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Abstract

The Bogomolnyi equation is a PDE for a connection and a Higgs field on a bundle over a 3
dimensional Riemannian manifold. Possible extensions of this PDE to higher dimensions preserving
the ellipticity modulo gauge transformations require some extra structure, which is available both
in 6 dimensional Calabi-Yau manifolds and 7 dimensional GG manifolds. These extensions are
known as higher dimensional monopole equations and Donaldson and Segal, [DS11], proposed
that “counting” solutions (monopoles) may give invariants of certain noncompact Calabi-Yau or G4
manifolds. In this thesis this possibility is investigated and examples of monopoles are constructed
on certain Calabi-Yau and GG manifolds. Moreover, this thesis also develops a Fredholm setup and

a moduli theory for monopoles on asymptotically conical manifolds.



Introduction

In [DT98], Donaldson and Thomas propose generalizing some of the gauge theoretical construc-
tions from 3 and 4 dimensions to some higher dimensional situations. This generalization requires
extra structure, satisfying some integrability conditions. For example, the 4 dimensional instan-
ton equations find a parallel in an 8 dimensional Spin(7) manifold and the resulting equation
is known as the Spin(7) instanton equation. Later, in [DS11] Donaldson and Segal explored
more possibilities for these new higher dimensional gauge theories, in particular mimicking the
monopole (Bogomolnyi) equation in 3 dimensions. In the same way as the Bogomolnyi equation
arises from dimensional reduction of the instanton equations in 4 dimensions, there are higher
dimensional monopole equations arising from dimensional reduction of the Spin(7) instanton
equations. These can be written in real 6 dimensional Calabi-Yau and 7 dimensional (G manifolds,
being most interesting when the underlying manifold is noncompact. Calabi-Yau 6-manifolds and
(G manifolds occupy a special place in Berger’s theorem [Ber55]: Their holonomy is contained
in SU(3) € SO(6) and in Go C SO(7) respectively, which are Ricci flat holonomy groups.
Moreover, both Calabi-Yau and (G2 manifolds come equipped with calibrations, as in [HL82], and
an interesting but hard problem is to understand the existence of calibrated submanifolds and their
moduli. For example, the Hodge Conjecture in a Kihler manifold (X, w) can be interpreted as an
existence problem for cycles calibrated with respect to ”k—lf for some k£ € N. The Hodge conjecture
holds for (1, 1) classes and then, on a Kihler 4 manifold, Gromov-Witten theory studies the moduli
of w calibrated cycles.

Special Lagrangian and coassociative submanifolds in a Calabi-Yau 3-folds or (G2 manifold respec-
tively, are codimension 3 calibrated cycles. McLean showed in [McL.98], that given a compact
special Lagrangian (resp. coassociative) submanifold /V, there is a smooth local moduli space of
deformations of dimension b; (resp. b2 ). There are some conjectural theories due to Dominic Joyce
[Joy02], [Joy12], attempting to define invariants of both Calabi-Yau 3-folds and G5 manifolds
by “counting" rigid special Lagrangian and coassociative submanifolds respectively. In [DS11]
it is suggested that, in both Calabi-Yau and G2 manifolds, there may exist an invariant counting
monopoles, and this may be easier to define and related to the conjectural invariants counting rigid
codimension 3 calibrated cycles. The main goal of the thesis is to tackle these problems, first by
giving concrete existence results for monopoles in special manifolds suitable to test ideas and

second by studying the analytic properties of the monopole equation.

Chapter 1 introduces Calabi-Yau and G2 manifolds, as well as the notion of finite mass
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monopoles in Asymptotically Conical (AC) manifolds. Chapter 2 studies the original 3 dimensional
monopole equations, more precisely it focuses on spherically symmetric monopoles in R3, equipped
with spherically symmetric metrics.

Chapter 3 defines complex monopoles and also a special kind of these called Calabi-Yau monopoles.
In this case one needs to consider complex monopoles in order to obtain an elliptic problem and
perhaps it is more appropriate to compare these with solutions to Hitchin’s equations, instead of
the Bogomolny equation. However, after some preliminary results one proves a proposition giving
conditions under which complex monopoles do reduce to Calabi-Yau monopoles. Then, certain
examples of AC Calabi-Yau manifolds are given, in which the study of the complex monopole
equation is an interesting Fredholm problem. Some of these examples do contain special Lagrangian
submanifolds, which makes it even more interesting to study monopoles. In one of these cases,
namely the Stenzel metric on 7*S?, the symmetries allow for using ODE methods to explore invari-
ant Calabi-Yau monopoles. These Calabi-Yau monopoles are constructed, their moduli studied as
well as the relation to the zero section, which is a rigid special Lagragian. A vanishing theorem for
complex monopoles on some AC Calabi-Yau manifolds which have no compact special Lagrangian
submanifolds is also given at the end of the chapter.

The G2 monopole equation is studied in chapter 4. In fact, there are only 3 known examples of
AC G5 manifolds, these are all cohomogeneity 1 and the underlying manifolds A% (S*), A2 (CP?),
S(S?), are respectively the total space of anti-self-dual 2 forms on the round S*, CP? with the
Fubini-Study metric and the spinor bundle of S®. These were in fact the first examples of complete
(G2 holonomy metrics and were first constructed in [BS89]. In the first two examples the zero
section is a compact coassociative submanifold, while in the third case these do not exist. Using the
symmetries, ODE methods are employed to construct invariant monopoles in the first two examples
and to study their moduli. Also, regarding the last example S(S?), where there are no compact
coassociative submanifolds, a vanishing theorem for monopoles is given.

Finally, chapter 5 gives an analytical setting in which finite mass (complex) monopoles in an AC
manifold are a good Fredholm problem. More specifically, one introduces function spaces in which
the deformation operator associated with the monopole equation (complex monopole equation in
the case of Calabi-Yau manifolds) is shown to be Fredholm. Then, one uses this result in order to
define the moduli space of monopoles as the zero set of a Fredholm section of a vector bundle over

a Banach manifold.

There remain many open questions. The central one is whether monopoles can indeed be used
to define an invariant of these AC manifolds, and in case this is possible, how to do it? There are
3 main problems towards such a definition: 1. Computing the index of the deformation operator.
Standard techniques can probably be successfully applied to this problem and the author is currently
addressing this in joint work with Mark Stern. 2. Establishing the smoothness of the moduli space.
The second part of the results stated in propositions 3.1.9 and 4.1.2, in the cases of Calabi-Yau
and G manifolds respectively, can be interpreted as intermediate steps in that direction. 3. The
compactness problem, which is probably a very hard one, and there is little hope of establishing

concrete general results in the near future. Despite this, the possibility that this can be carried out



in special classes of examples must not be discarded.

Still in the AC setting, there is one other interesting problem worth mentioning, and this addresses
the question of relating monopoles with codimension 3 calibrated cycles. In fact, it may be possible
to use known analytical techniques to construct a large mass monopole transverse to certain rigid
codimension 3 calibrated submanifolds. The author is currently investigating this possibility in joint
work with Thomas Walpuski. Moreover, it is worth mentioning that the analogous construction in 3
dimensions can be done. In fact, in [Oli13] starting with some points in a 3 dimensional manifold,
it is shown to be possible to construct large mass multimonopoles with monopoles located close to

the given points.

There are a number of interesting directions for monopoles that can be pursued outside the AC
world. In fact for any other kind of asymptotic behavior the definition of an invariant should go
along different lines. In these cases a good Fredholm problem is lacking and in general monopoles
are expected to have moduli. For example, it is possible to prove that for X = R3? x T3 (resp.
X = R3 x T*) with the Calabi-Yau (resp. G) structure where each torus slice is special Lagrangian
with phase zero (resp. coassociative) the pullback of any 3 dimensional monopole in R? gives
rise to a Calabi-Yau (resp. G'2) monopole on X with the given structure. It is then interesting to
understand finite mass monopoles in other classes of manifolds (with other asymptotic behaviors)
and find a Fredholm setup in which to fit these monopoles.

Moreover, one can also consider an even more ambitious program, to extend the theory to compact
Calabi-Yau and G5 manifolds. This could be done by introducing singularities, i.e. to allow the
monopoles to have Dirac type singularities along calibrated codimension 3 cycles. Similar ideas do

successfully extend 3 dimensional monopoles to compact 3 manifolds, see [Pau98].
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Chapter 1

Calabi-Yau, Go Manifolds and Gauge
Theory

This chapter introduces the reader to the central objects in the thesis and states some of their
properties for future reference. Besides defining Calabi-Yau and (G manifolds, sections 1.1 and
1.2 will study some of their properties, such as their Dirac operators, whose Weitzenbock formulae,
are useful in studying the linearized monopole equation (or the complex monopole equation in the
Calabi-Yau case). These two sections also introduce asymptotically conical Calabi-Yau and G2
manifolds respectively.

Later, section 1.3 introduces a unified setup for dealing with monopoles on 3 manifolds, Calabi-Yau
3 folds and G2 manifolds. Using it some relevant energies are introduced and used to study the re-
lation of monopoles with the volume growth of the underlying manifold. The upshot is proposition
1.3.9 which gives conditions under which there is a vanishing theorem for monopoles. It is also
proved that under the conditions of this vanishing result, monopoles are reducible and determined
by flat connections, Hermitian Yang Mills connections and reducible G2 instantons respectively for
3 manifolds, Calabi-Yau 3-folds and (G5 manifolds.

Section 1.4 sets up the problem for monopoles on Asymptotically Conical (AC) manifolds. Def-
inition 1.4.1 introduces finite mass monopoles, and the subsequent results study some of their
properties. Namely, proposition 1.4.6 studies the data determined by the asymptotics of finite mass
monopoles, which is then abstracted to produce definition 1.4.7. This last section also proves a
vanishing result for finite mass monopoles on AC manifolds; this is stated in proposition 1.4.9
(and corollary 1.4.11 for the special case G = SU(2)). The whole setup of sections 1.3 and 1.4 is
unified for all three cases of monopoles on 3 manifolds, Calabi-Yau 3 folds and G'» manifolds. In
chapter 3 the setup for complex monopoles on Calabi-Yau 3 folds is slightly different, but the same

kind of techniques will apply to the situation there.

1.1 Calabi-Yau Manifolds

This thesis only deals with Calabi-Yau 3 folds, i.e. with real dimension 6, but the general definition

in any real dimension n = 2m is given
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12 CHAPTER 1. CALABI-YAU, G2 MANIFOLDS AND GAUGE THEORY

Definition 1.1.1. A Calabi-Yau manifold (X ,w, Q) is a Kdhler manifold (X, w) with trivial canon-
ical bundle and a choice of holomorphic volume form Q € Q™°(X,C) trivializing Kx and

satisfying

% — ()™ (;) QAQ. (1.1.1)

According to this definition Calabi-Yau manifolds with real dimension n = 2m have holonomy
contained in SU (m). Some authors require the holonomy to be exactly SU (m) and here these will

be called irreducible Calabi-Yau manifolds.

1.1.1 The Dirac Operator

Calabi-Yau manifolds are Spin and ST = Q044 (X C) and S~ = Q%¢¥(X, C) are the vector
bundles respectively associated with the positive and negative Spin representation. Let E be a
vector bundle with connection A and denote by SJ:E,t the twisted bundle S* ® E, which comes
equipped with the connection induced from A and the Spin connection. This gives rise to the

twisted Dirac operator whose first component is
Dy =04+ 0, : QU X E) = Q¥ (X, E). (1.1.2)

The other component will be denoted by D% as it is the formal L? adjoint of D4. The goal of
this section is to obtain some Weitzenbock type formulae, which will be useful in studying the

linearisation to the monopole equations.

Proposition 1.1.2. Let (a,w) € (20! © Q%) (X, E) and (¢,b) € (2° @ Q%2)(X, E), then

DiDaa,w) = Ay, (a,w)+ <*[Fj’0 A ww], [FO2 A a]> (1.1.3)
DaDA6,D) = Ag, (6,6)+ (=« [F3° A, [Fy*,6]) (1.14)
Proof. To prove the first of these recall that since the dimension 6 is even 52 = — % J4* and that

%2 = (—1)* on k forms. Then one can compute

D4Dala,w) = D (éjga, Daa+ ézw) - (5/@;@ +0404a+ 040w, Dadaa + éAégw)
= (AgAa + #[F30 A sw], Ag,w+ [FO% A a}) .
And the result follows for the first case. The second formula follows from a similar computation. [J

Lemma 1.1.3. (Twisted Kdhler Identities) Let V' be a complex vector bundle over X, equipped a

unitary connection A. Then,

* —

04 = —i[A,04] , 0% =i[A, 04l (1.1.5)

and these imply that A5A — Ay, = —iho [F,}fl A

Proof. See page 240 in [HuyO5]. O
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Corollary 1.1.4. In the setup of proposition 1.1.2, the following Weitzenbdck formulae hold
DADAzivAvA_‘_WOddv ,DAIDAzﬁvAVA_'_WeU (116)

Where, Wey oaa € Q°(X, End(A%U4)) are the endomorphisms respectively defined by

Woaa(a,w) = <*[F§’O A xw] + [;AF}XJ, a] - iA[Fjl’l Aal, [F2’2 Aa) + [;AF}"l, w})

Wen(6,b) = (- x [FYO N +b] — BAF};l,qﬂ JFY2 9]+ [;AFj"l,b} —iA[Fy /\b]).

Proof. Compute the first by using formula 1.1.3, then for (a,w) € Q%% (X, E),
* _ 2,0 0,2
DD a(a,w) = Ag, (a,w) + (*[FA A ], [F$2 A a}) .

Now to compute the Laplacian Ay use lemma 1.1.3. For a € Q%!(X, E) this gives Ay, a =
Ap,a— iA[Fjl’l Aa), while for w € Q°3(X, E) the formula gives Ap, w=Ag,w— iA[Fj"l Aw],
but this last term vanishes as w is of type (0, 3), so AgAw = Ap,w. Putting these two together

D% Dala,w) = Ay, (a,w) + (—iA[F}"l A a] + «[F20 A sw], [FS? A a]) . (1.1.7)

Now use lemma 1.1.3 for (a, ¢) viewed as a section of V' = A%Odd ® FE equipped with the twist of

the Spin connection with A. This gives

Az, (a,w) = Ay, (a,w) — [iAFAg,odd a,w)].

QF’ (
The terms involving the curvature of the Spin connection on A?C’Odd are respectively the Ricci
curvature on the A%l component and the scalar curvature in the Ag:’?’ component. Both these vanish
since (X, w, 2) is a Calabi-Yau manifold. So the only remaining terms are those involving F', i.e.
the curvature of the connection A on E. So that Az (a,w) = Ay, (a,w) — ([iAFa, a], [iAF4, w]).
For (a,w) € Q(X, A%Odd ® E) and using V 4 to denote the twisted connection from both the

Spin connection and A one can write
VaVa(a,w) = Aula,w) = Az, (a,w) + Ay, (a,w) = 28p,(a,w) — ([{AF4, a], [iAF4, w]).
Passing the last term to the left hand side and diving by 2 gives
1_, .. .
Ap,(a,w) = §VAVA(a,w) t3 ([iAF4,al, [iAF4,w]).

To conclude the computation one needs to notice that since a and w are of type (0, ¢) for some ¢
the O-Laplacian Ay, is the same if we view (a, w) as an element of Q°(X, A%Odd ® E) or as an
element of Q%°%( X, ). So one can directly substitute the last formula above into equation 1.1.7

and this gives the desired result. The other Weitzenbock formula is a similar computation. O



14 CHAPTER 1. CALABI-YAU, G2 MANIFOLDS AND GAUGE THEORY

1.1.2 Asymptotically Conical (AC) Calabi-Yau Manifolds

Definition 1.1.5. A Riemannian manifold (X", g) is called asymptotically conical (AC) with rate
v < 0 if there is a compact set K C X, a Riemannian manifold (X", gs) and a diffeomorphism
¢ : (1,00) x & — X\K, such that: the metric go = dr? + r’gs, on (1,00) x X satisfies
(V7 (p*g—gc)|lc = O(rv=7), forall j € No. Here V is the Levi Civita connection of gc. A radius

function will be any positive function p : X — Ry, such that in X\K, p =10 o~ .

If a metric cone C(X) = (R x X, g¢) is Ricci flat and Kihler with Kéhler form we asso-
ciated with g¢, then its link (X, gx;) is said to be Sasaki-Einstein, see [Spal0] for a survey of
Sasaki-Einstein geometry. Moreover, one must suppose C'(X) has trivial canonical bundle with
a trivialization ¢. In fact, the C'(X)’s that appear as the asymptotic cones of smooth AC Calabi
Yau manifolds X can be supposed to be of this form (up to working on a covering X of X), see
[CH13b].

Definition 1.1.6. A noncompact, complete Calabi-Yau manifold (X,w, Q) is an asymptotically
conical Calabi-Yau manifold, if it is AC to a complex cone (C(X), gs) over a Sasaki-Einstein
manifold (3, gx)), such that the cone (C(X),wc, Qc) has its canonical bundle trivialized by Q¢
and |V (p*Q — Qc)|c = O(r*=7), for some A\ < 0 and all j € Ny.

This definition requires that both the metric and the complex structure are asymptotic to those
on the model cone (C'(X),wc, 2¢). One can regard the problem of existence of AC Calabi-Yau
manifolds as follows. If (X, () is complex with trivial canonical bundle K x and its complex
structure is asymptotic to the one on a model cone, are there Ricci flat, Kdhler metrics which
are asymptotic to a Ricci flat Kdhler metric on the cone? The next result (by Ronan Conlon and
Hans Joachim Hein in [CH13a]), summarizes what is known regarding existence and uniqueness

theorems for AC Calabi-Yau manifolds.

Theorem 1.1.7. (R. Conlon, H.J. Hein, theorem 2.4 in [CH13a]) Let (X, ) be a noncompact
complex manifold with trivial canonical bundle trivialized by ). Suppose that there is a Sasaki-
Einstein manifold (3, gx,), a compact set K C X, a diffeomorphism ¢ : (1,00) x ¥ — X\ K and
a trivialization of the canonical bundle Q¢ of C(X), such that

VI (¢*Q — Qc) | = O(r* ),

for some X\ < 0 and all j € Ng. Then, for each class £ € Hz(X, Z) with u < 0 and a € R, there

is a rate v < 0 with v > max{—n, A\, u} and a unique Ricci flat Kiihler metric w, € &, with
IV (p*wa — awe) |0 = O(r" ),

forall j € Ny.

Remark 1.1.8. In the above proposition HIQL(X , ) represents the p almost compactly supported
Kdihler classes, as in [CH13a]. These are those classes which on X\ K can be represented by a

Kdhler form of rate .
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Below some facts about Sasaki-Einstein geometry are collected, see [Spal0] and [Con09] for
a survey. The fact that > has a Sasaki-Einstein structure is equivalent to the cone C'(X) having a
Ricci-flat, Kihler metric. Hence, given a Calabi-Yau cone (C'(X),wc, Q¢), by embedding ¥ into
itas {1} x ¥ the Sasaki-Einstein geometry of 3 can be completely recovered from the cone as
follows.
The vector field 0, is known as the Euler vector field and using that the cone is Kéhler it can be
shown that r0, is real holomorphic. If J denotes the complex structure on the cone, we may define
& = J(ro,), this restricts to {1} x X as a unit length, Killing vector field known as the Reeb field.
The flow of £ foliates 3 and Sasaki-Einstein manifolds can be classified according to whether the
leaves of this foliation are compact or noncompact. In the first case the orbits are geodesic circles
and the flow of ¢ integrates to a S'-action on Y. If this action is free the Sasaki-Einstein manifold
is said to be regular, if not it is said to be quasi-regular. In the case where the orbits are noncompact
the Sasaki-Einstein structure is said to be irregular. Before proceeding into the contact geometry of
¥ it is worth noticing that the fact that the cone (C(3), g¢ = dr? + r?gs) is Ricci-flat implies that
gy is Einstein (with fixed Einstein constant).
It is possible to define the contact form 7 € Q!(3, R) as the unique 1 form on X such that n(¢) = 1
and igdn = 0. This extends homogeneously to the cone as = i(9 — 9) log(r) and can be used to
write wo = %857‘2 = %d(r%). The horizontal distribution ker 7 is transverse to the Reeb foliation,
and is preserved by the complex structure .J. Moreover, (J|xery, wr = %dn) equip ker n with a
transverse Kéhler structure compatible with gs; |ke”,.
One other construction which mimics Kéhler geometry ones is the basic de Rham cohomology,
see [Con09] and [EKA90]. The basic de Rham complex €2}, consists of those differential forms
a € (0" which satisfy i¢oe = L¢a = 0. The restriction of the usual exterior differential dp = d|Q}<3
preserves the basic de Rham complex and one can define its cohomology H;(X), called Basic
cohomology. Moreover, one can also define basic (p, ¢)-forms and split dg = 0 + 0. These
satisfy the basic Kihler identities (see Lemme 3.4.4 in [EKA90]) which as in the Kéhler case can
be used to construct a basic version of Hodge theory. The main consequence of these results is that

the splitting into (p, ¢) forms passes to basic cohomology [EKA90]

Hi(%,C) = @ HE(S,0).
p+q=k

At this point I remark that the similarities with Ké&hler geometry may not continue indefinitely, see
[Con09] for further details along this line.

Example 1. Subsection 3.2.1 in chapter 3 mentions AC Calabi-Yau manifolds, whose asymptotic
cone is regular, i.e. their link is a regular Sasaki-Einstein manifold. It is always the case that
a regular Sasaki-Einstein ¥ manifold is the total space of a S'-bundle over a Fano surface D,
equipped with a Kihler-Einstein metric. Associated with the S'-bundle one can construct a
complex line bundle L. — D and regard the contact form 1 as a connection which equips L with a

holomorphic structure, as the curvature dn is of type (1,1). In particular, denoting by w : ¥ — D
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the bundle projection one can write
gz =n®@n+7gp,

where gp is a Kdihler-Einstein metric on D. Moreover, in this regular case the basic cohomology
of the Sasaki-Einstein is just the pullback of the cohomology of D, i.e. Hy(%,C) = n*H*(D,C),
see section 2 of [Spal0] for a survey.

The standard example of a regular Sasaki-Einstein manifold is S° with the round metric, in which
case D = CP? with the Fubini-Study metric. One other example is when Y. is diffeomorphic to
S® x S% and D = CP' x CP' with the product Fubini-Study metric; we shall get back to this
example in subsection 3.3.1 of chapter 3.

The last class of examples finishes the list of all simply connected Sasaki-Einstein manifolds. Let
k € [3,8] and let Dy, = Bl,,CP?, i.e. the blow up of CP? at k points in general position. It is a
result of Tian and Siu that, there is a unique Kihler-Einstein metric on BlyCP?. In this case Xy, is
diffeomorphic to ,,S* x S? and it admits a unique regular Sasaki-Einstein metric compatible with

the unique Kdihler-Einstein metric on Bl,CP2.

1.2 G5 Manifolds

Definition 1.2.1. A 3 form ¢ on manifold X" determines a G5 structure if at each point x € X"
the GL(7,R) orbit of ¢, is open in A3.

The stabilizer of ¢, is the Lie group Ga. It is compact and preserves a Riemannian metric g,

for which there is an orthonormal frame {e;}7_;, such that
by = 123 4 o145 _ (167 | 246 _ 275 | 347 _ 356
Hence, a G5 structure reduces the structure group of the frame bundle to G5 and determines a

Riemannian metric g on X. In this case ¢ and g are said to be compatible.

Definition 1.2.2. A Gy manifold (X, ¢) is a T-manifold X7 equipped with a compatible Go

structure ¢, such that

dé = dip = 0,

where 1 = x¢ and * is the Hodge-* operator given by the metric g determined above.

Theorem 1.2.3. (Ferndndez and Gray [FG82]) For a Riemannian manifold (X", g) equipped with

a compatible 3 form ¢, the following are equivalent
1. V¢ =0,
2. dp=d*¢ =0,

3. The holonomy of g is contained in Gs.
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Proposition 1.2.4. Let (X, ¢) be a Go manifold. Then the exterior bundle splits orthogonally as
At = AL A2 = A2@ A2, and A3 = A3 ® A3 @ A3, where the subscript indicates the rank of the

irreducible component

A2 = {o, Vel (TX)}={w|*(wAep)=2w}
Ay = {wlwAp=0}={w|*WAd)=—w}
A = (9)

A2 = {wy,VeT(TX)}

AS, = {w|wAY =0 and wA$=0}.

Moreover if B is a 2 form and w7, 714 denote the respective projections on the irreducible compo-

nents, then the following algebraic identities hold

* (x(BAY)AY) 3m7(B), (1.2.1)
«(BAg) = 2m7(B) — ma(B). (122)
1.2.1 The Dirac Operator

In Theorem 3.1 of [Gra69] Alfred Gray showed that a 7 manifold X7 is Spin if and only if it admits
a G structure. Hence a G2 manifold (X, ¢) is always Spin and let S = R&T* X denote the vector
bundle associated with the standard irreducible Spin(7) representation. Clifford multiplication
v : T*X — End(S) is given by

1(0)(9,a) = (g(b, a), x(b A a A1) = bp),

for a, b 1-forms and ¢ a function. Let E be a vector bundle with connection A over X and denote
by Sg = S ® E the twisted bundle equipped with the connection V 4 obtained from the Spin
connection and A. Then one can define a twisted Dirac operator D4, which having in mind that
(X, Sp) 2 Q°(X, E) ® QY(X, E) can be written as

DA(¢, CL) = (_V*Aav *(dACL A ¢) - VA¢) ) (1.2.3)

for (¢,a) € Q°(X,E) ® Q'(X, E).

Proposition 1.2.5. The Dirac operator D 4 is formally self adjoint and for (¢,a) € Q°(X,E) @
QY (X, E), the following Weitzenbick type formula holds

D?(¢,a) = ViV a(s,a) + RV (¢, ),

with RV (¢, a) = (x[Fa A A a], *[xFa A a] — [Fa A1), @)).

Proof. One can compute D% using formula 1.2.3

D4(¢,a) = (Aad, Ana) + (*[Fa A Aa],— x [Fa A, ¢]), (1.2.4)
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and then use the more standard Weitzenbock formula A qa = V4V g4a + *[*F A a], where there is

no term involving the Ricci curvature, as (X, ¢) is a G2 manifold, hence Ricci flat. t

1.2.2 AC G5 Manifolds

This subsection starts by describing the geometric structures on the Riemannian 6-dimensional
manifolds (X, g») that arise as the links of Riemannian G2 cones. The first result is a lemma
which describes the algebraic structures that reduce the structure group of the tangent bundle 7Y to
SU(3).

Lemma 1.2.6. Let X5 be a 6 dimensional manifold, then the forms (w,Q1) € Q* @ Q3(X,R),

determine an SU (3) structure on Y. if:
e The GL(6,R) orbit of Q1 is open, with stabilizer a covering of SL(3,C);

o The following compatibility relations hold

w3 1
W/\91:W/\Q2207§2191/\92' (1.2.5)

where Qo = JQ and J denotes the almost complex structure determined by )y
e and h(-,-) = w(-, J-) determines on ¥ a Riemannian metric, i.e. h is positive definite.
Proof. See page 3 in [CS02]. O

Proposition 1.2.7. The Riemannian cone (C(X), gc = dr* + r?gys), with the Gy structure
w2
¢ =ridr Aw+r3Q; w:r47 —r3dr A Qa, (1.2.6)
has holonomy in Gy if and only if (X, gs) is nearly Kdhler, i.e. the forms (w,Q1, Q) satisfy
dQy = —2w? | dw = 3Q;. (1.2.7)
Proof. From theorem 1.2.3, g has holonomy contained in G if and only if d¢ = dy) = 0. Since

dp = r2dr A (30 — dw) + r2dy

2
dy = rid <°"2) +r3dr A (A9 + 20%)

one concludes that this holds if and only if (X, gx) is nearly Kihler, i.e. the equations 1.2.7 for the
forms (w, 1, Q2) hold. O

Definition 1.2.8. A G2 manifold (X, g) is Asymptotically Conical (AC) with rate v < 0 if there
is a compact set K C X, a compact nearly Kdhler 6-manifold (3, gs) and a diffeomorphism
¢ :(1,00) x ¥ = X\K, such that on (1,00) x X, the metric gc = dr? 4+ r?gy, and its Levi Civita
connection V satisfy

V7 (¢*g = gc) le = O( ),
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forall j € Ny. A radius function will be any positive function p : X — Ry, such that in X\ K,
1

p=rop .
Example 2. There are only 3 known examples of complete, AC and irreducible Go manifolds, these
are known as the Bryant-Salamon manifolds |[BS89], see also [GPPI0]. The reference [K1.12]
studies the moduli spaces of AC G manifolds, with a fixed asymptotic cone C(X), and these
examples are shown to be rigid. Further ahead, in chapter 4 of this thesis, these examples will be

examined in more detail.

1. Let A% (M) be the total space of the bundle of anti-self-dual 2-forms over (M*, g), where
(M*, g) denotes either the round S* or the Fubini-Study CP?. Then, A> (M) admits a

complete AC Gy metric with rate v = —4 asymptotic to the cone over CP? or Fs (the
manifold of flags in C3), for M = S* or CP? respectively.

2. S(S?), the spinor bundle over the round S admits a complete AC Go metric with rate

v = —3 which is asymptotic to the cone over S? x S3.

The links of the cones which these are asymptotic to are (apart from S°) the only known examples
of nearly Kiihler manifolds. In fact all three are homogeneous: CP? = Sp(2)/U(1) x SU(2),
F3 = SU(3)/T? and S* x S® = SU(2) x SU(2).

1.3 The Monopole Equation

Let (X™, g, ©) be an n-dimensional Riemannian manifold, together with © € Q"~3(X, R) a differ-
gl
1). Let G be a compact Lie group with Lie algebra g and P — X a principal GG bundle over X.

ential form (in examples it will be a calibration, i.e. closed, with comass supcn-37x\ 0}

Denote by gp = P X aq g the bundle with fibre g associated with the adjoint representation and
equip it with an Ad invariant metric (-, -). Let V 4 be a connection on P and ® € Q°(X, gp) an

Higgs Field, i.e. a section of gp. This section studies the properties of pairs (V 4, ®) satisfying
* Va0 = Fy N O, (1.3.1)

where * is the Hodge-* operator acting on the form components. Moreover, notice that if © is
closed, the Bianchi identity implies that a solution to 1.3.1 satisfies A 4® = 0. The examples of
most interest and which this thesis restricts attention are the following

Example 3. In this thesis the data (X, g, ©) will always be one of the following cases

1. (X3,9) a 3 dimensional Riemannian manifold, take © = 1, then equation 1.3.1 is the

Bogomolnyi equation *N 4® = F 5, which will be studied in chapter 2.

2. (X5, g) a Calabi-Yau 3-fold, take © = ; the real part of the holomorphic volume form
Q€ O30(X, C). Then, chapter 3 studies complex Calabi-Yau monopoles (definition 3.1.1)
and a particular case, called just Calabi-Yau monopoles, these solve xV 4® = F4 A\ Q4 and
it will also be imposed that AF4 = 0.
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3. (X7, 9) a Gy manifold and © = 1 € Q*(X, R) the calibrating 4-form. Then, equation 1.3.1
is the Go monopole equation xNV 4 ® = F4 A v, which will be studied in chapter 4.

The first example above, i.e. dimension 3 is the so-called Bogomolnyi equation which has been
the subject of intense research over the last 30 years, both by mathematicians and physicists. The
last have appeared in some scattered places both in the mathematics and physics literature. The
first occurrence that the author has been able to track down is in [War84], where the Spin(7) and
G instanton equations on R® and R” are written down. The monopole equations in items 2 and 3

of example 3 arise by dimensional reduction of these, see [DS11].

1.3.1 Energy Identities

This section contains some energy identities which will be further refined and used to study

monopoles on AC Calabi-Yau and G2 manifolds.

Definition 1.3.1. Let U C X be precompact. The Yang-Mills-Higgs energy Ey and the Intermedi-
ate Energy E(I] of a configuration (V 5, ®) on U are defined by

1 1
By = 2/ IVa®|* + |Fal*, Ef; = 2/ |VA®|2 + |Fa A O (13.2)
U U

The YMH Energy and the Intermediate energy agree for n = 3, i.e. case 1 in example 3.
However, both in the Calabi-Yau and G+ case the intermediate energy just measures the L? norm

of some of the components of the curvature, namely those in Re(A%? @ A%?) and A2 respectively.

Proposition 1.3.2. Let (V 4, ®) be a configuration i.e. a connection and Higgs field on P. The
Euler Lagrange equations for the Yang-Mills-Higgs functional are

dyFy=[da®, @], AyP =0. (1.3.3)
Moreover, if © is a calibration the Euler Lagrange equations for the Intermediate Energy are
dym(Fy) = [da®, @] , Ay =0. (1.3.4)
where m(Fy) = *(x(Fa A ©) A ©).

Proof. If (a, ¢) is a compactly supported variation, the boundary terms in the integration by parts
of 5E(dA,<i>)(a’ ¢) = %h:oE(dA + ta, ® + t¢) can be ignored. Then, Stokes’ theorem and the

Bianchi identity give
(5E(dA7(i))(a, ¢) = / (daa AN *Fa) 4 ((da¢ + [a, ®]) A xd D)
X
= /<a/\dA*FA>—<¢,dA*dA<I>>+<a/\[‘I>,*dA‘I>]>
X

= /)((a/\(dA*FA—i-[(I),*qu)]))—<¢),dA>I<dA<I>>.
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So the critical points of such a functional are precisely the solutions to the second order equations
d5Fy = [da®,®] and Ay, P = 0. The computations for the variation of the Intermediate energy

are similar and will be omitted. O

These Euler Lagrange equations are second order equations for (A, ®) while the monopole
equations are first order. In fact for the asymptotic behavior to be studied in this thesis, it will be

shown that monopoles are minimizers of the intermediate energy.
Example 4. In the cases from example 3

1. If n = 3, then the YMH and the Intermediate Energies are equal and so are the associated

Euler Lagrange equations.

2. If n = 6, the complex structure gives the splitting Q> = Q>0 @ Qb © Q%2, then n(Fy) =
—2(Fj’0 + Fg’Q). So the Intermediate Energy just measures the L? norm of Fg’2 and its
Euler Lagrange equations are A4, ® = 0 and GZFi’O = f% [04D, D].

3. Ifn =7, the Gy structure gives the splitting 0% = O3, © Q2 and 7(Fa) = 377(Fa). The
Intermediate Energy just measures the L? norm of m7(Fy), i.e. the component of F 5 which

lies in 12, and the Euler Lagrange equations are Ay, ® = 0 and dm7(Fa) = 3 [da®, ®].
The following differential and consequent integral relations are very useful

Lemma 1.3.3. (Green’s first identity) Let ¢, € Q%(gp) and U C X precompact with smooth
boundary, then

(¢, Mgy = d™(p, V av) + (V 40, V a1h). (1.3.5)

/ (6, V 1) = /U (VA6 Vath) — (6 D) * 1. (1.3.6)

*

oUu
Proof. Since on 1 forms d* = — x dx one has d*(¢, V 41) = — = d{(¢,*V 41). By the Leibniz
rule this is — % (VA¢ A ¥V 490) — (p, *d 4 * V 21)). The second term is A 41 = d*V 47 and this

gives the differential relation in the statement. Integrating over U gives
[ = dro.vaty = [ = (Tad nsTau) + 106, 800
U U

Using 2 = 1 and Stokes’ theorem on the left hand side gives the integral relation. O

Proposition 1.3.4. Let © be a calibration, U C X precompact with smooth boundary, and (V 4, )

a configuration. Then,

1
EL(A, @) = /<<1>, Fa) AO+ SIFa O — 5B, . (1.3.7)

ou

Moreover, for those (V o, ®) satisfying equation 1.3.1

1 1
EL(A,®) = SlIFan 0|22 + i\qu)H%z(U) = /8<<1>, Fa) AO. (1.3.8)
U
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In particular, if X is compact, then Eg( < 00and VP = Fq A © = 0 and the connection A is

reducible.

Proof. The proof amounts to compute
[FANO =5V a®| 72y = [IFa A BTz + IV AP 721y — 2(Fa A 0,5V a®) 121y).

The first two terms are 2E(I] and the last one is given by the integral

<FA/\67*VA‘1)>L2(U) = /<VA(I)/\FA>/\@: <‘I>,FA>/\@,
U oU

where one uses ¥V 4® = —V 4®, the Bianchi identity d4F4 = 0 and the fact that © is closed as

it is a calibration, in order to ignore the other term in the integration by parts. O

The argument used in the proof of proposition 1.3.4 will be extended for certain classes of

noncompact manifolds.

1.3.2 Volume Growth and Boundary Data

Definition 1.3.5. Ler (X", g) be a real n dimensional, complete, noncompact, Riemannian man-
ifold and a > 0. One says g has strict volume growth r® if for all p € X there is R, € R and
positive constants Ay < Ag, such that forall s >t > R,

A1(s* —t%) < Vol(Bs(p)) — Vol(Bi(p)) < Aa(s® —t), (1.3.9)
where B,.(p) is the geodesic ball with center p € X and radius r.

Remark 1.3.6. Since both Calabi-Yau and Go manifolds are Ricci flat, it follows from Bishop’s
Volume comparison that a € [1,7] (a > 1 follows from trick due to Yau). Moreover, Cheeger-
Gromoll’s splitting theorem implies that if (X, g) is an irreducible Calabi-Yau or G manifold (i.e.
g has full holonomy SU (3) or G4 respectively), then it has only one end.

Having this in mind, from now on assume that a € [1, 7] and there is a compact set K C X
and an (n — 1)-dimensional manifold 3, such that X\ K = (R, 4-00), x X, for some large R and
p: X — RT a smooth approximation to dist(p, -), such that |Vp| is very close to one. Then, the
inequality in 1.3.9 holds for s >t > R and B,(p) replaced by p=1[0, 7).

Lemma 1.3.7. (X, g) as above has strict volume growth r® if and only if there are positive constants
Al < Al such that A\re=r < Vol(p~1(r)) < Apra~L.

Proof. The first direction follows from setting ¢ = r and s = r + ¢ and differentiating the
inequality in 1.3.9 having in mind that Vol (p~!(r +¢)) — Vol(p~t(r)) = f:ﬁ Vol(p~t(u))du,
and using the fundamental theorem of calculus. The reverse direction follows in the same way from

integration. O
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Definition 1.3.8. Let P — X be a principal G-bundle and V 5 a connection on P. If the holonomy
group H of V 4 is isomorphic to a proper subgroup of G (i.e. H & G), then the connection is said

to be reducible. Moreover, a connection is said to be irreducible if it is not reducible.

The main interest of this thesis is to study irreducible monopoles and so we shall now focus
on these. Let P be a principal G-bundle and V 4 a connection on P as above. Given a vector
space V and a representation p : G — GL(V') with no trivial subfactors (i.e. there is no subspace
W C V where G acts trivially), one can construct the associated vector bundle V.= P x (g ,y V,
which comes equipped with an associated connection, also denoted V 4. Then, if s # 0 is
V 4 parallel section of V, the holonomy group H of V4 must preserve s and so be a proper
subgroup of GG. For a solution to 1.3.1 with irreducible connection, then V& # 0 and so
[Va®|2, (p-1(0,r)) Needs to be positive for some 7 > 0. If © is a calibration, then one can use

the formula HVA<PH%2(p_1( = fp—l(r) (®, F4) A ©, from proposition 1.3.4 and conclude that

0,7))
(®, F4 A ©) can not decay too fast. This argument proves.

Proposition 1.3.9. Let (X,g) be complete, noncompact with strict volume growth r* and (V 4, P)
a solution to equation 1.3.1. Suppose that

lim (®, F4 A O©)r¢~t = 0. (1.3.10)

r—00

Then V 4 ® = FANO© = 0. In particular, if (X, g) is asymptotically cylindrical and (P, FA N©) —
0 as r — oo, or (X,g) is asymptotically conical and for r large enough |(®,Fy N ©)| <

(n—1

cst.r™ )=¢, for some € > 0, the result applies.

We now introduce two notions in order to name the special case where monopoles also satisfy
VaP =0.

Definition 1.3.10. Let (X5, w, Q) be a Calabi-Yau manifold. A connection A on a bundle P is said
to be Hermitian Yang Mills (HYM) ifFf"0 =0and AF4 =0.

Definition 1.3.11. Let (X7, ¢) be a G manifold. A connection A on a bundle P is said to be a
Go-instanton if F4 N = 0.

From definition 1.3.8 and the discussion immediately below, if V 4® = 0 the connection V 4 is
reducible and the equations in example 3 respectively give: 1. flat connections on a 3 manifold,
i.e. F4 = 0. 2. On Calabi-Yau manifolds V 4 is an HYM connection, and 3. In G5 manifolds the
connection V 4 is a Go-instanton.

In general the rough conclusion that follows from proposition 1.3.9 is as follows. The faster the
volume of (X, g) grows, the less strict the decay conditions need to be for V 4® # 0. For example:
while for an asymptotically conical manifold it is enough to suppose that (&, F}4 A ©) decays at
most at rate 7~ (=1, for an asymptotically cylindrical one (®, F'4 A ©) cannot decay. Proposition
1.3.9 is analogous to proposition 1.3.4, but for noncompact manifolds. In the rest of the thesis there
will be further analogous results which combine this reasoning with more detailed information on

the asymptotic behavior of monopoles, in order to obtain other vanishing results.
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1.4 Monopoles on Asymptotically Conical (AC) Manifolds

Let (X, g) be an AC manifold as in definition 1.1.5 and equipped with © € Q"~3(X,R) as in the
previous section. As X is AC, we require that the closed form © is asymptotic to a form ©¢ on the
cone C(), i.e. for all j € Ny, V7 (0*0 — O¢)|c = O(r*~7), for some v < 0. Suppose there are
differential forms 6; € Q"~4(X) and 6, € Q"~3(X) such that

Oc = r""dr N Oy + 1730,

In the cases of interest, listed in example 3, one has
Example 5. 1. n=3case: © =1andso 61 =0and Oy =1

2. n = 6 case: Recall that the link of a Calabi-Yau cone is Sasaki-Einstein. In this case

© = Oy, i.e. the real part of a holomorphic volume form ). Since § is asymptotic to

Qc = r2(rn — idr) A Qr, where 1 is the contact form on the link and Q1 € Qg’o)(ﬁ, C)

pulled back to the cone and
Oc = Re(Qc) = r2dr ATm(Q7) + 7317 A Re(Qr).
As a side remark, note that since Q¢ is holomorphic on the cone QU satisfies OO0y =
3L (n — idlog(r)) A Qr.
3. m =T case: Recall that the link (X, gx,) has a nearly Kdhler structure (w,Q1,9) and
w2
Oc = Yo = —r3dr A Qs + 1"47.
1.4.1 Finite Mass Monopoles

This subsection defines finite mass monopoles and studies their asymptotics: see propositions 1.4.5
and 1.4.5. Let P — X be a GG bundle and suppose there is another GG bundle P, — X together with
an isomorphism of principal bundles ¢ Px\ ¢ & 7" P, such that the connection V 4 is asymptotic
to a connection Vg on Pag, i.6. 0*V 4 = Voo 4 a, with |p/ Viea| = O(r~17¢) for some & > 0.

Definition 1.4.1. Under the hypothesis above, a monopole (A, ®) is said to have finite mass if

lim |®| =m,
pP—>00

is finite at each end of X. The constant m € R{{ is called the mass of the monopole.

As monopoles always satisfy equation 1.3.1, in the rest of this section some consequences of

that equation and the finite mass assumption are studied.

Lemma 1.4.2. Let n > 2 and (X", g) be an AC manifold and (A, ®) a finite mass, irreducible
monopole. Denote by yi the smallest number such that |V a®| = O(p*~1) outside a compact set.
Then j1 > —(n — 2).
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Proof. Let B, = p~1(0,r), then since (A, ®) is a monopole V 4® = F4 A O, and the integration

by parts in proposition 1.3.4 gives the boundary term

2 . .

= < .

IVa®l72(p,) = lim 8E<¢, FAn®) < lim - (@, %V 49)|
Since V4® = O(p*~!) the term on the right is estimated as [(®, *V 4 ®)| < pH~1®| < mpH~!
and the volume of the cross sections grows like 71, so the limit above becomes ||V 4®||7, <
st limy oo r DW= So if 4 < —(n — 2), one concludes that V 4® = 0 and the monopole
would be reducible which is a contradiction. O

Lemma 1.4.3. Let (X, g) be AC and f : X — R™ be a smooth positive function, Af > 0, such
that [V f| = O(p*~7) forall j € N and all . < 0, for which f = O(p"). Also suppose there
is such a py < 0 with f = O(p"°) and that there is a constant ¢ > 0 with the property that
max,-1(;) [ < cming-1,y f. Then, for all sufficiently large R > 0, there are ca > ¢1 > 0, such
that

Proof. The first step is to prove the lower bound, which follows by a comparison argument. The
first thing to notice is that since (X, g) is AC, there is a compact set Bg C X and a harmonic
function G on X\ Bg with rate —(n — 2),i.e. G = O(r~("~2)). By possibly replacing G by G,
for small € > 0, one can suppose that inf ;5 f > sup,z,, G. Then, combining this with the fact
that both f, G tend to 0 at the ends of X and f is superharmonic, one concludes that f > G, on
X\K.

To prove the upper bound, let A® and A* denote the Laplacian on the cone and on the link
respectively. Since by hypothesis |V7 f| = O(p#~7) for all j € Ny, the inequality Af > 0 turns
into

ACf +O(r*=275) > 0,

where € > (0. Expand this using separation of variables

1 9 < n—laf
r -

1 Y —2—
- - _ > H €).
T 8r> + AR > 0@

Now, for each r € R integrate this over {r} x 9% with respect to the constant volume form

dvol g, and let

1
F(r) = / fdvol :/ f o spdvol,,,
(r) yn—1 (xS 9l{ryxs ()% gs

where s,.(z) = rx is the scaling map on the cone. The integration of the term A™ f vanishes since

Jiyxs A*(f o s,)dvolg, = 0 and so one obtains

1 a -1 aF —2—
- n - < 1 € i
=1 9r <r 87“) <O(r )
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Then there is a constant C, such that 7"”*1%—]; < C + O(r"~1+#7¢), Integrating this gives that
for large r one has F(r) < cor™ (=2 4 O(r#=%) for ¢y = —%. The hypothesis that for large r,
max,-1(;) [ < cmin,-1(,) f implies that a similar inequality holds for f.

Suppose that 1 — & > —(n — 2), then f = O(p"~¢) and going through the same arguments again
one proves that f(r) < cor™ 2 4+ O(r*~2¢). So one can iterate this procedure k times until one
obtains f(r) < cor" 2 + O(r*~*¢) with y — ke < —(n — 2). Moreover, one must also have

n—2)

¢z > 0 or otherwise one would get a contradiction with the lower bound f > ¢;p~( proved in

the beginning. 0

Proposition 1.4.4. Let (X, g) be AC and (A, ®) be a finite mass irreducible monopole, and let

m € Rt denote its mass. Then, there are positive constants cy, ca, such that on X\ K

C2

m2 — 4 <|®)?> <m? -

< (1.4.1)
pn—2

pn—2'
Moreover, |V 4| € L? and there is an ¥V o parallel Higgs Field ® over ¥ such that lim, ;0 ® =
D

Proof. Consider the function

U)::TRQ-—|¢W%

which satisfies lim,—ccw = 0, Ay® = 0 and so Aw = —A|®|> = 2|V 4|2, The problem
reduces to the setup of lemma 1.4.3 for the function w and the inequality 1.4.1 follows as a corollary
to this.

To prove that |V 4®| € L2, let xr be a smooth bump function which is 1 in Br and vanishes
on X\ Bag, (here B, = p~1[0,7]). Since (X, g) is AC the derivatives of the distance function p
are uniformly bounded and |V?xr| < ¢R~? for some constant ¢ > 0. Multiplying the identity
2|V 4®|? = Aw by xr and integrating gives

2/ XR\vAcby?:/ XrAW.
X X

The left hand side is greater or equal than ||V A<I>||%2( Br) and one can integrate the left hand side
by parts fX XrAw = fX Axgrw. Since |V?xr| < ¢R™2 and is supported in Bor\ B, while

0<w< cp_("_Q), one concludes that

IVA®l 725, < 62/ p P < CQ/QR pdp < C.
f R Bar\Br 2R* JR

This gives a bound on the L? norm of |V 4®| over any B, which is independent of R and so proves
that |V 4®| € L?. The existence of ®,, follows from the fact that (A, ®) solves the monopole
equation and V 4® € L2. Then, |p’ _IVQ¢| € L2 for all j € Ny and one can apply proposition
A.0.17 in the Appendix A, which gives the existence of . O

Proposition 1.4.5. Let (X, g) be AC and (A, ®) a finite mass, irreducible monopole. Let a =

©*V 4 — Vs be as in the discussion preceding definitions 1.4.1 and assume [a, D] =
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O(p~("=1=¢"), for some & > 0. Then, there is a section W, of gp.., such that (Oog, Uoy) # 0
and pulling back @, ¥, to X\ K

Voo
pn72

P =Dy + +O(p~ =2y,

for some €' > 0.

Proof. On X\ K one can write V4 = Vo, +aand a = O(p~17¢). Then
AP = AP0 + [ a, Poc] — 2 % [a A ¥V Poo] — *[a A [xa, Poo]],

and the first and third term vanish. The fact that (A, ®) is a monopole and [a, o] = O(p~ (1) =¢")
guarantees that [d* a, Poo] = d*_[a, Poo] = O(p~""¢'), hence the second and fourth terms have
rate O(p~("+<)). Write ® = @, + ¢ with |Vi¢| = O(p"*~*), for all i and some p < 0. Then
using the computation above 0 = AP = AP + App = App + O(p*”*d). Denote by AS,
the V connection Laplacian on the cone and pull back the equation A 4® = 0 to the cone. This
gives

AL +O(rH 2o =0,

for some ¢ > 0. The strategy for solving this is to use separation of variables. Write ¢ =
Yo Spec(AL) dxfr, where AZX £y = \f) are the eigenfunctions for the V, Laplacian on the link
>.. Then one obtains the following set of ODE’s

n —

. 1. A / /
Ox + dr = 5o = O(rmlr2e ey,

r
Up to a harmonic function on the cone, these can be solved for all A € Spec(AZ), with the
solutions ¢, having rate max{u — &', —(n+2) — &’}. If one takes the rate 4 to be optimal then one
must have 4 = —(n — 2). The irreducibility condition implies proposition 1.4.4 whose statement

can be written as
c1

pn—2
Then, since |¢|? is positive one concludes that (@, ¢) # 0 and decays at rate —(n — 2). Define
W, to be the leading term in p("~2)¢, i.e. such that ¢ = p~ ("W _ + O(p~("=2)—¢"), O

C2

n—2"

< «Ex7¢>_%‘¢F < -

Proposition 1.4.6. Ler (X, g) be AC and (A, ®) a finite mass, irreducible monopole under the
hypothesis of proposition 1.4.5 and V o, P, Vo the data determined by (A, ®) on ¥, then

1. If n =3 one has Foo = Voodvoly, with Voo Voo = 0 and (Pop, Vo) # 0.
2. Ifn> 3, then Foo N1 = Fio ANy = 0.

Proof. As usual, in the notation, the pullbacks by ¢ used to identify objects on X\ K with objects
on the cone (1, +00) x ¥ are omitted. Since (A, ®) is a monopole one must have F4 A© = *V 4P,
writing © = O¢ + (O — O¢) and recalling that |© — O¢| = O(r"). This, together with prop 1.4.5
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gives
FANO® = " AFiAdr NGy + 1" 3FA Ay + OV 2)
v
VA0 = (n—2)—=7r""dvoly + " 3dr A ([¥2a, Poo] + *x Voo Voo ) + O(r_(”_l)_g).

Tn—l

Equating both sides gives the following equations

Fant, = r ([*2&7 (I)oo] + *Zvoo\l’oo) + O(T—(TL—2)+V) + O(T_(n_2)_(n_3)_5)
FA A 92 = (TL — 2)T_(n_3)\l’ood’00l2 + O(,r.—(n—l)—g)'

Having in mind that k-homogeneous ¢-forms on the cone have rate O(r*~9) (Lemma 1.6 in
[CH13a]), the left hand sides are respectively O(r~("=2)) and O(r~("~1)). For n = 3 one has

61 =0, 02 = 1, and since a = O(r~17°) gives
Foo ANy = Uodvols, , VeeVUso = 0.

The case n > 3 immediately gives Fi.o A 6o = 0 by comparing decay rates. Moreover, now 6y # 0
and one needs to notice that v < 0. Moreover the hypothesis of proposition 1.4.5 also gives
rixsa, Poo] = O(r*(”*z)*sl), so that Fi.o A 07 = 0 as well. O

1.4.2 Boundary Data For Finite Mass Monopoles

Based on propositions 1.4.5 and 1.4.6 this subsection abstracts, in definition 1.4.7, the boundary
conditions determined by finite mass, irreducible monopoles on AC manifolds. Then, one goes on
to prove some more detailed vanishing results stated in proposition 1.4.9 and corollary 1.4.11 in the

particular case of G = SU(2).

Definition 1.4.7. The boundary data of a monopole is defined to be a G bundle P, over ¥, a
reducible connection V o, on Py, and a V oo-parallel Higgs Field ® .. Moreover, in the case n = 3,
one further assumes there is Vo such that (P, Vo) # 0 and

Foo = Vodvols, , VoW =0,
while for n > 3 one assumes that

Remark 1.4.8. Propositions 1.4.5 and 1.4.6 prove that such boundary data is precisely the one
determined by an irreducible, finite mass monopole (A, ®) with [a, By = O(p~ =D~ for
some & > 0. In other words, given such a monopole (A, ®) with (V », ) the connection and
Higgs field to which it is asymptotic. Then, these do satisfy the required conditions to be the

boundary data of a monopole as in definition 1.4.7.
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Example 6. I. Case n = 3: The data is given by the two parallel Higgs Fields ® ., V., such
that (oo, Vo) # 0 and a connection Vo with curvature Fo, = U dvoly. Moreover,
the fact that VoV = 0 can also be stated as d5 Foo = 0. So one can equivalently
consider a connection with Yang-Mills curvature F, and a parallel Higgs Field @, such
that (P, Foo) # 0. Also notice that since Voo ®o = 0, this immediately implies that
0=dooVoocPoo = [Foo, Po], L. [Voo, Poo] = 0.

2. Casen = 6: Here 3 comes equipped with a Sasaki-Einstein structure, and recalling example
5, the connection V o, must be such that FSO’Q = 0and 1¢Fo = 0, where £ denotes the Reeb
vector field. Proposition 3.1.28 in chapter 3 proves that (complex) Calabi-Yau monopoles
have an even more restrictive asymptotic behavior. In this case V o, must be a basic HYM

connection, see definition 3.1.29, together with remark 3.1.30.

3. Case n = 7: In this case X has a nearly Kdhler structure (w, 1, 2) and the connection
V oo must be HYM with respect to it, i.e. F N Q1 = F A w? =0.

Proposition 1.4.9. Let (X, g) be AC and (A, D) a finite mass monopole with |A — Ax| =
O(p~("=2=¢"), for some ' > 0. Denote by [i*©] € H"3(%,R) the cohomology class obtained
by restricting [©] € H"3(X,R) to any cross section along the end X\ K. Then,

Bl = /E (@oo, Fao)] U [i*6).

In particular; if [(®oo, Fxo)] U [i*0] = 0 € H" (X, R) or (X, g) has rate v < —(n — 3), then
VaA® =0, so A is reducible and Fo4 N © = 0.

Proof. Since (A, ®) has finite mass proposition 1.4.4 guarantees |V 4®| € L2. Moreover, it is
a monopole and so E§( = ||V A(I)H%Q (x)" Hence, the sequence EL _, is bounded, monotone and

increasing, the limit as » — oo exists and

E% = lim FL = lim
r—00 T r—oo [9n
OB,

(@, Fa) N7,

where the formula 1.3.4 for the intermediate energy was used and %, : OB, — X denotes the
inclusion. Write ® = &, + ¢, V4 = Voo +aand © = O¢ + np with a = O(p_(”_g)_sl) and
n = O(p”). Then, using proposition 1.4.6

(B, F4) N O = (Bog, Fuc) Ay + O(p~ 1),

for some ¢’ > 0. If one supposes v < —(n — 3) the first item is also O(p~(»~D~¢") and so the

limit above vanishes and E§( =0,ie. F'4 ANO =V 4® = 0 and the connection is reducible. [

Remark 1.4.10. The connection A, is reducible to a subgroup H C G, hence induced from
an H-principal bundle (). One can then extend @, 10 Pooy = Qoo X1 G in a G-equivariant
way. Fixing a point p € P, one can identify H with a subgroup of the centralizer of p =
O (p), and the curvature Foo € Q?(Pso,b), i.e. takes values in the Lie algebra of H. Taking
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a Cartan decomposition starting with j1 € tc, gc = tc ® Doy (u)=0 9o D Do) z0 Gar With
hbe =tc® ®a(u):0 9o Then H acts on @a(u#o 0o via the adjoint action, since if a(u) = 0 and
B(p) # 0, then [ga, 838) C Ga+p and (o + B)(p) # 0. One can then consider the associated vector
bundle E = Qoo X PO ()0 Ba equipped with the connection induced by A.. Its curvature
F acts on a section ¥ as Fso (V) = [Fo, Y] and (P oo, Fio) denotes a combination of curvature
components. The Bianchi identity and V o ® o, = 0 imply that (P, Fio) is a closed 2-form and so

determines a cohomology class in X.

Corollary 1.4.11. Assume the hypothesis of proposition 1.4.9 and that G = SU (2). Then Py and
A are reducible to a complex line bundle L — Y. and

IVa®|7: = 4mm{ei(L)U[i*6],[2]), (1.4.2)

where m = |®| € R is the mass. Moreover, if c1(L)U[i*©] = 0 or (X, g) has ratev < —(n—3),
then V 4P = 0, so it is reducible and F'4 N © = Q.

Proof. If G = SU(2), then it follows from SU(2) representation theory that gp, @ C = C ¢
Lo ® L_y,and ¢1(Ly) = —c1(L—q), i.e. L_o = LY. Alternatively, one constructs the bundle
E = P Xsu(2) C? associated with the standard representation. This splits into eigenspaces for
& as E = L& L*, where L? = L, and since V Ao, o = 0 the connection V 4__ is reducible to

a connection on L. In the end, one obtains

; 0 F, 0
o= " T ) F=("" , (1.4.3)
0 —m 0 —Fy

with F, € —2micy (L) € H*(X, —2miZ) and | P | = m, so

[Va®[3: = lim (B, F4) AO = 2i lim Fr, AO

r—r00 aBT r—00 aBT

= 4dmm(c1(L) U O, [X]).

O

Example 7. In the case of R3, finite mass monopoles have finite energy and |F 4|? is integrable, i.e.
the curvature is in L?. Let (V 5, ®) be a charge k and mass m monopole on R3. This has finite

energy EE = 2mwmk. The formula from corollary 1.4.11 reads

47rmk:/ (Foo, @),
S2

in this case. In fact, Fo = kgﬁdvolgz and so [Fr) = c1(H**) = key(H?), where H denotes the
Hopf line bundle over S?.



Chapter 2

Monopoles in 3 Dimensions

This chapter focuses on the study of the usual monopole equation in 3 dimensions, also known as
the Bogomolny equation. It starts off in section 2.1 with some preliminaries on the Bogomolnyi
equation. Namely the study of the linearized operator in subsection 2.1.1 is essential to show it
satisfies the necessary conditions to fit in the setup of chapter 5. Section 2.2, studies spherically
symmetric monopoles on R? equipped with a spherically symmetric metric g. The main theorem
2.2.1 of that section completely classifies these invariant monopoles under some conditions on g.
Roughly, these monopoles are shown to have finite mass, which is shown to completely classify
them. Then one studies the large mass limit and proves that in a small ball around the origin,
these large mass monopoles approach (after rescaling) a BPS monopole (the unique mass 1 and
spherically symmetric monopole for the Euclidean metric). Outside such a ball and also in the large
mass limit, one proves that symmetric monopoles on (R?, g) converge uniformly on compact sets
in R3\ {0} to a reducible Abelian monopole (which shall be called g-Dirac monopoles by analogy

with the Euclidean Dirac monopoles).

2.1 Preliminaries

Let (X3, g) be a 3 manifold and P — X a G = SU(2)-bundle. Denote the adjoint bundle of P
by su(P) = P x4q 5u(2) and refer to its sections as Higgs fields. Recall that a pair (A, ®) made
of an SU(2) connection A on P and an Higgs field ® is said to be a monopole if it satisfies the
Bogomolny equations

VaA® = xFy, (2.1.1)

where F4 is the curvature of A and x is the Hodge operator of the metric ¢g. For 3 dimensional
monopoles there is a vast literature, see [JT80] and [AH8&8] for the case of monopoles in the
Euclidean R3. Moreover, the results of the first chapter 1 give a detailed study of the boundary

conditions and energy identities and this chapter will refer to these.

31
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2.1.1 Linearized Operator

Let (V 4, ®) be a connection and Higgs field, which need not satisfy the Bogomolny equations. For
such a configuration the quantity ey = *F4, — V 4® may be nonzero. The linearized Bogomolny

equation fits into a sequence
Q(su(P)) L 0l (su(P)) & Q(su(P)) B Q' (su(P)), (2.1.2)
with di€ = (=V A€, —[®, £]) and
dy(a,¢) = #daa—Va¢— [a,®]. (2.1.3)

Their formal adjoints are given by dj(a, $) = —Va + [®, ¢] and d5a = (xdaa + [a, P], =V a).
If (A, ®) is a monopole then the sequence in 2.1.2 is actually an elliptic complex and so the operator
D = dy @ d} acting on sections of (A! @ A%)(su(P)) is elliptic. Its formal adjoint is D* = d3 @ d;

and these can be written as

p={* V) e, p*=D—2,].
—dy 0

Lemma 2.1.1. (Standard Weitzenbéck) Let ¥V 4 be a connection and u € Q' (su(2)) @ Q°(su(2)),
then
Aqu = V5V qu + FW (u) + Ric" (u). (2.1.4)

Where FW (a, ¢) = (¥[*Fa A a],0) and Ric" (a, $) = (Ric(a),0).
Lemma 2.1.2. (Monopole Weitzenbock) Let (V 4, ®) be a connection and an Higgs Field. Let

u € Q' (su(2)) @ QV(su(2)), then

DD*u = V4Vau — [[u,®],®] + Ric" (u) + &} (u) (2.1.5)
D*Du = DD*u+2(V4®)V (u). (2.1.6)

Where bV (a, ¢) = (x[a A b] — [b, @], [(b, a)]) and b is either eg = *Fa—V a®, Ric or (g+2d 4 ®).

If (A, ®) = (Ag+a, ®g+¢) for suitable u = (a, ¢) € Q! (su(P))®Q°(su(P)) is a monopole,
then
g0+ D(u) + Q(u,u) =0, 2.1.7)

x[a A a] — a, (;3])

where the operator D is as above and Q(u, u) = ( 0

2.1.2 Some Further Analytical Remarks

There is a scale invariance in the Bogomolny equation which is inherited from the conformal

invariance of the ASD equations in 4 dimensions. The precise result is
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Proposition 2.1.3. Let (V 4, ®) be a monopole on (M3, g), where M3 is a Riemannian 3 manifold.
Then (V 4,61 ®) is a monopole for (M?,§ = 6%g).

Proof. In general, if w is a k form and % the Hodge operator for the metric §, then %w = 6" 2% % w
(n = 3). This implies that ¥*F4 = 6! % F4 = 61V 4®, and the result follows. O

Recall from definition 1.3.1 that in the 3 dimensional case both the Energy and the Intermediate

Energy are equal and defined on a precompact set U C X as
1
Ey = 2/ |V 4® |2 + | Fal?. (2.1.8)
U

Proposition 1.3.2 computes its Euler Lagrange equations d F'y = [da®, ®], Ay, ® = 0, which

one can check monopoles do satisfy.

Proposition 2.1.4. Let (A, ®) be a monopole, then the following hold

1. |®|? is subharmonic and so has no local maxima, in fact A|®|?> = —2|V 4®|%. Moreover,
one can also compute that A|®| = |®|~! (|V|®||? — |V a®[?), which is < 0 by Kato’s
inequality.

2. The energy over a precompact set U with smooth boundary is given by the flux |, o0 ( @, Fa).

Now let (X, g) be an AC 3 manifold as in definition 1.1.5, with asymptotic cone C'(X). The
next two results will be used later in this chapter for the construction of monopoles on AC 3

manifolds.

Lemma 2.1.5. Let V 4 be a metric compatible connection on a Hermitian vector bundle E over an
AC manifold (X3, g). Then, for all o € [1, 3], there is a constant c () > 0, such that

1
dvol,)\ 2 2
( / |p%u2“‘§,g> < ex(0) ( / |vAu|2)
X P X

for all smooth and compactly supported section u. In particular for o = 3,1 one has respectively

lullf, < exllVaul?, and ||p~ ullf, < exllVaull?,.

Proof. Kato’s inequality |V|u|| < |V 4u
The proof follows from combining this with corollary 1.3 in [Heil I]. O

, holds pointwise for all irreducible Hermitian connections.

Lemma 2.1.6. In the conditions of lemma 2.1.5. Let u be a section such that V qsu € L2, then
there is a covariant constant limit u|y, € I'(X, E|x). Moreover, on the cone C(%;) over each end
there is an inequality

Il = sl 2 < IV .

2

Proof. This lemma is a particular case of propositions A.0.16 and A.0.17 in the Appendix A. [J
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2.2 Symmetric Monopoles on R?

Let g be a spherically symmetric metric on R3. Then, on R?\{0} = RT x S?, one can write
g = dr® + h*(r)gs2, (2.2.1)

with h(r) = r + hgr3 + ..., in order for the metric to be smooth and have bounded curvature at
r = 0. This section studies spherically symmetric monopoles on the trivial SU(2) bundle over
(R3, g). Under suitable conditions on h spherically symmetric solutions are constructed and these
solve a system of nonlinear first order ODE’s for two real valued functions a, ¢. These ODE’s have

a singularity at » = 0 and are given by

: 1
¢ = 2—]12(@2—1) (2.2.2)

@ = 2¢a. (2.2.3)

together with the conditions a(0) = 1,¢(0) = 0 and that a grows at most polynomially in 7,
ie. limy o0 r~%q = 0, for some k € Z. The first two of these are necessary and sufficient
to guarantee the solution extends over 7 = 0 (they guarantee the curvature and the Higgs field
are bounded) [SS84]. To understand the third condition, recall that there is a unique spherically
symmetric connection V. on the Hopf bundle over the S?. Then, one must require that over the 2
sphere at infinity, the connection is asymptotic to the reducible connection induced by V.. Using
any metric with polynomial volume growth (the Euclidean metric for example) in order to compare
connections certainly implies the condition that ¢ must grow at most polynomially. In fact, for the
applications in the current thesis, the metric g itself has polynomial volume growth and requiring
that the connection is asymptotic to V, with respect to g does imply that there is k& € Z such that

lim, 4 o0 r~%a = 0.

Notice that in case ¢ does not explode at a finite r, then sign(a) is preserved by the evolution.
As changing a by —a keeps the equations invariant there is no loss in restricting to the case a > 0.
All the results of this section can be interpreted as properties of this system of ODE’s and that is in
fact the relevant point of view for the applications in the current thesis. The moduli space My, of
spherically invariant monopoles on (R3, g) modulo the action of the spherically symmetric gauge

transformations is defined by
Miny = {(a, ®) ’ solving 2.2.2 with a(0) = 1,6(0) = Oand ez lim _r~¥a = o}. 2.2.4)
r—+00

The metric g will be called non-parabolic if its Green’s function G is bounded above, then it is

uniquely defined by
1

G(T) = —/W(T)dr, 'rli{goG:O

It will be shown that spherically invariant solutions to the Bogomolnyi equations actually have
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bounded Higgs field ® and a well defined mass

m(A,®) = lim [(r)].
Recall proposition 2.1.3, which contains a very important scaling property of the Bogomolny
equations and denote by ss(z) = dx the scaling map on R3. This can be used to map a monopole
(A, ®) for the metric g into a monopole s} (A, §®) for the metric 6~ 2s%g. In the case where g = gg
is the Euclidean metric there is a unique mass 1 and charge 1 monopole known as the BPS

ABPS’ (I)BPS)

monopole [PS75], this is spherically symmetric and denoted by ( . Moreover, the

Euclidean metric is scale invariant and so from (ABF5 ®BPS)

one can construct a whole family
of monopoles (ABPS ®BPS) = s* (A, m®), related by scaling and parametrized by their mass

m € RT. The solutions constructed in this chapter are modeled on these and the main result is

Theorem 2.2.1. Let g be spherically symmetric, real analytic and non-parabolic. Then, My, is

nonempty and consists of real analytic monopoles. Moreover, the following hold:

1. For all monopoles in My, the Higgs field is bounded and ®~1(0) = 0 is the origin in R>.

Moreover, the mass is well defined and gives a bijection

m: Mip, — RT.

2. Let {(Ay, ‘I)A)}AG[A,Jroo) € My, a sequence of monopoles with mass A\ converging to +oo.
Then, for all R > 0 there is a sequence n(\, R) converging to 0 as \ converges to 400, such

that the rescaled monopole
sy (Ax; @)

converges uniformly with all derivatives to the BPS monopole (ABPS ®BPS ) in the ball of
radius R in (R?, g).

3. Let {(Ax, @) }ac|A +o0) be the sequence above. Then the translated sequence

cI>A>
Ay, By — A—= ),
(A ST

converges uniformly with all derivatives on (R*\{0}, g) to a reducible monopole made of

two copies of the g-Dirac monopole (AP, ®P = G) with zero mass.

Remark 2.2.2. The above statement is not at all surprising and in fact it is possible to prove that if
in the complement of some ball h?(r) > cr*e, for some c,e > 0 (g is non-parabolic in this case).
Then, there is a spherically symmetric finite energy solution to the Yang-Mills-Higgs equations
d*Fa = [Va®,®], Ag® = 0in (R3, g) with bounded Higgs field. This can be achieved by direct

minimization of the spherically invariant Yang-Mills-Higgs functional on (R3, g).

The proof of theorem 2.2.1 occupies the rest of this chapter, which is organized in the following

way. In section 2.2.1 the reduction to an ODE of the Bogomolny equations in (R?, g) is outlined
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and an explicit formula for the BPS monopole with the Euclidean metric is given. For general
spherically symmetric metrics g, the solutions to the ODE’s 2.2.2 are not known. Besides these
ODE’s being nonlinear, there is a singularity at the origin, » = 0. The initial conditions one would
like to give at 7 = 0 do not satisfy the Lipschitz hypothesis required by the standard existence and
uniqueness theorem for ODE’s. It is then convenient to go back to elliptic PDE theory and obtain a
solution on the ball Bs(0) which can be used to give initial conditions at the Lipschitz point r = 0.
Instead of solving the monopole equations for the metric g in the ball By, use the scale invariance
of the Bogomolny equations stated in proposition 2.1.3 in order to solve the equations for the metric

gs = 6*23§ g on its unit ball. Then, one obtains

Proposition 2.2.3. For each m € R™, there is A(m) > 0, such that for each § < A(m) there is a
spherically symmetric, real analytic monopole (flfn, éfn) for g5 in B1(0).

This is basically proposition 2.2.8 in 2.2.2. Then given a monopole (Afn, i)gl) for gs in B1(0),
proposition 2.1.3 gives that (A% , ®° ) = S5-1 (AS,,61®9 ) is a monopole for g on Bs(0). A first
step towards the proof of the first item in theorem 2.2.1 is achieved by applying the ODE analysis in
section 2.2.3 to the solutions constructed on B;(0) which provide initial conditions for the ODE’s

at 7 = 4. This analysis gives,

Proposition 2.2.4. There is a one parameter family of spherically symmetric monopoles on (R3, g).
Moreover; these can all be obtained by extending the monopoles (A3, ®? ) on (Bs(0), g) for (m, d)
such thatm € R™ and 0 < § < A(m).

Proof. In Lemma 2.2.12 a Taylor expansion for solutions of the ODE is obtained. It gives a

recursive formula which depends only on 1 parameter ¢(0). The lemma does not address the

question of convergence and there are basically 3 different possibilities.

1. Case gb(()) = 0, is the easiest one. In this case there is indeed a unique solution given by
a = 1 and ¢ = 0 and recovers back the flat connection. In terms of the notation in lemma

2.2.12 note that this corresponds to v = 0.

2. Case qﬁ(()) > 0, for which there are no solutions, as proved in section 2.2.3, corollary 2.2.16

in terms of the function v = log(a?) defined in the beginning of section 2.2.3.

3. Case gb(()) < 0, this is the case for which the PDE analysis shows existence of solutions. If
one can find in the 2 parameter family constructed by the analysis a solution for each value
of $(0) < 0. Then, lemma 2.2.12 gives uniqueness of solutions for each value of ¢(0) < 0
and makes of this a genuine global coordinate for M.

To proceed one shows that the PDE construction of the solutions (A% , ®% ) for (m, §) with
m € Rt and 0 < § < A(m) does indeed give configurations with all negative values of ¢(0).
This is the reason why one uses two parameters in the construction of monopoles, i.e. with the two
parameters (m, d) it is easier to tune the properties of the monopole constructed than with only
one parameter. Estimate 2.2.23 in lemma 2.2.13 gives bounds on ¢ € [I(m, d), J(m, 8)]. Then,

lemma 2.2.14 gives two sequences of (m,, d,,). The first makes the lower bound I,, = I(my,, ,,)
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get as close to zero as one wants, while the second one makes the upper bound J,, = J(my,, 6,,)
get as close to —oo as one wants. The fact that all intermediate values are obtained follows from

continuity. O

Proposition 2.2.5. Let R > 0, then there is a sequence 6 converging to zero, such that the monopole
5% (A‘;R, %@%) converges uniformly with all derivatives to (ABTS ®BP3) on the Euclidean ball
R

Br(0).

Proof. One needs to prove that for all £ > 0, there is J, such that

. 5
157 (A %) — (427,857 o < =

In a first step one can consider s} (A‘;%, 5@%) = (AER, é%), then the estimate in proposition 2.2.8
gives that for all € > 0, there is A(R, €), such that for § < A(R,¢)

Isi (A%, 00%) — (AR"S, @57 oms,) < e,

for the norm induced by the Euclidean metric. Since the Euclidean metric is invariant by scaling and
(ABPS @BPS) = % (ABPS R®BPS) one can scale everything by R~! and obtain the desired
result for 6 = A(R, ). O

The next proposition will finish the proof of both the first and second items in theorem 2.2.1.
The first item will be immediate from the statement and for the second item one needs to combine
the statement with the previous proposition 2.2.5, in order to match those monopoles with the large

mass limit.
Proposition 2.2.6. For all monopoles in My, the mass is well defined and gives a bijection
m: Min'u — R+.

Moreover, fix R > 0 and let 6 — 0, the sequence of monopoles (A5R, @53) previously
constructed has mass m(J) — +oc.

Proof. One already knows that M;,,, = R™ corresponding to each value of —¢§(0) and this can
be used to topologise My, as a 1 dimensional manifold. The next step one needs to take care
is in showing that the map m is surjective. From proposition 4.3.19 and its corollary 2.2.20
one knows that for all 0 < ¢ < g9, m > 0 and § < A(m, ) there are bounds m (A%, &) €
[®_(m,e), Py (m,e)], given by

O (m,e) = % (mcoth(m) — 1 — 26) , & (m, ) = % (m coth(m) + 2 + G(5)) + 2G(5).

Take both m, € converging to zero in the same way as in the first sequence in lemma 2.2.14 with
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en = my, with o < 1. Then, it is straightforward to check that

lim |®4(my,,e,)| =0.
mp—0
The other extreme can be made using the second sequence in lemma 2.2.14, this keeps m fixed but

sends € — 0, moreover the choice of 6, < A(m, &) is such that 5 still converges to 0. Then
lim [®_(m,ep)| = +o0,
en—0

which gives the surjectivity of of the mass onto the positive real line. This second sequence also
establishes that the mass of the monopoles (A‘sR, <I>5R) diverges. Just take m = R fixed and §
converging to zero as it was just done. The last step is to show that the derivative of the map
m is everywhere injective. As m is a map between 1 dimensional manifolds, this together with
the surjectivity proved above imply the mass is actually a diffeomorphism. Let (A4, ®) € M,
then any v € T4 ¢)Minv C Q' & Q°(R3,5u(2)) is represented by two functions (b,1)) of r
solving the linearized monopole ODE’s. This mean that b(0) = +(0) = 0 and they solve 1) = g—’g,
a = 2¢b + 2a1). Differentiating the first of these equations and using the second to substitute for b
gives a second order ODE for 1

¥ + (20, (log(h)) — 4¢) v — 2a’¢ = 0. (2.2.5)
Solutions to this satisfy a maximum principle

e If ¢ has a maximum at M, then ¢)(M) < 0 and ¢»(M) = 0 and so ¢(M) < 0,

e If 1 has a minimum at mn, then ¢)(m) > 0 and ¥(m) = 0 and so ¥ (m) > 0.

The derivative of the mass is
dm(v) = 21p(c0) : R — R.

If v is in the kernel of dm, then 1)(cc0) = 0. The argument using these maximum principles is as
follows. If ¢/(0) = 0, one concludes that 1) must have a positive maximum or a negative minimum.
Both of these hypothesis are impossible due to the maximum principle unless if ¢» = 0 and hence
also b = 0, which gives v = 0. O

The last item which remains to be shown is that in the large mass limit after bubbling a BPS

monopole at 0, one is left with a g-Dirac monopole on the exterior.

Proposition 2.2.7. Let {(Ax, ®2) }ac[a +oc) be a sequence of monopoles with mass A — oo. Then

D)\
Ay, Py — N5
( A Py )\‘(I))\‘>7

converges uniformly with all derivatives to direct sum of two g-Dirac monopoles (AP ®P = G)
with mass 0, on (R3\{0}, g).

the translated monopole sequence
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Proof. Working in a fixed gauge to this amounts to prove that given R > 0 and € > 0, there is a A
such that [|(®) + A/2T1) — GT1| g [R,4oc) < €. For this one needs to study the function

A
Y AN
u < 5+ > ®x,s
2
where ¢ is the scalar such that @5 = ¢, T}. Then @ = — 535 — 535 (a3 — 1) = — 5%, which shows

that & < 0. This, together with lim,_,,, u = 0 can be integrated to give

u(r) < G(r) sup ai(t).
t€[R,+00)
Moreover, G is bounded in [R, +00) and a3 is decreasing, so that a3 < a3 (R). Now it is time
to pick &, m such that ay = a2 . This may be done with §(\), m()\) as in the second sequence in
lemma 2.2.14, but such that such that m(\) also converges to oo (see the proof of lemma 2.2.14).
Then 6(\) converges to 0 and as a3 is decreasing a3 < a3(d) ~ me™™ by the estimates in lemma

2.2.13, which converges to 0. O

2.2.1 The SU(2) Invariant Bogomolny Equations

As R3\0 =2 R, x S?, one pulls back the homogeneous bundle

from S? = SU(2)/U(1). Where )\, : U(1) — SU(2) is the isotropy homomorphism given
by taking A (e'®) = diag(e?*®, e~**), for k € Z. Let Ty, Ty, T3 be a basis of su(2), such that
[T;,T;] = 2€45 Tk, and w1, wo, w3 the dual coframe. Let h = T and m = (T, T3), this splitting
equips the Hopf bundle SU(2) — S? with an SU(2) invariant connection whose horizontal space is
m. This induces a connection in each P, known as the canonical invariant connection. It is encoded
by the 1-form A§ = KTy @ w! € Q1(SU(2),su(2)). By Wang’s theorem B.0.21, other invariant
connections differ from it by morphisms of U (1)-representations (m, Ad) — ((T»,T3), Ad o \y).
Invoking Schur’s lemma these vanish for all £ # =£1, and are isomorphisms for k = +1. Suppose
k =1, then
A=A+ a(r) (T ® W + T3 @ w?),

with @ : Ry — R. The curvature of such a connection is given by F4 = 2(a® — 1)T1 ®
w? 4+ a(Th ®dr Aw? + T3 @ dr Aw3.). For each r € RT an invariant Higgs field ®(r) €
Q°({r} x SU(2),5u(2)) must be a constant in the trivial component of the U(1) representation
(su(2),Ado \),ie. & = ¢(r) 11, with ¢ : Ry — R. Its covariant derivative V 4® with respect to
the connection A is V4® = ¢T1 ® dr + 2a¢ (Tr ® w® — T3 ® w?). The metric 2.2.1 on R* x S?
can then be written as g = dr? + 4h?(r) (w2 ® wa + w3 ® w3) and is invariant under the SU(2)
action, i.e. spherically symmetric. The Bogomolny equation *V 4® = F4 turns into the ODE’s

2.2.2 and 2.2.3 and explicit solutions to these are known in two different cases.
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First, and most important here is the Euclidean case h(r) = r. Some special solutions are the
flat connection |a| = 1 and ¢ = 0 and the Dirac monopole with a = 0 and ¢ = m — %, form e R.
For a # 0, the general solution to the ODE’s is

1/1 C Cr
Bps _ -~ (=-__ Bps _ YT
ocn =5 (r tanh(Cr+D)> > 9CD = Gnh(Cr + D)’ (2.2.6)

The solutions with D = 0 and C' = m < oo are the only ones that extend over the origin, giving

rise to irreducible monopoles on R3. These are the so called BPS monopole (a2P% ¢BF%) and

first appeared in [PS75]. For small r

2 4,3 2,.2
BPS mer  mor BPS mor ™m
= —— e = 1—
G (1) s T o0 toom (r) 5 T 360

47,4

while for large r

275y = =4 (m =)+ 0) a5 = Ofare

In the hyperbolic case h(r) = sinh(r) and there is also a one parameter family of monopoles

parametrized their mass m € R™ and given by

() = 1 ( 1 m+ 1 _ (m+ 1) sinh(r) 2.2.7)

~ 2 \tanh(r)  tanh((m + 1)7")) s am(r) = sinh((m + 1)r) "

In both cases the parameter m is the asymptotic value of the Higgs field at oo, i.e. the mass of the

monopole.

2.2.2 PDE Analysis

The metric g5 = _283 g on its unit ball can be written as
g5 = dt* + hg(t)gs2

where ¢ € (0,1) is the geodesic coordinate of the new metric (i.e. 6t = 7 o s5) and h3(t) =
t? + 62Gs(t), with G an analytic function such that Gg—f) can be bounded independently of d.
This changes the problem of solving the equations in a small ¢ ball to that of solving the equations
in a unit ball but with a varying metric g5, which is a spherically symmetric perturbation in § from
the Euclidean one. So one needs to solve xsF'4 — V 4P = 0, where *; is the gs-Hodge operator.
For each m € R consider the mass m Euclidean BPS monopoles [PS75], (AZPS ®BP9), Their
error term
en, = %5 Fymrs — V 48rsOFT% = O((0m)?),

is small and vanishes for § = 0, where the metric is Euclidean. The idea is to use these as
approximate solutions and search for a solution of the form (A9, ®0 ) = (ABPS ®BPS) 1 (b, ),
with v = (b, ) a section of (A' ® A°) ® su(2)). The Bogomolny equation looks like a first order
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quasilinear PDE and
P(u) = e§" + da(v) + Q(v,v) = 0, (2.2.8)

where Q(v,v) = x[bAb]— [b, 7] is a quadratic 0 order term and the linearized Bogomolnyi equation
as in formula 2.1.3. Search for a solution of the form v = dju, then the new problem is to solve
P(d%u) = 0, and a first step to do this is to find an inverse for dad?. This can be achieved by further

requiring a boundary condition giving rise to an elliptic problem,

& + dody(u) + Q(dsu, dju) = 0, (2.2.9)
u]aBl(O) = 0. (2.2.10)

The claim is that the Dirichlet boundary allows inverting dad5. This follows from a Weitzenbock

formula, which at 6 = 0 is
dgd;u = v*AgpstgPSU — [[U, @ﬁPS](bzPS] ;

acting on su(2) valued 1 forms. Then dadj at § = 0, together with the boundary condition
ulpp, = 01is an elliptic, positive and self adjoint operator. As it is self adjoint it has index 0 and
the boundary condition and positivity show it has zero kernel. So at § = 0, the unique solution is

u = 0 and the linearisation of P(d5u) is dad; which has a bounded inverse
L:CRe — CM2e,

The Implicit Function Theorem applies and for each m € R there is A(m), such that for all
§ < A(m), there is a small solution ud, of 2.2.9. Since 9, and the metric are analytic, elliptic
regularity guarantees that ugl is itself analytic, see sections 5.8 and 6.7 of [Mor(8]. This result can

be improved to come together with useful estimates which are stated in the following

Proposition 2.2.8. Let m > 0, then for all positive ¢, there is A(m,e) > 0, such that for

§ < A(m,e), the solution u?, is the unique one satisfying

[dud,||ce < e. 2.2.11)

)

o is real analytic and for a bound in the C* norm it is sufficient to take A(m, e) =

1 - 5 1 * * 1«
P mm{ T LT TETTET }, where ||d5||, | L|| denote the norms of the operators di : CH% —

CY and L : OO — C%°,

Moreover, u

To prove proposition 2.2.8 one uses an alternative formulation to the Implicit Function Theorem
via interpreting 2.2.9 as a fixed point equation and making use of the following lemma. It is
proved by using the contraction mapping principle and keeping track of the norms in the iterations

converging to the solution, see lemma 7.2.23 in [DK90].

Lemma 2.2.9. Let B be a Banach space and q : B — B a smooth map such that for all u,v € B

lg(w) = q() | < & (Jull + lo]]) lu = o],
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for some fixed constant k (i.e. independent of w and v). Then, if ||v] < mik there is a unique
solution u to the equation
u+q(u) =, (2.2.12)

which satisfies the bound ||u|| < 2||v]].

This is applied to prove proposition 2.2.8 as follows. Let B be the space of C>“ sections of

A B;(0) vanishing at the boundary and apply L to the left of P(d5u) = 0, this equation is now the
form of 2.2.12

u+ LQ(dyu, dyu) = —Le’

m

and ¢(u) = LQ(d5u, d5u) does satisfy the hypothesis of lemma 2.2.9 as shown below

I1LQ(dyu, dyu) — LQ(dyv, dyv)||c2e = [LQ(d2(u + v), da(u — )| g2
cst.[| L[| dz(u + v)l|coa l|dz(u — v) [ co.e

lq(u) = q(v)]|c2.a

IN

IN

est|IL[ld3]1* (Jullcza + lvlleze) llu = vllcza

Sothat k = cst.| L||||d}||>. Then, the lemma applies for || Le®, || co.« < cst.k™1, since ||Le, ||c2.a <

I L||[|€2,||co.o it is enough to guarantee that
legallcoe < est-(ILI]ld3) 7>, (2:2.13)

and in this case there is a unique solution u?, satisfying the estimate ||ud || c2.a < cst.||Led, ||c2.a.
Proposition 2.2.8 is proven by showing that given £ > 0 it is possible to make ||d}uS,||c1. < €.
Since

ld5ugllcne < N5l lullcee < est.lld3II LIl lem o,

it is enough to make § < &(m, ) small enough so that ||€2, || co.. < e||d3||~!||L||~". Having in
mind that one still needs to guarantee the estimate 2.2.13 holds, one concludes that ||, || 0. needs

to be small enough so that
lemllcoe < est.min{|[ L]~ 5] e, llda] 2 )I L] 2} (2.2.14)

Lemma 2.2.10. The estimate ||€0, || co. < cst.m?5? holds.

Proof. For § # 0, the error term does not vanish and is given by

2 1 t2
e0 = #Fpp — Vn®§ = ‘I’"TQ <h2 - 1) T\ @ dt. (2.2.15)
1)

Moreover, the point-wise norm of the above quantity is

1—a?(t) ,|Gs(t - |Gs(t
leo] < 2t;”( )52’ ;52( ) + 0(6%) < 6% sup <|¢>m|‘ iQ( )‘) )
t€(0,1]

Since as remarked at the beginning of this subsection % can be bounded independently of § on
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can just use the explicit formula for ¢, and compute sup; ¢ 1] \qﬁm\ = ’%2 the result follows. In

fact, it is easy to see that this also holds for the C'*-norm and so for all C%® norms with e < 1. [

Putting this together with equation 2.2.14 finally gives that is is enough to set 6 < A(m,¢),
with

1 € 1
A(m,e) = — min » TR ) (2.2.16)
m { [ld3[[1| L] |d2|||L||}

in order to obtain

ld5upllore <e.

Improving this to a C*° bound can be made by standard bootstrapping arguments in elliptic PDE
theory. Notice that all the coefficients of the PDE are real analytic as the BPS monopole is real
analytic and so is the metric by assumption. Then it follows by the regularity theory for elliptic
PDE’s, sections 5.8 and 6.7 of [Mor08], that the solution ufn is real analytic. This finishes the proof
of proposition 2.2.8.

The solution to the monopole equations on B (0) for the metric g5 obtained is (ABP S, @BPS ) +
d5u?, . Denote by (dju 9 ; the component of uC in A?, then proposition 2.1.3 gives the monopole
on B5(0) for the metric g, given by

(45,,@0) = (S50 (ABPS 4 (d3ud,)1), 07 551 (REFS + (d5u, )o) )
- (Afﬁfn+sé (du )1,®5B’?§1+5*133_1(d;u;)0)) 2.2.17)

Rescaling the estimate 2.2.11 gives

Lemma 2.2.11. Let m and ¢ be positive, then for § < A(m,€), the monopole (Ag@, @fn) for gin
Bg is such that

|AS, — AZES || oo By) + @0, — @EE oo (my) < 67 e, (2.2.18)

where the norms are measured in the metric g. In particular, there is eo(m) = m > 0, such
2
that for all € < g9(m) and § = A(m, €)

3
A8, — ABES || e Bé)ﬂ\qﬁ — 5 lmHCm(Bé) < my— = (2.2.19)

and once again the norms are measured using the metric g.

Proof. Denote by (B, g) the radius r ball centred at zero where the distance r is measured with
respect to the metric g. Then, as sets (Bs, g) = (B1, gs), moreover the norm of a 1 form w gets
scaled according to wly = 6 Hwls—2,

1) BPS - ) — 5 _
||Am - AéflmHC"o(B(Lg) =0 1”8;*1 (dgum)1||0"°(357857195) <94 1”(d§um)1||c"°(317g5) < 16'



44 CHAPTER 2. MONOPOLES IN 3 DIMENSIONS

In the same way for @fn one computes

@2, — ®FED oo (Bsg) = 0 HI(d5u,)ollcoe (Bs.g) < 6 HI(d5ud, )ollcoe(By.gs) < 6 Le.

the second statement follows directly from inserting the formula 2.2.16 and ¢¢ is determined by

go(m) = It ﬁ” T in order to make the first term in 2.2.16 smaller than the second. O
2

2.2.3 ODE Analysis

Recall the monopole ODE’s 2.2.2 and 2.2.3 and define v = 2log(a) (note that this implies © = 4¢)

and write the equations 2.2.3 as a second order ODE for v

.2

U= (e’ —1). (2.2.20)
The first result in this section gives conditions on the existence of a formal power series solution to
equation 2.2.20. Before the statement, recall that one is interested in solutions of 2.2.3 satisfying
a(0) = 1,¢(0) = 0 and lim, o, 7 *a(r) = 0, for some k € Z. Translated into v, these are the

conditions that v(0) = ©(0) = 0 and lim,_,o, 7 *e*(") = 0, for some k € Z.

Lemma 2.2.12. Let h be analytic and b € R. Write h*(r) = r?¢(r) with p(r) analytic such
that its expansion can be written as o(r) = Y .~ @1, with g = 1. Then, there is a unique
formal power series solution v =g vir' to the_equation 2.2.20 such that v(0) = ©(0) = 0 and
4(0) = b € R. It is determined by vo; v1 =0, vg = band

2 1 1
Viyo = m Z H Z Uiy -0, |+ Z Pi—j Z E Z Uiy -+ U1,

E>2 " L4l =it2 j<i E>1 0 L4 A lp=5+2
(2.2.21)

foralli 42 > 3.

Proof. Substituting into the equation shows that the recurrence relation formally satisfies equation
2.2.20. It remains to check that the recurrence relation is completely determined by setting

vg = v1 = 0 and v = b € R. This, as well, can be directly checked from equation 2.2.21. To do

Z% Z Uy - V1,

E>2 T 4 Al =it2

this notice that the first term

contains no terms in v; 49, since k > 2 and so one must have at least two v;’s. Since vg = 0, each

[ > 1, which is the same as saying that each [ < ¢ 4+ 1. As for the second term
1
Se (S X wen),
j<i k>1 0 L4l =j+2
it just contains terms in j + 2 < ¢ + 2. O

The monopoles from the last section give a family of solutions (Afn, @g%) on r < § depending
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on two parameters m € R™ and § < A(m). These can be used to give initial conditions for the
ODE’s at » = §. The estimates from lemma 2.2.11, can be used to obtain estimates to these initial

conditions as follows.

Lemma 2.2.13. Let m € Rt and ¢ > 0, then for all 5 < A(m,¢) the monopole (A, &)

constructed in the previous section has its fields satisfying

192 (6) 215 (1 —mcoth(m))| < 07, (2.2.22)
and |al (8) — smh \ < 6~ te. Moreover; the following estimate also holds
¢2.(0) € [I(m,d),J(m,0d)], (2.2.23)
with I(m,§) = —%?—22 —ed~Yand J(m,6) = —%Tg—; (mf2 — sinh*Q(m)) +e5 L,

Proof. The estimates from lemma 2.2.11 guarantee that

51<11§ (|¢fn — ¢5B_€‘21| + |pt (am afﬁi) |) <5 le
r<

Using the explicit formulas ¢255 (§) = 5 (1 — m coth(m)) and a?ﬁi (0) = one obtains

m
§—1m sinh(m)”’
the desired bounds on the values of the fields at §. Since lemma 2.2.11 actually gives C'! estimates
one also has sup,<5 [¢3, — 215 | < 6~ 'c and once again the explicit formula for ¢Z5 gives
the result in the statement. In order to obtain the bounds stated one must notice that qﬁBP S s

increasing, so one bounds below by gbBP 9 (0) and above by QSBP 5 (6). O

The following lemma contains two sequences of values (m,,, £,,) inducing sequences of values
(mp, d,,) which can be used to show that the PDE constructed monopoles are actually all monopoles
as done in proposition 2.2.4 and that there are monopoles with all values of mass m € R as done

in proposition 2.2.6.
Lemma 2.2.14. Let I, J be the quantities provided by the previous lemma, then:

1. There are sequences (my,ey,) and 6, < A(my,e,), such that I, = I(my,,d,) — 0.

Moreover, for this sequence of (my,, €,,) and 0, the quantity
1
®,(n) = 5 (my, coth(my,) — 14 2¢,) + 2G(6r),
n

also converges to zero.

2. There are other sequences (my, ) and 6, < A(my,, €y, such that J,, = J(my, 6,) =—

—o0. For these sequences of (my,, ) and 6y, the quantity

d_(n) = 5i (i, coth(my) — 1 — 26,),

n

converges to +0o0.
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Proof. 1. We shall first fix a sequence m,, — 0. Then, m,, coth(m,,) — 1 = O(m?) and notice
that to prove the statement it is enough to show that one can take the sequences to be such that
both ¢ and §* converge to 0, while d,, can be taken arbitrarily large, so that G (6n) — 0. To
achieve this we shall first take m,, — 0 as remarked before, and €,, = m{,, for some positive

a < 1, then &, < /&, and the formula for A(m,,, ;) in proposition 2.2.8 is

A, en) > " min { (2.2.24)
M,

1 1 }
V@)Ll ()5 1 Ll
As ||(d2)% ||| Lr] is uniformly bounded above and below for any sequence m,, — 0, we can
take 6, = C ;L—*; = Cm% !, for some C > 0. In this way we do have §,, getting arbitrarily

large and

_—1_2-a &n _ ~-1
—=C"m; *, 5 = C  my,
n

which do converge to zero as m,, does.

2. One can take m,, = m > 0 constant and ¢,, to be a sequence converging to zero, in this
way the inequality 2.2.24 still holds and it is enough to set 6, = Cm~'e,, where C > 0 is
constant. By substitution in J,, one obtains J,, = —kie,, Ly k, \/€n, for some positive real
constants k1, ko and this converges to —oo as €, — 0.

To check that ®_(n) — +o00, notice that by increasing n, ,, can be taken arbitrarily small
and so m coth(m) — 1 — 2¢,, is greater than a positive constant C”. Since §,, = Cm™ e, is

converging to zero we see that

O]

Lemma 2.2.15. Let v be a solution of 2.2.20. Suppose v has a minimum at m, or a maximum at
M, then v(m) > 0 and v(M) < 0. Moreover, if v satisfies initial conditions v(d) < 0, 0(d) < 0
(resp. v(0) > 0, ¥(§) > 0), then v < 0 (resp. v > 0) in (§, 0).

Proof. Let m be the point at which the minimum is achieved, then #(m) > 0 and so

2
ﬁ(e”—l)zo = v >0.

In the same way at a maximum M, (M) < 0 and this gives % (e’ — 1) < 0, which implies v < 0.

For the second part assume that v(J), 0(d) < 0, then one needs to prove that v < 0, for all ¢ > 4.

Suppose not, then let z > § be the smallest possible such that v = 0. Since v(¢), 0(d) < 0 there
must be a minimum m € (J, z). Applying the maximum principles just proved to conclude that

v(m) > 0 and this contradicts the minimality of z. O

Corollary 2.2.16. There are no solutions to the ODE 2.2.20 withv(0) = 9(0) = 0 and lim,_,, 7*e?

0 for some k € 7Z, such that $(0) = b > 0.
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Proof. Since v(0) = ©(0) = 0 and ©(0) = b > 0, there is § > 0 such that v(J), v(J) are both

2

positive. Then, by lemma 2.2.15, v > 0 in (J, +00). Using the equation ¥ = ;5

(e’ — 1) we see

that ¥ > 0 in (§, +00). Integrating this gives that

v(r) = v(0) +0(8)(r - 9),

for all » > §. Then r—Fe? > ¢~ Fev(0)+0()(=9) "and since 0(4) is positive, for all k € Z this
diverges as r — 4-00. O

Lemma 2.2.17. Let u,v,a : (§,00) — R be differentiable u < 0, such that
v—av >0, u—au=0.

Ifu(d) = v(6) and w(0) = ©(6), then v(r) > u(r) forall r > 6.

Proof. Define f = =, since by assumption u < 0 it is enough to prove that f < 1, forr > §
and that f > 1 for r < §. Moreover, since f(J) = 1 it is enough to prove that f < 0, i.e. that
vu — v < 0. Once again, our hypothesis dictate that at » = ¢ this expression vanishes and so it is
enough to show that its derivative ¥u — v is nonpositive. Substituting @ = au and ¥ > av gives
that indeed vu — vii < 0. O

Proposition 2.2.18. Let v be a solution of 2.2.20 on (0, 00), with the initial conditions v(§) =
—ko < 0and v(5) = —k1 < O, for some positive constants ki, ka. Then, fort > ¢
up(r) < v(t) < vu(r),

where vy(r) = —kg — k1(r —6) — 2 f5 f6 "Yds'ds, and vy (t) solves v, — h2 vy, = 0 with the
initial conditions v, (6) = —kg, 0y (0) = —kl.

Proof. Since the function F'(v) = eV is convex it lies above all its tangents, then ¢ = %(e” -1)>
h%v. The second step is using lemma 2.2.17 With a= % and u = vy to obtain the lower bound.

The upper bound comes from integrating ¢ > — %, which holds since e" is positive. O

h27

Insert a? = eV into the first monopole ODE in 2.2.3, then

. 1
¢ = Tm(ev - 1).

The above bounds on v can be used to estimate the values of the Higgs field. However, in the
following application a crude approach to these bounds will be given. Since #(0) < 0, the maximum
principle from lemma 2.2.15 guarantees v < 0 for all 7. Moreover, the standard existence and
uniqueness theorem applies locally at » = ¢ and the estimates in 2.2.23 show this extends to the

right. Moreover, this can be applied to compute

Proposition 2.2.19. Let (a, ¢) be a solution to the monopole ODE’s 2.2.3, then for all t € (§,00)

6(8) > 6(r) > B(6) — /5 ' W}@dt
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So, if the Green’s function G(r) = — [ Qh%(r)dr is bounded at oo, then so is the Higgs field.

This together with the fact that qb(r) — 0 as 7 — oo allows the conclusion that the limit

¢(00) = lim, o0 ¢(r), exists and is finite. As an application one obtains

Corollary 2.2.20. Let g be a spherically symmetric metric and (A, ®) € My, an invariant
monopole on (R3,g). The norm of the Higgs field is dominated by the Green’s function G.
Moreover, if G is bounded at infinity then the mass m(A, ®) exists and is finite. Let m € R™ and
€ > 0, then for § < A(m, €), the monopole (A°,, ®°) satisfies

m(A® ) e % (mcoth(m) — 1 — 2¢), % (mcoth(m) + 2¢) + 2G(5) | .



Chapter 3
Monopoles on Calabi-Yau 3 Folds

This chapter is organized as follows, in section 3.1 one defines complex monopoles and also a
particular case of these which shall be called just Calabi-Yau monopoles. For complex monopoles,
one goes to study the associated linearized operator, which fits into an elliptic complex. This is
done in subsection 3.1.2 and is a necessary step in order to use the results of chapter 5. Subsection
3.1.3 defines the relevant energies for complex monopoles and deduces some integral identities.
These will be used later in subsection 3.1.4 for AC Calabi-Yau manifolds to compute the relevant
energies and to prove proposition 3.1.26 which is a vanishing theorem for complex monopoles.
This gives conditions under which all complex monopoles reduce to Calabi-Yau monopoles. This
subsection also gives existence results such as proposition 3.1.31 for the boundary data determined
by the asymptotics of complex monopoles.

In section 3.2.1 a promising source of examples to study these monopoles and their interaction
with special Lagrangian geometry is explored. For one of these, the Stenzel metric on T*S?,
Calabi-Yau monopoles are actually found. In the other cases one sets up the problem of studying
complex monopoles, for which the results of chapter 5 give a nice Fredholm setup. Also in this
case proposition 3.1.26 applies and gives conditions under which these complex monopoles are
actually Calabi-Yau monopoles.

Section 3.3 proves theorem 3.3.1 regarding Calabi-Yau monopoles for the Stenzel metric. It proves
that there is a class of Calabi-Yau monopoles called invariant monopoles which are parametrized
by their mass. In this setting, the large mass limit is studied. It is is shown that in the limit where
the mass goes to infinite, there is a BPS monopole bubbling off along the transverse directions to
the zero section (which is special Lagrangian). This leaves behind a reducible monopole on its

complement (which will be called a Dirac monopole).

3.1 The Equations

Let (X%, w, Q) be a noncompact Calabi-Yau manifold, G' a compact semisimple Lie group with
Lie algebra g and P — X a principal G bundle. Denote by gp = P X (44, 9 the adjoint bundle
and g‘lg its complexification. Equip the first of these with an Ad-invariant metric and the second

one with the respective Hermitian metric.

49
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Definition 3.1.1. Let A be a G connection and ® = &1 + i®y € Q°(X, g%) a complex Higgs
Field, with ®1, ®5 € Q°(X, gp). The pair (A, ®) is called a complex monopole if

1
#0a% = JFanQ, (3.1.1)

AF, = %[@,6}, (3.1.2)

where A3 = x(8 A %Q)for B € Q%(X,C) and * is the C-linear extension of the Hodge * operator.

Definition 3.1.2. A complex monopole (A, ®) is called a Calabi-Yau monopole if ® = @4, i.e.
oy = 0, these satisfy

*VAD = F4AQ, (3.1.3)
AF, = 0. (3.1.4)

3.1.1 Rewriting the Equations
Proposition 3.1.3. The following are equivalent:

1. (A, ®) is a complex monopole, i.e. a solution to 3.1.1 and 3.1.2.

2. The pair (A, ®) satisfies

Fa+ *(FA A w) = *(dA(I)l A Ql) + *(dACI)Q N Qg) + [@1, (I)Q]w. (3.1.5)

3. The pair (A, D) satisfies

2

$ds®, = FA/\Ql—dACI)Q/\%, (3.1.6)
w2 (A}g
Fah = [0, 3.1.7)

. . 2
Moreover, one can also rewrite the first equation as *dga®o = Fa A Qo + da®1 A %

4. The pair (A, u) withu = —1Q € Q%3(X, g§) is a solution to

FY? = -9y, (3.1.8)
AFy = x[und, (3.1.9)

Proof. The proof will outline the equivalence of all equation in items 2, 3, 4 with the equations
3.1.1 and 3.1.2.

(1 & 2): Setting ® = @y + i®, gives £[®, @] = [®q, D). Next, it follows from linear algebra that
Fa+#(FaANw)=AFw + 2(Fj’0 + FX’Q), hence the component along the Kihler form gives
back equation 3.1.2. To recover equation 3.1.1 take the wedge of equation 3.1.5 with () and use
that *(da® A Q) A Q =0and x(da® A Q) AQ = 8% yP.
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(1 & 3): Taking the Hodge * of the second equation and using that x(F4 A %2) = AF4 one
obtains equation 3.1.2. The equation 3.1.1 is obtained by taking the Hodge * of the first equation
and using the fact that <d APy A %) = —Id 2 P2, where I denotes the complex structure.

(1 < 4): This case is a bit more involved. Start with the first complex monopole equation

3.1.8, replace u = —%@ﬁ to obtain
02 _ [ ~lis) _ ¢ = 1 —
F%% = —8A<4<I>Q>_—4*8A(<I>*Q)_4*(6A<I>/\Q).

Where one uses that 52 = — % Oa%, *Q) = iQ and 9Q = 0. The next step is to wedge this with
2 and take the resulting equation is F' A Q = % # (04® AQ) AQ = 2% 0,4P. To unwind the
right hand side it was needed to use the fact that the projection Q' — QY can be written as
at? = —% % (x(a AQ) AQ), for a € Q. This finishes the proof that the equations 3.1.8 and 3.1.1
are equivalent. Regarding the second equations, start with 3.1.2 and replace u = —i@Q, then after

using that *(Q A ) = —8i, equation 3.1.9 pops up. O

There is a very useful vanishing result stated below as lemma 3.1.5. This will be used in the
proof of propositions 3.1.9 and 3.1.23 and its proof requires the following extension of Stokes’

theorem to complete Riemannian manifolds.

Theorem 3.1.4. ([Gaf54]) Let (M™, g) be an orientable and complete Riemannian manifold and
o € Q"X R) be such that y,dv € L', then, [,,dy = 0.

Lemma 3.1.5. Let (X, w, Q) be a complete Calabi-Yau manifold, (A, u) a complex monopole on
P — X, ie. asolution to 3.1.8 and 3.1.9. Then, if $ € Q°(X,g%) is bounded and such that
Oad = [u, ¢] = 0 while D, [u, ¢] € L* and (0, d)c € L, then in fact also Oa¢p = [u, ¢p] = 0
and so dy¢ = 0.

Proof. Let (-,-)c = (-,7) be the Hermitian extension of the inner product and differentiate
(040, d)c. This gives

0" <8A¢a ¢>(C = <A8A¢7 ¢>(C - |3A¢>|2 (3110)

Moreover, since by hypothesis ¢ is holomorphic, Ay, ¢ = Ay, ¢ — AgAqb = [iAFjl’l, ¢|. This is a
straightforward application of the twisted K#hler identities stated in lemma 1.1.3. Inserting in this
the equation tAF' = ix[uAT] and iu = *u, gives Ay, ¢ = [x[*uAT], ¢] = [[T, p]A*xu]—[[¢, *u|Au].

So replacing this back into equation 3.1.10, integrating and using theorem 3.1.4 gives

0 =@ ¢lli7: — lllu, ¢ll72 — 04017

The first of these vanishes by hypothesis and hence so do the other two terms. O
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3.1.2 Linearized Operator

Recall that a complex monopole is a pair consisting of a connection A on P and a complexified

Higgs field u € Q03(X, g%) satisfying the equations
FO? +95u =0, ihNFy—i*[unt] = 0. (3.1.11)

Remark 3.1.6. Further below proposition 3.1.26 proves that under certain conditions complex
monopoles (A, ®) are solutions to ¥V 4® = Fx A Qq and AFy = 0 with ® € Q°(X, gp), i.e. are
Calabi-Yau monopoles. In fact, the Calabi-Yau monopole equation is overdetermined. However
in a Calabi-Yau one may have hope that solutions exist, since the complex structure is integrable.
Instead of working with these, for the deformation theory it is convenient to consider the more

general complex monopole equations, as these are elliptic modulo gauge transformations.

Use the identification Al = A%l to view deformations of the connection as (0,1) forms.
Then, at a complex monopole the linearized complex monopole equation gives a map dy from
QOodd(X g8 1o Q92(X, g&) @ iQ°(X, gp). This together with the linearization of the action by

gauge transformations gives an elliptic complex

Q0(X, gp) I Q01 (X, 05) @ QO3 (X, g%) 2 Q2(X, ¢8) @ iQ0(X,gp),  (3.1.12)
where

di¢ = (9a¢, [u,(]) (3.1.13)

do(a,w) = (5,4(1 LT w — i x[uAal, 20 Im(Fya + i * [u A@])) . (3.1.14)

Lemma 3.1.7. If (A, u) is a complex monopole, the sequence 3.1.12 is a complex.

Proof. This is an immediate consequence of the gauge invariance of the complex monopole
equations. However a full computation of ds o d; is given below. So take ¢ € Q°(X, gp) and show
that dad1 ¢ = d2(94C, [u, (]) vanishes. The first component ¢; of this equation is

= EAEAC—FBZ[u,Z]—i*[u/\i(]
= [FY +00u, ]+ i [u A 0al] — i % [uADaC) (3.1.15)

the last two terms annihilate each other and the first one vanishes since (A, u) is a complex

monopole and ¢ = ¢ € Q°(X, gp). The second component of dad;( is

o = 9404C—050aC+ 0% [uA[u,C]]) +i* [[u, (] AT
= [iAF4, (] —i*[[un],(], (3.1.16)

and this also vanishes for a complex monopole. Moreover, one must remark that the computation
above makes of use the twisted Kéhler identities stated in lemma 1.1.3 and the graded Jacobi
Identity, which reads [a A [b A ¢]] + (=1)! 0B [b A [e A a]] + (=1)PEHD[e A Ja A Y]] = 0, for gp
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valued forms a, b, c of degree 4, j, k respectively. O

So if (A, u) is a complex monopole then an elliptic operator can be made out of the complex
3.1.12. To do this notice that dj(a,w) = Re (52@ + % [u A @]), so one divides the second
equation in dg by 2 and takes

D:dy®di: Q" (X, g5) @ Q%3 (X, oF) — Q"3 (X,g5) & (iQ°(X,gp) ® Q°(X, gp)).

2Q0.0dd(X g ) =00 (X g5)

given by
D(a,w) = (52@,5/@ +52w) + (i*x[uANw]|,—i* [uAal). (3.1.17)
The first of these terms is just the Dirac operator
Da =04+, : Q%X gp) — Q" (X, gp),

which is a C-linear operator. The second one ¢ defines a section of End(A%°4 @ g§ A%< @ ¢§)

and is C-antilinear.

Remark 3.1.8. One must notice that D = D 4 + q is the sum of a C-linear and a C-antilinear

term respectively. Hence ker D is not a vector space over C, but just a vector space over R.

Let (-, -)c be as usual the Hermitian extention of the L? inner product on A* X ® g&. Denote
by D% the formal adjoint of the Dirac operator and by ¢ the antiadjoint of ¢, i.e. such that
(Dasi,s2)c = (s1,D%s2)c and (q(s1),s2)c = (s1,¢"(s2))c for all sq,s2. The next result

computes a Weitzenbock type formula for the operator D.

Proposition 3.1.9. Let (X, g) be a complete Calabi-Yau manifold and (A, u) a pair on P — X.
With the notation D* = D* + ¢, then

DD*(¢,b) = (Am + W+ qq*) (0,0),

where W (6,0) = (=([F3*,b)c = ([@hu,b)c, T« (D A 042) A Q) + [F§2, 6] + [@yu, 6]
and qqt(6,0) = — (x[u A *[w, @], «[u A *[w A b)]). In particular, if (A,u) is an irreducible
complex monopole and ¢ = ¢, i.e. it is real, then W (¢, b) = (0, % x (x[xb A 04 @] A Q)).

Moreover, if (¢,b) € ker(D*) N L2, then ¢ = 0 while b satisfies d ab = 0 and 8 b+ % [b Au] = 0.

Proof. The proof will just give some intermediate steps of the computation leading to the formula
above. First one computes ¢ (¢, b) = (i * [u A b], —i  [u, ¢]), which after combined with ¢, gives
qq" (¢, b) = — (x[u A *[u, @], *[u A *[u A b]]). Next, one computes DD*- = D4 D% - +q(D%-) +
Da(q*-) + gg*- and here one uses the Weitzenbdck formula in proposition 1.1.2 for D 4 D% and
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the computation above for gq*. Regarding the other terms, these are

qD% (¢, b) (i % [u A Oab], —i* [u A Oag] — i * [uAO}b]),
Daqt(¢,b) = (252 * [u A b, —i* 0alu, @] +i04 * [u/\g]) .

The first entry in the second line can be expanded using the Leibniz rule giving two terms, one of
them Kkills the first term in the first line, while the other one is — * [5211 A *b]. In the second entry
in the second line one can compute —i % d[u, ] = i * [u A @] + [0 yu, ¢, the first of which
kills the respective term in the first line. Then, expand i0 4 * [u A b] in two terms, one of them kills
the second term in the second entry of the first line and the other one is T * (x[xb A 94®] A Q2).
Summing these with the zero order terms appearing in the Weitzenbock formula for D 4 D7 in
proposition 1.1.2 gives that the only term left is precisely W (¢, b). The second assertion follows
from using the using the first complex monopole equation FB{Q + 5211 = 0 twice, with ¢ real, i.e.
¢ = ¢. Moreover, if (¢,b) € ker(D*) N L2, then in particular (¢, b) € ker(DD*) N L. Taking
the inner product of (¢, 0) with D D*(¢, b) and using the formula just proved and theorem 3.1.4 to
integrate by parts, gives |04¢[|%. + ||[@, ¢][|2, = 0 and so ¢ commutes with @ and is holomorphic.
Then lemma 3.1.5 proves that under such conditions, ¢ also commutes with « and d4¢ = 0, hence
V4¢ = 0 and ¢ is covariant constant. This, together with the assumption that A is irreducible
implies that ¢ = 0. O

Proposition 3.1.10. Under the conditions of proposition 3.1.9, then
D*D(a,w) = (AgA + Wi+ Wa + q+Q) (a, w),

where Wi (a,w) = (i [0auAa), 2[u, a)), Wa(a, w) = (—<[Vg’1u,ﬁ]> + *[Fi’o A xw), [Fg’2 A
al — 2% [04® A *a] A Q) and qTq(a, w) = — (x[u A x[T A a]], *[u, *[@ A w])).

Proof. The proof is a computation, similar to the one of proposition 3.1.9 of which the main
intermediate steps will be given. First one computes D*D- = D% D4 - +D%q - +q*Da - +¢" ¢,
then for the first term one uses the Weitzenbdck formula in proposition 1.1.2 and the computation
of " q is straightforward and gives the last term in the formula in the statement. Next one needs to

compute the two terms in the middle which are

¢ Da(a,w) = (i*[uAdaa)+ix[uAndyw),u,dyal),
Diqla,w) = (i*daluna]+ida*[uAw],—i4 * [uAd]).

Expanding the terms in the second line using the Leibniz rule gives: In the first term in the first
entry i« Oa[u A @) = —i * [u A 04G] + i * [0au A @], the first of which kills the first term in the
first line. Next is the term 04 * [u A W] = —04 * [u A ¥W] = —<[V?4’1u,@]> — ([u, V%’lﬁb
and the second of these kills the corresponding term in the first line since —([u, Vg{lw]) =

*[u A *0qw| = — * [u A 9yw]. Finally, the last term in the second line gives, after a tedious

computation —% % [04® A @] A Q + [u, 0%,a) and this second term adds with the last term in the
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first line. Putting these together with the zero order terms appearing in D% D 4 gives the formulas

in the statement for Wl and Wg. O]

3.1.3 Energy Identities

Proposition 3.1.11. Let (A, ®) be a pair on P and U C X precompact with smooth boundary 0U.
Then

IAF Al 2y + @1, @2lllF2ry = [AFA — [®1, @]l 72

—2/ <@1,*IdA(I)2>+2/ A(qu)l/\dA(DQ)7
ou U

where w denotes the dual of the Kdihler form and I is acting by pullback.

Proof. Start by working out the first term in the right hand side
IAFs = [@1, @]l T2y = [AFAll72) + 1[@1, @2l 720y — 2(AFA, [@1, P2]) 12(0)-

And so, one just needs to identify the mixed term with the integrals in the second line of the

statement. This is done as follows

wQ
<AFA7[(I)17(I)2]>L2(U) = /U<FA,[Q)1,@2]>/\ = _/U<[FA7(I)2]7(I)1>A2

M‘EM M‘ Em

= —/<d?4<1>2,<1>1>A
U

LL)Q w2
= —/ d <<dA(I)2, @1> A 2> + <dA@2 A dA(I)1> A 7
U

UJ2 CUQ
= —/ <dA(I)2,<I)1>/\—/<dA(I)2/\dA<I)1>/\,
ouU 2 U 2

where in the second line one uses the Ad-invariance of the inner product and the definition of
curvature. The result then follows from the fact that x(d 4 P2 A “’72) = —1d4P5 (with I acting
by pullback) and that * (<dA<I>2 Ada®r) A w;) = —g(Ida®s,ds®)) = w(da®s, dad;), or
A(da®y A dgPy) in the previous notation. Apply these to the last term, the add it to the first

equation. O

Proposition 3.1.12. Let (A, ®) be a complex monopole and U C X precompact with smooth
boundary OU. Write ® = ®1 + Py, then for bothi = 1,2

IV A2y = —/A(dA<I>1/\dA<I>2)+/ (D, F) A Q.
U oUu

Proof. We prove only the case ¢ = 2 as the case ¢ = 1 follows from a similar computation. Write

|da®2|? = (ds P2 A #d 4 P2) and use the equation in item 3 of proposition 3.1.3 to replace *d 4 Ps.
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This gives

w?
HVA@QH%Q(U) = /<dA(I)Q A (F/\QQ +da®Pp A 2>>
U
(.UQ
= —|—/ d(<‘1>2,F> /\Qg) —/<dA(I)1 /\dA‘I>2> /\7,
U U

where one used the Bianchi identity d 4’4 = 0 and the closedness of {2;. Then the result follows

from Stokes’ theorem. The second identity follows from a similar computation. 0

Corollary 3.1.13. Let (A, ®) be a complex monopole and U C X precompact with smooth
boundary OU. Then

1 Ball ey + V4@l = = | @1sdaata) + [ @i F) A0
U U

Lemma 3.1.14. Let (A, ® = ®1 4 i®2) be a complex monopole, then
1
ASI®i[* = —[[@1, Do]* — [Va®if".
In particular |®1|? and |®2|? are subharmonic and so is |®|? = |®1]? + |®2|%

Proof. The proof follows from AL|®q|?> = (@1, A4®;1) — |V 4P |* and the computation of the
first of these terms. Using both the complex monopole equations as in the third item of proposition

3.1.3, the definition of curvature and the Bianchi identity, gives

2
AuD, = —sdyxdy®, = —%dy <FAA91—dA<1>2A“2>

w?
= *[FA,(I)Q]/\7:H(I)17®2]7(I)2]'

Then the Ad-invariance of the metric gives (A s @1, ®1) = —|[®1, ®2]|? which gives the equation
in the statement for A|®;|2. Regarding the equation for A|®3|2, a computation along the same
lines gives APy = —[[®1, Po], P;] and the result in the statement then follows from the Ad

invariance of the metric. O

As in the preliminary case analyzed in section 1.3.1 there are two relevant energies in play. One

of them is an analogue of definition 1.3.1.

Definition 3.1.15. The Yang-Mills-Higgs (YMH) energy Ey and the intermediate energy E{] of a
pair (A, ®) over precompact set U C X with smooth boundary OU are respectively defined by

1 1
Ey(A,®) = SllFallfzw) + 5IVa®lLe ), (3.1.18)

1,1 1
E[(A,®) = §H§FA/\Q||%2(U)+§||3A‘I)H%2(U)~ (3.1.19)
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The intermediate energy does not measure the full L? norm of the curvature, so there may be
complex monopoles with infinite YMH energy but finite intermediate energy and this is indeed the

case for the complex monopoles to be constructed.

Proposition 3.1.16. Let U C X be precompact with smooth boundary OU as above, such that the
intermediate energy of the pair (A, ®) on U is finite, i.e. EL(A, ®) < oo, then

1.1 1
Eé(A,(I)):2|2*(FA/\Q)—8A<I>||%Q(U)+2/ (®,Fs AQ).
oU

In particular, if (A, ®) is a complex monopole, then

1 1
EL(A,®) = 2/8U<<1>1,FA>A91+Z/BU@Q,FAMQz, (3.1.20)

which is just another way of writing the boundary integral in the first formula. Moreover,
f8U<(I)2’ FA> AN = f8U<(I)1’ FA> A o,

Proof. Start by computing H% x (Fg N Q) — 8A<I>H%2 = %FA /\Q||%2 + ||8A<I>||%2 — (04D, x(Fa A
Q)) 2. The first two terms give twice the Intermediate energy, i.e 2E7,(A, ®) € R, so the last term
must also be real. Then integrating it by parts and using Stokes’ theorem, d€2 = 0 and d4F4 = 0,

gives
(04D, *(FANQ))p2 = /<8A(I),FA/\Q> :/ (P, Fa N2,
U ou

where the Bianchi identity and the closedness of €2 have been used. Dividing by 2 and rearranging
gives the result in the statement. The rest of the statement follows from noticing that for a complex
monopole % % (Fia AQ) — 0P = 0 and expanding the boundary integral. The last identity follows
from expanding 0 = (VA ®1, V4 P2) — (V 4Py, V4 P;) using the complex monopole equations
and integrating by parts. O

Corollary 3.1.17. Suppose X is compact and (A, ®) a complex monopole, then Fg’2 =AF,=0

and V 4® = [®,®] = 0, i.e. Ais a reducible Hermitian Yang Mills connection, with an explicit

reduction P.

Proof. This is an immediate consequence of proposition 3.1.16 and corollary 3.1.13, by integrating
over X. O

Proposition 3.1.18. Let the pair (V 5, ®) be real, i.e. the Higgs field is such that ® = ®1. Then
the YMH energy of the pair (A, ®) on a precompact set U C X with smooth boundary OU is given
by

3 1
Ey = §||AFAwH%2(U) + 5l (Fan) - Vad|Za

1
-l-/ <‘I>,FA>/\Ql—/FA/\FA/\w.
ouU 2 Ju



58 CHAPTER 3. MONOPOLES ON CALABI-YAU 3 FOLDS

Proof. The proof follows from splitting the curvature into orthogonal components

2,0 0,2 1,1
F = (F20+ F?) 4+ B},

where F}D’l = ATFw. It follows from linear algebra for the two forms that (F>0 4+ F02) =
—3 % (x(FAQ) A Q) and F};l = 2F — L x (FAw) — 3(F* + F%?). The first of these
formulas gives || F20 + F02||2, = 1||F A Q42,. Summing the various orthogonal components

and solving for || F'||3, one concludes that
|F25 = 3||AFw|2, + |F A Q25 — /F AF Aw. (3.1.21)

To finally compute E = 3| F||2, + 3||Va®|/2, sum ||V 4®||2, with half of equation 3.1.21.
Using proposition 3.1.16 to substitute for the term ||F' A 4|3 ,, gives

3 1 1 1
E = iHAFAwH%Q(U) +5lEA Nll72 + iHVA(I)H%z(U) -3 /UFA NFaNw
3 2 1 2
= SlIAFawlfiz@) + 5l * (FaA Q1) = Va®|Le )

1
+/ ((I),FA>/\§21—/FA/\FAAS21.
ouU 2 Ju

3.1.4 Monopoles on AC Calabi-Yau Manifolds

Let (X,w, Q) be an AC Calabi-Yau manifold as in section 1.1.2 and P — X a principal G-bundle.
This section studies asymptotic conditions for irreducible complex monopoles on P analogous to
the discussion in section 1.4.1. In particular, the boundary integrals lim, _, o, f B, (P, *xIdsP2) and
lim, o0 [y 5, (®i, F) A\ €Q; appearing in the propositions in the previous section will be convergent.
Then, in the spirit of proposition 1.4.9 and corollary 1.4.11 it is possible to obtain further results
regarding the energy, such as proposition 3.1.23 and corollary 3.1.25. This subsection also gives
proposition 3.1.26, which gives conditions under which complex monopoles end up being real and
satisfy the equations in definition 3.1.2.
The first thing to be done is to adapt the definition of finite mass monopoles (A, ®) as in definition
1.4.1, to complex monopoles. Suppose there is K C X compact such that on the end X\ K, there
is a bundle isomorphism

Plx\x = ¢"1" Px, (3.1.22)

where ¢ is the diffeomorphism in definition 1.2.8, Py, is a G bundle over X and 7 : (1, +00) x ¥ —

. is the projection on the second factor.

Definition 3.1.19. A pair (A, ®) is a finite mass complex (resp. Calabi-Yau) monopole on P, if it
is a complex (resp. Calabi-Yau) monopole and there is m € R such that lim,_,, |®| = m and a
connection Ao on P, such that after the identification 3.1.22, A is asymptotic to A, on P i.e.

there is € > 0, such that |A — As| = O(p~'7%), outside K and using the isomorphism 3.1.22 to
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pullback the connection A, to a connection on P X\K-

For a complex monopole the Higgs Field ® € Q°(X, g%) is a section of the complexified
adjoint bundle and the results in section 1.4.1 do not apply directly to these. Nevertheless, the

techniques used there, do extend in order to be applied to this complexified situation.

Proposition 3.1.20. Let (X, w, Q) be AC and (A, ) be a finite mass, irreducible complex monopole.
Then V 4 ®, [®, ®] € L? and there is an A-parallel Higgs Field ®,, € Q°(%, 9(1500) such that ®

converges to ® .. Moreover, there are positive constants c1, ca, such that on X\ K

mQ—%S \@]2§m2—%. (3.1.23)
Proof. Then, lemma 3.1.14 proves that |®| is subharmonic and the argument used in lemma 1.4.3
to prove proposition 1.4.4 applies to prove the inequality 3.1.23. The fact that V 4®, [®, ®] € L?
follows from applying the proof of the analogous fact in proposition 1.4.4. However, due to
lemma 1.4.3, in this case A|®> = —3|[®, ®]|> — 1|V 4®|? and so one obtains instead that
[®@,®]|2 + |Va®|? € L2 The existence of ®., as in the statement follows from the fact that

VA® € L? and applying proposition A.0.17 in the Appendix A. O

Remark 3.1.21. If both ®1, Py converge respectively to Pog 1, Poo 2 € 0O(X, gp) with these being
Aoo-parallel. Then |®o ;| = m; is constant for i = 1,2 and [P 1, Pso 2] = 0 hence one can use
the fact that both |®;|’s are subharmonic by lemma 3.1.14 in order to get an inequality as in 3.1.23
for both of these.

Below, the consequences of the finite mass assumption will continue to be explored. It will be
useful to introduce some cohomology classes of the cross section ¥ of the asymptotic cone C'(X).
It will be obvious from the definition that these depend on the complex structure of the Calabi-Yau

(X, w, Q) and are well defined by homotopy invariance.

Definition 3.1.22. Let [i*Q);] € H 3(3,R) for j = 1,2 denote the cohomology classes obtained
from the restriction of [Q;] € H3(X,R) to any cross section p({r} x ) over the end of X.

Proposition 3.1.23. Ler (X,w,2) be AC and (A,® # 0) a finite mass, irreducible complex

—4—5’)

monopole with |A — Ax| = O(p , for some &' > 0, then

Bl - / (@01, Foo) U [*1] + / (@ ooz, Foo) U [*).
% %
In particular, if the complex structure decays at rate X\ < —3 or the cohomology classes [i*$);] both

vanish, then Fg’2 =AF4s=0and V,® = 0, so A is reducible.

Proof. Under the finite mass hypothesis V 4® € L? by proposition 3.1.20. Then, if (4, ®) is a
complex monopole one can use equation 3.1.20 in proposition 3.1.16 over very large balls B,

centered at p € X to give

1 1
EL (A,®) = 2/33 <<I>1,FA>/\91+2/BB (Do, Fa) A Q. (3.1.24)
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Then, one can regard these boundary integrals éT as a monotone increasing function of r which is
bounded above by Eg( Hence it does converge, the limit is Eﬁ( and to conclude it is given by the
formula in the statement expand ® = &, + O(p~*) and F = F, + O(p~>~¢'), then for i = 1,2

(D5, Fa) AQi = (Pooi, Foo) AQi +0(p~77F).

So, when one takes the limit as » — oo of the integrals in the right hand side of 3.1.24 the higher
order terms vanish and one is left with the result in the statement. In the case where A < —3, one
can write ; = (Q¢); + 1 with n = O(p*), which gives (®o i, Foo) A Qi = (Poo iy Foo) A1 =
O(p~2**) and so the limit of 3.1.24 vanishes and E% = 0. This implies that F' A Q = 0% = 0,
moreover taking the complex conjugate of this second one has 9 4® = 0. Using the form of the
complex monopole equation in the fourth item of proposition 3.1.3 gives [®, ®] = £[®, ] = 0 and
so one can appeal to lemma 3.1.5 to conclude that also 94® = [®, ®] = 0. Hence d4® = 0 and so
A is reducible, moreover the second complex monopole equation gives iAF4 = [®, ®] = 0. The

same holds if the classes [i*€);] vanish. O

Remark 3.1.24. For G = SU(2) one is led to a similar problem as the one in corollary 1.4.11
and H is either {1} or U(1) and the connection A is induced by a connection on a circle
bundle Q. The decomposition suc(2) = uc(l) & C, & C_,, gives that E = Lo & L_,,
and su(2) representation theory shows Lo, = L?, where L = Qo Xy (1) C is the line bundle
associated with the standard U (1) representation. Then, L has a connection induced by A and

c1(L) 1 [m (Poo.1, Foo>] The energy formula in proposition 3.1.23 shows that

~or

Corollary 3.1.25. Let (X,w,Q) be AC, G = SU(2) and (A, ®) an irreducible, finite mass,
complex monopole with m; = |®uo ;| fori = 1,2 and |A — As| = O(p~*=") with &' > 0

Eg( =4dmmy <Cl (L) U [i*ﬂl], [ED + 47Tm2<01(L) U [i*Qz], [E])

In particular, if L is trivial or the complex structure has rate A\ < —3 or both [i*Q;] = 0, then
Eg( = 0 and so Fg’Q = A4 = 0and also V 4P = 0 so A is reducible.

Proposition 3.1.26. Let (X, w, Q) be AC, G = SU(2) and (A, ®) a finite mass complex monopole
asymptotic to (Ax, Poo) with |[A — A, ](@1,V}4pap<ﬁ2>\ = O(p=*), for & > 0 and As
induced from a connection on a line bundle L as in proposition 3.1.31 such that ¢1(L) U [i*Qs] = 0.
Then, V s®y = [®1, D3] = 0. In particular if A is irreducible, then &3 = 0, ie. & = & €
O°(X, gp) is a real Higgs field, the equations reduce to

x Va0 = 4N
AF4 = 0,
i.e. (A, ®) is a Calabi-Yau monopole as in definition 3.1.2.

Proof. From proposition 3.1.23 the finite mass condition implies that V 4 @9, [®1, $o] € L?. Define
f(r) = ||[®1, P2] H%Q(BT) +||V 4D H%Q(BT), then corollary 3.1.13 can be used to give the integration
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by parts

fr)y = —/ <<I>1,*IdA(I)2>—|—/ (Pa, F) A Qo, (3.1.25)
0B OBy
Using the hypothesis that there is ¢’ > 0 such that |(®, V’;‘rar ®y)| = O(r~*=¢'), the higher
order part of the first term in 3.1.25 is given by [1(®1, Vf‘pap(I>2>r477 A (dn)? = O(r~¢') and so
vanishes in the limit » — oo. The second boundary integral converges by the assumption that
(Boo, A — Ass) = O(r~*=¢") and so f(r) is monotone, increasing and bounded above by the sum
of the L? norms of V 4®5 and [®1, @]

1 .*
5\\[‘517@2]!@2+HVA‘1>2H%2 = /(<I>oo,z,Foo>A[z ]
b
= Am|Poop[(c1 (L) U [i" 2], [X]).

Since by assumption, the cohomology class ¢1(L) U [i*Q2] = 0, the quantity above vanishes
implying that V 4 & = [®1, §2] = 0. O

Remark 3.1.27. The author believes the boundary condition c¢1(L)U[i* Q] = 0 above, is necessary
in order to relate Calabi-Yau monopoles with phase 0 special Lagrangian submanifolds. This will be
more clear after definitions 3.2.2 and 3.2.3. Regarding the condition |(®1, V?pap Do) = O(p~*),
it is possible that this is a consequence of the other assumptions, namely |A — Aso| = O(p~47%)

and (A, ®) being a complex monopole.

The rest of this section analyses the boundary problem that (V,, @) must satisfy. It is
useful to recall some Sasaki-Einstein geometry and the reader may consult section 1.1.2 (and the

references therein), where some facts are collected.

Proposition 3.1.28. Let (X, w, Q) be AC and (A, ®) is a finite mass, irreducible complex monopole,
then F54 A Q € L? and the connection A, on Psg is such that V oo ®so = 0 and

ArFo =F2%2 =0, 1¢Fx = 0,

where £ denotes the Reeb vector field of the contact structure n on 33, A the dual of the transverse
Kdhler form wr = %" and FOO<;2 is the (0,2) component of Fo, with respect to the transverse

complex structure on the horizontal distribution.

Proof. Under the finite mass hypothesis V 4® € L? by proposition 3.1.20 and so is F)4 A £2. On
the cone the highest order term of Fq A Q is Fi, A Q¢ which in general is O(p~?) and so must
vanish so that F4 A Q € L2. One can write Q¢ = —ir?dr A Qp + r3n A Qr, where Q7 is a basic
(2,0)-form, see example 5 in section 1.4.1. And so the condition that F, A €2 on the cone can
be translated into Fi, A Q7 = 0, Fow A A Qp = 0, over .. These equations imply F&Q =0
and the first one also implies t¢ Fi, = 0. The last thing to prove is that A7 F, = 0 and recall that
for a finite mass, proposition 3.1.20 implies AF4 = [®,®] € L? and so the higher order terms

[® oo, Poo], A7 Fx vanish. d
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Definition 3.1.29. A complex vector bundle E on X is said to be basic holomorphic if it is equipped
with an operator O, Qg’Q) (3,E) — Qg’qﬂ) (3, E), such that 52 = 0 and which satisfies the
Leibniz rule Op(fs) = 0f Ns+ fOgsforall f € Q%(X,C) and s € Qg’q)(Z, E).

Remark 3.1.30. A connection V on E is said to be basic if V(Q% (2, E)) C QL(3, E); in this
case its curvature Fy is a basic form. Given such a V on E one can define Oy = d%l and this
equips E with a basic holomorphic structure if and only if Fg’2 = 0. Moreover, V is called a basic
Hermitian Yang Mills (HYM) connection if it further satisfies Ar Fxy = 0. Proposition 3.1.28 states

that A~ is a basic HYM connection.

The following result gives necessary and sufficient conditions for the existence of boundary
conditions (Ao, Poo) for G = SU(2).

Proposition 3.1.31. Let L — X be a basic holomorphic line bundle on ¥ such that ¢1 (L) U [wr] =
0. Then, there is a basic HYM connection on L, i.e. its curvature satisfies F' 02 — ApF = 0, where
A7 is the contraction with the transverse Kdihler form wp = d—Q”.

Proof. Equip L with an hermitian metric h, then there is a unique basic Chern connection which
is compatible with both the holomorphic structure and the metric. The fact that F*? = 0 is
obvious from the compatibility of the Chern connection with the holomorphic structure. That
F20 = F02 = 0isa consequence of the compatibility with the hermitian metric h. Moreover,

locally its curvature can be written as a basic (1, 1) form
F = i0goglog(h). (3.1.26)

Hodge theory for basic forms gives Q% (X, R) = R & im(9%0p) and since by hypothesis ¢1 (L) U
lwr] =0, ArF = 030Bf, for some real valued basic function f. Change the metric » on L to a
metric A’ = he~f. The claim is that the curvature F’ of the Chern connection of this new hermitian
metric has the right properties. In fact, F">? = ["%2 = ( still hold in the same way. Moreover,
using the local formula 3.1.26, F’ = F —idg0p f. Using the basic Kihler identity i[A7, O] = 05

ArF' = 050pf —iArOpOBS
= 0pdpf—0pdpf=0.

O]

Remark 3.1.32. Recall that if 3. is a regular Sasaki-Einstein manifold, then it is the total space of
an S bundle on a Fano surface D with a Kihler-Einstein metric. The Sasaki structure can then be
viewed as a connection on this bundle whose curvature is a Kdihler form on D, in fact dn = 2wr.
Then, the basic cohomology is the pullback to X of the cohomology of D. So L is the pullback of
a holomorphic line bundle on D with ¢1(L) U ¢1(X) = 0, and the connection from 3.1.31 is the

Chern connection of a suitable hermitian metric on L.
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3.2 Examples

3.2.1 Monopoles on Affine Smoothings

This section sets up the problem for studying Calabi-Yau monopoles on the AC Calabi-Yau
manifolds described in section 5 of [CH13a]. In view of proposition 5.1 of that reference one can
consider a compact Fano 3-fold X, of index £+ 1 and D a smooth anticanonical divisor in X, such
that Ky, = —(k + 1)[D], for some k € N. Then, X = X,\D is a smoothing of C = (31 Kp)*,
the blow down of the zero section in %K p-. In fact D is the orbit space of the C*-action on the
Calabi-Yau cone C. Moreover, C' can be C* equivariantly embedded in some C'V, for a weighted
action on the latter, as shown in [vanl1].

Let C be a complete intersection Calabi Yau cone in CV. We shall consider smoothings X by
adding lower order terms to the equations defining C. Hence, also X will be a complete intersection
affine manifold. The cohomology of such an X is supported in the middle dimension, 3 in this case,
in fact they are homotopy equivalent to a bouquet of S3’s [CH13a]. These examples are asymptotic
to a cone over a regular Sasaki-Einstein manifold 7p : ¥ — D, which is the total space of an S
bundle over a Fano surface D with a Kihler-Einstein metric gp. The Weitzenbock formula for
1-forms shows that since (D, gp) and (3, gs) have positive Ricci H'(D) = H*(3) = 0. In fact,
we shall suppose that the cone C has trivial canonical bundle and 71 (D) = 71 (X) = 0. Moreover
H?(X) = H,;'(D) as Kodaira vanishing implies H2°(D) = 0.

Definition 3.2.1. Let H},(X,Z) denote the compactly supported cohomology of X. A class
P € H2(X,Z) is said to be a special Lagrangian (SL) class if P U [Q3] = 0 € HS.(X,Z) and
PUw] =0¢€ H2(X,Z). Moreover, if P € ker(H3.(X,Z) — H3(X,Z)) then it is said to be a

monopole-SL class.

Remark 3.2.2. The definition above makes sense for any Calabi-Yau manifold. In fact, in the cases
to be considered here the condition P U [w] = 0 is immediate as H3,(X,7) = HY(X,Z)* = 0.

Definition 3.2.3. A class o € H?(X,Z) is said to be a monopole class if o U [i*Qg] = 0.

Remark 3.2.4. Take the long exact sequence for compactly supported cohomology and recall that
H*(X,Z)=0
0— H*(X,Z) — H2,(X,Z) — H¥(X,Z) — ...

Hence the image of the map H*(X,7) — H3,(X,7) is exactly the kernel of H3,(X,7) —
H3(X,7) and so identifies the image of the monopole classes with the monopole-SL classes.

Remark 3.2.5. Alternatively one could have considered the exact sequence for the pair (X, X),
which together with the Thom isomorphism H*(X., X) = H*~2(D) gives

0 — H%(X,,Z) — H%(D,Z) % H3(X,Z) —» H*(X.,7) — 0.

Since by Kodaira vanishing H*°(D) vanishes, H*(%,7) = H;;nl (D,Z) and one can give an

alternative definition of monopole classes as those o € H?(D,7) which are primitive of type



64 CHAPTER 3. MONOPOLES ON CALABI-YAU 3 FOLDS

(1,1) and 7o U [*Q] = 0. Their image i(c) corresponds to those classes in the kernel of the
map H3,(X,7) — H3(X.,7Z) such that i(a) U [Qs] = 0 and these could have been used as an

alternative definition of monopole-SL class.

Let 75 (a) € H*(X,Z) be a monopole class and £ — D a line bundle with ¢1(£) = o
Then, from proposition 3.1.31 there is an HYM connection on £, or equivalently a basic HYM on
L = 7, L — %, the pullback of L to X via mp. Take two copies of this connection to obtain a
reducible connection A, on L & L1 over ¥. Let P be an SU(2) bundle over X, such that for £
the rank 2 complex vector bundle associated with the standard representation, one has

Elp=LeLt (3.2.1)

Then one searches for finite mass complex monopoles (as in definition 3.1.19) on E = £|x. Indeed
the work to be developed later in chapter 5 gives a Fredholm setup for this problem and proposition
3.1.26 shows that for rate € > 3 these complex monopoles are actually Calabi-Yau monopoles and
so satisfy *V 4® = F4 A Qy and AF4 = 0.

Example 8. Take C to be the ordinary double point 23 + 22 + 22 + 22 = 0in C*. In this case
D = P! x P! and C can be smoothed out by adding a zero order term to the equation. X is
diffeomorphic to T*S? and can be equipped with a Calabi-Yau metric known as the Stenzel metric
[Ste93]. The zero section is a special Lagrangian S* and its class in H>,(X,7) lies in the image of
a monopole class. Moreover, the Stenzel metric is cohomogeneity 1 and so this is a particularly
interesting example for studying Calabi-Yau monopoles and their interaction with the special
Lagrangian submanifold, via ODE methods. This will be done in the next section 3.3, whose upshot

is theorem 3.3.1.

Example 9. Take C to be given by the cubic singularity 23 + 23 + z3 + 23 = 0. Consider the

deformations which can be written as

4 4
X:{<21,22,23,24)€C4‘ sz—‘r Z tijzizj+ztizi:€}7
i=1 1<i<j<4 i=1
for (tij,ti,e) € C. Each of these is diffeomorphic to a bouquet of 16 spheres [GH78]. AC Calabi-
Yau metrics are constructed in [CH13a], which have rate —3 in general and —6 in the case where
all the t;; = 0. In this example D = BlgP?, ¥ = #6S? x S3 and so H*(X,7Z) = 75. Those classes
ha € H*(X, Z) such that mha U [i*Qs] = 0 are the monopole classes which certainly exist and
form an Abelian group isomorphic to 7.5 or 75 according to whether [i*Qs) vanishes or not. For
each of these classes proposition 3.1.31 gives the asymptotic basic HYM connection A on a line
bundle L over ¥ such that ¢1(L) = w},a. Then, given a mass m € R*, chapter 5 gives a good

Fredholm setup for studying mass m Calabi-Yau monopoles with connection asymptotic to Axc.

Example 10. Take C to be given by the intersection of two quadrics in C°, given by 25 22 =

i=1"1
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Z?Zl X\iz? = 0, and the \;’s all distinct. Consider the deformations of C which can be written as

5 5 5
X = {(21---725) eC’ | ZZZQ +Ztm =e€1, Z)\ZZE = 52},
i=1 1=1 i=1

for (ti,e1,62) € C'. Each of these is diffeomorphic to a bouquet of 9 spheres [GH78]. AC
Calabi-Yau metrics are constructed in [CH13a], these have rate —3 in general and —6 in the case
where all t; = 0. In this example D = BlsP? is the intersection of the two quadrics in P4, so
Y = #5S% x §? and H*(X,7Z) = 7Z°. Once again there are monopole classes and they form an
Abelian group isomorphic to 7 or 7* according to whether [i*$2s] vanishes or not. For each of
these classes proposition 3.1.31 gives the asymptotic basic HYM connection A, on a line bundle
L over Y. Then, given a mass m € R™, chapter 5 gives a good Fredholm setup for studying mass
m complex monopoles with connection asymptotic to Ao.

This example is also promising for studying the relation between monopoles and special Lagrangian
submanifolds. For the statement of the next result suppose with no loss of generality that all the \;
are real and \; < \j ifi < j.

Proposition 3.2.6. Let €1,e2 € R, such that Ao > Z—f > A1. Then, for all sufficiently small t;’s,

there are two special Lagrangian 3 spheres in X.

Proof. Consider the antiholomorphic involution 4 : z; — Z; and let (w, Q2 = Q) + i{23) denote
respectively the Kihler form and the holomorphic volume form of the Calabi Yau structure. Since
the complex structure on X is induced from that on C®, h*w = —w and h*Qy = —Qy, hence
its fixed points cut out special Lagrangian submanifolds in X. In order to ease the computation
suppose the t;’s vanish, the general case follows from the implicit function theorem. Define real

coordinates by z; = x; + 1y;, the fixed points of i are such that all y; = 0 and

5 5

2 2
g T; =€1, E \iT; = €2.
i=1

i=1

Both of these are 4 spheres inside R, in fact the one on the left is a round sphere, while the one
on the right is an ellipsoid for general ;. Next one needs to show that under the conditions in the
statement they do intersect and the intersections are diffeomorphic to S*. Assume with no loss of

generality that \; = min;{);} and replace 2% = &1 — 2?22 x? in the second equation. This gives

5

Z()\Z — )\1)1‘? = &9 — )\161 > 0,
=2

and so defines a 3 sphere in R‘(lm )’ Moreover, if A\oe1 > €9, then all (x2, z3, 24, x5) in the 3

5

spheres defined by Z?:Q()‘i — )\1)3:? = g9 — A1&7 are such that Z?:2 3312 < €1. So there are two

distinct disconnected branches of the square root in the first equation 1 = £4/¢1 — 25’22 JJZZ and
each of these gives rise to a special Lagrangian 3 sphere. O
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3.2.2 Monopoles on Crepant Resolutions

Given a Calabi-Yau cone (C,wc,¢), then C' U {0} can be identified with an affine variety
(Theorem 3.1 in [van11]), equivariantly embedded in some cgh_“,w v With respect to a C* action
for some weights (wi, ..., wy). In many cases there is a resolution 7 : X — C which is crepant,
i.e. X has trivial canonical bundle equipped with a nonvanishing holomorphic section 2 = 7*{¢.
There are many examples of AC Calabi-Yau 3 folds obtained from crepant resolutions, see section
4 in [CH13a], where the main examples are reviewed and some new ones given. These include, for
example, Calabi’s explicit metric on Kp2 [Cal79], the small resolution of the ordinary double point
Op1(—1) ® Op1(—1), Joyce’s ALE examples [Joy00], Van Coevering’s examples in [van10], the
cohomogeneity 1 examples associated with flag manifolds in [CH13a] and others. In this class of
examples, there are no compact special Lagrangian submanifolds because H3(X) = H3(FE), where
E denotes the exceptional locus and H3(E) = 0. So, the following vanishing result is a promising

motivation for the conjectural relation between monopoles and special Lagrangian submanifolds.

Proposition 3.2.7. Let X be a crepant resolution of a Calabi-Yau cone with complex dimension 3,
then there are no irreducible, finite mass complex monopoles (A, ®) as in definition 3.1.19 on X
such that |A — Aso| = O(p~479) for some § > 0.

Proof. Recall the definition 3.1.19 of finite mass complex monopoles and suppose (A, ®). The
hypothesis say that there is A, as in definition 3.1.19 such that |[A — Ao = O(p=*%) and § > 0.
Using this together with the fact that away from the exceptional locus X is biholomorphic to the
cone, i.e. the complex structure approaches the conical one at rate A = —oco < —3, one can use

proposition 3.1.23 to conclude that A is reducible. O

3.3 Calabi-Yau Monopoles on 7*S?

This section analyzes example 8 from section 3.2.1 regarding the existence of Calabi-Yau monopoles
and proves theorem 3.3.1 below. The Stenzel metric will be discussed in detail in section 3.3.1,
moreover it will be showed to be of cohomogeneity 1, i.e. there is a Lie group acting by isometries
with codimension 1 principal orbits. In the presence of such a Lie group action there is a notion of
homogeneous bundle, i.e. a bundle where the previous action lifts via bundle automorphisms to the
total space. Let E be a rank 2 complex vector bundle associated with a homogeneous principal
bundle P with structure group SU(2), then there is a notion of invariant connection and invariant
Higgs field and it makes sense to define the moduli space of invariant Calabi-Yau monopoles on
P, Min,(P). This is defined as the set of those (A, ®) on P as in definition 3.1.19, which are
invariant and solve the Calabi-Yau monopole equations, up to the action of the invariant gauge

transformations.

Theorem 3.3.1. There is a homogeneous SU(2) bundle P over T*S3, such that the space of
invariant Calabi-Yau monopoles M., (P) is non empty and the following hold:

1. For all Calabi-Yau monopoles in My, (P), the Higgs field ® is bounded, the mass is well
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defined and gives a bijection
m : My (P) = RT.

2. Let R >0, and {(Ax, ®x) }re[A,+o00) € Minw(P) be a sequence of Calabi-Yau monopoles
with mass A converging to +o0c. Then there is a null sequence n(\, R) such that the restriction

to each fibre T,,S? for x € S? of the rescaled Calabi-Yau monopole

expy, (Ax, n®y)
converges uniformly to the BPS monopole (ABPS ®BPS) in the ball of radius R in (R3, g).

3. Let {(Ax, Px)Faeja,+00) C Minw(P) be a sequence of Calabi-Yau monopoles with mass

m(Ax, ®n) = A converging to co. Then the translated Calabi-Yau monopole sequence

D\
Ay, Py — A==
( A £ |q))\‘> )

converges uniformly with all derivatives to a zero mass Dirac Calabi-Yau monopole on

T *83\83, i.e. a reducible, singular Calabi-Yau monopole.

The proof of this theorem occupies this whole section and it is organized as follows. Subsection
3.3.1 explicitly obtains the Stenzel metric on T*S3. Subsection 3.3.2 constructs homogeneous
bundles and studies invariant connections and Higgs fields on them. Using these as input, the
Calabi-Yau monopole equations are then reduced to the ODE’s in proposition 3.3.16. The solutions
to these equations are studied in subsections 3.3.3, 3.3.4 and 3.3.5, where these are solved first
for the cone and then for the Stenzel metric. The proof of theorem 3.3.1 requires rewriting the
equations; this is done at the end of subsection 3.3.5 with the discussion after lemma 3.3.25. This
lemma is the last one in a sequence of rearrangements of the equations, which reduce the relevant
ODE’s to the ones analyzed in chapter 2 for spherically symmetric Calabi-Yau monopoles in R?
equipped with a certain spherically symmetric metric. This subsection finishes with one other
solution to the equations giving an explicit formula for an SU(2)-irreducible Hermitian Yang Mills

(HYM) connection, which to the author’s knowledge was previously unknown.

3.3.1 Stenzel’s Ricci Flat Metric

This subsection begins with an informal discussion of the Conifold and its deformations. Later the
Stenzel’s Calabi-Yau structure [Ste93] will be computed explicitly and shown to be asymptotic to
the Conifold one. Moreover, the uniqueness of Stenzel’s Calabi-Yau structure was recently shown
in [CH13a]

The Conifold and its Deformations

The ordinary double point in C* gives rise to a Calabi-Yau cone (C,w¢, ¢, known in the physics
literature as the Conifold [Cd90]. It is a Ricci flat Kihler cone (C’ =R x 3, go = dp? + p? gz),
whose link (3, gx) is a regular Sasaki-Einstein manifold. Topologically ¥ = S? x S2 is the total
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space of a U(1)-bundle over D = P! x P! with the product Fubini-Study Kéhler structure wp.
Let 77 be the contact structure on X, so gs = 7,gp + 1 ® 7, where gp is the product round
metric. The curvature of the connection 7 is dn = 2whwp, so in HM(D,Z) = Z & 7 and
¢1 = 5= [dn] = L [wp] represents the first Chern class of the associated complex line bundle. Since
% is simply connected and ¢;(—4Kpiyp1) = (1,1), one concludes that X is the total space of
the unit circle bundle in —%Kﬂn «pt- The complex structure Jo on the cone C' is the one given
by viewing it as the ordinary double point in C*. It matches the one in D along the transverse
directions and rotates pd, to the Reeb vector field . This makes (C, gc, Jc) a Ricci flat Kdhler
cone with a global Kahler potential p?, so we = 2d(p*n) = £0dp?. The smoothings,

2, .2, .2, .2_ 2 4
Xe = {F(21,2,23,23,24) = 21 + 2§ + 25 + 2§ ="} C C,

for ¢ € R™, make it nonsingular at the expense of changing the complex structure. Topologically
these are 7*S? and one obtains a complex 1-parameter family of complex structures on 7*S3. To
see that X, = T*S3, restrict to each X_ the function r? = Z?Zl |z;|? taking values into [¢2, +00)
and introduce the coordinates (x;,y;) € R* x R* = C4, via z; = x; + iy;. Then the real and
imaginary parts of the quadratic equation for X. are respectively

r? 4+ &2 r2 —g?

5 , |y =R = 5 , z-y=0. (3.3.1)

This shows that the map that to (z,y) € R* x R* associates (P%’ y) € S? x R* ¢ R* x R4,
restricts to X, C C* as a diffeomorphism onto 7'S? ¢ R* x R*. Moreover, the level sets of - are
either ¥ = S? x S? for r # ¢, or the zero section S? for r = .

Regarding symmetries, SO(4) acts on C* by matrix multiplication preserving F' and 7 and so acts
on X.. The action is transitive on each level set of r. In fact Stenzel’s Calabi-Yau structure, is
invariant under this SO(4) action. This symmetry allows for the reduction of the Monge-Ampere
equation to an ODE. For the purpose of constructing the metric it is irrelevant whether one considers
an SO(4)-action or its lift to a Spin(4)-action. However, regarding the existence of interesting

invariant connections it is convenient to work with the Spin(4)-action instead.

Stenzel’s Ricci Flat Metric

Identify the Lie algebra so(4) with the skewsymmetric matrices. Then, let X; = Cj2, Xy =
Ci3, X3 = Ci4, X4 = O3, X5 = Coy, X = C34, where C;; denotes the matrix whose (4, j) and
(4,14) entries are respectively 1, —1 and all other vanish. These satisfy the relations [C;;, Cix] =
—Cjy and [C;j, Cyy] = 0if 4,4, k, [ are all distinct. Let p = (R4,iR_,0,0) € X. C C*, with
Ry, R_ defined as in equation 3.3.1, then at p the isotropy subgroup is generated by exponentiating

X and this is
H, - {(é Z) Ac 50(2)} C SO(4). (332)
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One fixes a lift of SO(4) to Spin(4), such that the isotropy subgroup H, C SO(4) lifts to
H=U(1)in Spin(4) = SU(2) x SU(2), with

H= {v(t) = <<€;‘t e%) ; (6: 6%)) |te ]R} =~ U(1). (3.3.3)

and C{% = —2X¢. Using the basis for spin(4) = so(4) given by the {X;}¢_; and its dual basis

{6;¥6_,, the Maurer Cartan form on Spin(4) is = S.°_, 6;X; and the 1-form

1

296 € Q' (Spin(4),iR) (3.3.4)

equips the bundle Spin(4) — ¥ = Spin(4)/U(1) with a connection. This is the canonical
invariant connection in the language of [KN63]. The tangent space to the Spin(4)-orbits can be
identified with an Ad invariant complement to the isotropy algebra hh = (X§). Fix the one given by
defining m to be the span of {X;}>_,, then

spin(4) = h S m,

and extending m as a left invariant distribution in Spin(4) gives another point of view on the canon-
ical invariant connection. Moreover, one can further decompose m into irreducible representations
of H=U(1)as

m = (X1) & (X, X3) ® (X4, X5), (3.3.5)

where (X7) is the trivial representation and (X5, X3) & (X4, X5) = C with the standard weight
one representation. One can check that at p, (X4, X5) is the tangent space to the fibres of the
sphere bundle inside 7*S3? — S? (using the round metric on %), while (X;) @ (X, X3) projects

surjectively onto the tangent space to the base S3.

Proposition 3.3.2. There is a Spin(4)-invariant Ricci flat Kéhler metric on T*S? with Kéhler

form
w = Gdr A 0" + G(0** + %), (3.3.6)

where G = \/rt — 1L G = % and F(r?) is the (global) Kdihler potential, which satisfies

1
3

F'(r?(t)) = Smlll(t) <4§2) ’ (sinh(2t) — 2t)3 , (3.3.7)

Wl

where t € [0, 400] is the coordinate implicitly determined by r*> = &2 cosh(t).

Proof. Since by(T*S3) = 0 any Kihler metric has a global Kihler potential F(72). The proof
splits into 3 steps:

1) Find a (SO(4)-invariant) formula for the Kihler form in terms of F(r?). To do this expand
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the formula for the Kéhler form %85}" (7?) in terms of the Kéhler potential
= SF00(?) + 5 F'9(%) A 3(r). (33.8)
The first term is 99(r?) = 3", dz* A dz* and for the second

or?or? = (d—0)r* A(d —9)r* = —2rdr A Or* — 2ror® A dr — Or?0r?
= 2rdr A (0 — 0)r* — or?or?.

Pass the last term to the left hand side and get 9r29r2 = rdr A (0 — 0)r?, substituting this back in
equation 3.3.8 so that we = £ F'00r% + iF"rdr A (9 — 0)r?. Atp = (R4,iR_,0,0) € X, C C*

one may write

dz' =

d 6" dz?> = —R.0' —d
2R+ r+iR_ Ry +2R_T

dz® = —-R, 6°> —iR_#" dz* = —R, 6% —iR_6°.

and notice that the forms on the right hand side extend to SO(4)-invariant forms outside the zero
section. With these relations one computes (0—0)1? = 3, z'dz' —7z'dz" = 2i(R_dzo—Ridy;) =
—4iR_R,6". The same can be done for the terms dz* A dz* and one discovers that

I — (r*F + (r* — e F") dr NO* + /14 92/\04+93/\95)

we =
rd — gt

which in terms of G is the Kihler form in the statement, for a (yet) unknown F(r?).
i 8F 7& 0}

where recall F' = ZZ #. There, it is given by ) = (85) dzt A dzi. A dz and one can

compute it at p, since z; # 0 there. Writing the result in terms of the SO(4) invariant forms

2) Find a formula for the holomorphic volume form. ThlS

Re() = — (R160' — R26'%) — Zdr A (9% - 6%) (33.9)
m©Q) = - (Ergne - Bogne®) 4 RoR (0% - 029,
2 \ R_ R,

3) Use the formulas computed in the previous steps to reduce the Monge-Ampere equation to
an ODE and solve it. This is done by combining “’3—,3 = —éQ A Q with the formulas for w and
obtained in the first two steps. Since 2Q A Q) = —%dr A 612345 and “’3—,3 = —GG2dr A 912345
the ODE is 2692 =rR;R_, orin terms of the Kéhler potential F

rt—et d

3 dr?

TZ(}-/)B + (}")3 =1. (3.3.10)

4 1 d

Change variables to ¢ such that 72 = 2 cosh(t), then £* sinh?(t) = r* — ¢* and # = b di’
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Substituting this into 3.3.10, the ODE turns out to be

g2 sinh(t) d

2 "3 N3 _
e” cosh(t)(F')° + 3 $(}") =1, (3.3.11)

which can be solved by introducing an integrating factor, giving the formula in the statement for

the solution. O]

Remark 3.3.3. In some computations to be carried out further ahead it will be useful to recall the
ODE 3.3.10 in the form 2GG? = rR, R_.

For completeness, the complex structure can also be worked out explicitly in terms of the
invariant forms. This can be read out of the formulas relating the dz/s with the 6’s and this
gives 10" = splpdr, Idr = —25E=01, 102 = —7=6%, 6% = 126, 16° = —7=6° and
16° = %03 . These, together with the equation 3.3.6 for the Kéhler form, give the following

expression for the metric

2RyR_ R_ 2
= dr? 07 05 + 6 — (05 +67). 3.3.12
g = g2R R+ +g r +G 7(2"‘ 3) gR+(4+ 5) ( )
Definition 3.3.4. For each € define the radial function given by
(r) = "L / L (3.3.13)
P B € g € \/l4_54}—/(l2) . o

The function p just defined is the length through a geodesic orthogonal to the principal orbits
and for ¢ = 0 it agrees with the geodesic distance to the apex of the cone. Next one defines a
function which captures the volume growth of the level sets of p. The volume form for the induced
metric is given by g g g%dr AOYS = (RyR_)2Fdr AGL5.

Definition 3.3.5. Define the radial function h?(p) = 8%(R+R,)2}" '

Remark 3.3.6. For the Conifold, which corresponds to € = 0 one already knows the Kihler

potential is p. Moreover, in this case the SO(4) invariant Monge-Ampére equation 3.3.10 is

rt d

PE) 4 TP =L (3.3.14)

The Kdhler potential F is given by F = ( ) r3 and so one concludes that the geodesic distance

2
to the apex of the cone is p = (%) r5. This can be used to rewrite the Ricci Flat Kihler metric
3.3.12 on the conifold C' as

s (o) (' () () () o

3.3.2 The Calabi-Yau Monopole Equations

Recall that X.\771(g) = (g;00) x %, where ¥ = Spin(4)/U(1) is homogeneous and 7 is the

coordinate on the (¢; oo) component. This section describes homogeneous bundles having invariant



72 CHAPTER 3. MONOPOLES ON CALABI-YAU 3 FOLDS

connections and invariant Higgs Fields. Then, these are used to compute the Calabi-Yau monopole
equations and reduce them to ODE’s. Background material on homogeneous bundles and invariant

connections can be found for example in section 2 of chapter X in [KN63], or in Appendix B.

Homogeneous SU (2) Bundle

Recall that given a Lie group G, a principal G bundle P over ¥ = Spin(4)/U(1) is said to
be Spin(4)-homogeneous (or just homogeneous) if there is a lift of the Spin(4) action on ¥ to
its total space, which commutes with the right G action on P. In particular, Spin(4) — X is
itself a homogeneous U (1)-bundle. In general homogeneous SU (2) principal bundles over ¥ are

determined by their isotropy homomorphisms ); : U(1) — SU(2) and are constructed via
P)\l = Sp’in(4) X(U(l),)\l) SU(?), (3316)

where the possible group homomorphisms \; are parametrized by [ € Z and given by

eil@ 0
Mi(0) = ( 0 e—iw) :

By construction the P, are reducible to Spin(4) and each connection on the latter extends to a
reducible connection on Py, (see [KN63]). The goal is to find invariant connections on P, which
are not reducible to connections on Spin(4) and it will be seen in proposition 4.2.1, that this is not

possible for all but one [, which is [ = 1.

Remark 3.3.7. Let E; = Py, X (su(2).,¢) C2, or equivalently Py, X (SU(2),c21) C?, where c denotes
the standard representation of SU(2) on C2. As the P,’s are reducible,

E; = Spin(4) xeop, C2 = L' @ L7

splits as a sum of complex line bundles L' associated with Spin(4) from the degree | representation
of U(1) on C. As ¥ is topologically S* x S3, the bundles Ej are trivial and so do extend over T*S?,
i.e. when the zero section is glued back in. However, the splitting above only holds outside the zero
section in T*S3, as the bundle L itself does not extend.

Recall the canonical invariant connection —£¢% € Q1(Spin(4),iR) on Spin(4) — X defined
in equation 3.3.4. This is a U(1) connection and the next step is to extend it to a reducible

connection on each Py, .

Definition 3.3.8. Ler T1,T5,T3 be a basis for su(2) such that [T;,T;| = 2¢;,Ty. Then, the

canonical invariant connection on Py, is

6
Al = _% @ T1 € QY (Spin(4), su(2)). (33.17)
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Lemma 3.3.9. The curvature of the canonical invariant connection Al is

ﬂ:—%@%ﬂﬁ@ﬂ. (3.3.18)

Proof. This follows from the Maurer-Cartan relation df#% = 23 + 6%5, the other ones are df' =
024 4 335 d03 — _(915 o 926 d05 — 913 o 946 d92 — _(914 4 936‘ ]

In the same way one computes ¢ (L) = 2= [6?* + *°], and this can be compared this with
the transverse Kihler structure. The vector field X is the infinitesimal generator of a free S'-
action on X and this is precisely the flow of the Reeb field. The contact form equips the bundle
¥ — D with a connection which needs to be proportional to 8!, and one can read from 3.3.15 that
wp = % (6** + 635). Moreover, since wp = %, one discovers from the Maurer Cartan relations
that n = —26", as expected from 3.3.15 and so ¢1 () = 2¢1(D) = 5= [62* + 6%].

Remark 3.3.10. In fact L is the pull back of a holomorphic line bundle L over D. Moreover; —i%ﬁ
is then a Hermitian Yang Mills connection on L — D and in the case of the Conifold C' it does lift
to a reducible Calabi-Yau monopole. In fact one wants to construct Calabi-Yau monopoles whose

connection A is asymptotic to Ao, = Al

Invariant Connections and Higgs Fields

The problem of finding invariant connections on P is an application of Wang’s theorem, for which

the reader is referred to [KN63] or Appendix B in this thesis.

Proposition 3.3.11. Ler A € Q(Spin(4),su(2)) be the connection 1 form of an invariant

connection on P;. Then it is left-invariant and can be written as
A=Al 4 (A—- A (3.3.19)

where (A — A.) € m* ® su(2), extended as a left-invariant 1-form with values in su(2) is given by
A—A.=A0' Ty ifl # 1, while if | = 1

A—A, = A0'0T
+ (A260? — A30® + As0* — A50°) @ T
+ (A30% + A26° + A50" + A40°) © T3,

and Ay, Ay, A3, Ay, A5 € R.

Proof. By Wang’s theorem [KN63], invariant connections are given by morphisms of U (1) repre-
sentations
Al : (m, Ad) — (5u(2), Ado )\l).

Then by extending A; as a left invariant su(2)-valued 1-form in Spin(4) one obtains an invariant
connection A = AlC 4+ A; on P, (notice that A; = 0 gives the canonical invariant connection).

Let ¢ be the standard, weight 1, U(1) representation on C = R2. Split the representations
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above into irreducibles m = R @ ¢ @ ¢, and su(2) = R @ c®!, where in the first of these
c®c = (X9, X3) ® (X4, X5), from equation 3.3.5. Then, Schur’s lemma states that A should
restrict to each piece as an isomorphism or as 0. So for [ # 1, \; = A171 © 0, while for [ = 1,
A = A1Th P11 @ 19, where A1 € R and 14 and 15 are isomorphisms matching the ¢ components
in both sides. Using the basis of m given by the X;’s as in section 3.3.1 and the basis for su(2)

given by the 7;’s as in definition 3.3.8, 11, 15 can be written

1, = (A292 — A3(93) QT+ (A392 + A203) ® T3
1y = (A0 — A50°) @ To + (As0* + As0°) @ T3,
with A1, As, Az, A4, As € R. Rearranging gives the result in the statement. O

Proposition 3.3.12. For all | € Z, there are invariant Higgs fields ® and these are of the form
b = ¢ T, with ¢ € R.

Proof. The adjoint bundle is constructed via gp, X (sr7(2),Ad) su(2) and unwinding the construction

of P in equation 3.3.16, gives

gp, = Spin(4) Xy(1),Ador, S4(2).

So, think of Higgs fields (sections of gp,) as functions in Spin(4) with values in su(2) which are
equivariant for the U(1) right-action on Spin(4) and Ad o \;-action on su(2) via Ad o ;. For
Spin(4)-invariant Higgs fields, these functions must be constant. So the previous equivariance
condition reduces to the statement that such a constant must be fixed by the Ad o A\;-action, i.e. it
must lie in a irreducible component given by the trivial representation. There is only one such and

is the direction singled out by 77. O

Then a Spin(4)-invariant pair (A, ®) on the pull back of P, to (¢, +00) x X can be written as
A=dr® A (r)+ Ax(r) , ® =¢(r)® T,

with Ay, 1-parameter family as in proposition 3.3.11 and A,., & 1 parameter families as in proposi-
tion 3.3.12, parametrized by € (e, c0). Moreover, one can always get rid of the radial component
in A via a gauge transformation g that only depends on the r-direction, for this one needs to solve
(g - A)(0r) = 0. This equation can be written as g‘l% + g 1A,g = 0, and so amounts to solving
an ODE for g. This can always be solved with the condition lim, ,~, g(r) = 1 su(2)» the solution is

unique and so there is no loss in assuming that A, = 0.

Remark 3.3.13. For the proof of theorem 3.3.1 one must consider invariant gauge transformations.
The gauge-fixing above uses an invariant gauge transformation such that lim, ., g(r) = 1 SU(2)»
which is a usual requirement in monopole problems, but not here. So one can still use a gauge
transformation g’ which must not depend on r and be invariant, i.e. g must be a constant is
the subgroup Zy(1)(SU(2)) = U(1) C SU(2) of those elements which are centralized by U (1).

These do not affect the radial gauge fixing above, they preserve Alc and act by conjugation as
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g(A'— AVYg~ and so one can get rid of one the A;’s. The choice of such a gauge will be postponed

to a later stage, where a particular choice will ease the computations.

Lemma 3.3.14. For [ # 1, the curvature of an invariant connection A on P, is given by
l .
Fl = (-2(623 +0%) + Ardr A0 + AL (6% + 935)> ® Ty, (3.3.20)
in particular the connection is always reducible for | # 1. For | = 1, the curvature is

Fy = ((2(A§ + A3) - ;) 0> + <2(Ai + A%) - ;) 045> ® Ty
+ (2(A244 + A5 A3)(0%° — 0°%) + (A1 + 2(AxA5 — AgAz)) (6% +6°)) @ T}
+(As — 241 A3)(To ® 012 + T3 ® 03) + (A5 + 241 A2) (T3 ® 0" — Th ® 6')
—(A + 241 45)(Ta ® 0" + T3 ® 0'°) — (A3 — 241 A4) (T3 ® 0 — T, ® 0'°)

0
+dr A 5 (A= A) (3.3.21)

Proof. The curvature of an invariant connection A = Al 4 (A — Al) is given by
Fa=Fl+dy(A-A)+ % [(A - Alc) A (A ~ Alc)} , (3.3.22)

where F| cl is the curvature of the canonical invariant connection, computed in equation 3.3.18, and
dat (A— Alc) is the covariant derivative of A — AL with respect to Al. The statement that the
connection is reducible follows from the Ambrose-Singer theorem, since the curvature always takes

value in the u(1) C su(2) generated by 77.

For [ # 1, the third therm in 3.3.22 is A36! A 6! ® [Ty, T1] and so vanishes. One is left with
the computations of the second term, for which the Bianchi identity d aF é = 0 can be used to

conclude d Al Ti = 0 and so

dy(A—Ay) = d(A—A)+[ALA(A— A
= Adr NO' @ T+ AT @ (0% + 6%).

The case [ = 1 is more involved. Using the Maurer-Cartan relations, the second term in 3.3.22
Iy=da,(A—A.) =d(A—A.) +[Ac N (A— AL)] is

0
da(A=A) = dr A5 (A= A)+ AT @ (6% + 6°°)
_(A2T2 + A3T3) & (914 + (A3T2 — A2T3) & 915
+(A4To + AsTs) @ 0" + (—AsTy + AgTs) ® 62,

where the vertical terms (i.e. those in ) from the exterior derivative have canceled with the ones
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coming from [A. A (A — A.)]. The last term I3 = 1 [(A — A;) A (A — A.)] is given by

Iy = A0 A (Agfy — A30® + Ay0* — A560°) @ [T1, T
+A10Y A (A3 + A283 + A0 + A40°) @ [T, T3]
+ (A28 — A30® + Aaf* — As50°) A (A3 + As0® + A50* + As0°) @ [Ty, Ty
= 241 (AT3 — A3Th) ® 0'% + 24, (A4T3 — AsTh) ® 61
—2A1(AgTy + A3Ts) @ 613 — 24, (AT + AsT3) @ 672
+2(AgA5 — AgA3)T) @ (0% + 6%) 4 2(A2A4 + AsA3) Ty @ (0% — 63%)
2(A3 + ATy ® 6% + 2(A] + ATy ® 0.

O

Lemma 3.3.15. Let ® € Q°(T*S3, gp,) be an invariant Higgs field and Al an invariant connection
on P. Then, ifl # 1, V 4 ® = bdr @ Th, while forl = 1

Vad = ¢droTy
12042 (To ® 0° — T3 ® 0%) + 20 A3 (T2 ® 6> + T3 ® 6°)
—20A4(T3 ® 0" — Ty ® 0°) + 20 A5(To ® 0* + T3 @ 6°).

Proof. This follows from computing V 4 ® = V4 (¢T1) = dp @ Ty + ¢V 4 T1. The first
term is just ¢dr @ Ty, while for the second term one uses that A' = AL + (Al — AL), then
VTt =dguT +[A = AL T, ie.

V :q‘ﬁdr@TlJr(p(dAlch +[Al —Aé,Tl]).

Again, the Bianchi identity d aF =0 for Afj gives d 4tTh = 0 and one is left with the remaining
terms. In the case [ # 1 these vanishand V ;& = édr ® T, while for [ = 1 one has

(AT — AL Ty = 2(A30% + As0® + A50* + A40°) @ Ty — 2(A20% — A30° + A40* — A50°) @ Ts.
The result follows. O
Reduction to ODE’s

This section uses the results from the previous section to reduce the Calabi-Yau monopole equations
for invariant connections and Higgs fields to ODE’s. The two cases [ = 1 and [ # 1 are presented
separately and the case [ = 1 ends up being the more important one. Recall from the third item of
proposition 3.1.3, namely equations 3.1.6 and 3.1.7 with &3 = 0, that the Calabi-Yau monopole
equations are

2 2

dA<I>1/\%+FA/\ngO,FA/\w—:

0.
2
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Proposition 3.3.16. Up ro the action of a constant gauge transformation, Spin(4) invariant Calabi-
Yau monopoles on P, — T*S3\S? are in correspondence with solutions to the following set of
ODE’s. Forl # 1,

A = —ngl

. Il r (R R4
b o= Sl (fe )
4G \ Ry R_
While for | = 1, the fields must satisfy the constraint A3 A4 + A3 As = 0 and solve

g (Al + 2(A2A5 — A4A3)>

A, = —25
b= g (5 (- a0+ D) - SR (-0t a2 )
Ay = —;R12(A2+2A1A5)—;¢A2
Az = —;}312(143—2A1A4)—;¢A3
A = ;}%(A42A1A3)+;¢A4
As = —;]%(A5+2A1A2)+;¢A5,
with ¢, A; = (e,00) — R, fori = 1,2,3,4,5, Ry = /742 R_ = @andg -

VRIR_F'(r?), where F is the Kiihler potential for the Stenzel metric and F' its derivative.

Proof. We use the formulae 3.3.6 and 3.3.9, together with those computed in the previous section
to evaluate the quantities, V 4® A %2, FiAw?and Fq A Qo.

2

Vad A % = —G%p T @dr 6>

+2GG ¢ ((AsTy — AgTs) @ dr A 0" — (AT + AsTs) @ dr A 6'%%)
_2gg¢ ((ABTQ — A4T3) ® dr A 91345 _ (A4T2 + A5T3) ®dr A 91245) .

0 2345
5 (A—A.)NE

—4GG (Ay + 2(AsAs — Ay A3)) Ty @ dr A 912345
= 2@ (QA1 +2G (A + 2(A45 — A4A3))> T, @ dr A 612345,

Fy Aw? = —2G%dr A



78 CHAPTER 3. MONOPOLES ON CALABI-YAU 3 FOLDS

The computation of F'4 A 5 is long, but the outcome is

FaAQy=4R, R _(AgAy4 + A3A5)T) @ 01234

R r R
(ST (1 4(A2+ AD)) — DR (1 - 4(A2 4 A2) ) Ty @ dr A 6739
AR, AR

—R_Ry A2T2 + A3T3 R ((AQ + 2A1A5)T2 + (Ag — 2A1A4)T3)) ® dr N 1234

2R2 ((AQ + 2A1A5)T3 — (Ag — 2A1A4)T2)> R dr A 91235

~R_R,

—R_R, < A3T2 + Ang +
<A4T1 + Asj +

2R2 ((Ag — 2A1A3)Th + (A5 + 2A1A2)Tg)> @ dr A 9124

-R_R, < AsTy + AyTy + (A — 241 A3)T3 — (A5 + 2A1A2)T2)> ® dr A 913

R2

Matching all these computations in —V 4P A %2 = F' A\ Qg gives the constraint 4R R_(Ay Ay +
A3A5) and

G*o = <Zg+ (1—4(A3+ A3)) — 2% (1—4(A7 + A§))>
26G6(AsTy + AsTy) = —R-Ry ATy + AsTy) - %% ((Az + 241 45)T + (A3 — 24, A4)Ts)
~2006(AsTy — AsTy) = —R-Ry (—AsTy + AsTy) - g% ((Ag + 241 A5)Ts — (A3 — 24, Ag)Ty)
—2GG(AsTo + AsT3) = —R_R, (A4T2 + A5T3> - ;ZJF ((Ag — 2A1A3)To + (A5 + 241 A2)T3)
2GG9(AsTy — AiTy) = —R-Ry (—AsTy+ AiTy) - ;g; ((Ag — 241 A3) Ty — (A5 + 24, A5)T5) .
From these equations and using RagRg; = é, which is the ODE for the Ricci flatness of the metric
gives the statement. O

Remark 3.3.17. Recall that the Calabi-Yau monopole equations are overdetermined. In this specific
example this can be directly seen from the ODE’s in the statement of the previous proposition. In
fact, for I = 1 one sees that there are 6 ODE’s for 6 real valued functions, but they are constrained
to satisfy the identity As Ay + A3 As = 0. Since the complex structure is integrable it is expected
that the evolution encoded in the 6 ODE’s does preserve this constraint. In fact this will be shown

later in lemma 3.3.23.

3.3.3 Calabi-Yau Monopoles on the Cone

This subsection studies Calabi-Yau monopoles on the Conifold. The most important point is the
existence of an Abelian Calabi-Yau monopole given by the canonical invariant connection. This
is the pull back from L' 5 D =P x P! ofa HYM connection, which, recall, is the model for
the asymptotic behavior of finite mass Calabi-Yau monopoles. Since ¢;(L!) € H%'(D,Z) is in

the kernel of - U [wp] proposition 3.1.31 gives its existence, but here an explicit formula for the
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connection is given. One also has gp = iR @ L% and using this decomposition let ® = ¢ @ 0, with
¢ constant. Then (Af:, ®) are Calabi-Yau monopoles on the Conifold and provide good asymptotic
conditions for finite mass Calabi-Yau monopoles on 7*S?. In the system of ODE’s this corresponds
to taking ¢ constant and all the A;’s to be zero. After writing the equations on the cone it will be
trivial to see that this is indeed a solution. In fact a slightly more general result, proposition 3.3.18,

classifying all “constant" mass Calabi-Yau monopoles on the Conifold is obtained. Recall that the

3r
2

1 1 2
3\? 31 1/3\3 2 23 2
f/(,rz) — <2> ’[”_% = 5;’ g = 5 <2> r3 = %, g = <3> ’[4% = g\/ﬁ

Substitute these in the equations, then for [ = 1 these turn into

2
radius function on the cone is p = (5)® and F = p? and one has the relations

ol

A o= -0
;

(A1 +2(A3A5 — A4A3))

b= a3) rh At ) - a3+ )

together with the constraint Ao A4 + A3 As = 0 and

. 1 9\ 3 . 1 9\ 3
Ay = —= (AQ -+ 2A1A5) -2 — (Z5A2 Az = —— (Ag — 2A1A4) -2 — (f)Ag,
r 3r r 3r

1 1
p 1 2\3 p 1 2\3
A4 = —— (A4 — 2A1A3) +2 <> ¢A4 A5 = —— (A5 + 2A1A2) +2 <> ¢A5
r 3r r 3r

The following rescaling simplifies the equations and is a good preview of what will be done later
for T*S3. Define the fields B; via

By=rAy , By=rAs , By=rAs , Bs =rAs.

. i 1
Use A; + %Ai = %Bi, and change coordinates to p via d% = (3%,) 3 d% to obtain

dAq 4 18
— = ——A1+ —(B2Bs — ByB3),
dp p p4( )

do 33

i 275((32‘#3?)—(33‘?3%))7

together with the constraint Bo B4 + B3B5 = 0 and

dB 3 dB 3
—2 = _ZAB;—2¢By —> =+4ZABy — 2¢Bs,
dp p dp p
dB, 3 dB 3
2 — 42 AB3+2¢By  —— = —ZA,By+2¢Bs.
dp p dp p

Proposition 3.3.18. For all | and in radial gauge, any Spin(4) invariant Calabi-Yau monopole on
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P, over the Conifold with |®| # 0 constant is given by
A=A +Cpt T , ®=mT, (3.3.23)

with C € R and m € R\{0}. In particular, the canonical invariant connection AL, is obtain by
C=0.

Proof. If |®| is constant, then ¢ = m € R and in a first case focus in the more involved case [ = 1.
Make use of the extra gauge freedom and use g € U(1) C SU(2) to change the connection from
A — Alc to g(A — Alc) g~ '. This rotates AoT» + A3T3 and A,T» + AsT3 simultaneously. Hence,
there is no loss of generality in supposing that As = 0, i.e. B = 0. Then, the constraint turns into
BsBs = 0, while the third equation is A1 Bs = 0, then either A; = Bs = 0 or B5 = 0. In the
following these two cases are analyzed.

First the case A; = B3 = 0, then in fact A3T5 + AsT5 = 0 and so the gauge freedom is still
available to set By = 0. Since ¢ = m the equation for z—ﬁ = 0 gives Bs = 0 as well. So in this
case & = mT and the connection is the canonical invariant one.

For the case where B5 = 0, the second equation gives Bz = Bg, i.e. By = +£By. If one defines

By = p*Ay, the remaining equations are

dB
==L - F18B?2 (3.3.24)
dp
d(Bj) 3 2 2
i iﬁBlB4 — 4mB? (3.3.25)
d(Bj) 3 2 2
5, = TBiBi+amBE (3.3.26)

Since m # 0 by hypothesis, the last two ODE’s are compatible only in the case B4 = 0 and so
also B3 = 0. One is left with solving the first equation which now says that B; is constant. The
Calabi-Yau monopole to which this corresponds is given by the connection A = Al + %91 ® T
and the Higgs field ® = mT}. Hence its is reducible and the connection is HYM and for C' = 0 is

the canonical invariant one.

One must now discuss what happens when [ # 1. If that is the case, then immediately
By = B3 = B4 = Bs = 0 and the only equation is dc’% = —%Al. This can be integrated to give
the Calabi-Yau monopole in equation 3.3.23, which was obtained before for [ = 1. They do decay
to the canonical invariant connection. However, this decay is at a polynomial rate, more specifically
|A — Al] = O(p~9), which is due to the (unique) component which is "parallel” to the Higgs
field. So if one imposes that the connection must decay faster than this rate the canonical invariant

connection is the unique solution (setting C' = 0). O

Remark 3.3.19. All these Calabi-Yau monopoles are reducible and their connections are Hermitian
Yang Mills (HYM) on the Conifold. The canonical invariant connection, obtained from C' = 0,
is the unique one which is pulled back from the link. For C' # 0 the connections differ from this
one by Cp~49! = Id (% p_4), which is a harmonic 1-form on the cone. In fact, notice that given
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an Abelian Calabi-Yau monopole (A°, ®°) and a harmonic 1-form a, then (A° + a, ®°) is also a
Calabi-Yau monopole.

Also, notice that it is also possible to solve the equations with m = 0. Following the proof above
the equations reduce to dB 1 = ZFISB4 and ( ) = :I:p%Ble. Integrating these gives rise to an
SU (2)-irreducible H YM connectzon on the cone, which is not pulled back from D = P! x P,

3.3.4 Reducible Calabi-Yau Monopoles in 7*S?

For reducible Calabi-Yau monopoles one must put all A; = 0, for ¢ > 2. Then, only the first two
equations in proposition 3.3. 16 survive. For [ # 1, the first of them d;:} = —2gA1, can be readily
integrated to give Al( ) = g2’ where C € R is a constant. Regarding the second equation, using

the function h? = = L R, R_G and the radial coordinate p gives d(ﬁ = 2h2 This can be integrated

oi(p) :m—/%gl(p)dﬂ,

with m € R. This diverges at p = 0, i.e. the zero section. Notice that such solutions also exist for

to

! = 1 and by analogy with 3 dimensions are called Dirac Calabi-Yau monopoles.

Definition 3.3.20. Let (X,w, ) be a noncompact Calabi-Yau manifold and N C X a special
Lagrangian submanifold. A Dirac Calabi-Yau monopole is a Calabi-Yau monopole on a line bundle

defined on the complement of N. N will be called the singular set of the Calabi-Yau monopole.

Proposition 3.3.21. Foralll € 7 and C,m € R, the connections and Higgs fields

C l
gl 1 _ _
A—Ac—l——ge , p=m /2h2(p)dp,

are Dirac Calabi-Yau monopoles on L% for the Stenzel metric, with the zero section as singular

set.

Their curvature is
Fl' = —1(923 +6%) — Qngr NG+ g(924 + 6%) (3.3.27)
5 G G 3.
Moreover, from the Appendix C one knows that h(p) = p + O(p?) for p < 1 and h(p) = O(p®/?)
for p > 1 and so
1 0 :
=4+ 0(p°) ifpg1
op) =" _ (3.3.28)
m+ 5+ O(p~=¢) ifp>1,
where ¢ > 0 is a constant independent of [ and only depending on Vol () and € > 0. In fact ¢
is harmonic on 7*S?\S? for the Stenzel metric. This can be checked explicitly using the formula

3.3.12 for Stenzel’s metric. Since *A¢ = d * d¢, one computes

B | (1 8p 9
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3.3.5 Irreducible Calabi-Yau Monopoles in 7*S?

This subsection reduces the system of ODE’s in proposition 3.3.16 to simpler ones and uses it to
prove the main theorem 3.3.1. This is done in a series of steps: first proposition 3.3.22 rescales the
fields A; and changes coordinate to p in order to rewrite the ODE’s. Then lemma 3.3.23 rewrites
the equations once again and shows the constraint As A4 + A3 A5 = 0 is preserved by the evolution
encoded in the other equations. At the end of the subsection theorem 3.3.1 is proven and this
requires splitting into 3 cases. One of these cases requires using lemma 3.3.25, which is stated and
proved just before. This lemma reduces that case to the problem of solving a certain initial value
problem. That problem is precisely the one parameterizing spherically symmetric Bogomolnyi
monopoles in (R3, dr? + h?(r)gs2), and this has already been done in chapter 2. The rest of the
proof consists of using the results in the first part of chapter 2, namely theorem 2.2.1.

Proposition 3.3.22. Let the rescaled fields B; be defined via By = G>Ay, By = R_Ay, B3 =

R_As, By = Ry Ay, Bs = Ry As. Then, in terms of the distance function p, defined in 3.3.13,

and using h*(p) = L R.R_G the ODE’s in proposition 3.3.16 are given by the constraint

2

By By + B3Bs = 0 and

= g (1 S - )
dj)l — —4(ByBs — ByBs3)
ddi? _ _82%3135_2@2
ddi?’ — %31B4—2¢B3
ddl? — %31B3+2¢B4
ddB;f’ — _$3132+2¢B5-

Proof. The constraint Bo B4 + B3Bs = 0 is immediate from A3 A4 + A3As = 0. Inserting the
rescaled fields into the equation for ¢ in proposition 3.3.16 and rearranging gives

r 62

_ 4
b = mmgry (1= (B - @)

Next use d% =35 d% to change coordinates to p and h? = E%R+R_g to obtain the equation in the

do
statement for -

To analyze the other equations use R, = ﬁ and R_ = 57—»> which gives Bi=R_ (Al + ﬁAO,

for i = 2,3 and Bj = R, (Aj + ﬁA]) for 5 = 4,5. Inserting the equations in propo-
. + .

s'ition 3.3.16 into these, gives Bs = —ﬁAlBg’, — §9Ba, Bz = ﬁAlex — 59Bs,

By = R_:,TAlBg + §¢B4 and By = —ﬁAlBg + 5(/535. Changing coordinates to p
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again, these equations turn into

dBs 2G dBs 2G
=— A1Bs —2¢B — = A1By —2¢B 3.3.29
” R R, s ¢By i~ R R, 1B B3 ( )
dBy 2G dBs 2¢
/= A1B3 +2¢B = — A1By +2¢B
i R R, 1B3 +2¢By ap R R, 1B2 +2¢Bs,

and now changing from A; to B; = GA; and using h? = E%RJF R_G, gives the equations in the
statement. To obtain the remaining equation multiply the equation containing A; in proposition
3.3.16 by % in order to ease the coordinate change. This gives

dA; 4G 2G

— 2y - 4 (ByBs — ByBs).
dp rer+R_(25 4Bs)

Multiply this equation by G2 and pass the terms having A; to the same side, then this term of the
equation turns into 92 dAl + g%%fh = QQ dA1 + 2g Al, which is prec1sely o (QQAl) and
replaced back into the equatlon gives

dBy __ 2G°G
dp TR R_

4(ByBs — B4Bs).

Next recall that the reduction to ODE of the Monge-Ampere equation is 262G = rR, R_ as

alluded to in remark 3.3.3. Hence this equation also turns into the one in the statement. 0

Lemma 3.3.23. Let f1, fo : X — C be given by fi = By + iBs, fo = By + 1B5 and denote their
phases by X1, x2 respectively. The constraint in theorem 3.3.22 is Re(f1f2) = 0 and if initially

satisfied, is preserved by the other equations which are

Zﬁ = _thl(s)< i2(\f2|2 |f1!2)>
oL~ AIm(AF)

T~ Bk 2h

ng = —;%Blfl—i-?(;ﬁfg.

Moreover, the phases X1, x2 are constant and if f1 fo # 0, then x2 — x1 = 5 + 7k, for some k € Z.

Proof. The evolution equation for By and the constraint are obtained by using Re(fifs) =
By By + B3Bs and — Im(f1 fo) = B2 Bs — B3 By. The other equations follow from computing

d 9 , .
ci; = 53 Ai(=Bs +iBs) — 20(By + iB3)
%
- @Blﬁ - 2¢f17

and similarly for f. To obtain the first equation, just notice - 5 ((Bf+ B2)— (B3 +B3)) =
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;% (|f2|* = | f1]?)- The proof that the constraint Re( f1 f2) = 0 is preserved by the motion and the

statement regarding the phases is a direct application of lemma 3.3.24 below. O

Lemma 3.3.24. Let Ay(r), Aa(r), Bi(r), Ba(r) be real valued functions and f(r), g(r) complex
valued functions, such that Re(fg) = 0 atr = ro € R. Suppose f and g are subject to the
following ODE’s

g=A1g+iBif, f=Asf +iBag.

IfRe(fg) =0atr =ry € R, then Re(fg) = 0 for all v € R and both phases x1, x2 of f, g are
constant. Moreover, for fg # 0O these satisfy x2 — x1 = § + 7k, for some k € Z.

Proof. The fact that Re(fg) = 0 is preserved by the flow follows from computing

d . . _
9 = Jg+[g=(Aof +iB29)g + [(Arg —iB1f)
= (A1 + A2)fg +i(Balgl* — Bilf]?).

So L Re(fg) = (A1 + A2) Re(fg), so that in general Re(fg) = kel Avt42 and if at ro this
vanishes then Re(fg) = 0 always. If both f, g # 0 and 0 = Re(fg) = r17p Re(eX17X2)), then
one needs ¢‘X17X2) to be purely imaginary, i.e. y2 — x1 = 5 + mk for some k € Z. To see that

also each phase is constant let f = r1eX! and g = 72€'X2, then the second equation is
flei)a + Xlei(xl—i_g) = Agrlem + BQ'I"Q@i(gJ’_xlig) = (AQ’I“l + BQ’I“Q) €iX1.
So as a result one has y; = 0 and since the phase difference is constant also x2 = 0. 0

The next result will be central in the proof of the main theorem. During that proof one needs
to handle the equations in proposition 3.3.23. To do this, it will be useful to split into the cases
fifo = 0 and fi1fa # 0. In the second case fifo # 0 and so as stated in lemma 3.3.24, the
phases x1, x2 are constant and x; — x2 = 5 + wk. One can then use an invariant constant gauge
transformation, in order to have x1 = 7, x2 = —mk, which gives f; = iB3 and fy = (—1)'“B4.
One must remark that the initial conditions in equation 3.3.34 in the statement, are those which are

required for the connection to extend over the zero section.

Lemma 3.3.25. Let (¢, By, Bs, By) a be solution to the equations

d¢ 1 4 2 2

do - T 9p2(6) 17 2 B 7B oJe
dp 2h2(5s) < 22 ( 4 3)> (3.3.30)
dB; k
— = 4(-1)"B3B 331
dp ( ) 3P4 (3.3.31)
dBs (-1
Ay Zapy BB 208 (3.3.32)
dBy (-1

=t _ 9
dp e2h?

B1Bs + 2¢By, (3.3.33)
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such that for p < 1
Bi(p) = 0(p") , Bs(p) = O(p) , Balp) = 5 +O(p*). (3.3.34)

Then B1 = B3 =0, By = %a and (a, ¢) must satisfy the equations

do 1

_ 2
T = (1-a?) (3.3.35)
da _ 94al (3.3.36)
dp

subject to the conditions that a(0) = 1 and ¢(0) = 0

Proof. One must find all the possible solutions ¢, By, B3, B4 to the system in the statement
constrained so that 3.3.34 holds. Notice that a possible solution is given by taking B; = B3 = 0,
By = 2a and (a, ¢) solving the system 3.3.35, 3.3.36 with the conditions that a(0) = 1 and
#(0) = 0. These conditions together with the equations do guarantee 3.3.34. The proof is then
reduced to showing that these are all the solutions. To do this use equations 3.3.31, 3.3.32 and

3.3.33 and compute

’B B B
¢B_ 4(=1)k aBs b 4 g, B
dp? dp dp
-1
= 4(—1>k < ( 2h)2 Bl (B4 + B3) + 2¢(B4Bg - B3B4)>
2u
= ﬁBlv

where u = g% (B§ + BZ). This can be used to show that B; = 0 as follows. Recall from the
lemma C.1.1 in Appendix C that for p < 1, h%(p) = p*¥(p), where 1(p) is real analytic with

1(0) = 1. Then the solutions must be real analytic and one can write

2u =
=) eir s Bilp Zbkp :
=0

for some ;, with ¢y # 0 and by. Recall the hypothesis that B1(p) = O(p?), this implies

bg = by = by = 0. Inserting the series above into d 51 = 2”Bl,Just using that bp = b; = 0 and
rearranging gives

+00 oo

D E+2)(+Dbigop’ =D | Y wibijra | 0

i=0 i=0 \0<j<i
so one can use this to get the recurrence relation

bito =
i+2 (Z+1)2+2 Z ()0] 42— ]7

0<]<z
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with byp = b; = 0. This recurrence relation is completely determined by b2, which vanishes by
hypothesis (B1(p) = O(p?)). Hence, all the b;’s vanish by the recurrence relation above and so
By =0.

We now use the fact that By = 0 to finish the proof. First, notice that from B; = 0 it follows
from equation 3.3.31 that B3 B4 = 0. So one must have B3 = 0 as By = 0 would contradict the
hypothesis that B4(0) = 5, which then reduces the system to the one in the statement. The initial
conditions ¢(0) = 0 and a(0) = 1 together with the equations do guarantee that 3.3.34 holds
because 3.3.36 implies that a(0) = 2a(0)¢(0) = 0. O

As an application of the results in this section and in the first part of chapter 2, one can now

prove the main theorem 3.3.1 regarding Calabi-Yau monopoles for the Stenzel metric in 7*S3.

Proof of the main theorem 3.3.1

Start from the equations as stated in lemma 3.3.23, then the phases x1, x2 are constant and
Re(f1f2) = Re(| f1|| fa|e?X1=X2)) vanishes if and only if either | f;| = 0, or | fo| = 0, or X1 — x2 =
5 + mk for some k € Z. Before proceeding with the case splitting, notice that for the connection to
be asymptotic to the canonical invariant connection (which is HYM on the cone) one must have all
A;’s converging to 0. This implies that the B;’s must grow at most at a polynomial rate. Moreover,
recall from remark 3.3.13 that one can still use an invariant constant gauge transformation, i.e.
g € U(1) c SU(2) which rotates A — Al to g(A — AL)g~!. This rotates the phases x1, x2

simultaneously and will be used in different ways in each of the different cases below

1. If fi = 0, the equations imply X2 is constant and so a constant gauge transformation can be
used to make yo = 0 so that fo = By is real. Then, the equations from lemma 3.3.23 give
that B1 By = 0, 424 = 0 and

do 1 (4 B,
@_ 2 (2p2_1) Yt oy,
dp  2h? (52 4 )’dp ¢B4

The conditions that the connection which a possible solution encodes extends over the zero
section are studied in the Appendix C. It is shown in lemma C.2.2 that for the connection
to extend one needs Bi(p) = O(p?), Bs(p) = O(p) and By(p) = § + O(p?), for p < 1.
From the equations one knows that B; must be constant and so vanish in order to satisfy the

initial condition. Setting a = %B4, the equations reduce to

@— 1 @:2@1

2
= —(a® -1
dp _ 2n2 (" =1) dp
Together with the conditions that a(0) = 1 and ¢(0) = 0, which do imply (using the second

equation) a(p) = 1 + O(p?) and so Bs(p) = 5 + O(p*). Notice that this is the system
analyzed in chapter 2 for invariant monopoles in R? equipped with the metric dp? + h?(p)gsz.

2. The case | fa| = 0 is excluded as the condition that B3(0) = £ can not be satisfied and the

connection would not extend smoothly through the zero section.
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3. The last case is when f1 fo # 0 and x1 — x2 = § + 7k and the phases are constant. As above,
one can then use an invariant constant gauge transformation, to make x; = 5, x2 = —7k,

which gives f; = iBs and fo = (—1)*B,. The Calabi-Yau monopole equations are

ﬁ? = 4(-1)*B3B,
ﬁ3_2§¥&m—w&
ddB: = 2(&7_21’?21163133 +2¢By,

subject to the conditions so that the connection extends smoothly over the zero section as
shown in lemma C.2.2 in the Appendix C. This is precisely the system analyzed in lemma

3.3.25 and once again the problem has been reduced to the one analyzed in chapter 2.

The solution to the problem will now be obtained by invoking theorem 2.2.1 in chapter 2. The

first item in the statement says that any solution (a, ¢) has a well-defined finite limit

lim ¢(p) € R7,

p—+00
Moreover, for each value of m € R™ there is one and only one solution. Hence, such value
parametrizes the moduli space of invariant Calabi-Yau monopoles and this proves the first item in
theorem 3.3.1.
For the proof of the second and third statements, a preliminary digression is needed. Let (a,, ¢m,)
give the solution to the system given by equations 3.3.35, 3.3.36, with the initial conditions
#(0) =0, a(0) = 1 and ¢,,, converging to m € R~. This corresponds to the Calabi-Yau monopole
with By = By = B3 = B; =0, By = %am and ¢ = ¢,,, which can be written
€ Om

Ay = Al
<t oR,

('@ +0°RT3) , O =dnTh. (3.3.37)
The results in the second and third item of theorem 2.2.1 do not directly apply to these, instead
they apply for monopoles on the R? fibres normal to the zero section equipped with the spherically
symmetric metric h = dp? + h?(p)gs2. These 3-dimensional monopoles on the fibres can be
written

Am:Ab+%%¢®TbHﬁ®R),im:¢ﬁﬂ. (3.3.38)

However, it will be possible to use the results for these in order to prove the corresponding statement
for the genuine Calabi-Yau monopole 3.3.37. The two Higgs fields are the same Py = P, so
focus on the connections. For the proof of the second item one needs to show that for all R,§ > 0
there are m and 7(R, d, m) > 0 such that ||s} Ay, — ABPSHCO(BR) < 4. Let s, = exp, be the
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exponential in the fibre directions and expand
* S * A S * A *
lsiAm — AP lcopry < llshAm — AP \lcosyy + 15y Am = sy Amllco(sy)

and use the corresponding statement in second item of theorem 2.2.1. This guarantees the first
term can be made as small as one wishes, i.e. there is 7’ > 0 such that the first term is less than %.

Regarding the second term
HS;A’” —spAmllcosr) = Hlem - AmHCO(BnR)
€
o (o () i
pSnR m R+ | ’9E

sup ’(a L 1’ < nft
p<nR "\ 2e=4/3 ) pl T 443’

IN

IA

where in the last line one uses the fact that Ry = ¢ + 25%/5 p® + .... Hence the estimate
BPS
s5Ax — A7 | copy) < 6,

. .. 2:4/3
follows by making 7, equal~ to the minimum of 7" and ¢ =55—.
Notice that A,,, — Ai and A,,, — A}: differ by a factor of R%r' Since, this is bounded and independent
of m, the third item statement of theorem 3.3.1 follows directly from applying the third item in

theorem 2.2.1.

Remark 3.3.26. In the same gauge used so far, the curvature of A, is

2
ea T ea
2 _ mo_ 1) _ 23| g5 L1 m (912 o T 13 o T
Am <(<R+ ) 0 >9 ® 5 +72R+ (19 QRTy+607® 3)
d m
+— (;; >(dr/\94®Tg+dr/\95®T3).
+

Since the functions a,, decay exponentially with p, the connection A,, is exponentially asymptotic

to the canonical invariant connection Al.

Remark 3.3.27. Following the case splitting in the proof there were some cases whose analysis
were excluded as they did not satisfy the necessary conditions for the connection to extend over the
zero section (see lemma C.2.2 in the Appendix C). However in some cases Calabi-Yau monopoles

with singularities are possible

1. Inthe first case with f1 = 0 one can also take fo = 0 in order to solve the equations. Then, By
is constant, % = 7# and the only solutions are reducible to one of the Dirac Calabi-Yau

monopoles in proposition 3.3.21, i.e. A = AL+ %01 ®T) and & = (m - Wl(p)dp) 1.

2. Inthe case f1 # 0 but | fa| = 0, and using the gauge in which f1 = iBs, the system in 3.3.23
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reduces to B1 B3 = dd—]il =0and

dB
(1+ B2), d—p?’ = —2¢Bs.

@: 1

dp 2h2(s)

So B4 is constant and either B3 = 0 or By = 0. If Bs = 0 the unique solutions are the Dirac
Calabi-Yau monopole from the previous case. If By = 0, then there are no smooth solutions
as well since 1 + B3 > 0 and h(p) = O(p) for p < 1, also the Higgs field is unbounded at
the zero section. So any possible solution will give rise to irreducible Calabi-Yau monopoles

with a Dirac type singularity at the zero section.

3.3.6 Explicit Hermitian Yang Mills SU(2) Connection

Theorem 3.3.28. There is an irreducible Hermitian Yang Mills connection on P, — T*S? for

Stenzel’s Calabi-Yau structure. In the same gauge used before, it is given by

A= At = (oD +0eT), (3.3.39)
2R,
and its curvature by
1 R? €
F - _ 023 ;945 T = (T 912 T 913
A 2( +R2+ ®1+2R+(2® +T3®6")
S (Tyodr A6+ Ty @ dr A 6°) .
4 R

Proof. This solution is obtained by setting a = 1 and ¢ = 0, i.e. By = B3 = 0 and By = 5. These
satisfy the conditions from lemma C.2.2 in the Appendix C, so the resulting connection extends

over the zero section, is irreducible and HYM. For this solution A4 = ﬁ and A, = SO

E T
~S
using the formula 3.3.21 one can compute the curvature as in the statement. O
Remark 3.3.29. A — Al as p — oo, i.e. this HYM connection is asymptotic to the canonical
invariant connection, which recall is the pullback of a reducible HYM connection on a line bundle
over D = P! x P!,
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Chapter 4
Monopoles on Go Manifolds

The goal of this chapter is to construct and study monopoles on GG3 manifolds and it is organized
as follows. In section 4.1 one studies the Go monopole equation 4.1.1. Namely it is shown
that these fit into an elliptic complex which is encompassed by the setup of chapter 5. All the
analysis developed in section 1.3 holds for this specific case, in particular for the energies defined
in 1.3.1 the identities in proposition 4.1.4 are obtained. Then in section 4.1.3 monopoles on all
examples of known AC G5 manifolds are studied. On A? (P2) and A2 (S*) the zero sections are
the only coassociative submanifolds and theorem 4.1.9 shows that up to gauge there is also only
one invariant monopole for each fixed mass. Moreover, for large mass these monopoles concentrate
on the respective coassociative submanifold. This is proved in sections 4.2 and 4.3 respectively for
A2 (S*) and A2 (IP2). Moreover, in the case of S(S?) there are no compact coassociative cycles and
an application of proposition 1.4.9 gives a vanishing theorem for monopoles, stated in proposition
4.1.10.

4.1 The Equations

Let Y be a G holonomy manifold, then © = ¢ € Q*(X,R) and ) = ¢ € Q3(X,R) are both
parallel and hence closed. In this case the monopole equation is

Fu At = +V 4. @4.1.1)

4.1.1 Linearised Operator

The linearisation of the monopole equation —V 4® + x(F4 A ¢) = 0 at a configuration (A, ®)

gives a linear map

dQ:QO(X,gp)@Ql(X,gp) — QO(X,gp)
(p,a) — x(daaANp) — (Vad+ [a,®]).

Moreover, the infinitesimal action of the gauge group at (A4, ®) gives rise to dy : Q°(X, gp) —
Q(X,gp) ® QYX, gp) and maps & to (—V A&, [€, ®]). These two maps together give rise to a

91
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sequence
0— %X, gp) L QO(X, gp) @ (X, gp) 2 Q'(X, gp) — 0. (4.1.2)

Lemma 4.1.1. If (A, ®) is a monopole, then the sequence 4.1.2 is a complex.

Proof. One just needs to compute dad; & and show that this vanishes
dadi§ = — * (dZE N ) — dal€, @] + [da&, @] = ~[x(Fa A ) — Va2, €].
And this vanishes indeed if (A, ®) is a monopole. O

The formal adjoint of d; is dj(a,¢) = —V*a + [®, ¢] and can be put together with ds to

construct an operator
D =dj ®dy: Q°(X,gp) ® (X, gp) = (X, gp) ® Q' (X, 8p),
which in view of lemma 4.1.1 is elliptic if (A, ®) is a monopole. This operator is given by
D(,a) = (~Va,  (daa A ) — Va0) + ([0,a], [, 6]) 4.13)

The first of these is just the twisted Dirac operator D4 defined in equation 1.2.3 acting on S,
and the second defines an endomorphism ¢ € Q°(X, End(S,)). The following result gives a

Weitzenbock formula for the elliptic operator D

Proposition 4.1.2. There are Weitzenbock formulas

D*D(¢,a) = As(d,a)+ Gy (d,a) — q2(¢, a)
DD*(¢,a) = An(d,a)+G_(¢,a)— ¢(¢,a),

where G (d,a) = ([(FA AN £ +xVAP) Aa], —*[(Fa AN £ %V D), 9| £x[VAaPAYAa]) and

¢*(¢,a) = [2[®, (a, 9)]].
Suppose that (A, ®) is a monopole, if (¢, a) € ker D* is bounded and da¢ € L?, then actually
da¢p = [®,¢] = 0. In particular if A is irreducible, then ¢ = 0.

Proof. In the computation D*D(¢, a) = D% (6, a) +Da (q(¢,a)) —q (Da(o,a)) — ¢*(¢,a), one
can use equation 1.2.4 to replace D% = A4+ W where W (¢, a) = (x[FaAAa), —*[FaAth, ¢])

is zero order and involves only the curvature terms. Then, one needs to compute the term (¢, a) =
Da(q(p,a)) — q(Da(p,a)), this is given by

(—=d4[®, a], (da[®, a] AY) = Va[®, ¢]) — ([®, d}al, [®,%(daa AP)] = [®,Va¢]) (4.1.4)

and one can use the Leibniz rule to work out the terms in the first summand. The first of these is
—d4[®,a] = *[Vad A xa] + *[P®,d 4 * a] = %[V 4 A xa] — [P, d*a]. The second one is

#(da[®,a] ANY) = Va[@, 0] = *([VaR Aa] A+ [P, daa] Np) = [Va®, 9] — [P, Vad]
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Then, one just needs to identify which of these terms gets annihilated against the second term in
equation 4.1.4 and summing with W gives GG. For the other Weitzenbock formula for D D* one
proceeds in the same way but now one as G = W — I which gives the difference. To prove
the second assertion regarding (¢, a) € ker D* one uses the formula just proved which implies
App — [P, [P, ¢]] = 0. Using the hypothesis, one can integrate (¢, A g — [®, [P, ¢]]) and using

Gaffney’s extension of the Stokes’ theorem to complete Riemannian manifolds one obtains

|dag|l7 + [|[@, |32 = 0,

and so da¢ = [®,¢] = 0. O

Remark 4.1.3. The more usual Weitzenbock formula A sa = ViV ga + *[*F A a] can be used to

write the statement above in a slightly different way.

4.1.2 Energy Identities

In the case of a G5 manifold the setup in 1.3 fits perfectly since as described in point 3. of example 3
the equation 1.3.1 for © = 1) is precisely the G2 monopole equation *V 4@ = F4 Av. In particular,
all the energy identities in section 1.3.1 make sense, namely definition 1.3.1 gives respectively

1 1
By = 2/ IVa®|* + |Fal® , Bl = 2/ IVa®[* +[Fanyf. (4.1.5)
U U

for the YMH energy and Intermediate energy of a configuration (A, ®) respectively. Moreover, one
can see that monopoles do satisfy the Euler Lagrange equations for E(I] derived in proposition 1.3.2

and stated in example 4. Then, proposition 1.3.4 gives

Proposition 4.1.4. Let U C X be precompact with smooth boundary. If (V 4, ®) is a configuration
with finite Intermediate Energy on U, then

1
Efj = /a (@, Fa) Ao+ S |[Fa A b = #V 42|72 . (4.1.6)
U

Moreover; if the energy on U is also finite, then

1 1
Ey = —/(FAAFA>/\¢+/ (@, Fa) AN+ S Fa Ah = +V 4@ T2 ). (4.1.7)
2 Ju oU 2

In particular, if X is compact and (A, ®) smooth with ® # 0, then V 4® = 0 and A is a reducible
G4 instanton with energy E = —% Jx(FaNFa) Ao

Proof. The first identity 4.1.6 is proved in proposition 1.3.4 as for the second one, let 3 € Q?, then
one can write |3|? = |77(8)|? + |m14(B)|? and rearranging this as the sum of|714(3)|? — 2|m7(83)|?
with 3|77(3)|?. Then using equations 1.2.1 and 1.2.2

BPdvolx = —BA*(BAG)+BAx(x(BAY)YAY) =—BABAG+BAYA(BAY).
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Using this for 8 the 2 form part of the curvature gives
1 2 1 2
Ey = §||FA”L2(U) + §||VA‘I)||L2(U)

T 2 / (FaNFa) N+ §||FA A 1/’“%2(@ + §HVA(I)H%2(U). (4.1.8)
U

Then replacing the last two terms by the Intermediate energy and using identity 4.1.6 gives the last
one, formula 4.1.7. In the case where X is compact one can take U = X and this energy identity
gives that V,® = 0 and F4 A ¢ = 0. Then A is a G5 instanton and since ® # 0 and V 4P = 0, it

is reducible. The computation of the energy is reduced to the first term in equation 4.1.7. O

4.1.3 Monopoles on AC G, Manifolds

In what follows (X, ¢) will always be an AC G2 manifold, as in section 1.2.2, recall that in this
case it is asymptotic to a metric cone whose cross section is a nearly Kéhler 6 manifold (%, gx).
As there are only three known examples, see example 2, one may suppose (at the time of writing)
that (X, ¢) is one of these.

Definition 4.1.5. Letr H},(X) denote the compactly supported cohomology of X. A class P €
H32.(X,7Z) is said to be a coassociative class if P U [¢] = 0 € HS.(X,R). Moreover, if P €
ker(H2,(X,Z) — H3(X,Z)) then it is said to be monopole-coassociative class.

Definition 4.1.6. Define the monopole classes as the set of equivalence classes H*(X,Z) /i* H*(X, 7).

Remark 4.1.7. Take the long exact sequence for compactly supported cohomology
LHAX,Z) S HA(S,2) L H3,(X,Z) — H3(X,Z) — ... (4.1.9)

As in the case of Calabi-Yau manifolds, the monopole classes are exactly the ones that map to
monopole-coassociative classes. There is no need to force the monopole classes [ to satisfy
BU[p] =0 € H(X,Z), since for a nearly Kéihler manifold b' (%) = 0.

Now one considers the setup for finite mass monopoles which in this case adapts with no
change from section 1.4, then keeping in mind proposition 1.4.6, the third point in example 6 and
corollary 1.4.11 one can suppose the situation is as follows. Given a monopole class o € H?(X, R)
one considers a complex line bundle L over ¥ with ¢; (L) = « and denote by @), the underlying

principal U (1) bundle. Let L be equipped with an HYM connection A, i.e. such that
Foo Aw? = Foo A Qo =0, (4.1.10)

for the nearly Kihler structure (w,21,€2) on X. This induces a reducible connection on a
G = S0(3),SU(2) bundle Py, over X, which we still call A,. One can now consider the problem
of finding finite mass monopoles (A, ®) on a G bundle P — X asymptotic to these.
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Corollary 4.1.8. Let (A, ®) be a finite mass m € R monopole on P as above and |A — A| =
O(p=>=¢") for some &' > 0. Let [i*y)] € H*(X,R) be the restriction of [)] € H*(X,R) to any

cross section of the end of X, then
IVa®|2, = drm{aU[i*y], [X]). (4.1.11)

In particular, if a U [i*y)] = 0 or (X, g) has rate v < —4, then A is a Gy instanton and V 4P = 0,

so it is reducible.
Recall that there are 3 known examples of AC G2 manifolds, see example 2.

Example 11. In the two first examples, which are N> M (M = CP? S*), the zero section is a
compact coassociative submanifold and these determine a coassociative class P € HZ (A2 M, R).
Moreover; in both these cases b*> (CP?) = b% (S*) = 0 and so due to McLean’s work [Mc1.98], these
coassociatives are rigid. Recall the long exact sequence 4.1.9 with ¥ = Fg, CP? for M = CP? S*.
In the next section, homogeneous principal bundles P over A% (M) are constructed, on these ODE
methods will be used to study invariant monopoles and their moduli space M,,(A% (M), P). Here
Miny denotes the irreducible, invariant monopoles (A, ® # 0) up to the action of the invariant

gauge transformations. The main result of the next two sections is

Theorem 4.1.9. For M = S* P? there are respectively a SU(2), SO(3) bundle P which is
invariant under the action of a compact Lie group acting with cohomogeneity 1 on A% (M), such

that the space M, (A? (M), P) of invariant irreducible monopoles on P are non empty and the
following hold:

1. For all monopoles in My, the Higgs field ® vanishes at the zero section M, is bounded,

the mass is well defined and gives a bijection
m : Miny (A2 (M), P) — RY.

2. Let R > 0, and {(Ay,®))} € Min,(A%(M), P) a sequence of monopoles with mass \
converging to +oc. Then there is a null sequence n(\, R) such that the restriction to each
fibre N> (M), for x € M of the rescaled monopole

expy (Ax, 1))
converges uniformly to the BPS monopole (ABPS ®BPS) in the ball of radius R in (R3, g).

3. Let {(Ax, ®x) }ae[a,+00) C Minw be a sequence of monopoles with mass m(Ay, @) = A

converging to oo. . Then the translated monopole sequence

D)
Ay, Py — N\
( A |(I)>\|),

converges uniformly with all derivatives to a reducible, singular monopole on A% (M) with
zero mass and which is smooth on A% (M)\ M.
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Besides this, the next section also contains explicit formulas for irreducible G5 instantons in
SU(2) and SO(3) bundles on A2 (S*) and A2 (IP?) respectively. Moreover, the ODE’s for SU (3)
monopoles on A? (P?) are also obtained and from these two families of irreducible G instantons

with structure group SU (3) are obtained explicitly.

Example 12. In the case of S(S?), there are no compact coassociative cycles. In fact H3,(S(S?)) =
H 2(83 X 83) =0, where X = S3 x S?, and so there are no coassociative classes or monopole

classes at all. Moreover; the corollary 4.1.8 of proposition 1.4.9 can be invoked to state

Proposition 4.1.10. There are no finite mass m # 0, irreducible monopoles (A, ®) on S(S®) with
|A — Aso| = O(p~°%") for some &' > 0.

Proof. Suppose there is a G bundle P over S(S?) equipped with (A, ®) a finite mass m # 0,
irreducible monopole on P. Let (Ao, ®+,) be the connection and Higgs field on P, — S3 x 3
determined by (A, ®). The connection A, is HYM according to proposition 1.4.6 and the third
bullet in example 6. Then, the second item in proposition 1.4.4 implies the Intermediate Energy is

finite and as in the proof of proposition 1.4.9 given by the limit

E% = lim Ef = lim (B, Fp) Nirep = ([(Poo, Fuo)] U [i*1], % x S3]).
r—00 =0 JaB,
This vanishes because both [(®,, Fi)] = 0 and [i*1)] = 0 as S* x S? has vanishing second and
hence fourth cohomology groups. O

One must also remark that in this case there are G instantons and these have been recently
been constructed by Andrew Clarke in [Clal4].

4.2 Monopoles on A2 (S?)

Let S* C RS be the round sphere. Its isometry group is SO(5) whose universal cover is K =
Spin(5) and so there is a Spin(5) action on S*. This action lifts to A2 (S*) as A-Q, = (A71)*Q,,
for A € Spin(5) and 2, € A% (S*) an anti self dual 2 form on the tangent space to the point x € S*.
Let Spin(4) C Spin(5) be the isotropy of the action at z € S*, which then acts on the fibre over
as follows. Split Spin(4) = SU;(2) x SU3(2) and identify each SU(2) with the unit quaternions.
Let , € T;S*, so 7, gives an identification 7,S* = H. The action of (p,q) € Spin(4) by
pullback on 7, € T;S* is given by (p, ¢)1. = pn.q, In the same way A? (S*), gets identified with
the purely imaginary quaternions and the action is (p, ¢)€2, = ¢€2,q. The conclusion is that away
from the zero section, the isotropy of the Spin(5) action is H = SU;(2) x Uz(1). The action is
isometric, so the principal orbits

Spin(5)/SUL(2) x Us(1) = CP?,
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are the level sets of the norm function 7 = | - | in A2 (S*) induced by the round metric on S*. Let

denote the Lie algebra of H = SU;(2) x Uz(1); Then, given a reductive decomposition
spin(5) = h S m,

the bundle Spin(5) over CP? gets equipped with a connection whose horizontal space is m. To
give such a splitting write spin(5) = my @ suy(2) @ sus(2) and introduce a basis for the dual
spin(5)* such that

mi = (e!, e, e e) |, sui(2) = (n', 0 n?) | sub(2) = (W', w? W?), (4.2.1)

and the 7, w* form standard dual basis for su(2). Using the notation e'? = el A e2, define the 2

forms

O =el2—e, Qp=e® 62  Qg=eM_¢B (4.2.2)

The Maurer Cartan relations encode the Lie algebra structure

1 1
dw' = =208 + 2Qp, dw? = —2w3! + %Qg . dw® = —20w'? 4+ 2Qs3, 4.2.3)

2 2
1 — 1=
dpt = =m® = SOy, dn? = =2t = 50, dnt = =2 - S0 (424)

The ones involving the de’s are less important for what follows, but need to be used to compute
A = ey (2Qj AR — 20 A wj> , (4.2.5)
for i € {1, 2, 3}. Take the reductive decomposition spin(5) = h @ m with

m' = mOm=m & R(wQ,w?’) (4.2.6)
h* = sui(2) @ RWY. 4.2.7)

The sphere bundle of A? is the twistor fibration 7w : CP* — S* and at each point p € CP? there are
non-canonical identifications m = TPCP?’ and m; = T,r(p)S4. The 2 forms §2; give a basis for the

anti-self-dual 2 forms at 7(p), while the Q; for the self-dual ones.

4.2.1 The Bryant-Salamon (G, Metric

As seen above A2 (S*)\S?* = CP3 x R, where each CP? is a principal orbit of the K = Spin(5)
action. One may write the metric on A2 (S*)\S* from a family of Spin(5) invariant metrics on P3
and by letting the coordinate p € R™ be the length through a geodesic intersecting the principal
orbits orthogonally. As remarked at the beginning of section B in the Appendix B, a Spin(5)

invariant metric on CP? is determined by the splitting of m into b irreducible pieces. In the current
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situation one can write
§g=dp®dp+d*(p) (W @w® +w?@w?) +b%(p (Ze ®e>, (4.2.8)

where a, b are suitable real valued functions, which shall be chosen to make this metric have G4

holonomy. The associative and coassociate calibrations are respectively

¢ = dpA (W +b2Q1) +ab® (W A Qo —w? AQ3) (4.2.9)
¥ o= b —a®p?w® A —ab®dp A (WP A Qo+ wP A Q). (4.2.10)

The condition that the holonomy be in G5 is equivalent to the closedness of these both. Using
dO; = 4dw?? and d (w A Qo+ w3 A Qg) —2e1234 4 4523 A 4, this reduces to the following
set of ODE’s

d

d
d—p(zﬁ) —a, d—p(a%?) = 4ab®. (4.2.11)

2
a
= 422
5 T

d

i —(ab?) =

These are solved by setting a(s) = 2sf(s%) and b(s) = g(s?), where the functions f, g and the
coordinate s are given by

p(S)—/Osfds L F(S) = (14275, g(s?) = V2(1+ s2)i. (4.2.12)

These will be referred as f, g but this should be understood as f(s?), g(s?). The notation here is to
be matched with the original reference [BS89], see also [GPP90]. For future reference, rewrite the

G5 structure in terms of these as

§ = flds®ds+482f? (W 0w’ +w? @w?) + ¢*(e" ® e”) (4.2.13)
= ¢1e!B 42220 B A Q) — 2sf2g%ds A (w2 A Qo+ wd A Qg) . (4214

This is shown in [BS89] to have full G holonomy. For large s, p(s) ~ 24/s, a(p) ~ p and

b(p) ~ %, so that the G5 structure converges to the conical metric over the nearly Kihler CP?

4 i
Jgc = dp®dp+p2(w2®w2+w2®w2)+p2 (Z\%@\iﬁ) 4.2.15)

[

5 (w? AQy — w? A Q) (4.2.16)

Q
bc = pidpA <w23 + 21> +

4 e!?3 23, {h P 2 3
Yo = p YA —Edp/\(w AQo 4w’ AQ3). 4.2.17)

4.2.2 G, Monopoles on A% (S*)

Let! € Z be aninteger and \; : SU;(2) x Uz(1) — SU(2) be the group homomorphism \;(g, 0) =
diag (eiw, e‘“e) and P, = Spin(5) Xy, su,(2)xv»(1) SU(2), the family of homogeneous bundles
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determined by these );.

Lemma4.2.1. 1. Foreachl € Z, the canonical invariant connection is given by A. = lw' @ T},
where T1, Ty, T is a standard basis for su(2).

2. Let A € QY(Spin(5),su(2)) be an invariant connection on P, then A = A, + (A — A,)
and A — A, = 0 forl # 1. Forl = 1 this is (up to an invariant gauge transformation)

A-A, = a(hew’+T30w’), (4.2.18)
with a € R a constant.

3. Let ® be an invariant Higgs field of P, i.e. a section of the adjoint bundle gp, invariant with
respect to the Spin(5) action, then ® = ¢T3, for some constant ¢ € R.

Proof. 1. The proof of the first assertion amounts to compute the derivative of the isotropy

homomorphism );, this is d\ = lw! ® T1.

2. The second assertion is an application of Wang’s theorem B.0.21. Invariant connections

correspond to morphisms of SU;(2) x Usa(1) representations
A (m, Ad) — (511(2), Ado )\l) .

Decompose these into irreducible factors m = m; & mg and su(2) = R(T}) & R(T5, T3),
where on R(77) the representation is trivial and (R(7%,T3), Ad o \;) = (mg, Ad) as repre-
sentations, if and only if [ = 1. Then, Schur’s lemma gives A|y, = 0, while A|y, vanishes
for [ # 1 and is an isomorphism for [ = 1. Invariant gauge transformations g are constants in
the subgroup of SU (2) centralized by \;(SU;(2) x Uz(1)) = U(1), the maximal torus in
SU(2). This is obviously its own centralizer and so g must lie in the maximal torus which

acts on R(7%, T3) by rotations. So up to such a rotation A; can be picked to look like 4.2.18.

3. To prove the third item, recall from the Appendix B that Ad(P) = P X (s (2),4a) $4(2)
which is Spin(5) X (su, (2)x(1),Ador) 54(2) and ® must be constant with values in a trivial
component of (su(2), Ad o \) as an SU;(2) x Ux(1) representation.

O

Remark 4.2.2. The bundles P, are reducible to S* bundles associated with the degree | homomor-
phism of S'. Moreover, the canonical invariant connection is also reducible and induced from the

canonical invariant connection on this bundle.

The same discussion as the one preceding remark 3.3.13 applies and pulling back the bundle P;
to A2 S*\S* one can suppose that an invariant connection is in radial gauge. However, the invariant
data is now determined by a, ¢ which are constant along each principal orbit and so functions of p.

From now on the dot - denotes differentiation with respect to s.
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Lemma 4.2.3. 1. The curvature of the connection A = A. + (A — A.) is Fy = FH + FV,

where F and FV are respectively given by

1 a
F = @M+ 5 (Le%h+T00%) (4.2.19)
FV' = 2(1-a®)Tiew?+a(Th@ds Aw’ + Ts @ ds Aw®) . (4.2.20)

2. The covariant derivative of the invariant Higgs field ® = ¢11 is given by
Va® = ¢T1 @ ds + 2¢a (T ® w® — Ty ® w?)

Proof. The curvature of the invariant connection is computed as Fiy = F. + da, (A — A.) +
3 [(A— Ac) A (A— A.)]. Making use of the Maurer Cartan relations 4.2.3, these terms are

F. = <—2w23 + ;w) RT). (4.2.21)
(A—A,) = dsAdi(A—ACHd(A—AC)Jr[ACA(A—AC)]
S
= T ®ds Aw? +aTs@ds Aw’ + aTy ® <—2w31 + 292)

1
+ al3 ® (—2w12 + Qg) +a [Tl, TQ] ®wl2 +a [Tl, Tg] ®w13
2 —— ——
=2T3 —2T5

= a@dsAw’ +a®ds AW+ O %+ 00

[(A— AC)Q] = a1y, T3] @ w® = 2d°T) ® w?.

DN =

Summing all of these one can write Fiy = F 4+ FV, where each of these is as in the statement.
To compute is the covariant derivative of the Higgs field, write V& = ¢T) ® ds + ¢VyT) +
¢ [(A — Ac),T1] and using the Bianchi identity for A., V4,71 = 0 and so

Va® = ¢T) @ ds + 2¢a (T @ w’ — T3 @ w?) .

O]

Proposition 4.2.4. Let h?(p) = 25%(p) f~2(s%(p)) and consider the following set of ODE’s for

(b 9)
dp 1 .,
o = (b? 1) (4.2.22)
b _ 20b. (4.2.23)
dp

Then, the moduli space of invariant Monopoles M, (A2 (S*), P) can be identified with those pairs
(b= f~2a, $) which solve 4.2.22 and 4.2.23 with b(0) = 1,b(0) = 0 and lim,_, , », f*(s%)b = 0.

Proof. To compute the monopole equation Fiy A ) = *V 4P one uses lemma 4.2.3. The left hand
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Fainy = FVAgte!?* + FHA (—432f2g2w23 A+ 2sf2g%ds A (w2 A Qs 4w A Qg))
= (—294 (1 — a2) T @ w® + g4éz (TQ ®ds Aw? 4+ T3 @ ds A w3)) A el?34
+ (432g2f2 Th @ w® 4+ 2s¢> f2a (T2 @ ds Aw? + T3 @ ds A w?’)) A el234

2
— g4 (2 (232‘]02 _ (1 _ a2)> Tl ®w23> A 61234
g
f2
—l—g4 (252a + d> (T2 Qds Aw? + Ts ® ds A w3) A el?34,
g
While for the right hand side of the equation, i.e. *V 4 ®, it is given by
*Vad = fg! <4s<;'sT1 ®w? +2¢a (Tr ® ds A w? + Tads A w3)> Ae?3 (4.224)

Hence the monopole equation reduces to the following set of ODE’s

@__ 1
ds  2s2f

d 2
(1 — a2) + S , 9 _ 95t g + 2f¢a. (4.2.25)
2 ds 2

Which in terms of p(s) = fos dif(l) = f(f dl (1 + 52)_% are

dp 1

d¢ ( 1 da f
dp  2s2f2

2
—a”)+ —, — = —2s5a+ 2¢a.
)+, B2,

Define b(p) = f~2(s%(p))a(p) as in the statement, then the second ODE in 4.2.26 is equivalent to

% = 2¢b. What is left to show is that substituting a by b in the first equation in 4.2.26 gives rise
1)

1

to the remaining equation for ¢. Notice that g% — =— ﬁ f?, and factor this term out in the

2S2f2
following way
d¢ 1 1 2 L o Ly Lo -4 2
- = - —-———=(1- =——f"= =——f(1- .
dp 2 22/ (1-a’) Qszf 25272 232f (1-f"a%)

Replacing the term f~%a? by b? gives the equation in the statement. Then M, it is identified
with the solutions to the ODE’s that give rise to a connection and Higgs field extending over the zero
section. This is the same as requiring the curvature to be bounded at p = 0, which from formula
4.2.19 holds if and only if a(0) = 1 and a(0) = 0. The ODE’s imply that if these two hold then
also ¢(0) = 0 and ¢(0) is finite and so the Higgs field extends as well. So the conditions a(0) = 1
and a(0) = 0 are necessary and sufficient to guarantee the monopole extends over the zero section.
Moreover, as defined in section 1.4.1, see also section 4.1.3, the connection of a monopole is
asymptotic to the pullback of an HYM connection on the nearly Kdhler CP3. In this case, this is

the canonical invariant connection A¢ and so lim, , o a = 0,i.e. lim, ;o f 2(32)6 = 0. L]

Remark 4.2.5. During the proof above a rescaling from the field a to the field b was done. This
made the ODE look more familiar. It is precisely the same as the one obtained for invariant

monopoles on R with a spherically symmetric metric g = dr? + h%(r)gsz.
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Reducible Monopoles
There are solutions to the equations in proposition 4.2.4 by setting b = a = 0 and letting ¢ solve
% = ﬁ This is analogous to the Dirac monopole in the R?\{0} case, as the connection A = A,

is the canonical invariant connection which is reducible and & is unbounded and has singularities

at the zero section.

Remark 4.2.6. The canonical invariant connection A, is pulled back from an HYM connection on
a complex line bundle L over CP? with c1(L) = [—2w? + 104] € H?(CP?,R) N H*(CP*,Z) a

monopole class.
As it was done in the case of Calabi-Yau manifolds, see definition 4.2.7 one can define

Definition 4.2.7. Ler (X, ¢) be a noncompact Gy manifold and P C X a coassociative submani-
fold. A Dirac monopole is an Abelian monopole on a line bundle defined on the complement of P.

Moreover, P will also be called the singular set of the Dirac monopole.

Define the Green’s function G, to be the unique function on A% (S*)\S?, such that dG = #dp
and lim,, G(p) = 0. One can check it is harmonic on A2 (S%)\S%, since *A = d x d

*x AG = xd %*dp = *d 482%]02940023/\61234 =0,
op ap

. 2 . . . . .
since % = ﬁ = 2% and ¢g> = 272 and so the quantity inside the parenthesis is constant on

A? (S*)\S*. The upshot of this section is

Proposition 4.2.8. The solution to the monopole equations (AP, ®P) = (A., G —m), is a mass

m Dirac monopole on A (S*) with the zero section as its singular set.

Irreducible Monopoles

The general strategy to solve the ODE’s to which proposition 4.2.4 reduced the initial problem is via
remark 4.2.5 and the work in chapter 2. This gives an existence theorem for monopoles on A2 (S*)
parametrized by their mass and modeled on transverse BPS monopoles on a small neighborhood of

the zero section the R? fibers. The precise statement is theorem 4.1.9 which is proved below

Proof. (of theorem 4.1.9) One needs to find the solutions of the ODE’s in proposition 4.2.4 giving
rise to Monopoles extending over the zero section, i.e. such that b(0) = 1 and b(0) = 0. This
together with the ODE’s then implies that ¢(0) = 0 and % is bounded. Theorem 2.2.1 in chapter
2, gives the solutions (by,, ¢r,) to the ODE’s which are unique by fixing lim, ..o = =% € R™.

From these solutions one obtains a,, = f 2p,,, and ¢m Which give rise to the monopole
(A, @) = (Ac+ b (T @ 0? + T3 © %), o Th)

The fact that the mass function is well defined and a bijection is a direct consequence from theorem

2.2.1 in chapter 2, which basically asserts the previously claimed uniqueness of the solutions to the
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ODE’s.

The results in the last two items refers to the bubbling behavior, which can be proven by using the
corresponding one for monopoles in R? and stated in Theorem 2.2.1. Those results are proved in
propositions 2.2.5 and 2.2.7 and based on the estimates provided by lemma 2.2.11. One must note
that the result one wants to prove does not follow immediately from those ones. The reason is the

following: The results from theorem 2.2.1 are for a family of monopoles
(A)\, ‘i))\) = (Ac + by, (T2 & w? +T5® w3) ,qb)\Tg) .

on R3 =2 (A?), equipped with the metric g| (A2),- These need to be re-proven for a monopole on
A2 (S*) restricted to a fibre, which differs from (Ay, ®,) by rescaling the fields as

(Ax, ®x)|(a2), = (Ac + 2oy (L@ w® + T3 @ w?) , ¢\ T5) .

Let exp, = s, since the Higgs field is unchanged Py = P one just needs to check that for all
€ > 0 there is A and 7)(R, &, A) making [|sy A\ — ABPSHCO(BR) < . Proceed as follows

* S * A S * A *
55 Ax — AP cogry < lIsiAx — APPS o) + s Ax — st Axll o)

as already remarked the first of these can be made arbitrarily small due to proposition 2.2.5. So
there is ' which makes the first term less than 5, as for the second term Hs;';fi A= spAxllcosg) =

||/~1A — A)\||CO(B7]R) and so

nit
2 )

- 1

[spAx — spAxllco(sr) = sup ‘ (bA(1 = f?)) [walgy | < sup ’* (ba(1 = f%)) ’ <
s<nR s<s '8

where in the last line one uses the fact that f = (1 + 52)5 The conclusion is that estimate

[[s5Ax — ABPS o) < € follows by making 7 equal to the minimum of 7" and . The last

item in the statement needs no further check and follows directly from proposition 2.2.7 in chapter
2. O

Remark 4.2.9. e [t is straightforward to check that the connection of these monopoles con-
verges to the canonical invariant connection A., which recall from remark 4.2.6 is the

pullback of an HYM connection on a line bundle L — CP? with ¢; (L) a monopole class.

e The energy of these monopoles is not finite (as they are asymptotic to a nonflat connection on
CP3). However, the Intermediate energy is indeed finite and the formula 4.1.6 in proposition

4.1.4 can be used to compute

ENAp, &) = plim 2¢m(P)/ w23 A dergzs = 4rm([P%], e (L) U [i*¢)).  (4.2.26)
— OO P3

Moreover; recall that inside the cohomology ring of A? (P?) the class [1)] is dual to the zero
section S*. As for m € RT, it denotes the mass of the monopole (A, ®.,).
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4.2.3 (G Instantons

There is one further solution to the ODE’s in proposition 4.2.4 obtained by setting ¢ = O and b = 1,
which gives a = f 2. This is not contained in M ,,,,, since ® = 0 in this case, in fact this solution

gives rise to an irreducible (G5 instanton, the solution is explicit and shall be stated below.
Theorem 4.2.10. The connection on SU(2) bundle P — A? (S*) givenby A = A+ f2(s%) (T> @ w? + T3 ® w?)

is an irreducible G instanton. Its curvature is given by

Fy = — — w QT+ —F——= (2T + Q3R T
A <2 T 1 2\/@( 2 ®Th + 3 ®T5)

(ds/\w2®T2+ds/\w3®T3).

1482

Remark 4.2.11. As for the monopoles from the last section and these G instantons also converge
to the canonical invariant connection, see remarks 4.2.6 and 4.2.9. However, the convergence is

much slower in the case of the instantons.

Next one considers the Spin bundle over S*, it may be equipped with a self dual connection.

Lifting this to A% (S*) also gives rise to a G5 instanton.

Proposition 4.2.12. The Spin connection § on S* is a G instanton with curvature
1= 317 1= 1=
F9:—§Q1®T1—277 +592®T2—§Q3®T3-

Proof. The lift of the positive Spin bundle, denoted by @ is constructed by choosing the isotropy
homomorphism A : SU{(2) x Us(1) — SU(2), given by A(g, ¢) = g, for (g, e?) € SU1(2) x
Us(1). The canonical invariant connection § € Q!(Spin(5),su(2)) is given by extending the
projection on su;(2) as a left invariant 1 form. Let 77,75, T3 denote a basis for su(2) such that
[T}, T;] = 2€ijxT). Then 6 = n* @ T1 4+ n* ® Th + 1> ® T3. Using the Maurer Cartan relations
4.2.3 to compute the curvature Fy = dfl + 5[0 A 0], gives

Fy = 2020Ti+20' 0Ty + 202 @ Ty

1= 1~ 1—
— (27723 + 291> T — <27731 + 292) QT — <2n” + 293> QT

O]

In fact one can check that A€ is the unique invariant connection on ) and ® = 0 the unique
invariant Higgs field. The first of these claims follows from an application of Wang’s theorem
B.0.21, which identifies other invariant connections with morphisms of reps A : (m, Ad) —
(su(2), Ad o ). The left hand side splits into irreducibles as m = my & my, where my is irreducible
and my is trivial. Since the right hand side is irreducible not isomorphic to m; (they have different
dimensions), Schur’s lemma gives A = 0 as the only possibility.

Regarding invariant Higgs Fields @, these must be constant for each p and have values in the trivial

component of the representation (su(2), Ad o \), which is irreducible and nontrivial.
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4.3 Monopoles on A? (P?)

The unit tangent bundle in A2 (P?), i.e. the twistor space of P2, is the manifold of flags in C3. One
may write
F3 = {(z,€) € P* x (P*)" | () = 0},

i.e. z is a line in the hyperplane £. Then, there are three natural projections to P2, given by
m1(z,€) = x, mo(x, &) = €Nt and m3(x, £) = £, where 2+, £+ denote the duals using the
standard Hermitian product in C3. The fibrations 7; and 73 are holomorphic while 7 is the twistor
fibration.
The standard action of SU(3) on C? descends to a transitive action on [F3 with isotropy the maximal
torus T2 C SU(3), i.e.

Fs = SU(3)/T?.

Moreover, SU (3) also acts on the different P?’s making the respective projections equivariant. The
isotropy of this action on each P2 is a different subgroup H =2 S(U(1) x U(2)) of SU(3), and are
all conjugate by o an element of order 3 in the Weyl group of SU(3),i.e. m 0 02 = 1y 0 0 = m3.
(Recall that the Weyl group is the residual action on SU(3)/T?, descending from the action
of SU(3) on itself by conjugation.) The standard Hermitian structure gives an isomorphism
P2 x (P?)* = P2 x P2. Let ([x1, 22, 73], [£1, &2, &3]) € P? x P? be homogeneous coordinates,
then F3 C P? x P? is given by the points such that z1&; + xofy + 2363 = 0. At the point

(z,€) = ([1,0,0],]0,1,0]), the isotropy is a fixed T subgroup of SU(3) given by

elr 0 0
T? = {i(e"™ e 2) = | 0 el 0 , (a1,00) €10,27)% 3, 4.3.1)
0 0 e ilmtos)

and this identification will be used throughout. Identify su(3) with the anti-Hermitian matrices.
Denote by C;; the matrix with all entries vanishing but =1 on the (4, ) and (j,4) positions
respectively, and let D;; the matrix with all entries vanishing but the (,j) and (j,%) equal to 3.
Moreover, let X1 = diag(i,0, —i) and Xo = diag(0, 4, —i), these generate the Lie algebra t> of
the isotropy subgroup T2. Then, the decomposition of su(3) into ? irreducibles (the root space

decomposition) is
su(3) = 2 @ my ®my ® mg, (4.3.2)

where 2 = <X1,X2>, m; = <013,D13>, my = <012,D12>, mg = <023,D23>. The splitting
su(3) = t2 @ m, with m = my © my © m3, equips the bundle SU(3) — F3 with a connection
whose horizontal space is m. In particular o (x, &) = [0 : 0 : 1] and P? = 75(F3) is identified with
P2 = SU(3)/S(U(2) x U(1)) for an explicit subgroup S(U(2) x U(1)). Under this identification
m; @ mg3 is the horizontal space of a connection on 7y : F3 — P2, Then the tangent space to the

fibres of the twistor projection 7o gives a distribution which is my. Define left invariant one forms



106 CHAPTER 4. MONOPOLES ON (G3 MANIFOLDS

on SU(3), such that
()" = (01,02), m} = (e3,eq), mj = (v1,12), mj = (€1, e2),

dual to the respective vectors above. One then defines the anti self dual forms €2; as given in 4.2.2

and define the 3 forms
’y:(Qz/\I/g—Qg/\Vl) , 0= —Q3 ANy — Qo Ay
The Maurer Cartan relations are

do' = —2e34 — 2019, dB? = —2e19 + 2119 (4.3.3)
dvy = (=0 + 0" ) Ao+ Qo dro=— (=0 +0") Ay +Qy
de1 = (202 + 91) Ney —rie3 — ey , deg = — (292 + 91) A el —vieq — 9€e3
des = (92 + 291) ANeg+viep —gey , deyg = — (92 + 291) A es3 + vies + voeq.

These can in turn be used to compute
dd =4 (e1234 — 12 A1) , dy =0,

and in fact v = dejo = dr19 = —desy is exact.

4.3.1 The Bryant-Salamon GG, Metric

Using the fact that A% (P?)\P2 = R* x F3 and each Fj slice is a principal orbit for the SU(3)
action, this section reduces the equations of G holonomy with SU(3) symmetry to ODE’s on
R*. Integrating these, one constructs the Bryant Salamon metric on A% (P?). The notation tries to
match up with the original reference [BS89] and also with [CGLP02]. Let p € R™ be the distance
along a geodesic emanating from the zero section and intersecting the principal orbits of the SU(3)
action orthogonally. The adjoint action of 72 on m decomposes into irreducible components as
m = my @ my @ mg (the root space decomposition after complexification) and any invariant metric

can be written as
g =dp* +a*(p) (el +€3) +%(p) (€5 + 1) + *(p) (v +13) ,
for some positive functions a, b, c. The 3 form ¢ and 1) = *¢ defining the G5 structure are given by

¢ = dpA (—(12634 +ble1s + C2V12) + abc

P = —b?c? e12 A\ Vi + a’c? e3q N\ V12 + a’b? e1234 + abc dp N 6.

By theorem 1.2.3, the metric g has holonomy reduced to a subgroup of Gy if and only if d¢p =
dip = 0. Since 7 is closed and dd = 4(ej234 — 112 A 1), the equations reduce to the following
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ODE’s

d d d
d—p(aZCQ) = —(b??), —(abc) = a® + b + . (4.3.4)

d
4abe = — (a?b?) = a5 >

dp

Recall from section 4.2.1, equation 4.2.12, the definition of the following implicit functions of p
S
p(s) = / fds | f(s)= (1+2)7F | g(s) = Va1 + 7). (43.5)
0

Then as already done for A2 (S*), one can regard s as a radial coordinate. Moreover, the solution to
the ODE’s 4.3.4, which gives the Bryant Salamon G structure is given by setting a(p) = b(p) =
217 1(s(p)) and c(p) = 2s(p) f(s(p)). The Gy structure obtained is

= f2ds* +45°f* (vi +13) +29° (e] + €5 +e3 +e]) (4.3.6)
452 f3ds AN vig + 4fg%ds Ay — 2sf2%g? (11 A Qo+ 2 A Q3) 4.3.7)
= 49461234 — 882f29291 A Vi + 28f292d8 A (QQ A vy — Q3 A V3> . (4.3.8)

< S @
Il

It converges for large p to the Riemannian cone over the nearly Kihler F3. To check this use
% =1 _(r+ c)*% ~ 2#1"7%, ie. p(r) ~ V2ri = V/s and

2V/2r V2
jo = dp* +p* (46% + 4de3 + 4e3 + 4ef + 47 + 41/22)
oc = p2dp A (Ql + I/12) — ,03 (V1 Ao+ 19 A Qg)
Yo = p((o12 —X12) Avig o1 AX12) +pPdp A (R Ave — Q3 Avs).

4.3.2 (G, Monopoles

This section will use the SU(3) symmetry to construct G2 monopoles and G instantons on
A? (IP?). The strategy for the construction of the invariant data (homogeneous bundle with invariant
connections and Higgs Fields) is as follows (see Appendix B for further details). Given an
isotropy homomorphism X\ : 72 — G, one constructs homogeneous principal G-bundles via
Py = SU(3) X(r2,,y G on F3 = SU(3)/T?. The invariant connections are determined by
their left-invariant connection 1-form A € Q'(SU(3), g). Once a complement m to t> has been
chosen, Wang’s theorem B.0.21 parametrizes invariant connections in terms of morphisms of 72

representations A : m — g. The decomposition of m into irreducible components is
m=mp; O myg O ms,

where each component is labeled by a positive root. Then by Schur’s lemma A|,,,; will either vanish
or map m; into an isomorphic representation inside g. In the same way, invariant Higgs fields, i.e.
invariant sections of the adjoint bundle gp, = Py X 44 9, i.e. SU(3) X dox @, correspond to vectors

in the trivial components of the T2-representation Ad o \ on g.
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G = S! Bundles

For gauge group G = S!, the possible isotropy homomorphisms are given by the weights
Ani(e91, 102y = gilnartias) (4.3.9)

and so parametrized by two integers (n,1) € Z2. Moreover, since none of the root spaces is a trivial

representation of S! and the Ad o \,,; action on u(1) is trivial the canonical invariant connection
AS =nb +16%,

is the unique invariant connection. The Maurer Cartan relations for SU(3), in 4.3.3, give F}, ;| =
—2n(esq + v12) + 2l(v12 — e12), which one rearranges to

¢ *271634 — 21612 + 2(l - TL)I/lg, (4310)

nl —

is a closed, T-invariant, horizontal 2-form in SU(3) and descends to a closed 2-form on F3 =
SU(3)/T?. Particular cases are df' = Fy and df§*> = Fp, hence their classes generate
H?(FF3,R). It is a consequence of the next lemma that [d6], [dfs] also generate H?(F3,Z) seen as
a lattice inside H?(FF3, R).

Lemma 4.3.1. H?(F3,7) = H'(T?,7Z) is the lattice generated by the roots. Let O(1) denote the
canonical line bundle of P, then c1 (73 O(1)) = [F10), c1(m30(1)) = [F_1,-1] and c1(730(1)) =
[Fo.1]-

Proof. The first assertion is a consequence of Serre’s spectral sequence and the fact that SU(3) is 2-
connected, so H2(F3,7) = H'(T?,7Z). This identification can be made explicit by noticing that the
integral weights can be taken as generators and also as giving rise to the isotropy homomorphisms
generating the group of complex line bundles. Then, given o € H'(T?,Z), its exponential gives
the isotropy homomorphism of the line bundle Lo, = SU(3) X172 .« C whose first Chern class is
[da] € H%(F3,R) N H?(F3,7Z). Notice that in this case « is actually the canonical connection
of the underlying S' bundle and do its curvature. Since 7 is holomorphic, 75 is real and 73

antiholomorhic

~Y

i Kp2 = (m5)* @ (M), m3Kp2 = (mf)* @ (m§)*, m5Kp2 = (m5)" @ (m§)",

these are the complex line bundles determined from the isotropy homomorphisms e®i : 72 — S!
with

ap = —(208 +6%) — (6 — %) = 36"
an = (20 +62)(0' +26%) = 3(0* + 6?)
az = +(0' —6%) — (0 4 26%) = —36°.

Since Kpz = Op2(—3), the statement follows and ¢ (77 Op2(—1)) generate the integral second
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homology the statement follows. O

Lemma 4.3.2. I 1 generates a subgroup of H 2(P2,Z) corresponding to the first Chern classes of
the line bundles pulled back from P? via .

Proof. This is a consequence of the previous lemma. Alternatively the base of the twistor fibration
mo is P2 = SU(3)/S(U(2) x U(1)) so the bundles that are pull back from the base must have
an isotropy homomorphisms A,,; : 72 — S!, which factors via T? — S(U(2) x U(1)) — S'.
For the choices made before this is a fixed subgroup S(U(2) x U(1)) of SU(3) for which the
aforementioned homomorphisms are precisely the ones with n = [. In fact, these are the only cases
for which the curvature F;, ,, of the canonical invariant connection stays bounded close to the zero

section. O

Since S! is Abelian an invariant Higgs ® is just a real valued function of the radial coordinate p

and to compute the monopole equations one needs

Fony = (894 (1 —n) —16s2f2¢g2(l — n)) e1235 A V19
= 8(l—n)g* (9° — 25°f?) e1234 A 12

= 32(l — ’I’L)€1234 A V19,

where it is useful to use g2 = 2f~2. Moreover, d® = %dp and so xd®P = 6452f_2%61234 A V19.

The monopole equation can then be written as an ODE for ®. For each (n,!) and a given mass it

has a unique solution obtained by solving

l—n
doT, = ———d lim &7, = m. 4.3.11

n,l 252 (p) P s p—y00 n,l ( )

Moreover, the connection associated with this is the canonical invariant one A{ ;. This monopole

does not extend over the zero section unless [ = n in which case ® is constant and so for n # [

gives a Dirac type monopole, see definition 4.2.7

Proposition 4.3.3. For n # | the monopole (AS

w1 ®ny) is a Dirac monopole on A2 (P?) with

singular set the zero section. For n =l the connection A7, ,, is a Ga-instanton obtained by lifting a

self dual connection on Op2(—n) via 7o, their curvature is Fy, ,, = —2n (e12 + e34).

The Higgs field is then a harmonic function, which in the case n # [ is non constant and
unbounded at the zero section. For large p one uses 4.2.12, s ~ % and h?(p) = s*v1+ 52 to

5

conclude that h%(p) ~ g—z. Plugging this back in equation 4.3.11 gives ®,,; ~ —%(l —n)p~°,ie.

®,,; decays like the Green’s function for the cone metric.

Remark 4.3.4. These invariant connections are Hermitian Yang Mills type connections on line

bundles over the nearly Kdhler 5 pulled back to the cone.
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G = SO(3) Bundles

The possible isotropy homomorphisms A, ; : T' 2 5 SO(3) are also parametrized by two integers
(n,1) € Z%. These are constructed by using 4.3.9 from the previous example and letting the
image S! be the maximal torus in SO(3). Associated with each \,,; is the principal SO(3) bundle
Ppy = SU(3) X712 5,, SO(3). These are reducible and one can also construct there reducible
connections induced by the canonical invariant ones on the respective S' bundles. Let T, T», T3
be an orthonormal basis of s0(3), such that [T}, T}] = 2¢;;;, T}, and fix % as the generator of the
maximal torus. The canonical invariant connection on P, ; is then Af%l = (n91 + l92) ® %, with
curvature

w1 = (—nesy —lery + (I — n)ri2) @ T1. (4.3.12)

Other invariant connections are given by morphisms of 72 representations
A (mp @my @ mg, Ad) — (s0(3), Ado Ay ).

Let L,,; denote the real two dimensional representation of T?, where the first S acts by rotations
with degree n and the second S' acts by rotations with degree I (this is the same as the complex
representation of 72 induced with weight (n, 1) € Z?, i.e. by exponentiating nf' + 10% € (t3)*).

Identifying the corresponding representations

These are irreducible and it follows from Schur’s lemma, that A must vanish unless (n,1) is
one of (2,1), (1,2), (1,—1). In each of these cases A, is either 0 or an isomorphism for the
corresponding (7, 1). Up to invariant gauge transformations such an isomorphism is determined by

a constant. Then, it is possible to make A be one of the following

T
A271 = (291+02) ®51—|—a(01®T2+02®T3) (4.3.13)
T
Ao = (- ® ?1 +a( @Ty+ 1y ®Ts) (4.3.14)
T
Al = (00 +20°) @ ?1 +a(E10Th+ 3 ®Ts), (4.3.15)

with @ € R a function of the radial coordinate p. Invariant Higgs fields & = ®(p) must have values

in the components corresponding to the trivial 7 representation, i.e. ® € (0,0) and one writes
& = ¢T1, (4.3.16)

with ¢ € R a function of the radial coordinate p.

Lemma 4.3.5. The above SO(3) bundles P, for (n,l) = (2,1),(1,—1), (1, 2) extend over the
zero section giving rise to a bundle over A* (CP?) if and only if (n,1) = (1, —1).

Proof. One needs to show that only when (n,l) = (1, —1) the bundle E,,; = P,; X503 R3

associated via the standard representation is trivial along the fibres of the projection 7o : F3 — CP?.
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Equivalently one can show that only for (n,l) = (1,—1), is the bundle E,,; — F3 isomorphic
to a bundle pulled back from CP? via 7. To do this notice that w;(E,;) = 0 for all (n,1),
so it is enough to show that w2 (Ey;), p1(En,), are pulled back from H*(P?,Zs) via 73 only
for (n,l) = (1,—1). At this point it is convenient to work with U(2) bundles to compute the
characteristic classes. Consider the group homomorphism S\n,l : T? — U(2) given by

~ Z.na1+la2 ei% 0 ~
)\”%l(al’ 052) =1le€ 2 s 0 _;negtlag € (U(l) X SU(Q))/ZQ = U(2)
e 2

It has the property that after composed with the map U(2) — SO(3) given by
A — diag(det(A)~2 det(A)"1/?)A,

it agrees with A, ;. Define W, ; as the rank-2 complex vector bundle associated via the canon-
ical U(2) representation with SU(3) X125, ) U(2). Then, R ® E,; = gw, , and regarding
characteristic classes

wa(Ep) = ct(Wyny) mod 2, p1(Eny) = c1(Wny)? — dea(Wiy).

The canonical invariant connection of such a bundle is fl;,l = (nd! +10%) ® diag(i,0), and
its curvature is given by Fﬁl = (ndf! + 1d6?*) ® diag(i,0) € Q2(F3,u(2)). Using c1 (W) =
i[tr(ﬁg,l)] and co(W,, ;1) = %(tr(ﬁrf’l A Fil) - tr(ﬁﬁ’l)z) and inserting the formula above for the
curvature gives

c1(Wy) = —[nd* +1d6?] , ca(W,y) = 0.

First focus on ws(E, ), from lemma 4.3.2 the only classes in H?(FF3, Z) which are pulled back
from P? via 7y are those for which n = [. So one can write

wo(Fpy) = [ndo + 1d6?) = 1[d6" + 1d6%] + (n — 1)[do"],

and this equals 1[d0' + d0?] € H?(F3,Zs) if and only if n — [ is even. Then (n,l) = (1,—1)
is the only case in (n,l) = {(2,1),(1,—1),(1,2)} for which this holds. Next one needs to
check that pi(E1—1) = 1 (]5’17_1)2 is also the pull back of a class via 5. To do this one computes
p1(E1 —1) = [—2e1234 — 412 A Q4] and using the fact that dd = 4(ej234 — 12 A€21) one concludes
that [4v12 A Q1] = [4e1234] and so

p1(E1,-1) = [—8e1234),

which is indeed the pullback via 72 of a multiple of the fundamental class of P2. And so P; 4

does extend over the zero section while the other two cases do not. UJ

Having in mind this proposition focus for now on the case (n, ) = (1, —1). The curvature of
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the invariant connection A; _; is computed via

a2

Fy 1= Ff,_1+dA§771a (T +1r® T3)+? (@D +1v@T3) A (11 @ Ty + 12 @ T3)].

Denote these by I3, I3, I3 respectively, then first term Iy = FY | = (1 — 2v12) ® T, is the
curvature of the invariant connection. Use the Maurer Cartan relations 4.3.3 to compute the other

terms and the dot - to denote differentiation with respect to s, then

T
I, = a(dshv1®@Te+dsAvo,®T3)+a (91—92)®?1A(V1®T2—|—I/2®T3)

+a (dvy @ Ty + dvy @ T3)

= d(dS/\I/l®T2+d8/\V2®T3)+CL(01*02)/\(V1®T3*I/2®T2)
a((0'=0*) A+ Q) @Ty—a(— (0" —0°) Avy —Q3) @ T

= (ads Avy 4 afdy) ® Ty + (ads A vg + afd3) ® T,

while
a? 9
I3 = 5 (U12 ® [TQ,Tg] + 191 ® [Tg,Tg]) = 2a"v12 ® T1.
Put all these together and obtain

Fl,fl = (2(0,2 - 1)7/12 + Ql) QKT + (ads N+ CLQQ) ®Th + (ads Ny + CLQg) ® Tj.

The computation of F4, _, A % requires the G2 structure as computed in section 4.3.1. It is useful

to recall that 29 = 4 f~2, which helps in computing

Fay , Ny = 16f %0 (ds Avy @ Ty +ds Ay @ T3) A ejozg (4.3.17)
+ (32f_4(a2 — 1) + 3282) o12€1234 ® 11 + 16sa (1/1 RTy+ 1o ® Tg) N €1234
= 32 (f_4a2 — 1) e1234v12 @ 11 + 16 (f_4(i + Sa) dsejass N\ (11 @ T + vy @ T3).

The other ingredient of the equations is the covariant derivative of the Higgs field ® = ¢77. The

Bianchi identity for the connection A‘i_2 gives d AiflTl = 0 and so inserting this into V4, _, ®

gives
Va, @ = Vag @+ [a(1 @ Ta + 12 @ Th), ¢T1]
= ¢ds@T3+2a¢(Ta@vs—T3Q11),
and
«Va, @ = 645>fderasa Avio @ Th + 2a (Tr @ xvo — T3 @ %11) (4.3.18)

= 6482f_1¢ e1934V12 @ T + 32f_3a¢ dseqasq N (1/1 QRTH+ 15 ® Tg) .
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Equating both sides of the monopole equation, i.e. equation 4.3.17 on the left hand side with
equation 4.3.18 on the right gives the following set of ODE’s

64s>f1p = 32(fa®—1) (4.3.19)
16 (fa+sa) = 32f %as. (4.3.20)

Proposition 4.3.6. As a set My, (A% ((C]P)Q), Py _1) is given by those connections and Higgs fields
as in equations 4.3.14 and 4.3.16 such that (¢,b = f~2(s?)a) satisfy the ODE’s

d¢ 1

— = (p2 _
i = e (b —1) (4.3221)
b 2b. (4.3.22)
dp

with h*(p) = s%(p) f72(s*(p)) = 52(p)\/52(p) + 1and b(0) = 1,b(0) = 0 andlim,, 40 f*(s*)b =
0.

Proof. This amounts to substitute b = f~2(s%)a and change coordinates from s to p in equations
4.3.19 and 4.3.20. The first equation follows immediately and the second one from noticing that
f *ZZ—Z + sfa = g—z. The initial conditions on b follow from the requirements that the connection
and Higgs field extend over the zero section. This requires the curvature of the connection and
the Higgs field to be bounded, which requires ¢(0) = 0 and a(0) = 1 for the first and ¢(s) to be
bounded as s — 0. Since f(0) = 1 and f(0) = 0 the conditions on a end up being equivalent to
b(0) = 1 and b(0) = 0. From the first ODE and the fact that h2(s) ~ s? for small s it follows that
these conditions are also sufficient. Recall that for a finite mass monopole as defined in section
1.4.1, the connection is asymptotic to the pullback of an HYM connection on the nearly Kihler Fs.

In this case, it must be to A{ _; and so lim, 400 a =0, i.e. limy 400 f?(s®)b = 0. O

Remark 4.3.7. The equations in proposition 4.3.6 are the same as the ones in proposition 4.2.4.
Hence, the problem has been reduced to the one of solving the ODE’s for a spherically symmetric
monopole in R3 (with a non-Euclidean metric though). Moreover, one can check that h(p) > p, is
real analytic and as already remarked before behaves like: for small p, h(p) = p + o(p®) and for

large p it grows as p°.

With this remark one can use the results in chapter 2 to prove theorem 4.1.9 with P = P; _;.
The rest of the proof is done in exactly the same way as the the corresponding one for A? (S*) in
section 4.2.2 and shall be omitted. The work in chapter 2 gives for each m € R™ a unique solution
(¢m, bym) to the equations in proposition 4.3.6 such that lim,_,«c [¢m (p) @ T1| = m. In the gauge
used before this monopole can be written

(A @) = (A 1+ fPom (1 @ To + 12 ® T3) , ¢ T1)
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and the curvature of the connection is given by

Fy = (2 (f4bzn—1) V12+Ql) Ty + by (To @ Qo + T3 @ Q3)

d
dip(bem) (T2®dp/\1/1—|-T3®dp/\y3).

+

Remark 4.3.8. e These monopoles converge to the canonical invariant connection A{ _,. This

is reducible to a HYM connection on L1 _1 over the nearly Kéhler IF3. Their curvature is

given by FY _1(00) = (2v12 + Q1) ® T1, compare with equation 4.3.10 and see remark
4.34.

o The energy of these monopoles is not finite (as they are asymptotic to a nonflat connection on
F3). However, the Intermediate energy is indeed finite and the formula 4.1.6 in proposition

4.1.4 can be used to compute

ENAp, ®m) = lim 2¢m(P)/ 16e1234 A 2112 = drm([Fs], e1(L1,—1) U [i*9]).
p—0 F3

The next result regards the bundles P 5 as well as P ;. Recall from lemma 4.3.5 that these

do not extend over the zero section and so are defined on A% (P?)\P2. However the monopole

equations can still be integrated to give monopoles on the complement of the zero section and in

the following result these solutions are shown not to extend directly from the ODE’s.

Proposition 4.3.9. There is no smooth invariant monopole on the bundles P 1 and Py 2 which

extends over the zero section.

Proof. Start with the case (n,[) = (2, 1), most of the computations are similar to the ones above
and so will be omitted. In the case at hand, there are no solutions to the monopole ODE’s that can
be extended to the zero section as the bundle itself does not extend over the zero section as shown
in lemma 4.3.5. The curvature and covariant derivative of the Higgs field are respectively given by

Fry = —a (ds/\eg QR Ty +ds A ey ®T3) + (—2(a2 — 1)91 — 1/12) ® Ty

i

ta(raNes—v1ANel) Ty —a(vy ANeg+1vaNep) ®Ts
VAQJ(I) = g.de®T1—2a¢(T2®€3—T3®€4),

Equating *V 4, , ® = Fy 1 A 1 gives the following equations

d¢ 1,
— = —— (41
dp 2h2( +)
db

— = -2

p 2

where b = sa and as in the previous section h%(p) = s2(p)+/s2(p) + 1. These equations will never
give bounded solutions. In fact notice that since 1 + b > 0 and h(0) = 0, so ¢ can not be bounded
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as p — 0. The case (n,l) = (1,2) is similar

FLQ = a (ds ANe1 @ Ty +dsNeg ® Tg) + (2(@2 — 1)91 + 1/12) ® T
—a(riNes+1raNhe) @To—a(vy Nes—a Nes) @T5
VALQCI) = dis ® Ty + 2a¢(T2 ®ey—T3® 61),
and the monopole equations for these with b = sa and h?(p) = s%(p)+/s2(p) + 1 as before, are

@ 1

_ 2
i = e (1+0%)
db

Once again as it was the case for (n,l) = (1,2), there is no hope of finding smooth solutions in

this case, as d) is unbounded at the zero section. O

G = SU(3) Bundles

For gauge group G = SU(3), the possible isotropy homomorphisms A : T? — SU(3) are
parametrized by automorphisms of 72 by identifying the image 72 with the maximal torus in
SU(3). These depend on four integers (n11, 112, n21,no22) € 7Z* each corresponding to the degree
of a different map m; o A 04, : S' — S!. Explicitly, such an homomorphism is given by

)\(eial eiag) _ '(ei(n11a1+n12a2) ei(n21a1+n22a2))
where i : T? —» SU(3) is a fixed embedding of the maximal torus (as in 4.3.1). For each of
these homomorphisms one obtains a bundle Py = SU(3) x SU(3). The reductive decomposition
4.3.2 equips each of these with a canonical invariant connection A = (n11 X1 +n21X2) ® o' +

(n12X1 + N2 X)) ® 62, whose curvature is represented by the horizontal form

Ff = -2 (n11X1 + nngz) ® (634 + V12) +2 (n12X1 + n22X2) ® (Vl? - 612)
= —2(nnXi+n2X2) ®ess —2(n12X1 + n2peXs) ® e
+2 ((n12 — n11) X1 + (n21 + n92) Xa) @ vya. (4.3.23)

Other invariant connections are given by morphisms of 72 representations A : (m, Ad) —
(su(3), Ad o \). The following lemma is a tautology which will be helpful in decomposing
the right hand side into irreducible components

Lemma 4.3.10. Let exp(ih) : T" — C* = GL(C) be an irreducible {¢: representation with weight
vector dh € (t")*, and \ : T™ — T™ is a group homomorphism, then exp(ih) o A = exp(i\*h).

Since as T2 representations (mc, Ad) = (2,1) @ (1,—1) @ (1,2), and (n,l) € Z?* denotes
the representation ¢’ ("1792) and suc(3) = t2 @ mc) the lemma splits the (suc(3), Ad o \)
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representation in the right hand side, as

C @ Ca® (2n11 + n21,2n12 + n22) & (n11 — na1, ni2 — n22) @ (n11 + 2n21, N1z + 2n922).

Restrict to the special case where n1; = ngs = 1 and no; = nj2 = 0. Pick an invariant
connection given by A : m — m an isomorphism of representations. For each p € R™T, these
depend on a1, az, a3 € R, each corresponding to a scaling factor associated with a an isomorphism

between the corresponding irreducible components and induce the connection 1 forms given by

Ay = X1 ® 91 +Xo® 92 —aq (013 ®e3+ Dig ® 64) (4.3.24)
+az (C12 @ v1 + D12 @ 1) + a3 (C23 ® €1 + Doz ® e2) .

After a computation which is omitted the curvature is

d d
F\ = —di;(clg®dpA€3+D13®dp/\€4)+dip2(c12®dp/\l/1+D12®dp/\1/2)

d
+di; (Cos @dp N er+ Dz ®@dp A e3)

+X1 ® (2(af — 1)ega + 2(a3 — L)v1a) + Xo @ (2(a3 — ers + 2(1 — a3)vi2)

+ (a1 — aza3) (C13 ® (—v1e1 + voeg) — D13 @ (vieg + vze1))

+ (a2 — araz) (C12 ® Q2 + D12 ® OQ3)

+ (a3 — a1a2) (C23 ® (v1e1 + voe2) + Da3 @ (v1ea — vze1)) . (4.3.25)

Remark 4.3.11. The connection extends over to a connection on the whole A% (P?) if and only
if its curvature 4.3.26 is bounded. This is equivalent to the statement that a3(0) = 1, a2(0) = 0
and a1(0) = a2(0)as(0). For example, the special cases where ay = —1,a2 = a3 = +1 and
az = 1,a1 = —as = %1, can be easily checked (using the formula above) to give rise to flat

connections and these do extend over the zero section.

The invariant Higgs field ® € Q°(SU(3),s5u(3)) must have values in t> C su(3), so can be
written ® = ¢1 X1 + ¢ Xo, where ¢, @9 are functions of the radial coordinate. After a short
computation
doy doy
d

Va0 = 7dp®X1—l—dipdp@Xg—l—al(Q(ﬁl+¢2)(D13®63—Cl3®64)

—az(p1 — ¢2) (D12 @ v1 — Cr12 @ v2) — az(¢1 + 2¢2) (Daz @ e1 — Caz @ e2) .

Omitting some more computations the monopole equation F'q4 A ¢p = *xV 2P gives rise to the
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following set of ODE’s

dén 1 _
2 = g (Tl
de 1
T; - 2h2(8 a3 — f~*a3 +1)
day -1
ST T ) = s (2614 62)
d
= 2ﬂ+ sf(az —aras) = [ 2a2(dr — o)
d
sdipg + f M (a3 — ara2) = saz(d1 + 2¢2),

where h2(p) = s%(p)f2(s(p)) = s%(p)\/s2(p) + 1. Introduce the rescaled fields by = sa,
by = f~2as, by = sas. Then the ODE’s above can be written as

do _ 1

dp 2h2 (b5 -0t —1)

Cijf - 2h2 (b3 — 03 +1)

‘flbpl = Loy —br(261 + )
O;b; = gblbg + ba2(¢1 — ¢2)
Ogjj — gblbg + b3(P1 + 2¢2).

Theorem 4.3.12. There is a 1-parameter family of solutions to the system of equations above,
parametrized by their mass m € RT. Moreover, such a solution gives rise to a smooth G-
monopole, which in the previous gauge is given by the Higgs field ® = ¢,,,(X1 — X2) and the
connection A, = X1 @ 0 + Xo ® 0> + f2a,, (C12 @ v1 + D12 ® va), whose curvature is

Fn = (—2ess+2(f'a2, — Dv12) ® X1 + (—2e12 +2(1 — fla? )V12) ® Xo

<f4a2 QQ+ (f4 2)d/O/\m) ® C12 + <f4a29 + — (f4 2)dp/\l/2> ® D12.

Proof. The particular solutions stated above follow from an ansatz that reduces the system to the
same ODE’s that have been obtained in all the other cases (i.e. the ones for spherically symmetric
monopoles in (R3, dp? +h?(p)gs2)). Set by = bz = 0, then the third and fifth equations are trivially
satisfied. The other equations are

do by 1
d7p - dp T 9h2 (b2 1)
b _ ba(¢p1 — ¢2).

dp
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If it is further supposed that ¢; = —@o = ¢, one obtains

d¢ L 9

w = e
dbsy

— = 2¢b

dp ¢27

and the existence result from chapter 2 can be applied, to give a family of solutions. These are
parametrized by m € R* and given by (¢, b) = (¢, am ), where (¢, ar, ) is the solution provided
by theorem 2.2.1. One then computes the formula in the statement for their curvature, which is

bounded at p = 0 and so extends to a solution on A% (P?), see remark 4.3.11. O

The Ambrose-Singer theorem identifies the Lie algebra of the holonomy group with the values
of the curvature. This allows the conclusion that the holonomy of the monopoles above is contained
ina S(U(1) x SU(2)) subgroup of SU(3).

4.3.3 (- Instantons

This subsection constructs Gl instantons on bundles over A% (P?) equipped with the Bryant-
Salamon G structure. One must remark that Go instantons for the the other Bryant-Salamon
metrics also exist, as constructed in subsection 4.2.3 for A% (S*) and by Andrew Clarke in [Cla14]

for S(S3).

G = S! Bundles

In the case n = [, lemma 4.3.1 states that the bundle is P, ,, = m5Op2(—n). The bundles Opz(—n)
are self-dual and one can check that the canonical invariant connection associated with these will

give rise to a Go-instanton on A2 (P?). This is stated in proposition 4.3.3.

G = SO(3) Bundles

Irreducible G2-instanton in the bundle Py _; can be obtained by solving the ODE’s in proposition
4.3.6 for ¢ = 0. This implies b* = 1, i.e. b = £1, a = £ f?(s?) and 9 = F5f%(s?), the solution

is a smooth irreducible G2-instanton on P; 1 — A? (P?).

Theorem 4.3.13. The connection on Py 1 over A% (P?) given by A = Ai_l—i—fQ(sz) (1 @ To + 12 ® T3)
is an irreducible Gy-instanton with curvature

252

. = 52+1V12®T1+Q1®T1i

1
\/ﬁ<92®TQ+Q3®T3)

s (ds A1 ®@Toy+ds ANy ®T3).

(1+52)3

This instanton converges to the canonical invariant connection, which recall is the pullback to
the cone of a reducible HYM connection on 3 equipped with its standard nearly Kéhler structure.
Its curvature is 1 _1(c0) = (2v12 + Q1) @ T7.



4.3. MONOPOLES ON AZ (P?) 119

G = SU(3) Bundles

To obtain irreducible GG instantons, one solves the system of ODE’s 4.3.12.

Theorem 4.3.14. There are two families of irreducible G4 instantons parametrized by ¢ > 0. These

are respectively given by

ue(s
Ay = X1® o} +Xo® 92 — \/1617)52 (012 QKU1+ D1a® VQ) (4.3.26)
u2(s) — 1
For—— (Cs@e+ Diy®es —Cp@er — Dy @ey) (4327
and
Ay, = X1®91+X2®92+L(S)(C12®1/1+D12®V2) (4.3.28)
V1+ s?
uZ(s) — 1
T (C3@e3+ Dy@es+ C@er+ Dy @en),  (43.29)
where
52
uc(s) =1—2¢ . (4.3.30)
s2(1+c¢)+2 (\/1 +s2+ 1)
In particular, the case c = —1, recovers the flat connections alluded to in remark 4.3.11.

Proof. For ® = 0 one has to set ¢; = ¢2 = 0 in the system of equations above. This gives the

equations
1 = b3—b3="0b5—b]
db; f
= Ly
d,O s V%

fori,j, k € 1,2,3 and ¢ # j # k. In order to guarantee that the connection extends over the zero
section, its curvature must be bounded and from remark 4.3.11 together with the definitions of

the b5 one must have by (0)? = a2(0)? = 1, b1(0) = bo(0) = 0 and b3(0) = (—1)*b;(0), where
2 2 2

a(0) = (—1)*. Moreover, from the equations above %1 = % = % = <b1b2b3 and so the three

last equations are indeed compatible with the constraints imposed by the first two ones. These also

imply that b; = 4b3 = (—1)*b3, and the system gets reduced to solve

by—b = 1
dby f k
Bt . Y
dp 5( )"baby
dbs f k2
22 = Lok,
i S (=171

Inserting the first equation (the constraint) into the last one and using dip =f _1% gives the



120 CHAPTER 4. MONOPOLES ON G5 MANIFOLDS

following nonlinear singular ODE

dbs 2 0

— = (—1)"—(b5 — 1). 4.3.31

e A I) @331)
For k even there is a 1-parameter family of solutions given by ba(s) = —uc(s), forall ¢ > —1

and by (s) = b3(s) = £4/u2(s) — 1. In the same way for k odd, there is a 1-parameter given by
ba(s) = uc(s) forall ¢ > 0 and so by (s) = £4/u2(s) — 1. These give rise to the connections on
the statement and to check the connections extend one needs to show that 7”@;(;)_1 is bounded at

s = 0 which is indeed the case. OJ



Chapter 5

Moduli Spaces via Analysis

This chapter constructs an analytical setting in which to define the moduli spaces of finite mass
monopoles on AC manifolds. The results hold in all three cases of interest, namely 3 dimensions,
Calabi-Yau 3-folds and G>-manifolds. The chapter is organized into two main sections. The first
one 5.1 is focused on analyzing the linearization of the monopole equation, namely it defines
Banach spaces of sections on which the gauge fixed linearized operator is shown to be Fredholm.
Then section 5.2 combines this linear theory with Sobolev and multiplication properties of the
relevant Banach spaces in order to handle the nonlinearities of the (complex) monopole equation.
The main result of the first part is theorem 5.1.18 and that of the second part is theorem 5.2.3. This
is then reinterpreted in theorem 5.2.15 as saying that the moduli space of (complex) monopoles is

the zero locus of a Fredholm section of a suitable bundle over a Banach manifold.

5.1 Linear Analysis for Monopoles

Let (X™, g) be an asymptotically conical manifold with n odd (even) and (A, ®) either a finite
mass (resp. complex) monopole on P — X as in definition 1.4.1 (resp. 3.1.19). It is shown
in sections 2.1.1, 3.1.2 and 4.1.1 that for 3 manifolds, Calabi-Yau 3 folds and (G3-manifolds
respectively, the gauge fixed elliptic operator D = d] @ ds associated with the (resp. complex in
the Calabi- Yau case) monopole equation is as follows. Denote by S the vector bundle associated
with the standard Spin(n) representation and equip it with the standard spin connection (induced
by the Levi Civita one on 7'X). Equip the vector bundle £ = gp — X with the connection
induced by A and S = S ® F equipped with the connection induced from both A and the spin
connection. To ease notation also denote this connection by A, and by D 4 its Dirac operator and let
q = ade € Q°(X,End(E)) denote the induced endomorphism. Then, as computed in the sections
alluded to above D = D 4 + q and the goal of this section is to prove theorem 5.1.18 below, which

one can write as

Theorem 5.1.1. There are Banach spaces of sections of Sg denoted by H ,f o, s in definition 5.1.16
below (for p > 2), and a discrete set K(D4) C R such that the operator

D:DA—I—q:H,f

a1 — HY (5.1.1)

121
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is Fredholm for all o« > —n /2, such that o € K(D4) and p > 2.

The strategy to prove this result is to study the relevant model situations. First one studies the
operator D in a model metric cone (R, x X, g = dr? + r?gy), where (A4, ®) coincide with the
pull back to the cone of the boundary data (A, P, ). The connection A respects the eigenspace
decomposition of ¢, and so one can split Sg|s; = ker(q) ® ker(q)*. This splitting gives rise to two
distinguished cases: on ker(g), D = D is the usual Dirac operator and on ker(q)~, ¢ is invertible
and such operators are known as Callias operators due to the work in [Cal78]. Both these cases
are analyzed separately on a model cone in subsections 5.1.2 and 5.1.3 respectively, where one
constructs suitable Banach spaces in which parametrices exists. In subsection 5.1.4, one constructs
a mixed Banach space of sections, which allows to construct a parametrix in the general case where
both ker(q), ker(q)~* are nonzero. The operator D is elliptic and the usual parametrix construction
gives inverses on small Euclidean patches. Also in subsection 5.1.4 these two kinds of model
parametrices are matched to prove that on an asymptotically conical manifold, the overall operator
is Fredholm as claimed in theorem 5.1.15. In the final subsection 5.1.5 one extends the previous
Banach spaces of sections to depend on an exponent p which in the case p = 2 gives back the
previous ones. Then, one proves that the Fredholm property of D extends from p = 2to p > 2;

this is stated in theorem 5.1.18 and will be used in section 5.2 to deal with the nonlinear theory.

5.1.1 The Model Conical Operators

On the metric cone (C, go) = (R} x 2, dr? + r?gs) denote by P* — C (resp. P"~1 — X)) the
principal SO(n) (resp. SO(n — 1)) frame bundle of (C, g¢) (resp. (X, gx)). Forbothi =n,n+1,
let P* — P’ be the lifts to the Spin(i) bundle and S; = P* x p; Si the vector bundle associated
with the standard Spin(7) representation, p; : Spin(i) — U(S;). The Clifford Algebra splits as
Cl' = (C1")° @ (CI%)! in even and odd elements. Then, Spin(i) lies in (C1)" and is generated
by those elements of the form v - w, where ||v|| = ||jw|| = 1. This permits to see the Spin(7)
representations above as being induced by restricting to Spin(i) a representation of the Clifford
algebra. This is the key point for comparing p,_1 with p,, via the algebra isomorphism between
CI"~ ! and (C1™)° given by

e; € CI" s ey - e9 € (CIM)°, (5.1.2)

where {e; ?:_11 is an orthonormal frame of R”~! and is extended to an orthonormal frame of R" by

adding ey.
Remark 5.1.2. There are now to cases to distinguish,

o Ifn—lisevenand (pp—1,S" ' =S | ® S, ) isthe direct sum of the two irreducible
spin representations, then the Spin(n) representation obtained via CI"~1 is the unique
irreducible one. Or conversely, if py, is the unique irreducible Spin(n) respresentation, then
the induced representation of Spin(n — 1) via the isomorphism of algebras 5.1.2 is the direct
sum of the two irreducible ones. This is the relevant setup for the deformation operator of

the G'2 monopole equation.
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e Ifn—1isoddand p,_1 is the unique irreducible Spin(n — 1) representation, then it induces
one of the half Spin(n) representations S,". Conversely, if p, is the half Spin(n) represen-
tation S;¥, then the 5.1.2 induced Spin(n — 1) representation is the unique irreducible one.

This is the relevant situation for Calabi-Yau monopoles.

Let 7y : C — X is the projection on the second factor, then by remark 5.1.2, S =
75 (8™ 1). Parallel transport along the radial direction constructs a map P’ : Q(X, 8" 1) —
0°(C, 8™), which for o € Q°(2, 8" 1) yields P'o € Q°(C, S™), solving the initial value problem
Vo (P'o)=0,(P'o)|{13xs = o. This extends to an isomorphism P : Q°(R*, Q(%, 8" 1) =
QOB(TC, S™), which identifies sections of S™ over C' with 1 parameter families of sections of S*~!
over ¥ & {1} x ¥ in such that P_IV%PS = 8 for s € QO(RT, QO(3, 8" 71)).

Lemma 5.1.3. Let §J denote the spin Dirac operator on Q°(2, 8" 1) and {e;}= orthonormal.
Then, for s € Q°(C,S")

1

D(s) = ep- <V858 4 <Pg7P_1s + g (s))> . (5.1.3)
s T

Proof. This follows from a lengthy but straightforward computation using the formula for the Spin

connection the second fundamental form of the cross sections of the cone which are % times the

identity. Details of this computation are given for example in [Ang90]. O

Let E — X be a vector bundle with connection A which is pulled back to the cone. Construct
the bundle S = S"~! ® E, equipped with the twisted connection V 4 and the twisted Dirac
operator D 4. Also let ¢ € Q°(C, End(Sg)) be skew symmetric and such that V 4(g) = 0 for the
connection on the endomorphism bundle. Using lemma 5.1.3 the operator D acting on sections of
S" @ B = 14,Sg is equivalent to an operator on QY(RT, Q0(X, Sg)) is

D(s) = eq - <V‘;},g + % (P&}P_ls + Zs)) + q(s). (5.1.4)

The goal now is to use good Banach Spaces, which ensure the existence of suitable parametrices
for this model operator. Then, patch this together with the parametrices given by standard elliptic
theory over open bounded sets to give global parametrices for operators on asymptotically conical

manifolds.

5.1.2 The Dirac Operator (¢ = 0)

Back to the setup where (X, g) is an asymptotically conical manifold, this subsection gives the
Fredholm property in the case where ¢ = 0,i.e. Sp = S J‘E and so D = D4 is the Dirac operator.
Suitable Banach spaces where the Fredholm property for the Dirac Operator holds exist and this is
reviewed in this subsection. Let p be a radius function as in definition 1.1.5, « € R and p, k € Nj.

Denote the Lockhart-McOwen [LLM85] weighted norm by || - || rr - this is given by on a smooth
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compactly supported f € T'(X, Sg)

1z = I9aflly

k—1,a—

ISl s (5.1.5)
and || f[7, =[x |p~*fPp~"dvolx.

Definition 5.1.4. The Lockhart-McOwen [1LM85] Sobolev spaces LZ, o With weight o € R are the
completion of the smooth compactly supported functions in the norm 5.1.5. Moreover, one will
further require the radius function p to be such that p € (0, 1] inside a compact set K' with smooth
boundary, such that 0K' = p~1(1) and K' contains K, then on X\ K' one takes p = r o ¢, with
@ as in definition 1.1.5.

The next result states that the twisted Dirac operator D4 on an asymptotically conical Spin
manifold is Fredholm for the Lockhart McOwen weighted Sobolev spaces. This is a standard
result, as D 4 is an asymptotically conical operator [Mar02]. Alternatively this theorem follows by
translating all the setup into the cylindrical setting and using the results in [Don02] or in [LLM&5].
In fact the results in [Don02] also prove that the model operator on a cone admits a right inverse in

this case.

Theorem 5.1.5. Let (X, g) be asymptotically conical, then there is a discrete set of weights K (D 4)
such that for all o« & K(Dy) and k € N, the Dirac operator Dy : LZ+1,a+1 — sza is Fredholm.
Moreover,

Lo =Da(Lii1011) & Wa, (5.1.6)

with Wy, = ker(D%) _q—n, and in the case where ker(D% ) _q—n C Lia, ie. o > —75 equality
holds.

5.1.3 The Conical Callias Operator (g invertible).

This subsection focuses on the case where ¢ is pointwise invertible along the ends X\ K and
bounded below. Such a case is worked out in [Ang90] and [Kot10] where a formula for the
index in a quite general setup is given. Here a proof of the Fredholm property is given and the
treatment given is motivated by [Tau83] and [Don02]. The idea is to start and study the model
situation on a cone and then extend this to the AC setting. Before proceeding recall the relation
to monopoles, when restricted to the component Si. The operators D, D* : Q0(X\K,S%) —
QX \K,S ﬁ) associated with the (complex in the Calabi-Yau case) monopole equations, satisfy
certain Weitzenbock formulas, see lemma 2.1.2 in the 3 dimensional case, propositions 3.1.9 and
3.1.10 for the Calabi-Yau case and finally proposition 4.1.2 for the G4 case. In all cases one can
write D*D and DD* as V3,V 4 + W + ¢*q, where W is a zeroth order differential operator which
for finite mass (complex) monopoles decays along the ends. In fact, for finite mass (complex)
monopoles, along X\ K the configuration (A, ®) is modeled on (A, Ps) and so Fq, V4P
appearing in W do decay with rate smaller or equal to —2. In fact, the results proven below in

corollary 5.1.10 and proposition 5.1.11 will hold under slightly more general assumptions. They
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just require the F'4 and V 4@ to decay, i.e. they assume the existence of a smooth function ¢ > 0,
such that

lim |p’Vie(r)] =0 (5.1.7)

r—+00

and |0/ V7, Fa|, |V, ®| < €2 forall j € Ny.

The Model Cone

Proposition 5.1.6. Let C = (1,+00) x ¥ equipped with the cone metric g = dr? + r?gs, and D
as before with q constant and bounded by bellow, i.e. V aq(f) = q(V af) and |q(f)|> > c|f|? for
some constant ¢ > 0 and all f € Q°(C,Sg). Suppose there is a Weitzenbick formula

D*D =VVa+W+q"q,

with W decaying as r goes to oo, i.e. there is a function £(r) > 0 as in equation 5.1.7 such that
(W (f)| < &2(r)|f| Then, the following inequality holds

IF1Z2 < el DfIIZ2 + calle(r) £z, (5.1.8)

for some positive constants c1, co and all f compactly supported in C.

Proof. For compactly supported f one can integrate by parts in || D f||2, and use the Weitzenbock
formula in the hypothesis

IDfI2. = (D*Df, firz = Vaflie + (W (), £z + lla(f)|2
> VaflZe = le@) flI2: +cll f2..

Now one passes the term —||e(r) f||%. to the other side and this gives the inequality
IVaflze + cllfll72 < IDFIZ2 + Clle(r) 172,

which after suitably rearranging the constants gives the inequality 5.1.8, which one is trying to

prove. O

From the Cone to Asymptotically Conical

We return to the case where X is asymptotically conical and ¢ bounded by below. The following
lemmata will prove the Fredholm property for an operator which is globally like this, i.e. in the

case Sz extends over the whole X.

Lemma 5.1.7. Let ¢ : X — RT be smooth and such that lim,, . £(p) = 0. Then the embedding
L? < L2 is compact. Where in the right hand side L? denotes the completion of the smooth

compactly supported sections in the norm || f| 1z = | f| 2.

Proof. Let{f;} C L3 be asequence with || f; Hi% = 1 one needs to prove that there is a subsequence

which has a limit in L2. To do this notice that since || fiH%2 = 1, there is a subsequence with a
1
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weak limit in L, denote this by f and notice that || f||3, < 1. The claim is that this subsequence
1
converges to f strongly in L2, To see this denote by Br = p~![1, R) and compute

le(fi = NIZe = lle(fi = NZagmp + le(fi = D2\
< alfi= fllz s + RS = FlZ20m0)
< allfi = flli2(py) +4€*(R). (5.1.9)

Where in the last inequality one uses that

Hfl - fH%Q(X\BR) < HfZ - fH%%(X\BR) < 2“.]01“%%()(\31?) + 2Hf”%§(X\BR) <4

The second term in equation 5.1.9 is 4¢?( R) and can be made as small as one wishes by making R
big. Regarding the first one || f; — f H%Q( By)» Since the embedding L3(BR) < L*(BRg) is compact,
fi does converge strongly to f in L?(Bg) and the term || f; — f||? 12(By) CaN also be made arbitrarily

small by letting 7 get big. 0

Lemma 5.1.8. There is a positive constant C such that for all f € L?

17035 < € (IDSIB + 16132 ) - (5.1.10)

Proof. There are two cases to distinguish, the interior of X and its ends. Let R be big and

Br = p~1(0, R), then by the ellipticity of D, for compactly supported f inside B, there is

R’ > R such that
1oy < allDfBas, +callfl3am,,)

S ClHDfHLQ +02€(R/> 1”€f”L2(BR/ (5111)

A

for some constants c1, co > 0 which do depend on R, R’ but independent of f. At the ends of X,
i.e. on X\ Bp, pull back all the data to the cone via a quasi isometry, then there is an operator D¢
on the cone satisfying the hypothesis in proposition 5.1.6, such that D — De = O(p~1~¢) for some
€ > 0. So from proposition 5.1.6

HfH%g(X\BR) < AINDfI 20\ + Gllef 172005

for some constants ¢, ¢, > 0. The last step is to put this together with the interior inequality 5.1.11

let R be a function supported on Br1 which equals 1 on Bp, then

||f||%§ = HfHL2 (Br) + ||f||L2 (X\BR) < H‘PR+1f||L2(BR+1 + ||(1 - ‘PR)fH%f(X\BR)
< 2(er +A)IDFIIZ2 + 2cae(R) T + ch)llef 7,
which is the inequality one is trying to prove. O

Corollary 5.1.9. The AC operator D : L% — L? has closed range and finite dimensional kernel.
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Proof. To prove that the kernel is finite dimensional one proves that the unit ball in the kernel is
compact. Solet { f;} C ker(D) be a sequence with || fi||%% = 1. From lemma 5.1.7, the embedding
L? — L2 is compact and so there is a subsequence f;, which converges strongly in L2 to some
f € ker(D) N L2. But then, the inequality 5.1.10 gives || f; — f||%% < oolle(fi = f)|[22 — 0, and
so f; does converge to f in L3. Next one needs to prove that the image is closed, for that it is
enough to prove that there is a constant ¢ > 0, such that for all f € (ker D)+ N L?

IDfllz2 > el fIZs- (5.1.12)

Suppose not, then there is a sequence {f;} C (ker D)= N L} with || D f;[|?, — 0 and Hfz||2L% =1
There is a weak limit f € L? such that D f = 0 and from lemma 5.1.7, the limit f is strong in L2.
In fact f = 0 since by assumption it is the limit of the f;’s which are in the orthogonal complement
to the kernel. Then the inequality 5.1.10 gives 1 = ||f1||%% < IDfill2, + ||lefi]|2, as the first term
in the right hand side vanishes, while the second one converges to zero this is a contradiction. []

Corollary 5.1.10. Let D : Q°(X,Sg) — Q°(X,Sg) be such that on X\K it is modeled on a

conical operator D¢ as in proposition 5.1.6. Then, D : L? — L? is a Fredholm operator.

Proof. Corollary 5.1.9 gives that the kernel is finite dimensional and the image is closed, so it is
enough to prove that the cokernel is finite dimensional as well. As cokD = ker D* N L? one just
needs to prove that this later one is finite dimensional. Since D* is also modeled on an operator as
in the hypothesis of proposition 5.1.6, it satisfies an inequality as in equation 5.1.10. Using such an
inequality, one concludes that there is a constant c3 > 0 with the meaning for all f € ker D* N L?,
[fllz2 < callefllz2 < 2| f]|L2 and so ker D* N L? < L? and since by proposition 5.1.9 applied
to D* the kernel of D* in L? is finite dimensional. O

Proposition 5.1.11. Let D be as before and k € Ny, then D : L% s Li is a Fredholm operator.

Proof. If one can prove an inequality of the form

1122, < el DFIZz + elle' (M) fIIZz (5.1.13)

for both D and D* and some ¢’ as in equation 5.1.7. Then by repeating all the steps done before
with L? replaced by L7 and L3 replaced by L7, ; the proposition follows. Before, starting with
the proof of inequality 5.1.13, notice that the operator D can be extended to act on sections of
T* X ® Sg. Then, the Weitzenbock formulas for D* D and D D* have a further contribution coming
from the Riemannian curvature, which actually vanishes in the Ricci flat case. In general, the
manifold is AC and this algebraic term decays and it can be bounded from above by a function as
in equation 5.1.7, so one can assume these Weitzenbock formulae are as in proposition 5.1.6. To
establish the inequality, notice that || f ||%%+1 <|f ||%% +IVaf ”%i and arguing by induction one

can assume 5.1.13 to be true for k replaced by j < k, hence

1725 < (IDFIB; +1DVaflEy )+ (IefI3e +1eVafl2 ). .114)
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Notice that eV o f = V4(ef) — Ve ® f. Moreover, since ¢ satisfies equation 5.1.7, there is some
other function ¢ still decaying as in equation 5.1.7 and so that |¢| + |Ve| < £1. So one can bound
by above the terms in the second bracket by || f ”%i To bound from above the terms in the first
bracket in 5.1.14, let {e; } be an orthonormal frame at p € X such that Ve; = 0 at p. Then at p

D(V#f) DaVLf+ (Vi) =D eVivif+q(Vif)

(2

= Y (VMeVAS) + eiFalene)(f) + Via(f) — (Vig)(F)

%

= VDN + Y @Falee)) - (Vi (P

Recalling the model situation, one has VAq = 0 and F4 bounded above by some 5 as in equation

5.1.7. From this it follows immediately that
IDVAfIZ, < e(IVaDfIZ +leafl2 ),

which together with the previous bound [[ef[|7, + [[eVaf[2. < [le1f]3., gives the inequality
1 k—1 k
5.1.14 for any &’ > 1 + 3. O

5.1.4 The general case

This subsection puts together the Banach spaces of the two previous ones in order to measure the
components of the splitting Sp = S ﬂg oS ﬁ in an appropriate way. For future reference given
s € Q°(C, Sg), denote the components of s in each of these by sl st respectively. This subsection
starts by studying the model conical situation on which one constructs model parametrices. The
usual strategy of patching parametrices will then be used to deduce the Fredholm property in the

AC case; this is stated as theorem 5.1.15, which is the version p = 2 of theorem 5.1.1.

The Model Cone

In the model situation, the configuration (A, ®) is pulled back from the cross section, i.e. from
(Aoo, Poo) and recall that in all cases Voo Poo = 0. So, in the cone C' = (1, +00) x 3 the operator
q = adg_, is constant, i.e. V4q(s) = ¢(Vas) for all s € Q°(C,Sg), so q does preserve the
splitting Sp = S ﬂg oS ﬁ The existence of a model parametrix in this more general situation will
follow from patching together parametrices for each component, which exist by sections 5.1.2 and
5.1.3 respectively. To do this, one requires the definition a suitable mixed Banach space of sections

of Sg over the cone.

Definition 5.1.12. In the setup above define the norm
1
sl = M2+ 512,

for a € Rand k € NT. Define the spaces Hy ., as the completion of the smooth compactly

supported sections in the norm || - ||, .-
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On each component of the decomposition S = S )Uj eS é, the operator D : Hy 1 o1 — Hy o
restricts as the operator studied in sections 5.1.2 and 5.1.3. Since the direct sum of Fredholm

operators is Fredholm, one has

Corollary 5.1.13. For o € R there is a discrete set K(D), such that if o« € R\ (D) the operator
D : Hy o41 — Ho,o, admits parametrices Py, Pr : Hy o — Hp 1 o+1, such that

DPr=1+4+Sr, PLD=1+ 5,

with Sg : Hy 1,041 — Hpq1,041 and Sy, : Hy, o — Hy, o compact operators.

From the Cone to Asymptotically Conical

Let (X, g) be AC and K C X such that along the conical end X\ K the operator D is modeled by
an operator as analysed in the previous subsection 5.1.4. Below the function spaces from definition
5.1.12 will be adapted to the AC setting and then used to prove the main theorem 5.1.1. The strategy
is the usual one of matching the model parametrices over X \ K obtained in corollary 5.1.13 with
the ones for the model constant coefficient operators obtained over sufficiently small interior balls

covering the compact piece K.

Definition 5.1.14. Let p be the radius function from definition 5.1.4, o« € R and k € N*. Define

1
I50r,.. = slZa 0 + IsM02_vmey + 1513 vy

and the spaces Hy, ., as the completion of the smooth compactly supported sections in this norm.

Theorem 5.1.15. Let D be as above, k € N, € R. Then, there is a discrete set K(D) C R such
that for a« ¢ K(D), the operator D : Hy1 1 o11 — Hy, o, is a Fredholm operator.

Proof. This follows from a standard procedure, which constructs global parametrices by gluing
those obtained for the model operators. This will be illustrated below, in the construction of a
global right parametrix Q) g.

Let U = X\K and K C U;efV;, with || < oo form an open cover of X, such that there are local
right inverses (); to the operator D, defined on some slightly larger open sets U; containing V;.
Moreover, suppose K is big enough, so that on U, the operator D is modeled on some conical
operator D¢ as in section 5.1.4. Let 3, {Bi}ier be a partition of unity subordinate to this cover.
First, notice that one can change the operator D over U so that it is exactly conical as D®. In
fact this amounts to subtract to D the operator K (s) = 3(Ds — D®(3s))), which is a compact
operator K : Hy 1 o+1 — Hj, o, and the Fredholm property is not affected by perturbations by
compact operators. Then there is a parametrix P constructed for D¢ in section 5.1.4 and this

must be now glued with the local inverses @);. Define the candidate for a global parametrix as
Qr = VBPrVB + X_,c; VBiQiv/Bi and notice that even though the Pg and the @Q;’s are not
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globally defined the expression above is. To check that () is indeed a parametrix, compute

DQr(s) = o(dV/B)Pry/Bs+Y_ o(dy/B:)Qi/ Bis

el
+\/BDPR\/BS + Z \/EIDQZ Bis,
el

where o denotes the higher order symbol of D. The term in the first line is a compact operator
K Hy, o — Hj, o. This follows from the fact that it is supported on a compact set where the
derivatives of the 3’s are non vanishing. Moreover, over this compact set, by elliptic regularity one
can control the L? norms of the derivatives of Prs and ();s in terms of the L? norms of s. For the

term in the second line one can use DPr = I + Sgr over U and D(@; = I over V; to obtain
DQr(s) = K'(s)+VBU +Sp)V/Bs+ 3 fis

i€l
=5+ K'(s) + \/BSr\/Bs.

Moreover since the last term is supported on the conical end where it agrees with Sg, which is
a compact operator on these function spaces the operator Ky + v/3Sgr+/Bs is compact and this
proves that Qg is a right parametrix for D. O

515 Fromp=2top > 2.

The goal of this section is to extend the previous results, i.e. the statement regarding the Fredholm-
ness of the operator D from the case when p = 2 to p > 2. The upshot is theorem 5.1.18, which
contains the main result of the section and was announced in theorem 5.1.1. The relevant function

spaces for the general situation are the ones in definition 5.1.14 but constructed with p > 2.

Definition 5.1.16. For o € R, k € Ny and p > 2 define the spaces H,  to be the completion of

the smooth compactly supported sections in the norm || - || gy 8iven by

LHPP
Ly(X\K)’

N TIATY . e
HSHHIIc),a - HSHLz(K) + ||8 HLia(X\K) + ||S
where K C X is a large compact set outside of which the splitting Sp = S]UJ eSS ﬁ is well defined.

Remark 5.1.17. Notice that H ,3 o = Hp « in the notation from the previous section. Moreover,

recall these LY, o, Spaces are weighted with a distance function p as in definition 5.1.4.

Theorem 5.1.18. In the conditions of theorem 5.1.15 and p > 2, there is a discrete set K(D) C R
such that for « ¢ K(D) and oo > —n /2

D: H?

p
k+1,a+1 - Hk,a’

is a Fredholm operator.
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To prove this, i.e. that the Fredholm property extends for the operator

D: H?

k+l,a4+1 7 H};a? (5.1.15)

it is enough to fix some parametrices Pr, P, obtained for p = 2 and show these extend to bounded

operators with Sg, St compact operators when regarded as operators on the spaces with p > 2.

Proposition 5.1.19. Let a« > —n /2, a & K(D) and Pr, Py, be the parametrices for D obtained for

p = 2 by inverting D| : (ker(D) N Ho a11)+22 — (ker(D*) N Ho—p—q)tr2.

ker(D ﬂH() a+1) Lp2
These extend to bounded operators

p
PR,PL HOa _>H1a+17

such that DPr = I+Sp and PL.D = I+ Sy with Sg : Hy ,, — Hpy , and S, - HY .y — HY .4

compact operators.

Proof. Notice that the operator D\(ker(D)mHo,aH)LLQ . (ker(D) N Hoyay1)t22 — (ker(D*) N
H(]y—nfa)LLQ is well defined as long as D(H1,—p—q—1) C Ho,q, Which is true fora > —n/2 — 1
and this is guaranteed by the hypothesis that « > —n/2. Start by proving the last assertion,
namely that the extensions of Sg, Sy, are compact. The parametrix Py, in the statement is ob-

tained by constructing a left inverse to D| (ker(D then Sy, is minus the projection

)ﬁHo,a+1)LL2 ’
onto ker(D) N Hy 1, which is finite d1mens10nal as D is Fredholm for p = 2 due to theorem
5.1.15. In the same way, Pr is obtained by constructing a right inverse to D as an operator onto
(ker(D*) N Ho,—n—q ) 22 and so Sg is minus the projection onto ker(D*) N Hpy _y,—q, which is

the cokernel in the case @ > —n/2 and so finite dimensional as D is Fredholm for p = 2.

Next, one turns to the proof that the parametrices Pr, Pr, do extend to bounded operators from

P p
Ho,a to H07a+1.

The two important models to have in attention in order to set this up are

1. There is a big compact set p~1[0, R] C X, over which the spaces H ,f ., can be taken to agree
with the usual L% ones. Equip p~1[0, R] with a finite open cover {V; };c;, where the standard
Calderon-Zygmund inequalities hold. These are

IN

CUIDGILyr, + 19l
Lol < CUDG g + ).

”VAQHip(Vi)

A

where V/ D V; and V" D V/ are slightly larger open sets and C' > 0 is a generic constant, to
be possibly actualized at each stage. The reason why we chose to arrange them in this way is

that these can now be combined into

917 vy < CUDIN vy + 19117217



132 CHAPTER 5. MODULI SPACES VIA ANALYSIS

Then, by inserting ¢ = Pgrf into the inequality above and using that DPg = I + Sg, gives

”PRinp(v)

IN

C (IDPRFN ) + PRSI )

C (111, + ISRy + PRI W) -

IN

Then the fact that Pp is bounded for p = 2 and Sg is compact and hence bounded for p > 2
combine to further give ||PRf||’£p(V < C’HfHLp vy

2. On the noncompact end p~—!(R, +00), D is modeled on a conical operator D¢ as in section
5.1.4. The rest of the proof requires lemmas 5.1.20 and 5.1.24 below. For now assume these

hold, then from lemma 5.1.24 one can use the alternative /' f 1 hOrM
P — P P
loltse = 1Dl -+ gl
Insert into this g = Prf with f € H{ , and use DPgr = I + S, gives
P — P P
1Prfltyy =0+ Sefly +1Pafly

By using the generalized Young inequality and the fact that S : Hyy , — H{ , is compact

the first term can be bounded above by c|| f||» HE for some ¢ > 0. As for the second term, it
is guaranteed by lemma 5.1.24 that it is no greater than ¢|| f||¥ (ST for some other constant

¢ > 0. This shows that the model parametrix Pp, : H{)” o — HY 1,a+1 1s bounded.
Then by combining the two pieces above finishes the proof of proposition 5.1.19. 0
The rest of this section focuses on proving lemmas 5.1.20 and 5.1.24.

Lemma 5.1.20. The norm H},, ., is equivalent to the norm || - || defined by

— p p
I£17 = DIy + 1515y

Proof. The result follows from induction and the general step is not more difficult than the case
k = 1. In this case it is enough to show that || f||” can be bounded from above and below by
10
1. To prove the upper bound, use Df = Daf + q(f) and the generalized version of Young’s
inequality

A7 < cx(IDafllyy -+ la(h) e )+ 151 (5.1.16)

Using [Da(f)| < ca|V.a4f| one can bound the first term above by che1 | Vaf||,» . For the second
0,
term, use that |¢(f)| < cs|f*|and || f4|},, = [lfF]%» . ie. the weights do not affect the f+
0, 0,a+1
component. These two facts combine to bound the second term as [lq(f)|7,, < &l f*I5,
0, s

0,a+1

which can be further bounded by c4|| f[|%,, . Inserting these bounds back into 5.1.16 gives
0,a+1

117 < UVl +I1f1 ) =CIfly

1l,a+1
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where C' = max{chc1, 1+ c1cf} > 0.

2. To prove the lower bound on || f||P, one needs to establish an inequality as

£ < CUDSIy + 1A ), (5117

for some C’ > 0. To do this, it is convenient to split the proof into cases, i.e. to prove the result
independently for the S jlllz and § }_% components.
For f € Sl Df =Duf and HfHHg@ = ”fHLZk):,a’ i.e. the H}, , norm is the Lockhart-McOwen

one from definition 5.1.4. As D 4 is an elliptic asymptotically conical operator, there is an inequality

171, <es(IDafll, +1fl5, ), (5.1.18)

which follows immediately from a change of coordinates into Lockhart and McOwen’s asymptoti-

cally cylindrical setting in [LM85].

For f € Sg, ”fHHZa = Hf||LZ, i.e. the H , norm agrees with the usual Lj one. To bound

|Vaf|”, by above one can use the fact that L = Lé’,_n/p to rewrite |Vaf|[7, < [Vaflt, +

et 15 = 1IF1%» . Then, using the weighted inequality in equation 5.1.18, for the case
1,—n/p+1

a = —n/p, gives

IVaflfe < es (IPaflfe + Ir " FI5) < esce (IDFIE, + 115 + lIr " £117,)
< 2c5c6 (HDfHIip + ||f||lzp) )

where in the second inequality in the first line one uses D4 f = Df — ¢(f) and the fact that ¢
is bounded. The inequality 5.1.17 is now immediate from summing these two components and

choosing C” as the biggest constant. O
It will be useful in the analysis to be carried out to introduce a mixed norm

Definition 5.1.21. Define the intermediate norm || - || .v.2) by
0,

00 |
I = /1 (M 1y + 1 Wy ) 7O
0,

where the L? norms on the right hand side are with respect to the induced metric on p~*(r) = 3.,

Lemma 5.1.22. Let p > 2 and o € R, then there is a constant ¢ > 0, such that for f € Hg}a,

11 e < el g,

Proof. The proof follows from the observation that for p > 2 and over compact sets, the L?
norm is stronger than the L? norm. In fact over a radius 1 ball B; C RF there is a constant
c > Osuch that || f[|2(p,) < || fllL»(B,)» then by scaling || fl 125,y < c’rk%?HfHLp(Br) for all
r € R. Applying this scaling behavior of the L? norms, there is ¢ > 0 such that || f||*, (-1 S

-2
Pr(n=1)r5 [aliem (r-1(r)" Inserting this into the definition of the Hé:f) &2) norm above gives an
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upper bound with respect to the H} , norm. O

Lemma 5.1.23. Let p > 2 and o € R, there is a constant ¢ > 0, such that for all f € H(])D,a
one has || Prf| ;o2 < C||f|;w.2. Moreover, combining this with lemma 5.1.22 and possibly
0,a+1 0,

changing the constant ¢’ gives
1Py, < NS,

Proof. 1t is enough to prove the first inequality since as asserted in the statement the second one
follows from combining the first one with lemma 5.1.22. Recall that Pr is a bounded operator for
p=2,i.e. Hy, to Hy oy1. To proceed with the proof it is convenient to split the problem between
the S jUj and S g components.

1.For f € SJJE, the i ,f ., horm is the standard Lockhart-McOwen one LZ o Then, by changing
coordinates to ¢ = log(r), the statement that Pg is bounded from Ho o = L§ , into Ho a1 =

L(Q),aJrl gives

—+o0 —+o00
e~ P g gy 0t < C [ [l guye
/log(R) (Z,9%) log(R) (3,9%)

for some C' > 0 and where L?(X, gs;) denotes the L? norm on the cross section Y with respect to the
fixed metric gy.. Equivalently, this statement can be formulated as saying that for all ' > log(R),
the assignment e~ f +— e~ (@ DT (Pp £)(T) gives rise to a bounded map

My(T) : L*((log(R), +00), L*(%, g5)) — L*(Z, g5),

and the operator norm of this family is integrable, with integral no greater than C'. Still in the cylin-

. . (p,2) —at—(n—1)B=2¢ 9
drical setting, the fact that f € H ;” means thate 2 f(t) € LP((log(R), 00), L7 (%, g%)).
Hence, one can use the fact that the family M, () has integrable operator norm and the map
L' x LP < LP along (log(R), +00) x L?(%, gs) to prove that

(n—1)E=2 704 —(n—1)E2t _q
le™ " V% T (Mae™t FO)TDIE, < ||Ma(T)|lle” " V% et f (1),

Since || My (T)||;1 < C < oo, changing coordinates back to the asymptotically conical setting this

statement is equivalent to

2 2
”PRfHHé{’ﬁl < CHfHHé’p&m

and proves that Pp : H(gf7 0742) — H((f o _&1 is bounded for those components in S g

2.ForfeS }f, the H If ., horm is the standard Li one. The statement that P is bounded from

and into L? can equivalently be stated in the cylindrical setting, as follows. Using the measure
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e™dt on (log(R), +00), and all T > log(R), the assignment f + (Pgf)(T) gives a bounded map
Pr(T) : L*((log(R), +00), L*(Z, 95)) = L*(2, g5),

and this 7T-parametrized family has integrable operator norm. Then, given f € H(()p o ), in the
—2

cylindrical setting this means that e_(”_l)prtf(t) is in LP((log(R), ), L*(3, gs)), using the

measure e™'dt on (log(R), +00). Proceeding as before and combining the map L' x LP < LP

with the fact that the family Pr(7") has integrable operator norm gives

e DT (P ()T, < PTG e 05 e (1),

with || Pr(T)||, = C’" < +o0. Back to the conical world this statement gets translated into

[

2 ! 2
I1PRfI20e < C NI

proving the statement for those components in S ﬁ Then by putting together both cases 1. and 2.

proves the complete statement. O

Lemma 5.1.24. There is a constant ¢ > 0, such that for all f € H& o

PRS2

0,a+1

<N fllp,-

Proof. Recall the H{ia norm in definition 5.1.16, in what follows it will be useful to rewrite it as a

sum
+oo N
”g”I;{gY&(U) = A (TiapangHHpr(p—l(r)) + Hg ||Ifip(p—1(r))> dr
= 3 (R ) + 9 ) (5.1.19)
k>0

where 22 above denotes an equivalence of norms (which is straightforward to check) and C =
(RF, R*1) x ¥ equipped with the conical metric go = dr? + r2gy = 7”2(%2 + gx). Notice that
the conical annulus C',y1 is obtained from C}, by scaling with a factor of R > 1. As usual, in what

follows it will be convenient to separate into components.

1. First, one focuses on the components in Sp,. | Over the bounded annulus (1, the standard
Calderon-Zygmund inequalities give ||g[;, () < (| Dgll, e T HgHLQ(C, ), where Cf D C is

a slightly larger annulus in the cone. This inequality is not scale invariant and scaling it gives
k kB2
191250,y < € (RZIDGIG cp)y + BT N9la(cy))

and in this component D = D,. Moreover, since p > 2, Rk < R-(=DF 2 4nd
HgHL2 ) < cf HgHgQ(p_l(r))dr. Then by inserting these into the norm 5.1.19, gives for
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I
g €Sy

IN

c1 ZR (et L)ptn) Rpk”Dg“HLp (Cy)
k>0

o0 p—2
e A

< CIDglls gl g )-

0,a+1

lol,

Insert into this inequality g = Prf, then by using DPr = I + Sg, the fact that Sg is bounded

from and into H{)” ., and lemma 5.1.23, give

Parlly < (15 Snflly  +1Pesly,. )

Oa+1
< Clfl,

2. Next, one turns to those components in Sz, recall that for these the map ¢ € Q°(End(Sg))
is bounded below, i.e. |q(g)| > c|g|, for some ¢ > 0 and all f € S5. Then over any Cy, the
inequality

19170 (cp) < N2y < P9I,y + 1P agI 0y (5.1.20)
Moreover, rescaling the fact that D4 : LT (Cy) — LP(C) is bounded and the standard Calderon-
Zygmund inequality gives [|Dagll7, ¢, ) < c1(IVagll 7oy +R 970 cr)) and [V aglfseyy <
cl(HDgHLP(C,, + Rk HgHLQ(CI,C,)), where C;, O Cj and C} D C}, to denote slightly larger

annulus. Then by combining these gives

p
1Dagl7oicy < CUDGI ey + BT F = gl ony + Bl ),
k) () (

and inserting this back into equation 5.1.20 gives for R > 1

1910y < CUDGILw iy + B nkfg HgHch )- (5.1.21)
&) ) (Ck)

— —2
Moreover since p > 2 also in this case R_"kp < R~(n—1k pT and one can dominate the second

term in the right above by Cka HgHL2(p_1(r)) ~(=DkE3 4. which is for components in S

the H"? | norm. Then, inserting equation 5.1.21 into the norm in equation 5.1.19 for g € Sﬁ

0a+1
gives
P P e P (n—1)k2z2
R
lollyg < O Dy +C [ ol 5 ar
E>0
< (Dl + 1ol 0 ).

0,a+1

and notice that the weights « here are irrelevant but are introduced in order to use the appropriate
notation. Then, following a similar strategy as in the previous case let g = Prf in the inequal-

ity above. Then using DPr = I + Sg, that Sg is bounded on H(I]),a and lemma 5.1.23 gives
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|PrfllYr < IIflI%» - The general result follows immediately from combining O
0,a+1 0,

Remark 5.1.25. Recall that restricted to the components in S I , D = D, is the Dirac operator
and H l’; o= LZ} ., are the Lockhart-McOwen spaces. The results obtained in this section, when
restricted to these components also follow from standard Lockhart-McOwen theory and this could
have been used instead. In fact, this section relies partially on these results, when in the proof of
lemma 5.1.20 the inequality in equation 5.1.18 is used. However, such an inequality follows from
scaling the standard Calderon-Zygmund one ||V ag||;, o < C’(HDgHLP cp ||g||Lp ) ), from
the annulus C to all the annuli Cy, in a similar fashion to what was done in the proof of lemma
5.1.24.

5.2 The Moduli Theory

This section studies the properties of the moduli spaces of finite mass, irreducible monopoles (resp.
complex monopoles) on an asymptotically conical manifold (X, g), which is either a 3 dimensional
manifold or a G2 manifold (resp. a Calabi-Yau 3 fold). The main result is theorem 5.2.3 which
shows the setup from the previous section extends to the nonlinear case. Namely that the (complex)
monopole equations give rise to a Fredholm map between the Banach spaces in definition 5.1.16

from the previous section.

5.2.1 Moduli of Finite Mass (complex) Monopoles

Recall the boundary conditions for a finite mass monopole; let P, — 3 be the asymptotic bundle
and fix a framing

n: " Plx\x — 7 Poo, (5.2.1)

together with a pair (Vo, @) as in definitions 1.4.1 and 3.1.19 for monopoles and complex
monopoles respectively. Here ¢ is diffeomorphism from definition 1.2.8 and 7 : C' — ¥ denotes
the projection to the second factor. Moreover, also recall that VP, = 0 and V , satisfies the
conditions summarized in definition 1.4.7 and the examples following it (or proposition 3.1.28 in
the case of complex monopoles). Denote by [(V ., P )] the gauge equivalence class of this pair

and define

' = {g GAUt( ) | g- (VOOa(I)oo) = (vom(l)oo)}a
{€€T(gr.) | Vo€ = [§, o] = 0}

Yoo

Then I' are the gauge transformations of P, which preserve the boundary data and v its Lie

algebra. There are two possible approaches to setting up the moduli theory:

1. Consider pairs (A, ®) on P such that there are representatives (V. , ) € [(Voo, Poo)]s
with (A, ®) asymptotic to (V/_, @/ ). Take these modulo the action of the gauge group G of

continuous gauge transformations, which have a limit g, = lim, 9(p) € G-
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2. Fix the representative (Voo, Poo) € [(Voo, Po)] and consider pairs (A, ®) asymptotic to
this representative modulo the action of I' C G. Where I is defined to be those gauge

transformations g € G such that g, € ' and so preserves the asymptotic conditions.

The automorphism group of the boundary data I', is isomorphic to a subgroup H C G. An
explicit subgroup can be taken by fixing a point p € P, and setting H = C(®P(p)), i.e. the
centralizer. It is also usefull to consider a slightly larger moduli space which fibers over these
ones with fibre I'o,. Recall that the gauge group G comes equipped with an evaluation map
ev : G — Goo by taking the limit at infinity. Using the framing 5.2.1, T' = ev™!(I's,) and one can
define G(0) = ker(ewv). Then, consider the moduli space of configurations to be those pairs (A, ®)
which are asymptotic to (V, ) modulo the action of G(0). Any implementation of this idea

gives a moduli space of configurations, which fibers over the previous ones with fiber H.

Remark 5.2.1. There is also one other way of constructing such a moduli space which comes with
the framing 7 incorporated in the definition at the expense of considering a slightly larger gauge
group. Consider triples (A, ®,n) of configurations and a framing 1) modulo the action of T'. Here T

acts on the framing in a nontrivial way and this is what accounts for increasing the gauge group

from G(0) to T

Example 13. Let G = SU(2), then Py is reducible and since V P, = 0 so is the connection.
Then H is either {1} or U(1) standard facts of representation theory give a splitting gp., = R® L?,
where L is a line bundle over .. Moreover, if H = U (1), then L must be nontrivial. In fact one
must suppose that is the case, otherwise assuming ¥V A® € L? would give via corollary 1.4.11
that V 4® = 0 and the (complex) monopole would be reducible. Then, I is the subgroup Guo

consisting on automorphisms of P, preserving ®., and the connection V

o Ifg € Aut(Py) and g - oy = @, then one can write g = ef®=, for some f ¢
C™®(X,R/Z). Moreover, if g is further supposed to preserve the connection then it must be

constant, this gives an isomorphism I' oo = S'.

o I[fE €gp, and [, D] =0, then § = f@o for f € C(X,R) and if Voo = 0 then f

must be constant. This gives an isomorphism Vo, = R.

Let (Vo, ®o) be a connection and an Higgs Field on P which as p — oo converge to the
pullbacks of (V, o) via the framing 7 fixed before in 5.2.1. Then, on X'\ K the adjoint action
of ®¢ gives an endomorphism adg, = [®o, -] € End(gp|x\x) and this defines a splitting

grlxe =2 VIie vt (5.2.2)

where V- = im(adg, ) and VIl = ker(adg, ). So one can uniquely split sections 7 € Q¥ (X\ K, gp)
as ) = nll + nt, for nll € QF(X\K, V) and n* € QF(X\K, V).

Remark 5.2.2. Recall that the boundary data determine a reduction of Ps, and Vo toan H C G
bundle () — % equipped with an H connection which will also be denoted V oo. Then Py =
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QxgGandgp, = P XG,449 = Q XH, A4 9. Split g = b ® m, where by is the Lie algebra of H

which acts via the adjoint action on the complement m. Then, write

0p. = Q XH 44D D Q XHg aqm

and these are respectively VIE VL in the splitting 5.2.2. Digging a bit further one can let @, be an
H equivariant map from Q) to g, which constant along V , parallel path. Extend it G equivariantly
t0 Puo, let p € Py, and define H = C(®(p)), i.e. the centralizer of ®o(p) = m € g. One can
choose a set of positive roots R, and a fundamental Weyl chamber so that ®(p) lies in its closure.

Introduce the notation g& = (g0, © g_o) N g, then

g=to P o P o,

a(m)=0 a(m)#£0

withh =t® @a(m):o aX and m = @a(m)ﬂ ax,

The rest of this chapter develops a moduli theory for the monopole (resp. complex monopole)
equation. The general setup will be a familiar one in gauge theory, but there are many technicalities
involved. However, at this stage it is already possible to state a result which will be one of the main
ingredients of that larger moduli theory. In this result, the linear theory from the previous section
5.1 is shown to generalize to the nonlinear (complex) monopole equations. Suppose (A, ®¢)
is a (complex) monopole, i.e. a solution to equations 2.1.1 or 4.1.1 for the 3 dimensional case
or the GG case respectively and a solution of equations 3.1.1 and 3.1.2 in the Calabi-Yau case.
Let A; = A*®gp and Ag = A! ® gp in 3 dimensions or G5 manifolds, while for Calabi-Yau
manifolds these denote A} = A* @ g% and Ay = (A° ® igp) @ (A' ® g§). Then, in each
of these cases the (complex) monopole equation for the pair (A, ®) = (Ao, o) + (a, ¢) with
(a,¢) € Q°(X,A] & A}) defines a map

mon : Q°(X,A§ & A}) — Q0 (X, A}). (5.2.3)
Moreover, it is straightforward to see that this map can be written as

mon(a, ¢) = da(a, ) + q((a, ¢), (a, §)),

where ¢(+, -) is multilinear, so the overall equation has quadratic nonlinearities. Moreover, d above
denotes the linearized (monopole) equation as computed in sections 2.1.1, 3.1.2 and 4.1.1 for each
case. To each of these equations one can add the gauge fixing condition d;(a, ¢) = 0, where
di - QU(X, Ay @A) — QO(X, AY) is also computed in sections 2.1.1, 3.1.2 and 4.1.1 respectively
in 3 dimensions, Calabi-Yau and G manifolds. These two can be combined in the gauge fixed
monopole equation for (A, ®) = (Ap, Po) + (a, ¢)

Mon(a, ¢) = mon(a, ¢) + dy(a, 9), (5.2.4)
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and maps Q°(X, Ag &) Aé) to itself. The following result can be stated in more generality, but for

concreteness we shall restrict to G = SU(2).

Theorem 5.2.3. Let G = SU(2), p € [n/2,n) and o« = —n/p+ 1 & K(D), then the map Mon

defined in equation 5.2.4 gives rise to a nonlinear Fredholm map
Mon : Hf’a — Hga_l.

Proof. Since Mon = mon + dj = dj ® d2 + q and dj ® d> = D the linear operator analyzed in
section 5.1 it follows that D : H- f’a — Hg,a—l is well defined and Fredholm by the theorem 5.1.18
or5.1.1.
Next one needs to check that the nonlinear term ¢(-,-) : HY , x HY , — Hf ,  is well defined.
This term is multilinear, i.e. the overall equation has quadratic nonlinearities, and so q((a, ¢), (a, ¢))
is a sum of the terms [a A a, [a, ¢], [}, ¢].
First one proves a particular case, which is when p = n/2,thena =1—-2 = —1. Let{, x € HIL/fl
be either a or ¢. Then !l ¢l € Li/_zl and the weighted Sobolev embedding, ([LM85], or Theorem
4.17 in [Mar(02]) guarantees that LZ/_Zl — L6L,71- Moreover XL, §L € L?/ % and it is immediate to
check from the definition of the weighted norms that L!/* = L&/_2 5N L?/_2 1» which once again lies
in L _; from the weighted Sobolev embedding. So, one concludes that x,§ € Ly _;.
Since by hypothesis G = SU(2), [gIIL, g'llg} =0, [g'IL, g5] C gp and [gp,05] C g|1|3. Then
(X!l ¢l = 0, and

D€ = D €+ (L €4+ e €l

where the first term lies in g‘llj, while the second and the third lie in gI%. So, in order to prove that

[x,&] € H&/,QQ, it is enough to prove that [x!, ¢1] € L2 and [x ', ¢4 € LSLKEQ = LV2. This is
indeed true, as x, £ € L™ and
1€ sz < CllEN x| 2n-

The general case for p € [n/2,n) and « = —n/p + 1, follows from applying the multiplication
map in corollary 5.2.8 below and so ¢((a, ¢), (a,¢)) € Hy ,_, and the result follows. O

5.2.2 Sobolev Embeddings and Multiplication Maps

Denote by Li@ the weighted spaces defined in 5.1.4 using the pair (Ao, ®y) as in the previous
subsection. The moduli theory requires some important properties of these spaces which are
important in handling the nonlinearities. The most relevant of these properties is the one stated in

corollary 5.2.6 below, but its proof will require lemmas 5.2.4, 5.2.5 and 5.2.6.

Lemma 5.2.4. (Weighted Holder Inequality) Let 3,7 € R and % + % = %, then the multiplication

property Lg,ﬁ X Lj = Ll

0.7+ holds. In particular, if v < 0, then Lgﬂ X Lj = Lgvﬁ.

Proof. Let f € Lg 5,9 € Lj) - then using the definition of the weighted norms, rearranging the
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exponents and the usual Holder inequality shows

n

1gles ., = lo o gl =1 (577 721) (p7579) o

0,v+8

IN

lo™= P fllzrllo™gllLs
1f1zg gl -

This shows the first statement, which in the particular case where v < 0, then Lg 8 Lg 5 O

Lemma 5.2.5. Let p2 > p1 and 2 > 71, then for all s € [p1,p2] and vy > maxi:m{% — 2 4y},

NLE, < L§ .

there is an inclusion LF* o
yY2

0,7

Proof. First one notices that since p; < s < pg, then for all g € LP* N LP2, it holds that
llglls < ellgllzer + ||g]lLp2 ), for some ¢ > 0. Let f € L§ ., then

0y
Iflzs, = o7 = flos < elllp™ % Fllwe + lp777 5 fllze:)
= el + iz, )
Since v > max;{;- — ¢ + v}, one has v + ¢ — J» > 5, fori = 1,2 and so || f[lz5 <
el + 10z ) s

Lemma 5.2.6. Let B € R, p € [%, n] and k € Ny. Then, the following hold
k
o Ly =iso LZ—%—H‘

P q _
° Lk+1,ﬂ s Lkﬁ,forq = n"—_";}.

P k—1 P k—1
° Lk—f—l,loc(_)c ande+17ﬁC—>Cﬁ ,

loc

o Suppose NV is H irreducible, i.e. it induces an irreducible connection on V=+. Let £ €
Q" (X, gp) with Vo€ € Lﬁ,ﬁ’ then £+ € L£+175+1. In particular if B < 1, then lim,_,c § =

Eoo exists and Exo € Yoo-

Proof. The first bullet is an immediate consequence of the definition in equation 5.1.5 of the Lﬁ 3

norms. The case £ = 0 amounts to || f|| o= | p~"/P+/P f|| 1» and the general case follows
s n/p

from an induction argument, where the general step is not more difficult than the case £ = 1 and so

the proof sticks to this one. Write for the norm in the right hand side

AP = G+ = I + I AU + IV A
0,—n/p 1,—n/p+1

I I7e + e £

Then, one can bound this from above by 2|| f Hi,f and from below by || f Hl;ff and so the two norms
are equivalent.

The next two bullets are particular instances of the standard weighted Sobolev embedding theorems
(Theorem 4.17 in [Mar02]). To apply them one just needs to check that 1 — % > —% and
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k+1-— % > k-1
The third statement is a direct consequence of proposition A.0.16 in the Appendix A. O

Corollary 5.2.7. In the hypothesis of lemma 5.2.6 and N o, being H-irreducible. Let ¢ € QF(X, gp)
with pV o€ € H,f then £+ ¢ L£+1 and in case § < —1 + %, then lim,,_, o § = &oo exists and
§oo € Yoo-

7ﬂ+l’

Proof. Since pVo§ € HY 5., one knows pVo&t € L}, and the same proof as that of the
beginning of proposition A.0.16 shows that £+ € Lg 1 and converges to 0 as p — oo. The other
component follows from the fact that pV&l € L% G+1 is equivalent to V&l e LZ 5 Then, one
can repeat the final part of the proof of proposition A.0.16 and notice that the argument there using

Holder’s inequality works for 8 < —1 + %. O

The following is the main result of this subsection and is an application of the previous lemmata.

Corollary 5.2.8. Let G = SU(2) and p € [n/2,n) and o = 1 — n/p, then the Lie bracket |-, ]

gives rise to a continuous multiplication map
. 1P y2 p
[] HY o x HY ,, = H{y ;.

Proof. Letx, ¢ € HY , and ¢ = 2, then by definition xI, &l e LP | which using the embedding

n—p ’ 1705’
in the second bullet of lemma 5.2.6 lies in Lg’a. In the same way, the definition of the H f o, Space

gives x-, ¢t e LY = Lg}_n p 0 Ly by the first bullet in lemma 5.2.6. Moreover, using the

;—n/p+1

second bullet in this lemma again one knows that Lﬁ’ﬁn Jpr1 © Lgﬁn pt1 In conclusion,
P q Logl P q
X”»5” €Ly NLiy, x 6 € LO,fn/p N LO,fn/erl'

For G = SU(2), [ggj,glllg] =0, [ggg,g};] C g3 and [g5, 93] C g'llg. So the term [y, £/l] vanishes

and [x, €] =[x, &5 + (X!, €5 + [x*, €1)), where the first term lies in g|1|3 and both the second

and the third lie in g. So it is enough to show that [+, ¢1] € L§ o and XL 6], Ix L, €] e
_qp

Lp - L07_n/p.

First one analyses the term [y, £1], by using twice lemma 5.2.4 in the form Lgﬁn Ip % Lr

P 0,—n/p
L% and LY x LY c LY? Then, [x1, ¢t € L/

N Lq/2
0,—2n/p 0,—n/p+1 0,—n/p+1 0,—2n/p+2° 0,—2n/p 0,—2n/p+2

and using lemma 5.2.5 with p; = p/2,v1 = —2n/p, p2 = q/2, 72 = —2n/p + 2 and s = p gives
that [y, ¢4] € L o1 for all a such that

C

2 2n 2 2
a—lZmax{—n—ﬁ——n,—n—z——n—l—Z}:—ﬁ.
p p P g p p p

Next, one turns to the other terms and apply again lemma 5.2.4 twice, now in the form Lg, o X

q q/2 q P s 1 1 q/2
Loﬁn/erl C LO,afn/erl and Lo,aXLoﬁn/p C L07afn/p. Then [y, ¢4, [x*, €] € L07ain/p+1
np

LS:;’_”n/p and now use lemma 5.2.5 with p; = np/(2n — p), y1 = a —n/p, p2 = q/2, 72 =

N
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o —n/p+1and s = p, which gives that [y, é1], [x*,¢l] e LP = LP for all o such that

0,—n/p
_ 2
max{n p*EJra*ﬁafn*ﬁﬁLO‘*Ele}:*ﬁSiﬁ'
np D P qg p p p q

Since p > n /2 this is equivalent to « < —n/p+1. So in the end the result holds for « = —n/p+1.
One must remark that the condition p > n/2 is required for the Sobolev embeddings in lemma
5.2.6 to hold and the condition that p < n is required in order for p; = np/(2n — p) < p and

lemma 5.2.5 to apply in the second case above. O

5.2.3 Moduli of Configurations

This subsection gives a first step towards implementing the ideas in subsection 5.2.1 using the H ,f’ o
spaces from definition 5.1.16. Namely it defines and constructs moduli spaces of configurations
(A, ®). The upshot is theorem 5.2.14 which gives the moduli space of configurations the structure
of a smooth Banach manifold. Then the boundary conditions defined by a finite mass monopole are

preserved in
A%a:{VA:Vo—i-a | aEH};a}, Hi@:{q):@o_,_gb | ¢€H£,a}-

Let CZ o= Za X HZ ., denote the space of configurations. The topology induced in these spaces
will in principle depend on the background configuration (Vg, ®¢) and on p, k, cv. Recall the gauge
group G of continuous gauge transformations with a limit in G, (the gauge transformations which
preserve the boundary data (A, P~ )). Explicitly expanding around the background configuration

(Vo, @) a gauge transformation g acts on a configuration (V + a, ¢ + ¢) via

(Vo +gVog ™' + gag™, @o + (9Pog ™" — ®o) + gdg ) . (5.2.5)

p

Two configurations in Cﬁ o shall be considered equivalent if related by a continuous g € GN L} ;4.

To view this equivalence relation as generated by the action of a Banach Lie Group, let

i,a = {g € Li-{—l,loc | PVOQ € Hg,a-l—l} ) L(g)i,a = {5 € QO(X’ gP) | pVo{ € Hllcj,oc—l—l}'

The pointwise exponential defines a map exp : L(g)ﬁ I Qg o For e > 0 define

Ve={€ € L(G)o | 1PVolllny . <e},

k,a+1

and let the topology on g,’; ., be generated by the image under the exponential of the open sets
V. C L(G)} , together with their translations.

Proposition 5.2.9. Let p € [5,n), a = —n/p + 1, then the following hold

1. With the topology defined above g{’?a is a Banach Lie group with Lie algebra L(g)f’a.

2. If one further supposes that p < "TH then there is a surjective evaluation homomorphism

ev: Gy , — Do, with derivative dev : L(G)Y ,, — Yoo
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P o P
3. G}, acts smoothly in Cy .

Proof. Start by noticing that if g € gf o theng € LY loc and since one is working in a range where
p > n/2, the third bullet in lemma 5.2.6 applies and g € C)

1o 1-€. these gauge transformations are

continuous.

1. First prove that indeed pointwise multiplication and inversion are well defined on G7 . Then

p
l,a°

by construction of the topology above it will be a Lie group whose Lie Algebra is L(G)

(a) To prove multiplication is well defined let g, h € Qf’a, so pVog, pVoh € H f}a 41 and
one needs to show that

pVo(gh) = p(Vog)h + pgVoh € HY 1,

for all [ < k. The gauge transformations are continuous and pVoh € H ia 11> SOt
follows that pgVoh € H f@ 41 and the same applies for p(Vog)h. Alternatively one

uses the Sobolev embedding in the second bullet of lemma 5.2.6, which gives

c LY

1 1
pVohl, pVogll € LY (1 C L o1, pVoh*t, pVogt € LY o —n/p

,—n/p

i.e. since« =1 —n/p, pVoh, pVog € Lg,—n/pﬂ N Lg’_n/p.

map in lemma 5.2.4 and lemma 5.2.5 do guarantee that pVogVoh € LP C Hé”a.

Then, the multiplication

(b) To prove g~ ! € g{ia notice that Vog=! = —g~1(Vog)g~!. Then proceeding as
before, separating terms and using g, g~ ! € C’looc and lemmas 5.2.4 and 5.2.5 one shows
pVog~t € HY , 11

2. Letg € G, then pVog € HY ., ie. (Vog)ll € i, = Lgl_n/p and (Vog)* €

P
LO,—n/p—l'
(Vog)* — 0 always, but this does not hold for the other component. However, the last

Next, using the arguments in the proof of proposition A.0.16 one can show that

part of the argument in proposition A.0.16 can be used and is repeated here. Notice that

Vog € L’&_n Ip1o then Holder’s inequality gives

o0 400 400 »
/ ‘@| S/ |pn/p1Vog|p/ pﬁ(lfn/P).
1 dp 1 1

The first integral is bounded above by || Vogl[;» and the second is finite if and only
0,n/p+1

if p < ”T“ Hence in this case this proves there is goo € Goo such that ¢ — g and
Voogoo = 0 (i.e. goo € I'so). Using a bump function it is straightforward to check that the

evaluation maps given by taking the limit are surjective.

3. To check the action of g’i o On Cf’ o, 1s well defined, one needs to prove that gVog '+ gag™!

and (¢®gg~! — ®g) + gog~! are in H{”a. For the terms gag™!, gog~! b=
—(Vog)g ! notice that (a, ¢) € HY .. g€ CY as it is in L5 1,0 and pVog € HY . Then,

and gVog~

repeating the arguments in the proof of the first item proves that these are H? . One is now
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left with analyzing (g®og~! — @), for which one requires again the second item, namely that
if pVog, pVo€ € Hf,aﬂ, then g, £ converge to limits go, € I'oo and &5, € vYoo. Moreover,
using the decomposition of gp in X'\ K one has £+ € L by corollary 5.2.7. Then, let g = et

and so

g0y — By = €, @] + (6, [€, o)) + .

and the multiplication maps in lemma 5.2.6, used in the same way as before, show that the
higher order terms are in HY , if and only if the first order one [¢, @g] € HY . Away from K,
one can write [£, ®o] = [¢1, ®g] € V' and since P is smooth and bounded and ¢+ € L it
is indeed true that [¢, ®o] € HY .o The convergence of the series above is an immediate from
the fact that |[£, ®o]| < || which converges to 0 as p — co. Then, this must bounded in
C°(X\K) and the term 7 in the series guarantees the convergence.

To prove the converse result namely that if (4, ®) and g - (A, ®) both in Cg’ ., are related by
an Ly 1 joc
arguments. First, the fact that [¢, ®] = [+, ®g] + ... € L C LE implies pVoét € LP.
Second, the fact that g~ 'Vyg = Vo€ € H,f’a implies that pVoéll € L 41 Put these two
together to conclude that pVoé € HY ., andso g € Gf .

gauge transformation g = e, then actually e € gg ., one rewinds the previous

O]

Due to the second item in this proposition, one can use the Lie group homomorphism ev to
define
P ,(0) = ker(ev), (5.2.6)

as a Banach Lie subgroup of Q,f - This consists of gauge transformations which converge to the
identity as p — oco. For p € [n/2,n) and o« = 1 — n/p its Lie Algebra is the Lie subalgebra of
L(Gy, ,) consisting of those sections which decay, i.e Lie(Gy, ,(0)) = Hy | ,.1(X,gp).

Proposition 5.2.10. Let 3 € R and (V 4, ®) € CZ 3 and d’y the formal L? adjoint of the operator
d 4 and for all B extend d 5, d’ to operators

da, dza : L£+175+1(X’ gp) — LQ,L?(X’T*X & gp)
Then, the following holds

1. For 8 # —1, there is a constant ¢ > 0 and an inequality HdAWHLgﬁ > cHnHLg e and so a

decomposition

Ly s(X, T"X ®gp) = ker(d}y) N Ly 5 ®im(Va). (5.2.7)

2. On X\K, there is a constant ¢ > 0 and a pointwise inequality |[®,n]| > c|n*|.

Proof. For all p, k, 8 the map p~7 : LZ g Lg o 1s a Banach Space isomorphism. Conjugation
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with it gives then an equivalence of linear operators

da
Diviprn = Lig
3 Lo (5.2.8)
a3
LZH o Li,fl
with dﬁ = p(atl) g, patl = (a+ 1) + d 4. In what follows the proof will restrict to the case

p = 2 for simplicity as in this case it is easy to complete squares. As K is compact and d 4 is
irreducible on K, one can combine Kato’s and Poincaré’s inequalities to achieve ||da f||r2(x) >
c1l| fll2(k)» for some ¢; > 0 and all f compactly supported in the interior of K. Moreover, as
p is bounded on K, this holds equally well for > "4 = da. Then one needs to prove a similar
inequality for a section 1 which is supported on the conical end p~![R, 00) = X\ K one writes

n=nl4ntecL? 1.0 and splitting d%n into orthogonal components to compute ||d AnH 12

+o0o d
fR o 7” fE ]pdAn|2dvolg, gives

X\K) —

2
”dinuﬂ LL(X\K) © / / ( }7 + T + P‘VOWH‘Q + P’VOULP) dvolsy,

In computing a lower bound for this one can ignore the term p|Von!|? and the term p| |2 which
appears when one expands the square, as both these two terms are positive. Also, when one expand
the square there is a mixed term appearing, however as this is 2(5 + 1)(n, gz> (B+1)= - d'"‘ and
since 7 is compactly supported on X\ K, one can integrate by parts and this term vanishes. One is

left with

s corr = [ do [ (P02 4 o) deos.

To handle this let X, denote ¢({p} x %), then the irreducibility of the connection V., on V1,

gives a Poincaré type inequality, which after scaling is || Voon ™t ||2, =) 2 cap 2|12, (s, for
P

some constant co > 0. Moreover, as the connection Vg is asymptotic to V, one can assume the

same inequality holds for V( for very big p and inserting it above gives

/OO dp/ <(5+1)2|77|2 + erip) dvols;
1 ) P P

> (1+ﬁ)2||77||%[2)70(x\[()-

v

||d 77||L2 L(X\K)

Combining this with the similar inequality one has on K, gives the inequality in the first item
of the statement. It is a corollary of such a Poincaré type inequality that di has closed image
and the decomposition in the theorem follows. Recall that the operator dﬁ above is equivalent to
dy : L%,BH — L(Qw’ so this one has closed image. Then the same is true for d 4 : LZ+1,5+1 —
LZ 5> Which gives the decomposition 5.2.7. Using the weighted inner product (") L2, one can
identify a copy of cokernel of d 4 with the orthogonal complement, i.e. the kernel of the adjoint
dj{ﬂ = p2BHDAngx =261 — (25 4 n)Lpa% + d.
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Regarding the second item, since @ is asymptotic to @, outside K there is the decomposition
n = nll + n* and by definition (D, n”] = 0 while it is pointwise bounded by below on the V*
component. Since the cross sections are compact one can find a constant ¢ > 0 which always

works. OJ

Remark 5.2.11. The proof above gives a bound ”dAUHLg 52 cHnHLg o with an explicit constant
¢ = |1+ pB|. For 8 = —n/2 this gives back the well known Hardy inequality

2
n—2 _
ldanls > ("52) ol

Actually this gives the best possible constant on any asymptotically Euclidean manifold.
Corollary 5.2.12. For 3 # —1, the operator

L:Hp, 40 (X,0p) — Hpg(X, (M@ A @gp). (5.2.9)
£ = (=Va& €], (5.2.10)

has closed image. Using the notation H. ,f 3 for the right hand side in 5.2.9, there is an orthogonal
decomposition
Hgﬁ = ker(L*) @ im(L). (5.2.11)

Where Li(a, ¢) = =Via+ [P, §].

Proof. This proof copies the one above and goes by using the inequalities in the first and second
item of the previous proposition 5.2.10, as HLl(f)HHg .= [dall32 + I[®, €)% . This shows
> 0,3 0,

that L, has closed image and the result follows as in the proof of the theorem above. 0

Definition 5.2.13. A configuration (A, ®) is said to be irreducible if ker(L) = 0.
Theorem 5.2.14. Let p € [n/2,n) and « = 1 — n/p. There are Banach manifolds B{a =
Cl o/G1 o(0) and BY , = C7 ,/GY ,» such that

8117,04 = lej,oc/roo‘
Moreover, the subset obtained as the image of the irreducible configurations B*Zl”a C B{”a isa
smooth Banach manifold.

Proof. To prove that B} , = C? _/GP (0) is a Banach manifold one constructs local slices to the
action of G7 _(0) using the Inverse Function Theorem. Then these slices can be used as charts for

Bﬁ’va. Let € > 0 and define the slice candidates as
Tivaw).e ={(a;0) € HY, | Via—[®0,¢] =0, [[(a,d)|ur <e}
Then, in order to prove that these are actual slices one needs to show that the map

h : T(VA7¢)75 X gia(O) — Cp

1,
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which for g = ¢ sufficiently close to the identity, sends ((a, ¢),g) to the gauge equivalent
configuration g- (V 4 +a, ® 4 ¢) is an isomorphism onto an open set around (A, ®). This is proved
using the Inverse Function Theorem, so one needs to check that the derivative

dh=id® L: (kee(L) N HY,) @ HY, — HY,
((aa d))7 5) = (_VA§ +a, [5) Q)] + (Z))a

is an isomorphism. But this is a direct consequence of corollary 5.2.12. There is still the extra action
of 'y on Cf , and one can quotient out by its action to obtain the full quotient B , = C7 ,/G7 -

Moreover, away from reducible configurations the action of G¥ o 1s free and B*ia is smooth. [

5.2.4 Moduli of Monopoles

This subsection uses p € [n/2,n) and @« = 1 —n/p ¢ K(D), then theorem 5.2.14 holds. Moreover,
that statement can also be made in a more general setup where one need not restrict to the case
G = SU(2). The goal is to show that the moduli space of monopoles either in the G case, in
the Calabi-Yau case or in a 3 manifold can always be obtained as a quotient of the zero set of a

[ -invariant Fredholm section of a bundle 7 ,, where F7 , is the bundle over B o
Flo=Cloxgr o) Hoa1(X, X @gp). (5.2.12)

Notice that sections of this bundle are in one-to-one correspondence with gf, (0)-equivariant
maps from Cf , — Hf , (X, A*X ® gp). Moreover, in each case (3 dimensions, Calabi-Yau
and (G2 manifolds) the map mon defined in equation 5.2.3 is invariant by the action of the gauge

transformations G , O Gy ,(0). For this p,  theorem 5.2.3 holds and proves

Theorem 5.2.15. Let G = SU(2) and p € [n/2,n) suchthat o =1 —n/p ¢ K(D). Then, there
is a I'so-invariant Fredholm section mon of the bundle ff, o= l’;’i o Such that the moduli space of

(complex) monopoles is mon~1(0)/Ts C By

Proof. Due to theorem 5.2.3, the monopole equation can be written as the zero set of mon, which
due to the gauge invariance is a section of J-'f,a — Bf,a- Locally one can define s~1(0) inside
ker(L*) C H ,f, ., Dy using the local slices for B? ., constructed in the proof of theorem 5.2.14 and
intersecting such configurations with the ones satisfying the monopole equation. This is precisely
the same as the zero set of the map M on = mon + do to which theorem 5.2.3 refers to. Recall that
linearization of the (complex) monopole equation gives ds in each case as computed in sections
2.1.1,3.1.2.and 3.1.2. Then coupling this with d = L* the operator D = do@d; : HY , — Hp . 4
which is the linearization of M on is shown to be Fredholm in theorem 5.1.18 in section 5.1. [



Appendix A

Decay Estimates

Let (X", g) be an AC manifold of dimension n > 2 with asymptotic cone C' (X" 1) as in definition
1.1.5 and V — X a vector bundle equipped with a connection V. Suppose these have fixed
asymptotics, i.e outside a compact set K C X, V|x\g = ¢*7" Vo and V = ¢* 1"V, + a with
|Via| = O(p~1797¢) for all j € Ny and some € > 0.

Proposition A.0.16. Letp > n/2, f < —land & € Q%(X, V) with V¢ € LY 5. Thenlim,_, &(p)

exists and is equal to a V » parallel and continuous section £ of Vo.

Proof. Let VO‘L C Vs be a maximal vector subbundle, generated by the V., parallel sections, i.e.
there is I € N which is maximal such that there is an isomorphism (V., Voo ) = (RIOVE, dBOVL)
of vector bundles with connection. Write V,, = VJL &) V;, then Volo and so V4, is irreducible on
VL. Using the fixed asymptotic behavior of (V, V) one can suppose a similar decomposition holds
for V' and from now on the notation is according to this. So on X\ K one writes

ol o0&t

ve= X gaprvel + X gap v vel,

ap ap
and as the summands are linearly independent as sections of A' ® V/, each of them has its norm
bounded by that of V¢. Since V is irreducible on the V- component, there is a Poincaré type

inequality on the level set ¥1 = p~!(1) of p, which can be written as ||¢+ lr(my) < || Vet llr (21

for some ¢ > 0. Scaling this inequality gives

1EM 1 pe sy < e VE I Locsy) < erlVEl| po(s,)s

on each X, = p~!(r). This together with the hypothesis that V¢ € L¥ 5 shows that

oo ) dr +o0o _ dr
/1 Rl S </1 e IV 08 s,y < 00

r)rn -

Scaling the metric on (1, +00), x ¥ to the cylindrical metric r~2g = dt? 4 gx, where t = log(r).
This implies that as ¢t — oo, all three e~ P(F+1 gL o~tr(B+1)yel and e~ B+ YVEL converge

in the L” to zero, over the intervals (¢, 4+ 1) x X, equipped with the cylindrical metric dt? + gx..
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Since —(8 + 1) > 0, one concludes that as ¢ — oo, £ converges to zero in L over these intervals
equipped with the fixed cylindrical metric. Using, the Sobolev embedding Lf — CY, which holds
for p > n/2, one concludes that £+ converges uniformly to 0.

For the other component, i.e. £l one has |%i;‘| < |V¢| and using this together with the Holder

+00 ag” 400 _3 +o00 By
/ (fT‘dP S/ p plvépdp/ PP dp,
1 P 1 1

where p’ = p/(p — 1) is the conjugate exponent. The first integral is bounded above by ||V Hiﬁ r

inequality into

Bp
The second one is f;roo pp—pl dp and since § < —1 < 1/p —1 = (1 — p)/p one concludes this
integral is finite. It follows that there is a limit 5 to which &/l converges. O

Proposition A.0.17. Let k > % and £ € Q°(X, V) with p?~'Vi¢ € L? forall 1 < j < k. Then &

converges to a V o parallel section &0 of V.

Proof. The same proof as above works by replacing the Sobolev embedding L5 < CY over "1
by the Sobolev embedding L% < CY which holds for k > 5. O

The following propositions and their proofs have been explained to me by Mark Stern. They

can be used to estimate the rate of decay of sections in the kernel of some elliptic operators.

Proposition A.0.18. Let X" be an AC manifold with n > 2 and D an operator acting on sections
of a vector bundle V' equipped with a connection V. Suppose D satisfies a Weitzenbock type
Sformula

D*D=V*V+W,

with W = O(p~272%) for some § > 0. Then if f € ker(D) N L? it is smooth and p2 >~ f € L2,
foralle > 0.

Proof. Let L > 0 be large and to be fixed at the of the proof, R > L and ¢ a function smoothly
interpolating between p° for p < R and (R + 1) for p > R + 1. The goal is to show it is
possible to obtain an R independent bound on Hp_1¢f\|L2(p_1(L7+oo)) for all f € ker(D) N L?
and 8 < ”T_Q

Since 1) is bounded and f € L? we have f € L? and one can compute

(D*Df*f)z = (VVf+W(f),07f)a
= [0V Fle +20Vfdo @ f)rz + (W(), 0 f)a.

Using the identity
19V flge + 20V o ® fHre = V@72 — lld @ £122,
to replace in the expression 0 = (D*D f, )% f) 2, for f € ker(D*D), gives

0 = [V@HIZ2 — lldy @ fll22 + (W), 0> f) e
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Now, pass the last term to the left hand side and use the hypothesis that W = O(p*2*25). Then,
there is a constant ¢ > 0 independent of f and R, such that |[V(¢f)||2, — |ld¢ @ f||2. <
[~ 1794 f|2,. Nest we split the integration into the regions p~1[0, L] and p~!(L, +00), then we
can write

1 -
IV@ONL2(L o) = 140 @ FllT2(r 400y < CUL)+ Fa5lle™ 0 S Ia(s, 400) (A0D)

where C'(L) > 0 is some constant independent of R. Now one can use the Hardy type inequality

IV@ A2 00) = "F2 MNP O F l2(2 400) + 757 107 ¥ F | L2(1,+00)» fOr some &' > 0. Which,
together with the fact that |di| < |3|p~ !4 transform the inequality A.0.1 above into

n—2\2 9 1 1 12
B -p T2 Y o ¢f’|L2(L,+oo) < C(L).

Now, notice that for all 3 < § — 1 itis possible to chose L sufficiently large so that the left hand
side is greater than zero. Moreover since C'(L) does not depend on R, the inequality above holds

for all R > L giving the R independent bound we were looking for. O

Remark A.0.19. The decay estimates from the previous proposition are optimal in the case where

the cross section is a sphere.
Similar techniques to those employed in the proof of proposition A.0.18 show

Proposition A.0.20. Let X™, n > 2 be an asymptotically conical manifold and D an operator
acting on sections of a vector bundle V' equipped with a connection V. Suppose D satisfies a
Weitzenbdock type formula

D*D =V*V+W + q"q,

with W = O(p~%) for some § > 0 and |q(f)|*> > 2| f|? for ¢ > 0 and all f supported outside a
compact set K C X. Then if f € L?, infact P f € L2, forall e > 0.
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Appendix B

Homogeneous Bundles and Invariant
Connections

This section contains standard material on bundles over homogeneous spaces and Wang’s theorem
classifying invariant connections on these, the main reference is [KIN63].

Let K be a connected Lie group, H C K a normal subgroup, then K acts transitively on the
homogeneous space X = K/H with isotropy H. Denote by h C ¢ the Lie algebras of H and
K respectively and suppose there is an H — Ad complement m to f in €, i.e. € = h & m such
that Ady,(m) C mforall h € H. Itis a standard result that there is a one-to-one correspondence

between K -invariant metrics on X and metrics on m invariant under the adjoint A action.

Let 7 : P — X be a principal G-bundle. As usual K acts on the left on X and G on the right
on P. The bundle P is said to be Homogeneous if there is a lift of the left action of K on X to the
total space of P which commutes with the right G action on P. Suppose such a lift is given and let
H be the isotropy subgroup at z € X, then it acts on the fibre 7! (). As this action commutes
with the transitive right G action and gives rise to the isotropy homomorphism \ : H — G A,
which can be used to construct back the bundle P via P = K X(g,y) G-

Let (V,n) be a G representation, where V' is a vector space and 17 : G — GL(V'), construct the
associated bundle F' = P x ¢, V with fibre V. The lift of the K action to P naturally gives a K

action on F and there is an isomorphism of homogeneous bundles
E=K XgpoaV. (B.0.1)

A section s € I'(E) is said to be an invariant section under the K action on E if once regarded
as an H-equivariant map sg : K — V itis actually constant. Hence, no X\ : H — GL(V') can
be used to decompose V' into irreducibles and the H-equivariant condition restricts sg to take
values in the trivial components of V. A slight modification of the above paragraph in order to
obtain invariant section of more general bundles can be stated. In particular, gauge transformations
can be regarded as sections of the bundle ¢(P) = P x.¢g G, where ¢(g1)92 = 919291 Lis the
action by conjugation. And under the isomorphism ¢(P) = K X, g G the K-invariant Gauge

transformations correspond to those constant g € QY(K, G) with values in the subgroup of G
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centralized by A\(H).

One turns now to the definition of invariant connections on the principal bundle P = K x g ) G.
These are given by a left invariant connection 1 form A € Q!(K, g) and classified by Wang’s
theorem. The reductive decomposition £ = m & b equips the bundle K — X = K/H with a
K -invariant connection whose horizontal spaces are the left translates of m. This is known as the
canonical invariant connection and it’s connection 1 form is the left invariant translate of A = y,
where 7y is the projection m @ h — b. One can now state Wang’s theorem (see [KN63] volume II.,
theorem 11.5).

Theorem B.0.21. (Wang [Wan58]) Let P = K Xy \ G be a principal homogeneous G-bundle.
Then K -invariant connections A on P are in one to one correspondence with morphisms of H
representations

A (m,Ad) — (g, Ad o \). (B.0.2)

The upshot is that the left invariant 1-form A at the identity 1 € K is givenby dA @& A : € =
h & m — g. Moreover, the H-equivariant condition implies that the component A : m — gisa
morphism of H representations. In this case the canonical invariant connection is given by taking
A =0, sothat A = d\ o .



Appendix C

Appendix to Monopoles on 7*S?

This is an appendix to section 3.3. It will be used to study the function h(p) and the conditions that

ensure a given connection and Higgs field to extend over the zero section.

C.1 The function X (p).

Studying the function h(p) is a necessary step in order to use the results of chapter 2 in order to
solve the ODE’s in lemma 3.3.25 to which the problem was reduced to at the end of section 3.3.5.

One starts with some preliminary explicit formulas. In terms of

/2_3§5—§[r2 _354%%742
]:(7")—<2) ?k (52) ,g(T)—<24> k <52> (C.1.1)

where k : (1,00) — R is the function defined by k(z) = zv2? — 1 —log(vVx? — 1+ x). To write

p in terms of r and using this function, insert C.1.1 into equation 3.3.13, one has

wi=

1 1 2
2\ (" 1 [I? e2\3 [z .
= (= k™3 | = |dl=(-—= k™3 (1) dl. C.1.2
0 = () [t (G)a= () [Tton e
In order to see how the function h?(p) = 8%R+R_g in terms 7, it is useful to use k

3 4 é 4 1 2
R p(r)) = (257) \/2—4—1% (;) (C.1.3)

Lemma C.1.1. The function h(p) behaves for p < 1 as h(p) = p+ O(p®) and for p > 1 one has
h(p) = O(p*?).

Proof. Regarding the function & : (1,00) — R, for = close to 1 one has the following expansions

in terms of vz — 1

5 1 1
26— —1)3/2 331 33
33 10(2)5(3)3 26 Ve —1 20(2)s
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Inserting these expressions on k2 and p, one has that for p < 1

3 2 1 /2 3
€3 T T 2
= (s -1-=—(5 -1
p(T‘) 2 ( 52 60 <€2 > + >
4 2 2 2
€3 T 1 /r
Ry = —[(S5-1)+—(=-1] +..
(r) 2 ((52 >+20 <52 ) + )
hence, for small p, h(p) ~ p + O(p3). To get the behavior for large p, it is convenient to introduce
one further coordinate given by x = cosh(¢) for ¢ € (0, 00) since x € (1, 00). Inverting this gives
t 1 5t

t = log(v/#2 — 1 + z) and replacing it on k shows that h(p(t)) ~ e?/3ezes = £2/3¢s, while
p(t) ~ g2/3 1l ele™3 = e2/3¢3 and the result follows. O

C.2 Extending the Connection

Studying the conditions that ensure a given connection and Higgs field to extend over the zero
section is a necessary step for the proof of the main theorem 3.3.1, which appears at the end of
3.3.5. These conditions give rise to initial conditions at p = 0 (the zero section) for the ODE’s.
These are the initial conditions that where stated in the hypothesis of lemma 3.3.25, which reduces
the problem to that of solving the ODE’s analyzed in the first part of chapter 2.

It follows from formula 3.3.12 for Stenzel’s metric that the 1-forms defined by

RL.R_dG R R_
T2 20, was =] =-Glas , wis = =—Gbus,

— /2
1 dr : R_ R,

have constant norm equal to 1 and so are bounded. For a connection to extend it is a necessary

condition that the curvature remains bounded.

Lemma C.2.1. Letl = 1 and A an invariant connection parametrized by the fields A;. Let the
B;’s be the rescaled fields introduced in the statement of proposition 3.3.22. Fix a gauge such that
By = 0 and suppose as well that Bs = 0. Then, the curvature of the invariant connection can be

written in this frame as

Fy = (14(4)23 + I4w45 + Ilwl + Ig(w24 + WSS)) ® T
+L (T3 @dp A —To@dp Aw?) + I3 (Th @ dp Aw* + T3 @ dp Aw®)
+Is (D ow?+ T3 @w?) + (T ®w"™ — T3 @ w'),
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where
P dB1 zg ;. _1(Bi_ BB
LT 22Rr2(p) r BT g\ g2 R.R_
1 ng G 1 (dBy, G
I = B Iy = - 7B
? Eh(p)< dp rR? 3) T enlp) ( dp TR 4)
1 1
Iy = ———— (4B? Is = ——— (4B? — R?
4= e2h2(p) ( 3 > 48 £2h2(p) ( 4 +)
oo (Bs _,BiBs\ 1 | G (B _,BiBs\ 1 | G
¢~ \rRy “¢R_ )R \NER:R. ' " \R. “G¢°R,) R_\| RAR_

Proof. It follows from lemma 5.2.4 that the curvature can be written as

Fy = (<2A2 2) 923 <2A2 2) 645 dc‘;;l dp A 91 (A1 — 2144143)(024 + 935)) ® Ty

dA dA
+d73 (Ts@dpAO* —To @ dp A O°) + d—p”‘ (Ty @ dp A O* +T5 @ dp A 6°)
+(As — 241 43) (T ® 02 + T3 ® 02) + (A3 — 241 A1) (T2 ® 0 — T3 @ 64).

Using the definition of the B;’s in terms of the A;’s, the definition of the bounded forms w; and the

relations between p, h, G, R, R_ this turns into the formula in the statement. ]

Lemma C.2.2. The invariant connection A from lemma C.2.1 extends over the zero section if and
only if, for p < 1

Bi(p) = 0(s") , Ba(p) = 0(p?) . Balp) = 5 +O0(p?).

Proof. The connection extends over the zero section if and only if the curvature does remain
bounded. Since the forms w; are bounded, one concludes from lemma C.2.1 that this will be the
case if and only if the I;’s are bounded for p < 1. The fact that I5 needs to stay bounded implies
that

(4B4(p)” ~ R4 (p)?) = O(h(p)) = O(p?).

Since R? = % (ﬁ + 1) =e24+ £ (— — 1) = ¢2 + O(p?), then from the above one must have

2

and this gives the result in the statement. In the same way one can proceed to analyze 14, which
gives 4B3 — R?2 = O(p?), but since R2 = O(p?), one concludes that B3 = O(p?) and so
B3 = O(p). This is again the result in the statement and the only thing left to do is to compute
the estimate on Bi. From By(p) = § + O(p*) and Bs(p) = O(p). In fact inserting these into I
together with G = O(p) and R_ = O(p), gives that

B3B
2B, = L) =00
P 1 O<R+R O( )7
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from what it is straightforward to get By (p) = O(p?). So far, one has just used the boundedness of
14, I5, Is and obtained that

Bi(p) = 0(p%) , Balp) = O(p) , Balp) = 5 +O(p"). 2.1

One must analyze the behavior of the other I;’s. Writing B; = b; p2, Bs =bspand By = % + by p2
one can see that the boundedness of I, I3, I are guaranteed just by the estimates in lemma C.2.1,

while the boundedness of I7, I, Is require respectively
bg = 2\/58_%b1b4 s b1 = 2\/§bgb4 N bg =0.

Combining these implies that b; = b3 = 0 and the result follows. O

Remark C.2.3. Moreover, a posteriori to lemma 3.3.25, bounded invariant connections satisfying
the Calabi Yau monopole equations, are known to satisfy a Bogomolny equation when restricted to
the fibres of T*S® — S3. Hence, by the main theorem of [SS84] the condition that the curvature

remains bounded is also a sufficient one for an invariant Calabi-Yau monopole to extend.
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