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ABSTRACT 

 

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease caused by loss of 

motor neurons in the spinal cord, brain stem and cerebral cortex. ALS is characterized by 

both upper and lower motor neuron symptoms and death usually occurs 3-5 years after 

onset. Familial histories are found in 5-10% of ALS cases while the rest are sporadic. This 

study is focused on analysing known and novel candidate genes in ALS and the aims of 

study are to characterize causal genes and risk factors for Familial ALS (FALS) and 

Sporadic ALS (SALS) in the Imperial Cohorts, in which genetic causes have been 

assigned for 64% of FALS cases. Three strategies were pursued and genes involved in 

proteostasis pathways were emphasized in this study.  

 

Firstly, we sequenced known candidate genes in our FALS cases excluded for known 

mutations. VCP and SQSTM1 genes were sequenced. We did not identify any coding 

changes in VCP but report a 5’ hexanucleotide expansion exclusively found in ALS. 

Known and novel SQSTM1 mutations, P392L and E155K, were identified in FALS kindred 

presenting with a history of Paget’s disease of bone.  

 

Secondly, we carried out association studies for two candidate genes on Chromosome 17, 

P4HB and NPLOC4, and showed that they were risk factors for FALS and SALS 

respectively. The association of P4HB SNPs with FALS survival time indicates that it is a 

modifier gene.  

 

Thirdly, to explore novel genes in ALS, we investigated Variable number tandem repeats 

(VNTR) from top candidate genes selected based on association signals from previous 

Genome wide association (GWA) studies and protein functions. VNTRs in NIPA1 and 

HSPB8 gene were associated with FALS and SALS respectively. Finally, we 

characterized the size of the reported hexanucleotide GGGGCC expansion in the C9orf72 

gene using Southern blot analysis in our FALS cohort and interim results are presented. 
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Chapter 1 

 
Introduction to ALS 

 

 

Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease caused by 

progressive loss of motor neurons in the spinal cord, brain stem and cerebral cortex. This 

results in characteristic phenotypes comprising both upper motor neuron (UMN) and lower 

motor neuron (LMN) symptoms. UMN symptoms include spasticity and pathological 

reflexes, whereas LMN symptoms include muscle atrophy and paralysis. Sensory 

functions are preserved in ALS. Treatments for the disease are currently limited and death 

usually occurs within 3-5 years as a result of respiratory failure.  

 

The disease has incidence and prevalence of 1.89/100,000 per year and 5.2/ 100,000 

respectively in western countries, with a Male to Female ratio of 1.5:1 (Wijesekera 2009).  

The distribution of these parameters seems to be uniform across different countries 

(Worms 2001), except for several endemic areas in the West pacific region, such as Kii 

Peninsula, Islands of Guam and West New Guinea. Increased incidence has also been 

reported in US veterans and Italian soccer players (Mitsumoto 2010). The clustering has 

been attributed to environmental factors. 

 

About 5-10% of ALS cases are familial (FALS) whilst the remaining are Sporadic (SALS). 

In general, there is no clinical distinction between familial and sporadic cases, and the 

current views of disease mechanisms are largely inferred from the discoveries of causal 

genes in ALS families. In recent years, there has been substantial progress in identifying 

ALS mutations, allowing a classification for the disease. This also initiated our attempt to 

allocate genetic causes for each kindred in our FALS cohort. In the meantime, although 

risk factors, such as gender, smoking, and heavy metal exposure, have been recognized, 

there is a need for further investigation of genetic risk factors or modifiers for ALS. In this 

study, we began with the screening and characterization of a group of known genes in our 

cohort, which was followed by association studies using single nucleotide polymorphisms 

(SNP) and screening for VNTR in novel candidate genes. The genes were selected using 
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a candidate-gene-approach, which emphasis on functional evidence obtained from earlier 

research.  

 

In this thesis, I have started by describing the background to ALS from a genetic point of 

view, in which each pathway is illustrated with the corresponding candidate genes. 

General experimental protocols and statistics are described in the Methodology (Chapter 

2). Each of the following Chapters contain the specific background and methodologies 

used for the genes being analyzed, followed by separate discussions. The overall impact 

of this study is discussed in the final Chapter.  

 

 

1.1 Clinical features of ALS: Symptoms begin in various sites and progress 

throughout the body 

The natural history of ALS begins with a pre-clinical phase, which lacks any detectable 

clinical symptoms. In the presence of predisposing factors, subtle pathological changes 

such as size of motor neurons may occur at this stage (Brooks, 1996). In the Clinical 

phase, neurophysiological changes, such as abnormalities in single-fiber density and 

motor unit count, may precede the onset of symptoms, which typically occurs in patients in 

their fifties (Haverkamp et al., 1995). After onset, different groups of muscles may be 

affected depending on the sites of lesions. Asymmetric muscle weakness and atrophy are 

common lower motor neuron symptoms presenting in the early phase of disease. Upper 

motor neuron symptoms, such as muscle stiffness and fasciculation, are due to 

corticospinal involvement and hyperactivity of tendon reflexes may be elicited in physical 

examination. In 75% of patients these symptoms begin at their limbs, i.e. limb onset, 

whereas in 25% symptoms start in the bulbar region, resulting in bulbar palsy. Due to the 

damage of motor components in cranial nerves IX, X and XII, patients with bulbar onset 

may have difficulties in speaking, swallowing and loss of tongue mobility. Pseudobulbar 

symptoms including dysarthria and exaggeration of facial expression may be seen as a 

result of the loss of corticobulbar innervation (Brown, 2001).  

 

As disease progresses, focal symptoms may spread to other parts of body based on a 

topographical pattern, resulting in an asymmetric distribution of weakened muscle groups. 

It has been proposed that initial symptoms may be caused by discrete UMN and LMN 
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lesions which are responsible for the same region, and the lesions subsequently spread 

independently during disease progression, leading to a more complex phenotype (Ravits 

and La Spada, 2009). In general, the progression of symptoms, which are correlated with 

neuronal loss, is fastest among anatomical contiguous areas and it favours a rostral-

caudal direction. For example, in arm-onset patients, LMN symptoms first spread to 

contralateral arm and then ipsilateral foot, whereas UMN symptoms spread to ipsilateral 

foot prior to contralateral arm (Ravits et al., 2007). Arm symptoms occur sooner in bulbar-

onset patients than the occurrence of bulbar symptoms in arm-onset patients (Brooks, 

1991). However, it has also been reported that caudal-rostral spread occurs faster than 

rostral-caudal spread within the spinal column (Brooks, 1996), which is supported by the 

observation that there is a higher percentage of LMN loss in cervical than lumbar anterior 

horn in patients with trunk onset (Ravits et al., 2007). The extent of muscle loss can be 

measured by isometric muscle strength, which deteriorates as a function of time. The 

maximum rate of loss is seen in the early phase of disease and distal muscles are more 

severely affected. Respiratory function is compromised and deteriorates with disease 

progression. Forced vital capacity (FVC), a measurement of pulmonary function, has been 

reported as prognostic factor for ALS, in which patient with baseline FVC<75% have 

shortened survival time (Czaplinski et al., 2006). Complications such as inability to feed, 

aspiration and pneumonia may occur in late stage of disease, and death usually occurs 

due to respiratory failure within 3-5 years of onset. Nevertheless, different rates of 

progression are observed in FALS patients caused by different mutations (Section 1.5). 

Rapid progression is observed in patients with bulbar onset, whereas slow progression 

has been reported in SALS patients <40 years old.  

 

Intellectual reasoning, vision, hearing and sense function are not affected in ALS and 

sexual, bowel and bladder functions are mostly preserved. 

 

 

1.2 The diagnosis of ALS is based on clinical and electrophysiological findings 

In 1998, the World Federation of Neurology proposed a revised version of ALS diagnosis 

criteria, known as revised El Escorial criteria (R-EEC) (Brooks et al., 2000). The criteria, 

which stratify the confidence of diagnosis into four categories, are mainly based on clinical 

grounds and have been the gold standard for diagnosis (Table 1-1). For example, a 
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definite diagnosis requires the presence of upper and lower motor neuron symptoms in 

bulbar and two different spinal regions or greater than three spinal regions. Four 

anatomical regions are appointed for examination. Bulbar region refers to muscles of the 

jaw, face, palate, tongue and laryngeal muscles, whereas spinal region is categorized into 

cervical, thoracic and lumbosacral regions. In ALS, loss of nerve innervation results in 

membrane instability and reinnervation and these can be demonstrated in 

electrophysiological examinations. EMG findings compatible with active and chronic 

denervation, such as positive sharp wave and fibrillation potentials, are required to confirm 

LMN degeneration.  

 

On the other hand, as an effort to increase the sensitivity and facilitate early diagnosis, the 

Awaji criteria (AC) recommend that neurophysiological evidence should be taken as 

equivalent to clinical information when confirming regional involvements. The criteria also 

appreciate the sufficiency of fasciculation potentials, a characteristic electrophysiological 

feature of ALS, in the evaluation of active degeneration, allowing the feasibility of 

diagnosis without the presence of fibrillation potentials and positive sharp waves (de 

Carvalho et al., 2008). It has been reported that the time interval between onset and 

diagnosis using AC is 6.2 month earlier than that using the R-EEC (Okita et al., 2011).  

 

The diagnosis of ALS must be also accompanied by pathological, neuroimaging and other 

laboratory investigations to exclude other conditions that mimic ALS. These include (1) 

other motor neuron diseases of restricted involvement such as progressive muscular 

atrophy (PMA, lower motor neurons only), primary lateral sclerosis (PLS, upper motor 

neurons only) and progressive bulbar palsy (PBP, bulbar symptoms only) (Belsh, 1999; 

Norris et al., 1993). These disorders, however, may eventually progress to ALS when 

LMN or UMN symptoms subsequently develop and they are often considered as the same 

category of disease. Also in this category, flail arm syndrome (Hu et al., 1998) and flail leg 

syndrome are two distinctive phenotypes in which weakness and wasting are confined to 

upper and lower limbs respectively with improved survival compared to classical and 

bulbar onset ALS (Wijesekera et al., 2009). (2) ALS-like symptoms of other causes such 

as benign fasciculation, Parkinson’s disease, Kennedy’s disease, brainstem stroke, 

lumbosacral stenosis, cervical myelopathy, carpal tunnel syndrome, brachial plexopathy, 
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neuropathy, adult-onset spinal muscular atrophy (SMA) and heavy metal intoxication 

should be excluded before diagnosis (Belsh, 1999; Mitsumoto, 1997).  

 

Noteworthy, the term ALS variant describes the situation where certain clinical, genetic or 

epidemiological features develop in parallel with ALS. Familial ALS is most commonly 

classified based on the mutations that segregate within affected families or locus linked to 

the phenotype. Although phenotypic heterogeneity has been well recognized in patients 

with different point mutations in SOD1 gene, the most common causal gene caused by 

point mutations, patients with SOD1 mutations are collectively referred as ALS-1. At least 

18 FALS subtypes have been reported according to the genetic classification to date 

(Section 1.5). Types of ALS can also be distinguished by the presence of other coexisting 

conditions that extend beyond the pyramidal tract, such as Parkinsonism and 

Frontotemporal dementia (FTD) (Section 1.16), or geographic clustering (Hudson, 1981). 

There is a high prevalence of Parkinsonism-Dementia variant of ALS (ALS-PDC) in the 

indigenous Chamorro population from the island of Guam, where clusters of ALS cases 

have been reported (Sundar et al., 2007). 

 

Muscle strength and Forced vital capacity (FVC) are two important factors predicting the 

survival in ALS (Voustianiouk et al., 2008). The Revised Amyotrophic Lateral Sclerosis 

Functional Rating Scale (ALSFRS-R) is a questionnaire- based scoring system for 

monitoring the course of ALS (Cedarbaum et al., 1999), whereas the Appel ALS Score 

(AALS) is an examination based counterpart. Both scales correlate with disease 

progression and survival and ALSFRS-R, which involves assessment of gross motor 

tasks, fine motor tasks, bulbar functions and respiratory functions, is also correlated with 

quality of life and FVC.  
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Table 1-1. The revised El- Escorial Criteria. 

Requirement of Diagnosis 

 

Presence of  

1 Evidence of LMN Degeneration by Clinical, electrophysiological or 

neuropathology exam. 

2 Evidence of UMN degeneration by clinical exam 

3 Progressive spread of signs within a region or to other regions, with the 

Absence of  

a. Electrophysiological evidence of other disease process that might explain 

the signs of LMN or UMN degenerations, and 

b. Neuroimaging evidence of other disease process that might explain the 

observed clinical and electrophysiological signs. 

 

Categories of Diagnosis 

 

1 Clinically Definite ALS: UMN+ LMN signs together in bulbar and ≥ 2 spinal 

regions; or UMN+ LMN signs together in ≥ 3 spinal regions. 

2 Clinically Probable ALS: UMN+ LMN signs together in ≥ 2 regions with UMN 

rostral to LMN signs. 

3 Clinically Probable ALS- Laboratory supported: UMN+ LMN signs together in 1 

region; or UMN in 1 region + LMN defined by EMG in ≥ 2 regions. 

4 Clinically Possible ALS: UMN+ LMN signs together in 1 region, or UMN sign 

alone in ≥ 2 regions, or LMN signs are rostral to UMN signs. 

 

Electrophysiological Features 

           

 Electrophysiological studies should be performed to: 

1 Confirm LMN dysfunction in clinically affected regions.  

2 Detect electrophysiological evidence of LMN dysfunction in clinically 

uninvolved regions 

3 Exclude other pathophysiological processes. 

Criteria: 

1 The diagnosis requires the combination of features of: 

a. Active denervation: Fibrillation potentials (FP), Positive sharp waves 

(Psw). 

b. Chronic denervation: Large MUAPs, reduced interference pattern with 

firing rates higher than 10Hz, unstable motor unit potentials. 

2 Fasciculation potentials are characteristic clinical feature of ALS. 

3 These signs should be found in at least 2 regions of:  brain stem, thoracic 

spinal cord, cervical and lumbosacral spinal cords.  

4 Nerve conduction studies are required for diagnosis and to exclude other 

disorders.  
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Other Supporting Features 

 

1. Absence of neuroimaging features supporting other diagnosis. 

2. Laboratory features excluding other conditions or those found in ALS-related 

conditions: 

- Monoclonal gammopathy: elevation in monoclonal anti-neural antigen 

antibody. 

- Dysimmune motor system degeneration: elevation in polyclonal anti-

neural antigen antibody 

- Nonmalignant endocrine abnormalities: elevation in parathyroid 

hormone, thyroid hormone and other endocrine abnormalities 

- Lymphoma: abnormalities consistent with lymphoma 

- Infection: HIV-1, HTLV-1, encephalitis lethargica, VZV etc. 

- Acquired enzyme defects: detoxification enzymes etc. 

- Exogenous toxins: evidence of intoxication 

- Physical injury: antecedent electrical or radiation injury or severe 

trauma. 

- Vasculitis: elevated ESR and CSF abnormalities consistent with spinal 

vasculitis or ischemic injury. 

- Spondylotic myelopathy: spinal compression. 

3. Pathological evidences from muscle biopsy: disseminated single angulated 

muscle fibers. 

4. Postmortem spinal cord biopsies. 

 

The above Criteria are summarized according to Brooks et al (2000). 
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1.3 Current treatments for ALS are limited 

Treatments for ALS are currently limited. The only available prescription for ALS, Riluzole, 

a presynaptic modulator of glutamate transmission, was shown to protect neurons against 

excitotoxicity and prolong survival time of patients by 3- 5 months (Wokke, 1996). The β-

lactam antibiotic ceftriaxone is another potential anti-glutamate drug that decreases 

synaptic glutamate level by facilitating astrocyte glutamate uptake through the EAAT2 

transporter and showed neuroprotective effects (Rothstein et al., 2005). Compounds or 

substances with beneficial effects in Protein folding (Arimoclomol), Autophagy (Lithium), 

Muscle function (Myostatin Inhibitor), Neurotrophins (VEGF, IGF-1) and Stem cell therapy 

are potential alternatives for ALS [Reviewed by (Zinman and Cudkowicz, 2011)]. 

 

 

1.4 Pathological findings in ALS 

The pathological features of ALS have been well characterized. There is loss of motor 

neurons in both spinal cord (Lower motor neurons in the ventral horn) and the cerebral 

cortex (Betz’s cells), gliosis, and the presence of Neuronal cytoplasmic inclusions (NCIs) 

in lower motor neurons (Brownell et al., 1970). Different types of inclusions exist, including 

Bunina bodies, Ubiquitinated inclusions (UBIs) and Hyaline conglomerate inclusions 

(HCIs) (Wijesekera and Leigh, 2009).  

 

Bunina bodies, which can be visualized in HE staining, are small, eosinophilic and round 

inclusions seen in the cytoplasm and dendrites (Okamoto et al., 2008). Generally immuno-

negative for ubiquitin, Bunina bodies are found in 70% of SALS and are considered as a 

marker for the disease. Cystatin C and Transferrin have been reported as being 

components of Bunina bodies. However, the most common inclusions, which were found 

in 90-100% of SALS cases, are the UBIs. UBIs are immune-positive for ubiquitin and can 

be morphologically classified into Skeine-like (filamentous) inclusions and Lewy-body like 

(Round shape) inclusions. TDP-43 is the major component of UBIs, which are often also 

positive for p62 and are found in SALS and FALS cases that are unrelated to SOD1 

mutations (Neumann et al., 2006; Tan et al., 2007). On the other hand, HCIs are 

inclusions with glassy appearance under HE staining. These inclusions are mainly 

composed of accumulated intermediate filament (IF) proteins, i.e. hyperphosphorylated IF 
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subunits and peripherins, and have been found in other neurodegenerative conditions. 

They are therefore not a specific marker for ALS (Wood et al., 2003).  

 

FALS associated with SOD1 mutations encompass a different histo-pathologic entity. In 

contrast to the classic form of ALS, in which degeneration is restricted to the motor 

neurons, SOD1 FALS generally demonstrate multisystem degeneration, in which regions 

such as posterior thoracic nucleus and spinocerebellar tract are also involved (Tagawa et 

al., 2007). In addition, SOD1 FALS is pathologically characterised by the presence of 

Lewy body like Hyaline inclusions (LBHIs). These inclusions are positive for ubiquitin and 

SOD1, but not TDP-43 (Mackenzie et al., 2007). Not surprisingly, these SOD1 positive 

inclusions are rare in SALS and SOD1 unrelated FALS, and have been considered as the 

distinction between SOD1- positive and negative cases. Notably, the pathological features 

of SOD1- negative FALS are indistinguishable from SALS, suggesting a common 

pathological mechanism of FALS and SALS (Tagawa et al., 2007; Tan et al., 2007). 

 

 

1.5 Genetic studies have led to the understanding of underlying pathogenesis of 

ALS 

Genetic studies are important for understanding ALS as they ① have direct impacts on 

clinical diagnosis and subclassification of disease; ② may reveal general pathogenic 

mechanisms, risk factors, and possibly therapeutic targets; ③ lead to the development of 

models that can be used for further investigation; and ④ understanding of gene and 

protein functions (Hardy and Orr, 2006).  

 

As mentioned above, patterns of inheritance are found in 5-10% of ALS patients (FALS), 

and the clinical appearances FALS are similar to the majority of Sporadic cases (SALS). It 

is therefore important to investigate the genetic causes of FALS, which provide invaluable 

information about the general mechanisms (Pasinelli and Brown, 2006). Localization of 

disease loci was made possible by linkage studies. In brief, because the possibility of 

recombination between two loci decreases with the proximity between them, adjacent 

genes are more likely to segregate together during meiosis. Using suitable pedigrees, the 

linkage distance, measured by a LOD score, which is the logarithm of the odds of the 
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likelihood that two loci are linked against the likelihood that the loci are unlinked, between 

markers and the disease locus can be calculated. 

 

By performing linkage studies in 23 multi-generation autosomal dominant FALS families, 

Siddiuqe et al (1991) linked the disease locus to markers representing an approximately 

10cM region (~10 Mb) in chromosome 21. Dinucleotide repeats linked to the SOD1 gene 

were subsequently shown to exhibit a high linkage signal with these markers (Rosen et al., 

1992). Sequencing of the gene revealed 11 SOD1 mutations in 13 FALS families (Rosen 

et al., 1993). SOD1 mutations were subsequently found to account for 20% of FALS 

cases and more than 160 different mutations throughout gene have been reported. Most 

of the common mutations, such as A4V, I113T and L144F, caused autosomal dominant 

inheritance but recessive forms, such as D90A (Al-Chalabi et al., 1998) and N86S, were 

occasionally seen (Figure 1-1D). The mean survival time of SOD1-FALS is 4.6 years 

(Orrell et al., 1999) and clinical features may vary. Rapid progression is seen in A4V, 

L84V mutation carriers whereas slow progression has been reported in H46R carriers. 

Incomplete penetrance was obvious for some mutations which were found in obligate 

carriers and SALS (de Belleroche et al., 1995). The discovery of SOD1 mutations was 

considered as a milestone and the hypotheses proposed to explain the effect SOD1 

mutations also recapitulated the general features of ALS, including elevated oxidative 

stress, protein aggregation, mitochondrial dysfunction, cytoskeleton abnormality and 

excitotoxicity (Bendotti and Carrì, 2004). 

 

In addition to SOD1, mutations in more than 18 genes have been identified in different 

FALS pedigrees using linkage studies (Until DEC 2013) (Table 1-2). Currently, it seems to 

be unfeasible to predict clinical phenotypes based on the functions of candidate genes 

alone, as variants at different position may cause different consequences on protein 

structure and activities. However, there are instances where characteristic phenotypes are 

associated with mutations in certain genes. Juvenile onset cases have been reported in 

carriers of Alsin (ALS2, Section 1.17.1), Senataxin (SETX, Section 1.17.3), Spatacsin 

(SPG11, Section, 1.17.4) and Sigma-1 Receptor (SIGMAR1, Section 1.17.11) mutations, 

whereas VAMP associated membrane protein B (VAPB, Section 1.8) and Dynactin 

(DCTN, Section 1.10) mutations may cause adult-onset, slow progressive ALS. These 

known causal genes provide important clues about disease mechanisms and can be 
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generally categorized into four groups according to their functions: ① Redox reactions, ② 

Membrane trafficking, ③ mRNA processing and ④ Protein synthesis and degradation. 

Noteworthy, the fact that mutations in several recently found genes, such as TARDBP, 

VCP and C9orf72, are present in both FALS and Familial FTD supports the hypothesis 

that these conditions are extremities of the same spectrum of disorders caused by 

common mechanisms (Section 1.16).  

 

The genetics of the majority of cases, SALS, is still unclear. Although mutations in FALS-

genes have been identified in SALS cases, they were not verified by linkage signals or 

segregation analysis. SALS is often considered as a complex disease and genetic risk 

factors are located through association studies. Using a candidate gene approach, which 

determinates genetic risk on a trait based on a prior hypothesis that the genes might play 

roles in the aetiology of disease (Tabor, 2002), association signals defined by Single 

nucleotide polymorphisms (SNPs), Variable number tandem repeats (VNTRs) or 

haplotypes have been reported in APEX1, ATXN2, HFE, NEFH, SMN1, SMN2, PON1, 

PON2, PON3 and VEGF genes. This approach has also applied to the identification of 

genetic modifiers in familial cases. Genome-wide association studies (GWAS), in contrast, 

analyse hundreds of thousands of SNPs throughout the genome regardless of their 

functional properties. GWA studies have led to the identification of a number of risk factors 

in ALS which will be further discussed in Chapter 5. The association signals represent the 

susceptibility of disease conferred by the corresponding genes, which may have a partial 

contribution to the pathological mechanisms. In some cases, some of these association 

signals have led to the discovery of confirmed causal mutations. 
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Table 1-2. Mendelian genes in ALS.  

Subtypes Genes Inheritance Functions Pathology Remarks 

ALS      

ALS1 
SOD1 

(21q)
 6
 

AD 

-Reduce oxidative stress 

by facilitating  

disulphide bond 

exchange.  

-HCI which contains SOD1 

aggregations 
2, 3 

.  

-Most common mutation. ~20% of FALS.  

-Generally Typical ALS. Some mutations are 

associated with rapid progression or bulbar 

onset.  

ALS2 
ALSIN 

(2q33) 
AR 

-GTPase regulator
1
 ; 

-Related to Vesicle 

transport & Trafficking. 

-Mild reduction of axons. 
-Juvenile ALS (Onset <10 years old). 

Slow progression. 

ALS3 
18q21 

(18q21) 
AD -Unknown. -Unknown. 

-French family (20 affected ). -Typical ALS, 

Leg Onset at 45, duration 5 years
4
. 

ALS4 

SETX 

(9q34,  

Senataxin) 

AD -RNA processing. -Unknown 
-Juvenile ALS (Onset <25 years), initially 

affect distal Limbs, slow progression
5
. 

ALS5 

SPG11 

(15q21,  

Spatacsin) 

AR 
-Gene expression  

-Protein trafficking.  

-Betz cell loss.  

-Neuronal loss and strocytosis 

in IX and XII nuclei. Anterior 

horn atrophy.  

-No bunina bodies/ skein like 

inclusions. 

-Juvenile ALS (mean onset= 16 years), long 

term survival.  

-Variety of symptoms, principally distal 

weakness, Hoffmann always +ve. No 

sensory  or cognitive impairment 
7
. 
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Subtypes Genes Inheritance Functions Pathology Remarks 

ALS6 
FUS 

(16p11) 
AD/ AR 

-TDP-43 homolog.  

-Regulation of transcription,  

-RNA Splicing.  

-Severe LMN loss in spinal 

cord.  

-FUS protein is mis- localized 

and form inclusions
8
.  

-No skein like inclu- sions 

were observed.  

-~4% FALS. Typical ALS. Slightly rariler 

onset (44.5), normal progression (33m). No 

cognitive impairments
8
.  

-Also found in two Juvenile sporadic cases, 

one with mental retardation. 

-FTD is also described in 3 families
10

. 

ALS7 
? 

(20p13) 
9
 

AD -Unknown -Unknown -Onset at 57 years old. Survival 3 years. 

ALS8 
VAPB 

(20q13) 
AD 

-Formation of presynaptic 

vesicles. 

-Vesicle trafficking. 

-Unfolded protein 

response. 

-Transgenic mices expressing 

mutant VAPB have +ve TDP-

43 aggregates
13

. 

-Brazilian Family. Onset between 25 to 55 

years old 
11

. Also in one English FALS case 
12

.  

-Phenotypic heterogeneity: late onset SMA, 

atypical ALS, typical ALS. 

ALS9 

ANG 

(14q11, 

Angiogenin) 

AD/ 

Sporadic 

-Ribosomes synthesis and 

protein translation. 
-Unknown 

-Onset under 50 years old. Survival from 6m 

to 5years. Typical ALS with incomplete 

penetrance. One patient demonstrated 

Parkinsonism and FTD symptoms 
14,15

. 

ALS10 

TARDBP 

(1p36, 

TDP-43) 

AD/ AR/ 

Sporadic 

-mRNA maturation. 

-Neurotoxicity. 
-TDP-43 inclusions

17
.  

-Mean onset at 47, survive for 5.5 years
16

. 

Typical ALS. Most with slow progression.  

ALS11 
FIG4 

(6q21) 

AD/ 

Sporadic 

-Endosomal membrane 

fusion and Autophagy
19

. 
-Unknown 

-Also found in CMT4J. Mean onset 56 years 

old. Either ALS or PLS. Mean 9 years 

duration
18

.  
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Subtypes Genes Inheritance Functions Pathology Remarks 

ALS12 
OPTN 

(10p15) 
AD/ AR 

-Regulates NF-κB 

activation by TNF-α. 

-OPTN +ve, cytoplasmic 

inclusions. 

-Also in POAG. Onset at 30-60 years old. 

Slow progression
20

.  

ALS13 

ATXN2 

(CAG repeat 

with CAA 

interruptions
22

) 

AD 
-modifier of TDP-43 

toxicity.  

-Abnormal localization of 

ATXN2 in ALS. 

-~4.7% (24-34 repeats) of ALS
21

. Earlier age 

of onset in repeat +ve patients.  

ALS14 
VCP 

(9p13) 
AD -ERAD, Autophagy. 

-TDP-43 aggregates and 

Bunina bodies. 

-Found in IBMPFD and ~1% ALS. +ve 

Family history for FTD, Age of onset 37-53, 

survival 29m- 12 years 
23

.   

ALS15 
UBQLN2 

(Xp11) 
XD 

-Ubiquitin ligation in 

Proteasome degradation 

pathway.  

 

-Skeine like inclusions, which 

contain ubiquilin 2.  

-5 Families, 90% penetrance at 70 yro. Adult 

onset, survival 2-7 years. Dementia was 

prominent in several cases 
24

.  

ALS16 
SIGMAR1 

(9p13) 
AR 

-ER Chaperone, Ion 

channel modulation. 

-Abnormal subcellular 

distribution. 

-Saudi Arabian consanguious family of 

Juvenile ALS
25

. Lower limb spasicity at 

onset (1-2 year old), slow progression. 

Normal Cognitive functions.  

ALS18 
PFN1 

(17p13.2) 
AD 

-Converts G-actin to 

filamentous  F-actin. 

-Mutant PFN1 may form 

aggregates. 

-Typical ALS, Mean age of onset in FALS 

44.8 years 
26

. 

-PFN1 is associated with Miller Dieker 

Syndrome. 

ALS-FTD      
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Subtypes Genes Inheritance Functions Pathology Remarks 

ALS-FTD1 
? 

(9q21-22) 

AD/ 

Sporadic 
- Unknown. - Unknown. 

-ALS and FTD. Mean onset 54 years old, 

mean survival 3.8 years. Develop together
27

. 

ALS-FTD2 
C9orf72 

(9p21) 

AD/ 

Sporadic 

 

-Unknown. -Various TDP-43 pathology 

-Due to intronic GGGGCC expansion. Most 

common mutation in FALS and FALS/FTD
33

.  

-Associated with a founder haplotype. 

ALS-FTD3 

(ALS17) 

CHMP2B 

(3p11) 
Sporadic 

-Endosomal pathway for 

the degradation of 

transmembrane proteins. 

-p62 +ve, Ub +ve inclusions. 

-ALS and FTD. Onset at 6
th
 to 8

th
 decade. 

Account for ~1% of ALS. With bulbar 

dysfunction 
28

. 

OTHERS      

 
DAO 

(12q24.11) 
AD 

-D-serine metabolism and 

Excitotoxicity. 

-Reduced DAO activity in 

spinal cords of obligate 

carrier. 

-Rapid progression with mean age of death 

of 44 years 
29

. 

 
DCTN1 

(2p13.1) 
AR -Axonal transport. 

-Binding to microtubule was 

decreased in mutant protein . 
-Early onset, slow progressive ALS 

30
. 

 
NEFH 

(22q12) 

AD/ 

Sporadic 

-Neurofilament heavy 

chain. 
-Not available. -Variable clinical manifestations 

31
. 

 
SPG11 

(15q21.1) 
AR 

-Axonal transport and 

vesicle trafficking.  
-Anterior horn cell loss. 

-ARJALS (Type1). Mean onset 16 years, 

slow progressive.  Also found in ARHSP-

TCC 
32

.  

 
PRPH 

(12q12) 
Sporadic 

-Type III intermediate 

filament. 
-Cytoplasmic inclusions. -Typical ALS. 
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The table summarizes the key features of ALS subtypes and the corresponding causing genes. ALS-related genes that have not been allocated to 

any subtypes are shown in OTHERS. AD: Autosomal Dominant; AR: Autosomal Recessive; ARJALS: Autosomal Recessive Juvenile Onset ALS. 

Information in this table was obtained from Washington University Neuromuscular Disease Center 

(http://neuromuscular.wustl.edu/synmot.html#Hereditaryals) and the following References: 

 

1 (Kanekura, 2006)   

2 (Orrell et al., 1995)   

3 (Hays et al., 2006)   

4 (Hand et al., 2002)   

5 (Chen et al., 2004)  

6 (Rosen et al., 1993)   

7 (Orlacchio et al., 2010)   

8 (Vance et al., 2009)   

9 (Sapp et al., 2003)   

10 (Yan et al., 2010)  

11 (Nishimura et al.,      

2004a)  

12 (Chen et al., 2010)  

13 (Tudor, 2010)  

14 (van Es et al., 2009a)  

15 (Greenway et al., 

2006)  

16 (Sreedharan et al., 

2008)  

17 (Kabashi et al., 2008)  

18 (Chow et al., 2009)  

19 (Ferguson et al., 2009)  

20 (Maruyama et al., 

2010)  

21 (Elden et al., 2010)  

22 (Yu et al., 2011)   

23 (Johnson et al., 2010)  

24 (Deng et al., 2011)  

25 (Al-Saif et al., 2011)  

26 (Wu et al., 2012)  

27 (Hosler et al., 2000)   

28 (Cox et al., 2010)  

29 (Mitchell et al., 2010)  

30 (Puls et al., 2003)  

31 (Figlewicz et al., 1994)  

32 (Hentati et al., 1998). 

33 (Renton, 2011). 
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1.6 Mutant SOD1 causes oxidative stress, a common feature in ALS 

Superoxide dismutase is a ubiquitously expressed protein that has a protective function 

against oxidative stress by clearing free radicals generated in normal cell processes. The 

enzyme is a homodimer (Figure 1-1B), and each monomer binds Zn and Cu ions, the 

latter being an active site for thescavenging activity in which hydroxyl and superoxide ions 

are catalysed to form hydrogen peroxide and oxygen (Figure 1-1A).  

 

The structure of the SOD1 protein has been well characterized. Each monomer consists 

of an eight-stranded beta barrel, a metal binding loop (residue 49-84) and an electrostatic 

loop (residue 122-143). These strands are arranged in antiparallel beta-sheet structure, 

forming a “Greek-key” motif (Tainer et al., 1982) (Figure 1-1C). The catalytic copper ion is 

held by His46, His48, His63 and His120, whereas the Zinc ion, which is important for 

structural stability, is held by His63, His71, His80 and Asp83 (Rakhit and Chakrabartty, 

2006). The dimer is held together by a hydrophobic interface, which is normally buried 

inside the molecule, and each monomer is stabilized by intramolecular disulphide bonds, 

which will be further discussed in Chapter 5 and 8.  

 

More than 160 SOD1 mutations have been reported in ALS to date 

(http://alsod.iop.kcl.ac.uk). These mutations distribute throughout the gene but are more 

frequent in exon 4 and 5 (Figure 1-1D). Their effects on protein structure vary depending 

on the location. For example, A4V, the most common mutation, abolishes the hydrophobic 

interface (Cardoso et al., 2002), whereas the H43R mutation disrupts hydrophobic 

packing at one end of the beta-barrel (DiDonato et al., 2003). Rather than isolated effects 

on enzyme activities, the hazardous consequences of SOD1 mutations are attributed to 

destabilizing effects on protein structure which may initiate subsequent pathological 

processes. It has been concluded that mutant SOD1 toxicity can be mediated through two 

major gain-of-function mechanisms – oxidative stress and protein aggregation (Bendotti 

and Carrì, 2004). 

 

http://alsod.iop.kcl.ac.uk/
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Figure 1-1. SOD1 functions, structures and mutations found in ALS. 

 

 

A. In the catalytic cycle of SOD1, superoxide ions originating from various sources are 

catalyzed to form oxygen and hydrogen peroxide through a “Ping-Pong mechanism” in the 

Cupper-containing active site of SOD1 protein (Rakhit and Chakrabartty, 2006). B. SOD1 

protein exists as a homo-dimer (Bosco et al., 2010). C. Within each monomer there are 8 

antiparallel beta sheets, arranged in a 3-dimentional barrel shape (Khare et al., 2005), a 

metal binding loop (M), and an electrostatic loop (E). D shows SOD1 mutations identified 

in ALS as summarized by (Bendotti and Carrì, 2004).  
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Mutant SOD1 is a source of oxidative stress as a result of altered enzymatic activity. The 

mutant protein accepts nonconventional substrates such as hydrogen peroxide (H2O2) 

and peroxynitrite (ONOO-) and catalyzes the formation of hydroxyradicals (OH.) and the 

nitration of tyrosine residues of SOD1 itself in the presence of the substrates, respectively. 

In addition, mutant SOD1 proteins lacking the zinc ion may, in a reverse direction, 

catalyze the formation of superoxide anion (O2
.-) from oxygen molecules (Pasinelli and 

Brown, 2006). A possible explanation for these aberrant activities was that the mutations 

mediate conformational changes allowing more access of nonconventional substrates to 

the Cu ion, the active site for catalyzation (Beckman et al., 1993).  

 

Although it appears that the reactive oxygen species (ROS) and reactive nitrogen species 

(RNS) generated from the aberrant chemistry are not prerequisite for the development of 

ALS (Luty et al., 2010), there were several evidence supporting the involvement of 

oxidative stress in the disease. It has been shown that the concentrations of oxidized nitric 

oxide products are increased in Cerebrospinal fluid (CSF) of SALS patients (Zou et al., 

2013), and ROS levels are elevated in the CSF of G93A transgenic mice in vivo 

(DeJesus-Hernandez et al., 2011a). The hazardous consequences caused by free 

radicals have been validated by findings of elevated markers of oxidative damage to 

protein (Muller et al., 1999), lipid (Shibata et al., 2001) and DNA (Zhang et al., 2007a) in 

postmortem tissues of SALS. Furthermore, the exposure of cultured neurons to ROS 

causes toxicity and reduced viability (Weihl et al., 2008). 4-hydroxynoneal (HNE), a toxic 

product resulting from lipid peroxidation, has been reported to have an elevated 

conjugation rate with other proteins in the spinal cord of ALS patients, possibly by 

compromising the functions of the conjugated proteins (Mizuno et al., 2003).  

 

In addition, oxidative stress has been shown to interact with other pathogenic 

mechanisms in ALS. Firstly, ROS/ RNS exacerbate excitotoxicity by inhibiting glutamate 

transporters. This results in the accumulation of synaptic glutamate, which activates 

glutamate receptors, and allows the influx of Calcium ions and causing neurotoxicity 

(Barber and Shaw, 2010). Secondly, prolonged oxidative stress may cause mitochondrial 

damages (Barber and Shaw, 2010). Mitochondrial dysfunction (Section 1.9) is one of the 

pathogenic mechanisms in ALS, in which morphological changes of mitochondria and 

dysfunctions of the respiratory chain have been reported. In addition, mutation rate of 
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mitochondrial DNA was found to be elevated in the brain of SALS patients (Dhaliwal and 

Grewal, 2000). In SOD-FALS, direct damage to the mitochondria may be caused by the 

ROS generated by the mutant SOD1 proteins that are localized to the mitochondrial 

intermembraneous space (Blauw et al., 2012). Thirdly, oxidative stress can be incurred 

during oxidative folding, when disulphide bonds are introduced between cysteine residues. 

The formation of inappropriate disulphide bonds has been implicated in ALS and will be 

discussed further in Chapter 5.  

 

 

1.7 Mutant SOD1 proteins are prone to aggregate 

An alternative pathogenic hypothesis was that the harmful effects of mutant are due to 

formation of SOD1 aggregates and this is potentially intriguing. Mutant SOD1 can 

aggregate to form amyloid like fibrils through interaction between the loops and beta-

barrels. High molecular weight, detergent insoluble SOD1 aggregates have been detected 

in inclusions in neurons and astroglia from SOD1- FALS patients and transgenic mice 

(Johnston et al., 2000). The aggregates are formed before the onset of symptoms and 

their levels are correlated with stages of disease. The aggregates may contribute to 

disease by affecting axonal transport, proteasomal degradation and the sequestering 

properties of molecular chaperones (Elam et al., 2003).  

 

It has been shown that SOD1 mutations not only impair metal binding ability, but also give 

rise to a non-native protein- protein interaction interface that promotes aggregation (Elam 

et al., 2003). Indeed, SOD1 proteins lacking metal binding (Apo-SOD1), are unstable and 

can form fibrillar structures under destabilizing conditions. The aggregates, however, 

mainly comprise WT, full length SOD1 protein and it was therefore deduced that the 

aggregation takes place in a two-step process. In the nucleation process, a nucleus 

composed of abnormal SOD1 is formed and this is initiated by the cross-linking of 

disulphide-reduced apo-SOD1 through intermolecular disulphide bonds. The nucleus then 

recruits WT-SOD1 for an elongation process in which partially metallized SOD1 are 

mainly involved (Chattopadhyay et al., 2008). Indeed, oxidation of wild type SOD1 results 

in conformational changes that are similar to that caused by SOD1 mutations, suggesting 

that SOD1 may also play a role in ALS without SOD1 mutations (Bosco et al., 2010). 
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1.8 ER Stress, Unfolded Protein Response (UPR) and VAPB Mutations (ALS8) 

In addition to the cytoplasm, mutant SOD1 proteins are also localized to different 

organelles including the endoplasmic reticulum (ER), where proteins targeting the 

secretory pathway are folded (Urushitani et al., 2008). These proteins are translocated to 

the ER and assembled into functional structures under an oxidative environment, and 

those that fail to fold properly are degraded through the ubiquitin-proteasome system 

(UPS) or autophagy (Malhotra and Kaufman, 2007). As a mean of protein quality control, 

accumulation of unfolded proteins in ER activates the Unfolded protein response (UPR), 

which mediates a decrease in global transcription rates, up-regulation of ER chaperones 

and apoptosis (Ron and Walter, 2007). As summarized in Figure 1-2, this is 

accomplished by the detection of ER stress by the molecular chaperone BiP/Grp78 and 

the transduction of signals through the IRE1, ATF6 and PERK pathways. 

 

Importantly, prolonged ER stress may induce apoptosis via pathways coupled to the UPR 

[reviewed by (Kadowaki et al., 2004)]. First, the transcription factor CHOP can be 

activated through the PERK pathway, represses the expression of BCL-2 and promotes 

apoptosis. Second, ER stress also promotes the efflux of Ca2+ to the cytoplasm mediated 

by the BCL-2 family members, Bax and Bak, which are located on the ER membrane. 

Increased cytoplasmic Ca2+ activates Calpain, which in turn activates Caspase 4 

(Caspase 12 in rodents), and causes cell death (Orrenius et al., 2003). Third, Caspase-12 

can be activated as a result of the interaction between activated IRE1 and TNF receptor 

associated factor 2 (TRAF2). IRE1-TRAF2 also activates the ASK1-JNK pathway and 

lead to apoptosis (Kadowaki et al., 2004).  

 

The involvement of ER stress in ALS is supported by evidence that the UPR markers 

IRE1, PERK and ATF6 are overexpressed in the spinal cord of SALS (Atkin et al., 2008). 

Expression of another marker, BiP/Grp78, is increased in cultured cells and transgenic 

mice models prior to the onset of symptoms (Tobisawa et al., 2003). It has been 

demonstrated that Caspase-12 is activated in mutant SOD1 transgenic mice (Wootz et al., 

2004), and CHOP is up-regulated in both transgenic mice and SALS patients (Ito et al., 

2009), suggesting the involvement of UPR-coupled apoptosis. Indeed, instead of merely 

being a source of stress, mutant SOD1 also represses the clearance of misfolded proteins 

by interacting with essential components, such as Derlin 1, in the retrotranslocation 
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machinery in Endoplasmic reticulum associated protein degradation (ERAD) (Nishitoh et 

al., 2008).  

 

An ALS candidate gene related to ER stress is Vesicle-associated membrane protein-

associated protein B (VAPB). VAPB mutations were first identified in a multigeneration 

Brazilian FALS pedigree linked to chromosome 20q13 (Nishimura et al., 2004b). The 

phenotypes of VAPB mutation carriers varied and were classified into three categories: ① 

late-onset Spinal muscular atrophy (SMA); ② atypical ALS; and ③ typical ALS (Nishimura 

et al., 2004a). Both typical (survival <5 years) and Slow progressive cases (up to 18years) 

have been observed (Landers et al., 2008). VAPB, an ER protein, is a member of the VAP 

family interacting with Vesicle-associated membrane protein (VAMP) during exocytosis of 

neurotransmitters. VAPB also plays a regulatory role in the UPR by activating the IRE1 

pathway and both P56S and T46I mutations impair this property. In addition, mutant 

VAPB also inhibits the function of wild type VAPB, which dimerizes with the mutant form 

and becomes inactivated (Chen et al., 2010; Kanekura, 2006). Therefore, a proposed 

pathogenic mechanism for VAPB was that the cellular functions necessary for 

counteracting the build-up of protein aggregates are abolished by the mutations. 
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Figure 1-2. Signal transduction in Unfolded protein response (UPR). 

 

As reviewed by Malhotra et al (2007), the signal transduction of UPR relies on 

transmembrane receptors Inositol requiring kinase 1 (IRE1), Protein kinase like ER kinase 

(PERK) and bZiP-containing activating transcription factor 6 (ATF6). Without ER stress, 

activation of these receptors is inhibited by the binding of the molecular chaperone BiP, 

which has affinity for hydrophobic residues. Upon the accumulation of misfolded proteins, 

BiP is released and the receptors are activated. ①  Firstly, IRE1 undergoes homo-

dimerization and trans-autophosphorylation, acquiring endoribonuclease activity. 

Acitvated IRE1 cleaves the mRNA of XBPI to form alternatively spliced XBPIs, which act 

as transcription factors binding ERSE elements in UPR target genes such as ERAD 

proteins. ②Similarly, the homo-dimerization and auto-phosphorylation of PERK activates 

its kinase activity, which catalyzes the phosphorylation of eIF2α. This pathway is 

responsible for the reduction in global transcription rate and up-regulation of genes related 

to oxidative stress and apoptosis. ③ Upon release from BiP, the activated ATF6s are 

trafficked to the Glogi complex and cleaved. The cleaved forms become transcription 

factors binding ATF/cAMP and ERSE-1 elements in the UPR target genes such as P4HB 

(PDI), CRT and PDIA4 (ERP72) (Okada et al., 2002).  
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1.9 Mitochondrial dysfunction 

In addition to being an energy-generating organelle, mitochondria also play roles in 

different cellular functions and pathways such as calcium storage, apoptosis, steroid 

synthesis and mitochondrial ROS signaling, and there is accumulating evidence 

suggesting that mitochondrial functions are disrupted in ALS. Morphological abnormalities 

such as vacuole formation and conglomerates of dark mitochondria have been observed 

in proximal axons and cell bodies of motor neurons in ALS postmortem tissues, and 

impaired respiratory chain functions have been demonstrated (Manfredi and Xu, 2005). 

These include dysfunctions in the redox carriers Complex I (NADH:CoQ oxidoreductase) 

and IV (Cytochrome c oxidase, COX), which are located at the inner mitochondrial 

membrane (Vielhaber et al., 2000). Besides, mitochondira is an important source of ROS, 

which may in turn induce mitochondrial DNA mutations (Murphy, 2009). Human 

mitochondrial DNA encodes 37 genes that are crucial for the respiratory functions 

(Swerdlow et al., 1998). Comi et al(1998) identified a 5’ microdeletion that causes 

premature termination of the mitochondrial COX1 gene in a patient with motor neuron 

degeneration . The inhibition of COX1 may induce ROS by enhancing electron leak 

through Complex I and III and damage other cellular functions (Chen et al., 2003).  

 

Another body of evidence for mitochondrial dysfunction comes from mutant SOD1 

transgenic models. It has been observed in SOD1 G93A transgenic mice that the 

formation of vacuoles are due to detachment between inner and outer mitochondrial 

membranes and their size is associated with disease progression (Sasaki et al., 2004). 

Mitochondria are the second largest Ca2+ reservoir in cells, however, the Ca2+ loading 

function is impaired in SOD1 transgenic mice (Damiano et al., 2006), and this may result 

in an increase of cytoplasmic Ca2+ level causing neuronal death (Carrì et al., 1997). 

Similarly to what was found in ALS patients, oxidative phosphorylation in mitochondria is 

also impaired in mutant SOD1 transgenics, giving rise to a decrease in ATP production 

and increase in oxidative damage (Mattiazzi et al., 2002). The reason for these changes 

can be ascribed to the localization of mutant SOD1 in mitochondria. The mutant protein 

was found to aggregate in mitochondria and co-localize with cytochrome c and 

peroxisomal membranes (Takeuchi et al., 2002). These mitochondrial mutant SOD1 

proteins were hypothesized to cause neuronal damage by facilitating the release of pro-

apoptotic molecules, such as cytochrome c, to the cytosol by either forming pores in the 
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outer membrane or impairing the import of functional proteins to the mitochondria through 

the TOM/TIM complex (Pasinelli and Brown, 2006). Lastly, mutant SOD1 may also inhibit 

the function of the anti-apoptotic protein Bcl-2 promoting apoptosis (Pasinelli et al., 2004). 

 

 

1.10 Neurofilaments, impaired axonal transport and DCTN1 mutations 

Aberrant accumulation of neurofilaments in the anterior horn neurons is characteristic of 

both sporadic and SOD1- linked ALS, indicating dysfunctions in axonal transport (Hirano 

et al., 1984; Munoz et al., 1988). Neurofilaments (NFs) are intermediate filaments forming 

cytoskeleton in neurons and contain light (NF-L), medium (NF-M) and heavy (NF-H) 

subunits. Overexpression of both NF light (NEFL) (Xu et al., 1993) and heavy subunits 

(NEFH) (Côté et al., 1993) in transgenic mice causes motor neuron degeneration and 

variants in these two genes are associated with ALS patients (Figlewicz et al., 1994). 

Accumulation of neurofilaments has been observed in SOD1- FALS patients (Rouleau et 

al., 1996) and it has been shown that NF-L may contribute to the selective vulnerability of 

motor neurons, since its depletion prolongs the survival of SOD1 transgenic mice 

(Williamson et al., 1998). However, overexpressing NF-L and NF-H also prolongs the 

survival of the SOD1 mice (Kong and Xu, 2000) and this was accredited to the protective 

effects of perikaryal, but not axonal, accumulation of NFs, which may ameliorate damage 

mediated by Ca2+, glutamate, CDK5 and SOD1 (Cleveland and Rothstein, 2001).  

 

One of the hypotheses for the mechanisms underlying the accumulation of neurofilaments 

is impaired axonal transport. There are two types of axonal transport: fast and slow axonal 

transports. Vesicles and mitochondria are transported down the axon via fast axonal 

transport, which employs proteins of the kinesin family, whereas enzymes and soluble 

proteins are transported via slow axonal transport (Williamson and Cleveland, 1999). After 

being translated in the cell body, NFs are transported to the axon through slow axonal 

transport and provide mechanical support for neuronal structures. Impairments in fast and 

slow axonal transports have been documented in ALS patients and SOD1 transgenic mice 

respectively (Sasaki and Iwata, 1996; Williamson and Cleveland, 1999) and these may 

result in the accumulation of NFs in the cell body. Nevertheless, the observation that 

axonal transport is reduced in transgenic mice overexpressing NF-H and peripherin as a 

result of disorganized NFs indicates that impaired axonal transport could also be a 

consequence of neurofilament accumulation itself. The lack of axonal transport eventually 
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leads to the depletion of essential components for the axon and neurodegeneration 

(Collard et al., 1995; Millecamps et al., 2006).  

 

Mutations in Dynactin (DCTN1), a multi-subunit complex that attaches cargos to dynein 

and microtubules during retrograde axonal transport, have been identified in a dominantly 

inherited FALS kindred presenting with early onset, slowly progressive ALS (Puls et al., 

2003) and SALS. The mutation (G59S), located in the p150Glued subunit, causes 

aggregation of the subunit and induces cell death (Levy et al., 2006).  

 

 

1.11 Excitotoxicity and DAO mutations 

Being one of the earliest pathogenic mechanisms proposed in ALS, excitotoxicity was 

reported before the identification of SOD1 mutations. Glutamate is a common 

neurotransmitter in the CNS, but continuous accumulation of glutamate in the synapse 

mediates neuronal damages by activating NMDA or AMPA receptors, which allow influx of 

calcium ions (NMDA receptors). Calcium overload triggers apoptosis and activates 

proteases, phospholipases and nucleases, resulting in tissue damages (Foran and Trotti, 

2009). There is evidence indicating altered glutamate metabolism in ALS, including that ① 

glutamate levels were increased in the CSF of ALS patients (Rothstein et al., 1990); ② 

CSF from SALS patients induces excitotoxicity in cultured neurons; and ③ the clinically 

proven effects of the routinely used anti-glutamate drug Riluzole in ALS.  

 

The clearance of glutamate from the synaptic space greatly relies on glutamate 

transporters residing on postsynaptic membranes and astrocytes. EAAT2, a subtype of 

glutamate transporters expressed on the surface of astrocytes and other glial cells, 

mediates the transportation of most glutamate in the CNS (Foran and Trotti, 2009). The 

expression of EAAT2 is decreased and aberrant transcripts are present in the spinal cord 

of ALS patients (Lin et al., 1998). Mutations in the EAAT2 were identified in FALS and 

SALS patients but these variants were not proved to contribute to the alternative splicing 

(Aoki et al., 1998). The N206S mutation, which was found in SALS, reduced 

glycoslysation of the transporter and impaired glutamate reuptake (Trotti et al., 2001). 

However, despite lacking EAAT2 accelerated neurodegeneration in SOD1 transgenic 

mice (Pardo et al., 2006), it was argued that excitotoxicity is a collateral damage rather 



 

 

45 

 

than a primary one, since EAAT2 expression was reduced in the presence of other 

pathogenic sources such as ROS (Rao et al., 2003) and Caspase-3 activation (Boston-

Howes et al., 2006).   

 

A recently proposed pathway related to excitotoxicity is D-amino acid metabolism. By 

sequencing a region in Chromosome 12q22-23 linked to a FALS kindred presenting with 

early onset and short survival time, Mitchell et al (2010) reported a R199W mutation in D-

amino acid oxidase (DAO) gene. Gene expression was unaffected but enzyme activity 

was compromised in both an obligate carrier of the mutation and cultured cells expressing 

the mutant protein, suggesting a loss of function effect (Mitchell et al., 2010). DAO is a 

peroxisomal flavin adenine dinucleotide (FAD) dependent oxidase catalyzing the 

deamination, i.e. degradation, of D-amino acids including D-serine, whose formation is 

catalyzed by serine racemase in both neurons and glial cells. (Paul and de Belleroche, 

2012; Wolosker et al., 2008). Like glutamate, D-serine is a NMDA agonist and enhancer 

of NMDA- dependent toxicity (Sasabe et al., 2007). Elevated D-serine level was observed 

in ALS spinal cords and SOD1 transgenic mice, and there is a reverse correlation 

between DAO activity and D-serine level in spinal cord. Suppression of DAO activity also 

enhances the activation of NMDA receptors, proposing a direct link towards excitotoxicity 

(Sasabe et al., 2012). However, although this evidence is consistent with the loss of 

function hypothesis that DAO mutations cause pathogenicity by mediating the build-up of 

synaptic D-serine, how the mutants promote ubiquitinated inclusions and cell death in 

cultured cells remains to be elucidated (Mitchell et al., 2010).  

 

 

1.12 Apotosis: a possible route to neuronal death 

Although whether apoptosis plays a role in ALS pathogenicity is controversial, there are 

many links between them. As opposed to necrosis (Type III cell death), a term describing 

premature cell death characterized by karyolysis, Apoptosis, or Type I cell death, is a 

genetically controlled non-inflammatory process of cell death executed through 

sophisticated signaling pathways. Apoptosis is characterized by a series of morphological 

changes, including cell shrinkage, pyknosis, blebbing of cytoplasm and karyorrhexis 

(Elmore, 2007). These changes are due to protein cleavage, crosslinking and DNA 

fragmentation mediated by proteases, transglutaminase and endonucleases respectively. 
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Apoptosis can be activated via intrinsic or extrinsic pathways and finally converges on the 

execution pathway, which employs effector caspases, i.e. caspase-3, 6 and 7, to activate 

enzymes such as endonuclease CAD, decomposing DNA at regular interval. Stimuli 

targeting the intrinsic pathway initiate apoptosis by affecting the permeability of 

mitochondrial membranes, after which cytochrome c is released to the cytosol and 

activates caspase-9, which in turns activates caspase-3. 

 

A link between ALS and apoptosis is Calcium overload and this can be induced by the 

activation of NMDA receptors during excitotoxicity. Elevation of cytoplasmic calcium level 

contributes to apoptosis by activating different components of the apoptotic cascade 

(Orrenius et al., 2003). Oxidative stress may also increase cytoplasmic Ca2+ concentration 

by damaging Ca2+ transporting systems for the ER and mitochondria , the latter being the 

main reservoir of Ca2+ (McConkey and Orrenius, 1997). As described in Section 1.8, 

apoptosis takes place when different mechanisms are triggered as during prolonged ER 

stress caused by either protein misfolding or disrupted ER calcium homeostasis 

(Nakagawa et al., 2000). Furthermore, there is evidence showing that Caspase-1 and 

Caspase-3 are activated in SOD1 transgenic mice (Li et al., 2000; Pasinelli et al., 1998) 

and that overexpression of BCL-2 delayed the onset and prolonged the survival of SOD1 

transgenic mice (Kostic et al., 1997). However, it was also argued that morphological 

changes in the motor neurons of these models did not match those seen in apoptosis 

(Migheli et al., 1999). 

 

 

1.13 Other forms of protein aggregates, FUS (ALS6) and TARDBP (ALS10) 

mutations 

TDP-43 is known as the major component of Ubiquitinated Inclusions (UBI), a pathological 

hallmark of both ALS and Ubiquitin-positive frontal-temporal lobe dementia (FTLD-U, 

Section 1.16), suggesting a unifying pathology between these conditions (Neumann et al., 

2006). Congruously, mutations in the gene TARDBP, which encodes TDP-43, were found 

in autosomal-dominant inherited FALS (ALS10) (Sreedharan et al., 2008) and FTD 

families with or without motor neuron degeneration (Benajiba et al., 2009; Borroni et al., 

2009). FALS patients with TARDBP mutations developed typical ALS with mean age of 

onset and survival time of 47 years and 5.5 years respectively (Sreedharan et al., 2008). 
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In addition, TARDBP mutations also cause TDP-43 positive pathology reminiscent of 

those seen in SALS and FTLD-U (Van Deerlin et al., 2008). TDP-43 is a ubiquitously 

expressed hnRNP protein that regulates DNA transcription, alternative splicing and RNA 

stability and is normally localized in the nucleus (Tollervey et al., 2011). However, in 

ALS/FTLD-U, TDP-43 is depleted from the nucleus forming hyperphosphorylated, 

ubiquinated C-terminal aggregates in the cytoplasm (Neumann et al., 2006). Therefore, 

pathogenic effects may be mediated by either loss of normal functions or gain of toxic 

functions. 

 

TDP-43 is a 414 amino acid protein containing two RNA Recognition Motifs (RRMs) and a 

glycine-rich C-terminal region implicated in the binding of single stranded DNA and RNA 

molecules (Mackenzie et al., 2010). TDP-43 preferentially binds UG rich regions in long 

introns and may regulate splicing or expression of more than 100,000 targets genes 

(Tollervey et al., 2011). It is known that, by interacting with the UG repeats in Exon 9 of 

CFTR pre-mRNA, TDP-43 induces the skipping of Exon 9 (Buratti et al., 2001). Other 

recognized splicing mechanisms regulated by TDP-43 include APOAII Exon 3, SMN1/2 

Exon7, SC35, HDAC6, and S6K1 (Buratti and Baralle, 2010; Fiesel et al., 2011). TDP-43 

is also known to be a component of transport granules, processing bodies and stress 

granules, which are important structures for the transportation, processing and 

degradation of mRNA (Gendron et al., 2010).  

 

A toxic gain of function effect may be mediated by the cytoplasmic TDP-43 aggregates. 

The aggregates may directly contribute to axonal damages since overexpression of TDP-

43 (wild type) recapitulates ALS- phenotype and TDP-43 pathologies in transgenic mice 

(Wils et al., 2010). TDP-43 aggregates induce cellular toxicity and apoptosis, impair 

neurite growth (Zhang et al., 2009), and deplete normal nuclear TDP-43 (Yang et al., 

2010). Although mechanisms underlying aggregate formation remain elusive, it was 

shown that a 25kDa TDP-43 C-terminal fragment, which can be generated by caspases, 

was prone to form ubiquitin- positive inclusions (Zhang et al., 2009). The RRM2 motif was 

necessary, but not sufficient, for aggregate formation (Yang et al., 2010). Caspases have 

been implicated in different neurodegenerative conditions, for example, Caspase-3 is 

activated in ALS transgenic mice (Li et al., 2000) and the knockdown of Progranulin 

(PRGN) gene, a causal gene for FTLD, causes caspase-3 dependent cleavage and 
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redistribution of TDP-43 (Zhang et al., 2007b). Another ALS candidate gene, VCP, also 

regulates the distribution of TDP-43 (Gitcho et al., 2009).   

 

The identification of TARDBP mutations led to the search of genes containing similar 

domains within a linked region in Chromosome 16, and mutations in FUS gene were 

identified in FALS kindred. Patients with FUS mutations developed typical ALS without 

cognitive impairments. The mean age of onset was 44.5 years and mean survival time 

was 33 months. In these patients, ubiquitin- positive and p62- positive inclusions were 

rare. TDP-43- positive inclusions were absent and FUS- positive cytoplasmic inclusions 

were found (Vance et al., 2009). FUS was subsequently shown to be a common 

component of inclusions that are also immune-reactive for TDP-43 and ubiquitin in non-

SOD1 FALS and SALS (Deng et al., 2010). FUS mutations were also found in FTLD and 

the FUS protein was identified in ubiquitin- positive, tau-negative, TDP-43 negative 

inclusions found in FTLD patients, known as FTLD-FUS. 

 

Fused in Sacroma (FUS) is a ubiquitously expressed nuclear protein sharing certain 

functional and structural features with TDP-43. FUS was known to regulate gene 

transcription, RNA splicing and nucleo-cytosolic mRNA transportation (Vance et al., 

2009). Most FUS mutations were found in the C-terminal region, which contains a R/G 

rich region, a RRM domain and a Zinc finger domain (Lagier-Tourenne et al., 2010). It has 

been demonstrated that cytoplasmic mislocalization of FUS can be caused by disrupting a 

32 amino-acid nuclear localization signal at the C-terminal. This can be affected by some 

truncating mutations. In addition, it has been shown that FUS mislocalisation is related to 

methylation of Arginine residues which modulates Transportin-1 mediated nuclear import 

of mutant FUS protein (Dormann et al 2012). Interestingly, mutant FUS protein interacts 

with stress granule markers and, probably, processing bodies (Gal et al., 2011) and 

overexpression of mutant FUS protein causes progressive paralysis reminiscent of ALS 

accompanied by ubiquitinated inclusions in rats (Huang et al., 2011). Indeed, mutant FUS 

proteins with defective RNA binding sites failed to induce neurodegenerative phenotypes 

as the RNA-binding competent mutant FUS did in fly brains, indicating that RNA binding 

capacity is required for mediating the pathogenic effects (Daigle et al., 2013). Taken 

together, FUS and TARDBP mutations may cause deficits in mRNA quality control 
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systems and these are important pathogenic mechanisms for ALS/FTLD-U (Ito and 

Suzuki, 2011).  

 

  

1.14 The Ubiquitin-Proteasome System (UPS), autophagy and VCP mutations 

(ALS14) 

As summarized above, like many other neurodegenerative conditions, such as AD, PD 

and HD, protein aggregation is an important feature of ALS. These aggregates exist in the 

form of cytosolic inclusions and may mediate various toxic effects, causing neuronal 

damages. Their formation is probably facilitated by defects in the protein-degrading 

pathways. There are two systems through which misfolded proteins are eliminated in 

eukaryotes—The Ubiquitin-Proteasome system (UPS) and Autophagy-Lysosome system. 

One of the candidate genes characterized in this study, VCP, is involved in both systems. 

 

In the secretory pathway, newly synthesized peptides are folded into their nascent state in 

aid of molecular chaperones, such as heat shock protein 70, in the ER. This process 

involves the formation of correct disulphide bonds which is allowed by the highly oxidative 

environment in the ER. However, a considerable proportion of peptides that are not 

properly folded or subjected to post-synthetically damage are degraded through the UPS. 

In fact, the binding of misfolded proteins to HSP70 not only helps their refolding to the 

proper structure, but also mediates their degradation (Goldberg, 2003). The UPS also 

degrades normal, short-lived proteins and this was known to be important for cellular 

processes such as the NF-kB pathway. UPS is a multi-staged system, in which the 

proteins to be degraded are labeled with ubiquitin and have their peptide bonds 

hydrolyzed in the 26S proteasome. Indeed, the fact that ubiquitin is present in most 

inclusions, regardless of their component, found in ALS suggests that UPS is actively 

involved in the elimination of these aggregates. This is supported by evidence showing 

direct involvement of UPS in degrading mutant SOD1 proteins, but not wild type, in ALS 

(Urushitani et al., 2002) as well as inclusions found in other neurodegenerative conditions 

(Taylor et al., 2002).  

 

The mechanisms of the UPS have been extensively reviewed (Ciechanover, 2006; 

Glickman and Ciechanover, 2002). Brief speaking, the first step being the recognition of 
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substrates, which are conjugated with ubiquitin in a three- step mechanism. Ubiquitin 

molecules( Ub) are firstly activated by the ubiquitin-activating enzyme, E1, in an ATP-

requiring reaction generating E1-S-ubiquitin intermediate. The activated Ub then form 

intermediates with Ubiquitin-conjugating enzymes, E2, which transfer the Ub to substrates 

that are bound to the substrate-specific Ubiquitin ligases, E3. Catalyzed by E3, the Ub 

molecules are covalently conjugated to the substrates and can be successively added to 

the internal lysine residue of the previous Ub molecule, forming poly-Ub chains. The 

second step in UPS is proteasomal degradation carried out in the 26S proteasome, which 

consists a 20S core particle and a 19S regulatory particle. The 20S core particle is 

enzymatically active, whereas the 19S regulatory particle is responsible for the recognition 

of substrates. After degradation, Ub are released from the short peptides by 

deubiquitinating enzymes and recycled.  

 

Since ubiquitination and degradation take place in the cytoplasm, the substrates need to 

be extracted from the ER prior to degradation through a process known as 

retrotranslocation, and the whole machinery comprising recognition, translocation, 

ubiquitination and degradation is known as ER-associated degradation (ERAD) (Yoshida, 

2007). In the very first step of ERAD, unfolded proteins are recognized by ERAD 

components such as EDEM, OS9, and XTP3B. After that, the misfolded proteins are 

unfolded with the aid of enzymes that cleave disulphide bonds such as PDI and BiP 

(Yoshida, 2007). The unfolded substrates then pass through a retrotranslocation channel 

formed by components such as Derlin-1,VIMP and UBX2 on the ER membrane and this 

process requires the protein VCP (p97), encoded by the gene VCP in which mutations 

have been identified in FALS. VCP has been shown to connect Derlin-1 through VIMP, 

recognise the substrates and present them to ubiquitin ligases E3 (Ye et al., 2004). VCP 

can either promote or inhibit ubiquitination depending on the existence of different 

cofactors (Halawani and Latterich, 2006). In fact, VCP is able to recognise both non-

ubiquitinated and ubiquitinated substrates through interacting with hydrophobic peptide 

segments and poly-Ub chains, respectively. Once substrates are bound, the ATPase 

activity of VCP is activated (Ye et al., 2003). Finally, VCP also participates in the delivery 

of ubiquitinated substrates to the 26S proteasome for degradation (Weihl et al., 2009).  
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There are further indications for the involvement of UPS in the pathogenic mechanism of 

ALS. First, in addition to VCP, mutations in another UPS- related gene, UBQLN2, have 

been identified in ALS and this will be discussed in Section 1.17.10. Second, UPS has 

been shown to be a target of the toxic SOD1 aggregates (Urushitani et al., 2002). In the 

presence of certain cytokines during infection or inflammation, the constitutive subunits of 

the 20S catalytic core of the proteasome can be replaced by other homologs to form the 

inducible proteasome (Bendotti et al., 2012). It has been shown in SOD1 mice that the 

inducible subunits were overexpressed in the spinal cord, whereas the constitutive 

subunits were decreased along with the activities of the UPS (Cheroni et al., 2009).  

 

Autophagy, on the other hand, is a highly conserved pathway for the degradation of long-

lived proteins or cell components. There are three types of Autophagy, i.e. 

Macroautophagy, Microautophagy, and Chaperone-mediated autophagy. 

Marcoautophagy, the one implicated in neurodegeneration and a variety of pathogenic 

conditions, refers to a process in which the cellular components to be degraded are 

sequestered in vesicles and delivered to auto-lysosomes for breakdown (Yorimitsu and 

Klionsky, 2005). This involves four distinct stages, which are vesicle nucleation, vesicle 

elongation, formation of autophagosome and fusion with lysosome (Levine and Kroemer, 

2008).  

 

In mamillian cells, Autophagy is regulated in a complicated manner and can be induced by 

a variety of stimuli (Mizushima, 2007). A well-known condition for induction is nutrient 

starvation, such as the depletion of amino acids. Autophagy is suppressed by insulin and 

induced by glucagon in liver cells. Different stimuli converge on autophagy regulators such 

as mTOR, a Rapamycin target that inhibits autophagy by interacting with Autophagy- 

related proteins 1 (Atg1) (Jung et al., 2010), and Beclin1 (Atg6)/PI3KIII, which, in contrast, 

interacts with Atg9 and induces autophagy. After the induction stage, nucleation and 

elongation stages take place in the participation of different members from homologs of 

the ATG gene family. Membranes are recruited to from an elongating structure known as 

phagophore, which sequesters the components to be degraded, and a double-membrane 

vesicle known as autophagosome is then formed. The inclusion of substrates relies on the 

cargo receptor LC-3, a mammalian homolog of Atg8, found in the inner membrane of the 

autophagosome. The substrates targeted for autophagy can be recognized by 
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Sequestosome-1 (SQSTM1, Chapter 4), which interacts with LC-3, and shuttled into the 

autophagosome (Bjørkøy et al., 2005). In the final stage of Autophagy, autophagosomes 

are fused with lysosomes to form autolysosomes. The contents are eventually degraded 

by lysosomal hydrolases and released to the cytosol.  

 

There is considerable evidence suggesting that Autophagy may contribute to the 

pathogenesis of ALS, and this has been recently reviewed (Chen et al., 2012). The 

evidence can be summarized into four aspects. First, there is increased autophagic 

activity in the spinal cord of both ALS patients and SOD1 transgenic mice. (Hetz et al., 

2009; Zhang et al., 2011) and suppression of autophagy induced the formation of 

neuronal inclusions and motor neuron degeneration in mice (Hara et al., 2006). Second, 

both SOD1 and TDP-43 aggregates can be degraded through autophagy and enhancing 

autophagy using rapamycin reduces both mutant SOD1 and TDP-43 aggregates in 

cultured cells (Caccamo et al., 2009; Kabuta et al., 2006). However, it should be noted 

that rapamycin also induces apoptosis in SOD1 transgenic mice (Zhang et al., 2011). 

Third, Lithium, a modulator for autophagy, mediates neuroprotective effects and delays 

disease progression in ALS patients (Fornai et al., 2008), although further confirmation is 

needed (Aggarwal et al., 2010). Fourth, most importantly, several ALS related genes play 

roles in pathways associated with autophagy. They are UBQLN2 (Section 1.17.10), 

CHMP2B (Section 1.17.12), SQSTM1 (Chapter 3), DCTN1 and VCP. Mutations in 

DCTN1, which encodes the p150 unit of dynactin, has been found in both FALS and 

SALS (Münch et al., 2004). Dynactin is an activator for the motor protein dynein and 

mediates the binding of cellular components to microtubules during vesicle transport, 

including autophagosomes, and the fusion of autolysosomes may be interrupted when this 

is impaired (Chen et al., 2012). In addition, VCP also has been shown to participate in 

autophagy as loss of VCP causes accumulation of autophagosomes and failure of the 

formation of autolysosomes (Ju et al., 2009). A detailed background of VCP will be 

discussed in Chapter 3. 

 

 

1.15 The NF-kB pathway: TDP-43 aggregates, SQSTM1 and OPTN mutations 

ALS candidate genes SQSTM1 and OPTN both participate in the NF-kB pathway. NF-kB 

is a widely expressed protein complex that regulates gene expression. Targets of NF-kB 

are known to be involved in the regulation of immune responses, cellular stress, cell 
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differentiation and apoptosis (Oeckinghaus et al., 2011). In the presence of various stimuli, 

NF-kB can be activated through either canonical (common) or non-canonical pathways, 

after which the activated NF-kB translocates to the nucleus and binds DNA sequences 

known as kB sites (Reviewed by (Oeckinghaus et al., 2011) ). In the canonical pathway, 

prior to activation, the NF-kB molecule, composed of two subunits, p65( RelA) and p50, is 

bound to the inhibitor IkB, and this is known as the latent state. The pathway can be 

activited by cytokine receptors such as IL-1R, TNFR and TLR4. Upon activitation, IkB is 

phosphorylated by IKK, an IkB kinase consisting NEMO, IKKα and IKKβ, and degraded by 

the proteasome. This process releases NF-kB, which then enters the nucleus and 

regulates transcription. In the non-canonical pathway, in contrast, the two subunits of NF-

kB complex are p100 and RelB. After induction of this pathway, activated IKKα 

phosphorylates the p100 subunit, which is then partially degraded. Then, the active form 

of NF-kB, consisting of p52 and RelB, enters the nucleus and regulates transcription. 

 

Interestingly, the NF-kB pathway has been recently implicated as a possible route for 

TDP-43 mediated toxicity (Swarup et al., 2011).It was shown in the study that TDP-43 

activates the p65 subunit of NF-kB and that the expression levels of both TDP-43 and p65 

are elevated in the spinal cord of SALS patients. The activation of NF-kB also contributes 

to neuronal vulnerability caused by excitotoxicity and inflammation. Furthermore, ALS 

candidate genes OPTN (Section1.17.8) and SQSTM1 (p62, Chapter 4) are both involved 

in the NF-kB pathway. OPTN acts as a NF-kB inhibitor, whereas p62 mediates its 

activation. When the Nk-kB pathway is activated through membrane receptors, an adaptor 

protein TRAF-6 is recruited, and the enzyme aPKC is employed to activate the IKKs. p62 

functions as a scaffold protein linking these two components. This pathway mediates the 

NF-kB activation through the RANK receptor, which regulates the activation and 

differentiation of osteoclasts when activated by RANK-L, and, therefore, Paget’s disease 

of bone (PDB) is caused when the pathway is disrupted with SQSTM1 mutations 

(McManus and Roux, 2012).    

 

 

1.16 ALS-FTD and C9orf72 mutations 

Despite being characterized by degeneration of the motor system, cognitive impairment 

reminiscent of Frontotemporal dementia (FTD) is frequently noticed in ALS. FTD is a 
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heterogeneous group of conditions caused by severe frontotemporal lobar degeneration 

(FTLD) and it encompasses three groups of symptoms (Lillo and Hodges, 2009). ① The 

behavioural variant of FTD (bvFTD) is characterized by profound changes in personality 

and social behavior, apathy and alterations in appetite; ② Semantic dementia (SD) is 

marked by loss in semantic memory causing anomic aphasia, i.e. difficulties in naming 

and comprehensions; ③ In Progressive non-fluent aphasia (PNFA), there are progressive 

losses in phonological and grammatical abilities with preserved word comprehensions. 

Cognitive impairments had been reported in 51% of SALS patients, 15% of which met the 

diagnostic criteria for FTD (Ringholz et al., 2005). Conversely, motor neuron degeneration 

had also been described in patients with initial diagnosis of FTD (Giordana et al., 2011). 

ALS-FTD was reported to have shortened survival times compared to classical ALS 

(Olney et al., 2005).  

 

As previously mentioned, the clinical overlap between ALS and FTD is supported by both 

pathological and genetic findings. Histological subtypes of FTLD are distinguished by 

immunoreactive profiles (Giordana et al., 2011). A type of FTLD presents with tau-positive 

inclusions which are found in other conditions such as Pick’s disease, corticobasal 

degeneration and progressive supranuclear palsy, whereas TDP-43 is the major 

component of tau-negative, ubiquitin-positive inclusions that are present in the most 

common histological variety, FTLD-U (FTLD-TDP-43) (Weder et al., 2007). In addition, 

FTLD-FUS refers to conditions where FUS-positive inclusions are found (Mackenzie et al., 

2010). TDP-43 and FUS were both found in ALS inclusions, suggesting a common 

disease mechanism. 

 

ALS and FTD co-exist in familial form of autosomal dominant inheritance and has been 

linked to chromosome 9p21 (Vance et al., 2006). Analysis of Genome-wide association 

signals narrowed the susceptible region to a 232kb LD block spanning three genes: 

MOBKL2B, C9orf72, and IFNK (Mok et al., 2012) and it was recently confirmed that a 

hexanucleotide GGGGCC expansion in the intron 1 of C9orf72 gene is responsible for the 

linkage signal and segregates with disease (Renton et al., 2011). This will be further 

discussed in Chapter 7. 
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1.17 Other ALS Loci 

1.17.1 Alsin (ALS2) mutations 

Autosomal recessive juvenile amyotrophic lateral sclerosis (ARJALS) refers to a group of 

rare forms of ALS presenting with onset before 25 years and long progression (Hamida et 

al., 1990). There are three types of ARJALS and the loci for type 3 (ALS2) and type 1 

(ALS5) were mapped to chromosome 2q33 and 15q15-22 respectively. 

 

Sequence analysis of transcripts from Chromosome 2q33 resulted in the identification of 

mutations in a gene with 34 Exons, ALS2 (Hadano et al., 2001). ALS 2 (ARJALS Type 3) 

is characterized by juvenile onset, long survival time and prominent upper motor neuron 

symptoms such as spasticity of limb, facial and tongue muscles resembling primary lateral 

sclerosis (Hentati et al., 1998). ALS2 mutations are also responsible for Infantile onset 

ascending hereditary spastic paralysis (IAHSP) and Juvenile primary lateral sclerosis 

(PLSJ), which causes pure upper motor neuron symptoms.  

 

Multiple mutations have been identified in this gene, most of which are frameshift and 

nonsense mutations causing truncation of the protein. ALS2 is an 184kDA protein 

containing motifs that are homologous to members of Guanine nucleotide exchange 

factors (GEFs), which promote the dissociation of GDP from inactive GTPases. There are 

three GEF domains in the Alsin protein. The RCC-1 like domain locating near the N-

terminal is a regulator for Ran GTPase, which was implicated in nuclear transfer and 

chromatin condensation. The DH/PH domain, which locates in the middle part of protein, 

and VPS9 domain, which located at the C-terminal, regulate the GTPases Rho and Rab5 

respectively. Rho plays a role in the regulation of cytoskeleton and neuronal 

morphogenesis, whereas Rab5 regulates vesicle trafficking (Otomo et al., 2003). There 

are two alternative spliced transcripts of ALS2 producing a long, 1,659 amino acids, and a 

short, 396 amino acids, proteins respectively. As reviewed by Chandran et al (2007), 

phenotypes were initially reported to be associated with the length of mutants. Lower 

motor neurons tend to be unaffected when the short form of ALS2 remains intact, leading 

to PLSJ or IAHSP, but this has been complicated by a later observation that lower motor 

neurons were not affected in some mutations affecting the short form of ALS2.  
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More pathogenic consequences of ALS2 mutations have been revealed by the catalytic 

activity of the VPS9 domain for Rab5. ALS2 may play a role in vesicle trafficking as it 

promotes endosome formation though the activation of Rab5 located in endosomal 

compartments (Otomo et al., 2003). The RLD domain, however, appeared to be a 

negative regulator for Rab5 activation and it is able to bind the PDZ domains of Glutamate 

receptor interacting protein (GRIP1), which interacts with a calcium-impermeable GluR2 

subunit of the AMPA receptor. It has been shown that dysfunction of ALS2 reduces the 

presentation of GluR2 to the plasma membrane and enhances glutamate- induced 

excitotoxicity (Lai et al., 2006). Although the lack of ALS2 was insufficient to induce a 

motor neuron disease phenotype in knock-out mice, it did increase the vulnerability to 

oxidative stress in cultured neurons (Cai et al., 2005). 

 

1.17.2 18q21 (ALS3) 

Chromosome 18q21 has been linked to a European kindred presenting autosomal 

dominant typical ALS. The mean age of onset was 45 years and survival time was 5 years. 

The region defined by D18S846 and D18s1109 spans 7.5cM (8Mb) and contains 50 

genes. No mutation has been identified to date (Hand et al., 2002).  

 

1.17.3 SETX (Senataxin, ALS4) 

ALS4 is the only form of dominantly inherited juvenile onset ALS. Onset is often seen 

before the second decade witha slow progression and a normal life span. Affected 

individuals usually present with distal weakness and wasting, pyramidal signs and normal 

sensation (Chen et al., 2004). Linkage analysis of an 11-generation autosomal dominant 

juvenile onset ALS pedigree from Maryland mapped the locus to a 5cM interval in 

chromosome 9p34 (Chance et al., 1998). A mutation was subsequently identified in the 

SETX gene in this kindred and two other mutations in the same gene were confirmed in 

additional kindreds (Chen et al., 2004). SETX mutations were also found to be a cause of 

Ataxia-oculomotor apraxia type 2, a syndrome comprising early onset cerebrellar atrophy, 

axonal sensorimotor neuropthy, oculomotor apraxia and elevated serum AFP (AOA2, 

OMIM 606002) 

 

Senataxin shows homology to the fungal Sen1p protein, which possesses helicase activity 

and is required for splicing and termination of tRNA, small nuclear RNA and small 
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nucleolar RNA (Moreira et al., 2004). Senataxin is a 302.8 kD protein with a DNA/RNA 

helicase domain at the C-terminal (OMIM 608465) and Chen et al (2004) described that 

there are two main transcripts of 11.5kb and 9kb respectively. A nuclear localization signal 

and an ATP/GTP binding site which is essential for the activity of helicases were also 

identified . In addition, the C-terminal of Senataxin also shows homology to two other 

members of the DExxQ-box family of helicases: RENT1/Upf1 and IGHMBP2. RENT1 

plays a role in non-sense mediated RNA decay (NMD), whereas IGHMBP2 has been 

known to bind a specific DNA sequence in the immunoglobin mu chain switch region 

(Moreira et al., 2004). IGHMBP2 mutations have also been implicated in Spinal muscular 

atrophy with respiratory distress type 1 (Tachi et al., 2005). 

 

Recent research has revealed more about the roles that Senataxin plays in 

neurodegeneration. Expression of full-length Senataxin alleviates oxidative DNA damage 

in lymphoblastoid cell lines derived form AOA2 patients, indicating that the lack of helicase 

activity may abolish the cell’s ability to repair double strand breakage (DSB) damage 

when subjected to oxidative stress (Suraweera et al., 2007). However, this can also be a 

consequence of alteration in expression of other genes required for DNA damage repair, 

which can be regulated by the Senataxin homolog Sen1 through regulating RNA 

polymerase II (Steinmetz et al., 2006). In agreement with this, it has been recently shown 

that Senataxin regulates transcription termination by allowing the access of 5’-3’ 

exonuclease Xrn2 to RNA/DNA hybrid structures (Skourti-Stathaki et al., 2011). Senataxin 

also regulates mRNA splicing (Suraweera et al., 2009) and neuronal differentiation by 

promoting the expression of fibroblast growth factor 8 (FGF8) (Vantaggiato et al., 2011). 

In conclusion, although the exact way in which SETX mutations cause neurodegeneration 

has not been clarified, it is probably achieved by altering the expression of other genes 

that are important for the survival of neurons. 

 

1.17.4 SPG11, Spatacsin (ALS5) 

Mutations in the SPG11 (Spatacsin) gene located in the Chromosome 15q15-22 locus 

were recently found to be responsible for another form of ARJALS (type 1) , also known 

as ALS5 (Orlacchio et al., 2010). This gene is also causal for Autosomal recessive 

hereditary spastic paraplegia with thin corpus callosum (ARHSP-TCC) (Stevanin et al., 

2007). Onset of ARHSP-TCC is usually before the second decade. In ARHSP-TCC, there 
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is progressive spasticity and stiffness of lower limb and mental retardation. Cognitive 

impairments are occasionally observed (OMIM 604360). Age of onset of ALS5 ranges 

from 8 -18 years old and progression is usually longer than ten years. In contrast to ALS2, 

lower motor neuron symptoms being in limbs and upper motor neuron symptoms are 

moderate in ALS5 (Hentati et al., 1998).  

 

Very little is known about the functions and pathogenic roles of Spatascin. Spatascin is a 

2,443 amino acid protein that belongs to the Aromatic compound dioxygenase superfamily. 

There are four transmembrane domains indicating functions as receptor or transporter. 

Spatascin mutations are likely to cause disease in a loss of function manner, since most 

of them are truncating mutations (Orlacchio et al., 2010). Spatascin is expressed in 

neuronal cell bodies and co-localizes with markers for mictrotubules, endoplasmic 

reticulum, mitochondria and vesicles involved in protein trafficking, suggesting roles in 

axonal transport and vesicle trafficking (Murmu et al., 2011). Indeed, the major 

pathological feature in Hereditary spastic paraplegia is the retrograde degeneration of 

long nerve fibres in corticospinal tract and dorsal columns as a result of disrupted axonal 

transport, cytoskeleton organization, membrane trafficking and mitochondrial metabolism 

(Salinas et al., 2008). Given the fact that upper motor neuron symptoms also 

predominates in ALS5, it is likely that Spatascin has a crucial function in maintaining 

adequate axonal nutrient supplies for neurons in the corticospinal tract.  

 

1.17.5 20p13 (ALS7) 

A 5Mb locus on 20p13 was reported to be shared by two out of 15 siblings in a FALS 

kindred from Boston with a LOD score of >3.0. This was designated as ALS7. The mean 

age of onset was 56.5 years and mean survival time was 2.9 years. However, this locus 

has not been identified in any other kindred and additional information is needed for 

confirmation (Sapp et al., 2003). 

 

1.17.6 ALS9: Angiogenin (ANG) 

The gene ANG encodes a protein essential for angiogenesis, Angiogenin, and is located 

on chromosome 14q11. Angiogenin (ANG) facilitates the formation of new vessels by 

mediating the degradation of basal membranes degradation and allowing migration of 

endothelial cells. ANG not only binds to receptors on the endothelial cells, such as alpha-
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actin and ANG receptor, but also undergoes nuclear translocation in the target cells. 

Target genes harbouring ANG-binding elements, i.e. [CT]n repeats, can be regulated in 

this way. RNase activity, another property of ANG, is also necessary for its functions 

[ reviewed by (Gao and Xu, 2008)]. It is noteworthy that ANG is required for cell 

proliferation induced by other angiogenic proteins, such as Fibroblast growth factors 

(FGF), Epidermal growth factor (EGF) and Vascular endothelial growth factor (VEGF) 

(Kishimoto et al., 2005).  

 

During hypoxia, Hypoxia inducible factors (HIF) upregulates VEGF and promotes 

angiogenesis. Mice lacking HIF binding region in the promoter of VEGF gene developed 

symptoms reminiscent of ALS, probably due to impairment in neural vascular perfusion 

(Oosthuyse et al., 2001). Meta-analysis of subjects from Sweden, Belgium and England 

showed that a risk haplotype in the promoter region of VEGF both conferrs risks of ALS 

and correlates with the expression of the gene (Lambrechts et al., 2003). 

 

Association studies indicated that a common coding SNP in APEX gene, located on 

chromosome 14q11.2-12, is associated with ALS (Hayward et al., 1999). However, this 

association was then later allocated to ANG, which locates 237Kb downstream to APEX 

(Greenway et al., 2004). In the same study it was demonstrated that the SNP rs11701 in 

the ANG gene is significantly associated with ALS and coding mutations were 

subsequently identified in both FALS and SALS patients from the Irish/Scottish population 

(Greenway et al., 2006). ANG mutations have been identified in ALS patients from 

America, Italy, France, Netherlands and Germany (Fernandez-Santiago et al., 2009). 

ANG- ALS cases are typical ALS. Age of onset ranges from 27 to 76 years and survival 

time ranges from 0.8 to 10 years (Greenway et al., 2006). K40I and C39W ANG mutations 

may affect the active sites or folding of the protein, whereas S28N mutation was located 

adjacent to the nuclear localisaziton sequence (NLS) and may impair nuclear import. Wu 

et al (2007) showed that K17I, S28N and P112L mutants failed to induce angiogenesis 

and the RNase activity essential for ANG function was abolished. Q12L and K40I mutants 

impaired neurite extension and reduced the survival of cultured motor neurons 

(Subramanian et al., 2008). In addition, the cytotoxic effects of ANG mutants could be 

explained by the motor neurons’ tendency to form stress granules (SGs), a structure 

composed of sequestered ribonucleoproteins during cellular stress, when mutant ANG 
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failed to induce RNA cleavage (Thiyagarajan et al., 2012). This provides RNA for the 

assembly of SGs. RNA may be necessary for the assembly of SGs. For example, it has 

been recently shown that TDP-43 inclusions are colocalized with SG markers, causing a 

variety of pathogenic consequences (Li et al., 2013). RNase treatment abolished the 

binding between endogenous TDP-43 and SG protein TIA-1, suggesting that the 

interaction was dependent on RNA, which can be used as a therapeutic target (Liu-

Yesucevitz et al., 2010). 

 

1.17.7 FIG4 (ALS11) 

There is a genetic overlap between ALS11 and Charcot-marie-tooth disease (CMT) type 

4J (CMT4J), which are both caused by FIG4 mutations. FIG4 encodes for 

phosphastidylinositol 3,5- bisphosphate (abbrev: PI(3,5)P2 ) 5-phosphatase, also known 

as SAC domain containing protein 3 (Sac3). The phosphastase FIG4 links with molecules 

ArPIKfyve (VAC14) and PIKfyve, which has kinase activity, to form a complex (PAS 

complex) that regulates the metabolism of PI(3,5)P2. The PAS complex therefore 

possesses both phosphostase activity that removes a phosphate group of PI(3,5)P2 to 

form PI3P and kinase activity that catalyzes the opposite reaction. PI(3,5)P2 is a less 

abundant type of inositol phospholipids, which are membrane molecules playing important 

cellular functions such as controlling membrane-cytosol interface, defining organelle 

identity, membrane trafficking and cytoskeleton organization (Di Paolo and De Camilli, 

2006). PI(3,5)P2 was known for its function in regulating membrane homeostasis in late 

endosomes and a possible role in the retrograde transport from late endosome to trans-

glogi network via various effectors (Michell et al., 2006).  

 

FIG4 mutations have been identified in both FALS and SALS. Clinical presentations were 

typical and the FALS kindred were of dominant inheritance. Average age of onset of these 

patients was 56 years and average duration time was 9 years (Chow et al., 2009a). 

Variants found in FIG4 included two truncating mutations located upstream of the SAC 

active site and two splice site mutations that were predicted to induce exon skipping. Two 

missense mutations, D53Y and R388G, were shown to have deleterious effects on protein 

function. I41T, the commonest FIG4 mutation in CMT4J (Chow et al., 2007), was not 

reported in ALS.  
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A pathogenic model of FIG4 mutation has been proposed using I41T transgenic mice. It 

was shown that the stability of FIG4 was maintained by VAC14, and the I41T mutation, 

which abolished the interaction with VAC14, greatly reduced FIG4 activity and caused 

neurodegeneration (Lenk et al., 2011). Loss of FIG4 in turn reduced PI(3,5)P2 and 

resulted in vacuolization and accumulation of autophagy intermediates causing neuronal 

damages (Ferguson et al., 2009a; Lenk et al., 2011).   

 

1.17.8 OPTN (ALS12) 

Homozygosity mapping and direct sequencing in an autosomal recessive consanguineous 

Japanese ALS family revealed mutations in the Optineurin (OPTN) gene, including a  

homozygous deletion of exon 5 caused by AluJ-mediated recombination and a nonsense 

Q398X mutation. Q398X was further detected in SALS cases and an additional E478G 

mutation was detected in an autosomal dominant FALS kindred (Maruyama et al., 2010). 

Skein-like inclusions positive for OPTN, Ubiquitin and TDP-43 antibodies were observed 

in postmortem spinal cord tissue of the E478G patient, and OPTN was further shown to 

colocalize with SOD1 and FUS inclusions in patients with corresponding mutations (Ito et 

al., 2011b; Maruyama et al., 2010). Subsequent screening identified OPTN mutations in 

cases from Germany (Weishaupt et al., 2013), Italy (Del Bo et al., 2011) and Holland (van 

Blitterswijk et al., 2012b), giving mutation frequencies of 1-4% in FALS and <1% in SALS. 

OPTN patients present with typical ALS with variable age of onset ranging from 24 to 83 

years, and their survival time ranges from 0.75 to 25 years. In addition, OPTN is a causal 

gene for primary open angle glaucoma (POAG) and a risk factor for Paget’s disease of 

bone (PDB) (Albagha et al., 2010), and the latter can also be caused by SQSTM1 

mutations. The fact that both SQSTM1 and OPTN are implicated PDB and ALS highlights 

their functions in NF-kB pathway (Section 1.15).   

 

OPTN is known as an inhibitor of NF-kby competing for the binding sites of NF-

kessential modulator (NEMO), which activates the TNF- dependent NF-kpathway 

(Zhu et al., 2007). In POAG mouse models, overexpression of an OPTN E50K mutation 

led to neuronal death probably by abolishing the interaction with Rab8 and propagating 

oxidative stress (Chi et al., 2010). In contrast, ALS- associated OPTN mutations mediate 

loss of function effects. Mutant OPTN proteins lack the ability to inhibit NF-k(Maruyama 

et al., 2010) and knockdown of OPTN in cultured cells results in inappropriate activation of 
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NF-kand promotes cell detath (Akizuki et al., 2013). OPTN also interacts with different 

proteins involved in vesicle trafficking. One of such is Myosin VI, which is involved in both 

endocytic and exocytic pathways. OPTN anchores Myosin VI to the Glogi complex and 

this is required for exocytosis. Moreover, the glogi complex is fragmented in the absence 

of OPTN (Sahlender et al., 2005). OPTN interacts with Rab8 and Huntingtin (HTT), both 

of which are implicated in vesicle trafficking, coordinating motor functions and maintaining 

Glogi structures (Sahlender et al., 2005).  

 

Indeed, that fact that OPTN co-localizes with cytoplasmic inclusions could be explained by 

a possible role of OPTN in autophagy. It has been recently demonstrated in SOD1 cells 

that OPTN recognizes and mediates the clearance of protein aggregates through the 

autophagy- lysosome pathway in an ubiquitin- independent manner and this necessitates 

the phosphorylation by a kinase TBK1 (Korac et al., 2013). 

 

1.17.9 ATXN2 (Ataxin-2, ALS13) 

Spinocerebellar ataxia 2 (SCA2) is an autosomal dominant form of progressive cerebellar 

ataxia characterized by incoordination of gait and limb movements, ophthalmoplegia, 

pyramidal signs, mild dementia and peripheral neuropathy (OMIM183090). SCA2 is 

caused by trinucleotide CAG expansions in the Ataxin-2 (ATXN2) gene (Imbert et al., 

1996). The expansion codes for a polyglutamine tract in the 1,313-amino-acid protein 

localized to the Glogi complex and ER. CAG alleles of less than 22 repeats are commonly 

found in the healthy population. Alleles up to 31 repeats remain non-pathogenic, whereas 

those of more than 33 repeats are exclusively observed in SCA2 patients (Geschwind et 

al., 1997).  

 

PBP1, a yeast ortholog of human ATXN2, was identified as a modifier that enhances 

TDP-43 toxicity and it was shown that intermediate ATXN2 expansions (27-33 repeats) 

are over-represented in ALS (Elden et al., 2010). In subsequent screening intermediate 

(31-33 repeats) and longe (32-39 repeats) ATXN2 expansions were identified in FALS 

and SALS patients with frequencies of 1.1% and 0.5% respectively. All these patients 

were typical ALS. The mean age of onset of these patients was 57 years and mean 

survival time was 35 months (Van Damme et al., 2011). Most expansions with ≥ 34 

repeats are interrupted with CAA units, and these imperfect units were associated with 
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early age of onset in ALS (Ross et al., 2011; Yu et al., 2011). Of note, phenotypic overlap 

between ALS and SCA2 has been reported in patients with ATXN2 expansions of ≥33 

repeats (Nanetti et al., 2009). 

 

ATXN2 co-localizes and interacts with TDP-43 in a RNA- dependent manner and has a 

distinct cellular distribution in ALS (Elden et al., 2010). In addition to TDP-43, ATXN2 has 

been shown to interact with other proteins possessing RNA recognition motifs (RRM) as 

well as components of P-bodies and Stress granules, suggesting a role in RNA 

processing (Nonhoff et al., 2007). However, Farg et al (2013) demonstrated that ATXN2 

interacts with FUS in a RNA- independent manner. The intermediate poly-glutamine 

expansions promoted the translocation of mutant FUS to the cytoplasm and enhanced ER 

stress, Glogi fragmentation and apoptosis induced by mutant FUS protein . These effects 

may be caused by perturbed vesicle trafficking, another known physiological function of 

ATXN2 (Farg et al., 2013). ATXN2 has been shown to interact with components involved 

in endocytosis (Nonis et al., 2008). Expression of expanded ATXN2 abolishes its normal 

localization to the Glogi complex, triggers Glogi fragmentation and apoptosis (Huynh et al., 

2003). Neuronal viability may be compromised when the proper trafficking of essential 

molecules is disrupted. 

 

1.17.10  UBQLN2 (ALS15) 

UBQLN2 is the only known causal gene for dominant, X-linked ALS. The UBQLN2 P497H 

mutation was first identified in a five-generation FALS kindred with no male-to-male 

transmissions and reduced penetrance in females (Deng et al., 2011). Four mutations, 

P497S, P506T, P509S and P525S, were then identified in a different kindred and it was 

estimated that UBQLN2 mutations account for <1% of FALS. Most mutations are located 

in codons for Proline residues in the characteristic PXX tandem repeat region in the 

intron-less gene. Age of onset of these patients ranges from 16 to 71 years and the 

survival time of female appears to be longer than male (Deng et al., 2011).  

 

UBQLN2 positive skein-like neuronal inclusions were identified in UBQLN2-FALS cases. 

These inclusions are also positive for TDP-43, p62, FUS and OPTN. UBQLN2 positive, 

p62 positive inclusions were also identified in ALS patients without UBQLB2 mutations 

and FTD patients, suggesting ubiquitinopathy is a common feature of ALS/FTD (Fecto 
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and Siddique, 2012). Intriguingly, Brettschneider et al (2012) described a dinstinctive 

UBQLN2 distribution that coincided with the C9orf72 expansion.  

 

UBQLN2 belongs to the Ubiquilin family and has a direct functional link to protein 

clearance. The protein has three domains, including a N-terminal ubiquitin-like domain, 

which binds to proteasome, a variable middle part, and a C-terminal ubiquitin-associated 

domain, which binds to polyubiquitin chains (Fecto and Siddique, 2012). Therefore, the 

widespread localization of UBQLN2 in neuronal inclusions may be explained by the 

hypothesis that UBQLN2 plays a role in targeting ubiquitinated substrates for proteasomal 

degradation. It has also been shown that the C-terminal of TDP-43 interacts with UBQLN2 

in cultured cells and mutant UBQLN2 protein impairs the functions of UPS (Deng et al., 

2011).  

 

1.17.11 SIGMAR1 (ALS16) 

By analyzing shared haplotypes in an autosomal recessive Saudi Arabian ALS family, a 

homozygous missense mutation, causing p.E102Q substitution, in the SIGMAR1 gene 

was found to segregate with disease (Al-Saif et al., 2011). The mutation caused juvenile 

onset (1 to 2 years), slow progressive ALS without cognitive impairments. In addition, 

mutations in the 3’UTR of the gene have been identified in ALS/FTD families in which 

patients have distinct TDP-43 pathology (Luty et al., 2010). SIGMAR1 encodes for a 

sigma-receptor 1, which is primarily expressed in spinal cord motor neurons (Mavlyutov et 

al., 2010). The trans-membranous receptor binds a variety of ligands and functions as a 

modulator for ion channels and ER chaperones. Moreover, SIGMAR1 has been implicated 

in neuroprotection and may suppress accumulation of misfolded proteins in the ER 

(Hayashi and Su, 2007). The p.E102Q mutation changed subcellular localization of the 

protein and enhanced apoptosis (Al-Saif et al., 2011) and, in addition, a 3’UTR variant 

was shown to increase SIGMAR1 expression and relocate TDP-43 to the cytoplasm (Luty 

et al., 2010). Therefore, SIGMAR1 may be related to multiple functional aspects of 

neurodegeneration and the deleterious effects could be mediated through either gain of 

function or loss of function mechanisms.   
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1.17.12  CHMP2B (ALS17) 

Charged multivesicular body protein 2b (CHMP2B) is a gene that has been linked to FTD 

(Skibinski et al., 2005). Parkinson et al (2006) reported CHMP2B mutations in two 

unrelated ALS patients. One patient harbouring a Q206H mutation developed ALS at the 

age of 75 and died at 15 months after onset. There was self-reported family history of ALS 

and no cognitive impairment was noted. Remarkably, autopsy showed LMN inclusions 

that were positive for both ubiquitin and p62/SQSTM1. The other patient, who harboured 

the p.I29V mutation, was a SALS case with a confirmed diagnosis of FTD. Age of onset of 

this patient was 65 years and survival time was 6 years. Subsequent screening identified 

one further mutation, p.T104N, and it was found that most of the carriers presented 

prominent lower motor neuron symptoms. Surprisingly, dementia was not a feature in 

these cases. CHMP2B mutations account for ~1% of ALS (Cox et al., 2010).  

 

CHMP2B is a 213-amino-acid protein containing a Coiled-coil, a Snf-7 and an acidic C-

terminal domains. The yeast orthologue of human CHMP2B, VPS2, is a component of 

Endosomal secretory complex required for transport complex III (ESCRTIII) (Cox et al., 

2010). Transmembrane proteins are degraded through the endosomal pathway, in which 

ubiquitinated substrates to be degraded are firstly contained within vesicles and then 

matured into late endosomes/multivesicular bodies (MVBs). MVB finally fuses with 

lysosomes and this process is facilitated by the ESCRT complexes (Hurley and Emr, 

2006). MVBs also fuse with autophagosomes (Fader and Colombo, 2009). Therefore, 

malfunction of the complexes may result in the build-up of ubiquitinated inclusions. It has 

been reported that CHMP2B is associated with autophagy and the loss of this protein 

causes neurodegeneration (Lee et al., 2007b). In cell models transfected with ALS 

associated CHMP2B mutations, large vacuoles were found and the turnover of LC3, a 

marker of autophagic activity, was inhibited, indicating that the vesicle fusion with 

lysosome and autophagic activity are compromised (Cox et al., 2010).  

 

1.17.13  PFN-1 (ALS18) 

Exome sequencing of FALS cases from two unrelated Caucasian and Sephardic Jewish 

kindred revealed mutations in Profilin 1, PFN1 (Wu et al., 2012). All families with PFN1 

mutations demonstrated dominant inheritance. The patients presented typical ALS and 

the mean of age of onset was 44.8 years. Dementia was not reported. Mutant PFN1 
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gained propensity to form ubiquitinated aggregates, which also contained TDP-43, in cell 

models, suggesting that the mutants may induce TDP-43 aggregation (Wu et al., 2012). 

PFN1 regulates actin polymerization, which is important for the rearrangement of 

cytoskeleton (Theriot and Mitchison, 1993). It has been shown that PFN1 mutations impair 

the actin-binding ability of the protein and reduce neurite growth, which requires normal 

actin dynamics (Wu et al., 2012). It is also noteworthy that PFN1 also interacts with VCP 

(Witke et al., 1998).  

 

Also using Exome sequencing, mutations in the Matrin 3 (MATR3) gene were recently 

identified in ALS families presenting variable phenotypes (Johnson et al 2014). Matrin 3 is 

a RNA binding protein that interacts with TDP-43 and Matrin 3 pathology was identified in 

ALS patients with or without MATR3 mutations.  

 

 

1.18 Sequence analysis and the importance of studying known candidate genes 

in extended cohorts in ALS 

Genotypes of a DNA polymorphism/ variant can be determined by the nature of the 

variant, such as Restriction fragment length polymorphism (RFLP), Amplified fragment 

length polymorphism (AFLP), Single strand conformation polymorphism (SSCP) or DNA 

sequencing. The latter method allows a direct determination of DNA sequences and has 

been widely used for the screening of deleterious genetic variants in human diseases. The 

Sanger sequencing method, which was developed in the 1970s, is an enzyme based 

method relying on the random inhibition of chain elongation in the presence of 

dideoxynucleotides (ddNTPs) [Reviewed by (Strachan, 2011)]. In brief, a DNA template to 

be analyzed is amplified in four parallel reactions; each contains DNA polymerase, a 

single primer, dNTP (all four types of bases) and ddNTP (a single type of base). During 

the reaction, strand elongation is terminated when the ddNTP is incorporated, generating 

a mixture containing fragments of different sizes corresponding to the positions of the 

bases. The ddNTPs are labelled with isotopes and the sequence is finally determined by 

electrophoresis, in which four different lanes are used for the four reactions. In automated 

Sanger sequencing, the ddNTPs are labelled with fluorescent dyes with different emission 

lengths, and, therefore, all reactions can be separated in a single electrophoresis lane, 

allowing better efficiency.  
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Massively parallel DNA sequencing, also known as the Next generation sequencing 

(NGS), allows rapidly generating massive amount of sequencing data. NGS relies on 

detecting signals generated during the incorporation of bases, i.e. sequencing-by-

synthesis, instead of the separation of DNA fragments. In most NGS platforms, the DNA 

templates are fragmentized, attached to an adapter sequence which allows non-specific 

amplification, and clonally amplified via emlusion PCR or Solid-phase amplification 

[Reviewed by (Metzker, 2010)]. In commonly used platforms such as Illumina, the 

sequencing chemistry is based on Cyclic reversible termination (CRT). The DNA 

amplification process is terminated after the incorporation of a fluorescently labelled dNTP 

that is chemically modified to stop the reaction. Unlike ddNTP, the modification can be 

reversibly removed. After that, unincorporated dNTPs are removed by washes and the 

fluorescent signal can be detected. At the end of each cycle, the chemical modification of 

dNTP is removed by chemical cleavage allowing the start of the next cycle.  

 

As reviewed above, the identification of DNA mutations has extended the understanding 

of ALS pathogenesis. The Sanger sequencing method was traditionally employed for 

mutation screening in a disease-linked locus inferred by linkage studies using multi-

generation kindred. Such a locus may, however, still contain a large number of genes that 

may need to be prioritized for screening using a candidate gene approach. The difficulty 

has been overcome by NGS-based approaches, such as Whole exome sequencing and 

Deep resequencing, which, indeed, have recently led to the identification of VCP, C9orf72, 

PFN1, ERBB4 and hnRNPA2B1 mutations in ALS. However, in such methods, massive 

amount of genetic variants are generated and additional genetic or bio-informatic 

approaches are often required to identify the candidate variants (Cooper and Shendure, 

2011). For example, linkage studies may be carried out in parallel with NGS in a kindred 

to exclude the variants that are not located within linked regions. Secondly, the deleterious 

effect of the variant may be predicted according to the location and type of the variant as 

well as gene functions. This can be achieved by a number of algorithms in silico (Kircher 

et al., 2014). Thirdly, it is important to show co-segregation of a variant with disease and 

to establish a mutation frequency in different cohorts of cases and controls. Therefore, 

screening of known mutation in larger cohorts is almost always necessitated.  
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Sanger sequencing remains the method of choice for the screening of known candidate 

genes in extended cohorts or novel genes that are strongly implicated in disease. In an 

effort to define genetic causes of all families in our FALS cohort (Section 1.19), we 

carried out Sanger sequencing on two known ALS candidate genes, VCP and SQSTM1, 

in our FALS cohort. Both genes are of particular functional interests as they are implicated 

in the maintenance of ER proteostasis which is disturbed in ALS (Hetz and Mollereau, 

2014). VCP/p97 plays a role in extracting misfolded proteins from the ER to cytosol during 

ERAD, autophagy and nuclear transport and VCP mutations were identified in ALS with or 

without Inclusion body myopathy, Paget’s disease and Frontotemporal dementia 

(IBMPFD). Some or all of these symptoms were found to be manifest in kindred with VCP 

or hnRNPA2B1 mutations and, therefore, a term Multisystem Proteinopathy (MSP) has 

been recently adopted to describe the spectrum of disease (Benatar et al., 2013; Kim et 

al., 2013). On the other hand, SQSTM1/p62 is involved in targeting the misfolded proteins 

for autophagic degradation and SQSTM1 mutations were independently identified in ALS 

and Paget’s disease of bone as well as kindred presenting with both disorders, supporting 

the notion that ALS and PDB may share a common mechanism.  
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1.19 Aims of study  

(1) In view of the importance of defining causal genes in the classification and 

understanding of disease mechanism of ALS, we aim to define genetic causes of all 

families from the Imperial College FALS (IC-FALS) cohort. (2) We also sought to identify 

genetic risk factors and modifiers for FALS and SALS using association studies and (3) 

characterize VNTRs in novel candidate genes for ALS.  

 

1.19.1 Characterizing known genes in the IC-FALS cohort: Sequence analysis 

and Southern Blot 

A total of 208 unrelated kindred have been recruited to this study, predominantly of British 

descent from the UK. Most of these families have confirmed diagnosis of ALS with DNA 

available for screening but others have a family history but lack DNA samples. Extensive 

linkage and FALS mutation screening has been completed with 134 well documented 

kindred. Investigation of the IC-FALS cohort had previously led to the identification of 

mutations in TARDBP (Sreedharan et al., 2008), DAO (Mitchell et al., 2010), VAPB (Chen 

et al., 2010) and FUS (Vance et al., 2006). Defining the mutations present in the cohort is 

important for the understanding of genetic causes of ALS and their prevalence in the UK. 

Screening for mutations in identified FALS genes in the IC-FALS cohort allowed the 

mutation frequencies of the following genes to be established: SOD1 (19.0 %), TARDBP 

(4.5%), FUS (2.2%), VAPB (0.8%) and DAO (0.8%) in 134 kindred. This cohort has more 

recently also been screened for the C9orf72 GGGGCC expansion using Repeat-primed 

PCR method and it was shown that 31.3% of kindred in this cohort are positive for the 

expansion. Thus, 41.4% of this cohort was of unknown status. In this project, 98 IC FALS 

kindred were investigated which lacked mutations in SOD1, FUS, TARDBP, VAPB or 

DAO and these consisted of 42 C9orf72 positive kindred identified after the start of this 

project together with 56 kindred lacking known mutations. Additional kindred were 

included during the course of the study. 

 

To further clarify mutation frequencies and genotype-phenotype relationships in the IC-

FALS cohort lacking mutations in the SOD1, TARDBP, FUS, VAPB and DAO genes, we 

carried out sequence analysis of coding regions in two known ALS-causing genes, VCP 

and SQSTM1. Mutations in these genes are found in ALS and Paget’s disease of bone 

(PDB) and play roles in the clearance of protein aggregates. Exons harboring most known 
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mutations, i.e. Exons 1, 2, 3, 5, 6, 7, 10, 13, 14, 17, and the 5’ and 3’ UTRs, of the VCP 

gene and all 8 coding exons of the SQSTM1 gene were screened using Sanger 

sequencing. A novel small hexanucleotide expansion in the 5’ UTR of the VCP gene and 

a novel coding mutation in the SQSTM1 gene were identified. Our results also show the 

coexistence of ALS and PDB in SQSTM1 kindred. (Chapter 3) 

 

Although the IC-FALS has been screened for the C9orf72 expansion using the Repeat-

primed PCR method, the sizes of expansion need to be characterized. We aimed to 

optimize a non-radioactive Southern’s blot protocol for the detection of the sizes of 

expansion in FALS patients that are known to be positive, and investigate their 

relationship with phenotypes of disease. Interim results of this project are presented in 

Chapter 7. 

 

1.19.2 Association studies 

Our next aim was to carry out Single nucleotide polymorphism (SNP) association studies 

to investigate genetic risk factors and disease modifiers that may be present in the IC-

FALS and IC-SALS cohorts. The IC-SALS cohort consists of UK ALS patients lacking a 

family history of ALS collected within the Imperial College Healthcare Trust. Using a 

candidate-gene-approach, we prioritized SNPs in two genes functioning in protein quality 

control, P4HB and NPLOC4, located at the telomeric region of Chromosome 17. The 

SNPs were genotyped using restriction digest, which were confirmed by sequencing, or 

Competitive Allele Specific PCR (KASP™) Service carried out by LGC genomics, UK. The 

SNPs were tested for allele, genotype, haplotype associations and disease phenotype 

correlation, i.e. age of onset, disease duration and site of onset. Our results indicate that 

P4HB gene is a risk factor and modifier of FALS, whereas the NPLOC4 gene confers risk 

of SALS (Chapter 5). 

 

1.19.3 Characterization of VNTR length in candidate genes for ALS 

The last aim of this study was to investigate novel disease causing genes in ALS. Variable 

number tandem repeats (VNTR) has been associated with a variety of neurodegenerative 

conditions including ALS and we investigated whether VNTR length from a group of 

candidate genes was associated with ALS. 20 VNTRs from 19 genes, known to be 

expressed in the human spinal cord, located close to SNPs that are associated with ALS 
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or implicated in the pathogenic mechanism of disease were characterized in this study. 

Using PCR and electrophoresis, we investigated whether any products indicative of 

abnormal expansions existed in the IC-FALS cohort. One of the candidates, HSPB8, 

which previously showed altered expression in SALS, was further investigated in the IC-

SALS cohort. The effects of the HSPB8 repeat on gene expression, which has been 

previously characterized, and disease phenotype was investigated. Our results show no 

abnormal expansion indicative of repeat instability in FALS. However, it was shown that 

long alleles in the HSPB8 repeat are risk factors for SALS. In addition, the allele 

frequencies of the NIPA1 repeat, which has been previously shown to be associated with 

FALS, was further characterized and confirmed in this study (Chapter 6).  

 

 

-END OF CHAPTER 1- 
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Chapter 2 
 

Methodology and Materials 

 

 

2.1 Subjects 

The study population comprise ALS cases and controls recruited from Imperial College 

NHS Healthcare Trust clinics as summarized in Figure 2-1. All ALS patients were 

diagnosed according to the El Escorial criteria (Table 1-1) which requires presentation 

with both upper motor neuron and lower motor neuron symptoms (Brooks et al., 2000).  

 

As summarised in Section 1.19, The IC-FALS cohort contained a total of 208 FALS 

kindred and full screening for known FALS mutations was complete for 134 FALS kindred. 

Using DNA from index cases, each from an unrelated kindred, 27.3% of these kindred 

were positive for mutations in SOD1, FUS, TARDBP and DAO genes (Figure 2-1). The 

remaining 72.7% comprised the main body of subjects used for initial mutation analysis 

(VCP gene) performed prior to the discovery of the C9orf72 expansions. The screening of 

the SQSTM1 gene and VNTRs was carried out using C9orf72-negative cases (41.4% of 

characterised cohort of 134 FALS kindred). The C9orf72 positive cases were used for 

measuring expansion sizes (Chapter 7). 

 

The IC-SALS cohort consisted of 120 Sporadic ALS cases obtained from the Imperial 

College NHS Healthcare Trust clinics. In addition, a second cohort was used for some 

studies, the K-SALS cohort, and this contained 192 Sporadic ALS cases obtained from 

the King’s college NHS Healthcare Trust clinics through collaboration with Professor 

Christopher Shaw and colleagues. These cases were investigated in the P4HB and 

NPLOC4 association studies (Chapter 5). The IC-Control cohort contained neurologically 

healthy individuals collected from East Anglian (78 individuals), East Yorkshire (61 

individuals) and London populations (150 individuals). All controls were of UK ethnicity. 

Genotype data from the European subgroup (EUR) of the 1000 genome project 

(http://www.1000genomes.org/) included 98 Toscani from Italy (TSI), 93 Finnish from 

Finland (FIN), 89 British form England and Scotland (GBR), 14 Iberian from Spain (IBR) 

http://www.1000genomes.org/
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and 85 Utah residents with Northern and western European ancestry (CEU); and the 

European American subgroup from the NHLBI Exome sequencing project 

(http://evs.gs.washington.edu/EVS/) were also included as controls. Stratification tests 

between controls were carried out as described for each study.  

 

 

Figure 2-1. Summary of subjects in this study. 

 

Frequencies of known mutations in the IC-FALS cohort are shown in the upper panel. 

Controls were obtained from the UK and public databases as indicated. 

 

  

http://evs.gs.washington.edu/EVS/
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2.2 DNA Extraction 

2.2.1 DNA extraction from whole blood or the buffy coat layer 

DNA used for genotyping and sequencing was extracted from whole blood or the buffy 

coat layer, which contains leukocytes, using a QIAamp® DNA Mini Kit (Qiagen, UK) 

according to protocols provided by the manufacturer. In summary, cells were first lysed to 

release DNA, 200μl of whole blood/ buffy coat was incubated with 20μl QIAGEN® 

Protease and buffer AL for 10 minutes at 56oC. The mixture was briefly centrifuged to 

bring down evaporated drops, after which 200μl 96-100% ethanol was added to the 

mixture and vortexed for 15 seconds. To bind DNA, the mixture was applied to a QIAmp 

Mini spin column and centrifuged for 1 minute at 6,000 g (8000 rpm). The filtrate was 

discarded. A wash was carried out using 500μl of buffer AW1 which was added to the 

column and centrifuged for 1 minute at 6,000 g. The filtrate was discarded and the column 

was placed in a new collection tube. 500μl of buffer AW2 was then added to the column 

and the column was centrifuged for 3 minutes at 20,000 g (14,000 rpm). The filtrate was 

discarded and the column was placed in a new collection tube. To elute DNA from the 

filter, 200μl of ddH2O was added to the column and incubated for 2 minutes, after which 

the column was centrifuged for 1 minute at 6,000 g.   

 

2.2.2 DNA purification from agarose gels 

To isolate DNA from Agarose gels, desired bands were excised using a scalpel or 

excising tips under UV light and purified using a QIAGEN gel extraction kit (QIAGEN, UK) 

according to the Manufacurer’s instructions. To do this, the excised gels were incubated 

with 3 times gel volumes (1g = 100μl) of solubilisation buffer QG for 10 minutes at 50oC. 

After the gels are completely dissolved, 1 gel volume of isopropanol was added to the 

mixture. The mixture was vortexed and applied to the QIAquick column and centrifuged 

for 1 minute at 17,900 g. The filtrate was discarded and, for washing, 750μl of washing 

buffer PE was added to the column, which was then centrifuged for 1 minute at 17,900 g. 

The filtrate was discarded and the column was centrifuged for 1 minute at 17,900 g again 

to remove residual washing buffers. To elute DNA, the column was placed in a new 

collection tube. 50μl of ddH2O was added to the column, incubated for 2 minutes and 

centrifuged for 1 minute at 17,900 g. 
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2.2.3 Total RNA extraction from blood 

To investigate whether DNA variants affect expression or cause alternative splicing, we 

performed RT-PCR using RNA extracted from patient’s whole blood or buffy coat 

samples, which were stored at -80oC. RNA was extracted using TRI Reagent® (SIGMA, 

UK) and Direct-zol TM RNA MiniPrep Kits (ZYMO Research, USA).  

 

For each extraction, 100μl of whole blood/ buffy coat was mixed with 300μl of TRI 

Reagent®, vortexed and incubated for 5 minutes at room temperature. The mixture (400μl) 

was then mixed and vortexed with 400μl of absolute alcohol and loaded onto the Zymo-

Spin IIC Column, which was placed in a collection tube. The tube was centrifuged for 1 

minute at 16,000 g, allowing RNA binding to the column. Filtrate was discarded. To pre-

wash, 400μl Direct-zol RNA PreWash was added to the column and centrifuged for 1 

minute at 16,000g. Filtrate was discarded and the pre-wash was repeated once more. To 

wash, 700μl of RNA Wash Buffer was added to the column and centrifuged for 1 minute at 

16,000 g. Filtrate was discarded. After that, the tube was centrifuged for an additional 2 

minutes to ensure removal of washing buffers. To elute RNA, the column was placed into 

a new tube and 25μl of RNase-free water was added, incubated for 2 minutes and 

centrifuged for 1 minute at 16,000 g.  

 

The eluted RNA was immediately used for measuring of concentration and reverse 

transcription. Unused RNA was stored at -80oC. 

 

 

2.3 Polymerase chained reaction (PCR) 

Desired DNA fragments were amplified from extracted genomic DNA for genotyping using 

PCR. PCR Primers flanking ~100 base pairs at either end of the target sequence were 

designed using the PRIMER 3 ( http://frodo.wi.mit.edu/primer3 ) program. The optimum 

length of primers and PCR products used were 18 to 22 bps and less than 700 bps 

respectively. No more than 4 identical consecutive nucleotides were allowed in the 

primers and the maximum difference in melting temperatures (Tm) between forward and 

reverse primers was 5oC. Purchased Primers (Invitrogen, UK; SIGMA, UK) were diluted to 

a stock concentration of 10µM and stored at -20oC. The details of primers are specified in 

the methodology of each project.  

http://frodo.wi.mit.edu/primer3
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Table 2-1. Preparation of PCR reactions. 

Reagents 
Stock 

Concentration 

Final 

Concentration 

Volume Needed 

for Single 

Reaction. 

Buffer 5X 1.00 X 6.00μl 

Mg2+ 25 mM 1.50 mM 1.80μl 

dNTPs 10 mM 0.10 mM 0.30μl 

Forward Primer 10 μM 0.50 μM 1.50μl 

Reverse Primer 10 μM 0.50 μM 1.50μl 

PTq 5 U/μl 0.02 U/μl 0.12μl 

Template 10ng/μl 0.5 ng/μl 1.5μl 

Water 

  

17.28μl 

Total Volume 

  

30.00μl 

Components of reagents used for a standard single PCR reaction. The stock dNTP mix 

contained 10mM of each nucleotide: dATP, dCTP, dGTP, dTTP. 

 

PCR reactions were carried out in a standard 30μl solution containing 1X buffer, 1.5mM 

Mg2+, 0.1mM dNTP, 0.5μM forward primers, 0.5μM reverse primers, 0.05U/μl GoTaq® 

DNA Polymerase (Promega, UK) and 0.5ng/μl templates (Table 2-1).  

 

A standard 35 cycles was used for most reactions. Annealing temperature (Tann) was 

taken as being 5oC below then melting temperature (Tm). PCR results were visualized by 

separating an aliquot (8μl) of reaction mix in 2% agarose gels. If further optimisation was 

required, temperature gradient PCRs were carried out, in which 12 reactions were cycled 

under different Tann ranging from 50 to 65°C. 

 

PCRx Enhancers System (Invitrogen, UK) was used in optimizing unsuccessful PCRs.  

7-deaza-dGTP (THERMOPOL®, New England Biolabs, UK), which lowers melting 

temperatures of the G-C duplexes, was used for the amplification of GC rich regions. 

 

PCRs were carried out in thermal cyclers (Techne, UK) using the following cycles:  

Initial denaturation: 94°C for 5 minutes. For each cycle : Denaturation step (94°C) for 30 

seconds, Annealing step (Tann°C) for 30 seconds, Extension step (72°C) for 45 seconds 

Final elongation: 72°C for 5 minutes. 
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2.4 cDNA Synthesis and Endpoint RT-PCR 

To perform RT-PCR, cDNA was synthesized from RNA using Cloned Avian 

Myeloblastosis Virus (AMV) Reverse Transcriptase (AMV-RT) immediately after RNA 

extraction, after which the cDNA was used as template for an ordinary PCR reaction as 

described in Section 2.3. Random hexamers were used as primers for the reverse 

transcription. The Cloned AMV First-Strand cDNA Synthesis Kit (Invitrogen, UK) was 

used. 

 

For each reaction, 8μl (~24ng, after measurement) of RNA was mixed with 1μl of random 

hexamers (50ng/μl), 2μl of dNTP (10mM) and 1μl of RNase-free water, giving a final 

volume of 12μl. The mixture was then incubated for 5 minutes at 65oC for denaturation. 

After that, the tube was vortexed, placed on ice and mixed with a separate 8μl mixture 

containing 4μl of cDNA synthesis buffer (5X), 1μl of DTT (0.1M), 1μl of RNaseOUTTM 

(40U/μl), 1μl of RNase-free water and 1μl of Cloned AMV-RT (1μl). Next, the mixture was 

placed in a preheated thermal cycler and incubated for 10 minutes at 25oC, followed by 

50oC for 50 minutes. Reaction was then stopped by heating for 5 minutes at 80oC and 

proceeded for ordinary PCR reaction or stored at -20oC.   

 

 

2.5 DNA Sequencing 

2.5.1 DNA Purification 

Prior to sequencing, DNA was purified from the PCR mixture using SureClean (Bioline, 

UK) or an Exonuclease I- Shrimp Alkaline Phosphatase (Exo-SAP) method to remove 

proteins, primers and dNTPs from the mix. 

 

SureClean is a column-free protocol allowing the precipitation of nucleic acids ≥ 75 bp. 

For each clean-up, 20μl of SureClean was added to 20μl of PCR products and incubated 

for 10 minutes. The mixture was centrifuged for 40 minutes at 4000 rpm and supernatant 

was removed. Then the sample was resuspended and participated with 40μl of ethanol, 

centrifuged for 40 minutes at 4000 rpm again, after which alcohol was removed by 

centrifuging the tube/ plate upside down for 1 minute at 400 rpm. Finally, the platelet was 

resuspended in 10μl of H2O and ready for sequencing. 
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In the Exo-SAP method, excess primers were removed by exonuclease I and dNTPs were 

removed by shrimp alkaline phosphatase. For each clean-up, 10μl of Exo-SAP mix 

containing 0.025μl exonuclease I, 0.25μl of shrimp alkaline phosphatase and 9.725μl of 

distilled water was added into 30μ l of PCR reaction mix. The 40μ l mixture was 

incubated at 37oC for 30 minutes and then 95oC for 5 minutes in a PCR machine. A 10μl 

aliquot was then withdrawn for sequencing and the remainder was stored at -20oC. 

 

2.5.2 DNA Sequencing 

DNA sequences were obtained using traditional Sanger sequencing method, which has 

been reviewed in Section 1.18. The reactions were carried out using the automated 

3730xl DNA Analyzer system (Applied Biosystems, UK) at the Imperial College genomics 

laboratory (http://genomics.csc.mrc.ac.uk/). The sizes of PCR products used for 

sequencing were optimized to 200-600 bps. For each sequencing reaction, 10μl of 

cleaned PCR products, as described above, was mixed with 1μl (6.4 pmol) of forward 

primer or reverse primers for sequencing. The chromatograms were visualized using 

Codon Code Aligner (http://www.codoncode.com/aligner/) and Seqdoc program 

(http://research.imb.uq. edu.au/seqdoc/ ) (Crowe, 2005).   

 

 

2.6 Restriction digest  

In addition to DNA sequencing, genotypes of DNA variants can be determined using 

restriction fragment length polymorphism (RFLP) analysis. Restriction endonucleases, or 

restriction enzymes, are enzymes that cleave DNA at or near a specific sequence 

recognized by the enzyme, also known as restriction sites. When an allele of a DNA 

variant creates a restriction site with flanking sequences, it is possible to tell whether this 

allele is present using enzymes recognizing that site. The cleaved products can be 

visualized in agarose gel electrophoresis. 

 

Restriction enzymes, identified using NEBCUTTER (http://tools.neb.com/NEBcutte r2), 

discriminating different alleles of DNA variants were used for Single nucleotide variant 

(SNV) genotyping in this study. The desired fragments was first amplified in PCR (Section 

2.3), after which a 10μl mixture containing 1X Buffer, 1 to 3 U restriction enzyme and 

distilled water was added to digest each 30μl (<1 μg) of PCR products. Compatible 

http://genomics.csc.mrc.ac.uk/
http://www.codoncode.com/aligner/
http://tools.neb.com/NEBcutte%20r2


 

 

79 

 

buffers and digesting temperatures were chosen according to instructions by the 

manufacturer (New England Biolabs, UK).The addition of 100 µg/ml of Bovine Serum 

Albumin (BSA) was required for some enzymes. Conditions used for each digest will be 

specified in the methodology sections of the project. The digestion of genomic DNA used 

for Southern’s blot will be mentioned in Section 2.10.  

 

 

2.7 Electrophoresis 

2.7.1  Agarose gel electrophoresis 

The casting of agarose gels and performing electrophoresis were carried out using routine 

laboratory practices for visualizing PCR and restriction digest results. Agarose is a 

polysaccharide polymer material that crosslinks to form matrices containing channels that 

allow the passage of DNA. When electric field is applied, the negatively charged DNA 

molecules in the agarose gel migrate to the positively charged anode with a rate 

proportional to their sizes. The optimum percentage [w/v] of agarose used depends on the 

sizes of fragments to be analysed (Table 2-2). Ethidium bromide, a DNA dye that 

becomes fluorescent under UV lights, was used for the staining of DNA, and, after 

electrophoresis, the DNA fragments can be visualized in a UV transilluminator.  

 

To prepare a 2% agarose gel, which was routinely used in this study, 11g of agarose 

powder (ELECTRAN® , VWR, UK) was dissolved in 500ml of 0.5X TBE buffer and 

microwaved for 7 minutes. The mix was cooled down in water and 10μl of Ethidium 

Bromide was added when the temperature decreased to 60oC and mixed. The mix was 

then poured into the gel casting tank and remained in room temperature for 1 hour.  

 

Samples (100-1000 bps) were then loaded and electrophoresied at 210V (7V/cm) for 1 

hour. 10μl of ethidium bromide was added to the anode buffers prior to electrophoresis. A 

gel documentation system (Geldoc) was used to visualize the result. PhiX-174-HaeIII 

(Thermo scientific, UK) was used as the DNA marker in the standard gel. 
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Table 2-2. Concentration of agarose gels used for the separation of DNA 

fragments of different sizes as summarized by (Barril, 2012). 

% Agarose [w/v] Fragment Size (bp) 

0.2 5000-40000 

0.4 5000-30000 

0.6 3000-10000 

0.8 1000-7000 

1 500-5000 

1.5 300-3000 

2 200-1500 

3 100-1000 

 

 

To discriminate between small differences in fragment sizes, a long electrophoresis was 

carried out using 2.8% agarose gels. This method was able to detect down to 3 bps 

difference in fragment sizes and has been applied to analysis of short tandem repeats or 

indels in this study. To prepare the gel, 14g of agarose powder was microwaved at 800W 

for 10 minutes in 500 ml TBE. 10μl of ethidium bromide was added when the gel was 

cooled down to 60oC and 10μl of ethidium bromide was added in the anode buffer prior to 

electrophoresis. Electrophoresis was carried out at 140V (4.5V/cm) for 16 hours. A 10 bp 

DNA ladder (Invitrogen, UK) was used as a marker for long-electrophoreses. 

 

 

2.7.2 Denaturing Polyacrylamide Gel Electrophoresis (PAGE) 

While larger DNA fragments can be resolved in agarose gels, polyacrylamide gels enable 

better resolutions down to single base pair differences in size. Acrylamide gel is a 

polymerized matrix containing acrylamide and bisacrylamide molecules. The 

polymerization of acrylamide takes place in the presence of bisacrylamide, a cross-linking 

agent that binds two acrylamide molecules when initiators, such as ammonium 

persulphate and TMEMD, are added. The ratio of acrylamide to bisacrylamide is typically 

19:1 and different concentrations of acrylamide are selected depending on fragment sizes 

(Table 2-3). A denaturing polyacrylamide gel, in addition, also contains a DNA denaturant 

that keeps the DNA single-stranded during electrophoresis and avoids the formation of 

heteroduplexes. Therefore, compared to agarose gel electrophoresis, a denaturing PAGE 
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was preferably used for the accurate sizing of short tandem repeats and small indels and 

urea was used as the denaturant in this study.  

 

 

Table 2-3.  Formulations for commonly used gel percentages and the amount of 

solutions used for each 50ml gels (adopted from national diagnostics). 

% Monomer [w/v] Fragment Size (bp) 

4 >200 

5 80-200 

6 60-150 

8 40-100 

12 10-50 

20 <20 

 

 

In this study, gels were cast using a 50ml 4% Urea polyacrylamide gel (SequaGel 

UreaGel System, National Diagnostics, UK). For each gel, 8ml of UreaGel Concentrate 

(237.5g/L acrylamide, 12.5g/L methylenebisacrylamide, 7.5M urea), 37ml of UreaGel 

Diluent (7.5M urea) and 5ml of UreaGel Buffer (10X TBE and 7.5M urea) were mixed in a 

measuring cylinder. After that, 20μl of TMEMD and 400μl of freshly prepared 10% 

ammonium persulphate was added into the mix. The cylinder was then sealed with 

parafilm and mixed by turning upside down. The mix was then poured into the 1mm space 

between the glass plates of the casting setup as shown in Figure2-2, 1. The gel was left 

overnight for polymerization. 

 

Prior to loading, the samples were denatured using a formamide loading buffer containing 

95% formamide (Applied Biosystems, UK), 0.9μg/ml Xylene Cyanol and 0.005M EDTA. 

Equal volume of samples and loading buffer were mixed and incubated at 99oC for 10 

minutes, and then chilled on ice. The PAGE apparatus was placed on a leveller. Both 

anode and cathode chambers of the PAGE apparatus were filled with 1XTBE. The gel 

sandwich was placed into the PAGE apparatus (Figure 2-2, 2-8) and pre-electrophoresed 

at 15W for 30 minutes, which allowed the gel to be warmed up to ~50oC. Blow out the 

wells, which were filled with urea, of the pre-heated gel with syringe and needle. 
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After that, depending on the DNA concentration, 1-10μl (100-1000ng) of the loading mix 

was loaded into each well. Samples were kept on ice when loading. The gel was 

electrophoresed at 15W for 3 hours and 45 minutes to give the maximum resolution of 

200-300bp products. The time needed can be estimated by the migration of Xylene 

cyanol, whose migration rate is approximately equivalent to that of a 155bp fragment in a 

4% gel.  

 

When finished, the setup was dismantled and the gel was detached from the glass plates 

by soaking in distilled water. The gel was placed in a UV-transparent container. 50ml of 

1X TBE and 5μl of 10,000X SYBR Gold Nucleic Acid Gel Stain (Invitrogen, UK), making a 

1X solution, were added into the container. The gel was incubated in the dark for 30 

minutes and visualized in a UV trans-illuminator.  
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Figure 2-2. Setup of Polyacrylamide gel electrophoresis (PAGE). 

 

1: Assembly of the acrylamide gel sandwich; 2: the PAGE apparatus; 3: A water-resistant 

sponge isolating the cathode chamber; 4: Cathode buffer (1X TBE); 5: Anode buffer (1X 

TBE); 6: leveller; 7: Anode cable; 8: Cathode cable. 
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2.8 SNP Genotyping using Kompetitive Allele Specific PCR (KASPTM) assay 

KASP is a commercially available service allowing SNP genotyping based on competitive 

allelic specific PCR. The modified PCR reaction utilizes a reverse primer and two forward 

primers that are labelled with different fluorescent dyes (FAM, HEX or ROX). Each 

forward primer is complementary to one allele of a SNP and is initially bound to a 

quencher that inactivates fluorescence signals. Upon denaturation, the labelled primers 

are released from the quenchers and take part in PCR reactions that exponentially 

generate fluorescent signals representing different genotypes. Genomic DNA was 

prepared following the specifications of sample quantity and packaging, and genotyping 

was carried out by LGC genomics, Middlesex, UK, 

(http://www.lgcgenomics.com/genotyping/kasp-genotyping-reagents/). 

 

 

2.9 Fragment analysis 

Fragment analysis is a well-established method for analysing microsatellites and has been 

widely applied in linkage analysis and DNA fingerprinting. In principle, DNA fragments are 

amplified using a fluorescently labelled primer and separated in capillary electrophoresis. 

Genotypes of the microsatellite are then discriminated by the relative positions of 

fluorescent signals in the electropherogram. In this study, fragment analysis was 

performed on a dinucleotide TG repeat in the NPLOC4 gene (Section 5.3). The 

electrophoresis was carried out using an ABI 3730x1 DNA Analyzer at the Imperial 

College Genomic Core Facility.  

 

To prepare samples, we first optimized PCR conditions, as described in Section 2.3, 

using a 6-FAM labelled forward primer. 1μl of PCR products and 10μl of 95% Hi-Di 

Formamide (Applied Biosystems,UK) were aliquot and mixed in a well of 96-well PCR 

plate. The plate was wrapped in aluminium foil and sent for analysis. Electropherograms 

were visualized in GeneMapper® software v4.1.  

 

 

2.10 Southern Blot 

Southern blotting is a technique used to detect DNA of a specific sequence in a sample. 

The technique can be used to analyse DNA from different sources such as PCR products, 

http://www.lgcgenomics.com/genotyping/kasp-genotyping-reagents/
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cloned fragments and genomic DNA. In principle, the samples are first fragmented into 

desired fragments using restriction digest and separated by size in agarose gel 

electrophoresis. DNA molecules in the gel are then denatured and transferred onto a 

nylon membrane in the presence of capillary force, which can be created by a stack of 

paper towels. After that, the membrane, on which the DNA fragments attach, is hybridized 

with an oligonucleotide DNA probe complementary to the desired sequence and labelled 

with materials that can be detected in autoradiography (32P) or chemiluminescent assays 

(Digoxigenin). Southern blot protocols using both detection methods are summarised 

below.  

 

2.10.1 Sample preparation and electrophoresis 

DNAs used for southern blot were extracted from whole blood or lymphoblastoid cell line 

as described in Section 2.2.1. 5-30μg of DNA was concentrated to a volume of ~30μl 

using a centrifuging concentrator (Eppendorf 5301) or Ethanol precipitation. To perform 

ethanol precipitation, 1/10 volume of 3M Sodium acetate, pH 5.2, was added to the 

sample. The tube was vortexed and 2 to 3 volumes of 100% ethanol was added, followed 

by vortexing. The mixture was placed on ice for 20 minutes, followed by centrifugation for 

15 minutes at maximum speed. After that, supernatant was removed and 1 volume of 70% 

ethanol was added into the tube. The tube was centrifuged briefly and supernatant was 

removed. The tube was airdried for 3 to 5 hours at room temperature and pellet was 

reconstituted to desired volume using distilled water. 

 

50U of XbaI, or with 75U of EcoRI (New England Biolabs, UK), buffer and water were 

added, making a final volume of 50μl and incubated at 37oC overnight. After adding 5μl of 

loading dye samples were loaded into every other lane in an 8mm-thick 0.8% agarose gel. 

The gel was 14.5cm x 12cm and we used a 7mm wide comb (12 samples per gel) so the 

50μl samples can be fully contained.  

 

Different markers were used depending on the detection method. For 

chemiluminenescent assay, 8μl of DIG labelled DNA Molecular Marker III (10ng/μl) and 

VII (10ng/μl) (Roche, UK) were mixed with 3μl of 6X loading dye and loaded into the first 

two lanes respectively. For radioactive detection, 1μl of 1kb plus DNA ladder (Stock: 

250ng/μl) (Invitrogen, UK) was used. The gel was then electrophoresed in 1X TBE buffer 
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at 30V (1.5V/cm) for 16 hours. Ethidium bromide was added to the anode before the run. 

This is suitable for an appropriate migration of bands >1kb in a 14.5 cm gel. For a better 

separation, a voltage of 3-4V/cm can be used but bands <2kb would not be detectable. An 

image was kept after the run.  

 

2.10.2 Preparation for DNA transfer 

Depurination was an optional step allowing random DNA fragmentation and was used for 

the transfer of larger (>3kb) DNA fragments. The gel was placed in large volumes of 

depurination solution (0.25M HCl) and rocked for 10 minutes. The gel was rinsed 3 times 

in distilled water afterwards. Bromophenol blue (BPB), which turns yellow in acidic 

solutions, can be used as a pH indicator for this process.  

 

The gel was then placed in large volumes (~500ml) of denaturation solution, which 

contained 1.5M NaCl and 0.4M NaOH, for 30 minutes on a rocker mixer. Reagents were 

changed every 15 minutes. After this, the gel was neutralized in neutralization solution, 

which contained 1.5M NaCl, 1M Tis-HCl (pH7.4) and placed in ~500ml of neutralization 

solution for 15 minutes on the rocker mixer.  

 

2.10.3 Assembling the blot 

In this stage the denatured DNA was transferred onto a positively charged nylon 

membrane (Hybond-XL). First, the reservoir of the blotting apparatus was filled with 

20XSSC. To prepare the wick, trim a piece of 3M Whattmann filter paper, place it on the 

plastic platform and soak both ends in the buffer. After that, to assemble the gel sandwich, 

trim 4 sheets of 3M Whattman into the size of the gel, soak in 20XSSC and place 2 of 

them on the wick. Place the gel on the Whattman papers with the flat surface (sample 

wells) facing up. Trim a piece of Hybond-XL and and carefully place it on the gel without 

moving after making contact and place the other 2 sheets of pre-wet Whattman papers on 

top of the Hybond-XL. In order to prevent direct contact between the wick and the paper 

towels, surfaces surrounding the gel were covered using saran wrap. A pile, 

approximately 10 cm height, of paper towels was placed on the gel sandwich. Finally, a 

~500g weight was placed on the pile of paper towels. The transfer was left undisturbed 

overnight. Details of the assembly are shown in Figure2-3. 
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Figure 2-3. Setup of Southern transfer. 

 

1: The gel sandwich; 2: A 500g weight; 3: Stack of paper towels; 4: Transfering buffer 

(20X SSC); 5: Saran wrap preventing direct contact between the paper towl and the wick. 
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2.10.4 Dissembling the blot and preparation for hybridization 

The blot was dismantled after overnight transfer. The paper towels and saran wrap were 

removed and the gel sandwich was placed on clean filter paper with the membrane side 

facing down. The gel was kept in place, the well positions on the membrane were marked 

with a pencil and the gel was removed. The successfulness of the transfer was confirmed 

by visualizing the gel in a UV transilluminator confirming no DNA was left in the gel and 

the dye could be seen on the membrane indicating a successful transfer.  

 

Next, the membrane was washed in 2X SSC at room temperature for 5 minutes on the 

rocker mixer. The membrane was placed with the DNA side facing up, on a clean filter 

paper to air dry for 15 minutes. The membrane was placed in a UV cross-linker and cross-

linked at 120,000 microjoules/cm2. At this stage, the membrane could be stored at 4oC in 

a plastic folder or used for hybridization. 

 

2.10.5 Hybridization using Digoxigenin (DIG) labelled probes 

During hybridization, digoxigenin (DIG) labelled DNA probes were denatured and 

incubated with the membrane. The DIG-probes were synthesized using a PCR DIG Probe 

synthesis kit (Roche, UK), in which the probes were synthesized in a PCR reaction using 

DIG-labelled dUTP and a cloned plasmid DNA as template. The reactions were optimized 

using a dNTP mix with DIG-dUTP:dTTP ratio of 1:6, which can be simply prepared by 

mixing equal volumes of vial 2 (ratio of 1:3) and vial 4 (unlabelled dNTP) in the Kit. The 

labelling reactions were carried out as following described in Table 2-4 and the yield was 

checked by electrophoresis. Generally, migration of labelled probes is slower than the 

unlabelled products and the yield is decreased when a high DIG-dUTP:dTTP ratio is used. 

To prepare the hybridization buffer, 64ml of distilled water was added into a bottle of DIG 

Easyhyb Granules (Roche, UK) and dissolved by incubating at 37oC for 5 minutes. The 

Easyhyb was then preheated to the hybridization temperature (Topt), which can be 

calculated using the following equations, where Tm is the melting temperature and l is the 

length of the oligonucleotide:  

 

Tm= 40.82 + 0.41(%G+C) – (600/l) 

Topt= Tm- (20~25oC) 
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The hybridization temperature used was 48oC. The membrane was placed in a glass 

bottle, 8ml of Easyhyb and 2ml of Salmon Sperm DNA (Roche, UK) was added and the 

membrane was incubated at 48oC for 3 hours in a rolling hybridization oven. This pre-

hybridization step blocks the membrane for non-specific bindings. Alternatively, the 

incubation can be carried out in a sealed plastic bag, which increases buffer contact and 

prevents drying of the membrane.  

 

 

Table 2-4. Preparation of PCR reactions for the synthesis of DIG-labelled 

Probes. 

Reagents 

Stock  

Concentr- 

ation 

Final 

Concentr-

ation 

Volume needed 

for Single 

Reaction 

Water - - 29.25μl 

PCR Buffer with Mg2+ [vial3] 10X 1X 5μl 

1:6 DIG- dNTP mix  2mM 200μM 5μl 

Forward Primer  10μM 0.5μM 2.5μl 

Reverse Primer 10μM 0.5μM 2.5μl 

Polymerase [vial 1] - - 0.75μl 

Template 10ng/μl 0.5 ng/μl 5μl 

The concentrations of the stock 1:6 DIG-dNTP mix were 2mM dATP, 2mM dCTP, 2mM 

dGTP, 1.65mM dTTP and 0.35mM dUTP. Purified plasmid DNA containing a fragment of 

the probe was used as template. The PCR reactions were carried out at an annealing 

temperature of 55oC. 

 

 

At the end of the pre-hybridization step, the DIG-probe was denatured by incubating at 

95oC for 10 minutes and rapidly cooled on ice. The hybridization buffer was poured into a 

clean falcon tube and mixed with the DIG-probe. The volumes of probe needed depend 

on the size of probe and the yield of labelling. In general, 2 to 10μl of probe (~200ng) is 

needed. The mix was then hybridized with the membrane at 48oC for 16 hours. 

Following the hybridization step, the hybridization buffer was discarded, or stored at -20oC 

and stringency washes were carried out to remove non-specific binding. The membrane 

was treated, with constant agitation, as follow: 

 Low stringency wash: 2XSSC, 0.1%SDS at room temperature for 15 minutes. 
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 Low stringency wash: 2XSSC, 0.1%SDS at 68oC for 15 minutes. 

 High stringency wash: 0.1XSSC, 0.1%SDS at 68oC for 15 minutes. 

 High stringency wash: 0.1XSSC, 0.1%SDS at 68oC for 15 minutes. 

The high temperature steps were carried out in the rolling hybridization oven and 

temperature was monitored at 15 minute intervals. The chemiluminescent detection 

washes are carried out immediately after the washes. 

  

2.10.6 Chemiluminesence detection 

The DIG-labelled probes were detected by anti-DIG monoclonal antibodies conjugated 

with alkaline phosphatase (AP). AP catalyzes its substrates for the emission of visible 

light, which can be captured by X ray films. The membrane was washed and blocked 

using the DIG Wash and Block Buffer Set (Roche, UK) and incubated with Anti-

Digoxigenin-AP Fab Fragments (Roche, UK) as follows: 

 Rinse membrane in 1X Washing Buffer (DIG wash set) at room temperature for 5 

minutes.  

 Blocking: This step blocks non-specific binding sites for the antibody. Incubate the 

membrane in 100 ml 1X blocking solution for 30 minutes. To prepare the solution, 

dilute the maleic acid buffer (10X stock) to 1X with distilled water and dilute the 

blocking solution (10X stock) to 1X using the 1X Maleic acid buffer. 

 Prepare Antibody solution: Centrifuge the antibody solution, which is ready to use, 

for 5 minutes at full speed. Use 1μl of antibody per ml (37.5mU/ml). Mix 40ml of 

the 1X blocking solution with 4μl of antibody taken from the surface.  

 Wash the membrane in the antibody solution at room temperature for 30 minutes 

on the rocker mixer. 

 Discard the antibody solution and wash the membrane in 1X DIG washing buffer 

for 2 x 15 minutes at room temperature on the rocker mixer. 

 Take out the membrane and equilibrate in in 20 ml 1X detection buffer. Place the 

membrane in a plastic folder with DNA side up.  

 Add 0.5-1ml (20 drops) of CDP-STAR (Roche, UK). Close the folder and incubate 

at room temperature for 5 minutes. 

 Finally, squeeze out excess liquid and expose to X ray film for 15 minutes to 6 

hours depending on the strength of signal. 
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The membrane should be kept wet during all procedures to control backgrounds. The 

membrane can be stripped and re-probed after washing in Stripping solution (0.2M HCl, 

0.1% SDS) at 37oC for 2 x 20 minutes under constant agitation. The preparations of all 

stock solutions are listed in Table 2-7. 

 

 

2.10.7 Dot Blot 

Dot blot was carried out to test and optimize for the hybridization conditions of Southern’s 

blot. To do this, DNA samples were denatured in NaOH manually applied onto positively 

charged nylon membrane: 

 Prepare a serial dilution of DNA templates to be blotted.  

 Mix 1μl of template, 1.45μl of 1M NaOH and 0.5μl of 200mM EDTA pH 8.2 

in a microcentrifuge tube, giving a final volume of 2.4μl mixture containing 

0.4M NaOH, 

 Heat denature the mixture at 95oC for 10 minutes, and immediately place it on 

ice.  

 Cut a piece of Hybond N+ membrane (GE) and slowly apply the samples (2.4

μl) onto the membrane. A dye can be used to aid visualizing the samples. 

 UV crosslink the membrane. 

 The membrane can then be processed for pre-hybridization and hybridization 

(Section 2.10.5). 
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2.11 Statistics  

Statistical methods used for each study will be specified in each of the following chapters. 

In general, the power of each study was calculated using G*Power, which calculates 

power based on w (effect sizes): 

  √∑
(     )

 

  
 

,where w is the effect size. p0 and p1 are allele frequencies in unaffected and affected 

cases respectively. Power of study can then be determined as following (Table 2-5).  

 

 

Table 2-5. A combined power heatmap with table of effect size w-Values, for 

different Case/Control MAFs at a=0.05, and a total sample size of 270 subjects. 

 

 
Increase of MAF in Cases 

Control MAF 7% 8% 10% 

50% 0.14 0.16 0.2 

40% 0.143 0.163 0.20 

30% 0.153 0.175 0.22 

20% 0.175 0.2 0.25 

10% 0.233 0.267 0.33 

 

Power <70% 

Power >73% 

Power >85% 

 

 

For SNP analysis, departure from Hardy-Weinberg Equilibrium (HWE) was tested by 

comparing observed and expected genotype frequencies using 2 x 3 Fisher’s test with 1 

degree of freedom. 2 x 2 Fisher’s test, which was used for testing allelic association, was 

implemented using PLINK Program. 2 x 3 Fisher’s test, which was used for testing 

genotypic associations, was implemented using the fisher.test() function in R (Appendix I). 

Models of associations were determined by comparing disease penetrance between 

individuals of different genotypes (Table 2-6) (Clarke et al., 2011). 
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Table 2-6. Penetrance functions used for determining model of associations 

(Modified from Clarke et al 2011). 

Model 
Penetrance  Relative Risk 

d/d d/D D/D  d/D D/D 
Addtive 

0 0 20   2 
Recessive 

0 0 0  1  
Dominant 

0 0 0    
Multiplicative 

0 0 0
2   

2 

Disease penetrance functions for different genotypes d/d, d/D and D/D are shown. D is 

the associated allele and the non-associated genotype d/d has a baseline disease 

penetrance 0 = 0. The right panel shows the relative risk of disease for genotypes d/D 

and D/D compared to wild type genotype d/d, where the genetic penetrance parameter is 

>1. 

 

 

Linkage disequilibrium (LD) and haplotypes were visualized using Haploview (Barrett et 

al., 2005), which adopts the Partition-ligation-expectation-maximization (PL-EM) algorithm 

for the reconstruction of Haplotypes. r2 value was used as the measurement of LD 

(Lewontin, 1964). Haplotype phasing was performed using PLINK and haplotypes with the 

best posterior probability were chosen. Each of the haplotypes was tested for associations 

with disease using 2 x 2 Fisher’s tests. A mode-free permutation omnibus test for 

haplotype association was carried out using CLUMP Program. 

 

All tests were corrected for multiple testing using Benjamini- Hochberg correction, which 

was implemented using the p.adjust() function in R. 

 

For genotype- phenotype correlations, allele frequencies were compared in patients with 

different site of onsets, i.e. bulbar onset or limb onset. Survival analysiswas performed 

using Kaplan-Meyer curves which were compared using a log-rank test, implemented 

using SPSS and Graphpad.  
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2.12 Stock solutions 

 

Table 2-7. Preparation of stock solutions used in this study. 

Solutions Volume Components 

Stock solutions for electrophoresis 

1X TBE 20L 

 

Tris Base, 216g 

Boric Acid, 110g 

0.5M EDTA pH 8, 40ml 

Distilled Water, to 20L 

 

Denaturing 

Solution for PAGE 
10ml 

 

95% Formamide, 9.9ml 

Xylene Cyanol, 9μg 

0.5M EDTA pH 8, 100μl 

 

0.5M EDTA 

pH 8 
500ml 

 

84.05g EDTA 

400ml H2O 

Titrate with 5M NaOH until pH=8.0, and bring up 

volume to 500ml. 

 

Stock solutions for Southern’s Blot 

20X SSC 2L 

 

Sodium Chloride, 350.6g 

Sodium Citrate, 176.4g 

Titrate with HCl until pH=7. 

 

2X SSC 1L 

 

20X SSC, 100ml 

Distilled water, 900ml 

 

Depurination 

Solution 
2L 

 

37% HCl, 41.39ml 

Distilled water, 1958ml 

 

Denaturation 

Solution 
2L 

 

NaOH, 32g 

NaCl, 175.32g 

Distilled water, bring up to 2L 

 



 

 

95 

 

Neutralization 

Soluction 
2L 

 

Tris, 242.28g 

NaCl, 175.32g 

Distilled water, bring up to 1.5 L 

Titrate with HCl to pH 7.4 and bring up to 2L 

 

Pre-Hybridization 

Solution 
10ml 

 

DIG-Easyhyb, 8ml 

Salmon Sperm DNA, 2ml 

 

Low Stringency 

Wash Solution 
1L 

 

2x SSC, 1L 

SDS, 1g 

 

High Stringency 

Wash Solution 
1L 

 

2x SSC, 50ml 

Water, 950ml 

SDS, 1g 

 

Stripping Solution 1L 

 

NaOH, 8g 

SDS, 1g 

Distilled water, 1L 

 

 

 

-END OF CHAPTER 2- 
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Chapter 3 
 

Sequence Analysis of VCP Gene in the Imperial College 

ALS Cohort 

 

 

3.1 Introduction 

VCP mutations were first identified in ALS pedigrees by Johnson et al (Johnson et al., 

2010) using exome sequencing but were already known to be a cause of an autosomal 

dominant form of Inclusion body myopathy with Paget’s disease of bone and fronto-

temporal dementia (IBMPFD), also characterized by TDP-43 inclusions (Weihl et al., 2008) 

as seen in ALS cases with VCP mutations (Johnson et al., 2010). In fact, a family history 

of cognitive impairment, dementia, myopathy or Paget’s disease of bone (PDB) is not 

uncommon in ALS and coexistence of FALS and PDB has been reported in pedigrees 

with p62/SQSTM1 mutations (Fecto and Siddique, 2011). Importantly, VCPR155H/+ knock-in 

mice develop slow-progressive motor neuron degeneration and extensive TDP-43 

pathology (Yin et al., 2012).  

 

Valonsin containing protein (VCP) is a ubiquitously expressed protein involved in a variety 

of cellular activities but its most well established roles lie in the translocation of misfolded 

proteins from the endoplasmic reticulum (ER) during ER-associated protein degradation 

(ERAD) and their subsequent degradation by the proteasome and through autophagy. 

VCP mutations induce ER stress and the unfolded protein response (UPR) (Gitcho et al., 

2009), impair ERAD function causing accumulation of misfolded proteins in the ER (Weihl 

et al., 2006), decrease proteasome activity and impair autophagy (Ju and Weihl, 2010). 

VCP mutations have also been shown to cause mitochondrial dysfunction and impaired 

ATP production (Bartolome et al., 2013). Most recently, the essential role of VCP in 

autophagy has been linked to the removal of stress granules (SGs), which are formed in 

cellular stress and accumulate RNA binding proteins such as TDP-43 and FUS. Indeed 

the accumulation of cytoplasmic inclusions containing stress granule constituents is 

widespread in ALS, FTLD and other neurodegenerative conditions. Furthermore, 

overexpression of ALS-associated mutations in VCP, A232E and R155H, leads to the 
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formation of SG-like structures containing the SG markers, eIF3, TDP-43 and VCP, 

suggesting a common effect of SG promoting mutations in TARDBP, FUS and VCP that 

may contribute to ALS pathogenesis (Buchan et al., 2013). 

 

In order to further investigate the prevalence of VCP mutations and potentially identify 

ALS multigenerational pedigrees in which VCP mutations segregate with disease, we 

screened a UK cohort of FALS cases for mutations/ DNA variants in VCP. Although no 

mutations were identified in coding regions, we report an unusual hexanucleotide 

expansion located in the 5’UTR. In addition, a novel single nucleotide substitution, c.-

360G>C, was also identified in the 5’UTR. Both of these DNA variants were predicted to 

be pathogenic.  

 

 

3.2 Method 

3.2.1 Sample collection and DNA extraction 

Cohorts of 102 FALS index cases and 90 SALS cases were obtained with consent 

(Imperial College NHS Healthcare Trust). The diagnosis of ALS was made according to 

revised El Escorial criteria, which requires the presence of both upper motor neuron and 

lower motor neuron symptoms. An additional cohort of 96 FALS cases obtained from 

King’s College London (Kings College NHS Healthcare Trust) was screened for the 

hexanucleotide repeat. DNA samples of 184 healthy individuals were used as controls. 

DNA was extracted from whole blood or buffy coats using QIAmp DNA Mini Kit (QIAGEN, 

UK) according to the Manufacturer’s instructions.  

 

3.2.2 DNA Sequencing 

Exons 1, 2, 3, 5, 6, 7, 10, 13, 14, 17, including ~400bps of the 5’ and 3’ UTRs and 

~100bps flanking regions of VCP were amplified using Platinum Taq DNA Polymerase 

(Invitrogen, UK) and sequenced. PCR Primers (Invitrogen, UK) were designed using 

Primer 3 program (http://frodo.wi.mit.edu/) (Table 3-1). PCR products were purified using 

SureClean (BIOLINE, UK) and sequenced using an ABI 3730XL sequencer (Imperial 

College Genomics laboratory). Sequences were aligned and analyzed using Condon 

Code Aligner (http://www.codoncode.com/aligner/) and Seqdoc programs 

(http://research.imb.uq.edu.au/seqdoc/).  

http://frodo.wi.mit.edu/
http://www.codoncode.com/aligner/
http://research.imb.uq.edu.au/seqdoc/
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3.2.3 Gel electrophoresis 

Long electrophoresis was used to discriminate between DNA fragments of similar size 

using 2.8% agarose (Electran®, VWR BDH Prolabo, UK) gels. Electrophoresis was 

carried out for 16 hours at 140V, 55mA and data analysed using a Gel Doc 2000 (BIO-

RAD, UK) system.  

 

3.2.4 Total RNA extraction and RT-PCR 

Expression of VCP was studied using RT-PCR. RNA was extracted from whole blood or 

buffy coats using Direct-zolTM RNA Mini-Prep Kit (Zymo Research) and cDNA was 

generated using SuperScript® III First-Strand Synthesis System (Invitrogen, UK) 

according to the Manufacturer’s instructions. PCR reactions were carried out using cDNA 

primers shown in Table 3-1. 

 

3.2.5 Statistics 

Genotypic and allelic associations of SNPs were tested by 2 x 3 and 2 x 2 Fisher’s tests 

respectively. The genotypic frequencies of hexanucleotide repeats between cases and 

controls were compared using 2 x 4 Fisher’s tests. To obtain a frequency of the 

hexanucleotide repeat in the general population, raw DNA/RNA sequencing data from the 

1000 genome project and the Geuvadis project (http://www.geuvadis.org/ ) were retrieved 

using SAMTools (http://samtools.sourceforge.net/ ) and called for indels using Dindel 

(Albers et al., 2011) programs. Depth and Breadth of coverage were evaluated using 

BEDTools (https://code.google.com/p/bedtools/) program (Appendix II). Haploview 

(http://www.broadinstitute.org/haploview) was used to reconstruct haplotypes and 

calculate r2 values. Survival data was analyzed using Kaplan-Meyer curves and compared 

using a log-rank test. The Bioinformatic programs, SIFT (http://sift.jcvi.org), Polyphen 2 

(http://genetics.bwh.harvard.edu/pph2/) and Mutation taster 

(http://www.mutationtaster.org) were used to predict the effect of DNA variants. 

Phylogibbs (http://www.phylogibbs.unibas.ch/cgi-bin/phylogibbs.pl), a Gibbs sampler 

incorporating phylogenetic information, was used to analyse the 5’ region.  

http://www.geuvadis.org/
http://samtools.sourceforge.net/
http://www.broadinstitute.org/haploview
http://sift.jcvi.org/
http://genetics.bwh.harvard.edu/pph2/
http://www.mutationtaster.org/
http://www.phylogibbs.unibas.ch/cgi-bin/phylogibbs.pl
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Table 3-1. Primers used for Polymerase Chained Reactions for the VCP Study. 

Exon Primers Product Size 

5’UTR  

and  

Exon 1 

 

1a F: TGTGTGTTCTGTGGTTGCCC 

1a R: CCGCAGATCACAGCCAATCA 

 

1b F: GCGTGTCGCATCACTGAG 

1b R: CTGCATGACACAGCACGAT 

 

Hex F: GATTCGGCTCTTCTCGGCTC 

Hex R: TAACGGCTACGAGCGGTGG 

583 

 

 

719 

 

 

250 

2-3 
F: GCTTTCTGGTCTAGGGACAGC 

R: CAAGAACTTGGTCCTGCCTG 
685 

5 
F: GAGCTTGGCATTTTGACCC 

R: CCCAGTCCTGACAGTTACCAC 
301 

6 
F: ACCATGCCGGGTTGAGAATC 

R: CCCTCTAATCCAAGGCAATAATGA 
382 

7 
F: CCCTCTCTGGAGCGCTAGTC 

R: AAAAGGATGTGTTCATAAGTGCTC 
269 

10 
F: AGAGTGACCAACCACCCTGG 

R: TGCCAACTCCCATTTCCTGG 
449 

13 
F: AGGTTTGAGGCACTAAGGAGTC 

R: CAGTTGAGCAGCCAGCACTA 
600 

14 
F: GTGTGAGCCACCACGTTTG 

R: CCCAGTGGAATCTTGTCCAG 
471 

17 
F: TGGGAGCATTAGACAGTGCTT 

R: TGCAGATGCTTTACTGTGGCA 
597 

VCP- 

cDNA Primers 

(Exon 3 and 5) 

F: CGAGGTGACACAGTGTTGCT 

R: TTGAACTCCACAGCACGCAT 
335 

GAPDH-cDNA 

Primers 

(Exon 7 and 8) 

F: CCTGCACCACCAACTGCTTA 

R: GAACATCATCCCTGCCTCTAC 
181 

 

Exon1 and the 5’UTR were sequenced using two pairs of primers. The Hex primers were 

used for amplifying the hexanucleotide repeat for electrophoresis. Successful PCR of 

exon 10 requires 2.5mM Mg2+ concentration. The VCP cDNA PCR was carried out for 55 

cycles at annealing temperature of 65oC, whereas the GAPDH cDNA PCR was carried 

out for 38 cycles at annealing temperature of 55oC. 

  

http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000165280;r=9:35056061-35073246;t=ENST00000358901;v=rs368645352;vf=57336907
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3.3 Results 

3.3.1 Sequence analysis of the VCP gene 

Twelve non-synonymous DNA variants have been detected in the VCP gene in ALS to-

date (FALS and SALS) cohorts (Table 3-2). In this study, we screened VCP in a further 

UK cohort of FALS and SALS cases. As most pathogenic mutations in VCP that have 

been detected in IBMPFD and ALS are found in the N-terminal domain, the L1 linker and 

the D1/ ATPase domain (Figure 3-1 A), we screened ten exons (1, 2, 3, 5, 6, 7, 10, 13, 14, 

17) harbouring most known mutations found in ALS and IBMPFD together with 5’UTR and 

3’UTR regions of the gene that have not been extensively studied before. The FALS 

cohort consisted of 102 index cases, from which known mutations in SOD1, VAPB, 

TARDBP, FUS and DAO genes had been previously excluded. No coding mutations in 

VCP were detected. However, three novel variants were found in regulatory regions in 

three separate index cases, a single base pair substitution c.-360G>C located in the 

5’UTR, a c.2421+94C>T substitution located in the 3’UTR and an 18bp insertion, c.-221_-

220insCTGCCACTGCCACTGCCG present in the 5’UTR. The latter sequence was 

inserted in the middle of a repeat sequence of imperfect CTGCCR hexanucleotide repeats, 

in which the last nucleotide could either be A or G, and this is equivalent to an expansion 

of 3 additional hexanucleotide repeats (i.e. an 8-repeat variant) within the control 

sequence that contains 5 repeats (Figure 3-1 B). These variants are not present in any 

public databases. All three index cases harbouring these variants were heterozygous and 

also positive for the C9orf72 hexanucleotide expansion. 

 

The c.-360G>C substitution and the 18 bps hexunucleotide expansion were predicted to 

be pathogenic using the Mutation taster program as they may interrupt the 5’ regulatory 

region (Figure 3-1 C). The c.2421+94C>T was predicted to be polymorphic. The proband 

carrying the hexanucleotide expansion was a female patient with limb onset at 41 years 

who died at the age of 47 years. There was no record of PDB, myopathy or dementia in 

the pedigree (Figure 3-1 D).  

 

The carrier of c.-360G>C (Figure 3-2) was a male patient with bulbar onset at the age of 

64 who died at 68 years of age, 48 months after disease onset. He developed ALS with 

dementia and his mother and brother were also diagnosed with ALS (refer Figure 3-2 for 

details). The carrier of c.2421+94C>T was a female patient with bulbar onset at the age of 
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73 years who died at 75 years, 24 months after disease onset. The only FALS case 

possessing the 18bp insertion is described in main text. 

 

Interestingly, female FALS patients who possessed the minor allele of SNP2 had 

significantly decreased survival time (median 15.5months) compared to those possessing 

the major allele (median 25 months) (P=0.0174) or compared to male patients possessing 

the minor allele (P=0.0242). No significant changes in onset and site of onset were found 

for any of the polymorphisms detected.  
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Table 3-2. Frequencies of VCP mutations.  

Protein/ 
Region 

Position rs Changes 
Population Prevalence Prediction 

FALS SALS Control 
SIFT PP MT 

5’ Variant 35072710  c.-360G>C 1/102a  0/379k na na + 

5’ Variant 35072570  8-repeat* 1/198a 0a/88a 0/219a na na + 

5’ Variant 35072570  7-repeat** 0/198a 1a/88a 0/219a na na + 

I114V 35066777  c.340A>G 1i/876b,d,e-g,i,j 1d/2243b-d,f-j 0/5558d,i,k - - + 

I151V 35065373 rs367881889 

 

c.451A>G 0/1074 a,b,d,e-g,i,j b,d,e-

g,i,j 

1c/2505 b-d,f-j 0/5781c,d,k - - + 

R155C§ 35065361 rs121909330 c.463C>T 1i/1074 a,b,d,e-g,i,j 0/2505 b-d,f-j 0/5558d,i,k + + + 

R155H§ 35065360 rs121909333 c.464G>A 2 b,i/1074 a,b,d,e-g,i,j,l 0/2505 b-d,f-j 0/7127b,d,i,k, - - + 

R159G§ 35065349 rs387906789 

 

c.475C>G 1b/1074 a,b,d,e-g,i,j,l 0/2505 b-d,f-j 0/6943b,d,k - + + 

R159C§ 35065349  c.475C>T 1i/1074 a,b,d,e-g,i,j 1h/2505 b-d,f-j 0/7127d,h,I,k + + + 

R159H§ 35065348 rs121909335 c.476G>A 1d/1074 a,b,d,e-g,i,j 0/2505 b-d,f-j 0/5392d,k - - + 

R191G§ 35065253  c.571C>G 1i/1074 a,b,d,e-g,i,j 0/2505 b-d,f-j 0/5558d,i,k - + + 

R191Q§ 35065252 rs121909334 c.572G>A 3 b,i/1074 a,b,d,e-g,i,j 0/2505 b-d,f-j 0/7127b,d,i,k + + + 

I300I 35062259 rs372839296 

 

c.900C>T 1g/876 b,d,e-g,i,j 0/1642 b-d,f-j 1/5374d,k -  + 

T330T    0/876 b,d,e-g,i,j 1d/1642 b-d,f-j     

N387T 35061608  c.1160A>C 0/978 b,d,e-g,i,j 1h/1642 b-d,f-j 0/6943d,h,k + + + 

L414L    0/876 b,d,e-g,i,j 1d/1642 b-d,f-j     

I479I    1d/876 b,d,e-g,i,j 0/1642 b-d,f-j     

A528A    0/978 b,d,e-g,i,j 2d/1642 b-d,f-j     

Q568Q 35059790 rs142577424 c.1704A>G 3e/978 b,d,e-g,i,j 0/2016 b-d,f-j 46/5659d,e,k   + 

D592N 35059720 rs387906790 c.1774G>A 1b/978 b,d,e-g,i,j 0/2016 b-d,f-j 0/7188b,d,j,k + + + 

R625R 35059619 rs201410035 c.1875G>T 0/978 b,d,e-g,i,j 1/2016 b-d,f-j 0/5619j    + 

L661L    0/978 b,d,e-g,i,j 1d/2016 b-d,f-j     

R662C 35059510  c.1984C>T 0/978 b,d,e-g,i,j 1h/2016 b-d,f-j 0/7188d,h,j,k - + + 

3’ Variant 35057020  c.2421+94C>T 1a/102a  0/379k na na + 
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Frequencies of VCP variants found in ALS to date are summarized. Variants identified in this study are in bold. Predictions on the consequences of the 

variants using SIFT, Polyphen2 (PP) and Mutation Taster(MT) are shown: “+” : predicted as pathogenic; “-” : predicted as tolerated; “§” denotes the 

mutations that have been found in ALS families with histories of Paget’s disease or inclusion body myopathy. *8-repeat hexanucleotide expansion: c.-221_-

220insCTGCCACTGCCACTGCCG **7-repeat hexanucleotide expansion: c.-221_-220insCTGCCGCTGCCG. 

 

References for Table 3-2. 

a Present study (102 FALS for Exon1, 2, 3, 5, 6, 7, 10, 13, 14, 17, 5’ and 3’ UTRs; 96 FALS for HEX-Repeat, 88 SALS for HEX-Repeat, 219 Controls for 

Hex repeat). b (Johnson et al., 2010) (211 FALS for all Exons, 78 SALS for all Exons, 1569 Controls for R155H, R159G, R191Q and D592N). c (DeJesus-

Hernandez et al., 2011a) (1 SALS for All Exons + 112 SALS for Exon 5; 407 Controls for I151V). d (Koppers et al., 2011) (93 FALS from 80 Families for all 

Exons; 377 SALS for all Exons+ 377 SALS for Exon 4 and 5+ 58 SALS-FTD for All Exons; 713 Controls for R159H, 685 for T330T, 674 for L414L and 

I479I, 662 for A528A, 594 for L661L and 695 for the rest of Exons). e (Tiloca et al., 2011) (166 FALS+ 14 FALS/FTD for all Exons, 285 Controls for 

Q568Q). f (Miller et al., 2012) (75 FALS for all Exons; 101 SALS for all Exons + 150 SALS for Exons 5 and 14). g (Williams et al., 2012) (131 FALS for all 

Exons; 48 SALS for all Exons). h (Abramzon et al., 2012) (701 SALS for all Exons; 1569 Controls (same as b) for R159C, N387T and R662C). i (Gonzalez-

Perez et al., 2012) (179 FALS for all Exons + 96 FALS for Exon 5; 178 SALS for all Exons; 184 Controls for I114V, R155C, R155H, R159C, R191G and 

R191Q). j (Zou et al., 2013) (20 FALS for all Exons; 100 SALS for all Exons + 224 SALS for Exons 4, 5, 10, 14; 245 Controls for Exon 14). k 1000 genome 

project EUR subgroup (379 Controls) or with NHLBI EVS (4300 Controls).l Data from (Benatar et al., 2013) was not included in this Table as frequency 

data was not available but is included in Table 3-5. na indicates not appropriate to use for non-coding changes. 

 



 

 

104 

 

Figure 3-1. Published coding mutations in VCP in ALS and IBMPFD. 
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A.VCP is an AAA+ protein comprising N, N-D1 linker, D1, D1-D2 Linker, D2 and C 

domains. Two conserved motifs, Walker1 and Walker2, serve as ATP binding sites and 

catalyze hydrolysis, whereas N-domain and C-domain allow binding of substrates and 

cofactors. FALS-related VCP mutations have been identified throughout the gene and are 

more frequent in exon 5 and 14, which correspond to N and D2 domains respectively. 

Conditions associated with the variants are shown separately.  

 

B shows the chromatograms of the variants identified in this study. The positions where 

the hexanucleotide repeats are expanded are marked by red lines and the mutated 

sequences are shown in the expansion carriers.  

 

C shows the 5’UTR sequence of the VCP gene. The hexanucleotide repeat region is 

underlined and the transcription start site is denoted by asterisk (*). Predicted transcription 

factor binding sites are shown in orange boxes and the c.-360G>C variant (bold) is 

located in a potential MAZ binding site.  

 

D shows the pedigree of the FALS case carrying the 8-repeat hexanucleotide expansion.  

 

E and F show the frequencies of phenotypes existing in published ALS kindred caused by 

different VCP mutations. The mutations are grouped according to the number of 

symptoms seen in the kindred.  

(E) For mutations causing ALS alone or with 1 additional phenotype, i.e. I114V, 

D592N, R159H, R191G and R159C, Dementia, PDB and Myopathy co-occurred 

with ALS at the same frequency.  

(F) Dementia and PDB are more frequently observed than Myopathy in kindred in 

which mutations causing ALS with 2 or 3 phenotypes are present , i.e. R155H, 

R191G and R191Q. I114V and D592N have only been described in pure ALS 

kindred, whereas R155H and R191Q were found in kindred presenting all four 

phenotypes.  
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Figure 3-2. The c.-360G>C Pedigree.  

 

 

Individual I:2 had severe bulbar onset and died at 63 years. The proband, II:3, onset at 63 years and died at 68 years. 

He developed hyperreflexia, fasciculations, muscular atrophy, bulbar signs and dementia. III:1 was a multiple 

sclerosis patient and developed ALS at 42 years. Hyperreflexia, fasciculations, muscular atrophy and bulbar signs 

were present in this patient. 
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3.3.2 Screening for the hexanucleotide expansion in additional ALS cohorts 

In order to further investigate the prevalence of the hexanucleotide expansion, the region 

containing the repeat was amplified in four extra cohorts including FALS (n=96), FALS 

with SOD1 mutations (n=20), SALS (n=88) and Controls (n=219). The products were then 

separated by long electrophoresis to discriminate 3 base pair differences in PCR product 

sizes (Figure 3-3A). Representative samples were confirmed by sequencing. No variation 

was found in the additional FALS cohort. A 7-repeat variant, c.-221_-

220insCTGCCGCTGCCG, was found in one SALS case, and a 6-repeat variant, c.-221_-

220insCTGCCG, was found in six controls and one SOD-FALS case. Unlike the 8-repeat 

variant, the 7-repeat and the 6-repeat variants both contain homogenous inserted 

sequences, [CTGCCG]n, at the same site as the 8-repeat. All these variants were 

heterozygous. The 5-repeat variant is the major allele in all cohorts. A significant 

genotypic association of the 8-repeat with ALS was found using a 2 x 4 Fisher’s test 

(P=0.0064, Table 3-3).  

 

RT-PCR was carried out to investigate the effect of the hexanucleotide repeat on VCP 

expression in lymphocytes. VCP expression was readily detected in spinal cord and 

lymphocytes from control, SALS and FALS cases (Figure 3-3B). Although a similar level 

of expression was found in lymphocytes from the 8-repeat carrier, the lack of further 

samples does not allow any conclusions to be made about effects on expression. 

 

3.3.3 SNPs identified in the VCP gene 

An 11 bp indel close to the intron 9/Exon 10 junction (rs11272867) detected in FALS 

cases was further genotyped in a group of controls (n=184) using long electrophoresis 

(Figure 3-3C). No significant difference in SNP frequency was observed between FALS 

cases and controls (MAF = 30.2%). A 3’ UTR SNP, rs62544156, was detected in 1 FALS 

case. The SNP was absent from EUR controls from the 1000 genome project but was 

found in 0.1% of chromosomes in the European-American samples from the NHLBI 

Exome Variant Server. We further tested SNP associations with FALS cases with or 

without the C9orf72 mutations in the common SNPs identified in this study (Table 3-4) but 

found no significant allelic and genotypic association (after FDR correction) with FALS.  
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Figure 3-3. Electrohporesis for the VCP tandem repeats. 

 

A. Agarose gel electrophoresis: ① Represents the wild type 5-repeat variant seen in most 

samples; ② is a faint band representing the 6-repeat variant; bands ③ and ⑥ are 

heteroduplexes generated as a result of mixed templates. The seven-repeat and eight-

repeat variants are represented by ④ and ⑤ respectively. These were confirmed by 

sequencing. 

 

B. RT-PCR of the VCP and GAPDH genes were carried out in the lymphocytes and spinal 

cords of ALS and Controls. The 8-repeat FALS case is indicated by HEX. Each lane is 

from a different individual. 

 

C. The PCR products of the 11-bp indel were also separated on agarose electrophoresis. 

The first 2 lanes show heterozygous products accompanied by heteroduplexs (arrow). 

Lane 4 shows the large PCR product which represents homozygous insertions, and wild 

type product is seen in Lane 6. 
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Table 3-3. Frequencies of hexanucleotide expansions in cases and controls. 

Population [CTGCCR]8 [CTGCCR]7 [CTGCCR]6 [CTGCCR]5 n 

FALS 1 0 0 197 198 

SALS 0 1 0 87 88 

SODFALS 0 0 1 19 20 

CONTROL 0 0 6 213 219 

The wild type 5-repeat is the most frequent allele in all cohorts. The 6-repeat variant was 

found in Control and SOD-FALS individuals, whereas the 7 and 8 repeat variants were 

only found in SALS and FALS cohorts.  

 

A Fisher’s 2 x4 Table was used to compare the frequency of the VNTRs between cases 

and controls, and significant results were obtained between FALS cases and controls 

(P=0.0208) and pooled ALS cases and controls (P=0.0064). The analysis showed that 

rare higher number repeats were only found in FALS and SALS and not in controls, 

suggesting pathogenic effects are caused by these variants.  
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Table 3-4. Prevalence of VCP SNPs detected in this study. 

Known Genetic variations of the VCP gene in FALS cases and Controls 

Population Chrs 
MAF 

% 
Genotype  

Frequency% 

Genotype Fisher’s 
P 

(FDR) 

Allelic 
Fisher’s P 

(FDR) 

SNP1, rs10972300, Int2, G/A GG GA AA   

EUR 762 21 63 32 5   

FALS 188 27 55 36 8 0.1803 (0.3335) 
 

0.0767 (0.2018) 
   C9+ 74 19 68 27 5 0.7868 (0.9659) 

 
0.8800 (0.8800) 

  C9- 114 32 47 42 11 0.0299 (0.1495) 

 

0.0108 (0.0900) 

       
SNP2, rs514492, Int7, A/G AA AG GG   

EUR 762 23 60 33 7   

FALS 204 20 67 27 6 0.4695 (0.5859) 
 

0.2594 (0.3243) 
 

  C9+ 72 22 55 28 17 0.9555 (0.9659) 
 

0.8782 (0.8800) 
 

  C9- 98 26 55 33 12 0.8284 (0.8481) 
 

0.6999 (0.8749) 
       

SNP3, rs11272867, Int9,  
-/TTGTGTACTGT 

WT/WT WT/INS INS/INS   

IC Contros 368 70 7 47 46   

FALS 194 75 7 35 58 0.1312 (0.3335) 0.2005 (0.3243) 

  C9+ 58 72 7 41 52 0.7726 (0.9659) 0.7589 (0.8800) 

  C9- 90 70 11 38 51 0.3675 (0.6185) 
 

1 (1) 
 

      
SNP4, rs684562, Int13, G/A GG GA AA   

EUR 762 31 50 39 11   

FALS 186 28 53 39 9 0.6266 (0.6266) 
 

0.3771 (0.3771) 
   C9+ 64 28 53 38 9 0.9659 (0.9659) 0.6741 (0.8800) 

  C9- 86 36 39 49 12 0.3711 (0.6185) 
 

0.3937 (0.8749) 
       

SNP5, rs62544156, 3’UTR ,C/T CC CT TT   

EUR - - - - - - - 

FALS 196 1 99 1 0 - - 

      
SNP6, rs10553318, 
 3’UTR, G/T 

GG GT TT   

EUR 762 21 63 32 5   

FALS 186 15 73 24 3 0.2001 (0.3335) 0.0807 (0.2018) 

  C9+ 64 13 78 19 3 0.2325 (0.9659) 0.1434 (0.7170) 

  C9- 86 19 67 28 5 0.8481 (0.8481) 0.6758 (0.8749) 

 

Six known SNPs were detected in this study. Four of these are intronic, which were 

identified in the flanking regions of exon sequences, and two were found in the 3’UTR 

(Exon17). SNPs 1, 2, 4, 6 were polymorphic with minor allele frequencies > 10%, whereas 

SNP 5 was found in only one FALS case. The frequencies of these SNPs in FALS were 

compared with the EUR subgroup from the 1000Genome project using Fisher’s tests. All 

comparisons were corrected for multiple testing using Benjamini-Hochbergh correction 

(FDR). No significant association was detected. There was no available frequency data for 

SNP3 and SNP5 in any accessible database.  
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3.4 Discussion 

In this study, we investigated whether any potentially pathogenic DNA variants were 

present in the VCP gene in a cohort of 102 index FALS cases. No known or novel 

mutations were found in the ten exons which harbour most known mutations. Taking into 

account the results from previous studies, it can be concluded that VCP mutations are 

rare in ALS (Table 3-2).  

 

To date nine coding mutations have been detected in 14 kindred. In general, most 

mutation carriers are positive for a family history of multiple symptoms (Table 3-5). 

Amongst the previously reported families with at least one confirmed case of ALS, 

dementia was present in seven families, myopathy in five families and PDB in seven 

families (Table 3-5). Age at onset of ALS varied between 28 and 63 years and disease 

duration between 1 and 26 years with considerable heterogeneity within some kindred 

(Table 3-5). For some mutations (R159G, R159C, R159H, 191G, R191Q or D592N), ALS 

was the predominant phenotype where 90% of carriers possessing these mutations 

developed ALS, whereas the clinical manifestations of other mutations such as R155H 

were more variable (only 17.6% of carriers developing ALS). Notably, only the R191G 

mutation has been shown to segregate with ALS (Gonzalez-Perez et al., 2012). Two 

mutations, I114V and D592N, have only been found in kindred presenting with a pure ALS 

phenotype (Figure 3-1 E-F, Table 3-5). Two coding changes (I114V and R159C) found in 

FALS have also been reported in SALS together with 3 further novel coding changes 

(I151V, N387T and R662C). In addition, VCP mutations have been reported both in 

families with ALS, and also families that present with PDB with or without dementia and 

IBMPDB (e.g. R155H) (Table 3-2). 

 



 

 

112 

 

Table 3-5. Summary of phenotypes exhibited for known VCP mutations. 

Mutat- 
ions 

Symptoms seen in VCP mutation carriers from FALS families 
 ( No. of families positive for the symptoms) 

Age of onset 
(Years) 

Survival 
Time (Years) 

References 

ALS Dementia 
Paget’s 
disease 

Myopathy 
Median 

(Range), n 
Median 

(Range), n 

I114V 1/2 (1/1) 0/2 (0/1) 0/2 (0/1) 0/2 (0/1) 45, n=1 2.25 n=1 
 (Gonzalez-Perez et 

al., 2012) 

R155C ?/? (1/1) ?/? (1/1) ?/? (1/1) ?/?(1/1) na na (Benatar et al., 2013)§ 

R155H *3/17 (4/4) *2/17 (3/4) *3/17 (4/4) 8/17 (3/4) 41(28-63), n=19 
15.45 (1-26) 

n=10 

(Benatar et al., 2013; 
Gonzalez-Perez et al., 
2012; Johnson et al., 

2010)§ 

R159G 3/3 (2/2) 2/3 (2/2) 1/3 (1/2) 0/3 (0/2) 52 (46-53), n=3 5 (2-13), n=3 (Benatar et al., 2013)§ 

R159C 2/3 (1/1) 0/3 (0/1) 1/3 (1/1) 0/3 (0/1) 55 (53-57), n=2 - 
Gonzalez-Perez et al., 

2012) 

R159H 1/1 (1/1) *0/1 (1/1) 0/1 (0/1) 0/1 (0/1) 59 n=1 1.9 n=1 (Koppers et al., 2011) 

R191G 6/7 (1/1) 0/7 (0/1) 0/7 (0/1) 4/7 (1/1) 45 (42-45), n=3 9 n=1 
(Gonzalez-Perez et 

al., 2012) 

R191Q 6/6 (3/3) 1/6 (1/3) *0/6 (1/3) *0/6 (1/3) 50 (37-53), n=7 
2.8 (2.4-14.9), 

n=3 

(Johnson et al., 2010) 
(Gonzalez-Perez et 

al., 2012) 

D592N 1/1 (1/1) 0/1 (0/1) 0/1 (0/1) 0/1 (0/1) 53 n=1 <1 n=1 (Johnson et al., 2010) 
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Phenotypes of VCP mutation carriers from Familial ALS cases published to date. Pedigrees with multiple affected and at least one confirmed ALS case are 

classified as FALS pedigrees. Values indicate the number of cases with a confirmed mutation exhibiting a specific phenotype divided by the number of 

individuals with a confirmed mutation. * indicates that not all individuals within the family with this specified phenotype had been tested for the mutation. The 

values in brackets indicate the number of positive families with a defined phenotype divided by the total number of familes with the specified mutation. In 

summary, most mutation carriers were positive for a familial history of multiple symptoms. The clinical manifestations of R155H were most variable (only 

17.6% of carriers developed ALS). In contrast, no additional symptoms were seen in carriers of I114V and D592N mutations and this may be explained by 

the rapidly progressive phenotypes caused by these mutations. Using the data where ethnicity is specified, 2 pedigrees, carrying R159H and R191Q 

mutations, were from Italian and Dutch cohorts, whereas 9 pedigrees, carrying the R155C, R155H, R159G, R191Q and D592N mutations, were from US 

cohorts. § Data from Benatar et al (2013) was not included in Table 3-2 as frequency data was not given. na =not available.  
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In view of the important regulatory function of 5’ and 3’UTRs, these regions were also 

included in the study. An imperfect hexanucleotide expansion and a single base pair 

substitution were identified in the 5’UTR region, which were both predicted to be 

pathogenic, were found in two index cases. Although both of these cases were also 

positive for a C9orf72 expansion mutation, the co-existence of multiple mutations, 

including C9orf72 and TARDBP, has been reported previously in ALS (van Blitterswijk et 

al., 2012a). The expression of the VCP gene is regulated by the transcription factors, 

PBX-1 and ELF2, which bind to the 5’ upstream region of the VCP gene (Qiu, 2007). The 

transcription start site and a predicted transcription factor binding site for E-box, are 

specifically located in the region of the hexanucleotide repeat expansions, which 

potentially may interrupt the formation of the initiation complex. The Phylogibbs program 

also predicted the presence of a possible motif for transcription factor binding within the 

hexanucleotide repeat. In addition, the c.-360G>C variant is located within a predicted 

transcription factor binding site for MAZ (Qiu, 2007) (Figure 3-1C). Clearance of existing 

ubiquitinated aggregates may be impaired as a consequence of decreased levels of VCP 

expression (Kobayashi et al., 2007). 

 

Whilst the 5 and 6-repeat expansions were common in controls, the 7- and 8-repeat 

variants were only found in SALS and FALS respectively. It is possible that pathogenicity 

increases with the length of the repeat. In fact, after analysing the raw data from the 

Geuvadis RNA sequencing project of 1000 Genomes samples (http://www.geuvadis.org/) 

using the Dindel program (Albers et al., 2011) (Appendix II), we found that a 6-repeat, but 

not 7 or 8-repeats, was present in 324 well-covered samples (all with >20 depth of 

coverage and >0.99 breadth of coverage in a 200bp window flanking the repeat). Whilst 

most pedigrees with VCP mutations also have family histories of PDB, myopathy and 

dementia (Table 3-5), the 8-repeat family only presented with ALS. It is possible that the 

early age of onset in the proband (47 years) is the result of a combined effect of both VCP 

and C9orf72 expansions. However, no genomic DNA was available from other family 

members to study the patterns of segregation and anticipation, and no other FALS cases 

possessed this expansion.  

 

Tandem repeats are frequently associated with neurodegenerative diseases, such as 

Huntington’s disease and spinocerebellar ataxias and have recently been shown be the 

http://www.geuvadis.org/
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most common mutation found in ALS, FTD and ALS/FTD, with the identification of 

hexanucleotide repeat expansions in the first intron of C9orf72 gene, located on 

chromosome 9p21 accounting for 18-55% of FALS cases according to geographic 

location, being most prevalent in Western Europe (DeJesus-Hernandez et al., 2011b; 

Moreira et al., 2004; Renton, 2011). Tri-nucleotide expansions in NIPA1 (Blauw et al., 

2012) and ATXN2 (Elden et al., 2010) genes also confer risk of ALS (Chapter 6).  

 

In conclusion, the overall frequency of VCP mutations in Europe and US is low (<1%). 

However, three novel variants were found in the 5’ UTR of FALS cases, including a 

hexanucleotide expansion which may be pathogenic and merit further investigation. 

 

 

-END OF CHAPTER 3- 
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Chapter 4 
 

Sequence Analysis of SQSTM1 Gene in the Imperial 

College ALS Cohort 

 

 

4.1 Introduction 

TDP-43/FUS -positive poly-ubiquitinated inclusions are the pathological hallmark of most 

sporadic ALS cases. These inclusions not only contain TDP-43 or FUS, but also 

p62/sequestosome 1 (p62/SQSTM1), optineurin (OPTN) and ubiquilin-2 (UBQLN2). 

Indeed, mutations in several components of protein homeostasis, such as UBQLN2, 

Charged multivesicular body protein 2B (CHMP2B), OPTN and valosin containing protein 

(VCP), are also present in less prevalent forms of ALS and ALS/FTD (Fecto and Siddique, 

2011). Interestingly, mutations in OPTN and VCP are also seen in other allelic forms 

characterised by TDP-43-positive poly-ubiquitinated inclusions, primary open angle 

glaucoma (POAG) and inclusion body myopathy with Paget’s disease of bone and 

frontotemporal dementia (IBMPFD), respectively.  

 

Screening of four large ALS cohorts from US, Europe and Japan for mutations in 

SQSTM1 has revealed the presence of a number of novel or rare coding mutations in 

FALS, FTLD and SALS, some of which are predicted to be pathogenic (Fecto et al., 2011; 

Hirano et al., 2013; Rubino et al., 2012; Teyssou et al., 2013). However, due to lack of 

DNA in multiple members of FALS kindred, to date it has not been proved that any of 

these mutations are transmitted with disease in ALS. Nevertheless, amongst the coding 

mutations is P392L, which is common in Paget’s disease of bone (PDB) (Morissette et al., 

2006; Rea et al., 2009), where there is evidence of transmission of the mutation with 

disease in multiple kindred. In order to further investigate and assess whether they are 

independently causal for ALS or whether p62/SQSTM1 DNA variants or modified forms of 

p62/SQSTM1 contribute to a significant predisposition to disease, we have examined a 

further FALS cohort from the UK.  
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p62/SQSTM1 is abundantly expressed in spinal cord, especially in motor neurons and is 

present in distinctive p62/SQSTM1-positive fibrillar or compact TDP-43-positive inclusions 

found in ALS and FTD-ALS (Keller et al., 2012). In addition, a significant portion of 

C9orf72 positive FTD/ALS patients have p62 positive, TDP-43 negative inclusions, 

indicating that multiple substrates are recognised by p62 in these conditions (Al-Sarraj et 

al., 2011). SQSTM1 plays multiple roles in protein homeostasis (Geetha and Wooten, 

2002), in particular, the interaction of p62/SQSTM1 with the autophagic marker light chain 

3 (LC3) is essential for the generation of autophagosomes necessary for the autophagic 

degradation of ubiquitinated protein aggregates (Lamark and Johansen, 2010). Depletion 

of p62 protein levels inhibits LC3 recruitment to autophagosomes and has been shown to 

increase cell death induced by mutant huntingtin (Bjørkøy et al., 2005). 

  

4.2 Methods 

4.2.1 Sample collection 

The FALS cohort used in the initial screen of SQSTM1 mutations consisted of 61 FALS 

kindred that are known to lack mutations in SOD1, TARDBP, FUS, VAPB, DAO, VCP and 

C9orf72. This is a subset of a larger cohort as described in Section 1.19.1. This study 

employed ALS cases, presenting with motor neuron symptoms and diagnosed as ALS 

according to EL-Escorial criteria from the United Kingdom (Imperial College Healthcare 

NHS trust). All ALS patients were positive for a familial history (FALS) and each patient 

was an index case from a separate kindred. Research governance regulations of the 

college were satisfied with appropriate informed consent form subjects. Controls included 

consented UK cases obtained within the Trust and genotype data from samples from the 

EUR subgroup of 1000 genome project (http://www.1000genomes.org) and the European 

American subgroup of NHLBI EVS (http://evs.gs.washington.edu/EVS/). DNA was 

extracted from whole blood or the buffy coat layer using a DNA extraction kit (Qiagen). In 

addition a further group of 26 C9orf72 positive FALS cases were also screened. 

 

4.2.2 Genotyping 

All eight exons of the SQSTM1 gene that encode the major 440 amino acid isoform 

(SQSTM1-001, NM_003900.4) were amplified using Polymerase chain reaction (PCR). 

Primers flanking at least 50bp of these exons were designed using Primer 3 program 

(http://frodo.wi.mit.edu/primer3 ) (Table 4-1) and purchased from Invitrogen (UK). PCR 

http://www.1000genomes.org/
http://frodo.wi.mit.edu/primer3


 

 

118 

 

products were purified using Sureclean (Bioline, UK), and sequenced using an ABI Prism 

BigDye terminator kit (Applied Biosystems, Warrington, Cheshire, UK). The presence of 

the P392L mutation was confirmed by RFLP analysis using the restriction enzyme BstU1 

(New England Biolabs, UK). DNA fragments were separated on a 2% agarose gel 

(Electran, VWR) and stained with 0.5 μg/ml ethidium bromide for 1 h at 11 V/cm. φX-174-

HaeIII (New England Biolabs, UK) was used as DNA marker. Gel profiles were visualized 

and analysed using a GelDoc system (Bio-Rad UK, Hertfordshire, UK). 

 

4.2.3 Data analysis 

Mutation pathogenicity was evaluated using SIFT (http://sift.jcvi.org), Polyphen 2 

(http://genetics.bwh.harvard.edu/pph2/) and Mutation taster 

(http://www.mutationtaster.org). The effects of intronic variants on splicing were analysed 

using Human splicing finder program (http://www.umd.be/HSF/ ). Genotype and allelic 

distributions of variants were compared with controls using 2x2 and 2x3 Fisher’s tests and 

subjected to Benjamini-Hochberg correction. To examine genetic background, haplotypes 

were reconstructed using the Expectation-Maximization algorithm, implemented in PLINK. 

Linkage disequilibrium was measured by r2 values calculated using Haploview 

(http://www.broadinstitute.org/haploview). We also analysed the age of onset and survival 

time of FALS using Kaplan-Meyer curve and log-rank test. The combined effect of 

pathogenic variants was calculated using the Mantel Haenszel Test. 

 

http://sift.jcvi.org/
http://genetics.bwh.harvard.edu/pph2/
http://www.mutationtaster.org/
http://www.umd.be/HSF/
http://www.broadinstitute.org/haploview
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Table 4-1. Primers used for the Sequencing of SQSTM1 Gene. 

Exon Primers Product Size 

Exon1 
E1F: GCCTCCGCGTTCGCTACA 

E1R: GTCACCACTCCAGTCACCAG 
478 

Exon2 
E2F: GTCTTGCCTCTCACTCCTGC 

E2R: CCACACCTGGCCTATGTCTC 
396 

Exon3 
E3F: GGATTCCATGCTGGAGAGCAG 

E3R: TTCACCTTCCGGAGCCAG 
479 

Exon4 
E4F: ACTTGTGTAGCGTCTGCGAG 

E4R: TTGTAGGGCACCAGGAAGGT 
452 

Exon 5 
E5F: CACAGGGACCTTGGCAAGAA 

E5R: TGAGGCAACAAATCCTCACCA 
296 

Exon 6 
E6F: TCTGTAGTCTCCACAGGCCA 

E6R CTGCAGAGGTGCTGAGGATG 
391 

Exon 7 
E7F: CCCTGCAGCCTTAACTGCAC 

E7R: TGTCGCTGAAATCAGAGGAGG 
397 

Exon 8 
E8F: CCAAGGCAGCAGGGTATGTG 

E8R: TGGCTTCTTGCACCCTAACC 
372 

rs10277 
SNP1F:CTGCTGAGGCCTTCTCTTGA 

SNP1R: GGCCTGACATGGAAGGTGAA 
287 

rs1065154 
SNP2F: GGACTCCATAGCTCCTTCCCA 

SNP2R: TGTCCCAGCCTGACAGCTT 
249 

The reaction mixture contained 1× buffer, 1.5 mM Mg2+, 0.1 mM dNTP, 0.5 μM primers, 

0.05 U/μl GOtaq Taq DNA polymerase (Promega, UK), and 0.5 ng/μl templates, and 

thermal cycle was carried out as follow: 94oC for 210s [94oC for 30s, 55oC for 30s, 72oC 

for 45s] X38 cycles, 72oC for 360s. Successful amplification of Exon 1 requires the 

addition of 1x PCR Enhancer (Invitrogen, UK) and 45 cycles at annealing temperature of 

65 oC. 
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4.3 Results 

4.3.1 Identification of SQSTM1 sequence variants in a UK-FALS cohort 

We screened all eight coding exons of the SQSTM1 gene (Figure 4-1 A), in a cohort of 61 

Familial ALS patients. All subjects lacked mutations in SOD1, TARDBP, FUS (exons 14 

and 15, which harbour most known mutations found in ALS), VAPB, DAO, VCP and 

C9orf72 genes, and each individual was an index case from unrelated families. Six exonic 

variants c.463G>A (E155K) (Figure 4-1 B), c.822G>C (E274D), c.888G>T (P296P), 

c.954C>T (S318S), c.1038G>A (V346V), and c.1175C>T (P392L) (Figure 4-1 C) were 

identified in 5 FALS index cases, three of which were non-synonymous and three were 

synonymous. One index case harboured 3 variants (E274D, S318S and P296P) and a 

second index case harboured 2 variants (E274D and S318S). 

 

The c.822G>C (rs55793208, E274D) substitution has been previously reported in ALS by 

Rubino et al (Rubino et al., 2012) and results in a glutamate to aspartate change in the 

PEST domain of SQSTM1. All three synonymous variants have been previously reported, 

but not in ALS. The E274D and other synonymous variants were predicted to be tolerated, 

using SIFT, Polyphen2 and Mutation taster programs. However, whilst such programs can 

predict pathogenicity for recessive mutations, their predictions may not always apply to 

dominant mutations which may have subtle effects on protein structure or splicing 

(Flanagan et al., 2010; Valdmanis et al., 2009). There were no significant differences in 

allele frequency between cases and controls for the E274D and other synonymous 

variants using a 2x2 Fisher’s test.  

 

However, the substitution c.1175C>T (P392L) disrupts a highly conserved sequence in 

the UBA domain(Geetha and Wooten, 2002) and may abolish the ubiquitin-binding ability 

of the protein. Using SIFT, Polyphen2 and Mutation taster programs, this mutation was 

predicted to be pathogenic by all three programmes. To confirm the presence of this 

mutation, we digested the PCR product with BstU1, which selectively cuts the major allele 

leaving the mutated allele uncut (Figure 4-1 E). 
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Figure 4-1. SQSTM1 sequence variants in ALS and PDB. 
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A Summarizes SQSTM1 mutations previously reported in ALS and PDB. Probable pathogenic variants are in red and variants in the present study are 

outlined in blue. Domains are annotated as summarized by Geetha and Wooten (2002): SH2 (src homology 2 binding domain), AID (acidic interaction 

domain), ZZ (ZZ finger), TRAF6 (binding site for ring-finger protein tumor necrosis factor), PEST (PEST sequence) and UBA (Ubiquitin-associated domain). 

B-D. Representative chromatograms showing the heterozygous c.463G>A (E155K), c.1175C>T (P392L), c.205+12G>T and c.205+21C>T variants and 

control sequences indicated by arrows. The protein sequences are conserved in mammals and the mutated residues are highlighted in red. E. The P392L 

mutation was confirmed by RFLP. Upper band showing the mutation only appeared in lane 2 (FALS#G15), whereas samples with normal sequences (Lane 

3, FALS#G35) were completely digested.  
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The proband bearing the P392L mutation (P392L Family I, Figure 4-2 A) was male and 

diagnosed with ALS at the age of 53 years. Upper and lower motor symptoms were 

present and there was significant bulbar involvement but no cognitive impairment. The 

patient had previously been diagnosed with Paget’s disease of bone from bone scans and 

analysis of serum phosphate levels. The patient died of respiratory failure 6 years after 

diagnosis at the age of 59 years. There was a family history in which the father (IV:11) 

and paternal aunt (IV:9) of the proband were also diagnosed with ALS. Individual IV:11, 

presented with prominent lower motor neuron symptoms and bulbar involvement, onset 

occurred at 60 years and the patient died at 67 years of age. Individual IV:9 demonstrated 

significant muscle wasting and died at 52 years. However, no DNA was available from 

either of these cases. We were able to obtain DNA from the brother (V:5) and son (VI:5) of 

the proband. Individual V:5 was not a mutation carrier and had no symptoms of ALS when 

64 years old. VI:5, in contrast, was heterozygous for the mutation but no conclusion on the 

phenotype can be made yet, as the individual was 21 years at the time of sampling.   

 

We also screened for the P392L mutation in sporadic ALS cases (n=86), controls (n=78) 

and FALS cases with hexanucleotide expansions in C9orf72 (n=26). Cases with C9orf72 

expansions were included at this stage as they are known to exist together with other 

FALS mutations (van Blitterswijk et al., 2012a). One further P392L mutation was detected 

in these FALS cases and confirmed by sequencing but the mutation was absent from all 

controls and SALS cases that were screened. This FALS case (P392L Family B, Figure 

4-2 B) showed typical ALS features with prominent bulbar features including marked 

tongue spasticity. Disease onset occurred at 63 years of age and disease duration was 27 

months. Her sibling showed similar disease duration and died at the age of 62 years. Both 

brothers and parents were unaffected by ALS, the mother died at 86 years and the father 

in his mid-fifties with nephritis. The brothers both died in their 70s from cancer. There was 

no evidence of PDB in this kindred. 

 

The overall prevalence of the P392L substitution is 2.3% in our UK-FALS cohort, which is 

significantly higher than the general population (P=0.0455, Figure 4-3).  

 

c.463G>A (E155K) is a novel non-synonymous variant found in the ZZ-type zinc finger 

domain, which is responsible for protein-protein interactions and interacts with RIP in 
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TNFɑ/NFkB pathway (Geetha and Wooten, 2002). The mutation is absent from all 

available databases and was predicted to be pathogenic by all three programmes. The 

proband was diagnosed with ALS at 71 years and survived for 21 months and was 

heterozygous for the variant. There was no record of PDB in this case. The father of the 

proband developed PDB but not ALS, while the brother of the proband was diagnosed 

with ALS at 69 years. He survived for 12 months and there was no record of PDB in this 

case (Figure 4-2 C). No DNA was available for these samples.   

 

All coding mutations in SQSTM1 detected in ALS (SALS and FALS) in this and previous 

studies are presented in Table 4-2 together with their prevalence in ALS and control 

populations and pathogenicity predictions. Analysis of all SQSTM1 variants that are 

predicted as being pathogenic in published cohorts (Fecto et al., 2011; Hirano et al., 2013; 

Rubino et al., 2012; Teyssou et al., 2013) and the current study demonstrated that 

pathogenic SQSTM1 variants are significantly associated with FALS with a combined 

odds ratio of 3.85 (PMH=0.0003, Table 4-3). No significant association was found for SALS 

cases. In combination with previous studies, it can be concluded that P392L, which has 

been identified in 5 out of 524 FALS families, is the most common SQSTM1 mutation in 

FALS and PDB to date with a mutation frequency of 2.3% in our UK-FALS cohort and 

0.95% in pooled FALS populations published to date (Table 4-2; Figure 4-3). 

 

We also identified two novel intronic variants, c.205+12G>T and c.205+21C>T, which are 

located at 12 bps and 21 bps from the exon 1/intron 1 junction respectively. These 

variants were present in the same FALS individual, who was heterozygous for the first 

variant and homozygous for the second (Figure 4-1 D). Their effects on splicing were 

analysed using the Human splicing finder program, which showed that the mutant allele of 

c.205+21C>T may give rise to a novel donor site with a consensus value of 82.06 (+ 

48.59% variation compared to wildtype) and elongate exon 1 by 16 bps.  
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Figure 4-2. Pedigrees of the FALS index cases carrying P392L and E155K SQSTM1 mutations.  

 

 

Age of death and genotypes are indicated where available. A. in P392L Family I, individual II:1 and II:4 died of senility, and III:1 and III:2 died of 

arteriosclerosis and heart disease respectively. DNA was available for three individuals. The index case developed both PDB and ALS, and the phenotypes 

of generations VI and VII were unknown at the time of sampling. B. In Family II, individual I:2 died of nephritis and no DNA was available for other family 

members. C. In the E155K Family, the father of the proband developed Paget’s disease and died at 70 years. 
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Figure 4-3. Mutation frequency of P392L SQSTM1 in different populations.  

 

 

The frequency of the P392L substitution is shown as a percentage of individuals carrying this mutation in different populations. IC-groups show the data 

obtained in the current study. There is a significant increase in prevalence in IC-FALS compared to the combined control group using a 2 x 2 Fisher’s test. 

The frequency in PDB was summarized as reported by Morissette et al (2006) and Rea et al (2009). 
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Table 4-2. Summary of coding variants in SQSTM1 in FALS, SALS and FTD from different studies. 

Protein Position rs  Changes Population Prevalence Prediction 
    FALS SALS FTD Control SIFT PP MT 

A33V 179248034 rs200396166 c.98C>T 1/498a 2/458a   6/4418a,f + - + 
A53T 179248093  c.157G>A  1/458c  0/4550c,f - - - 
M87V 179250011  c.259A>G  1/458d  0/4660d,f + - + 
K102E 179250056  c.304A>G  1/458d  0/4660d,f + - + 
V153I 179251013 rs145056421 c.457G>A  2/458a   9/5024a,f - - - 
E155K 179251019  c.463G>A 1/498e   0/4300e,f + + + 
P228L 179252155 rs151191977 c.683C>T  1/458a   4/5024a,f + - + 
V234V 179252174   c.702G>A 1/498a    0/5024a,f -  - 
K238E 179252184 rs11548633 c.712A>G  1/458b   32/4824b,f,g + + + 
K238del 179252186-8   c.714-716delGAA  1/458a   0/724a   + 
V259L 179260052   c.775G>C   1/170b 0/4445b,f + - + 
H261H 179260060 rs145001811 c.783C>T  1/458a   1/5038a,f -  - 
E274D 179260099 rs55793208 c.822G>C 2/498b,e 11/458b 5/170b 236/4824b,f,g - - - 
P296P 179260165 rs148984239 c.888G>T 1/498e   1/4679f,g    
S318P 179260229   c.952T>C 1/498a    0/5038a,f - - - 
S318S 179260231 rs56092424 c.954C>T 2/498e    199/4674f,g -  - 
E319K 179260232 rs61748794 c955G>A   1/170b 2/4817b,f,g - - - 
R321C 179260238 rs140226523 c.961C>T  1/458a   5/5407a,f,g + - - 
K344E 179260647   c.1032A>G   1/170b 0/4805b,d,f + + + 
V346V 179260655 rs150470670 c.1038G>A 1/498e   4/4300f -  + 
P348L 179260660   c.1044C>T  1/458b   0/4805b,d,f + + + 
S370P 179260725 rs143956614 c.1108T>C 1/498a    0/5393a,b,f - - + 
A390X 179260783  c.1165+1G>A  1/458  -   + 
P392L 179263445 rs104893941 c.1175C>T 5/524a,d,e 1/544a,e   22/5999a,b,d,e,f,g + + + 
G411S 179263501 rs143511494 c.1231G>A 1/498a    0/5397a,d,f + + + 
G425R 179263543  CM041449 c.1273G>A 1/498a    0/5397a,d,f + + + 
P438L 179263586   c.1313C>T  1/458b   1/4805b,d,f + + + 
P439L 179263676 rs199854262 c.1316C>T  1/458c  0/4910c,d,f + + + 
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Mutations identified in this study are in bold and the frequencies comprise heterozygous and homozygous minor 

genotypes. All changes shown are exonic except that A390X, also known as IVS7+1 G>A, occurred at the splice site of 

intron 7. Data from the EUR subgroup of 1000 genome project and EA subgroup of NHLBI Exome sequencing project 

and ‘in house’ controls published in previous studies were combined as reference controls. The effects of mutations 

were predicted using SIFT, Polyphen 2(PP) and Mutation taster (MT): “+” = probable damaging; “–” =tolerated. 

a Fecto et al (2011) (FALS, n=340; SALS, n=206; control, n=724);    

b Rubino et al (2012) (SALS, n=124; control=145);    

c Hirano et al (2013) (FALS, n=7, SALS, n=54; control n=250);    

d Teyssou et al (2013) (FALS, n=90; SALS, n=74; control, n=360);   

e Current study (FALS, n=61+26, SALS,n=86, control, n=78);  

f  Exome Variant Server, NHLBI GO Exome Sequencing Project (ESP), Seattle, WA (URL: 

http://evs.gs.washington.edu/EVS/) [Apr, 2013];   

g 1000 genomes (EUR, n=379 ). 
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Table 4-3. Combined allelic frequencies of SQSTM1 variants that are predicated 

as pathogenic in cases and controls.  

Protein CTRL  FALS (POOL)  SALS (POOL) 

Changes MAF%  MAF% OR CI95  MAF% OR CI95 

A33V 0.07  0.10 1.48 0.18-12.3 
 

    

M87V 0      0.11 30.54 1.24-750.32 

K102E 0      0.11 31.54 1.24-750.32 

E155K 0  0.10 25.92 1.06-636.7     

P228L 0.04      0.11 2.7443 0.31-24.58 

K238E 0.33      0.11 0.33 0.05-2.41 

K238del 0      0.11 4.75 0.19-116.65 

S318P 0         

R321C 0.05      0.11 2.36 0.28-20.24 

K344E 0         

P348L 0      0.11 31.49 1.28-773.66 

S370P 0  0.10 32.51 
 

1.32- 798.5 
 

    

A390X -      0.11   

P392L 0.18  0.48 2.60 
 

0.98-6.88 
 

 0.09 0.50 0.07-3.72 

G411S 0  0.10 32.53 
 

1.32-799.1 
 

    

G425R 0  0.10 33.00 
 

1.34-810.5     

P438L 0.10      0.11 10.50 0.66-168.04 

P439L 0      0.11 32.18 1.31-790.57 

 χ2
MH 13.23    1.46  

 P MH 0.0002    0.2276  

 PExact 0.0010    0.1504  

 Combined OR 3.85 1.86-7.94   1.63 0.83-3.22 

 PWoolf 0.1993    0.0480  

We analysed the combined risk carried by these variants using Mantel-Haenszel analysis. 

Odds ratios were calculated for 2 x 2 contingency tables for each variant. It can be 

summarised that all FALS-associated variants are more frequent in FALS than control 

with odds ratios >1 and Woolf’s test indicated no significant heterogeneity between the 

odds ratios in FALS. Significant Mantel-Haenszel Test and Exact conditional test indicates 

that pathogenic SQSTM1 variants are associated with FALS with a combined odds ratio of 

3.85. However, we did not observe this association in SALS. Significant values are 

bolded. Refer Table 4-2 for the counts of genotype. 

 



 

 

130 

 

4.3.2 Founder haplotype of P392L SQSTM1 kindred 

A four-SNP founder haplotype, H2, has been previously described to carry most P392L 

mutations in PDB patients of British descent (Lucas et al., 2005). We carried out 

haplotype analysis to investigate whether this was also the case in FALS. We first 

reconstructed the haplotypes in the control population (1000 genome EUR group) where 

all 4 SNPs are in high LD (r2>0.8) (Figure 4-4 A) showing that H1 (T-A-C-T) and H2 (C-G-

T-G) accounted for 95% of haplotypes, as previously reported (Lucas et al., 2005) (Table 

4-4). All P392L mutations carriers in this study were heterozygous for H2 and H2α (C-G-C-

G) haplotypes and the E155K carrier was heterozygous for H1 and H2 haplotypes. In the 

FALS cohort as a whole, there were no significant differences in the frequency of a two-

SNP haplotype between cases and controls (Table 4-4). Survival data was available for 

16 samples and there were no significant differences between haplotypes (Figure 4-4 B). 

 

The frequencies of common non-coding variants detected in this study are summarised in 

Table 4-5, the allele frequencies between cases and controls were compared using 2 x 2 

Fisher’s test and corrected for multiple testing. No marked changes were detected.  

 

All index cases in P392L FALS families and the pre-symptomatic son in P392L SQSTM1 

family I were heterozygous for H2 and C-G-C-G (H2α) haplotypes. The unaffected brother 

in P392L family I was homozygous for H1 haplotype.The index case in the E155K family 

was heterozygous for the H1 and H2 haplotypes.  

 

A two-SNP haplotype comprising positions 1 and 2 was reconstructed in both FALS and 

Control (first column) but there were no significant changes in haplotype frequencies 

between cases and controls using a 2 x 2 Fisher’s test (data not shown).  
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Table 4-4. Founder haplotypes for SQSTM1 mutations. 

Haplotypes Frequency (%) 

1, 2 1, 2, 3, 4 Control FALS 

C-G  48.3 40.2 

 C-G-T-G (H2) 46.2  

 C-G-C-G (H2α) 1.2  

 C-G-C-T  0.9  

T-A  46.7 54.9 

 T-A-C-T (H1) 45.9  

 T-A-C-G 0.3  

 T-A-T-G 0.5  

T-G  2.8 3.3 

 T-G-T-T 0.1  

 T-G-T-G 1.5  

 T-G-C-T 1.2  

C-A  2.2 1.6 

 C-A-T-G 1.3  

  C-A-C-T 0.9  

Haplotype frequencies of the p62/SQSTM1gene are shown. The reported four-SNP 

haplotype comprising position 1 (rs4935), 2 (rs4797), 3 (rs10277) and 4 (rs1065154) was 

reconstructed in control samples derived from 1000 genome (column 2), and 4 individuals 

were heterozygous for the P392L mutation, 2 for K238E, 16 for E274D, 16 for S319S and 

2 for R321C. All P392L and K238E were contained within H2 haplotype, whereas the 

others were contained within H1 haplotype. None of these variants were contained within 

the H2α haplotype.  
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Figure 4-4. Linkage disequilibrium and Survival analysis of SQSTM1 SNPs 

A. Linkage disequilibrium (LD) between 

the SNPs that form the founder 

haplotype. r2 values, a measurement of 

LD, are shown in the boxes.  

 

 

 

 

 

 

 

 

 

 

B. Kaplan-Meyer plots showing the 

percentage of surviving individuals of 

different p62/SQSTM1 haplotype at 

different time intervals. A subgroup of 

FALS (n=16) was used in this analysis. 

Curves were compared using Log-rank 

test and P values are shown. No 

significant differences were observed.  
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Table 4-5. Common SNPs (MAF > 10%) detected in this study.   

 

 

Chr MAF  Genotype HWE Allelic  Genotype 

 (2n) %   %   P FDR OR CI95  P 
FDR 

 

 rs4700700 G/A             
EUR 758 6.3  88 11 1 0.05        
FALS 114 13  77 19 4 0.23 0.0177 0.0568 2.24 1.21-4.15  0.0384 0.0640 

             
rs2241349 G/A             
EUR 758 32  45 46 9 0.41        
FALS 66 47  27 52 21 1 0.1985 0.1985 1.88 1.13-3.12  0.0354 0.0640 
             
rs4935 C/T             
EUR 758 49  26 50 25 1 

 

       
FALS 122 58  13 57 30 0.2 0.0794 0.1323 1.42 0.97-2.09  0.0897 0.1121 
             
rs4797 G/A             
EUR 758 49  25 53 23 0.36 

 

       
FALS 122 57  11 64 25 0.04 0.1432 0.1790 1.36 0.93-2.00  0.5673 0.5673 
             
rs155787 A/G             
EUR 758 51  23 51 26 0.84        
FALS 40 33  35 65 0 0.06 0.0227 0.0568 0.45 0.23-0.89  0.0097 0.0485 
             
rs10277 C/T             
EUR 758 50  25 50 25 1        
FALS               
             
rs1065154 G/T             
EUR 758 49  26 50 24 1        
FALS               

Allelic and genotypic frequencies of common SNPs captured in this study are shown. All 

SNPs are in Hardy-Weinberg equilibrium (HWE) in control. There was significant 

difference in genotypic frequency of rs155787 using a 2 x 3 Fisher’s test. All P values 

were subjected to Benjamini-Hochberg correction as shown in the FDR column. 

rs7711505 (intronic), rs753636646 (intronic) and rs155790 (3’ UTR) were also detected in 

this study at similar frequencies in control and ALS populations. 
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4.4 Discussion 

In this study, we screened all exons of the SQSTM1 gene and confirmed the presence of 

SQSTM1 mutations in FALS cases of UK descent. We identified six candidate exonic 

variants, including a novel E155K mutation, and two novel intronic variants in FALS index 

cases. There were positive familial histories of Paget’s disease of bone in two families 

carrying either the P392L or the E155K mutation, which were predicted to be pathogenic.  

 

The E274D and other synonymous exonic variants detected in this study were not 

predicted to be pathogenic. In contrast to the findings of Rubino et al (2012), we found no 

significant differences in allelic and genotypic frequencies of the E274D or other 

synonymous variants between our ALS cohorts and controls derived from a UK control 

cohort and publically available databases. In contrast, the properties of the P392L and 

E155K mutations are more likely to contribute pathogenic effects. Firstly, these mutations 

are located in highly conserved domains that are required for the basic functions of 

p62/SQSTM1. The P392L mutation occurs in the UBA domain which is required for the 

binding of ubiquitin (Geetha and Wooten, 2002) and modifies the structure of this domain 

by extending the N-terminus of helix1 (Ciani et al., 2003). This results in a reduced affinity 

for mono-ubiquitin and shortened polyubiquitin chains (Cavey et al., 2006). The ZZ 

domain, which accommodates the E155K mutation, is a conserved structural component 

in different ZIP/p62 homologs and plays an important role in the formation of complexes 

that participate in the NF-kB signalling pathway (Moscat et al., 2007). Secondly, the 

coexistence of both PDB and ALS in the two families reported here and in other studies 

(Teyssou et al., 2013) is indicative that common pathogenic mechanisms underlie both 

these diseases. p62/SQSTM1 has an established causal role in PDB and the P392L 

mutation is, in fact, the most common cause of PDB (Morissette et al., 2006; Rea et al., 

2009). The P392L mutation segregates with PDB and, although the binding of 

polyubiquitin remains intact, it causes a phenotype that is indistinguishable from those 

caused by mutations that truncate the entire domain (Hocking et al., 2004). Thirdly, 

multiple studies have confirmed the existence of the P392L mutation in ALS from different 

populations (Fecto et al., 2011; Teyssou et al., 2013) and, in combination with the data 

presented here, it can be concluded that it is the most common mutation in the gene in 

ALS to date (Table 4-2). The coexistence of the P392L mutation in a family with a C9orf72 

expansion is not unexpected as C9orf72 has also been found in FALS cases harbouring 
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SOD1, FUS or TARDBP mutations (van Blitterswijk et al., 2012a). The SQSTM1 P392L 

mutation index case with the C9orf72 mutation (Family II) showed classical features of 

ALS with no evidence of cognitive impairment and shorter survival (age at death: 62 to 65 

years) compared to Family I that lacked a C9orf72 expansion (age at death: 52 to 67 

years). It is possible that the severity of the disease may have been affected by the co-

existence of both mutations but whether the effect of the SQSTM1 mutation is potentiated 

by the expansion remains to be established. 

 

The fundamental role of p62 in autophagy is well established and relevant to multiple 

tissues. However, more recently considerable evidence has accumulated for the specific 

involvement of p62 in ALS and ALS with fronto-temporal lobar degeneration (ALS/FTLD), 

where p62 is associated with both TDP-43-positive and TDP-43-negative inclusions in 

spinal cord and cerebral cortex. Furthermore, similar inclusions have been demonstrated 

in ALS cases harbouring SQSTM1 mutations (Teyssou et al., 2013). 

 

In spite of the phenotypic heterogeneity found in ALS, ALS/FTLD and PDB and related 

disorders such as IBMPFD and POAG, the discovery of mutations in overlapping 

candidate genes, such as VCP, UBQLN2, CHMP2B and OPTN, points to a common 

pathogenic mechanism affecting the formation and clearance of misfolded proteins (Fecto 

and Siddique, 2011). In the current study, we also report that the genotypes of Protein 

disulphide isomerase (PDI), a redox enzyme that reduces formation of aberrant disulphide 

bonds, are associated with survival time of FALS (Chapter 5), supporting the hypothesis 

that factors interfering with proteostasis may modify disease progression and can be 

considered as therapeutic targets for ALS. The investigation of p62/SQSTM1 mutations in 

multiple cohorts provides further support for their contribution to a significant 

predisposition to disease in ALS.  

 

 

-END OF CHAPTER 4- 
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Chapter 5 
 

Association Studies of ALS Candidate Genes 
 

 

5.1 General introduction: Association study and its use for identifying 

susceptibility genetic variants in ALS. 

Linkage studies have been successful in allocating oligogenetic causes to a number of 

Mendelian traits, and such causes may have major contribution to the traits. However, the 

majority of human diseases cannot be explained by a single genetic cause and appear to 

be underlined by multiple genetic factors, each exerting partial effects on the traits (Risch, 

2000). Although inheritance is sometimes identified in rare forms of common diseases, 

linkage studies aiming to determinate disease locus in common conditions that are not 

inherited in a simple Mendelian manner, also known as complex diseases, have been 

unsuccessful (Altmuller et al., 2001). Association studies, on the other hand, have taken 

advantage of a greater statistical power in detecting genetic risk factors for complex 

diseases and have been widely applied for this purpose in the past few decades. Genetic 

association is a statistical observation of “a tendency of two characters (disease, marker 

alleles etc.) to occur together at non-random frequencies which can sometimes be caused 

by linkage disequilibrium” (Strachan, 2011). In contrast to linkage, which describes the 

relationship between a marker and the disease locus segregating in affected kindred, the 

association between a genetic variant and disease is a result of shared ancestral 

chromosomal segments or haplotypes that cause or confer susceptibility of the disease in 

a population. An association study determines whether an individual carrying specific 

genetic variants, mostly common Single nucleotide polymorphisms (SNPs), is at 

increased risk of disease (Lewis, 2002).  

 

Different designs for association studies have been described, including family based 

designs and population based designs (Cordell and Clayton, 2005). A family based case-

parent triad design compares the genotype transmitted from heterozygous parents to 

affected individuals to those that are non-transmitted using a transmission/disequilibrium 

(TDT) test. This design eliminates population stratification, however, the disadvantage is 
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that it has limited power and requires a large trio cohort that is relatively difficult to obtain 

compared to a case-control design (Cordell and Clayton, 2005). In a population-based 

case-control design, which is the most commonly used design for association studies, 

allele and genotype frequencies of a SNP are compared between cases and controls 

using Chi-square or Fisher’s tests (Hirschhorn et al., 2002). Other statistical methods, 

such as Logistic regression, Cochran-Armitage trend test and Permutation tests are also 

employed with the disease status as the outcome.  

 

The advance in microarray technology has given rise to Genome-wide association studies 

(GWAS), which assesses SNPs throughout the genome at even intervals [reviewed by 

(Hirschhorn and Daly, 2005)]. Thus, GWAS enables an unbiased assessment of genetic 

associations with diseases without making assumptions about gene functions and 

generates massive amounts of genotype data in the populations being studied. However, 

it has not always been possible to replicate the top-hit association signals in follow-up 

studies. In addition, association tests in GWAS studies are subjected to a stringent 

genome-wide threshold for multiple corrections and cohorts of large numbers are usually 

required to gain sufficient power. Having said this, it remains possible that SNPs having 

genuine effects that do not exceed the genome-wide threshold are overlooked in such 

analyses.  

 

On the other hand, in a candidate gene approach, the SNPs being studied are selected 

based on an a priori assumption that they may directly or indirectly contribute to the trait 

being investigated, such as mediating changes in gene expression or protein function or 

being in linkage disequilibrium with these changes (Tabor et al., 2002). Although, in the 

end, the identification of significant associations is not always accompanied by functional 

changes in mRNA or protein levels, it has been suggested that such results should be 

considered as informative clues to potential disease pathways rather than evidence of 

causality (Tabor et al., 2002). In a way, these two approaches are complementary to each 

other as, with publicly available GWAS databases, such as dbGAP 

(http://www.ncbi.nlm.nih.gov/gap) and GWAS Central (http://www.gwascentral.org ), 

independent candidate gene studies can be initiated by taking into account both functional 

properties of the candidate gene and previous GWAS results, including the below -

threshold signals. Indeed, some traditional challenges to the candidate gene approach, 

http://www.ncbi.nlm.nih.gov/gap
http://www.gwascentral.org/
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such as population stratification and Type1 error and the lack of SNP functional impacts, 

can nowadays be overcome in silico using sophisticated databases and prediction 

algorithms (Patnala et al., 2013), which are also taken account in this study.  

 

Despite the identification of more than 18 causal genes in FALS, no major gene has been 

shown to be causal for SALS. Using the candidate gene approach, a number of genetic 

risk factors have been reported for SALS, such as Apurinic endonuclease (APEX), 

Angiogenin (ANG), Chromatic modifying protein 2b (CHMP2B), Dynactin (DCTN1), 

Haemochromatosis (HFE), Neurofilaments (NEFL, NEFM, NEFH), Paraoxonase (PON), 

Peripherin (PRPH), Progranulin (PGRN), SOD1, Survival motor neuron 1 and 2 (SMN1 

and SMN2) and Vascular endothelial cell growth factor (VEGF) genes [reviewed by 

(Schymick et al., 2007a)]. Subsequent screening of these genes has indeed led to the 

identification of mutations in FALS or SALS patients as summarized in Chapter 1. In the 

GWA studies carried out in ALS, SNPs in FGGY (Schymick et al., 2007b), ITPR2 (van Es 

et al., 2007), DPP6 (van Es et al., 2008) and UNC13A (van Es et al., 2009b) genes have 

been shown to exceed the genome wide threshold. Noteworthy, in a GWAS study using a 

Finish ALS cohort comprising both FALS and SALS patients (Laaksovirta et al., 2010), a 

significant association signal was observed in the 9p21 region, which overlapped with the 

linked region in ALS/FTD families. The association was mainly driven by FALS and a 42-

SNP haplotype was found in both FALS and SALS patients that accounted for most of the 

association (Laaksovirta et al., 2010; Mok et al., 2012). The C9orf72 expansion, which 

was covered by this haplotype, was subsequently identified as the most common cause of 

FALS/FTD (Renton, 2011). Indeed, SNPs in the 9p21 region were also evident for SALS 

populations in independent studies, suggesting common variants in this region may be 

risk factors for both FALS and SALS (Shatunov et al., 2010; van Es et al., 2009b). 

However, the possibility of the existence of a common founder in SALS with reduced 

penetrance cannot be excluded (Shatunov et al., 2010), and disease loci other than 

C9orf72 may exist in this region as residual association was retained after removal of 

C9orf72 positive cases (Jones et al., 2013).  

 

In this study, we carried out two independent association studies on two candidate genes 

in the telomeric region of the chromosome 17, P4HB and NPLOC4. Protein disulphide 

isomerase A1 (PDIA1), which is encoded by the P4HB gene, is a redox enzyme that 
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facilitates the exchange of disulphide bonds and prevents the formation of aberrant 

protein aggregates, however, this gene was not well-represented in GWA studies. 

NPLOC4 is a gene located ~200 kb upstream of P4HB and functionally being a cofactor 

for VCP. Association signals in this gene were shown in previous GWAS studies and this 

was further investigated in our study. Our results show that SNPs and haplotypes for 

P4HB (Section 5.2) and NPLOC4 (Section 5.3) genes are associated in our FALS and 

SALS cohorts respectively. 
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5.2 Association studies indicate that P4HB is a risk factor in Amyotrophic lateral 

sclerosis  

5.2.1 Introduction 

A prominent pathological feature of ALS as well as many other neurodegenerative 

diseases is the build-up of misfolded or aberrant proteins that might, for example, arise 

due to oxidative damage, impaired calcium homeostasis, endoplasmic reticulum (ER) 

stress and/or impaired protein quality control. There is strong evidence demonstrating that 

ER stress occurs in sporadic cases of ALS and also in animal models of ALS (Atkin et al., 

2008; Ilieva et al., 2007) resulting in the recruitment of the unfolded protein response 

(UPR), through IRE1, ATF6 and PERK pathways inducing the production of ER 

chaperones and protein disulphide isomerase (PDI, also known as prolyl 4-hydroxylase 

subunit beta [P4HB]) which facilitate protein folding and transport. In addition, the removal 

of misfolded proteins is facilitated through ER-associated degradation (ERAD), the 

ubiquitinated proteasomal system (UPS) and autophagy which are all evident in ALS 

tissue. However, if ER stress is not resolved, activation of apoptosis is initiated in the ER 

(Yoshida, 2007). Interestingly, several mutations known to cause familial ALS occur in 

genes mediating these processes such as VAPB which regulates the IRE1 component of 

the UPR (Chen et al., 2010; Nishimura et al., 2004a), SOD1 which interacts with 

components of ERAD, and VCP (Johnson et al., 2010) and UBQLN2 (Deng et al., 2011) 

that regulate UPS and autophagy. Furthermore, levels VAPB are known to decrease 

significantly in sporadic cases of ALS (Anagnostou et al., 2010). 

 

In view of the importance of protein quality control in ALS pathogenesis, we have focused 

on one particular ER component, PDI (PDIA1) that not only prevents the formation of 

misfolded proteins by facilitating the exchange of disulphide bonds but also has 

oxidoreductase and protein isomerase activities. PDI together with other ER stress 

markers are significantly elevated in ALS spinal cord compared to controls and also in the 

G93A SOD1 mouse model of ALS (Atkin, 2006; Atkin et al., 2008; Massignan et al., 2007). 

Elevated levels of 5-nitrosylated PDI, an inactivated form, are also found in ALS which 

suggests that despite the elevated levels, PDI is functionally inactive (Walker et al., 2010). 

Overexpression of PDI decreases both the accumulation of SOD1 aggregates and also 

neuronal death in the SOD1 mouse model of ALS, whereas inhibition of PDI using 

bacitracin increases the formation of aggregates (Atkin, 2006; Atkin et al., 2008). In ALS, 
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the major inclusions associated with most forms of both sporadic and FALS are the TDP-

43-positive ubiquitinated protein aggregates that accumulate in the cytoplasm and recent 

studies show co-localisation with PDI (Honjo et al., 2011). FUS-positive ubiquitinated 

inclusions found in a smaller subset of ALS cases also co-localise with PDI (Farg et al., 

2012).   

 

Although the application of genome wide association studies (GWAS) has raised 

expectations of detecting genetic risk factors in sporadic ALS, this has not been realised, 

despite the use of large cohorts. A limited number of associations have been reported but 

most have not been replicated. The reasons are multiple, GWAS methodology uses SNPs 

covering the entire genome and consequently a large statistical correction for the number 

of SNPs tested (usually 300K to 550K) must be applied. Hence large combined cohorts 

are necessary which may introduce additional variation due to population stratification of 

SNP allele frequencies. In practice, GWAS can rarely detect multiple variants or a single 

rare variant at a single locus (Andersen and Al-Chalabi, 2011) and SNPs within a gene of 

interest may be poorly represented which is true for P4HB where only one tag SNP 

(rs2070871) is present in the Illumina HumanHap SNP array (550K SNPs). We have used 

a candidate gene approach which is hypothesis driven and therefore dependent on 

rigorous standards of biological plausibility. Indeed, the results of a recent simulation 

study showed that a candidate gene approach has greater power than GWAS (Amos et 

al., 2011). The evidence outlined above, for a role of PDI in ALS pathogenesis, provides a 

compelling case for testing the hypothesis that the corresponding gene (P4HB) is a risk 

factor for ALS. 

 

In this study, we have investigated whether P4HB is a genetic risk factor for familial or 

sporadic ALS by analysis of associations between SNP markers and disease and disease 

severity, assessed by age at onset and duration. Our results show significant genotypic 

association of SNPs in P4HB, with FALS and that specific haplotypes confer risk for FALS 

or SALS. We also identified two genotypes and one diplotype that modify disease survival. 
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5.2.2 Methods for P4HB association study 

5.2.2.1 Sample collection.  

ALS patients were recruited from the UK (Imperial College Healthcare NHS Trust (ICHT) 

and Kings College Healthcare NHS Trust (KCHT)), diagnosed according to the El Escorial 

criteria (Brooks et al., 2000) and satisfying Research Governance regulations for both 

Institutions. Each FALS patient was an index case from a separate kindred. The control 

cohort consists of UK subjects of European origin and the EUR subgroup from the 1000 

Genome Project Database. Informed consent was given for all samples. DNA was 

extracted from whole blood or the buffy coat layer using a DNA Extraction kit (QIAGEN), 

according to protocols provided by the manufacturers.  

 

5.2.2.2  Identification and genotyping of SNPs. 

SNPs in P4HB were identified in ENSEMBL (http://www.ensembl.org) and dbSNP 

(http://www.ncbi.nlm.nih.-gov/projects/SNP/ ). Only SNPs with Minor allele frequency 

(MAF) of > 15% in the European population and having natural restriction sites were 

selected. Primers flanking a 100-bp region around the SNPs were designed using 

PRIMER 3 program (http://frodo.wi.mit.edu/ primer3) and purchased from Invitrogen UK. 

Details of the primers are shown in Table 5-1. PCR was carried out in a standard 30μl 

volume containing 1X buffer, 1.5mM Mg2+, 0.1mM dNTP, 0.5μM Primers, 0.05U/μl GOtaq® 

Taq DNA polymerase (Promega, UK) and 0.5ng/μl templates.  

 

SNPs were genotyped using restriction digestion. SNP1 and SNP3 were digested with the 

restriction enzyme MspI, and SNP 2 and SNP 4 were digested with BstNI and AvaII 

respectively. PCR products were incubated with 1U of enzyme at appropriate 

temperatures overnight, after which the DNA fragments were separated on a 2% agarose 

gel (VWR) stained with 0.5 μg/ml ethidium bromide for 1 hour at 11V/cm. PhiX-174-HaeIII 

(New England Biolabs, UK) was used as DNA marker. Results were visualized using the 

GELDOC (Bio-Rad UK, Hemel Hempstead Hertfordshire, UK) system and profiles 

quantified where necessary. In order to rule out the possibility of genotyping errors, all 

rare haplotypes not present in controls and ambiguous results were sequenced for 

confirmation. 
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Table 5-1. Primers used for PCR of P4HB SNPs. 

SNPs Primers Product Size 

SNP 1 
F: TCTAGTGGACTCCAGAGAAT 

R: CGAACCCTGTGTTGTCAC 
211 

SNP 2 
F: GTGAGCTCTGACTTCCAG 

R: GTTCTGTCTCCATTCTCTG 
210 

SNP 3 
F: CTACATCCAGGCTGGTCCT 

R: GTGAAATCAAGACTCACATC 
242 

SNP 4 
F: GACTGATCATGGCTCTTG 

R: TGTAGAGAGGCCAGTGGT 
190 

 

5.2.2.3  DNA Sequencing 

PCR products were purified with Sureclean (Bioline, UK) according to the manufacturer’s 

instructions, and centrifuged for 40 mins at 4000 rpm. The supernatant was removed and 

the pellet was resuspended in 70% ethanol, centrifuged again at 4000 rpm for 40 mins 

and the supernatant was removed. Finally, 10μl H2O containing 6.4 pmol of primer was 

added and sequencing was carried out using an ABI Prism BigDye terminator kit (Applied  

Biosystems, Warrington, Cheshire, UK) according to the manufacturer’s instructions. The 

sequences were analyzed using Codon Code Aligner and Seqdoc programs 

(http://research.imb.uq.edu.au/seqdoc).   

 

5.2.2.4  Statistics 

Allelic and genotypic associations, as well as departures from Hardy-Weinberg 

equilibrium, were tested with 2 x 2 and 2 x 3 Fisher’s tests using the PLINK program. 

Linkage disequilibrium (LD) was estimated using r2 values which were calculated and 

represented using Haploview (Barrett et al., 2005). Haplotypes were reconstructed using 

the Expectation-maximization (EM) algorithm implemented in PLINK. Haplotypes and 

diplotypes were inferred in a four-SNP window and those with posterior probabilities >0.9 

were accepted. Fisher’s test was also used to test the associations for each haplotype in a 

2 x 2 contingency table comparing the counts of haplotypes in ALS against controls. The 

P values for both genotypic and haplotypic tests were corrected for multiple comparisons 

using the Benjamini-Hochberg method. We compared the overall haplotypic distributions 
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in a 2 x N contingency table using the CLUMP program, a model-free algorithm which 

assesses significance using Monte-Carlo simulations (Sham and Curtis, 1995). For 

genotype-phenotype relationships, the frequencies of site of onset were compared for 

each genotype using the Fisher’s test. Data for age at onset and survival were presented 

in Kaplan-Meyer curves using SPSS and Graphpad and Hazard ratios were estimated 

using the Cox-regression test. Differences between curves were tested by the log-rank 

test. The power of the study was evaluated using the G*Power program (Version 3).  

 

5.2.3 Results 

We investigated whether SNPs in P4HB, which encodes PDI, are associated with disease 

and/or disease progression in ALS. The ALS cohort consisted of index cases from 200 

families, lacking mutations in TARDBP, FUS, SOD1, VABP and DAO and 282 cases of 

sporadic ALS, totalling 482 ALS cases (Imperial College Healthcare Trust and Kings 

College Hospital MND Care and Research Clinic) and a control group of 169 UK 

individuals (Imperial College Healthcare NHS Trust), which was further expanded with 

genotyping data from 367 EUR cases originating from the UK, Italy, Finland and Utah in 

the 1,000 genomes project, giving a total of 536 control individuals (Samples are 

summarized in Table 5-2).  

 

There was no significant population stratification between the control groups (2 x 2 

Fisher’s test). The power of these cohorts to detect a significant association with FALS 

was greater than 95% to detect a difference in MAF frequency between cases and 

controls of >6% (G* power) and >69% for a 4% change in MAF frequency (Table 5-3). 

The familial cases were screened for C9orf72 expansions using repeat primed PCR 

(Renton et al., 2011) and this was taken into account in a sub-analysis.  

 

Four SNPs were selected with MAF frequencies of 18 – 19%, which were located in 

introns 4 and 6 and in the 3’UTR, rs876017, rs876016, rs2070872 and rs8324, referred to 

as SNP1, 2, 3 and 4 respectively (Figure 5-1). None of these SNPs deviated from Hardy-

Weinberg (HW) equilibrium in controls. A preliminary analysis of a small FALS cohort (104 

index cases and the control cohort) was carried out using all 4 SNPs, which showed an 

increase in minor allele frequency for all SNPs but significant genotypic association was 
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only evident for SNPs 2 and 3 and therefore warranted examination in the main study. 

Preliminary data for SNPs 1 and 4 is shown in Table 5-4. 

 

 

Table 5-2. Description of ALS and Control cohorts used in the P4HB study. 

Cohorts No. of individuals 

Gender Ratio 

(Male: 

Female) 

Control 

   UK ( ICHT) 

   EUR(1000 Genome Project) 

FALS 

   UK ( ICHT) 

   UK  (KCHT)    

SALS 

   UK ( ICHT) 

   UK  (KCHT)    

536 

   169 

   367 

200 

   104 

   96 (SNP2 and 3) 

282 

   90 

   192 (SNP2 only) 

1 : 1.13 

 

 

1 : 0.88 

 

 

1 : 0.49 

 

 

Total  1018  

DNA samples of cases and controls were obtained from existing cohorts. To 

evaluate the effect of gender on genetic associations, we compared allelic and 

genotypic distributions of the SNPs between Male and Female controls and no 

significant differences were observed. 

 

 

 

Table 5-3. Power calculation for the P4HB association study. 

Control 

MAF 

Increase in MAF 

4% 5% 6% 7% 

19% 

(SNP3) 
69.13% 87.78% 96.67% 99.39% 

18% 

(SNP2) 
71.06% 89.15% 97.26% 99.54% 

Power of FALS study for different effect sizes, as measured by w-values and control 

MAFs, where α=0.05 and total sample size=736 (excluding SALS), are shown. 



 

 

146 

 

 

 

 

 

Figure 5-1. Details of P4HB SNPs investigated in this study.  

 

 

 

Alleles on the coding strand are shown.  
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Table 5-4. Genotypic and allelic associations of P4HB SNPs 1 and 4. 

 
 

Chr MAF  Genotype  Allelic  Genotype 

 (2n) %   %   P  P 

         

SNP 1 (rs876017)  AA AG GG     

Control 1066 18  67 30 3     

FALS 208 21  60 38 2  0.2843  0.2329 
 └C9 ˗ve 140 21  59 40 1  0.3531  0.2233 

SALS 180 19  64 33 2  0.7546  0.8288 
Pool ALS 388 20  62 36 2  0.3613  0.2800 
         

         

SNP 4  (rs8324)  CC CA AA     

Control 1062 19  66 31 3     

FALS 202 19  64 33 3  0.8442  0.9336 
 └C9 -ve 136 22  60 35 4  0.3535  0.5328 

SALS 180 24  60 32 8  0.1035  0.1248 
Pool ALS 382 21  62 32 5  0.2285  0.3939 
           

Genotype frequencies are summarized in the left panel. The FALS group contains 

patients with and without the hexanucleotide expansion in the C9orf72 gene, whereas the 

C9–ve group contains only samples lacking the expansion. All P values were calculated 

using the Fisher’s test and are uncorrected for multiple testing. 

 

 

5.2.3.1 Genotype Analysis of P4HB yielded Significant Genotypic 

Associations with ALS. 

A full analysis of familial cases and controls was carried out using two SNPs, rs876016 

and rs2070872, referred to as SNPs and 2 and 3 respectively. Significant genotypic 

associations with FALS were evident for both SNPs using 2 x 3 tests, following FDR 

correction using the Benjamini-Hochberg method (Table 5-5). There was an increase in 

heterozygote frequency for SNPs 2 and 3 of 11% and 13% respectively which gives rise 

to the differences in genotype distribution. In addition to genotypic association, SNP 3 also 

showed deviation from HW equilibrium in FALS cases (P = 0.0008). Using a 2 x 2 test to 

compare heterozygote frequency, the A/G genotype of SNP 3 (ORAG/AA=1.67, P=0.0014) 

was shown to confer a significant risk of FALS.   
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There were no significant associations with SALS cases but when all ALS cases were 

pooled (FALS and SALS), significant (FDR corrected) allelic and genotypic associations 

were found for SNP2 and a significant genotypic association for SNP 2 (Table 5-5). This 

result suggests that it is reasonable to conclude that the minor alleles of SNPs 2 and 3 are 

risk factors for ALS.  

 

 

Table 5-5. Genotypic and allelic associations of P4HB SNPs. 

 
 

Chr MAF  Genotype  Allelic  Genotype 

 (2n) %   %   P FDR OR CI95  P FDR 

             

SNP 2 (rs876016) 
 

 AA AG GG         

Control 1064 18  68 29 3         

FALS 394 25  55 40 5  0.0039 0.0155 1.51 1.15-2.00  0.0100 0.0198 

 └C9 –ve 268 25  54 42 4  0.0153 0.0612 1.49 1.09-2.05  0.0153 0.0307 

SALS 530 22  60 36 4  0.0511 0.2045 1.29 1.00-1.68  0.1134 0.2495 

Pool ALS 924 23  58 37 5  0.0037 
 

0.0148 
 

1.39 1.11-1.72  0.0082 
 

0.0280 
              

SNP 3 (rs2070872)  AA AG GG         

Control 1056 19  66 30 4         

FALS* 384 23  56 43 1  0.1816 0.3632 1.22 0.92-1.62  0.0011 0.0046 

 └C9 -ve 256 24  53 46 1  0.1189 0.2379 1.30 0.94-1.80  0.0012 0.0047 

SALS 178 24  60 34 6  0.1868 
 

0.2491 
 

1.30 0.89-1.89  0.3385 
 

0.4513 
 Pool ALS* 562 23  57 40 3  0.0929 0.1858 1.25 0.97-1.60  0.0153 0.0306 

               

Genotypic and allelic associations of P4HB SNPs. Genotype frequencies are summarized 

in the left panel. The FALS group contains patients with and without the hexanucleotide 

expansion in the C9orf72 gene, whereas the C9–ve group contains only samples 

excluded for the expansion. All p values were calculated using Fisher’s test and significant 

associations are in bold. The FDR columns show p values corrected for 4 SNPs using the 

Benjamini-Hochberg FDR correction. *There were no deviations from HW equilibrium 

except for SNP 3 FALS and Pool ALS groups, P < 0.0008 and 0.001, respectively. 
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5.2.3.2 Rare Haplotypes are associated with FALS and SALS. 

Four SNP haplotypes, which included two additional flanking SNPs, rs876017 (SNP 1) 

and rs8324 (SNP 4), were examined in ALS cases compared to controls. SNPs 1-4 form 

an LD block in controls extending across the P4HB gene from exon 5 to the 3’UTR as 

indicated from r2 values between these SNPs which were > 0.95 in the control samples 

obtained from the 1000 genome database. High LD was also observed in the matched 

controls (Imperial College Healthcare NHS Trust). However, LD was decreased in both 

FALS and SALS (Figure 5-2A). Haplotypes and diplotypes were reconstructed using 

PLINK and the frequencies are summarized in Table 5-6 and Table 5-7 respectively. 

Individuals possessing rare haplotypes were sequenced to ensure correct genotyping.  

In total, 15 haplotypes were identified in cases and controls. The haplotype AAAC, which 

is composed of major alleles, was the most common in all groups, but its frequency was 

significantly decreased by 11.9% in FALS (PFDR=0.0013) compared to controls. Consistent 

with the changes in LD, rare haplotypes were more prevalent in cases than in controls. 

Amongst these, seven haplotypes were significantly overrepresented in FALS and one 

haplotype was significantly over-represented in SALS (Table 5-6). The combined 

frequencies of the corresponding risk haplotypes were 14.7% in FALS, 6.1% in SALS and 

0.5% in controls (Figure 5-2B).  

 

Since the functions of PDI that are affected in ALS have been primarily focused on the 

folding of mutant SOD1, we also analysed the P4HB haplotype in 20 additional FALS 

cases possessing SOD1 mutations. One haplotype, AAGC, was more prevalent in SOD1-

FALS than in controls. Remarkably, AAGC, which was not found in SALS, was found in 4 

individuals with SOD-FALS with a frequency of 10% (P=0.0025) but only in 1% of non-

SOD1-FALS cases, indicating a specific association with SOD1 mutations. We then used 

the CLUMP program (Sham and Curtis, 1995) which contains an omnibus permutation 

test to examine differences in haplotype distributions between ALS groups and control 

(Table 5-6). This analysis showed that the specific haplotype distributions for FALS and 

SALS that did not occur in controls under 108 simulations (P<0.0001). We did not find any 

haplotypes exclusively associated with the C9orf72 expansion, and no significant 

difference in distribution was observed between expansion positive and negative groups. 

AAAC/AAAC was the most common diplotype in all groups, and most of the remaining 

individuals were heterozygous. The frequency of AAAC/AAAC was significantly decreased 
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in FALS (P=0.0015) (Figure 5-2C, Table 5-7), suggesting that individuals lacking the 

homozygous haplotype are at higher risk of FALS in the UK population. This association 

can be largely attributed to the risk haplotypes as most of the over-represented diplotypes 

contained one of the risk-haplotypes. We identified 3 FALS cases, which were 

homozygous for rare FALS-risk haplotypes. Moreover, the only individual who was 

homozygous for a rare haplotype in SALS also carried the SALS-risk haplotype, AGGA. 

Neverthe less the most significant association with FALS contained one common 

haplotype and one FALS-risk haplotype. 
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Figure 5-2. SNP LD, haplotype and diplotype associations. 

 

A. r2 values for controls were >89% which indicates a high LD, whereas values in FALS 

were consistently reduced. In SALS, the LD between SNP1 and other SNPs were 

decreased but the other three SNPs were still in LD, suggesting a recombination between 

SNP1 and SNP2. Haplotype analysis showed that more rare haplotypes were present in 

FALS and SALS than in controls.  

 

B. Haplotypes were grouped according to the presence of significant association with ALS 

shown in Table 5-6, and the combined frequency of these haplotypes is represented for 

each phenotype (control, FALS, SALS and FALS with SOD1 mutations. The FALS group 

consisted of the seven haplotypes significantly associated with FALS and indicated in red 

in Table 5-6. The SALS associated haplotype consisted of one haplotype significantly 

associated with SALS and the FALS-SOD1 associated haplotype consisted of the one 

haplotype associated with FALS-SOD1, as indicated in Table 5-6. The corrected P values 

were for FALS and SALS were 1.8E-17 and 3.6E-7 respectively. 

 

C. The diplotype AAAC/AAAC was less prevalent in FALS than controls, with corrected P 

values of 0.0018.
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Table 5-6. Phased haplotypes for P4HB in ALS ranked according to their frequencies in controls.  

HAP CTRL  FALS SALS SOD-FALS 

 
%  All % FDR C9+ % FDR C9- % FDR % FDR % FDR 

AAAC 80.5  68.6 0.0013 71.2  67.4 0.0039 73.9  65.0  

GGGA 17.2  12.7  10.6  13.8  17.2  12.5  

GAGA 0.7        
 

 
 

 
AAGC 0.5  1.0  1.5  0.7  

 
 10.0 0.0025 

AGGA 0.4  1.5    2.2  6.1 5.42E-06 5.0 
 

AAGA 0.3        
 

 
 

 
AGAC 0.2  3.9 0.0001 6.1 0.0022 2.9 0.0063 0.6  2.5 

 
GGAC 0.1  1.0  1.5  0.7  0.6  

 
 

GGGC 0.1  3.4 0.0001 4.5 0.0055 2.9 0.0039 
 

 
 

 
AAAA 0.1  2.0 0.0086   2.9 0.0039 

 
 2.5 

 
GAAA 

 
 1.0 0.0485 1.5  0.7  

 
 

 
 

GGAA 
 

 2.0 0.0025 1.5  2.2 0.0056 
 

 
 

 
AGGC 

 
 1.0 0.0485   1.4 0.0282 

 
 2.5 

 
GAAC 

 
 1.5 0.0103 1.5  1.4 0.0282 1.1  

 
 

AGAA 
 

 0.5  
 

 0.7  0.6  
 

 
Omnibus   P< 0.0001     P< 0.0001 P=2.3E-4 

Each haplotype was tested with a 2 x 2 Fisher’s test with FDR correction for 15 tests. Significant P values are shown in bold. The data shows that the most 

common haplotype, highlighted in black has a frequency of >65% in all populations and was significantly decreased in FALS, in which rare haplotypes were 

more prevalent. Seven haplotypes were significantly associated with FALS and these are highlighted in red. One haplotype was significantly associated 

with SALS and is highlighted in orange. One haplotype was found in 10% of SOD-FALS individuals and is highlighted in brown. Significant P values were 

obtained in Omnibus tests for haplotypic distributions between cases and controls. Non-significant FDR values are not shown. 
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Table 5-7. Diplotype frequencies of P4HB SNPs. 

 

 Diplotype Frequencies % 
P for 

AAAC/AAAC 
FDR OR CI95 

 AAAC/AAAC 
Heterozygous 

Diplotypes 
    

Control 65.2 31.8     

FALS 44.0 54.0* 1.18E-4 0.0015 2.38 1.54-3.67 

SALS 56.7 41.1 0.1244 0.5383 1.43 0.91-2.25 

SOD-FALS 50.0 50.0 0.2322 0.8625 1.87 0.76-4.58 

Pool ALS 50.0 47.4 0.0002 0.0070 1.87 1.34-2.62 

Diplotypes were grouped according to whether they were homozygous for AAAC, tested for associations using the 2 by 2 Fisher’s test and corrected for 30 

tests. The percentage of samples lacking the homozygous diplotype was significantly higher in FALS and Pooled ALS and the odds ratio was highest in 

FALS. * Heterozygous diplotypes are significantly more prevalent in FALS (P=3.5E-5), and all FALS-associated diplotypes were heterozygous for the AAAC 

haplotype (data not shown).  
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5.2.3.3 Genotypes and Haplotypes of P4HB affect the Survival of ALS. 

We also examined the genotype-phenotype relationships between the P4HB gene and 

ALS. Clinical details, including gender, age of onset, age of death and site of onset, were 

available for a subset of FALS and SALS patients as summarized in Table 5-8. None of 

the SNPs were associated with site of onset (Figure 5-3) or gender. We then investigated 

whether the genotypes of each SNP affected survival. Affected cases were grouped into 

two groups according to the presence of risk alleles and the survival curves were 

compared using the Log-rank test. In FALS, the minor alleles of SNPs 3 and 4 were 

associated with shortened survival times (median=21 months for SNP 3; 24 months for 

SNP 4) compared to the major allele (median=29 months for SNP 3; 29 months for SNP 4, 

Figure 5-4 A and B). Since the lack of the AAAC/AAAC diplotype was associated with a 

higher risk of FALS, we tested whether this also modifies survival. We found that FALS 

patients with the AAAC/AAAC diplotype have significantly longer survival time 

(median=34.5 months) compared with those lacking this diplotype (median=22 months, 

Figure 5-4 C). This correlation was not affected by gender. However, the risk haplotypes 

did not have any significant effects on survival time, suggesting a protective role of the 

common genotypes and haplotype in FALS. Furthermore, in order to investigate whether 

the C9orf72 expansion had an effect on survival, we performed a Cox-regression in which 

both P4HB genotypes and the presence of the C9orf72 expansion were treated as 

covariates, but no significant interaction was observed (Table 5-9).  

 

 

Table 5-8. Clinical details available for phenotype analysis in this study.  

Clinical details 
No. of patients with clinical details 

FALS SALS 

 
Age of onset 
Survival Time  
Site of onset 
  Limb 
  Bulbar 
  Both 
  Cognitive 
                                                        

 
142 
37 

 
49 
18 
6 
1 

 
24 
23 

 
18 
5 
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Figure 5-3. Effects of P4HB genotype on site at onset of disease. 

 

Frequencies of each site at onset are shown for each SNP genotype. No significant 

differences were found. 

 

Figure 5-4. Kaplan-Meyer curves showing the survival times of FALS patients 

with different P4HB genotypes. 

 

A. Effect of SNP 3 genotypes AA compared to AG and GG combined on survival, with the 

following number of individuals, nAA=26, nAG,GG=11, B. Effect of SNP 4 genotypes CC 

compared to CA and AA combined on survival, with the following number of individuals,  

nCC=27, nCT,TT=9. C.Effect of diplotype on survival for the diplotype containing only major 

alleles AAAC/AAAC compared to the remainder with the following number of individuals, 

nAAAC/AAAC=20, nothers=16. Nominal p values. P vales and Hazard ratios values are given for 

each comparison. 
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Table 5-9. Cox-regression models used to analyse the combined effects of 

C9orf72 and P4HB on the survival of FALS. 

Models Covariants Exp (B) P 

SNP3 + C9+ SNP3*C9 C9 
SNP3*C9orf72 

1.247 
0.648 

0.730 
0.559 

SNP4 + C9+ SNP4*C9 C9 
SNP4*C9orf72 

0.620 
1.359 

0.555 
0.734 

AAAC + C9+ AAAC*C9 C9 
AAAC*C9 

1.833 
0.431 

0.245 
0.239 

Cox-regression was used to analyse the combined effects of C9orf72 and P4HB on the 

survival of FALS. In the first two rows, genotype of SNP3, SNP 4, the presence of the 

expansion and their interaction were included in the model, and the significances for the 

coefficients are shown. In the last row, the presence of the homozygous major haplotype, 

AAAC, was used instead of a single SNP genotype. Exp (B) represents the changes in 

hazard ratio explained by a unit change of the dichotomous covariates.  

 

 

5.2.4 Discussion: P4HB 

In this study, we found significant genotype associations with FALS for two SNPs in the 

P4HB gene (rs876016 and rs2070872). This is a novel finding. No significant association 

was detected in SALS cases which is consistent with GWAS studies, although this gene is 

poorly represented in the widely used SNP arrays. All subjects are of European ancestry 

and cases and controls were matched to eliminate population stratification with no 

departure from Hardy-Weinberg equilibrium in controls. In fact, the deviation from Hardy-

Weinberg equilibrium found for one associated SNP (rs2070872) in FALS cases provides 

extra support for association with disease (Deng et al., 2001; Gyorffy et al., 2004). The 

FALS cohort consisted of index cases lacking mutations in SOD1, TARDBP, FUS, VAPB 

and VCP but included cases with C9orf72 expansions. A significant genotypic association 

for these two SNPs was retained after removal of C9orf72 cases despite the reduced 

sample size indicating that the P4HB may have a stronger genotypic association in 

patients without the expansion.  

 

Haplotype analysis was used to define the haplotypes that conferred risk of susceptibility 

for FALS and SALS. The haplotypes were tested using the 2 x 2 Fisher’s test individually 
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and subjected to correction for multiple comparisons. In all groups, the most frequent 

haplotypes were composed of either all major alleles or all minor alleles, but greater 

variation in heterozygous haplotypes was seen in the FALS and SALS groups. Most 

importantly, there was a highly significant decrease in the frequency of the common 

haplotype, AAAC, in both the combined FALS cohort and FALS cases lacking the C9orf72 

expansion. Interestingly, among the haplotypes that were significantly elevated in cases, 

two were exclusive to ALS. One haplotype, AAGC, was selectively over-represented in 

SOD1-FALS, and, considering the known functional link between PDI and SOD1 

mutations, it is possible that this haplotype may influence penetrance in these individuals. 

Based on the haplotype data, the seven FALS haplotypes significantly associated with 

FALS were grouped together as a FALS-risk group and the SALS associated haplotype 

was referred to as the SALS-risk group for subsequent analysis. The frequencies of these 

two groups were each significantly different from controls (Figure 5-2B). Diplotype 

analysis showed that most of the risk-haplotypes existed in the form of heterozygotes, and 

most diplotypes that are significantly increased in ALS also contain at least one of the risk-

haplotypes.  

 

The survival data, which was available for a subset of patients, was presented in Kaplan-

Meyer plots and the Hazard ratios were estimated using the Cox-regression test. The 

finding that the presence of the minor allele of SNP 3 (rs2070872) and the lack of the 

homozygous AAAC diplotype are associated with reduced survival is suggestive of a 

protective effect for the AAAC haplotype. The Hazard ratios also indicate that there is a 

2.85 fold risk of reduced survival after onset in FALS patients possessing the minor allele 

of SNP3, compared to the major allele (Figure 5-4 C). Again, in order to account for the 

effect of the C9orf72 expansion, it was included as a covariate in the regression but no 

significant effect was seen.  

 

Based on these findings, we propose that P4HB is a genetic modifier for ALS. PDI is a 

multifunctional protein that catalyses the formation, cleavage and rearrangement of 

disulphide bonds, through the oxido-reductase properties of its two thioredoxin domains. 

PDI also functions as a chaperone that inhibits aggregation of misfolded proteins. PDI has 

been implicated in ALS, as together with other UPR markers it is up-regulated in the 

spinal cord of both SALS cases and G93ASOD1 transgenic mice, in which PDI preferentially 
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binds to SOD1 aggregates. Several studies have shown the co-localisation of PDI with 

TDP-43, FUS or SOD1-positive ubiquitinated protein inclusions in ALS (Farg et al., 2012; 

Honjo et al., 2011) . 

 

The mechanisms involved in the formation of SOD1 aggregates have been extensively 

investigated and show that reduction of disulphide bonds plays a crucial role in the 

nucleation process, which is followed by the formation of mature fibrils via non-covalent 

interactions between intact SOD1 molecules (Chattopadhyay et al., 2008). The nucleation 

process limits the aggregation rate of SOD1 (Chia et al., 2010), which is related to the 

survival of FALS patients (Wang et al., 2008). Hence an inhibitory effect of PDI on protein 

aggregation may extend this process and prolong the survival of ALS. The 

neuroprotective action of PDI is further supported by the effect of deletion of a PDI 

regulator, reticulon-4A, which accelerates motor neuron degeneration in the SOD1 

transgenic mouse (Yang et al., 2009).  

 

The role of PDI in redox signalling pathways may also contribute to ALS pathogenesis. 

Many studies have shown that oxidative damage to proteins, lipids and DNA, caused by 

ROS occur in ALS and may affect disease progression (Barber et al., 2006). In addition to 

catalysing the generation of ROS via a variety of aberrant reactions, mutant SOD1 also 

prolongs the activation of NADPH oxidase, one of the main sources from which ROS is 

generated, increasing the generation of ROS (Ferraiuolo et al., 2011). Remarkably, PDI is 

involved in both generation and consumption of ROS. In the presence of ER stress, H2O2 

can be generated through the PDI/Ero1 system as PDI undergoes oxidation, however, 

H2O2 is also consumed through the Prdx4/PDI and Gpx7/8/PDI systems which also 

oxidize the protein (Laurindo et al., 2012). Therefore, pathogenicity may be caused when 

the homeostasis maintained by PDI is disrupted. Indeed, it is possible that the normal 

function of PDI is disrupted in ALS. Walker et al (2010) demonstrated that, as also 

happens in Parkinson’s disease and Alzheimer’s disease, the active cysteine residues of 

PDI are S-nitrosylated in SALS and G93A transgenic mouse spinal cords, which 

inactivates the enzyme. Although none of the SNPs used in this study are located in 

coding regions, it is possible that the haplotype block associated with ALS may contain 

other genetic variations associated with gene function. 
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Several modifier genes related to the redox signalling pathway in ALS have been 

proposed. Knockdown of the Nox1 or Nox2 genes, encoding NADPH oxidase, prolongs 

the survival of the G93A transgenic mouse, where homozygous deletion of Nox2 led to a 

four-fold increase in survival index (Marden et al., 2007). In addition, Mitchell et al (2009) 

reported the association of two SNPs located in the thioredoxin reductase 1 gene 

(TXNRD1) with FALS. This gene, encoding (ThxR1) catalyses the NADPH-dependent 

reduction of thioredoxin (Powis et al., 1995) and was also proposed as a modifier gene as 

a minor allele in one SNP was associated with the age of onset of FALS (Mitchell et al., 

2009). PDI and thioredoxin share similar active site sequences and they both can be 

reduced by thioredoxin reductase (Lundström and Holmgren, 1990). Taken together, our 

findings are consistent with the known cytoprotective effects of PDI demonstrated in 

previous studies and suggest that DNA variants in this gene linked to the SNP markers 

used in this study may impair its physiological function. Further investigations are needed 

to further characterize the modifier effect of this gene and therapeutic potential of this 

protein.   
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5.3 Association study of the NPLOC4 Gene:  

5.3.1 Introduction 

Using a candidate gene approach that focused on genes involved in oxidative protein 

folding, we reported the associations of TXRDN1 and P4HB with FALS. We then 

annotated and examined the telomeric region of chromosome 17, where P4HB locates, 

for association signals with SALS in a publicly available GWAS dataset and found that the 

signals were enriched in a gene locates ~200 kb upstream of P4HB-- the NPLOC4 gene. 

  

NPLOC4 encodes the protein nuclear protein localization protein 4 homolog, Npl4, which 

is ubiquitously expressed in the central nervous system and was originally known to have 

a regulatory role in nuclear import. The Npl4 protein contains an ubiquitin associated 

domain, a zinc finger domain, a Npl4-homology domain and a C- terminal zinc-finger 

domain (NZF) (Lass et al., 2008). Npl4 forms a heterodimer with Ufd1 and serves as a co-

factor of Valosin containing protein (VCP), a known causal gene for FALS. VCP is 

involved in multiple cellular processes and its function depends on the binding of different 

co-factors. The most well-characterized function of the VCP complex with Npl4 and Ufd1 

lies in the transfer of ubiquitinated misfolded proteins from the ER for proteasomal 

degradation, a process known as endoplasmic reticulum associated protein degradation 

(ERAD). This process requires the binding of the cofactor Npl4-Ufd1, which contain 

ubiquitin binding domains recognising lys-48 linked polyubiquitin chains (Meyer et al., 

2002). Ubiquitin binding by Npl4 is mediated by the NZF domain. Accumulation of 

misfolded proteins in the ER induces ER stress, a well-established feature of ALS. 

Furthermore, ER stress can also be induced by the over-expression of mutant Npl4 

proteins (Lass et al., 2008).  

 

TDP-43 is a nuclear protein, but in the pathological state it is depleted from the nucleus 

and forms toxic cytoplasmic aggregates, which are hallmarks of most SALS and FTD 

cases. The typical hallmark of both ALS and FTLD are cytoplasmic ubiquitinated protein 

inclusions containing the nuclear protein, TDP-43, suggesting a defect in nuclear import or 

protein clearance (Neumann et al., 2006). Similar TDP-43- positive cytoplasmic inclusions 

are also associated with VCP mutations present in multiple phenotypes of multi-

systematic proteinopathy including ALS and FTD, Paget's disease and Inclusion body 

myositis (IBMPFD). TDP-43 possesses a nuclear localization signal (NLS), which causes 
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cytoplasmic aggregations when disrupted (Winton et al., 2008), and is imported to the 

nucleus through by interacting with karyopherin-β1, a transport receptor in the Nuclear 

pore complex (NPC) (Nishimura et al., 2010). Npl4 is another structural component of the 

NPC and regulates nuclear protein import (DeHoratius and Silver, 1996). Moreover, the 

importance of nuclear import in the pathogenesis of ALS can be illustrated by the 

observation that mutations impairing the activity of a component in the nuclear import 

machinery, Ran-GTPase, redistributes FUS, a TDP-43 homolog that also forms 

cytoplasmic aggregates in ALS, to the cytoplasm (Ito et al., 2011a).  

 

An important function of TDP-43 is regulating the maturation of pre-mRNA. TDP-43 

possesses two RNA recognition motifs, RRM 1 and RRM 2, found in a variety of RNA 

binding proteins. These motifs preferentially bind UG rich intronic regions and regulate the 

splicing and expression of its targets (Tollervey et al., 2011). Npl4 is one of these targets. 

The expression of an alternatively spliced Npl4 isoform lacking the last exon, which 

encodes the NZF domain, was increased in SALS and, as a consequence, the ubiquitin-

binding ability of the VCP-Npl4-Ufd1 complex may be impaired, exacerbating ER stress 

(Xiao et al., 2011). Furthermore, amplification of a CNV containing a fragment of NPLOC4 

has been found in a single SALS patient (Pamphlett et al., 2011). 

 

In order to investigate whether common variants of the NPLOC4 gene are risk factors of 

ALS, we genotyped six SNPs in the Imperial College ALS and Control cohorts and 

showed that 3 of them are risks factors for SALS. Distinct gender effects were observed. 

We also hypothesized that a TG dinucleotide repeat adjacent to the alternatively spliced 

exon, c.1669+1387TG(11_30), may be responsible for the TDP-43 biding and confer risks 

of ALS. We showed that this repeat is polymorphic but failed to identify any alleles 

associated with SALS.  

 

 

5.3.2  Methods for NPLOC4 association study 

5.3.2.1 Subjects 

The study included 89 FALS and 97 SALS UK cases recruited from Imperial College 

Healthcare NHS Trust) and 174 additional SALS cases recruited from and Kings College 

Healthcare NHS Trust. Research governance regulations for both institutions were 
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fulfilled. The control populations contained 276 neurologically normal European individuals 

from the U.K. (IC-Controls) and 379 healthy samples from the EUR subgroup of 1000 

Genomes Project (http://www.1000genomes.org/). These panels provide >90% power to 

detect a 5% change in minor allele frequency for SNPs 1-3 in SALS (Table 5-10).DNA 

was extracted from whole blood or the buffy coat layer using a DNA extraction kit 

(QIAGEN, UK), according to protocols provided by the manufacturer. 

 

 

Table 5-10. Power calculations. 

 
 
 

Control 
MAF %   

% 
Increase  

 

  

4 5 6 7 8 

(SNP2) 19 0.8734 0.9724 0.9965 0.9997 1 

(SNP3) 24 0.8133 0.9455 0.9897 0.9988 0.9999 

(SNP1) 30 0.7569 0.9131 0.9785 0.9964 0.9996 

The power of detecting alterations in MAFs in our cases (excluding FALS) and controls 

(Total 926 Samples) when α=0.05. 

 

 

The Selection and Genotyping of Single nucleotide polymorphisms (SNPs) 

Six SNPs were selected (MAF>15%) showing LD (r2>0.9) with other SNPs and present in 

across five separate LD blocks (only SNPs 4 and 5 were present in the same LD block) in 

the European population. PCR primers are shown in Table 5-11. Genotyping was carried 

out using restriction digests or Kompetitive Allele Specific PCR (KASPTM), a PCR based 

method using fluorescently labelled allele-specific primers. For the restriction digests, 30μl 

PCR products were incubated with 1U of enzyme for 16 hours as follows: DdeI for SNP1, 

PflMI for SNP2, NlaIV for SNP4, HinfI for SNP5. KASPTM was used for SNPs 3 and 5 that 

lacked restriction sites and was carried out by LGC Genomics (UK) following the 

instructions provided for sample preparation. A subset of samples was genotyped by both 

methods and no mismatch was observed confirming genotyping accuracy.  

 

http://www.1000genomes.org/
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Table 5-11. Primers used for polymerase chained reaction of the NPLOC4 SNPs. 

SNP Primers 
Product 

Size 

rs6565612 
FOR: GCTTCCCAAAGTGCTGGGAT 
REV: ACCAGTCCCTCGTTAAGTTGTG 

265 

rs8075102 
FOR: CAGGGCCTACAAAGAGGCAG 
REV: TCGTTGTACTCAGGTATTCTCTGG 

281 

rs7405450 
FOR: ATTGGAGCTCTCAGACCCGA 
REV: GGAGTTGGATCTGTAACTGACTGT 

299 

rs3934711 
FOR: TGTAAGTTGTGGCAGTTTGCAT 
REV: CCACTGCTCAGACCTCTTCC 

241 

rs9912074 
FOR: CCAGGTCCTGAACGATTCCC 
REV: GAGGTTGCAGTGAGGCAAGA 

302 

Primers for 
TG repeat 

FOR: 6-FAM-5’-TTGCCTGATGCTGAGGTTGG 
REV: 6-FAM-5’-CAGGAGGCAGAGTTTGCAGT 

203 

Primers used for polymerase chained reaction. The PCR thermal cycles were carried out 

as following: 94oC for 3m30s, [94oC for 30s, 55oC for 30s, 72oC for 45s] x35 cycles, 72oC 

for 5m. 6-FAM: 6-carboxyfluorescein. 

 

 

5.3.2.2 Fragment analysis 

The genotypes of the dinucleotide repeat, c.1669+1387TG(11_30), were analysed using 

fragment analysis. A DNA Fragment containing the repeat was amplified using a 6-

carboxyfluorescein (6-FAM) labelled forward primer and unlabelled reverse primer. 

Capillary electrophoresis was carried out using ABI 3730x1 DNA Analyzer by the Imperial 

College Genomic Core Facility. Electrophoregrams were visualized using GeneMapper 

v4.1 program (Life Technologies). 

 

5.3.2.3 Statistics 

The power of the study was evaluated using G*Power program (v3). Allelic, genotypic 

associations and departures from Hardy-Weinberg equilibrium (HWE) were tested using 2 

x 2 and 2 x 3 Fisher’s tests using in PLINK program v0.99 

(http://pngu.mgh.harvard.edu/~purcell/plink/) and R. Mantel-Haenszel analysis and 

Woolf’s test were employed for association tests in stratified genders. Linkage 

disequilibrium (LD) was estimated using r2 values calculated by Haploview program 

http://pngu.mgh.harvard.edu/~purcell/plink/
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(Barrett et al., 2005). Haplotypes were phased in 3-SNP and 5-SNP windows using 

PLINK, which adopts the Expectation–Maximization algorithm, and those with the highest 

posterior probability were accepted. The haplotypes were also tested for deviations from 

HWE using a program based on Likelihood ratio tests (LRTs) under models causing the 

deviations (Mao et al., 2013). Each haplotype was tested for association using 2 x 2 

Fisher’s test. All association tests were corrected for multiple comparisons using the 

Benjamini-Hochberg method. The program CLUMP, a model-free algorithm using Monte 

Carlo simulations, was used for omnibus tests for Haplotypic distributions. Distribution of 

TG the repeat between cases and controls were tested using Mann-Whitney-U test. The 

genotype and haplotype’s effects on age of onset and survival times were investigated 

using Kaplan-Meyer curve and Hazard ratio computed by GraphPad. Differences between 

curves were tested by the log-rank tests. 

 

 

5.3.3 Results 

5.3.3.1 GWAS SNPs tagged for independent haplotype blocks in the 

NPLOC4 gene 

Tagged SNPs within the region of the NPLOC4 gene were examined for enriched 

association signals using a publically available GWAS dataset of ALS (dbGAP study 

accession no: phs000101.v3.p1) (Schymick et al., 2007b). Significant associations 

(uncorrected) were found for SNPs rs6565612 (SNP1) and rs7405450 (SNP3), the latter 

being the most significant SNP in the region (P=0.0019). In the EUR population 

(http://www.1000genomes.org/), these tagged SNPs (r2≥0.9) arise from different non-

overlapping haplotype blocks (Blocks 1 and 3, Figure 5-5 A). SNP rs8075102 (SNP2), 

which showed significance in a follow-up GWAS study (Chio et al., 2009), tagged an 

independent block (Block 2) between Blocks 1 and 3. SNPs rs3934711 (SNP4) and 

rs9912074 (SNP5), although not highlighted by the GWAS studies, were located in the 

same block (Block 4) that covers a region implicated in alternative splicing and locates 

immediately adjacent to a putative TDP-43 binding site (Figure 5-5 A). To characterize 

the haplotype in this region, a downstream exonic SNP rs4073997 (SNP6), was also 

investigated. Subjects analysed in this study were comprising 89 FALS index cases 

(Imperial College), 271 SALS cases (97 from Imperial College Health Care Trust and 174 

http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000101.v3.p1
http://www.1000genomes.org/
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from King’s College London) and 276 normal controls (Imperial College London). Controls 

from the EUR population (n=379) were also included in the analysis.  

 

5.3.3.2 SNPs in NPLOC4 gene are significantly associated with Sporadic 

ALS 

SNPs 1, 2 and 3 were genotyped in SALS and control cohorts, All SNPs were in HWE in 

controls and no significant population stratification was seen between the controls 

(Imperial College London) and the EUR population (using 2 x 2 Fisher’s tests). Minor 

allele frequencies of SNP 1, SNP 2 and SNP 3 were increased in SALS, yielding 

significant allelic and genotypic associations after Benjamini-Hochberg correction 

(PFDR=0.0307 for SNP1, PFDR=0.0307 for SNP 2, PFDR=0.0131 for SNP3) (Table 5-12). 

SNPs 1 and 2 were further studied in the FALS cohort (Table 5-13) but no significant 

association was evident although the association of SNP1 and 2 remained significant in 

pooled ALS (PFDR=0.0277 for SNP1, PFDR=0.0367 for SNP 2). Of note, SNP 2 deviated 

from HWE in FALS (P=0.0360) and SALS (P=0.0013). Odds ratios of these associations 

in SALS ranged from 1.32 to 1.97 (Figure 5-5 B).  

 

As SNP 4 is in complete LD with SNP 5 in both SALS and Controls (r2=1, Details not 

shown), only the latter SNP was genotyped in the full set of samples. No significant allelic 

or genotypic associations were found for these two SNPs (Table 5-13).  
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Figure 5-5. SNPs, haplotype and diplotypes in the NPLOC4 gene. 

 

A shows the structure and domains of the NPLOC4 gene (NM_017921.2). The 

constitutively spliced transcript 001 (ENST00000331134) encodes a 608 amino acid 

protein, whereas the alternatively spliced transcript 002 (ENST00000374747), in which 

exon 17 is replaced with an incomplete intron 16, encodes an elongated protein of 617 

amino acids. Haplotypes tagged by the NPLOC4 SNPs span different functional domains 

and are indicated in orange. Block 1 resides the Ub-binding domain, which interacts with 

VCP, whereas Block 2, 3 and 4 are in the conserved Npl4 domain. The NZF domain, 

which allows ubiquitin binding, is lost in transcript 002. The TG repeat located between 

SNPs 5 and 6 is indicated in blue and the –log P values of the SNPs in the current study 

are indicated in red. B. Odds ratios and CI95 between SALS and Controls from the current 

study are indicated by squares and lines respectively. C shows the frequencies of the 

three most common haplotypes and (D) diplotypes (3-SNP window) in SALS and controls. 

* indicates P<0.05 in 2 x 2 Fisher’s tests after multiple corrections. E shows the role of 

NPLOC4 as a co-factor for VCP during ERAD. 
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Table 5-12. SNP associations of NPLOC4 SNPs. 

 
 

Chr MAF Genotype  Allelic  Genotype 

 (2n) %  %   P FDR OR CI95  P FDR 

            

rs6565612, SNP 1 AA AG GG         

Control 1262 30 49 42 9         

♀ 644 29 51 40 9         

♂ 594 30 48 43 9         

ALS 718 35 41 48 11  0.0139 
 

0.0277 
 

1.28 1.06-1.56  0.0250 
 

0.0250 

 

SALS 540 36 38 52 11  0.0110 
 

0.0307 

 

1.32 1.07-1.64  0.0112 
 

0.0223 

 

♀ 176 40 33 55 13  0.0076 
 

0.0147 

 

1.63 1.15-2.30  0.0088 
 

0.0176 

 

♂ 344 34 42 49 9  0.3087 
 

0.7933 

 

1.17 0.88-1.56  0.4027 
 

0.7719 

 

            

rs8075102, SNP 2 
 

CC CA AA         

Control 1282 19 66 31 3         

♀ 658 17 59 28 3         

♂ 600 20 53 34 3         

ALS* 720 23 56 42 2  0.0367 
 

0.0367 

 

1.27 1.02-1.59  0.0012 
 

0.0024 

 

SALS** 542 24 55 43 2  0.0153 
 

0.0307 

 

1.36 1.06-1.73  0.0017 
 

0.0102 

 

♀ 176 26 50 48 2  0.0098 
 

0.0147 

 

1.69 1.14-2.50  0.0022 
 

0.0066 

 

♂ 344 23 57 41 2  0.4086 
 

0.7933 

 

1.15 0.83-1.58  0.3234 
 

0.7719 

 

              

rs7405450, SNP 3 AA AG GG         

Control 1280 24 59 35 6         

♀ 654 20 65 30 6         

♂ 602 27 53 40 7         

SALS 508 31 48 43 9  0.0022 
 

0.0131 

 

1.44 1.14-1.80  0.0079 
 

0.0223 

 

♀ 172 34 44 44 12  0.0004 
 

0.0023 

 

1.97 1.37-2.85  0.0018 
 

0.0066 

 

♂ 318 29 51 41 8  0.5864 
 

0.7933 

 

1.10 0.81-1.49  0.8136 
 

0.9674 

 

            

rs4073997, SNP 6 GG GC CC         

Control 1272 31 50 42 10         

♀ 652 27 54 39 7         

♂ 596 35 43 45 12         

SALS 490 32 46 44 9  0.6877 
 

0.6877 

 

1.05 0.84-1.31  0.7365 
 

0.7365 

 

♀ 158 38 39 46 15  0.0061 
 

0.0147 

 

1.68 1.17-2.42  0.0207 
 

0.0311 

 

♂ 318 29 49 44 7  0.0763 
 

0.4577 

 

0.77 0.57-1.03  0.1462 
 

0.7719 

 

              

The associations of SNPs 1-3 and 6 are summarized. Genotype and allelic frequencies 

are shown in the left side. Significant values are in bold. All SNPs had >10% MAF. No 

deviation from HWE was noticed in controls and SNP2 deviated in cases: * P=7.72E-5; ** 

P=0.0013. The allelic and genotypic associations were calculated using 2 x 2 and 2 x 3 

Fisher’s tests, respectively, and subjected to Benjamini- Hochberg corrections (FDR). 

Significant P values are in boldface. Female and males are denoted by “♀” and “♂” and 

the associations stratified by gender are shown separately. The gender split was taken 

account in multiple corrections. 



 

 

168 

 

Table 5-13. Non-associated NPLOC4 SNPs (SNPs 4, 5 and SNP 1, 2 for FALS). 

 
 

Chr MAF Genotype  Allelic  Genotype 

 (2n) %  %   P FDR OR CI95  P FDR 

            

rs6565612, SNP 1 AA AG GG         

FALS 172 33 47 42 12  0.4788 
 

0.9576 

 

1.14 0.81-1.60  0.6529 
 
 

0.6529 

 

♀ 86 38 37 49 14  0.0796 
 

0.1592 

 

1.53 0.96-2.45  0.1700 
 

0.1700 

 

♂ 80 24 60 33 8  0.2422 0.2972 

 

0.71 0.41-1.22  0.4207 
 

0.5761 

 

              

rs8075102, SNP 2 
 

CC CA AA         

FALS 172 19 63 37 0  1 
 

1 

 

0.99 0.66-1.49  0.1365 
 

0.2729 

 

♀ 86 21 58 42 0  0.4524 
 

0.4524 

 

1.26 0.72-2.21  0.1261 
 

0.1700 

 

♂ 80 15 70 30 0  0.2972 
 

0.2972 

 

0.69 0.36-1.32  0.5761 
 

0.5761 

 

            

rs3934711, SNP 4 CC CT TT         

EUR 758 22 61 34 5         

♀ 402 23 60 35 5         

♂ 356 21 63 33 4         

SALS 172 18 65 34 1  0.3014 
 

0.3617 

 

0.78 0.51-1.20  0.3042 
 

0.4263 

 

♀ 44 9 82 18 0  0.0338 
 

0.0406 

 

0.34 0.12 - 0.97  0.1506 
 

0.1807 

 

♂ 110 22 58 40 2  0.7907 
 

0.7933 

 

1.06 0.63 - 1.79  0.5146 
 

0.7719 

 

              

rs9912074, SNP 5 TT TC CC         

Control 1272 21 63 33 4         

♀ 652 22 60 35 5         

♂ 596 19 66 30 4         

SALS 518 18 68 29 3  0.1702 
 

0.2553 

 

0.82 0.63-1.07  0.3552 
 

0.4263 

 

♀ 166 17 70 27 4  0.1370 
 

0.1370 

 

0.70 0.45-1.10  0.2860 
 

0.2860 

 

♂ 334 18 67 29 4  0.7933 
 

0.7933 

 

0.94 0.67-1.33  0.9674 
 

0.9674 

 

SNP frequencies and of non-associated SNPs are summarized, in complementary to 

Table 5-12. Significant values are in bold. 
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5.3.3.3 Linkage disequilibrium and Haplotype Analysis 

No apparent LD amongst SNPs 1, 2, 3, 5 and 6 was observed in cases or controls 

(Figure 5-6). In view of the significant associations that were found, we investigated 

whether a specific haplotype was associated with SALS. Five SNPs were phased in 3-

SNP and 5-SNP windows and haplotype frequencies were compared using 2 x 2 fisher’s 

tests with Benjamini-Hochberg corrections. The omnibus tests for haplotype distributions 

were significant for both windows (Table 5-14). In the 3-SNP window containing SNPs1, 2 

and 3, three haplotypes accounted for >90% of chromosomes analysed, A-C-A (H1), G-A-

G (H2) and G-C-A (H3), and these were the most common haplotypes found in both cases 

and controls (Table 5-14). There was no deviation from HWE based on likelihood ratio 

tests for different causal models (Data not shown) (Mao et al., 2013). The frequency of H2, 

comprising all minor alleles, was increased by 6.5% in SALS (PFDR=0.0106, Figure 5-5 C). 

Therefore, we propose that H2 is a risk haplotype. In the 5-SNP window, only the 

haplotype G-A-G-T-G showed significant association (PFDR=0.0283). Furthermore, the 

diplotype analysis showed that homozygosity of H1 (H1/H1 haplotype) was decreased in 

SALS (PBH=0.0222). The H2 risk haplotype mainly existed in a heterozygous form of H1/H2, 

which was also increased in cases (PBH=0.0072) (Figure 5-5 D).  

 

 

Figure 5-6. Linkage disequilibrium between NPLOC4 SNPs. 

 

r2 values between the NPLOC4 SNPs are indicated by grayscale. SNP4 was in complete 

LD (r2=1) with SNP5 in both SALS and Controls and and therefore not shown.  



 

 

170 

 

Table 5-14. NPLOC4 Haplotypic associations. 

Windows Haplotype 
Frequencies% 

P FDR 
CTRL SALS 

3 ACA (H1) +++ 65.1 59.2 0.0194 0.0516 

5 ACATG +++++ 37.1 32.4 0.0592 0.2393 

5 ACATC ++++- 17.0 17.6 0.7325 0.9418 

5 ACACG +++-+ 9.8 8.9 0.5984 0.9179 

5 ACACC +++-- 0.7 0.0 0.0665 0.2393 

3 GAG (H2) --- 16.9 23.4 0.0013 0.0106 

5 GAGTG ---++ 14.4 20.6 0.0016 0.0283 

5 GAGTC ---+- 2.2 2.7 0.6119 0.9179 

3 GCA (H3) -++ 9.3 10.0 0.6630 0.8278 

5 GCACG -++-+ 3.1 1.9 0.2053 0.4619 

5 GCACC -++-- 6.0 6.8 0.5211 0.9179 

5 GCATG -++++ 0.2 0.9 0.0505 0.2393 

5 GCATC -+++- 0.7 0.6 1.0000 1.0000 

  3-SNP Window Omnibus: 0.0043  

  5-SNP Window Omnibus: 0.0065  

The common haplotypes, phased in 3-SNP (SNP 1, 2, 3) and 5-SNP (SNP 1, 2, 3, 5, 6) 

windows, in SALS (n=271 for 3 SNPs, n=264 for 5 SNPs) and Controls (n=645) are 

shown. These account for >90% of haplotypes in cases and controls. “+” denotes major 

alleles and “-” denotes minor alleles. Each haplotype was tested using 2 x 2 Fisher’s test 

and the 3-SNP and 5-SNP haplotypes were corrected for 8 and 18 comparisons 

respectively using Benjamini-Hochberg procedure (FDR). Significant P values, which are 

in boldface, were retained in two 3-SNP haplotypes, H1 and H2, and one 5-SNP haplotype, 

CAGTG. Model-free omnibus tests were calculated for the both windows. 
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5.3.3.4 Frequencies of [TG]n repeats 

Intronic TG repeats are probable binding sites for TDP-43, which regulates alternative 

splicing (Polymenidou et al., 2011). To investigate whether a TG dinucleotide repeat 

located in intron 16 (Figure 5-5 A), c.1669+1387TG(11_30), is associated with SALS, 

fragment analysis was carried out in a subset of 76 SALS and 144 controls. The repeat 

was polymorphic. We observed the presence of 12 alleles ranging from 11 to 30 repeats, 

in which the reference allele, [TG]17, was the commonest in both cases and controls 

(Figure 5-6). No alleles or genotypes of this repeat confer additional risk of SALS in our 

cohorts.  

 

 

Figure 5-6. Genotype frequency of the TG repeat in the NPLOC4 gene. 

 

Fragment analysis of the TG dinucleotide repeat, c.1669+1387TG(11_30), was performed 

in a subset of Imperial College controls (n=144) and SALS (n=76) and the allelic 

frequencies are shown. 9 alleles were found in SALS (median= 21.5 repeats) and 10 

alleles were found in Controls (median= 21 repeats).  
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5.3.3.5 Gender and age of onset effects of NPLOC4 SNPs 

When cohorts were analysed by gender, very marked allelic and genotypic differences 

were seen in females for SNPs 1-3 (PFDR= 0.0147, OR= 1.63 for SNP 1; PFDR=0.0147, 

OR=1.69 for SNP 2; PFDR=0.0023, OR=1.97 for SNP 3), whilst in contrast SNP 

associations in males were diminished. In addition, a significant allelic association of SNP 

6 was found in females SALS cases alone (PFDR=0.0147). Associations of SNPs 1, 2, 3 

remained significant when gender was accounted using a Mantel-Haenszel analysis and 

heterogeneity of odds ratio was evident for SNP 3 and 6 following a Woolf’s test (Table 5-

15).  

 

When haplotype analysis was stratified for gender, a 12.7% decrease in H1 and a 10.4% 

increase in H2 were found in female SALS cases (Table 5-16). No significant effects of 

site of onset, age at onset or survival on SNP frequency were detected.   

 

 

Table 5-15. Mantel-Haenszel analysis with respect to gender. 

 Odds ratios CMH Woolf 

 
Female Male Combined CI95 P P 

RS6565612,SNP1 1.63 1.17 1.33 1.07-1.67 0.0106 0.1498 

RS8075102,SNP2 1.69 1.15 1.33 1.04- 1.71 0.0228 0.1333 

RS7405450, SNP3 1.97 1.10 1.38 1.09-1.74 0.0069 0.0157 

RS3934711,SNP4 0.33 1.06 0.79 0.50-1.24 0.3116 0.0657 

RS9912074, SNP5 0.70 0.94 0.84 0.64-1.11 0.2164 0.3164 

RS4073997, SNP6 1.68 0.77 1.03 0.82-1.30 0.7837 0.0010 

Odds ratios for SALS association within males female,sand when combined are shown. 

All associations (SNP1-3) remained significant when gender stratification was accounted 

for, as shown by the Cochran–Mantel–Haenszel (CMH) statistics. However, the size 

effects for SNP3 and 6 were significantly heterogeneous between genders as indicated by 

the Woolf test.  
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Table 5-16. Haplotype association in Female SALS 

Windows Haplotype 
Frequencies % 

P FDR 
CTRL♀ SALS♀ 

3 ACA (H1) +++ 66.7 54.0 0.0026 0.0103 

5 ACATG +++++ 41.5 25.6 0.0001 0.0025 

5 ACATC ++++- 13.9 20.9 0.0317 0.1904 

5 ACACG +++-+ 10.7 7.6 0.2559 0.6293 

5 ACACC +++-- 0.9 0.0 0.3540 0.6293 

3 GAG (H2) --- 15.2 25.6 0.0017 0.0103 

5 GAGTG ---++ 13.0 22.1 0.0038 0.0340 

5 GAGTC ---+- 1.8 2.9 0.3689 0.6293 

3 GCA (H3) -++ 10.5 10.2 1 1 

5 GCACG -++-+ 3.5 1.2 0.1353 0.4871 

5 GCACC -++-- 6.1 8.1 0.3846 0.6293 

5 GCATG -++++ 0.2 0.6 0.3725 0.6293 

5 GCATC -+++- 0.8 0.6 1.0000 1.0000 

  3-SNP Window Omnibus: 0.0118  

  5-SNP Window Omnibus: 0.0044  

Haplotype association in Female SALS (n=88 for 3 SNPs, n=86 for 5 SNPs) and gender 

matched controls (n=302 for 3 SNPs; n=300 for 5 SNPs). “+” denotes major alleles and 

“-” denotes minor alleles. Compared to the complete cohorts, as shown in Table 5-14, the 

differences in H1 and H2 frequencies were augmented.  

 

 

5.3.4 Discussion: NPLOC4 

We carried out an independent study in a UK cohort on NPLOC4 to investigate a potential 

association with SALS, based on the major role played by Npl4 in proteostasis pathways 

strongly implicated in ALS pathogenesis and previous GWAS data,. In addition to the 

SNPs (SNP 1, 3, 4) genotyped in the GWAS dataset, we analysed 3 additional SNPs and 

showed significant associations of 3 out of 6 SNPs with SALS. These include two known 

associations from the GWAS Dataset and we propose that NPLOC4 is a genetic risk 

factor for SALS. Although no association was evident in FALS cases, two SNPs remained 

significant in the pooled ALS group. In addition to the initial GWAS study (Schymick et al., 

2007b), SNPs 1-3 have been shown to be significant (uncorrected) in a replication stage 

in which their major alleles were reported as risk alleles (Chio et al., 2009). We showed 

that minor alleles were over-represented in ALS cases, suggesting heterogeneity in 
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effects which may be caused by ethnicity. The replication stage of the GWAS study 

contained ALS cases from the US, Italy and Germany, whereas, in this study, population 

stratification was controlled by using ethnically homogeneous samples from the UK. Using 

2 x 2 Fisher’s tests, there were no significant MAF differences of all SNPs between the IC-

Controls and the EUR from 1000 genome project. However, the IC-Controls were 

significantly different from the controls used in the GWAS study for SNP1 and 2 

(P=0.0384 for SNP1; P=0.0035 for SNP2; P=0.0850 for SNP3) (Chio et al., 2009).  

 

We examined the linkage disequilibrium (LD) of the SNPs with MAF>0.1 in the NPLOC4 

gene in the EUR population prior to haplotype analysis and showed that, instead of a 

single LD block, discrete blocks were formed throughout the gene. Using tagged SNPs we 

showed that SNP 1, 2 and 3 were each in LD (r2>0.9) with >2 tagged SNPs spanning from 

6 to 22 kb (Table 5-17), suggesting that adequate amount of variation were captured by 

these SNPs. In addition, we were interested in a separate LD block, covering intron 16, 

which is predicted to interact with the TG repeat. Three SNPs in (SNP 4 and 5) or 

adjacent (SNP 6) to the block were therefore analysed in the SALS cohort, in which no 

changes in LD was observed (Data not shown). Only SNPs 1, 2, 3, 5 and 6 were used for 

haplotype analysis, which was carried out in both 3-SNP and 5-SNP windows. In the 3-

SNP window, the risk alleles of SNP 1-3 constituted a risk haplotype for SALS, H2 (G-A-G), 

covering the first half of the gene (Exon 2 -12), and it was shown in the 5-SNP window 

that H2 was further defined by the risk haplotype, G-A-G-T-G. 

 

TDP-43 is known to bind TG repeats through its RRM 1 motif and mediate exon skipping 

of the CFTR gene (Buratti and Baralle, 2008). Splicing events are regulated through 

different mechanisms and it is likely that in the case of NPLOC4, TDP-43 promotes the 

removal of intron 16. Xiao et al (2011) further validated the binding of TDP-43 to a site of 

NPLOC4 pre-mRNA adjacent to the alternative spliced exon, suggesting a functional role 

of the intron 16 TG repeat. Nevertheless, no significant differences in genotypic or allelic 

distributions of the repeat were observed between cases and controls. There are two 

possible explanations, firstly, the variation in the numbers of repeat detected in our 

cohorts may not be sufficient to interfere with TDP-43 binding as RNA containing (UG)11 

repeats efficiently bind to TDP-43 (Buratti et al., 2001),which is equivalent to the lowest 

number detected in the current study. Alternatively, if there is a quantitative relationship 
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between repeat length and TDP-43 binding efficiency, the resulting alteration in Npl4 

isoform levels may be tolerated. It has been shown that, in the Npl4-Ufd1 complex, loss of 

the Npl4 NZF domain, which is the case in the 002 isoform (Figure 5-5A), does not 

completely abolish the ubiquitin-binding ability as this can be compensated by the UT3 

domain of Ufd1 (Ye et al., 2003a). However, we do not exclude the possibility that a total 

loss of the TG repeat may result in profound pathogenic effects. 

 

NPLOC4 interacts with several known pathogenic pathways occurring in ALS and its 

probable functional links with TDP-43 may underlie the specific association with SALS. 

We compared cases and controls within the same gender category and demonstrated 

gender effects in which both single SNP and haplotype associations were strengthened in 

female SALS. As can be seen in Table 5-6, the MAFs of all associated SNPs were lower 

in female in controls and this trend was inverted in cases. The size effects, which were in 

consistent in direction for both genders, were appreciably increased in female SALS 

(Table 5-15). The incidence of ALS has been known to be higher in male than female, 

with a ratio of ~1.3, and female patients tend to have a later age of onset with bulbar 

involvement (McCombe and Henderson, 2010). Gender effects have been also reported 

in SOD1 transgenic mices in which survival times were prolonged in females (Heiman-

Patterson et al., 2005) and a SNP, rs1570360, in the VEGF gene showed female-

dependent association with SALS patients (Fernandez-Santiago et al., 2006). 

Furthermore, there is considerable evidence suggesting that oestrogen is a 

neuroprotective agent (Garcia-Segura et al., 2001) and it is possible that Npl4 may play a 

role in the regulation of oestrogen-mediated signalling pathways (Nawaz et al., 1999; 

Wojcikiewicz, 2004).  

 

Using an approach complementary to GWA studies, this report provides an initial 

evidence for NPLOC4 as a susceptibility gene of SALS that is strongest in females. 

Combined with our previous report (Section 5.1, Kwok et al., 2013), two genes playing 

roles in the maintenance of ER proteostasis at the telomeric region of chromosome 17 , 

P4HB and NPLOC4, have been associated with our FALS and SALS cohorts respectively 

and replications are merited to further validate these findings in different cohorts.  
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Table 5-17. NPLOC4 SNPs tagged by those analysed in this study. 

SNP Position Exon/inron 

SNPs Tagged by rs6565612   

rs74002480 79611355 5’ 

rs35570626 79611084 5’ 

rs62075721 79610246 5’ 

rs7406219 79609410 5’ 

rs9747119 79607017 5’ 

rs7220310 79606056 5’ 

* 
rs8079963 79603285 

Intron1 

rs9890852 79600110 Intron1 

rs12946906 79599573 Intron1 

rs7405937 79597811 Intron1 

rs7406382 79597786 Intron1 

rs6565609 79592267 Intron2 

rs7502337 79588470 Intron3 

SNPs Tagged by rs8075102   

rs7405966 79566727 Intron9 

rs7405469 79566596 Intron9 

rs7405646 79551064 Intron12 

rs7406991 79548614 Intron12 

SNPs tagged by rs7405450   

rs9893365 79541555 Intron12 

rs8081883 79540598 Intron12 

rs7406408 79535532 Intron14 

SNPs tagged by rs3934711   

rs7406704 79535171 Intron14 

rs3936237 79533264 Intron15 

rs9911739 79532109 Intron16 

rs9912074 79531888 Intron16 

rs9905026 79531572 Intron16 

rs72855627 79531183 Intron16 

SNPs that are tagged by those analysed in this study. Regions of SNPs tagged by 

rs6565612= 22,885 bps; Region tagged by rs8075102= 18,113 bps; Region tagged by 

rs7405450= 6,023 bps.  

 

 

-END OF CHAPTER 5- 
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Chapter 6 
 

Investigation of Variable Number Tandem Repeat 
(VNTR) in Novel ALS Candidate Genes 

 

 

6.1 Introduction 

Dynamic mutations in variable number tandem repeats (VNTR) have been reported to be 

associated with progressive neurodegenerative conditions and in some cases may cause 

pathogenic consequences depending on their location (Paulson and Fischbeck, 1996). 

The most well documented expansions in coding regions are present in polyglutamine and 

polyalanine tracts in disorders such as Huntington’s disease, Spinalbulbar Muscular 

Atrophy (SBMA), Dentatorubral-Pallidoluysian Atrophy (DRPLA), Spinocerebellar Ataxia 

(SCA) types 1-3 and 17 and Oculopharyngeal Muscular Dystrophy (OPMD). Triplet 

expansions in introns and 5’ and 3’ Untranslated regions (UTR) are seen in Myotonic 

Dystrophy (DM), Friedrich’s Ataxia and SCA types 8 and 12, causing pathogenicity by 

affecting gene expression or mediating RNA dependent toxicity. Furthermore, age at 

onset and severity of disease are often associated with the length of expansion, which has 

the propensity to increase in successive generations depending on perfectness and length 

of the repeat. Although the majority of known dynamic mutations are trinucleotide 

expansions, tetra- and penta-nucleotide expansions have been reported in conditions 

such as DM2 (Liquori et al., 2001) (CCTG), SCA10 (Matsuura et al., 2000) (AATCT).  

 

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting both upper 

and lower motor neurons and is pathologically characterized by the presence of 

cytoplasmic inclusions. Ubiquitinated inclusions containing TDP-43 are found in most 

Sporadic ALS (SALS) patients and Frontotemporal dementia (FTD) patients, indicating a 

common pathogenic mechanism underlying these conditions (Neumann et al., 2006). A 

hexanucleotide GGGGCC expansion in intron 1 of C9orf72 gene was recently identified 

as the most common cause of Familial ALS (FALS) with or without FTD (Renton, 2011). 

The effect of the expansion is as yet not established but may cause different pathogenic 

consequences (Chapter 7), indicating further functional consequences of noncoding 
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repeats (Mori et al., 2013b). We also reported that a small hexanucleotide expansion in 

5’UTR of the VCP gene was exclusively found in FALS and SALS in Chapter 3.  

 

Genome-wide assessment of VNTR length in ALS is difficult as genotyping of repetitive 

sequences is limited by the read length obtained using current Next-generation 

sequencing (NGS) platforms (Figley et al., 2014; Treangen and Salzberg, 2012). Using 

candidate-gene approaches, a number of VNTR in genes causing relevant neurological 

conditions have been investigated in ALS, and VNTRs present in the ATXN2 (Elden et al., 

2010) and NIPA1 (Blauw et al., 2012) genes have been shown to be associated with 

susceptibility to SALS. In view of the importance of VNTRs in ALS, we explored a list of 

twenty candidate VNTR in genes based either on evidence of altered expression in 

SALS, location adjacent to associated SNPs in GWAS studies (Chio et al., 2009) or 

involvement in known pathogenic mechanisms present in ALS. Trinucleotide repeats 

(TNR) in coding polyalanine tracts and those located in the 5’ and 3’ regulatory regions 

were prioritised for initial study.  

 

Four candidate genes, EIF2AK2, CAPNS1, YWHAQ and FAM120C, were amongst 48 

genes revealed in our previous reports using Random Rapid Rapid Assay of cDNA Level 

(RRACE) (Kaushik et al., 1998) and High Density Array Membrane (HDAM) (Kaushik, 

2000) based methods for detecting tandem repeat-containing genes that are expressed in 

the human spinal cord. YWHAQ (14-3-3 protein θ) was subsequently shown to be over-

expressed in the spinal cord of SALS patients (Malaspina et al., 2000). Lewy-body like 

hyaline inclusions (LBHI) that are immunoreactive for YWHAQ and other forms of 14-3-3 

proteins have been identified in the spinal cords of SALS patients (Kawamoto et al., 2004) 

and a FALS patient with a 2 base pair SOD1 deletion (Kawamoto et al., 2005). Fourteen 

additional TNRs, previously reported by Kozlowski (Kozlowski et al., 2010), were selected 

based on the presence of SNPs that are significantly associated (P<0.005) with SALS 

within ±100 kb of the VNTR or being implicated in ALS pathogenesis. They are involved in 

DNA metabolism (SSBP3), Excitotoxity (TMEM158), Oxidative stress (GPX1), 

Neurodevelopment (SLC12A2, IRX2, IRX3, IRX4), Neuronal Growth (ID4), Wnt/TCF and 

NfkB pathway (CTNND2), Retinoid Acid signalling (RXRB), Protein folding and 

degradation through the Ubiquitin-Proteasome System (UPS) (HSPB8, UBQLN3) and 

RNA binding (RBM23). Of these, the activity of Glutathione peroxidase 1 (GPX1), a pivotal 
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free-radical scavenging enzyme, was reported to be decreased in the motor cortex of ALS 

patients (Przedborski et al., 1996). Iroquois homeobox protein 3 (IRX3) is overexpressed 

in the spinal cord of SOD1 transgenic mice at 90 days (Ferraiuolo et al., 2007). Heat 

shock protein 22 (HSPB8), a small heat shock protein expressed in the spinal cord, is 

involved in facilitating protein folding and the degradation of misfolded proteins via 

autophagy and the UPS (Hu et al., 2007). Expression of HSPB8 is upregulated both in 

SOD1 transgenic mice (Crippa et al., 2010) and spinal cord of SALS cases (Anagnostou 

et al., 2010), suggesting a neuroprotective effect. Finally, based on our findings that SNPs 

in the P4HB gene, which encodes Protein disulphide isomerase A1 (PDIA1), is a potential 

risk factor and modifier of FALS (Chapter 5), we also included TXNDC5, which encodes 

PDIA15, another member of the PDI family. The reported association of the NIPA1 repeat 

in SALS (Blauw et al., 2012) was also further investigated in our FALS cohort.  

 

VNTRs were screened in ALS and control cohorts for repeat expansions and association 

studies carried out for polymorphic candidates. Our results show that the NIPA1 and 

HSPB8 repeats are significantly associated with FALS and SALS respectively.  

 

 

6.2  Backrgounds for candidate genes 

6.2.1 SSBP3 

The SSBP3 gene encodes Single strand DNA binding (SSB) protein 3. The SSB proteins, 

which are characterized by a N-terminal domain and a glycine- and proline-rich domain, 

bind and stabilize single stranded DNA generated in different DNA metabolism processes 

such as replication, repair and recombination (Shamoo, 2001), where SSB proteins 

remove secondary structures, regulate annealing and prevent nuclease-mediated DNA 

degradation. The human SSB has been shown to regulate the arrest of DNA replication 

induced by UV radiation (Carty et al., 1994). Although the precise functions of the SSBP3 

protein are unknown, it is a human ortholog of the chicken CSDP gene and may play a 

role in DNA repair following oxidative damages in neurodegeneration (Castro et al., 2002; 

Mantha et al., 2013).  

 

6.2.2 HSPB8 

Please refer to discussions. 
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6.2.3 EIF2AK2 

Eukaryotic translation initiation factor 2- alpha kinase 2 (EIF2AK2), also known as Protein 

kinase R (PKR), is a serine/ threonine kinase that mediates responses to different cellular 

stresses. EIF2AK2 is capable of binding double-stranded RNA in circumstances such as 

viral infection, after which it is activated by dimerization and auto-phosphorylation. The 

activated EIF2AK2 phosporylates the translation initiation factor EIF2A and inhibits mRNA 

translations, which can be followed by apoptosis (Garcia et al., 2006). This pathway is 

critical for antiviral effects mediated by interferons and relies on the N-terminal dsRBD and 

C-terminal kinase domains. Indeed, the phosphorylation of the EIF2A by the ER sensor 

PERK is a crucial step for activating the Unfolded protein response (UPR), which can also 

be regulated by PKR in a PERK- independent manner (Lee et al., 2007a). Alternatively, 

either by exerting kinase activity or directly interacting with other molecules, EIF2AK2 is 

involved in different signalling pathways such as the NF-kB pathway, which has been 

implicated in ALS. Moreover, EIF2AK2 is also essential for the stabilization of the mRNA 

of HSP70, which is important for protein folding (Zhao et al., 2002). 

 

6.2.4 YWHAQ 

The YWHAQ gene encodes for theta-isotype of the14-3-3 protein, a group of signalling 

molecules that are abundantly expressed in the brain, comprising 1% of its total soluble 

protein (Berg et al., 2003). 14-3-3 proteins were known for their roles in the regulation of 

enzymatic activity and subcellular localization of it substrates, and, in neurons, they are 

involved in multiple processes including intracellular signalling, division and differentiation, 

migration, neurite outgrowth, ion channel regulation and apoptosis (Berg et al., 2003; 

Shimada et al., 2013). 14-3-3 proteins interplay with known pathogenic mechanisms of 

neurodegeneration, such as oxidative stress, ER stress, protein aggregates formation and 

degradation, and the isotypes have been implicated in various neurological disorders 

(Steinacker et al., 2011). Regarding ALS, the zeta-isotype of 14-3-3 has been shown to 

interact with HSP70 and BAG3, indicating a role in the prevention and elimination of 

misfolded proteins (Ge et al., 2010). Further evidence of this hypothesis are the direct 

interaction of the beta, zeta, tau, gamma and eta isotypes with the mRNA of low-

molecular weight neurofilament (NF-L) (Ge et al., 2007), which can be also bound and 

modulated by mutant SOD1 and TDP-43 (Volkening et al., 2009). Furthermore, the 
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observation that the zeta- and theta- isotypes were upregulated in hypoglossoal nerves 

during mechanical injury suggests that 14-3-3 proteins may be required for peripheral 

nerve regeneration (Namikawa et al., 1998). We previously identified the theta-isotype of 

14-3-3 from the human spinal cord cDNA library (Kaushik et al., 1998) and, using 

Nothern’s blot, it was demonstrated that the expression of both transcripts (1.8kb and 

2.2kb) were consistently up-regulated in the spinal cord of ALS patients. The 5’UTR hexa-

nucleotide repeat was characterized in a small group of FALS, SALS, PD patients as well 

as controls, but no significant differences were noticed. In the current study, we sought to 

characterize this repeat in an extended cohort of FALS, SALS and Controls.  

 

6.2.5 GPX1 

There are substantial evidences indicating that oxidative stress is a mechanism causing 

neuronal injuries in ALS. 5-10% of Familial ALS cases are caused by mutations in SOD1 

gene, a redox enzyme that catalyzes the detoxification of superoxide radicals to form 

oxygen and hydrogen peroxide. The removal of hydrogen peroxide, however, requires 

reduced glutathione (GSH), which donates H+ and e- to free radicals and undergoes 

oxidation, forming the oxidized GSSG (Schulz et al., 2000). This process, also involved in 

the detoxification of peroxynitrite and hydroxyl radicals, is facilitated by glutathione 

peroxidise 1 (GPX1) (Mills, 1957). Any deficiency in this pathway may cause the build-up 

of Reactive oxygen species and impair cellular tolerance to oxidative stress (de Haan et 

al., 1998). GPX1 is a well-characterized, cytosolic, selenium containing enzyme 

accommodating a poly-Alanine tract, coded by a CCG repeat in Exon 1, at the N-terminal. 

Loss of homozygosity (LOH) in this repeat, which is polymorphic with 5-, 6- and 7- repeat 

alleles, has been associated with cancer in lung (Moscow et al., 1994), head and neck 

(Hu et al., 2004) and breast (Hu and Diamond, 2003) and this was ascribed to the process 

of tumor evolution. A functional explanation of the association was the accompanying loss 

of the Pro genotype at codon 198 which sustains the activity of GPX1 stimulated by 

selenium (Hu and Diamond, 2003). It has been shown that the activity of GPX1 is 

significantly reduced in the motor cortex (Przedborski et al., 1996), but not the spinal cord 

(Fujita et al., 1996) of SALS patients.  
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6.2.6 SLC12A2 

The Solute carrier family 12 gene (SLC12A2) encodes for Na+-K+-2Cl- co-transporter 1 

(NKCC1) expressed in both epithelial and non-epithelial cells throughout the body. 

Solutes are imported into the cells through NKCC1, allowing the secretion of fluids to 

lumens of exocrine glands and the regulation of cell volumes (Hebert et al., 2004). There 

are two isoforms of NKCC1, the first being the constitutive spliced isoform containing a C-

terminal domain, 12 transmembrane domains and a N-terminal domain, whereas the 

second isoform has a shortened C-terminal domain due to the deletion of Exon 21 (Hebert 

et al., 2004). NKCC1, which is expressed in the developing brain and spinal cord, also 

regulates the neuronal responses to GABA by modulating chloride equilibrium potential 

(ECl) and contributes to the development of neonatal seizures (Delpy et al., 2008; Dzhala 

et al., 2005).  

 

6.2.7 RBM23 

RNA binding motif protein 23, also known as RNPC4 or CAPERbeta, belongs to the 

Splicing factor U2 auxiliary factor 65 (U2AF65) family of RNA binding proteins and 

regulates steroid hormone receptor mediated transcription and splicing (Dowhan et al., 

2005). The protein contains a serine-arginine-rich (RS) domain and two RRM motifs that 

are typically found in the U2AF proteins, which participates in the formation of 

spliceosome through binding to the poly-pyrimidine tract at the 3’ splice site (Lunde et al., 

2007). Defects in pre-RNA maturation have been implicated in ALS as TAR-DNA binding 

protein 43 (TDP-43), another nuclear RNA-binding protein, has been found in the 

neuronal inclusions in ALS (Neumann et al., 2006). TDP-43 is depleted from the nucleus, 

suggesting loss-of-function consequences may contribute to ALS.  

 

6.2.8 NIPA1 

Please refer to discussions. 

 

6.2.9 CAPNS1 

Calpain small subunit 1 (CAPNS1) is a regulatory unit of Calpains, which are calcium-

activated cysteine proteases that have been implicated in different neurodegenerative 

conditions. The cytoplasmic enzymes, which are widely expressed in different tissues, can 

be activated by stimuli such as altered Ca2+, phosphorylation by PKA and decrease in 
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Ca2+ binding proteins (Vosler et al., 2008). Upon activation, m-Calpain cleaves pro-

Caspase-12, which in turns cleave other effector Caspases and induces apoptosis 

(Orrenius et al., 2003). This link is interesting as it may connect different pathological 

mechanisms to cell death in ALS. First, a cause of motor neurons damages in ALS is 

excitotoxicity, which occurs when NMDA receptors are over-stimulated by extracellular 

glutamate. The activated receptors in turn allow Ca2+ influx through Ca2+ channels 

(Pasinelli and Brown, 2006), creating alterations in cytoplasmic Ca2+ levels. Second, it has 

been shown that activated Calpain cleaves TDP-43, a pathological hallmark of ALS, in 

transgenic neuronal models of ALS (Yamashita et al., 2012). In fact, C-terminal of TDP-43 

formed after the cleavage of Caspase-3, which activates Calpain, forms insoluble TDP-43 

aggregates that mimic ALS (Zhang et al., 2009), suggesting these processes may be 

associated.  

 

6.2.10 UBQLN3 

The UBQLN3 gene encodes one of the four human Ubiquilin proteins, Ubiquilin-3. 

Ubiquilins have been implicated in Alzheimer’s disease and Parkinson’s disease. Like 

other Ubiquilins, Ubiquilin-3 is testis-specific isoform characterized by the N-terminal 

Ubiquitin-like domain (UBL) and C-terminal Ubiquitin-associated domain (UBA). The UBL 

domain shares homology with Ubiquitin and may be able to conjugate substrates that are 

targeted for proteasomal degradation, whereas the UBA domain may interact with other 

components in Ubiquitin-Proteasome pathway (Conklin et al., 2000). Moreover, Ubiquilins 

also regulate autophagy by interacting with LC-3 (Rothenberg et al., 2010). 

 

6.2.11 TMEM158 

TMEM158 gene, which encodes Transmembrane protein 158, as known as Ras-induced 

senescence 1 (RIS1), is a candidate tumor suppressor gene that is upregulated 

specifically in response to the activation of the oncogene Ras, causing proliferation 

senescence similar to that seen in mitosis (Barradas et al., 2002). Interestingly, RIS1 has 

also been identified as a cell-surface binding protein for brain injury-derived neurotrophic 

peptide (BINP), which protects neurons against glutamate damages, and it may therefore 

play a role in the regulation of neuronal death (Hama et al., 2001).  
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6.2.12 IRX2, IRX3 and IRX4 

IRX2 and IRX3 genes encode for two members from the Iroquois homeobox protein family 

(Irx), both of which are from the IrxA subgroup. Irx proteins share a homeodomain 

domain, TALE, and a Iro box domain and are involved in a variety of developmental 

processes including transcriptional regulation of neural development (Gomez-Skarmeta 

and Modolell, 2002). The genomic organisation of the Iroquois genes is highly conserved 

among species. In human, both IRX2 and IRX4 are located in chromosome 5, whereas 

IRX3 is located in chromosome 16. IRX3 has been shown to be up-regulated at 90 days in 

motor neurons from G93A SOD1 transgenic mice, suggesting a role in adaptive functions 

following SOD1 injury (Ferraiuolo et al., 2007). 

 

6.2.13 CTNND2 

Delta-Catenin2 (catenin δ2, CTNND2) was known as an Armadillo-repeat containing 

protein that plays a role in cell adhesion and interacts with essential components for the 

functioning of neuromuscular junctions (Rodova et al., 2004). The protein has been shown 

to regulate the Wnt/TCF pathway and the Nf-kB pathways. In disease conditions, 

CTNND2 was located in a deleted region in chromosome 5p that was responsible for Cri-

du-Chat syndrome and the knock down of this gene resulted in severe cognitive 

impairments (Israely et al., 2004). In fact, another member of this family, beta-Catenin, 

has been shown to interact with Presenilin-1, a candidate gene in Familial Alzheimer’s 

disease and enhance neuronal vulnerability to beta-amyloids (Zhang et al., 1998). 

 

6.2.14 ID4 

ID4 encodes Inhibitor of DNA-binding protein 4, a protein that belongs to the helix-loop-

helix (HLH) transcription factor family. However, without any DNA binding motifs, ID 

proteins function as suppressors of other transcription factors (bHLH) in the same family 

and represses gene expression induced by cis-elements such as E-box (Perk et al., 

2005). ID4 was thought as a tumor suppression gene based on the observation that its 

expression was altered in various types of tumors (Perk et al., 2005). ID proteins have 

also been implicated in regulating axonal growth and elongation in neurons, which share 

molecular similarities with the initiation process of tumor metastasis (Iavarone and 

Lasorella, 2006). 
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6.2.15 TXNDC5 

We reported in Chapter 5 that the P4HB gene, which encodes the ER protein Protein 

disulphide isomerase (PDI) A1 (PDIA1), is a risk factor and modifier for Familial ALS.  

Proteins from the PDI family are characterized by the presence of TRX-like domain, which 

contains catalytic active sites facilitating the exchange of disulphide bonds and prevent 

the formation of misfolded proteins. TXNDC5 encodes another member from the PDI 

family, PDIA15, also known as Erp46 or EndoPDI (Galligan and Petersen, 2012). PDIA15 

possesses three TRX-like domains containing three functionally active motifs, CGHC, 

which are identical to PDIA1, and an ER-localization signal, KDEL (Galligan and Petersen, 

2012). It has been shown that PDIA15 was expressed in the brain and it was able to 

complement the functions of PDIA1 in yeast, suggesting an important role in ER protein 

folding (Knoblach et al., 2003). 

 

6.2.16 RXRB 

There were considerable studies showing protective effects of Retinoic acid (RA) in 

various neurodegenerative conditions. RA is a metabolic product of retinol (Vitamin A), 

which binds RBP1 in bloodstream and enters the cells through membrane receptor 

STRA6. RA may function as a signalling molecule by entering the nucleus and forming a 

complex with RA receptor (RAR) and Retinoic X receptor (RXR), after which the complex 

binds target DNA sequences (Maden, 2007). RA signalling has been implicated in the 

differentiation and development of the nervous system and, in particular, motor neurons, 

and may therefore have a protective role against neurodegeneration (Maden, 2007). In 

fact, a link between RA signalling and ALS has been established by the observation that 

rats depleted of the receptor RAR-alpha, which was also reduced in SALS spinal cords, 

developed motor neuron degeneration (Corcoran et al., 2002). We previously showed that 

the expression of Cellular retinoic acid binding protein 1 (CRABP1), an intracellular carrier 

of RA, was significantly increased in the spinal cord of SALS, suggesting a secondary 

response to compensate for the loss of RA signalling (Maden, 2007; Malaspina et al., 

2001). In addition, RA was shown to regulate the level of Superoxide dismutases (SOD) 

and protect the neurons from apoptosis and oxidative stress (Ahlemeyer et al., 2001). The 

RXRB gene encodes Retinoic X receptor beta and may therefore important in mediating 

the plausible protective effects of RA.  
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6.2.17 FAM120C 

FAM120C is a 16-exon gene encoding a putative transmembrane protein spanning 111kb 

in chromosome Xp11.2 (Holden and Raymond, 2003). A microdeletion involving this gene 

has been associated with autistic disorder (Qiao et al., 2008).  

 

 

6.3 Methodology 

6.3.1 Subjects 

The study population consisted of 200 FALS index cases, 99 SALS cases and 299 

Controls from the UK recruited from the Imperial College Healthcare NHS Trust and Kings 

College Healthcare NHS Trust (Table 6-1). Diagnosis of ALS was made using the El 

Escorial Criteria. All FALS cases presented with a positive familial history in which at least 

two members were affected in the family and each FALS was an index case from 

unrelated families. All FALS cases lacked mutations in SOD1, TARDBP, FUS, DAO and 

VAPB genes. The C9orf72 expansion had been screened in the FALS cohort and this was 

taken into account in the analysis. Informed consent was given by all subjects and the 

study was carried out according to the Research governance regulations of Imperial 

College London and Kings College London. DNA was extracted from whole blood or the 

buffy coat layer using a DNA extraction kit according to instructions of the manufacturer 

(Qiagen, Manchester, UK). 
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Table 6-1. Summary of the cases and controls employed in this study. 

Cohorts No. of samples 
Gender Ratio 

(Male: Female) 

Control 

   Group 1 

   Group 2 

   Group 3 

 

FALS 

   Imperial College (All) 

   King’s College (YWHAQ) 

 

SALS 

   Imperial College (HSP) 

299 

   129 

   82 

   88 

 

200 

   104 

   96  

 

 

99 

1:1.05 

 

 

 

 

 

1 : 1.04 

 

 

 

1:2.22 

Total  598  

A total of 598 cases and controls were included in this study and genotyping was 

performed in different subsets of samples. The Imperial FALS cohort was used for the 

initial screening of all VNTRs, whereas the King’s FALS cohort and the Imperial SALS 

cohort were only employed in the screening for YWHAQ and HSP repeats respectively. 

Control group 1, which was collected from East Anglia and East Yorkshire, was screened 

for the EIF2AK2, CAPNS1 and YWHAQ repeats. Control group 2, which was collected 

from London, was screened for the HSPB8 repeat. Control group 3 was collected from 

around the U.K. and was used in the screening for all other polymorphic VNTRs. 

 

 

6.3.2 Genotyping and DNA sequencing 

DNA fragments were amplified in PCR reactions using primers flanking ~100 bps of the 

VNTRs. The primers were designed using Primer 3 Program 

(http://frodo.wi.mit.edu/primer3) and purchased from Invitrogen, UK. A standard 30µl PCR 

reaction mixture was prepared, as shown in Table 6-2, and a nested PCR was used for 

the GPX1 repeat. The VTNRs are then genotyped using electrophoresis. For an agarose 

gel electrophoresis which discriminates down to 3 bps size differences, for DNA fragments 

sized 200- 300 bps, 15 to 30 µl of PCR products were separated in a 20 cm x 20 cm x 0.8 

cm, 2.8% agarose gel at 110V for 16 hours. Time may be extended for larger fragments. 

 

For denaturing acrylamide gel electrophoresis (Urea-PAGE), we prepared 50 ml of 4% to 

6% urea polyacrylamide gel (1mm thick) using the SequaGel Urea Gel System (National 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_cdi=271331&_issn=08915849&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Ffrodo.wi.mit.edu%252Fprimer3
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Diagnostics, UK) according to instructions. Prior to loading, 1 to 10 µl of PCR products 

were mixed with equal amount of denaturing buffer containing 95% Formamide (Applied 

Biosystems, UK), 0.9μg/ml Xylene Cyanol and 0.005M EDTA, incubated at 99oC for 10 

minutes and chilled on ice. The gel was pre-electrophoresed to 45oC. After loading, 

electrophoresis was carried out at 15W for 3 to 4 hours depending on fragment sizes. The 

gel was then stained in 50 ml of 1X SYBR Gold Nucleic Acid Gel Stain (Invitrogen, UK) for 

30 minutes. The results of both agarose and acrylamide gel electrophoreses were 

visualized using GelDoc (Bio-Rad UK, Hemel Hempstead, Hertfordshire, UK) system. The 

GelAnalyzer Program v 2010a (http://www.gelanalyzer.com/) was used for molecular 

weight calculation.  For DNA sequencing, the PCR products were purified using Sureclean 

(Bioline, UK) according to instructions and sequenced using ABI Prism BigDye terminator 

kit (Applied Biosystems, Warrington, Cheshire, UK) carried out by the College’s core 

genomic laboratory. Sequences were visualized using Codon Code Aligner and Seqdoc 

programs (http://research.imb.uq.edu.au/seqdoc). 

 

Table 6-2. Primers and PCR Conditions used in this study.  

VNTR Primers 
Product 

Size 

UBL3 
FOR: CTGGGGCATTTTTCTCCTG 

REV: GAGGTTCTGGTTCGAAGAGG 
277 

HSPB8 
FOR: GCTCCATCAGGAACCAAGCA 

REV: CTCCCTCCTTTAGGCATCGC 
293 

ID4 
FOR: GATGAAGGCGGTGAGCCC 

REV: GCGGCTATAGCAGTCGTTCA 
223 

SSBP3(A) 
FOR: CGTTCGGTTGAGCTCCAAGT 

REV: CATCGCCCTGGAACTCCTTC 
188 

SSBP3(B) 
FOR: CTGACGCTTTGACAGCTGGA 

REV: CGCCACTTGCAAAATAGGGC 
283 

TMEM158 
FOR: TAAGCCCATTGAGTCCACGC 

REV: ACACAGGACGGACACAGGGA 
286 

GPX1* 

FOR: GAAAACTGCCTGTGCCACG 

REV: CAGAGGGACGCCACATTCTC 

NestedFOR:CCGCTGGCTTCTTGGACAAT 

Nested REV: AGCCCAGGCTCACAGGCT 

260,  

126 

IRX4 
FOR: GAGGCCAAGCTGGGGTTTGT 

REV: CCGTCCACCCAGTTTCTGAG 
281 

IRX2 
FOR: CTCGGCGTTCAGCCCCTA 

REV: GACTCCTGAGTCGCCAGC 
252 

http://www.gelanalyzer.com/
http://research.imb.uq.edu.au/seqdoc
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VNTR Primers 
Product 

Size 

IRX3 
FOR: GAAGCCCAAGATCTGGTCCC 

REV: AGAGCCCAGCAGGGAGAG 
256 

SLC12A2 
FOR: TCGGTGCCGGAGGATGCTG 

REV: GCTTCCTCGCTGCCTTTAGC 
284 

TXNDC5 
FOR: CCCAGGACGCCTCCTCCC 

REV: GCGCGAAGAACATGACGAAG 
248 

CTNND2 
FOR: TAAGTGCGCGTGTTCTCTCC 

REV: CTGCAGCTTGGTGGGCGAA 
265 

NIPA1 
FOR: CTCTTCCTGCTCCTCCCCC 

REV: GCACGATGCCCTTCTTCTGT 
286 

RXRB 
FOR: CCAGGGATCATGTCTTGGGC 

REV: ATAAAGCGGTCACTGGCTCG 
289 

RBM23 
FOR: CAGCTCATGGCAAAACTGGC 

REV: GCGCACTCCTTCTTTCCAGA 
291 

YWHAQ 
FOR: GCATTGTCTGACGGCGCTC 

REV: GCTCGGCCTGCTCGGCCAGCTT 
198 

EIF2AK2 
FOR: CCCGTAGCAGACGAGGGCTT 

REV: GGGACGCAGGATTGGCGAGT 
253 

FAM120C 
FOR: AGATCGTCGCCTATCCTGCT 

REV: GAGTAGGCACCCAAGGCAG 
283 

CAPNS1 
FOR: AGTGAGTCGCAGCCATGTTC 

REV: CCCTCTGATAGTCTCCGCCT 
246 

PCR reactions were carried out in a standard 30μl volume containing 1× buffer, 1.5 mM 

Mg2+, 0.1 mM dNTP, 0.5 μM primers, 0.05 U/μl GOtaq Taq DNA polymerase (Promega, 

UK), and 0.5 ng/μl templates. PCRx Enhancers System (Invitrogen, UK) and 7-deaza-

dGTP (THERMOPOL®, New England Biolabs, UK) were used when necessary. The 

thermal cycles were carried out as following: 5 minutes at 94oC, [45s at 94oC, 30s at 

Annealing Temperature, 30s at 72oC] x 35 Cycles, 5 mintues at 72oC. 

 

*To perform Nested PCR for the GPX1 repeat, the gDNA templates were, in the first 

round, amplified using the FOR and REV primers to generate 260-bp products, after 

which 1μl of an 1:100 fold dilution of the product was taken as the template for the second 

round of PCR using the Nested primers, which generated the final 126-bp products. 

 

 

6.3.3 Data analysis and Statistics. 

To obtain a list of known Trinucleotide repeats (TNRs) throughout the genome, all TNRs 

reported by Kozlowski et al (2010) were matched to the reference sequence 
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(BSgenome.Hsapiens.UCSC.hg19) using the BSgenome package v 1.30.0 

(http://www.bioconductor.org/packages/release/bioc/html/BSgenome.html) in R 

(Appendix III). The successful matches together with SNPs genotyped in a previous 

GWA study (dbGAP Study: phs000101, Accession: pha002846.1) (Schymick et al., 

2007b) were annotated for gene names and positions using a prediction track obtained 

from the UCSC Table Browser, assembly GRCh37/hg19. After that, the most significant P 

value, which had been computed using Cochran-Armitage trend test, within a ± 100 kb 

window of each matched TNR was obtained and analyzed in a Manhattan plot (Data not 

shown).  

 

All VNTRs genotyped in this study were tested for allelic and genotypic associations with 

ALS. For the omnibus tests for allelic distributions, we employed the Mann-Whitney U test, 

computed using R, and a Monte-Carol test for association, computed using the CLUMP 

Program (Sham and Curtis, 1995). Alleles were then categorized according to repeat 

length and a 2 x 2 Fisher test, computed using R, was employed to test the association of 

each allele or each group of alleles. The 2 x 2 Fisher test was also used to analyse 

genotype distributions. All tests were corrected for multiple comparisons using the 

Benjamini-Hochberg method. Student’s t test was used to compare HSPB8 expression in 

samples with different genotypes. To investigate whether the VNTRs are associated with 

clinical parameters, we compared allele frequencies in cases with different site of onset 

using the Fisher’s test. Survival and age of onset analysis using Kaplan-Meyer curves was 

carried out for all VNTRs using Graphpad and SPSS Programs.  

 

 

6.4 Results 

6.4.1 Identification of candidate Variable number tandem repeats for ALS.  

In order to investigate whether VNTR expansions are involved in ALS pathogenesis, we 

selected 20 candidate VNTRs for study, using a comprehensive list of VNTRs present 

throughout the genome (Kozlowski et al., 2010), expression data and relevance to ALS 

based on existing publications. Publically available GWAS dataset using the BSgenome 

package in R (http://cran.r-project.org/) were also taken into account (Table 6-3). Although 

no significant SNP associations have been reported in candidate genes harbouring the 

VNTRs selected for this study, the closest GWAS SNPs were some distance from the 

http://www.bioconductor.org/packages/release/bioc/html/BSgenome.html
http://cran.r-project.org/
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VNTR (up to 100kb) in most cases (Figure 6-1). Interestingly, the highest uncorrected 

SNP association (-log p value ~3) was for one of the selected candidates (HSPB8). The 

candidate VNTRs included 11 VNTRs coding for polyalanine tracts, 1 coding for a 

polyglycine tract, 1 coding for a polyglutamine tract and 6 located in regulatory regions. 

With the exception of the YWHAQ repeat, which is a hexanuceotide GGGGCC repeat of 2 

units, all VNTRs are trinucleotide repeats of ≥ 5 units in the reference sequence (Figure 

6-2). The NIPA1 repeat which has previously been been shown to be associated with 

FALS (Blauw et al., 2012) was also analysed in our cohorts in parallel.  

 

Table 6-3. Criteria used for the selection of candidate genes.  

Genes Gene Functions 
GWAS SNP ± 

100kb 
Expression Profile 

 

Neuro-
logical 
Dis-

orders 

ALS path-
ways 

(DNA/ RNA 
binding, cell 
survival and 

Redox ) 

P< 
0.0
007 

P< 
0.00
15 

P< 
0.005 

Altered 
Expression 

in ALS/ 
mouse 

Spinal 
Cord 
TNR 

Kaushik 
et al. 

Expressed 
in Brain & 

Spinal Cord 

EIF2AK2         
CAPNS1         

FAM120C         

YWHAQ         

HSPB8         

GPX1         

IRX3         

ID4         

CTNND2         
RXRB         

RBM23         

SLC12A2         

NIPA1         

TXNDC5         

UBQLN3         

SSBP3         

TMEM158         

IRX4         
IRX2         

All candidate genes being investigated in study are expressed in the brain and spinal 

cord, most of which were known to play roles in DNA/RNA binding, cell survival and 

Redox reactions. Expressions of four candidates were shown to be altered in ALS. 

HSPB8 was of particular interest as multiple criteria are fulfilled. 
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Figure 6-1. SNPs that flank ± 100kb of known tri-nucleotide repeats throughout the genome. 

 

Manhattan-Plot showing SNPs that flank ± 100kb of known tri-nucleotide repeats throughout the genome (Kozlowski et al., 2010). These are the most 

significant associations with SALS according to a previous GWAS study (dbGAP study accession: phs000101.v3.p1; analysis: pha002846.1) within the 

region. SNPs adjacent to the candidate VNTRs in this study are indicated by red dots. 
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Figure 6-2. A summary of VNTRs in the current study. 

 

Relative location between the candidate VNTRs (Kozlowski et al., 2010) and the 

associated ± 100kb SNPs are shown. In addition, a SNP which is located 133.6kb 

upstream from the YWHAQ hexanucleotide repeat is indicated by a broken line (-//-). 

Protein coding and non-coding VNTRs are shown in black and blue respectively. The 

SNPs are indicated by dots of different colours representing their significances.  
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6.4.2 Identification of polymorphic VNTRs. 

All VNTR candidates were genotyped in an IC-FALS cohort consisting of 104 index cases 

from which known mutations in the SOD1, VCP, TARDBP, FUS (Exon 14 and 15), VAPB 

and DAO genes had been excluded. FALS cases harboring C9orf72 expansions were 

included in this screen in view of the coexistence of C9orf72 expansions with other FALS 

genes (van Blitterswijk et al., 2012a). C9orf72 status was taken into account in all 

analyses and effects are noted in the text. VNTR containing sequences were amplified by 

PCR and sized using agarose gel or polyacrylamide gel electrophoresis. The c.*-

25CCCCGS(3_4) repeat in the YWHAQ gene was further studied in an additional FALS 

cohort of 96 cases from King’s College London and the results are included in the 

following analysis. Nine of the VNTRs were polymorphic and used for further analysis. 

Details of the non-polymorphic VNTRs are summarized in Table 6-4. 

 

Table 6-4. Non-polymorphic VNTR repeats in FALS and IC-Controls. 

Gene Chr VNTR Exon  
Alleles No. Chr. 

    FALS 

SSBP3(A) 1 
g.*54872037CCG(8)/ 
c.*-379CGG(8) 

5' rs3033693 
Ref: 8 
(100) 

82 

UBL3 13 
g.*30423923GTC(6) 

5' NA 
Ref: 6 
(100) 

98 
c.*-265GAC(6) 

TMEM158 3 
g.*45266664CGG(5_6) 

Ex1 TMP_ESP_3_45266662 
Ref: 6 
(100) 

80 
c.*839CCG(5_6) 

IRX4 5 
g.*1878499CGG(5_7) 

Ex5 TMP_ESP_5_1878496 6(100) 78 
c.*1127CCG(5_7) 

IRX2 5 
g.*2751296CGG(6) 

Ex1 NA 6(100) 58 
c.*215CCG(6) 

CTNND2 5 
g.*11385276CGG(6) 

Ex7 NA 
Ref: 6 
(100) 

78 
c.*658CCG(6) 

ID4 6 
g.*19838107CGG(5_6) 

Ex1 TMP_ESP_6_19838105  
Ref: 6 
(100) 

80 
c.*122CGG(5_6) 

TXNDC5 6 
g.*7910871CCG(5_7) 

Ex1 TMP_ESP_6_7910870 
Ref: 6 
(100) 

84 
c.*122CGG(5_7) 

RXRB 6 
g.*33168097CCG(5_6) 

Ex1 TMP_ESP_6_33168096 
Ref: 6 
(100) 

86 
c.*140CGG(5_6) 

IRX3 16 
g.*54318613CGG(5_6) 

Ex2 TMP_ESP_16_54318611 
Ref: 6 
(100) 

38 
c.*1163CCG(5_6) 

FAM120C X 
g.*54209521CTG(5_6) 

Ex1 TMP_ESP_X_54209518  NP 128 
c.*97CAG(5_6) 

Details of the non-polymorphic VNTRs genotyped in this study. 
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Table 6-5. VNTR Allele frequencies in FALS and Controls. 

Gene Chr VNTR Exon  RS Alleles 
Allele Counts (Frequencies, %) Association tests 

Chr 
(2N) 

CTRL 
Chr 
(2N) 

FALS 
Allelic 
2 x 2 

FDR 
Omnibus 
CLUMP 

FDR 

SSBP3 1 

g.*54871712CCG(5_13) 

5' 
TMP_ESP_ 
1_54871709 

Short:5-6 

150  

11 (7.3%) 

132 

7 (5.3%) 0.6270 0.8282     

c.*-51CGG(5_13) Ref: 7  61 (40.7%) 68 (51.5%) 0.0734 0.2760 0.3840 0.4934 

  Long: 8-13 78 (52.0%) 57 (43.2%) 0.1527 0.3245 
  

HSPB8 12 

g.*119632512AAT(5_9) 

3' rs112223147 

Short:5-6  

290 

109 
(37.6%) 

120 

40 (33.3%) 0.4319 0.7342 
  

c.*591+849AAT(5_9) Ref: 7  83 (28.6%) 35 (29.2%) 0.9052 1 0.4934 0.4934 

 
Long: 8-9 98 (33.8%) 45 (37.5%) 0.4955 0.7658 

  

EIF2 
AK2 

2 

g.*37384056CCG(6_9) 

5’ rs72114633 
6 

240 
31 (12.9%) 

130 
 

11 (8.5%) 
0.2315 0.4373 

 
 

c.*-215CGG(6_9) Ref:9  
209 

(87.1%) 
119 (91.5%) 

 

YWHAQ 2 
g.*9970589SCGGGG(3_4) 

Ex2 rs200302461 
Ref: 3 

214 

187 
(87.4%) 242 

212 (87.6%) 
1 1   

c.*-25CCCCGS(3_4) 4 27 (12.6%) 30 (12.4%) 
  

GPX1 3 

g.*49395675CCG(4_7) 
Ex1 
(Ala) 

rs56041243 Short: 4-5 

156 

110 
(70.5%) 

122 

97 (79.5%) 0.09744 0.2760 
  

c.*20CGG(4_7) rs17838762 Ref: 6 45 (28.8%) 25 (20.5%) 0.1265 0.3072 0.3296 0.4934 

    Long: 7 1 (0.6%) 0 (0%) 1 1 
  

SLC12A2 5 

g.*127419933CGG(5_7) 
Ex1 
(Ala) 

TMP_ESP_ 
5_127419931 

5 
145 

5 (3.4%) 
85 

2 (2.4%) 
1 1 

  

c.*287CGG(5_7) Ref: 7  
140 

(96.6%) 
83 (97.6%) 

  

RBM23 14 
g.*23371267CAG(4_7) Ex12 

(Ala) 
rs61680332 

Ref: 6  
154 

116 
(75.3%) 84 

66 (78.6%) 
0.6333 0.8282   

c.*1151CTG(4_7) 7 38 (24.7%) 18 (21.4%) 
  

NIPA1 
§ 15 

g.*23086366CCG(5_9) 

Ex1 
(Ala) 

NA 

Short: 5-7  

146 

32 (21.9%) 

98 

41 (41.8%) 0.0010 0.0085 
  

c.*23CGG(5_9) Ref: 8  
109 

(74.7%) 
48 (49.0%) 6.77E-05 0.0012 2.8E-05 0.0001 

 
Long:>8 5 (3.4%) 9 (9.2%) 0.0891 0.2760 

  

CAPNS1 19 
g.*36632027CGG(10_11) Ex2 

(Gly) 
TMP_ESP_ 
19_36632024 

Ref: 10 
250 

246 
(98.4%) 130 

128 (98.5%) 
1 1   

c.*114CGG(10_11) 11 4 (1.6%) 2 (1.5%) 
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Four candidates encode for poly-alanine tracts and the CAPNS1-repeat encodes for a poly-glycine tract. Counts and frequencies (brackets) of alleles that 

are shorter than (short), equal to (ref) or longer than (long) the reference allele are shown for both FALS and Control cohorts. The controls used for HSPB8-

repeat contain the additional 82 UK Samples that were included in the later stage (see main text). Each group was tested for association using 2 x 2 

Fisher’s tests and model-free omnibus tests were performed for VNTRs with ≥ 3 alleles. All tests were subjected to Benjamini- Hochberg correction (FDR). 

Significant P values are in bold. 

§ The allele frequencies of the NIPA1 repeat in C9orf72 negative FALS cases (N=25) are: Short (44%), (P=0.0035), Reference (46%) (P=0.0004), Long 

(10%) (P=0.1273).  
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6.4.3 VNTR association with ALS: allelic and genotypic associations and loss of 

heterozygosity (LOH) tests 

Polymorphic VNTRs were genotyped in FALS index cases and matched UK controls and 

representative bands were sequenced to confirm genotyping. Allele counts and 

frequencies are summarized in Figure 6-3. Association tests were performed and 

corrected for multiple comparisons (Table 6-5). Association tests on all genotypes present 

in the current study were performed using 2 x 2 Fisher’s tests (Table 6-6). Loss of 

heterozygosity (LOH) was also tested for all VNTRs as LOH is known to occur in the 

GPX1 repeat in lung cancer (Moscow et al., 1994). Significant associations were detected 

for two candidates after correction for multiple testing. 

 

 

Table 6-6. VNTR Genotype frequencies. 

  CTRL 
 

FALS SALS 

VNTR Genotype % % P FDR % P FDR 

SSBP3(B) 5/13 0.0 1.5 0.468 1 
   

 
5/7 5.3 6.1 1 1 

   

 
5/9 2.7 1.5 1 1 

   

 
6/7 4.0 1.5 0.623 1 

   

 
6/8 1.3 0.0 1 1 

   

 
6/9 1.3 0.0 1 1 

   

 
7/11 5.3 10.6 0.347 1 

   

 
7/7 9.3 24.2 0.022 0.308 

   

 
7/8 1.3 0.0 1 1 

   

 
7/9 46.7 36.4 0.235 1 

   

 
8/9 2.7 7.6 0.252 1 

   

 
9/11 10.7 6.1 0.379 1 

   

 
9/13 1.3 0.0 1 1 

   

 
9/9 8.0 4.5 0.502 1 

   

 
N= 75 66 

     
HSPB8 5/5 6.2 5.0 1 1 4.1 0.5698 1 

 
5/6 12.4 3.3 0.0672 0.8069 5.1 0.0733 0.9135 

 
5/7 18.6 25.0 0.3429 1 15.3 0.6046 1 

 
5/8 18.6 10.0 0.1474 1 25.5 0.2064 1 

 
5/9 0.7 5.0 0.0763 0.8389 0.0 1 1 

 
6/8 0.0 8.3 0.0019 0.0247 0.0 1 1 

 
6/9 

 
1.7 0.2927 1 

 
1 1 

 
7/7 10.3 5.0 0.2844 1 6.1 0.3525 1 

 
7/8 14.5 21.7 0.2203 1 22.4 0.1247 1 

 
7/9 3.4 1.7 0.6734 1 4.1 1 1 

 
8/8 6.2 1.7 0.2867 1 13.3 0.0703 0.9135 

 
8/9 7.6 6.7 1 1 4.1 0.4157 1 

 
9/9 1.4 5.0 0.1509 1 0.0 0.5167 1 
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  CTRL 
 

FALS SALS 

VNTR Genotype % % P FDR % P FDR 

 
N= 145 60 

  
98 

  
EIF2AK2 6/6 4.2 3.1 1 1 

   

 
6/9 17.5 10.8 0.2845 0.7198 

   

 
9/9 78.3 86.2 0.2399 0.7198 

   

 
N= 120 65 

     

 
N= 73 49 

     
CAPNS1 10/10 96.8 96.9 1 1 

   

 
10/11 3.2 3.1 1 1 

   

 
N= 125 65 

     
YWHAQ 3/3 79.4 77.7 0.8718 1  

 
3/4 15.9 19.8 0.4918 1 

 

 
4/4 4.7 2.5 0.4793 1 

 

 
N= 107 121 

   
GPX1 4/4 20.5 31.1 0.1716 1 

 

 
4/5 21.8 19.7 0.8351 1 

 

 
4/6 30.8 24.6 0.4524 1 

 

 
5/5 5.1 9.8 0.3341 1 

 

 
5/6 15.4 13.1 0.8097 1 

 

 
6/6 5.1 1.6 0.3849 1 

 

 
6/7 1.3 0.0 1 1 

 

 
N= 78 61 

   
SLC12A2 A/A 86.7 88.6 1 1 

 

 
A/B 6.7 4.5 1 1 

 

 
A/C 6.7 6.8 1 1 

 

 
N= 75 44 

   
RBM23 6/6 52.6 57.1 0.7016 1 

 

 
6/7 47.4 42.9 0.7016 1 

 

 
N= 76 42 

   
NIPA1 5/8 4.1 0.0 0.2731 0.5461 

 

 
7/7 2.7 14.3 0.0293 0.1307 

 

 
7/8 34.2 55.1 0.0261 0.1307 

 

 
8/8 53.4 14.3 9.8E-6 0.0001 

 

 
8/≥9 4.1 14.3 0.0875 0.2626 

 

 
≥9/≥9 1.4 2.0 1 1 

 

 
N= 73 49 

   
CAPNS1 10/10 96.8 96.9 1 1 

 

 
10/11 3.2 3.1 1 1 

 

 
N= 125 65 

   
       

Genotype frequencies of the VNTR in Cases and Controls. Each genotype was tested for 

association using a 2 x 2 Fisher’s test. All tests were corrected for multiple comparisons 

using the Benjamimi-Hochberg correction (FDR). Significant values are in bold. 
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Figure 6-3. Allele frequencies of VNTR with ≥3 alleles in this study.  
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From the analysis of allelic associations in FALS in the nine polymorphic VNTRs, 

significant effects were found for NIPA1. Performing the omnibus test for allelic 

distributions using the CLUMP Program, the alanine repeat c.*23CGG(5_9) in the NIPA1 

gene showed a significant difference between FALS cases and controls (PBH=0.0001). 

Alleles were subsequently grouped into Short (short alleles), Reference (=reference 

sequence) and Long (expanded) categories which were tested for associations with ALS 

using 2 x 2 Fisher’s tests. The frequency of the Reference allele (8-repeat) of the NIPA1 

repeat was significantly decreased from 74.7% in controls to 49.0% in FALS (PBH=0.0012, 

OR=0.33), whereas the Short alleles (≤7-repeat) were increased from 21.9% in controls to 

41.8% in FALS (PBH=0.0085, OR=2.56). The increase in Short allele frequency was 

further enhanced in C9orf72 negative cases (P=0.0035, OR=2.80) (Figure 6-4 A). The 

Short allele category consisted of two alleles in controls, the 5-repeat (2.1%) and the 7-

repeat (19.9%) but only the 7-repeat was present in FALS. Previously the Long allele (≥ 9-

repeat), was reported to be associated with SALS (Blauw et al., 2012) with allele 

frequency increasing from 1.9 to 2.7% in a large SALS cohort (2292 ALS and 2777 control 

cases). Whilst the control frequency of the long allele in our study was similar (3.4%), no 

increase could be detected in our FALS cohort reflecting the smaller cohort size. 

However, it is interesting to note that the increase in short allele frequency in FALS was 

clearly not evident in SALS indicating a marked difference in VNTR length between FALS 

and SALS cases. 

 

Consistent with the changes in allelic frequencies, there was a significant decrease in the 

frequency of the Reference 8/8 genotype of the NIPA1 repeat (PBH=0.0001, OR=0.15) 

together with an increase in genotypes that only contained the Short alleles (≤7-repeat), 

i.e.7/7, in FALS (PBH=0.0293, OR=5.92) cases. Similarly, in C9orf72 negative FALS 

cases, the frequency of the Short genotype was further increased (P=0.0111, OR=8.88) 

(Figure 6-4 B). The LOH test showed that heterozygous genotypes of the NIPA1 repeat 

were significantly over-represented in FALS (P=0.0053, OR=3.07, CI95=1.43-6.60) (Figure 

6-4 C).  

 

A significant genotype association was also found for the 6/8 genotype of the 3’ UTR 

repeat c.*591+849AAT (5_9) in the HSPB8 gene which was absent from controls but 

present in 8.3% of FALS cases, (PBH=0.0247, OR=28.84), most of which (4/5) were 
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C9orf72 negative (Table 6-6). No significant allelic association for the HSPB8 gene was 

found in FALS. In view of the significant genotypic association in FALS, this repeat in the 

HSPB8 gene was further investigated in SALS cases (n= 99) and additional UK controls 

(n= 82) (total number of control individuals used for HSPB8 = 170) (Figure 6-4 D). A 

significant omnibus association for the repeat with SALS was obtained (P=0.0161) with an 

over-representation of the Long alleles (≥8 repeats) in SALS (P=0.0360, OR=1.50) (Table 

6-7). Similarly, when HSPB8 genotypes for SALS cases and controls were pooled 

according to the length of the expanded allele, we found that those containing at least one 

copy of a Long allele (i.e. 8/-, 9/-) were significantly associated with increased risk of 

SALS (P=0.0113, OR=2.06, Figure 6-4 E). Although smaller effects were seen in terms of 

an over-representation of long alleles in FALS cases, pooling genotypes for FALS and 

SALS indicated that they conferred a significant increased risk of ALS applied to both 

FALS and SALS (P=0.0141, OR=1.80).  

 

 

Table 6-7. Frequencies of HSPB8 repeat length (rs112223147) in SALS 

Genotypes 
CTRL 

2N 
(%) 

SALS 
2N 
(%) 

P OR CI95 
Omnibus 
CLUMP 

Short (<7) 
109 

(37.6%) 
58 

(29.6%) 
0.0797 0.70 

0.47- 
1.03 

P= 
0.0161 

Normal (=7) 
83 

(28.6%) 
53 

(27.0%) 
0.7576 0.92 

0.62- 
1.39 

Long (≥8) 
98 

(33.8%) 
85 

(43.4%) 
0.0360 1.50 

1.03- 
2.18 

The table shows allele counts and frequencies (bracket) for the HSPB8 repeat in SALS 

and Controls. There is a significant increase in frequency of long repeats in SALS and a 

significant omnibus test for association. Significant values are in bold.  
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Figure 6-4. Grouped Allelic and genotype frequencies of VNTRs with ≥ 3 alleles. 

 

 

A shows the increase in frequencies of the Short alleles (≤7), Reference and Long (≥8) 

alleles of the NIPA1 repeat in FALS compared to Controls. Association was tested using a 

2 x 2 Fisher’s test and significances (P<0.05) are indicated by an asterisk (*). B. Genotype 

frequencies that only contained the Short alleles (5-, 7-) were significantly increased in 

FALS. C shows the change in heterozygosity of the NIPA1 repeat in FALS compared to 

Controls. D. Long (≥8 repeat) alleles of the HSPB8 repeat are more frequent in SALS. E. 

Genotypes of the HSPB8 repeat are grouped according to the size of the longer allele. F. 

HSPB8 mRNA expression in spinal cord in SALS (n=39) and controls (n=18) is compared 

for different genotypes using an Unpaired Student’s t test with Welch’s correction. Data for 

levels of expression is obtained from Anagnostou et al (2010). 
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6.4.4 Genotypic correlation with phenotypes and expression 

To investigate the effect of genotype on clinical parameters, we first compared the 

genotype frequencies in cases with different sites of onset (limb or bulbar) and gender 

using 2 x 2 Fisher’s tests. No association with site of onset was observed. Notably, 

frequency of the 7-repeat genotype in RBM23 was significantly increased in males (29%) 

compared to females (16%) FALS cases (P=0.0414). Age-of-onset and survival analyses 

were performed (Kaplan-Meyer’s curve) but no repeats showed significant effects on 

survival times. 

 

We have previously shown that the expression level of HSPB8 is increased in spinal cord 

of SALS cases (Anagnostou et al., 2010) and in view of the association of the HSPB8 

repeat with SALS, we investigated the effect of genotype on HSPB8 expression in spinal 

cord. HSPB8 repeat genotypes were determined for 18 Controls and 39 SALS cases with 

known levels of HSPB8 expression. There were no significant differences in expression 

between genotypes containing long alleles and those containing short alleles in controls or 

ALS cases (Figure 6-4F). 

 

 

6.5 Discussions 

The finding that hexanucleotide repeat expansions in C9orf72 are the major cause of 

familial ALS together with the evidence that trinucleotide repeat polymorphisms in the 

ATXN2 gene are a risk factor for ALS highlight the importance of these repetitive variants 

in ALS as also occurs on other neurodegenerative disorders. To further assess whether 

other VNTRs are involved in the aetiology of ALS, we characterized VTNRs present in 19 

further genes in ALS. VNTRs were genotyped using agarose gel and polyacrylamide gel 

electrophoresis which can detect up to 53 CAG repeats in the HTT gene (Goldberg et al., 

1993), No alleles exclusively present in FALS were identified. Although it is possible that 

exceptionally large expansions may have failed to amplify, this is unlikely as no VNTR 

showed increased homozygosity in FALS (Figley et al., 2014). Nine of the VNTRs were 

found to be polymorphic in both FALS and controls cases and four of these i.e. SSBP3, 

GPX1, HSPB8 and NIPA1 repeats, each showed more than two alleles in our cohorts. 

The alleles were grouped according to size using unifying criteria, in which those identical 

to the reference sequences (GRCh 37) were categorised as Reference alleles, whereas 
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deleted and expanded alleles were grouped as Short and Long alleles respectively. We 

confirmed that the Reference alleles were the commonest alleles present in both FALS 

and Control cohorts for all the VNTRs tested. Allelic and genotype associations test were 

carried out using two different tests. A model free permutation test for omnibus allelic and 

genotypic distributions was carried out using the CLUMP program and each individual or 

allele and genotype group was tested for association using a 2 x 2 Fisher’s test. 

 

A VNTR in NIPA1, a causal gene for Hereditary spastic paraplegia (HSP) type SPG6, 

previously found to be associated with sporadic ALS (Blauw et al., 2012) showed a 

significant omnibus association with FALS. Using a 2 x 2 Fisher’s test, we found that Short 

alleles (≤ 7-repeat) were significantly associated with FALS. Although most of the Short 

alleles were present in a heterozygous genotype containing the Reference allele, 7/8 

(Table 6-6), which was not associated, a significant risk of FALS was conferred by the 

homozygous Short genotype, 7/7. The effect sizes of both allelic and genotypic 

associations were increased in C9orf72-negative FALS cases and in the LOH test, we 

found that heterozygous genotypes were more common in FALS (P=0.0053), which has 

not been reported for SALS, suggesting a FALS-specific shift in allelic and genotypic 

distributions. Our results, however, do not oppose the previous findings that the rare long 

alleles containing ≥ 9 repeats are associated with SALS (Blauw et al., 2012) and it is 

possible that alteration in repeat length of the NIPA1 repeat is associated with disease 

penetrance. In our controls, the 7- and 8-repeats are the most common alleles with 

frequencies of 0.20 and 0.75 respectively (Figure 6-3), which is similar to previous reports 

(0.20 and 0.78) (Chai et al., 2003), indicating consistency in genotyping. Indeed, there 

was a 5.8% increase in the frequency of the 9-repeat in our FALS cohort compared to 

controls with an odds ratio of 2.85, but no significance was observed due to lack of power.  

 

Our results support the conclusion that the NIPA1 repeat is a risk factor for FALS. NIPA1 

encodes a transmembranous transporter that allows the uptake of Mg2+ ions (Goytain et 

al., 2007), which is also associated with endosome formation and may inhibit Bone 

morphogenetic protein (BMP) signalling, a crucial pathway in regulating synaptic function 

and axonal transport (Blackstone, 2012). Mutations in the NIPA1 gene are the cause of an 

autosomal dominant form of hereditary spastic paraplegia, SPG6, characterized by axonal 

degeneration of the cotricospinal and spinocerebellar tracts. Phenotypic and genetic 
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overlaps between HSP and ALS have been documented (Eymard-Pierre et al., 2002; 

Stevanin et al., 2008) and, most importantly, TDP-43 pathology has been reported in a 

familial hereditary spastic paraplegia case with a NIPA1 mutation who developed ALS-like 

symptoms and frontal lobe degeneration in later life (Martinez-Lage et al., 2012).  

 

Although the HSPB8 repeat was not associated with FALS at the allelic level, a significant 

genotype association was found for the 6/8 genotype which was absent from controls. As 

we have previously shown evidence of differential expression of HSPB8 in SALS we 

therefore studied VNTR frequency of HSPB8 in SALS patients. The length of the repeat 

ranged from 5 to 9 in both cases and controls which is consistent with the control 

alignment data from the 1000 genomes project (Data was obtained from 

ftp://ftp.1000genomes.ebi.ac.uk and visualized using NCBI Genome Workbench v.2.7.15, 

details not shown). Unlike FALS cases, we found both an allelic and genotypic association 

of the HSPB8 VNTR repeat with SALS, which has not been documented before. There 

was a significant omnibus allelic association together with an over-representation of long 

alleles (≥8) in SALS compared to controls. The increase is largely contributed by the 

increased frequency of the heterozygous 7/8 genotype (Table 6-6). When genotypes were 

grouped according to size, a significant association with SALS cases was observed with 

long alleles (8-, 9-) (P=0.0113). There was no significant increase in levels of expression 

of HSPB8 in SALS cases Anagnostou et al., 2010) harbouring the associated long alleles 

compared to controls (Figure 6-4E).  

 

The risk of ALS conferred by the VNTR may be associated with the biological functions of 

HSPB8, which are likely to play a central role in counteracting the formation of different 

protein aggregates. HSPB8, a 22-kDA small Heat shock protein abundantly expressed in 

the brain and spinal cord, has been implicated in protein folding, degradation of misfolded 

proteins and apoptosis. Mutations in HSPB8 are found in Charcot-Marie-tooth disease 

(CMT) type 2L and distal hereditary motor neuropathy (dHMN) type II (Irobi et al., 2010). 

HSPB8 functions as a molecular chaperone assisting correct protein folding mediated by 

a conserved alpha-crystallin domain (Hu et al., 2007) and it has been shown to prevent 

the aggregation of the polyglutamate protein Htt43Q (Carra et al., 2005). The observations 

that HSPB8 is upregulated in both G93A-SOD1 transgenic mice and SALS cases and 

facilitates the removal of both SOD1 and TDP-43 aggregates via autophagy indicate that 
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the protein may play an important role in modulating the formation of aberrant protein 

aggregates and disease progress in ALS (Crippa et al., 2010).  

 

In summary, we show the association of VNTRs in two candidate genes, NIPA1 and 

HSPB8, with FALS and SALS and respectively. The allele distribution of the NIPA1 repeat 

found in FALS in this study differed from that found in SALS in a previous study (Blaww et 

al 2013) but was of greater magnitude. We also demonstrate a novel association of the 

HSPB8 repeat with SALS, which highlights the potential relevance of small heat shock 

proteins to ALS pathogenesis as they are known to participate in the elimination of 

misfolded proteins. In conclusion, VNTRs may play important roles in the pathogenicity of 

ALS and the further characterization of VNTRs as causal mutations or risk factors in the 

disease is merited. 

 

 

-END OF CHAPTER 6- 
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Chapter 7 
 

Characterization of C9orf72 GGGGCC Expansion 

 

 

7.1 Introduction 

A locus for Amyotrophic lateral sclerosis on Chromosome 9p21 (ALS) associated with 

both ALS and Fromtotemporal dementia (FTD) has been previously reported (Morita et 

al., 2006; Vance et al., 2006). In 2010, a Genome-wide association study (GWAS) 

conducted in a Finnish population demonstrated that a single nucleotide polymorphism 

(SNP), rs3849942, in this 9p21 region was significantly associated with FALS, a 

significant portion of which shared a 42-SNP haplotype spanning a 232kb LD block 

(Laaksovirta et al., 2010). The finding indicated the presence of founder mutations in one 

of the genes contained in this block: MOBKL2B, IFNK and C9orf72. Following next-

generation deep re-sequencing, a hexanucleotide GGGGCC (G4C2) expansion in intron 1 

of the C9orf72 gene was found as the cause for the association, being confirmed using a 

repeat-primed PCR (rpPCR) method which detects up to 60 repeat units (DeJesus-

Hernandez et al., 2011b; Renton et al, 2011). The expansion was subsequently shown to 

be present in 73.2% of FALS (Cruts et al., 2013), 100% of FALS/FTD, (Cruts et al., 2013), 

20% of SALS and 30% of FTD (Ling et al., 2013) from different cohorts, being the most 

common cause of both ALS and FTD. In addition, the C9orf72 expansion has also been 

reported in Alzheimer’s disease (Harms et al., 2013), and Parkinsonism (Lesage et al., 

2013). 

 

The C9orf72 expansion may mediate multiple pathological consequences through both 

Gain-of-function and Loss-of-function mechanisms [reviewed by (Ling et al., 2013)]. 

Haploinsufficiency was implicated as mRNA expression levels of transcript variants 1 and 

3, both encoding C9orf72 isoform a, were decreased in lymphoblast cell lines and frontal 

coretex of C9orf72 positive cases (DeJesus-Hernandez et al., 2011b). The C9orf72 

protein has been reported to play roles in membrane trafficking and autophagy, indicating 

pathological consequences when normal functions are affected (Ling et al., 2013). 

Alternatively, whilst most patients with the C9orf72 expansion have TDP-43 pathology, 
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TDP-43 negative, p62 and Ubiquilin positive inclusions were also found in C9orf72 cases. 

These inclusions were found to contain insoluble dipeptide-repeat protein (DRR) 

aggregates encoded by the expansion through non-ATG initiated translation, a 

mechanism also observed in Spinocerebellar Ataxia type 8 (SCA8) (Mori et al., 2013). In 

addition to DRP aggregates which may contribute to neurotoxicity, RNA foci, which may 

sequester RNA binding proteins, were found in both cytoplasm and nucleus in the spinal 

cord and frontal cortex of affected patients (DeJesus-Hernandez et al., 2011b). It was also 

found that the expansion is capable of forming secondary DNA or RNA structures such as 

G-quadraplexes and DNA/RNA hybrids, which induce the generation of abnormal 

transcripts sequestering RNA binding proteins (Haeusler et al., 2014). 

 

A wide range of clinical diversity has been described in C9orf72 ALS cases. In C9orf72 

positive cases, as detected using rpPCR, there were reports of increased frequencies of 

severe phenotypes, such as bulbar onset, early onset, reduced survival time and 

increased FTD comorbidity (Byrne et al., 2012; Cooper-Knock et al., 2014) and bvFTD 

was the subtype enriched for the C9orf72 epxansion (Cruts et al., 2013). However, as the 

rpPCR method is unable to discriminate the size of larger expansions (>60 Units), the 

relationship between expansion size and clinical phenotype has not been thoroughly 

investigated. Characterising expansion sizes is also important for understanding of the 

threshold size for pathogenicity, stability of the expansion and anticipation. Different 

Southern blot protocols, both radioactive and non-radioactive, have been used for sizing 

C9orf72 expansions (Beck et al., 2013; Buchman et al., 2013; DeJesus-Hernandez et al., 

2011b). In this study, we performed Southern blots in our FALS cohort which have been 

previously shown to possess the expansion using rpPCR using a protocol originally 

proposed by Dejesus et al (2011b).  

 

 

7.2 Methodology 

7.2.1 Subjects and sample preparation 

The study population comprises 65 FALS cases known to harbour the C9orf72 expansion, 

which account for 31.3% of the IC-FALS cohort (Section 1.19.1). Genomic DNA was used 

from whole blood or buffy coats from 20 cases, from LBCs of 4 cases. Post-mortem spinal 

cord was used from 4 cases and cerebral cortex extracts were used from a single case. 
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DNA from blood or LBC sources was extracted using a QIAmp DNA Blood Midi Kit 

(QIAGEN, UK), whereas those from tissues were extracted using a QIAmp DNA Mini Kit 

for tissues (QIAGEN, UK). DNA was concentrated to a final volume of 30μl using a 

centrifuging concentrator (Eppendorf 5301) or ethanol precipitation (Section 2.10.1).  

 

7.2.2 Southern Blot analysis 

The Southern blot protocol is described in detail in Section 2.10. In brief, DNA was 

digested using 50-100 Units of XbaI (New England Biolabs, UK) in a 50μl reaction mix for 

16 hours at 37oC and separated in electrophoresis using 0.8%, 8mm agarose gel at 3-

4V/cm for 16 hours. The DNA was then transferred to a nylon membrane using 20X SSC 

overnight. The membrane was UV-crosslinked and pre-hybridized in 10-20 ml of DIG 

Easyhyb for 3 hours at 48oC. Oligonucleotide probes labelled with Digoxigenin (DIG) were 

synthesized using a PCR DIG Probe synthesis kit (Roche, UK) with the following primers: 

Probe 1 (241 bp): Forward: AGAACAGGACAAGTTGCC; Reverse: 

AACACACACCTCCTAAACCC. Probe 2 (367bp): Forward: 

AAGTGCCATCTCACACTTGC; Reverse: CCCTGGTAGGGGACAGCTC. Hybridization 

was carried out using 0.5-3μl/ml of probe for 16 hours at 48oC and the membrane was 

washed in 2XSSC, 0.1%SDS for 15 minutes at room temperature; 0.1XSSC, 0.1% SDS 

for 15 minutes at 68oC twice. Chemiluminesence signals were detected using DIG Wash 

and Block Buffer Set (Roche, UK) according to the Manufacturer’s instructions. In the 

detection stage, 250μl of CDP-star (Roche, UK) was mixed with 20ml of detection buffer 

and incubated with the membrane in a sealed hybridization bag for 5 minutes prior to 

exposure. The membrane was then exposed to X-Ray Film from 30 minutes to 12 hours.  

 

7.2.3 Statistics 

Expansion sizes were calculated using GelAnalyzer v2010 (http://www.gelanalyzer.com/ ). 

To assess the relationship between expansion size and clinical phentypes, correlation and 

regression analyses were carried out using Graphpad. Survival analyses were carried out 

using Kaplan-Meyer curves (Graphpad) by splitting the data at 25%, 50% and 75% 

percentiles of sizes. Frequencies of site of onset were compared in cases harbouring 

expansions of different sizes using 2 x 2 Fisher’s tests.  

http://www.gelanalyzer.com/
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7.3 Results 

7.3.1 Optimization of Southern blot protocol using different probes. 

Considering that variable expansion sizes have been described, two commonly used 

markers were calibrated (Figure 7-1 A). The two markers yielded different calibration 

curves and using the DIG labelled DNA molecular marker III (Roche, UK) alone may result 

in an error of up to 6kb in the measurement of molecular weight (MW) in <2kb or >5kb 

regions. The DIG marker VII yielded more reliable size predictions in the 1-5kb region, 

suggesting that DIG marker III should only be used for the calculation of MW beyond the 

range of marker VII (Figure 7-1 B). 

 

The signal generated by a probe is directly proportional to the amount of DIG-labelled-

dUTP which is randomly incorporated during PCR reaction. A longer probe gives rise to a 

stronger signal and requires a higher annealing temperature. It was hypothesized that the 

concomitant binding of two similar sized probes targeting different sequences may 

enhance the signal at a similar hybridization temperature. Therefore, we generated and 

tested two DIG-labelled probes, including a 241bp probe (Probe 1), which was originally 

used by Dejesus et al (2011), and a 367bp probe (Probe 2), which is a novel “in hosue” 

probe located 5’ upstream from Probe 1 (Figure 7-1C). No additional human genomic 

sequences that might lead to non-specific binding were identified for either probes using 

BLAST. 

 

 To test the specificity of both probes, three independent filters, each blotted with two 

FALS samples known to carry the C9orf72 expansion, were hybridized using Probe 1, 

Probe 2, and Probe 1+2 respectively. Hybridization was carried out at 48oC for 16 hours 

and the filter was washed in 2x SSC, 0.1%SDS at room temperature for 15 minutes, 

followed by 0.1XSSC, 0.1%SDS at 68oC for 15 minutes twice. For both probes, the wild 

type bands were present in both samples and the “large” band for sample (i) was only 

present when Probe 1 alone was used. For sample (ii), two “large” bands were observed 

for Probe 1 and and three for probe 2, respectively, only one of which was common for 

both probes, suggesting a genuine band (Figure 7-1D). As expected, the signal was 

enhanced when both probes were used together but non-specific binding was also 

increased. These results suggest that the binding of Probe 1 is more specific than Probe 

2, and, therefore, only the former was chosen for subsequent experiments.  
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7.3.2 Characterisation of C9orf72 expansion size using Digoxigenin-based 

Southern Blots. 

Our cohort contains 65 FALS patients possessing the C9orf72 expansion as previously 

confirmed using rpPCR (repeat-primed PCR) methodology. Southern blots were carried 

out using whole blood, spinal cord tissues or LBCs derived from the FALS patients using 

Probe 1. Expansion sizes were estimated using the GelAnalyzer program (Figure 7-1D) 

and genotypes of 8 samples from 7 unrelated kindred were obtained, all of which were 

from Buffy coat extracts (Figure 7-2) or LBCs (Figure 7-3). The wild type alleles were 

detectable in all of these samples and showed moderate variations. Only discrete bands 

were taken into account as expansions. The expansion sizes range from ~3.9kb (~240 

Units) to ~20.4kb (~3011 Units) with a median size of 8.76kb (1049Units) (Figure 7-4A). 

The FALS sample G48 was replicated in two independent experiments yielding expansion 

sizes of 11.6kb and 12.8kb, respectively, which were within the sizing error found using 

the DIG marker III (Figure 7-2). 

 

It should be noted that two of the genotyped samples, AO620 (~20.4kb, 3011 Units) and 

AO621 (~17.5kb, 2534 Units) were from the same kindred. Their expansion sizes were in 

the same range but decreased in latter sample, which was from a younger generation and 

had an onset 17 year earlier than the former. In addition, an expanded allele sized ~2.5kb 

(25 Units) was detected in a single control sample (buffy coat, data not shown).  

 

7.3.3 Correlation between C9orf72 expansion size and clinical phenotypes.  

Details of age of onset were available for all 8 samples and disease duration was known 

for 7 samples and these were analysed for correlation with expansion sizes. No significant 

correlation between expansion size and age of onset (Pearson’s r=0.1148, CI95=-0.64-

0.76 P=0.7866) (Figure 7-4B) or survival time was observed (Spearman r=-

0.0522,CI95=-0.77-0.73 P=0.9115) (Figure 7-4C). No significant difference was observed 

in survival analysis or site of onset was observed. Gender information was available for all 

8 samples (2 male and 6 female) but no differences could be concluded.   

 

.
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Figure 7-1. Representative Southern blot results and the sizing of expanded alleles. 

 

DIG labelled DNA molecular marker III (Roche, UK) and VII in a typical Southern’s blot are 

shown in A. To assess the relative migration of bands of different sizes, the actual molecular 

weights of each marker bands are compared with the predicted weights (brackets) when 

using the other set of markers as standard. B shows the calibration curves for each set of 

markers, in which the molecular weight (Bps) versus relative migration distance (Rf) was fit 

using a logarithmic model (R2 >0.99 for both markers). Using marker III, the curve becomes 

flat when Rf is >0.39, whereas using marker VII, there is better discrimination in small 

molecular weight (<8kb) in spite of a smaller detection range. C. Probes 1 (241bp) and 2 

(357bp) both bind C9orf72 genomic sequence 5’ upstream to the hexanucleotide expansion. 

D. Two C9orf72 positive FALS cases (i and ii) were hybridized using either probes in the 

following conditions: 3μg of genomic DNA (buffy coat), digested with 25U of XbaI and 

hybridized using 3µl/ml of DIG labelled probe (each) in 10ml of EasyHyb for 16 hours at 

48oC. Intensity profiles for each lane are shown in the lower panel. Background signals were 

eliminated using a “rolling ball” method and the peaks corresponding to known bands are 

indicted by red arrows. The peaks labelled as “1” correspond to the wild type alleles.  
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Figure 7-2. C9orf72 Southern blot results using Buffy coat DNA. 

 
The filters were blotted using 3-10µg of genomic DNA extracted from buffy coat and 

hybridized using Probe 1. The estimated expansion sizes of G32, G34, G48 and G49 in the 

left blot are: 5864bp (567 Units), 4519bp (346 Units), 11616bp (1530 Units) and 3878bp 

(240 Units) bp respectively. For the right blot, the estimated size of G48, which was 

replicated, and G27 are 12797bp (1741 Units) and 14511bp (2025 Units) respectively. 

Intensity profiles are shown in lower panels and the bands are indicated using red arrows. 
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Figure 7-3. C9orf72 Southern blot results using LBC DNA. 

 

Both filters were blotted using 20-30µg of DNA extracted from LBC. The estimated 

expansion size of AO399 (left) is 4341 bp (354 Units). No visible bands were observed in 

the first lane (AO396) in the filter on the right hand side. The second lane, AO611, is a 

C9orf72 negative control and a smear was present indicating non-specific binding. 

Although smears were also present in AO620 (20401bp, 3011Units) and AO621 

(17542bp, 2534Units), relatively discrete bands were found as indicated in the intensity 

plots (arrow “2”).  
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Figure 7-4. Correlation and regression analyzes of clinical phenotypes against 

C9orf72 expansion sizes.  

 

A. summarizes expansion sizes of all genotyped samples. Correlation and regression 

analysis between expansion size and age of onset are shown in B and C respectively. 

Pearson’s r, r2 and P values are mentioned in the main text.  
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7.4 Discussion 

The C9orf72 GGGGCC expansion has been shown to be the most common cause of 

familial ALS and FTD but the relationship between expansion size and phenotype is not 

yet confirmed. In this study we optimized a non-radioactive Southern blot protocol, 

originally proposed by (DeJesus-Hernandez et al., 2011b), using two digoxigenin-labelled 

probes and demonstrated that the 241bp Probe 1, which was originally used by Dejesus 

et al, leads to more specific binding than the in-house 371bp, Probe 2. In addition, the co-

binding of both probes did not enhance the signal-to-background ratio, which can only be 

improved by increasing sample quantity (5-30ng) and prolonging exposure time. However, 

as a result, a marked portion of samples in our cohort could not be genotyped due to 

insufficient template concentrations. Considering the limited separation of large sized 

bands, we suggest that the DIG marker III (Roche) should only be used for expansions 

beyond the range of smaller markers such as DIG marker VII (Figure 7-1 A). We 

characterized the expansion size in 8 FALS cases, all showing discrete bands with 

consistent sizes, when replicated. The range of expansion sizes coincides with previous 

reports. A control individual possessing a small expansion with an estimated size of ~25 

repeats was observed, which was within the previously reported normal range (< 60Units) 

(Renton, 2011), but this was not found in any of the FALS cases. 

 

C9orf72 expansions are not specifically found in any particular ALS phenotypes and there 

were only few studies of the relationship between C9orf72 repeat size and phenotype. 

Although variation in the non-expanded alleles (< 32 units) is not associated with any 

clinical parameters (Rutherford et al., 2012), expansion sizes in the frontal cortex are 

correlated with age of onset in FTD and those of >1467 Units in the cerebellum are 

associated with short survival time in a combined cohort of FTD and MND (van Blitterswijk 

et al., 2013). In addition, a positive correlation between expansion size (LBC) and age of 

onset has been recently reported in a pure MND cohort (Hubers et al., 2014). In the 

current study, we were able to investigate phenotypic associations using Southern blots 

but no significant correlation was found. Our findings are in agreement with other 

Southern blot-based studies using pure ALS cohorts (Beck et al., 2013; Dols-Icardo et al., 

2014). Despite not being significant, it is noteworthy that a positive correlation coefficient 

between expansion size and age of onset was found in our cohort.  
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In addition to the relationship between repeat size and phenotype severity, it is important 

to answer the question of whether C9orf72 disorders share the two important features of 

expansion diseases, clinical anticipation and repeat instability (Renton et al., 2014). 

Anticipation has been previously reported in C9orf72 ALS kindred, in which children had 

an earlier onset (average 7 years ) than their parents (Chiò et al., 2012), but whether this 

is related to expansion size was unclear (Cooper-Knock et al., 2014). In the current study, 

there are two kindred where multiple samples were available. In both kindred, age of 

onset was younger in children compared to their parents, indicating anticipation. In 

Kindred I, only the affected offspring AO399 (onset at 50 years) was genotyped and the 

size of the affected parent AO396 (onset at 75 years) was inconclusive. In kindred II, the 

offspring (AO621, onset at 47 years) had a smaller expansion than the parent (AO620, 

onset at 64 years), indicating that the expansion size is unrelated to, if any, anticipation. It 

should be noted that genotyping in both of these kindred was carried out using DNA from 

LBCs, which may show considerable size variation compared to genomic DNA form blood 

(Dols-Icardo et al., 2014). Indeed, it appears that C9orf72 expansion size may change 

during life time and may be affected by the age at collection (Cooper-Knock et al., 2014). 

Therefore, no conclusion can still be made on whether there is tendency in altering size in 

successive generations. It was demonstrated that the non-expanded repeat varied 

amongst healthy kindred but no evidence of increased instability or perfectness have been 

reported to date (Beck et al., 2013).  

 

There are several challenges to characterizing the genotype- phenotype relationships of 

the C9orf72 repeat in ALS. First, as discussed above, the separation of high molecular 

weight alleles is not satisfactory and there can be up to 6kb errors in estimating expansion 

size using Southern blots. The error can be minimized by using different markers for 

different size ranges. Secondly, the repeat demonstrates marked somatic mosacism and 

the sizes obtained from different tissues may show different correlation with clinical 

phenotypes. It was proposed that the sizes in cerebellum are more stable reflecting the 

actual size causing diseases (van Blitterswijk et al., 2013), but expansion sizes in the 

spinal cord, the major tissue being affected in ALS, have not been thoroughly investigated 

using Southern blots. Although it may not turn out to be a useful disease marker in clinical 

practice, spinal cord repeat size may provide more insight in the expansion. However, 

studies using such tissues are likely to have limited power and require extended cohorts. 
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Thirdly, if expansion size is not simply a reflection of age at collection, the positive 

correlation between C9orf72 expansion size with age of onset (Hubers et al., 2014) is 

inconsistent with known pathogenic mechanisms seen with expansions. Although 

haploinsufficeny has been proposed as a pathogenic mechanism underlying the 

expansion, ALS/FTD Patients harbouring homozygous C9orf72 expansions, as confirmed 

by Southern blot, did not develop extreme phenotypes beyond the spectrum of 

heterozygous patients, in agreement with a gain-of-function hypothesis (Fratta et al., 

2013). In VNTR disorders caused by such a mechanism, for example, DM1, which is 

caused by an intronic expansion generating toxic mRNA, large expansion sizes are often 

associated with early age of onset (Woollacott and Mead, 2014). Having said that, none of 

the C9orf72 gain-of-function models, such as forming RNA foci and DPR inclusions have 

been correlated with neurodegeneration to date [reviewed by (Mackenzie et al., 2014)]. 

 

In conclusion, we optimized a Southern blot protocol and carried out initial assessment of 

the C9orf72 expansion size in our FALS cohort. No significant association with any clinical 

parameter was found. Our results do not support the idea that C9orf72 expansion size 

underlies clinical anticipation. The power of the current study power is limited by the small 

sample size used and further investigations in additional samples are required.  

 

 

-END OF CHAPTER 7- 
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Chapter 8 
 

Discussion 

 
8.1 Overview: the current and changing view of ALS genetics and proteostasis 

as a pathogenic mechanism 

 

Amyotrophic lateral sclerosis (ALS) is a lethal disorder characterized by the degeneration 

both upper and lower motor neurons, including Betz cells in the motor cortex, descending 

axons which form the corticospinal tract and lower motor neurons in the anterior horn of 

the spinal cord, accompanied by the proliferation of glial cells (Leblond et al., 2014). 

Despite being clinically indistinguishable, ALS has been empirically classified into Familial 

ALS (FALS) and Sporadic ALS (SALS) according to family histories. A general consensus 

for defining a positive familial history has been concluded as the presence of ALS in the 

first or second degree relatives of the index case (Byrne et al., 2011), yet this can be 

complicated by the fact that ALS can co-occur with other conditions such as 

Frontotemproal Dementia (FTD), Paget’s disease of bone (PDB) and Inclusion body 

myopathy (IBM). Considerable advances hsve been made on the genetics of FALS cases 

satisfying Mendelian inheritance and this has promoted the understanding of disease 

mechanisms. To date at least 18 genes have been found to cause for FALS since the 

identification of SOD1 mutations. 

 

The presence of protein aggregates is an important feature of ALS and the mechanisms 

for their formation and pathogenic effects have been understood by studying SOD1-FALS 

models. SOD1 aggregates represent a distinctive pathological entity compared to non-

SOD1 ALS cases (Mackenzie et al., 2007) and can mediate multiple downstream effects 

that are part of the general mechanisms of ALS, such as oxidative stress, impaired axonal 

transport and mitochondrial dysfunction (Figure 8-1). Although it was postulated that the 

formation of aggregates was triggered by conformational abnormalities of the mutant 

SOD1 protein, different types of aggregates containing such as TDP-43, FUS and C9orf72 

DRP were subsequently found as components of neuronal inclusions, indicating the 

involvement of a common proteostasis pathway. This is further supported by the 
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identification of mutations in genes, VCP and SQSTM1, that are directly involved in the 

major protein clearance pathways: Ubiquitin-proteasome system (UPS) and Autophagy 

(Figure 8-1).TDP-43 aggregates are characteristic of both ALS and FTD, suggesting that 

the conditions are, indeed, two extremes of the same spectrum of disease, and it was 

further demonstrated in VCP and SQSTM1 kindred that both conditions may manifest in 

the presence of the same genetic causes. 

 

Recent research has led to the re-examination of rare, functional genetic variants as risk 

factors for ALS (Renton et al., 2014). It has been generally assumed in FALS cases that a 

single locus is responsible for each kindred which follows Mendelian inhieritance. 

However, an oligogenic model of inheritance has been recently proposed to explain the 

facts that penetrance is incomplete for some mutations and, in some kindred, more than 

one known ALS mutation is present (van Blitterswijk et al., 2012a). It was shown, in such 

kindred, that a second mutation was required for the development of ALS, and, instead of 

being “directly pathogenic”, or being fully penetrant, each mutation confers a different risk 

for disease. This model is consistent with the notion that ALS pathology is consequential 

to the interaction between different genetic variants and, hence, can be modified by 

multiple components in relevant pathways. In contrast, whilst SALS was considered as a 

complex disease and its risk factors mostly being common polymorphisms, germline de 

novo mutations occurring in unaffected parents have been reported to be enriched in ALS 

cases (Chesi et al., 2013). Known ALS mutations such as SOD1, SQSTM1 and C9orf72, 

have been detected in a substantial portion of SALS giving rise to an allelic model for the 

sporadic cases (reviewed by(Renton et al., 2014). Importantly, both oligogenic and allelic 

models may point to the same deduction that low penetrance of a variant is likely to be 

due to the existence of genetic modifiers which “neutralize” its pathogenic effects. It would 

also not be surprising that if these modifiers existed, they would have universal effects on 

both FALS and SALS. Our studies may promote insight into these concepts. First, we 

performed sequence analysis in both C9orf72 positive and negative FALS cases and 

presented candidate variants that co-exist with C9orf72 expansions. Second, including 

both FALS and SALS cohorts in the association studies, surprisingly, we found 

associations that were specific for either FALS or SALS. 
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Figure 8-1. ALS mutations involved in Proteostasis pathways. 

 

Current views of pathogenic mechanisms of ALS mutations that disrupt proteostasis are 

summarized in the upper panel, whereas the lower panel shows the pathways of 

formation and clearance of misfolded proteins. PDI facilitates the exchange between 

native and misfolded states in the ER (bi-directional arrows). Misfolded proteins, which 

may oligomerize to form aggregates, can be eliminated through autophagy or proteasomal 

degradation which take place in the cytoplasm. 
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In an attempt to clarify the genetic causes in our FALS cohort and to determine genetic 

risk factors and modifiers for ALS, we carried out sequence analysis and association 

studies in our cohorts. Genes playing roles in proteostasis pathways comprise the main 

body of candidate genes sequenced in this study. Sequence analysis was carried out for 

the VCP and SQSTM1 genes, both take part in the extraction or shuttling of substrates for 

protein degradation, in our FALS cohort. In association studies we investigated Protein 

disulphide isomerase (PDI), which plays an important role in protein quality control. The 

ER redox enzyme prevents inappropriate disulphide bonds formation and therefore is an 

appropriate candidate as modifier gene. Another candidate in the association study is 

Nuclear pore localization protein 4 (Npl4), a cofactor for VCP.  

 

Whilst most known variants in ALS had been point mutations, the discovery of the C9orf72 

expansion as the most common cause of ALS/FTD delineated a more complicated 

landscape of ALS genetics. Two fundamental questions are to be answered: Are there 

any other expansions that are causal or susceptible for ALS? Does ALS exhibit 

characteristics that are seen in other neurodegenerative diseases caused by expansions? 

Addressing these questions, we first attempted to investigate known Variable number 

tandem repeats (VNTRs) in novel candidate genes as causes or risk factors for ALS, 

followed by measuring the expansion sizes of the C9orf72 expansion in our cohorts using 

Southern blot analysis. 

 

 

8.2  Sequence analysis 

Following the screening for selected exons in the VCP gene we did not identify any coding 

mutations. This study was carried out prior to the identification of the C9orf72 expansion 

and C9-positive cases were therefore also included for analysis. The results were not 

unexpected considering the low frequency (~1%) of VCP mutations.  

 

We report an imperfect hexanucleotide repeat, c.-221_-

220insCTGCCACTGCCACTGCCG, in the 5’ UTR region and demonstrated that the 

expanded genotypes were exclusively found in ALS. No frequency data was available for 

this repeat in any public database and, by examining the BAM files from the 1000 genome 

project, it was found that the repeat was poorly covered for genotyping. The result that 
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repeat number was increased from Control to SALS and FALS led to the hypothesis that 

expansion size is associated with susceptibility or penetrance of disease. However, 

neither segregation with disease nor penetrance could be investigated due to lack of 

multiple samples in the affected kindred. There was no indication of gaining instability of 

the repeat, however we do not exclude the possibility that exceptionally large expansions 

have been lost during PCR. Location of the repeat at the transcription start site of the VCP 

gene is indicative of a functional effect, however, no significant alteration in VCP 

expression levels can be concluded using a semiquantitative endpoint rtPCR.  

 

VCP mutations are known to be rare and mediate variable phenotypes known as 

Multisystematic proteinopathy. We conclude that VCP mutations are not a major cause of 

FALS in our FALS cohort. The heaxnucleotide expansion may be pathogenic. 

 

In addition to the functional similarities between SQSTM1 and VCP genes, clinical 

overlaps are seen in patients harbouring mutations in these genes. Paget’s disease of 

bone (PDB) is common to both entities. All eight exons of the SQSTM1 gene were 

screened for mutations in our FALS cohort excluding any known mutations and coding 

mutations were identified. Six exonic variants in five FALS index cases, three of which 

were non-synonymous and three were synonymous. One index case harboured three 

variants (E274D, P296P and S318S), and a second index case harboured two variants 

(E274D and S318S). Considering coding changes and frequencies, it was concluded that 

only P392L and E155K mutations were likely to be pathogenic. The P392L mutation has 

an established pathogenic role and is the commonest mutation in PDB. 

 

We reported two FALS SQSTM1 kindred in which both ALS and PDB developed. In one 

P392L kindred, the proband developed both ALS and PDB. In the second E155K kindred, 

the proband developed pure ALS and his father developed pure PDB. These results 

indicate connections between ALS and PDB and that SQSMT1mutations may result in 

variable phenotypes resembling multisystematic proteinopathy caused by VCP mutations. 

Although PDB has a higher prevalence than ALS, a primary association between 

SQSTM1 mutations and ALS was illustrated in the E155K kindred as the proband 

developed pure ALS, but not ALS/PDB. Following the screening for the P392L mutation in 

additional C9orf72 positive FALS cases, we found one additional P392L kindred 
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presenting with pure ALS. A shorter survival time was observed in this case compared to 

the C9orf72 positive P392L case and we speculated that this may be attributed to the co-

existence of both mutations.  

 

It has been shown in British PDB cases that most P392L mutations come from a founder 

haplotype, and we also showed that this is also the case in ALS. However, the E155K 

mutation was found to arise from a different haplotype background.  

 

In conclusion, our results confirm the presence of SQSTM1 mutation in FALS. The 

frequency of the P392L mutation in this UK FALS cohort was 2.3% and 0.95% overall 

including three previously screened FALS cohorts. This mutation is the most common 

SQSTM1 mutation found in ALS to date, and a likely pathogenicity is supported by having 

an established causal role in PDB. The occurrence of the same mutation in ALS and PDB 

is indicative of a common pathogenic pathway that converges on proteostasis.  

 

 

8.3  Association studies 

Common Single nucleotide polymorphisms (SNP) were investigated as risk factors and 

modifiers for ALS using association studies. The two candidate genes, P4HB and 

NPLOC4, are located in telomeric region of the Chromosome 17 and are poorly 

represented in previous GWA studies. SNPs were investigated in both FALS and SALS 

cohorts and those showing significances in the initial studies were further studied in 

expanded cohorts. We selected representative common SNPs, with >15% minor alleles 

frequencie (MAF), based on linkage disequilibrium (LD) throughout the genes.  

 

The P4HB gene is associated with FALS using multiple statistical analyses. Firstly, there 

were significant genotypic associations for two SNPs in P4HB gene with FALS, SNP 2 

(rs876016, P=0.0198) and SNP 3 (rs2070872, P=0.0046), all values being FDR corrected. 

For allelic associations, significances were obtained for SNP 2 in FALS (P=0.0155) and 

ALS as a combined group of FALS and SALS (P=0.0148). Secondly, we examined four 

SNP haplotypes including two additional flanking SNPs, SNP 1 (rs876017) and SNP 4 

(rs8324), and found that, consistent with the decrease in LD, rare haplotypes were more 

common in ALS cases compared to controls. Seven haplotypes were found to be 
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significantly associated with FALS and one haplotype was significantly associated with 

SALS. One rare haplotype, which was present in controls, was overrepresented in a group 

of SOD1 positive FALS cases.  

 

P4HB may play a role in the progression of ALS as survival effects were also found. 

Reduced survival was observed in FALS cases possessing at least one copy of the minor 

allele of SNP 3 (rs2070872, P=0.0059). Although no association with SNP 4 (rs8324) was 

observed, the SNP also showed survival effects (P=0.0167). For a combined effect of all 4 

SNPs on survival, we found that individuals lacking the homozygous AAAC/AAAC 

diplotype had a reduced survival time (P=0.011). 

 

The association results are consistent with a protective role of Protein disulphide 

isomerase (PDI), which reduces the formation of inappropriate bonds. This is best 

illustrated using the SOD1 model. In wild type SOD1, conserved disulphide bonds are 

formed between residues Cys57 and Cys146 which maintain protein stability, whereas in 

mutant SOD1 the bonds are reduced and this is a necessary step for aggregate formation 

(Ray et al., 2004) (Furukawa et al., 2006). Aberrant disulphide bonds, such as those 

between Cys6 and Cys111, are then introduced enabling crosslinking between molecules 

(Banci et al., 2008). Disulphide bonds link a significant portion of mutant SOD1 

aggregates (Furukawa et al., 2006) and may also contribute to the crosslinking of TDP-

43(Cohen et al., 2012). However, the aberrant structures have decreased stability and this 

can be prevented through the active exchange of disulphide bonds catalysed by PDI. In 

conclusion, our results suggest that P4HB is a modifier gene for FALS and is a potential 

therapeutic target.  

 

The NPLOC4 gene became a candidate for our association study based on several 

reasons. Firstly, Nuclear protein localization protein 4 homolog (NPLOC4) is an essential 

co-factor for the function of VCP during ERAD. Secondly, the splicing of NPLOC4 is 

regulated by TDP-43 and alternative transcripts have been shown to increase in the spinal 

cord of SALS. Thirdly, the NPLOC4 gene is located ~200kb upstream of P4HB in the 

chromosome 17 and sub-threshold genome association signals were reported in previous 

GWAS studies. 
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Six SNPs were selected based on intragenic LD pattern in the control population. The first 

3 SNPs tagged for 3 independent LD blocks from Exon 1 to 15. Interesting, a strong LD 

block was observed in the 3’ end of the gene and is adjacent to a TG dinucleotide repeat 

in intron 16. With the hypothesis that the repeat is responsible for TDP-43 mediated 

alternative splicing, we selected two SNPs from this block in order to see whether LD is 

altered in ALS. Finally, a coding SNP in exon 17 which is independent from any other LD 

block was included. The TG- rich repeat was characterized in SALS and controls.   

 

After correction for multiple testing, we found significant associations for three NPLOC4 

SNPs, SNP 1 (rs6565612,P=0.0243), SNP 2 (rs8075102, P=0.0260) and SNP 3 

(rs7405450, P=0.0060) in our SALS cohort. This was accompanied by the association of a 

3-SNP haplotype H2 which consists of the associated SNPs (P=0.0107). Remarkably, all 

three SNPs showed considerable variation in allele frequencies between genders, and the 

associations were further confirmed by the fact that minor allele frequencies were 

invariably increased in ALS cases using a Mantel-Haesnzel analysis. Size effects for all 

associations were enhanced in female patients. Delayed age of onset was observed in 

pooled ALS cases possessing the minor allele of rs6565612 but we concluded that this is 

due to the gender- specific association.  

 

It is interesting to note that, although no association was found for the TG repeat, this 

neither excluded its possible role as a TDP-43 binding site nor the association between 

repeat length and binding capacity. However, it can be deduced that, changes in TDP-43, 

rather than genotypes of the TG repeat, are likely to be the primary cause of the increased 

alternative splicing. In conclusion, we have investigated the association of NPLOC4 gene 

with ALS based on the combined evidences of known gene functions and GWAS signals. 

Our results indicate that NPLOC4 is a risk factor for SALS.  

 

 

8.4  VNTR analysis 

Dynamic mutations are frequently associated with neurological disorders and the 

involvement of repetitive sequences in C9orf72, ATXN2 and NIPA1 genes indicates that 

Variable number tandem repeats (VNTRs) may play an important role in ALS. To 

investigate the role of VNTRs in ALS, we investigated 20 VNTRs in 19 genes in Familial 
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ALS cases and controls, their selection being based on altered expression in ALS, 

location adjacent to associated SNPs in GWA studies and/or involvement in pathogenic 

mechanisms implicated in ALS. The gene HSPB8 was of particular interest as it satisfies 

multiple selection criteria. HSPB8 is a molecular chaperone that assists protein folding 

and is overexpressed in SALS. A SNP located 54.7kb upstream of the gene, rs11064675 

(P=0.0006, uncorrected value), was associated with SALS in GWA study (Schymick et al., 

2007b). We therefore investigated the HSPB8 repeat in a sporadic ALS (SALS) cohort. 

 

We screened for abnormal expansions in all VNTRs using PCR and electrophoresis in a 

FALS cohort and no abnormal expansion was detected. However, as for the VCP 

expansion, it is possible that exceptionally large expansions are missed. Nine VNTRs 

were polymorphic in the FALS cohort and were further genotyped in Controls.  

 

Significant allelic and genotypic associations of Short alleles (≤7-repeat) of the NIPA1 

repeat were detected in FALS, heterozygous genotypes being more common in FALS 

than controls. The repeat association with FALS was distinct from that in a previous report 

that the long repeat was associated with SALS (Blauw et al., 2012). We did not find 

significances for the long repeats, probably due to lack of power, but there was, indeed, a 

larger effect size compared to the previous report.  

 

We showed that Long alleles (≥8-repeat) of the HSPB8 VNTR were associated with 

SALS. Interestingly, the association was mainly contributed by the increased frequency of 

the 8-repeat. We asked whether the association was due to altered HSPB8 expression 

level mediated by the repeat but no genotype-expression relationship was observed. Our 

results suggest that VNTRs in NIPA1 and HSPB8 genes are risk factors for FALS and 

SALS, respectively, and that the association of NIPA1 Short alleles may be specific for 

FALS. It is possible that VNTRs in other candidate genes may be risk factors for ALS and 

further investigations are merited. 

 

 

8.5  Characterization of C9orf72 expansion 

A GGGGCC expansion in the C9orf72 gene is the most common cause of Amyotrophic 

lateral sclerosis and Fromtotemporal dementia. The expansion has been found in a wide 
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range of clinical phenotypes but no correlation between expansion size and phenotype 

has been confirmed. In our cohort, 31.3% of FALS cases had been shown to harbour the 

expansion using the repeat-primed PCR method. However, large expansions can not be 

amplified using such method and Southern blot was considered as the method of choice 

to measure the expansion size (Akimoto et al., 2014).  

 

The use of different probes has been described for Southern blot analysis, the first of 

those being a 241bp probe labelled with Digoxigenin (DIG) using a PCR reaction 

(DeJesus-Hernandez et al., 2011b). The 5’-3’-DIG-labelled Probe containing five 

GGGGCC repeats was suggested to increase the signal but also produced smeared 

bands in the blot (Beck et al., 2013), whereas Buchmann et al used a 32P labelled probe 

(Buchman et al., 2013). In this study, we optimized the Sothern blot procedure using two 

different DIG labelled probes. The first one (Probe 1) being the 241bp probe originally 

used by Dejesus et al which binds the 5’ flanking sequence of the expansion, whereas the 

second one binds a novel 371bp probe that is located 5’ to Probe 1. The probes were 

used to probe C9orf72 positive samples both independently and simultaneously and it 

was concluded that Probe 1 gives more specific binding than Probe 2. However, 

consistent with other reports, we found that Probe 1 yielded a weak signal and this can 

only be overcome by increasing template quantitiy. 

 

Unlike other repeat-disorders, no evidence of gaining instability has been reported in 

successive generations of C9orf72 cases. There was, however, evidence of anticipation 

(Chiò et al., 2012). We obtained expansion sizes for 8 FALS cases from 7 unrelated 

families and demonstrated that the expansion size ranges from ~3.9kb (~240 Units) to 

~20.4kb (~3011 Units) with a median size of 8.76kb (1049Units) in our cohort. Of the 

analysed samples, multiple cases were available from 2 kindred. We found that age of 

onset was earlier in younger generations in both kindred, indicating possible anticipation. 

Genotypes were obtained from multiple cases in one of the two kindred and the expansion 

size was smaller in the offspring. Therefore, if there was anticipation, no association with 

expansion size can be concluded. However, this is to be confirmed in a larger cohort.  

 

No significant correlation with age of onset or survival time was observed. However, this 

does not necessarily mean that expansion size is not associated with pathogenicity. It has 
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been reported that the mechanism of translation of dipeptide repeat proteins (DRP) is 

more efficient with increasing repeat length (Mori et al., 2013). Regarding the oligogenic 

model of inheritance, which is supported by our findings in VCP and SQSTM1 screenings, 

it is possible that the effect of C9orf72 is modified by other genetic variants. 

 

This section presents interim results of a project aiming to characterize expansion size 

from different tissues, including LBC, blood, spinal cord and temporal cortex, in our FALS 

cohorts. To date, genotypes have been obtained from a portion of LBC and blood 

samples. Our results are consistent with most published reports that there is no 

correlation of C9orf72 expansion size with any clinical parameter.  

 

 

8.6  Future work 

Two sequence variants identified in this study may merit further investigation, including 

the VCP hexanucletodie expansion and the SQSTM1 E155K mutation. Both mutations are 

novel rare variants and their assocaition with disease will be supported if they are absent 

from a larger group of controls or show segregation with disease within affected kindred. 

To investigate the effect of the VCP expansion on expression, we carried out a 

semiquantitative endpoint rtPCR using whole blood from the carrier but no changes were 

evident. The effect can be better characterized by measuring expression levels in spinal 

cord using qrtPCR. A luciferase essay can also be carried out to confirm whether 

promoter activity is affected (Qiu, 2007) using systems such as the Dual-luciferase system 

(Promega). To do this, the VCP promoter region containing the expansion is amplified 

using the heterozygous carrier as a template. Wild type and expanded fragments are 

separated in a long agarose electrophoresis and independently cloned into a Luciferase 

reporter vector, which lacks eukaryotic promoter/enhancer sequences. After that, cells in 

which VCP are abundantly expressed are transiently co-transfected with the VCP 

construct along with an internal control construct containing a different luciferase gene. A 

positive control is made by transfecting the cells with a control luciferase vector containing 

both promoter and enhancer seuqences and lacks the VCP promoter. The cells are then 

lysed and luciferase reagents are added to generate luminescent signals, which represent 

expression induced by the cloned sequences.  
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Functional analysis can be carried out to follow up the SQSTM1 E155K mutation, which is 

hypothesized to change protein properties. Mutant forms of SQSTM1 can be generated 

using a traditional two step mutagenesis PCR using a full length SQSTM1 cDNA as 

template and cloned into a mammalian expressing vector containing GFP. The constructs 

are then used to transfect a neuronal cell line (NSC-34) in which intracellular distribution 

of WT and mutant SQSTM1 proteins are visualized using immunocytochemistry using 

anti-GFP antibodies. Western blot is subsequently carried out to quantify apoptotic 

markers in cells expressing the mutatnt proteins. We have used a similar approach to 

study pathogenic effects of VAPB and DAO mutations associated with FALS (Chen et al., 

2010; Mitchell et al., 2010; Paul and de Belleroche, 2014). 

 

Results from our association studies also suggest further follow-up studies. Firstly, the 

NPLOC4 is a novel candidate gene in ALS and alternative splicing has been shown to be 

increased in ALS spinal cord upon the depletion of TDP-43. The alternatively spliced 

transcript lacks exon 17 which is replaced by the original intron 16 encoding an elongated 

protein. qRT PCR should be carried out to investigate its expression in ALS spinal cord 

and whether expression of spliced isoforms are associated with any SNPs or haplotypes. 

In addition, spatial distribution and localization patterns of the NPLOC4 protein can be 

characterized in autopsy spinal cord tissues using immunohistochemistry. Secondly, 

although no significant association with expression was concluded for the HSPB8 repeat, 

the increased difference in expression between Case/Control possessing the Long alleles 

may indicate its interactions with expression regulatory mechanisms. A luciferase assay, 

in which the luciferase gene is placed between a constituent promoter and the 3’UTR of 

interest, can be employed to better understand whether expression is affected.  

 

We optimized a Southern blot protocol and showed C9orf72 expansion size in a subgroup 

of FALS patients. Our future plan is to chacterize expansion size in all C9or72 positive 

cases in our cohort. This requires further DNA extraction from different available tissues 

including blood, spinal cord, temporal cortex and lymphoblastoid cell lines. Showing 

expansion sizes in multiple affected individuals from same kindred would allow further 

understanding of anticipation and repeat instability. As mentioned, the current method 

using the 241bp probe gives faint singals for expanded alles unless a large quantity of 

template is used. Considering the limited amount of each sample available, it would be 
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worth using a radioactive Southern blot protocol with longer probes labelled with 32P via 

nick translation, which has been shown to be more sensitive.   

 

 

-END OF MAIN TEXT- 
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Appendix 

 

Appendix I: R Codes used for a quick assessment of genotypes/allelic counts and 

association tests 

 

 

 

# Genotype 3.0: Usage (with the above data format for example, 

major allele can not be missing) 

 

snp_3allele=c("AA","AG","GG") 

casepop=file[which(population=="FALS"),] 

controlpop=file[which(population=="CONTROL"),] 

 

> genotypetabfin_all("snp_3",snp_3allele,casepop,controlpop) 

> genotypefisher_all("snp_3",snp_3allele,casepop,controlpop) 

> alleletabfin_all("snp_3",snp_3allele,casepop,controlpop) 

> allelefisher_all("snp_3",snp_3allele,casepop,controlpop) 

> allelefisherwithod_all("snp_3",snp_3allele,casepop,controlpop) 

> hwepvalue_all("snp_3",snp_3allele,casepop,controlpop) 

 

#=========Atomic Functions============ 

genotypefisher=function(SNP,ALLELE,POP1,POP2){ 

firstpopulation=subset(POP1,select=SNP) 

firstpopulationmatrix1=as.matrix(firstpopulation) 

firstpop=na.omit(firstpopulationmatrix1) 

firstpop_stand=c(" ")  

for(i in 1:length(firstpop)) { 

if(firstpop [i]==ALLELE[1]) 

firstpop_stand[i]="AA"} 

for(i in 1:length(firstpop)) { 

if(firstpop [i]==ALLELE[2]) 

firstpop_stand[i]="AB"} 

for(i in 1:length(firstpop)) { 

if(firstpop [i]==ALLELE[3]) 

firstpop_stand[i]="BB"} 

firstpopulationmatrix=as.matrix(firstpop_stand) 

firstgeno<-genotype(firstpopulationmatrix,sep="")  

firsttab<-table(firstgeno) 

firsttabadj<-c(firsttab,0,0,0) 

firsttabfin<-firsttabadj[1:3] 
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secondpopulation=subset(POP2,select=SNP) 

secondpopulationmatrix1=as.matrix(secondpopulation) 

secondpop=na.omit(secondpopulationmatrix1) 

secondpop_stand=c(" ")  

for(i in 1:length(secondpop)) { 

if(secondpop [i]==ALLELE[1]) 

secondpop_stand[i]="AA"} 

for(i in 1:length(secondpop)) { 

if(secondpop [i]==ALLELE[2]) 

secondpop_stand[i]="AB"} 

for(i in 1:length(secondpop)) { 

if(secondpop [i]==ALLELE[3]) 

secondpop_stand[i]="BB"} 

secondpopulationmatrix=as.matrix(secondpop_stand) 

secondgeno<-genotype(secondpopulationmatrix,sep="")  

secondtab<-table(secondgeno) 

secondtabadj<-c(secondtab,0,0,0) 

secondtabfin<-secondtabadj[1:3] 

conttable=matrix(c(firsttabfin,secondtabfin),3) 

fisher.test(conttable)$p.value 

} 

 

genotypetabfin=function(SNP,ALLELE,POP1){ 

firstpopulation=subset(POP1,select=SNP) 

firstpopulationmatrix1=as.matrix(firstpopulation) 

firstpop_stand=c(" ")  

firstpop=na.omit(firstpopulationmatrix1) 

for(i in 1:length(firstpop)) { 

if(firstpop [i]==ALLELE[1]) 

firstpop_stand[i]="AA"} 

for(i in 1:length(firstpop)) { 

if(firstpop [i]==ALLELE[2]) 

firstpop_stand[i]="AB"} 

for(i in 1:length(firstpop)) { 

if(firstpop [i]==ALLELE[3]) 

firstpop_stand[i]="BB"} 

firstpopulationmatrix=as.matrix(firstpop_stand) 

firstgeno<-genotype(firstpopulationmatrix,sep="")  

firsttab<-table(firstgeno) 

firsttabadj<-c(firsttab,0,0,0) 

firsttabfin<-firsttabadj[1:3] 

firsttabfin 

} 

 

allelefisher=function(SNP,ALLELE,POP1,POP2){ 

firstpopulation=subset(POP1,select=SNP) 

firstpopulationmatrix1=as.matrix(firstpopulation) 

firstpop=na.omit(firstpopulationmatrix1) 
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firstpop_stand=c(" ")  

for(i in 1:length(firstpop)) { 

if(firstpop [i]==ALLELE[1]) 

firstpop_stand[i]="AA"} 

for(i in 1:length(firstpop)) { 

if(firstpop [i]==ALLELE[2]) 

firstpop_stand[i]="AB"} 

for(i in 1:length(firstpop)) { 

if(firstpop [i]==ALLELE[3]) 

firstpop_stand[i]="BB"} 

firstpopulationmatrix=as.matrix(firstpop_stand) 

firstgeno<-genotype(firstpopulationmatrix,sep="")  

firsttab<-table(firstgeno) 

firsttabadj<-c(firsttab,0,0,0) 

firsttabfin<-firsttabadj[1:3] 

secondpopulation=subset(POP2,select=SNP) 

secondpopulationmatrix1=as.matrix(secondpopulation) 

secondpop=na.omit(secondpopulationmatrix1) 

secondpop_stand=c(" ")  

for(i in 1:length(secondpop)) { 

if(secondpop [i]==ALLELE[1]) 

secondpop_stand[i]="AA"} 

for(i in 1:length(secondpop)) { 

if(secondpop [i]==ALLELE[2]) 

secondpop_stand[i]="AB"} 

for(i in 1:length(secondpop)) { 

if(secondpop [i]==ALLELE[3]) 

secondpop_stand[i]="BB"} 

secondpopulationmatrix=as.matrix(secondpop_stand) 

secondgeno<-genotype(secondpopulationmatrix,sep="")  

secondtab<-table(secondgeno) 

secondtabadj<-c(secondtab,0,0,0) 

secondtabfin<-secondtabadj[1:3] 

alleletab<-

rbind(c((2*firsttabfin[1]+firsttabfin[2]),(2*firsttabfin[3]+firstt

abfin[2])),c((2*secondtabfin[1]+secondtabfin[2]),(2*secondtabfin[3

]+secondtabfin[2]))) 

fisher.test(alleletab)$p.value 

} 

 

alleletabfin=function(SNP,ALLELE,POP1){ 

firstpopulation=subset(POP1,select=SNP) 

firstpopulationmatrix1=as.matrix(firstpopulation) 

firstpop=na.omit(firstpopulationmatrix1) 

firstpop_stand=c(" ")  

for(i in 1:length(firstpop)) { 

if(firstpop [i]==ALLELE[1]) 

firstpop_stand[i]="AA"} 
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for(i in 1:length(firstpop)) { 

if(firstpop [i]==ALLELE[2]) 

firstpop_stand[i]="AB"} 

for(i in 1:length(firstpop)) { 

if(firstpop [i]==ALLELE[3]) 

firstpop_stand[i]="BB"} 

firstpopulationmatrix=as.matrix(firstpop_stand) 

firstgeno<-genotype(firstpopulationmatrix,sep="")  

firsttab<-table(firstgeno) 

firsttabadj<-c(firsttab,0,0,0) 

firsttabfin<-firsttabadj[1:3] 

alleletab<-

c((2*firsttabfin[1]+firsttabfin[2]),(2*firsttabfin[3]+firsttabfin[

2])) 

alleletab 

} 

 

hwepvalue=function(SNP,ALLELE,POP1){ 

firstpopulation=subset(POP1,select=SNP) 

firstpopulationmatrix1=as.matrix(firstpopulation) 

firstpop=na.omit(firstpopulationmatrix1) 

firstpop_stand=c(" ")  

for(i in 1:length(firstpop)) { 

if(firstpop [i]==ALLELE[1]) 

firstpop_stand[i]="AA"} 

for(i in 1:length(firstpop)) { 

if(firstpop [i]==ALLELE[2]) 

firstpop_stand[i]="AB"} 

for(i in 1:length(firstpop)) { 

if(firstpop [i]==ALLELE[3]) 

firstpop_stand[i]="BB"} 

firstpopulationmatrix=as.matrix(firstpop_stand) 

firstgeno<-genotype(firstpopulationmatrix,sep="")  

HWE.exact(firstgeno)$p.value 

} 

allelefisherod=function(SNP,ALLELE,POP1,POP2){ 

firstpopulation=subset(POP1,select=SNP) 

firstpopulationmatrix1=as.matrix(firstpopulation) 

firstpop=na.omit(firstpopulationmatrix1) 

firstpop_stand=c(" ")  

for(i in 1:length(firstpop)) { 

if(firstpop [i]==ALLELE[1]) 

firstpop_stand[i]="AA"} 

for(i in 1:length(firstpop)) { 

if(firstpop [i]==ALLELE[2]) 

firstpop_stand[i]="AB"} 

for(i in 1:length(firstpop)) { 

if(firstpop [i]==ALLELE[3]) 
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firstpop_stand[i]="BB"} 

firstpopulationmatrix=as.matrix(firstpop_stand) 

firstgeno<-genotype(firstpopulationmatrix,sep="")  

firsttab<-table(firstgeno) 

firsttabadj<-c(firsttab,0,0,0) 

firsttabfin<-firsttabadj[1:3] 

secondpopulation=subset(POP2,select=SNP) 

secondpopulationmatrix1=as.matrix(secondpopulation) 

secondpop=na.omit(secondpopulationmatrix1) 

secondpop_stand=c(" ")  

for(i in 1:length(secondpop)) { 

if(secondpop [i]==ALLELE[1]) 

secondpop_stand[i]="AA"} 

for(i in 1:length(secondpop)) { 

if(secondpop [i]==ALLELE[2]) 

secondpop_stand[i]="AB"} 

for(i in 1:length(secondpop)) { 

if(secondpop [i]==ALLELE[3]) 

secondpop_stand[i]="BB"} 

secondpopulationmatrix=as.matrix(secondpop_stand) 

secondgeno<-genotype(secondpopulationmatrix,sep="")  

secondtab<-table(secondgeno) 

secondtabadj<-c(secondtab,0,0,0) 

secondtabfin<-secondtabadj[1:3] 

alleletab<-

rbind(c((2*secondtabfin[1]+secondtabfin[2]),(2*secondtabfin[3]+sec

ondtabfin[2])),c((2*firsttabfin[1]+firsttabfin[2]),(2*firsttabfin[

3]+firsttabfin[2]))) 

as.vector(fisher.test(alleletab)$estimate) 

} 

 

#==========GENOTYPE COUNT 3.0======== 

genotypetabfin_all=function(SNP,SNP_ALLELE,CASEPOP,CONTROLPOP){ 

obj1=matrix(0,nrow=(length(CONTROLPOP)),ncol=3) 

obj2=matrix(0,nrow=(length(CASEPOP)),ncol=3) 

for(j in 1:length(CONTROLPOP)) { 

obj1[j,]=eval(call("genotypetabfin",SNP,SNP_ALLELE,as.symbol(CONTR

OLPOP[j]))) 

} 

for(i in 1:length(CASEPOP)) { 

obj2[i,]=eval(call("genotypetabfin",SNP,SNP_ALLELE,as.symbol(CASEP

OP[i]))) 

} 

result=rbind(obj1,obj2) 

colnames(result)=c("AA","Aa","aa") 

rownames(result)=c(CONTROLPOP,CASEPOP) 

result} 
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#usage: genotypetabfin_all("snp_3",snp_3allele,casepop,controlpop) 

 

#========GENOTYPE TEST COUNT ====== 

genotypefisher_all=function(SNP,SNP_ALLELE,CASEPOP,CONTROLPOP){ 

obj1=matrix(0,ncol=(length(CASEPOP)),nrow=(length(CONTROLPOP))) 

for(i in 1:length(CASEPOP)){ 

for(j in 1:length(CONTROLPOP)){ 

obj1[j,i]=eval(call("genotypefisher",SNP,SNP_ALLELE,as.symbol(CASE

POP[i]),as.symbol(CONTROLPOP[j]))) 

} 

} 

print("======SUPER FISHERS TEST  OUTPUT  :)=======") 

colnames(obj1)=CASEPOP 

rownames(obj1)=CONTROLPOP 

obj1} 

# usage: 

genotypefisher_all("snp_3",snp_3allele,casepop,controlpop) 

 

#=========ALLELE COUNT 3.0============ 

alleletabfin_all=function(SNP,SNP_ALLELE,CASEPOP,CONTROLPOP){ 

obj1=matrix(0,nrow=(length(CONTROLPOP)),ncol=2) 

obj2=matrix(0,nrow=(length(CASEPOP)),ncol=2) 

for(j in 1:length(CONTROLPOP)) { 

obj1[j,]=eval(call("alleletabfin",SNP,SNP_ALLELE,as.symbol(CONTROL

POP[j]))) 

} 

for(i in 1:length(CASEPOP)) { 

obj2[i,]=eval(call("alleletabfin",SNP,SNP_ALLELE,as.symbol(CASEPOP

[i]))) 

} 

result=rbind(obj1,obj2) 

colnames(result)=c("A","a") 

rownames(result)=c(CONTROLPOP,CASEPOP) 

result} 

 

# usage: alleletabfin_all("snp_4",snp_4allele,casepop,controlpop) 

 

#===========ALLELE TEST 3.0=============== 

allelefisher_all=function(SNP,SNP_ALLELE,CASEPOP,CONTROLPOP){ 

obj1=matrix(0,ncol=(length(CASEPOP)),nrow=(length(CONTROLPOP))) 

for(i in 1:length(CASEPOP)){ 

for(j in 1:length(CONTROLPOP)){ 

obj1[j,i]=eval(call("allelefisher",SNP,SNP_ALLELE,as.symbol(CASEPO

P[i]),as.symbol(CONTROLPOP[j]))) 

} 

} 

print("========SUPER ALLELE FISHER's TEST  OUTPUT  :)======") 

colnames(obj1)=CASEPOP 
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rownames(obj1)=CONTROLPOP 

obj1} 

# usage: allelefisher_all("snp_3",snp_3allele,casepop,controlpop) 

 

#==========ALLELE TEST WITH ODD RATIO =============== 

allelefisherwithod_all=function(SNP,SNP_ALLELE,CASEPOP,CONTROLPOP)

{ 

obj1=matrix(0,ncol=2*(length(CASEPOP)),nrow=length(CONTROLPOP)) 

column_name=rep(0,times=2*length(CASEPOP)) 

for(i in 1:length(CASEPOP)){ 

column_name[(2*i-1)]=CASEPOP[i] 

column_name[(2*i)]=c("OR") 

for(j in 1:length(CONTROLPOP)){ 

obj1[j,(2*i-

1)]=eval(call("allelefisher",SNP,SNP_ALLELE,as.symbol(CASEPOP[i]),

as.symbol(CONTROLPOP[j]))) 

obj1[j,(2*i)]=eval(call("allelefisherod",SNP,SNP_ALLELE,as.symbol(

CASEPOP[i]),as.symbol(CONTROLPOP[j]))) 

} 

} 

print("======SUPER ALLELE FISHER's TEST with ODD RATIO OUTPUT  

:)===") 

colnames(obj1)=column_name 

rownames(obj1)=CONTROLPOP 

obj1} 

# usage: 

allelefisherwithod_all("snp_4",snp_4allele,casepop,controlpop) 

 

#==============HWEPVALUE 3.0================= 

hwepvalue_all=function(SNP,SNP_ALLELE,CASEPOP,CONTROLPOP){ 

obj1=matrix(0,nrow=(length(CONTROLPOP)),ncol=1) 

obj2=matrix(0,nrow=(length(CASEPOP)),ncol=1) 

for(j in 1:length(CONTROLPOP)) { 

obj1[j,]=eval(call("hwepvalue",SNP,SNP_ALLELE,as.symbol(CONTROLPOP

[j]))) 

} 

for(i in 1:length(CASEPOP)) { 

obj2[i,]=eval(call("hwepvalue",SNP,SNP_ALLELE,as.symbol(CASEPOP[i]

))) 

} 

result=rbind(obj1,obj2) 

colnames(result)=c("HWE p values") 

rownames(result)=c(CONTROLPOP,CASEPOP) 

print("============HWE P VALUE OUTPUT  :)============") 

result} 

#usage: hwepvalue_all("snp_3",snp_3allele,casepop,controlpop) 
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Appendix II: Linux codes used for retrieving raw sequencing data from the 1000 

genome project and calling for indels using SAMTools, Dindel and BEDTools 

programs 

 

#!/bin/sh 

 

BASE="ftp://ftp.ebi.ac.uk/pub/databases/microarray/data/experiment

/GEUV/E-GEUV-1/processed/" 

REGION="chr9:35072459-35072659" 

REFERENCE_FILE="chr9.fa" 

OUTPUTFOLDER="VCPHEXSAM2test" 

DINDEL_WINDOW="120" 

MAXIMUM_DISTANCE_BETWEEN_WINDOW="0" 

FILTER_QUALITY="0" 

BEDFILE="vcphex.bed" 

 

INDIVIDUAL="\ 

HG00096.1.M_111124_6 \ 

HG00097.7.M_120219_2 " 

 

mkdir ${OUTPUTFOLDER} 

 

for c in $INDIVIDUAL ; do 

samtools/samtools view -h ${BASE}/${c}.bam ${REGION} > 

${OUTPUTFOLDER}/${c}.sam 

samtools/samtools view -bS ${OUTPUTFOLDER}/${c}.sam > 

${OUTPUTFOLDER}/${c}.bam 

samtools/samtools sort ${OUTPUTFOLDER}/${c}.bam 

${OUTPUTFOLDER}/${c}sorted 

 samtools/samtools index ${OUTPUTFOLDER}/${c}sorted.bam 

 rm -f -r ${OUTPUTFOLDER}/${c}.sam 

 rm -f -r ${OUTPUTFOLDER}/${c}.bam 

 rm -f -r ${OUTPUTFOLDER}/${c}.bam.bai 

done 

 

 

for c in $INDIVIDUAL ; do 

 mkdir ${OUTPUTFOLDER}/${c}windows 

 mkdir ${OUTPUTFOLDER}/${c}glf 

 

dindel/dindel --analysis getCIGARindels --bamFile 

${OUTPUTFOLDER}/${c}sorted.bam \ 

--outputFile ${OUTPUTFOLDER}/${c}.dindel_output --ref 

${REFERENCE_FILE} 

 

dindel/makeWindows.py -i 

${OUTPUTFOLDER}/${c}.dindel_output.variants.txt \ 
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-w ${OUTPUTFOLDER}/${c}windows/${c}.sample.realign_windows -m 

${MAXIMUM_DISTANCE_BETWEEN_WINDOW} -n ${DINDEL_WINDOW} 

 

echo Number of Windows is $(seq 1 $(find 

${OUTPUTFOLDER}/${c}windows -type f | wc -l)) 

 

for d in $(seq 1 $(find ${OUTPUTFOLDER}/${c}windows -

type f | wc -l)); do 

   dindel/dindel --analysis indels \ 

   --doDiploid \ 

   --bamFile ${OUTPUTFOLDER}/${c}sorted.bam \ 

   --ref ${REFERENCE_FILE} \ 

--varFile 

${OUTPUTFOLDER}/${c}windows/${c}.sample.realign_wi

ndows.${d}.txt \ 

--libFile 

${OUTPUTFOLDER}/${c}.dindel_output.libraries.txt \ 

--outputFile 

${OUTPUTFOLDER}/${c}glf/${c}.sample.dindel.stage_2

_output_windows.${d} 

  done ; 

 

find ${OUTPUTFOLDER}/${c}glf -type f > 

${OUTPUTFOLDER}/${c}.glffiles.txt 

 

 dindel/mergeOutputDiploid.py \ 

 --inputFiles ${OUTPUTFOLDER}/${c}.glffiles.txt \ 

 --outputFile {OUTPUTFOLDER}/${c}.glffiles.txtvariantCalls.txt \ 

 --refFile ${REFERENCE_FILE} \ 

 --filterQual ${FILTER_QUALITY} 

 

 rm -f -r ${OUTPUTFOLDER}/${c}.dindel_output.variants.txt 

 rm -f -r ${OUTPUTFOLDER}/${c}.dindel_output.libraries.txt 

 rm -f -r ${OUTPUTFOLDER}/${c}windows 

 rm -f -r ${OUTPUTFOLDER}/${c}glf 

 rm -f -r ${OUTPUTFOLDER}/${c}.glffiles.txt 

 rm -f -r ${c}.bam.bai 

done; 

 

 

mkdir ${OUTPUTFOLDER}/coverageBed_result 

for c in $INDIVIDUAL ; do 

 bedtools/bin/bedtools coverage \ 

 -abam ${OUTPUTFOLDER}/${c}sorted.bam \ 

-b ${BEDFILE} >  

${OUTPUTFOLDER}/coverageBed_result/${c}sorted.bed_coverage.txt; 

done; 
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find ${OUTPUTFOLDER}/coverageBed_result/*.txt -type f -exec cat {} 

>> ${OUTPUTFOLDER}/coverageBed_result/Combined_Coverage.txt \; 
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Appendix III: R Codes used for re-locating a list of VNTR (Kozlowski 2010) to the 

reference genome (hg19) using BSgenome package and the cross-referencing with 

GWAS data. 

 

#=============LOAD DATA============= 

chio_file<-"E:/08ALS/VNTRs/Kozlowski 2010/phs000101.pha002846.txt" 

#defining the link of ped file 

chio_file<-read.delim(file=chio_file,header=T,sep="\t") 

 

repeat_file<-"E:/08ALS/VNTRs/Kozlowski 2010/nar-02659-n-2009-

File008.txt" #defining the link of ped file 

repeat_file<-read.delim(file=repeat_file,header=T,sep="\t") 

 

repeat_intergenic_file<-"E:/08ALS/VNTRs/Kozlowski 2010/nar-02659-

n-2009-File007.txt" #defining intergenic repeat file 

repeat_intergenic_file<-

read.delim(file=repeat_intergenic_file,header=T,sep="\t") 

 

track_file<-"E:/08ALS/VNTRs/Kozlowski 2010/prediction_track.txt" 

#defining the link of ped file 

track_file<-read.delim(file=track_file,header=T,sep="\t") 

 

#=============Load BSgenome============= 

source("http://www.bioconductor.org/biocLite.R") 

biocLite("BSgenome") 

library(BSgenome) 

biocLite("BSgenome.Hsapiens.UCSC.hg19") #installs the human genome 

(~850 MB download). 

library(BSgenome.Hsapiens.UCSC.hg19) 

 

#=============For each Chromosome======== 

print("Chr1") 

 

chio_file_chr=chio_file[which(chio_file$chr==1),] 

repeat_intergenic_file_chr=repeat_intergenic_file[which(repeat_int

ergenic_file$chr==1),] 

 

track_file_chr=track_file[which(track_file$chr==1),] 

 

table1=matrix(0,nrow=length(repeat_intergenic_file_chr$position),n

col=1)#P value 

table2=matrix(0,nrow=length(repeat_intergenic_file_chr$position),n

col=1)#Rs number 

table3=matrix(0,nrow=length(repeat_intergenic_file_chr$position),n

col=1)#Position 
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table4=matrix(0,nrow=length(repeat_intergenic_file_chr$position),n

col=1)#Ref Seq Gene Start 

table5=matrix(0,nrow=length(repeat_intergenic_file_chr$position),n

col=1)#Ref Seq Gene end 

table6=matrix(0,nrow=length(repeat_intergenic_file_chr$position),n

col=1)#No. of Significant SNPs 

table7=matrix(0,nrow=length(repeat_intergenic_file_chr$position),n

col=1)#matched position 

table8=matrix(0,nrow=length(repeat_intergenic_file_chr$position),n

col=1)#matched gene_name 

table9=matrix(0,nrow=length(repeat_intergenic_file_chr$position),n

col=1)#matched number 

 

for (i in 1:length(repeat_intergenic_file_chr$position)){ 

rep_unit=repeat_intergenic_file_chr$rep_unit[i] 

period=repeat_intergenic_file_chr$period[i] 

repeat_sequence=paste(rep(rep_unit,each=period),collapse="") 

repeat_sequence_reverse=as.character(reverseComplement(DNAStr

ing(repeat_sequence))) 

repeat_start=c(start(matchPattern(repeat_sequence,Hsapiens$ch

r1)),start(matchPattern(repeat_sequence_reverse,Hsapiens$chr1

))) 

matched_position_all=repeat_start[repeat_start<repeat_interge

nic_file_chr$position[i]+2000000 & 

repeat_start>repeat_intergenic_file_chr$position[i]-2000000] 

matched_position=matched_position_all[which.min(abs(matched_p

osition_all-repeat_intergenic_file_chr$position[i]))] 

gene_name=track_file_chr[which(track_file_chr$start<matched_p

osition & track_file_chr$end>matched_position),]$gene_id 

gene_start=min(track_file_chr[which(as.character(track_file_c

hr$gene_id)==as.character(gene_name)),]$start) 

gene_end=max(track_file_chr[which(as.character(track_file_chr

$gene_id)==as.character(gene_name)),]$end) 

pvalue=chio_file_chr[which(chio_file_chr$position<matched_pos

ition+100000 & chio_file_chr$position>matched_position-

100000),]$p_value 

rs=chio_file_chr[which(chio_file_chr$position<matched_positio

n+100000 & chio_file_chr$position>matched_position-

100000),]$snp_id 

rsid=rs[which.min(pvalue)] 

position=chio_file_chr[which(chio_file_chr$position<matched_p

osition+100000 & chio_file_chr$position>matched_position-

100000),]$position 

positionid=position[which.min(pvalue)] 

significant_pvalue=chio_file_chr[which(chio_file_chr$position

<matched_position+100000 & 

chio_file_chr$position>matched_position-100000 & 

chio_file_chr$p_value<0.05),]$p_value 
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table1[i,]=min(pvalue) 

table2[i,]=as.character(rsid[1]) 

table3[i,]=as.character(positionid[1]) 

table4[i,]=as.character(gene_start) 

table5[i,]=as.character(gene_end) 

table6[i,]=length(as.vector(significant_pvalue)) 

table7[i,]=as.character(matched_position[1]) 

table8[i,]=as.character(gene_name[1]) 

table9[i,]=length(matched_position_all) 

} 

result1=cbind(table1,table2,table3,table4,table5,table6,table7,tab

le8,table9) 

result1 

 

-END OF Thesis- 

 


