabilities as well as temporal

patterns of offtake in the case of exploited populations and temporal patterns of

economic or disease burden in the case of pest or vector populations (Reuman et al.,

2006, 2008).

Empirical data show that annually censused population dynamics are positively

autocorrelated, and consequently described by red power spectra (Pimm & Redfearn,

1988; Sugihara, 1995; Halley, 1996; Inchausti & Halley, 2001); we provide definitions

to make this statement precise. The power spectrum is a widely used mathematical

technique that takes a time series (population or environmental) as input and returns

as output a plot which shows the decomposition of the total variance (or power) in

the time series into its frequency components (Brillinger, 2001). A red time series, by

definition, has more variation at low frequencies than at high frequencies. A blue time

series has more variation at high frequencies and a white time series has equal variation

at all frequencies in a range. The colour-based terminology used here was coined

because red (respectively, blue) light is more dominated by lower (respectively, higher)

frequencies than other colours of visible light. Colour can be quantified for a time series

by calculating the spectral exponent, defined as the slope of a linear regression line

drawn through a log-power-versus-log-frequency plot of the spectrum; negative slopes

correspond to red time series, and positive slopes to blue time series, with white noise

having a spectral exponent equal to or close to zero. Inchausti & Halley (2002) found

that the spectral exponents in annually censused animal populations across several

clades and trophic levels were negative: population dynamics, as typically measured

by ecologists, are red.

Ascribing the spectral colour of populations to a cause or mechanism has proven

more complex than describing the pattern. Early work focussed on simple unstructured
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deterministic population models to see whether intrinsic dynamics could be the cause

of population spectral redness. For example, Cohen (1995) investigated several such

population models using a single point in parameter space chosen to be in the models’

chaotic regime, finding that the dynamics predicted by the selected models tended

to be blue. Other authors subsequently found, however, that the same models with

other parameters produced red spectra (Blarer & Doebeli, 1996; White et al., 1996a):

simple deterministic models can produce dynamics of a range of colours, depending

on parameters. Deterministic models alone failed to completely explain the origin of

populations’ spectral colour, unless accompanied by an argument that real populations

are constrained to certain parameter regimes.

Several modifications of the initial deterministic models were examined, all with the

potential to redden spectra. These included the introduction of measurement error

(Akçakaya et al., 2003), a spatial component (White et al., 1996b), delayed stochastic

density dependence (Kaitala & Ranta, 1996), and age structure (Greenman & Benton,

2005). One mechanism that has received much attention is environmental variability

(Lawton, 1988; Sugihara, 1995; Kaitala et al., 1997b; Ranta et al., 2000). Climatic

variables are also characterised by reddened spectra (Steele & Henderson, 1994; Cyr &

Cyr, 2003; Vasseur & Yodzis, 2004). Given populations’ reliance on the surrounding

environment, it seems likely that their spectral redness can, at least in part, be traced

back to the redness of climate.

If environmental colour were to have any influence on population spectral colour,

population dynamics should be redder in redder environments (Roughgarden, 1975;

Kaitala et al., 1997b). To investigate this link, both laboratory experiments

(Petchey, 2000; Laakso et al., 2003b) and theoretical studies (Roughgarden, 1975;

May, 1981; Kaitala et al., 1997b; Laakso et al., 2001, 2003a; Greenman & Benton,

2005; Ruokolainen et al., 2007) have been undertaken, tentatively concluding that

some of the environmental spectral colour is likely to propagate through to the

population spectra, “tinging” the dynamics with a similar colour. Figure 6.1 provides

a summary presentation of some prior modelling results demonstrating this effect

using the well-known Ricker model (Methods). A similar pattern generally arises

in other simple univariate models such as the Hassell and Maynard Smith models

(Section E.1). It is important, however, to augment prior modelling (Roughgarden,

1975; May, 1981; Kaitala et al., 1997b; Greenman & Benton, 2005) and experimental

(Laakso et al., 2003b) results summarised here with tests based on field data. Although

the use of observational field data makes it difficult or impossible to establish a causal

relationship between climate and population spectral colour, field data can be used

to test for correlations that such a causal relationship would produce. Modelling and

experimental studies have explored causation in a context where it is possible to do so
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whereas observational field studies are now necessary to see to what degree predicted

consequences of the causal hypothesis actually pertain in a broad way to real systems.
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Figure 6.1: The impact of environmental spectral colour on population spectral
colour in a stochastic formulation of the Ricker model (Methods). Panel A is the
bifurcation plot for the deterministic skeleton of the model, indicating the growth
rate (r) values and respective line types used for the following panels. Panel B is
with weak environmental noise (σ = 0.01; see Methods), and panel C is with strong
environmental noise (σ = 0.1). Results show that environmental spectral colour
tinges population spectral colour, to an extent that depends on growth rate and the
strength of environmental noise.

Environmental noise colour has an influence on population extinction risk, but results

so far indicate that this influence can be complex and contingent on the details of

population dynamics. Prompted by the positive autocorrelation reported for both

climatic variables and populations, Lawton (1988; later supported by Halley, 1996;

Pike et al., 2004 and Inchausti & Halley, 2003, the latter using empirical data and

the concept of “quasi extinction”, a 90% reduction in population size) argued that red

noise should increase the risk of extinction, based on the intuition that populations

would then suffer long runs of adverse conditions. In apparent contradiction to this

intuition, Ripa & Lundberg (1996) claimed that red noise decreases extinction risk.

Subsequent studies (Petchey et al., 1997; Heino, 1998) expressed a more nuanced view.
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Theoretical studies have not reached a consensus predominantly due to differences in

population model and parameter choice (Ripa & Lundberg, 1996, 2000; Heino, 1998;

Ripa & Heino, 1999), environmental noise model (Heino, 1998; Halley & Kunin, 1999;

Cuddington & Yodzis, 1999), variance used (Heino et al., 2000; Schwager et al., 2006),

and the time scales on which extinctions are scored (Halley & Kunin, 1999; Heino

et al., 2000). It is difficult to systematically explore the relationship between colour

and extinction risk with models given the variety of modelling choices that must be

made. We return to the relationship between spectral colour and extinction risk in the

Discussion.

The relationships between the spectral colours of climate and populations and the

associated population extinction risk need to be viewed in a context of climate change.

Climate patterns throughout the world are changing rapidly, as evidenced by increases

in average global temperature and in the variability of climatic conditions (IPCC,

2007). These changes are conceivably shifting the spectral colour of climatic variables,

and consequently may be affecting populations’ spectra, if climate and population

spectra are causally related. We test the hypothesis that the spectral exponents of

climate variables have changed over the last century and combine the results with

our observations about how population and climate spectral exponents are related to

formulate hypotheses about how population spectral exponents may be influenced by

climate change.

6.2 Methods

6.2.1 Data sources

Two data sets of climate variables were used, respectively, for the purposes of

analysing changes in climate spectral exponent over time and for comparison with

population time series: a large collection of direct measurements taken from weather

stations; and a global-coverage, spatially gridded data set derived from measurements

by interpolation. These data sets have, respectively, the complementary strengths

of greater reliability and coverage that make them suitable to be used for the

intended purposes. Weather station data were downloaded from the Global Historical

Climatology Network (GHCN; Peterson & Vose, 1997). The GHCN provides data from

about 7280 stations worldwide, although different stations were active for different

periods. Spatially gridded data were downloaded from the Climatic Research Unit

(CRU TS 2.1 data set). CRU data have global terrestrial coverage at 0.5◦ by 0.5◦

resolution and monthly temporal resolution from 1901 to 2002 (Mitchell & Jones,

2005). The interpolation procedure used for the CRU data is described by New et al.

(2000).
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CRU data span a century and are spatially comprehensive, enabling comparison

between population time series and interpolated climate data from the same location.

However, the reliability of the interpolated data depends on location and time, being

related to the number and proximity of nearby weather stations. A density index

of nearby stations for each grid cell at each time is provided with the CRU data

set. CRU data were validated against the GHCN data (see Section E.2) to obtain a

threshold value for the station density index above which the CRU data were found

to be sufficiently reliable. Only data with reliability above this threshold value were

used for comparison with population data, so populations in a time or place with CRU

data reliability below the threshold were not used.

The Global Population Dynamics Database (GPDD; NERC Centre for Population

Biology & Imperial College, 1999) currently holds nearly 5000 animal and plant

population time series and is freely accessible. It has been used in several population

dynamics studies, some of which investigated population spectral colour (Kendall et al.,

1998; Inchausti & Halley, 2001; Halley & Inchausti, 2002; Inchausti & Halley, 2003).

GPDD data were filtered to remove time series not suitable for our analysis. The

filtering process, described in detail in Section E.3, kept only annual time series with

at least 30 continuous data points that were also accompanied by metadata with the

geographic coordinates of the location. Other filtering constraints were also applied.

147 time series remained after filtering (see Section E.3.1 for a complete list of time

series used).

6.2.2 Preprocessing of weather data

The GPDD data used is annual, whereas the CRU and GHCN data used consist of

mean monthly temperatures (i.e., time series with a sampling frequency of 12 per year).

In order for the two to have the same temporal resolution, the CRU and GHCN data

were preprocessed to derive several variables, all with a sampling frequency of one per

year. Mean annual temperatures were obtained by taking the mean of the 12 mean

monthly temperature values (January to December). All but one of the populations

left over from the filtering process were located in the Northern hemisphere, so seasons

were defined accordingly, with winter being December to February, spring being March

to May, and so on. Mean summer temperature is the mean of the three monthly

temperature values corresponding to summer. Similarly, the other seasons are defined

as the means of their respective months. Mean seasonal temperature refers to all four

time series, collectively.
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6.2.3 General methods

The wide prior use of the spectral exponent facilitates direct comparisons of our

results with earlier studies. All time series were linearly detrended and the spectrum

was then estimated using an unsmoothed periodogram (spec.pgram function in the

R programming language). Before detrending and computing spectra, population

numbers, p, were transformed by log10(p + 1). Climate variables were detrended

but not transformed. All computations and graphics were done in the R computing

environment, version 2.10.0 (2009-10-26; R Development Core Team, 2009).

6.2.4 Testing for correlation between climate and population spectral

exponents

Using the CRU data, the spectral exponents of mean seasonal and mean annual

temperatures were calculated for the same time period and location (rounded to

0.5◦) as each of the 147 GPDD population time series. The null hypothesis that

the correlation between climate and population spectral exponents was zero was then

tested by computing a Pearson correlation coefficient and P value, taking spatial

autocorrelation into account as described below.

6.2.5 Testing for change in climate spectral exponent

The GHCN data were filtered to include time series that covered the 1911–1990 period.

These years were chosen because they gave a good compromise between length of time

period and number of weather stations active throughout that period. Using the most

recent years available (until 2002 in the version of the GHCN data set used for this

study) would have greatly reduced the number of weather stations available (New

et al., 2000). For each half of the time series (1911–1950 and 1951–1990) a maximum

proportion of missing values of 0.15 was allowed. Because it can accommodate missing

data, for this spectral analysis the Lomb periodogram (Scargle, 1982) was used to

calculate spectra. Spectral exponents for both halves of the time series (1911–1950 and

1951–1990) were calculated for mean annual and mean seasonal temperatures. The

null hypothesis that the spectral exponents of the two halves were the same was tested

using a t-test, taking spatial autocorrelation into account as described below. This

hypothesis was tested for the whole world and for continental regions separately (see

Section E.4 for region definitions). Although we used both Lomb periodograms and

ordinary periodograms in this study, the two methods were used in different analyses

and results were kept separate.
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6.2.6 Correcting for spatial autocorrelation

The focus of this study is the analysis of temporal variations in climate and populations.

Climate and population phenomena have a spatial structure, however, that needs

to be accounted for to avoid inflation of Type I error rates (Legendre & Legendre,

1998; see Section E.5). The software package Sam (Spatial Analysis in Macroecology;

Rangel et al., 2006) was used to calculate effective numbers of degrees of freedom,

with which the appropriate reference distributions could then be found for the t-tests

mentioned above, and the corrected value of P computed for the correlations between

climate and population spectral exponents. We followed the method of Dutilleul

(1993a). This standard approach does not depend on any a priori assumption on

the functional form of spatial autocorrelation, as might be the case when using, for

example, generalised least squares methods (e.g. exponential, Gaussian, or spherical

assumptions; see Dormann et al., 2007).

6.2.7 Setup of models

We use a stochastic formulation of the Ricker model to help illustrate and

explain background information and interpret empirical results. The model is

pt+1 = pt exp(r(1− pt/K) + xt), where K is carrying capacity (K = 1 was used), r

is growth rate, and xt is the environmental noise modelled as an autoregressive order 1

(AR1) process. The spectral colour of xt is determined by ρ, its lag-1 autocorrelation

(−1 < ρ < 1, ρ > 0 for red noise, ρ < 0 for blue noise). The strength of environmental

noise is σ, the standard deviation of the process.

We used a threshold autoregressive model of Grenfell et al. (1998) to help interpret

results. The model is defined as xt+1 = a0 +b0xt+ε0 for xt ≤ C and xt+1 = a1 +ε1 for

xt > C, where xt is log population density. The model is diagrammatically depicted

in Grenfell et al. (1998). Here C is a carrying capacity above which winter weather,

ε1, may cause a substantial crash or a modest increase in very good years. Below C,

growth is exponential, with noise that depends on summer weather, ε0. Each noise

time series εi is autoregressive order 1 with standard deviation σi (σ1 > σ0) and colour

ρi, where ρi ranges from -0.9 (very blue noise) to 0.9 (very red noise). Parameter values

ai, b0, and σi used were those given in Grenfell et al. (1998), except C was slightly

changed from 7.01 to 7.23 to better illustrate the phenomenon of interest, although

the original value produced qualitatively similar results.
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6.3 Results

Mean summer and annual temperatures had spectral exponents significantly correlated

with population spectral exponents (Table 6.1), even after accounting for spatial

autocorrelation, confirming the hypothesis that redder populations live in redder

climates. The correlation coefficients r for separate species groups were generally

similar to overall r values and were always positive for mean summer and annual

temperatures.

Table 6.1: Correlations between the spectral exponents of animal populations and
the spectral exponents of mean temperature, for seasonal and annual averages. P
is the P -value corrected for spatial autocorrelation. Ntotal = 147, N for Aves is
56, for Crustacea 12, for Mammalia 47, and for Osteichthyes 23. The P -values for
the clade-specific regressions were not significant because of the reduced statistical
power that comes from a reduced data set, although r values show that clade-specific
patterns were consistent with overall trends.

r P Aves r Crustacea r Mammalia r Osteichthyes r

Winter -0.055 0.659 -0.040 0.508 -0.230 0.062
Spring 0.060 0.590 0.226 0.538 -0.065 0.123
Summer 0.312 0.021 0.294 0.406 0.306 0.207
Autumn -0.179 0.146 -0.179 -0.105 -0.160 -0.250
Annual 0.135 0.049 0.191 0.206 0.299 0.202

The change in spectral exponent from 1911–1950 to 1951–1990 was generally

statistically significant for most climate variables and geographical regions: most

spectral exponents became less red-shifted (see Figure 6.2 for mean summer

temperatures, Figure 6.3 for other examples, and Section E.6 for all climate variables

examined). There is a conspicuous exception to the trend: Asia was redder in

1951-1990 than it was in 1911-1950 for all climate variables except for mean autumn

temperatures. The spectral exponents for all continents were still typically red,

however, in both the first and second halves of the time series examined. Mean summer

temperatures are of particular interest because their spectral exponents correlated

most strongly with population spectral exponents. For mean summer temperatures,

Asia and Australasia became redder, and other regions became conspicuously bluer

(Figure 6.2).

Distributions of the spectral exponents of population and climate variables appeared

symmetric and unimodal, and quantile-quantile plots indicated they were not markedly

different from normal. These results help justify the use of t-tests and Pearson

correlations.
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Figure 6.2: Change in the spectral exponents of mean summer temperature time
series from 1911-1950 to 1951-1990. P values (t-test corrected for spatial
autocorrelation, N in parentheses) are listed above each box-whisker plot. A
positive (respectively negative) difference in spectral exponent denotes a bluer
(respectively redder) spectrum during 1951-1990 compared to 1911-1950.

6.4 Discussion

Our results show that the spectral exponents of population time series correlated

positively and significantly with the spectral exponents of the mean summer

temperatures the populations experienced. The correlation is weak, but this is expected

because we analysed a wide range of species, and each could be affected predominantly

by different factors only partly related to those considered; a variety of measurement

errors will also have weakened the correlation. The fact that a relationship can be

detected at all in spite of these heterogeneities is a valuable result that merits analyses

in future research using additional data sets.

We also found that mean seasonal and annual temperatures have become bluer

over the past century on all continents, except Asia and, for some climate variables,

Australasia and North America. This indicates that high frequencies are generally

becoming increasingly important relative to low frequencies in the climate variables

we examined.
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Figure 6.3: Other examples of changes in climate spectral exponents (s.e.). The
change in the spectral exponents to 1951-1990 (‘after’) from 1911-1950 (‘before’)
for annual mean temperature in Europe (A, B) and winter mean temperature in
Asia (C, D) as histograms (A, C) and as paired values (B, D).

The combination of our two results suggests the possibility that population spectra

are in the process of becoming bluer as a consequence of ongoing climate change.

Although this conclusion is indirect because population time series are not abundant

or long enough to directly examine how their spectral exponents are changing, it

is important because it represents a broad possible impact of climate change on

population dynamics.

6.4.1 Why summer?

Why does summer mean temperature correlate most significantly of the variables

we examined? Many of the populations were at high latitudes, with severe winter

weather, suggesting that spectral exponents of winter climatic variables should perhaps

correlate more strongly with population spectral exponents than summer climate

spectral exponents. We argue here that this expectation is flawed, and we present

a possible hypothetical explanation for the importance of summer.

In populations for which bad winter weather causes crashes at high densities,

interannual autocorrelation in winter weather is not transmitted to population

autocorrelation because a crash caused by the first bad winter makes subsequent

bad winters have little effect. In contrast, summer weather maps more directly onto
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successive years of population growth if it takes multiple years for a population to reach

carrying capacity and summer weather affects population growth. This reasoning and

the assumptions implicit in it are explained in more detail in Section E.7.

The hypothesis presented here is supported by a simple model of Grenfell et al.

(1998) which quantitatively captures the mechanisms (see Methods for the model

definition). Model output (Figure 6.4) indicates that the impact of summer noise colour

on population spectral colour can indeed be substantially greater than the impact of

winter noise colour when growth is slow and affected by summer weather and crashes

are rapid and brought about by bad winter weather and high population density. The

model thereby supports our explanation of empirical results.
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Figure 6.4: The effect of winter and summer environmental spectral colour on
population spectral colour according to the model of Grenfell et al. (1998)
(Methods), for which the repercussions of environmental autocorrelation in the
two seasons on population spectral exponent can be separately analysed. Model
population spectral colour was much more strongly affected by summer spectral
colour (ρ0) than by winter spectral colour (ρ1). s.e. = spectral exponent.

6.4.2 Extinction risk

The impacts that climate and population spectral colours have on extinction risk are

complex and have not been settled, as testified by the lack of consensus in the prior

theoretical work summarised in the Introduction. Nevertheless, it is important to

discuss the link between our results and the large extinction risk literature because

extinction risk is one major reason for studying population and climate spectral colour.

For this reason, we discuss the link within the context of a family of univariate

population models for which the relationship between spectral colour and extinction

risk is well understood. For the Ricker model (Figure 6.5) and other unstructured

population models (Section E.8) it has been observed that for red-shifted, slow-growing

populations, reddening of environmental noise increases extinction risk, whereas for
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blue-shifted, fast-growing populations, reddening of environmental noise decreases

extinction risk (Cuddington & Yodzis, 1999; Heino et al., 2000; Schwager et al., 2006).

In particular, for populations which are already red-shifted, becoming less red-shifted is

associated with decreased extinction risk. Since most populations typically monitored

by ecologists are red-shifted (Inchausti & Halley, 2002), and since we have shown that

spectra of some environmental variables are getting bluer and this is correlated with

bluer population spectra, our results suggest that the observed shifts may broadly

contribute to decreased extinction risk. This conclusion is in the context of the

univariate population models considered here; the same patterns may not hold for

stage-structured, spatially structured models, or models with other elaborations. Also,

numerous other factors contribute to extinction risk, including aspects of environmental

signals such as their mean and variance, and direct human factors such as habitat

destruction and population exploitation. Future research quantifying the relative

contributions of these and other factors to total extinction risk under different scenarios

of population dynamics would be useful.
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Figure 6.5: The relationship between noise and population spectral colour and
extinction risk in the stochastic Ricker model of Figure 6.1 (Methods). The
results suggest that for red-shifted, slow-growing populations, reddening of
environmental noise increases extinction risk; in contrast, for blue-shifted, fast
growing populations, the opposite is true. Each individual line is labelled by the
fixed growth rate (r) value used for all points on the line; line colour corresponds to
environmental noise colour (the value of ρ used; see Methods). For 0.7 < r < 1.9,
extinction risk was ≤ 0.0165 for all environmental noise colours, hence lines for these
growth rate values are not visible in the plot. The results presented in this Figure
are present in the literature in fragmented form (Cuddington & Yodzis, 1999; Heino
et al., 2000; Schwager et al., 2006).
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7 Conclusion

The aim of this thesis was to investigate how different statistical descriptions of

currently ongoing climate change may affect the dynamics of populations and their

risk of extinction, and how their effects compare.

In Chapter 3, we developed a simple population model explicitly linked to an

environmental process, and used it to compare the sensitivity of the population

long-term stochastic growth rate to changes in the mean and the variability of the

environment. Results showed that changes in the variability of the environment can be

more important for populations than changes in mean conditions. The main gradient

along which the relative contributions of changes in environmental mean and variability

vary was the population’s distance from its ideal environment. Changes in mean

conditions are likely to have a greater impact than changes in variability on populations

far from their ideal environment, such as populations near species range boundaries

and potentially of conservation concern. Pests and disease vectors living near range

centres and close to their ideal environment are more likely to be affected by changes

in variability. US weather station data was also analysed to compare the observed

changes in mean and variability of biologically relevant environmental variables. The

observed changes in means of all temperature variables were generally larger than the

changes in standard deviations, although not markedly so. The observed changes in

variability may benefit pests and disease vectors.

The population model of Chapter 3 was extended in Chapter 4 to provide an estimate

of extinction risk and its sensitivity to changes in the mean and the variability of the

environment. The conclusion was that even when considering extinction risk as the

population fitness parameter, an increase in environmental variability can still have a

greater impact on populations than an increase in mean conditions. Like in Chapter 3,

the main gradient along which the relative contributions of changes in environmental

mean and variability varied was the population’s distance from its ideal environment.

Changes in mean environment are more likely to affect populations characterised by

slow life histories and larger body sizes, living close to their ideal environment, but

yet risking extinction. A change in environmental variability, on the other hand, could

have a greater impact on populations with a high maximum intrinsic growth rate but

that live far from ideal conditions, and are more likely to be composed by populations
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of small body size and fast life histories.

In Chapter 5, we re-analysed some existing population models to obtain sensitivities

of populations to changes in mean and variability of climate, and thereby provide

more points against which to compare the model of Chapters 3 and 4. We found

that the empirical studies re-analysed support the general conclusion that changes in

variability affect the dynamics of populations, and can be as important as changes

in mean environmental conditions. Changes in variability were found to have a more

substantial impact on the variability of population dynamics. The only study that

provided an environmental range across which to compare the relative effects of changes

in mean and variability of the environment closely resembled results from Chapter 3.

In Chapter 6 we explored possible correlations between the spectral colour

of environmental variables and the spectral colour of population dynamics of a

taxonomically heterogeneous group of populations. We found that the spectral

exponent of mean summer temperatures correlates positively and significantly with

population spectral exponent. We also suggest a plausible hypothesis for the observed

results, quantitatively supported by a simple exploratory model, that provides a

mechanism that explains the correlation found. Using weather station data, changes in

the spectral colour of temperature variables over the last century were also analysed.

Over the last century the spectral colour of temperature climate variables on most

continents has become bluer, suggesting that a broad possible impact of climate change

on population dynamics may be under way.

7.1 Recommendations for future work

Possibilities for further work have been discussed in individual chapters, but the main

recommendations are summarised here.

7.1.1 Extending the theoretical population model & simulations

The theoretical model of Chapters 3 and 4 could be extended to introduce more

biological detail. As mentioned in Chapter 3, a possible development may be the

introduction of age or stage structure. An age-structured model would make it

possible to study the differing impacts of climate change on fecundity and survival

rates, as well as effects that may only emerge when some age structure is present,

such as, for example, changes in the autocorrelation structure of the environment.

The introduction of age structure could conceivably affect the net impact of an

environmental change on the population fitness, when compared to the univariate

model of Chapters 3 and 4. The change in impact on a population after introducing
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age structure could also provide useful insight into how to further interpret the

meta-analysis of Chapter 5, where univariate and age-structured models are compared.

Haridas & Tuljapurkar (2005) could be used as a starting point to analyse an

age-structured model, and in this case Tuljapurkar’s (1982; 1990) approximation would

be required to estimate lnλs. If a general model proves too complicated to usefully

analyse, an intermediate step may be a two by two matrix model with juveniles and

adults.

Chapter 4 focussed on populations of conservation concern by using extinction risk

as a proxy for population fitness. The diffusion approximation of Lande & Orzack

(1988) provides an extinction estimate by calculating the probability that a population

goes below a threshold. The approximation can be modified to investigate population

booms, by estimating the probability that population size increases beyond a large

threshold. This modified approximation would be useful to focus on the second type

of population identified in Chapter 3: pests and disease vectors.

7.1.2 Further analyses of empirical data

Field studies & extending the meta-analysis of Chapter 5 Chapters 3 and

4 discussed the need for empirical data to validate the results obtained from the

theoretical population model. There are currently few studies that explicitly compare

the sensitivity of some population fitness parameter to changes in mean and variability

of the environment. There are none that compare more than one population across an

environmental gradient. We therefore strongly encourage field work that encompasses

multiple populations with different levels of adaptation to their environment (thereby

including struggling and successful populations). The meta-analysis of Chapter 5

provided some support for our theoretical model, although no clear pattern arose

when comparing results across the different studies due to the differences in study

systems and modelling approaches. The addition of a greater number of studies may

help to draw conclusions from comparisons across the different studies. Studies driven

by Markov chains could be added if the necessary information on how vital rates

are affected by the environment were available. Depending on how the environment

is modelled in each study, changes in autocorrelation of the environment could also

be added to the comparison. For example, if the environment is modelled as an

autoregressive process, it is possible to change the autocorrelation of the environment

and measure its impact on a population.

Variability & power at low and high frequencies - The change in spectral

exponent of an environmental time series provides no information on how the absolute

variance at low and high frequencies has changed (Figure 7.1). Both changed variance
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and changed spectral exponent may affect population extinction probability. A

complementary analysis could be undertaken where the total power (or variance) and

how it changes is analysed. In addition to the total power, the total power at low and

high frequencies could be analysed separately (in both environmental and population

time series, and exploring the relationship between these). Considering all these results

in concert would help illuminate the expected effects of changing environmental signals

on population extinction probability in a multifaceted way that goes beyond prior work.
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Figure 7.1: The change in spectral exponent gives no indication as to the change
in total variance. The same spectral exponent can both mean that low frequency
variance has been reduced and high frequency variance increased (keeping the total
amount of variance constant) or that the high frequency explains more of the total
variance (increasing total variance).

Spectral colour - The results of Chapter 6 merit further analyses in future research.

It would be particularly useful to perform a similar analysis on a dataset of a

taxonomically more constrained group to test the robustness of the correlation found

using the GPDD. Such a database would likely be more homogeneous, and therefore

eliminated a source of noise associated with using taxonomically diverse species. It

would also enable us to test more biologically probing hypotheses. For example, were

there a correlation to be found between the spectral colours of climate and populations,

• does the correlation depend on geographic location (e.g., is the correlation

different for populations living at high latitudes compared to those living at

low latitudes)?

• do different taxonomic groups respond differently to environmental fluctuations

(e.g., Passeriformes versus non-passerines in birds)?
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• does the correlation depend on life-history (for example migratory versus

non-migratory populations) or phenotypic (e.g., body size) traits?

7.2 Concluding remarks

Changes in the variability of the environment were found to significantly affect

population dynamics. The results presented in this thesis show that it is important to

understand how different statistical descriptions of changes in the environment affect

population dynamics and contribute to the observed impact of climate change on

animal populations. The balance in the current research effort should be readdressed

to incorporate further analysis on how changes in variability and autocorrelation of

the environment contribute to changes in population fitness.
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Overview of methods

The main statistical tool we use in Chapter 6 is called the power spectrum. Its purpose

is to reveal the frequencies of oscillations that predominate in a time series, and to

provide information on their relative importance. The input for this kind of analysis is

a time series, and the output is a plot that shows frequency on the horizontal axis and

“power” on the vertical axis, where power indicates the amount of variation occurring

in a time series at each frequency. For example, Figure A.1 shows a monthly average

temperature time series from Montreal for the period 1950 to 2000, along with the

respective power spectrum. The peak that dominates the power spectrum corresponds

to the seasonal component of temperature fluctuations for Montreal. Figure A.2

provides a series of examples that further illustrate the information the power spectrum

provides.

A large number of statistical methods have been developed to estimate the power

spectra from time series data (Brillinger, 2001), but these will not be reviewed here. A

suite of commonly used methods use a “periodogram” combined with various degrees

of smoothing to estimate the power spectrum. Henceforth, the term “spectrum” will be

used to denote a periodogram. The term “frequency domain analysis” refers to analysis

of the periodic or oscillatory elements of a time series, by for example estimating and

analysing the spectrum, whereas “time domain analysis” refers to the direct analysis

of time series without estimating the spectrum.

Time series and their corresponding spectra are often described by colours;

the terminology is intended to convey information about whether lower or higher

frequencies predominate. ‘Red’ indicates that variation at lower frequencies is more

powerful (Figure A.2 c, h), ‘blue’ noise is dominated by higher frequencies (Figure A.2

e, j) and ‘white’ noise or spectra are characterised by equal contributions of lower

and higher frequencies (Figure A.2 d, i). The colour-based terminology was coined

because red (respectively, blue) light is dominated by lower (respectively, higher)

frequencies than other colours of visible light. The colour of a time series can be

qualitatively appreciated from its spectrum, but there are also several methods that

93



Appendix A: Overview of methods

−
10

0
10

20

1950 1960 1970 1980 1990 2000

Year

D
eg

re
es

 C

(a) Time series

0.0 0.1 0.2 0.3 0.4 0.5

2
3

4
5

6

Normalised frequency

Lo
g 

po
w

er

(b) Power spectrum

Figure A.1: (a) Time series of mean monthly temperature between 1950 and 2000
for Montreal, Canada, and (b) its respective power spectrum. The peak in the
power spectrum corresponds to the dominant seasonal component of temperature
fluctuations characteristic of higher latitude locations such as Montreal.
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Figure A.2: Examples of time series (a-e) and their corresponding power spectra (f-j),
illustrating the capacity of the power spectrum method to decompose variation in
time series according to the frequencies at which the variation occurs. Panel (a)
is a sine wave of frequency 2 rad/s with a small amount of added noise, hence the
variation in (a) is mostly at frequency 2 rad/s. This is revealed by the peak in the
power spectrum in (f) at frequency 2 rad/s. Panel (b) is the sum of two sine waves
of frequencies 2 and 5 rad/s, again with a small amount of white noise, hence the
variation in (b) is mostly at those frequencies. This is revealed by the peaks in the
power spectrum in (g) at 2 and 5 rad/s. Panel (c) depicts highly autocorrelated
noise, for which most variation occurs at low frequencies. This is revealed by the
corresponding power spectrum in (h). Panel (d) has white noise, which has equal
components of variation at all frequencies, as indicated by the flat spectrum in (j).
Panel (e) has negatively autocorrelated noise, for which most variation occurs at
high frequencies, as revealed in (j).
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quantify this measure. The most common, the spectral exponent, refers to the

slope of a linear regression line drawn through a log-log plot of the spectrum (e.g.

Figure A.3). The slope indicates whether it is the lower or the higher frequencies that

are relatively more important in the signal being analysed: negative slopes correspond

to greater dominance of low-frequency variation (red noise), and positive slopes to

greater dominance of high-frequency variation (blue noise). White noise has a spectral

exponent close to 0. The spectral exponent helps indicate the relative contributions

of lower and higher frequencies to the variance of a signal. However, the spectral

exponent does not capture the detailed structure of the spectrum: the spectrum can

be of different forms whilst having the same spectral exponent (see Figure A.4).
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Figure A.3: The spectra are the log-log plots of those shown in Figure A.2 (h-j). The
straight solid lines are their respective regression lines. (a) is highly autocorrelated
noise, for which the regression line has a negative slope; (b) is white noise, hence its
regression line has a slope close to zero; and (c) is negatively autocorrelated noise,
for which the regression line has a positive slope.

A commonly cited form is the so-called 1/fβ family of noises. In this formulation,

f refers to frequency, so 1/fβ noise is a specific form of the spectrum that is

mathematically described by its name. When log transforming the equation power =

1/fβ, you get a linear relationship between log(power) and log(f) with slope β. In this

family of noises, consequently, −β corresponds to the spectral exponent (Mandelbrot,

1982; Halley, 1996).

Colours are often used to refer specifically to the value of β within the context of 1/fβ

noise. Confusingly, however, the colour terminology used in the literature to describe

spectra with this form follow conventions that are not completely consistent with the

colour terminology above. In the context of 1/fβ noise, β ∼ 1 is called “pink” noise,

β ∼ 2 is called “brown” (also termed ‘random walk’ or ‘Brownian motion’ noise), and

β ∼ 3 is called “black” noise. All these, by the prior terminology, would be different

degrees of “red”. For clarity, we will only use the terms “pink”, “brown”, or “black” in
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Figure A.4: Two diagrammatic examples of spectra, each with two spectra with
different structure yielding the same spectral exponent (depicted by the slope of
the regression line, shown as dotted lines). (a) Two example spectra drawn on
log-log scales, both of which would have the same spectral exponent and would
therefore be defined as being white; and (b) two example spectra, both of which
would give a negative spectral exponent and would therefore be defined as being
red.

reference to power spectra specifically of the 1/fβ form. The terms “red” and “blue”

noise will be used in their qualitative sense as described previously, not corresponding

to any specific value of the spectral exponent or to any particular functional form of

the power spectrum.

Time series with spectra of the form 1/fβ with β > 0 are characterised by a variance

that increases continuously as the length of a block of the time series used to measure

the variance increases. There is another type of noise, called autoregressive (AR)

noise, that on the other hand has a variance that increases initially for short lengths

of time series, but then stabilises. AR noise is, in its simplest form, defined as pt+1 =

ϕpt + εt, where εt is normally distributed with zero mean and standard deviation σ,

and ϕ is a parameter with |ϕ| < 1. The variance for both brown (β = 2) and highly

autocorrelated AR noise is shown in Figure A.5. The brown noise in this case was

produced using pt+1 = pt + εt. AR noise is often used in studies as it is easy to

produce.

Spectral exponents, as mentioned above, are perhaps the most common and simplest

way to describe the relative importance of different frequencies in a time series. There

are alternatives too. White et al. (1996a), for instance, also used a periodogram,

but rather than using the slope of a regression as an indication of the colour, they

integrated the spectrum separately over lower and higher frequencies and used the

ratio of total power at lower frequencies to total power at upper frequencies. Ripa
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Figure A.5: Variance per time series length for (a) brown noise; and (b) AR noise.
The variance for brown noise increases indefinitely with the length of the time series
used to calculate it. On the other hand, the variance for AR noise quickly reaches
a maximum.

& Lundberg (1996) and Petchey et al. (1997) used the autocorrelation function to

characterise colour. The Hurst exponent is a statistic related to the spectral exponent

(Clegg, 2006). There are several techniques that can be used to estimate it. One way

is by computing the spectral exponent and converting it to the Hurst exponent H (H

is related to the spectral exponent β (of the 1/fβ family) by the formula β = 2H + 1;

Clegg, 2006). Another is to estimate the so-called rescaled range, a measure of how

the apparent variability of a time series changes with the length of the time period

considered (Ariño & Pimm, 1995). More specifically, it involves dividing the range

by the standard deviation for time series chunks of increasing length. The logarithm

of the rescaled range is then plotted against the logarithm of the number of data

points, and the slope of the resulting line is H. Detrended fluctuation analysis (DFA;

Koscielny-Bunde et al., 1996, 1998; Blender & Fraedrich, 2003) is also similar to the

aforementioned Hurst exponent, except that DFA can also be applied to non-stationary

signals. The scaling exponent α is analogous to H, and is tied to the spectral exponent

by β = 2α − 1. Singular-spectrum analysis (SSA; Yiou et al., 1996; Rodó et al.,

2002), is based on principle component analysis, and provides a decomposition of

the signal into a trend, oscillatory components, and noise (Rodó et al., 2002). Some

studies have also used the maximum entropy method (e.g. Rodó et al., 2002). This

method consists of obtaining the power spectrum by determining the most random

process (i.e. with fewest assumptions), with the same autocorrelation coefficients as

the original signal (Yiou et al., 1996). Wavelets have also been increasingly used for
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frequency domain analysis (Lau & Weng, 1995; Torrence & Compo, 1998; Datsenko

et al., 2004; Corbineau et al., 2008). They are a statistically rigorous and generalised

form of a windowed Fourier transform, i.e., estimating the spectrum of numerous

subsets (or ‘windows’) of the signal and characterising how the spectrum changes with

location of the window in the longer time series. Wavelets can indicate, given sufficient

data, not only the frequency-decomposition of variance in a time series, but how this

changes from the beginning of the signal to the end (Lau & Weng, 1995). Wavelet

decompositions can detect transient or changing components of system dynamics. The

quality of the wavelet decomposition depends on a frequency versus time resolution

trade-off, and the method performs poorly with time series that are too short.

98



Appendix B

Are changes in the mean or variability

of climate signals more important for

long-term stochastic growth rate?

B.1 Transforming the environmental variable

Let w̃t be the original, untransformed environmental variable, assuming without loss

of generality it is normally distributed (it can be transformed to make it so). Let

wt = α w̃t + β

where α = 1/sd(w̃t) and β = −E(w̃t)/sd(w̃t).

B.2 Derivation of lnλs

Let g(wt) = p(wt)− c. Then,

lnλs =

∫ ∞
−∞

g(wt)ϕµ,σ(wt) dwt + c (B.1)

= a1

∫ b

−∞
h(−wt + b)ϕµ,σ(wt) dwt + a2

∫ ∞
b
h(wt − b)ϕµ,σ(wt) dwt + c. (B.2)

Therefore lnλs is a function of a1, a2, b, c, and α, i.e. the parameters that define the

log response function.

B.3 Derivation of ∂ lnλs/∂µ

Take the partial derivative of lnλs with respect to µ:
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∂ lnλs
∂µ

=

∫ ∞
−∞

p(wt)
∂

∂µ
ϕµ,σ(wt) dwt, (B.3)

∂

∂µ
ϕµ,σ(wt) =

∂

∂µ

[
1

σ
√

2π
exp

(
−(wt − µ)2

2σ2

)]
(B.4)

=

(
wt − µ
σ2

)
ϕµ,σ(wt). (B.5)

So

∂ lnλs
∂µ

=

∫ ∞
−∞

p(wt)

(
wt − µ
σ2

)
ϕµ,σ(wt) dwt, (B.6)

and

∂ lnλs
∂µ

∣∣∣∣µ=0
σ=1

=

∫ ∞
−∞

g(wt)wt ϕ0,1(wt) dwt + c

∫ ∞
−∞

wt ϕ0,1(wt) dwt. (B.7)

We need two lemmas to proceed.

Lemma B.3.1 ∫ ∞
0
xn e−β x

2
dx =

Γ(γ)

2βγ
,

where Γ(z) is the Gamma function (Abramowitz & Stegun, 1964, pg. 255), γ = n+1
2 ,

Reβ > 0, and Ren > 0.

Proof See Section 3.326 in pg. 337 of Gradshteyn & Ryzhik (2007). �

Lemma B.3.2

∫ ∞
−∞

xn ϕ0,1(x) dx =


Γ
(
n+1
2

)
2

n
2

√
π

if n ≥ 0 is an even integer

0 if n ≥ 0 is an odd integer.
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Proof∫ ∞
−∞

xn ϕ0,1(x) dx =
1√
2π

∫ ∞
−∞

xn exp

(
−x

2

2

)
dx (B.8)

=


2√
2π

∫ ∞
0
xn exp

(
−x

2

2

)
dx if n is even,

0 if n is odd,

(B.9)

=


2√
2π

Γ
(
n+1
2

)
2
(
1
2

)n+1
2

if n is even,

0 if n is odd,

(B.10)

=


Γ
(
n+1
2

)
2

n
2

√
π

if n is even,

0 if n is odd.

(B.11)

�

Given lemma B.3.2, the second term of equation (B.7) is equal to zero, so

∂ lnλs
∂µ

∣∣∣∣µ=0
σ=1

= a2

[
fs

∫ b

−∞
h(−wt + b)wt ϕ0,1(wt) dwt

+

∫ ∞
b
h(wt − b)wt ϕ0,1(wt) dwt

]
. (B.12)

The sensitivity of lnλs to changes in µ therefore depends on a2, fs, b, and α.

B.4 Derivation of ∂ lnλs/∂σ

Take the partial derivative of lnλs with respect to σ:

∂ lnλs
∂σ

=

∫ ∞
−∞

p(wt)
∂

∂σ
ϕµ,σ(wt) dwt, (B.13)
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∂

∂σ
ϕµ,σ(wt) =

∂

∂σ

[
1

σ
√

2π
exp

(
−(wt − µ)2

2σ2

)]
(B.14)

=
−1

σ2
√

2π
exp

(
−(wt − µ)2

2σ2

)

+
1

σ
√

2π
exp

(
−(wt − µ)2

2σ2

)(
(wt − µ)2

σ3

)
(B.15)

= − 1

σ
ϕµ,σ(wt) +

(wt − µ)2

σ3
ϕµ,σ(wt). (B.16)

Therefore

∂ lnλs
∂σ

=

∫ ∞
−∞

p(wt)

[
− 1

σ
ϕµ,σ(wt) +

(wt − µ)2

σ3
ϕµ,σ(wt)

]
dwt, (B.17)

and

∂ lnλs
∂σ

∣∣∣∣µ=0
σ=1

=

∫ ∞
−∞

(g(wt) + c) (w2
t − 1)ϕ0,1(wt) dwt (B.18)

=

∫ ∞
−∞

g(wt) (w2
t − 1)ϕ0,1(wt) dwt + c

∫ ∞
−∞

w2
t ϕ0,1(wt) dwt − c. (B.19)

Given lemma (B.3.2),

∂ lnλs
∂σ

∣∣∣∣µ=0
σ=1

=

∫ ∞
−∞

g(wt) (w2
t − 1)ϕ0,1(wt) dwt + c

2 Γ
(
3
2

)
√
π
− c. (B.20)

But 2 Γ(3/2)/
√
π = 1, so

∂ lnλs
∂σ

∣∣∣∣µ=0
σ=1

= a2

[
fs

∫ b

−∞
h(−wt + b) (w2

t − 1)ϕ0,1(wt) dwt

+

∫ ∞
b
h(wt − b) (w2

t − 1)ϕ0,1(wt) dwt

]
. (B.21)

Therefore, the sensitivity of lnλs to changes in σ depends on a2, fs, b, and α.

Because the variance of the environment is the square of the standard deviation of

the environment, sensitivities of lnλs to changes in the variance of the environment
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can be computed straightforwardly from the results above using the chain rule. We

use sensitivities to changes in standard deviation because they have the same units

as sensitivities to changes in the mean of the environment, and this is necessary for

comparison of the sensitivities.

B.5 Analysis of climate data

The United States Historical Climatology Network database (USHCN; Menne

et al., 2009; National Climatic Data Center, National Oceanic and Atmospheric

Administration, 2011) consists of monthly values of precipitation, and minimum,

maximum and average temperature from 1221 weather stations from the conterminous

United States. The data had been corrected to account for various historical changes

in station location, instrumentation, and observing practice; and temperatures (but

not precipitation) had been adjusted for time-of-observation bias (due to the 24-hour

observation period beginning and ending at times other than local midnight at different

stations; Vose et al., 2003). Data had been tested for homogeneity by testing for

changepoints using a ‘pairwise’ homogenisation algorithm, as described in Menne &

Williams Jr (2009). Estimates for missing data had been calculated using a weighted

average of values from highly correlated neighbouring values (Menne et al., 2009),

providing time series that are complete. All corrections had been performed by

climate researchers prior to our use of the database and were described in the data

documentation.

The weather data in the USHCN consist of monthly values. These data were

preprocessed to derive several variables, all with a sampling frequency of one per

year. We chose example aggregations that are likely to be biologically meaningful to

populations living in temperate latitudes. Mean summer temperatures were obtained

by taking the mean of the three mean monthly temperature values corresponding

to summer (June-August). Minimum winter temperature is the minimum monthly

temperature registered during the three winter months (December-February) and

maximum summer temperature is the maximum monthly temperature during summer.

Finally, total spring precipitation is the total precipitation during the three spring

months (March-May).

B.6 Special case with α = 2 and a1 = a2 = a

Let h(wt) = w2
t and a1 = a2 = a. Then,
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lnλs = a

∫ ∞
−∞

(wt − b)2 ϕ0,1(wt) dwt + c (B.22)

= a

∫ ∞
−∞

w2
t ϕ0,1(wt) dwt − 2 a b

∫ ∞
−∞

wt ϕ0,1(wt) dwt + a b2 + c. (B.23)

By lemma B.3.2,

lnλs = a
2Γ
(
3
2

)
√
π

+ a b2 + c (B.24)

= a (b2 + 1) + c. (B.25)

Turning to the sensitivity with respect to µ,

∂ lnλs
∂µ

∣∣∣∣µ=0
σ=1

= a

∫ ∞
−∞

(wt − b)2wt ϕ0,1(wt) dwt (B.26)

= a

∫ ∞
−∞

w3
t ϕ0,1(wt) dwt − 2 a b

∫ ∞
−∞

w2
t ϕ0,1(wt) dwt

+ a b2
∫ ∞
−∞

wt ϕ0,1(wt) dwt (B.27)

= −2 a b
2 Γ
(
3
2

)
√
π

= −2 a b. (B.28)

The sensitivity of lnλs to changes in σ is

∂ lnλs
∂σ

∣∣∣∣µ=0
σ=1

= a

∫ ∞
−∞

(wt − b)2 (w2
t − 1)ϕ0,1(wt) dwt (B.29)

= a

∫ ∞
−∞

(
w4
t − 2 bw3

t − w2
t + b2w2

t + 2 bwt − b2
)
ϕ0,1(wt) dwt. (B.30)

But by lemma B.3.2,
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∂ lnλs
∂σ

∣∣∣∣µ=0
σ=1

= a

∫ ∞
−∞

(
w4
t + (b2 − 1)w2

t

)
ϕ0,1(wt) dwt − a b2 (B.31)

= a

∫ ∞
−∞

w4
t ϕ0,1(wt) dwt + a (b2 − 1)

∫ ∞
−∞

w2
t ϕ0,1(wt) dwt − a b2 (B.32)

= a
4 Γ
(
5
2

)
√
π

+ a (b2 − 1)− a b2 = 2 a. (B.33)

The ratio of sensitivities is

∂ lnλs
∂µ

∣∣∣∣µ=0
σ=1

∂ lnλs
∂σ

∣∣∣∣µ=0
σ=1

=
−2 a b

2 a
= −b. (B.34)
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B.7 Additional climate data analysis results
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Figure B.1: Mean (a-c) and standard deviation (d-f) values for 1976-2010 minus
values for 1911-1945, and absolute values of changes in mean minus absolute values
of changes in standard deviation (g-i), for summer mean temperature (a, d, g),
winter minimum temperature (b, e, h), summer maximum temperature (c, f, i).
White corresponds to no change.

B.8 Semelparous populations

Our results apply not only to unstructured populations, but also to semelparous

populations. Consider a semelparous population with k age classes with a transition

matrix

Λt =

 0 · · · g(t)

s1(t) · · · 0

· · · sk−1(t) 0

,
where the s(t) are the survival rates for each age class and g(t) is the fertility rate for

the final, reproductive age class. The product of k matrices like the one above yields

a diagonal matrix model equivalent to our model (Tuljapurkar, 1990).
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Are changes in the mean or variability

of climate signals more important for

extinction risk?

C.1 Derivation of σ2
r

The log variance is

σ2r = Var(lnλt) = E
[
p(wt)

2
]
− [E(p(wt))]

2 (C.1)

=

∫ ∞
−∞

p(wt)
2 ϕµ,σ(wt) dwt − (lnλs)

2. (C.2)

Let g(wt) = p(wt)− c. Then,

σ2r =

∫ ∞
−∞

(g(wt) + c)2 ϕµ,σ(wt) dwt − (lnλs)
2 (C.3)

=

∫ ∞
−∞

g(wt)
2 ϕµ,σ(wt) dwt + 2 c

∫ ∞
−∞

g(wt)ϕµ,σ(wt) dwt + c2 − (lnλs)
2 (C.4)

= a21

∫ b

−∞
h(−wt + b)2 ϕµ,σ(wt) dwt + a22

∫ ∞
b
h(wt − b)2 ϕµ,σ(wt) dwt

+ 2 c a1

∫ b

−∞
h(−wt + b)ϕµ,σ(wt) dwt + 2 c a2

∫ ∞
b
h(wt − b)ϕµ,σ(wt) dwt

+ c2 − (lnλs)
2 (C.5)
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= a21

∫ b

−∞
h(−wt + b)2 ϕµ,σ(wt) dwt + a22

∫ ∞
b
h(wt − b)2 ϕµ,σ(wt) dwt

− (lnλs − c)2. (C.6)

Therefore σ2r is a function of a1, a2, b, and α, i.e. the parameters that define the log

response function, but is independent of c.

C.2 Transforming the environmental variable

Let w̃t be the original, untransformed environmental variable, assuming without loss

of generality it is normally distributed (it can be transformed to make it so). Let

wt = α w̃t + β

where α = 1/sd(w̃t) and β = −E(w̃t)/sd(w̃t).

C.3 Derivation of ∂σ2
r/∂µ

Take the partial derivative of σ2r with respect to µ:

∂σ2r
∂µ

=

∫ ∞
−∞

p(wt)
2 ∂

∂µ
ϕµ,σ(wt) dwt

−
(

2

∫ ∞
−∞

p(wt)ϕµ,σ(wt) dwt

)(∫ ∞
−∞

p(wt)
∂

∂µ
ϕµ,σ(wt)dwt

)
, (C.7)

∂

∂µ
ϕµ,σ(wt) =

∂

∂µ

[
1

σ
√

2π
exp

(
−(wt − µ)2

2σ2

)]
=

(
wt − µ
σ2

)
ϕµ,σ(wt). (C.8)

So

∂σ2r
∂µ

=
1

σ2

∫ ∞
−∞

p(wt)
2 (wt − µ)ϕµ,σ(wt) dwt

− 2

(∫ ∞
−∞

p(wt)ϕµ,σ(wt) dwt

)(
1

σ2

∫ ∞
−∞

p(wt) (wt − µ)ϕµ,σ(wt)dwt

)
, (C.9)
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and

∂σ2r
∂µ

∣∣∣∣µ=0
σ=1

=

∫ ∞
−∞

(g(wt) + c)2wt ϕ0,1(wt) dwt − 2 lnλs

(
∂ lnλs
∂µ

∣∣∣∣µ=0
σ=1

)
(C.10)

=

∫ ∞
−∞

g(wt)
2wt ϕ0,1(wt) dwt + 2 c

∫ ∞
−∞

g(wt)wt ϕ0,1(wt) dwt

+ c2
∫ ∞
−∞

wt ϕ0,1(wt) dwt − 2 lnλs

(
∂ lnλs
∂µ

∣∣∣∣µ=0
σ=1

)
. (C.11)

We need two lemmas to proceed.

Lemma C.3.1 ∫ ∞
0
xn e−β x

2
dx =

Γ(γ)

2βγ
,

where Γ(z) is the Gamma function (Abramowitz & Stegun, 1964, pg. 255), γ = n+1
2 ,

Reβ > 0, and Ren > 0.

Proof See Gradshteyn & Ryzhik (2007; 3.326, pg. 337). �

Lemma C.3.2

∫ ∞
−∞

xn ϕ0,1(x) dx =


Γ
(
n+1
2

)
2

n
2

√
π

if n ≥ 0 is an even integer

0 if n ≥ 0 is an odd integer.

Proof∫ ∞
−∞

xn ϕ0,1(x) dx =
1√
2π

∫ ∞
−∞

xn exp

(
−x

2

2

)
dx (C.12)

=


2√
2π

∫ ∞
0
xn exp

(
−x

2

2

)
dx if n is even,

0 if n is odd,

(C.13)

=


2√
2π

Γ
(
n+1
2

)
2
(
1
2

)n+1
2

if n is even,

0 if n is odd,

(C.14)
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=


Γ
(
n+1
2

)
2

n
2

√
π

if n is even,

0 if n is odd.

(C.15)

�

Given lemma C.3.2,

∂σ2r
∂µ

∣∣∣∣µ=0
σ=1

= a21

∫ b

−∞
h(−wt + b)2wt ϕ0,1(wt) dwt + a22

∫ ∞
b
h(wt − b)2wt ϕ0,1(wt) dwt

+ 2 c a1

∫ b

−∞
h(−wt + b)wt ϕ0,1(wt) dwt

+ 2 c a2

∫ ∞
b
h(wt − b)wt ϕ0,1(wt) dwt − 2 lnλs

(
∂ lnλs
∂µ

∣∣∣∣µ=0
σ=1

)
(C.16)

= a21

∫ b

−∞
h(−wt + b)2wt ϕ0,1(wt) dwt

+ a22

∫ ∞
b
h(wt − b)2wt ϕ0,1(wt) dwt − 2

(
∂ lnλs
∂µ

∣∣∣∣µ=0
σ=1

)
(lnλs − c).

(C.17)

The sensitivity of σ2r to changes in µ therefore depends on a2, fs, b, and α, but is

independent of c.

C.4 Derivation of ∂σ2
r/∂σ

Take the partial derivative of σ2r with respect to σ:

∂σ2r
∂σ

=

∫ ∞
−∞

p(wt)
2 ∂

∂σ
ϕµ,σ(wt) dwt

−
(

2

∫ ∞
−∞

p(wt)ϕµ,σ(wt) dwt

)(∫ ∞
−∞

p(wt)
∂

∂σ
ϕµ,σ(wt)dwt

)
, (C.18)
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∂

∂σ
ϕµ,σ(wt) =

∂

∂σ

[
1

σ
√

2π
exp

(
−(wt − µ)2

2σ2

)]
(C.19)

=
−1

σ2
√

2π
exp

(
−(wt − µ)2

2σ2

)

+
1

σ
√

2π
exp

(
−(wt − µ)2

2σ2

)(
(wt − µ)2

σ3

)
(C.20)

= − 1

σ
ϕµ,σ(wt) +

(wt − µ)2

σ3
ϕµ,σ(wt). (C.21)

Therefore

∂σ2r
∂σ

∣∣∣∣µ=0
σ=1

=

∫ ∞
−∞

p(wt)
2 (w2

t − 1)ϕ0,1(wt) dwt

− 2

(∫ ∞
−∞

p(wt)ϕ0,1(wt) dwt

)(∫ ∞
−∞

p(wt) (w2
t − 1)ϕ0,1(wt) dwt

)
(C.22)

=

∫ ∞
−∞

p(wt)
2 (w2

t − 1)ϕ0,1(wt) dwt − 2 lnλs

(
∂ lnλs
∂σ

∣∣∣∣µ=0
σ=1

)
(C.23)

=

∫ ∞
−∞

g(wt)
2 (w2

t − 1)ϕ0,1(wt) dwt + 2 c

∫ ∞
−∞

g(wt) (w2
t − 1)ϕ0,1(wt) dwt

+ c2
∫ ∞
−∞

(w2
t − 1)ϕ0,1(wt) dwt − 2 lnλs

(
∂ lnλs
∂σ

∣∣∣∣µ=0
σ=1

)
. (C.24)

Given lemma (C.3.2),

∂σ2r
∂σ

∣∣∣∣µ=0
σ=1

= a21

∫ b

−∞
h(−wt + b)2 (w2

t − 1)ϕ0,1(wt) dwt

+ a22

∫ ∞
−b
h(wt − b)2 (w2

t − 1)ϕ0,1(wt) dwt

− 2

(
∂ lnλs
∂σ

∣∣∣∣µ=0
σ=1

)
(lnλs − c). (C.25)

Therefore, the sensitivity of σ2r to changes in σ depends on a2, fs, b, and α, but

is independent of c. Because the variance of the environment is the square of the
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standard deviation of the environment, sensitivities of σ2r to changes in the variance of

the environment can be computed straightforwardly from the results above using the

chain rule. We use sensitivities to changes in standard deviation because they have

the same units as sensitivities to changes in the mean of the environment, and this is

necessary for comparison of the sensitivities.

C.5 Sensitivity of G to changes in lnλs and σ2
r

The sensitivities of G are

∂G(t|x0)
∂ lnλs

∣∣∣∣µ=0
σ=1

=
−2x0
σ2r

exp

(
−2 lnλs x0

σ2r

)
Φ

[
−x0 + lnλs t√

σ2r t

]
, (C.26)

and

∂G(t|x0)
∂σ2r

∣∣∣∣µ=0
σ=1

=
x0√

2π t σ3r
exp

(
−(x0 + lnλs t)

2

2σ2r t

)

+
2 lnλs x0

σ4r
exp

(
−2 lnλs x0

σ2r

)
Φ

[
−x0 + lnλs t√

σ2r t

]
. (C.27)

As noted by Dennis et al. (1991), the calculation of G(t|x0) (and its sensitivities) can

lead to numerical underflow and overflow. Specific values of lnλs, σ
2, x0, and t, can

lead to the product of a very large number exp(·) and a very small number Φ[·]. To

avoid this problem, the values of G(t|x0) and its sensitivities were computed on the

logarithmic scale.
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C.6 Additional results for ∂G/∂µ and ∂G/∂σ

In the following figures, the panels correspond to (a) ∂G/∂µ, (b) ∂G/∂σ, (c) the sign

of the sensitivity shown in panel (a), (d) the relative importance of the sensitivity to

changes in µ, i.e. |∂G/∂µ|/(|∂G/∂µ|+ |∂G/∂σ|), (e) the sign of the sensitivity shown

in panel (b). The red contour lines are G(t = 5) = 0.9, and blue contour lines are for

G(t = 10) = 0.1, 0.9. The green areas correspond to populations with G(t = 100) ≤ 0.1

that are therefore relatively safe from extinction.
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Figure C.1: α = 0.5, fs = 1, a2 = −0.5, t = 10.
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Figure C.2: α = 0.75, fs = 1, a2 = −0.5, t = 10.
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Figure C.3: α = 1, fs = 1, a2 = −0.5, t = 10.
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Figure C.4: α = 1.5, fs = 1, a2 = −0.5, t = 10.
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Figure C.5: α = 2, fs = 1/3, a2 = −0.5, t = 10.
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Figure C.6: α = 2, fs = 1, a2 = −0.1, t = 10.
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Figure C.7: α = 2, fs = 1, a2 = −1, t = 10.
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Figure C.8: α = 2, fs = 1, a2 = −1.5, t = 10.
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C.7 Additional results for ∂G/∂ lnλs and ∂G/∂σ2
r

In the following figures, the panels correspond to (a) ∂G/∂ lnλs, (b) ∂G/∂σ2r , (c) the

sign of the sensitivity shown in panel (a), (d) the relative importance of the sensitivity

to changes in lnλs, i.e. |∂G/∂ lnλs|/(|∂G/∂ lnλs| + |∂G/∂σ2r |), (e) the sign of the

sensitivity shown in panel (b). The red contour lines are G(t = 5) = 0.9, and blue

contour lines are for G(t = 10) = 0.1, 0.9. The green areas correspond to populations

with G(t = 100) ≤ 0.1 that are therefore relatively safe from extinction.
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Figure C.9: α = 1, fs = 1, a2 = −0.5, t = 10.
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Figure C.10: α = 2, fs = 1/3, a2 = −0.5, t = 10.
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Figure C.11: α = 2, fs = 1, a2 = −1.5, t = 10.
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Appendix D

Are changes in the mean or variability

of climate more important for

populations?

D.1 Tables of parameters

Table D.1: Posterior mean values and standard deviations reported in Sæther et al.
(2000), except for the values for a and σ2λ, which were provided by Jarle Tufto
(personal communication).

Parameter Estimate ± sd

r -0.0860 0.186
α 0.0042 0.0014
β 0.15 0.03
σ2e 0.21 0.06
σ2d 0.268 0.018
µ0 3.8979 0.101
µ1 0.1100
σ2c 4.0701 0.97
σ2λ 0.1882 0.84
a 0.0042 0.0015
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Table D.2: Parameter estimates for the effects of density, the NAO, and their
interaction from statistical models of survival, fecundity, and lamb neonatal survival
rates for individual Soay sheep in different demographic classes. All models are
linear on the logit scale. Population density was transformed prior to model fitting
such that population density = (actual population density − 1202.86)/100. The
NAO was transformed such that NAO = (actual NAO − 1.73)/10. The average
litter sizes of breeding females aged 1 to 10 years were, respectively 1, 1.06, 1.11,
1.17, 1.23, 1.26, 1.27, 1.25, 1.2 and 1.14 lambs. No individuals > 10 years old
produced twins. The table is reproduced from Coulson et al. (2008).

Class & parameter Intercept Density NAO Interaction

Survival
Female lambs 0.5403 -0.3078 -1.6086 -0.6602
Female yearlings 2.2797 -0.1924 -2.4922 -0.5816
Female 2–6 years 2.7725 -0.1702 -1.975 -0.5041
Female > 6 years 1.6199 -0.2409 -1.2312 -1.316
Male lambs -0.2068 -0.3053 -3.5837 -0.4202
Male 1–6 years 3.4038 -0.5066 -14.7928 1.6893
Male > 6 years -0.4812 0 0 0

Fecundity
Female lambs -0.915 -0.376 -2.069 0
Female yearlings 0.815 -0.1017 -2.085 0
Female 2–6 years 1.3869 -0.0797 0 0
Female 7–9 years 1.106 -1.09 -2.052 -0.812
Female > 9 years -1.099 0 0 0

Neonatal survival
Lambs -0.654 -0.3436 -2.313 0
Yearlings 1.293 -0.2318 -3.55 0
2–9 years 2.084 -0.0614 -1.433 -0.562
> 9 years 0.887 0 0 0
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Appendix E

An empirical link between the spectral

colour of climate and the spectral

colour of field populations in the

context of climate change
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E.1 Effect of environmental noise on two univariate

population models
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Figure E.1: The impact of environmental spectral colour on population spectral
colour in a stochastic formulation of the Hassell model (Hassell, 1975). The model
is pt+1 = rpt(1 + pt)

−b exp(xt). Here b describes competition for resources, ranging
from ‘scramble’ (b → ∞) to ‘contest’ (b → 1). In this example b = 4. The
growth rate is r, and xt is the same as in Figure 1 in the main text. A starting
population p0 = 1 was used for all simulations. Panel a is the bifurcation plot
for the deterministic skeleton of the model, indicating the growth rate (r) values
and respective line types used for the following panels. Panel b is with weak
environmental noise (σ = 0.01; see Methods in the main text), and panel c is with
strong environmental noise (σ = 0.1). Results show that environmental spectral
colour generally tinges the population spectral colour, to an extent that depends on
r and σ.
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Figure E.2: See caption for Fig. E.1, but with b = 20.
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Figure E.3: The impact of environmental spectral colour on population spectral
colour in a stochastic formulation of the Maynard Smith model (May & Oster,
1976). The model is pt+1 = rpt/(1 + pbt) exp(xt). Here b describes the type and
intensity of density dependence. In this example b = 3. The growth rate is r, and
xt is as in Figure 1 in the main text. A starting population p0 = 1 was used for
all simulations. Panel a is the bifurcation plot for the deterministic skeleton of the
model, indicating the growth rate (r) values and respective line types used for the
following panel. Panel b is with weak environmental noise (σ = 0.01; see Methods in
the main text), and panel c is with strong environmental noise (σ = 0.1). Results
show that environmental spectral colour generally tinges the population spectral
colour, to an extent that depends on r and σ.
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Figure E.4: See caption for Figure E.3, but with b = 15.
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E.2 Validation of the CRU data set with GHCN data

Mitchell & Jones (2005) and New et al. (2000) explain the quality control and

homogenisation process passed by the raw data that underlies the CRU data set. The

CRU gridded data was optimised for homogeneity in space rather than time; the main

objective was to provide spatially complete grids (Mitchell, 2004). We therefore have

examined how reliable the database really is for our analyses, which have a temporal

as well as a spatial component. In areas with high concentrations of weather stations

contributing to the interpolation scheme, the CRU data is likely to follow the raw

weather station data quite closely, and is likely to be reliable for our purposes. The

spatio-temporal station density index is provided with the CRU data.

We calculated correlations between GHCN time series and corresponding time series

from the CRU data set (same location and time span), and related the correlations

to the number of weather stations contributing in the CRU data to that location at

that time, as computed by the mean CRU density index in the location over the time.

Results show that correlation is generally high (Figure E.5). We assumed, based on

these results, that grid cells and time periods with more than 50 weather stations

on average contributing to the time series were reliable for our intended use: nearly

all locations with CRU mean density index above 50 were correlated with weather

station data with R > 0.9 (Figure E.5).
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Figure E.5: Value of R, the Pearson correlation coefficient, between weather station
and gridded data, plotted against the mean number of weather stations contributing
to the interpolation for the relevant grid cell. The horizontal grey line, drawn at
50 contributing weather stations, indicates the quality index used in the filtering of
the GPDD (Section E.3).
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E.3 GPDD filtering process and filtered list of species

The GPDD authors included as many population dynamics studies as were available,

leading to some heterogeneities that need to be accounted for by filtering prior to our

analysis (Brook et al., 2006):

• Study lengths vary from months to over a century.

• Sampling frequencies include the range from daily to annual; the sampling

interval of some time series is listed as one generation of the focal species, with

no specification of generation time.

• Many time series include zero abundance measures; without further information

these may reflect local extinction, emigration, or inadequate sampling methods

or effort.

• Many abundance measures are transformations of population size, including

logarithms and power relationships.

• Sampling methodologies are diverse, sometimes subjective, and difficult to

classify.

• Geographical location metadata are occasionally missing. Furthermore, some

location data apply to centroids of large study areas, such as countries or states,

and other time series have location data that refer to the single location of census.

The specificity of the location data is not given.

These shortcomings were first addressed by automatically removing populations that

did not satisfy the following conditions:

• A sampling frequency of one year.

• Entries for both latitude and longitude were present and non-zero. Though 0◦N,

0◦W is a valid location on the globe, it is in the ocean. Time series that are

georeferenced with this location were likely to be in error.

• Time series had at least 30 continuous data points (with none missing).

• Time series had a proportion of zeroes to data points of maximum 0.2.

• The study took place in a location that is above the minimum required CRU

“quality index”, i.e. CRU station density index of 50 or higher (Section E.2).

The GPDD was then further filtered manually by:

• Checking the locations of populations on maps and comparing with centroids

of political regions, to remove populations that appeared to have been given

centroid or approximate coordinates.

• Fully marine species of the Osteichthyes class (censused in coastal regions) were

removed. Osteichthyes were retained only if they inhabit freshwater during some
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life stage.

• The largest contributing references to the filtered database were checked from the

original source. Data from Novak et al. (1987) were removed because the authors

stated that “. . . the data cannot simply be taken to indicate . . . population levels

. . . ”. Reasons included inaccurate or imprecise location metadata and a large

variety of assumptions on potential correspondence between population density

and animals trapped.

• Three populations were removed because despite the fact that logarithmic units

were indicated in the database, the numbers provided were still large (> 100),

corresponding to impossibly large linear-scale populations that must have been

in error.

• Some time series were found to have a constant population value throughout.

Since we analyse population fluctuations, these were not useful and were removed.
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E.3.1 List of filtered GPDD populations

Following is a list of the details of the filtered time series used in the analysis of the

GPDD.

Table E.1: The GPDD populations left after completing the filtering process. The
species name is that provided by the GPDD database.

Species Class Lat. Long. Time period

Alauda arvensis Aves 51 -5 1946-1979

Anas platyrhynchos Aves 50 -98 1955-2002

Anas platyrhynchos Aves 50 -98 1955-1992

Ardea cinerea Aves 52 -1 1928-1970

Ardea sp1 Aves 53 -1 1928-1970

Bucephala albeola Aves 50 -98 1955-1992

Cardinalis cardinalis Aves 40 -88 1939-1976

Certhia americana Aves 40 -88 1937-1976

Ciconia ciconia Aves 48 7 1945-1986

Coccyzus americanus Aves 40 -88 1939-1976

Colaptes auratus Aves 40 -88 1939-1976

Colinus virginianus Aves 42 -110 1945-1990

Contopus virens Aves 40 -88 1939-1976

Corvus corone Aves 51 -5 1946-1979

Cyanocitta cristata Aves 40 -88 1937-1976

Grus americana Aves 27 -97 1939-1986

Grus americana Aves 27 -97 1938-1989

Haematopus ostralegus Aves 51 -5 1946-1979

Junco hyemalis Aves 40 -88 1937-1976

Lagopus lagopus scoticus Aves 56 -4 1901-1978

Lagopus lagopus scoticus Aves 56 -4 1901-1978

Lagopus lagopus scoticus Aves 56 -4 1901-1944

Lagopus lagopus scoticus Aves 56 -4 1901-1943

Lagopus lagopus scoticus Aves 56 -4 1901-1947

Lagopus lagopus scoticus Aves 56 -4 1901-1942

Luscinia megahrynchos Aves 51 -2 1927-1960

Melanerpes carolinus Aves 40 -88 1939-1976

Melanerpes carolinus Aves 40 -88 1937-1976

Myiarchus crinitus Aves 40 -88 1940-1976

Oxyura jamaicensis Aves 50 -98 1955-1992

Continued on next page. . .
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Table E.1 – Continued

Species Class Lat. Long. Time period

Parus bicolor Aves 40 -88 1937-1969

Parus caeruleus Aves 51 1 1947-1983

Parus major Aves 51 1 1947-1978

Passerina cyanea Aves 40 -88 1939-1976

Perdix perdix Aves 52 1 1901-1933

Perdix perdix Aves 54 -1 1901-1933

Perdix perdix Aves 52 1 1901-1932

Perdix perdix Aves 51 0 1901-1932

Perdix perdix Aves 52 1 1901-1933

Phalacrocorax aristotelis Aves 55 -1 1949-1978

Phylloscopus collybita Aves 51 -2 1928-1960

Phylloscopus trochilus Aves 51 -2 1928-1960

Picoides pubescens Aves 40 -88 1939-1976

Picoides pubescens Aves 40 -88 1937-1976

Picoides villosus Aves 40 -88 1939-1976

Picoides villosus Aves 40 -88 1937-1976

Pterocles namaqua Aves -28 24 1950-1992

Rissa tridactyla Aves 54 -1 1949-1984

Scolopax rusticola Aves 51 0 1901-1932

Sitta carolinensis Aves 40 -88 1937-1976

Spizella arborea Aves 40 -88 1937-1976

Sturnus vulgaris Aves 51 -5 1946-1979

Sturnus vulgaris Aves 40 -88 1940-1976

Tetrao tetrix Aves 60 25 1901-1933

Troglodytes aedon Aves 40 -88 1939-1976

Vanellus vanellus Aves 51 -5 1946-1979

Mya arenaria Bivalvia 36 -122 1916-1947

Tivela stultorum. Bivalvia 36 -122 1916-1947

Cancer magister Crustacea 38 -123 1950-1992

Cancer magister Crustacea 39 -123 1950-1992

Cancer magister Crustacea 40 -124 1950-1992

Cancer magister Crustacea 42 -124 1950-1992

Cancer magister Crustacea 43 -124 1950-1992

Cancer magister Crustacea 44 -123 1950-1992

Cancer magister Crustacea 45 -123 1950-1992

Cancer magister Crustacea 46 -123 1950-1992

Continued on next page. . .
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Table E.1 – Continued

Species Class Lat. Long. Time period

Cancer magister Crustacea 46 -124 1950-1992

Cancer magister Crustacea 42 -124 1950-1992

Cancer magister Crustacea 38 -122 1945-1977

Panulirus interruptus Crustacea 36 -122 1916-1978

Haliotis rufescens Gastropoda 36 -122 1935-1964

Blissus leucopterus Insecta 39 -89 1901-1940

Lymantria dispar Insecta 43 20 1954-1986

Lymantria monacha Insecta 51 11 1901-1941

Panaxia dominula-dominula Insecta 51 -1 1939-1978

Panaxia dominula-medionigra Insecta 51 -1 1939-1978

Panolis flammea Insecta 52 11 1901-1940

Alopex lagopus Mammalia 64 28 1958-1989

Arvicola terrestris Mammalia 46 6 1938-1991

Arvicola terrestris Mammalia 46 6 1940-1980

Arvicola terrestris Mammalia 46 7 1951-1992

Arvicola terrestris Mammalia 46 7 1944-1992

Canis latrans Mammalia 55 -104 1914-1957

Canis latrans Mammalia 55 -98 1919-1957

Canis latrans Mammalia 55 -105 1919-1957

Canis lupus Mammalia 52 24 1946-1993

Canis lupus Mammalia 52 24 1946-1993

Clethrionomys glareolus Mammalia 55 36 1956-1986

Clethrionomys rufocanus Mammalia 43 143 1962-1992

Clethrionomys rufocanus Mammalia 43 143 1962-1992

Clethrionomys rufocanus Mammalia 69 21 1949-1994

Lepus europaeus Mammalia 54 -1 1901-1932

Lepus europaeus Mammalia 52 1 1901-1932

Lepus europaeus Mammalia 51 0 1902-1932

Lepus europaeus Mammalia 52 -1 1944-1980

Lepus europaeus Mammalia 52 -1 1944-1977

Lepus europaeus Mammalia 57 10 1902-1946

Lepus timidus Mammalia 60 25 1901-1934

Lynx lynx Mammalia 64 27 1901-1961

Martes americana Mammalia 45 -78 1961-1992

Martes pennanti Mammalia 55 -98 1924-1957

Mustela vison Mammalia 55 -104 1914-1957

Continued on next page. . .
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Table E.1 – Continued

Species Class Lat. Long. Time period

Mustela vison Mammalia 55 -98 1924-1957

Ondatra zibethicus Mammalia 52 -88 1919-1957

Ondatra zibethicus Mammalia 55 -104 1914-1957

Ondatra zibethicus Mammalia 55 -98 1924-1957

Ondatra zibethicus Mammalia 50 -107 1920-1959

Ondatra zibethicus Mammalia 54 -107 1916-1959

Ondatra zibethicus Mammalia 57 -107 1916-1959

Oryctolagus cuniculus Mammalia 52 1 1901-1933

Oryctolagus cuniculus Mammalia 52 1 1901-1932

Oryctolagus cuniculus Mammalia 51 0 1902-1932

Oryctolagus cuniculus Mammalia 52 -1 1944-1980

Oryctolagus cuniculus Mammalia 52 -1 1944-1977

Phoca groenlandica Mammalia 49 -53 1901-1942

Vulpes Mammalia 55 -125 1919-1957

Vulpes Mammalia 55 -115 1919-1957

Vulpes Mammalia 55 -104 1914-1957

Vulpes Mammalia 55 -98 1919-1957

Vulpes Mammalia 52 -88 1919-1957

Vulpes Mammalia 47 -67 1924-1957

Vulpes Mammalia 45 -63 1919-1957

Vulpes Mammalia 50 -80 1920-1951

Vulpes Mammalia 55 -105 1920-1951

Esox lucius Osteichthyes 54 -3 1944-1981

Esox lucius Osteichthyes 54 -2 1944-1981

Oncorhynchus gorbuscha Osteichthyes 45 -121 1938-1994

Oncorhynchus gorbuscha Osteichthyes 56 -134 1934-1966

Oncorhynchus gorbuscha Osteichthyes 58 -135 1960-1995

Oncorhynchus gorbuscha Osteichthyes 56 -133 1960-1995

Oncorhynchus keta Osteichthyes 50 -126 1955-1987

Oncorhynchus nerka Osteichthyes 54 -129 1908-1964

Oncorhynchus nerka Osteichthyes 50 -119 1948-1993

Oncorhynchus nerka Osteichthyes 50 -122 1948-1993

Oncorhynchus nerka Osteichthyes 52 -123 1948-1993

Oncorhynchus nerka Osteichthyes 52 -123 1948-1993

Oncorhynchus nerka Osteichthyes 52 -123 1949-1988

Oncorhynchus nerka Osteichthyes 52 -121 1948-1993

Continued on next page. . .
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Table E.1 – Continued

Species Class Lat. Long. Time period

Oncorhynchus nerka Osteichthyes 53 -123 1949-1994

Oncorhynchus nerka Osteichthyes 52 -121 1948-1993

Oncorhynchus nerka Osteichthyes 54 -130 1943-1985

Oncorhynchus nerka Osteichthyes 54 -130 1908-1952

Oncorhynchus nerka Osteichthyes 51 -127 1951-1995

Oncorhynchus nerka Osteichthyes 54 -124 1948-1994

Oncorhynchus nerka Osteichthyes 53 -123 1948-1994

Oncorhynchus nerka Osteichthyes 49 -121 1948-1992

Salmo salar Osteichthyes 60 10 1901-1986
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E.4 Additional methods

For the stochastic Ricker model simulations presented in Figure 1 in Chapter 6 and

described in Methods, a starting population p0 = K was used for all simulations. For

each combination of parameters, 100 time series of length 500 were generated and power

spectra were computed based on the last 250 time steps of each simulation. Spectral

exponents were computed using the mean power spectra (mean of each frequency over

the 100 simulations) and these were plotted against ρ separately for each combination

of parameters.

The model developed by Grenfell et al. (1998) and used to produce Figure 4 in

Chapter 6 was run 2000 times for 1000 time steps for each combination of ρ0 and ρ1;

the spectral exponent of xt was calculated for each run and averaged across runs.

For the simulations used to produce Figure 5 in the main text, for each ρ with −0.9 <

ρ < 0.9 and r with 0.1 < r < 3, and for σ = 0.3 and K = 1, 2000 population time series

of length 512 were simulated starting from p0 = K. Population spectral exponents

were computed for the latter 256 time steps of each simulation and averaged. Any

population falling below 0.01K was considered to have gone extinct; the proportion

of populations that went below this threshold for each combination of parameters

quantified extinction risk for those parameters.

The power spectrum can be used to estimate α for 1/fα noise (Halley, 1996; Halley

& Kunin, 1999). In that context it is used with an assumed statistical model, so it is

important to test the assumptions of the model (i.e. whether noise was actually 1/fα

noise, which can be assessed by testing if the log-power-versus-log-frequency plot is

reasonably characterised by the linear regression). In the present study, however,

the spectral exponent provides an index of the relative importance of low and high

frequencies only; its use relies on no statistical model or assumptions about the form

of the spectrum.

Table E.2: Definition of the geographical regions used.

Region Latitude Longitude

North America > 10◦N 50◦ to 170◦W
South America < 10◦N 34◦ to 82◦W
Africa < 34◦N 50◦E to 20◦W
Europe > 34◦N 60◦E to 25◦W
Asia > 10◦N > 60◦E
Australasia+ < 10◦N > 90◦E
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E.5 Spatial autocorrelation

So far, only temporal autocorrelation has been discussed and considered. Similarly,

variables can also have a spatial context (Dale & Fortin, 2009). In much the same way

that the temperature today is likely to be similar to that of yesterday, the temperature

in two nearby locations is bound to be more similar (if positively autocorrelated) than

expected for randomly associated observations (Legendre & Fortin, 1989; Legendre,

1993). The structure can largely be attributed to the physical processes that form

the environment. Biological systems are also not distributed uniformly or at random

(Legendre, 1993), but are spatially autocorrelated, although in this case it is more

complicated to discern to what extent it is spatial dependence (induced by spatially

autocorrelated variables such as the environment) or actual spatial autocorrelation

in the variable of interest (Dale & Fortin, 2009). In any case, the heterogeneity in

biological systems is functional, and therefore dictated by, for example, habitat, mates

and food availability, and predator-prey interactions. Through these, environmental

heterogeneity may influence the response in biological systems (albeit at a range of

scales) by affecting their distribution (Legendre & Legendre, 1998).

The lack of independence among observations in autocorrelated processes impairs

our ability to perform standard statistical tests of hypotheses (Legendre & Fortin, 1989;

Legendre, 1993; Legendre & Legendre, 1998). In a spatially structured variable, each

new observation does not provide a full degree of freedom, given that these can at least

in part be predicted by the values of neighbouring sites, but rather a fraction which

is inversely proportional to the degree of autocorrelation in the data (Cliff & Ord,

1975; Fortin & Dale, 2005). It is therefore difficult to decide what the appropriate null

reference distribution for the test should be. On the other hand, if a classical statistical

test were performed without taking spatial autocorrelation into account, the effect for

positively autocorrelated processes would be an artificial inflation of the number of

degrees of freedom, and consequently the probability of a Type I error would be larger

than the assumed α value (Legendre et al., 1990).

The simplest way to tackle the issue of spatial autocorrelation in statistical testing is

to remove the spatial dependency among observations (Dutilleul, 1993b). For example,

one could reduce the resolution of the data (by using a subset or by averaging) in

order to eliminate autocorrelation, or otherwise by using filtering techniques (such as

detrending) (Student, 1914; Cliff & Ord, 1981). These solutions are far from ideal

given that data is lost in the process, and is something that fields such as ecology, with

relative scarcity of data, cannot afford. A more complex approach involves modifying

the tests in order to take the spatial structure into account.

Several techniques have been proposed for a range of tests (Cliff & Ord, 1973,
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1981; Fortin & Dale, 2005). The methods that have perhaps received more attention,

however, are those that propose to estimate a modified number of degrees of freedom

(Clifford et al., 1989; Dutilleul, 1993a). Randomization procedures can also be used to

generate a reference distribution, although these entail the challenge of developing a

permutation scheme that maintains the spatial structure in the data (Legendre et al.,

1990; Manly, 2007).

As mentioned above, spatial autocorrelation effectively reduces the effective sample

size. The degree of autocorrelation could therefore be used to determine how much

smaller the sample size is than the number of observations (Clifford et al., 1989;

Dutilleul, 1993a). With the geographically effective sample size, it is then possible to

find a reference distribution and standard parametric tests can then be used. Several

implementations of these methods are available (e.g. Legendre (2000)). One is SAM

(Spatial Analysis in Macroecology), developed by Rangel et al. (2006), which estimates

the effective sample size derived from spatial correlograms by using either the method

described in Clifford et al. (1989), or its generalisation as formulated by Dutilleul

(1993a).
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E.6 Results for all climate variables

Figure E.6: Change in the spectral exponents of GHCN temperature time series from

1911-1950 to 1951-1990, for (a) mean annual temperatures, and (b)-(e) mean winter,

spring, summer, and autumn temperatures respectively. Panel (d) for mean summer

temperature is exactly the same as Figure 2 in the main text, and is reproduced

here to ease comparison with the other panels. P values (t-test corrected for spatial

autocorrelation, N in parentheses) are listed above each box-whisker plot. A positive

(respectively negative) difference in spectral exponent denotes a bluer (respectively

redder) spectrum during 1951-1990 compared to 1911-1950.
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E.7 Why summer?

We present a conceptual model which suggests a general mechanism whereby

autocorrelation in summer climatic variables will propagate through to population

autocorrelation more than autocorrelation in winter climatic variables. We then

consider a previously studied mathematical model of a particular population that

serves as a concrete specific example of the general conceptual model. The model

presented here is the same as the one presented in the “Why Summer?” section of the

Discussion, but a more detailed exposition is provided here.

The conceptual model applies to the class of populations for which three assumptions

are reasonable. First, we assume that a population takes more than one year to grow to

carrying capacity following a crash. In contrast to the slow growth phase, populations

can crash quickly, falling to below carrying capacity in a single year. Second, we

assume that crashes occur only once a population has reached or is close to carrying

capacity, and are due to an interaction between density dependence and bad winter

weather. Density-dependent effects alone and poor winter weather alone are assumed

less likely to cause crashes than their combination, such that winter weather has no or

limited effect on dynamics during a population’s growth phase. Finally, we assume that

summer environmental conditions are responsible for year-to-year variation during the

growth phase. For many populations, reproduction occurs in spring or summer, so it is

reasonable to assume that population growth depends on the conditions that pertain

when recruits are youngest and most vulnerable. These assumptions seem more or

less reasonable for the primarily temperate and generally large-bodied species that

dominate our dataset. The assumptions are presented diagrammatically in Figure E.7.

The conceptual model helps us understand intuitively how climate autocorrelation

in summer months more effectively propagates through to population autocorrelation

than climate autocorrelation in winter months. A sequence of bad winters leads a

population that is at or above carrying capacity to a crash in population numbers in

the first year, bringing the population below carrying capacity so that the second

and subsequent bad winters have little effect and winter autocorrelation cannot

be transmitted to the population time series. In contrast, since growth from low

numbers to carrying capacity can take more than one year, multiple good (respectively

bad) summers all have the potential to affect the population, producing population

autocorrelation.

To illustrate the conceptual model quantitatively, we used the model of Grenfell

et al. (1998) described in Methods. The model meets the assumptions of the

conceptual model in Figure E.7. The model of Grenfell et al. (1998) is characterised

by two distinct regimes: one describing populations at or above carrying capacity, and
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the other pertaining to populations below carrying capacity. These two regimes are

affected by winter and summer seasons respectively, which allows us to introduce noise

for both winter and summer months separately; the repercussions of autocorrelation

in the two seasons on the resulting spectral exponent of the modelled population can

be separately analysed. Model output (Figure 4 in the main text) indicates that the

impact of summer noise colour on population spectral colour can be substantially

greater than the impact of winter noise colour, as expected according to the conceptual

model and in parallel with our empirical results.

Po
p
u
la

ti
o
n

Time

Carrying capacity

Affected by summer
conditions

Affected by winter
conditions

Good summer

Bad summer

Bad winter

Good winter

Figure E.7: Diagram explaining the main assumptions of the conceptual model
proposed in the text: (i) crashes in population numbers are generally faster than
the growth regime; (ii) crashes occur once the population is near or above carrying
capacity and depend on winter weather, but winter weather has little effect below
carrying capacity; and (iii) growth is mediated primarily by summer conditions.
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E.8 Extinction risk in other univariate models
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Figure E.8: The relationship between noise and population spectral colour and
extinction risk in the stochastic formulation of the Hassell model of Figure E.1
(with b = 4). The same procedure used to obtain Figure 5 in the main text was
followed (Methods and Section E.4), but with 1 < r < 50. In this case, any
population falling below 0.05K was considered to have gone extinct. The results
are similar to those of Figure 5 in the main text. The reddening of environmental
noise increases extinction risk for red-shifted, slow-growing populations; in contrast,
for blue-shifted, fast growing populations, the opposite is generally true. Each
individual line is labelled by the fixed r value used for all points on the line; line
colour corresponds to the value of ρ used.
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Figure E.9: The relationship between noise and population spectral colour and
extinction risk in the stochastic formulation of the Maynard Smith model of
Figure E.3 (with b = 3). The same procedure used to obtain Figure 5 in the main
text was followed (Methods and Section E.4), but with 1 < r < 30. In this case, any
population falling below 0.05K was considered to have gone extinct. The results
are similar to those of Figure 5 in the main text. The reddening of environmental
noise increases extinction risk for red-shifted, slow-growing populations; in contrast,
for blue-shifted, fast growing populations, the opposite is true. Each individual line
is labelled by the fixed r value used for all points on the line; line colour corresponds
to the value of ρ used.
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