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Abstract

The Bogomolnyi equation is a PDE for a connection and a Higgs field on a bundle over a 3

dimensional Riemannian manifold. Possible extensions of this PDE to higher dimensions preserving

the ellipticity modulo gauge transformations require some extra structure, which is available both

in 6 dimensional Calabi-Yau manifolds and 7 dimensional G2 manifolds. These extensions are

known as higher dimensional monopole equations and Donaldson and Segal, [DS11], proposed

that “counting” solutions (monopoles) may give invariants of certain noncompact Calabi-Yau or G2

manifolds. In this thesis this possibility is investigated and examples of monopoles are constructed

on certain Calabi-Yau and G2 manifolds. Moreover, this thesis also develops a Fredholm setup and

a moduli theory for monopoles on asymptotically conical manifolds.



Introduction

In [DT98], Donaldson and Thomas propose generalizing some of the gauge theoretical construc-

tions from 3 and 4 dimensions to some higher dimensional situations. This generalization requires

extra structure, satisfying some integrability conditions. For example, the 4 dimensional instan-

ton equations find a parallel in an 8 dimensional Spin(7) manifold and the resulting equation

is known as the Spin(7) instanton equation. Later, in [DS11] Donaldson and Segal explored

more possibilities for these new higher dimensional gauge theories, in particular mimicking the

monopole (Bogomolnyi) equation in 3 dimensions. In the same way as the Bogomolnyi equation

arises from dimensional reduction of the instanton equations in 4 dimensions, there are higher

dimensional monopole equations arising from dimensional reduction of the Spin(7) instanton

equations. These can be written in real 6 dimensional Calabi-Yau and 7 dimensional G2 manifolds,

being most interesting when the underlying manifold is noncompact. Calabi-Yau 6-manifolds and

G2 manifolds occupy a special place in Berger’s theorem [Ber55]: Their holonomy is contained

in SU(3) ⊂ SO(6) and in G2 ⊂ SO(7) respectively, which are Ricci flat holonomy groups.

Moreover, both Calabi-Yau and G2 manifolds come equipped with calibrations, as in [HL82], and

an interesting but hard problem is to understand the existence of calibrated submanifolds and their

moduli. For example, the Hodge Conjecture in a Kähler manifold (X,ω) can be interpreted as an

existence problem for cycles calibrated with respect to ωk

k! , for some k ∈ N. The Hodge conjecture

holds for (1, 1) classes and then, on a Kähler 4 manifold, Gromov-Witten theory studies the moduli

of ω calibrated cycles.

Special Lagrangian and coassociative submanifolds in a Calabi-Yau 3-folds or G2 manifold respec-

tively, are codimension 3 calibrated cycles. McLean showed in [McL98], that given a compact

special Lagrangian (resp. coassociative) submanifold N , there is a smooth local moduli space of

deformations of dimension b1 (resp. b2−). There are some conjectural theories due to Dominic Joyce

[Joy02], [Joy12], attempting to define invariants of both Calabi-Yau 3-folds and G2 manifolds

by “counting" rigid special Lagrangian and coassociative submanifolds respectively. In [DS11]

it is suggested that, in both Calabi-Yau and G2 manifolds, there may exist an invariant counting

monopoles, and this may be easier to define and related to the conjectural invariants counting rigid

codimension 3 calibrated cycles. The main goal of the thesis is to tackle these problems, first by

giving concrete existence results for monopoles in special manifolds suitable to test ideas and

second by studying the analytic properties of the monopole equation.

Chapter 1 introduces Calabi-Yau and G2 manifolds, as well as the notion of finite mass
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monopoles in Asymptotically Conical (AC) manifolds. Chapter 2 studies the original 3 dimensional

monopole equations, more precisely it focuses on spherically symmetric monopoles inR3, equipped

with spherically symmetric metrics.

Chapter 3 defines complex monopoles and also a special kind of these called Calabi-Yau monopoles.

In this case one needs to consider complex monopoles in order to obtain an elliptic problem and

perhaps it is more appropriate to compare these with solutions to Hitchin’s equations, instead of

the Bogomolny equation. However, after some preliminary results one proves a proposition giving

conditions under which complex monopoles do reduce to Calabi-Yau monopoles. Then, certain

examples of AC Calabi-Yau manifolds are given, in which the study of the complex monopole

equation is an interesting Fredholm problem. Some of these examples do contain special Lagrangian

submanifolds, which makes it even more interesting to study monopoles. In one of these cases,

namely the Stenzel metric on T ∗S3, the symmetries allow for using ODE methods to explore invari-

ant Calabi-Yau monopoles. These Calabi-Yau monopoles are constructed, their moduli studied as

well as the relation to the zero section, which is a rigid special Lagragian. A vanishing theorem for

complex monopoles on some AC Calabi-Yau manifolds which have no compact special Lagrangian

submanifolds is also given at the end of the chapter.

The G2 monopole equation is studied in chapter 4. In fact, there are only 3 known examples of

AC G2 manifolds, these are all cohomogeneity 1 and the underlying manifolds Λ2
−(S4), Λ2

−(CP2),

S(S3), are respectively the total space of anti-self-dual 2 forms on the round S4, CP2 with the

Fubini-Study metric and the spinor bundle of S3. These were in fact the first examples of complete

G2 holonomy metrics and were first constructed in [BS89]. In the first two examples the zero

section is a compact coassociative submanifold, while in the third case these do not exist. Using the

symmetries, ODE methods are employed to construct invariant monopoles in the first two examples

and to study their moduli. Also, regarding the last example S(S3), where there are no compact

coassociative submanifolds, a vanishing theorem for monopoles is given.

Finally, chapter 5 gives an analytical setting in which finite mass (complex) monopoles in an AC

manifold are a good Fredholm problem. More specifically, one introduces function spaces in which

the deformation operator associated with the monopole equation (complex monopole equation in

the case of Calabi-Yau manifolds) is shown to be Fredholm. Then, one uses this result in order to

define the moduli space of monopoles as the zero set of a Fredholm section of a vector bundle over

a Banach manifold.

There remain many open questions. The central one is whether monopoles can indeed be used

to define an invariant of these AC manifolds, and in case this is possible, how to do it? There are

3 main problems towards such a definition: 1. Computing the index of the deformation operator.

Standard techniques can probably be successfully applied to this problem and the author is currently

addressing this in joint work with Mark Stern. 2. Establishing the smoothness of the moduli space.

The second part of the results stated in propositions 3.1.9 and 4.1.2, in the cases of Calabi-Yau

and G2 manifolds respectively, can be interpreted as intermediate steps in that direction. 3. The

compactness problem, which is probably a very hard one, and there is little hope of establishing

concrete general results in the near future. Despite this, the possibility that this can be carried out
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in special classes of examples must not be discarded.

Still in the AC setting, there is one other interesting problem worth mentioning, and this addresses

the question of relating monopoles with codimension 3 calibrated cycles. In fact, it may be possible

to use known analytical techniques to construct a large mass monopole transverse to certain rigid

codimension 3 calibrated submanifolds. The author is currently investigating this possibility in joint

work with Thomas Walpuski. Moreover, it is worth mentioning that the analogous construction in 3

dimensions can be done. In fact, in [Oli13] starting with some points in a 3 dimensional manifold,

it is shown to be possible to construct large mass multimonopoles with monopoles located close to

the given points.

There are a number of interesting directions for monopoles that can be pursued outside the AC

world. In fact for any other kind of asymptotic behavior the definition of an invariant should go

along different lines. In these cases a good Fredholm problem is lacking and in general monopoles

are expected to have moduli. For example, it is possible to prove that for X = R3 × T3 (resp.

X = R3×T4) with the Calabi-Yau (resp. G2) structure where each torus slice is special Lagrangian

with phase zero (resp. coassociative) the pullback of any 3 dimensional monopole in R3 gives

rise to a Calabi-Yau (resp. G2) monopole on X with the given structure. It is then interesting to

understand finite mass monopoles in other classes of manifolds (with other asymptotic behaviors)

and find a Fredholm setup in which to fit these monopoles.

Moreover, one can also consider an even more ambitious program, to extend the theory to compact

Calabi-Yau and G2 manifolds. This could be done by introducing singularities, i.e. to allow the

monopoles to have Dirac type singularities along calibrated codimension 3 cycles. Similar ideas do

successfully extend 3 dimensional monopoles to compact 3 manifolds, see [Pau98].
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Chapter 1

Calabi-Yau, G2 Manifolds and Gauge
Theory

This chapter introduces the reader to the central objects in the thesis and states some of their

properties for future reference. Besides defining Calabi-Yau and G2 manifolds, sections 1.1 and

1.2 will study some of their properties, such as their Dirac operators, whose Weitzenböck formulae,

are useful in studying the linearized monopole equation (or the complex monopole equation in the

Calabi-Yau case). These two sections also introduce asymptotically conical Calabi-Yau and G2

manifolds respectively.

Later, section 1.3 introduces a unified setup for dealing with monopoles on 3 manifolds, Calabi-Yau

3 folds and G2 manifolds. Using it some relevant energies are introduced and used to study the re-

lation of monopoles with the volume growth of the underlying manifold. The upshot is proposition

1.3.9 which gives conditions under which there is a vanishing theorem for monopoles. It is also

proved that under the conditions of this vanishing result, monopoles are reducible and determined

by flat connections, Hermitian Yang Mills connections and reducible G2 instantons respectively for

3 manifolds, Calabi-Yau 3-folds and G2 manifolds.

Section 1.4 sets up the problem for monopoles on Asymptotically Conical (AC) manifolds. Def-

inition 1.4.1 introduces finite mass monopoles, and the subsequent results study some of their

properties. Namely, proposition 1.4.6 studies the data determined by the asymptotics of finite mass

monopoles, which is then abstracted to produce definition 1.4.7. This last section also proves a

vanishing result for finite mass monopoles on AC manifolds; this is stated in proposition 1.4.9

(and corollary 1.4.11 for the special case G = SU(2)). The whole setup of sections 1.3 and 1.4 is

unified for all three cases of monopoles on 3 manifolds, Calabi-Yau 3 folds and G2 manifolds. In

chapter 3 the setup for complex monopoles on Calabi-Yau 3 folds is slightly different, but the same

kind of techniques will apply to the situation there.

1.1 Calabi-Yau Manifolds

This thesis only deals with Calabi-Yau 3 folds, i.e. with real dimension 6, but the general definition

in any real dimension n = 2m is given

11



12 CHAPTER 1. CALABI-YAU, G2 MANIFOLDS AND GAUGE THEORY

Definition 1.1.1. A Calabi-Yau manifold (X,ω,Ω) is a Kähler manifold (X,ω) with trivial canon-

ical bundle and a choice of holomorphic volume form Ω ∈ Ωm,0(X,C) trivializing KX and

satisfying
ωm

m!
= (−1)

m(m−1)
2

(
i

2

)m
Ω ∧ Ω. (1.1.1)

According to this definition Calabi-Yau manifolds with real dimension n = 2m have holonomy

contained in SU(m). Some authors require the holonomy to be exactly SU(m) and here these will

be called irreducible Calabi-Yau manifolds.

1.1.1 The Dirac Operator

Calabi-Yau manifolds are Spin and S+ = Ω0,odd(X,C) and S− = Ω0,ev(X,C) are the vector

bundles respectively associated with the positive and negative Spin representation. Let E be a

vector bundle with connection A and denote by S±E the twisted bundle S± ⊗ E, which comes

equipped with the connection induced from A and the Spin connection. This gives rise to the

twisted Dirac operator whose first component is

DA = ∂A + ∂
∗
A : Ω0,odd(X,E)→ Ω0,ev(X,E). (1.1.2)

The other component will be denoted by D∗A as it is the formal L2 adjoint of DA. The goal of

this section is to obtain some Weitzenböck type formulae, which will be useful in studying the

linearisation to the monopole equations.

Proposition 1.1.2. Let (a,w) ∈ (Ω0,1 ⊕ Ω0,3)(X,E) and (φ, b) ∈ (Ω0 ⊕ Ω0,2)(X,E), then

D∗ADA(a,w) = ∆∂A
(a,w) +

(
∗[F 2,0

A ∧ ∗w], [F 0,2
A ∧ a]

)
(1.1.3)

DAD∗A(φ, b) = ∆∂A
(φ, b) +

(
− ∗ [F 2,0

A ∧ ∗b], [F 0,2
A , φ]

)
. (1.1.4)

Proof. To prove the first of these recall that since the dimension 6 is even ∂
∗
A = − ∗ ∂A∗ and that

∗2 = (−1)k on k forms. Then one can compute

D∗ADA(a,w) = D∗A
(
∂
∗
Aa, ∂Aa+ ∂

∗
Aw
)

=
(
∂A∂

∗
Aa+ ∂

∗
A∂Aa+ ∂

∗
A∂
∗
Aw, ∂A∂Aa+ ∂A∂

∗
Aw
)

=
(

∆∂A
a+ ∗[F 2,0

A ∧ ∗w],∆∂A
w + [F 0,2

A ∧ a]
)
.

And the result follows for the first case. The second formula follows from a similar computation.

Lemma 1.1.3. (Twisted Kähler Identities) Let V be a complex vector bundle over X , equipped a

unitary connection A. Then,

∂
∗
A = −i[Λ, ∂A] , ∂∗A = i[Λ, ∂A], (1.1.5)

and these imply that ∆∂A
−∆∂A = −iΛ ◦ [F 1,1

A ∧ ·]

Proof. See page 240 in [Huy05].



1.1. CALABI-YAU MANIFOLDS 13

Corollary 1.1.4. In the setup of proposition 1.1.2, the following Weitzenböck formulae hold

D∗ADA =
1

2
∇∗A∇A +Wodd , DAD∗A =

1

2
∇∗A∇A +Wev (1.1.6)

Where, Wev,odd ∈ Ω0(X,End(Λ0,ev,odd)) are the endomorphisms respectively defined by

Wodd(a,w) =

(
∗[F 2,0

A ∧ ∗w] +

[
i

2
ΛF 1,1

A , a

]
− iΛ[F 1,1

A ∧ a], [F 0,2
A ∧ a] +

[
i

2
ΛF 1,1

A , w

])
Wev(φ, b) =

(
− ∗ [F 2,0

A ∧ ∗b]−
[
i

2
ΛF 1,1

A , φ

]
, [F 0,2

A , φ] +

[
i

2
ΛF 1,1

A , b

]
− iΛ[F 1,1

A ∧ b]
)
.

Proof. Compute the first by using formula 1.1.3, then for (a,w) ∈ Ω0,odd(X,E),

D∗ADA(a,w) = ∆∂A
(a,w) +

(
∗[F 2,0

A ∧ ∗w], [F 0,2
A ∧ a]

)
.

Now to compute the Laplacian ∆∂A
use lemma 1.1.3. For a ∈ Ω0,1(X,E) this gives ∆∂A

a =

∆∂Aa− iΛ[F 1,1
A ∧a], while for w ∈ Ω0,3(X,E) the formula gives ∆∂A

w = ∆∂Aw− iΛ[F 1,1
A ∧w],

but this last term vanishes as w is of type (0, 3), so ∆∂A
w = ∆∂Aw. Putting these two together

D∗ADA(a,w) = ∆∂A (a,w) +
(
−iΛ[F 1,1

A ∧ a] + ∗[F 2,0
A ∧ ∗w], [F 0,2

A ∧ a]
)
. (1.1.7)

Now use lemma 1.1.3 for (a, φ) viewed as a section of V = Λ0,odd
C ⊗E equipped with the twist of

the Spin connection with A. This gives

∆∂A
(a,w) = ∆∂A(a,w)− [iΛF

Λ0,odd
C ⊗E , (a,w)].

The terms involving the curvature of the Spin connection on Λ0,odd
C are respectively the Ricci

curvature on the Λ0,1
C component and the scalar curvature in the Λ0,3

C component. Both these vanish

since (X,ω,Ω) is a Calabi-Yau manifold. So the only remaining terms are those involving FA, i.e.

the curvature of the connectionA onE. So that ∆∂A
(a,w) = ∆∂A(a,w)−([iΛFA, a], [iΛFA, w]).

For (a,w) ∈ Ω0(X,Λ0,odd
C ⊗ E) and using ∇A to denote the twisted connection from both the

Spin connection and A one can write

∇∗A∇A(a,w) = ∆A(a,w) = ∆∂A
(a,w) + ∆∂A(a,w) = 2∆∂A(a,w)− ([iΛFA, a], [iΛFA, w]) .

Passing the last term to the left hand side and diving by 2 gives

∆∂A(a,w) =
1

2
∇∗A∇A(a,w) +

1

2
([iΛFA, a], [iΛFA, w]) .

To conclude the computation one needs to notice that since a and w are of type (0, q) for some q

the ∂-Laplacian ∆∂A is the same if we view (a,w) as an element of Ω0(X,Λ0,odd
C ⊗ E) or as an

element of Ω0,odd(X,E). So one can directly substitute the last formula above into equation 1.1.7

and this gives the desired result. The other Weitzenböck formula is a similar computation.
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1.1.2 Asymptotically Conical (AC) Calabi-Yau Manifolds

Definition 1.1.5. A Riemannian manifold (Xn, g) is called asymptotically conical (AC) with rate

ν < 0 if there is a compact set K ⊂ X , a Riemannian manifold (Σn−1, gΣ) and a diffeomorphism

ϕ : (1,∞) × Σ → X\K, such that: the metric gC = dr2 + r2gΣ on (1,∞) × Σ satisfies

|∇j(ϕ∗g− gC)|C = O(rν−j), for all j ∈ N0. Here∇ is the Levi Civita connection of gC . A radius

function will be any positive function ρ : X → R+, such that in X\K, ρ = r ◦ ϕ−1.

If a metric cone C(Σ) = (R+ × Σ, gC) is Ricci flat and Kähler with Kähler form ωC asso-

ciated with gC , then its link (Σ, gΣ) is said to be Sasaki-Einstein, see [Spa10] for a survey of

Sasaki-Einstein geometry. Moreover, one must suppose C(Σ) has trivial canonical bundle with

a trivialization ΩC . In fact, the C(Σ)’s that appear as the asymptotic cones of smooth AC Calabi

Yau manifolds X can be supposed to be of this form (up to working on a covering X̃ of X), see

[CH13b].

Definition 1.1.6. A noncompact, complete Calabi-Yau manifold (X,ω,Ω) is an asymptotically

conical Calabi-Yau manifold, if it is AC to a complex cone (C(Σ), gΣ) over a Sasaki-Einstein

manifold (Σ, gΣ), such that the cone (C(Σ), ωC ,ΩC) has its canonical bundle trivialized by ΩC

and |∇j(ϕ∗Ω− ΩC)|C = O(rλ−j), for some λ < 0 and all j ∈ N0.

This definition requires that both the metric and the complex structure are asymptotic to those

on the model cone (C(Σ), ωC ,ΩC). One can regard the problem of existence of AC Calabi-Yau

manifolds as follows. If (X,Ω) is complex with trivial canonical bundle KX and its complex

structure is asymptotic to the one on a model cone, are there Ricci flat, Kähler metrics which

are asymptotic to a Ricci flat Kähler metric on the cone? The next result (by Ronan Conlon and

Hans Joachim Hein in [CH13a]), summarizes what is known regarding existence and uniqueness

theorems for AC Calabi-Yau manifolds.

Theorem 1.1.7. (R. Conlon, H.J. Hein, theorem 2.4 in [CH13a]) Let (X,Ω) be a noncompact

complex manifold with trivial canonical bundle trivialized by Ω. Suppose that there is a Sasaki-

Einstein manifold (Σ, gΣ), a compact set K ⊂ X , a diffeomorphism ϕ : (1,∞)× Σ→ X\K and

a trivialization of the canonical bundle ΩC of C(Σ), such that

|∇j (ϕ∗Ω− ΩC) |C = O(rλ−j),

for some λ < 0 and all j ∈ N0. Then, for each class k ∈ H2
µ(X,Z) with µ < 0 and a ∈ R+, there

is a rate ν < 0 with ν ≥ max{−n, λ, µ} and a unique Ricci flat Kähler metric ωa ∈ k, with

|∇j (ϕ∗ωa − aωC) |C = O(rν−j),

for all j ∈ N0.

Remark 1.1.8. In the above proposition H2
µ(X,Z) represents the µ almost compactly supported

Kähler classes, as in [CH13a]. These are those classes which on X\K can be represented by a

Kähler form of rate µ.
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Below some facts about Sasaki-Einstein geometry are collected, see [Spa10] and [Con09] for

a survey. The fact that Σ has a Sasaki-Einstein structure is equivalent to the cone C(Σ) having a

Ricci-flat, Kähler metric. Hence, given a Calabi-Yau cone (C(Σ), ωC ,ΩC), by embedding Σ into

it as {1} × Σ the Sasaki-Einstein geometry of Σ can be completely recovered from the cone as

follows.

The vector field r∂r is known as the Euler vector field and using that the cone is Kähler it can be

shown that r∂r is real holomorphic. If J denotes the complex structure on the cone, we may define

ξ = J(r∂r), this restricts to {1} × Σ as a unit length, Killing vector field known as the Reeb field.

The flow of ξ foliates Σ and Sasaki-Einstein manifolds can be classified according to whether the

leaves of this foliation are compact or noncompact. In the first case the orbits are geodesic circles

and the flow of ξ integrates to a S1-action on Σ. If this action is free the Sasaki-Einstein manifold

is said to be regular, if not it is said to be quasi-regular. In the case where the orbits are noncompact

the Sasaki-Einstein structure is said to be irregular. Before proceeding into the contact geometry of

Σ it is worth noticing that the fact that the cone (C(Σ), gC = dr2 + r2gΣ) is Ricci-flat implies that

gΣ is Einstein (with fixed Einstein constant).

It is possible to define the contact form η ∈ Ω1(Σ,R) as the unique 1 form on Σ such that η(ξ) = 1

and iξdη = 0. This extends homogeneously to the cone as η = i(∂ − ∂) log(r) and can be used to

write ωC = i
2∂∂r

2 = 1
2d(r2η). The horizontal distribution ker η is transverse to the Reeb foliation,

and is preserved by the complex structure J . Moreover, (J |ker η, ωT = 1
2dη) equip ker η with a

transverse Kähler structure compatible with gΣ|ker η.

One other construction which mimics Kähler geometry ones is the basic de Rham cohomology,

see [Con09] and [EKA90]. The basic de Rham complex Ω∗B consists of those differential forms

α ∈ Ω∗ which satisfy iξα = Lξα = 0. The restriction of the usual exterior differential dB = d|Ω∗B
preserves the basic de Rham complex and one can define its cohomology H∗B(Σ), called Basic

cohomology. Moreover, one can also define basic (p, q)-forms and split dB = ∂B + ∂B . These

satisfy the basic Kähler identities (see Lemme 3.4.4 in [EKA90]) which as in the Kähler case can

be used to construct a basic version of Hodge theory. The main consequence of these results is that

the splitting into (p, q) forms passes to basic cohomology [EKA90]

Hk
B(Σ,C) =

⊕
p+q=k

Hp,q
B (Σ,C).

At this point I remark that the similarities with Kähler geometry may not continue indefinitely, see

[Con09] for further details along this line.

Example 1. Subsection 3.2.1 in chapter 3 mentions AC Calabi-Yau manifolds, whose asymptotic

cone is regular, i.e. their link is a regular Sasaki-Einstein manifold. It is always the case that

a regular Sasaki-Einstein Σ manifold is the total space of a S1-bundle over a Fano surface D,

equipped with a Kähler-Einstein metric. Associated with the S1-bundle one can construct a

complex line bundle L→ D and regard the contact form η as a connection which equips L with a

holomorphic structure, as the curvature dη is of type (1, 1). In particular, denoting by π : Σ→ D
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the bundle projection one can write

gΣ = η ⊗ η + π∗gD,

where gD is a Kähler-Einstein metric on D. Moreover, in this regular case the basic cohomology

of the Sasaki-Einstein is just the pullback of the cohomology of D, i.e. H∗B(Σ,C) = π∗H∗(D,C),

see section 2 of [Spa10] for a survey.

The standard example of a regular Sasaki-Einstein manifold is S5 with the round metric, in which

case D = CP2 with the Fubini-Study metric. One other example is when Σ is diffeomorphic to

S3 × S2 and D = CP1 × CP1 with the product Fubini-Study metric; we shall get back to this

example in subsection 3.3.1 of chapter 3.

The last class of examples finishes the list of all simply connected Sasaki-Einstein manifolds. Let

k ∈ [3, 8] and let Dk = BlkCP2, i.e. the blow up of CP2 at k points in general position. It is a

result of Tian and Siu that, there is a unique Kähler-Einstein metric on BlkCP2. In this case Σk is

diffeomorphic to ]kS2 × S3 and it admits a unique regular Sasaki-Einstein metric compatible with

the unique Kähler-Einstein metric on BlkCP2.

1.2 G2 Manifolds

Definition 1.2.1. A 3 form φ on manifold X7 determines a G2 structure if at each point x ∈ X7

the GL(7,R) orbit of φx is open in Λ3
x.

The stabilizer of φx is the Lie group G2. It is compact and preserves a Riemannian metric gx
for which there is an orthonormal frame {ei}7i=1, such that

φx = e123 + e145 − e167 + e246 − e275 + e347 − e356.

Hence, a G2 structure reduces the structure group of the frame bundle to G2 and determines a

Riemannian metric g on X . In this case φ and g are said to be compatible.

Definition 1.2.2. A G2 manifold (X,φ) is a 7-manifold X7 equipped with a compatible G2

structure φ, such that

dφ = dψ = 0,

where ψ = ∗φ and ∗ is the Hodge-∗ operator given by the metric g determined above.

Theorem 1.2.3. (Fernández and Gray [FG82]) For a Riemannian manifold (X7, g) equipped with

a compatible 3 form φ, the following are equivalent

1. ∇φ = 0,

2. dφ = d∗φ = 0,

3. The holonomy of g is contained in G2.
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Proposition 1.2.4. Let (X,φ) be a G2 manifold. Then the exterior bundle splits orthogonally as

Λ1 = Λ1
7, Λ2 = Λ2

7 ⊕ Λ2
14 and Λ3 = Λ3

1 ⊕ Λ3
7 ⊕ Λ3

27, where the subscript indicates the rank of the

irreducible component

Λ2
7 = {ιV φ, V ∈ Γ(TX)} = {ω | ∗ (ω ∧ φ) = 2ω}

Λ2
14 = {ω | ω ∧ ψ = 0} = {ω | ∗ (ω ∧ φ) = −ω}

Λ3
1 = 〈φ〉

Λ3
7 = {ιV ψ, V ∈ Γ(TX)}

Λ3
27 = {ω | ω ∧ ψ = 0 and ω ∧ φ = 0}.

Moreover if β is a 2 form and π7, π14 denote the respective projections on the irreducible compo-

nents, then the following algebraic identities hold

∗ (∗(β ∧ ψ) ∧ ψ) = 3π7(β), (1.2.1)

∗(β ∧ φ) = 2π7(β)− π14(β). (1.2.2)

1.2.1 The Dirac Operator

In Theorem 3.1 of [Gra69] Alfred Gray showed that a 7 manifoldX7 is Spin if and only if it admits

aG2 structure. Hence aG2 manifold (X,φ) is always Spin and let S = R⊕T ∗X denote the vector

bundle associated with the standard irreducible Spin(7) representation. Clifford multiplication

γ : T ∗X → End(S) is given by

γ(b)(φ, a) = (g(b, a), ∗(b ∧ a ∧ ψ)− bφ) ,

for a, b 1-forms and φ a function. Let E be a vector bundle with connection A over X and denote

by SE = S ⊗ E the twisted bundle equipped with the connection ∇A obtained from the Spin

connection and A. Then one can define a twisted Dirac operator DA, which having in mind that

Ω0(X,SE) ∼= Ω0(X,E)⊕ Ω1(X,E) can be written as

DA(φ, a) = (−∇∗Aa, ∗(dAa ∧ ψ)−∇Aφ) , (1.2.3)

for (φ, a) ∈ Ω0(X,E)⊕ Ω1(X,E).

Proposition 1.2.5. The Dirac operator DA is formally self adjoint and for (φ, a) ∈ Ω0(X,E)⊕
Ω1(X,E), the following Weitzenböck type formula holds

D2
A(φ, a) = ∇∗A∇A(φ, a) +RW (φ, a),

with RW (φ, a) = (∗[FA ∧ ψ ∧ a], ∗[∗FA ∧ a]− ∗[FA ∧ ψ, φ]).

Proof. One can compute D2
A using formula 1.2.3

D2
A(φ, a) = (∆Aφ,∆Aa) + (∗[FA ∧ ψ ∧ a],− ∗ [FA ∧ ψ, φ]) , (1.2.4)



18 CHAPTER 1. CALABI-YAU, G2 MANIFOLDS AND GAUGE THEORY

and then use the more standard Weitzenböck formula ∆Aa = ∇∗A∇Aa+ ∗[∗F ∧ a], where there is

no term involving the Ricci curvature, as (X,φ) is a G2 manifold, hence Ricci flat.

1.2.2 AC G2 Manifolds

This subsection starts by describing the geometric structures on the Riemannian 6-dimensional

manifolds (Σ, gΣ) that arise as the links of Riemannian G2 cones. The first result is a lemma

which describes the algebraic structures that reduce the structure group of the tangent bundle TΣ to

SU(3).

Lemma 1.2.6. Let Σ6 be a 6 dimensional manifold, then the forms (ω,Ω1) ∈ Ω2 ⊕ Ω3(Σ,R),

determine an SU(3) structure on Σ if:

• The GL(6,R) orbit of Ω1 is open, with stabilizer a covering of SL(3,C);

• The following compatibility relations hold

ω ∧ Ω1 = ω ∧ Ω2 = 0 ,
ω3

3!
=

1

4
Ω1 ∧ Ω2. (1.2.5)

where Ω2 = JΩ1 and J denotes the almost complex structure determined by Ω1

• and h(·, ·) = ω(·, J ·) determines on Σ a Riemannian metric, i.e. h is positive definite.

Proof. See page 3 in [CS02].

Proposition 1.2.7. The Riemannian cone (C(Σ), gC = dr2 + r2gΣ), with the G2 structure

φ = r2dr ∧ ω + r3Ω1 , ψ = r4ω
2

2
− r3dr ∧ Ω2, (1.2.6)

has holonomy in G2 if and only if (Σ6, gΣ) is nearly Kähler, i.e. the forms (ω,Ω1,Ω2) satisfy

dΩ2 = −2ω2 , dω = 3Ω1. (1.2.7)

Proof. From theorem 1.2.3, gC has holonomy contained in G2 if and only if dφ = dψ = 0. Since

dφ = r2dr ∧ (3Ω1 − dω) + r3dΩ1

dψ = r4d

(
ω2

2

)
+ r3dr ∧

(
dΩ2 + 2ω2

)
,

one concludes that this holds if and only if (Σ, gΣ) is nearly Kähler, i.e. the equations 1.2.7 for the

forms (ω,Ω1,Ω2) hold.

Definition 1.2.8. A G2 manifold (X, g) is Asymptotically Conical (AC) with rate ν < 0 if there

is a compact set K ⊂ X , a compact nearly Kähler 6-manifold (Σ, gΣ) and a diffeomorphism

ϕ : (1,∞)×Σ→ X\K, such that on (1,∞)×Σ, the metric gC = dr2 + r2gΣ and its Levi Civita

connection∇ satisfy

|∇j (ϕ∗g − gC) |C = O(rν−j),
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for all j ∈ N0. A radius function will be any positive function ρ : X → R+, such that in X\K,

ρ = r ◦ ϕ−1.

Example 2. There are only 3 known examples of complete, AC and irreducible G2 manifolds, these

are known as the Bryant-Salamon manifolds [BS89], see also [GPP90]. The reference [KL12]

studies the moduli spaces of AC G2 manifolds, with a fixed asymptotic cone C(Σ), and these

examples are shown to be rigid. Further ahead, in chapter 4 of this thesis, these examples will be

examined in more detail.

1. Let Λ2
−(M) be the total space of the bundle of anti-self-dual 2-forms over (M4, g), where

(M4, g) denotes either the round S4 or the Fubini-Study CP2. Then, Λ2
−(M) admits a

complete AC G2 metric with rate ν = −4 asymptotic to the cone over CP3 or F3 (the

manifold of flags in C3), for M = S4 or CP2 respectively.

2. S(S3), the spinor bundle over the round S3 admits a complete AC G2 metric with rate

ν = −3 which is asymptotic to the cone over S3 × S3.

The links of the cones which these are asymptotic to are (apart from S6) the only known examples

of nearly Kähler manifolds. In fact all three are homogeneous: CP3 = Sp(2)/U(1) × SU(2),

F3 = SU(3)/T 2 and S3 × S3 = SU(2)× SU(2).

1.3 The Monopole Equation

Let (Xn, g,Θ) be an n-dimensional Riemannian manifold, together with Θ ∈ Ωn−3(X,R) a differ-

ential form (in examples it will be a calibration, i.e. closed, with comass supξ∈Λn−3TX\{0}
|Θ(ξ)|
|ξ| =

1). Let G be a compact Lie group with Lie algebra g and P → X a principal G bundle over X .

Denote by gP = P ×Ad g the bundle with fibre g associated with the adjoint representation and

equip it with an Ad invariant metric 〈·, ·〉. Let ∇A be a connection on P and Φ ∈ Ω0(X, gP ) an

Higgs Field, i.e. a section of gP . This section studies the properties of pairs (∇A,Φ) satisfying

∗ ∇AΦ = FA ∧Θ, (1.3.1)

where ∗ is the Hodge-∗ operator acting on the form components. Moreover, notice that if Θ is

closed, the Bianchi identity implies that a solution to 1.3.1 satisfies ∆AΦ = 0. The examples of

most interest and which this thesis restricts attention are the following

Example 3. In this thesis the data (X, g,Θ) will always be one of the following cases

1. (X3, g) a 3 dimensional Riemannian manifold, take Θ = 1, then equation 1.3.1 is the

Bogomolnyi equation ∗∇AΦ = FA, which will be studied in chapter 2.

2. (X6, g) a Calabi-Yau 3-fold, take Θ = Ω1 the real part of the holomorphic volume form

Ω ∈ Ω3,0(X,C). Then, chapter 3 studies complex Calabi-Yau monopoles (definition 3.1.1)

and a particular case, called just Calabi-Yau monopoles; these solve ∗∇AΦ = FA ∧Ω1 and

it will also be imposed that ΛFA = 0.
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3. (X7, g) a G2 manifold and Θ = ψ ∈ Ω4(X,R) the calibrating 4-form. Then, equation 1.3.1

is the G2 monopole equation ∗∇AΦ = FA ∧ ψ, which will be studied in chapter 4.

The first example above, i.e. dimension 3 is the so-called Bogomolnyi equation which has been

the subject of intense research over the last 30 years, both by mathematicians and physicists. The

last have appeared in some scattered places both in the mathematics and physics literature. The

first occurrence that the author has been able to track down is in [War84], where the Spin(7) and

G2 instanton equations on R8 and R7 are written down. The monopole equations in items 2 and 3

of example 3 arise by dimensional reduction of these, see [DS11].

1.3.1 Energy Identities

This section contains some energy identities which will be further refined and used to study

monopoles on AC Calabi-Yau and G2 manifolds.

Definition 1.3.1. Let U ⊂ X be precompact. The Yang-Mills-Higgs energy EU and the Intermedi-

ate Energy EIU of a configuration (∇A,Φ) on U are defined by

EU =
1

2

∫
U
|∇AΦ|2 + |FA|2 , EIU =

1

2

∫
U
|∇AΦ|2 + |FA ∧Θ|2 (1.3.2)

The YMH Energy and the Intermediate energy agree for n = 3, i.e. case 1 in example 3.

However, both in the Calabi-Yau and G2 case the intermediate energy just measures the L2 norm

of some of the components of the curvature, namely those in Re(Λ2,0 ⊕ Λ0,2) and Λ2
7 respectively.

Proposition 1.3.2. Let (∇A,Φ) be a configuration i.e. a connection and Higgs field on P . The

Euler Lagrange equations for the Yang-Mills-Higgs functional are

d∗AFA = [dAΦ,Φ] , ∆AΦ = 0. (1.3.3)

Moreover, if Θ is a calibration the Euler Lagrange equations for the Intermediate Energy are

d∗Aπ(FA) = [dAΦ,Φ] , ∆AΦ = 0. (1.3.4)

where π(FA) = ∗(∗(FA ∧Θ) ∧Θ).

Proof. If (a, φ) is a compactly supported variation, the boundary terms in the integration by parts

of δE(dA,Φ̃)(a, φ) = d
dt |t=0E(dA + ta,Φ + tφ) can be ignored. Then, Stokes’ theorem and the

Bianchi identity give

δE(dA,Φ̃)(a, φ) =

∫
X
〈dAa ∧ ∗FA〉+ 〈(dAφ+ [a,Φ]) ∧ ∗dAΦ〉

=

∫
X
〈a ∧ dA ∗ FA〉 − 〈φ, dA ∗ dAΦ〉+ 〈a ∧ [Φ, ∗dAΦ]〉

=

∫
X
〈a ∧ (dA ∗ FA + [Φ, ∗dAΦ])〉 − 〈φ, dA ∗ dAΦ〉.



1.3. THE MONOPOLE EQUATION 21

So the critical points of such a functional are precisely the solutions to the second order equations

d∗AFA = [dAΦ,Φ] and ∆dAΦ = 0. The computations for the variation of the Intermediate energy

are similar and will be omitted.

These Euler Lagrange equations are second order equations for (A,Φ) while the monopole

equations are first order. In fact for the asymptotic behavior to be studied in this thesis, it will be

shown that monopoles are minimizers of the intermediate energy.

Example 4. In the cases from example 3

1. If n = 3, then the YMH and the Intermediate Energies are equal and so are the associated

Euler Lagrange equations.

2. If n = 6, the complex structure gives the splitting Ω2 = Ω2,0 ⊕ Ω1,1 ⊕ Ω0,2, then π(FA) =

−2(F 2,0
A + F 0,2

A ). So the Intermediate Energy just measures the L2 norm of F 0,2
A and its

Euler Lagrange equations are ∆dAΦ = 0 and ∂∗AF
2,0
A = −1

2 [∂AΦ,Φ].

3. If n = 7, the G2 structure gives the splitting Ω2 = Ω2
14 ⊕ Ω2

7 and π(FA) = 3π7(FA). The

Intermediate Energy just measures the L2 norm of π7(FA), i.e. the component of FA which

lies in Ω2
7, and the Euler Lagrange equations are ∆dAΦ = 0 and d∗Aπ7(FA) = 1

3 [dAΦ,Φ].

The following differential and consequent integral relations are very useful

Lemma 1.3.3. (Green’s first identity) Let φ, ψ ∈ Ω0(gP ) and U ⊆ X precompact with smooth

boundary, then

〈φ,∆Aψ〉 = d∗〈φ,∇Aψ〉+ 〈∇Aφ,∇Aψ〉. (1.3.5)∫
∂U
∗〈φ,∇Aψ〉 =

∫
U
〈∇Aφ,∇Aψ〉 − 〈φ,∆Aψ〉 ∗ 1. (1.3.6)

Proof. Since on 1 forms d∗ = − ∗ d∗ one has d∗〈φ,∇Aψ〉 = − ∗ d〈φ, ∗∇Aψ〉. By the Leibniz

rule this is − ∗ 〈∇Aφ ∧ ∗∇Aψ〉 − 〈φ, ∗dA ∗ ∇Aψ〉. The second term is ∆Aψ = d∗A∇Aψ and this

gives the differential relation in the statement. Integrating over U gives∫
U
− ∗2 d ∗ 〈φ,∇Aψ〉 =

∫
U
− ∗2 〈∇Aφ ∧ ∗∇Aψ〉+ ∗〈φ,∆Aψ〉.

Using ∗2 = 1 and Stokes’ theorem on the left hand side gives the integral relation.

Proposition 1.3.4. Let Θ be a calibration, U ⊂ X precompact with smooth boundary, and (∇A,Φ)

a configuration. Then,

EIU (A,Φ) =

∫
∂U
〈Φ, FA〉 ∧Θ +

1

2
‖FA ∧Θ− ∗∇AΦ‖2L2(U). (1.3.7)

Moreover, for those (∇A,Φ) satisfying equation 1.3.1

EIU (A,Φ) =
1

2
‖FA ∧Θ‖2L2(U) +

1

2
‖∇AΦ‖2L2(U) =

∫
∂U
〈Φ, FA〉 ∧Θ. (1.3.8)
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In particular, if X is compact, then EIX <∞ and ∇AΦ = FA ∧Θ = 0 and the connection A is

reducible.

Proof. The proof amounts to compute

‖FA ∧Θ− ∗∇AΦ‖2L2(U) = ‖FA ∧Θ‖2L2(U) + ‖∇AΦ‖2L2(U) − 2〈FA ∧Θ, ∗∇AΦ〉L2(U).

The first two terms are 2EIU and the last one is given by the integral

〈FA ∧Θ, ∗∇AΦ〉L2(U) =

∫
U
〈∇AΦ ∧ FA〉 ∧Θ =

∫
∂U
〈Φ, FA〉 ∧Θ,

where one uses ∗2∇AΦ = −∇AΦ, the Bianchi identity dAFA = 0 and the fact that Θ is closed as

it is a calibration, in order to ignore the other term in the integration by parts.

The argument used in the proof of proposition 1.3.4 will be extended for certain classes of

noncompact manifolds.

1.3.2 Volume Growth and Boundary Data

Definition 1.3.5. Let (Xn, g) be a real n dimensional, complete, noncompact, Riemannian man-

ifold and a ≥ 0. One says g has strict volume growth ra if for all p ∈ X there is Rp ∈ R+ and

positive constants A1 ≤ A2, such that for all s ≥ t ≥ Rp

A1(sa − ta) ≤ V ol(Bs(p))− V ol(Bt(p)) ≤ A2(sa − ta), (1.3.9)

where Br(p) is the geodesic ball with center p ∈ X and radius r.

Remark 1.3.6. Since both Calabi-Yau and G2 manifolds are Ricci flat, it follows from Bishop’s

Volume comparison that a ∈ [1, 7] (a ≥ 1 follows from trick due to Yau). Moreover, Cheeger-

Gromoll’s splitting theorem implies that if (X, g) is an irreducible Calabi-Yau or G2 manifold (i.e.

g has full holonomy SU(3) or G2 respectively), then it has only one end.

Having this in mind, from now on assume that a ∈ [1, 7] and there is a compact set K ⊂ X

and an (n− 1)-dimensional manifold Σ, such that X\K ∼= (R,+∞)ρ × Σ, for some large R and

ρ : X → R+ a smooth approximation to dist(p, ·), such that |∇ρ| is very close to one. Then, the

inequality in 1.3.9 holds for s ≥ t ≥ R and Br(p) replaced by ρ−1[0, r).

Lemma 1.3.7. (X, g) as above has strict volume growth ra if and only if there are positive constants

A′1 < A′2 such that A′1r
a−1 ≤ V ol(ρ−1(r)) ≤ A′2ra−1.

Proof. The first direction follows from setting t = r and s = r + ε and differentiating the

inequality in 1.3.9 having in mind that V ol(ρ−1(r + ε))− V ol(ρ−1(r)) =
∫ r+ε
r V ol(ρ−1(u))du,

and using the fundamental theorem of calculus. The reverse direction follows in the same way from

integration.
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Definition 1.3.8. Let P → X be a principalG-bundle and∇A a connection on P . If the holonomy

group H of∇A is isomorphic to a proper subgroup of G (i.e. H  G), then the connection is said

to be reducible. Moreover, a connection is said to be irreducible if it is not reducible.

The main interest of this thesis is to study irreducible monopoles and so we shall now focus

on these. Let P be a principal G-bundle and ∇A a connection on P as above. Given a vector

space V and a representation ρ : G→ GL(V ) with no trivial subfactors (i.e. there is no subspace

W ⊂ V where G acts trivially), one can construct the associated vector bundle V = P ×(G,ρ) V ,

which comes equipped with an associated connection, also denoted ∇A. Then, if s 6= 0 is

∇A parallel section of V, the holonomy group H of ∇A must preserve s and so be a proper

subgroup of G. For a solution to 1.3.1 with irreducible connection, then ∇AΦ 6= 0 and so

‖∇AΦ‖2L2(ρ−1(0,r)) needs to be positive for some r > 0. If Θ is a calibration, then one can use

the formula ‖∇AΦ‖2L2(ρ−1(0,r)) =
∫
ρ−1(r)〈Φ, FA〉 ∧Θ, from proposition 1.3.4 and conclude that

〈Φ, FA ∧Θ〉 can not decay too fast. This argument proves.

Proposition 1.3.9. Let (X,g) be complete, noncompact with strict volume growth ra and (∇A,Φ)

a solution to equation 1.3.1. Suppose that

lim
r→∞
〈Φ, FA ∧Θ〉ra−1 = 0. (1.3.10)

Then∇AΦ = FA∧Θ = 0. In particular, if (X, g) is asymptotically cylindrical and 〈Φ, FA∧Θ〉 →
0 as r → ∞, or (X, g) is asymptotically conical and for r large enough |〈Φ, FA ∧ Θ〉| ≤
cst.r−(n−1)−ε, for some ε > 0, the result applies.

We now introduce two notions in order to name the special case where monopoles also satisfy

∇AΦ = 0.

Definition 1.3.10. Let (X6, ω,Ω) be a Calabi-Yau manifold. A connection A on a bundle P is said

to be Hermitian Yang Mills (HYM) if F 2,0
A = 0 and ΛFA = 0.

Definition 1.3.11. Let (X7, φ) be a G2 manifold. A connection A on a bundle P is said to be a

G2-instanton if FA ∧ ψ = 0.

From definition 1.3.8 and the discussion immediately below, if∇AΦ = 0 the connection∇A is

reducible and the equations in example 3 respectively give: 1. flat connections on a 3 manifold,

i.e. FA = 0. 2. On Calabi-Yau manifolds∇A is an HYM connection, and 3. In G2 manifolds the

connection∇A is a G2-instanton.

In general the rough conclusion that follows from proposition 1.3.9 is as follows. The faster the

volume of (X, g) grows, the less strict the decay conditions need to be for∇AΦ 6= 0. For example:

while for an asymptotically conical manifold it is enough to suppose that 〈Φ, FA ∧Θ〉 decays at

most at rate r−(n−1), for an asymptotically cylindrical one 〈Φ, FA ∧Θ〉 cannot decay. Proposition

1.3.9 is analogous to proposition 1.3.4, but for noncompact manifolds. In the rest of the thesis there

will be further analogous results which combine this reasoning with more detailed information on

the asymptotic behavior of monopoles, in order to obtain other vanishing results.
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1.4 Monopoles on Asymptotically Conical (AC) Manifolds

Let (X, g) be an AC manifold as in definition 1.1.5 and equipped with Θ ∈ Ωn−3(X,R) as in the

previous section. As X is AC, we require that the closed form Θ is asymptotic to a form ΘC on the

cone C(Σ), i.e. for all j ∈ N0, |∇j(ϕ∗Θ−ΘC)|C = O(rν−j), for some ν < 0. Suppose there are

differential forms θ1 ∈ Ωn−4(Σ) and θ2 ∈ Ωn−3(Σ) such that

ΘC = rn−4dr ∧ θ1 + rn−3θ2.

In the cases of interest, listed in example 3, one has

Example 5. 1. n = 3 case: Θ = 1 and so θ1 = 0 and θ2 = 1

2. n = 6 case: Recall that the link of a Calabi-Yau cone is Sasaki-Einstein. In this case

Θ = Ω1, i.e. the real part of a holomorphic volume form Ω. Since Ω is asymptotic to

ΩC = r2(rη − idr) ∧ ΩT , where η is the contact form on the link and ΩT ∈ Ω
(2,0)
B (Σ,C)

pulled back to the cone and

ΘC = Re(ΩC) = r2dr ∧ Im(ΩT ) + r3η ∧ Re(ΩT ).

As a side remark, note that since ΩC is holomorphic on the cone ΩT satisfies ∂ΩT =
3i
2 (η − id log(r)) ∧ ΩT .

3. n = 7 case: Recall that the link (Σ, gΣ) has a nearly Kähler structure (ω,Ω1,Ω2) and

ΘC = ψC = −r3dr ∧ Ω2 + r4ω
2

2
.

1.4.1 Finite Mass Monopoles

This subsection defines finite mass monopoles and studies their asymptotics: see propositions 1.4.5

and 1.4.5. Let P → X be aG bundle and suppose there is anotherG bundle P∞ → Σ together with

an isomorphism of principal bundles ϕ∗PX\K ∼= π∗P∞, such that the connection∇A is asymptotic

to a connection∇∞ on P∞, i.e. ϕ∗∇A = π∗∇∞ + a, with |ρj∇j∞a| = O(r−1−ε) for some ε > 0.

Definition 1.4.1. Under the hypothesis above, a monopole (A,Φ) is said to have finite mass if

lim
ρ→∞

|Φ| = m,

is finite at each end of X . The constant m ∈ R+
0 is called the mass of the monopole.

As monopoles always satisfy equation 1.3.1, in the rest of this section some consequences of

that equation and the finite mass assumption are studied.

Lemma 1.4.2. Let n > 2 and (Xn, g) be an AC manifold and (A,Φ) a finite mass, irreducible

monopole. Denote by µ the smallest number such that |∇AΦ| = O(ρµ−1) outside a compact set.

Then µ ≥ −(n− 2).
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Proof. Let Br = ρ−1(0, r), then since (A,Φ) is a monopole∇AΦ = FA ∧Θ, and the integration

by parts in proposition 1.3.4 gives the boundary term

‖∇AΦ‖2L2(Br)
= lim

r→∞

∫
∂Br

〈Φ, FA ∧Θ〉 ≤ lim
r→∞

∫
∂Br

|〈Φ, ∗∇AΦ〉|.

Since ∇AΦ = O(ρµ−1) the term on the right is estimated as |〈Φ, ∗∇AΦ〉| ≤ ρµ−1|Φ| ≤ mρµ−1

and the volume of the cross sections grows like rn−1, so the limit above becomes ‖∇AΦ‖2L2 ≤
cst. limr→∞ r

(n−1)+(µ−1). So if µ < −(n− 2), one concludes that ∇AΦ = 0 and the monopole

would be reducible which is a contradiction.

Lemma 1.4.3. Let (X, g) be AC and f : X → R+ be a smooth positive function, ∆f ≥ 0, such

that |∇jf | = O(ρµ−j) for all j ∈ N and all µ < 0, for which f = O(ρµ). Also suppose there

is such a µ0 < 0 with f = O(ρµ0) and that there is a constant c > 0 with the property that

maxρ−1(r) f ≤ cminρ−1(r) f . Then, for all sufficiently large R > 0, there are c2 ≥ c1 > 0, such

that
c1

ρn−2
≤ f ≤ c2

ρn−2
.

Proof. The first step is to prove the lower bound, which follows by a comparison argument. The

first thing to notice is that since (X, g) is AC, there is a compact set BR ⊂ X and a harmonic

function G on X\BR with rate −(n− 2), i.e. G = O(r−(n−2)). By possibly replacing G by εG,

for small ε > 0, one can suppose that inf∂BR f > sup∂BR G. Then, combining this with the fact

that both f,G tend to 0 at the ends of X and f is superharmonic, one concludes that f > G, on

X\K.

To prove the upper bound, let ∆C and ∆Σ denote the Laplacian on the cone and on the link

respectively. Since by hypothesis |∇jf | = O(ρµ−j) for all j ∈ N0, the inequality ∆f ≥ 0 turns

into

∆Cf +O(rµ−2−ε) ≥ 0,

where ε > 0. Expand this using separation of variables

− 1

rn−1

∂

∂r

(
rn−1∂f

∂r

)
+

1

r2
∆Σf ≥ O(rµ−2−ε).

Now, for each r ∈ R+ integrate this over {r} × ∂Σ with respect to the constant volume form

dvolgΣ and let

F (r) =
1

rn−1

∫
{r}×Σ

fdvolg|{r}×Σ
=

∫
{1}×Σ

f ◦ srdvolgΣ ,

where sr(x) = rx is the scaling map on the cone. The integration of the term ∆Σf vanishes since∫
{1}×Σ ∆Σ(f ◦ sr)dvolgΣ = 0 and so one obtains

1

rn−1

∂

∂r

(
rn−1∂F

∂r

)
≤ O(rµ−2−ε).
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Then there is a constant C, such that rn−1 ∂F
∂r ≤ C + O(rn−1+µ−ε). Integrating this gives that

for large r one has F (r) ≤ c2r
−(n−2) +O(rµ−ε) for c2 = − C

n−2 . The hypothesis that for large r,

maxρ−1(r) f ≤ cminρ−1(r) f implies that a similar inequality holds for f .

Suppose that µ− ε > −(n− 2), then f = O(ρµ−ε) and going through the same arguments again

one proves that f(r) ≤ c2r
n−2 + O(rµ−2ε). So one can iterate this procedure k times until one

obtains f(r) ≤ c2r
n−2 + O(rµ−kε) with µ − kε < −(n − 2). Moreover, one must also have

c2 > 0 or otherwise one would get a contradiction with the lower bound f ≥ c1ρ
−(n−2) proved in

the beginning.

Proposition 1.4.4. Let (X, g) be AC and (A,Φ) be a finite mass irreducible monopole, and let

m ∈ R+ denote its mass. Then, there are positive constants c1, c2, such that on X\K

m2 − c1

ρn−2
≤ |Φ|2 ≤ m2 − c2

ρn−2
. (1.4.1)

Moreover, |∇AΦ| ∈ L2 and there is an∇∞ parallel Higgs Field Φ∞ over Σ such that limρ→+∞Φ =

Φ∞.

Proof. Consider the function

w = m2 − |Φ|2,

which satisfies limρ→∞w = 0, ∆AΦ = 0 and so ∆w = −∆|Φ|2 = 2|∇AΦ|2. The problem

reduces to the setup of lemma 1.4.3 for the function w and the inequality 1.4.1 follows as a corollary

to this.

To prove that |∇AΦ| ∈ L2, let χR be a smooth bump function which is 1 in BR and vanishes

on X\B2R, (here Br = ρ−1[0, r]). Since (X, g) is AC the derivatives of the distance function ρ

are uniformly bounded and |∇2χR| ≤ cR−2 for some constant c > 0. Multiplying the identity

2|∇AΦ|2 = ∆w by χR and integrating gives

2

∫
X
χR|∇AΦ|2 =

∫
X
χR∆w.

The left hand side is greater or equal than ‖∇AΦ‖2L2(BR) and one can integrate the left hand side

by parts
∫
X χR∆w =

∫
X ∆χRw. Since |∇2χR| ≤ cR−2 and is supported in B2R\BR, while

0 ≤ w ≤ cρ−(n−2), one concludes that

‖∇AΦ‖2L2(BR) ≤
c

R2

∫
B2R\BR

ρ−(n−2) ≤ C

2R2

∫ 2R

R
ρdρ ≤ C.

This gives a bound on the L2 norm of |∇AΦ| over any BR which is independent of R and so proves

that |∇AΦ| ∈ L2. The existence of Φ∞ follows from the fact that (A,Φ) solves the monopole

equation and ∇AΦ ∈ L2. Then, |ρj−1∇jAΦ| ∈ L2 for all j ∈ N0 and one can apply proposition

A.0.17 in the Appendix A, which gives the existence of Φ∞.

Proposition 1.4.5. Let (X, g) be AC and (A,Φ) a finite mass, irreducible monopole. Let a =

ϕ∗∇A − π∗∇∞ be as in the discussion preceding definitions 1.4.1 and assume [a,Φ∞] =
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O(ρ−(n−1)−ε′), for some ε′ > 0. Then, there is a section Ψ∞ of gP∞ , such that 〈Φ∞,Ψ∞〉 6= 0

and pulling back Φ∞,Ψ∞ to X\K

Φ = Φ∞ +
Ψ∞
ρn−2

+O(ρ−(n−2)−ε′),

for some ε′ > 0.

Proof. On X\K one can write∇A = ∇∞ + a and a = O(ρ−1−ε). Then

∆AΦ∞ = ∆∞Φ∞ + [d∗∞a,Φ∞]− 2 ∗ [a ∧ ∗∇∞Φ∞]− ∗[a ∧ [∗a,Φ∞]],

and the first and third term vanish. The fact that (A,Φ) is a monopole and [a,Φ∞] = O(ρ−(n−1)−ε′)

guarantees that [d∗∞a,Φ∞] = d∗∞[a,Φ∞] = O(ρ−n−ε
′
), hence the second and fourth terms have

rate O(ρ−(n+ε′)). Write Φ = Φ∞ + φ with |∇iφ| = O(ρµ−i), for all i and some µ < 0. Then

using the computation above 0 = ∆AΦ = ∆AΦ∞ + ∆Aφ = ∆Aφ+O(ρ−n−ε
′
). Denote by ∆C

∞

the∇∞ connection Laplacian on the cone and pull back the equation ∆AΦ = 0 to the cone. This

gives

∆C
∞φ+O(rµ−2−ε) = O(r−n−ε

′
),

for some ε > 0. The strategy for solving this is to use separation of variables. Write φ =∑
λ∈Spec(∆Σ

∞) φλfλ, where ∆∂X
∞ fλ = λfλ are the eigenfunctions for the∇∞ Laplacian on the link

Σ. Then one obtains the following set of ODE’s

φ̈λ +
n− 1

r
φ̇λ −

λ

r2
φλ = O(rmax{µ−2−ε′,−n−ε′}).

Up to a harmonic function on the cone, these can be solved for all λ ∈ Spec(∆Σ
∞), with the

solutions φλ having rate max{µ− ε′,−(n+ 2)− ε′}. If one takes the rate µ to be optimal then one

must have µ = −(n− 2). The irreducibility condition implies proposition 1.4.4 whose statement

can be written as

− c1

ρn−2
≤ 〈Φ∞, φ〉+ |φ|2 ≤ − c2

ρn−2
.

Then, since |φ|2 is positive one concludes that 〈Φ∞, φ〉 6= 0 and decays at rate −(n− 2). Define

Ψ∞ to be the leading term in ρ(n−2)φ, i.e. such that φ = ρ−(n−2)Ψ∞ +O(ρ−(n−2)−ε′).

Proposition 1.4.6. Let (X, g) be AC and (A,Φ) a finite mass, irreducible monopole under the

hypothesis of proposition 1.4.5 and∇∞,Φ∞,Ψ∞ the data determined by (A,Φ) on Σ, then

1. If n = 3 one has F∞ = Ψ∞dvolΣ, with∇∞Ψ∞ = 0 and 〈Φ∞,Ψ∞〉 6= 0.

2. If n > 3, then F∞ ∧ θ1 = F∞ ∧ θ2 = 0.

Proof. As usual, in the notation, the pullbacks by ϕ used to identify objects on X\K with objects

on the cone (1,+∞)×Σ are omitted. Since (A,Φ) is a monopole one must have FA∧Θ = ∗∇AΦ,

writing Θ = ΘC + (Θ−ΘC) and recalling that |Θ−ΘC | = O(rν). This, together with prop 1.4.5
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gives

FA ∧Θ = rn−4FA ∧ dr ∧ θ1 + rn−3FA ∧ θ2 +O(rν−2)

∗∇AΦ = (n− 2)
Ψ∞
rn−1

rn−1dvolΣ + rn−3dr ∧ ([∗Σa,Φ∞] + ∗Σ∇∞Ψ∞) +O(r−(n−1)−ε).

Equating both sides gives the following equations

FA ∧ θ1 = r ([∗Σa,Φ∞] + ∗Σ∇∞Ψ∞) +O(r−(n−2)+ν) +O(r−(n−2)−(n−3)−ε)

FA ∧ θ2 = (n− 2)r−(n−3)Ψ∞dvolΣ +O(r−(n−1)−ε).

Having in mind that k-homogeneous q-forms on the cone have rate O(rk−q) (Lemma 1.6 in

[CH13a]), the left hand sides are respectively O(r−(n−2)) and O(r−(n−1)). For n = 3 one has

θ1 = 0, θ2 = 1, and since a = O(r−1−ε) gives

F∞ ∧ θ2 = Ψ∞dvolΣ , ∇∞Ψ∞ = 0.

The case n > 3 immediately gives F∞ ∧ θ2 = 0 by comparing decay rates. Moreover, now θ1 6= 0

and one needs to notice that ν < 0. Moreover the hypothesis of proposition 1.4.5 also gives

r[∗Σa,Φ∞] = O(r−(n−2)−ε′), so that F∞ ∧ θ1 = 0 as well.

1.4.2 Boundary Data For Finite Mass Monopoles

Based on propositions 1.4.5 and 1.4.6 this subsection abstracts, in definition 1.4.7, the boundary

conditions determined by finite mass, irreducible monopoles on AC manifolds. Then, one goes on

to prove some more detailed vanishing results stated in proposition 1.4.9 and corollary 1.4.11 in the

particular case of G = SU(2).

Definition 1.4.7. The boundary data of a monopole is defined to be a G bundle P∞ over Σ, a

reducible connection∇∞ on P∞ and a∇∞-parallel Higgs Field Φ∞. Moreover, in the case n = 3,

one further assumes there is Ψ∞ such that 〈Φ∞,Ψ∞〉 6= 0 and

F∞ = Ψ∞dvolΣ , ∇∞Ψ∞ = 0,

while for n > 3 one assumes that

F∞ ∧ θ1 = F∞ ∧ θ2 = 0.

Remark 1.4.8. Propositions 1.4.5 and 1.4.6 prove that such boundary data is precisely the one

determined by an irreducible, finite mass monopole (A,Φ) with [a,Φ∞] = O(ρ−(n−1)−ε′), for

some ε′ > 0. In other words, given such a monopole (A,Φ) with (∇∞,Φ∞) the connection and

Higgs field to which it is asymptotic. Then, these do satisfy the required conditions to be the

boundary data of a monopole as in definition 1.4.7.
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Example 6. 1. Case n = 3: The data is given by the two parallel Higgs Fields Φ∞,Ψ∞ such

that 〈Φ∞,Ψ∞〉 6= 0 and a connection ∇∞ with curvature F∞ = Ψ∞dvolΣ. Moreover,

the fact that ∇∞Ψ∞ = 0 can also be stated as d∗∞F∞ = 0. So one can equivalently

consider a connection with Yang-Mills curvature F∞ and a parallel Higgs Field Φ∞, such

that 〈Φ∞, F∞〉 6= 0. Also notice that since ∇∞Φ∞ = 0, this immediately implies that

0 = d∞∇∞Φ∞ = [F∞,Φ∞], i.e. [Ψ∞,Φ∞] = 0.

2. Case n = 6: Here Σ comes equipped with a Sasaki-Einstein structure, and recalling example

5, the connection ∇∞ must be such that F 0,2
∞ = 0 and ιξF∞ = 0, where ξ denotes the Reeb

vector field. Proposition 3.1.28 in chapter 3 proves that (complex) Calabi-Yau monopoles

have an even more restrictive asymptotic behavior. In this case ∇∞ must be a basic HYM

connection, see definition 3.1.29, together with remark 3.1.30.

3. Case n = 7: In this case Σ has a nearly Kähler structure (ω,Ω1,Ω2) and the connection

∇∞ must be HYM with respect to it, i.e. F ∧ Ω1 = F ∧ ω2 = 0.

Proposition 1.4.9. Let (X, g) be AC and (A,Φ) a finite mass monopole with |A − A∞| =

O(ρ−(n−2)−ε′), for some ε′ > 0. Denote by [i∗Θ] ∈ Hn−3(Σ,R) the cohomology class obtained

by restricting [Θ] ∈ Hn−3(X,R) to any cross section along the end X\K. Then,

EIX =

∫
Σ

[〈Φ∞, F∞〉] ∪ [i∗Θ].

In particular, if [〈Φ∞, F∞〉] ∪ [i∗Θ] = 0 ∈ Hn−1(Σ,R) or (X, g) has rate ν < −(n − 3), then

∇AΦ = 0, so A is reducible and FA ∧Θ = 0.

Proof. Since (A,Φ) has finite mass proposition 1.4.4 guarantees |∇AΦ| ∈ L2. Moreover, it is

a monopole and so EIX = ‖∇AΦ‖2L2(X). Hence, the sequence EIBr , is bounded, monotone and

increasing, the limit as r →∞ exists and

EIX = lim
r→∞

EIBr = lim
r→∞

∫
∂Br

〈Φ, FA〉 ∧ i∗rΘ,

where the formula 1.3.4 for the intermediate energy was used and ir : ∂Br ↪→ X denotes the

inclusion. Write Φ = Φ∞ + φ, ∇A = ∇∞ + a and Θ = ΘC + η with a = O(ρ−(n−2)−ε′) and

η = O(ρν). Then, using proposition 1.4.6

〈Φ, FA〉 ∧Θ = 〈Φ∞, F∞〉 ∧ η +O(ρ−(n−1)−ε′),

for some ε′ > 0. If one supposes ν < −(n − 3) the first item is also O(ρ−(n−1)−ε′) and so the

limit above vanishes and EIX = 0, i.e. FA ∧Θ = ∇AΦ = 0 and the connection is reducible.

Remark 1.4.10. The connection A∞ is reducible to a subgroup H ⊂ G, hence induced from

an H-principal bundle Q∞. One can then extend Φ∞ to P∞ = Q∞ ×H G in a G-equivariant

way. Fixing a point p ∈ P∞, one can identify H with a subgroup of the centralizer of µ =

Φ∞(p), and the curvature F∞ ∈ Ω2(P∞, h), i.e. takes values in the Lie algebra of H . Taking
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a Cartan decomposition starting with µ ∈ tC, gC = tC ⊕
⊕

α(µ)=0 gα ⊕
⊕

α(µ)6=0 gα, with

hC = tC⊕
⊕

α(µ)=0 gα. Then H acts on
⊕

α(µ) 6=0 gα via the adjoint action, since if α(µ) = 0 and

β(µ) 6= 0, then [gα, gβ] ⊂ gα+β and (α+ β)(µ) 6= 0. One can then consider the associated vector

bundle E = Q∞ ×H
⊕

α(µ)6=0 gα, equipped with the connection induced by A∞. Its curvature

F̃∞ acts on a section Ψ as F̃∞(Ψ) = [F∞,Ψ] and 〈Φ∞, F∞〉 denotes a combination of curvature

components. The Bianchi identity and∇∞Φ∞ = 0 imply that 〈Φ∞, F∞〉 is a closed 2-form and so

determines a cohomology class in Σ.

Corollary 1.4.11. Assume the hypothesis of proposition 1.4.9 and that G = SU(2). Then P∞ and

A∞ are reducible to a complex line bundle L→ Σ and

‖∇AΦ‖2L2 = 4πm〈c1(L) ∪ [i∗Θ], [Σ]〉, (1.4.2)

wherem = |Φ∞| ∈ R is the mass. Moreover, if c1(L)∪ [i∗Θ] = 0 or (X, g) has rate ν < −(n−3),

then ∇AΦ = 0, so it is reducible and FA ∧Θ = 0.

Proof. If G = SU(2), then it follows from SU(2) representation theory that gP∞ ⊗ C = C ⊕
Lα ⊕ L−α, and c1(Lα) = −c1(L−α), i.e. L−α ∼= L∗α. Alternatively, one constructs the bundle

E = P∞ ×SU(2) C2 associated with the standard representation. This splits into eigenspaces for

Φ∞ as E = L⊕ L∗, where L2 ∼= Lα and since ∇A∞Φ∞ = 0 the connection ∇A∞ is reducible to

a connection on L. In the end, one obtains

Φ∞ =

(
im 0

0 −im

)
, FA∞ =

(
FL 0

0 −FL

)
, (1.4.3)

with FL ∈ −2πic1(L) ∈ H2(Σ,−2πiZ) and |Φ∞| = m, so

‖∇AΦ‖2L2 = lim
r→∞

∫
∂Br

〈Φ, FA〉 ∧Θ = 2i lim
r→∞

∫
∂Br

FL ∧Θ

= 4πm〈c1(L) ∪Θ, [Σ]〉.

Example 7. In the case of R3, finite mass monopoles have finite energy and |FA|2 is integrable, i.e.

the curvature is in L2. Let (∇A,Φ) be a charge k and mass m monopole on R3. This has finite

energy E = 2πmk. The formula from corollary 1.4.11 reads

4πmk =

∫
S2

〈F∞,Φ∞〉,

in this case. In fact, F∞ = k Φ∞
|Φ∞|dvolS2 and so [FL] = c1(H2k) = kc1(H2), where H denotes the

Hopf line bundle over S2.



Chapter 2

Monopoles in 3 Dimensions

This chapter focuses on the study of the usual monopole equation in 3 dimensions, also known as

the Bogomolny equation. It starts off in section 2.1 with some preliminaries on the Bogomolnyi

equation. Namely the study of the linearized operator in subsection 2.1.1 is essential to show it

satisfies the necessary conditions to fit in the setup of chapter 5. Section 2.2, studies spherically

symmetric monopoles on R3 equipped with a spherically symmetric metric g. The main theorem

2.2.1 of that section completely classifies these invariant monopoles under some conditions on g.

Roughly, these monopoles are shown to have finite mass, which is shown to completely classify

them. Then one studies the large mass limit and proves that in a small ball around the origin,

these large mass monopoles approach (after rescaling) a BPS monopole (the unique mass 1 and

spherically symmetric monopole for the Euclidean metric). Outside such a ball and also in the large

mass limit, one proves that symmetric monopoles on (R3, g) converge uniformly on compact sets

in R3\{0} to a reducible Abelian monopole (which shall be called g-Dirac monopoles by analogy

with the Euclidean Dirac monopoles).

2.1 Preliminaries

Let (X3, g) be a 3 manifold and P → X a G = SU(2)-bundle. Denote the adjoint bundle of P

by su(P ) = P ×ad su(2) and refer to its sections as Higgs fields. Recall that a pair (A,Φ) made

of an SU(2) connection A on P and an Higgs field Φ is said to be a monopole if it satisfies the

Bogomolny equations

∇AΦ = ∗FA, (2.1.1)

where FA is the curvature of A and ∗ is the Hodge operator of the metric g. For 3 dimensional

monopoles there is a vast literature, see [JT80] and [AH88] for the case of monopoles in the

Euclidean R3. Moreover, the results of the first chapter 1 give a detailed study of the boundary

conditions and energy identities and this chapter will refer to these.

31
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2.1.1 Linearized Operator

Let (∇A,Φ) be a connection and Higgs field, which need not satisfy the Bogomolny equations. For

such a configuration the quantity e0 = ∗FA0 −∇AΦ may be nonzero. The linearized Bogomolny

equation fits into a sequence

Ω0(su(P ))
d1→ Ω1(su(P ))⊕ Ω0(su(P ))

d2→ Ω1(su(P )), (2.1.2)

with d1ξ = (−∇Aξ,−[Φ, ξ]) and

d2(a, φ) = ∗dAa−∇Aφ− [a,Φ]. (2.1.3)

Their formal adjoints are given by d∗1(a, φ) = −∇∗Aa+ [Φ, φ] and d∗2a = (∗dAa+ [a,Φ],−∇∗Aa).

If (A,Φ) is a monopole then the sequence in 2.1.2 is actually an elliptic complex and so the operator

D = d2⊕ d∗1 acting on sections of (Λ1⊕Λ0)(su(P )) is elliptic. Its formal adjoint is D∗ = d∗2⊕ d1

and these can be written as

D =

(
∗dA −∇A
−d∗A 0

)
+ [Φ, .] , D∗ = D − 2[Φ, .].

Lemma 2.1.1. (Standard Weitzenböck) Let∇A be a connection and u ∈ Ω1(su(2))⊕ Ω0(su(2)),

then

∆Au = ∇∗A∇Au+ FW (u) + RicW (u). (2.1.4)

Where FW (a, φ) = (∗[∗FA ∧ a], 0) and RicW (a, φ) = (Ric(a), 0).

Lemma 2.1.2. (Monopole Weitzenböck) Let (∇A,Φ) be a connection and an Higgs Field. Let

u ∈ Ω1(su(2))⊕ Ω0(su(2)), then

DD∗u = ∇∗A∇Au− [[u,Φ],Φ] + RicW (u) + εW0 (u) (2.1.5)

D∗Du = DD∗u+ 2(∇AΦ)W (u). (2.1.6)

Where bW (a, φ) = (∗[a ∧ b]− [b, φ], [〈b, a〉]) and b is either ε0 = ∗FA−∇AΦ, Ric or (ε0+2dAΦ).

If (A,Φ) = (A0 +a,Φ0 +φ) for suitable u = (a, φ) ∈ Ω1(su(P ))⊕Ω0(su(P )) is a monopole,

then

ε0 +D(u) +Q(u, u) = 0, (2.1.7)

where the operator D is as above and Q(u, u) =

(
∗[a ∧ a]− [a, φ]

0

)
.

2.1.2 Some Further Analytical Remarks

There is a scale invariance in the Bogomolny equation which is inherited from the conformal

invariance of the ASD equations in 4 dimensions. The precise result is
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Proposition 2.1.3. Let (∇A,Φ) be a monopole on (M3, g), where M3 is a Riemannian 3 manifold.

Then (∇A, δ−1Φ) is a monopole for (M3, g̃ = δ2g).

Proof. In general, if ω is a k form and ∗̃ the Hodge operator for the metric g̃, then ∗̃ω = δn−2k ∗ ω
(n = 3). This implies that ∗̃FA = δ−1 ∗ FA = δ−1∇AΦ, and the result follows.

Recall from definition 1.3.1 that in the 3 dimensional case both the Energy and the Intermediate

Energy are equal and defined on a precompact set U ⊂ X as

EU =
1

2

∫
U
|∇AΦ|2 + |FA|2. (2.1.8)

Proposition 1.3.2 computes its Euler Lagrange equations d∗AFA = [dAΦ,Φ], ∆dAΦ = 0, which

one can check monopoles do satisfy.

Proposition 2.1.4. Let (A,Φ) be a monopole, then the following hold

1. |Φ|2 is subharmonic and so has no local maxima, in fact ∆|Φ|2 = −2|∇AΦ|2. Moreover,

one can also compute that ∆|Φ| = |Φ|−1
(
|∇|Φ||2 − |∇AΦ|2

)
, which is ≤ 0 by Kato’s

inequality.

2. The energy over a precompact set U with smooth boundary is given by the flux
∫
∂U 〈Φ, FA〉.

Now let (X, g) be an AC 3 manifold as in definition 1.1.5, with asymptotic cone C(Σ). The

next two results will be used later in this chapter for the construction of monopoles on AC 3

manifolds.

Lemma 2.1.5. Let∇A be a metric compatible connection on a Hermitian vector bundle E over an

AC manifold (X3, g). Then, for all α ∈ [1, 3], there is a constant cK(α) > 0, such that

(∫
X
|ρ

1
2u|2αdvolg

ρ3

) 1
2α

≤ cK(α)

(∫
X
|∇Au|2

) 1
2

for all smooth and compactly supported section u. In particular for α = 3, 1 one has respectively

‖u‖2L6
≤ cK‖∇Au‖2L2

and ‖ρ−1u‖2L2
≤ cK‖∇Au‖2L2

.

Proof. Kato’s inequality |∇|u|| ≤ |∇Au|, holds pointwise for all irreducible Hermitian connections.

The proof follows from combining this with corollary 1.3 in [Hei11].

Lemma 2.1.6. In the conditions of lemma 2.1.5. Let u be a section such that ∇Au ∈ L2, then

there is a covariant constant limit u|Σ ∈ Γ(Σ, E|Σ). Moreover, on the cone C(Σi) over each end

there is an inequality

‖|u| − uΣi‖L2α

0,− 1
2

≤ ‖∇Au‖L2 .

Proof. This lemma is a particular case of propositions A.0.16 and A.0.17 in the Appendix A.
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2.2 Symmetric Monopoles on R3

Let g be a spherically symmetric metric on R3. Then, on R3\{0} = R+ × S2, one can write

g = dr2 + h2(r)gS2 , (2.2.1)

with h(r) = r + h3r
3 + ..., in order for the metric to be smooth and have bounded curvature at

r = 0. This section studies spherically symmetric monopoles on the trivial SU(2) bundle over

(R3, g). Under suitable conditions on h spherically symmetric solutions are constructed and these

solve a system of nonlinear first order ODE’s for two real valued functions a, φ. These ODE’s have

a singularity at r = 0 and are given by

φ̇ =
1

2h2
(a2 − 1) (2.2.2)

ȧ = 2φa. (2.2.3)

together with the conditions a(0) = 1, φ(0) = 0 and that a grows at most polynomially in r,

i.e. limr→+∞ r
−ka = 0, for some k ∈ Z. The first two of these are necessary and sufficient

to guarantee the solution extends over r = 0 (they guarantee the curvature and the Higgs field

are bounded) [SS84]. To understand the third condition, recall that there is a unique spherically

symmetric connection∇∞ on the Höpf bundle over the S2. Then, one must require that over the 2

sphere at infinity, the connection is asymptotic to the reducible connection induced by ∇∞. Using

any metric with polynomial volume growth (the Euclidean metric for example) in order to compare

connections certainly implies the condition that a must grow at most polynomially. In fact, for the

applications in the current thesis, the metric g itself has polynomial volume growth and requiring

that the connection is asymptotic to∇∞ with respect to g does imply that there is k ∈ Z such that

limr→+∞ r
−ka = 0.

Notice that in case φ does not explode at a finite r, then sign(a) is preserved by the evolution.

As changing a by −a keeps the equations invariant there is no loss in restricting to the case a > 0.

All the results of this section can be interpreted as properties of this system of ODE’s and that is in

fact the relevant point of view for the applications in the current thesis. The moduli spaceMinv of

spherically invariant monopoles on (R3, g) modulo the action of the spherically symmetric gauge

transformations is defined by

Minv =
{

(a, φ)
∣∣∣ solving 2.2.2 with a(0) = 1, φ(0) = 0 and ∃k∈Z lim

r→+∞
r−ka = 0

}
. (2.2.4)

The metric g will be called non-parabolic if its Green’s function G is bounded above, then it is

uniquely defined by

G(r) = −
∫

1

2h2(r)
dr , lim

r→∞
G = 0.

It will be shown that spherically invariant solutions to the Bogomolnyi equations actually have



2.2. SYMMETRIC MONOPOLES ON R3 35

bounded Higgs field Φ and a well defined mass

m(A,Φ) = lim
r→∞

|Φ(r)|.

Recall proposition 2.1.3, which contains a very important scaling property of the Bogomolny

equations and denote by sδ(x) = δx the scaling map on R3. This can be used to map a monopole

(A,Φ) for the metric g into a monopole s∗δ(A, δΦ) for the metric δ−2s∗δg. In the case where g = gE

is the Euclidean metric there is a unique mass 1 and charge 1 monopole known as the BPS

monopole [PS75], this is spherically symmetric and denoted by (ABPS ,ΦBPS). Moreover, the

Euclidean metric is scale invariant and so from (ABPS ,ΦBPS) one can construct a whole family

of monopoles (ABPSm ,ΦBPS
m ) = s∗m(A,mΦ), related by scaling and parametrized by their mass

m ∈ R+. The solutions constructed in this chapter are modeled on these and the main result is

Theorem 2.2.1. Let g be spherically symmetric, real analytic and non-parabolic. Then,Minv is

nonempty and consists of real analytic monopoles. Moreover, the following hold:

1. For all monopoles inMinv, the Higgs field is bounded and Φ−1(0) = 0 is the origin in R3.

Moreover, the mass is well defined and gives a bijection

m :Minv → R+.

2. Let {(Aλ,Φλ)}λ∈[Λ,+∞) ∈Minv a sequence of monopoles with mass λ converging to +∞.

Then, for all R > 0 there is a sequence η(λ,R) converging to 0 as λ converges to +∞, such

that the rescaled monopole

s∗η(Aλ, ηΦλ)

converges uniformly with all derivatives to the BPS monopole (ABPS ,ΦBPS) in the ball of

radius R in (R3, gE).

3. Let {(Aλ,Φλ)}λ∈[Λ,+∞) be the sequence above. Then the translated sequence(
Aλ,Φλ − λ

Φλ

|Φλ|

)
,

converges uniformly with all derivatives on (R3\{0}, g) to a reducible monopole made of

two copies of the g-Dirac monopole (AD,ΦD = G) with zero mass.

Remark 2.2.2. The above statement is not at all surprising and in fact it is possible to prove that if

in the complement of some ball h2(r) ≥ cr1+ε, for some c, ε > 0 (g is non-parabolic in this case).

Then, there is a spherically symmetric finite energy solution to the Yang-Mills-Higgs equations

d∗AFA = [∇AΦ,Φ], ∆AΦ = 0 in (R3, g) with bounded Higgs field. This can be achieved by direct

minimization of the spherically invariant Yang-Mills-Higgs functional on (R3, g).

The proof of theorem 2.2.1 occupies the rest of this chapter, which is organized in the following

way. In section 2.2.1 the reduction to an ODE of the Bogomolny equations in (R3, g) is outlined
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and an explicit formula for the BPS monopole with the Euclidean metric is given. For general

spherically symmetric metrics g, the solutions to the ODE’s 2.2.2 are not known. Besides these

ODE’s being nonlinear, there is a singularity at the origin, r = 0. The initial conditions one would

like to give at r = 0 do not satisfy the Lipschitz hypothesis required by the standard existence and

uniqueness theorem for ODE’s. It is then convenient to go back to elliptic PDE theory and obtain a

solution on the ball Bδ(0) which can be used to give initial conditions at the Lipschitz point r = δ.

Instead of solving the monopole equations for the metric g in the ball Bδ, use the scale invariance

of the Bogomolny equations stated in proposition 2.1.3 in order to solve the equations for the metric

gδ = δ−2s∗δg on its unit ball. Then, one obtains

Proposition 2.2.3. For each m ∈ R+, there is ∆(m) > 0, such that for each δ ≤ ∆(m) there is a

spherically symmetric, real analytic monopole (Ãδm, Φ̃
δ
m) for gδ in B1(0).

This is basically proposition 2.2.8 in 2.2.2. Then given a monopole (Ãδm, Φ̃
δ
m) for gδ in B1(0),

proposition 2.1.3 gives that (Aδm,Φ
δ
m) = s∗δ−1(Ãδm, δ

−1Φ̃δ
m) is a monopole for g on Bδ(0). A first

step towards the proof of the first item in theorem 2.2.1 is achieved by applying the ODE analysis in

section 2.2.3 to the solutions constructed on Bδ(0) which provide initial conditions for the ODE’s

at r = δ. This analysis gives,

Proposition 2.2.4. There is a one parameter family of spherically symmetric monopoles on (R3, g).

Moreover, these can all be obtained by extending the monopoles (Aδm,Φ
δ
m) on (Bδ(0), g) for (m, δ)

such that m ∈ R+ and 0 < δ ≤ ∆(m).

Proof. In Lemma 2.2.12 a Taylor expansion for solutions of the ODE is obtained. It gives a

recursive formula which depends only on 1 parameter φ̇(0). The lemma does not address the

question of convergence and there are basically 3 different possibilities.

1. Case φ̇(0) = 0, is the easiest one. In this case there is indeed a unique solution given by

a = 1 and φ = 0 and recovers back the flat connection. In terms of the notation in lemma

2.2.12 note that this corresponds to v = 0.

2. Case φ̇(0) > 0, for which there are no solutions, as proved in section 2.2.3, corollary 2.2.16

in terms of the function v = log(a2) defined in the beginning of section 2.2.3.

3. Case φ̇(0) < 0, this is the case for which the PDE analysis shows existence of solutions. If

one can find in the 2 parameter family constructed by the analysis a solution for each value

of φ̇(0) < 0. Then, lemma 2.2.12 gives uniqueness of solutions for each value of φ̇(0) < 0

and makes of this a genuine global coordinate forMinv.

To proceed one shows that the PDE construction of the solutions (Aδm,Φ
δ
m) for (m, δ) with

m ∈ R+ and 0 < δ ≤ ∆(m) does indeed give configurations with all negative values of φ̇(0).

This is the reason why one uses two parameters in the construction of monopoles, i.e. with the two

parameters (m, δ) it is easier to tune the properties of the monopole constructed than with only

one parameter. Estimate 2.2.23 in lemma 2.2.13 gives bounds on φ̇ ∈ [I(m, δ), J(m, δ)]. Then,

lemma 2.2.14 gives two sequences of (mn, δn). The first makes the lower bound In = I(mn, δn)
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get as close to zero as one wants, while the second one makes the upper bound Jn = J(mn, δn)

get as close to −∞ as one wants. The fact that all intermediate values are obtained follows from

continuity.

Proposition 2.2.5. LetR > 0, then there is a sequence δ converging to zero, such that the monopole

s∗δ
R

(
AδR,

δ
RΦδ

R

)
converges uniformly with all derivatives to (ABPS ,ΦBPS) on the Euclidean ball

BR(0).

Proof. One needs to prove that for all ε > 0, there is δ, such that

‖s∗δ
R

(
AδR,

δ

R
Φδ
R

)
− (ABPS ,ΦBPS)‖C∞(BR) ≤ ε.

In a first step one can consider s∗δ
(
AδR, δΦ

δ
R

)
=
(
ÃδR, Φ̃

δ
R

)
, then the estimate in proposition 2.2.8

gives that for all ε > 0, there is ∆(R, ε), such that for δ ≤ ∆(R, ε)

‖s∗δ
(
AδR, δΦ

δ
R

)
− (ABPSR ,ΦBPS

R )‖C∞(B1) ≤ ε,

for the norm induced by the Euclidean metric. Since the Euclidean metric is invariant by scaling and

(ABPSR ,ΦBPS
R ) = s∗R(ABPS , RΦBPS) one can scale everything by R−1 and obtain the desired

result for δ = ∆(R, ε).

The next proposition will finish the proof of both the first and second items in theorem 2.2.1.

The first item will be immediate from the statement and for the second item one needs to combine

the statement with the previous proposition 2.2.5, in order to match those monopoles with the large

mass limit.

Proposition 2.2.6. For all monopoles inMinv, the mass is well defined and gives a bijection

m :Minv → R+.

Moreover, fix R > 0 and let δ → 0, the sequence of monopoles
(
AδR,Φ

δ
R

)
previously

constructed has mass m(δ)→ +∞.

Proof. One already knows thatMinv
∼= R+ corresponding to each value of −φ̇(0) and this can

be used to topologiseMinv as a 1 dimensional manifold. The next step one needs to take care

is in showing that the map m is surjective. From proposition 4.3.19 and its corollary 2.2.20

one knows that for all 0 < ε < ε0, m > 0 and δ ≤ ∆(m, ε) there are bounds m(Aδm,Φ
δ
m) ∈

[Φ−(m, ε),Φ+(m, ε)], given by

Φ−(m, ε) =
1

δ
(m coth(m)− 1− 2ε) , Φ+(m, ε) =

1

δ
(m coth(m) + 2ε+G(δ)) + 2G(δ).

Take both m, ε converging to zero in the same way as in the first sequence in lemma 2.2.14 with
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εn = mα
n, with α < 1. Then, it is straightforward to check that

lim
mn→0

|Φ+(mn, εn)| = 0.

The other extreme can be made using the second sequence in lemma 2.2.14, this keeps m fixed but

sends ε→ 0, moreover the choice of δn ≤ ∆(m, εn) is such that εnδn still converges to 0. Then

lim
εn→0

|Φ−(m, εn)| = +∞,

which gives the surjectivity of of the mass onto the positive real line. This second sequence also

establishes that the mass of the monopoles
(
AδR,Φ

δ
R

)
diverges. Just take m = R fixed and δ

converging to zero as it was just done. The last step is to show that the derivative of the map

m is everywhere injective. As m is a map between 1 dimensional manifolds, this together with

the surjectivity proved above imply the mass is actually a diffeomorphism. Let (A,Φ) ∈ Minv,

then any v ∈ T(A,Φ)Minv ⊂ Ω1 ⊕ Ω0(R3, su(2)) is represented by two functions (b, ψ) of r

solving the linearized monopole ODE’s. This mean that b(0) = ψ(0) = 0 and they solve ψ̇ = ab
h2 ,

ȧ = 2φb+ 2aψ. Differentiating the first of these equations and using the second to substitute for b

gives a second order ODE for ψ

ψ̈ + (2∂r (log(h))− 4φ) ψ̇ − 2a2ψ = 0. (2.2.5)

Solutions to this satisfy a maximum principle

• If ψ has a maximum at M , then ψ̈(M) ≤ 0 and ψ̇(M) = 0 and so ψ(M) ≤ 0,

• If ψ has a minimum at m, then ψ̈(m) ≥ 0 and ψ̇(m) = 0 and so ψ(m) ≥ 0.

The derivative of the mass is

dm(v) = 2ψ(∞) : R→ R.

If v is in the kernel of dm, then ψ(∞) = 0. The argument using these maximum principles is as

follows. If ψ(0) = 0, one concludes that ψ must have a positive maximum or a negative minimum.

Both of these hypothesis are impossible due to the maximum principle unless if ψ = 0 and hence

also b = 0, which gives v = 0.

The last item which remains to be shown is that in the large mass limit after bubbling a BPS

monopole at 0, one is left with a g-Dirac monopole on the exterior.

Proposition 2.2.7. Let {(Aλ,Φλ)}λ∈[Λ,+∞) be a sequence of monopoles with mass λ→∞. Then

the translated monopole sequence (
Aλ,Φλ − λ

Φλ

|Φλ|

)
,

converges uniformly with all derivatives to direct sum of two g-Dirac monopoles (AD,ΦD = G)

with mass 0, on (R3\{0}, g).
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Proof. Working in a fixed gauge to this amounts to prove that given R > 0 and ε > 0, there is a λ

such that ‖(Φλ + λ/2T1)−GT1‖C∞[R,+∞) ≤ ε. For this one needs to study the function

u =

(
−λ

2
+G

)
− φλ,

where φλ is the scalar such that Φλ = φλT1. Then u̇ = − 1
2h2 − 1

2h2 (a2
λ−1) = − a2

λ
2h2 , which shows

that u̇ < 0. This, together with limr→∞ u = 0 can be integrated to give

u(r) ≤ G(r) sup
t∈[R,+∞)

a2
λ(t).

Moreover, G is bounded in [R,+∞) and a2
λ is decreasing, so that a2

λ ≤ a2
λ(R). Now it is time

to pick δ,m such that aλ = aδm. This may be done with δ(λ),m(λ) as in the second sequence in

lemma 2.2.14, but such that such that m(λ) also converges to∞ (see the proof of lemma 2.2.14).

Then δ(λ) converges to 0 and as a2
λ is decreasing a2

λ ≤ a2
λ(δ) ∼ me−m by the estimates in lemma

2.2.13, which converges to 0.

2.2.1 The SU(2) Invariant Bogomolny Equations

As R3\0 ∼= R+ × S2, one pulls back the homogeneous bundle

Pk = SU(2)×λk SU(2),

from S2 ∼= SU(2)/U(1). Where λk : U(1) → SU(2) is the isotropy homomorphism given

by taking λk(eiα) = diag(eikα, e−ikα), for k ∈ Z. Let T1, T2, T3 be a basis of su(2), such that

[Ti, Tj ] = 2εijkTk, and ω1, ω2, ω3 the dual coframe. Let h = T1 and m = 〈T2, T3〉, this splitting

equips the Höpf bundle SU(2)→ S2 with an SU(2) invariant connection whose horizontal space is

m. This induces a connection in each Pk known as the canonical invariant connection. It is encoded

by the 1-form Ack = kT1 ⊗ ω1 ∈ Ω1(SU(2), su(2)). By Wang’s theorem B.0.21, other invariant

connections differ from it by morphisms of U(1)-representations (m, Ad)→ (〈T2, T3〉, Ad ◦ λk).

Invoking Schur’s lemma these vanish for all k 6= ±1, and are isomorphisms for k = ±1. Suppose

k = 1, then

A = Ac + a(r)(T2 ⊗ ω2 + T3 ⊗ ω3),

with a : R+ → R. The curvature of such a connection is given by FA = 2(a2 − 1)T1 ⊗
ω23 + ȧ

(
T2 ⊗ dr ∧ ω2 + T3 ⊗ dr ∧ ω3.

)
. For each r ∈ R+ an invariant Higgs field Φ(r) ∈

Ω0({r} × SU(2), su(2)) must be a constant in the trivial component of the U(1) representation

(su(2), Ad ◦ λ), i.e. Φ = φ(r) T1, with φ : R+ → R. Its covariant derivative∇AΦ with respect to

the connection A is∇AΦ = φ̇T1 ⊗ dr+ 2aφ
(
T2 ⊗ ω3 − T3 ⊗ ω2

)
. The metric 2.2.1 on R+ × S2

can then be written as g = dr2 + 4h2(r)(ω2 ⊗ ω2 + ω3 ⊗ ω3) and is invariant under the SU(2)

action, i.e. spherically symmetric. The Bogomolny equation ∗∇AΦ = FA turns into the ODE’s

2.2.2 and 2.2.3 and explicit solutions to these are known in two different cases.
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First, and most important here is the Euclidean case h(r) = r. Some special solutions are the

flat connection |a| = 1 and φ = 0 and the Dirac monopole with a = 0 and φ = m− 1
2r , for m ∈ R.

For a 6= 0, the general solution to the ODE’s is

φBPSC,D =
1

2

(
1

r
− C

tanh(Cr +D)

)
, aBPSC,D =

Cr

sinh(Cr +D)
. (2.2.6)

The solutions with D = 0 and C = m <∞ are the only ones that extend over the origin, giving

rise to irreducible monopoles on R3. These are the so called BPS monopole (aBPSm , φBPSm ) and

first appeared in [PS75]. For small r

φBPSm (r) = −m
2r

6
+
m4r3

90
+ ... , aBPSm (r) = 1− m2r2

6
+

7m4r4

360
− ...

while for large r

φBPSm (r) = −1

2

(
m− 1

r

)
+O(e−mr) , aBPSm (r) = O(2re−mr).

In the hyperbolic case h(r) = sinh(r) and there is also a one parameter family of monopoles

parametrized their mass m ∈ R+ and given by

φm(r) =
1

2

(
1

tanh(r)
− m+ 1

tanh((m+ 1)r)

)
, am(r) =

(m+ 1) sinh(r)

sinh((m+ 1)r)
. (2.2.7)

In both cases the parameter m is the asymptotic value of the Higgs field at∞, i.e. the mass of the

monopole.

2.2.2 PDE Analysis

The metric gδ = δ−2s∗δg on its unit ball can be written as

gδ = dt2 + h2
δ(t)gS2

where t ∈ (0, 1) is the geodesic coordinate of the new metric (i.e. δt = r ◦ sδ) and h2
δ(t) =

t2 + δ2Gδ(t), with Gδ an analytic function such that Gδ(t)
t4

can be bounded independently of δ.

This changes the problem of solving the equations in a small δ ball to that of solving the equations

in a unit ball but with a varying metric gδ, which is a spherically symmetric perturbation in δ from

the Euclidean one. So one needs to solve ∗δFA −∇AΦ = 0, where ∗δ is the gδ-Hodge operator.

For each m ∈ R+ consider the mass m Euclidean BPS monopoles [PS75], (ABPSm ,ΦBPS
m ). Their

error term

εδm = ∗δFABPSm
−∇ABPSm

ΦBPS
m = O((δm)2),

is small and vanishes for δ = 0, where the metric is Euclidean. The idea is to use these as

approximate solutions and search for a solution of the form (Aδm,Φ
δ
m) = (ABPSm ,ΦBPS

m ) + (b, ψ),

with v = (b, ψ) a section of
(
Λ1 ⊕ Λ0

)
⊗ su(2)). The Bogomolny equation looks like a first order
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quasilinear PDE and

P (u) = εmδ + d2(v) +Q(v, v) = 0, (2.2.8)

whereQ(v, v) = ∗[b∧b]− [b, ψ] is a quadratic 0 order term and the linearized Bogomolnyi equation

as in formula 2.1.3. Search for a solution of the form v = d∗2u, then the new problem is to solve

P (d∗2u) = 0, and a first step to do this is to find an inverse for d2d
∗
2. This can be achieved by further

requiring a boundary condition giving rise to an elliptic problem,

εδC + d2d
∗
2(u) +Q(d∗2u, d

∗
2u) = 0, (2.2.9)

u|∂B1(0) = 0. (2.2.10)

The claim is that the Dirichlet boundary allows inverting d2d
∗
2. This follows from a Weitzenböck

formula, which at δ = 0 is

d2d
∗
2u = ∇∗ABPSm

∇ABPSm
u−

[
[u,ΦBPS

m ]ΦBPS
m

]
,

acting on su(2) valued 1 forms. Then d2d
∗
2 at δ = 0, together with the boundary condition

u|∂B1 = 0 is an elliptic, positive and self adjoint operator. As it is self adjoint it has index 0 and

the boundary condition and positivity show it has zero kernel. So at δ = 0, the unique solution is

u = 0 and the linearisation of P (d∗2u) is d2d
∗
2 which has a bounded inverse

L : Ck,α → Ck+2,α.

The Implicit Function Theorem applies and for each m ∈ R+ there is ∆(m), such that for all

δ < ∆(m), there is a small solution uδm of 2.2.9. Since εδm and the metric are analytic, elliptic

regularity guarantees that uδm is itself analytic, see sections 5.8 and 6.7 of [Mor08]. This result can

be improved to come together with useful estimates which are stated in the following

Proposition 2.2.8. Let m > 0, then for all positive ε, there is ∆(m, ε) > 0, such that for

δ ≤ ∆(m, ε), the solution uδm is the unique one satisfying

‖d∗2uδm‖C∞ ≤ ε. (2.2.11)

Moreover, uδm is real analytic and for a bound in the C1 norm it is sufficient to take ∆(m, ε) =
1
m min

{√
ε

‖d∗2‖‖L‖
1

‖d∗2‖‖L‖

}
, where ‖d∗2‖, ‖L‖ denote the norms of the operators d∗2 : C1,α →

C0,α and L : C0,α → C2,α.

To prove proposition 2.2.8 one uses an alternative formulation to the Implicit Function Theorem

via interpreting 2.2.9 as a fixed point equation and making use of the following lemma. It is

proved by using the contraction mapping principle and keeping track of the norms in the iterations

converging to the solution, see lemma 7.2.23 in [DK90].

Lemma 2.2.9. Let B be a Banach space and q : B → B a smooth map such that for all u, v ∈ B

‖q(u)− q(v)‖ ≤ k (‖u‖+ ‖v‖) ‖u− v‖,
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for some fixed constant k (i.e. independent of u and v). Then, if ‖v‖ ≤ 1
10k there is a unique

solution u to the equation

u+ q(u) = v, (2.2.12)

which satisfies the bound ‖u‖ ≤ 2‖v‖.

This is applied to prove proposition 2.2.8 as follows. Let B be the space of C2,α sections of

Λ1B1(0) vanishing at the boundary and apply L to the left of P (d∗2u) = 0, this equation is now the

form of 2.2.12

u+ LQ(d∗2u, d
∗
2u) = −Lεδm,

and q(u) = LQ(d∗2u, d
∗
2u) does satisfy the hypothesis of lemma 2.2.9 as shown below

‖q(u)− q(v)‖C2,α = ‖LQ(d∗2u, d
∗
2u)− LQ(d∗2v, d

∗
2v)‖C2,α = ‖LQ(d∗2(u+ v), d∗2(u− v)‖C2,α

≤ cst.‖L‖‖d∗2(u+ v)‖C0,α‖d∗2(u− v)‖C0,α

≤ cst.‖L‖‖d∗2‖2 (‖u‖C2,α + ‖v‖C2,α) ‖u− v‖C2,α

So that k = cst.‖L‖‖d∗2‖2. Then, the lemma applies for ‖Lεδm‖C0,α ≤ cst.k−1, since ‖Lεδm‖C2,α ≤
‖L‖‖εδm‖C0,α it is enough to guarantee that

‖εδm‖C0,α ≤ cst.(‖L‖‖d∗2‖)−2, (2.2.13)

and in this case there is a unique solution uδm satisfying the estimate ‖uδm‖C2,α ≤ cst.‖Lεδm‖C2,α .

Proposition 2.2.8 is proven by showing that given ε > 0 it is possible to make ‖d∗2uδm‖C1,α ≤ ε.

Since

‖d∗2uδm‖C1,α ≤ ‖d∗2‖‖uδm‖C2,α ≤ cst.‖d∗2‖‖L‖‖εδm‖C0,α ,

it is enough to make δ ≤ δ(m, ε) small enough so that ‖εδm‖C0,α ≤ ε‖d∗2‖−1‖L‖−1. Having in

mind that one still needs to guarantee the estimate 2.2.13 holds, one concludes that ‖εδm‖C0,α needs

to be small enough so that

‖εδm‖C0,α ≤ cst.min{‖L‖−1‖d∗2‖−1ε, ‖d∗2‖−2‖L‖−2}. (2.2.14)

Lemma 2.2.10. The estimate ‖εδm‖C0,α ≤ cst.m2δ2 holds.

Proof. For δ 6= 0, the error term does not vanish and is given by

ε0 = ∗FAm0 −∇Am0 ΦC
0 =

a2
m − 1

2t2

(
t2

h2
δ

− 1

)
T1 ⊗ dt. (2.2.15)

Moreover, the point-wise norm of the above quantity is

|ε0| ≤
1− a2

m(t)

2t2
δ2 |Gδ(t)|

t2
+ o(δ4) ≤ δ2 sup

t∈[0,1]

(
| ˙φm|
|Gδ(t)|
t2

)
.

Since as remarked at the beginning of this subsection |G(t)|
t4

can be bounded independently of δ on
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can just use the explicit formula for φm and compute supt∈[0,1] | ˙φm| = m2

6 the result follows. In

fact, it is easy to see that this also holds for the C1-norm and so for all C0,α norms with α < 1.

Putting this together with equation 2.2.14 finally gives that is is enough to set δ ≤ ∆(m, ε),

with

∆(m, ε) =
1

m
min

{√ ε

‖d∗2‖‖L‖
,

1

‖d∗2‖‖L‖

}
, (2.2.16)

in order to obtain

‖d∗2uδm‖C1,α ≤ ε.

Improving this to a C∞ bound can be made by standard bootstrapping arguments in elliptic PDE

theory. Notice that all the coefficients of the PDE are real analytic as the BPS monopole is real

analytic and so is the metric by assumption. Then it follows by the regularity theory for elliptic

PDE’s, sections 5.8 and 6.7 of [Mor08], that the solution uδm is real analytic. This finishes the proof

of proposition 2.2.8.

The solution to the monopole equations onB1(0) for the metric gδ obtained is
(
ABPSm ,ΦBPS

m

)
+

d∗2u
δ
m. Denote by (d∗2u

δ
m)i the component of d∗2u

δ
C in Λi, then proposition 2.1.3 gives the monopole

on Bδ(0) for the metric g, given by(
Aδm,Φ

δ
m

)
=

(
s∗δ−1(ABPSm + (d∗2u

δ
m)1), δ−1s∗δ−1(ΦBPS

m + (d∗2u
δ
m)0)

)
=

(
ABPSδ−1m + s∗δ−1(d∗2u

δ
m)1,Φ

BPS
δ−1m + δ−1s∗δ−1(d∗2u

δ
m)0)

)
(2.2.17)

Rescaling the estimate 2.2.11 gives

Lemma 2.2.11. Let m and ε be positive, then for δ ≤ ∆(m, ε), the monopole
(
Aδm,Φ

δ
m

)
for g in

Bδ is such that

‖Aδm −ABPSδ−1m‖C∞(Bδ) + ‖Φδ
m − ΦBPS

δ−1m‖C∞(Bδ) ≤ δ−1ε, (2.2.18)

where the norms are measured in the metric g. In particular, there is ε0(m) = 1
‖d∗2‖‖L‖

> 0, such

that for all ε ≤ ε0(m) and δ = ∆(m, ε)

‖Aδm −ABPSδ−1m‖C∞(Bδ) + ‖Φδ
m − ΦBPS

δ−1m‖C∞(Bδ) ≤ m

√
ε

ε0
, (2.2.19)

and once again the norms are measured using the metric g.

Proof. Denote by (Br, g) the radius r ball centred at zero where the distance r is measured with

respect to the metric g. Then, as sets (Bδ, g) = (B1, gδ), moreover the norm of a 1 form ω gets

scaled according to |ω|g = δ−1|ω|δ−2g

‖Aδm −ABPSδ−1m‖C∞(Bδ,g) = δ−1‖s∗δ−1(d∗2u
δ
m)1‖C∞(Bδ,sδ−1gδ) ≤ δ

−1‖(d∗2uδm)1‖C∞(B1,gδ) ≤ δ
−1ε.
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In the same way for Φδ
m one computes

‖Φδ
m − ΦBPS

δ−1m‖C∞(Bδ,g) = δ−1‖(d∗2uδm)0‖C∞(Bδ,g) ≤ δ
−1‖(d∗2uδm)0‖C∞(B1,gδ) ≤ δ

−1ε.

the second statement follows directly from inserting the formula 2.2.16 and ε0 is determined by

ε0(m) = 1
‖d∗2‖‖L‖

in order to make the first term in 2.2.16 smaller than the second.

2.2.3 ODE Analysis

Recall the monopole ODE’s 2.2.2 and 2.2.3 and define v = 2 log(a) (note that this implies v̇ = 4φ)

and write the equations 2.2.3 as a second order ODE for v

v̈ =
2

h2
(ev − 1) . (2.2.20)

The first result in this section gives conditions on the existence of a formal power series solution to

equation 2.2.20. Before the statement, recall that one is interested in solutions of 2.2.3 satisfying

a(0) = 1, φ(0) = 0 and limr→∞ r
−ka(r) = 0, for some k ∈ Z. Translated into v, these are the

conditions that v(0) = v̇(0) = 0 and limr→∞ r
−kev(r) = 0, for some k ∈ Z.

Lemma 2.2.12. Let h be analytic and b ∈ R. Write h2(r) = r2ϕ(r) with ϕ(r) analytic such

that its expansion can be written as ϕ(r) =
∑

i≥0 ϕir
i, with ϕ0 = 1. Then, there is a unique

formal power series solution v =
∑

i≥0 vir
i to the equation 2.2.20 such that v(0) = v̇(0) = 0 and

v̈(0) = b ∈ R. It is determined by v0 = v1 = 0, v2 = b and

vi+2 =
2

i(i+ 3)

∑
k≥2

1

k!

∑
l1+...+lk=i+2

vl1 ...vlk

+
∑
j<i

ϕi−j

∑
k≥1

1

k!

∑
l1+...+lk=j+2

vl1 ...vlk

 ,

(2.2.21)

for all i+ 2 ≥ 3.

Proof. Substituting into the equation shows that the recurrence relation formally satisfies equation

2.2.20. It remains to check that the recurrence relation is completely determined by setting

v0 = v1 = 0 and v2 = b ∈ R. This, as well, can be directly checked from equation 2.2.21. To do

this notice that the first term ∑
k≥2

1

k!

∑
l1+...+lk=i+2

vl1 ...vlk ,

contains no terms in vi+2, since k ≥ 2 and so one must have at least two vl’s. Since v0 = 0, each

l ≥ 1, which is the same as saying that each l ≤ i+ 1. As for the second term

∑
j<i

ϕi−j

∑
k≥1

1

k!

∑
l1+...+lk=j+2

vl1 ...vlk

 ,

it just contains terms in j + 2 < i+ 2.

The monopoles from the last section give a family of solutions (Aδm,Φ
δ
m) on r ≤ δ depending
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on two parameters m ∈ R+ and δ ≤ ∆(m). These can be used to give initial conditions for the

ODE’s at r = δ. The estimates from lemma 2.2.11, can be used to obtain estimates to these initial

conditions as follows.

Lemma 2.2.13. Let m ∈ R+ and ε > 0, then for all δ ≤ ∆(m, ε) the monopole (Aδm,Φ
δ
m)

constructed in the previous section has its fields satisfying

|φδm(δ)− 1

2δ
(1−m coth(m)) | ≤ δ−1ε, (2.2.22)

and |aδm(δ)− m
sinh(m) | ≤ δ

−1ε. Moreover, the following estimate also holds

φ̇δm(0) ∈ [I(m, δ), J(m, δ)] , (2.2.23)

with I(m, δ) = −1
6
m2

δ2 − εδ−1 and J(m, δ) = −1
2
m2

δ2

(
m−2 − sinh−2(m)

)
+ εδ−1.

Proof. The estimates from lemma 2.2.11 guarantee that

sup
r≤δ

(
|φδm − φBPSδ−1m|+ |h

−1
(
aδm − aBPSδ−1m

)
|
)
≤ δ−1ε.

Using the explicit formulas φBPSδ−1m(δ) = 1
2δ (1−m coth(m)) and aBPSδ−1m(δ) = m

sinh(m) , one obtains

the desired bounds on the values of the fields at δ. Since lemma 2.2.11 actually gives C1 estimates

one also has supr≤δ | ˙φδm − φ̇BPSδ−1m| ≤ δ−1ε and once again the explicit formula for φ̇BPSδ−1m gives

the result in the statement. In order to obtain the bounds stated one must notice that φ̇BPSδ−1m is

increasing, so one bounds below by φ̇BPSδ−1m(0) and above by φ̇BPSδ−1m(δ).

The following lemma contains two sequences of values (mn, εn) inducing sequences of values

(mn, δn) which can be used to show that the PDE constructed monopoles are actually all monopoles

as done in proposition 2.2.4 and that there are monopoles with all values of mass m ∈ R+ as done

in proposition 2.2.6.

Lemma 2.2.14. Let I, J be the quantities provided by the previous lemma, then:

1. There are sequences (mn, εn) and δn ≤ ∆(mn, εn), such that In = I(mn, δn) → 0.

Moreover, for this sequence of (mn, εn) and δn, the quantity

Φ+(n) =
1

δn
(mn coth(mn)− 1 + 2εn) + 2G(δn),

also converges to zero.

2. There are other sequences (mn, εn) and δn ≤ ∆(mn, εn), such that Jn = J(mn, δn) =→
−∞. For these sequences of (mn, εn) and δn, the quantity

Φ−(n) =
1

δn
(mn coth(mn)− 1− 2εn) ,

converges to +∞.
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Proof. 1. We shall first fix a sequence mn → 0. Then, mn coth(mn)− 1 = O(m2
n) and notice

that to prove the statement it is enough to show that one can take the sequences to be such that

both mn
δn

and εn
δn

converge to 0, while δn can be taken arbitrarily large, so that G(δn)→ 0. To

achieve this we shall first take mn → 0 as remarked before, and εn = ma
n, for some positive

a < 1, then εn ≤
√
εn and the formula for ∆(mn, εn) in proposition 2.2.8 is

∆(mn, εn) ≥ εn
mn

min
{ 1√
‖(d2)∗n‖‖Ln‖

,
1

‖(d2)∗n‖‖Ln‖

}
. (2.2.24)

As ‖(d2)∗n‖‖Ln‖ is uniformly bounded above and below for any sequence mn → 0, we can

take δn = C εn
mn

= Cma−1
n , for some C > 0. In this way we do have δn getting arbitrarily

large and

mn

δn
= C−1m2−a

n ,
εn
δn

= C−1mn,

which do converge to zero as mn does.

2. One can take mn = m > 0 constant and εn to be a sequence converging to zero, in this

way the inequality 2.2.24 still holds and it is enough to set δn = Cm−1εn, where C > 0 is

constant. By substitution in Jn one obtains Jn = −k1ε
−1
n + k2

√
εn, for some positive real

constants k1, k2 and this converges to −∞ as εn → 0.

To check that Φ−(n)→ +∞, notice that by increasing n, εn can be taken arbitrarily small

and so m coth(m)− 1− 2εn is greater than a positive constant C ′. Since δn = Cm−1εn is

converging to zero we see that

Φ−(n) ≥ Cm

C ′
1

εn
→ +∞.

Lemma 2.2.15. Let v be a solution of 2.2.20. Suppose v has a minimum at m, or a maximum at

M , then v(m) ≥ 0 and v(M) ≤ 0. Moreover, if v satisfies initial conditions v(δ) < 0, v̇(δ) < 0

(resp. v(δ) > 0, v̇(δ) > 0), then v < 0 (resp. v > 0) in (δ,∞).

Proof. Let m be the point at which the minimum is achieved, then v̈(m) ≥ 0 and so

2

h2
(ev − 1) ≥ 0 =⇒ v ≥ 0.

In the same way at a maximum M , v̈(M) ≤ 0 and this gives 2
h2 (ev − 1) ≤ 0, which implies v ≤ 0.

For the second part assume that v(δ), v̇(δ) < 0, then one needs to prove that v < 0, for all t ≥ δ.

Suppose not, then let x > δ be the smallest possible such that v = 0. Since v(δ), v̇(δ) < 0 there

must be a minimum m ∈ (δ, x). Applying the maximum principles just proved to conclude that

v(m) ≥ 0 and this contradicts the minimality of x.

Corollary 2.2.16. There are no solutions to the ODE 2.2.20 with v(0) = v̇(0) = 0 and limr→∞ r
−kev =

0 for some k ∈ Z, such that v̈(0) = b > 0.
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Proof. Since v(0) = v̇(0) = 0 and v̈(0) = b > 0, there is δ > 0 such that v(δ), v̇(δ) are both

positive. Then, by lemma 2.2.15, v > 0 in (δ,+∞). Using the equation v̈ = 2
h2 (ev − 1) we see

that v̈ > 0 in (δ,+∞). Integrating this gives that

v(r) ≥ v(δ) + v̇(δ)(r − δ),

for all r ≥ δ. Then r−kev ≥ r−kev(δ)+v̇(δ)(r−δ), and since v̇(δ) is positive, for all k ∈ Z this

diverges as r → +∞.

Lemma 2.2.17. Let u, v, a : (δ,∞)→ R be differentiable u < 0, such that

v̈ − av ≥ 0 , ü− au = 0.

If u(δ) = v(δ) and u̇(δ) = v̇(δ), then v(r) ≥ u(r) for all r ≥ δ.

Proof. Define f = v
u , since by assumption u < 0 it is enough to prove that f ≤ 1, for r ≥ δ

and that f ≥ 1 for r ≤ δ. Moreover, since f(δ) = 1 it is enough to prove that ḟ ≤ 0, i.e. that

v̇u− vu̇ ≤ 0. Once again, our hypothesis dictate that at r = δ this expression vanishes and so it is

enough to show that its derivative v̈u− vü is nonpositive. Substituting ü = au and v̈ ≥ av gives

that indeed v̈u− vü ≤ 0.

Proposition 2.2.18. Let v be a solution of 2.2.20 on (δ,∞), with the initial conditions v(δ) =

−k2 < 0 and v̇(δ) = −k1 < 0, for some positive constants k1, k2. Then, for t ≥ δ

vb(r) ≤ v(t) ≤ vu(r),

where vb(r) = −k2− k1(r− δ)− 2
∫ r
δ

∫ s
δ h
−2(s′)ds′ds, and vu(t) solves v̈u− 2

h2 vu = 0 with the

initial conditions vu(δ) = −k2, v̇u(δ) = −k1.

Proof. Since the function F (v) = ev is convex it lies above all its tangents, then v̈ = 2
h2 (ev− 1) ≥

2
h2 v. The second step is using lemma 2.2.17 with a = 2

h2 and u = vb to obtain the lower bound.

The upper bound comes from integrating v̈ ≥ − 2
h2 , which holds since ev is positive.

Insert a2 = ev into the first monopole ODE in 2.2.3, then

φ̇ =
1

2h2
(ev − 1).

The above bounds on v can be used to estimate the values of the Higgs field. However, in the

following application a crude approach to these bounds will be given. Since v̈(0) < 0, the maximum

principle from lemma 2.2.15 guarantees v ≤ 0 for all r. Moreover, the standard existence and

uniqueness theorem applies locally at r = δ and the estimates in 2.2.23 show this extends to the

right. Moreover, this can be applied to compute

Proposition 2.2.19. Let (a, φ) be a solution to the monopole ODE’s 2.2.3, then for all t ∈ (δ,∞)

φ(δ) ≥ φ(r) ≥ φ(δ)−
∫ r

δ

1

2h2(t)
dt.
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So, if the Green’s function G(r) = −
∫

1
2h2(r)

dr is bounded at∞, then so is the Higgs field.

This together with the fact that φ̇(r) → 0 as r → ∞ allows the conclusion that the limit

φ(∞) = limr→∞ φ(r), exists and is finite. As an application one obtains

Corollary 2.2.20. Let g be a spherically symmetric metric and (A,Φ) ∈ Minv an invariant

monopole on (R3, g). The norm of the Higgs field is dominated by the Green’s function G.

Moreover, if G is bounded at infinity then the mass m(A,Φ) exists and is finite. Let m ∈ R+ and

ε > 0, then for δ ≤ ∆(m, ε), the monopole (Aδm,Φ
δ
m) satisfies

m(Aδm,Φ
δ
m) ∈

[
1

δ
(m coth(m)− 1− 2ε) ,

1

δ
(m coth(m) + 2ε) + 2G(δ)

]
.



Chapter 3

Monopoles on Calabi-Yau 3 Folds

This chapter is organized as follows, in section 3.1 one defines complex monopoles and also a

particular case of these which shall be called just Calabi-Yau monopoles. For complex monopoles,

one goes to study the associated linearized operator, which fits into an elliptic complex. This is

done in subsection 3.1.2 and is a necessary step in order to use the results of chapter 5. Subsection

3.1.3 defines the relevant energies for complex monopoles and deduces some integral identities.

These will be used later in subsection 3.1.4 for AC Calabi-Yau manifolds to compute the relevant

energies and to prove proposition 3.1.26 which is a vanishing theorem for complex monopoles.

This gives conditions under which all complex monopoles reduce to Calabi-Yau monopoles. This

subsection also gives existence results such as proposition 3.1.31 for the boundary data determined

by the asymptotics of complex monopoles.

In section 3.2.1 a promising source of examples to study these monopoles and their interaction

with special Lagrangian geometry is explored. For one of these, the Stenzel metric on T ∗S3,

Calabi-Yau monopoles are actually found. In the other cases one sets up the problem of studying

complex monopoles, for which the results of chapter 5 give a nice Fredholm setup. Also in this

case proposition 3.1.26 applies and gives conditions under which these complex monopoles are

actually Calabi-Yau monopoles.

Section 3.3 proves theorem 3.3.1 regarding Calabi-Yau monopoles for the Stenzel metric. It proves

that there is a class of Calabi-Yau monopoles called invariant monopoles which are parametrized

by their mass. In this setting, the large mass limit is studied. It is is shown that in the limit where

the mass goes to infinite, there is a BPS monopole bubbling off along the transverse directions to

the zero section (which is special Lagrangian). This leaves behind a reducible monopole on its

complement (which will be called a Dirac monopole).

3.1 The Equations

Let (X6, ω,Ω) be a noncompact Calabi-Yau manifold, G a compact semisimple Lie group with

Lie algebra g and P → X a principal G bundle. Denote by gP = P ×(Ad,G) g the adjoint bundle

and gCP its complexification. Equip the first of these with an Ad-invariant metric and the second

one with the respective Hermitian metric.

49
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Definition 3.1.1. Let A be a G connection and Φ = Φ1 + iΦ2 ∈ Ω0(X, gCP ) a complex Higgs

Field, with Φ1,Φ2 ∈ Ω0(X, gP ). The pair (A,Φ) is called a complex monopole if

∗ ∂AΦ =
1

2
FA ∧ Ω, (3.1.1)

ΛFA =
i

2
[Φ,Φ], (3.1.2)

where Λβ = ∗(β ∧ ω2

2 ) for β ∈ Ω2(X,C) and ∗ is the C-linear extension of the Hodge ∗ operator.

Definition 3.1.2. A complex monopole (A,Φ) is called a Calabi-Yau monopole if Φ = Φ1, i.e.

Φ2 = 0, these satisfy

∗ ∇AΦ = FA ∧ Ω1, (3.1.3)

ΛFA = 0. (3.1.4)

3.1.1 Rewriting the Equations

Proposition 3.1.3. The following are equivalent:

1. (A,Φ) is a complex monopole, i.e. a solution to 3.1.1 and 3.1.2.

2. The pair (A,Φ) satisfies

FA + ∗(FA ∧ ω) = ∗(dAΦ1 ∧ Ω1) + ∗(dAΦ2 ∧ Ω2) + [Φ1,Φ2]ω. (3.1.5)

3. The pair (A,Φ) satisfies

∗ dAΦ1 = FA ∧ Ω1 − dAΦ2 ∧
ω2

2
, (3.1.6)

FA ∧
ω2

2
= [Φ1,Φ2]

ω3

3!
. (3.1.7)

Moreover, one can also rewrite the first equation as ∗dAΦ2 = FA ∧ Ω2 + dAΦ1 ∧ ω2

2 .

4. The pair (A, u) with u = − i
4ΦΩ ∈ Ω0,3(X, gCP ) is a solution to

F 0,2
A = −∂∗Au, (3.1.8)

ΛFA = ∗[u ∧ u], (3.1.9)

Proof. The proof will outline the equivalence of all equation in items 2, 3, 4 with the equations

3.1.1 and 3.1.2.

(1⇔ 2): Setting Φ = Φ1 + iΦ2 gives i
2 [Φ,Φ] = [Φ1,Φ2]. Next, it follows from linear algebra that

FA + ∗(FA ∧ ω) = ΛFAω + 2(F 2,0
A + F 0,2

A ), hence the component along the Kähler form gives

back equation 3.1.2. To recover equation 3.1.1 take the wedge of equation 3.1.5 with Ω and use

that ∗(dAΦ ∧ Ω) ∧ Ω = 0 and ∗(dAΦ ∧ Ω) ∧ Ω = 8 ∗ ∂AΦ.
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(1⇔ 3): Taking the Hodge ∗ of the second equation and using that ∗(FA ∧ ω2

2 ) = ΛFA one

obtains equation 3.1.2. The equation 3.1.1 is obtained by taking the Hodge ∗ of the first equation

and using the fact that ∗
(
dAΦ2 ∧ ω2

2

)
= −IdAΦ2, where I denotes the complex structure.

(1 ⇔ 4): This case is a bit more involved. Start with the first complex monopole equation

3.1.8, replace u = − i
4ΦΩ to obtain

F 0,2 = −∂∗A
(
−i
4

ΦΩ

)
= − i

4
∗ ∂A

(
Φ ∗ Ω

)
=

1

4
∗
(
∂AΦ ∧ Ω

)
.

Where one uses that ∂
∗
A = − ∗ ∂A∗, ∗Ω = iΩ and ∂Ω = 0. The next step is to wedge this with

Ω and take the resulting equation is F ∧ Ω = 1
4 ∗
(
∂AΦ ∧ Ω

)
∧ Ω = 2 ∗ ∂AΦ. To unwind the

right hand side it was needed to use the fact that the projection Ω1 → Ω1,0 can be written as

a1,0 = −1
8 ∗ (∗(a ∧ Ω) ∧ Ω), for a ∈ Ω1. This finishes the proof that the equations 3.1.8 and 3.1.1

are equivalent. Regarding the second equations, start with 3.1.2 and replace u = − i
4ΦΩ, then after

using that ∗(Ω ∧ Ω) = −8i, equation 3.1.9 pops up.

There is a very useful vanishing result stated below as lemma 3.1.5. This will be used in the

proof of propositions 3.1.9 and 3.1.23 and its proof requires the following extension of Stokes’

theorem to complete Riemannian manifolds.

Theorem 3.1.4. ([Gaf54]) Let (Mn, g) be an orientable and complete Riemannian manifold and

α ∈ Ωn−1(X,R) be such that γ, dγ ∈ L1, then,
∫
M dγ = 0.

Lemma 3.1.5. Let (X,ω,Ω) be a complete Calabi-Yau manifold, (A, u) a complex monopole on

P → X , i.e. a solution to 3.1.8 and 3.1.9. Then, if φ ∈ Ω0(X, gCP ) is bounded and such that

∂Aφ = [u, φ] = 0 while ∂Aφ, [u, φ] ∈ L2 and 〈∂Aφ, φ〉C ∈ L1, then in fact also ∂Aφ = [u, φ] = 0

and so dAφ = 0.

Proof. Let 〈·, ·〉C = 〈·, ·〉 be the Hermitian extension of the inner product and differentiate

〈∂Aφ, φ〉C. This gives

∂∗〈∂Aφ, φ〉C = 〈∆∂Aφ, φ〉C − |∂Aφ|
2. (3.1.10)

Moreover, since by hypothesis φ is holomorphic, ∆∂Aφ = ∆∂Aφ−∆∂A
φ = [iΛF 1,1

A , φ]. This is a

straightforward application of the twisted Kähler identities stated in lemma 1.1.3. Inserting in this

the equation iΛF = i∗[u∧u] and iu = ∗u, gives ∆∂Aφ = [∗[∗u∧u], φ] = [[u, φ]∧∗u]−[[φ, ∗u]∧u].

So replacing this back into equation 3.1.10, integrating and using theorem 3.1.4 gives

0 = ‖[u, φ]‖2L2 − ‖[u, φ]‖2L2 − ‖∂Aφ‖2L2 .

The first of these vanishes by hypothesis and hence so do the other two terms.
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3.1.2 Linearized Operator

Recall that a complex monopole is a pair consisting of a connection A on P and a complexified

Higgs field u ∈ Ω0,3(X, gCP ) satisfying the equations

F 0,2
A + ∂

∗
Au = 0 , iΛFA − i ∗ [u ∧ u] = 0. (3.1.11)

Remark 3.1.6. Further below proposition 3.1.26 proves that under certain conditions complex

monopoles (A,Φ) are solutions to ∗∇AΦ = FA ∧ Ω1 and ΛFA = 0 with Φ ∈ Ω0(X, gP ), i.e. are

Calabi-Yau monopoles. In fact, the Calabi-Yau monopole equation is overdetermined. However

in a Calabi-Yau one may have hope that solutions exist, since the complex structure is integrable.

Instead of working with these, for the deformation theory it is convenient to consider the more

general complex monopole equations, as these are elliptic modulo gauge transformations.

Use the identification Λ1 ∼= Λ0,1
C to view deformations of the connection as (0, 1) forms.

Then, at a complex monopole the linearized complex monopole equation gives a map d2 from

Ω0,odd(X, gCP ) to Ω0,2(X, gCP )⊕ iΩ0(X, gP ). This together with the linearization of the action by

gauge transformations gives an elliptic complex

Ω0(X, gP )
d1−→ Ω0,1(X, gCP )⊕ Ω0,3(X, gCP )

d2−→ Ω0,2(X, gCP )⊕ iΩ0(X, gP ), (3.1.12)

where

d1ζ = (∂Aζ, [u, ζ]) (3.1.13)

d2(a,w) =
(
∂Aa+ ∂

∗
Aw − i ∗ [u ∧ a], 2i Im(∂

∗
Aa+ i ∗ [u ∧ w])

)
. (3.1.14)

Lemma 3.1.7. If (A, u) is a complex monopole, the sequence 3.1.12 is a complex.

Proof. This is an immediate consequence of the gauge invariance of the complex monopole

equations. However a full computation of d2 ◦ d1 is given below. So take ζ ∈ Ω0(X, gP ) and show

that d2d1ζ = d2(∂Aζ, [u, ζ]) vanishes. The first component c1 of this equation is

c1 = ∂A∂Aζ + ∂
∗
A[u, ζ]− i ∗ [u ∧ ∂Aζ]

= [F 0,2
A + ∂

∗
Au, ζ] + i ∗ [u ∧ ∂Aζ]− i ∗ [u ∧ ∂Aζ] (3.1.15)

the last two terms annihilate each other and the first one vanishes since (A, u) is a complex

monopole and ζ = ζ ∈ Ω0(X, gP ). The second component of d2d1ζ is

c2 = ∂
∗
A∂Aζ − ∂∗A∂Aζ + i ∗ [u ∧ [u, ζ]]) + i ∗ [[u, ζ] ∧ u]

= [iΛFA, ζ]− i ∗ [[u ∧ u], ζ], (3.1.16)

and this also vanishes for a complex monopole. Moreover, one must remark that the computation

above makes of use the twisted Kähler identities stated in lemma 1.1.3 and the graded Jacobi

Identity, which reads [a ∧ [b ∧ c]] + (−1)i(j+k)[b ∧ [c ∧ a]] + (−1)k(i+j)[c ∧ [a ∧ b]] = 0, for gP
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valued forms a, b, c of degree i, j, k respectively.

So if (A, u) is a complex monopole then an elliptic operator can be made out of the complex

3.1.12. To do this notice that d∗1(a,w) = Re
(
∂
∗
Aa+ i ∗ [u ∧ w]

)
, so one divides the second

equation in d2 by 2 and takes

D : d2 ⊕ d∗1 : Ω0,1(X, gCP )⊕ Ω0,3(X, gCP )︸ ︷︷ ︸
∼=Ω0,odd(X,gCP )

→ Ω0,2(X, gCP )⊕
(
iΩ0(X, gP )⊕ Ω0(X, gP )

)︸ ︷︷ ︸
∼=Ω0,ev(X,gCP )

,

given by

D(a,w) =
(
∂
∗
Aa, ∂Aa+ ∂

∗
Aw
)

+ (i ∗ [u ∧ w],−i ∗ [u ∧ a]) . (3.1.17)

The first of these terms is just the Dirac operator

DA = ∂A + ∂
∗
A : Ω0,odd(X, gCP )→ Ω0,ev(X, gCP ),

which is a C-linear operator. The second one q defines a section of End(Λ0,odd ⊗ gCP ,Λ
0,ev ⊗ gCP )

and is C-antilinear.

Remark 3.1.8. One must notice that D = DA + q is the sum of a C-linear and a C-antilinear

term respectively. Hence kerD is not a vector space over C, but just a vector space over R.

Let 〈·, ·〉C be as usual the Hermitian extention of the L2 inner product on Λ∗X ⊗ gCP . Denote

by D∗A the formal adjoint of the Dirac operator and by q+ the antiadjoint of q, i.e. such that

〈DAs1, s2〉C = 〈s1, D
∗
As2〉C and 〈q(s1), s2〉C = 〈s1, q+(s2)〉C for all s1, s2. The next result

computes a Weitzenböck type formula for the operator D.

Proposition 3.1.9. Let (X, g) be a complete Calabi-Yau manifold and (A, u) a pair on P → X .

With the notation D∗ = D∗A + q+, then

DD∗(φ, b) =
(

∆∂A
+W + qq+

)
(φ, b),

where W (φ, b) =
(
−〈[F 0,2

A , b]〉C − 〈[∂
∗
Au, b]〉C, 1

4 ∗
(
∗[∗b ∧ ∂AΦ] ∧ Ω

)
+ [F 0,2

A , φ] + [∂
∗
Au, φ]

)
and qq+(φ, b) = − (∗[u ∧ ∗[u, φ]], ∗[u ∧ ∗[u ∧ b]]). In particular, if (A, u) is an irreducible

complex monopole and φ = φ, i.e. it is real, then W (φ, b) =
(
0, 1

4 ∗
(
∗[∗b ∧ ∂AΦ] ∧ Ω

))
.

Moreover, if (φ, b) ∈ ker(D∗)∩L2, then φ = 0 while b satisfies ∂Ab = 0 and ∂
∗
Ab+ i ∗ [b∧u] = 0.

Proof. The proof will just give some intermediate steps of the computation leading to the formula

above. First one computes q+(φ, b) = (i ∗ [u ∧ b],−i ∗ [u, φ]), which after combined with q, gives

qq+(φ, b) = − (∗[u ∧ ∗[u, φ]], ∗[u ∧ ∗[u ∧ b]]). Next, one computes DD∗· = DAD
∗
A ·+q(D∗A·) +

DA(q+·) + qq+· and here one uses the Weitzenböck formula in proposition 1.1.2 for DAD
∗
A and
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the computation above for qq+. Regarding the other terms, these are

qD∗A(φ, b) =
(
i ∗ [u ∧ ∂Ab],−i ∗ [u ∧ ∂Aφ]− i ∗ [u ∧ ∂∗Ab]

)
,

DAq
+(φ, b) =

(
i∂
∗
A ∗ [u ∧ b],−i ∗ ∂A[u, φ] + i∂A ∗ [u ∧ b]

)
.

The first entry in the second line can be expanded using the Leibniz rule giving two terms, one of

them kills the first term in the first line, while the other one is − ∗ [∂
∗
Au ∧ ∗b]. In the second entry

in the second line one can compute −i ∗ ∂A[u, φ] = i ∗ [u ∧ ∂Aφ] + [∂
∗
Au, φ], the first of which

kills the respective term in the first line. Then, expand i∂A ∗ [u ∧ b] in two terms, one of them kills

the second term in the second entry of the first line and the other one is 1
4 ∗
(
∗[∗b ∧ ∂AΦ] ∧ Ω

)
.

Summing these with the zero order terms appearing in the Weitzenböck formula for DAD
∗
A in

proposition 1.1.2 gives that the only term left is precisely W (φ, b). The second assertion follows

from using the using the first complex monopole equation F 0,2
A + ∂

∗
Au = 0 twice, with φ real, i.e.

φ = φ. Moreover, if (φ, b) ∈ ker(D∗) ∩ L2, then in particular (φ, b) ∈ ker(DD∗) ∩ L2. Taking

the inner product of (φ, 0) with DD∗(φ, b) and using the formula just proved and theorem 3.1.4 to

integrate by parts, gives ‖∂Aφ‖2L2 + ‖[u, φ]‖2L2 = 0 and so φ commutes with u and is holomorphic.

Then lemma 3.1.5 proves that under such conditions, φ also commutes with u and ∂Aφ = 0, hence

∇Aφ = 0 and φ is covariant constant. This, together with the assumption that A is irreducible

implies that φ = 0.

Proposition 3.1.10. Under the conditions of proposition 3.1.9, then

D∗D(a,w) =
(

∆∂A
+ W̃1 + W̃2 + q+q

)
(a,w),

where W̃1(a,w) = (i∗ [∂Au∧a], 2[u, ∂∗Aa]), W̃2(a,w) = (−〈[∇0,1
A u,w]〉+∗[F 2,0

A ∧∗w], [F 0,2
A ∧

a]− i
4 ∗ [∂AΦ ∧ ∗a] ∧ Ω) and q+q(a,w) = − (∗[u ∧ ∗[u ∧ a]], ∗[u, ∗[u ∧ w]]).

Proof. The proof is a computation, similar to the one of proposition 3.1.9 of which the main

intermediate steps will be given. First one computes D∗D· = D∗ADA ·+D∗Aq ·+q+DA ·+q+q·,
then for the first term one uses the Weitzenböck formula in proposition 1.1.2 and the computation

of q+q is straightforward and gives the last term in the formula in the statement. Next one needs to

compute the two terms in the middle which are

q+DA(a,w) = (i ∗ [u ∧ ∂Aa] + i ∗ [u ∧ ∂∗Aw], [u, ∂∗Aa]) ,

D∗Aq(a,w) =
(
i ∗ ∂A[u ∧ a] + i∂A ∗ [u ∧ w],−i∂A ∗ [u ∧ a]

)
.

Expanding the terms in the second line using the Leibniz rule gives: In the first term in the first

entry i ∗ ∂A[u ∧ a] = −i ∗ [u ∧ ∂Aa] + i ∗ [∂Au ∧ a], the first of which kills the first term in the

first line. Next is the term i∂A ∗ [u ∧ ∗w] = −∂A ∗ [u ∧ ∗w] = −〈[∇0,1
A u,w]〉 − 〈[u,∇0,1

A w]〉
and the second of these kills the corresponding term in the first line since −〈[u,∇0,1

A w]〉 =

∗[u ∧ ∗∂Aw] = − ∗ [u ∧ ∂∗Aw]. Finally, the last term in the second line gives, after a tedious

computation − i
4 ∗ [∂AΦ ∧ ∗a] ∧ Ω + [u, ∂∗Aa] and this second term adds with the last term in the
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first line. Putting these together with the zero order terms appearing in D∗ADA gives the formulas

in the statement for W̃1 and W̃2.

3.1.3 Energy Identities

Proposition 3.1.11. Let (A,Φ) be a pair on P and U ⊂ X precompact with smooth boundary ∂U .

Then

‖ΛFA‖2L2(U) + ‖[Φ1,Φ2]‖2L2(U) = ‖ΛFA − [Φ1,Φ2]‖2L2(U)

−2

∫
∂U
〈Φ1, ∗IdAΦ2〉+ 2

∫
U

Λ(dAΦ1 ∧ dAΦ2),

where ω denotes the dual of the Kähler form and I is acting by pullback.

Proof. Start by working out the first term in the right hand side

‖ΛFA − [Φ1,Φ2]‖2L2(U) = ‖ΛFA‖2L2(U) + ‖[Φ1,Φ2]‖2L2(U) − 2〈ΛFA, [Φ1,Φ2]〉L2(U).

And so, one just needs to identify the mixed term with the integrals in the second line of the

statement. This is done as follows

〈ΛFA, [Φ1,Φ2]〉L2(U) =

∫
U
〈FA, [Φ1,Φ2]〉 ∧ ω

2

2
= −

∫
U
〈[FA,Φ2],Φ1〉 ∧

ω2

2

= −
∫
U
〈d2
AΦ2,Φ1〉 ∧

ω2

2

= −
∫
U
d

(
〈dAΦ2,Φ1〉 ∧

ω2

2

)
+ 〈dAΦ2 ∧ dAΦ1〉 ∧

ω2

2

= −
∫
∂U
〈dAΦ2,Φ1〉 ∧

ω2

2
−
∫
U
〈dAΦ2 ∧ dAΦ1〉 ∧

ω2

2
,

where in the second line one uses the Ad-invariance of the inner product and the definition of

curvature. The result then follows from the fact that ∗(dAΦ2 ∧ ω2

2 ) = −IdAΦ2 (with I acting

by pullback) and that ∗
(
〈dAΦ2 ∧ dAΦ1〉 ∧ ω2

2

)
= −g(IdAΦ2, dAΦ1) = ω(dAΦ2, dAΦ1), or

Λ(dAΦ2 ∧ dAΦ1) in the previous notation. Apply these to the last term, the add it to the first

equation.

Proposition 3.1.12. Let (A,Φ) be a complex monopole and U ⊂ X precompact with smooth

boundary ∂U . Write Φ = Φ1 + iΦ2, then for both i = 1, 2

‖∇AΦi‖2L2(U) = −
∫
U

Λ(dAΦ1 ∧ dAΦ2) +

∫
∂U
〈Φi, F 〉 ∧ Ωi.

Proof. We prove only the case i = 2 as the case i = 1 follows from a similar computation. Write

|dAΦ2|2 = 〈dAΦ2 ∧ ∗dAΦ2〉 and use the equation in item 3 of proposition 3.1.3 to replace ∗dAΦ2.
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This gives

‖∇AΦ2‖2L2(U) =

∫
U
〈dAΦ2 ∧

(
F ∧ Ω2 + dAΦ1 ∧

ω2

2

)
〉

= +

∫
U
d (〈Φ2, F 〉 ∧ Ω2)−

∫
U
〈dAΦ1 ∧ dAΦ2〉 ∧

ω2

2
,

where one used the Bianchi identity dAFA = 0 and the closedness of Ω1. Then the result follows

from Stokes’ theorem. The second identity follows from a similar computation.

Corollary 3.1.13. Let (A,Φ) be a complex monopole and U ⊂ X precompact with smooth

boundary ∂U . Then

‖[Φ1,Φ2]‖2L2(U) + ‖∇AΦi‖2L2(U) = −
∫
∂U
〈Φ1, ∗IdAΦ2〉+

∫
∂U
〈Φi, F 〉 ∧ Ωi.

Lemma 3.1.14. Let (A,Φ = Φ1 + iΦ2) be a complex monopole, then

∆
1

2
|Φi|2 = −|[Φ1,Φ2]|2 − |∇AΦi|2.

In particular |Φ1|2 and |Φ2|2 are subharmonic and so is |Φ|2 = |Φ1|2 + |Φ2|2.

Proof. The proof follows from ∆1
2 |Φ1|2 = 〈Φ1,∆AΦ1〉 − |∇AΦ1|2 and the computation of the

first of these terms. Using both the complex monopole equations as in the third item of proposition

3.1.3, the definition of curvature and the Bianchi identity, gives

∆AΦ1 = − ∗ dA ∗ dAΦ1 = − ∗ dA
(
FA ∧ Ω1 − dAΦ2 ∧

ω2

2

)
= ∗[FA,Φ2] ∧ ω

2

2
= [[Φ1,Φ2],Φ2].

Then the Ad-invariance of the metric gives 〈∆AΦ1,Φ1〉 = −|[Φ1,Φ2]|2 which gives the equation

in the statement for ∆|Φ1|2. Regarding the equation for ∆|Φ2|2, a computation along the same

lines gives ∆AΦ2 = −[[Φ1,Φ2],Φ1] and the result in the statement then follows from the Ad

invariance of the metric.

As in the preliminary case analyzed in section 1.3.1 there are two relevant energies in play. One

of them is an analogue of definition 1.3.1.

Definition 3.1.15. The Yang-Mills-Higgs (YMH) energy EU and the intermediate energy EIU of a

pair (A,Φ) over precompact set U ⊂ X with smooth boundary ∂U are respectively defined by

EU (A,Φ) =
1

2
‖FA‖2L2(U) +

1

2
‖∇AΦ‖2L2(U), (3.1.18)

EIU (A,Φ) =
1

2
‖1

2
FA ∧ Ω‖2L2(U) +

1

2
‖∂AΦ‖2L2(U). (3.1.19)
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The intermediate energy does not measure the full L2 norm of the curvature, so there may be

complex monopoles with infinite YMH energy but finite intermediate energy and this is indeed the

case for the complex monopoles to be constructed.

Proposition 3.1.16. Let U ⊂ X be precompact with smooth boundary ∂U as above, such that the

intermediate energy of the pair (A,Φ) on U is finite, i.e. EIU (A,Φ) <∞, then

EIU (A,Φ) =
1

2
‖1

2
∗ (FA ∧ Ω)− ∂AΦ‖2L2(U) +

1

2

∫
∂U
〈Φ, FA ∧ Ω〉.

In particular, if (A,Φ) is a complex monopole, then

EIU (A,Φ) =
1

2

∫
∂U
〈Φ1, FA〉 ∧ Ω1 +

1

2

∫
∂U
〈Φ2, FA〉 ∧ Ω2, (3.1.20)

which is just another way of writing the boundary integral in the first formula. Moreover,∫
∂U 〈Φ2, FA〉 ∧ Ω1 =

∫
∂U 〈Φ1, FA〉 ∧ Ω2.

Proof. Start by computing ‖1
2 ∗ (FA∧Ω)−∂AΦ‖2L2 = ‖1

2FA∧Ω‖2L2 +‖∂AΦ‖2L2−〈∂AΦ, ∗(FA∧
Ω)〉L2 . The first two terms give twice the Intermediate energy, i.e 2EIU (A,Φ) ∈ R, so the last term

must also be real. Then integrating it by parts and using Stokes’ theorem, dΩ = 0 and dAFA = 0,

gives

〈∂AΦ, ∗(FA ∧ Ω)〉L2 =

∫
U
〈∂AΦ, FA ∧ Ω〉 =

∫
∂U
〈Φ, FA ∧ Ω〉,

where the Bianchi identity and the closedness of Ω have been used. Dividing by 2 and rearranging

gives the result in the statement. The rest of the statement follows from noticing that for a complex

monopole 1
2 ∗ (FA ∧Ω)− ∂AΦ = 0 and expanding the boundary integral. The last identity follows

from expanding 0 = 〈∇AΦ1,∇AΦ2〉 − 〈∇AΦ2,∇AΦ1〉 using the complex monopole equations

and integrating by parts.

Corollary 3.1.17. Suppose X is compact and (A,Φ) a complex monopole, then F 0,2
A = ΛFA = 0

and ∇AΦ = [Φ,Φ] = 0, i.e. A is a reducible Hermitian Yang Mills connection, with an explicit

reduction Φ.

Proof. This is an immediate consequence of proposition 3.1.16 and corollary 3.1.13, by integrating

over X .

Proposition 3.1.18. Let the pair (∇A,Φ) be real, i.e. the Higgs field is such that Φ = Φ1. Then

the YMH energy of the pair (A,Φ) on a precompact set U ⊂ X with smooth boundary ∂U is given

by

EU =
3

2
‖ΛFAω‖2L2(U) +

1

2
‖ ∗ (FA ∧ Ω1)−∇AΦ‖2L2(U)

+

∫
∂U
〈Φ, FA〉 ∧ Ω1 −

1

2

∫
U
FA ∧ FA ∧ ω.
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Proof. The proof follows from splitting the curvature into orthogonal components

F = (F 2,0 + F 0,2) + F 1,1
P ,

where F 1,1
P = ΛF

3 ω. It follows from linear algebra for the two forms that (F 2,0 + F 0,2) =

−1
2 ∗ (∗(F ∧ Ω1) ∧ Ω1) and F 1,1

P = 2
3F −

1
3 ∗ (F ∧ ω) − 1

3(F 2,0 + F 0,2). The first of these

formulas gives ‖F 2,0 + F 0,2‖2L2 = 1
2‖F ∧ Ω1‖2L2 . Summing the various orthogonal components

and solving for ‖F‖2L2 one concludes that

‖F‖2L2 = 3‖ΛFω‖2L2 + ‖F ∧ Ω1‖2L2 −
∫
F ∧ F ∧ ω. (3.1.21)

To finally compute E = 1
2‖F‖

2
L2 + 1

2‖∇AΦ‖2L2 sum 1
2‖∇AΦ‖2L2 with half of equation 3.1.21.

Using proposition 3.1.16 to substitute for the term ‖F ∧ Ω1‖2L2 , gives

E =
3

2
‖ΛFAω‖2L2(U) +

1

2
‖F ∧ Ω1‖2L2 +

1

2
‖∇AΦ‖2L2(U) −

1

2

∫
U
FA ∧ FA ∧ ω

=
3

2
‖ΛFA ω‖2L2(U) +

1

2
‖ ∗ (FA ∧ Ω1)−∇AΦ‖2L2(U)

+

∫
∂U
〈Φ, FA〉 ∧ Ω1 −

1

2

∫
U
FA ∧ FA ∧ Ω1.

3.1.4 Monopoles on AC Calabi-Yau Manifolds

Let (X,ω,Ω) be an AC Calabi-Yau manifold as in section 1.1.2 and P → X a principal G-bundle.

This section studies asymptotic conditions for irreducible complex monopoles on P analogous to

the discussion in section 1.4.1. In particular, the boundary integrals limr→∞
∫
∂Br
〈Φ1, ∗IdAΦ2〉 and

limr→∞
∫
∂Br
〈Φi, F 〉 ∧ Ωi appearing in the propositions in the previous section will be convergent.

Then, in the spirit of proposition 1.4.9 and corollary 1.4.11 it is possible to obtain further results

regarding the energy, such as proposition 3.1.23 and corollary 3.1.25. This subsection also gives

proposition 3.1.26, which gives conditions under which complex monopoles end up being real and

satisfy the equations in definition 3.1.2.

The first thing to be done is to adapt the definition of finite mass monopoles (A,Φ) as in definition

1.4.1, to complex monopoles. Suppose there is K ⊂ X compact such that on the end X\K, there

is a bundle isomorphism

P |X\K ∼= ϕ∗π∗P∞, (3.1.22)

where ϕ is the diffeomorphism in definition 1.2.8, P∞ is aG bundle over Σ and π : (1,+∞)×Σ→
Σ is the projection on the second factor.

Definition 3.1.19. A pair (A,Φ) is a finite mass complex (resp. Calabi-Yau) monopole on P , if it

is a complex (resp. Calabi-Yau) monopole and there is m ∈ R such that limρ→∞ |Φ| = m and a

connection A∞ on P∞, such that after the identification 3.1.22, A is asymptotic to A∞ on P∞. i.e.

there is ε > 0, such that |A−A∞| = O(ρ−1−ε), outside K and using the isomorphism 3.1.22 to



3.1. THE EQUATIONS 59

pullback the connection A∞ to a connection on P |X\K .

For a complex monopole the Higgs Field Φ ∈ Ω0(X, gCP ) is a section of the complexified

adjoint bundle and the results in section 1.4.1 do not apply directly to these. Nevertheless, the

techniques used there, do extend in order to be applied to this complexified situation.

Proposition 3.1.20. Let (X,ω,Ω) be AC and (A,Φ) be a finite mass, irreducible complex monopole.

Then∇AΦ, [Φ,Φ] ∈ L2 and there is an A∞-parallel Higgs Field Φ∞ ∈ Ω0(Σ, gCP∞) such that Φ

converges to Φ∞. Moreover, there are positive constants c1, c2, such that on X\K

m2 − c1

ρ4
≤ |Φ|2 ≤ m2 − c2

ρ4
. (3.1.23)

Proof. Then, lemma 3.1.14 proves that |Φ| is subharmonic and the argument used in lemma 1.4.3

to prove proposition 1.4.4 applies to prove the inequality 3.1.23. The fact that∇AΦ, [Φ,Φ] ∈ L2

follows from applying the proof of the analogous fact in proposition 1.4.4. However, due to

lemma 1.4.3, in this case ∆|Φ|2 = −1
2 |[Φ,Φ]|2 − 1

2 |∇AΦ|2 and so one obtains instead that

|[Φ,Φ]|2 + |∇AΦ|2 ∈ L2. The existence of Φ∞ as in the statement follows from the fact that

∇AΦ ∈ L2 and applying proposition A.0.17 in the Appendix A.

Remark 3.1.21. If both Φ1,Φ2 converge respectively to Φ∞,1,Φ∞,2 ∈ Ω0(Σ, gP ) with these being

A∞-parallel. Then |Φ∞,i| = mi is constant for i = 1, 2 and [Φ∞,1,Φ∞,2] = 0 hence one can use

the fact that both |Φi|’s are subharmonic by lemma 3.1.14 in order to get an inequality as in 3.1.23

for both of these.

Below, the consequences of the finite mass assumption will continue to be explored. It will be

useful to introduce some cohomology classes of the cross section Σ of the asymptotic cone C(Σ).

It will be obvious from the definition that these depend on the complex structure of the Calabi-Yau

(X,ω,Ω) and are well defined by homotopy invariance.

Definition 3.1.22. Let [i∗Ωj ] ∈ H3(Σ,R) for j = 1, 2 denote the cohomology classes obtained

from the restriction of [Ωj ] ∈ H3(X,R) to any cross section ϕ({r} × Σ) over the end of X .

Proposition 3.1.23. Let (X,ω,Ω) be AC and (A,Φ 6= 0) a finite mass, irreducible complex

monopole with |A−A∞| = O(ρ−4−ε′), for some ε′ > 0, then

EIU =

∫
Σ
〈Φ∞,1, F∞〉 ∪ [i∗Ω1] +

∫
Σ
〈Φ∞,2, F∞〉 ∪ [i∗Ω2].

In particular, if the complex structure decays at rate λ < −3 or the cohomology classes [i∗Ωi] both

vanish, then F 0,2
A = ΛFA = 0 and ∇AΦ = 0, so A is reducible.

Proof. Under the finite mass hypothesis ∇AΦ ∈ L2 by proposition 3.1.20. Then, if (A,Φ) is a

complex monopole one can use equation 3.1.20 in proposition 3.1.16 over very large balls Br
centered at p ∈ X to give

EIBr(A,Φ) =
1

2

∫
∂Br

〈Φ1, FA〉 ∧ Ω1 +
1

2

∫
∂Br

〈Φ2, FA〉 ∧ Ω2. (3.1.24)



60 CHAPTER 3. MONOPOLES ON CALABI-YAU 3 FOLDS

Then, one can regard these boundary integrals EIBr as a monotone increasing function of r which is

bounded above by EIX . Hence it does converge, the limit is EIX and to conclude it is given by the

formula in the statement expand Φ = Φ∞ +O(ρ−4) and F = F∞ +O(ρ−5−ε′), then for i = 1, 2

〈Φi, FA〉 ∧ Ωi = 〈Φ∞,i, F∞〉 ∧ Ωi +O(ρ−5−ε′).

So, when one takes the limit as r →∞ of the integrals in the right hand side of 3.1.24 the higher

order terms vanish and one is left with the result in the statement. In the case where λ < −3, one

can write Ωi = (ΩC)i + η with η = O(ρλ), which gives 〈Φ∞,i, F∞〉 ∧ Ωi = 〈Φ∞,i, F∞〉 ∧ η =

O(ρ−2+λ) and so the limit of 3.1.24 vanishes and EIX = 0. This implies that F ∧ Ω = ∂Φ = 0,

moreover taking the complex conjugate of this second one has ∂AΦ = 0. Using the form of the

complex monopole equation in the fourth item of proposition 3.1.3 gives [Φ,Φ] = i
4 [Φ,Φ] = 0 and

so one can appeal to lemma 3.1.5 to conclude that also ∂AΦ = [Φ,Φ] = 0. Hence dAΦ = 0 and so

A is reducible, moreover the second complex monopole equation gives iΛFA = [Φ,Φ] = 0. The

same holds if the classes [i∗Ωi] vanish.

Remark 3.1.24. For G = SU(2) one is led to a similar problem as the one in corollary 1.4.11

and H is either {1} or U(1) and the connection A∞ is induced by a connection on a circle

bundle Q∞. The decomposition suC(2) = uC(1) ⊕ Cα ⊕ C−α gives that E = Lα ⊕ L−α,

and su(2) representation theory shows Lα ∼= L2, where L = Q∞ ×U(1) C is the line bundle

associated with the standard U(1) representation. Then, L has a connection induced by A∞ and

c1(L) = 1
2π

[
1

2|Φ∞,1|〈Φ∞,1, F∞〉
]
. The energy formula in proposition 3.1.23 shows that

Corollary 3.1.25. Let (X,ω,Ω) be AC, G = SU(2) and (A,Φ) an irreducible, finite mass,

complex monopole with mi = |Φ∞,i| for i = 1, 2 and |A−A∞| = O(ρ−4−ε′) with ε′ > 0

EIX = 4πm1〈c1(L) ∪ [i∗Ω1], [Σ]〉+ 4πm2〈c1(L) ∪ [i∗Ω2], [Σ]〉.

In particular, if L is trivial or the complex structure has rate λ < −3 or both [i∗Ωi] = 0, then

EIX = 0 and so F 0,2
A = λFA = 0 and also ∇AΦ = 0 so A is reducible.

Proposition 3.1.26. Let (X,ω,Ω) be AC, G = SU(2) and (A,Φ) a finite mass complex monopole

asymptotic to (A∞,Φ∞) with |A − A∞|, |〈Φ1,∇AIρ∂ρΦ2〉| = O(ρ−4−ε′), for ε′ > 0 and A∞
induced from a connection on a line bundle L as in proposition 3.1.31 such that c1(L)∪ [i∗Ω2] = 0.

Then, ∇AΦ2 = [Φ1,Φ2] = 0. In particular if A is irreducible, then Φ2 = 0, i.e. Φ = Φ1 ∈
Ω0(X, gP ) is a real Higgs field, the equations reduce to

∗ ∇AΦ = FA ∧ Ω1

ΛFA = 0,

i.e. (A,Φ) is a Calabi-Yau monopole as in definition 3.1.2.

Proof. From proposition 3.1.23 the finite mass condition implies that∇AΦ2, [Φ1,Φ2] ∈ L2. Define

f(r) = ‖[Φ1,Φ2]‖2L2(Br)
+‖∇AΦ2‖2L2(Br)

, then corollary 3.1.13 can be used to give the integration
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by parts

f(r) = −
∫
∂Br

〈Φ1, ∗IdAΦ2〉+

∫
∂Br

〈Φ2, F 〉 ∧ Ω2, (3.1.25)

Using the hypothesis that there is ε′ > 0 such that |〈Φ1,∇AIr∂rΦ2〉| = O(r−4−ε′), the higher

order part of the first term in 3.1.25 is given by
∫

Σ〈Φ1,∇AIρ∂ρΦ2〉r4η ∧ (dη)2 = O(r−ε
′
) and so

vanishes in the limit r → ∞. The second boundary integral converges by the assumption that

〈Φ∞, A−A∞〉 = O(r−4−ε′) and so f(r) is monotone, increasing and bounded above by the sum

of the L2 norms of∇AΦ2 and [Φ1,Φ2]

1

2
‖[Φ1,Φ2]‖2L2 + ‖∇AΦ2‖2L2 =

∫
Σ
〈Φ∞,2, F∞〉 ∧ [i∗Ω2]

= 4π|Φ∞,2|〈c1(L) ∪ [i∗Ω2], [Σ]〉.

Since by assumption, the cohomology class c1(L) ∪ [i∗Ω2] = 0, the quantity above vanishes

implying that∇AΦ2 = [Φ1,Φ2] = 0.

Remark 3.1.27. The author believes the boundary condition c1(L)∪[i∗Ω2] = 0 above, is necessary

in order to relate Calabi-Yau monopoles with phase 0 special Lagrangian submanifolds. This will be

more clear after definitions 3.2.2 and 3.2.3. Regarding the condition |〈Φ1,∇AIρ∂ρΦ2〉| = O(ρ−4−ε′),

it is possible that this is a consequence of the other assumptions, namely |A−A∞| = O(ρ−4−ε)

and (A,Φ) being a complex monopole.

The rest of this section analyses the boundary problem that (∇∞,Φ∞) must satisfy. It is

useful to recall some Sasaki-Einstein geometry and the reader may consult section 1.1.2 (and the

references therein), where some facts are collected.

Proposition 3.1.28. Let (X,ω,Ω) be AC and (A,Φ) is a finite mass, irreducible complex monopole,

then FA ∧ Ω ∈ L2 and the connection A∞ on P∞ is such that∇∞Φ∞ = 0 and

ΛTF∞ = F 0,2
∞ = 0 , ιξF∞ = 0,

where ξ denotes the Reeb vector field of the contact structure η on Σ, ΛT the dual of the transverse

Kähler form ωT = dη
2 and F 0,2

∞ is the (0, 2) component of F∞ with respect to the transverse

complex structure on the horizontal distribution.

Proof. Under the finite mass hypothesis∇AΦ ∈ L2 by proposition 3.1.20 and so is FA ∧ Ω. On

the cone the highest order term of FA ∧ Ω is F∞ ∧ ΩC which in general is O(ρ−2) and so must

vanish so that FA ∧ Ω ∈ L2. One can write ΩC = −ir2dr ∧ ΩT + r3η ∧ ΩT , where ΩT is a basic

(2, 0)-form, see example 5 in section 1.4.1. And so the condition that F∞ ∧ ΩC on the cone can

be translated into F∞ ∧ ΩT = 0, F∞ ∧ η ∧ ΩT = 0, over Σ. These equations imply F 0,2
∞ = 0

and the first one also implies ιξF∞ = 0. The last thing to prove is that ΛTF∞ = 0 and recall that

for a finite mass, proposition 3.1.20 implies ΛFA = [Φ,Φ] ∈ L2 and so the higher order terms

[Φ∞,Φ∞],ΛTF∞ vanish.
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Definition 3.1.29. A complex vector bundleE on Σ is said to be basic holomorphic if it is equipped

with an operator ∂E : Ω
(p,q)
B (Σ, E)→ Ω

(p,q+1)
B (Σ, E), such that ∂

2
E = 0 and which satisfies the

Leibniz rule ∂E(fs) = ∂f ∧ s+ f∂Es for all f ∈ Ω0
B(Σ,C) and s ∈ Ω

(p,q)
B (Σ, E).

Remark 3.1.30. A connection ∇ on E is said to be basic if ∇(Ω0
B(Σ, E)) ⊂ Ω1

B(Σ, E); in this

case its curvature F∇ is a basic form. Given such a ∇ on E one can define ∂∇ = d0,1
∇ and this

equips E with a basic holomorphic structure if and only if F 0,2
∇ = 0. Moreover, ∇ is called a basic

Hermitian Yang Mills (HYM) connection if it further satisfies ΛTF∇ = 0. Proposition 3.1.28 states

that A∞ is a basic HYM connection.

The following result gives necessary and sufficient conditions for the existence of boundary

conditions (A∞,Φ∞) for G = SU(2).

Proposition 3.1.31. Let L→ Σ be a basic holomorphic line bundle on Σ such that c1(L)∪ [ωT ] =

0. Then, there is a basic HYM connection on L, i.e. its curvature satisfies F 0,2 = ΛTF = 0, where

ΛT is the contraction with the transverse Kähler form ωT = dη
2 .

Proof. Equip L with an hermitian metric h, then there is a unique basic Chern connection which

is compatible with both the holomorphic structure and the metric. The fact that F 0,2 = 0 is

obvious from the compatibility of the Chern connection with the holomorphic structure. That

F 2,0 = F 0,2 = 0 is a consequence of the compatibility with the hermitian metric h. Moreover,

locally its curvature can be written as a basic (1, 1) form

F = i∂B∂B log(h). (3.1.26)

Hodge theory for basic forms gives Ω0
B(X,R) = R⊕ im(∂∗B∂B) and since by hypothesis c1(L) ∪

[ωT ] = 0, ΛTF = ∂∗B∂Bf , for some real valued basic function f . Change the metric h on L to a

metric h′ = he−f . The claim is that the curvature F ′ of the Chern connection of this new hermitian

metric has the right properties. In fact, F ′2,0 = F ′0,2 = 0 still hold in the same way. Moreover,

using the local formula 3.1.26, F ′ = F − i∂B∂Bf . Using the basic Kähler identity i[ΛT , ∂B] = ∂∗B

ΛTF
′ = ∂∗B∂Bf − iΛT∂B∂Bf

= ∂∗B∂Bf − ∂∗B∂Bf = 0.

Remark 3.1.32. Recall that if Σ is a regular Sasaki-Einstein manifold, then it is the total space of

an S1 bundle on a Fano surface D with a Kähler-Einstein metric. The Sasaki structure can then be

viewed as a connection on this bundle whose curvature is a Kähler form on D, in fact dη = 2ωT .

Then, the basic cohomology is the pullback to Σ of the cohomology of D. So L is the pullback of

a holomorphic line bundle on D with c1(L) ∪ c1(Σ) = 0, and the connection from 3.1.31 is the

Chern connection of a suitable hermitian metric on L.
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3.2 Examples

3.2.1 Monopoles on Affine Smoothings

This section sets up the problem for studying Calabi-Yau monopoles on the AC Calabi-Yau

manifolds described in section 5 of [CH13a]. In view of proposition 5.1 of that reference one can

consider a compact Fano 3-foldXc of index k+1 andD a smooth anticanonical divisor inXc, such

that KXc = −(k + 1)[D], for some k ∈ N. Then, X = Xc\D is a smoothing of C = ( 1
kKD)×,

the blow down of the zero section in 1
kKD. In fact D is the orbit space of the C∗-action on the

Calabi-Yau cone C. Moreover, C can be C∗ equivariantly embedded in some CN , for a weighted

action on the latter, as shown in [van11].

Let C be a complete intersection Calabi Yau cone in CN . We shall consider smoothings X by

adding lower order terms to the equations defining C. Hence, alsoX will be a complete intersection

affine manifold. The cohomology of such an X is supported in the middle dimension, 3 in this case,

in fact they are homotopy equivalent to a bouquet of S3’s [CH13a]. These examples are asymptotic

to a cone over a regular Sasaki-Einstein manifold πD : Σ→ D, which is the total space of an S1

bundle over a Fano surface D with a Kähler-Einstein metric gD. The Weitzenböck formula for

1-forms shows that since (D, gD) and (Σ, gΣ) have positive Ricci H1(D) = H1(Σ) = 0. In fact,

we shall suppose that the cone C has trivial canonical bundle and π1(D) = π1(Σ) = 0. Moreover

H2(Σ) ∼= H1,1
pr (D) as Kodaira vanishing implies H2,0(D) = 0.

Definition 3.2.1. Let H∗cs(X,Z) denote the compactly supported cohomology of X . A class

P ∈ H3
cs(X,Z) is said to be a special Lagrangian (SL) class if P ∪ [Ω2] = 0 ∈ H6

cs(X,Z) and

P ∪ [ω] = 0 ∈ H5
cs(X,Z). Moreover, if P ∈ ker(H3

cs(X,Z)→ H3(X,Z)) then it is said to be a

monopole-SL class.

Remark 3.2.2. The definition above makes sense for any Calabi-Yau manifold. In fact, in the cases

to be considered here the condition P ∪ [ω] = 0 is immediate as H5
cs(X,Z) ∼= H1(X,Z)∗ = 0.

Definition 3.2.3. A class α ∈ H2(Σ,Z) is said to be a monopole class if α ∪ [i∗Ω2] = 0.

Remark 3.2.4. Take the long exact sequence for compactly supported cohomology and recall that

H2(X,Z) = 0

0→ H2(Σ,Z)→ H3
cs(X,Z)→ H3(X,Z)→ ...

Hence the image of the map H2(Σ,Z) → H3
cs(X,Z) is exactly the kernel of H3

cs(X,Z) →
H3(X,Z) and so identifies the image of the monopole classes with the monopole-SL classes.

Remark 3.2.5. Alternatively one could have considered the exact sequence for the pair (Xc, X),

which together with the Thom isomorphism H∗(Xc, X) ∼= H∗−2(D) gives

0→ H2(Xc,Z)→ H2(D,Z)
i→ H3

cs(X,Z)→ H3(Xc,Z)→ 0.

Since by Kodaira vanishing H2,0(D) vanishes, H2(Σ,Z) ∼= H1,1
pr (D,Z) and one can give an

alternative definition of monopole classes as those α ∈ H2(D,Z) which are primitive of type
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(1, 1) and π∗Dα ∪ [i∗Ω2] = 0. Their image i(α) corresponds to those classes in the kernel of the

map H3
cs(X,Z) → H3(Xc,Z) such that i(α) ∪ [Ω2] = 0 and these could have been used as an

alternative definition of monopole-SL class.

Let π∗D(α) ∈ H2(Σ,Z) be a monopole class and L → D a line bundle with c1(L) = α.

Then, from proposition 3.1.31 there is an HYM connection on L, or equivalently a basic HYM on

L = π∗DL → Σ, the pullback of L to Σ via πD. Take two copies of this connection to obtain a

reducible connection A∞ on L⊕ L−1 over Σ. Let P be an SU(2) bundle over Xc such that for E
the rank 2 complex vector bundle associated with the standard representation, one has

E|D ∼= L ⊕ L−1. (3.2.1)

Then one searches for finite mass complex monopoles (as in definition 3.1.19) on E = E|X . Indeed

the work to be developed later in chapter 5 gives a Fredholm setup for this problem and proposition

3.1.26 shows that for rate ε > 3 these complex monopoles are actually Calabi-Yau monopoles and

so satisfy ∗∇AΦ = FA ∧ Ω1 and ΛFA = 0.

Example 8. Take C to be the ordinary double point z2
1 + z2

2 + z2
3 + z2

4 = 0 in C4. In this case

D = P1 × P1 and C can be smoothed out by adding a zero order term to the equation. X is

diffeomorphic to T ∗S3 and can be equipped with a Calabi-Yau metric known as the Stenzel metric

[Ste93]. The zero section is a special Lagrangian S3 and its class in H3
cs(X,Z) lies in the image of

a monopole class. Moreover, the Stenzel metric is cohomogeneity 1 and so this is a particularly

interesting example for studying Calabi-Yau monopoles and their interaction with the special

Lagrangian submanifold, via ODE methods. This will be done in the next section 3.3, whose upshot

is theorem 3.3.1.

Example 9. Take C to be given by the cubic singularity z3
1 + z3

2 + z3
3 + z3

4 = 0. Consider the

deformations which can be written as

X =
{

(z1, z2, z3, z4) ∈ C4 |
4∑
i=1

z3
i +

∑
1≤i≤j≤4

tijzizj +

4∑
i=1

tizi = ε
}
,

for (tij , ti, ε) ∈ C. Each of these is diffeomorphic to a bouquet of 16 spheres [GH78]. AC Calabi-

Yau metrics are constructed in [CH13a], which have rate −3 in general and −6 in the case where

all the tij = 0. In this example D = Bl6P2, Σ = ]6S2 × S3 and so H2(Σ,Z) ∼= Z6. Those classes

π∗Dα ∈ H2(Σ,Z) such that π∗Dα ∪ [i∗Ω2] = 0 are the monopole classes which certainly exist and

form an Abelian group isomorphic to Z6 or Z5 according to whether [i∗Ω2] vanishes or not. For

each of these classes proposition 3.1.31 gives the asymptotic basic HYM connection A∞ on a line

bundle L over Σ such that c1(L) = π∗Dα. Then, given a mass m ∈ R+, chapter 5 gives a good

Fredholm setup for studying mass m Calabi-Yau monopoles with connection asymptotic to A∞.

Example 10. Take C to be given by the intersection of two quadrics in C5, given by
∑5

i=1 z
2
i =
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∑5
i=1 λiz

2
i = 0, and the λi’s all distinct. Consider the deformations of C which can be written as

X =
{

(z1..., z5) ∈ C5 |
5∑
i=1

z2
i +

5∑
1=1

tizi = ε1 ,
5∑
i=1

λiz
2
i = ε2

}
,

for (ti, ε1, ε2) ∈ C7. Each of these is diffeomorphic to a bouquet of 9 spheres [GH78]. AC

Calabi-Yau metrics are constructed in [CH13a], these have rate −3 in general and −6 in the case

where all ti = 0. In this example D = Bl5P2 is the intersection of the two quadrics in P4, so

Σ = ]5S2 × S3 and H2(Σ,Z) ∼= Z5. Once again there are monopole classes and they form an

Abelian group isomorphic to Z5 or Z4 according to whether [i∗Ω2] vanishes or not. For each of

these classes proposition 3.1.31 gives the asymptotic basic HYM connection A∞ on a line bundle

L over Σ. Then, given a mass m ∈ R+, chapter 5 gives a good Fredholm setup for studying mass

m complex monopoles with connection asymptotic to A∞.

This example is also promising for studying the relation between monopoles and special Lagrangian

submanifolds. For the statement of the next result suppose with no loss of generality that all the λi
are real and λi < λj if i < j.

Proposition 3.2.6. Let ε1, ε2 ∈ R, such that λ2 >
ε2
ε1
> λ1. Then, for all sufficiently small ti’s,

there are two special Lagrangian 3 spheres in X .

Proof. Consider the antiholomorphic involution h : zi 7→ zi and let (ω,Ω = Ω1 + iΩ2) denote

respectively the Kähler form and the holomorphic volume form of the Calabi Yau structure. Since

the complex structure on X is induced from that on C5, h∗ω = −ω and h∗Ω2 = −Ω2, hence

its fixed points cut out special Lagrangian submanifolds in X . In order to ease the computation

suppose the ti’s vanish, the general case follows from the implicit function theorem. Define real

coordinates by zi = xi + iyi, the fixed points of h are such that all yi = 0 and

5∑
i=1

x2
i = ε1 ,

5∑
i=1

λix
2
i = ε2.

Both of these are 4 spheres inside R5, in fact the one on the left is a round sphere, while the one

on the right is an ellipsoid for general λi. Next one needs to show that under the conditions in the

statement they do intersect and the intersections are diffeomorphic to S3. Assume with no loss of

generality that λ1 = mini{λi} and replace x2
1 = ε1 −

∑5
i=2 x

2
i in the second equation. This gives

5∑
i=2

(λi − λ1)x2
i = ε2 − λ1ε1 > 0,

and so defines a 3 sphere in R4
(x2,...,x5). Moreover, if λ2ε1 > ε2, then all (x2, x3, x4, x5) in the 3

spheres defined by
∑5

i=2(λi − λ1)x2
i = ε2 − λ1ε1 are such that

∑5
i=2 x

2
i < ε1. So there are two

distinct disconnected branches of the square root in the first equation x1 = ±
√
ε1 −

∑5
i=2 x

2
i and

each of these gives rise to a special Lagrangian 3 sphere.
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3.2.2 Monopoles on Crepant Resolutions

Given a Calabi-Yau cone (C,ωC ,ΩC), then C ∪ {0} can be identified with an affine variety

(Theorem 3.1 in [van11]), equivariantly embedded in some CNw1,...,wN
with respect to a C∗ action

for some weights (w1, ..., wN ). In many cases there is a resolution π : X → C which is crepant,

i.e. X has trivial canonical bundle equipped with a nonvanishing holomorphic section Ω = π∗ΩC .

There are many examples of AC Calabi-Yau 3 folds obtained from crepant resolutions, see section

4 in [CH13a], where the main examples are reviewed and some new ones given. These include, for

example, Calabi’s explicit metric on KP2 [Cal79], the small resolution of the ordinary double point

OP1(−1)⊕OP1(−1), Joyce’s ALE examples [Joy00], Van Coevering’s examples in [van10], the

cohomogeneity 1 examples associated with flag manifolds in [CH13a] and others. In this class of

examples, there are no compact special Lagrangian submanifolds because H3(X) ∼= H3(E), where

E denotes the exceptional locus and H3(E) = 0. So, the following vanishing result is a promising

motivation for the conjectural relation between monopoles and special Lagrangian submanifolds.

Proposition 3.2.7. Let X be a crepant resolution of a Calabi-Yau cone with complex dimension 3,

then there are no irreducible, finite mass complex monopoles (A,Φ) as in definition 3.1.19 on X

such that |A−A∞| = O(ρ−4−δ) for some δ > 0.

Proof. Recall the definition 3.1.19 of finite mass complex monopoles and suppose (A,Φ). The

hypothesis say that there is A∞ as in definition 3.1.19 such that |A−A∞| = O(ρ−4−δ′) and δ > 0.

Using this together with the fact that away from the exceptional locus X is biholomorphic to the

cone, i.e. the complex structure approaches the conical one at rate λ = −∞ < −3, one can use

proposition 3.1.23 to conclude that A is reducible.

3.3 Calabi-Yau Monopoles on T ∗S3

This section analyzes example 8 from section 3.2.1 regarding the existence of Calabi-Yau monopoles

and proves theorem 3.3.1 below. The Stenzel metric will be discussed in detail in section 3.3.1,

moreover it will be showed to be of cohomogeneity 1, i.e. there is a Lie group acting by isometries

with codimension 1 principal orbits. In the presence of such a Lie group action there is a notion of

homogeneous bundle, i.e. a bundle where the previous action lifts via bundle automorphisms to the

total space. Let E be a rank 2 complex vector bundle associated with a homogeneous principal

bundle P with structure group SU(2), then there is a notion of invariant connection and invariant

Higgs field and it makes sense to define the moduli space of invariant Calabi-Yau monopoles on

P ,Minv(P ). This is defined as the set of those (A,Φ) on P as in definition 3.1.19, which are

invariant and solve the Calabi-Yau monopole equations, up to the action of the invariant gauge

transformations.

Theorem 3.3.1. There is a homogeneous SU(2) bundle P over T ∗S3, such that the space of

invariant Calabi-Yau monopolesMinv(P ) is non empty and the following hold:

1. For all Calabi-Yau monopoles inMinv(P ), the Higgs field Φ is bounded, the mass is well
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defined and gives a bijection

m :Minv(P )→ R+.

2. Let R > 0, and {(Aλ,Φλ)}λ∈[Λ,+∞) ∈Minv(P ) be a sequence of Calabi-Yau monopoles

with mass λ converging to +∞. Then there is a null sequence η(λ,R) such that the restriction

to each fibre TxS3 for x ∈ S3 of the rescaled Calabi-Yau monopole

exp∗η(Aλ, ηΦλ)

converges uniformly to the BPS monopole (ABPS ,ΦBPS) in the ball of radius R in (R3, gE).

3. Let {(Aλ,Φλ)}λ∈[Λ,+∞) ⊂ Minv(P ) be a sequence of Calabi-Yau monopoles with mass

m(Aλ,Φλ) = λ converging to∞. Then the translated Calabi-Yau monopole sequence(
Aλ,Φλ − λ

Φλ

|Φλ|

)
,

converges uniformly with all derivatives to a zero mass Dirac Calabi-Yau monopole on

T ∗S3\S3, i.e. a reducible, singular Calabi-Yau monopole.

The proof of this theorem occupies this whole section and it is organized as follows. Subsection

3.3.1 explicitly obtains the Stenzel metric on T ∗S3. Subsection 3.3.2 constructs homogeneous

bundles and studies invariant connections and Higgs fields on them. Using these as input, the

Calabi-Yau monopole equations are then reduced to the ODE’s in proposition 3.3.16. The solutions

to these equations are studied in subsections 3.3.3, 3.3.4 and 3.3.5, where these are solved first

for the cone and then for the Stenzel metric. The proof of theorem 3.3.1 requires rewriting the

equations; this is done at the end of subsection 3.3.5 with the discussion after lemma 3.3.25. This

lemma is the last one in a sequence of rearrangements of the equations, which reduce the relevant

ODE’s to the ones analyzed in chapter 2 for spherically symmetric Calabi-Yau monopoles in R3

equipped with a certain spherically symmetric metric. This subsection finishes with one other

solution to the equations giving an explicit formula for an SU(2)-irreducible Hermitian Yang Mills

(HYM) connection, which to the author’s knowledge was previously unknown.

3.3.1 Stenzel’s Ricci Flat Metric

This subsection begins with an informal discussion of the Conifold and its deformations. Later the

Stenzel’s Calabi-Yau structure [Ste93] will be computed explicitly and shown to be asymptotic to

the Conifold one. Moreover, the uniqueness of Stenzel’s Calabi-Yau structure was recently shown

in [CH13a]

The Conifold and its Deformations

The ordinary double point in C4 gives rise to a Calabi-Yau cone (C,ωC ,ΩC), known in the physics

literature as the Conifold [Cd90]. It is a Ricci flat Kähler cone
(
C = R+ × Σ, g0 = dρ2 + ρ2gΣ

)
,

whose link (Σ, gΣ) is a regular Sasaki-Einstein manifold. Topologically Σ ∼= S3 × S2 is the total
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space of a U(1)-bundle over D = P1 × P1 with the product Fubini-Study Kähler structure ωD.

Let η be the contact structure on Σ, so gΣ = π∗DgD + η ⊗ η, where gD is the product round

metric. The curvature of the connection η is dη = 2π∗DωD, so in H1,1(D,Z) ∼= Z ⊕ Z and

c1 = 1
2π [dη] = 1

π [ωD] represents the first Chern class of the associated complex line bundle. Since

Σ is simply connected and c1(−1
2KP1×P1) = (1, 1), one concludes that Σ is the total space of

the unit circle bundle in −1
2KP1×P1 . The complex structure JC on the cone C is the one given

by viewing it as the ordinary double point in C4. It matches the one in D along the transverse

directions and rotates ρ∂ρ to the Reeb vector field ξ. This makes (C, gC , JC) a Ricci flat Kähler

cone with a global Kähler potential ρ2, so ωC = 1
2d(ρ2η) = i

2∂∂ρ
2. The smoothings,

Xε =
{
F (z1, z2, z3, z3, z4) = z2

1 + z2
2 + z2

3 + z2
4 = ε2

}
⊆ C4,

for ε ∈ R+, make it nonsingular at the expense of changing the complex structure. Topologically

these are T ∗S3 and one obtains a complex 1-parameter family of complex structures on T ∗S3. To

see that Xε
∼= T ∗S3, restrict to each Xε the function r2 =

∑4
i=1 |zi|2 taking values into [ε2,+∞)

and introduce the coordinates (xi, yi) ∈ R4 × R4 ∼= C4, via zi = xi + iyi. Then the real and

imaginary parts of the quadratic equation for Xε are respectively

|x|2 = R2
+ =

r2 + ε2

2
, |y|2 = R2

− =
r2 − ε2

2
, x · y = 0. (3.3.1)

This shows that the map that to (x, y) ∈ R4 × R4 associates
(

x
R+
, y
)
∈ S3 × R4 ⊂ R4 × R4,

restricts to Xε ⊂ C4 as a diffeomorphism onto TS3 ⊂ R4 × R4. Moreover, the level sets of r are

either Σ = S3 × S2 for r 6= ε, or the zero section S3 for r = ε.

Regarding symmetries, SO(4) acts on C4 by matrix multiplication preserving F and r and so acts

on Xε. The action is transitive on each level set of r. In fact Stenzel’s Calabi-Yau structure, is

invariant under this SO(4) action. This symmetry allows for the reduction of the Monge-Ampère

equation to an ODE. For the purpose of constructing the metric it is irrelevant whether one considers

an SO(4)-action or its lift to a Spin(4)-action. However, regarding the existence of interesting

invariant connections it is convenient to work with the Spin(4)-action instead.

Stenzel’s Ricci Flat Metric

Identify the Lie algebra so(4) with the skewsymmetric matrices. Then, let X1 = C12, X2 =

C13, X3 = C14, X4 = C23, X5 = C24, X6 = C34, where Cij denotes the matrix whose (i, j) and

(j, i) entries are respectively 1,−1 and all other vanish. These satisfy the relations [Cij , Cik] =

−Cjk and [Cij , Ckl] = 0 if i, j, k, l are all distinct. Let p = (R+, iR−, 0, 0) ∈ Xε ⊂ C4, with

R+, R− defined as in equation 3.3.1, then at p the isotropy subgroup is generated by exponentiating

X6 and this is

Hp =

{(
I 0

0 A

)
| A ∈ SO(2)

}
⊆ SO(4). (3.3.2)
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One fixes a lift of SO(4) to Spin(4), such that the isotropy subgroup Hp ⊂ SO(4) lifts to

H ∼= U(1) in Spin(4) = SU(2)× SU(2), with

H ∼=

{
γ(t) =

((
eit 0

0 e−it

)
,

(
eit 0

0 e−it

))
| t ∈ R

}
∼= U(1). (3.3.3)

and dγ
dt

∣∣∣
t=0

= −2X6. Using the basis for spin(4) = so(4) given by the {Xi}6i=1 and its dual basis

{θi}6i=1, the Maurer Cartan form on Spin(4) is θ =
∑6

i=1 θiXi and the 1-form

− i

2
θ6 ∈ Ω1(Spin(4), iR) (3.3.4)

equips the bundle Spin(4) → Σ = Spin(4)/U(1) with a connection. This is the canonical

invariant connection in the language of [KN63]. The tangent space to the Spin(4)-orbits can be

identified with an Ad invariant complement to the isotropy algebra h = 〈X6〉. Fix the one given by

defining m to be the span of {Xi}5i=1, then

spin(4) = h⊕m,

and extending m as a left invariant distribution in Spin(4) gives another point of view on the canon-

ical invariant connection. Moreover, one can further decompose m into irreducible representations

of H = U(1) as

m = 〈X1〉 ⊕ 〈X2, X3〉 ⊕ 〈X4, X5〉, (3.3.5)

where 〈X1〉 is the trivial representation and 〈X2, X3〉 ∼= 〈X4, X5〉 ∼= C with the standard weight

one representation. One can check that at p, 〈X4, X5〉 is the tangent space to the fibres of the

sphere bundle inside T ∗S3 → S3 (using the round metric on S3), while 〈X1〉 ⊕ 〈X2, X3〉 projects

surjectively onto the tangent space to the base S3.

Proposition 3.3.2. There is a Spin(4)-invariant Ricci flat Kähler metric on T ∗S3 with Kähler

form

ω = Ġdr ∧ θ1 + G(θ24 + θ35), (3.3.6)

where G =
√
r4 − ε4F ′

2 , Ġ = dG
dr and F(r2) is the (global) Kähler potential, which satisfies

F ′(r2(t)) =
1

sinh(t)

(
3

4ε2

) 1
3

(sinh(2t)− 2t)
1
3 , (3.3.7)

where t ∈ [0,+∞] is the coordinate implicitly determined by r2 = ε2 cosh(t).

Proof. Since b2(T ∗S3) = 0 any Kähler metric has a global Kähler potential F(r2). The proof

splits into 3 steps:

1) Find a (SO(4)-invariant) formula for the Kähler form in terms of F(r2). To do this expand
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the formula for the Kähler form i
2∂∂F(r2) in terms of the Kähler potential

ωC =
i

2
F ′∂∂(r2) +

i

2
F ′′∂(r2) ∧ ∂(r2). (3.3.8)

The first term is ∂∂(r2) =
∑

i dz
i ∧ dzi and for the second

∂r2∂r2 = (d− ∂)r2 ∧ (d− ∂)r2 = −2rdr ∧ ∂r2 − 2r∂r2 ∧ dr − ∂r2∂r2

= 2rdr ∧ (∂ − ∂)r2 − ∂r2∂r2.

Pass the last term to the left hand side and get ∂r2∂r2 = rdr ∧ (∂ − ∂)r2, substituting this back in

equation 3.3.8 so that ωC = i
2F
′∂∂r2 + iF ′′rdr∧ (∂− ∂)r2. At p = (R+, iR−, 0, 0) ∈ Xε ⊂ C4

one may write

dz1 =
r

2R+
dr + iR−θ

1 dz2 = −R+θ
1 +

ir

2R−
dr,

dz3 = −R+θ
2 − iR−θ4 dz4 = −R+θ

3 − iR−θ5.

and notice that the forms on the right hand side extend to SO(4)-invariant forms outside the zero

section. With these relations one computes (∂−∂)r2 =
∑

i z
idzi−zidzi = 2i(R−dx2−R+dy1) =

−4iR−R+θ
1. The same can be done for the terms dzi ∧ dzi and one discovers that

ωC =
r√

r4 − ε4

(
r2F ′ + (r4 − ε4)F ′′

)
dr ∧ θ1 +

√
r4 − ε4

F ′

2
(θ2 ∧ θ4 + θ3 ∧ θ5),

which in terms of G is the Kähler form in the statement, for a (yet) unknown F(r2).

2) Find a formula for the holomorphic volume form. This is done on the chart {zi ∂F
∂zi
6= 0},

where recall F =
∑

i z
2
i . There, it is given by Ω =

(
∂F
∂zi

)−1
dz1 ∧ ...d̂zi... ∧ dz4 and one can

compute it at p, since z1 6= 0 there. Writing the result in terms of the SO(4) invariant forms

Re(Ω) = −
(
R2

+θ
123 −R2

−θ
145
)
− r

2
dr ∧

(
θ25 − θ25

)
, (3.3.9)

Im(Ω) =
r

2

(
R+

R−
dr ∧ θ23 − R−

R+
dr ∧ θ45

)
+R+R−(θ134 − θ125).

3) Use the formulas computed in the previous steps to reduce the Monge-Ampère equation to

an ODE and solve it. This is done by combining ω3

3! = − i
8Ω ∧ Ω with the formulas for ω and Ω

obtained in the first two steps. Since i
8Ω ∧ Ω = − rR+R−

2 dr ∧ θ12345 and ω3

3! = −ĠG2dr ∧ θ12345

the ODE is 2ĠG2 = rR+R−, or in terms of the Kähler potential F

r2(F ′)3 +
r4 − ε4

3

d

dr2
(F ′)3 = 1. (3.3.10)

Change variables to t such that r2 = ε2 cosh(t), then ε4 sinh2(t) = r4 − ε4 and d
dr2 = 1

ε2 sinh(t)
d
dt .
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Substituting this into 3.3.10, the ODE turns out to be

ε2 cosh(t)(F ′)3 +
ε2 sinh(t)

3

d

dt
(F ′)3 = 1, (3.3.11)

which can be solved by introducing an integrating factor, giving the formula in the statement for

the solution.

Remark 3.3.3. In some computations to be carried out further ahead it will be useful to recall the

ODE 3.3.10 in the form 2ĠG2 = rR+R−.

For completeness, the complex structure can also be worked out explicitly in terms of the

invariant forms. This can be read out of the formulas relating the dz′is with the θi’s and this

gives Iθ1 = r
2R−R+

dr, Idr = −2R+R−
r θ1, Iθ2 = −R−

R+
θ4, Iθ4 = R+

R−
θ2, Iθ3 = −R−

R+
θ5 and

Iθ5 = R+

R−
θ3. These, together with the equation 3.3.6 for the Kähler form, give the following

expression for the metric

g = Ġ r

2R−R+
dr2 + Ġ 2R+R−

r
θ2

1 + GR+

R−

(
θ2

2 + θ2
3

)
+ GR−

R+

(
θ2

4 + θ2
5

)
. (3.3.12)

Definition 3.3.4. For each ε define the radial function given by

ρ(r) =

∫ r

ε

l

2G
dl =

∫ r

ε

l√
l4 − ε4

1

F ′(l2)
dl. (3.3.13)

The function ρ just defined is the length through a geodesic orthogonal to the principal orbits

and for ε = 0 it agrees with the geodesic distance to the apex of the cone. Next one defines a

function which captures the volume growth of the level sets of ρ. The volume form for the induced

metric is given by GR−R+
G R+

R−

√
Ġ 2R+R−

r dr ∧ θ1...5 = (R+R−)2F ′dr ∧ θ1...5.

Definition 3.3.5. Define the radial function h2(ρ) = 1
ε2

(R+R−)2F ′.

Remark 3.3.6. For the Conifold, which corresponds to ε = 0 one already knows the Kähler

potential is ρ2. Moreover, in this case the SO(4) invariant Monge-Ampère equation 3.3.10 is

r2(F ′)3 +
r4

3

d

dr2
(F ′)3 = 1. (3.3.14)

The Kähler potential F is given by F =
(

3
2

) 4
3 r

4
3 and so one concludes that the geodesic distance

to the apex of the cone is ρ =
(

3
2

) 2
3 r

2
3 . This can be used to rewrite the Ricci Flat Kähler metric

3.3.12 on the conifold C as

g = dρ2 + ρ2

((
2

3
θ1

)2

+

(
θ2√

3

)2

+

(
θ3√

3

)2

+

(
θ4√

3

)2

+

(
θ5√

3

)2
)
. (3.3.15)

3.3.2 The Calabi-Yau Monopole Equations

Recall that Xε\r−1(ε) ∼= (ε;∞) × Σ, where Σ = Spin(4)/U(1) is homogeneous and r is the

coordinate on the (ε;∞) component. This section describes homogeneous bundles having invariant
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connections and invariant Higgs Fields. Then, these are used to compute the Calabi-Yau monopole

equations and reduce them to ODE’s. Background material on homogeneous bundles and invariant

connections can be found for example in section 2 of chapter X in [KN63], or in Appendix B.

Homogeneous SU(2) Bundle

Recall that given a Lie group G, a principal G bundle P over Σ = Spin(4)/U(1) is said to

be Spin(4)-homogeneous (or just homogeneous) if there is a lift of the Spin(4) action on Σ to

its total space, which commutes with the right G action on P . In particular, Spin(4) → Σ is

itself a homogeneous U(1)-bundle. In general homogeneous SU(2) principal bundles over Σ are

determined by their isotropy homomorphisms λl : U(1)→ SU(2) and are constructed via

Pλl = Spin(4)×(U(1),λl) SU(2), (3.3.16)

where the possible group homomorphisms λl are parametrized by l ∈ Z and given by

λl(θ) =

(
eilθ 0

0 e−ilθ

)
.

By construction the Pλl are reducible to Spin(4) and each connection on the latter extends to a

reducible connection on Pλl (see [KN63]). The goal is to find invariant connections on Pl which

are not reducible to connections on Spin(4) and it will be seen in proposition 4.2.1, that this is not

possible for all but one l, which is l = 1.

Remark 3.3.7. Let El = Pλl ×(SU(2),c) C2, or equivalently Pλ1 ×(SU(2),c⊗l) C2, where c denotes

the standard representation of SU(2) on C2. As the Pl’s are reducible,

El = Spin(4)×c◦λl C
2 = Ll ⊕ L−l,

splits as a sum of complex line bundles Ll associated with Spin(4) from the degree l representation

of U(1) on C. As Σ is topologically S2× S3, the bundles El are trivial and so do extend over T ∗S3,

i.e. when the zero section is glued back in. However, the splitting above only holds outside the zero

section in T ∗S3, as the bundle L itself does not extend.

Recall the canonical invariant connection − i
2θ

6 ∈ Ω1(Spin(4), iR) on Spin(4)→ Σ defined

in equation 3.3.4. This is a U(1) connection and the next step is to extend it to a reducible

connection on each Pλl .

Definition 3.3.8. Let T1, T2, T3 be a basis for su(2) such that [Ti, Tj ] = 2εijkTk. Then, the

canonical invariant connection on Pλl is

Alc = − lθ
6

2
⊗ T1 ∈ Ω1(Spin(4), su(2)). (3.3.17)
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Lemma 3.3.9. The curvature of the canonical invariant connection Alc is

F lc = − l
2

(
θ23 + θ45

)
⊗ T1. (3.3.18)

Proof. This follows from the Maurer-Cartan relation dθ6 = θ23 + θ45, the other ones are dθ1 =

θ24 + θ35, dθ3 = −θ15 − θ26, dθ5 = θ13 − θ46, dθ2 = −θ14 + θ36.

In the same way one computes c1(L) = 1
4π

[
θ23 + θ45

]
, and this can be compared this with

the transverse Kähler structure. The vector field X1 is the infinitesimal generator of a free S1-

action on Σ and this is precisely the flow of the Reeb field. The contact form equips the bundle

Σ→ D with a connection which needs to be proportional to θ1, and one can read from 3.3.15 that

ωD = 1
3

(
θ24 + θ35

)
. Moreover, since ωD = dη

2 , one discovers from the Maurer Cartan relations

that η = −2
3θ

1, as expected from 3.3.15 and so c1(Σ) = 2c1(D) = 1
3π

[
θ24 + θ35

]
.

Remark 3.3.10. In fact L is the pull back of a holomorphic line bundle L over D. Moreover, −i θ6

2

is then a Hermitian Yang Mills connection on L → D and in the case of the Conifold C it does lift

to a reducible Calabi-Yau monopole. In fact one wants to construct Calabi-Yau monopoles whose

connection A is asymptotic to A∞ = Alc.

Invariant Connections and Higgs Fields

The problem of finding invariant connections on Pl is an application of Wang’s theorem, for which

the reader is referred to [KN63] or Appendix B in this thesis.

Proposition 3.3.11. Let Al ∈ Ω1(Spin(4), su(2)) be the connection 1 form of an invariant

connection on Pl. Then it is left-invariant and can be written as

Al = Alc + (A−Ac) (3.3.19)

where (A−Ac) ∈ m∗ ⊗ su(2), extended as a left-invariant 1-form with values in su(2) is given by

A−Ac = A1θ
1 ⊗ T1 if l 6= 1, while if l = 1

A−Ac = A1θ
1 ⊗ T1

+
(
A2θ

2 −A3θ
3 +A4θ

4 −A5θ
5
)
⊗ T2

+
(
A3θ

2 +A2θ
3 +A5θ

4 +A4θ
5
)
⊗ T3,

and A1, A2, A3, A4, A5 ∈ R.

Proof. By Wang’s theorem [KN63], invariant connections are given by morphisms of U(1) repre-

sentations

Λl : (m,Ad) −→ (su(2),Ad ◦ λl).

Then by extending Λl as a left invariant su(2)-valued 1-form in Spin(4) one obtains an invariant

connection A = Alc + Λl on Pl (notice that Λl = 0 gives the canonical invariant connection).

Let c be the standard, weight 1, U(1) representation on C ∼= R2. Split the representations
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above into irreducibles m ∼= R ⊕ c ⊕ c, and su(2) ∼= R ⊕ c⊗l, where in the first of these

c ⊕ c ∼= 〈X2, X3〉 ⊕ 〈X4, X5〉, from equation 3.3.5. Then, Schur’s lemma states that Λ should

restrict to each piece as an isomorphism or as 0. So for l 6= 1, λl = A1T1 ⊕ 0, while for l = 1,

Λ1 = A1T1 ⊕ 11 ⊕ 12, where A1 ∈ R and 11 and 12 are isomorphisms matching the c components

in both sides. Using the basis of m given by the Xi’s as in section 3.3.1 and the basis for su(2)

given by the Ti’s as in definition 3.3.8, 11, 12 can be written

11 =
(
A2θ

2 −A3θ
3
)
⊗ T2 +

(
A3θ

2 +A2θ
3
)
⊗ T3

12 =
(
A4θ

4 −A5θ
5
)
⊗ T2 +

(
A5θ

4 +A4θ
5
)
⊗ T3,

with A1, A2, A3, A4, A5 ∈ R. Rearranging gives the result in the statement.

Proposition 3.3.12. For all l ∈ Z, there are invariant Higgs fields Φ and these are of the form

Φ = φ T1, with φ ∈ R.

Proof. The adjoint bundle is constructed via gPl ×(SU(2),Ad) su(2) and unwinding the construction

of P in equation 3.3.16, gives

gPl = Spin(4)×U(1),Ad◦λl su(2).

So, think of Higgs fields (sections of gPl) as functions in Spin(4) with values in su(2) which are

equivariant for the U(1) right-action on Spin(4) and Ad ◦ λl-action on su(2) via Ad ◦ λl. For

Spin(4)-invariant Higgs fields, these functions must be constant. So the previous equivariance

condition reduces to the statement that such a constant must be fixed by the Ad ◦ λl-action, i.e. it

must lie in a irreducible component given by the trivial representation. There is only one such and

is the direction singled out by T1.

Then a Spin(4)-invariant pair (A,Φ) on the pull back of Pl to (ε,+∞)× Σ can be written as

A = dr ⊗Ar(r) +AΣ(r) , Φ = φ(r)⊗ T1,

with AΣ 1-parameter family as in proposition 3.3.11 and Ar,Φ 1 parameter families as in proposi-

tion 3.3.12, parametrized by r ∈ (ε,∞). Moreover, one can always get rid of the radial component

in A via a gauge transformation g that only depends on the r-direction, for this one needs to solve

(g ·A)(∂r) = 0. This equation can be written as g−1 ∂g
∂r + g−1Arg = 0, and so amounts to solving

an ODE for g. This can always be solved with the condition limr→∞ g(r) = 1SU(2), the solution is

unique and so there is no loss in assuming that Ar = 0.

Remark 3.3.13. For the proof of theorem 3.3.1 one must consider invariant gauge transformations.

The gauge-fixing above uses an invariant gauge transformation such that limr→∞ g(r) = 1SU(2),

which is a usual requirement in monopole problems, but not here. So one can still use a gauge

transformation g′ which must not depend on r and be invariant, i.e. g must be a constant is

the subgroup ZU(1)(SU(2)) = U(1) ⊂ SU(2) of those elements which are centralized by U(1).

These do not affect the radial gauge fixing above, they preserve Alc and act by conjugation as
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g(Al−Alc)g−1 and so one can get rid of one theAi’s. The choice of such a gauge will be postponed

to a later stage, where a particular choice will ease the computations.

Lemma 3.3.14. For l 6= 1, the curvature of an invariant connection A on Pl is given by

F l =

(
− l

2
(θ23 + θ45) + Ȧ1dr ∧ θ1 +A1(θ24 + θ35)

)
⊗ T1, (3.3.20)

in particular the connection is always reducible for l 6= 1. For l = 1, the curvature is

FA =

((
2(A2

2 +A2
3)− 1

2

)
θ23 +

(
2(A2

4 +A2
5)− 1

2

)
θ45

)
⊗ T1

+
(
2(A2A4 +A5A3)(θ25 − θ34) + (A1 + 2(A2A5 −A4A3)) (θ24 + θ35)

)
⊗ T1

+(A4 − 2A1A3)(T2 ⊗ θ12 + T3 ⊗ θ13) + (A5 + 2A1A2)(T3 ⊗ θ12 − T2 ⊗ θ13)

−(A2 + 2A1A5)(T2 ⊗ θ14 + T3 ⊗ θ15)− (A3 − 2A1A4)(T3 ⊗ θ14 − T2 ⊗ θ15)

+dr ∧ ∂

∂r
(A−Ac) (3.3.21)

Proof. The curvature of an invariant connection A = Alc + (A−Alc) is given by

FA = F lc + dAlc (A−Ac) +
1

2

[(
A−Alc

)
∧
(
A−Alc

)]
, (3.3.22)

where F lc is the curvature of the canonical invariant connection, computed in equation 3.3.18, and

dAlc
(
A−Alc

)
is the covariant derivative of A − Alc with respect to Alc. The statement that the

connection is reducible follows from the Ambrose-Singer theorem, since the curvature always takes

value in the u(1) ⊂ su(2) generated by T1.

For l 6= 1, the third therm in 3.3.22 is A2
1θ

1 ∧ θ1 ⊗ [T1, T1] and so vanishes. One is left with

the computations of the second term, for which the Bianchi identity dAlcF
l
c = 0 can be used to

conclude dAlcT1 = 0 and so

dAlc(A−A
l
c) = d(A−Alc) + [Alc ∧ (A−Alc)]

= Ȧ1dr ∧ θ1 ⊗ T1 +A1T1 ⊗ (θ24 + θ35).

The case l = 1 is more involved. Using the Maurer-Cartan relations, the second term in 3.3.22

I2 = dAc(A−Ac) = d(A−Ac) + [Ac ∧ (A−Ac)] is

dAc(A−Ac) = dr ∧ ∂

∂r
(A−Ac) +A1T1 ⊗ (θ24 + θ35)

−(A2T2 +A3T3)⊗ θ14 + (A3T2 −A2T3)⊗ θ15

+(A4T2 +A5T3)⊗ θ12 + (−A5T2 +A4T3)⊗ θ13,

where the vertical terms (i.e. those in h) from the exterior derivative have canceled with the ones
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coming from [Ac ∧ (A−Ac)]. The last term I3 = 1
2 [(A−Ac) ∧ (A−Ac)] is given by

I3 = A1θ
1 ∧ (A2θ2 −A3θ

3 +A4θ
4 −A5θ

5)⊗ [T1, T2]

+A1θ
1 ∧ (A3θ2 +A2θ

3 +A5θ
4 +A4θ

5)⊗ [T1, T3]

+
(
A2θ2 −A3θ

3 +A4θ
4 −A5θ

5
)
∧
(
A3θ2 +A2θ

3 +A5θ
4 +A4θ

5
)
⊗ [T2, T3]

= 2A1(A2T3 −A3T2)⊗ θ12 + 2A1(A4T3 −A5T2)⊗ θ14

−2A1(A2T2 +A3T3)⊗ θ13 − 2A1(A4T2 +A5T3)⊗ θ15

+2(A2A5 −A4A3)T1 ⊗ (θ24 + θ35) + 2(A2A4 +A5A3)T1 ⊗ (θ25 − θ34)

2(A2
2 +A2

3)T1 ⊗ θ23 + 2(A2
4 +A2

5)T1 ⊗ θ45.

Lemma 3.3.15. Let Φ ∈ Ω0(T ∗S3, gPl) be an invariant Higgs field andAl an invariant connection

on Pl. Then, if l 6= 1, ∇AlΦ = φ̇dr ⊗ T1, while for l = 1

∇A1Φ = φ̇dr ⊗ T1

+2φA2

(
T2 ⊗ θ3 − T3 ⊗ θ2

)
+ 2φA3

(
T2 ⊗ θ2 + T3 ⊗ θ3

)
−2φA4(T3 ⊗ θ4 − T2 ⊗ θ5) + 2φA5(T2 ⊗ θ4 + T3 ⊗ θ5).

Proof. This follows from computing ∇AlΦ = ∇Al (φT1) = dφ ⊗ T1 + φ∇AlT1. The first

term is just φ̇dr ⊗ T1, while for the second term one uses that Al = Alc + (Al − Alc), then

∇AlT1 = dAlcT1 + [Al −Alc, T1], i.e.

∇AlΦ = φ̇dr ⊗ T1 + φ
(
dAlcT1 + [Al −Alc, T1]

)
.

Again, the Bianchi identity dAlcFAlc = 0 for Alc gives dAlcT1 = 0 and one is left with the remaining

terms. In the case l 6= 1 these vanish and∇AlΦ = φ̇dr ⊗ T1, while for l = 1 one has

[Al −Alc, T1] = 2(A3θ
2 +A2θ

3 +A5θ
4 +A4θ

5)⊗ T2 − 2(A2θ
2 −A3θ

3 +A4θ
4 −A5θ

5)⊗ T3.

The result follows.

Reduction to ODE’s

This section uses the results from the previous section to reduce the Calabi-Yau monopole equations

for invariant connections and Higgs fields to ODE’s. The two cases l = 1 and l 6= 1 are presented

separately and the case l = 1 ends up being the more important one. Recall from the third item of

proposition 3.1.3, namely equations 3.1.6 and 3.1.7 with Φ2 = 0, that the Calabi-Yau monopole

equations are

dAΦ1 ∧
ω2

2
+ FA ∧ Ω2 = 0 , FA ∧

ω2

2
= 0.
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Proposition 3.3.16. Up to the action of a constant gauge transformation, Spin(4) invariant Calabi-

Yau monopoles on Pl → T ∗S3\S3 are in correspondence with solutions to the following set of

ODE’s. For l 6= 1,

Ȧ1 = −2
Ġ
G
A1

φ̇ =
l

4

r

G2

(
R−
R+
− R+

R−

)
.

While for l = 1, the fields must satisfy the constraint A2A4 +A3A5 = 0 and solve

Ȧ1 = −2
Ġ
G

(A1 + 2(A2A5 −A4A3))

φ̇ =
1

G2

(
r

4

R−
R+

(
1− 4(A2

2 +A2
3)
)
− r

4

R+

R−

(
1− 4(A2

4 +A2
5)
))

Ȧ2 = −r
2

1

R2
−

(A2 + 2A1A5)− r

G
φA2

Ȧ3 = −r
2

1

R2
−

(A3 − 2A1A4)− r

G
φA3

Ȧ4 = −r
2

1

R2
+

(A4 − 2A1A3) +
r

G
φA4

Ȧ5 = −r
2

1

R2
+

(A5 + 2A1A2) +
r

G
φA5,

with φ,Ai : (ε,∞) → R, for i = 1, 2, 3, 4, 5, R+ =
√

r2+ε2

2 , R− =
√

r2−ε2
2 and G =

√
R+R−F ′(r2), where F is the Kähler potential for the Stenzel metric and F ′ its derivative.

Proof. We use the formulae 3.3.6 and 3.3.9, together with those computed in the previous section

to evaluate the quantities,∇AΦ ∧ ω2

2 , FA ∧ ω2 and FA ∧ Ω2.

∇AΦ ∧ ω
2

2
= −G2φ̇ T1 ⊗ dr ∧ θ2345

+2GĠφ
(
(A3T2 −A2T3)⊗ dr ∧ θ1235 − (A2T2 +A3T3)⊗ dr ∧ θ1234

)
−2GĠφ

(
(A5T2 −A4T3)⊗ dr ∧ θ1345 − (A4T2 +A5T3)⊗ dr ∧ θ1245

)
.

FA ∧ ω2 = −2G2dr ∧ ∂

∂r
(A−Ac) ∧ θ2345

−4GĠ (A1 + 2(A2A5 −A4A3))T1 ⊗ dr ∧ θ12345

= 2G
(
GȦ1 + 2Ġ (A1 + 2(A2A5 −A4A3))

)
T1 ⊗ dr ∧ θ12345.
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The computation of FA ∧ Ω2 is long, but the outcome is

FA ∧ Ω2 = 4R+R−(A2A4 +A3A5)T1 ⊗ θ12345

+

(
r

4

R−
R+

(
1− 4(A2

2 +A2
3)
)
− r

4

R+

R−

(
1− 4(A2

4 +A2
5)
))

T1 ⊗ dr ∧ θ2345

−R−R+

(
Ȧ2T2 + Ȧ3T3 +

r

2R2
−

((A2 + 2A1A5)T2 + (A3 − 2A1A4)T3)

)
⊗ dr ∧ θ1234

−R−R+

(
−Ȧ3T2 + Ȧ2T3 +

r

2R2
−

((A2 + 2A1A5)T3 − (A3 − 2A1A4)T2)

)
⊗ dr ∧ θ1235

−R−R+

(
Ȧ4T1 + Ȧ5j +

r

2R2
+

((A4 − 2A1A3)T2 + (A5 + 2A1A2)T2)

)
⊗ dr ∧ θ1245

−R−R+

(
−Ȧ5T2 + Ȧ4T3 +

r

2R2
+

((A4 − 2A1A3)T3 − (A5 + 2A1A2)T2)

)
⊗ dr ∧ θ1345

Matching all these computations in −∇AΦ ∧ ω2

2 = F ∧ Ω2 gives the constraint 4R+R−(A2A4 +

A3A5) and

G2φ̇ =

(
r

4

R−
R+

(
1− 4(A2

2 +A2
3)
)
− r

4

R+

R−

(
1− 4(A2

4 +A2
5)
))

2GĠφ(A2T2 +A3T3) = −R−R+

(
Ȧ2T2 + Ȧ3T3

)
− r

2

R+

R−
((A2 + 2A1A5)T2 + (A3 − 2A1A4)T3)

−2GĠφ(A3T2 −A2T3) = −R−R+

(
−Ȧ3T2 + Ȧ2T3

)
− r

2

R+

R−
((A2 + 2A1A5)T3 − (A3 − 2A1A4)T2)

−2GĠφ(A4T2 +A5T3) = −R−R+

(
Ȧ4T2 + Ȧ5T3

)
− r

2

R−
R+

((A4 − 2A1A3)T2 + (A5 + 2A1A2)T3)

2GĠφ(A5T2 −A4T3) = −R−R+

(
−Ȧ5T2 + Ȧ4T3

)
− r

2

R−
R+

((A4 − 2A1A3)T3 − (A5 + 2A1A2)T2) .

From these equations and using 2GĠ
R+R−

= r
G , which is the ODE for the Ricci flatness of the metric

gives the statement.

Remark 3.3.17. Recall that the Calabi-Yau monopole equations are overdetermined. In this specific

example this can be directly seen from the ODE’s in the statement of the previous proposition. In

fact, for l = 1 one sees that there are 6 ODE’s for 6 real valued functions, but they are constrained

to satisfy the identity A2A4 +A3A5 = 0. Since the complex structure is integrable it is expected

that the evolution encoded in the 6 ODE’s does preserve this constraint. In fact this will be shown

later in lemma 3.3.23.

3.3.3 Calabi-Yau Monopoles on the Cone

This subsection studies Calabi-Yau monopoles on the Conifold. The most important point is the

existence of an Abelian Calabi-Yau monopole given by the canonical invariant connection. This

is the pull back from Ll → D = P1 × P1 of a HYM connection, which, recall, is the model for

the asymptotic behavior of finite mass Calabi-Yau monopoles. Since c1(Ll) ∈ H1,1(D,Z) is in

the kernel of · ∪ [ωD] proposition 3.1.31 gives its existence, but here an explicit formula for the
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connection is given. One also has gP ∼= iR⊕L2l and using this decomposition let Φ = φ⊕ 0, with

φ constant. Then (Alc,Φ) are Calabi-Yau monopoles on the Conifold and provide good asymptotic

conditions for finite mass Calabi-Yau monopoles on T ∗S3. In the system of ODE’s this corresponds

to taking φ constant and all the Ai’s to be zero. After writing the equations on the cone it will be

trivial to see that this is indeed a solution. In fact a slightly more general result, proposition 3.3.18,

classifying all “constant" mass Calabi-Yau monopoles on the Conifold is obtained. Recall that the

radius function on the cone is ρ =
(

3r
2

) 2
3 and F = ρ2 and one has the relations

F ′(r2) =

(
3

2

) 1
3

r−
2
3 =

3

2

1

ρ
, G =

1

2

(
3

2

) 1
3

r
4
3 =

ρ2

2
, Ġ =

(
2

3

) 2
3

r
1
3 =

2

3

√
ρ.

Substitute these in the equations, then for l = 1 these turn into

Ȧ1 = − 8

3r
(A1 + 2(A2A5 −A4A3))

φ̇ = 4

(
2

3

) 2
3

r−
5
3
(
(A2

4 +A2
5)− (A2

2 +A2
3)
)

together with the constraint A2A4 +A3A5 = 0 and

Ȧ2 = −1

r
(A2 + 2A1A5)− 2

(
2

3r

) 1
3

φA2 Ȧ3 = −1

r
(A3 − 2A1A4)− 2

(
2

3r

) 1
3

φA3,

Ȧ4 = −1

r
(A4 − 2A1A3) + 2

(
2

3r

) 1
3

φA4 Ȧ5 = −1

r
(A5 + 2A1A2) + 2

(
2

3r

) 1
3

φA5.

The following rescaling simplifies the equations and is a good preview of what will be done later

for T ∗S3. Define the fields Bi via

B2 = rA2 , B3 = rA3 , B4 = rA4 , B5 = rA5.

Use Ȧi + 1
rAi = 1

r Ḃi, and change coordinates to ρ via d
dr =

(
2
3r

) 1
3 d
dρ to obtain

dA1

dρ
= −4

ρ
A1 +

18

ρ4
(B2B5 −B4B3),

dφ

dρ
=

33

2ρ5

(
(B2

4 +B2
5)− (B2

2 +B2
3)
)
,

together with the constraint B2B4 +B3B5 = 0 and

dB2

dρ
= −3

ρ
A1B5 − 2φB2

dB3

dρ
= +

3

ρ
A1B4 − 2φB3,

dB4

dρ
= +

3

ρ
A1B3 + 2φB4

dB5

dρ
= −3

ρ
A1B2 + 2φB5.

Proposition 3.3.18. For all l and in radial gauge, any Spin(4) invariant Calabi-Yau monopole on



80 CHAPTER 3. MONOPOLES ON CALABI-YAU 3 FOLDS

Pl over the Conifold with |Φ| 6= 0 constant is given by

Al = Alc + Cρ−4θ1 ⊗ T1 , Φ = mT1, (3.3.23)

with C ∈ R and m ∈ R\{0}. In particular, the canonical invariant connection Alc is obtain by

C = 0.

Proof. If |Φ| is constant, then φ = m ∈ R and in a first case focus in the more involved case l = 1.

Make use of the extra gauge freedom and use g ∈ U(1) ⊂ SU(2) to change the connection from

A− Alc to g(A− Alc)g−1. This rotates A2T2 + A3T3 and A4T2 + A5T3 simultaneously. Hence,

there is no loss of generality in supposing that A2 = 0, i.e. B2 = 0. Then, the constraint turns into

B3B5 = 0, while the third equation is A1B5 = 0, then either A1 = B3 = 0 or B5 = 0. In the

following these two cases are analyzed.

First the case A1 = B3 = 0, then in fact A2T2 + A3T3 = 0 and so the gauge freedom is still

available to set B4 = 0. Since φ = m the equation for dφ
dρ = 0 gives B5 = 0 as well. So in this

case Φ = mT1 and the connection is the canonical invariant one.

For the case where B5 = 0, the second equation gives B2
4 = B2

3 , i.e. B3 = ±B4. If one defines

B1 = ρ4A1, the remaining equations are

dB1

dρ
= ∓18B2

4 (3.3.24)

d(B2
4)

dρ
= ± 3

ρ5
B1B

2
4 − 4mB2

4 (3.3.25)

d(B2
4)

dρ
= ± 3

ρ5
B1B

2
4 + 4mB2

4 . (3.3.26)

Since m 6= 0 by hypothesis, the last two ODE’s are compatible only in the case B4 = 0 and so

also B3 = 0. One is left with solving the first equation which now says that B1 is constant. The

Calabi-Yau monopole to which this corresponds is given by the connection A = A1
c + C

ρ4 θ
1 ⊗ T1

and the Higgs field Φ = mT1. Hence its is reducible and the connection is HYM and for C = 0 is

the canonical invariant one.

One must now discuss what happens when l 6= 1. If that is the case, then immediately

B2 = B3 = B4 = B5 = 0 and the only equation is dA1
dρ = −4

ρA1. This can be integrated to give

the Calabi-Yau monopole in equation 3.3.23, which was obtained before for l = 1. They do decay

to the canonical invariant connection. However, this decay is at a polynomial rate, more specifically

|A − Alc| = O(ρ−5), which is due to the (unique) component which is "parallel" to the Higgs

field. So if one imposes that the connection must decay faster than this rate the canonical invariant

connection is the unique solution (setting C = 0).

Remark 3.3.19. All these Calabi-Yau monopoles are reducible and their connections are Hermitian

Yang Mills (HYM) on the Conifold. The canonical invariant connection, obtained from C = 0,

is the unique one which is pulled back from the link. For C 6= 0 the connections differ from this

one by Cρ−4θ1 = Id
(

3C
8 ρ
−4
)
, which is a harmonic 1-form on the cone. In fact, notice that given
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an Abelian Calabi-Yau monopole (A0,Φ0) and a harmonic 1-form a, then (A0 + a,Φ0) is also a

Calabi-Yau monopole.

Also, notice that it is also possible to solve the equations with m = 0. Following the proof above

the equations reduce to dB1
dρ = ∓18B2

4 and d(B2
4)

dρ = ± 3
ρ5B1B

2
4 . Integrating these gives rise to an

SU(2)-irreducible HYM connection on the cone, which is not pulled back from D = P1 × P1.

3.3.4 Reducible Calabi-Yau Monopoles in T ∗S3

For reducible Calabi-Yau monopoles one must put all Ai = 0, for i ≥ 2. Then, only the first two

equations in proposition 3.3.16 survive. For l 6= 1, the first of them dA1
dρ = −2 ĠGA1, can be readily

integrated to give A1(r) = C
G2 , where C ∈ R is a constant. Regarding the second equation, using

the function h2 = 1
ε2
R+R−G and the radial coordinate ρ gives dφ

dρ = − l
2h2 . This can be integrated

to

φl(ρ) = m−
∫

l

2h2(ρ)
dρ,

with m ∈ R. This diverges at ρ = 0, i.e. the zero section. Notice that such solutions also exist for

l = 1 and by analogy with 3 dimensions are called Dirac Calabi-Yau monopoles.

Definition 3.3.20. Let (X,ω,Ω) be a noncompact Calabi-Yau manifold and N ⊂ X a special

Lagrangian submanifold. A Dirac Calabi-Yau monopole is a Calabi-Yau monopole on a line bundle

defined on the complement of N . N will be called the singular set of the Calabi-Yau monopole.

Proposition 3.3.21. For all l ∈ Z and C,m ∈ R, the connections and Higgs fields

A = Alc +
C

G
θ1 , φ = m−

∫
l

2h2(ρ)
dρ,

are Dirac Calabi-Yau monopoles on L⊗l for the Stenzel metric, with the zero section as singular

set.

Their curvature is

F l = − l
2

(θ23 + θ45)− 2C
Ġ
G3
dr ∧ θ1 +

C

G2
(θ24 + θ35) (3.3.27)

Moreover, from the Appendix C one knows that h(ρ) = ρ+O(ρ3) for ρ� 1 and h(ρ) = O(ρ5/2)

for ρ� 1 and so

φ(ρ) =

1
ρ +O(ρ0) if ρ� 1

m+ cl
ρ4 +O(ρ−4−ε) if ρ� 1,

(3.3.28)

where c > 0 is a constant independent of l and only depending on V olgΣ(Σ) and ε > 0. In fact φ

is harmonic on T ∗S3\S3 for the Stenzel metric. This can be checked explicitly using the formula

3.3.12 for Stenzel’s metric. Since ∗∆φ = d ∗ dφ, one computes

∗∆φ = d ∗ d
∫ ρ

0

1

2h2(s)
ds = d

(
1

2h2(ρ)

∂ρ

∂r
∗ dr

)
= dε2 = 0.
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3.3.5 Irreducible Calabi-Yau Monopoles in T ∗S3

This subsection reduces the system of ODE’s in proposition 3.3.16 to simpler ones and uses it to

prove the main theorem 3.3.1. This is done in a series of steps: first proposition 3.3.22 rescales the

fields Ai and changes coordinate to ρ in order to rewrite the ODE’s. Then lemma 3.3.23 rewrites

the equations once again and shows the constraint A2A4 +A3A5 = 0 is preserved by the evolution

encoded in the other equations. At the end of the subsection theorem 3.3.1 is proven and this

requires splitting into 3 cases. One of these cases requires using lemma 3.3.25, which is stated and

proved just before. This lemma reduces that case to the problem of solving a certain initial value

problem. That problem is precisely the one parameterizing spherically symmetric Bogomolnyi

monopoles in (R3, dr2 + h2(r)gS2), and this has already been done in chapter 2. The rest of the

proof consists of using the results in the first part of chapter 2, namely theorem 2.2.1.

Proposition 3.3.22. Let the rescaled fields Bi be defined via B1 = G2A1, B2 = R−A2, B3 =

R−A3, B4 = R+A4, B5 = R+A5. Then, in terms of the distance function ρ, defined in 3.3.13,

and using h2(ρ) = 1
ε2
R+R−G the ODE’s in proposition 3.3.16 are given by the constraint

B2B4 +B3B5 = 0 and

dφ

dρ
= − 1

2h2(ρ)

(
1− 4

ε2

(
(B2

4 +B2
5)− (B2

2 +B2
3)
))

dB1

dρ
= −4 (B2B5 −B4B3)

dB2

dρ
= − 2

ε2h2
B1B5 − 2φB2

dB3

dρ
=

2

ε2h2
B1B4 − 2φB3

dB4

dρ
=

2

ε2h2
B1B3 + 2φB4

dB5

dρ
= − 2

ε2h2
B1B2 + 2φB5.

Proof. The constraint B2B4 + B3B5 = 0 is immediate from A2A4 + A3A5 = 0. Inserting the

rescaled fields into the equation for φ̇ in proposition 3.3.16 and rearranging gives

φ̇ = − r

R−R+G2

ε2

4

(
1− 4

ε2

(
(B2

4 +B2
5)− (B2

2 +B2
3)
))

Next use d
dr = r

2G
d
dρ to change coordinates to ρ and h2 = 1

ε2
R+R−G to obtain the equation in the

statement for dφdρ .

To analyze the other equations use Ṙ+ = r
2R+

and Ṙ− = r
2R−

, which gives Ḃi = R−

(
Ȧi + r

2R2
−
Ai

)
,

for i = 2, 3 and Ḃj = R+

(
Ȧj + r

2R2
+
Aj

)
for j = 4, 5. Inserting the equations in propo-

sition 3.3.16 into these, gives Ḃ2 = − r
R+R−

A1B5 − r
GφB2, Ḃ3 = r

R+R−
A1B4 − r

GφB3,

Ḃ4 = r
R+R−

A1B3 + r
GφB4 and Ḃ5 = − r

R+R−
A1B2 + r

GφB5. Changing coordinates to ρ
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again, these equations turn into

dB2

dρ
= − 2G

R−R+
A1B5 − 2φB2 ,

dB3

dρ
=

2G
R−R+

A1B4 − 2φB3 (3.3.29)

dB4

dρ
=

2G
R−R+

A1B3 + 2φB4 ,
dB5

dρ
= − 2G

R−R+
A1B2 + 2φB5,

and now changing from A1 to B1 = GA1 and using h2 = 1
ε2
R+R−G, gives the equations in the

statement. To obtain the remaining equation multiply the equation containing Ȧ1 in proposition

3.3.16 by 2G
r in order to ease the coordinate change. This gives

dA1

dρ
= −4Ġ

r
A1 −

2Ġ
rR+R−

4 (B2B5 −B4B3) .

Multiply this equation by G2 and pass the terms having A1 to the same side, then this term of the

equation turns into G2 dA1
dρ + 4G2

r
r

2G
dG
dρA1 = G2 dA1

dρ + 2G dGdρA1, which is precisely d
dρ

(
G2A1

)
and

replaced back into the equation gives

dB1

dρ
= − 2G2Ġ

rR+R−
4 (B2B5 −B4B3) .

Next recall that the reduction to ODE of the Monge-Ampère equation is 2G2Ġ = rR+R− as

alluded to in remark 3.3.3. Hence this equation also turns into the one in the statement.

Lemma 3.3.23. Let f1, f2 : X → C be given by f1 = B2 + iB3, f2 = B4 + iB5 and denote their

phases by χ1, χ2 respectively. The constraint in theorem 3.3.22 is Re(f1f2) = 0 and if initially

satisfied, is preserved by the other equations which are

dφ

dρ
= − 1

2h2(s)

(
1− 4

ε2

(
|f2|2 − |f1|2

))
dB1

dρ
= 4Im(f1f2)

df1

dρ
=

2i

ε2h2
B1f2 − 2φf1

df2

dρ
= − 2i

ε2h2
B1f1 + 2φf2.

Moreover, the phases χ1, χ2 are constant and if f1f2 6= 0, then χ2−χ1 = π
2 +πk, for some k ∈ Z.

Proof. The evolution equation for B1 and the constraint are obtained by using Re(f1f2) =

B2B4 +B3B5 and − Im(f1f2) = B2B5 −B3B4. The other equations follow from computing

df1

dρ
=

2

ε2h2
A1(−B5 + iB4)− 2φ(B2 + iB3)

=
2i

ε2h2
B1f2 − 2φf1,

and similarly for f2. To obtain the first equation, just notice 4
ε2

(
(B2

4 +B2
5)− (B2

2 +B2
3)
)

=
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4
ε2

(
|f2|2 − |f1|2

)
. The proof that the constraint Re(f1f2) = 0 is preserved by the motion and the

statement regarding the phases is a direct application of lemma 3.3.24 below.

Lemma 3.3.24. Let A1(r), A2(r), B1(r), B2(r) be real valued functions and f(r), g(r) complex

valued functions, such that Re(fg) = 0 at r = r0 ∈ R. Suppose f and g are subject to the

following ODE’s

ġ = A1g + iB1f , ḟ = A2f + iB2g.

If Re(fg) = 0 at r = r0 ∈ R, then Re(fg) = 0 for all r ∈ R and both phases χ1, χ2 of f, g are

constant. Moreover, for fg 6= 0 these satisfy χ2 − χ1 = π
2 + πk, for some k ∈ Z.

Proof. The fact that Re(fg) = 0 is preserved by the flow follows from computing

d

dr
(fg) = ḟg + fġ = (A2f + iB2g)g + f(A1g − iB1f)

= (A1 +A2)fg + i(B2|g|2 −B1|f |2).

So d
dr Re(fg) = (A1 + A2) Re(fg), so that in general Re(fg) = ke

∫
A1+A2 and if at r0 this

vanishes then Re(fg) = 0 always. If both f, g 6= 0 and 0 = Re(fg) = r1r2 Re(ei(χ1−χ2)), then

one needs ei(χ1−χ2) to be purely imaginary, i.e. χ2 − χ1 = π
2 + πk for some k ∈ Z. To see that

also each phase is constant let f = r1e
iχ1 and g = r2e

iχ2 , then the second equation is

ṙ1e
iχ1 + χ̇1e

i(χ1+π
2 ) = A2r1e

iχ1 +B2r2e
i(π2 +χ1±π2 ) = (A2r1 ±B2r2) eiχ1 .

So as a result one has χ̇1 = 0 and since the phase difference is constant also χ̇2 = 0.

The next result will be central in the proof of the main theorem. During that proof one needs

to handle the equations in proposition 3.3.23. To do this, it will be useful to split into the cases

f1f2 = 0 and f1f2 6= 0. In the second case f1f2 6= 0 and so as stated in lemma 3.3.24, the

phases χ1, χ2 are constant and χ1 − χ2 = π
2 + πk. One can then use an invariant constant gauge

transformation, in order to have χ1 = π
2 , χ2 = −πk, which gives f1 = iB3 and f2 = (−1)kB4.

One must remark that the initial conditions in equation 3.3.34 in the statement, are those which are

required for the connection to extend over the zero section.

Lemma 3.3.25. Let (φ,B1, B3, B4) a be solution to the equations

dφ

dρ
= − 1

2h2(s)

(
1− 4

ε2

(
B2

4 −B2
3

))
(3.3.30)

dB1

dρ
= 4(−1)kB3B4 (3.3.31)

dB3

dρ
= 2

(−1)k

ε2h2
B1B4 − 2φB3 (3.3.32)

dB4

dρ
= 2

(−1)k

ε2h2
B1B3 + 2φB4, (3.3.33)
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such that for ρ� 1

B1(ρ) = O(ρ3) , B3(ρ) = O(ρ) , B4(ρ) =
ε

2
+O(ρ2). (3.3.34)

Then B1 = B3 = 0, B4 = 2
εa and (a, φ) must satisfy the equations

dφ

dρ
= − 1

2h2(ρ)

(
1− a2

)
(3.3.35)

da

dρ
= 2φa, (3.3.36)

subject to the conditions that a(0) = 1 and φ(0) = 0.

Proof. One must find all the possible solutions φ,B1, B3, B4 to the system in the statement

constrained so that 3.3.34 holds. Notice that a possible solution is given by taking B1 = B3 = 0,

B4 = 2
εa and (a, φ) solving the system 3.3.35, 3.3.36 with the conditions that a(0) = 1 and

φ(0) = 0. These conditions together with the equations do guarantee 3.3.34. The proof is then

reduced to showing that these are all the solutions. To do this use equations 3.3.31, 3.3.32 and

3.3.33 and compute

d2B1

dρ2
= 4(−1)k

(
dB3

dρ
B4 +B3

dB4

dρ

)
= 4(−1)k

(
2

(−1)k

ε2h2
B1

(
B2

4 +B2
3

)
+ 2φ(B4B3 −B3B4)

)
=

2u

h2
B1,

where u = 4
ε2

(
B2

3 +B2
4

)
. This can be used to show that B1 = 0 as follows. Recall from the

lemma C.1.1 in Appendix C that for ρ � 1, h2(ρ) = ρ2ψ(ρ), where ψ(ρ) is real analytic with

ψ(0) = 1. Then the solutions must be real analytic and one can write

2u

h2
= ρ−2

+∞∑
j=0

ϕjρ
j , B1(ρ) =

+∞∑
k=0

bkρ
k,

for some ϕj , with ϕ0 6= 0 and bk. Recall the hypothesis that B1(ρ) = O(ρ3), this implies

b0 = b1 = b2 = 0. Inserting the series above into d2B1
dρ2 = 2u

h2B1, just using that b0 = b1 = 0 and

rearranging gives

+∞∑
i=0

(i+ 2)(i+ 1)bi+2ρ
i =

+∞∑
i=0

 ∑
0≤j≤i

ϕjbi−j+2

 ρi,

so one can use this to get the recurrence relation

bi+2 =
1

(i+ 1)(i+ 2)− ϕ0

∑
0<j≤i

ϕjbi+2−j ,



86 CHAPTER 3. MONOPOLES ON CALABI-YAU 3 FOLDS

with b0 = b1 = 0. This recurrence relation is completely determined by b2, which vanishes by

hypothesis (B1(ρ) = O(ρ3)). Hence, all the bi’s vanish by the recurrence relation above and so

B1 = 0.

We now use the fact that B1 = 0 to finish the proof. First, notice that from B1 = 0 it follows

from equation 3.3.31 that B3B4 = 0. So one must have B3 = 0 as B4 = 0 would contradict the

hypothesis that B4(0) = ε
2 , which then reduces the system to the one in the statement. The initial

conditions φ(0) = 0 and a(0) = 1 together with the equations do guarantee that 3.3.34 holds

because 3.3.36 implies that ȧ(0) = 2a(0)φ(0) = 0.

As an application of the results in this section and in the first part of chapter 2, one can now

prove the main theorem 3.3.1 regarding Calabi-Yau monopoles for the Stenzel metric in T ∗S3.

Proof of the main theorem 3.3.1

Start from the equations as stated in lemma 3.3.23, then the phases χ1, χ2 are constant and

Re(f1f2) = Re(|f1||f2|ei(χ1−χ2)) vanishes if and only if either |f1| = 0, or |f2| = 0, or χ1−χ2 =
π
2 + πk for some k ∈ Z. Before proceeding with the case splitting, notice that for the connection to

be asymptotic to the canonical invariant connection (which is HYM on the cone) one must have all

Ai’s converging to 0. This implies that the Bi’s must grow at most at a polynomial rate. Moreover,

recall from remark 3.3.13 that one can still use an invariant constant gauge transformation, i.e.

g ∈ U(1) ⊂ SU(2) which rotates A − A1
c to g(A − A1

c)g
−1. This rotates the phases χ1, χ2

simultaneously and will be used in different ways in each of the different cases below

1. If f1 = 0, the equations imply χ2 is constant and so a constant gauge transformation can be

used to make χ2 = 0 so that f2 = B4 is real. Then, the equations from lemma 3.3.23 give

that B1B4 = 0, dB1
dρ = 0 and

dφ

dρ
=

1

2h2

(
4

ε2
B2

4 − 1

)
,
dB4

dρ
= 2φB4.

The conditions that the connection which a possible solution encodes extends over the zero

section are studied in the Appendix C. It is shown in lemma C.2.2 that for the connection

to extend one needs B1(ρ) = O(ρ3), B3(ρ) = O(ρ) and B4(ρ) = ε
2 + O(ρ2), for ρ � 1.

From the equations one knows that B1 must be constant and so vanish in order to satisfy the

initial condition. Setting a = 2
εB4, the equations reduce to

dφ

dρ
=

1

2h2

(
a2 − 1

)
,
da

dρ
= 2φa

Together with the conditions that a(0) = 1 and φ(0) = 0, which do imply (using the second

equation) a(ρ) = 1 + O(ρ2) and so B4(ρ) = ε
2 + O(ρ2). Notice that this is the system

analyzed in chapter 2 for invariant monopoles in R3 equipped with the metric dρ2 +h2(ρ)gS2 .

2. The case |f2| = 0 is excluded as the condition that B2
4(0) = ε

2 can not be satisfied and the

connection would not extend smoothly through the zero section.
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3. The last case is when f1f2 6= 0 and χ1−χ2 = π
2 +πk and the phases are constant. As above,

one can then use an invariant constant gauge transformation, to make χ1 = π
2 , χ2 = −πk,

which gives f1 = iB3 and f2 = (−1)kB4. The Calabi-Yau monopole equations are

dφ

dρ
= − 1

2h2(s)

(
1− 4

ε2

(
B2

4 −B2
3

))
dB1

dρ
= 4(−1)kB3B4

dB3

dρ
= 2

(−1)k

ε2h2
B1B4 − 2φB3

dB4

dρ
= 2

(−1)k

ε2h2
B1B3 + 2φB4,

subject to the conditions so that the connection extends smoothly over the zero section as

shown in lemma C.2.2 in the Appendix C. This is precisely the system analyzed in lemma

3.3.25 and once again the problem has been reduced to the one analyzed in chapter 2.

The solution to the problem will now be obtained by invoking theorem 2.2.1 in chapter 2. The

first item in the statement says that any solution (a, φ) has a well-defined finite limit

lim
ρ→∞

φ(ρ) ∈ R−,

Moreover, for each value of m ∈ R− there is one and only one solution. Hence, such value

parametrizes the moduli space of invariant Calabi-Yau monopoles and this proves the first item in

theorem 3.3.1.

For the proof of the second and third statements, a preliminary digression is needed. Let (am, φm)

give the solution to the system given by equations 3.3.35, 3.3.36, with the initial conditions

φ(0) = 0, a(0) = 1 and φm converging to m ∈ R−. This corresponds to the Calabi-Yau monopole

with B1 = B2 = B3 = B5 = 0, B4 = ε
2am and φ = φm, which can be written

Am = A1
c +

ε

2

am
R+

(
θ4 ⊗ T2 + θ5 ⊗ T3

)
, Φm = φmT1. (3.3.37)

The results in the second and third item of theorem 2.2.1 do not directly apply to these, instead

they apply for monopoles on the R3 fibres normal to the zero section equipped with the spherically

symmetric metric h = dρ2 + h2(ρ)gS2 . These 3-dimensional monopoles on the fibres can be

written

Ãm = A1
c +

am
2

(
θ4 ⊗ T2 + θ5 ⊗ T3

)
, Φ̃m = φmT1. (3.3.38)

However, it will be possible to use the results for these in order to prove the corresponding statement

for the genuine Calabi-Yau monopole 3.3.37. The two Higgs fields are the same Φ̃λ = Φλ so

focus on the connections. For the proof of the second item one needs to show that for all R, δ > 0

there are m and η(R, δ,m) > 0 such that ‖s∗ηAm − ABPS‖C0(BR) ≤ δ. Let sη = expη be the
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exponential in the fibre directions and expand

‖s∗ηAm −ABPS‖C0(BR) ≤ ‖s∗ηÃm −ABPS‖C0(BR) + ‖s∗ηÃm − s∗ηAm‖C0(BR)

and use the corresponding statement in second item of theorem 2.2.1. This guarantees the first

term can be made as small as one wishes, i.e. there is η′ > 0 such that the first term is less than δ
2 .

Regarding the second term

‖s∗ηÃm − s∗ηAm‖C0(BR) = ‖Ãm −Am‖C0(BηR)

≤ sup
ρ≤ηR

∣∣∣ (am(1− ε

R+

))
|θ4|gE

∣∣∣
≤ sup

ρ≤ηR

∣∣∣(am( ρ2

2ε−4/3

)
1

ρ

∣∣∣ ≤ ηR

4ε4/3
,

where in the last line one uses the fact that R+ = ε+ 1
2ε1/3

ρ2 + .... Hence the estimate

‖s∗ηAλ −ABPS‖C0(BR) ≤ δ,

follows by making η equal to the minimum of η′ and δ 2ε4/3

R .

Notice that Am−A1
c and Ãm−A1

c differ by a factor of ε
R+

. Since, this is bounded and independent

of m, the third item statement of theorem 3.3.1 follows directly from applying the third item in

theorem 2.2.1.

Remark 3.3.26. In the same gauge used so far, the curvature of Am is

FAm =

(((
εam
R+
− 1

)2

− θ23

)
θ45

)
⊗ T1

2
+
εam
2R+

(
θ12 ⊗ T2 + θ13 ⊗ T3

)
+
d

dr

(
εam
2R+

)(
dr ∧ θ4 ⊗ T2 + dr ∧ θ5 ⊗ T3

)
.

Since the functions am decay exponentially with ρ, the connection Am is exponentially asymptotic

to the canonical invariant connection A1
c .

Remark 3.3.27. Following the case splitting in the proof there were some cases whose analysis

were excluded as they did not satisfy the necessary conditions for the connection to extend over the

zero section (see lemma C.2.2 in the Appendix C). However in some cases Calabi-Yau monopoles

with singularities are possible

1. In the first case with f1 = 0 one can also take f2 = 0 in order to solve the equations. Then,B1

is constant, dφdρ = − 1
2h2 and the only solutions are reducible to one of the Dirac Calabi-Yau

monopoles in proposition 3.3.21, i.e. A = A1
c + C
G2 θ

1⊗T1 and Φ =
(
m−

∫
1

2h2(ρ)
dρ
)
⊗T1.

2. In the case f1 6= 0 but |f2| = 0, and using the gauge in which f1 = iB3, the system in 3.3.23
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reduces to B1B3 = dB1
dρ = 0 and

dφ

dρ
= − 1

2h2(s)

(
1 +B2

3

)
,
dB3

dρ
= −2φB3.

So B1 is constant and eitherB3 = 0 or B1 = 0. If B3 = 0 the unique solutions are the Dirac

Calabi-Yau monopole from the previous case. If B1 = 0, then there are no smooth solutions

as well since 1 +B2
3 > 0 and h(ρ) = O(ρ) for ρ� 1, also the Higgs field is unbounded at

the zero section. So any possible solution will give rise to irreducible Calabi-Yau monopoles

with a Dirac type singularity at the zero section.

3.3.6 Explicit Hermitian Yang Mills SU(2) Connection

Theorem 3.3.28. There is an irreducible Hermitian Yang Mills connection on P1 → T ∗S3 for

Stenzel’s Calabi-Yau structure. In the same gauge used before, it is given by

A = A1
c +

ε

2R+

(
θ4 ⊗ T2 + θ5 ⊗ T3

)
, (3.3.39)

and its curvature by

FA = −1

2

(
θ23 +

R2
−

R2
+

θ45

)
⊗ T1 +

ε

2R+

(
T2 ⊗ θ12 + T3 ⊗ θ13

)
−ε

4

r

R3
+

(
T2 ⊗ dr ∧ θ4 + T3 ⊗ dr ∧ θ5

)
.

Proof. This solution is obtained by setting a = 1 and φ = 0, i.e. B1 = B3 = 0 and B4 = ε
2 . These

satisfy the conditions from lemma C.2.2 in the Appendix C, so the resulting connection extends

over the zero section, is irreducible and HYM. For this solution A4 = ε
2R+

and Ȧ4 = − ε
4
r
R3

+
, so

using the formula 3.3.21 one can compute the curvature as in the statement.

Remark 3.3.29. A → A1
c as ρ → ∞, i.e. this HYM connection is asymptotic to the canonical

invariant connection, which recall is the pullback of a reducible HYM connection on a line bundle

over D = P1 × P1.



90 CHAPTER 3. MONOPOLES ON CALABI-YAU 3 FOLDS



Chapter 4

Monopoles on G2 Manifolds

The goal of this chapter is to construct and study monopoles on G2 manifolds and it is organized

as follows. In section 4.1 one studies the G2 monopole equation 4.1.1. Namely it is shown

that these fit into an elliptic complex which is encompassed by the setup of chapter 5. All the

analysis developed in section 1.3 holds for this specific case, in particular for the energies defined

in 1.3.1 the identities in proposition 4.1.4 are obtained. Then in section 4.1.3 monopoles on all

examples of known AC G2 manifolds are studied. On Λ2
−(P2) and Λ2

−(S4) the zero sections are

the only coassociative submanifolds and theorem 4.1.9 shows that up to gauge there is also only

one invariant monopole for each fixed mass. Moreover, for large mass these monopoles concentrate

on the respective coassociative submanifold. This is proved in sections 4.2 and 4.3 respectively for

Λ2
−(S4) and Λ2

−(P2). Moreover, in the case of S(S3) there are no compact coassociative cycles and

an application of proposition 1.4.9 gives a vanishing theorem for monopoles, stated in proposition

4.1.10.

4.1 The Equations

Let Y be a G2 holonomy manifold, then Θ = ψ ∈ Ω4(X,R) and ∗ψ = φ ∈ Ω3(X,R) are both

parallel and hence closed. In this case the monopole equation is

FA ∧ ψ = ∗∇AΦ. (4.1.1)

4.1.1 Linearised Operator

The linearisation of the monopole equation −∇AΦ + ∗(FA ∧ ψ) = 0 at a configuration (A,Φ)

gives a linear map

d2 : Ω0(X, gP )⊕ Ω1(X, gP ) → Ω0(X, gP )

(φ, a) 7→ ∗ (dAa ∧ ψ)− (∇Aφ+ [a,Φ]) .

Moreover, the infinitesimal action of the gauge group at (A,Φ) gives rise to d1 : Ω0(X, gP ) →
Ω0(X, gP ) ⊕ Ω1(X, gP ) and maps ξ to (−∇Aξ, [ξ,Φ]). These two maps together give rise to a

91
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sequence

0→ Ω0(X, gP )
d1−→ Ω0(X, gP )⊕ Ω0(X, gP )

d2−→ Ω1(X, gP )→ 0. (4.1.2)

Lemma 4.1.1. If (A,Φ) is a monopole, then the sequence 4.1.2 is a complex.

Proof. One just needs to compute d2d1ξ and show that this vanishes

d2d1ξ = − ∗ (d2
Aξ ∧ ψ)− dA[ξ,Φ] + [dAξ,Φ] = −[∗(FA ∧ ψ)−∇AΦ, ξ].

And this vanishes indeed if (A,Φ) is a monopole.

The formal adjoint of d1 is d∗1(a, φ) = −∇∗Aa + [Φ, φ] and can be put together with d2 to

construct an operator

D = d∗1 ⊕ d2 : Ω0(X, gP )⊕ Ω1(X, gP )→ Ω0(X, gP )⊕ Ω1(X, gP ),

which in view of lemma 4.1.1 is elliptic if (A,Φ) is a monopole. This operator is given by

D(φ, a) = (−∇∗Aa, ∗ (dAa ∧ ψ)−∇Aφ) + ([Φ, a], [Φ, φ]) (4.1.3)

The first of these is just the twisted Dirac operator DA defined in equation 1.2.3 acting on SgP
and the second defines an endomorphism q ∈ Ω0(X,End(SgP )). The following result gives a

Weitzenböck formula for the elliptic operator D

Proposition 4.1.2. There are Weitzenböck formulas

D∗D(φ, a) = ∆A (φ, a) +G+ (φ, a)− q2(φ, a)

DD∗(φ, a) = ∆A (φ, a) +G− (φ, a)− q2(φ, a),

whereG±(φ, a) = ([(FA ∧ ψ ± ∗∇AΦ) ∧ a] ,−∗ [(FA ∧ ψ ± ∗∇AΦ) , φ]±∗[∇AΦ∧ψ∧a]) and

q2(φ, a) = [Φ[Φ, (a, φ)]].

Suppose that (A,Φ) is a monopole, if (φ, a) ∈ kerD∗ is bounded and dAφ ∈ L2, then actually

dAφ = [Φ, φ] = 0. In particular if A is irreducible, then φ = 0.

Proof. In the computation D∗D(φ, a) = D2
A (φ, a)+DA (q(φ, a))− q (DA(φ, a))− q2(φ, a), one

can use equation 1.2.4 to replaceD2
A = ∆A+W whereW (φ, a) = (∗[FA∧ψ∧a],−∗ [FA∧ψ, φ])

is zero order and involves only the curvature terms. Then, one needs to compute the term I(φ, a) =

DA (q(φ, a))− q (DA(φ, a)), this is given by

(−d∗A[Φ, a], ∗(dA[Φ, a] ∧ ψ)−∇A[Φ, φ])− ([Φ, d∗Aa], [Φ, ∗(dAa ∧ ψ)]− [Φ,∇Aφ]) (4.1.4)

and one can use the Leibniz rule to work out the terms in the first summand. The first of these is

−d∗A[Φ, a] = ∗[∇Aφ ∧ ∗a] + ∗[Φ, dA ∗ a] = ∗[∇Aφ ∧ ∗a]− [Φ, d∗Aa]. The second one is

∗ (dA[Φ, a] ∧ ψ)−∇A[Φ, φ] = ∗ ([∇AΦ ∧ a] ∧ ψ + [Φ, dAa] ∧ ψ)− [∇AΦ, φ]− [Φ,∇Aφ]
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Then, one just needs to identify which of these terms gets annihilated against the second term in

equation 4.1.4 and summing with W gives G+. For the other Weitzenböck formula for DD∗ one

proceeds in the same way but now one as G− = W − I which gives the difference. To prove

the second assertion regarding (φ, a) ∈ kerD∗ one uses the formula just proved which implies

∆Aφ− [Φ, [Φ, φ]] = 0. Using the hypothesis, one can integrate 〈φ,∆Aφ− [Φ, [Φ, φ]]〉 and using

Gaffney’s extension of the Stokes’ theorem to complete Riemannian manifolds one obtains

‖dAφ‖2L2 + ‖[Φ, φ]‖2L2 = 0,

and so dAφ = [Φ, φ] = 0.

Remark 4.1.3. The more usual Weitzenböck formula ∆Aa = ∇∗A∇Aa+ ∗[∗F ∧ a] can be used to

write the statement above in a slightly different way.

4.1.2 Energy Identities

In the case of aG2 manifold the setup in 1.3 fits perfectly since as described in point 3. of example 3

the equation 1.3.1 for Θ = ψ is precisely theG2 monopole equation ∗∇AΦ = FA∧ψ. In particular,

all the energy identities in section 1.3.1 make sense, namely definition 1.3.1 gives respectively

EU =
1

2

∫
U
|∇AΦ|2 + |FA|2 , EIU =

1

2

∫
U
|∇AΦ|2 + |FA ∧ ψ|2. (4.1.5)

for the YMH energy and Intermediate energy of a configuration (A,Φ) respectively. Moreover, one

can see that monopoles do satisfy the Euler Lagrange equations for EIU derived in proposition 1.3.2

and stated in example 4. Then, proposition 1.3.4 gives

Proposition 4.1.4. Let U ⊂ X be precompact with smooth boundary. If (∇A,Φ) is a configuration

with finite Intermediate Energy on U , then

EIU =

∫
∂U
〈Φ, FA〉 ∧ ψ +

1

2
‖FA ∧ ψ − ∗∇AΦ‖2L2(U). (4.1.6)

Moreover, if the energy on U is also finite, then

EU = −1

2

∫
U
〈FA ∧ FA〉 ∧ φ+

∫
∂U
〈Φ, FA〉 ∧ ψ +

1

2
‖FA ∧ ψ − ∗∇AΦ‖2L2(U). (4.1.7)

In particular, if X is compact and (A,Φ) smooth with Φ 6= 0, then∇AΦ = 0 and A is a reducible

G2 instanton with energy E = −1
2

∫
X〈FA ∧ FA〉 ∧ φ.

Proof. The first identity 4.1.6 is proved in proposition 1.3.4 as for the second one, let β ∈ Ω2, then

one can write |β|2 = |π7(β)|2 + |π14(β)|2 and rearranging this as the sum of|π14(β)|2− 2|π7(β)|2

with 3|π7(β)|2. Then using equations 1.2.1 and 1.2.2

|β|2dvolX = −β ∧ ∗(β ∧ φ) + β ∧ ∗(∗(β ∧ ψ) ∧ ψ) = −β ∧ β ∧ φ+ β ∧ ψ ∧ ∗(β ∧ ψ).
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Using this for β the 2 form part of the curvature gives

EU =
1

2
‖FA‖2L2(U) +

1

2
‖∇AΦ‖2L2(U)

= −1

2

∫
U
〈FA ∧ FA〉 ∧ φ+

1

2
‖FA ∧ ψ‖2L2(U) +

1

2
‖∇AΦ‖2L2(U). (4.1.8)

Then replacing the last two terms by the Intermediate energy and using identity 4.1.6 gives the last

one, formula 4.1.7. In the case where X is compact one can take U = X and this energy identity

gives that∇AΦ = 0 and FA ∧ ψ = 0. Then A is a G2 instanton and since Φ 6= 0 and∇AΦ = 0, it

is reducible. The computation of the energy is reduced to the first term in equation 4.1.7.

4.1.3 Monopoles on AC G2 Manifolds

In what follows (X,φ) will always be an AC G2 manifold, as in section 1.2.2, recall that in this

case it is asymptotic to a metric cone whose cross section is a nearly Kähler 6 manifold (Σ, gΣ).

As there are only three known examples, see example 2, one may suppose (at the time of writing)

that (X,φ) is one of these.

Definition 4.1.5. Let H∗cs(X) denote the compactly supported cohomology of X . A class P ∈
H3
cs(X,Z) is said to be a coassociative class if P ∪ [φ] = 0 ∈ H6

cs(X,R). Moreover, if P ∈
ker(H3

cs(X,Z)→ H3(X,Z)) then it is said to be monopole-coassociative class.

Definition 4.1.6. Define the monopole classes as the set of equivalence classesH2(Σ,Z)/i∗H2(X,Z).

Remark 4.1.7. Take the long exact sequence for compactly supported cohomology

...H2(X,Z)
i∗−→ H2(Σ,Z)

j−→ H3
cs(X,Z)→ H3(X,Z)→ ... (4.1.9)

As in the case of Calabi-Yau manifolds, the monopole classes are exactly the ones that map to

monopole-coassociative classes. There is no need to force the monopole classes β to satisfy

β ∪ [φ] = 0 ∈ H5(X,Z), since for a nearly Kähler manifold b1(Σ) = 0.

Now one considers the setup for finite mass monopoles which in this case adapts with no

change from section 1.4, then keeping in mind proposition 1.4.6, the third point in example 6 and

corollary 1.4.11 one can suppose the situation is as follows. Given a monopole class α ∈ H2(Σ,R)

one considers a complex line bundle L over Σ with c1(L) = α and denote by Q∞ the underlying

principal U(1) bundle. Let L be equipped with an HYM connection A∞, i.e. such that

F∞ ∧ ω2 = F∞ ∧ Ω2 = 0, (4.1.10)

for the nearly Kähler structure (ω,Ω1,Ω2) on Σ. This induces a reducible connection on a

G = SO(3), SU(2) bundle P∞ over Σ, which we still call A∞. One can now consider the problem

of finding finite mass monopoles (A,Φ) on a G bundle P → X asymptotic to these.
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Corollary 4.1.8. Let (A,Φ) be a finite mass m ∈ R+ monopole on P as above and |A−A∞| =
O(ρ−5−ε′) for some ε′ > 0. Let [i∗ψ] ∈ H4(Σ,R) be the restriction of [ψ] ∈ H4(X,R) to any

cross section of the end of X , then

‖∇AΦ‖2L2 = 4πm〈α ∪ [i∗ψ], [Σ]〉. (4.1.11)

In particular, if α ∪ [i∗ψ] = 0 or (X, g) has rate ν < −4, then A is a G2 instanton and∇AΦ = 0,

so it is reducible.

Recall that there are 3 known examples of AC G2 manifolds, see example 2.

Example 11. In the two first examples, which are Λ2
−M (M = CP2, S4), the zero section is a

compact coassociative submanifold and these determine a coassociative class P ∈ H4
cs(Λ

2
−M,R).

Moreover, in both these cases b2−(CP2) = b2−(S4) = 0 and so due to McLean’s work [McL98], these

coassociatives are rigid. Recall the long exact sequence 4.1.9 with Σ = F3,CP3 for M = CP2, S4.

In the next section, homogeneous principal bundles P over Λ2
−(M) are constructed, on these ODE

methods will be used to study invariant monopoles and their moduli spaceMinv(Λ
2
−(M), P ). Here

Minv denotes the irreducible, invariant monopoles (A,Φ 6= 0) up to the action of the invariant

gauge transformations. The main result of the next two sections is

Theorem 4.1.9. For M = S4,P2 there are respectively a SU(2), SO(3) bundle P which is

invariant under the action of a compact Lie group acting with cohomogeneity 1 on Λ2
−(M), such

that the spaceMinv(Λ
2
−(M), P ) of invariant irreducible monopoles on P are non empty and the

following hold:

1. For all monopoles inMinv, the Higgs field Φ vanishes at the zero section M , is bounded,

the mass is well defined and gives a bijection

m :Minv(Λ
2
−(M), P )→ R+.

2. Let R > 0, and {(Aλ,Φλ)} ∈ Minv(Λ
2
−(M), P ) a sequence of monopoles with mass λ

converging to +∞. Then there is a null sequence η(λ,R) such that the restriction to each

fibre Λ2
−(M)x for x ∈M of the rescaled monopole

exp∗η(Aλ, ηΦλ)

converges uniformly to the BPS monopole (ABPS ,ΦBPS) in the ball of radius R in (R3, gE).

3. Let {(Aλ,Φλ)}λ∈[Λ,+∞) ⊂Minv be a sequence of monopoles with mass m(Aλ,Φλ) = λ

converging to∞. . Then the translated monopole sequence(
Aλ,Φλ − λ

Φλ

|Φλ|

)
,

converges uniformly with all derivatives to a reducible, singular monopole on Λ2
−(M) with

zero mass and which is smooth on Λ2
−(M)\M .
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Besides this, the next section also contains explicit formulas for irreducible G2 instantons in

SU(2) and SO(3) bundles on Λ2
−(S4) and Λ2

−(P2) respectively. Moreover, the ODE’s for SU(3)

monopoles on Λ2
−(P2) are also obtained and from these two families of irreducible G2 instantons

with structure group SU(3) are obtained explicitly.

Example 12. In the case of S(S3), there are no compact coassociative cycles. In factH3
cs(S(S3)) =

H2(S3 × S3) = 0, where Σ = S3 × S3, and so there are no coassociative classes or monopole

classes at all. Moreover, the corollary 4.1.8 of proposition 1.4.9 can be invoked to state

Proposition 4.1.10. There are no finite mass m 6= 0, irreducible monopoles (A,Φ) on S(S3) with

|A−A∞| = O(ρ−5−ε′) for some ε′ > 0.

Proof. Suppose there is a G bundle P over S(S3) equipped with (A,Φ) a finite mass m 6= 0,

irreducible monopole on P . Let (A∞,Φ∞) be the connection and Higgs field on P∞ → S3 × S3

determined by (A,Φ). The connection A∞ is HYM according to proposition 1.4.6 and the third

bullet in example 6. Then, the second item in proposition 1.4.4 implies the Intermediate Energy is

finite and as in the proof of proposition 1.4.9 given by the limit

EIX = lim
r→∞

EIBr = lim
r→∞

∫
∂Br

〈Φ, FA〉 ∧ i∗rψ = 〈[〈Φ∞, F∞〉] ∪ [i∗ψ], S3 × S3]〉.

This vanishes because both [〈Φ∞, F∞〉] = 0 and [i∗ψ] = 0 as S3 × S3 has vanishing second and

hence fourth cohomology groups.

One must also remark that in this case there are G2 instantons and these have been recently

been constructed by Andrew Clarke in [Cla14].

4.2 Monopoles on Λ2
−(S4)

Let S4 ⊂ R5 be the round sphere. Its isometry group is SO(5) whose universal cover is K =

Spin(5) and so there is a Spin(5) action on S4. This action lifts to Λ2
−(S4) as A ·Ωx = (A−1)∗Ωx,

forA ∈ Spin(5) and Ωx ∈ Λ2
−(S4) an anti self dual 2 form on the tangent space to the point x ∈ S4.

Let Spin(4) ⊂ Spin(5) be the isotropy of the action at x ∈ S4, which then acts on the fibre over x

as follows. Split Spin(4) = SU1(2)× SU2(2) and identify each SU(2) with the unit quaternions.

Let ηx ∈ T ∗xS4, so ηx gives an identification TxS4 ∼= H. The action of (p, q) ∈ Spin(4) by

pullback on ηx ∈ T ∗xS4 is given by (p, q)ηx = pηxq, In the same way Λ2
−(S4)x gets identified with

the purely imaginary quaternions and the action is (p, q)Ωx = qΩxq. The conclusion is that away

from the zero section, the isotropy of the Spin(5) action is H = SU1(2)× U2(1). The action is

isometric, so the principal orbits

Spin(5)/SU1(2)× U2(1) ∼= CP3,
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are the level sets of the norm function r = | · | in Λ2
−(S4) induced by the round metric on S4. Let h

denote the Lie algebra of H = SU1(2)× U2(1); Then, given a reductive decomposition

spin(5) = h⊕m,

the bundle Spin(5) over CP3 gets equipped with a connection whose horizontal space is m. To

give such a splitting write spin(5) = m1 ⊕ su1(2) ⊕ su2(2) and introduce a basis for the dual

spin(5)∗ such that

m∗1 = 〈e1, e2, e3, e4〉 , su∗1(2) = 〈η1, η2, η3〉 , su∗2(2) = 〈ω1, ω2, ω3〉, (4.2.1)

and the ηi, ωi form standard dual basis for su(2). Using the notation e12 = e1 ∧ e2, define the 2

forms

Ω1 = e12 − e34 , Ω2 = e13 − e42 , Ω3 = e14 − e23 (4.2.2)

Ω1 = e12 + e34 , Ω2 = e13 + e42 , Ω3 = e14 + e23,

The Maurer Cartan relations encode the Lie algebra structure

dω1 = −2ω23 +
1

2
Ω1 , dω2 = −2ω31 + 1

2Ω2 , dω3 = −2ω12 +
1

2
Ω3, (4.2.3)

dη1 = −2η23 − 1

2
Ω1 , dη2 = −2η31 − 1

2Ω2 , dη3 = −2η12 − 1

2
Ω3. (4.2.4)

The ones involving the de’s are less important for what follows, but need to be used to compute

dΩi = εijk

(
2Ωj ∧ ωk − 2Ωk ∧ ωj

)
, (4.2.5)

for i ∈ {1, 2, 3}. Take the reductive decomposition spin(5) = h⊕m with

m∗ = m1 ⊕m2 = m1 ⊕ R〈ω2, ω3〉 (4.2.6)

h∗ = su1(2)⊕ R〈ω1〉. (4.2.7)

The sphere bundle of Λ2
− is the twistor fibration π : CP3 → S4 and at each point p ∈ CP3 there are

non-canonical identifications m ∼= TpCP3 and m1
∼= Tπ(p)S4. The 2 forms Ωi give a basis for the

anti-self-dual 2 forms at π(p), while the Ωi for the self-dual ones.

4.2.1 The Bryant-Salamon G2 Metric

As seen above Λ2
−(S4)\S4 ∼= CP3 × R+, where each CP3 is a principal orbit of the K = Spin(5)

action. One may write the metric on Λ2
−(S4)\S4 from a family of Spin(5) invariant metrics on P3

and by letting the coordinate ρ ∈ R+ be the length through a geodesic intersecting the principal

orbits orthogonally. As remarked at the beginning of section B in the Appendix B, a Spin(5)

invariant metric on CP3 is determined by the splitting of m into h irreducible pieces. In the current
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situation one can write

g̃ = dρ⊗ dρ+ a2(ρ)
(
ω2 ⊗ ω2 + ω3 ⊗ ω3

)
+ b2(ρ)

(
4∑
i=1

ei ⊗ ei
)
, (4.2.8)

where a, b are suitable real valued functions, which shall be chosen to make this metric have G2

holonomy. The associative and coassociate calibrations are respectively

φ = dρ ∧
(
a2ω23 + b2Ω1

)
+ ab2

(
ω3 ∧ Ω2 − ω2 ∧ Ω3

)
(4.2.9)

ψ = b4e1234 − a2b2ω23 ∧ Ω1 − ab2dρ ∧
(
ω2 ∧ Ω2 + ω3 ∧ Ω3

)
. (4.2.10)

The condition that the holonomy be in G2 is equivalent to the closedness of these both. Using

dΘ1 = 4dω23 and d
(
ω2 ∧ Ω2 + ω3 ∧ Ω3

)
= −2e1234 + 4ω23 ∧ Ω1, this reduces to the following

set of ODE’s

d

dρ
(ab2) =

a2

2
+ 2b2 ,

d

dρ
(b2) = a ,

d

dρ
(a2b2) = 4ab2. (4.2.11)

These are solved by setting a(s) = 2sf(s2) and b(s) = g(s2), where the functions f, g and the

coordinate s are given by

ρ(s) =

∫ s

0
fds , f(s2) = (1 + s2)−

1
4 , g(s2) =

√
2(1 + s2)

1
4 . (4.2.12)

These will be referred as f, g but this should be understood as f(s2), g(s2). The notation here is to

be matched with the original reference [BS89], see also [GPP90]. For future reference, rewrite the

G2 structure in terms of these as

g̃ = f2ds⊗ ds+ 4s2f2
(
ω2 ⊗ ω2 + ω3 ⊗ ω3

)
+ g2(ea ⊗ ea) (4.2.13)

ψ = g4e1234 − 4s2f2g2ω23 ∧ Ω1 − 2sf2g2ds ∧
(
ω2 ∧ Ω2 + ω3 ∧ Ω3

)
. (4.2.14)

This is shown in [BS89] to have full G2 holonomy. For large s, ρ(s) ∼ 2
√
s, a(ρ) ∼ ρ and

b(ρ) ∼ ρ√
2
, so that the G2 structure converges to the conical metric over the nearly Kähler CP3

g̃C = dρ⊗ dρ+ ρ2
(
ω2 ⊗ ω2 + ω2 ⊗ ω2

)
+ ρ2

(
4∑
i=1

ei√
2
⊗ ei√

2

)
(4.2.15)

φC = ρ2dρ ∧
(
ω23 +

Ω1

2

)
+
ρ3

2

(
ω3 ∧ Ω2 − ω2 ∧ Ω3

)
(4.2.16)

ψC = ρ4

(
e1234

4
− ω23 ∧ Ω1

2

)
− ρ3

2
dρ ∧

(
ω2 ∧ Ω2 + ω3 ∧ Ω3

)
. (4.2.17)

4.2.2 G2 Monopoles on Λ2
−(S4)

Let l ∈ Z be an integer and λl : SU1(2)×U2(1)→ SU(2) be the group homomorphism λl(g, θ) =

diag
(
eilθ, e−ilθ

)
and Pl = Spin(5)×λl,SU1(2)×U2(1) SU(2), the family of homogeneous bundles
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determined by these λl.

Lemma 4.2.1. 1. For each l ∈ Z, the canonical invariant connection is given byAc = lω1⊗T1,

where T1, T2, T3 is a standard basis for su(2).

2. Let A ∈ Ω1(Spin(5), su(2)) be an invariant connection on Pl, then A = Ac + (A − Ac)
and A−Ac = 0 for l 6= 1. For l = 1 this is (up to an invariant gauge transformation)

A−Ac = a
(
T2 ⊗ ω2 + T3 ⊗ ω3

)
, (4.2.18)

with a ∈ R a constant.

3. Let Φ be an invariant Higgs field of P1, i.e. a section of the adjoint bundle gP1 invariant with

respect to the Spin(5) action, then Φ = φT1, for some constant φ ∈ R.

Proof. 1. The proof of the first assertion amounts to compute the derivative of the isotropy

homomorphism λl, this is dλ = lω1 ⊗ T1.

2. The second assertion is an application of Wang’s theorem B.0.21. Invariant connections

correspond to morphisms of SU1(2)× U2(1) representations

Λl : (m, Ad)→ (su(2), Ad ◦ λl) .

Decompose these into irreducible factors m = m1 ⊕ m2 and su(2) = R〈T1〉 ⊕ R〈T2, T3〉,
where on R〈T1〉 the representation is trivial and (R〈T2, T3〉, Ad ◦ λl) ∼= (m2, Ad) as repre-

sentations, if and only if l = 1. Then, Schur’s lemma gives Λ|m1 = 0, while Λ|m2 vanishes

for l 6= 1 and is an isomorphism for l = 1. Invariant gauge transformations g are constants in

the subgroup of SU(2) centralized by λl(SU1(2)× U2(1)) = U(1), the maximal torus in

SU(2). This is obviously its own centralizer and so g must lie in the maximal torus which

acts on R〈T2, T3〉 by rotations. So up to such a rotation Λ1 can be picked to look like 4.2.18.

3. To prove the third item, recall from the Appendix B that Ad(P ) = P ×(SU(2),Ad) su(2)

which is Spin(5)×(SU1(2)×U2(1),Ad◦λ) su(2) and Φ must be constant with values in a trivial

component of (su(2), Ad ◦ λ) as an SU1(2)× U2(1) representation.

Remark 4.2.2. The bundles Pl are reducible to S1 bundles associated with the degree l homomor-

phism of S1. Moreover, the canonical invariant connection is also reducible and induced from the

canonical invariant connection on this bundle.

The same discussion as the one preceding remark 3.3.13 applies and pulling back the bundle P1

to Λ2
−S4\S4 one can suppose that an invariant connection is in radial gauge. However, the invariant

data is now determined by a, φ which are constant along each principal orbit and so functions of ρ.

From now on the dot · denotes differentiation with respect to s.
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Lemma 4.2.3. 1. The curvature of the connection A = Ac + (A − Ac) is FA = FH + F V ,

where FH and F V are respectively given by

FH =
1

2
T1 ⊗ Ω1 +

a

2
(T2 ⊗ Ω2 + T3 ⊗ Ω3) (4.2.19)

F V = −2
(
1− a2

)
T1 ⊗ ω23 + ȧ

(
T2 ⊗ ds ∧ ω2 + T3 ⊗ ds ∧ ω3

)
. (4.2.20)

2. The covariant derivative of the invariant Higgs field Φ = φT1 is given by

∇AΦ = φ̇T1 ⊗ ds+ 2φa
(
T2 ⊗ ω3 − T3 ⊗ ω2

)
Proof. The curvature of the invariant connection is computed as FA = Fc + dAc (A−Ac) +
1
2 [(A−Ac) ∧ (A−Ac)]. Making use of the Maurer Cartan relations 4.2.3, these terms are

Fc =

(
−2ω23 +

1

2
Ω1

)
⊗ T1. (4.2.21)

dAc (A−Ac) = ds ∧ d

ds
(A−Ac) + d(A−Ac) + [Ac ∧ (A−Ac)]

= ȧT2 ⊗ ds ∧ ω2 + ȧT3 ⊗ ds ∧ ω3 + aT2 ⊗
(
−2ω31 +

1

2
Ω2

)
+ aT3 ⊗

(
−2ω12 +

1

2
Ω3

)
+ a [T1, T2]︸ ︷︷ ︸

=2T3

⊗ω12 + a [T1, T3]︸ ︷︷ ︸
−2T2

⊗ω13

= ȧ⊗ ds ∧ ω2 + ȧ⊗ ds ∧ ω3 +
a

2
⊗ Ω2 +

a

2
⊗ Ω3

1

2

[
(A−Ac)2

]
= a2 [T2, T3]⊗ ω23 = 2a2T1 ⊗ ω23.

Summing all of these one can write FA = FH + F V , where each of these is as in the statement.

To compute is the covariant derivative of the Higgs field, write ∇AΦ = φ̇T1 ⊗ ds + φ∇θT1 +

φ [(A−Ac), T1] and using the Bianchi identity for Ac, ∇AcT1 = 0 and so

∇AΦ = φ̇T1 ⊗ ds+ 2φa
(
T2 ⊗ ω3 − T3 ⊗ ω2

)
.

Proposition 4.2.4. Let h2(ρ) = 2s2(ρ)f−2(s2(ρ)) and consider the following set of ODE’s for

(b, φ)

dφ

dρ
=

1

2h2

(
b2 − 1

)
(4.2.22)

db

dρ
= 2φb. (4.2.23)

Then, the moduli space of invariant MonopolesMinv(Λ
2
−(S4), P ) can be identified with those pairs

(b = f−2a, φ) which solve 4.2.22 and 4.2.23 with b(0) = 1, ḃ(0) = 0 and limρ→+∞ f
2(s2)b = 0.

Proof. To compute the monopole equation FA ∧ ψ = ∗∇AΦ one uses lemma 4.2.3. The left hand
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side is

FA ∧ ψ = F V ∧ g4e1234 + FH ∧
(
−4s2f2g2ω23 ∧ Ω1 + 2sf2g2ds ∧

(
ω2 ∧ Ω2 + ω3 ∧ Ω3

))
=

(
−2g4

(
1− a2

)
T1 ⊗ ω23 + g4ȧ

(
T2 ⊗ ds ∧ ω2 + T3 ⊗ ds ∧ ω3

))
∧ e1234

+
(
4s2g2f2 T1 ⊗ ω23 + 2sg2f2a

(
T2 ⊗ ds ∧ ω2 + T3 ⊗ ds ∧ ω3

))
∧ e1234

= g4

(
2

(
2s2 f

2

g2
−
(
1− a2

))
T1 ⊗ ω23

)
∧ e1234

+g4

(
2s
f2

g2
a+ ȧ

)(
T2 ⊗ ds ∧ ω2 + T3 ⊗ ds ∧ ω3

)
∧ e1234.

While for the right hand side of the equation, i.e. ∗∇AΦ, it is given by

∗ ∇AΦ = fg4
(

4sφ̇T1 ⊗ ω23 + 2φa
(
T2 ⊗ ds ∧ ω2 + T3ds ∧ ω3

))
∧ e1234. (4.2.24)

Hence the monopole equation reduces to the following set of ODE’s

dφ

ds
= − 1

2s2f

(
1− a2

)
+
f

g2
,
da

ds
= −2s

f2

g2
a+ 2fφa. (4.2.25)

Which in terms of ρ(s) =
∫ s

0 dlf(l) =
∫ s

0 dl
(
1 + l2

)− 1
4 are

dφ

dρ
=

1

2s2f2

(
1− a2

)
+

1

g2
,
da

dρ
= −2s

f

g2
a+ 2φa.

Define b(ρ) = f−2(s2(ρ))a(ρ) as in the statement, then the second ODE in 4.2.26 is equivalent to
db
dρ = 2φb. What is left to show is that substituting a by b in the first equation in 4.2.26 gives rise

to the remaining equation for φ. Notice that 1
g2 − 1

2s2f2 = − 1
2s2
f2, and factor this term out in the

following way

dφ

dρ
=

1

g2
− 1

2s2f2

(
1− a2

)
= − 1

2s2
f2 − 1

2s2f2
a2 = − 1

2s2
f2
(
1− f−4a2

)
.

Replacing the term f−4a2 by b2 gives the equation in the statement. ThenMinv, it is identified

with the solutions to the ODE’s that give rise to a connection and Higgs field extending over the zero

section. This is the same as requiring the curvature to be bounded at ρ = 0, which from formula

4.2.19 holds if and only if a(0) = 1 and ȧ(0) = 0. The ODE’s imply that if these two hold then

also φ(0) = 0 and φ̇(0) is finite and so the Higgs field extends as well. So the conditions a(0) = 1

and ȧ(0) = 0 are necessary and sufficient to guarantee the monopole extends over the zero section.

Moreover, as defined in section 1.4.1, see also section 4.1.3, the connection of a monopole is

asymptotic to the pullback of an HYM connection on the nearly Kähler CP3. In this case, this is

the canonical invariant connection Ac and so limρ→+∞ a = 0, i.e. limρ→+∞ f
2(s2)b = 0.

Remark 4.2.5. During the proof above a rescaling from the field a to the field b was done. This

made the ODE look more familiar. It is precisely the same as the one obtained for invariant

monopoles on R3 with a spherically symmetric metric g = dr2 + h2(r)gS2 .
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Reducible Monopoles

There are solutions to the equations in proposition 4.2.4 by setting b = a = 0 and letting φ solve
dφ
dρ = 1

2h2 . This is analogous to the Dirac monopole in the R3\{0} case, as the connection A = Ac

is the canonical invariant connection which is reducible and Φ is unbounded and has singularities

at the zero section.

Remark 4.2.6. The canonical invariant connection Ac is pulled back from an HYM connection on

a complex line bundle L over CP3 with c1(L) = [−2ω23 + 1
2Ω1] ∈ H2(CP3,R) ∩H2(CP3,Z) a

monopole class.

As it was done in the case of Calabi-Yau manifolds, see definition 4.2.7 one can define

Definition 4.2.7. Let (X,φ) be a noncompact G2 manifold and P ⊂ X a coassociative submani-

fold. A Dirac monopole is an Abelian monopole on a line bundle defined on the complement of P .

Moreover, P will also be called the singular set of the Dirac monopole.

Define the Green’s function G, to be the unique function on Λ2
−(S4)\S4, such that dG = 1

2h2dρ

and limρ→∞G(ρ) = 0. One can check it is harmonic on Λ2
−(S4)\S4, since ∗∆ = d ∗ d

∗∆G = ∗d
(
∂G

∂ρ
∗ dρ

)
= ∗d

(
4s2∂G

∂ρ
f2g4ω23 ∧ e1234

)
= 0,

since ∂G
∂ρ = 1

2h2 = f2

2s2
and g2 = 2f−2 and so the quantity inside the parenthesis is constant on

Λ2
−(S4)\S4. The upshot of this section is

Proposition 4.2.8. The solution to the monopole equations (AD,ΦD
m) = (Ac, G−m), is a mass

m Dirac monopole on Λ2
−(S4) with the zero section as its singular set.

Irreducible Monopoles

The general strategy to solve the ODE’s to which proposition 4.2.4 reduced the initial problem is via

remark 4.2.5 and the work in chapter 2. This gives an existence theorem for monopoles on Λ2
−(S4)

parametrized by their mass and modeled on transverse BPS monopoles on a small neighborhood of

the zero section the R3 fibers. The precise statement is theorem 4.1.9 which is proved below

Proof. (of theorem 4.1.9) One needs to find the solutions of the ODE’s in proposition 4.2.4 giving

rise to Monopoles extending over the zero section, i.e. such that b(0) = 1 and ḃ(0) = 0. This

together with the ODE’s then implies that φ(0) = 0 and dφ
dρ is bounded. Theorem 2.2.1 in chapter

2, gives the solutions (bm, φm) to the ODE’s which are unique by fixing limρ→∞ = −m
2 ∈ R

−.

From these solutions one obtains am = f2bm and φm which give rise to the monopole

(Am,Φm) =
(
Ac + f2bm

(
T2 ⊗ ω2 + T3 ⊗ ω3

)
, φmT3

)
The fact that the mass function is well defined and a bijection is a direct consequence from theorem

2.2.1 in chapter 2, which basically asserts the previously claimed uniqueness of the solutions to the
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ODE’s.

The results in the last two items refers to the bubbling behavior, which can be proven by using the

corresponding one for monopoles in R3 and stated in Theorem 2.2.1. Those results are proved in

propositions 2.2.5 and 2.2.7 and based on the estimates provided by lemma 2.2.11. One must note

that the result one wants to prove does not follow immediately from those ones. The reason is the

following: The results from theorem 2.2.1 are for a family of monopoles(
Ãλ, Φ̃λ

)
=
(
Ac + bλ

(
T2 ⊗ ω2 + T3 ⊗ ω3

)
, φλT3

)
.

on R3 ∼= (Λ2
−)x equipped with the metric g|(Λ2

−)x . These need to be re-proven for a monopole on

Λ2
−(S4) restricted to a fibre, which differs from (Ãλ, Φ̃λ) by rescaling the fields as

(Aλ,Φλ)|(Λ2
−)x =

(
Ac + f2bλ

(
T2 ⊗ ω2 + T3 ⊗ ω3

)
, φλT3

)
.

Let expη = sη, since the Higgs field is unchanged Φ̃λ = Φλ one just needs to check that for all

ε > 0 there is λ and η(R, ε, λ) making ‖s∗ηAλ −ABPS‖C0(BR) ≤ ε. Proceed as follows

‖s∗ηAλ −ABPS‖C0(BR) ≤ ‖s∗ηÃλ −ABPS‖C0(BR) + ‖s∗ηÃλ − s∗ηAλ‖C0(BR),

as already remarked the first of these can be made arbitrarily small due to proposition 2.2.5. So

there is η′ which makes the first term less than ε
2 , as for the second term ‖s∗ηÃλ − s∗ηAλ‖C0(BR) =

‖Ãλ −Aλ‖C0(BηR) and so

‖s∗ηÃλ − s∗ηAλ‖C0(BR) = sup
s≤ηR

∣∣∣ (bλ(1− f2)
)
|ω2|gE

∣∣∣ ≤ sup
s≤δ

∣∣∣1
s

(
bλ(1− f2)

) ∣∣∣ ≤ ηR

2
,

where in the last line one uses the fact that f = (1 + s2)
1
4 . The conclusion is that estimate

‖s∗ηAλ − ABPS‖C0(BR) ≤ ε follows by making η equal to the minimum of η′ and ε
R . The last

item in the statement needs no further check and follows directly from proposition 2.2.7 in chapter

2.

Remark 4.2.9. • It is straightforward to check that the connection of these monopoles con-

verges to the canonical invariant connection Ac, which recall from remark 4.2.6 is the

pullback of an HYM connection on a line bundle L→ CP3 with c1(L) a monopole class.

• The energy of these monopoles is not finite (as they are asymptotic to a nonflat connection on

CP3). However, the Intermediate energy is indeed finite and the formula 4.1.6 in proposition

4.1.4 can be used to compute

EI(Am,Φm) = lim
ρ→∞

2φm(ρ)

∫
P3

2ω23 ∧ 4e1234 = 4πm〈[P3], c1(L) ∪ [i∗ψ]〉. (4.2.26)

Moreover, recall that inside the cohomology ring of Λ2
−(P2) the class [ψ] is dual to the zero

section S4. As for m ∈ R+, it denotes the mass of the monopole (Am,Φm).
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4.2.3 G2 Instantons

There is one further solution to the ODE’s in proposition 4.2.4 obtained by setting φ = 0 and b = 1,

which gives a = f2. This is not contained inMinv, since Φ = 0 in this case, in fact this solution

gives rise to an irreducible G2 instanton, the solution is explicit and shall be stated below.

Theorem 4.2.10. The connection on SU(2) bundleP → Λ2
−(S4) given byA = Ac+f

2(s2)
(
T2 ⊗ ω2 + T3 ⊗ ω3

)
is an irreducible G2 instanton. Its curvature is given by

FA =

(
Ω1

2
− 2s2

1 + s2
ω23

)
⊗ T1 +

1

2
√

1 + s2
(Ω2 ⊗ T2 + Ω3 ⊗ T3)

− s

1 + s2

(
ds ∧ ω2 ⊗ T2 + ds ∧ ω3 ⊗ T3

)
.

Remark 4.2.11. As for the monopoles from the last section and these G2 instantons also converge

to the canonical invariant connection, see remarks 4.2.6 and 4.2.9. However, the convergence is

much slower in the case of the instantons.

Next one considers the Spin bundle over S4, it may be equipped with a self dual connection.

Lifting this to Λ2
−(S4) also gives rise to a G2 instanton.

Proposition 4.2.12. The Spin connection θ on S4 is a G2 instanton with curvature

Fθ = −1

2
Ω1 ⊗ T1 − 2η31 +

1

2
Ω2 ⊗ T2 −

1

2
Ω3 ⊗ T3.

Proof. The lift of the positive Spin bundle, denoted by Q is constructed by choosing the isotropy

homomorphism λ : SU1(2)× U2(1)→ SU(2), given by λ(g, eiθ) = g, for (g, eiθ) ∈ SU1(2)×
U2(1). The canonical invariant connection θ ∈ Ω1(Spin(5), su(2)) is given by extending the

projection on su1(2) as a left invariant 1 form. Let T1, T2, T3 denote a basis for su(2) such that

[Ti, Tj ] = 2εijkTk. Then θ = η1 ⊗ T1 + η2 ⊗ T2 + η3 ⊗ T3. Using the Maurer Cartan relations

4.2.3 to compute the curvature Fθ = dθ + 1
2 [θ ∧ θ], gives

Fθ = 2η23 ⊗ T1 + 2η31 ⊗ T2 + 2η12 ⊗ T3

−
(

2η23 +
1

2
Ω1

)
⊗ T1 −

(
2η31 +

1

2
Ω2

)
⊗ T2 −

(
2η12 +

1

2
Ω3

)
⊗ T3

In fact one can check that Ac is the unique invariant connection on Q and Φ = 0 the unique

invariant Higgs field. The first of these claims follows from an application of Wang’s theorem

B.0.21, which identifies other invariant connections with morphisms of reps Λ : (m, Ad) →
(su(2), Ad ◦ λ). The left hand side splits into irreducibles as m = m1⊕m2, where m1 is irreducible

and m2 is trivial. Since the right hand side is irreducible not isomorphic to m1 (they have different

dimensions), Schur’s lemma gives Λ = 0 as the only possibility.

Regarding invariant Higgs Fields Φ, these must be constant for each ρ and have values in the trivial

component of the representation (su(2), Ad ◦ λ), which is irreducible and nontrivial.
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4.3 Monopoles on Λ2
−(P2)

The unit tangent bundle in Λ2
−(P2), i.e. the twistor space of P2, is the manifold of flags in C3. One

may write

F3 = {(x, ξ) ∈ P2 × (P2)∗ | ξ(x) = 0},

i.e. x is a line in the hyperplane ξ. Then, there are three natural projections to P2, given by

π1(x, ξ) = x, π2(x, ξ) = ξ ∩ x⊥ and π3(x, ξ) = ξ⊥, where x⊥, ξ⊥ denote the duals using the

standard Hermitian product in C3. The fibrations π1 and π3 are holomorphic while π2 is the twistor

fibration.

The standard action of SU(3) on C3 descends to a transitive action on F3 with isotropy the maximal

torus T 2 ⊂ SU(3), i.e.

F3 = SU(3)/T 2.

Moreover, SU(3) also acts on the different P2’s making the respective projections equivariant. The

isotropy of this action on each P2 is a different subgroup H ∼= S(U(1)× U(2)) of SU(3), and are

all conjugate by σ an element of order 3 in the Weyl group of SU(3), i.e. π1 ◦ σ2 = π2 ◦ σ = π3.

(Recall that the Weyl group is the residual action on SU(3)/T 2, descending from the action

of SU(3) on itself by conjugation.) The standard Hermitian structure gives an isomorphism

P2 × (P2)∗ ∼= P2 × P2. Let ([x1, x2, x3], [ξ1, ξ2, ξ3]) ∈ P2 × P2 be homogeneous coordinates,

then F3 ⊂ P2 × P2 is given by the points such that x1ξ1 + x2ξ2 + x3ξ3 = 0. At the point

(x, ξ) = ([1, 0, 0], [0, 1, 0]), the isotropy is a fixed T 2 subgroup of SU(3) given by

T 2 =

i(eiα1 , eiα2) =

e
iα1 0 0

0 eiα2 0

0 0 e−i(α1+α2)

 , (α1, α2) ∈ [0, 2π]2

 , (4.3.1)

and this identification will be used throughout. Identify su(3) with the anti-Hermitian matrices.

Denote by Cij the matrix with all entries vanishing but ±1 on the (i, j) and (j, i) positions

respectively, and let Dij the matrix with all entries vanishing but the (i, j) and (j, i) equal to i.

Moreover, let X1 = diag(i, 0,−i) and X2 = diag(0, i,−i), these generate the Lie algebra t2 of

the isotropy subgroup T 2. Then, the decomposition of su(3) into t2 irreducibles (the root space

decomposition) is

su(3) = t2 ⊕m1 ⊕m2 ⊕m3, (4.3.2)

where t2 = 〈X1, X2〉, m1 = 〈C13, D13〉, m2 = 〈C12, D12〉, m3 = 〈C23, D23〉. The splitting

su(3) = t2 ⊕ m, with m = m1 ⊕ m2 ⊕ m3, equips the bundle SU(3) → F3 with a connection

whose horizontal space is m. In particular π2(x, ξ) = [0 : 0 : 1] and P2 = π2(F3) is identified with

P2 ∼= SU(3)/S(U(2)×U(1)) for an explicit subgroup S(U(2)×U(1)). Under this identification

m1 ⊕m3 is the horizontal space of a connection on π2 : F3 → P2. Then the tangent space to the

fibres of the twistor projection π2 gives a distribution which is m2. Define left invariant one forms
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on SU(3), such that

(t2)∗ = 〈θ1, θ2〉, m∗1 = 〈e3, e4〉, m∗2 = 〈ν1, ν2〉, m∗3 = 〈e1, e2〉,

dual to the respective vectors above. One then defines the anti self dual forms Ωi as given in 4.2.2

and define the 3 forms

γ = (Ω2 ∧ ν2 − Ω3 ∧ ν1) , δ = −Ω3 ∧ ν2 − Ω2 ∧ ν1

The Maurer Cartan relations are

dθ1 = −2e34 − 2ν12 , dθ2 = −2e12 + 2ν12 (4.3.3)

dν1 =
(
−θ2 + θ1

)
∧ ν2 + Ω2 , dν2 = −

(
−θ2 + θ1

)
∧ ν1 + Ω3

de1 =
(
2θ2 + θ1

)
∧ e2 − ν1e3 − ν2e4 , de2 = −

(
2θ2 + θ1

)
∧ e1 − ν1e4 − ν2e3

de3 =
(
θ2 + 2θ1

)
∧ e4 + ν1e1 − ν2e2 , de4 = −

(
θ2 + 2θ1

)
∧ e3 + ν1e2 + ν2e1.

These can in turn be used to compute

dδ = 4 (e1234 − ν12 ∧ Ω1) , dγ = 0,

and in fact γ = de12 = dν12 = −de34 is exact.

4.3.1 The Bryant-Salamon G2 Metric

Using the fact that Λ2
−(P2)\P2 ∼= R+ × F3 and each F3 slice is a principal orbit for the SU(3)

action, this section reduces the equations of G2 holonomy with SU(3) symmetry to ODE’s on

R+. Integrating these, one constructs the Bryant Salamon metric on Λ2
−(P2). The notation tries to

match up with the original reference [BS89] and also with [CGLP02]. Let ρ ∈ R+ be the distance

along a geodesic emanating from the zero section and intersecting the principal orbits of the SU(3)

action orthogonally. The adjoint action of T 2 on m decomposes into irreducible components as

m = m1 ⊕m2 ⊕m3 (the root space decomposition after complexification) and any invariant metric

can be written as

g̃ = dρ2 + a2(ρ)
(
e2

1 + e2
2

)
+ b2(ρ)

(
e2

3 + e2
4

)
+ c2(ρ)

(
ν2

1 + ν2
2

)
,

for some positive functions a, b, c. The 3 form φ and ψ = ∗φ defining the G2 structure are given by

φ = dρ ∧
(
−a2e34 + b2e12 + c2ν12

)
+ abc γ

ψ = −b2c2 e12 ∧ ν12 + a2c2 e34 ∧ ν12 + a2b2 e1234 + abc dρ ∧ δ.

By theorem 1.2.3, the metric g has holonomy reduced to a subgroup of G2 if and only if dφ =

dψ = 0. Since γ is closed and dδ = 4(e1234 − ν12 ∧ Ω1), the equations reduce to the following
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ODE’s

4abc =
d

dρ
(a2b2) =

d

dρ
(a2c2) =

d

dρ
(b2c2) ,

d

dρ
(abc) = a2 + b2 + c2. (4.3.4)

Recall from section 4.2.1, equation 4.2.12, the definition of the following implicit functions of ρ

ρ(s) =

∫ s

0
fds , f(s) = (1 + s2)−

1
4 , g(s) =

√
2(1 + s2)

1
4 . (4.3.5)

Then as already done for Λ2
−(S4), one can regard s as a radial coordinate. Moreover, the solution to

the ODE’s 4.3.4, which gives the Bryant Salamon G2 structure is given by setting a(ρ) = b(ρ) =

2f−1(s(ρ)) and c(ρ) = 2s(ρ)f(s(ρ)). The G2 structure obtained is

g̃ = f2ds2 + 4s2f2
(
ν2

1 + ν2
2

)
+ 2g2

(
e2

1 + e2
2 + e2

3 + e2
4

)
(4.3.6)

φ = 4s2f3ds ∧ ν12 + 4fg2ds ∧ Ω1 − 2sf2g2 (ν1 ∧ Ω2 + ν2 ∧ Ω3) (4.3.7)

ψ = 4g4e1234 − 8s2f2g2Ω1 ∧ ν12 + 2sf2g2ds ∧ (Ω2 ∧ ν2 − Ω3 ∧ ν3) . (4.3.8)

It converges for large ρ to the Riemannian cone over the nearly Kähler F3. To check this use
dρ
dr = 1

2
√

2r
(r + c)−

1
4 ∼ 1

2
√

2
r−

3
4 , i.e. ρ(r) ∼

√
2r

1
4 =
√
s and

g̃C = dρ2 + ρ2
(
4e2

1 + 4e2
2 + 4e2

3 + 4e2
4 + 4ν2

1 + 4ν2
2

)
φC = ρ2dρ ∧ (Ω1 + ν12)− ρ3 (ν1 ∧ Ω2 + ν2 ∧ Ω3)

ψC = ρ4 ((σ12 − Σ12) ∧ ν12 + σ12 ∧ Σ12) + ρ3dρ ∧ (Ω2 ∧ ν2 − Ω3 ∧ ν3) .

4.3.2 G2 Monopoles

This section will use the SU(3) symmetry to construct G2 monopoles and G2 instantons on

Λ2
−(P2). The strategy for the construction of the invariant data (homogeneous bundle with invariant

connections and Higgs Fields) is as follows (see Appendix B for further details). Given an

isotropy homomorphism λ : T 2 → G, one constructs homogeneous principal G-bundles via

Pλ = SU(3) ×(T 2,λ) G on F3
∼= SU(3)/T 2. The invariant connections are determined by

their left-invariant connection 1-form A ∈ Ω1(SU(3), g). Once a complement m to t2 has been

chosen, Wang’s theorem B.0.21 parametrizes invariant connections in terms of morphisms of T 2

representations Λ : m→ g. The decomposition of m into irreducible components is

m = m1 ⊕m2 ⊕m3,

where each component is labeled by a positive root. Then by Schur’s lemma Λ|mi will either vanish

or map mi into an isomorphic representation inside g. In the same way, invariant Higgs fields, i.e.

invariant sections of the adjoint bundle gPλ = Pλ×Ad g, i.e. SU(3)×Ad◦λ g, correspond to vectors

in the trivial components of the T 2-representation Ad ◦ λ on g.
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G = S1 Bundles

For gauge group G = S1, the possible isotropy homomorphisms are given by the weights

λn,l(e
iα1 , eiα2) = ei(nα1+lα2), (4.3.9)

and so parametrized by two integers (n, l) ∈ Z2. Moreover, since none of the root spaces is a trivial

representation of S1 and the Ad ◦ λn,l action on u(1) is trivial the canonical invariant connection

Acn,l = nθ1 + lθ2,

is the unique invariant connection. The Maurer Cartan relations for SU(3), in 4.3.3, give Fn,l =

−2n(e34 + ν12) + 2l(ν12 − e12), which one rearranges to

F cn,l = −2ne34 − 2le12 + 2(l − n)ν12, (4.3.10)

is a closed, T 2-invariant, horizontal 2-form in SU(3) and descends to a closed 2-form on F3 =

SU(3)/T 2. Particular cases are dθ1 = F1,0 and dθ2 = F0,1, hence their classes generate

H2(F3,R). It is a consequence of the next lemma that [dθ1], [dθ2] also generate H2(F3,Z) seen as

a lattice inside H2(F3,R).

Lemma 4.3.1. H2(F3,Z) ∼= H1(T2,Z) is the lattice generated by the roots. Let O(1) denote the

canonical line bundle of P2, then c1(π∗1O(1)) = [F1,0], c1(π∗2O(1)) = [F−1,−1] and c1(π∗3O(1)) =

[F0,1].

Proof. The first assertion is a consequence of Serre’s spectral sequence and the fact that SU(3) is 2-

connected, soH2(F3,Z) ∼= H1(T2,Z). This identification can be made explicit by noticing that the

integral weights can be taken as generators and also as giving rise to the isotropy homomorphisms

generating the group of complex line bundles. Then, given α ∈ H1(T 2,Z), its exponential gives

the isotropy homomorphism of the line bundle Lα = SU(3)×T 2,eα C whose first Chern class is

[dα] ∈ H2(F3,R) ∩ H2(F3,Z). Notice that in this case α is actually the canonical connection

of the underlying S1 bundle and dα its curvature. Since π1 is holomorphic, π2 is real and π3

antiholomorhic

π∗1KP2
∼= (mC2 )∗ ⊗ (mC1 )∗ , π∗2KP2

∼= (mC1 )∗ ⊗ (mC3 )∗ , π∗3KP2
∼= (mC2 )∗ ⊗ (mC3 )∗,

these are the complex line bundles determined from the isotropy homomorphisms eαi : T 2 → S1

with

α1 = −(2θ1 + θ2)− (θ1 − θ2) = −3θ1

α2 = (2θ1 + θ2)(θ1 + 2θ2) = 3(θ1 + θ2)

α3 = +(θ1 − θ2)− (θ1 + 2θ2) = −3θ2.

Since KP2
∼= OP2(−3), the statement follows and c1(π∗iOP2(−1)) generate the integral second
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homology the statement follows.

Lemma 4.3.2. F1,1 generates a subgroup of H2(P2,Z) corresponding to the first Chern classes of

the line bundles pulled back from P2 via π2.

Proof. This is a consequence of the previous lemma. Alternatively the base of the twistor fibration

π2 is P2 = SU(3)/S(U(2) × U(1)) so the bundles that are pull back from the base must have

an isotropy homomorphisms λn,l : T 2 → S1, which factors via T 2 ↪→ S(U(2) × U(1)) → S1.

For the choices made before this is a fixed subgroup S(U(2) × U(1)) of SU(3) for which the

aforementioned homomorphisms are precisely the ones with n = l. In fact, these are the only cases

for which the curvature Fn,n of the canonical invariant connection stays bounded close to the zero

section.

Since S1 is Abelian an invariant Higgs Φ is just a real valued function of the radial coordinate ρ

and to compute the monopole equations one needs

Fn,l ∧ ψ =
(
8g4 (l − n)− 16s2f2g2(l − n)

)
e1235 ∧ ν12

= 8(l − n)g2
(
g2 − 2s2f2

)
e1234 ∧ ν12

= 32(l − n)e1234 ∧ ν12,

where it is useful to use g2 = 2f−2. Moreover, dΦ = dΦ
dρ dρ and so ∗dΦ = 64s2f−2 dΦ

dρ e1234 ∧ ν12.

The monopole equation can then be written as an ODE for Φ. For each (n, l) and a given mass it

has a unique solution obtained by solving

dΦm
n,l =

l − n
2h2(ρ)

dρ , lim
ρ→∞

Φm
n,l = m. (4.3.11)

Moreover, the connection associated with this is the canonical invariant one Acn,l. This monopole

does not extend over the zero section unless l = n in which case Φ is constant and so for n 6= l

gives a Dirac type monopole, see definition 4.2.7

Proposition 4.3.3. For n 6= l the monopole (Acn,l,Φ
m
n,l) is a Dirac monopole on Λ2

−(P2) with

singular set the zero section. For n = l the connection Acn,n is a G2-instanton obtained by lifting a

self dual connection on OP2(−n) via π2, their curvature is Fn,n = −2n (e12 + e34).

The Higgs field is then a harmonic function, which in the case n 6= l is non constant and

unbounded at the zero section. For large ρ one uses 4.2.12, s ∼ ρ2

4 and h2(ρ) = s2
√

1 + s2 to

conclude that h2(ρ) ∼ ρ6

64 . Plugging this back in equation 4.3.11 gives Φn,l ∼ −32
5 (l − n)ρ−5, i.e.

Φn,l decays like the Green’s function for the cone metric.

Remark 4.3.4. These invariant connections are Hermitian Yang Mills type connections on line

bundles over the nearly Kähler F3 pulled back to the cone.
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G = SO(3) Bundles

The possible isotropy homomorphisms λn,l : T 2 → SO(3) are also parametrized by two integers

(n, l) ∈ Z2. These are constructed by using 4.3.9 from the previous example and letting the

image S1 be the maximal torus in SO(3). Associated with each λn,l is the principal SO(3) bundle

Pn,l = SU(3) ×T 2,λn,l SO(3). These are reducible and one can also construct there reducible

connections induced by the canonical invariant ones on the respective S1 bundles. Let T1, T2, T3

be an orthonormal basis of so(3), such that [Ti, Tj ] = 2εijkTk and fix T1
2 as the generator of the

maximal torus. The canonical invariant connection on Pn,l is then Acn,l =
(
nθ1 + lθ2

)
⊗ T1

2 , with

curvature

F cn,l = (−ne34 − le12 + (l − n)ν12)⊗ T1. (4.3.12)

Other invariant connections are given by morphisms of T 2 representations

Λ : (m1 ⊕m2 ⊕m3, Ad)→ (so(3), Ad ◦ λn,l).

Let Ln,l denote the real two dimensional representation of T 2, where the first S1 acts by rotations

with degree n and the second S1 acts by rotations with degree l (this is the same as the complex

representation of T 2 induced with weight (n, l) ∈ Z2, i.e. by exponentiating nθ1 + lθ2 ∈ (t2)∗).

Identifying the corresponding representations

Λ : (2, 1)⊕ (1,−1)⊕ (1, 2)→ (0, 0)⊕ (n, l).

These are irreducible and it follows from Schur’s lemma, that Λ must vanish unless (n, l) is

one of (2, 1), (1, 2), (1,−1). In each of these cases Λ|mi is either 0 or an isomorphism for the

corresponding (n, l). Up to invariant gauge transformations such an isomorphism is determined by

a constant. Then, it is possible to make Λ be one of the following

A2,1 =
(
2θ1 + θ2

)
⊗ T1

2
+ a (σ1 ⊗ T2 + σ2 ⊗ T3) (4.3.13)

A1,−1 =
(
θ1 − θ2

)
⊗ T1

2
+ a (ν1 ⊗ T2 + ν2 ⊗ T3) (4.3.14)

A1,2 =
(
θ1 + 2θ2

)
⊗ T1

2
+ a (Σ1 ⊗ T2 + Σ2 ⊗ T3) , (4.3.15)

with a ∈ R a function of the radial coordinate ρ. Invariant Higgs fields Φ = Φ(ρ) must have values

in the components corresponding to the trivial T 2 representation, i.e. Φ ∈ (0, 0) and one writes

Φ = φT1, (4.3.16)

with φ ∈ R a function of the radial coordinate ρ.

Lemma 4.3.5. The above SO(3) bundles Pn,l for (n, l) = (2, 1), (1,−1), (1, 2) extend over the

zero section giving rise to a bundle over Λ2
−(CP2) if and only if (n, l) = (1,−1).

Proof. One needs to show that only when (n, l) = (1,−1) the bundle En,l = Pn,l ×SO(3) R3

associated via the standard representation is trivial along the fibres of the projection π2 : F3 → CP2.
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Equivalently one can show that only for (n, l) = (1,−1), is the bundle En,l → F3 isomorphic

to a bundle pulled back from CP2 via π2. To do this notice that w1(En,l) = 0 for all (n, l),

so it is enough to show that w2(En,l), p1(En,l), are pulled back from H∗(P2,Z2) via π∗2 only

for (n, l) = (1,−1). At this point it is convenient to work with U(2) bundles to compute the

characteristic classes. Consider the group homomorphism λ̃n,l : T 2 → U(2) given by

λ̃n,l(α1, α2) =

(
ei
nα1+lα2

2 ,

(
ei
nα1+lα2

2 0

0 e−i
nα1+lα2

2

))
∈ (U(1)× SU(2))/Z2

∼= U(2).

It has the property that after composed with the map U(2)→ SO(3) given by

A 7→ diag(det(A)−1/2,det(A)−1/2)A,

it agrees with λn,l. Define Wn,l as the rank-2 complex vector bundle associated via the canon-

ical U(2) representation with SU(3) ×(T 2,λ̃n,l)
U(2). Then, R ⊕ En,l ∼= gWn,l

and regarding

characteristic classes

w2(En,l) = c1(Wn,l) mod 2 , p1(En,l) = c1(Wn,l)
2 − 4c2(Wn,l).

The canonical invariant connection of such a bundle is Ãcn,l = (nθ1 + lθ2) ⊗ diag(i, 0), and

its curvature is given by F̃ cn,l = (ndθ1 + ldθ2) ⊗ diag(i, 0) ∈ Ω2(F3, u(2)). Using c1(Wn,l) =

i[tr(F̃ cn,l)] and c2(Wn,l) = 1
2(tr(F̃ cn,l ∧ F̃ cn,l)− tr(F̃ cn,l)

2) and inserting the formula above for the

curvature gives

c1(Wn,l) = −[ndθ1 + ldθ2] , c2(Wn,l) = 0.

First focus on w2(En,l), from lemma 4.3.2 the only classes in H2(F3,Z) which are pulled back

from P2 via π2 are those for which n = l. So one can write

w2(En,l) = [ndθ1 + ldθ2] = l[dθ1 + ldθ2] + (n− l)[dθ1],

and this equals l[dθ1 + dθ2] ∈ H2(F3,Z2) if and only if n − l is even. Then (n, l) = (1,−1)

is the only case in (n, l) = {(2, 1), (1,−1), (1, 2)} for which this holds. Next one needs to

check that p1(E1,−1) = c1(E1,−1)2 is also the pull back of a class via π2. To do this one computes

p1(E1,−1) = [−2e1234−4ν12∧Ω1] and using the fact that dδ = 4(e1234−ν12∧Ω1) one concludes

that [4ν12 ∧ Ω1] = [4e1234] and so

p1(E1,−1) = [−8e1234],

which is indeed the pullback via π2 of a multiple of the fundamental class of P2. And so P1,−1

does extend over the zero section while the other two cases do not.

Having in mind this proposition focus for now on the case (n, l) = (1,−1). The curvature of
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the invariant connection A1,−1 is computed via

F1,−1 = F c1,−1+dAc1,−1
a (ν1 ⊗ T2 + ν2 ⊗ T3)+

a2

2
[(ν1 ⊗ T2 + ν2 ⊗ T3) ∧ (ν1 ⊗ T2 + ν2 ⊗ T3)] .

Denote these by I1, I2, I3 respectively, then first term I1 = F c1,−1 = (Ω1 − 2ν12) ⊗ T1, is the

curvature of the invariant connection. Use the Maurer Cartan relations 4.3.3 to compute the other

terms and the dot · to denote differentiation with respect to s, then

I2 = ȧ (ds ∧ ν1 ⊗ T2 + ds ∧ ν2 ⊗ T3) + a

[(
θ1 − θ2

)
⊗ T1

2
∧ (ν1 ⊗ T2 + ν2 ⊗ T3)

]
+a (dν1 ⊗ T2 + dν2 ⊗ T3)

= ȧ (ds ∧ ν1 ⊗ T2 + ds ∧ ν2 ⊗ T3) + a(θ1 − θ2) ∧ (ν1 ⊗ T3 − ν2 ⊗ T2)

a
((
θ1 − θ2

)
∧ ν2 + Ω2

)
⊗ T2 − a

(
−
(
θ1 − θ2

)
∧ ν1 − Ω3

)
⊗ T3

= (ȧds ∧ ν1 + aΩ2)⊗ T2 + (ȧds ∧ ν2 + aΩ3)⊗ T3,

while

I3 =
a2

2
(ν12 ⊗ [T2, T3] + ν21 ⊗ [T3, T2]) = 2a2ν12 ⊗ T1.

Put all these together and obtain

F1,−1 =
(
2(a2 − 1)ν12 + Ω1

)
⊗ T1 + (ȧds ∧ ν1 + aΩ2)⊗ T2 + (ȧds ∧ ν2 + aΩ3)⊗ T3.

The computation of FA1,−1 ∧ ψ requires the G2 structure as computed in section 4.3.1. It is useful

to recall that 2g2 = 4f−2, which helps in computing

FA1,−1 ∧ ψ = 16f−4ȧ (ds ∧ ν1 ⊗ T2 + ds ∧ ν2 ⊗ T3) ∧ e1234 (4.3.17)

+
(
32f−4(a2 − 1) + 32s2

)
σ12e1234 ⊗ T1 + 16sa (ν1 ⊗ T2 + ν2 ⊗ T3) ∧ e1234

= 32
(
f−4a2 − 1

)
e1234ν12 ⊗ T1 + 16

(
f−4ȧ+ sa

)
dse1234 ∧ (ν1 ⊗ T2 + ν2 ⊗ T3).

The other ingredient of the equations is the covariant derivative of the Higgs field Φ = φT1. The

Bianchi identity for the connection Ac1,−2 gives dAc1,−1
T1 = 0 and so inserting this into ∇A1,−1Φ

gives

∇A1,−1Φ = ∇Ac1,−1
Φ + [a(ν1 ⊗ T2 + ν2 ⊗ T3), φT1]

= φ̇ ds⊗ T3 + 2aφ (T2 ⊗ ν2 − T3 ⊗ ν1) ,

and

∗ ∇A1,−1Φ = 64s2f−1φ̇e1234 ∧ ν12 ⊗ T1 + 2aφ (T2 ⊗ ∗ν2 − T3 ⊗ ∗ν1) (4.3.18)

= 64s2f−1φ̇ e1234ν12 ⊗ T1 + 32f−3aφ dse1234 ∧ (ν1 ⊗ T2 + ν2 ⊗ T3) .



4.3. MONOPOLES ON Λ2
−(P2) 113

Equating both sides of the monopole equation, i.e. equation 4.3.17 on the left hand side with

equation 4.3.18 on the right gives the following set of ODE’s

64s2f−1φ̇ = 32(f−4a2 − 1) (4.3.19)

16
(
f−4ȧ+ sa

)
= 32f−3aφ. (4.3.20)

Proposition 4.3.6. As a setMinv(Λ
2
−(CP2), P1,−1) is given by those connections and Higgs fields

as in equations 4.3.14 and 4.3.16 such that (φ, b = f−2(s2)a) satisfy the ODE’s

dφ

dρ
=

1

2h2

(
b2 − 1

)
(4.3.21)

db

dρ
= 2bφ. (4.3.22)

with h2(ρ) = s2(ρ)f−2(s2(ρ)) = s2(ρ)
√
s2(ρ) + 1 and b(0) = 1, ḃ(0) = 0 and limρ→+∞ f

2(s2)b =

0.

Proof. This amounts to substitute b = f−2(s2)a and change coordinates from s to ρ in equations

4.3.19 and 4.3.20. The first equation follows immediately and the second one from noticing that

f−2 da
dρ + sfa = db

dρ . The initial conditions on b follow from the requirements that the connection

and Higgs field extend over the zero section. This requires the curvature of the connection and

the Higgs field to be bounded, which requires ȧ(0) = 0 and a(0) = 1 for the first and φ̇(s) to be

bounded as s→ 0. Since f(0) = 1 and ḟ(0) = 0 the conditions on a end up being equivalent to

b(0) = 1 and ḃ(0) = 0. From the first ODE and the fact that h2(s) ∼ s2 for small s it follows that

these conditions are also sufficient. Recall that for a finite mass monopole as defined in section

1.4.1, the connection is asymptotic to the pullback of an HYM connection on the nearly Kähler F3.

In this case, it must be to Ac1,−1 and so limρ→+∞ a = 0, i.e. limρ→+∞ f
2(s2)b = 0.

Remark 4.3.7. The equations in proposition 4.3.6 are the same as the ones in proposition 4.2.4.

Hence, the problem has been reduced to the one of solving the ODE’s for a spherically symmetric

monopole in R3 (with a non-Euclidean metric though). Moreover, one can check that h(ρ) ≥ ρ, is

real analytic and as already remarked before behaves like: for small ρ, h(ρ) = ρ+ o(ρ3) and for

large ρ it grows as ρ3.

With this remark one can use the results in chapter 2 to prove theorem 4.1.9 with P = P1,−1.

The rest of the proof is done in exactly the same way as the the corresponding one for Λ2
−(S4) in

section 4.2.2 and shall be omitted. The work in chapter 2 gives for each m ∈ R+ a unique solution

(φm, bm) to the equations in proposition 4.3.6 such that limρ→∞ |φm(ρ)⊗ T1| = m. In the gauge

used before this monopole can be written

(Am,Φm) =
(
Ac1,−1 + f2bm (ν1 ⊗ T2 + ν2 ⊗ T3) , φmT1

)
,
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and the curvature of the connection is given by

FA =
(
2
(
f4b2m − 1

)
ν12 + Ω1

)
⊗ T1 + f2bm (T2 ⊗ Ω2 + T3 ⊗ Ω3)

+
d

dρ

(
f2bm

)
(T2 ⊗ dρ ∧ ν1 + T3 ⊗ dρ ∧ ν3) .

Remark 4.3.8. • These monopoles converge to the canonical invariant connectionAc1,−1. This

is reducible to a HYM connection on L1,−1 over the nearly Kähler F3. Their curvature is

given by F c1,−1(∞) = (2ν12 + Ω1) ⊗ T1, compare with equation 4.3.10 and see remark

4.3.4.

• The energy of these monopoles is not finite (as they are asymptotic to a nonflat connection on

F3). However, the Intermediate energy is indeed finite and the formula 4.1.6 in proposition

4.1.4 can be used to compute

EI(Am,Φm) = lim
ρ→∞

2φm(ρ)

∫
F3

16e1234 ∧ 2ν12 = 4πm〈[F3], c1(L1,−1) ∪ [i∗ψ]〉.

The next result regards the bundles P1,2 as well as P2,1. Recall from lemma 4.3.5 that these

do not extend over the zero section and so are defined on Λ2
−(P2)\P2. However the monopole

equations can still be integrated to give monopoles on the complement of the zero section and in

the following result these solutions are shown not to extend directly from the ODE’s.

Proposition 4.3.9. There is no smooth invariant monopole on the bundles P2,1 and P1,2 which

extends over the zero section.

Proof. Start with the case (n, l) = (2, 1), most of the computations are similar to the ones above

and so will be omitted. In the case at hand, there are no solutions to the monopole ODE’s that can

be extended to the zero section as the bundle itself does not extend over the zero section as shown

in lemma 4.3.5. The curvature and covariant derivative of the Higgs field are respectively given by

F2,1 = −ȧ (ds ∧ e3 ⊗ T2 + ds ∧ e4 ⊗ T3) +
(
−2(a2 − 1)Ω1 − ν12

)
⊗ T1

+a (ν2 ∧ e2 − ν1 ∧ e1)⊗ T2 − a (ν1 ∧ e2 + ν2 ∧ e1)⊗ T3

∇A2,1Φ = φ̇ ds⊗ T1 − 2aφ (T2 ⊗ e3 − T3 ⊗ e4) ,

Equating ∗∇A2,1Φ = F2,1 ∧ ψ gives the following equations

dφ

dρ
= − 1

2h2

(
b2 + 1

)
db

dρ
= −2bφ,

where b = sa and as in the previous section h2(ρ) = s2(ρ)
√
s2(ρ) + 1. These equations will never

give bounded solutions. In fact notice that since 1 + b2 > 0 and h(0) = 0, so φ̇ can not be bounded
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as ρ→ 0. The case (n, l) = (1, 2) is similar

F1,2 = ȧ (ds ∧ e1 ⊗ T2 + ds ∧ e2 ⊗ T3) +
(
2(a2 − 1)Ω1 + ν12

)
⊗ T1

−a (ν1 ∧ e3 + ν2 ∧ e4)⊗ T2 − a (ν1 ∧ e4 − ν2 ∧ e3)⊗ T3

∇A1,2Φ = φ̇ ds⊗ T1 + 2aφ (T2 ⊗ e2 − T3 ⊗ e1) ,

and the monopole equations for these with b = sa and h2(ρ) = s2(ρ)
√
s2(ρ) + 1 as before, are

dφ

dρ
=

1

2h2

(
1 + b2

)
db

dρ
= 2bφ.

Once again as it was the case for (n, l) = (1, 2), there is no hope of finding smooth solutions in

this case, as φ̇ is unbounded at the zero section.

G = SU(3) Bundles

For gauge group G = SU(3), the possible isotropy homomorphisms λ : T 2 → SU(3) are

parametrized by automorphisms of T 2 by identifying the image T 2 with the maximal torus in

SU(3). These depend on four integers (n11, n12, n21, n22) ∈ Z4 each corresponding to the degree

of a different map πi ◦ λ ◦ ij : S1 → S1. Explicitly, such an homomorphism is given by

λ(eiα1 , eiα2) = i(ei(n11α1+n12α2), ei(n21α1+n22α2)),

where i : T 2 ↪→ SU(3) is a fixed embedding of the maximal torus (as in 4.3.1). For each of

these homomorphisms one obtains a bundle Pλ = SU(3)×λ SU(3). The reductive decomposition

4.3.2 equips each of these with a canonical invariant connection Acλ = (n11X1 + n21X2)⊗ θ1 +

(n12X1 + n22X2)⊗ θ2, whose curvature is represented by the horizontal form

F cλ = −2 (n11X1 + n21X2)⊗ (e34 + ν12) + 2 (n12X1 + n22X2)⊗ (ν12 − e12)

= −2 (n11X1 + n21X2)⊗ e34 − 2 (n12X1 + n22X2)⊗ e12

+2 ((n12 − n11)X1 + (n21 + n22)X2)⊗ ν12. (4.3.23)

Other invariant connections are given by morphisms of T 2 representations Λ : (m, Ad) →
(su(3), Ad ◦ λ). The following lemma is a tautology which will be helpful in decomposing

the right hand side into irreducible components

Lemma 4.3.10. Let exp(ih) : Tn → C∗ = GL(C) be an irreducible tnC representation with weight

vector dh ∈ (tn)∗, and λ : Tn → Tn is a group homomorphism, then exp(ih) ◦ λ = exp(iλ∗h).

Since as T 2 representations (mC, Ad) = (2, 1) ⊕ (1,−1) ⊕ (1, 2), and (n, l) ∈ Z2 denotes

the representation ei(nα1+lα2) and suC(3) = t2C ⊕ mC) the lemma splits the (suC(3), Ad ◦ λ)
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representation in the right hand side, as

C⊕ C⊕ (2n11 + n21, 2n12 + n22)⊕ (n11 − n21, n12 − n22)⊕ (n11 + 2n21, n12 + 2n22).

Restrict to the special case where n11 = n22 = 1 and n21 = n12 = 0. Pick an invariant

connection given by Λ : m → m an isomorphism of representations. For each ρ ∈ R+, these

depend on a1, a2, a3 ∈ R, each corresponding to a scaling factor associated with a an isomorphism

between the corresponding irreducible components and induce the connection 1 forms given by

Aλ = X1 ⊗ θ1 +X2 ⊗ θ2 − a1 (C13 ⊗ e3 +D13 ⊗ e4) (4.3.24)

+a2 (C12 ⊗ ν1 +D12 ⊗ ν2) + a3 (C23 ⊗ e1 +D23 ⊗ e2) .

After a computation which is omitted the curvature is

Fλ = −da1

dρ
(C13 ⊗ dρ ∧ e3 +D13 ⊗ dρ ∧ e4) +

da2

dρ
(C12 ⊗ dρ ∧ ν1 +D12 ⊗ dρ ∧ ν2)

+
da3

dρ
(C23 ⊗ dρ ∧ e1 +D23 ⊗ dρ ∧ e2)

+X1 ⊗
(
2(a2

1 − 1)e34 + 2(a2
2 − 1)ν12

)
+X2 ⊗

(
2(a2

3 − 1)e12 + 2(1− a2
2)ν12

)
+ (a1 − a2a3) (C13 ⊗ (−ν1e1 + ν2e2)−D13 ⊗ (ν1e2 + ν2e1))

+ (a2 − a1a3) (C12 ⊗ Ω2 +D12 ⊗ Ω3)

+ (a3 − a1a2) (C23 ⊗ (ν1e1 + ν2e2) +D23 ⊗ (ν1e2 − ν2e1)) . (4.3.25)

Remark 4.3.11. The connection extends over to a connection on the whole Λ2
−(P2) if and only

if its curvature 4.3.26 is bounded. This is equivalent to the statement that a2
2(0) = 1, ȧ2(0) = 0

and a1(0) = a2(0)a3(0). For example, the special cases where a2 = −1, a2 = a3 = ±1 and

a2 = 1, a1 = −a3 = ±1, can be easily checked (using the formula above) to give rise to flat

connections and these do extend over the zero section.

The invariant Higgs field Φ ∈ Ω0(SU(3), su(3)) must have values in t2 ⊂ su(3), so can be

written Φ = φ1 X1 + φ2 X2, where φ1, φ2 are functions of the radial coordinate. After a short

computation

∇AΦ =
dφ1

dρ
dρ⊗X1 +

dφ1

dρ
dρ⊗X2 + a1(2φ1 + φ2) (D13 ⊗ e3 − C13 ⊗ e4)

−a2(φ1 − φ2) (D12 ⊗ ν1 − C12 ⊗ ν2)− a3(φ1 + 2φ2) (D23 ⊗ e1 − C23 ⊗ e2) .

Omitting some more computations the monopole equation FA ∧ ψ = ∗∇AΦ gives rise to the
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following set of ODE’s

dφ1

dρ
=

1

2h2

(
f−4a2

2 − s2a2
1 − 1

)
dφ2

dρ
=

1

2h2

(
s2a2

3 − f−4a2
2 + 1

)
s
da1

dρ
+ f−1 (a1 − a2a3) = −sa1(2φ1 + φ2)

f−2da2

dρ
+ sf (a2 − a1a3) = f−2a2(φ1 − φ2)

s
da3

dρ
+ f−1 (a3 − a1a2) = sa3(φ1 + 2φ2),

where h2(ρ) = s2(ρ)f−2(s(ρ)) = s2(ρ)
√
s2(ρ) + 1. Introduce the rescaled fields b1 = sa1,

b2 = f−2a2, b3 = sa3. Then the ODE’s above can be written as

dφ1

dρ
=

1

2h2

(
b22 − b21 − 1

)
dφ2

dρ
=

1

2h2

(
b23 − b22 + 1

)
db1
dρ

=
f

s
b2b3 − b1(2φ1 + φ2)

db2
dρ

=
f

s
b1b3 + b2(φ1 − φ2)

db3
dρ

=
f

s
b1b2 + b3(φ1 + 2φ2).

Theorem 4.3.12. There is a 1-parameter family of solutions to the system of equations above,

parametrized by their mass m ∈ R+. Moreover, such a solution gives rise to a smooth G2-

monopole, which in the previous gauge is given by the Higgs field Φ = φm(X1 − X2) and the

connection Am = X1 ⊗ θ1 +X2 ⊗ θ2 + f2am (C12 ⊗ ν1 +D12 ⊗ ν2), whose curvature is

Fm =
(
−2e34 + 2(f4a2

m − 1)ν12

)
⊗X1 +

(
−2e12 + 2(1− f4a2

m)ν12

)
⊗X2

+

(
f4a2

mΩ2 +
d

dρ

(
f4a2

m

)
dρ ∧ ν1

)
⊗ C12 +

(
f4a2

mΩ3 +
d

dρ

(
f4a2

m

)
dρ ∧ ν2

)
⊗D12.

Proof. The particular solutions stated above follow from an ansatz that reduces the system to the

same ODE’s that have been obtained in all the other cases (i.e. the ones for spherically symmetric

monopoles in (R3, dρ2 +h2(ρ)gS2)). Set b1 = b3 = 0, then the third and fifth equations are trivially

satisfied. The other equations are

dφ1

dρ
= −dφ2

dρ
=

1

2h2

(
b22 − 1

)
db2
dρ

= b2(φ1 − φ2).
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If it is further supposed that φ1 = −φ2 = φ, one obtains

dφ

dρ
=

1

2h2

(
b22 − 1

)
db2
dρ

= 2φb2,

and the existence result from chapter 2 can be applied, to give a family of solutions. These are

parametrized bym ∈ R+ and given by (φ, b) = (φm, am), where (φm, am) is the solution provided

by theorem 2.2.1. One then computes the formula in the statement for their curvature, which is

bounded at ρ = 0 and so extends to a solution on Λ2
−(P2), see remark 4.3.11.

The Ambrose-Singer theorem identifies the Lie algebra of the holonomy group with the values

of the curvature. This allows the conclusion that the holonomy of the monopoles above is contained

in a S(U(1)× SU(2)) subgroup of SU(3).

4.3.3 G2 Instantons

This subsection constructs G2 instantons on bundles over Λ2
−(P2) equipped with the Bryant-

Salamon G2 structure. One must remark that G2 instantons for the the other Bryant-Salamon

metrics also exist, as constructed in subsection 4.2.3 for Λ2
−(S4) and by Andrew Clarke in [Cla14]

for S(S3).

G = S1 Bundles

In the case n = l, lemma 4.3.1 states that the bundle is Pn,n = π∗2OP2(−n). The bundles OP2(−n)

are self-dual and one can check that the canonical invariant connection associated with these will

give rise to a G2-instanton on Λ2
−(P2). This is stated in proposition 4.3.3.

G = SO(3) Bundles

Irreducible G2-instanton in the bundle P1,−1 can be obtained by solving the ODE’s in proposition

4.3.6 for φ = 0. This implies b2 = 1, i.e. b = ±1, a = ±f2(s2) and da
ds = ∓sf6(s2), the solution

is a smooth irreducible G2-instanton on P1,−1 → Λ2
−(P2).

Theorem 4.3.13. The connection onP1,−1 over Λ2
−(P2) given byA = Ac1,−1+f2(s2) (ν1 ⊗ T2 + ν2 ⊗ T3)

is an irreducible G2-instanton with curvature

F1,−1 =
2s2

s2 + 1
ν12 ⊗ T1 + Ω1 ⊗ T1 ±

1√
s2 + 1

(Ω2 ⊗ T2 + Ω3 ⊗ T3)

∓ s

(1 + s2)
3
2

(ds ∧ ν1 ⊗ T2 + ds ∧ ν2 ⊗ T3) .

This instanton converges to the canonical invariant connection, which recall is the pullback to

the cone of a reducible HYM connection on F3 equipped with its standard nearly Kähler structure.

Its curvature is F1,−1(∞) = (2ν12 + Ω1)⊗ T1.
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G = SU(3) Bundles

To obtain irreducible G2 instantons, one solves the system of ODE’s 4.3.12.

Theorem 4.3.14. There are two families of irreducibleG2 instantons parametrized by c ≥ 0. These

are respectively given by

Aλ = X1 ⊗ θ1 +X2 ⊗ θ2 − uc(s)√
1 + s2

(C12 ⊗ ν1 +D12 ⊗ ν2) (4.3.26)

∓
√
u2
c(s)− 1

s
(C13 ⊗ e3 +D13 ⊗ e4 − C23 ⊗ e1 −D23 ⊗ e2) (4.3.27)

and

Aλ = X1 ⊗ θ1 +X2 ⊗ θ2 +
uc(s)√
1 + s2

(C12 ⊗ ν1 +D12 ⊗ ν2) (4.3.28)

∓
√
u2
c(s)− 1

s
(C13 ⊗ e3 +D13 ⊗ e4 + C23 ⊗ e1 +D23 ⊗ e2) , (4.3.29)

where

uc(s) = 1− 2c
s2

s2(1 + c) + 2
(√

1 + s2 + 1
) . (4.3.30)

In particular, the case c = −1, recovers the flat connections alluded to in remark 4.3.11.

Proof. For Φ = 0 one has to set φ1 = φ2 = 0 in the system of equations above. This gives the

equations

1 = b22 − b23 = b22 − b21
dbi
dρ

=
f

s
bjbk,

for i, j, k ∈ 1, 2, 3 and i 6= j 6= k. In order to guarantee that the connection extends over the zero

section, its curvature must be bounded and from remark 4.3.11 together with the definitions of

the b′is one must have b2(0)2 = a2(0)2 = 1, b1(0) = b2(0) = 0 and ḃ3(0) = (−1)k ḃ1(0), where

a2(0) = (−1)k. Moreover, from the equations above db21
dρ =

db22
dρ =

db23
dρ = f

s b1b2b3 and so the three

last equations are indeed compatible with the constraints imposed by the first two ones. These also

imply that b1 = ±b3 = (−1)kb3, and the system gets reduced to solve

b22 − b21 = 1

db1
dρ

=
f

s
(−1)kb2b1

db2
dρ

=
f

s
(−1)kb21.

Inserting the first equation (the constraint) into the last one and using d
dρ = f−1 d

ds gives the
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following nonlinear singular ODE

db2
ds

= (−1)k
f2

s
(b22 − 1). (4.3.31)

For k even there is a 1-parameter family of solutions given by b2(s) = −uc(s), for all c ≥ −1

and b1(s) = b3(s) = ±
√
u2
c(s)− 1. In the same way for k odd, there is a 1-parameter given by

b2(s) = uc(s) for all c ≥ 0 and so b1(s) = ±
√
u2
c(s)− 1. These give rise to the connections on

the statement and to check the connections extend one needs to show that
√
u2
c(s)−1

s is bounded at

s = 0 which is indeed the case.



Chapter 5

Moduli Spaces via Analysis

This chapter constructs an analytical setting in which to define the moduli spaces of finite mass

monopoles on AC manifolds. The results hold in all three cases of interest, namely 3 dimensions,

Calabi-Yau 3-folds and G2-manifolds. The chapter is organized into two main sections. The first

one 5.1 is focused on analyzing the linearization of the monopole equation, namely it defines

Banach spaces of sections on which the gauge fixed linearized operator is shown to be Fredholm.

Then section 5.2 combines this linear theory with Sobolev and multiplication properties of the

relevant Banach spaces in order to handle the nonlinearities of the (complex) monopole equation.

The main result of the first part is theorem 5.1.18 and that of the second part is theorem 5.2.3. This

is then reinterpreted in theorem 5.2.15 as saying that the moduli space of (complex) monopoles is

the zero locus of a Fredholm section of a suitable bundle over a Banach manifold.

5.1 Linear Analysis for Monopoles

Let (Xn, g) be an asymptotically conical manifold with n odd (even) and (A,Φ) either a finite

mass (resp. complex) monopole on P → X as in definition 1.4.1 (resp. 3.1.19). It is shown

in sections 2.1.1, 3.1.2 and 4.1.1 that for 3 manifolds, Calabi-Yau 3 folds and G2-manifolds

respectively, the gauge fixed elliptic operator D = d∗1 ⊕ d2 associated with the (resp. complex in

the Calabi-Yau case) monopole equation is as follows. Denote by S the vector bundle associated

with the standard Spin(n) representation and equip it with the standard spin connection (induced

by the Levi Civita one on TX). Equip the vector bundle E = gP → X with the connection

induced by A and SE = S ⊗E equipped with the connection induced from both A and the spin

connection. To ease notation also denote this connection by A, and by DA its Dirac operator and let

q = adΦ ∈ Ω0(X,End(E)) denote the induced endomorphism. Then, as computed in the sections

alluded to above D = DA + q and the goal of this section is to prove theorem 5.1.18 below, which

one can write as

Theorem 5.1.1. There are Banach spaces of sections of SE denoted by Hp
k,α as in definition 5.1.16

below (for p ≥ 2), and a discrete set K(DA) ⊂ R such that the operator

D = DA + q : Hp
k+1,α+1 → Hp

k,α (5.1.1)

121
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is Fredholm for all α ≥ −n/2, such that α 6∈ K(DA) and p ≥ 2.

The strategy to prove this result is to study the relevant model situations. First one studies the

operator D in a model metric cone (R+
r × Σ, g = dr2 + r2gΣ), where (A,Φ) coincide with the

pull back to the cone of the boundary data (A∞,Φ∞). The connection A respects the eigenspace

decomposition of q, and so one can split SE |Σ = ker(q)⊕ ker(q)⊥. This splitting gives rise to two

distinguished cases: on ker(q), D = DA is the usual Dirac operator and on ker(q)⊥, q is invertible

and such operators are known as Callias operators due to the work in [Cal78]. Both these cases

are analyzed separately on a model cone in subsections 5.1.2 and 5.1.3 respectively, where one

constructs suitable Banach spaces in which parametrices exists. In subsection 5.1.4, one constructs

a mixed Banach space of sections, which allows to construct a parametrix in the general case where

both ker(q), ker(q)⊥ are nonzero. The operator D is elliptic and the usual parametrix construction

gives inverses on small Euclidean patches. Also in subsection 5.1.4 these two kinds of model

parametrices are matched to prove that on an asymptotically conical manifold, the overall operator

is Fredholm as claimed in theorem 5.1.15. In the final subsection 5.1.5 one extends the previous

Banach spaces of sections to depend on an exponent p which in the case p = 2 gives back the

previous ones. Then, one proves that the Fredholm property of D extends from p = 2 to p > 2;

this is stated in theorem 5.1.18 and will be used in section 5.2 to deal with the nonlinear theory.

5.1.1 The Model Conical Operators

On the metric cone (C, gC) = (R+
r × Σ, dr2 + r2gΣ) denote by Pn → C (resp. Pn−1 → Σ) the

principal SO(n) (resp. SO(n−1)) frame bundle of (C, gC) (resp. (Σ, gΣ)). For both i = n, n+ 1,

let P̃ i → P i be the lifts to the Spin(i) bundle and Si = P̃ i ×ρi Si the vector bundle associated

with the standard Spin(i) representation, ρi : Spin(i) → U(Si). The Clifford Algebra splits as

Cli = (Cli)0 ⊕ (Cli)1 in even and odd elements. Then, Spin(i) lies in (Cli)0 and is generated

by those elements of the form v · w, where ‖v‖ = ‖w‖ = 1. This permits to see the Spin(i)

representations above as being induced by restricting to Spin(i) a representation of the Clifford

algebra. This is the key point for comparing ρn−1 with ρn via the algebra isomorphism between

Cln−1 and (Cln)0 given by

ei ∈ Cln−1 7→ ei · e0 ∈ (Cln)0, (5.1.2)

where {ei}n−1
i=1 is an orthonormal frame of Rn−1 and is extended to an orthonormal frame of Rn by

adding e0.

Remark 5.1.2. There are now to cases to distinguish,

• If n− 1 is even and (ρn−1, S
n−1 = S+

n−1 ⊕ S
−
n−1) is the direct sum of the two irreducible

spin representations, then the Spin(n) representation obtained via Cln−1 is the unique

irreducible one. Or conversely, if ρn is the unique irreducible Spin(n) respresentation, then

the induced representation of Spin(n− 1) via the isomorphism of algebras 5.1.2 is the direct

sum of the two irreducible ones. This is the relevant setup for the deformation operator of

the G2 monopole equation.
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• If n−1 is odd and ρn−1 is the unique irreducible Spin(n−1) representation, then it induces

one of the half Spin(n) representations S+
n . Conversely, if ρn is the half Spin(n) represen-

tation S+
n , then the 5.1.2 induced Spin(n− 1) representation is the unique irreducible one.

This is the relevant situation for Calabi-Yau monopoles.

Let πΣ : C → Σ is the projection on the second factor, then by remark 5.1.2, Sn ∼=
π∗Σ(Sn−1). Parallel transport along the radial direction constructs a map P ′ : Ω0(Σ,Sn−1) →
Ω0(C,Sn), which for σ ∈ Ω0(Σ,Sn−1) yields P ′σ ∈ Ω0(C,Sn), solving the initial value problem

∇ ∂
∂r

(P ′σ) = 0, (P ′σ) |{1}×S = σ. This extends to an isomorphism P : Ω0(R+,Ω0(Σ,Sn−1)
∼−→

Ω0(C,Sn), which identifies sections of Sn over C with 1 parameter families of sections of Sn−1

over Σ ∼= {1} × Σ in such that P−1∇ ∂
∂r
Ps = ∂s

∂r for s ∈ Ω0(R+,Ω0(Σ,Sn−1)).

Lemma 5.1.3. Let 6∂ denote the spin Dirac operator on Ω0(Σ,Sn−1) and {ei}n−1
i=0 orthonormal.

Then, for s ∈ Ω0(C,Sn)

D(s) = e0 ·
(
∇ ∂

∂r
s+

1

r

(
P 6∂P−1s+

n

2
(s)
))

. (5.1.3)

Proof. This follows from a lengthy but straightforward computation using the formula for the Spin

connection the second fundamental form of the cross sections of the cone which are n
2r times the

identity. Details of this computation are given for example in [Ang90].

Let E → Σ be a vector bundle with connection A which is pulled back to the cone. Construct

the bundle SE = Sn−1 ⊗ E, equipped with the twisted connection ∇A and the twisted Dirac

operator DA. Also let q ∈ Ω0(C,End(SE)) be skew symmetric and such that∇A(q) = 0 for the

connection on the endomorphism bundle. Using lemma 5.1.3 the operator D acting on sections of

Sn ⊗ π∗ΣE ∼= π∗ΣSE is equivalent to an operator on Ω0(R+,Ω0(Σ,SE)) is

D(s) = e0 ·
(
∇A∂

∂r

s+
1

r

(
P 6∂P−1s+

n

2
s
))

+ q(s). (5.1.4)

The goal now is to use good Banach Spaces, which ensure the existence of suitable parametrices

for this model operator. Then, patch this together with the parametrices given by standard elliptic

theory over open bounded sets to give global parametrices for operators on asymptotically conical

manifolds.

5.1.2 The Dirac Operator (q = 0)

Back to the setup where (X, g) is an asymptotically conical manifold, this subsection gives the

Fredholm property in the case where q = 0, i.e. SE = S‖E and so D = DA is the Dirac operator.

Suitable Banach spaces where the Fredholm property for the Dirac Operator holds exist and this is

reviewed in this subsection. Let ρ be a radius function as in definition 1.1.5, α ∈ R and p, k ∈ N1.

Denote the Lockhart-McOwen [LM85] weighted norm by ‖ · ‖Lpk,α , this is given by on a smooth
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compactly supported f ∈ Γ(X,SE)

‖f‖Lpk,α = ‖∇Af‖Lpk−1,α−1
+ ‖f‖Lp0,α , (5.1.5)

and ‖f‖p
Lp0,α

=
∫
X |ρ

−αf |pρ−ndvolX .

Definition 5.1.4. The Lockhart-McOwen [LM85] Sobolev spaces Lpk,α with weight α ∈ R are the

completion of the smooth compactly supported functions in the norm 5.1.5. Moreover, one will

further require the radius function ρ to be such that ρ ∈ (0, 1] inside a compact set K ′ with smooth

boundary, such that ∂K ′ = ρ−1(1) and K ′ contains K, then on X\K ′ one takes ρ = r ◦ ϕ, with

ϕ as in definition 1.1.5.

The next result states that the twisted Dirac operator DA on an asymptotically conical Spin

manifold is Fredholm for the Lockhart McOwen weighted Sobolev spaces. This is a standard

result, as DA is an asymptotically conical operator [Mar02]. Alternatively this theorem follows by

translating all the setup into the cylindrical setting and using the results in [Don02] or in [LM85].

In fact the results in [Don02] also prove that the model operator on a cone admits a right inverse in

this case.

Theorem 5.1.5. Let (X, g) be asymptotically conical, then there is a discrete set of weights K(DA)

such that for all α 6∈ K(DA) and k ∈ N, the Dirac operator DA : L2
k+1,α+1 → L2

k,α is Fredholm.

Moreover,

L2
k,α = DA(L2

k+1,α+1)⊕Wα, (5.1.6)

with Wα
∼= ker(D∗A)−α−n and in the case where ker(D∗A)−α−n ⊂ L2

k,α, i.e. α ≥ −n
2 equality

holds.

5.1.3 The Conical Callias Operator (q invertible).

This subsection focuses on the case where q is pointwise invertible along the ends X\K and

bounded below. Such a case is worked out in [Ang90] and [Kot10] where a formula for the

index in a quite general setup is given. Here a proof of the Fredholm property is given and the

treatment given is motivated by [Tau83] and [Don02]. The idea is to start and study the model

situation on a cone and then extend this to the AC setting. Before proceeding recall the relation

to monopoles, when restricted to the component S⊥E . The operators D,D∗ : Ω0(X\K,S⊥E ) →
Ω0(X\K,S⊥E ) associated with the (complex in the Calabi-Yau case) monopole equations, satisfy

certain Weitzenböck formulas, see lemma 2.1.2 in the 3 dimensional case, propositions 3.1.9 and

3.1.10 for the Calabi-Yau case and finally proposition 4.1.2 for the G2 case. In all cases one can

write D∗D and DD∗ as∇∗A∇A +W + q∗q, where W is a zeroth order differential operator which

for finite mass (complex) monopoles decays along the ends. In fact, for finite mass (complex)

monopoles, along X\K the configuration (A,Φ) is modeled on (A∞,Φ∞) and so FA,∇AΦ

appearing in W do decay with rate smaller or equal to −2. In fact, the results proven below in

corollary 5.1.10 and proposition 5.1.11 will hold under slightly more general assumptions. They
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just require the FA and∇AΦ to decay, i.e. they assume the existence of a smooth function ε > 0,

such that

lim
r→+∞

|ρj∇jε(r)| = 0 (5.1.7)

and |ρj∇jAFA|, |ρj∇
j
AΦ| ≤ ε2 for all j ∈ N0.

The Model Cone

Proposition 5.1.6. Let C = (1,+∞)× Σ equipped with the cone metric g = dr2 + r2gΣ and D

as before with q constant and bounded by bellow, i.e. ∇Aq(f) = q(∇Af) and |q(f)|2 ≥ c|f |2 for

some constant c > 0 and all f ∈ Ω0(C,SE). Suppose there is a Weitzenböck formula

D∗D = ∇∗A∇A +W + q∗q,

with W decaying as r goes to∞, i.e. there is a function ε(r) > 0 as in equation 5.1.7 such that

|W (f)| ≤ ε2(r)|f |. Then, the following inequality holds

‖f‖2L2
1
≤ c1‖Df‖2L2 + c2‖ε(r)f‖2L2 , (5.1.8)

for some positive constants c1, c2 and all f compactly supported in C.

Proof. For compactly supported f one can integrate by parts in ‖Df‖2L2 and use the Weitzenböck

formula in the hypothesis

‖Df‖2L2 = 〈D∗Df, f〉L2 = ‖∇Af‖2L2 + 〈W (f), f〉L2 + ‖q(f)‖2L2

≥ ‖∇Af‖2L2 − ‖ε(r)f‖2L2 + c‖f‖2L2 .

Now one passes the term −‖ε(r)f‖2L2 to the other side and this gives the inequality

‖∇Af‖2L2 + c‖f‖2L2 ≤ ‖Df‖2L2 + c′‖ε(r)f‖2L2 ,

which after suitably rearranging the constants gives the inequality 5.1.8, which one is trying to

prove.

From the Cone to Asymptotically Conical

We return to the case where X is asymptotically conical and q bounded by below. The following

lemmata will prove the Fredholm property for an operator which is globally like this, i.e. in the

case S⊥E extends over the whole X .

Lemma 5.1.7. Let ε : X → R+ be smooth and such that limρ→∞ ε(ρ) = 0. Then the embedding

L2
1 ↪→ L2

ε is compact. Where in the right hand side L2
ε denotes the completion of the smooth

compactly supported sections in the norm ‖f‖L2
ε

= ‖εf‖L2 .

Proof. Let {fi} ⊂ L2
1 be a sequence with ‖fi‖2L2

1
= 1 one needs to prove that there is a subsequence

which has a limit in L2
ε. To do this notice that since ‖fi‖2L2

1
= 1, there is a subsequence with a



126 CHAPTER 5. MODULI SPACES VIA ANALYSIS

weak limit in L2
1, denote this by f and notice that ‖f‖2

L2
1
≤ 1. The claim is that this subsequence

converges to f strongly in L2
ε . To see this denote by BR = ρ−1[1, R) and compute

‖ε(fi − f)‖2L2 = ‖ε(fi − f)‖2L2(BR) + ‖ε(fi − f)‖2L2(X\BR)

≤ c1‖fi − f‖2L2(BR) + ε2(R)‖fi − f‖2L2(X\BR)

≤ c1‖fi − f‖2L2(BR) + 4ε2(R). (5.1.9)

Where in the last inequality one uses that

‖fi − f‖2L2(X\BR) ≤ ‖fi − f‖
2
L2

1(X\BR) ≤ 2‖fi‖2L2
1(X\BR) + 2‖f‖2L2

1(X\BR) ≤ 4.

The second term in equation 5.1.9 is 4ε2(R) and can be made as small as one wishes by making R

big. Regarding the first one ‖fi − f‖2L2(BR), since the embedding L2
1(BR) ↪→ L2(BR) is compact,

fi does converge strongly to f in L2(BR) and the term ‖fi− f‖2L2(BR) can also be made arbitrarily

small by letting i get big.

Lemma 5.1.8. There is a positive constant C such that for all f ∈ L2
1

‖f‖2L2
1
≤ C

(
‖Df‖2L2 + ‖f‖2L2

ε

)
. (5.1.10)

Proof. There are two cases to distinguish, the interior of X and its ends. Let R be big and

BR = ρ−1(0, R), then by the ellipticity of D, for compactly supported f inside BR+1 there is

R′ > R such that

‖f‖2L2
1(BR+1) ≤ c1‖Df‖2L2(BR′ )

+ c2‖f‖2L2(BR′ )

≤ c1‖Df‖2L2(BR′ )
+ c2ε(R

′)−1‖εf‖2L2(BR′ )
, (5.1.11)

for some constants c1, c2 > 0 which do depend on R,R′ but independent of f . At the ends of X ,

i.e. on X\BR, pull back all the data to the cone via a quasi isometry, then there is an operator DC

on the cone satisfying the hypothesis in proposition 5.1.6, such that D−DC = O(ρ−1−ε) for some

ε > 0. So from proposition 5.1.6

‖f‖2L2
1(X\BR) ≤ c

′
1‖Df‖2L2(X\BR) + c′2‖εf‖2L2(X\BR),

for some constants c′1, c
′
2 > 0. The last step is to put this together with the interior inequality 5.1.11

let ϕR be a function supported on BR+1 which equals 1 on BR, then

‖f‖2L2
1

= ‖f‖2L2
1(BR) + ‖f‖2L2

1(X\BR) ≤ ‖ϕR+1f‖2L2
1(BR+1) + ‖(1− ϕR)f‖2L2

1(X\BR)

≤ 2(c1 + c′1)‖Df‖2L2 + 2(c2ε(R
′)−1 + c′2)‖εf‖2L2 ,

which is the inequality one is trying to prove.

Corollary 5.1.9. The AC operator D : L2
1 → L2 has closed range and finite dimensional kernel.
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Proof. To prove that the kernel is finite dimensional one proves that the unit ball in the kernel is

compact. So let {fi} ⊂ ker(D) be a sequence with ‖fi‖2L2
1

= 1. From lemma 5.1.7, the embedding

L2
1 ↪→ L2

ε is compact and so there is a subsequence fi, which converges strongly in L2
ε to some

f ∈ ker(D) ∩ L2
ε. But then, the inequality 5.1.10 gives ‖fi − f‖2L2

1
≤ c2‖ε(fi − f)‖2L2 → 0, and

so fi does converge to f in L2
1. Next one needs to prove that the image is closed, for that it is

enough to prove that there is a constant c > 0, such that for all f ∈ (kerD)⊥ ∩ L2
1

‖Df‖L2 ≥ c‖f‖2L2
1
. (5.1.12)

Suppose not, then there is a sequence {fi} ⊂ (kerD)⊥ ∩ L2
1 with ‖Dfi‖2L2 → 0 and ‖fi‖2L2

1
= 1.

There is a weak limit f ∈ L2
1 such that Df = 0 and from lemma 5.1.7, the limit f is strong in L2

ε .

In fact f = 0 since by assumption it is the limit of the fi’s which are in the orthogonal complement

to the kernel. Then the inequality 5.1.10 gives 1 = ‖fi‖2L2
1
≤ ‖Dfi‖2L2 + ‖εfi‖2L2 , as the first term

in the right hand side vanishes, while the second one converges to zero this is a contradiction.

Corollary 5.1.10. Let D : Ω0(X,SE) → Ω0(X,SE) be such that on X\K it is modeled on a

conical operator DC as in proposition 5.1.6. Then, D : L2
1 → L2 is a Fredholm operator.

Proof. Corollary 5.1.9 gives that the kernel is finite dimensional and the image is closed, so it is

enough to prove that the cokernel is finite dimensional as well. As cokD ∼= kerD∗ ∩ L2 one just

needs to prove that this later one is finite dimensional. Since D∗ is also modeled on an operator as

in the hypothesis of proposition 5.1.6, it satisfies an inequality as in equation 5.1.10. Using such an

inequality, one concludes that there is a constant c2 > 0 with the meaning for all f ∈ kerD∗ ∩ L2,

‖f‖L2
1
≤ c2‖εf‖L2 ≤ c2‖f‖L2 and so kerD∗ ∩ L2 ↪→ L2

1 and since by proposition 5.1.9 applied

to D∗ the kernel of D∗ in L2
1 is finite dimensional.

Proposition 5.1.11. Let D be as before and k ∈ N0, then D : L2
k+1 → L2

k is a Fredholm operator.

Proof. If one can prove an inequality of the form

‖f‖2L2
k+1
≤ c1‖Df‖2L2

k
+ c2‖ε′(r)f‖2L2

k
, (5.1.13)

for both D and D∗ and some ε′ as in equation 5.1.7. Then by repeating all the steps done before

with L2 replaced by L2
k and L2

1 replaced by L2
k+1 the proposition follows. Before, starting with

the proof of inequality 5.1.13, notice that the operator D can be extended to act on sections of

T ∗X⊗SE . Then, the Weitzenböck formulas forD∗D andDD∗ have a further contribution coming

from the Riemannian curvature, which actually vanishes in the Ricci flat case. In general, the

manifold is AC and this algebraic term decays and it can be bounded from above by a function as

in equation 5.1.7, so one can assume these Weitzenböck formulae are as in proposition 5.1.6. To

establish the inequality, notice that ‖f‖2
L2
k+1
≤ ‖f‖2

L2
1

+ ‖∇Af‖2L2
k

and arguing by induction one

can assume 5.1.13 to be true for k replaced by j < k, hence

‖f‖2L2
k+1
≤
(
‖Df‖2L2

1
+ ‖D∇Af‖2L2

k−1

)
+
(
‖εf‖2L2

1
+ ‖ε∇Af‖2L2

k−1

)
. (5.1.14)
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Notice that ε∇Af = ∇A(εf)−∇ε⊗ f . Moreover, since ε satisfies equation 5.1.7, there is some

other function ε1 still decaying as in equation 5.1.7 and so that |ε|+ |∇ε| ≤ ε1. So one can bound

by above the terms in the second bracket by ‖ε1f‖2L2
k
. To bound from above the terms in the first

bracket in 5.1.14, let {ei} be an orthonormal frame at p ∈ X such that∇ei = 0 at p. Then at p

D(∇Aj f) = DA∇Aj f + q(∇Aj f) =
∑
i

ei∇Ai ∇Aj f + q(∇Aj f)

=
∑
i

(
∇Aj (ei∇Ai f) + eiFA(ei, ej)(f)

)
+∇Aj (q(f))− (∇Aj q)(f)

= ∇Aj (Df) +
∑
i

eiFA(ei, ej)(f)− (∇Aj q)(f).

Recalling the model situation, one has∇Aq = 0 and FA bounded above by some ε2 as in equation

5.1.7. From this it follows immediately that

‖D∇Af‖2L2
k−1
≤ c(‖∇ADf‖2L2

k−1
+ ‖ε2f‖2L2

k−1
),

which together with the previous bound ‖εf‖2
L2

1
+ ‖ε∇Af‖2L2

k−1
≤ ‖ε1f‖2L2

k
, gives the inequality

5.1.14 for any ε′ ≥ ε1 + ε2.

5.1.4 The general case

This subsection puts together the Banach spaces of the two previous ones in order to measure the

components of the splitting SE = S‖E ⊕ S⊥E in an appropriate way. For future reference given

s ∈ Ω0(C,SE), denote the components of s in each of these by s‖, s⊥ respectively. This subsection

starts by studying the model conical situation on which one constructs model parametrices. The

usual strategy of patching parametrices will then be used to deduce the Fredholm property in the

AC case; this is stated as theorem 5.1.15, which is the version p = 2 of theorem 5.1.1.

The Model Cone

In the model situation, the configuration (A,Φ) is pulled back from the cross section, i.e. from

(A∞,Φ∞) and recall that in all cases∇∞Φ∞ = 0. So, in the cone C = (1,+∞)×Σ the operator

q = adΦ∞ is constant, i.e. ∇Aq(s) = q(∇As) for all s ∈ Ω0(C,SE), so q does preserve the

splitting SE = S‖E ⊕ S⊥E . The existence of a model parametrix in this more general situation will

follow from patching together parametrices for each component, which exist by sections 5.1.2 and

5.1.3 respectively. To do this, one requires the definition a suitable mixed Banach space of sections

of SE over the cone.

Definition 5.1.12. In the setup above define the norm

‖s‖2Hk,α = ‖s‖‖2L2
k,α

+ ‖s⊥‖2L2
k
,

for α ∈ R and k ∈ N+. Define the spaces Hk,α as the completion of the smooth compactly

supported sections in the norm ‖ · ‖Hk,α .
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On each component of the decomposition SE = S‖E⊕S⊥E , the operator D : Hk+1,α+1 → Hk,α

restricts as the operator studied in sections 5.1.2 and 5.1.3. Since the direct sum of Fredholm

operators is Fredholm, one has

Corollary 5.1.13. For α ∈ R there is a discrete set K(D), such that if α ∈ R\K(D) the operator

D : H1,α+1 → H0,α, admits parametrices PL, PR : Hk,α → Hk+1,α+1, such that

DPR = I + SR , PLD = I + SL,

with SR : Hk+1,α+1 → Hk+1,α+1 and SL : Hk,α → Hk,α compact operators.

From the Cone to Asymptotically Conical

Let (X, g) be AC and K ⊂ X such that along the conical end X\K the operator D is modeled by

an operator as analysed in the previous subsection 5.1.4. Below the function spaces from definition

5.1.12 will be adapted to the AC setting and then used to prove the main theorem 5.1.1. The strategy

is the usual one of matching the model parametrices over X\K obtained in corollary 5.1.13 with

the ones for the model constant coefficient operators obtained over sufficiently small interior balls

covering the compact piece K.

Definition 5.1.14. Let ρ be the radius function from definition 5.1.4, α ∈ R and k ∈ N+. Define

‖s‖2Hk,α = ‖s‖2L2
k(K) + ‖s‖‖2L2

k,α(X\K) + ‖s⊥‖2L2
k(X\K),

and the spaces Hk,α as the completion of the smooth compactly supported sections in this norm.

Theorem 5.1.15. Let D be as above, k ∈ N, α ∈ R. Then, there is a discrete set K(D) ⊂ R such

that for α /∈ K(D), the operator D : Hk+1,α+1 → Hk,α, is a Fredholm operator.

Proof. This follows from a standard procedure, which constructs global parametrices by gluing

those obtained for the model operators. This will be illustrated below, in the construction of a

global right parametrix QR.

Let U = X\K and K ⊂ ∪i∈IVi, with |I| <∞ form an open cover of X , such that there are local

right inverses Qi to the operator D, defined on some slightly larger open sets Ui containing Vi.

Moreover, suppose K is big enough, so that on U , the operator D is modeled on some conical

operator DC as in section 5.1.4. Let β, {βi}i∈I be a partition of unity subordinate to this cover.

First, notice that one can change the operator D over U so that it is exactly conical as DC . In

fact this amounts to subtract to D the operator K(s) = β(Ds −DC(βs))), which is a compact

operator K : Hk+1,α+1 → Hk,α, and the Fredholm property is not affected by perturbations by

compact operators. Then there is a parametrix PR constructed for DC in section 5.1.4 and this

must be now glued with the local inverses Qi. Define the candidate for a global parametrix as

QR =
√
βPR
√
β +

∑
i∈I
√
βiQi
√
βi and notice that even though the PR and the Qi’s are not
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globally defined the expression above is. To check that QR is indeed a parametrix, compute

DQR(s) = σ(d
√
β)PR

√
βs+

∑
i∈I

σ(d
√
βi)Qi

√
βis

+
√
βDPR

√
βs+

∑
i∈I

√
βiDQi

√
βis,

where σ denotes the higher order symbol of D. The term in the first line is a compact operator

K ′ : Hk,α → Hk,α. This follows from the fact that it is supported on a compact set where the

derivatives of the β’s are non vanishing. Moreover, over this compact set, by elliptic regularity one

can control the L2 norms of the derivatives of PRs and Qis in terms of the L2 norms of s. For the

term in the second line one can use DPR = I + SR over U and DQi = I over Vi to obtain

DQR(s) = K ′(s) +
√
β(I + SR)

√
βs+

∑
i∈I

βis

= s+K ′(s) +
√
βSR

√
βs.

Moreover since the last term is supported on the conical end where it agrees with SR, which is

a compact operator on these function spaces the operator K1 +
√
βSR
√
βs is compact and this

proves that QR is a right parametrix for D.

5.1.5 From p = 2 to p > 2.

The goal of this section is to extend the previous results, i.e. the statement regarding the Fredholm-

ness of the operator D from the case when p = 2 to p > 2. The upshot is theorem 5.1.18, which

contains the main result of the section and was announced in theorem 5.1.1. The relevant function

spaces for the general situation are the ones in definition 5.1.14 but constructed with p > 2.

Definition 5.1.16. For α ∈ R, k ∈ N1 and p ≥ 2 define the spaces Hp
k,α to be the completion of

the smooth compactly supported sections in the norm ‖ · ‖Hp
k,α

given by

‖s‖p
Hp
k,α

= ‖s‖p
Lpk(K)

+ ‖s‖‖p
Lpk,α(X\K)

+ ‖s⊥‖p
Lpk(X\K)

,

where K ⊂ X is a large compact set outside of which the splitting SE = S‖E ⊕ S⊥E is well defined.

Remark 5.1.17. Notice that H2
k,α = Hk,α in the notation from the previous section. Moreover,

recall these Lpk,α spaces are weighted with a distance function ρ as in definition 5.1.4.

Theorem 5.1.18. In the conditions of theorem 5.1.15 and p ≥ 2, there is a discrete set K(D) ⊂ R
such that for α /∈ K(D) and α ≥ −n/2

D : Hp
k+1,α+1 → Hp

k,α,

is a Fredholm operator.
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To prove this, i.e. that the Fredholm property extends for the operator

D : Hp
k+1,α+1 → Hp

k,α, (5.1.15)

it is enough to fix some parametrices PR, PL obtained for p = 2 and show these extend to bounded

operators with SR, SL compact operators when regarded as operators on the spaces with p > 2.

Proposition 5.1.19. Let α ≥ −n/2, α 6∈ K(D) and PR, PL be the parametrices forD obtained for

p = 2 by inverting D|
(ker(D)∩H0,α+1)

⊥
L2 : (ker(D) ∩H0,α+1)⊥L2 → (ker(D∗) ∩H0,−n−α)⊥L2 .

These extend to bounded operators

PR, PL : Hp
0,α → Hp

1,α+1,

such thatDPR = I+SR and PLD = I+SL with SR : Hp
0,α → Hp

0,α and SL : Hp
1,α+1 → Hp

1,α+1

compact operators.

Proof. Notice that the operator D|
(ker(D)∩H0,α+1)

⊥
L2 : (ker(D) ∩ H0,α+1)⊥L2 → (ker(D∗) ∩

H0,−n−α)⊥L2 is well defined as long as D(H1,−n−α−1) ⊂ H0,α, which is true for α ≥ −n/2− 1

and this is guaranteed by the hypothesis that α ≥ −n/2. Start by proving the last assertion,

namely that the extensions of SR, SL are compact. The parametrix PL in the statement is ob-

tained by constructing a left inverse to D|
(ker(D)∩H0,α+1)

⊥
L2 , then SL is minus the projection

onto ker(D) ∩H0,α+1, which is finite dimensional as D is Fredholm for p = 2 due to theorem

5.1.15. In the same way, PR is obtained by constructing a right inverse to D as an operator onto

(ker(D∗) ∩H0,−n−α)⊥L2 and so SR is minus the projection onto ker(D∗) ∩H0,−n−α, which is

the cokernel in the case α ≥ −n/2 and so finite dimensional as D is Fredholm for p = 2.

Next, one turns to the proof that the parametrices PR, PL do extend to bounded operators from

Hp
0,α to Hp

0,α+1. The two important models to have in attention in order to set this up are

1. There is a big compact set ρ−1[0, R] ⊂ X , over which the spaces Hp
k,α can be taken to agree

with the usual Lpk ones. Equip ρ−1[0, R] with a finite open cover {Vi}i∈I , where the standard

Calderon-Zygmund inequalities hold. These are

‖∇Ag‖pLp(Vi)
≤ C(‖Dg‖p

Lp(V ′i )
+ ‖g‖p

Lp(V ′i )
)

‖ g‖p
Lp(V ′i )

≤ C(‖Dg‖p
Lp(V ′′i )

+ ‖g‖p
L2(V ′′i )

),

where V ′i ⊃ Vi and V ′′i ⊃ V ′i are slightly larger open sets and C > 0 is a generic constant, to

be possibly actualized at each stage. The reason why we chose to arrange them in this way is

that these can now be combined into

‖g‖p
Lp1(Vi)

≤ C(‖Dg‖p
Lp(V ′′i )

+ ‖g‖p
L2(V ′′i )

).
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Then, by inserting g = PRf into the inequality above and using that DPR = I + SR, gives

‖PRf‖pLp(Vi)
≤ C

(
‖DPRf‖pLp(V ′′i )

+ ‖PRf‖pL2(V ′′i )

)
≤ C

(
‖f‖p

Lp(V ′′i )
+ ‖SRf‖pLp(V ′′i )

+ ‖PRf‖pL2(V ′′i )

)
.

Then the fact that PR is bounded for p = 2 and SR is compact and hence bounded for p ≥ 2

combine to further give ‖PRf‖pLp(Vi)
≤ C‖f‖p

Lp(V ′′i )
.

2. On the noncompact end ρ−1(R,+∞), D is modeled on a conical operator DC as in section

5.1.4. The rest of the proof requires lemmas 5.1.20 and 5.1.24 below. For now assume these

hold, then from lemma 5.1.24 one can use the alternative Hp
1,α+1 norm

‖g‖p
Hp

1,α+1
= ‖Dg‖p

Hp
0,α

+ ‖g‖p
Hp

0,α+1
.

Insert into this g = PRf with f ∈ Hp
0,α and use DPR = I + SR, gives

‖PRf‖pHp
1,α+1

= ‖f + SRf‖pHp
0,α

+ ‖PRf‖pHp
0,α+1

.

By using the generalized Young inequality and the fact that SR : Hp
0,α → Hp

0,α is compact ,

the first term can be bounded above by c‖f‖p
Hp

0,α
, for some c > 0. As for the second term, it

is guaranteed by lemma 5.1.24 that it is no greater than c‖f‖p
Hp

0,α
, for some other constant

c > 0. This shows that the model parametrix PR : Hp
0,α → Hp

1,α+1 is bounded.

Then by combining the two pieces above finishes the proof of proposition 5.1.19.

The rest of this section focuses on proving lemmas 5.1.20 and 5.1.24.

Lemma 5.1.20. The norm Hp
k+1,α+1 is equivalent to the norm ‖ · ‖ defined by

‖f‖p = ‖Df‖p
Hp
k,α

+ ‖f‖p
Hp

0,α+1
.

Proof. The result follows from induction and the general step is not more difficult than the case

k = 1. In this case it is enough to show that ‖f‖p can be bounded from above and below by

‖f‖p
Hp

1,α+1
.

1. To prove the upper bound, use Df = DAf + q(f) and the generalized version of Young’s

inequality

‖f‖p ≤ c1(‖DAf‖pHp
0,α

+ ‖q(f)‖p
Hp

0,α
) + ‖f‖p

Hp
0,α+1

. (5.1.16)

Using |DA(f)| ≤ c2|∇Af | one can bound the first term above by cp2c1‖∇Af‖pHp
0,α

. For the second

term, use that |q(f)| ≤ c3|f⊥| and ‖f⊥‖p
Hp

0,α
= ‖f⊥‖p

Hp
0,α+1

, i.e. the weights do not affect the f⊥

component. These two facts combine to bound the second term as ‖q(f)‖p
Hp

0,α
≤ cp3‖f⊥‖

p
Hp

0,α+1
,

which can be further bounded by cp3‖f‖
p
Hp

0,α+1
. Inserting these bounds back into 5.1.16 gives

‖f‖p ≤ C(‖∇Af‖pHp
0,α

+ ‖f‖p
Hp

0,α+1
) = C‖f‖p

Hp
1,α+1

,
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where C = max{cp2c1, 1 + c1c
p
3} > 0.

2. To prove the lower bound on ‖f‖p, one needs to establish an inequality as

‖f‖p
Hp

1,α+1
≤ C ′(‖Df‖p

Hp
0,α

+ ‖f‖p
Hp

0,α+1
), (5.1.17)

for some C ′ > 0. To do this, it is convenient to split the proof into cases, i.e. to prove the result

independently for the S‖E and S⊥E components.

For f ∈ S‖E , Df = DAf and ‖f‖Hp
k,α

= ‖f‖Lpk,α , i.e. the Hp
k,α norm is the Lockhart-McOwen

one from definition 5.1.4. AsDA is an elliptic asymptotically conical operator, there is an inequality

‖f‖p
Lp1,α+1

≤ c5(‖DAf‖pLp0,α + ‖f‖p
Lp0,α+1

), (5.1.18)

which follows immediately from a change of coordinates into Lockhart and McOwen’s asymptoti-

cally cylindrical setting in [LM85].

For f ∈ S⊥E , ‖f‖Hp
k,α

= ‖f‖Lpk , i.e. the Hp
k,α norm agrees with the usual Lpk one. To bound

‖∇Af‖pLp by above one can use the fact that Lp = Lp0,−n/p to rewrite ‖∇Af‖pLp ≤ ‖∇Af‖
p
Lp +

‖r−1f‖pLp = ‖f‖p
Lp

1,−n/p+1

. Then, using the weighted inequality in equation 5.1.18, for the case

α = −n/p, gives

‖∇Af‖pLp ≤ c5

(
‖DAf‖pLp + ‖r−1f‖pLp

)
≤ c5c6

(
‖Df‖pLp + ‖f‖pLp + ‖r−1f‖pLp

)
≤ 2c5c6

(
‖Df‖pLp + ‖f‖pLp

)
,

where in the second inequality in the first line one uses DAf = Df − q(f) and the fact that q

is bounded. The inequality 5.1.17 is now immediate from summing these two components and

choosing C ′ as the biggest constant.

It will be useful in the analysis to be carried out to introduce a mixed norm

Definition 5.1.21. Define the intermediate norm ‖ · ‖
H

(p,2)
0,α

by

‖f‖p
H

(p,2)
0,α

=

∫ +∞

1

(
r−αp−n‖f‖‖p

L2(ρ−1(r))
+ ‖f⊥‖p

L2(ρ−1(r))

)
r−(n−1) p−2

2 dr,

where the L2 norms on the right hand side are with respect to the induced metric on ρ−1(r) ∼= Σ.

Lemma 5.1.22. Let p ≥ 2 and α ∈ R, then there is a constant c > 0, such that for f ∈ Hp
0,α,

‖f‖
H

(p,2)
0,α

≤ c‖f‖Hp
0,α
.

Proof. The proof follows from the observation that for p ≥ 2 and over compact sets, the Lp

norm is stronger than the L2 norm. In fact over a radius 1 ball B1 ⊂ Rk there is a constant

c′ > 0 such that ‖f‖L2(B1) ≤ c′‖f‖Lp(B1), then by scaling ‖f‖L2(Br) ≤ c′r
k p−2

2p ‖f‖Lp(Br) for all

r ∈ R. Applying this scaling behavior of the Lp norms, there is c > 0 such that ‖f‖p
L2(ρ−1(r))

≤

cpr(n−1) p−2
2 ‖f‖p

Lp(ρ−1(r))
. Inserting this into the definition of the H(p,2)

0,α norm above gives an



134 CHAPTER 5. MODULI SPACES VIA ANALYSIS

upper bound with respect to the Hp
0,α norm.

Lemma 5.1.23. Let p ≥ 2 and α ∈ R, there is a constant c′ > 0, such that for all f ∈ Hp
0,α

one has ‖PRf‖H(p,2)
0,α+1

≤ c′‖f‖
H

(p,2)
0,α

. Moreover, combining this with lemma 5.1.22 and possibly

changing the constant c′ gives

‖PRf‖H(p,2)
0,α+1

≤ c′‖f‖Hp
0,α
.

Proof. It is enough to prove the first inequality since as asserted in the statement the second one

follows from combining the first one with lemma 5.1.22. Recall that PR is a bounded operator for

p = 2, i.e. H0,α to H1,α+1. To proceed with the proof it is convenient to split the problem between

the S‖E and S⊥E components.

1. For f ∈ S‖E , the Hp
k,α norm is the standard Lockhart-McOwen one Lpk,α. Then, by changing

coordinates to t = log(r), the statement that PR is bounded from H0,α = L2
0,α into H0,α+1 =

L2
0,α+1 gives

∫ +∞

log(R)
‖e−tPRf‖2L2(Σ,gΣ)e

−2αtdt ≤ C
∫ +∞

log(R)
‖f‖2L2(Σ,gΣ)e

−2αtdt,

for someC > 0 and whereL2(Σ, gΣ) denotes theL2 norm on the cross section Σ with respect to the

fixed metric gΣ. Equivalently, this statement can be formulated as saying that for all T > log(R),

the assignment e−αtf 7→ e−(α+1)T (PRf)(T ) gives rise to a bounded map

Mα(T ) : L2((log(R),+∞), L2(Σ, gΣ))→ L2(Σ, gΣ),

and the operator norm of this family is integrable, with integral no greater than C. Still in the cylin-

drical setting, the fact that f ∈ H(p,2)
0,α means that e−αt−(n−1) p−2

2p
t
f(t) ∈ Lp((log(R),∞), L2(Σ, gΣ)).

Hence, one can use the fact that the family Mα(·) has integrable operator norm and the map

L1 × Lp ↪→ Lp along (log(R),+∞)× L2(Σ, gΣ) to prove that

‖e−(n−1) p−2
2p

T
(Mαe

−αtf(t))(T )‖pLp ≤ ‖Mα(T )‖p
L1‖e−(n−1) p−2

2p
t
e−αtf(t)‖pLp .

Since ‖Mα(T )‖L1 < C <∞, changing coordinates back to the asymptotically conical setting this

statement is equivalent to

‖PRf‖2
H

(p,2)
0,α+1

≤ C‖f‖2
H

(p,2)
0,α

and proves that PR : H
(p,2)
0,α → H

(p,2)
0,α+1 is bounded for those components in S‖E .

2. For f ∈ S⊥E , the Hp
k,α norm is the standard Lpk one. The statement that PR is bounded from

and into L2 can equivalently be stated in the cylindrical setting, as follows. Using the measure
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entdt on (log(R),+∞), and all T > log(R), the assignment f 7→ (PRf)(T ) gives a bounded map

PR(T ) : L2((log(R),+∞), L2(Σ, gΣ))→ L2(Σ, gΣ),

and this T -parametrized family has integrable operator norm. Then, given f ∈ H
(p,2)
0,α , in the

cylindrical setting this means that e−(n−1) p−2
2p

t
f(t) is in Lp((log(R),∞), L2(Σ, gΣ)), using the

measure entdt on (log(R),+∞). Proceeding as before and combining the map L1 × Lp ↪→ Lp

with the fact that the family PR(T ) has integrable operator norm gives

‖e−(n−1) p−2
2p

T
(PRf(t))(T )‖pLp ≤ ‖PR(T )‖p

L1‖e−(n−1) p−2
2p

t
e−αtf(t)‖pLp ,

with ‖PR(T )‖p
L1 = C ′ < +∞. Back to the conical world this statement gets translated into

‖PRf‖2
H

(p,2)
0,α+1

≤ C ′‖f‖2
H

(p,2)
0,α

,

proving the statement for those components in S⊥E . Then by putting together both cases 1. and 2.

proves the complete statement.

Lemma 5.1.24. There is a constant c′ > 0, such that for all f ∈ Hp
0,α

‖PRf‖Hp
0,α+1

≤ c′‖f‖Hp
0,α
.

Proof. Recall the Hp
0,α norm in definition 5.1.16, in what follows it will be useful to rewrite it as a

sum

‖g‖p
Hp

0,α(U)
=

∫ +∞

1

(
r−αp−n‖g‖‖p

Lp(ρ−1(r))
+ ‖g⊥‖p

Lp(ρ−1(r))

)
dr

∼=
∑
k≥0

(
R−k(αp+n)‖g‖‖pLp(Ck) + ‖g⊥‖pLp(Ck)

)
, (5.1.19)

where ∼= above denotes an equivalence of norms (which is straightforward to check) and Ck =

(Rk, Rk+1)× Σ equipped with the conical metric gC = dr2 + r2gΣ = r2(dr
2

r2 + gΣ). Notice that

the conical annulus Ck+1 is obtained from Ck by scaling with a factor of R > 1. As usual, in what

follows it will be convenient to separate into components.

1. First, one focuses on the components in S‖E . Over the bounded annulus C1, the standard

Calderon-Zygmund inequalities give ‖g‖pLp(C1) ≤ c(‖Dg‖
p
Lp(C′1)

+ ‖g‖p
L2(C′1)

), where C ′1 ⊃ C1 is

a slightly larger annulus in the cone. This inequality is not scale invariant and scaling it gives

‖g‖pLp(Ck) ≤ c
(
Rkp‖Dg‖p

Lp(C′k)
+R−nk

p−2
2 ‖g‖p

L2(C′k)

)
,

and in this component D = DA. Moreover, since p > 2, R−nk
p−2

2 ≤ R−(n−1)k p−2
2 and

‖g‖p
L2(Ck)

≤ c
∫ Rk+1

Rk ‖g‖p
L2(ρ−1(r))

dr. Then by inserting these into the norm 5.1.19, gives for
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g ∈ S‖E

‖g‖p
Hp

0,α+1
≤ c1

∑
k≥0

R−k((α+1)p+n)Rpk‖Dg‖‖pLp(Ck)

+c2

∫ +∞

R
r−(α+1)p−n‖g‖p

L2(ρ−1(r))
r−(n−1) p−2

2 dr

≤ C(‖Dg‖p
Hp

0,α
+ ‖g‖p

H
(p,2)
0,α+1

).

Insert into this inequality g = PRf , then by using DPR = I + SR, the fact that SR is bounded

from and into Hp
0,α and lemma 5.1.23, give

‖PRf‖pHp
0,α+1

≤ c

(
‖f + SRf‖pHp

0,α+1
+ ‖PRf‖p

H
(p,2)
0,α+1

)
≤ C‖f‖p

Hp
0,α+1

.

2. Next, one turns to those components in S⊥E , recall that for these the map q ∈ Ω0(End(SE))

is bounded below, i.e. |q(g)| ≥ c|g|, for some c > 0 and all f ∈ S⊥E . Then over any Ck, the

inequality

‖g‖pLp(Ck) ≤ ‖q(g)‖pLp(Ck) ≤ ‖Dg‖
p
Lp(Ck) + ‖DAg‖pLp(Ck). (5.1.20)

Moreover, rescaling the fact that DA : Lp1(C1)→ Lp(C1) is bounded and the standard Calderon-

Zygmund inequality gives ‖DAg‖pLp(Ck) ≤ c1(‖∇Ag‖pLp(C′k)
+R−pk‖g‖p

Lp(C′k)
) and ‖∇Ag‖pLp(C′k)

≤

c1(‖Dg‖p
Lp(C′′k )

+ R−nk
p−2

2 ‖g‖p
L2(C′′k )

), where C ′k ⊃ Ck and C ′′k ⊃ Ck to denote slightly larger

annulus. Then by combining these gives

‖DAg‖pLp(Ck) ≤ C(‖Dg‖p
Lp(C′′k )

+R−nk
p−2

2 ‖g‖p
L2(C′′k )

+R−pk‖g‖p
Lp(C′k)

),

and inserting this back into equation 5.1.20 gives for R� 1

‖g‖pLp(Ck) ≤ C(‖Dg‖p
Lp(C′′k )

+R−nk
p−2

2 ‖g‖p
L2(Ck)

). (5.1.21)

Moreover since p > 2 also in this case R−nk
p−2

2 ≤ R−(n−1)k p−2
2 and one can dominate the second

term in the right above by c
∫ Rk+1

Rk ‖g‖p
L2(ρ−1(r))

r−(n−1)k p−2
2 dr, which is for components in S⊥E

the H(p,2)
0,α+1 norm. Then, inserting equation 5.1.21 into the norm in equation 5.1.19 for g ∈ S⊥E

gives

‖g‖p
Hp

0,α+1
≤ C

∑
k≥0

‖Dg‖p
Lp(C′′k )

+ C

∫ +∞

R
‖g‖p

L2(ρ−1(r))
r−(n−1)k p−2

2 dr

≤ C(‖Dg‖p
Hp

0,α
+ ‖g‖p

H
(p,2)
0,α+1

),

and notice that the weights α here are irrelevant but are introduced in order to use the appropriate

notation. Then, following a similar strategy as in the previous case let g = PRf in the inequal-

ity above. Then using DPR = I + SR, that SR is bounded on Hp
0,α and lemma 5.1.23 gives
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‖PRf‖pHp
0,α+1

≤ ‖f‖p
Hp

0,α
. The general result follows immediately from combining

Remark 5.1.25. Recall that restricted to the components in S‖E , D = DA is the Dirac operator

and Hp
k,α = Lpk,α are the Lockhart-McOwen spaces. The results obtained in this section, when

restricted to these components also follow from standard Lockhart-McOwen theory and this could

have been used instead. In fact, this section relies partially on these results, when in the proof of

lemma 5.1.20 the inequality in equation 5.1.18 is used. However, such an inequality follows from

scaling the standard Calderon-Zygmund one ‖∇Ag‖pLp(C1) ≤ C(‖Dg‖p
Lp(C′1)

+ ‖g‖p
Lp(C′1)

), from

the annulus C1 to all the annuli Ck, in a similar fashion to what was done in the proof of lemma

5.1.24.

5.2 The Moduli Theory

This section studies the properties of the moduli spaces of finite mass, irreducible monopoles (resp.

complex monopoles) on an asymptotically conical manifold (X, g), which is either a 3 dimensional

manifold or a G2 manifold (resp. a Calabi-Yau 3 fold). The main result is theorem 5.2.3 which

shows the setup from the previous section extends to the nonlinear case. Namely that the (complex)

monopole equations give rise to a Fredholm map between the Banach spaces in definition 5.1.16

from the previous section.

5.2.1 Moduli of Finite Mass (complex) Monopoles

Recall the boundary conditions for a finite mass monopole; let P∞ → Σ be the asymptotic bundle

and fix a framing

η : ϕ∗P |X\K → π∗P∞, (5.2.1)

together with a pair (∇∞,Φ∞) as in definitions 1.4.1 and 3.1.19 for monopoles and complex

monopoles respectively. Here ϕ is diffeomorphism from definition 1.2.8 and π : C → Σ denotes

the projection to the second factor. Moreover, also recall that ∇∞Φ∞ = 0 and ∇∞ satisfies the

conditions summarized in definition 1.4.7 and the examples following it (or proposition 3.1.28 in

the case of complex monopoles). Denote by [(∇∞,Φ∞)] the gauge equivalence class of this pair

and define

Γ∞ = {g ∈ Aut(P∞) | g · (∇∞,Φ∞) = (∇∞,Φ∞)},

γ∞ = {ξ ∈ Γ(gP∞) | ∇∞ξ = [ξ,Φ∞] = 0}.

Then Γ∞ are the gauge transformations of P∞ which preserve the boundary data and γ∞ its Lie

algebra. There are two possible approaches to setting up the moduli theory:

1. Consider pairs (A,Φ) on P such that there are representatives (∇′∞,Φ′∞) ∈ [(∇∞,Φ∞)],

with (A,Φ) asymptotic to (∇′∞,Φ′∞). Take these modulo the action of the gauge group G of

continuous gauge transformations, which have a limit g∞ = limρ→∞ g(ρ) ∈ G∞.
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2. Fix the representative (∇∞,Φ∞) ∈ [(∇∞,Φ∞)] and consider pairs (A,Φ) asymptotic to

this representative modulo the action of Γ ⊂ G. Where Γ is defined to be those gauge

transformations g ∈ G such that g∞ ∈ Γ∞ and so preserves the asymptotic conditions.

The automorphism group of the boundary data Γ∞ is isomorphic to a subgroup H ⊂ G. An

explicit subgroup can be taken by fixing a point p ∈ P∞ and setting H = C(Φ∞(p)), i.e. the

centralizer. It is also usefull to consider a slightly larger moduli space which fibers over these

ones with fibre Γ∞. Recall that the gauge group G comes equipped with an evaluation map

ev : G → G∞ by taking the limit at infinity. Using the framing 5.2.1, Γ = ev−1(Γ∞) and one can

define G(0) = ker(ev). Then, consider the moduli space of configurations to be those pairs (A,Φ)

which are asymptotic to (∇∞,Φ∞) modulo the action of G(0). Any implementation of this idea

gives a moduli space of configurations, which fibers over the previous ones with fiber H .

Remark 5.2.1. There is also one other way of constructing such a moduli space which comes with

the framing η incorporated in the definition at the expense of considering a slightly larger gauge

group. Consider triples (A,Φ, η) of configurations and a framing η modulo the action of Γ. Here Γ

acts on the framing in a nontrivial way and this is what accounts for increasing the gauge group

from G(0) to Γ.

Example 13. Let G = SU(2), then P∞ is reducible and since ∇∞Φ∞ = 0 so is the connection.

ThenH is either {1} or U(1) standard facts of representation theory give a splitting gP∞
∼= R⊕L2,

where L is a line bundle over Σ. Moreover, if H = U(1), then L must be nontrivial. In fact one

must suppose that is the case, otherwise assuming ∇AΦ ∈ L2 would give via corollary 1.4.11

that ∇AΦ = 0 and the (complex) monopole would be reducible. Then, Γ∞ is the subgroup G∞
consisting on automorphisms of P∞ preserving Φ∞ and the connection∇∞

• If g ∈ Aut(P∞) and g · Φ∞ = Φ∞, then one can write g = eifΦ∞ , for some f ∈
C∞(Σ,R/Z). Moreover, if g is further supposed to preserve the connection then it must be

constant, this gives an isomorphism Γ∞ ∼= S1.

• If ξ ∈ gP∞ and [ξ,Φ∞] = 0, then ξ = fΦ∞ for f ∈ C∞(Σ,R) and if ∇∞ξ = 0 then f

must be constant. This gives an isomorphism γ∞ ∼= R.

Let (∇0,Φ0) be a connection and an Higgs Field on P which as ρ → ∞ converge to the

pullbacks of (∇∞,Φ∞) via the framing η fixed before in 5.2.1. Then, on X\K the adjoint action

of Φ0 gives an endomorphism adΦ0 = [Φ0, ·] ∈ End(gP |X\K) and this defines a splitting

gP |X\K ∼= V ‖ ⊕ V ⊥, (5.2.2)

where V ⊥ = im(adΦ0) and V ‖ = ker(adΦ0). So one can uniquely split sections η ∈ Ωk(X\K, gP )

as η = η‖ + η⊥, for η‖ ∈ Ωk(X\K,V ‖) and η⊥ ∈ Ωk(X\K,V ⊥).

Remark 5.2.2. Recall that the boundary data determine a reduction of P∞ and∇∞ to an H ⊂ G
bundle Q → Σ equipped with an H connection which will also be denoted ∇∞. Then P∞ =
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Q×H G and gP∞ = P∞ ×G,Ad g = Q×H,Ad g. Split g = h⊕m, where h is the Lie algebra of H

which acts via the adjoint action on the complement m. Then, write

gP∞ = Q×H,Ad h⊕Q×H,Ad m

and these are respectively V ‖, V ⊥ in the splitting 5.2.2. Digging a bit further one can let Φ∞ be an

H equivariant map from Q to g, which constant along ∇∞ parallel path. Extend it G equivariantly

to P∞, let p ∈ P∞ and define H = C(Φ∞(p)), i.e. the centralizer of Φ∞(p) = m ∈ g. One can

choose a set of positive roots R+ and a fundamental Weyl chamber so that Φ∞(p) lies in its closure.

Introduce the notation gRα = (gα ⊕ g−α) ∩ g, then

g = (t⊕
⊕

α(m)=0

gRα)⊕
⊕

α(m)6=0

gRα,

with h = t⊕
⊕

α(m)=0 g
R
α and m =

⊕
α(m)6=0 g

R
α.

The rest of this chapter develops a moduli theory for the monopole (resp. complex monopole)

equation. The general setup will be a familiar one in gauge theory, but there are many technicalities

involved. However, at this stage it is already possible to state a result which will be one of the main

ingredients of that larger moduli theory. In this result, the linear theory from the previous section

5.1 is shown to generalize to the nonlinear (complex) monopole equations. Suppose (A0,Φ0)

is a (complex) monopole, i.e. a solution to equations 2.1.1 or 4.1.1 for the 3 dimensional case

or the G2 case respectively and a solution of equations 3.1.1 and 3.1.2 in the Calabi-Yau case.

Let Λ∗g = Λ∗ ⊗ gP and Λ̃g = Λ1 ⊗ gP in 3 dimensions or G2 manifolds, while for Calabi-Yau

manifolds these denote Λ∗g = Λ∗ ⊗ gCP and Λ̃g = (Λ0 ⊗ igP ) ⊕ (Λ1 ⊗ gCP ). Then, in each

of these cases the (complex) monopole equation for the pair (A,Φ) = (A0,Φ0) + (a, φ) with

(a, φ) ∈ Ω0(X,Λ0
g ⊕ Λ1

g) defines a map

mon : Ω0(X,Λ0
g ⊕ Λ1

g)→ Ω0(X,Λ∗g). (5.2.3)

Moreover, it is straightforward to see that this map can be written as

mon(a, φ) = d2(a, φ) + q((a, φ), (a, φ)),

where q(·, ·) is multilinear, so the overall equation has quadratic nonlinearities. Moreover, d2 above

denotes the linearized (monopole) equation as computed in sections 2.1.1, 3.1.2 and 4.1.1 for each

case. To each of these equations one can add the gauge fixing condition d∗1(a, φ) = 0, where

d∗1 : Ω0(X,Λ0
g ⊕Λ1

g)→ Ω0(X,Λ0
g) is also computed in sections 2.1.1, 3.1.2 and 4.1.1 respectively

in 3 dimensions, Calabi-Yau and G2 manifolds. These two can be combined in the gauge fixed

monopole equation for (A,Φ) = (A0,Φ0) + (a, φ)

Mon(a, φ) = mon(a, φ) + d∗1(a, φ), (5.2.4)
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and maps Ω0(X,Λ0
g ⊕ Λ1

g) to itself. The following result can be stated in more generality, but for

concreteness we shall restrict to G = SU(2).

Theorem 5.2.3. Let G = SU(2), p ∈ [n/2, n) and α = −n/p+ 1 6∈ K(D), then the map Mon

defined in equation 5.2.4 gives rise to a nonlinear Fredholm map

Mon : Hp
1,α → Hp

0,α−1.

Proof. Since Mon = mon+ d∗1 = d∗1 ⊕ d2 + q and d∗1 ⊕ d2 = D the linear operator analyzed in

section 5.1 it follows that D : Hp
1,α → Hp

0,α−1 is well defined and Fredholm by the theorem 5.1.18

or 5.1.1.

Next one needs to check that the nonlinear term q(·, ·) : Hp
1,α ×H

p
1,α → Hp

0,α−1 is well defined.

This term is multilinear, i.e. the overall equation has quadratic nonlinearities, and so q((a, φ), (a, φ))

is a sum of the terms [a ∧ a], [a, φ], [φ, φ].

First one proves a particular case, which is when p = n/2, then α = 1−2 = −1. Let ξ, χ ∈ Hn/2
1,−1

be either a or φ. Then χ‖, ξ‖ ∈ Ln/21,−1 and the weighted Sobolev embedding, ([LM85], or Theorem

4.17 in [Mar02]) guarantees that Ln/21,−1 ↪→ Ln0,−1. Moreover χ⊥, ξ⊥ ∈ Ln/21 and it is immediate to

check from the definition of the weighted norms that Ln/21 = L
n/2
0,−2 ∩ L

n/2
1,−1, which once again lies

in Ln0,−1 from the weighted Sobolev embedding. So, one concludes that χ, ξ ∈ Ln0,−1.

Since by hypothesis G = SU(2), [g
‖
P , g

‖
P ] = 0, [g

‖
P , g

⊥
P ] ⊂ g⊥P and [g⊥P , g

⊥
P ] ⊂ g

‖
P . Then

[χ‖, ξ‖] = 0, and

[χ, ξ] = [χ⊥, ξ⊥] + ([χ‖, ξ⊥] + [χ⊥, ξ‖]),

where the first term lies in g
‖
P , while the second and the third lie in g⊥P . So, in order to prove that

[χ, ξ] ∈ Hn/2
0,−2, it is enough to prove that [χ‖, ξ⊥] ∈ Ln/2 and [χ⊥, ξ⊥] ∈ Ln/20,−2 = Ln/2. This is

indeed true, as χ, ξ ∈ Ln and

‖ξχ‖Ln/2 ≤ C‖ξ‖Ln‖χ‖Ln .

The general case for p ∈ [n/2, n) and α = −n/p + 1, follows from applying the multiplication

map in corollary 5.2.8 below and so q((a, φ), (a, φ)) ∈ Hp
0,α−1 and the result follows.

5.2.2 Sobolev Embeddings and Multiplication Maps

Denote by Lpk,α the weighted spaces defined in 5.1.4 using the pair (A0,Φ0) as in the previous

subsection. The moduli theory requires some important properties of these spaces which are

important in handling the nonlinearities. The most relevant of these properties is the one stated in

corollary 5.2.6 below, but its proof will require lemmas 5.2.4, 5.2.5 and 5.2.6.

Lemma 5.2.4. (Weighted Hölder Inequality) Let β, γ ∈ R and 1
r + 1

s = 1
q , then the multiplication

property Lr0,β × Ls0,γ ↪→ Lq0,γ+β holds. In particular, if γ ≤ 0, then Lr0,β × Ls0,γ ↪→ Lq0,β .

Proof. Let f ∈ Lr0,β, g ∈ Ls0,γ , then using the definition of the weighted norms, rearranging the
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exponents and the usual Hölder inequality shows

‖fg‖Lq0,γ+β
= ‖ρ−

n
q
−γ−β

fg‖Lq = ‖
(
ρ−

n
r
−βf

)(
ρ−

n
s
−γg

)
‖Lq

≤ ‖ρ−
n
r
−βf‖Lr‖ρ−

n
s
−γg‖Lq

= ‖f‖Lr0,β‖g‖Ls0,γ .

This shows the first statement, which in the particular case where γ ≤ 0, then Lq0,γ+β ↪→ Lq0,β .

Lemma 5.2.5. Let p2 > p1 and γ2 > γ1, then for all s ∈ [p1, p2] and γ ≥ maxi=1,2{ npi −
n
s + γi},

there is an inclusion Lp1
0,γ1
∩ Lp2

0,γ2
↪→ Ls0,γ .

Proof. First one notices that since p1 < s < p2, then for all g ∈ Lp1 ∩ Lp2 , it holds that

‖g‖Ls ≤ c(‖g‖Lp1 + ‖g‖Lp2 ), for some c > 0. Let f ∈ Ls0,γ , then

‖f‖Ls0,γ = ‖ρ−γ−
n
s f‖Ls ≤ c(‖ρ−γ−

n
s f‖Lp1 + ‖ρ−γ−

n
s f‖Lp2 )

= c(‖f‖Lp1
0,γ+n

s −
n
p1

+ ‖f‖Lp2
0,γ+n

s −
n
p2

).

Since γ ≥ maxi{ npi −
n
s + γi}, one has γ + n

s −
n
pi
≥ γi for i = 1, 2 and so ‖f‖Ls0,γ ≤

c(‖f‖Lp10,γ1

+ ‖f‖Lp20,γ2

).

Lemma 5.2.6. Let β ∈ R, p ∈
[
n
2 , n

]
and k ∈ N1. Then, the following hold

• Lpk =
⋂k
i=0 L

p
i,−n

p
+i

• Lpk+1,β ↪→ Lqk,β , for q = np
n−p .

• Lpk+1,loc ↪→ Ck−1
loc and Lpk+1,β ↪→ Ck−1

β ,

• Suppose ∇∞ is H irreducible, i.e. it induces an irreducible connection on V ⊥. Let ξ ∈
Ω∗(X, gP ) with∇0ξ ∈ Lpk,β , then ξ⊥ ∈ Lpk+1,β+1. In particular if β ≤ 1, then limρ→∞ ξ =

ξ∞ exists and ξ∞ ∈ γ∞.

Proof. The first bullet is an immediate consequence of the definition in equation 5.1.5 of the Lpk,β
norms. The case k = 0 amounts to ‖f‖Lp

0,−n/p
= ‖ρ−n/p+n/pf‖Lp and the general case follows

from an induction argument, where the general step is not more difficult than the case k = 1 and so

the proof sticks to this one. Write for the norm in the right hand side

‖f‖p = ‖f‖p
Lp

0,−n/p
+ ‖f‖p

Lp
1,−n/p+1

= ‖f‖pLp + ‖r−1f‖pLp + ‖∇f‖pLp

= ‖f‖p
Lp1

+ ‖r−1f‖pLp .

Then, one can bound this from above by 2‖f‖p
Lp1

and from below by ‖f‖p
Lp1

and so the two norms

are equivalent.

The next two bullets are particular instances of the standard weighted Sobolev embedding theorems

(Theorem 4.17 in [Mar02]). To apply them one just needs to check that 1 − n
p > −n

q and
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k + 1− n
p ≥ k − 1.

The third statement is a direct consequence of proposition A.0.16 in the Appendix A.

Corollary 5.2.7. In the hypothesis of lemma 5.2.6 and∇∞ beingH-irreducible. Let ξ ∈ Ωk(X, gP )

with ρ∇0ξ ∈ Hp
k,β+1, then ξ⊥ ∈ Lpk+1 and in case β < −1 + 1

p , then limρ→∞ ξ = ξ∞ exists and

ξ∞ ∈ γ∞.

Proof. Since ρ∇0ξ ∈ Hp
k,β+1, one knows ρ∇0ξ

⊥ ∈ Lpk+1 and the same proof as that of the

beginning of proposition A.0.16 shows that ξ⊥ ∈ Lpk+1 and converges to 0 as ρ→∞. The other

component follows from the fact that ρ∇0ξ
‖ ∈ Lpk,β+1 is equivalent to ∇0ξ

‖ ∈ Lpk,β . Then, one

can repeat the final part of the proof of proposition A.0.16 and notice that the argument there using

Hölder’s inequality works for β < −1 + 1
p .

The following is the main result of this subsection and is an application of the previous lemmata.

Corollary 5.2.8. Let G = SU(2) and p ∈ [n/2, n) and α = 1 − n/p, then the Lie bracket [·, ·]
gives rise to a continuous multiplication map

[·, ·] : Hp
1,α ×H

p
1,α ↪→ Hp

0,α−1.

Proof. Let χ, ξ ∈ Hp
1,α and q = np

n−p , then by definition χ‖, ξ‖ ∈ Lp1,α, which using the embedding

in the second bullet of lemma 5.2.6 lies in Lq0,α. In the same way, the definition of the Hp
1,α space

gives χ⊥, ξ⊥ ∈ Lp1 = Lp0,−n/p ∩ L
p
1,−n/p+1 by the first bullet in lemma 5.2.6. Moreover, using the

second bullet in this lemma again one knows that Lp1,−n/p+1 ⊂ L
q
0,−n/p+1. In conclusion,

χ‖, ξ‖ ∈ Lp0,α ∩ L
q
0,α , χ

⊥, ξ⊥ ∈ Lp0,−n/p ∩ L
q
0,−n/p+1.

For G = SU(2), [g
‖
P , g

‖
P ] = 0, [g

‖
P , g

⊥
P ] ⊂ g⊥P and [g⊥P , g

⊥
P ] ⊂ g

‖
P . So the term [χ‖, ξ‖] vanishes

and [χ, ξ] = [χ⊥, ξ⊥] + ([χ‖, ξ⊥] + [χ⊥, ξ‖]), where the first term lies in g
‖
P and both the second

and the third lie in g⊥P . So it is enough to show that [χ⊥, ξ⊥] ∈ Lp0,α−1 and [χ‖, ξ⊥], [χ⊥, ξ‖] ∈
Lp = Lp0,−n/p.

First one analyses the term [χ⊥, ξ⊥], by using twice lemma 5.2.4 in the form Lp0,−n/p × L
p
0,−n/p ⊂

L
p/2
0,−2n/p and Lq0,−n/p+1 × L

q
0,−n/p+1 ⊂ L

q/2
0,−2n/p+2. Then, [χ⊥, ξ⊥] ∈ Lp/20,−2n/p ∩ L

q/2
0,−2n/p+2

and using lemma 5.2.5 with p1 = p/2, γ1 = −2n/p, p2 = q/2, γ2 = −2n/p+ 2 and s = p gives

that [χ⊥, ξ⊥] ∈ Lp0,α−1 for all α such that

α− 1 ≥ max{2n

p
− n

p
− 2n

p
,
2n

q
− n

p
− 2n

p
+ 2} = −n

p
.

Next, one turns to the other terms and apply again lemma 5.2.4 twice, now in the form Lq0,α ×

Lq0,−n/p+1 ⊂ L
q/2
0,α−n/p+1 andLq0,α×L

p
0,−n/p ⊂ L

np
2n−p
0,α−n/p. Then [χ‖, ξ⊥], [χ⊥, ξ‖] ∈ Lq/20,α−n/p+1∩

L
np

2n−p
0,α−n/p and now use lemma 5.2.5 with p1 = np/(2n − p), γ1 = α − n/p, p2 = q/2, γ2 =
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α− n/p+ 1 and s = p, which gives that [χ‖, ξ⊥], [χ⊥, ξ‖] ∈ Lp = Lp0,−n/p for all α such that

max{2n− p
np

− n

p
+ α− n

p
,
2n

q
− n

p
+ α− n

p
+ 1} = −n

p
≤ −n

q
.

Since p ≥ n/2 this is equivalent to α ≤ −n/p+1. So in the end the result holds for α = −n/p+1.

One must remark that the condition p ≥ n/2 is required for the Sobolev embeddings in lemma

5.2.6 to hold and the condition that p < n is required in order for p1 = np/(2n − p) < p and

lemma 5.2.5 to apply in the second case above.

5.2.3 Moduli of Configurations

This subsection gives a first step towards implementing the ideas in subsection 5.2.1 using the Hp
k,α

spaces from definition 5.1.16. Namely it defines and constructs moduli spaces of configurations

(A,Φ). The upshot is theorem 5.2.14 which gives the moduli space of configurations the structure

of a smooth Banach manifold. Then the boundary conditions defined by a finite mass monopole are

preserved in

Apk,α = {∇A = ∇0 + a | a ∈ Hp
k,α} , H

p
k,α = {Φ = Φ0 + φ | φ ∈ Hp

k,α}.

Let Cpk,α = Apk,α ×H
p
k,α denote the space of configurations. The topology induced in these spaces

will in principle depend on the background configuration (∇0,Φ0) and on p, k, α. Recall the gauge

group G of continuous gauge transformations with a limit in G∞ (the gauge transformations which

preserve the boundary data (A∞,Φ∞)). Explicitly expanding around the background configuration

(∇0,Φ0) a gauge transformation g acts on a configuration (∇0 + a,Φ0 + φ) via

(
∇0 + g∇0g

−1 + gag−1,Φ0 + (gΦ0g
−1 − Φ0) + gφg−1

)
. (5.2.5)

Two configurations in Cpk,α shall be considered equivalent if related by a continuous g ∈ G∩Lpk+1,loc.

To view this equivalence relation as generated by the action of a Banach Lie Group, let

Gpk,α = {g ∈ Lpk+1,loc | ρ∇0g ∈ Hp
k,α+1} , L(G)pk,α = {ξ ∈ Ω0(X, gP ) | ρ∇0ξ ∈ Hp

k,α+1}.

The pointwise exponential defines a map exp : L(G)pk,α → G
p
k,α. For ε > 0 define

Vε = {ξ ∈ L(G)pk,α | ‖ρ∇0ξ‖Hp
k,α+1

≤ ε},

and let the topology on Gpk,α be generated by the image under the exponential of the open sets

Vε ⊂ L(G)pk,α together with their translations.

Proposition 5.2.9. Let p ∈ [n2 , n), α = −n/p+ 1, then the following hold

1. With the topology defined above Gp1,α is a Banach Lie group with Lie algebra L(G)p1,α.

2. If one further supposes that p < n+1
2 , then there is a surjective evaluation homomorphism

ev : Gp1,α → Γ∞, with derivative dev : L(G)p1,α → γ∞.
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3. Gp1,α acts smoothly in Cp1,α.

Proof. Start by noticing that if g ∈ Gp1,α, then g ∈ Lp2,loc and since one is working in a range where

p ≥ n/2, the third bullet in lemma 5.2.6 applies and g ∈ C0
loc, i.e. these gauge transformations are

continuous.

1. First prove that indeed pointwise multiplication and inversion are well defined on Gp1,α. Then

by construction of the topology above it will be a Lie group whose Lie Algebra is L(G)p1,α.

(a) To prove multiplication is well defined let g, h ∈ Gp1,α, so ρ∇0g, ρ∇0h ∈ Hp
1,α+1 and

one needs to show that

ρ∇0(gh) = ρ(∇0g)h+ ρg∇0h ∈ Hp
1,α+1,

for all l ≤ k. The gauge transformations are continuous and ρ∇0h ∈ Hp
1,α+1, so it

follows that ρg∇0h ∈ Hp
1,α+1 and the same applies for ρ(∇0g)h. Alternatively one

uses the Sobolev embedding in the second bullet of lemma 5.2.6, which gives

ρ∇0h
‖, ρ∇0g

‖ ∈ Lp1,α+1 ⊂ L
q
0,α+1 , ρ∇0h

⊥, ρ∇0g
⊥ ∈ Lp1,−n/p ⊂ L

q
0,−n/p,

i.e. since α = 1− n/p, ρ∇0h, ρ∇0g ∈ Lp0,−n/p+1 ∩L
q
0,−n/p. Then, the multiplication

map in lemma 5.2.4 and lemma 5.2.5 do guarantee that ρ∇0g∇0h ∈ Lp ⊂ Hp
0,α.

(b) To prove g−1 ∈ Gp1,α notice that ∇0g
−1 = −g−1(∇0g)g−1. Then proceeding as

before, separating terms and using g, g−1 ∈ C0
loc and lemmas 5.2.4 and 5.2.5 one shows

ρ∇0g
−1 ∈ Hp

1,α+1.

2. Let g ∈ Gp1,α, then ρ∇0g ∈ Hp
1,α+1, i.e. (∇0g)‖ ∈ Lp1,α = Lp0,1−n/p and (∇0g)⊥ ∈

Lp0,−n/p−1. Next, using the arguments in the proof of proposition A.0.16 one can show that

(∇0g)⊥ → 0 always, but this does not hold for the other component. However, the last

part of the argument in proposition A.0.16 can be used and is repeated here. Notice that

∇0g ∈ Lp0,−n/p+1, then Hölder’s inequality gives

∫ +∞

1

∣∣∂g
∂ρ

∣∣ ≤ ∫ +∞

1
|ρn/p−1∇0g|p

∫ +∞

1
ρ

p
p−1

(1−n/p)
.

The first integral is bounded above by ‖∇0g‖pLp
0,n/p+1

and the second is finite if and only

if p < n+1
2 . Hence in this case this proves there is g∞ ∈ G∞ such that g → g∞ and

∇∞g∞ = 0 (i.e. g∞ ∈ Γ∞). Using a bump function it is straightforward to check that the

evaluation maps given by taking the limit are surjective.

3. To check the action of Gp1,α on Cp1,α is well defined, one needs to prove that g∇0g
−1 + gag−1

and (gΦ0g
−1 − Φ0) + gφg−1 are in Hp

1,α. For the terms gag−1, gφg−1 and g∇0g
−1 =

−(∇0g)g−1 notice that (a, φ) ∈ Hp
1,α, g ∈ C0 as it is in Lp2,loc and ρ∇0g ∈ Hp

1,α+1. Then,

repeating the arguments in the proof of the first item proves that these are Hp
1,α. One is now
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left with analyzing (gΦ0g
−1−Φ0), for which one requires again the second item, namely that

if ρ∇0g, ρ∇0ξ ∈ Hp
1,α+1, then g, ξ converge to limits g∞ ∈ Γ∞ and ξ∞ ∈ γ∞. Moreover,

using the decomposition of gP in X\K one has ξ⊥ ∈ Lp2 by corollary 5.2.7. Then, let g = eξ

and so

gΦ0g
−1 − Φ0 = [ξ,Φ0] +

1

2!
[ξ, [ξ,Φ0]] + ...

and the multiplication maps in lemma 5.2.6, used in the same way as before, show that the

higher order terms are in Hp
1,α if and only if the first order one [ξ,Φ0] ∈ Hp

1,α. Away from K,

one can write [ξ,Φ0] = [ξ⊥,Φ0] ∈ V ⊥ and since Φ0 is smooth and bounded and ξ⊥ ∈ Lp2 it

is indeed true that [ξ,Φ0] ∈ Hp
1,α. The convergence of the series above is an immediate from

the fact that |[ξ,Φ0]| ≤ |ξ⊥| which converges to 0 as ρ→∞. Then, this must bounded in

C0(X\K) and the term 1
k! in the series guarantees the convergence.

To prove the converse result namely that if (A,Φ) and g · (A,Φ) both in Cpk,α are related by

an Lpk+1,loc gauge transformation g = eξ, then actually eξ ∈ Gpk,α one rewinds the previous

arguments. First, the fact that [ξ,Φ] = [ξ⊥,Φ0] + ... ∈ Lp2 ⊂ Lpk implies ρ∇0ξ
⊥ ∈ Lpk.

Second, the fact that g−1∇0g = ∇0ξ ∈ Hp
k,α implies that ρ∇0ξ

‖ ∈ Lp1,α+1. Put these two

together to conclude that ρ∇0ξ ∈ Hp
1,α+1 and so g ∈ Gp1,α.

Due to the second item in this proposition, one can use the Lie group homomorphism ev to

define

Gpk,α(0) = ker(ev), (5.2.6)

as a Banach Lie subgroup of Gpk,α. This consists of gauge transformations which converge to the

identity as ρ → ∞. For p ∈ [n/2, n) and α = 1 − n/p its Lie Algebra is the Lie subalgebra of

L(Gpk,α) consisting of those sections which decay, i.e Lie(Gpk,α(0)) = Hp
k+1,α+1(X, gP ).

Proposition 5.2.10. Let β ∈ R and (∇A,Φ) ∈ Cpk,β and d∗A the formal L2 adjoint of the operator

dA and for all β extend dA, d∗A to operators

dA, d
∗,α
A : Lpk+1,β+1(X, gP )→ Lpk,β(X,T ∗X ⊗ gP ).

Then, the following holds

1. For β 6= −1, there is a constant c > 0 and an inequality ‖dAη‖Lp0,β ≥ c‖η‖Lp0,β+1
, and so a

decomposition

Lpk,β(X,T ∗X ⊗ gP ) = ker(d∗A) ∩ Lpk,β ⊕ im(∇A). (5.2.7)

2. On X\K, there is a constant c > 0 and a pointwise inequality |[Φ, η]| ≥ c|η⊥|.

Proof. For all p, k, β the map ρ−β : Lpk,β → Lpk,0 is a Banach Space isomorphism. Conjugation
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with it gives then an equivalence of linear operators

Lpk+1,β+1

dA−→ Lpk,β
↓ ↓

Lpk+1,0

dαA−→ Lpk,−1

, (5.2.8)

with dβA = ρ−(α+1)dAρ
α+1 = (α+ 1)dρρ + dA. In what follows the proof will restrict to the case

p = 2 for simplicity as in this case it is easy to complete squares. As K is compact and dA is

irreducible on K, one can combine Kato’s and Poincaré’s inequalities to achieve ‖dAf‖L2(K) ≥
c1‖f‖L2(K), for some c1 > 0 and all f compactly supported in the interior of K. Moreover, as

ρ is bounded on K, this holds equally well for dβA = dA. Then one needs to prove a similar

inequality for a section η which is supported on the conical end ρ−1[R,∞) = X\K one writes

η = η‖+η⊥ ∈ L2
1,0 and splitting dαAη into orthogonal components to compute ‖dβAη‖2L2

0,−1(X\K)
=∫ +∞

R
dρ
ρ

∫
Σ |ρd

β
Aη|2dvolΣ, gives

‖dβAη‖
2
L2

0,−1(X\K) =

∫ ∞
R

dρ

∫
Σ

(
ρ
∣∣∂η
∂ρ

+
β + 1

ρ
η
∣∣2 + ρ|∇0η

‖|2 + ρ|∇0η
⊥|2
)
dvolΣ

In computing a lower bound for this one can ignore the term ρ|∇0η
‖|2 and the term ρ|∂η∂ρ |

2 which

appears when one expands the square, as both these two terms are positive. Also, when one expand

the square there is a mixed term appearing, however as this is 2(β + 1)〈η, ∂η∂ρ 〉 = (β + 1)∂|η|
2

∂ρ and

since η is compactly supported on X\K, one can integrate by parts and this term vanishes. One is

left with

‖dβAη‖
2
L2

0,−1(X\K) =

∫ ∞
1

dρ

∫
Σ

(
(β + 1)2

ρ
|η|2 + ρ|∇0η

⊥|2
)
dvolΣ.

To handle this let Σρ denote ϕ({ρ} × Σ), then the irreducibility of the connection ∇∞ on V ⊥,

gives a Poincaré type inequality, which after scaling is ‖∇∞η⊥‖2L2(Σρ) ≥ c2ρ
−2‖η⊥‖2L2(Σρ) for

some constant c2 > 0. Moreover, as the connection∇0 is asymptotic to∇∞ one can assume the

same inequality holds for∇0 for very big ρ and inserting it above gives

‖dβAη‖
2
L2

0,−1(X\K) ≥
∫ ∞

1
dρ

∫
Σ

(
(β + 1)2

ρ
|η‖|2 +

c2 + (β + 1)2

ρ
|η⊥|2

)
dvolΣ

≥ (1 + β)2‖η‖2L2
0,0(X\K).

Combining this with the similar inequality one has on K, gives the inequality in the first item

of the statement. It is a corollary of such a Poincaré type inequality that dβA has closed image

and the decomposition in the theorem follows. Recall that the operator dβA above is equivalent to

dA : L2
1,β+1 → L2

0,β , so this one has closed image. Then the same is true for dA : Lpk+1,β+1 →
Lpk,β , which gives the decomposition 5.2.7. Using the weighted inner product 〈·, ·〉L2

0,β
one can

identify a copy of cokernel of dA with the orthogonal complement, i.e. the kernel of the adjoint

d∗,βA = ρ2(β+1)+nd∗Aρ
−2β−n = (2β + n)ιρ ∂

∂ρ
+ d∗A.
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Regarding the second item, since Φ0 is asymptotic to Φ∞, outside K there is the decomposition

η = η‖ + η⊥ and by definition [Φ, η‖] = 0 while it is pointwise bounded by below on the V ⊥

component. Since the cross sections are compact one can find a constant c > 0 which always

works.

Remark 5.2.11. The proof above gives a bound ‖dAη‖Lp0,β ≥ c‖η‖Lp0,β+1
with an explicit constant

c = |1 + β|. For β = −n/2 this gives back the well known Hardy inequality

‖dAη‖2L2 ≥
(
n− 2

2

)2

‖ρ−1η‖2L2 .

Actually this gives the best possible constant on any asymptotically Euclidean manifold.

Corollary 5.2.12. For β 6= −1, the operator

L : Hp
k+1,β+1(X, gP ) → Hp

k,β(X, (Λ0 ⊕ Λ1)⊗ gP ). (5.2.9)

ξ 7→ (−∇Aξ, [ξ,Φ]), (5.2.10)

has closed image. Using the notation Hp
k,β for the right hand side in 5.2.9, there is an orthogonal

decomposition

Hp
k,β = ker(L∗)⊕ im(L). (5.2.11)

Where L∗1(a, φ) = −∇∗Aa+ [Φ, φ].

Proof. This proof copies the one above and goes by using the inequalities in the first and second

item of the previous proposition 5.2.10, as ‖L1(ξ)‖H2
0,β

= ‖dAξ‖2H2
0,β

+ ‖[Φ, ξ]‖2
H2

0,α
. This shows

that L1 has closed image and the result follows as in the proof of the theorem above.

Definition 5.2.13. A configuration (A,Φ) is said to be irreducible if ker(L) = 0.

Theorem 5.2.14. Let p ∈ [n/2, n) and α = 1 − n/p. There are Banach manifolds B̃p1,α =

Cp1,α/G
p
1,α(0) and Bp1,α = Cp1,α/G

p
1,α, such that

Bp1,α = B̃p1,α/Γ∞.

Moreover, the subset obtained as the image of the irreducible configurations B∗p1,α ⊂ B
p
1,α is a

smooth Banach manifold.

Proof. To prove that B̃p1,α = Cp1,α/G
p
1,α(0) is a Banach manifold one constructs local slices to the

action of Gp1,α(0) using the Inverse Function Theorem. Then these slices can be used as charts for

B̃p1,α. Let ε > 0 and define the slice candidates as

T(∇A,Φ),ε = {(a, φ) ∈ Hp
1,α | ∇

∗
Aa− [Φ0, φ] = 0 , ‖(a, φ)‖Hp

1,α
< ε}.

Then, in order to prove that these are actual slices one needs to show that the map

h : T(∇A,Φ),ε × G
p
1,α(0)→ Cp1,α,
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which for g = eξ sufficiently close to the identity, sends ((a, φ), g) to the gauge equivalent

configuration g · (∇A+a,Φ+φ) is an isomorphism onto an open set around (A,Φ). This is proved

using the Inverse Function Theorem, so one needs to check that the derivative

dh = id⊕ L :
(

ker(L∗) ∩Hp
1,α

)
⊕Hp

1,α → Hp
1,α

((a, φ), ξ) 7→ (−∇Aξ + a, [ξ,Φ] + φ),

is an isomorphism. But this is a direct consequence of corollary 5.2.12. There is still the extra action

of Γ∞ on Cp1,α and one can quotient out by its action to obtain the full quotient Bp1,α = Cp1,α/G
p
1,α.

Moreover, away from reducible configurations the action of Gp1,α is free and B̃∗p1,α is smooth.

5.2.4 Moduli of Monopoles

This subsection uses p ∈ [n/2, n) and α = 1−n/p 6∈ K(D), then theorem 5.2.14 holds. Moreover,

that statement can also be made in a more general setup where one need not restrict to the case

G = SU(2). The goal is to show that the moduli space of monopoles either in the G2 case, in

the Calabi-Yau case or in a 3 manifold can always be obtained as a quotient of the zero set of a

Γ∞-invariant Fredholm section of a bundle Fp1,α, where Fp1,α is the bundle over B̃p1,α

Fp1,α = Cp1,α ×Gp1,α(0) H
p
0,α−1(X,Λ∗X ⊗ gP ). (5.2.12)

Notice that sections of this bundle are in one-to-one correspondence with Gp1,α(0)-equivariant

maps from Cp1,α → Hp
0,α−1(X,Λ∗X ⊗ gP ). Moreover, in each case (3 dimensions, Calabi-Yau

and G2 manifolds) the map mon defined in equation 5.2.3 is invariant by the action of the gauge

transformations Gp1,α ⊃ G
p
1,α(0). For this p, α theorem 5.2.3 holds and proves

Theorem 5.2.15. Let G = SU(2) and p ∈ [n/2, n) such that α = 1− n/p 6∈ K(D). Then, there

is a Γ∞-invariant Fredholm section mon of the bundle Fp1,α → B̃
p
1,α such that the moduli space of

(complex) monopoles is mon−1(0)/Γ∞ ⊂ Bp1,α.

Proof. Due to theorem 5.2.3, the monopole equation can be written as the zero set of mon, which

due to the gauge invariance is a section of Fp1,α → B̃
p
1,α. Locally one can define s−1(0) inside

ker(L∗) ⊂ Hp
k,α by using the local slices for Bpk,α constructed in the proof of theorem 5.2.14 and

intersecting such configurations with the ones satisfying the monopole equation. This is precisely

the same as the zero set of the map Mon = mon+ d2 to which theorem 5.2.3 refers to. Recall that

linearization of the (complex) monopole equation gives d2 in each case as computed in sections

2.1.1, 3.1.2 and 3.1.2. Then coupling this with d∗1 = L∗ the operatorD = d2⊕d∗1 : Hp
1,α → Hp

0,α−1

which is the linearization of Mon is shown to be Fredholm in theorem 5.1.18 in section 5.1.



Appendix A

Decay Estimates

Let (Xn, g) be an AC manifold of dimension n > 2 with asymptotic cone C(Σn−1) as in definition

1.1.5 and V → X a vector bundle equipped with a connection ∇. Suppose these have fixed

asymptotics, i.e outside a compact set K ⊂ X , V |X\K ∼= ϕ∗π∗V∞ and ∇ = ϕ∗π∗∇∞ + a with

|∇ja| = O(ρ−1−j−ε) for all j ∈ N0 and some ε > 0.

Proposition A.0.16. Let p ≥ n/2, β ≤ −1 and ξ ∈ Ω0(X,V ) with∇ξ ∈ Lp1,β . Then limρ→∞ ξ(ρ)

exists and is equal to a∇∞ parallel and continuous section ξ∞ of V∞.

Proof. Let V ‖∞ ⊂ V∞ be a maximal vector subbundle, generated by the ∇∞ parallel sections, i.e.

there is l ∈ N0 which is maximal such that there is an isomorphism (V∞,∇∞) ∼= (Rl⊕V ⊥∞ , d⊕∇⊥∞)

of vector bundles with connection. Write V∞ = V
‖
∞ ⊕ V ⊥∞ , then ∇⊥∞ and so∇∞ is irreducible on

V ⊥∞ . Using the fixed asymptotic behavior of (V,∇) one can suppose a similar decomposition holds

for V and from now on the notation is according to this. So on X\K one writes

∇ξ =
∂ξ‖

∂ρ
⊗ dρ+∇ξ‖ +

∂ξ⊥

∂ρ
⊗ dρ+∇ξ⊥,

and as the summands are linearly independent as sections of Λ1 ⊗ V , each of them has its norm

bounded by that of ∇ξ. Since ∇ is irreducible on the V ⊥ component, there is a Poincaré type

inequality on the level set Σ1 = ρ−1(1) of ρ, which can be written as ‖ξ⊥‖Lp(Σ1) ≤ c‖∇ξ⊥‖Lp(Σ1),

for some c > 0. Scaling this inequality gives

‖ξ⊥‖Lp(Σr) ≤ cr‖∇ξ
⊥‖Lp(Σr) ≤ cr‖∇ξ‖Lp(Σr),

on each Σr = ρ−1(r). This together with the hypothesis that∇ξ ∈ Lpk,β shows that

∫ +∞

1
r−(β+1)p‖ξ⊥‖pLp(Σr)

dr

rn
≤
∫ +∞

1
cr−βp‖∇0ξ‖pLp(Σr)

dr

rn
<∞.

Scaling the metric on (1,+∞)r × Σ to the cylindrical metric r−2g = dt2 + gΣ, where t = log(r).

This implies that as t→∞, all three e−tp(β+1)ξ⊥, e−tp(β+1)∇ξ⊥ and e−tp(β+1)∇∇ξ⊥ converge

in the Lp to zero, over the intervals (t, t+ 1)× Σ, equipped with the cylindrical metric dt2 + gΣ.
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Since −(β + 1) > 0, one concludes that as t→∞, ξ converges to zero in Lp2 over these intervals

equipped with the fixed cylindrical metric. Using, the Sobolev embedding Lp2 ↪→ C0, which holds

for p ≥ n/2, one concludes that ξ⊥ converges uniformly to 0.

For the other component, i.e. ξ‖ one has |∂ξ
‖

∂ρ | ≤ |∇ξ| and using this together with the Hölder

inequality into ∫ +∞

1

∣∣∣∂ξ‖
∂ρ

∣∣∣dρ ≤ ∫ +∞

1
ρ−βp|∇ξ|pdρ

∫ +∞

1
ρβp

′
dρ,

where p′ = p/(p− 1) is the conjugate exponent. The first integral is bounded above by ‖∇ξ‖p
Lp0,β

.

The second one is
∫ +∞

1 ρ
βp
p−1dρ and since β ≤ −1 < 1/p − 1 = (1 − p)/p one concludes this

integral is finite. It follows that there is a limit ξ∞ to which ξ‖ converges.

Proposition A.0.17. Let k > n
2 and ξ ∈ Ω0(X,V ) with ρj−1∇jξ ∈ L2 for all 1 ≤ j ≤ k. Then ξ

converges to a ∇∞ parallel section ξ∞ of V .

Proof. The same proof as above works by replacing the Sobolev embedding Lp2 ↪→ C0 over Σn−1

by the Sobolev embedding L2
k ↪→ C0 which holds for k > n

2 .

The following propositions and their proofs have been explained to me by Mark Stern. They

can be used to estimate the rate of decay of sections in the kernel of some elliptic operators.

Proposition A.0.18. Let Xn be an AC manifold with n > 2 and D an operator acting on sections

of a vector bundle V equipped with a connection ∇. Suppose D satisfies a Weitzenböck type

formula

D∗D = ∇∗∇+W,

with W = O(ρ−2−2δ) for some δ > 0. Then if f ∈ ker(D) ∩ L2 it is smooth and ρ
n
2
−2−εf ∈ L2,

for all ε > 0.

Proof. Let L > 0 be large and to be fixed at the of the proof, R > L and ψ a function smoothly

interpolating between ρβ for ρ ≤ R and (R + 1)β for ρ ≥ R + 1. The goal is to show it is

possible to obtain an R independent bound on ‖ρ−1ψf‖L2(ρ−1(L,+∞)) for all f ∈ ker(D) ∩ L2

and β < n−2
2 .

Since ψ is bounded and f ∈ L2 we have ψf ∈ L2 and one can compute

〈D∗Df,ψ2f〉L2 = 〈∇∗∇f +W (f), ψ2f〉L2

= ‖ψ∇f‖L2 + 2〈ψ∇f, dψ ⊗ f〉L2 + 〈W (f), ψ2f〉L2 .

Using the identity

‖ψ∇f‖2L2 + 2〈ψ∇f, dψ ⊗ f〉L2 = ‖∇(ψf)‖2L2 − ‖dψ ⊗ f‖2L2 ,

to replace in the expression 0 = 〈D∗Df,ψ2f〉L2 , for f ∈ ker(D∗D), gives

0 = ‖∇(ψf)‖2L2 − ‖dψ ⊗ f‖2L2 + 〈W (f), ψ2f〉L2 .
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Now, pass the last term to the left hand side and use the hypothesis that W = O(ρ−2−2δ). Then,

there is a constant c > 0 independent of f and R, such that ‖∇(ψf)‖2L2 − ‖dψ ⊗ f‖2L2 ≤
‖ρ−1−δψf‖2L2 . Nest we split the integration into the regions ρ−1[0, L] and ρ−1(L,+∞), then we

can write

‖∇(ψf)‖2L2(L,+∞) − ‖dψ ⊗ f‖
2
L2(L,+∞) ≤ C(L) +

1

L2δ
‖ρ−1−δψf‖2L2(L,+∞),(A.0.1)

where C(L) > 0 is some constant independent of R. Now one can use the Hardy type inequality

‖∇(ψf)‖L2(L,+∞) ≥ n−2
2 ‖ρ

−1ψf‖L2(L,+∞) + 1
Lδ′
‖ρ−1ψf‖L2(L,+∞), for some δ′ > 0. Which,

together with the fact that |dψ| ≤ |β|ρ−1ψ transform the inequality A.0.1 above into((
n− 2

2

)2

− β2 − 1

L2δ
− 1

Lδ′

)
‖ρ−1ψf‖2L2(L,+∞) ≤ C(L).

Now, notice that for all β < n
2 − 1 it is possible to chose L sufficiently large so that the left hand

side is greater than zero. Moreover since C(L) does not depend on R, the inequality above holds

for all R > L giving the R independent bound we were looking for.

Remark A.0.19. The decay estimates from the previous proposition are optimal in the case where

the cross section is a sphere.

Similar techniques to those employed in the proof of proposition A.0.18 show

Proposition A.0.20. Let Xn, n > 2 be an asymptotically conical manifold and D an operator

acting on sections of a vector bundle V equipped with a connection ∇. Suppose D satisfies a

Weitzenböck type formula

D∗D = ∇∗∇+W + q∗q,

with W = O(ρ−δ) for some δ > 0 and |q(f)|2 ≥ c2|f |2 for c > 0 and all f supported outside a

compact set K ⊂ X . Then if f ∈ L2, in fact e(c−ε)ρf ∈ L2, for all ε > 0.
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Appendix B

Homogeneous Bundles and Invariant
Connections

This section contains standard material on bundles over homogeneous spaces and Wang’s theorem

classifying invariant connections on these, the main reference is [KN63].

Let K be a connected Lie group, H ⊂ K a normal subgroup, then K acts transitively on the

homogeneous space X = K/H with isotropy H . Denote by h ⊂ k the Lie algebras of H and

K respectively and suppose there is an H − Ad complement m to h in k, i.e. k = h ⊕ m such

that Adh(m) ⊆ m for all h ∈ H . It is a standard result that there is a one-to-one correspondence

between K-invariant metrics on X and metrics on m invariant under the adjoint H action.

Let π : P → X be a principal G-bundle. As usual K acts on the left on X and G on the right

on P . The bundle P is said to be Homogeneous if there is a lift of the left action of K on X to the

total space of P which commutes with the right G action on P . Suppose such a lift is given and let

H be the isotropy subgroup at x ∈ X , then it acts on the fibre π−1(x). As this action commutes

with the transitive right G action and gives rise to the isotropy homomorphism λ : H → G λ,

which can be used to construct back the bundle P via P = K ×(H,λ) G.

Let (V, η) be a G representation, where V is a vector space and η : G → GL(V ), construct the

associated bundle E = P ×G,η V with fibre V . The lift of the K action to P naturally gives a K

action on E and there is an isomorphism of homogeneous bundles

E ∼= K ×H,η◦λ V. (B.0.1)

A section sE ∈ Γ(E) is said to be an invariant section under the K action on E if once regarded

as an H-equivariant map sE : K → V it is actually constant. Hence, η ◦ λ : H → GL(V ) can

be used to decompose V into irreducibles and the H-equivariant condition restricts sE to take

values in the trivial components of V . A slight modification of the above paragraph in order to

obtain invariant section of more general bundles can be stated. In particular, gauge transformations

can be regarded as sections of the bundle c(P ) = P ×c,G G, where c(g1)g2 = g1g2g
−1
1 is the

action by conjugation. And under the isomorphism c(P ) ∼= K ×c◦λ,H G the K-invariant Gauge

transformations correspond to those constant g ∈ Ω0(K,G) with values in the subgroup of G

153
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centralized by λ(H).

One turns now to the definition of invariant connections on the principal bundle P = K ×H,λ G.

These are given by a left invariant connection 1 form A ∈ Ω1(K, g) and classified by Wang’s

theorem. The reductive decomposition k = m ⊕ h equips the bundle K → X = K/H with a

K-invariant connection whose horizontal spaces are the left translates of m. This is known as the

canonical invariant connection and it’s connection 1 form is the left invariant translate of A = πh,

where πh is the projection m⊕ h→ h. One can now state Wang’s theorem (see [KN63] volume II.,

theorem 11.5).

Theorem B.0.21. (Wang [Wan58]) Let P = K ×H,λ G be a principal homogeneous G-bundle.

Then K-invariant connections A on P are in one to one correspondence with morphisms of H

representations

Λ : (m,Ad)→ (g,Ad ◦ λ). (B.0.2)

The upshot is that the left invariant 1-form A at the identity 1 ∈ K is given by dλ⊕ Λ : k =

h ⊕ m → g. Moreover, the H-equivariant condition implies that the component Λ : m → g is a

morphism of H representations. In this case the canonical invariant connection is given by taking

Λ = 0, so that A = dλ ◦ πh.



Appendix C

Appendix to Monopoles on T ∗S3

This is an appendix to section 3.3. It will be used to study the function h(ρ) and the conditions that

ensure a given connection and Higgs field to extend over the zero section.

C.1 The function h(ρ).

Studying the function h(ρ) is a necessary step in order to use the results of chapter 2 in order to

solve the ODE’s in lemma 3.3.25 to which the problem was reduced to at the end of section 3.3.5.

One starts with some preliminary explicit formulas. In terms of r

F ′(r2) =

(
3

2

) 1
3 ε−

2
3√

r4

ε4
− 1

k
1
3

(
r2

ε2

)
, G(r) =

(
3ε4

24

) 1
3

k
1
3

(
r2

ε2

)
. (C.1.1)

where k : (1,∞)→ R is the function defined by k(x) = x
√
x2 − 1− log(

√
x2 − 1 +x). To write

ρ in terms of r and using this function, insert C.1.1 into equation 3.3.13, one has

ρ(r) =

(
2

3ε4

) 1
3
∫ r

ε
lk−

1
3

(
l2

ε2

)
dl =

(
ε2

12

) 1
3
∫ r2

ε2

1
k−

1
3 (l) dl. (C.1.2)

In order to see how the function h2(ρ) = 1
ε2
R+R−G in terms r, it is useful to use k

h2(ρ(r)) =

(
3ε4

27

) 1
3

√
r4

ε4
− 1k

1
3

(
r2

ε2

)
. (C.1.3)

Lemma C.1.1. The function h(ρ) behaves for ρ� 1 as h(ρ) = ρ+O(ρ3) and for ρ� 1 one has

h(ρ) = O(ρ5/2).

Proof. Regarding the function k : (1,∞)→ R, for x close to 1 one has the following expansions

in terms of
√
x− 1

k
1
3 (x) =

2
5
6

3
1
3

√
x− 1 +

(x− 1)3/2

10(2)
1
6 (3)

1
3

, k−
1
3 (x) =

3
1
3

2
5
6

1√
x− 1

− 3
1
3

20(2)
5
6

√
x− 1 + ...
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Inserting these expressions on h2 and ρ, one has that for ρ� 1

ρ(r) =
ε

2
3

√
2

(√
r2

ε2
− 1− 1

60

(
r2

ε2
− 1

) 3
2

+ ...

)

h2(r) =
ε

4
3

2

((
r2

ε2
− 1

)
+

1

20

(
r2

ε2
− 1

)2

+ ...

)
,

hence, for small ρ, h(ρ) ∼ ρ+O(ρ3). To get the behavior for large ρ, it is convenient to introduce

one further coordinate given by x = cosh(t) for t ∈ (0,∞) since x ∈ (1,∞). Inverting this gives

t = log(
√
x2 − 1 + x) and replacing it on k shows that h(ρ(t)) ∼ ε2/3e

t
2 e

t
3 = ε2/3e

5t
6 , while

ρ(t) ∼ ε2/3
∫
ete−

2t
3 = ε2/3e

t
3 and the result follows.

C.2 Extending the Connection

Studying the conditions that ensure a given connection and Higgs field to extend over the zero

section is a necessary step for the proof of the main theorem 3.3.1, which appears at the end of

3.3.5. These conditions give rise to initial conditions at ρ = 0 (the zero section) for the ODE’s.

These are the initial conditions that where stated in the hypothesis of lemma 3.3.25, which reduces

the problem to that of solving the ODE’s analyzed in the first part of chapter 2.

It follows from formula 3.3.12 for Stenzel’s metric that the 1-forms defined by

ω1 =

√
2
R+R−
r

dG
dr
θ1 , ω2,3 =

√
R+

R−
Gθ2,3 , ω4,5 =

√
R−
R+
Gθ4,5,

have constant norm equal to 1 and so are bounded. For a connection to extend it is a necessary

condition that the curvature remains bounded.

Lemma C.2.1. Let l = 1 and A an invariant connection parametrized by the fields Ai. Let the

Bi’s be the rescaled fields introduced in the statement of proposition 3.3.22. Fix a gauge such that

B2 = 0 and suppose as well that B5 = 0. Then, the curvature of the invariant connection can be

written in this frame as

FA =
(
I4ω

23 + I4ω
45 + I1ω

1 + I8(ω24 + ω35)
)
⊗ T1

+I2

(
T3 ⊗ dρ ∧ ω2 − T2 ⊗ dρ ∧ ω3

)
+ I3

(
T2 ⊗ dρ ∧ ω4 + T3 ⊗ dρ ∧ ω5

)
+I6

(
T2 ⊗ ω12 + T3 ⊗ ω13

)
+ I7(T2 ⊗ ω15 − T3 ⊗ ω14),
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where

I1 =
1

ε2h2(ρ)

(
dB1

dρ
− 2Ġ

r
B1

)
, I8 =

1

G

(
B1

G2
− 2

B3B4

R+R−

)
I2 =

1

εh(ρ)

(
dB3

dρ
− G
rR2
−
B3

)
, I3 =

1

εh(ρ)

(
dB4

dρ
− G
rR2

+

B4

)
I4 =

1

ε2h2(ρ)

(
4B2

3 −R2
−
)

, I5 =
1

ε2h2(ρ)

(
4B2

4 −R2
+

)
I6 =

(
B4

R+
− 2

B1B3

G2R−

)
1

R+

√
G

R+R−
, I7 =

(
B3

R−
− 2

B1B4

G2R+

)
1

R−

√
G

R+R−
.

Proof. It follows from lemma 5.2.4 that the curvature can be written as

FA =

((
2A2

3 −
1

2

)
θ23 +

(
2A2

4 −
1

2

)
θ45 +

dA1

dρ
dρ ∧ θ1 + (A1 − 2A4A3)(θ24 + θ35)

)
⊗ T1

+
dA3

dρ

(
T3 ⊗ dρ ∧ θ2 − T2 ⊗ dρ ∧ θ3

)
+
dA4

dρ

(
T2 ⊗ dρ ∧ θ4 + T3 ⊗ dρ ∧ θ5

)
+(A4 − 2A1A3)

(
T2 ⊗ θ12 + T3 ⊗ θ13

)
+ (A3 − 2A1A4)) (T2 ⊗ θ15 − T3 ⊗ θ14).

Using the definition of the Bi’s in terms of the Ai’s, the definition of the bounded forms ωi and the

relations between ρ, h,G, R+, R− this turns into the formula in the statement.

Lemma C.2.2. The invariant connection A from lemma C.2.1 extends over the zero section if and

only if, for ρ� 1

B1(ρ) = O(ρ3) , B3(ρ) = O(ρ2) , B4(ρ) =
ε

2
+O(ρ2).

Proof. The connection extends over the zero section if and only if the curvature does remain

bounded. Since the forms ωi are bounded, one concludes from lemma C.2.1 that this will be the

case if and only if the Ii’s are bounded for ρ� 1. The fact that I5 needs to stay bounded implies

that (
4B4(ρ)2 −R+(ρ)2

)
= O(h2(ρ)) = O(ρ2).

Since R2
+ = ε2

2

(
r2

ε2
+ 1
)

= ε2 + ε2

2

(
r2

ε2
− 1
)

= ε2 +O(ρ2), then from the above one must have

B4(ρ) =
ε2

4
+O(ρ2),

and this gives the result in the statement. In the same way one can proceed to analyze I4, which

gives 4B2
3 − R2

− = O(ρ2), but since R2
− = O(ρ2), one concludes that B2

3 = O(ρ2) and so

B3 = O(ρ). This is again the result in the statement and the only thing left to do is to compute

the estimate on B1. From B4(ρ) = ε
2 +O(ρ2) and B3(ρ) = O(ρ). In fact inserting these into I8

together with G = O(ρ) and R− = O(ρ), gives that

ρ−2B1 = O

(
B3B4

R+R−

)
= O(1),
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from what it is straightforward to get B1(ρ) = O(ρ2). So far, one has just used the boundedness of

I4, I5, I8 and obtained that

B1(ρ) = O(ρ2) , B3(ρ) = O(ρ) , B4(ρ) =
ε

2
+O(ρ2). (C.2.1)

One must analyze the behavior of the other Ii’s. Writing B1 = b1ρ
2, B3 = b3ρ and B4 = ε

2 + b4ρ
2

one can see that the boundedness of I1, I3, I6 are guaranteed just by the estimates in lemma C.2.1,

while the boundedness of I7, I8, I2 require respectively

b3 = 2
√

2ε−
7
3 b1b4 , b1 = 2

√
2b3b4 , b3 = 0.

Combining these implies that b1 = b3 = 0 and the result follows.

Remark C.2.3. Moreover, a posteriori to lemma 3.3.25, bounded invariant connections satisfying

the Calabi Yau monopole equations, are known to satisfy a Bogomolny equation when restricted to

the fibres of T ∗S3 → S3. Hence, by the main theorem of [SS84] the condition that the curvature

remains bounded is also a sufficient one for an invariant Calabi-Yau monopole to extend.
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