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Abstract

Cellular signalling networks are responsible for coordinating a cell’s response to internal
and external perturbations. In order to do this, these networks make use of a wide vari-
ety of molecular mechanisms, including allostery, gene regulation, and post-translational
modifications. Mathematical modelling and systems approaches have been useful in un-
derstanding the signal processing capabilities and potential behaviours of such networks.

In this thesis, a series of mathematical modelling and systems investigations are pre-
sented into the potential regulation of a variety of cellular systems. These systems range
from ubiquitously seen mechanisms and motifs, common to a wide variety of signalling
pathways across many organisms, to the study of a particular process in a particular cell
type - the cell cycle in Saccharomyces cerevisiae.

The first part of the thesis involves the analysis of ubiquitous signalling mechanisms
and behaviours. The potential behaviours of these systems are examined, with particular
attention paid to properties such as adaptive and switch-like signalling. This series of
investigations is followed by a study of the dynamic regulation of cell cycle oscillators by
external signalling pathways. A methodology is developed for the study of mathematical
models of the cell cycle, based on linear sensitivity analysis, and this methodology is then
applied to a range of models of the cell cycle in Saccharomyces cerevisiae. This allows the
description of some interesting generic behaviours, such as nonmonotonic approach of cell
cycle characteristics to their eventual values, as well as allowing identification of potential
principles of dynamic regulation of the cell cycle.
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Chapter 1

Introduction

Signalling networks allow cells to convert information about their environment into in-

structions for cellular behaviour. They allow single-cell organisms to adapt to new environ-

ments, and allow the correct development of multicellular organisms through intercellular

communication. Understanding of cellular signalling networks has involved a variety of

theoretical and biological work.

In this thesis, two strands of work on this theme are laid out. The first is a sequence

of investigations into some of the signalling behaviours which some generic signalling net-

works are capable of, while the second strand of work encompasses a detailed investigation

into one relatively well-characterised process - the budding yeast cell cycle - and how it is

controlled by the environment through the signalling networks which interact with it.

The first strand, investigating generic signalling networks, follows a broad thematic

progression from the coupling of different biochemical signalling modules to the details

of how a particular module might operate. These investigations are not specific to any one

biological system, but are motivated by patterns of behaviour and biochemical mechanisms

that are expected to be ubiquitous in biological systems. This expectation is established by

thorough reference to the relevant experimental literature.

This strand of work begins with an investigation into the consequences of two path-

ways being coupled by the sharing of a single component (chapter 3). In this chapter

a basic modelling framework for understanding the coupling of processes and pathways

through shared components is developed. This framework starts with the interaction of

two components with a common third component and includes production and degrada-

tion of all these components. This model is then analysed to identify possible signalling
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behaviours, including ultrasensitive and adaptive responses. The basic model is then elabo-

rated with additional control regulation, including switch-like signal processing, and spatial

signalling. In the process, a way in which allosteric regulation may contribute to signalling

specificity is identified. Further, the role of competitive effects in coupling parallel switch-

like signalling mechanisms in an enzymatic signalling cascade is analysed to show how an

enzyme might robustly coordinate and time the activation of parallel pathways.

One interesting theme arising from this work is how the details of protein-protein in-

teractions can affect signalling behaviours, as noted particularly in the examination of an

enzyme regulating two signalling pathways in parallel. This observation, which has not in

general been appreciated in the construction and analysis of models of signalling networks

leads naturally to consideration of how the behaviour of models of signalling networks

might be affected by the inclusion of protein-protein interactions which are not generally

included. This is investigated in some prototypical signalling systems in chapter 4. The ba-

sic signalling system chosen for investigation is an enzymatic signalling cascade in which

each successive protein is reversibly modified by an upstream enzyme. In these systems,

the interaction of an active enzyme with the unmodified form of its substrate is essen-

tial for signalling to occur. However, a myriad of other enzyme-substrate interactions are

possible, such as the interaction of an active enzyme with the modified form of its sub-

strate (i.e. product inhibition), examples of which are found in the experimental literature.

Thus, in this chapter, the behaviour of a basic model of signalling in which such additional,

non-essential enzyme–substrate interactions are possible is analysed. These interactions

include those between the inactive form of an enzyme and its substrate, and between the

active form of an enzyme and its product. It is shown that these additional interactions can

result in increased sensitivity and biphasic responses, respectively. The dynamics of the

responses are also significantly altered by the presence of additional interactions. Finally,

the consequences of these interactions are investigated in two variations of the basic model,

involving double modification of substrate and scaffold-mediated signalling, respectively.

It is concluded that the molecular details of protein–protein interactions are important in

determining the signalling properties of enzymatic signalling pathways.

Thus, in summary, chapters 3 and 4 can be seen as investigating the signalling capabil-

ities of generic, small, modules. In chapter 5 this approach is extended by analysing the

signalling capabilities of two modules, with typical and widely seen signalling behaviours,

when combined. The modules combined are an adaptive signalling module and a thresh-

old signalling module. Representative models of these processes are used to examine and
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analyse various aspects of their interaction including the order of interconnection, the role

of relative time-scales, the difference between monostable and bistable thresholds in this

context, and how threshold modules may act as a switch induced by transient signals. Nu-

merical simulations, bifurcation analysis and analytical work are employed to address these

questions. Overall, this analysis is a first step towards a detailed systems engineering under-

standing of the different kinds of interactions between these ubiquitous elements in cellular

signal transduction.

The work on interacting modules leads into the detailed investigation of the regulation

of a specific module in a specific system - the cell cycle of the budding yeast, Saccha-

romyces cerevisiae, in chapter 6. This is a good model system for understanding cell cycle

regulation in a wide variety of other organisms. In this chapter, a framework is built for the

analysis of the dynamic regulation of the cell cycle, based around sensitivity analysis and

inspired by work on neural and circadian oscillators. This framework is applied to a selec-

tion of models of the budding yeast cell cycle from literature, and some general conclusions

about the possibilities of dynamic regulation are made. These include the independent con-

trollability of cell size and cell cycle period, complex dynamic responses after step-changes

in conditions, flexibility in these responses for a given choice of signalling mechanisms, and

the potential for phase shifting through asymmetric division. While some of these results

are specific to budding yeast, the general approach and methods are expected to be appli-

cable to other systems, and have relevance to investigations of population-level properties

of many cell types.
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Chapter 2

Background

2.1 Introduction

Cellular signalling networks are responsible for coordinating cellular responses with extra-

and intracellular signals, and consequently display an enormous variety of behaviours.

Here, “signalling networks” are given the broad definition of any biochemical network

which is responsible for producing a particular response to a given stimulus, regardless of

whether the origin of the stimulus is intra- or extracellular. These networks are composed

of a variety of protein and non-protein components, which interact with each other in a

variety of ways.

In this chapter, background is provided to the study of cell signalling, with a particular

focus placed on areas in which mathematical modelling and analysis has been useful. An

overview of some basic mathematical modelling techniques is also supplied, along with a

discussion of the relevance of each approach to different scenarios.

Given the broad scope of analysis in subsequent chapters, the description of key themes

here is necessarily general. The intention is to give an idea of the range of different

mechanisms and behaviours of cellular signalling systems, and the ways in which they

are commonly modelled. These principles will then be utilised repeatedly to investigate

both generic signalling behaviours and an example of a complex cellular process (the cell

cycle).
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2.2 Biochemical mechanisms of cellular signal transduction

In order to give an idea of the diversity of biochemical mechanisms that are involved in

cellular signalling pathways, a brief overview of some very common mechanisms is given

below. These mechanisms are: ligand binding, complex formation, post-translational mod-

ification, and transcriptional regulation. These mechanisms provide the core signalling

capabilities of many signalling pathways, and a discussion of their basic properties gives

an indication of some of the variety that can be expected in the mathematical models of

signalling that will be explored and analysed later. Note that the listed mechanisms are

not exhaustive. Other important mechanisms of regulation in biological systems include

ion channels, mRNA binding proteins, mRNA degradation, protein transport channels, and

translational regulation.

2.2.1 Ligand binding

One of the most basic mechanisms of regulation is the binding of a ligand to a receptor or

other protein. Ligand receptors can be either extracellular or intracellular. An example of

the former is the epidermal growth factor (EGF) receptor family, including the ERBB fam-

ily (Citri and Yarden, 2006). The ERBB signalling network is one of the most extensively

studied areas of signal transduction, and of great interest as an anti-cancer drug target. An

example of intracellular ligand binding is signalling through the soluble gas nitric oxide.

Nitric oxide is capable of passing through cellular membranes, and binds reversibly to

iron in the active site of guanylyl cyclase in cellular cytoplasm, stimulating its enzymatic

activity to produce the second messenger cyclic GMP. Another example of a class of intra-

cellular ligand receptors is the family of nuclear hormone receptors. These mediate ligand

regulation of gene activity by binding to specific DNA sequences in a ligand-dependent

manner. The ligands for nuclear receptors in higher eukaryotes are often hormones, such

as cortisol and vitamin D.

The above examples have considered cases in which an initially extracellular ligand

is allowed to pass through the membrane before instigating signalling through binding

to an intracellular signalling protein. In other cases, an intracellular ligand is produced

as a result of extracellular signalling. Such ligands are termed “second messengers”. A

prototypical example of such a ligand is cyclic AMP (cAMP), which regulates a diverse

range of processes in the cell. These include transcription of a range of genes (through
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the CREB family of transcription factors (Sands and Palmer, 2008)) and post-translational

modifications (through the cAMP-dependent kinase PKA (McConnachie et al., 2006)).

More sophisticated examples of ligand binding come in the form of allosteric regula-

tion. This refers to the ability of a ligand to selectively stabilise a particular conformation

of the protein. Depending on the conformation stabilised, this can increase or decrease the

affinity of the protein for another ligand at another site. The prototypical example for this

type of interaction is the binding of oxygen to haemoglobin. In this case, allostery allows

cooperative binding of successive oxygen molecules, greatly enhancing oxygen transport.

This mechanism is also of use in signalling, where it allows proteins to integrate multi-

ple signals through cooperative binding of different ligands. An example of this is seen

in PLCβ (Philip et al., 2010), which is responsible for integrating signals from G-protein

coupled receptors to produce the second messenger species IP3.

2.2.2 Post-translational modification

The reversible post-translational modification of proteins is a ubiquitously utilised and ver-

satile mechanism of biochemical signal transmission. Such modifications include phospho-

rylation, acetylation, O-GlcNacylation, and ubiquitination. Of these, phosphorylation has

been the most widely studied as a result of the availability of experimental techniques, and

it has been shown to be occur widely in many systems (e.g. (Gnad et al., 2009; Mayya et al.,

2009; Sugiyama et al., 2008)). However, as technology has developed, other modifications

such as acetylation have also been demonstrated to be similarly widespread (Choudhary

et al., 2009). Cascades of enzymes regulating one another through post-translational modi-

fication, such as the MAPK cascade, have provided some of the most well-studied examples

of cellular signalling.

Post-translational modification of a protein can provide a signal in several different

ways. For example, a modification can create a binding site for another protein, prevent

binding of another protein, or change the structure of the protein in a way that activates its

catalytic capabilities (). The combination of multiple modifications - both of the same type

and different types - on different sites of the same protein has been suggested to allow a

high degree of signal integration (Hunter, 2007).

The basic mechanism of post-translational modification in eukaryotes usually involves

an enzyme binding to the target site on a protein and catalysing a reaction between an

amino acid at the target site and the substrate required for the relevant modification (e.g.
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ATP in the case of phosphorylation). Another mechanism of post-translational modification

involves a modified protein passing on its own modification to a downstream substrate. An

example of such a modification is the phosphorelay, which is common in bacterial systems

(Stock et al., 2000).

2.2.3 Complex formation

In addition to the transient interactions between enzymes and substrates upon which sig-

nalling through post-translational modifications relies, proteins are capable of forming

longer-lived interactions as part of protein complexes. These form the core of many cellular

processes (Gavin et al., 2006).

Some of the most well-studied examples of protein complexes are those involved in the

basic processes of the cell. These include ribosome, RNA polymerase, and protease com-

plexes. Regulation of the composition and activity of these complexes can have global con-

sequences for cellular processes, including signalling, but their primary function is not to

process signals. At the smaller scale, a well-studied example of protein complexes involved

in signalling is that of the G-protein coupled receptors (GPCRs) (Rosenbaum et al., 2009).

The dynamics of complex formation between the α and βγ subunits of these complexes

transmit information to a wide range of second-messenger systems at the cell membrane.

In this case, the regulated binding properties of the complex confer signalling abilities

which can be dynamically modulated.

Other classical examples of signalling complexes are receptor and transcription factor

dimers. Transcription factors often form homo- or heterodimers before they can bind DNA

and perform their gene regulatory function. This is a highly regulatable process (Seo et al.,

2011). The complexes formed by a particular transcription factor depend on its binding

specificities for available monomers, and the identity of the complex then determines which

binding sites it can bind to (Amoutzias et al., 2008). This allows flexibility in the responses

that can be induced by a single transcription factor, depending on the coincidence with

other signals.

2.2.4 Transcriptional regulation

Regulation of gene transcription is a fundamental mechanism of signal transduction, by

which a cell can modify the rate at which a transcript from a particular gene is produced.
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Networks of genes involving only regulation at the transcriptional level are capable of

complex behaviours, for example self-sustained oscillations (Elowitz and Leibler, 2000;

Stricker et al., 2008) or pulse-like responses (Mangan and Alon, 2003). The most well-

studied and basic model of transcriptional regulation involves the binding of transcription

factors to the promoter of a gene, and either aiding the recruitment of RNA polymerase (i.e.

the transcription factor behaves as an activator) or preventing it (i.e. the transcription fac-

tor behaves as a repressor). More recently, regulation of transcription through mechanisms

outside this well understood mechanism, such as modification of chromatin structures, have

been investigated (MacQuarrie et al., 2011).

It is important to note that, while transcriptional regulation is important and widespread,

the ultimate level of expression of a gene is only partially determined by levels of tran-

scription - it is also influenced by transcript degradation. This itself is a highly regulated

process capable of responding to external stimuli in a transcript-specific manner (Fabian

et al., 2010; Shyu et al., 2008).

2.3 Prototypical behaviours of cellular signalling networks

Cellular signalling networks are sophisticated networks of biochemical reactions that have

evolved to coordinate cellular responses with the vast array of external signals. In this

section, a brief overview of some of the behaviours observed in signalling networks is

provided. These behaviours are: switch-like signalling, where a small change in stimulus

can result in a large change in the pathway output; adaptive signalling, in which changes in

the stimulus may provide only a transient change in the pathway output, before it relaxes

to close to its original level; oscillatory signalling, in which a sequence of cellular events is

coordinated repeatedly in time by an oscillating signal; and signalling specificity, in which

a network with multiple inputs, outputs, and sources of crosstalk is capable of responding

specifically to some combinations of inputs.

While the above list of behaviours is in no sense complete, it does describe what can

be considered prototypical examples of biochemical signal processing, all of which will be

elaborated on in further chapters. In each case, the essential behaviour will be discussed,

followed by a summary of how understanding of these basic elements of signal processing

have been useful in understanding systems with more complex overall behaviours.
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2.3.1 Switch-like signalling

Switch-like signalling behaviour is observed in many situations in which a sensitive re-

sponse to a signal is required. These include, for example, the response of the Janus kinase

(JNK) signalling cascade (Bagowski et al., 2003), or the mitogen activated protein kinase

(MAPK) cascade (Huang and Ferrell, 1996). More recently, this behaviour has also been

engineered into signalling systems. For example, a molecular titration mechanism has been

used to create switches in transcription factor activity (Buchler and Cross, 2009), modifica-

tion of a protein’s modular domains has been used to introduce sensitive allosteric regula-

tion of catalytic activity (Dueber et al., 2007), and eukaryotic signalling proteins have been

used to create a switch based on post-translational modifications in Escherichia coli (Taka-

hashi et al., 2012). These examples are interesting for their diversity of mechanisms, and

for the fact that the behaviour is the result of relatively local interactions between proteins

- there are no complex feedback structures built into these systems.

In real systems, however, positive feedback is a commonly seen mechanism for enhanc-

ing sensitivity of switch-like behaviour, and for introducing hysteresis (Ferrell, 2002). This

means that they have different thresholds for switching “up” and “down”, and so have a

region of bistability in which the switch is capable of existing in either state. The differ-

ence between monostable and bistable switches is depicted in figure 2.1. This has been

suggested to enhance the robustness of switches in cell states. This is of clear utility in the

cell cycle, for example - the cell should only undertake DNA replication once per cycle, so

the transitions through phases must be irreversible (Charvin et al., 2010; He et al., 2011).

Another classic example of a bistable switch is the switch to a lysogenic state in phage

lambda (Ptashne, 2011).

2.3.2 Adaptive signalling

Adaptive signalling behaviour is the (possibly approximate) maintenance of a given output

level after a change in input, after any transient response has subsided (Drengstig et al.,

2008; Ma et al., 2009). A schematic of this behaviour, displaying perfect adaptation, is

shown in 2.1. Such signalling patterns are common in a wide range of systems. Some

good examples are found in stress responses (El-Samad et al., 2005; Muzzey et al., 2009;

Ni et al., 2009; Zhang and Andersen, 2007). In these cases, the application of a stress

stimulates activation of signalling pathways, leading to an appropriate cellular response.
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This response counteracts the effects of the stress, leading to a subsequent deactivation

of the relevant signalling pathways, with the resultant pulse-like response in their activity.

Another good example of adaptive signalling occurs in sensory systems (Friedlander and

Brenner, 2009; Wark et al., 2007) and chemotactic systems (Levchenko and Iglesias, 2002;

Yi et al., 2000). In these cases, adaptation to the level of a stimulus allows the pathway to

maintain a dynamic range of signalling to new changes in the stimulus (i.e. the pathway

response is not susceptible to saturation).

2.3.3 Oscillatory signalling

Cellular rhythms have been identified in a wide range of processes across a wide range of

timescales (Goldbeter et al., 2012). Oscillatory signals are characterised by a period and

an amplitude (see figure 2.1c) for an illustration), both of which may change with time and

may encode their own information for downstream processes to interpret.

Some examples of oscillatory signalling systems include oscillations in Ca2+ (Dupont

and Croisier, 2010) and p53 (Batchelor et al., 2009). Along with these examples of os-

cillating signals encoding information to downstream processes are canonical examples of

self-sustained oscillators in biological systems, such as circadian clocks (Zhang and Kay,

2010), cell-cycle oscillators (Tyson and Novak, 2008), and segmentation clocks (Oates

et al., 2012). These oscillating systems are able to regulate various forms of coordination.

In particular, the cell cycle coordinates the internal state of the cell so that specific stages

of development (e.g. duplication of DNA) occur only once and in the correct order, while

segmentation clocks coordinate the development of sets of cells within one organism, and

circadian clocks coordinate organism timing in response to external 24-hour-periodic stim-

uli.

In addition to the oscillators identified above, it is interesting to note synthetic exam-

ples of oscillators. Genetic circuits displaying rhythmic behaviour have been designed,

including a three-negative-feedback loop oscillator (known as the repressilator (Elowitz

and Leibler, 2000)), a simple self-repressing feedback loop (Stricker et al., 2008), and a

synthetic gene-metabolic oscillator (Fung et al., 2005).

Similarly to adaptive behaviour, oscillatory signalling is interesting and non-trivial to

investigate because of its dynamic behaviour (Novak and Tyson, 2008). In this way, os-

cillators provide a good example of systems in which mathematical modelling has been

especially instructive in establishing an understanding of the basic mechanisms behind the
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behaviour.

Despite differences in the purpose of these various cellular oscillators, there are clear

similarities in the structure of the networks responsible for generating their essential oscilla-

tory behaviour. In particular, the examples listed all contain at least one negative feedback,

which help facilitate oscillations.

2.4 Systems characteristics of cellular signalling networks

While examples of biochemical signalling mechanisms and behaviours are interesting to

consider, it is also important to ask what system-level properties are commonly exhibited

by cellular signalling networks. These are considered here, and provide some necessary

background to justify the approaches taken in subsequent section. This is especially true of

the discussion of network modularity, which is taken advantage of in every chapter, and is,

in fact, implicit in the majority of experimental approaches.

2.4.1 Network modularity

One common property observed in biology as a whole is modularity - the property that a

complex whole can be subdivided into parts with distinct, relatively independent functions.

This is not to say that the behaviour of the whole can be understood by merely studying

subsystems in isolation. Rather, the existence of modularity is required for any subsystems

to be identified in the first place. This property has been key to much of the success that has

been possible up to this point in understanding biological processes at the molecular level,

as it allows for the possibility of reverse engineering and the informative study of processes

in relative isolation.

Modularity is observed at essentially all levels of biology. Genes contain sequences re-

sponsible for regulating their expression (i.e. promoters) distinct from their protein-coding

regions, while proteins may have different domains and motifs which are responsible for

different aspects of the protein function (Bhattacharyya et al., 2006; Del Sol et al., 2007).

At the whole-organism level, functions of metabolism and reproduction are frequently seg-

regated into distinct compartments and/or organs. Another excellent example at this scale

is the specialisation of regions of the brain to perform specific functions. Of particular

importance for the investigation of cellular signalling behaviour, however, is modularity at

the intermediate scale of biochemical signalling networks.
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This has been observed in network-level analyses, for example in the case of coex-

pression of functional modules (Barabasi and Oltvai, 2004; Tanay et al., 2004) or sets of

interacting proteins (Luo et al., 2007), and is also clear from investigations of specific

pathways and processes. For example, it is seen in oxygen signalling pathways (Crosson

et al., 2005), and epidermal growth factor signalling (Citri and Yarden, 2006). Separation

of functions into modules has also been detected at the evolutionary level in the cases of

stress response networks (Singh et al., 2008). While the above examples refer mostly to

networks of interacting proteins, modularity is also clear at the level of gene regulatory

networks, for example in development (Davidson, 2010). This ability to separate functions

in this way has recently been taken advantage of to produce a model of a cell at the whole-

organism level in Mycoplasma genitalium (Karr et al., 2012) - an endeavour which would

not have been possible if an appropriate modular decomposition of functions did not exist.

In all cases, the observation of modularity is of course merely a useful abstraction -

no biological module is truly independent of the system in which it resides. Nevertheless,

while the evolutionary origins and posited selective advantage of modularity have been

questioned (Lynch, 2007), the existence of network modularity has been vital for the suc-

cessful investigation of these systems.

2.4.2 Robustness

Another property which has been suggested to be widespread in biological system is that

of “robustness”. This has been defined as “a property that allows a system to maintain

its functions against internal and external perturbations.” (Kitano, 2004), or similarly as

“the ability to maintain performance in the face of perturbations and uncertainty” (Stelling

et al., 2004). As a result of the myriad perturbations and challenges faced by organisms

in dynamically changing environments, this property has been seen as a key property of

biological systems. Classic examples of robustness include the adaptive dynamics of the

chemotaxis system in e. coli (Yi et al., 2000) and the temperature compensation observed

in circadian systems (Ukai and Ueda, 2010).

Apart from the theoretical interest in how a system maintains a behaviour across a

range of conditions, it should also be pointed out that this property has been of great use

experimentally, since it has meant that many labs can study essentially the same phenomena

independently and without exact duplication of conditions.
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2.4.3 Signalling crosstalk

Signalling networks contain many components, each of which may interact with many

others. This means that signalling from inputs to outputs does not occur through linear

signalling pathways of unconnected components, but through complicated networks which

branch, combine, and feed back on one another. It is interesting, then, that such networks

are capable of responding in a specific manner to a given input signal. By this, we mean

that an output provides information about a particular input independently of other inputs,

even if those inputs are utilising some of the same components of the signalling network to

transmit information.

2.5 Mathematical modelling and analysis of signalling networks

Mathematical modelling has become an increasingly useful tool for understanding the

mechanisms and principles around which biological systems are organised. This is due

in part to the inherent complexity of these systems, meaning that intuition and verbal rea-

soning alone are of limited utility, and also in part to the rapid advancement of experimental

technology, which has led to a dramatic increase in quantitative characterisation.

Mathematical modelling provides a way of formalising knowledge about a biological

system. This can allow intuition about mechanisms to be checked and confirmed (i.e. “is

the mechanism I have suggested actually capable of producing the observations?”). In cases

where data are difficult to reconcile with the current model, the models can also be useful

for suggesting additional experiments or gaps in understanding. Finally, investigation of

the properties of the model may suggest principles of operation which may be shared by

other systems.

In this section, a brief overview is given of approaches to the mathematical modelling

and analysis of signalling networks. This overview focuses on deterministic dynamical

modelling of biochemical networks using ordinary differential equations (ODEs), since it is

this approach which is used throughout the thesis. Other approaches may be more suitable

for other types of investigation. For example, stochastic models have seen widespread use

in biochemical modelling, and enable investigation of the consequences of molecular noise

in biological systems (Wilkinson, 2009).

The objective in this section is merely to give an idea of how such models are con-

structed. Small, self-contained models of some of the basic signalling mechanisms dis-
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cussed above are included here as examples.

2.5.1 Ordinary differential equation representations of biochemistry

The ordinary differential equation (ODE) formalism is one of the most commonly used

modelling formalisms for biological systems. An ODE model of a system, involving the

dynamic change in time (denoted t) of state variables x, is given by:

dx
dt

= f(x, t, θ) (2.1)

The solution to this equation is given by x(t). Here, x is a vector of state variables,

which could be, for example, concentrations of species, or absolute number of molecules of

a particular species. The vector θ provides a set of parameters, describing fixed properties

such as rate constants and binding affinities. The time is specified by t, meaning that

x0 = x(0) provides the initial conditions of the system.

There are many advantages to using this formalism. It is flexible, and able to represent

a wide range of mechanisms. In addition, there are theoretical tools available for the exact

solution of ODEs, and for the investigation of properties such as stability and oscillatory

behaviour (through bifurcation analysis and dynamical systems theory). For cases in which

it is not possible to derive exact solutions, there are excellent numerical tools available for

the approximate solution of these problems. These numerical tools are, in general, not

very computationally expensive (e.g. when compared to simulations of stochastic models).

They are also naturally extensible to the spatial domain by the inclusion of diffusion effects

(so they become partial differential equations (PDEs)).

As will become clear by the range of different examples considered below, it is possible

to use this basic modelling formalism to describe biological systems at varying levels of

abstraction.

2.5.2 Mass action kinetics

Mass-action kinetics describe the rates of reactions through products of concentrations

combination of two species. For example, in the case of ligand-mediated signalling, the

association between a receptor R and a ligand L has the reaction equation:

R + L⇔ R.L (2.2)
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This can be modelled by mass-action kinetics of the form:

d[R]

dt
= kd[R.L]− ka[R][L]

d[L]

dt
= kd[R.L]− ka[R][L]

d[R.L]

dt
= ka[R][L]− kd[R.L] (2.3)

Here, ka represents the rate of association, and kd represents the rate of dissociation.

The dynamics of this model, and the eventual steady state, are then fully specified once the

initial conditions are specified. In modelling real biological systems, it is also common to

include processes leading to the production and degradation of all components. A simple,

mass-action model of this process would include constant production and a constant rate of

dilution of protein (as a result of cell growth - the rate of which is commonly denoted by

µ):

d[R]

dt
= ksa + kd[R.L]− ka[R][L]− µ[R]

d[L]

dt
= ksl + kd[R.L]− ka[R][L]− µ

d[R.L]

dt
= ka[R][L]− kd[R.L]− µ (2.4)

Here, ksa and ksl denote the rates of production of receptor and ligand, respectively. In-

terestingly, while the dynamics described by equation 2.4 depend on the initial conditions,

the eventual steady state is insensitive to the initial conditions. This is a common property

of models which include constitutive production and degradation terms.

From this brief overview, it is possible to evaluate a few advantages and disadvantages

of this modelling approach. Its main advantages are derived from the explicit representation

of proteins in their various bound and unbound states. This means that knowledge about

the protein-protein interactions can be specified in detail. It also means that such models

can be used directly to perform stochastic simulations of the system using the Gillespie

algorithm (or similar). On the other hand, it should be noted that detailed mass-action ki-

netic models are likely to be overcomplicated in many cases, and will usually involve many

more parameters than can reasonably be identified from available data. These factors have
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led to simplified representations of large sets of reactions, which are nonetheless capable

of capturing the main behaviours.

2.5.3 Michaelis-Menten kinetics

Michaelis-Menten kinetics are the best-known case of a simplified representation of mass-

action kinetics. This was derived in order to describe the kinetics of a simple reaction:

E + S ⇔ E.S ⇒ E + P (2.5)

This reaction describes the reversible binding of an enzyme to its substrate, followed by

a reaction, leaving product and the original enzyme. This is a common way to represent the

post-translational modification of a protein by some signalling enzyme, as described above

- the reverse reaction may be treated in a similar way. Clearly, in many cases the actual

reaction kinetics are more complicated. For example, phosphorylation of a substrate by a

kinase also requires the binding of ATP to the appropriate site on the kinase. However, this

provides a useful working model for these types of reaction in many cases. The mass-action

kinetics of this reaction are given by:

d[E]

dt
= kr[E.S]− kf [E][S] + kcat[E.S]

d[S]

dt
= kr[E.S]− kf [E][S]

d[E.S]

dt
= kf [E][S]− kr[E.S]− kcat[E.S]

d[P ]

dt
= kcat[E.S] (2.6)

These equations can be simplified by assuming that the concentration of the complex

E.S does not change on the timescale of product formation (i.e. d[E.S]
dt

= 0). This is known

as the quasi-steady-state assumption, and allows the concentration of E.S to be expressed

as a function of substrate and enzyme concentrations, so a simple expression is obtained

for the rate of product formation:

d[P ]

dt
=

Vmax[S]

Km + [S]
(2.7)
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Where Vmax = kcat[E] (the enzyme capacity), and Km = (kr + kcat)/kf (the so-called

“Michaelis-Menten constant”, related to the affinity of enzyme for substrate. The above

is an example of a more general approach to the simplification of mass-action equations,

making use of the quasi-steady-state assumption (for more information, see (Ciliberto et al.,

2007; Segel, 1988)).

2.5.4 General cooperativity

At a further level of abstraction, it has been observed that many biological systems display

a high degree of cooperativity, meaning that a nonlinear response, sensitive to a stimulus

is observed, as discussed above in the context of switch-like signalling. This can occur

at the level of a single protein complex, for example through the mechanism of allostery,

a classical example of which is the binding of oxygen to hemoglobin (Perutz, 1970). It

is also observed at the level of complex formation and binding of transcription factors to

DNA, and at the whole-pathway level (e.g. in the response of MAPK cascades (Ferrell,

1996)).

A common way to model this qualitative behaviour in biological systems is to simply

represent the response by a Hill function, which has a sigmoidal response function, as

defined by:

f(x) =
xn

xn +Kn
(2.8)

The “steepness” of this function is determined by the value of the cooperativity coeffi-

cient n (higher values of n lead to more nonlinear input-output functions), while the input

(denoted x) required to achieve half-maximal output is given by the parameter K. While

this represents a monotonically increasing function, indicating activation with increasing

x, it is equally straightforward to represent repression:

f(x) =
Kn

xn +Kn
(2.9)

As an example application of this approach, we take a model of gene expression in

which a gene (Y) is regulated at the transcriptional level by both an activator (A) and a

repressor (R):

d[Y ]

dt
= ks.

[A]nA

[A]nA +KnA
A

.
KnR
R

[R]nR +KnR
R

− kd[Y ] (2.10)
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Here, ks and kd give the rates of production and degradation of Y, respectively, while

nA, KA and nR, KR describe the activation and repression responses to A and R, respec-

tively.
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Figure 2.1: Some simple behaviours exhibited by a wide range of biochemical signalling networks are rep-
resented. a) a threshold response is shown, in which at some input value, a small change in input results in
a large change in output. The thresholds displayed are monostable (blue) and bistable (red). b) an adaptive
response is shown, in which a sudden change in input causes a change in output which eventually returns to
its original value. c) an oscillatory response is shown, characterised by an amplitude, offset, and oscillatory
frequency.
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Chapter 3

Coupling of pathways and processes
through shared components

3.1 Introduction

Components of intracellular signalling networks often interact with multiple entities at mul-

tiple locations, allowing them to receive and send multiple signals. This property is seen,

for example, in proteins capable of multiple allosteric interactions such as n-WASP Padrick

and Rosen (2010), WAVE Beene and Scott (2007), Cdk-2 Prehoda and Lim (2002), and

PLC Philip et al. (2010). There are also many examples of enzymes capable of modify-

ing multiple substrates Copley (2003); Hult and Berglund (2007); Kim et al. (2010, 2011);

Nobeli et al. (2009), including signalling proteins such as cyclin-dependent kinases Bloom

and Cross (2007); Csikasz-Nagy et al. (2009), and ubiquitin ligases Peters (2006). Simi-

larly, substrates may be modified by multiple enzymes, as is the case for the p53 tumour

suppressor Lavin and Gueven (2006) and many GTPases. Each of these reactions may take

place while bound to various adaptor and scaffold structures, as is common for instance in

MAPK cascades Dhanasekaran et al. (2007). Finally, all of these interactions and reactions

may take place in diverse cellular locations, with many proteins having been identified as

having multiple subcellular localizations Huh et al. (2003). Commonly known examples

of this are cell-cycle proteins such as cyclins, which shuttle between the nucleus and cy-

toplasm, and a wide variety of membrane-binding signalling proteins, which may also be

present in the cytoplasm. The sharing of components between pathways and locations is

widespread and one of the most basic ways in which processes may be coupled. A notable
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aspect of signalling in biological systems, and one which distinguishes them from many

engineered systems, is that it is inherently bidirectional. Whenever a signal is being sent

or received, components must interact with one another, and/or change location, and are

occupied by those actions for finite periods of time. Therefore a signal is itself modified

when it is perceived by a downstream signalling element. The extent of bidirectional sig-

nalling has been termed retroactivity Del Vecchio et al. (2008). While retroactivity may

be low in some cases, and while there may be reasons for systems minimising it in some

cases, it is nonetheless likely to have a non-trivial effect in other cases. This is particularly

true, and especially significant, in networks containing elements with multiple interactions.

Signalling networks involve many proteins with multiple interactions and multispecific en-

zymes, where many of the elements are similar in concentration. Therefore, proteins may

be shared between multiple pathways, and the question arises as to what functional roles

these multiple interactions and consequent bidirectionality might play in cellular signal

processing in biological systems.

The most important aspect of signalling networks which may be affected by multiple

interactions is their ability to perceive and integrate signals, and thereby perform logical

operations. Multiple interactions and bidirectional signalling may affect the input-output

response of pathways, and may be particularly relevant to investigating signalling crosstalk

Bardwell (2006); Bardwell et al. (2007); Haney et al. (2010). Crosstalk occurs when multi-

ple pathways share components. Despite this coupling, signalling networks are often seen

to allow one input to specifically regulate only one or a few outputs. This is termed sig-

nalling specificity. Likewise, it is observed that in some networks particular outputs are

regulated by only one or a few inputs, termed signalling fidelity. It is important to un-

derstand the role of crosstalk in such networks and how signalling specificity and fidelity

may be maintained. Another phenomenon observed in signalling is the temporal coordina-

tion of processes with one another. Examples include events such as mitosis Georgi et al.

(2002) and the assembly of large protein complexes involved in flagellar motors Kalir et al.

(2001). Bidirectional aspects of signalling may affect or even contribute to these properties

in a very non-trivial manner, and therefore are of direct biological relevance. Overall our

studies provide important insights which help bridge descriptions of networks at local and

global levels.

Further to the biological implications discussed above, there are important implica-

tions for the ways in which biological signalling circuits are modelled. Mathematical mod-

elling has been used to analyse and understand many signalling networks. Such models
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frequently consider enzyme-substrate complexes only implicitly, often using Michaelis-

Menten kinetics or other simplifications such as the quasi-steady state assumption (QSSA)

(Borghans et al., 1996; Ciliberto et al., 2007; Segel, 1988). It has been recognised that

these simplifications may have significant effects on the behaviour of models, as seen re-

cently in analyses of ultrasensitive and multistable reaction networks (Gunawardena, 2005;

Sabouri-Ghomi et al., 2008; Thomson and Gunawardena, 2009). Another implication is

that modular decompositions of networks, which may allow rapid simulation and more

straightforward analysis, must be undertaken with care. The analysis which we present is

relevant to both these aspects.

In order to focus on the essential aspects of coupling of processes through shared com-

ponents, and hence provide insights into the various issues mentioned above, we develop

an appropriate modelling/systems framework. The modelling framework incorporates two

components which bind exclusively to a common third component, and are therefore indi-

rectly affected by each other. The model incorporates the production and degradation of all

components, thus allowing each component to serve as a “signalling port”. Having devel-

oped the basic model, we proceed to systematically examine the signal processing through

this module, as this sheds direct light on the above issues. It is worth emphasizing that in

this minimal general setting, systems analysis provides transparent and important insights

which are relevant to a wide range of systems/contexts where the above feature(s) occur.

We further build on the study of the basic model to include additional features such as

spatial diffusion/localization, and other complexities in signal propagation such as thresh-

old effects. Throughout, we focus on the effects of coupling signalling elements through

shared components, revealing different facets of such generic coupling.

This chapter is organized as follows. In the next section, we present the basic mod-

elling framework which we employ. Following this, we systematically examine the steady

state and temporal signal processing in this module in turn. We illustrate the relevance of

the analysis in specific biological contexts. We then examine the effect of the additional

elements mentioned above. Finally we conclude with a synthesis and discuss additional

applications and extensions.
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3.2 Models

3.2.1 A basic model of coupling between signalling pathways

Here, we develop a basic model of pathway coupling – the sharing of one component

between processes. In its most basic form, the coupling of processes and signalling can be

studied via a simplified ordinary differential equation model, which involves the interaction

of three species A, B and X. A and B each bind exclusively to X, and thus X serves as a

factor which couples the dynamics of A and B. We formulate the model in a general form,

so that the essential insights can be extracted in a transparent and generalisable way. We

begin by modelling the interaction of A and X alone. The processes which are modelled

are the binding of A and X to produce a complex AX, the dissociation of the complex, and

the independent production and degradation of A and X. The dynamics of this system are

governed by the equations:

d[X]

dt
= ka2[AX]− ka1[A][X] + kpx − kdx[X]

d[A]

dt
= ka2[AX]− ka1[A][X] + kpa − kda[A]

d[AX]

dt
= ka1[A][X]− ka2[AX]− kdax[AX] (3.1)

Here, [X], [A], and [AX] denote the concentrations of each species A, X and the com-

plex AX. In the above equation, ka1 and ka2 denote the binding and unbinding rate con-

stants, kpx, kpa denote the production rates of the species X and A respectively, and kdx,

kda denote the degradation rates of these species. This model is, in general, non-trivial to

solve analytically, although this may be facilitated if the degradation rates of all species are

equal (Buchler and Louis, 2008). There are, however, several reasonable simplifications

which allow some initial analysis to be performed. First of all, if production and degra-

dation of species may be assumed to occur on a longer timescale than complex formation,

then these terms may be neglected and this results in the equations (in dimensionless form):
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d[X]

dt
= ka2[AX]− ka1[A][X]

d[A]

dt
= ka2[AX]− ka1[A][X]

d[AX]

dt
= ka1[A][X]− ka2[AX] (3.2)

Note that in these simplified equations, the total amounts of A and X are conserved,

and hence information about the availability of these species is contained in the initial con-

ditions. These expressions may be condensed by applying conservation conditions using

the total quantities of A, and X (denoted [AT ] and [XT ], respectively).

All we have done up to this point is describe the dynamics of a protein, X, involved

in one process, A, as has been modelled previously (Buchler and Louis, 2008). However,

we are primarily interested in what happens when X is involved in more than one process,

since it is these cases in which the coupling comes into play. Therefore, we introduce a

second process, B, and can make use of the same model to describe its interactions with X

(see figure 3.1):

d[X]

dt
= ka2[AX]− ka1[A][X] + kb2[BX]− kb1[B][X] + kpx − kdx[X]

d[A]

dt
= ka2[AX]− ka1[A][X] + kpa − kda[A]

d[AX]

dt
= ka1[A][X]− ka2[AX]− kdax[AX]

d[B]

dt
= kb2[BX]− kb1[B][X] + kpb − kdb[A]

d[BX]

dt
= kb1[B][X]− kb2[BX]− kdbx[BX] (3.3)

The above model incorporates the binding of B to X to form a complex BX, as well

as the dissociation, and in addition includes the production and degradation of B (rate

constants kb1,kb2,kpb, and kdb respectively). While we have described the production and

degradation of species, we stress that this need not be taken as protein synthesis and degra-

dation – it includes, for example, the rate of formation of a particular post-translationally

modified form of a protein. This is significant because these processes may occur on a

much faster timescale than protein synthesis and degradation.
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Figure 3.1: Basic model schematic. A schematic of the basic model is shown here. The species X interacts
with both A and B. All species undergo constant production and degradation.

Some of the analysis will be concerned with the steady-state of these models. In this, the

equilibrium constants for the complex formation of A and B with X (the ratio of binding

to dissociation rate constants) become relevant parameters of interest. We denote these

KA(= ka1/ka2) and KB(= kb1/kb2), respectively.

Variation of inputs and outputs

We note at the outset that the model is a general model of components A and B, interacting

through competitive binding with the element X. This model allows modulation of the

levels of each of these components by external signals through their rates of production

and degradation. Throughout the chapter, we are primarily interested in two essentially

different ways in which the levels of components are modulated by external signals. In

the first case, we examine how changes in production of the shared component, X, are

propagated to affect the levels of free A and B, and the levels of the complexes AX and

BX, and therefore modify both pathways in which X participates. In the second case, we

examine how changes in the production of the components A and B affect the levels of

all components and complexes. This corresponds to the pathways being controlled while

the shared component remains constant. Through this analysis, we hope to understand the

range of behaviours available to such systems, and their possible biological significance.

In particular, we examine how shared components may coordinate processes, and how
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processes may remain independent despite sharing components.

At this stage we make very few assumptions about the nature of the downstream pro-

cesses involving the complexes AX and BX. Later in the chapter, we build on the existing

modelling framework to examine certain additional features in the downstream processes

from our perspective.

Choice of parameters

Since we are concerned with investigating the effects of binding in a general context, we

choose parameters that allow straightforward demonstration of the important behaviours.

To this end, the binding affinities of the species for one another are chosen to be high, while

remaining within a biologically feasible range. In general, the total concentrations of each

component are ofO(1), while the affinities are ofO(103) (KA = 103 andKB = 70 for most

simulations, see below). The concentrations and parameter values are dimensionless, and

therefore represent a range of possible scenarios. To give an idea of a corresponding real-

unit scenario in the case of the higher-affinity interaction between A and X, the parameters

used here could correspond to concentrations of 10µM with KA = 104nM−1. These

affinities are high compared to typical affinities of enzyme-substrate interactions, but are

still biologically feasible in this case (see, for example, (Bae et al., 2009; Huynh et al.,

2009)), and may be more typical of other systems, since enzyme-substrate interactions are

expected to be transient (and therefore low affinity) by their very nature.

Our results involve analysing the models using simulations (performed in MATLAB

using ode15s) and analytical results. The MATLAB code used to generate the figures is

provided as part of the digital appendices (described in Appendix E.0.2), with the parameter

values used in each case additionally supplied in Appendix A.

3.2.2 Models of reversible phosphorylation

In order to investigate the effects of multiple interactions in the case of enyzmes with mul-

tiple substrates (so-called “multispecific enzymes”), we simulate two models of reversible

phosphorylation. Given the abstract representation of phosphorylation in these models,

they may be considered representative of any number of other reversible post-translational

modifications, such as methylation or ubiquitination. The models we use consist of single-

and double-modification of a substrate by an enzyme.
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Model of single reversible phosphorylation

A single reversible phosphorylation, with uptake of the kinase, can be described by com-

bining a mass-action based phosphorylation reaction with a Michaelis-Menten type de-

phosphorylation reaction (as in (Goldbeter and Koshland, 1981)). This gives the equations:

d[E]

dt
= v2 + v3 − v1

d[AE]

dt
= v1 + v2 − v3

d[Ap]

dt
= v3 − v4

d[A]

dt
= v2 + v4 − v1 (3.4)

Where:

v1 = ka1[A][E]

v2 = ka2[AE]

v3 = ka3[AE]

v4 =
ka4[Ap]

Kma4 + [Ap]
(3.5)

Similar equations are obtained for the phosphorylation of B by the same enzyme.

Model of double phosphorylation

Modification cycles consisting of multiple phosphorylations may behave similarly to mod-

ification cycles involving only one phosphorylation. Therefore, by including a model of

double phosphorylation, we are especially interested in a behaviour that it is capable of

exhibiting that is not possible in the case of single phosphorylation - bistability. A model

of double phosphorylation has been shown to exhibit bistability Markevich et al. (2004),

and we use this model as published. This model is described by the equations:
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d[E]

dt
= u2 − u1 + u4 − u2

d[F ]

dt
= w3 − w1 + w6 − w4

d[A]

dt
= w6 − u1

d[Ap]

dt
= u2 − u3 + w3 − w4

d[App]

dt
= u4 − w1

d[AE]

dt
= u1 − u2

d[ApE]

dt
= u3 − u4

d[AppF ]

dt
= w1 − w2

d[ApF

dt
= w2 − w3

d[ApF
∗

dt
= w4 − w5

d[AF ]

dt
= w5 − w6 (3.6)

Where:
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u1 = k1[A][E]− k−1[AE]

u2 = k2[AE]

u3 = k3[Ap][E]− k−3[ApE]

u4 = k4[ApE]

w1 = h1[App][F ]− h−1[AppF ]

w2 = h2[AppF ]

w3 = h3[ApF ]− h−3[Ap][F ]

w4 = h4[Ap][F ]− h−4[ApF ]

w5 = h5[ApF
∗]

w6 = h6[AF ]− h−6[A][F ] (3.7)

3.3 Results and discussion

The results are organized as follows: we use our modelling framework to study how the

system responds to different signals from both steady state and temporal perspectives. We

then build on our analysis to examine a number of biologically motivated variations to

our structure, which include additional components, downstream switching elements and

spatial signal transduction, and discuss their possible biological significance. We start by

examining the case where a signal modulates the production of the shared component, X,

and continue by examining the case where signals modulate the components A and B, both

separately and simultaneously. As discussed above, the MATLAB code used to generate

the figures is provided as part of the digital appendices (described in Appendix E.0.2), with

the parameter values used in each case additionally supplied in Appendix A.

3.3.1 Modulation of the shared component

We begin by analysing the steady state response of the system to changes in the production

of X. From the perspective of signal propagation, this may be regarded as signal processing

through “diverging pathways”. Assuming that the rates of degradation of all components

are equal, we can write the total quantity of each component in terms of the production

and degradation rates ([XT ] = kpx/kd, [AT ] = kpa/kd, [BT ] = kpb/kd, where [XT ], [AT ],
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and [BT ] refer to the total concentrations of X, A, and B, respectively). This allows us to

analyse the model in terms of its response to [XT ], allowing more transparent explanation

of the results.

Figure 3.2 shows the response of the system when A and B are produced and degraded

at equal rates, for the case where X binds more strongly to A than to B. We note that there

are essentially three regimes of response. In the first regime, all processes are unsaturated

and X is mostly taken up by A, since . In the second regime, process A has become satu-

rated, and X is taken up by B. In the third regime, both processes have become saturated and

X accumulates in its free form. These regimes show an “ultrasensitive” response of BX and

free X, where a threshold in the total amount of X present must be reached before a signif-

icant response is observed. For our purposes, it is sufficient to think of “ultrasensitivity” as

an effect involving increased relative sensitivity, along with a concomitant threshold effect,

and see (Gunawardena, 2005) for a discussion of technical definitions of “ultrasensitivity”).

Figure 3.2: Steady-state response to changes in production of X a) The pattern of linear and saturating
responses to changes in [XT ] is shown for the case KA � KB � 1. b) The relative sensitivity of each
component with respect to [XT ] is plotted showing how it peaks above one for free X and BX, but decreases
to zero for AX.

Some basic analysis provides direct quantitative insight. For simplicity, the analysis is

performed for the case where the production and degradation of X, A and B are neglected.

In this case, the behaviour of the system is monitored for the case where an addition of free

X (and hence total X) is imposed at t=0. An inspection of the steady state equations reveals

that the concentration of the complexes is proportional to the total amount of X, [XT ]. At

steady state, each of the complex formation/dissociation reactions is at equilibrium (derived



3.3 Results and discussion 46

from Equation 3.3):

[AX] = KA[A][X]

[BX] = KB[B][X] (3.8)

At steady state and using the conservation condition , we get the following equations

for the response of AX, BX and free X to changes in the total concentration of X:

[X]

[XT ]
=

1

KA[A] +KB[B] + 1

[AX]

[XT ]
=

KA[A]

KA[A] +KB[B] + 1

[BX]

[XT ]
=

KB[B]

KA[A] +KB[B] + 1
(3.9)

Note that [A] and [B] are the concentrations of free A and free B and hence implicitly

depend on the total X in the system. As mentioned above, for our purposes ultrasensitiv-

ity involves heightened relative sensitivity to [XT ] along with any concomitant threshold

effects. The absolute sensitivity of a concentration to [XT ] is defined as its derivative with

respect to [XT ], while the relative sensitivity is this quantity scaled by the ratio of the rel-

evant concentrations. Here, we analyse the steady state response of the model in terms of

the absolute and relative sensitivities to the total quantity of X, [XT ]. In particular, we look

at how these quantities behave in particular limits, when there is a significant difference in

the affinities KA and KB.

We begin by deriving expressions for the absolute and relative sensitivities. Differen-

tiating the steady state expressions given in equation 3.9 with respect to [XT ] gives the

absolute sensitivities

d[X]d[XT ] =
1

KA[A] +KB[B] + 1
+ [XT ]

d

d[XT ]

(
1

KA[A] +KB[B] + 1

)
d[AX]

d[XT ]
=

KA[A]

KA[A] +KB[B] + 1
+ [XT ]

d

d[XT ]

(
KA[A]

KA[A] +KB[B] + 1

)
d[BX]

d[XT ]
=

KB[B]

KA[A] +KB[B] + 1
+ [XT ]

d

d[XT ]

(
KB[B]

KA[A] +KB[B] + 1

)
(3.10)
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The relative sensitivities are then given by:

S
[XT ]
[X] =

d[X]

d[XT ]

[XT ]

[X]

= 1 +
[XT ]2

[X]

d

d[XT ]

(
1

KA[A] +KB[B] + 1

)
S
[XT ]
[AX] =

d[AX]

d[XT ]

[XT ]

[AX]

= 1 +
[XT ]2

[AX]

d

d[XT ]

(
KA[A]

KA[A] +KB[B] + 1

)
S
[XT ]
[BX] =

d[BX]

d[XT ]

[XT ]

[BX]

= 1 +
[XT ]2

[BX]

d

d[XT ]

(
KB[B]

KA[A] +KB[B] + 1

)
(3.11)

From these expressions, we can explain the pattern in relative sensitivities shown in

figure 3.2b. First, when there is very little X present, very little complex is formed, and

we have [A] ≈ [AT ], [B] ≈ [BT ], and [XT ] � 1 (the amount of different complexes

is proportional to the available X). At this point, noting that the derivatives in the above

expressions are bounded, we simply have S[XT ]
[X] = S

[XT ]
[AX] = S

[XT ]
[BX] = 1.

We can consider what happens at intermediate, albeit low, values of [XT ] for the case of

comparable [AT ] and [BT ], with KA >> KB >> 1. This is similar to the case considered

in figure 3.2. Here, at low levels of [XT ], KA[A] >> KB[B]+1, meaning that the absolute

sensitivities are given by: d[X]/d[XT ] ≈ 0, d[AX]/d[XT ] ≈ 1, and d[BX]/d[XT ] ≈ 0.

Taking the relative sensitivities, as given by equation 3.11, and evaluating the derivatives

(substituting (−d[AX]/d[XT ]) for d[A]/d[XT ] and −(d[BX]/d[XT ]) for d[B]/d[XT ], as

given by the conservation conditions) gives:

S
[XT ]
[X] = 1 +

[XT ]2

[X]

(
KA

d[AX]
d[XT ]

+KB
d[BX]
d[XT ]

)
(KA[A] +KB[B] + 1)2

S
[XT ]
[AX] = 1 +

[XT ]2

[AX]

(
KA[A]

(
KA

d[AX]
d[XT ]

+KB
d[BX]
d[XT ]

)
−KA

d[AX]
d[XT ]

(KA[A] +KB[B] + 1)
)

(KA[A] +KB[B] + 1)2

S
[XT ]
[BX] = 1 +

[XT ]2

[BX]

(
KB[B]

(
KA

d[AX]
d[XT ]

+KB
d[BX]
d[XT ]

)
−KB

d[BX]
d[XT ]

(KA[A] +KB[B] + 1)
)

(KA[A] +KB[B] + 1)2
(3.12)
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Substituting the above approximations for the absolute sensitivities then gives:

S
[XT ]
[X] = 1 +

[XT ]2

[X]

KA

(KA[A] +KB[B] + 1)2

S
[XT ]
[AX] = 1− [XT ]2

[AX]

KA(KB[B] + 1)

(KA[A] +KB[B] + 1)2

S
[XT ]
[BX] = 1 +

[XT ]2

[BX]

KAKB[B]

(KA[A] +KB[B] + 1)2
(3.13)

This shows that, before A becomes saturated (i.e. while KA[A] � KB[B] + 1 holds),

the relative sensitivities of both [X] and [BX] to [XT ] increase from 1, while that of [AX]

decreases from 1. This is observed in simulations, as shown in Fig. 2b.

In the limit of very high [XT ], we can consider that [XT ] ≈ [X], as the proportion of X

taken up in complexes becomes small. Under these conditions, the equilibrium expressions

in equation 3.8 can be rearranged to give:

[A] =
[AX]

KA[XT ]

[B] =
[BX]

KB[XT ]
(3.14)

where the numerators approach a constant value. This indicates the asymptotics for [A]

and [B] as the total X becomes large (this can be justified carefully).

These expressions are small for high [XT ], so we can consider that KA[A] +KB[B]�
1, so 1+KA[A]+KB[B] ≈ 1. Using this and equation 3.12 in equation 3.11 and evaluating

the derivatives gives:

S
[XT ]
[X] → 1

S
[XT ]
[AX] → 0

S
[XT ]
[BX] → 0 (3.15)

This result can also be obtained by incorporating the asymptotic expression for [A] and

[B] for large [XT ] and evaluating the relevant expressions.
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This demonstrates what we expect intuitively – as [XT ] becomes large, the relative

sensitivity of free X asymptotes to one, while the relative sensitivities of the complexes AX

and BX asymptote to zero.

In summary, assuming that the binding affinity of A is much greater than that of B, we

can discern three regimes in the response. These three regimes can be described in terms

of the saturation of A and B. Initially, since the binding affinity of A is much greater than

B and A and B are present in equal amounts, KA[A] + KB[B] + 1 ≈ KA[A], and most of

the available X forms complexes with A (this implicitly assumes that the available A and

B is in excess of X). Once A is depleted, the quantity KA[A] becomes dwarfed by KB[B],

and so KB[B] + 1 ≈ KB[B], and most of the available X forms complexes with B. This is

what underlies an ultrasensitive response in BX as the total concentration of X is increased.

This parallels the effects discussed by Buchler et al (Buchler and Cross, 2009; Buchler

and Louis, 2008), although we note that the relative sensitivity (the sensitivity scaled by

concentrations, see (Seaton and Krishnan, 2011b) for details) in the complex BX is less

than the relative sensitivity observed in the free X (see figure 3.2). Once B is depleted, all

remaining X is added to the free pool. We note that the ultrasensitivity in response of the

B pathway depends on suppression of signal at low values of the input (in this case [XT ])

by the A pathway. This requires that KA[A] � KB[B], which is a condition on relative

affinities rather than absolute affinities. However, the absolute sensitivity in also depends

upon a high linear response once A is depleted and that suppression is overcome, requiring

KB[B]� 1. Therefore, the response observed requires the system to satisfy the condition

KA[A]� KB[B]� 1. The results are illustrated in figure 3.2.

Other classes of regime may similarly be discerned, depending on the relative amounts

of A and B initially and the affinities. For instance suppose KA[A] � 1 � KB[B], then

we see that as [XT ] increases, A is largely taken up, but as A depletes, much of the extra

X remains free rather than bound to B. The other case, where 1 � KA[A] � KB[B]

throughout is one where most of the X is unbound, and is hence of less interest.

Returning to the above analysis for the case when KA[A]� KB[B]� 1, we note that

our analysis and conclusions were based on a steady state analysis and the factors which

enter the analysis are the equilibrium constants. We now examine how such a network

responds to temporal signals.

In order to do this, we take the full system at steady state and change the production

rate of X at t = 0. Note that a slow change in the quantity of X would leave the system in a

quasi-steady state, and the results would follow directly from the steady state analysis pre-
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sented above. Thus, we examine cases where rapid changes in the quantity of X available

are induced.

If we apply a step increase in the production of X, we find that A responds first, followed

by B as discussed above – this is illustrated in figure 3.3. This is for the case where the

relative affinity of A is greater than that of B and where the timescales of the pathway A

are much faster than that of B. In this case the dynamic signal processing in this circuit

essentially mirrors the steady state signalling and response discussed above. This can also

be demonstrated analytically (Seaton and Krishnan, 2011b). We further note that, when

X is present at low levels, an increase in the production of X will primarily affect A, with

little dynamic response in B.

Also shown in figure 3.3 is that, in the opposite case, if the relative time scales of

the high affinity binding/unbinding are changed (keeping the equilibrium constant fixed)

it is possible to saturate the low-affinity component, B, more rapidly than the high-affinity

component. In figure 3.3, a case where a sufficiently high change in X is considered so

that both A and B are essentially saturated at steady state. For intermediate levels of X,

what can be observed is that the low affinity component complex is rapidly formed before

a gradual redistribution of X between the pathways. Thus if the low affinity component

B is the faster responding component, then a step change in X (in this range) will affect

B first, before it gradually reduces with the X “leaking” back to the A pathway. Thus in

this regime, a step change in X results in a marked but essentially transient response for

BX, and a much more gradual response for AX. Thus BX displays a faster but adaptive

response, while AX displays a slower but persistent response. We further note that if the

total X is increased past a level which ensures saturation of the component A, then BX

displays a response which is partially adaptive. This partial adaptation (underadaptation)

can be traced to the saturation of the “inhibitory” pathway A. This illustrates the importance

of kinetics in addition to steady state and quasi-steady state analysis in understanding the

temporal order of activation of the pathways.

To further examine the temporal response, we input a square pulse in the production

of X. The response is seen in figure 3.4, where the faster of the two pathways responds

quickly, but also recovers more quickly. In contrast, the slower pathway registers a more

prolonged but shallower response. Again, the insights from the numerical simulations can

be complemented by analytical studies.

Overall, the analysis above provides insight into how the coupled pathways process

steady and temporal signals through their shared component and propagate them down-
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Figure 3.3: Dynamic response to a step-change in production of X a). This figure shows how a step
change in production rate of X (starting from 0) imposed at t = 0, affects the concentration of all different
components. Here,KA � KB � 1. Note that eventually the concentration of free X also reaches a steady
state. b) When the timescale of the lower-affinity interaction (interaction of X with B) is lengthened, the
higher-affinity interaction saturates at earlier times, and the lower-affinity interaction saturates at later times.
c) When the timescale of the higher-affinity interaction (interaction of X with A) is lengthened, the order in
which the complexes are formed can be reversed, so that the lower-affinity interaction saturates at an earlier
time than the higher-affinity interaction. Note that in this case the total amount of X in the system finally
is clearly greater than the total of A and B put together, so that eventually, most of A and B are present in
complexed form. (d) The case where the lower affinity component is faster is shown. Here a sudden change
in production of X is imposed so that the total X does not exceed the total amount of A and B. Here we see
that at early times B takes up most of the X, while at longer times, the concentration of the complex BX
gradually decreases and that of AX eventually increases.



3.3 Results and discussion 52

stream, and the role of other factors in modulating this process.

Figure 3.4: Dynamic response to pulsatile change in production of X The response to a rectangular pulse
of X imposed starting at t = 0 is considered here. Here the affinities of the interactions are equal (KA =
KB = 1), but the timescales are different (τA � τB). The faster interaction (with A) takes up X more
quickly, but also releases it more quickly.

3.3.2 Modulation of each pathway alone and together

We now use our modelling framework to examine the case where input signals “converge”

on a common target. This is done in our model by changing the production of A and B, and

keeping the production of X fixed. We first consider the case when the input is applied only

to A (the high affinity component). Figure 3.5 shows the result wherein the concentration

of the complex AX increases and the concentration of free X decreases followed by that

of the complex BX. This shows how signalling through one of two “converging pathways”

may affect the second one. Also shown is the case where the step input is applied to the

low affinity component. Here BX builds up, depleting X, and then AX, but overall the AX

concentration doesn’t decrease as substantially as before simply because the low affinity

component isn’t able to outcompete the high affinity component as effectively. Thus here

the retroactivity effect of pathway B on pathway A is weak, when compared to that of

pathway A on B.

Now we consider the effect of simultaneous step changes provided to A and B (figure
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Figure 3.5: Dynamic response to change in production of A or B alone The response to step change in
production of A (starting from zero) is shown in a), with KA � KB � 1. The steady state analysis shows
that this should result in a depletion of BX and X. The temporal analysis shows the expected ordering of this
depletion: first X is depleted, then BX. Note that the initial conditions correspond to a steady state with a
non-zero production rate of B. The response of the system to a step change in production of B (starting from
zero) is shown in b). The initial conditions here correspond to a steady state with a non-zero production of
A. The result is qualitatively similar, except production of B is less able to deplete AX, since KA � KB .

3.6). We find that the concentrations of both complexes initially rise, but that eventually the

concentration of the complex of the low affinity component is depleted by the retroactivity

effect. We thus see how a step change in production and A and B together results in a

partially adapting response of BX, purely due to competition effects.

We have examined a variety of ways in which this basic system may be modulated

by a external signals, both at steady state and dynamically (see Table 3.1 for a summary).

We now build on this to examine how the basic network structure and dynamics may be

affected by other additional elements or features. We begin by examining how an additional

component can affect the system by forming a complex with A and X.

3.3.3 Combinatorial signalling and the influence of complex formation

mechanisms and allostery

It was shown above that, in essence, processes which share a component may act to inhibit

one another. The above analysis of the mass-action model applies to situations where A

and B form complexes with X by simple independent interactions. In many cases a protein

may bind cooperatively, and it may be affected by further binding proteins. In this section
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Figure 3.6: Dynamic response to change in production of A and B together The response to a simultaneous
step change in production of A and B (both starting from zero) is shown, whereKA � KB � 1. We observe
that both [AX] and [BX] rise initially. However, as [X] decreases competition between A and B becomes
significant, and the higher affinity interaction of X with A means that it outcompetes B at later times.

Scenario Result
Changing the rate
of production of the
shared component, X

At steady state, ultrasensitivity may be ob-
served in the response of the lower affinity com-
ponent, and of free X. When one examines the
dynamics of the response of the two pathways,
the relative timescales of the interactions are
important. Depending on this, the dynamics
may mirror the steady state response; alterna-
tively, an adaptive response may be observed in
the low affinity component.

Changing the rate of
production of A and B.

The two pathways may inhibit one another, with
the high affinity component having a greater in-
hibitory effect. Depending on the timescales of
the interactions, the dynamics may either mirror
the steady state response, or result in an adap-
tive response in the lower affinity pathway.

Table 3.1: Summary of results for the basic model We consider the case where the shared component, X,
binds with high affinity to component A, forming the complex AX, and with low affinity to component B,
forming the complex BX.
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we show how such mechanisms influence the potential interaction and coupling between

processes. We then suggest a role for this in effect in insulating pathways against crosstalk.

In particular, since these mechanisms allow single proteins to behave as “AND” gates –

active only when receiving both input signals – they allow tuning of specificity through

combinatorial signalling.

In this section, we will consider X as an input affecting A and B; the only difference

is that we will have an additional input Y which affects the activation of the A pathway by

X. This can occur in different ways: for instance Y can bind with A before it is targeted

by X. Alternatively Y can bind with the complex AX only. A third way is if X and Y

co-operatively interact with A. Schematic diagrams of all these cases are shown in figure

3.7. All of these cases represent a modification of one of the coupled pathways by an

extra element Y. Having understood the behaviour of the simpler model previously we can

examine what the role of the extra element Y is in coupling the two pathways. Here, we

consider the X and Y to be two inputs, with the complexes AXY and BX the outputs.

As a simple example of the effect complex formation mechanisms can have, consider

that the binding of X to A precedes binding by Y (Fig. 3.7b). We denote this, the sequential-

binding model of complex formation. A good example of such a mechanism is the binding

of substrate to CDK-cyclin complexes, where the cyclin must bind to CDK before the

substrate (Rabiller et al., 2010). In this case, two unbinding events must occur before X is

free. Y, which corresponds to the CDK-cyclin substrate, is effectively locking in X, which

corresponds to the CDK (which may bind to many different cyclins, corresponding to A

and B). An analysis of this network reveals the highly non-trivial impact which Y has: this

will impact on both the steady state and dynamic behaviour as seen in figure 3.8. What

is observed is that without Y, the signalling pathway involving A is inactive, and in the

presence of Y it is active. Further, in the presence of Y, not only is the A pathway activated

but the B pathway is inhibited. In our modelling framework, the introduction of Y can be

seen as effectively reducing the dissociation rate of X from the complex AX, modulating

the response by further suppressing BX formation at low concentrations of X.

Thus, such a complex formation mechanism can act to increase signalling specificity by

effectively combining the cross inhibition and combinatorial signalling methods of reduc-

ing crosstalk. In the case of CDK-cyclin complexes mentioned above, given that different

cyclins result in different substrate specificities (Bloom and Cross, 2007), sequestration

provides a mechanism for the presence of substrates for a particular cyclin-CDK complex

to favour the formation of that complex rather than other cyclin-CDK complexes. Further,
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Figure 3.7: Schematic of combinatorial signalling A situation where an extra player Y is involved in reg-
ulating/interacting with pathway X is considered. The signals X and Y combine to form an active complex
with A, but X also participates in a complex with B, as shown in a). This involves the formation of a tertiary
complex, AXY. Three distinct mechanisms for the formation of this complex are illustrated in b)-d). In b), A
binding to X precedes its binding to Y. In c), A binding to Y precedes its binding to X. In d) X and Y bind to
A cooperatively, stabilizing it in its active conformation.
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Figure 3.8: Combinatorial signalling and specificity Combinatorial signalling can increase signalling speci-
ficity through competitive inhibition of parallel pathways. This figure depicts the outputs of the A and B
pathways when subject (at t = 0) to a change in production rate of X, starting from zero. Solid curves repre-
sent the response to both X and Y together, while dashed curves represent the response to X alone. a) shows
the response when X binding to A precedes Y binding, b) shows the response when Y binding to A precedes
X binding, c) shows how the amount of available Y affects the fraction of free X and d) shows the response
when X and Y bind to A cooperatively. In all cases, it is seen that the presence of X and Y together not only
activates the A pathway but also inhibits the B pathway, and thus leads to improved signalling specificity. In
(a) and (b), the absence of Y leads to zero output from the A pathway. While the qualitative results from (a)
and (b) are similar, we some differences in how the total availability of Y affects the results. In the case where
Y binds to A before X binds to it, we see that a low availability of Y substantially increases the fraction of
free X. This is not the case when Y binds to A after X is bound to it.
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deletion of a cyclin may lead to compensation effects from the binding of substitute cyclins,

as many are present at significant levels at the same time (Cross et al., 2002).

The other case, where binding of Y to A precedes binding of X to form the active

complex AXY, can also be considered within our framework (figure 3.7c)). In this case,

addition of Y allows binding of X, and so performs the same role in modulating B as A

alone did in the basic model. Figure 3.8 shows again that the presence of Y, increases

specificity of A and leads to greater inhibition of B. On the other hand, we see that the

presence of Y acts to insulate A from the crosstalk through B via the common connection

X. While in both cases an increased Y acts to inhibit BX formation at steady state, there

are some differences. In one case (Y binding with A before binding with X) we see that the

amount of Y limits the amount of X involved in this pathway. Thus a low level of Y will

substantially reduce the amount of X involved in this pathway. This is not the case for the

scenario where Y binds to the complex AX. The contrasting effects of the two mechanisms

on the uptake of X in response to Y are shown in figure 3.8.

The above mechanism essentially allows one component to lock another into the com-

plex. Another view of protein complex formation comes from allostery. Here, it is possible

for two inputs to act on one protein in a synergistic way, so that they are both in some sense

locked in by one another, simply through the stabilization of a high affinity conformation.

Examples in which this might be significant are widely available, and include the WASP

family of proteins (Padrick and Rosen, 2010), A-kinase anchoring proteins (Beene and

Scott, 2007), and phospholipase C (Philip et al., 2010). This can be captured by a model of

co-operative interaction between X and Y in binding A in which the preferential binding

of the proteins to the active conformation shifts the population towards this active state. A

simple representation of such a model is the following (see schematic in figure 3.7d)).

[AX]

[A][X]
= KA1

[AY ]

[A][Y ]
= KA2

[AXY ]

[AY ][X]
= αKA1

[AXY ]

[AX][Y ]
= αKA2 (3.16)
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Where KA1 and KA2 are association constants and α is the cooperativity constant be-

tween X and Y. Note that in the above model the same co-operativity constant appears in

the last two expressions. This is done for simplicity, and ensures that the steady state of

binding in the network corresponds to equilibrium conditions. Again, we see that signalling

specificity may be increased through this mechanism. Just as in the previous cases, we find

that the presence of Y increases the active output from pathway A but also inhibits pathway

B (figure 3.8).

It is worth pointing out that allosteric models of complex formation predict that this

mechanism of crosstalk inhibition can occur bidirectionally, meaning that Y affects uptake

of X and vice versa. This is in contrast to the sequential-binding model discussed above,

where the component which binds first can affect uptake of the other, but not the other

way round. It should also be noted that, while allosteric mechanisms are often proposed

due to observed synergistic activation of a protein, the crosstalk inhibition effect identified

here does not require such synergy. In the case considered here, if Y can activate A on its

own, then allosteric effects may not appear to be significant. However, they can still allow

cross-inhibition of pathways, and therefore signalling specificity.

Taken together we have seen how the presence of an extra element Y to the simple path-

way coupling can lead to the activation of the relevant pathway and inhibition of the other

(competing) pathway. Thus mechanisms of complex formation provide control settings to

determine how pathways and processes may inhibit one another. Overall, additional ele-

ments can modulate the pathway structures in highly non-trivial ways, and this provides

some insight into how additional elements in cellular signalling systems may act to modu-

late and control signal splitting between pathways.

3.3.4 Coupling of switches

The basic model presented here made no assumptions about the nature of the pathways in

which A and B are involved, and merely represented the binding of species to one another.

However, in many cases proteins with multispecificity are also capable of enzymatically

modifying the proteins with which they interact (Copley, 2003; Csikasz-Nagy et al., 2009;

Hult and Berglund, 2007; Kim et al., 2010, 2011; Nobeli et al., 2009). In this section

we extend our model to examine some of the consequences which reversible multispecific

posttranslational modification might have on the signalling properties of the system. We

examine two generic cases of signalling through post-translational modifications – one
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involving only single reversible modifications of the substrates, and the other involving

a double modification of one substrate. The first case is shown in Fig. 3.9 and involves

two switch-like pathways of Goldbeter-Koshland type (Goldbeter and Koshland, 1981),

involving a single reversible posttranslational modification of each substrate (A and B) by

the shared enzyme X. As previously, we begin by examining the steady state situation in

terms of the conserved total quantities of X. The enzyme kinetics are chosen such that

the affinity of X for A is higher than that for B, while keeping the overall steady state

response of the switches in isolation very similar, as shown in Fig. 3.9. Now, when the

two switches are connected via the common upstream component, we see that the high

affinity pathway (A) is activated at a lower input level than the low affinity pathway (B).

Thus the coupling of switches allows for a sequential activation in a well-defined order of

the two pathways. In the model under consideration, we examined the effect of availability

of A and B on the input dose difference between the activation of the switches, over a wide

range of abundances of A and B (Fig. 3.10). We note that this difference varies significantly

when there are low concentrations of one component – this is the result of the uptake of

X by the component being insufficient to couple to switches effectively. However, higher

concentrations of A and B ensure suitable conditions for the coupling to occur effectively,

and little difference is observed in their activation dosage-gap. Thus it is possible to have a

sequenced activation of coupled switches arising from their activation through a common

source.

Further to the steady state analysis, we can look at the effects of the system dynamics

on signalling. As expected from the dynamic analysis of the response of coupled pathways

to modulation of the shared component X, if the timescale of interaction between A and X

(the high affinity interaction) is faster than the interaction between B and X, the dynamic

pattern is similar to the steady state one – activation of A preceding that of B. Likewise, if

the timescale of interaction between B and X is faster than the interaction between A and

X, we get the reversed pattern, where at first B is active, followed by A. Again, adaptive

behaviour in the low-affinity component, B, can result due if the faster pathway is the lower

affinity pathway(results not shown).

We now examine a different coupling of switches, of the enzyme with a single reversible

modification of the substrate B, but two sequential reversible modifications of the substrate

A (which we refer to as the multiphosphorylation switch), by the common enzyme X. The

multiphosphorylation switch is capable of a range of behaviours – it is also capable of the

switch-like monostable response of single phosphorylation (Liu et al., 2010), but is further
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Figure 3.9: Competition and specificity This figure shows how signalling specificity may be improved
by competition effects. It considers the case of two switches which are regulated by the same upstream
component. Each of the switches in isolation display switching behaviour at the same input dosage. a) shows
the response of the switches in isolation, and b) shows the switches operating together. It is clear that it is not
possible to choose input values for the isolated case which would result in mutual specificity. However, when
they operate together mutual specificity can be obtained by having low inputs activating A and high inputs
activating B, triggering the relevant switch.

Figure 3.10: Competition and timing This figure further examines the case presented in Figure 3.9 and
shows how the difference in total enzyme ([XT ]) concentrations at which the two switches become activated is
kept consistent over a wide range of total concentrations of A and B. The difference plotted is the difference in
input concentration between that where the A pathway is triggered and that where the B pathway is triggered.
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capable of exhibiting bistability (Markevich et al., 2004) (see above for model equations

and parameter values). When exhibiting a monostable response, the behaviour of the com-

bined system is as described above. However, when exhibiting a bistable response, a qual-

itative change in the behaviour is observed. The behaviour of the two switches in isolation

and together is shown in Fig. 3.11. We note that, when isolated from one another, pathway

B displays only a slightly sigmoidal response, while pathway A displays a dramatic shift

in response as a result of its bistability. In this case by coupling these two pathways via

a common upstream regulator X, we see that as the upstream signal is increased past a

threshold the multiphosphorylation switch is switched on. It is evident that at this point the

switch involved in pathway A is also triggered, in fact in a more dramatic fashion than the

regular switching of pathway A itself, and this is purely due to the coupling of the switches.

The reason for this switching is seen in the shift in the available X observed when the bista-

bility threshold is crossed (see Fig. 3.10) – this shift is not observed when a monostable

signalling threshold is crossed. Bistability in this case therefore results in significant qual-

itative changes to bidirectional signalling, as well as to the input-output response. Thus

this example reveals that a strong switching behaviour in a pathway need not necessarily

arise from characteristics embodied in that pathway, but may instead arise from coupling

with other switches through shared components. Taken together the examples show how it

is possible to get sequential spaced switching from the coupling of switches with identical

thresholds and also to get coordinated switching of pathways in a striking manner.

3.3.5 Spatial signalling

This chapter thus far has studied the coupling of pathways/processes through shared com-

ponents and focussed exclusively on temporal signal processing. Many cellular processes

involve aspects of spatial signal transduction, and the importance of spatial aspects in sig-

nalling is being increasingly recognized. In the context of our analysis, we systematically

investigate phenomena introduced purely by differences in the diffusivity and localization

of the components.

In order to do this, we assume that all components exist in a spatial domain. For speci-

ficity, we take this to be a 1-dimensional periodic domain, although most of the essential

results remain valid in other domains. We now include the spatial element, by including

spatial variation in one or more elements. Additionally, we examine the effects of one of

the components being highly diffusible to see if this changes the effect of the interaction of
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Figure 3.11: Coordinated switching This figure illustrates another aspect related to the coupling of two
switches through common upstream regulation. One of the switches (A) is a multiphosphorylation switch
while the other (B) is a monophosphorylation switch. The response of the multiphosphorylation and
monophosphorylation switches are shown in a) and b), respectively. The solid curves show their response to
[XT ] in isolation, while dashed curves show their response to [XT ] when together. We see that the sharp
switching of the multiphosphorylation switch can be “transmitted” to the monophosphorylation switch, re-
sulting in coordinated switching at a well defined location. The reason for this is the sharp change in the
uptake of enzyme by the multiphosphorylation switch, as the threshold is crossed, as shown in c), resulting in
an increase in free enzyme. The response of the single phosphorylation switch does not exhibit this behaviour,
as shown in d).
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the pathways in a non-trivial way. In this case, we will assume that A is highly diffusible,

and likewise so is the complex AX. We emphasize that while we perform simulations and

analysis in a 1-D periodic domain, our analysis and main conclusions are also relevant to

other situations, for instance where X is initially present only in the membrane of the cell ,

while A is present, along with its complex, both in the membrane as well freely diffusible in

the cytosol. We will examine some scenarios which draw a direct contrast with the purely

temporal signal processing in the case where the shared component, X, is modulated. We

start by examining the situation where X is present only in part of the domain. A concrete

example is if X is present at a non-zero level only in a specific region initially (for exam-

ple having a square-pulse like spatial profile). No species is either produced or degraded.

Now if all entities are non-diffusible then we expect that, in the region where X is present,

at steady state there exists a balance between the concentrations of free X and complexes

AX and BX, and this is determined exactly as above. Overall the conclusion therefore is

that the complexes AX and BX are present only in the region where X is present, and the

balance between these complexes is determined just as in previous sections.

We now build on this to examine a related case where X is being actively produced

in a inhomogeneous manner with a Gaussian like profile centred around the middle of the

domain. All species are assumed to be degraded equally quickly. Analysis reveals again

that the total A and B attain a uniform constant profile, that the complex AX attains a

uniform profile, while both X and the complex BX are inhomogeneous. Increasing the

production of X actually leads to an elevation in the level of BX at every spatial location,

while only weakly reflecting the pronounced asymmetry in the spatial profile of X. This

is shown in Fig. 3.12. Complementary analytical results are performed in (Seaton and

Krishnan, 2011b).

In the above case, the activating signal was spatially inhomogeneous and this was the

source of the spatial aspect of signalling. A slightly different case can be also examined,

which fits naturally into our framework. This is the case where the activating signal is spa-

tially homogeneous, but a localized sequestration reaction occurs. Thus in the above case

we let the production of X be spatially homogeneous, but we regard the activation of the

B pathway as occurring only locally in a restricted region. This can be described either by

starting with homogeneous X in the domain, and B present only in a localized region, with

no production or degradation of any species or alternatively by having homogeneous pro-

duction of X (and A) and highly inhomogeneous production of B and having degradation

of all species. Both situations provide essentially similar results.
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Figure 3.12: Response to localized production of X This figure shows how the steady state spatial distribu-
tion of the complexes in response to varying rates of production of nondiffusible X. A and B are produced at
a uniform rate across the domain, while X is produced in a localized region. a) shows the spatial distribution
of BX as production of X changes, where both A and AX are diffusible. This allows BX to spread over
the whole cell, even though it is not diffusible. The distribution of BX is almost uniform for low levels of
production of X. b) shows the spatial distribution of BX as production of X changes, where A is the only
diffusible component. Here a pronounced localization is observed. In both cases the AX profile is spatially
uniform (not shown).

Now, if the A pathway is highly diffusible, at steady state the AX profile becomes

homogeneous and an analysis of the X profile reveals that it too becomes homogeneous.

The BX profile reflects the pronounced heterogeneity, and now there is a global coupling

between the levels of X and AX, and the profile of BX, which arises from a global conser-

vation condition.

Simulations describing this case are shown in Fig. 3.13. In this case, if the X binding

to B is strong, the net effect is a localized activation of B, and a consequently less strong

regulation of A, which is nevertheless spatially homogeneous. It is also worth pointing out

that for moderate levels of X production, the spatial profile of free X is itself close to uni-

form (and under these conditions are in agreement with analytical results performed for the

case of no production/degradation of X) although as the rate of production is substantially

increased the free X profile starts to reflect a dip in the region where B is present.

Finally, we can consider the effects of differing affinities in this system. These effects

are demonstrated in Fig. 3.14, showing the response of AX and BX to a fixed, localised

production of X, in the cases of A alone being diffusible, and A and AX both diffusing. In

all cases, increasing the binding affinity of a complex increases its concentration globally,



3.3 Results and discussion 66

Figure 3.13: Response of pathways when production of B is localized This figure shows how the steady
state spatial distribution of the complexes AX and BX change in response to varying rates of production
of nondiffusible X. A and X are produced at a uniform rate across the domain, while B is produced in
a localized region (described by a sharp Gaussian profile centred around the middle of the domain). The
spatial distribution of AX and BX as production of X changes is shown in a) and b), respectively. Localized
production of B causes a very mild reduction in the production of AX around the centre and a sharp increase
in BX there. Both A and AX are diffusible. In part c), only A is diffusible. Localized production of B causes
a sharp reduction in the production of AX around the location at which B is produced.
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Figure 3.14: Response when affinities are varied This figure shows how the steady state spatial distributions
of the complexes AX and BX change with the relative affinities of A and B for X. In a) and b), both A and
AX are the only diffusible components, while X is locally produced. In c) and d), only A is diffusible, while
X is locally produced. It is seen that increasing the binding affinity of a particular complex increases its
concentration, and that this effect is most significant for the nondiffusible complex, BX, which exhibits a
more pronounced spatial variation.
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as expected. However, there is a difference in the behaviour of AX and BX to the difference

in affinities – BX is more sensitive to changes in affinities than AX. The reason for this

is that diffusion of A (or A and AX) allows the concentration of free A, and therefore

the concentration of complexes, to remain relatively constant, while any uptake from a

local pool of B cannot be compensated by the same mechanism. Therefore, AX is merely

responding to changes in availability of X, while BX responds to changes in availability of

X and B, and its sensitivity is consequently greater. In the above, when we have considered

the effects of a diffusible pathway, we have assumed that both A and AX are diffusible.

One may also examine the case where A is the only diffusible component, and not AX. In

this case, the response is similar to non-diffusible case, and AX exhibits a non-trivial spatial

profile. The main difference when X is inhomogeneous arises in the fact that X is no longer

limited by the local availability of A in contrast to the results in the purely temporal case.

Overall the above cases provide an illustration of the coupling of signalling pathways

with shared components, where spatial aspects of signalling are important.

Scenario Result
An additional compo-
nent is involved the up-
take of X by one of the
two pathways through
a complex formation
mechanism.

The additional component can control how sig-
nalling through X is divided between the two
pathways. This may enhance signalling speci-
ficity. The degree of control the additional com-
ponent has depends on the mechanism of com-
plex formation.

The shared component
is involved in two
downstream path-
ways which display
switching behaviour.

Where uptake of the shared component is sig-
nificant, the switching behaviour of one path-
way may influence that of the other. This can
result in either a specific ordering of activation,
or coordinated activation, of the two pathways.

One of the downstream
components, and its
complex with the
shared component, is
diffusible.

The shared component is spread across the do-
main. This results in uptake being significant
across the domain, with the spatial distribution
of the nondiffusible components also affected.

Table 3.2: Summary of results for variations on the basic model A summary of results for the biologically
motivated variations on the basic model is presented. These demonstrate how the effects considered may play
a role in diverse biological contexts.
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3.4 Conclusions

This chapter focussed on analyzing the interaction and coupling of pathways through shared

components, a ubiquitous phenomenon in cellular networks. In this chapter we examined

this basic branching structure from a modelling and systems perspective. We believe that a

detailed systems analysis of signal processing in this setting is useful for multiple reasons.

Firstly, it allows us to explicitly analyze the different features which affect signal process-

ing, without being distracted by the details of a particular signalling context. Secondly,

since such structures are repeatedly encountered biologically, it is only to be expected that

different variations around this basic theme will be encountered, and the results here pro-

vide a platform and framework for analyzing these subsequently.

We developed a minimal modelling framework where we could examine the interaction

of pathways with shared components. Since we include the possibility of production of

all components, we were able to examine both dynamic and steady state responses to a

variety of signals. More complex cases such as temporally regulated interacting pathways,

with buffering of one pathway also form part of the framework. Each of the pathways of

necessity interacted with the other, because of the shared component. These results were

obtained using simulations and analytical work (see Table 3.1 for a summary of the main

results).

We first examined the case where the common component is regulated by some external

signal. Building on the work of Buchler et al (Buchler and Cross, 2009; Buchler and

Louis, 2008), our studies reveal how, depending on the affinities of the common activating

component to the two pathways, it is possible to obtain “ultrasensitivity” in the response

of the component with a weaker affinity. We also showed how depending on the kinetic

rates of binding/unbinding, the pathways could get activated in either temporal order or

even concurrently. If there is a clear separation of affinities, and the low affinity pathway is

the faster pathway, then for certain ranges of the input signal, the response of this pathway

to a persistent stimulus is adaptive: this adaptation may be close to being exact if enough

quantity of the high affinity component is present. A significant departure from the adaptive

response is observed if the high affinity component is consumed. The saturation effect

leading to inexact adaptation in this case is the consumption of the additional “inhibitory”

high affinity component, and this is qualitatively similar to other saturating mechanisms

leading to inexact adaptation (see the discussion in [41]).

In a similar manner we examined the case where the two other components, A and B,
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are regulated by external signals. Our framework allowed us to naturally apply and extend

our analysis to this case too. We found that at steady state the high affinity pathway dom-

inates. However, temporally, if the low affinity pathway was the faster pathway, then the

response of this pathway was (for certain stimulus levels) partially adaptive (either under-

adaptive or overadaptive) and this was entirely due to the added high affinity component

acting as an inhibitory component. If one regards the components A and B to be stimulated

externally through some common source, then the signal transduction of the low affinity

pathway in this regime is qualitatively similar to a feedforward adaptive signalling module.

Although our analysis was performed for the case of two pathways sharing a common

component, the insights naturally generalize to the case where there are multiple pathways

sharing a common component. Our results indicate that depending on the relative affinities,

kinetics, and amounts of the individual components, different combinations of steady state

responses (including possible “ultrasensitivity”) and different kinds of temporal responses

will be observed for the different complexes. This will be examined in detail subsequently.

Our results have natural relevance for the (competitive) binding/activation of different enti-

ties by a common factor. Further, it is possible to predict the effect of modulating individual

pathways here. Additionally, since many components are subject to temporal modulation

(for instance, in concert with the progression with the cell cycle), this framework provides

a natural platform for examining such effects systematically.

We then built on our basic analysis by examining additional factors built over the basic

model structure (see Table 3.2 for a summary of models and findings). This is motivated

by the fact that such additional elements modulating such pathways are naturally expected

to be present in different ways in different contexts.

In the first case we examined the effect of an additional component modulating one of

the two pathways. It was shown that this could allow for greater specificity in signalling,

effectively through inhibition of the one pathway by the other. Different modes of interac-

tion via the extra component were considered, including sequential binding either before or

after binding with the target, as well as co-operative binding to the target species. Analysis

reveals that many of the relevant conclusions for all these cases were similar. This indi-

cates how cellular systems may have naturally exploited their pre-existing set of molecules

to add further layers of control and separation/differentiation between diverging pathways.

We additionally examined the effect of coupling of pathways which are involved non-trivial

and highly non-linear signal processing. Thus we built on our existing modelling structure

to include switch-like signalling in each pathway. Our analysis reveals that coupling two
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switches even with identical switching thresholds, can result in a well-defined order in the

switching response, and further that under many conditions it is possible to maintain a ro-

bust “dosage gap” in the switching of the pathways. In other cases the interaction of two

switches can lead to one switch being highly accentuated by coupling to a multiphospho-

rylation switch which is bistable. This is an example of co-ordinated switching in two

pathways which arises from their coupling through shared components, and suggests that

in some cases switch-like behaviour in some pathways can arise from their coupling to

other pathways rather than their intrinsic switch-like behaviour.

Finally we expanded our model in a natural way to include spatial aspects in signalling

and built on our early studies to examine signal processing in coupled pathways in spa-

tial signal transduction. We showed that the coupling of a highly diffusible pathway to

a non-diffusible pathway, could lead to effective redistribution, even of the non-diffusible

complexes and hence provide a completely different spatial signalling profile. This re-

veals another facet of the coupling between pathways through shared components. Our

framework and analysis is relevant in a range of cellular settings. The activating of el-

ements involved in controlling multiple pathways is observed in different settings, espe-

cially for proteins which interact promiscuously with a range of downstream targets (eg.

Cyclin-dependent kinases (Bloom and Cross, 2007) and ubiquitin ligases (Peters, 2006)).

A special case is that of protein which interacts with different isoforms of downstream

proteins. One example of an effect similar to the response we have analyzed here occurs

with anaphase promoting complex (APC)–mediated ubiquitination of cyclin A, securin and

geminin: securin and geminin are ubiquitinated, and thus degraded, earlier than cyclin A

(Rape et al., 2006). Further, the presence of securin and geminin delays the ubiquitination

of cyclin A. Other examples include the multiple GEFs (Guanine Exchange Factors) which

target RhoGTPases. Our analysis of the is also relevant to competitive exclusive binding

of multiple ligands to the same receptor, and is of special interest when the binding of each

ligand triggers opposite responses (for e.g. CAMP and 8-CPT CAMP to CAR1 receptors

in Dictyostelium [42]).

In the case of the two separate components being modulated together, our framework

provides insight into how different elements are targeted by multiple pathways, and how

cells may have evolved strategies to reinforce or minimize the concurrence of signals. The

presence of a host of additional proteins providing combinatorial control and selective tun-

ing of individual pathways is a key aspect to be investigated to understand signal processing

through classes of hub proteins, and is also likely to be highly relevant to selective targeting
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of pathways intended as drug targets. Our analysis is also relevant to the assessment of the

deleterious effects of increased gene dosage (suggested to be the result of the promiscu-

ous interaction of certain proteins, which is suppressed at low copy numbers) as well as

their mitigation by selective degradation of unbound proteins which are also promiscuous

(Oberdorf and Kortemme, 2009; Vavouri et al., 2009; Veitia et al., 2008).

The spatial aspect of signalling we have considered here is relevant to enzyme regu-

lation of multiple components, all or some of which may shuttle between different com-

partments (for eg. membrane, cytosol, nucleus, ER) as well as the enzyme regulation of

multiple components, some of which may be highly diffusible (eg. cGMP). Likewise the

localized sequestration is observed when certain enzymes which are otherwise freely mo-

bile, partially bind to anchor proteins at specific regions on the cell membrane or elsewhere

in the cell. An example of this is the case of PKA which may be partially anchored in cer-

tain regions by suitable anchor proteins. Analogues of these spatial effects at the tissue level

also exist. In developing Drosophila embryos it has been suggested that substrate compe-

tition for MAPK (itself present in a spatial pattern) coordinates the anterior and terminal

patterning systems (Kim et al., 2010).

The presence of a common element between two pathways can serve to couple them.

If the signal transduction in either or both pathways is highly non-linear, this can lead to a

significant interference between the signal processing and distortion as a result. In which

situations this actually happens due to the natural wiring of the cell, and under which con-

ditions this is effectively minimized, is a topic which needs much more thorough investiga-

tion. It will be of interest to see how shared components may affect the interaction of other

modules (e.g. (Seaton and Krishnan, 2011b)) and this is something which will be examined

in the future.

Our results and insights have been obtained in a general setting, and thus we expect that

many of these insights to be relevant of a wide range of systems. Using this framework, it

is possible to build additional features like multiple-component signalling, combined con-

verging and diverging signals as well as coupling of more complex downstream processes.

Additionally, the analysis here provides insight into understanding to what extent control

or temporal modulation of upstream signals may be propagated through multiple pathways

and how this affects the manner in which pathways interact with one another. It is worth

pointing out that the analysis here is relevant not only to natural signalling circuits but to

synthetic circuits as well. In synthetic circuits a major challenge is to how a synthetically

constructed circuit may interact with the host cell. One of the most basic interactions is the
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possibility of components in the synthetic circuit being also involved in other pathways in

the host cell.

The network structure which embodies the diverging/converging pathways we have

studied is ubiquitously observed. By examining the signal processing in this “splitter” or

“converger” element from a systems perspective we can examine how such elements may

be interfaced with other signal transduction elements both upstream and downstream. This

will be invaluable both in understanding complex dynamics and control regulation and

coupling of signalling in systems biology, but also be vital for starting to build synthetic

circuits which usefully and optimally channelize signals for a range of purposes.
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Chapter 4

Effects of multiple enzyme-substrate
interactions in basic units of cellular
signal processing

4.1 Introduction

Cellular signalling networks are responsible for coordinating a cell’s response to internal

and external perturbations. In order to do this, these networks make use of a wide variety

of molecular mechanisms, including allostery, gene regulation, and post-translational mod-

ifications. Post-translational modifications are ubiquitous in signalling networks, and are

frequently viewed as basic units of signal transduction, in which activated enzymes provide

a signal to downstream substrates through their catalytic activity. The basic signalling sys-

tem which we consider here involves signal activating an enzyme which in turn modifies

its substrate.

The essential signalling interaction in this system involves the interaction of the active

enzyme with the unmodified substrate, since it is this interaction which allows catalysis to

take place. Similar signalling cascades have been the subject of much experimental and

theoretical investigation Ferrell (1996); Goldbeter and Koshland (1981); Huang and Fer-

rell (1996); Kholodenko (2000); Salazar and Hofer (2006), and it has been demonstrated

that these systems are capable of producing switch-like responses, amongst other things.

Furthermore, recent investigations have demonstrated some of the ways in which uptake of

enzyme by substrate can significantly modulate the behaviour of these signalling networks
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Ciliberto et al. (2007); Kim and Ferrell (2007); Kim et al. (2010); Rape et al. (2006); Seaton

and Krishnan (2011b); Vecchio et al. (2008). In these cases, the affinities and abundances

of the signalling components are such that interesting signalling behaviours arise from

the details of the enzyme-substrate interactions. There is huge diversity in the patterns of

enzyme-substrate interactions, as they often involve multiple domains and protein-protein

interfaces Bhattacharyya et al. (2006); Endicott et al. (2012); Goldsmith et al. (2007), and

their occurrence may be regulated by a variety of mechanisms including allostery Canals

et al. (2011); Goodey and Benkovic (2008); Seco et al. (2012) and post-translational modi-

fication Chen et al. (2011); Narayanan and Jacobson (2009); Pawson and Kofler (2009). It

is therefore of interest to explore in some detail how the precise nature of the rules govern-

ing the occurrence of enzyme-substrate interactions affects simple signalling systems such

as the one described above. Here, we examine how some simple and biologically realistic

additional enzyme-substrate interactions, beyond those typically considered, might affect

signalling in this system.

The first such interaction considered is the interaction between active enzyme and

modified substrate. This corresponds to product inhibition, as is commonly seen in en-

zymes involved in metabolism. Some signalling enzymes involved in such interactions

are Ca2+/calmodulin dependent protein kinases Huynh and Pagratis (2011), kinases in the

MAPK pathway Schindler et al. (2002), and protein kinase D Huynh and McKinsey (2006).

In these cases, the phosphorylation of the substrate protein is not a sufficient modification

to prevent binding between enzyme and substrate. Kinases are a particularly good example

system for diverse protein-protein interactions because they mediate their many interac-

tions through a variety of different domains, motifs, and scaffolds, that are located away

from the interface between the active site of the enzyme and the modification site of the

substrate Bhattacharyya et al. (2006); Endicott et al. (2012); Goldsmith et al. (2007).

The second additional interaction considered here is the interaction between inactive

enzyme and unmodified substrate, which we term “inactive enzyme interference”. This

occurs when regulation of an enzyme’s catalytic activity is separated from regulation of

its substrate binding affinity. Some examples of such enzymes are the protein kinases

Btk Lin et al. (2009), PKA Steichen et al. (2010), and JNK1β1 Figuera-Losada and Lo-

Grasso (2012). In these cases, activation of their conserved catalytic domains takes place

through phosphorylation of the activation loop. This phosphorylation allows the active site

residues to adopt a catalysis-competent conformation Kornev et al. (2006); Taylor and Ko-

rnev (2011). In the kinases listed above, dephosphorylation of the activation loop leads to a
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dramatic reduction in the kcat, but not the Km, of the enzyme, meaning that substrate bind-

ing can still occur. This binding may prevent the active form of the enzyme from modifying

the substrate, hence “inactive enzyme interference”. As with product inhibition, inactive

enzyme interference can be seen as a natural consequence of the regulation of protein-

protein interactions by many different binding domains and docking motifs. While the

examples given for both of the additional enzyme-substrate interactions have come from

one well-studied class of signalling enzymes (the protein kinases), they are likely not lim-

ited to this class, but may occur more generally when an enzyme’s activity is regulated at its

active site while using other protein-protein interfaces to bind substrate. We also examine

a third additional interaction, between the inactive enzyme and the modified substrate.

In this work, we aim to build a predictive framework to elucidate the potential effects of

additional protein-protein interactions in this basic unit of signal transduction. By including

these additional interactions in our models, we are able to consider how they modify the

basic nature of signal transduction - the main objective of this chapter. In addition, we

are able to investigate the effects of introducing analogous additional interactions in two

variations of this basic model, involving multiple modification of substrate, and scaffold-

mediated modification of substrate. These are both commonly seen in signalling systems

involving post-translational modifications.

4.2 Modelling and methods

In this chapter, we analyse a model of a two-stage signalling cascade in which enzyme

and substrate interact in multiple ways (see Fig. 4.1 for a schematic). The basic system

consists of an enzyme, A, which in its active form (denoted by A*) modifies a downstream

substrate, B, producing B* (the modified form of B). The enzyme A is itself activated by an

upstream signal, S, and deactivated by another protein, X. The modification of the substrate

B is removed by another protein, Y. In our model, all elementary reactions are modelled by

mass action kinetics, so that the effects of enzyme uptake and competitive binding are taken

into account, and so that additional interactions may be unambiguously introduced. The

input to this system is taken to be the total concentration of signal S, denoted [ST ], while the

output is taken to be the free concentration of modified substrate B*, denoted [B∗]. Implicit

in this choice of output is the idea that the interaction of B* with other species (e.g. with

Y) prevents it from participating in other processes downstream.

The additional interactions we examine are an interaction between the active enzyme,
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Figure 4.1: Schematics of the models analysed are shown, along with the additional interactions which occur
in the cases of product inhibition and inactive enzyme interference. a) shows the basic model, in which the
enzyme A is activated by the signal S, and modifies the substrate B. X and Y reverse the activation of A and
the modification of B, respectively. b) shows the double modification model, in which an additional reaction
occurs to modify B again after its first modification. c) shows the scaffold model, in which the interaction
between A and B is mediated by the scaffold, C.



4.2 Modelling and methods 78

A*, and the modified substrate, B* (this is the case of product inhibition), and an interaction

between the inactive enzyme, A, and the unmodified substrate, B (this is the case of inactive

enzyme interference). We also briefly examine the effects of another interaction, between

A and B*. There are many other interactions which may be thought to occur but which,

for the purposes of simplicity, we exclude from occurring. These include, for example, the

binding of X and Y to their products, A and B, respectively, and the formation of ternary

complexes. An example of a ternary complex would be a complex containing S, A, and B,

and not allowing this complex to form means that an inactive enzyme cannot be activated

once it is bound to the substrate.

The first model we consider is a mass action model of the basic, two-stage signalling

cascade with the additional interactions described above. The model equations below de-

scribe the concentration dynamics of all species (active and inactive forms), and their com-

plexes, with mass action kinetics. The equations for the basic model are:
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d[S]/dt = (k1r + k2)[SA]− k1f [S][A]

d[A]/dt = k1r[SA]− k1f [S][A] + k4[XA
∗]− k10f [A][B] + k10r[AB]

−k11f [A][B∗] + k11r[AB
∗]

d[A∗]/dt = k2[SA]− k3f [X][A∗] + k3r[XA
∗]− k7f [A∗][B] + k7r[A

∗B]

+k8[A
∗B]− (k9f [A

∗][B∗]− k9r[A∗B∗])

d[B]/dt = k6[Y B
∗]− k7f [A∗][B] + k7r[A

∗B]− k10f [A][B] + k10r[AB]

d[B∗]/dt = k8[A
∗B]− k5f [Y ][B∗] + k5r[Y B

∗]− k9f [A∗][B∗] + k9r[A
∗B∗]

−k11f [A][B∗] + k11r[AB
∗]

d[X]/dt = (k3r + k4)[XA
∗]− k3f [X][A∗]

d[Y ]/dt = (k5r + k6)[Y B
∗]− k5f [Y ][B∗]

d[SA]/dt = k1f [S][A]− (k1r + k2)[SA]

d[XA∗]/dt = k3f [X][A∗]− (k3r + k4)[XA
∗]

d[Y B∗]/dt = k5f [Y ][B∗]− (k5r + k6)[Y B
∗]

d[A∗B]/dt = k7f [A
∗][B]− (k7r + k8)[A

∗B]

d[A∗B∗]/dt = k9f [A
∗][B∗]− k9r[A∗B∗]

d[AB]/dt = k10f [A][B]− k10r[AB]

d[AB∗]/dt = k11f [A][B∗]− k11r[AB∗] (4.1)

The dynamics of the additional interactions are seen in the kinetics of the formation of the

complexes A*B* (product inhibition), AB (inactive enzyme interference), and AB* (inac-

tive enzyme and modified substrate) in the final three equations. Our goal will be to exam-

ine the effects of these interactions on the the dynamics of the system. This will be done by

focussing first on the effects of these additional interactions in isolation from one another

(by setting the rate constants controlling the other interactions to zero). Subsequently, we

will study the combined effects of these interactions.

In order to extend the scope of our investigation, and examine the generality of our

results, we also consider two variations of the basic model described above. The first vari-

ation of the model involves situation where the enzyme leads to the double modification of

the substrate, B, producing the modified forms B* and B**. Multiple modification of a sub-
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strate by a single enzyme is seen in many contexts, such as phosphorylation Cohen (2000)

and ubiquitylation Sun and Chen (2004). Depending on the details of the mechanism and

reaction kinetics, these systems may be capable of ultrasensitivity Gunawardena (2005)

and multistability Thomson and Gunawardena (2009), and may be useful for regulating the

timing of events K et al. (2010); Salazar et al. (2010); Seaton and Krishnan (2011b). The

model we use is similar to the basic model, but with an additional reaction from B* to B**.

This reaction is catalysed by A*, while the reverse reaction is catalysed by Y. This model

corresponds to a sequential and distributive model of multisite modification of substrate,

as has been studied in the case of protein phosphorylation Gunawardena (2005); Thomson

and Gunawardena (2009). “Distributive” means that each distinct modification requires a

distinct enzyme binding event, as opposed to a “processive” mechanism in which multiple

modifications can take place during a single enzyme binding event. “Sequential” means

that the modifications occur in a particular order, with modification at the first site neces-

sary before modification at the second site can take place. While more complex examples

of the multiple modification of proteins exist, this model captures some of the essential

features of these cases. The mass action model of this scenario is obtained from a kinetic

description of all the elementary steps similar to the previous case and is given below.



Chapter 4. Effects of multiple enzyme-substrate interactions in basic units of
cellular signal processing 81

d[S]/dt = (k1r + k2)[SA]− k1f [S][A]

d[A]/dt = k4[XA
∗]− k1f [S][A] + k1r[SA]− k10f [A][B] + k10r[AB])

−k10f [A][B∗] + k10r[AB
∗]− k11r[AB∗∗] + k11f [A][B∗∗]

d[A∗]/dt = k2[SA]− k3f [X][A∗] + k3r[XA
∗]− k7f [A∗][B] + k7r[A

∗B]

+k8[A
∗B]− k9f [A∗][B∗] + k9r[A

∗][B∗]

d[B]/dt = k6[Y B
∗]− k7f [A∗][B] + k7r[A

∗B]− k10f [A][B] + k10r[AB]

d[B∗]/dt = k8[A
∗B]− k5f [Y ][B∗] + k5r[Y B

∗]− k9f [A∗][B∗] + k9r[A
∗][B∗]

−k10f [A][B∗] + k10r[AB
∗]

d[B∗∗]/dt = k8[A
∗B∗]− k5f [Y ][B∗∗] + k5r[Y B

∗∗]− k9f [A∗][B∗∗] + k9r[A
∗][B∗∗]

−k11f [A][B∗∗] + k11r[AB
∗∗]

d[X]/dt = (k3r + k4)[XA
∗]− k3f [X][A∗]

d[Y ]/dt = (k5r + k6)[Y B
∗]− k5f [Y ][B∗] + (k5r + k6)[Y B

∗∗]− k5f [Y ][B∗∗]

d[SA]/dt = k1f [S][A]− (k1r + k2)[SA]

d[XA∗]/dt = k3f [X][A∗]− (k3r + k4)[XA
∗]

d[Y B∗]/dt = k5f [Y ][B∗]− (k5r + k6)[Y B
∗]

d[Y B∗∗]/dt = k5f [Y ][B∗∗]− (k5r + k6)[Y B
∗∗]

d[A∗B]/dt = k7f [A
∗][B]− (k7r + k8)[A

∗B]

d[A∗B∗]/dt = k7f [A
∗][B∗]− (k7r + k8)[A

∗B∗]

d[A∗B∗∗]/dt = k9f [A
∗][B∗∗]− k9r[A∗][B∗∗]

d[AB]/dt = k10f [A][B]− k10r[AB]

d[AB∗]/dt = k10f [A][B∗]− k10r[AB∗]

d[AB∗∗]/dt = k11f [A][B∗∗]− k11r[AB∗∗] (4.2)

The introduction of an additional modification step leads to several new species, corre-

sponding toB∗∗ and the complexes it forms. The additional interactions which we examine

in this case correspond to product inhibition and inactive enzyme interference. The interac-

tion between the active enzyme, A*, and the doubly modified substrate, B**, corresponds

to product inhibition (note that A* already interacts with B* in order to convert it to B**),
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and the dynamics of this interaction are seen in the kinetics of the formation of the complex

A∗B∗∗. The interaction between inactive enzyme, A, and either the unmodified or singly

modified substrate (B and B∗), corresponds to inactive enzyme interference, resulting in

the complexes AB and AB∗. We also include the interaction between inactive enzyme

and double modified substrate. It should be noted that in our model we do not incorporate

potentially different binding sites for multiple modifications.

The second variation of the model involves the scaffold-mediated modification of B by

A*. Scaffolds are ubiquitous in cell signalling - they provide a structure for both substrate

and enzyme to bind to through the interaction of scaffold domains with binding domains

present on the substrate and enzyme. These binding domains are typically distinct from

both the substrate domain to be modified and the enzyme domain responsible for its en-

zymatic activity. In our model, the reactions which occur are the same, but a scaffold, C,

is required to bind to the active enzyme, A∗, and the unmodified substrate, B, in order for

the modification of B to occur. The binding of A∗ and B to the scaffold are assumed to be

independent of one another i.e. there is no allostery or cooperative binding present.

We consider this model to be the simplest model that captures the essential charac-

teristics of scaffold-mediated signalling signalling, similar to a recent investigation Yang

and Hlavacek (2011). Other possible models of scaffold signalling might involve cooper-

ative binding, or have more species involved, as in the yeast pheromone sensing pathway

in which three species bind to the scaffold Chapman and Asthagiri (2009); Good et al.

(2011); Levchenko et al. (2000); Locasale et al. (2007); Thalhauser and Komarova (2010).

In constructing each of these models, assumptions must be made concerning issues such

as whether enzyme being bound to the scaffold prevents its deactivation, or whether sub-

strate binding prevents removal of its modifications. The range of models of scaffolding

highlights the potential complexity of the protein-protein interactions. Given these factors,

and keeping the focus on the main issue of interest, we make use of what we consider to

be the simplest model that captures the essential characteristics of scaffold-mediated sig-

nalling. The ODE model is developed in an analogous way to the previous models, and the

equations are given below.
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d[S]/dt = (k1r + k2)[SA]− k1f [S][A]

d[A]/dt = k4[XA
∗]− k1f [S][A] + k1r[SA])− k10f [A][C] + k10r[AC]

−k10f [A][B∗C] + k10r[AB
∗C]− k10f [A][BC] + k10r[ABC])

d[A∗]/dt = k2[SA]− k3f [X][A∗] + k3r[XA
∗]− k7f [A∗][C] + k7r[A

∗C])

−k7f [A∗][B∗C] + k7r[A
∗B∗C]− (k7f [A

∗][BC] + k7r[A
∗BC]

d[B]/dt = k6[Y B
∗]− k8f [B][C] + k8r[BC]− k8f [B][A∗C] + k8r[A

∗BC])

−k8f [B][AC] + k8r[ABC]

d[B∗]/dt = k5r[Y B
∗]− k5f [Y ][B∗]− k9f [B∗][C] + k9r[B

∗C]

−k9f [B∗][A∗C] + k9r[A
∗B∗C]− k9f [B∗][AC] + k9r[AB

∗C]

d[X]/dt = (k3r + k4)[XA
∗]− k3f [X][A∗]

d[Y ]/dt = (k5r + k6)[Y B
∗]− k5f [Y ][B∗]

d[SA]/dt = k1f [S][A]− (k1r + k2)[SA]

d[XA∗]/dt = k3f [X][A∗]− (k3r + k4)[XA
∗]

d[Y B∗]/dt = k5f [Y ][B∗]− (k5r + k6)[Y B
∗]

d[C]/dt = k7r[A
∗C]− k7f [A∗][C]− k10f [A][C]

+k10r[AC]− k8f [B][C] + k8r[BC]

−k9f [B∗][C] + k9r[B
∗C])

d[A∗C]/dt = k7f [A
∗][C]− k7r[A∗C]− k8f [B][A∗C]

+k8r[A
∗BC]− k9f [B∗][A∗C] + k9r[A

∗B∗C])

d[AC]/dt = k10f [A][C]− k10r[AC]− k8f [B][AC]

+k8r[ABC]− k9f [B∗][AC] + k9r[AB
∗C]

d[B∗C]/dt = k9f [B
∗][C]− k9r[B∗C]− k7f [A∗][B∗C] + k7r[A

∗B∗C]

−k10f [A][B∗C] + k10r[AB
∗C]

d[BC]/dt = k8f [B][C]− k8r[BC]− k7f [A∗][BC] + k7r[A
∗BC]

−k10f [A][BC] + k10r[ABC]

d[A∗B∗C]/dt = k7f [A
∗][B∗C]− k7r[A∗B∗C] + k9f [B

∗][A∗C]

−k9r[A∗B∗C] + k11[A
∗BC]

d[AB∗C]/dt = k10f [A][B∗C]− k10r[AB∗C] + k9f [B
∗][AC]− k9r[AB∗C]

d[A∗BC]/dt = k7f [A
∗][BC]− k7r[A∗BC] + k8f [B][A∗C]− k8r[A∗BC]

−k11[A∗BC]

d[ABC]/dt = k10f [A][BC]− k10r[ABC] + k8f [B][AC]− k8r[ABC] (4.3)
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In contrast to a model in which cooperative binding occurs, the dynamics of association

of the scaffold with a particular species are described with the same kinetics regardless of

the state of the scaffold. So, for example, the active enzyme, A∗, binds to C,BC, and B∗C

with identical kinetics. Again, interactions which are analogous to product inhibition and

inactive enzyme interference are included in this model, but they occur through the binding

of species to the scaffold. In particular, product inhibition is the result of B* binding to

C, while inactive enzyme interference is the result of A binding to C. Again, there are

additional complexes which might form in some situations but which we do not consider

in this model (e.g. ternary complexes between S, A, and C, or between C, B, and Y).

Therefore the model does not allow A to be activated, A∗ to be deactivated, or B∗ to be

demodified while they are bound to the scaffold.

We now comment on the choice of parameters and initial conditions (which set the

total quantities of all species), and the way in which we investigate the models. We make

use of two sets of parameters and initial conditions: a “basal” set of parameters, which is

used for most simulations, and an “alternative” set of parameters, which is used to help

establish the generality of our conclusions. The basal set of parameters corresponds to an

enzymatic cascade in which the enzymes X and Y are acting relatively close to saturation

(as in Goldbeter and Koshland (1981)), and in which the interaction between A∗ and B

is relatively high affinity (see below). These parameters give a more-or-less switch-like

input-output response at steady state similar to that seen in many contexts (e.g. the MAPK

cascade Ferrell (1996)). In contrast, the alternative parameter set corresponds to a cascade

in which both X and Y are unsaturated. This parameter set gives a graded response at

steady state, rather than a switch-like response. The affinities and concentrations used in

the model are appropriately scaled to one another and are therefore dimensionless.

In both sets of parameters, the affinity of the essential interaction (between A* and

B) is the same (with a dissociation constant Kd = 0.1), as are the total concentrations

of A and B ([AT ] = 3, [BT ] = 1). These concentrations and affinities correspond to a

scenario in which the ratios of enzyme and substrate concentrations to the dissociation

constant (i.e. [AT ]/Kd and [BT ]/Kd) are of order 10. For signalling cascades with con-

centrations of components in the 100 nM to 1 µM range (as is typical in such systems

Chung et al. (2011); O’Shaughnessy et al. (2011)), this corresponds to Kds in the 10 to 100

nM range. A wide variety of parameters have been used in similar models in the litera-

ture Ferrell (1996); Levchenko et al. (2000); O’Shaughnessy et al. (2011), and examples

of models with similarly high affinity interactions are found in Kholodenko et al. (2010);
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Kim and Ferrell (2007); Markevich et al. (2004); Thalhauser and Komarova (2010). While

many experimentally determined enzyme-substrate signalling interactions have Kd in the

µM range, examples of signalling enzyme-substrate interactions with affinities in the nM

range are also readily available Bae et al. (2009); Bardwell et al. (1996); Huynh et al.

(2009). High affinity interactions have also been noted between enzyme-substrate docking

domains Gordus et al. (2009); Jones et al. (2006); Kohn et al. (2007); Lee et al. (2010);

Wolf-Yadlin et al. (2009). We note that the model parameters chosen could also be rele-

vant to enzyme-substrate interactions with a Kd in the µM range in cases where the local

concentrations have been increased to the µM range through compartmentalisation effects

or similar effects. In order to establish the generality of the conclusions reached, simula-

tions in different ranges of concentrations and affinities are performed, and we show some

mathematical analysis of the model under some simplifying assumptions. All simulations

are performed in MATLAB, using the ode15s solver. The code used to obtain all results

presented here is provided as part of the digital appendices, documented in Appendix E.0.3.

Parameter values are provided with the code, and are also provided in Appendix B.

Our investigations will focus on how the additional interactions considered affect the

signal processing properties of these systems. This will be done, to start with, by analysing

the effects of each additional interaction in isolation. Thus the basal parameter set will

be kept fixed, and the parameter determining the strength of the additional interaction un-

der consideration will be varied, with the other additional interactions not occurring. The

strengths of the interactions are varied within a range from zero (no additional interaction)

to the strength of the interaction between A* for B (the essential interaction). This approach

allows the elucidation of the effects of the additional interaction. Once the effects of these

interactions have been studied separately, the combined effects of the extra interactions are

also investigated. For completeness, in the basic model we examine the effect of these

interactions together alongside a further interaction involving inactive enzyme binding to

active substrate.

4.3 Results

We present the results as follows. We start with the basic model, and examine the roles

of product inhibition and inactive enzyme interference in isolation from one another. We

examine both steady state and dynamic behaviour. We then examine the combined effects

of these interactions. We also examine the interaction between the inactive enzyme and
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modified substrate. Subsequently, we examine the role of additional interactions in varia-

tions of our basic model. The results we present are based on simulation and analysis of

the models.

4.3.1 Product Inhibition

Steady state response

We begin with the case of product inhibition. As mentioned, we regard the total signal

concentration, [ST ], as the input and the concentration of free modified substrate, [B∗],

as the output. In the case of product inhibition, we observe that at steady state there is

a biphasic response to the signal - the output initially increases with the input signal and

reaches a maximum, before decreasing to a steady value above zero (see Fig. 4.2). This is in

contrast to the monotonic response observed without product inhibition. A similar change

in behaviour as a result of product inhibition is observed with the alternative parameter set

(see Fig. 4.3). Biphasic behaviour has previously been identified in systems containing

incoherent feedforward loops Kaplan et al. (2008); Kim et al. (2008). It is interesting that

in this case there is no explicit incoherent feedforward loop - the behaviour is the result of

the combination of the essential catalytic interaction between A* and B, and the product

inhibition of A* by B*. With these two interactions present, a change occurs in the primary

role of the activated enzyme, A*, as signal levels increase. At low signalling levels, A* is

primarily involved in the modification of B, while at high signalling levels it is primarily

involved in uptake of B*. At low [ST ], both [A∗] and [B] are low, so changes in [A∗]

primarily result in increasing [B∗] through formation of the catalysis-competent complex

A*B. This is illustrated by the initial increase in [A∗B] with [ST ] in Fig. 4.2. Product

inhibition is not important at low [ST ], since both [A∗] and [B∗] are low. As [ST ] increases,

however, A*B levels saturate, and A* begins to uptake significant quantities of B*. This

is seen by the increase in [A∗B∗] with [ST ] at higher signal levels in Fig. 4.2b). Under

these conditions, changes in A* primarily result in reducing the free B* available to act as

output, rather than generating more B*. The result is a decrease in [B∗], and a biphasic

response. Of course, if the complex A*B*, rather than only free B*, is able to contribute to

the output, the effect of B* uptake on the output is lost (results not shown). We note that in

Salazar and Hofer (2006), all forms of modified substrate (A*B*, B*, and YB*) are used

together as output. While this may be the relevant variable in some situations, we argue
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that the free concentration is the most natural output variable (a similar choice was made

in Buchler and Louis (2008)).

Figure 4.2: The modified behaviour of the pathway in the presence of product inhibition is shown. a) shows
the steady-state input-output response curve of the concentration of free modified substrate, B*, to the total
concentration of signal, S, for five different strengths of product inhibition (ranging from zero to the strength
of the essential interaction between A* and B). b) shows how the quantity of A*B (solid lines) and A*B*
(dashed lines) change with the signal, demonstrating the switch in the primary role of A* with increasing
levels of S. Increasing strength of product inhibition (i.e. increasing k9f ) is indicated by the black arrows.

We can further demonstrate how the behaviour observed in simulations can be under-

stood through analysis of the model. We note at the outset that the model has a relatively

large number of parameters and is rather cumbersome to analyse, and therefore we will

make appropriate simplifications to demonstrate the results and analyse the origin of the

particular behaviour. We thus aim to obtain transparency in the analysis in each case,

rather than an overall exhaustive study of the model.

We will focus on the steady state. A basic analysis of the model equations for the

complexes AS, XA∗ and Y B∗ (see Eq. 4.1), incorporating the conservation of total S, X

and Y results in:

[SA] =
k1f [A]

k1r + k2
.

[ST ]

1 + k1f [A]/(k1r + k2)

[XA∗] =
k3f [A

∗]

(k3r + k4)
.

[XT ]

1 + k3f [A∗]/(k3r + k4)

[Y B∗] =
k5f [B]

(k5r + k6)
.

[YT ]

1 + k5f [B∗]/(k5r + k6)

(4.4)



4.3 Results 88

Figure 4.3: The response to different strengths of product inhibition for the basic model with the alternative
parameter set is shown, demonstrating the similarity of the effects in this different parameter regime. This
shows the steady-state input-output response curve of the concentration of free modified substrate, B*, to
the total concentration of signal, S, for five different strengths of product inhibition (ranging from zero to
the strength of the essential interaction between A* and B). Increasing strength of product inhibition (i.e.
increasing k9f ) is indicated by the black arrows.
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In all our analysis, we will assume that the concentrations of the complexes XA∗ and

Y B∗ (denoted [XA∗] and [Y B∗] are small), for instance due to relatively large (forward)

dissociation rates. This is done for simplicity and transparency. In particular, this means

that practically all X and Y are present in free form. In analysing the case of product

inhibition, we also consider the concentration of the complex SA (denoted [SA]) to be

negligible, since we are interested in understanding just the interaction between A∗ and

B∗.

In this case the steady state equations for the network results in

[A∗]

[A]
=

k1f [ST ]

k3f [XT ]

[A∗B] =
k5f [YT ][B∗]

k8

[B] =
(k7r + k8)k5f [YT ][B∗]

[A∗]k7fk8

[A∗B∗] =
k9f
k9r

[A∗][B∗]

[A] + [A∗] + [A∗B] + [A∗B∗] = [AT ]

[B] + [B∗] + [A∗B] + [A∗B∗] = [BT ]

This results in the following equations:

[A∗] =
[AT ]− q[B∗]

1 + k3f [XT ]/(k1f [ST ]) + k9f [B∗]/k9r

[B∗] =
[BT ]

1 + k5f [YT ]/k8 + k5f/(k7f [A∗]) + k9f [A∗]/k9r
(4.5)

Note that the above equation reflects two terms involving opposite effects of A∗ in B∗. In

the above equation q = k5f [YT ]/k8. These equations can be differentiated with respect to
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[ST ] to yield

d[A∗]

d[ST ]
= −([AT ]− q[B∗]) ((k9f/k9r)(d[B∗]/d[ST ])− k3f/(k1f [ST ]2))

(1 + k3f [XT ]/(k1f [ST ]) + k9f [B∗]/k9r)2

− q(d[B∗]/d[ST ])

1 + k3f [XT ]/(k1f [ST ]) + k9f [B∗]/k9r

d[B∗]

d[ST ]
= − [BT ](d[A∗]/d[ST ]) ((k9f/k9r)− k5f/(k7f [A∗]2))

(1 + k5f [YT ]/k8 + k5f/(k7f [A∗]) + k9f [A∗]/k9r)2

(4.6)

From the above equations, looking at the expression for d[B∗]/d[ST ], we find that it can

indeed become zero at some finite S, owing to the competition of the two terms in the nu-

merator (incidentally, we notice from the above equations that d[B∗]/d[ST ] cannot be zero

because d[A∗]/d[ST ] is zero: the equation for d[A∗]/d[ST ] shows that both d[A∗]/d[ST ]

and d[B∗]/d[ST ] cannot both be zero together. This is immediately seen by noting that

[AT ]−q[B∗] (the totalA not in the complexAB∗) is non-zero and hence if d[B∗]/d[ST ] = 0

then d[A∗]/d[ST ] is non-zero. Thus we see that the response [B∗] can indeed exhibit a

biphasic response to [ST ] while [A∗] remains monophasic (at least locally in that range of

signal). This response depends on some key parameters, notably the ratios k5f/k7f and

k9f/k9r. We immediately see that if the A∗B∗ binding is very weak, then d[B∗]/d[ST ] can

never become zero: this is because [A∗] is bounded above by the value of [AT ], and the nu-

merator can never become zero. Thus the analysis reveals that a critical strength of binding

between A∗ and B∗ is required for a biphasic response to occur. On the other hand if the

binding reaction is extremely strong, and if the total amount of B is greater than the total

amount of A, we see that all A∗ is bound to B∗ (this can be obtained also by an asymptotic

analysis) and this prevents a biphasic response. Thus conditions which facilitate a biphasic

response generally are an intermediate strength of binding of A∗ and B∗ and an excess of

(total) A when compared to B.

We can further expand on this analysis by considering what happens to the behaviour of

the system when the total quantities of enzyme and substrate (i.e. [AT ] and [BT ]) change.

Fig. 4.4 shows what happens in the case of full product inhibition (i.e. when the interaction

between A* and B* is as strong as the interaction between A* and B). It is observed that,

for a range of values of [ST ], a biphasic response to [AT ] is obtained. The same is true for

the response to [ST ] for a broad range of values of [AT ]. This is a result of the uptake of B*

at high [AT ] and [ST ] - low levels of either result in insufficient levels of A* to significantly
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uptake of B*, and so a biphasic response is not possible. This also means that the biphasic

response to [ST ] becomes more pronounced at high [AT ], and vice versa (see Fig. 4.4).

Figure 4.4: The response of the system to changes in [AT ] and [ST ] is shown in a). The system is capable of
responding in a biphasic manner to [AT ] at sufficient levels of [ST ], and vice versa. b) shows how the biphasic
response to [ST ] becomes more pronounced at higher [AT ]. In b), the black arrow denotes the direction of
increasing [AT ].

The modulation of [BT ] has less dramatic consequences on the properties of the sig-

nalling pathway, as increasing [BT ] leads to a steady linear increase in the levels at all

appreciable levels of [ST ] (results not shown). This means that, while the biphasic be-

haviour is not lost at high [BT ], it is relatively less pronounced since there is a fixed offset

between peak [B∗] and its asymptotic value. This offset is the result of the fixed quantity

of A available in the system to suppress B*. Finally, as expected from the mechanism

described here, we note that increasing the affinity of the essential interaction makes the

biphasic response more pronounced, while it is less pronounced at lower affinities (see Fig.

4.5).

Dynamic response

In the dynamic case, a stepwise increase in signal can result in a single-pulse response

which mirrors the steady state response - it first increases, before decreasing to its steady

state value (see Fig. 4.6a)). Again, we can explain this by a change in the primary role

of A*, from modification of B at early times, to suppressor of free B* at later times. The

pulse-like behaviour is not a result of slow uptake of any component, since increasing the

timescale separation between the binding interactions and the catalytic reactions produced

the same results. A point worth emphasizing about the response is that its existence de-

pends upon the size of the step change (for fixed network parameters): if the step change

is insufficient to bring the system into the regime where there is sufficient A* to suppress
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Figure 4.5: The change in behaviour induced by increasing strengths of product inhibition is shown for cases
where the enzyme-substrate affinity (determined by k9f ) is a) half the basal value, and b) twice the basal
value. There is a diminished response at lower affinities, compared to higher affinities. The range of product
inhibition strengths investigated has been rescaled to vary between zero and the maximal strength of the
essential interaction. Increasing strength of product inhibition (i.e. increasing k9f ) is indicated by the black
arrows.

B*, no pulse-like behaviour is observed (see Fig. 4.6b)). This is an important difference

between the behaviour observed here and similar behaviour in other systems. In particu-

lar, we note that adaptive signalling networks produce pulse-like responses to small input

signals, but may saturate at high input levels Krishnan (2011). This is in contrast to the

situation considered here. No active adaptive mechanism is present in the system studied

here, and pulse-like responses are only observed to changes from low to high signal.

As in the steady state response, the range of accessible output values decreases with the

strength of product inhibition. However, it is also clear that the peak in output is attained

more rapidly in systems with product inhibition. This is because, while the upswing in

B* levels is the same for different strengths of product inhibition, the suppression of free

B* levels by uptake of B* occurs earlier in cases of stronger product inhibition. This is

confirmed by direct comparison of the times of peak response and the size of those peaks

as the strength of product inhibition is changed (see Fig. 4.6c)). Therefore, a trade-off

appears to exist between the range of output values attainable by the signalling pathway

and the time to the peak.
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Figure 4.6: The potential dynamics of the system with product inhibition are shown. a) demonstrates the
possibility of pulse-like behaviour in response to a step change in signal, while b) shows that a pulse-like
response is not observed if the step change is not sufficiently large. The step changes in signal applied in b)
are all significantly smaller than those applied in a). c) illustrates the trade-off between the size of the peak
in the response and the speed of the response. The black arrows in a) and c) denote increasing strength of
product inhibition (i.e. increasing k9f ), while the black arrow in b) denotes decreasing size of step change in
input, [ST ].
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4.3.2 Inactive Enzyme Interference

Steady state response

At steady state, the qualitative “ultrasensitive” or threshold-like behaviour of the pathway is

not changed by the introduction of inactive enzyme interference (see Fig. 4.7 a)). However,

there is a clear change in the quantitative characteristics of the ultrasensitivity. The maxi-

mum relative sensitivity (defined by R = d(ln[B∗])/d(ln[ST ])) of the output to changes in

input is larger, and occurs at higher input levels in the presence of inactive enzyme interfer-

ence (see Fig. 4.7 b)). An increase in sensitivity is also seen using the alternative parameter

set, although the response remains essentially graded in character (see Fig. 4.8). It is pos-

sible, however, to convert a graded response to an ultrasensitive response by increasing

the strength of inactive enzyme interference, as shown in Fig. 4.9 for a different set of

parameters (see Appendix B for parameter values). The increased sensitivity observed in

these cases is a result of the signal having an additional mechanism through which it can

modulate the output. This new mechanism, introduced by inactive enzyme interference,

is the molecular titration of the unmodified substrate, B, by the inactive enzyme, A (the

competition between A and A∗ for B), since A is present at higher levels than B. Similar

effects have been noted previously in other systems, notably multiphosphorylation switches

Legewie et al. (2007), and genetic circuits Buchler and Cross (2009); Buchler and Louis

(2008).

We can investigate the origins of this effect analytically, beginning by simplifying the

model description. We expect that ultrasensitive and threshold like responses result from

kinetics being far from the mass-action: in other words we would expect significant con-

centrations of some complexes. Thus, in this case, we do not neglect the concentration of

the complex SA. We perform basic analysis in the case where the A and B binding is very

strong. i.e. k10r/k10f = ε� 1, for instance through high k10f . Now since both A and B can

exist under basal conditions even without any stimulus, we would expect a high degree of

binding between A and B. For a fixed signal S, we can expand all variables perturbatively
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in the small parameter ε. Thus we employ an expansion

[A] = A0 + εA1 + ...

[B] = B0 + εB1 + ...

[A∗] = A∗0 + εA∗1 + ...

[B∗] = B∗0 + εB∗1 + ... (4.7)

and similarly for other complexes. This results in the leading order behaviour for A and

B governed by the equation A0B0 = 0, where A0, B0 are the leading order terms in the

concentrations of A and B respectively. This intuitive result simply indicates that if there

is a very strong degree of binding of A and B, then for a fixed signal (or no signal) either

the concentration of A or B has to be zero. In other words the species present in less total

amount is completely taken up and bound to the species present in greater total amount.

The concentrations of the other entities in the network can be inferred from this equation.

We are now able to examine the scenario above, in which the upstream component is

present in excess concentration compared to the downstream component (i.e. [BT ] > [AT ]).

From the perturbation analysis, we see that practically all B is bound to A, with A in excess.

This now implies that the concentration of free B is O(ε). Now we notice from the steady

state equations that

[A∗B] =
k7f

(k7r + k8)
[A∗][B] (4.8)

From the chain of equations above, we see that if free B is negligible, then so is [A∗B]

(note that A∗B is needed to produce B∗). In asymptotic terms the concentration of B at

steady state is O(ε). The only way to produce a finite O(1) level of free B (and hence

response) is to increase [A∗] to a high level to make it of the order of 1/ε (note that the

earlier perturbation result assumed all other rate constants rate constants and [ST ] of O(1)).

We see that for significant concentrations of A∗B, a high concentration of A∗ is needed,

which directly translates to a high degree of signal (and high availability of A). Thus we

see here how a threshold emerges just due to the strong A-B interaction. Here the signal

must generate enough A∗ to compete with B’s strong affinity for binding with A.

As before, we are able to investigate how the behaviour of this system changes when the

total quantity of intermediate species available (i.e. [AT ] and [BT ]) is altered. This allows
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Figure 4.7: The modified behaviour of the pathway in the presence of inactive enzyme interference is shown.
a) shows the steady-state input-output response curve of the concentration of free modified substrate, B*, to
the total concentration of signal, S, for five different strengths of inactive enzyme interference (ranging from
zero to the strength of the essential interaction between A* and B). b) shows the relative sensitivity of the
output to changes in the input in the same cases, demonstrating that inactive enzyme interference leads to
increased sensitivity. Increasing strength of inactive enzyme interference (i.e. increasing k10f ) is indicated
by the black arrows.

Figure 4.8: The modified behaviour of the pathway in the presence of inactive enzyme interference is shown
for the alternative parameter set. a) shows the steady-state input-output response curve of the concentration
of free modified substrate, B*, to the total concentration of signal, S, for five different strengths of inactive
enzyme interference (ranging from zero to the strength of the essential interaction between A* and B). The
qualitative graded nature of the response does not change significantly, but b) shows that relative sensitivity of
the output to changes in the input is increased for cases with stronger inactive enzyme interference. Increasing
strength of inactive enzyme interference (i.e. increasing k10f ) is indicated by the black arrows.
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Figure 4.9: The conversion of a graded response to a threshold response by increasing the strength of inactive
enzyme interference is shown. a) shows the steady-state input-output response curve of the concentration
of free modified substrate, B*, to the total concentration of signal, S, for five different strengths of inactive
enzyme interference (ranging from zero to the strength of the essential interaction between A* and B). It is
clear that the graded response becomes increasingly switch-like with increasing strength of inactive enzyme
interference. This is confirmed by b), which shows the relative sensitivity of the output to changes in the input
in the same cases, demonstrating that inactive enzyme interference leads to increased sensitivity. Increasing
strength of inactive enzyme interference (i.e. increasing k10f ) is indicated by the black arrows.

us identify mechanisms by which ultrasensitivity can arise in this system. In particular,

if we consider a case in which [AT ] < [BT ] (the reverse of the cases considered above,

in which [AT ] > [BT ]), we observe a similar threshold effect and a similar increase in

sensitivity with increasing strength of inactive enzyme interference (see Fig. 4.10). Since B

is relatively abundant, this effect is not due to competition between A and A* for B. Instead,

it is a result of competition between S and B for A. The increased sensitivity observed in

free B* is therefore the result of the increased sensitivity observed in A*. A comparison

of the response of A* in the two cases analysed is shown in Fig. 4.11, demonstrating

very little change in [A∗] with increasing strength of the additional interaction for a case

where [AT ] > [BT ] (Fig. 4.11a), while substantial changes in [A∗], in particular increased

sensitivity of the response of [A∗], is observed in a case where [BT ] > [AT ] (Fig. 4.11b).

Again, we are able to demonstrate the basis of this behaviour analytically. Here, with

[BT ] > [AT ], we find that if the A-B binding is very strong then almost all A is bound to B,

leaving negligible A∗ and hence negligible B∗. We notice from the steady state equations
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that

[SA] =
k1f [A]

k1r + k2)

[ST ]

1 + k1f [A]/(k1r + k2)

[A∗] =
k2[SA]

k3f [XT ]

[A∗B] =
k7f

(k7r + k8)
[A∗][B] (4.9)

From the chain of equations above, we see that if free A is negligible, then so are [SA],

[A∗] and [A∗B] (A∗B is needed to produce B∗). In asymptotic terms the concentration of

A at steady state is O(ε). The only way to produce a finite O(1) level of free A (and hence

response) is to increase [ST ] to a high level to make it of the order of 1/ε (note that the

earlier perturbation result assumed all other rate constants rate constants and [ST ] of O(1)).

Intuitively what this says is that the extremely strong binding affinity of A with B has to

be compensated by a sufficiently high level of signal to pull part of A into a complex with

the stimulus and eventually convert it to A∗B and hence produce B∗. This reveals how a

certain threshold of signal is needed for a non trivial response. As S becomes comparable

with 1/ε non-trivial binding of A with S is to be expected leading to non-trivial output.

Thus we see here that the role of strong binding of A and B causes a threshold effect in the

response, essentially through molecular titration (the essential feature is similar to the case

studied in Chapter 3, with A being shared between B and S, and the non-shared component

S being modulated).

Such effects, whereby the interaction of an enzyme with its substrate modulates its own

pattern of activity, may be important in the coordination of signalling through different

pathways when a signalling enzyme has multiple substrates Rape et al. (2006); Seaton and

Krishnan (2011b). Note that the situation with [BT ] ≈ [AT ] results in increased sensitivity

through a combination of both mechanisms considered here (results not shown).

Finally, we consider how the situation changes with different affinities of interaction

between A and B. Simulations in which this affinity is halved and doubled in magnitude

are shown in Fig. 4.12. This demonstrates that the change in behaviour resulting from the

additional interaction is reduced when the affinity is halved, but there remains a significant

effect. Further, the change in behaviour becomes more pronounced at double affinity, as

expected.
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Figure 4.10: The increased sensitivity for a case in which [BT ] > [AT ] is shown, demonstrating the gener-
ality of the observation. a) shows the steady-state input-output response curve of the concentration of free
modified substrate, B*, to the total concentration of signal, S, for five different strengths of inactive enzyme
interference(ranging from zero to the strength of the essential interaction between A* and B). b) shows the
relative sensitivity of the output to changes in the input in the same cases, demonstrating that inactive enzyme
interference leads to increased sensitivity. Increasing strength of inactive enzyme interference (i.e. increasing
k10f ) is indicated by the black arrows.

Figure 4.11: The changes in free concentration of upstream enzyme, A*, with the strength of inactive enzyme
interference, are shown for the basal case in a), in which [AT ] > [BT ]. A situation in which [BT ] > [AT ]
is shown in b). It is clear that the presence of inactive enzyme interference significantly alters the response
in the case where [BT ] > [AT ], introducing a threshold in the concentration of A*. Increasing strength of
inactive enzyme interference (i.e. increasing k10f ) is indicated by the black arrows.
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Figure 4.12: The change in behaviour induced by increasing strengths of inactive enzyme interference is
shown for cases where the enzyme-substrate affinity (determined by k10f ) is a) half the basal value, and
b) twice the basal value. There is a diminished response at lower affinities, compared to higher affinities.
Increasing strength of inactive enzyme interference (i.e. increasing k10f ) is indicated by the black arrows.

Dynamic response

In the dynamic case, a stepwise increase in signal results in a monotonic increase in the out-

put (see 4.13a)). The response time, defined as the time taken for the output to reach half

its maximum level, clearly increases with increasing strength of inactive enzyme interfer-

ence. This is a result of the inactive enzyme A sequestering B, and consequently slowing

its conversion to B*. Again, by increasing the timescale separation between the binding

interactions and the catalytic reactions, we confirm that the observed effects are the result

of the underlying reaction kinetics, rather than the dynamics of substrate uptake and re-

lease. From the relationship observed between the strength of inactive enzyme interference

and both ultrasensitivity and response times, we conclude that there is a trade-off between

the ultrasensitivity attainable in the pathway through this mechanism, and the speed of its

response (see Fig. 4.13b)).

4.3.3 The interaction between inactive enzyme and modified substrate

The final enzyme-substrate interaction which remains to be considered is the interaction

between inactive enzyme, A, and modified substrate, B*. This interaction is pehaps rel-

atively less likely to occur in isolation from the other interactions, as it suggests that the

inactive enzyme may bind strongly to modified substrate.. This is in contrast to the other

additional interactions, which can be thought of as arising from a lack of special regulation
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Figure 4.13: The slow down in signalling dynamics with increasing inactive enzyme interference is shown.
This is clear from the dynamics of the output shown in a). The trade-off between the maximum relative
sensitivity obtained and the response time (defined as the time taken to reach half the maximal output) is
illustrated in b). Increasing strength of inactive enzyme interference (i.e. increasing k10f ) is indicated by the
black arrows.

(e.g. in the case of product inhibition, the additional interaction arises from active enzyme

lacking specificity for unmodified substrate as opposed to modified substrate). However,

it remains instructive to include this interaction in the model to examine what this partic-

ular interaction results in and to understand the case where all possible combinations of

interaction occur (see next section). We note that this interaction on its own produces be-

haviour similar to that of inactive enzyme interference, modulating the sensitivity through

a threshold effect (see Fig. 4.14).

Perturbation analysis is again able to provide analytical insight into the underlying

mechanism of increased sensitivity in this case. Again, we analyse this by examining

the limiting case of very strong binding between A and B∗. By expanding the steady state

concentrations in a perturbation series in k11r/k11f (a small parameter, due to for instance

large k11f ) we find that, exactly as before, to leading order: A0B
∗
0 = 0. What this says

is that, due to strong binding, either the concentration of free B∗ (the output) is zero or

the concentration of free A is zero. Thus the only way to obtain a non-negligible output

is to practically deplete all free A , which in turn needs a sufficiently high signal. The

basic mechanism at play here is similar to what was observed previously. Again, while this

analysis is obtained in the limiting case, similar trends are observed for moderate levels of

binding of A and B∗.



4.3 Results 102

Figure 4.14: The change in behaviour with the strength of interaction between inactive enzyme and modified
substrate is shown. This interaction introduces a threshold-like response similar to that observed for inactive
enzyme interference. Increasing strength of the additional interaction (i.e. increasing k11f ) is indicated by
the black arrows.

4.3.4 Combinations of additional interactions

It is natural to consider how product inhibition and inactive enzyme interference affect

signalling when both are included at the same time. The consequence of combining both

interactions is illustrated in Fig. 4.15, in which the strengths of both interactions are mod-

ulated in unison. It is clear that at low strengths of additional interactions, the combination

of both interactions gives a response that is a combination of the two cases: there is a

biphasic response as a result of product inhibition, and sensitivity is increased within a cer-

tain range as a result of the inactive enzyme interference. However, the biphasic response

observed here is very much less pronounced than it is in the case when only product inhi-

bition is considered, and the range of accessible outputs is substantially reduced compared

to when only inactive enzyme interference is considered. This is especially clear when the

additional interactions are of comparable strength to the essential interaction.

The scenario in which both additional interactions occur simultaneously, and at com-

parable strengths to the main interaction, corresponds to a signalling cascade in which the

interaction between enzyme and substrate is mostly unregulated - the modification of sub-

strate doesn’t prevent it from binding to active enzyme, and the inactivation of enzyme

doesn’t prevent it from binding to unmodified substrate. It is also natural, then, to include

the final possible interaction between enzyme and substrate, between inactive enzyme and

modified substrate (i.e. A and B*). Including all possible interactions between enzyme
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and substrate corresponds to the complete deregulation of the interaction between enzyme

and substrate, since they bind to one another regardless of their activation or modification

states. Fig. 4.15 shows how the response in this case is merely extremely damped, with no

biphasic response or increased sensitivity. This is a result of the uptake of B* by any form

of A under any signalling conditions.

Figure 4.15: The steady state response of the system under different strengths of the combined interactions
are shown. a) shows the response with the two additional interactions at increasing strengths, and b) shows the
response with all possible interactions between enzyme and substrate. The black arrows denote the direction
of increasing strength of additional interactions (i.e. increasing k9f and k10f in a), and in addition k11f in
b)), but with all additional interaction strengths equal to one another in each case shown.

We conclude from this that the complete deregulation of the interaction between en-

zyme and substrate, which leads to multiple additional interactions occurring at once,

eliminates or dampens out the changes in behaviour observed when a single interaction

is introduced. This is a consequence of the signal being unable to differentially regulate

the uptake of substrate by enzyme in cases where all forms of enzyme and substrate bind

to one another equally well.

4.3.5 Double Modification of Substrate

We now move on to consider simple variations of the basic model, beginning with the

double modification of the downstream substrate. As discussed above, the model used here

assumes that the two modifications are made distributively and sequentially, as discussed

in Thomson and Gunawardena (2009). This is the simplest relevant model of multiple

modification of substrate. Note that the model assumes that the active enzyme bound to
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the singly modified substrate necessarily has the capability of converting into the doubly

modified form. Further, we do not consider situations in which the enzyme may bind at

different sites on the substrate to orchestrate the different modifications. Fig. 4.16 shows

how additional interactions can affect signalling in this case. The outputs of interest are

the free concentrations of singly- and doubly-modified substrate (denoted [B∗] and [B∗∗],

respectively), and the sum of the two. This is because different forms of the substrate may

be involved in different interactions downstream.

To begin with, we briefly examine the case without any of the additional interactions.

This case has already been well studied in the literature Gunawardena (2005); Thomson

and Gunawardena (2009), and so we only make two observations here. First, we see that

[B∗∗], and the sum of both [B∗] and [B∗∗], can exhibit ultrasensitivity (threshold effects)

at steady state, as expected. Second, we see that the response of [B∗] alone to the signal

is biphasic. This is in agreement with our results above, since the uptake of B* by A* is

a form of product inhibition, the only difference being that A* is then able to convert B*

to B**. In fact, the biphasic response in this case is more pronounced than that observed

in the case of simple product inhibition. This is the result of A* being able to suppress B*

both by uptaking it, and by converting it to B** (which releases A*).

We can now consider the effects of product inhibition on this system, introducing an

interaction between A* and B**. We see in Fig. 4.16 that the effects of product inhibition

are largely the same as in the case of the basic model. The main point here is that, because

of the pronounced biphasic response of [B∗] to [ST ] even without this additional interaction,

the biphasic response of both [B∗] and [B∗∗] together is more pronounced than in the case

of the basic model. The situation is similar in the case of inactive enzyme interference,

with both [B∗∗] and the sum of [B∗] and [B∗∗] responding with increased ultrasensitivity

to [ST ]. The biphasic response of [B∗] to [ST ], by way of contrast, is strongly diminished

under inactive enzyme interference. This is simply the result of strong uptake of B* by A.

In summary, we have seen that this variation of the basic model, involving an addi-

tional modification of the substrate, leads us to similar conclusions to those already drawn.

It also provides additional insights into the interplay between multiple steps of substrate

modification and the interactions we have studied.
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Figure 4.16: The effects of product inhibition (in a), b), and c)) and inactive enzyme interference (in d),
e), and f)) on the concentration of singly-modified substrate, B*, (in a) and d)), doubly-modified substrate,
B**, (in b) and e)), and both forms together (in c) and f)) are shown. Product inhibition leads to a pro-
nounced biphasic response in [B∗∗] and the sum of [B∗] and [B∗∗], while inactive enzyme interference leads
to pronounced ultrasenstivity in [B∗∗]. The black arrow denotes the direction of increasing strength of the
additional interaction under consideration (i.e. increasing k9f and k10f , respectively).



4.3 Results 106

4.3.6 Scaffold-mediated modification

In our second variation of the basic model, we consider what happens when a scaffold

mediates the interaction between enzyme and substrate. This is common in signalling cas-

cades, a particularly well-studied example being MAPK cascades Ferrell (1996). We can

investigate how the presence of a scaffold might change the effects of two additional inter-

actions we have been considering - product inhibition through binding of B* to the scaffold,

C, and inactive enzyme interference through binding of A to C. Fig. 4.17 shows how the

steady state response is altered by the additional interactions. Interestingly, the basal re-

sponse without additional interactions has become substantially less ultrasensitive than in

the basic model, where the scaffold was not present. This is a result of the strong binding

between the scaffold, enzyme, and substrate, as discussed in Thalhauser and Komarova

(2010). At higher scaffold concentrations, the response becomes even less sensitive.

Figure 4.17: The effects of a) inactive enzyme interference and b) product inhibition on scaffold-mediated
signalling are shown. Inactive enzyme interference is capable of increasing the sensitivity of the switch,
while product inhibition decreases the accessible range of signalling. The black arrow denotes the direction
of increasing strength of the additional interaction under consideration.

In Fig. 4.17, we see that increasing the strength of product inhibition only suppresses

the output, and does not lead to any biphasic response to [ST ]. This is because the binding

of B* to the scaffold C does not depend upon C already being bound to A* and so A* is

not able to influence uptake of B*. The only effect the product inhibition has, then, is to

cause uptake of B* by C, an effect which decreases the free B* available at each signalling

level. In this way, C is acting as a buffer between A* and B, preventing A* from regulating

B as it does in the case where the scaffold is not present. While the model considered
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here assumes independent binding of A and B to C, the situation is likely to be different

when cooperative binding is present. In this situation, the scaffold’s buffering properties

are likely to be diminished.

Also shown in Fig. 4.17 is the effect of inactive enzyme interference on scaffold medi-

ated signalling, where the response becomes progressively more ultrasensitive and switch-

like. Again, this is the result of the competition in binding between A and A*, although

in this case they are competing for binding to the scaffold rather than the substrate. Inter-

estingly, this additional mechanism of producing ultrasensitivity means that an ultrasensi-

tive response becomes possible even with high-affinity binding to the scaffold, as long as

scaffold-binding isn’t dependent on the activation state of the upstream enzyme.

4.4 Conclusions

A basic element of signalling in protein networks is the enzyme-catalysed modification of

a substrate protein. While this may be understood in terms of an interaction between active

enzyme and unmodified substrate, additional enzyme-substrate interactions are possible.

From the perspective of cellular signal processing, we can examine the interaction of en-

zyme and substrate as the interaction between two two-state networks of inactive/active

enzyme and unmodified/modified substrate. While the essential interaction in these net-

works is between the active enzyme and unmodified substrate, we focussed on the effects

of additional interactions, in particular those between modified substrate and active enzyme

(product inhibition) and inactive enzyme and unmodified substrate (inactive enzyme inter-

ference). Our goal was to examine how these interactions modulate signal processing in

this basic unit of signal transmission. The effects of the additional interactions were ex-

amined one at a time to start with, then in combination. We further examined the roles

of these interactions in two related situations: one in which the enzyme multiply modi-

fies the substrate and one in which the enzyme-substrate interaction was mediated by a

scaffold/adapator protein.

The results presented demonstrate some of the interesting new signalling behaviours

available to these simple systems if additional enzyme-substrate interactions occur. In the

case of product inhibition, we have seen that the qualitative nature of the behaviour can

change from a monotonic response to a biphasic response. Biphasic responses allow the

network to respond specifically to signal strength in an intermediate range, where the signal

is not too high or low. Similar responses are commonly seen in incoherent feedforward
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circuits Kaplan et al. (2008); Kim et al. (2008), and have been suggested to play roles in the

regulation of signalling crosstalk de Ronde et al. (2011). We have further seen that product

inhibition is capable of resulting in pulse-like responses to a change in the input signal. By

considering the effects of uptake of substrate by enzyme, these results complement other

work analysing the consequences of product inhibition in similar systems Ortega et al.

(2002); Salazar and Hofer (2006). The biphasic behaviour is exaggerated when multiple

modifications of the substrate occur. In contrast to the basic and multiple modification

models, however, biphasic and pulse-like responses are not seen in the scaffold model.

Thus, in this situation, the scaffold acts as a buffer to prevent this behaviour.

In the case of inactive enzyme interference, we have seen that the additional interaction

is capable of emphasising threshold-type responses to signals, and that this may be under-

stood in terms of molecular titration effects in a variety of conditions. Such thresholds are

important in allowing cells to trigger all-or-none responses to extracellular stimuli Ferrell

(1996). A trade-off was identified between the speed of the dynamic response and the de-

gree of sensitivity observed in the steady state response, depending on the strength of the

additional interaction. These conclusions also hold when multiple modifications of the sub-

strate occur. Interestingly, the inactive enzyme interference effect can increase sensitivity

even in the case of scaffold-mediated interactions between enzyme and substrate.

When the product inhibition and inactive enzyme interference interactions are present

side-by-side, a combination of their effects could be observed. However, when multiple

strong additional interactions are present, the qualitative differences in the response are

lost. This is a result of the signal being unable to differentially regulate binding between the

enzyme and substrate. These results show how some regulation of the binding properties

of enzyme and substrate is required in order for the observed signalling properties to occur.

We have shown how the tuning of individual protein-protein interactions can be used to

create new signalling behaviours. The details of the interactions between two proteins in a

network, and how they depend on the modification state of those proteins, can substantially

alter the network’s global signal processing properties, both at steady state and dynami-

cally. Information transmission in cellular pathways involves more complex networks than

those considered here, wherein a protein may interact with a number of other proteins to

form a variety of different complexes under changing conditions. Thus the results and in-

sights presented here and extensions thereof are particularly relevant when one examines

the natural complexity of signalling networks and the modular structure of protein-protein

interactions in conjunction with one another. Parallels with recent work include analysis
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of a case where both kinases and phosphatases simulataneously bind to a substrate (moti-

vated by observations in phosphopinositide signalling) Szomolay and Shahrezaei (2012),

and the observation that the introduction of an interaction between an inactive enzyme and

its substrate can lead to bistability in a simple feedback circuit Ciliberto et al. (2007). While

additional interactions beyond those typically considered are included in the models stud-

ied, it was still necessary, in the interests of simplicity, to make assumptions about some

interactions not occurring. The consequences of the relaxation of these assumptions is a

topic for future work.

Our findings have relevance for both signal processing in natural cellular and synthetic

cellular networks as well as the understanding of biological signal transduction processes.

Importantly, we have demonstrated some ways in which signalling behaviours such as

thresholds or biphasic responses can be generated purely from local interactions between

two components in a network, rather than involving extra entities or pathways. This indi-

cates that an extra layer of robustness in these behaviours may be built into a network by

combining these local features with global network features such as feedforward and feed-

back signalling pathways (e.g. multiple threshold effects in a cascade may provide a more

robust threshold effect to the cascade as a whole). It is also possible that some complex

behaviours may have their origins largely or entirely in local interactions in a signalling

network, and therefore that such behaviour may sometimes be misattributed to additional

(or missing) pathways, perhaps based on inspection of the topology of the signalling net-

work. This, in turn, can lead to a mistaken understanding of signalling in the network.

Furthermore, the presence of strongly nonlinear signalling processing as examined above

in multiple enzyme-substrate interactions in a network can have very nontrivial effect on the

network dynamics as a whole. Finally, we note that the rules governing enzyme-substrate

interactions are likely to be important in the design of synthetic signalling systems. This

is particularly important for cases in which signalling complexes are designed by com-

bining multiple modular domains, as in these cases the relationship between the activa-

tion/modification state of a protein and its binding properties are likely to be unknown.

Of course, given sufficient knowledge, it should also be possible to generate different sig-

nalling behaviours in synthetic circuits by modulating or engineering the type and strength

of interactions which are allowed to occur.

In summary, the investigations presented constitute a systematic examination of the role

of additional protein-protein interactions in affecting signal transmission in a simple unit

of signal transduction. It suggests that the nature of the protein interactions can signifi-
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cantly distort the signal transduction in chemical networks and that part of the complexity

and nature of signal transmission in reaction networks may be traced to the complexity of

interactions occurring between individual proteins. The modulation of protein-protein in-

teractions in networks such as these therefore represents an important aspect of signalling

in these systems, tunable by evolution and synthetic approaches alike to produce new sig-

nalling behaviours.
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Chapter 5

A modular systems approach to
understanding the interaction of
adaptive, monostable, and bistable
threshold processes

5.1 Introduction

In the preceding chapters, we have considered how simple biochemical motifs can produce

a variety of interesting signalling behaviours. In this chapter, we extend this approach by

considering how modules with different, well-defined signalling behaviours may interact

with one another. In order to do this in a general way, we take advantage of the observation

that some aspects of signalling recur from system to system Tyson et al. (2003).

One example of a dynamic characteristic which occurs in different kinds of signal trans-

duction is adaptation. This loosely means that following the application of a stimulus, a

transient response is observed which eventually recovers (exactly or approximately) to the

original basal pre-stimulus state Drengstig et al. (2008); Ma et al. (2009). Such signals are

particularly common in stress responses El-Samad et al. (2005); Muzzey et al. (2009); Ni

et al. (2009); Zhang and Andersen (2007), and also occur in sensory systems Friedlander

and Brenner (2009); Wark et al. (2007) and chemotactic systems Levchenko and Iglesias

(2002); Yi et al. (2000). We also note that these adaptive responses may occur across a

wide range of network scales - from a single receptor (e.g. adaptation to chemoattractant
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concentration Yi et al. (2000)), to several pathways at once (e.g. adaptation to changes in

inorganic ion concentration Ni et al. (2009)). Ultimately, adaptive signal transduction in-

volves the conversion (through the underlying chemical circuits) of a persistent signal into

a transient signal, which carries the relevant information to downstream targets.

Another dynamic characteristic which is present in different cellular contexts is that

of thresholds or switch-like behaviour Ferrell (1996); Huang and Ferrell (1996). This im-

plies that, following an activating signal, the downstream response is activated only when

the upstream signal exceeds a particular (threshold) value. This prevents the unnecessary

activation and production of downstream second messengers. In cells, thresholds can be

realized in many different biochemical ways, but these can be separated into two essentially

different categories based on the number of stable steady states present. In the first place,

there are ultrasensitive systems which have a single stable steady state for any value of pa-

rameters, which we refer to as monostable switches Ferrell (1996); Goldbeter and Koshland

(1981); Huang and Ferrell (1996). In the second place, there are systems which have two

stable steady states for a range of parameters, which we refer to as bistable switches Angeli

et al. (2004); Bagowski and Ferrell (2001); Ramakrishnan and Bhalla (2008). The presence

of two stable steady states in bistable elements manifests itself in their steady state response

in the form of hysteresis. Thus, while both of these signalling elements exhibit a sharply

elevated steady state response when the threshold is crossed, there are important qualita-

tive differences in their behaviour. Both monostable and bistable elements are frequently

encountered in signal transduction.

In this chapter we use a modular systems approach to try to achieve an understanding

of the ways in which adaptive signalling interacts with threshold processes (a schematic is

shown in figure 5.1). This is important for various reasons. The first, already discussed

above, is the fact that both of these processes are very common in biological signal trans-

duction, and have been seen in a variety of biological networks. Thus such interactions

may generically be expected in signalling networks, and may have important functional

roles. Secondly, the activation of switches by transient signals is quite different from the

activation of switches by static signals. Since the outputs of adaptive modules are pulse-

like signals, this systems approach also sheds light on the ways in which pulsatile signals

interact with threshold processes. Such an understanding also has relevance to the manipu-

lation of particular pathways through transient signals. In fact, a modular approach with an

explicit biochemical description of adaptive processes is the first step towards understand-

ing the role of adaptive signal transduction and transient signal propagation in the context
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of complex signal transduction networks. A systems approach entails viewing the adaptive

and threshold processes as individual signal processing entities and examining the quali-

tatively essentially different ways in which these entities interact. This involves analyzing

and distilling the signal processing characteristics and capabilities from different interac-

tions/interconnections of these modules. A systems-based understanding would provide

insights into the behaviour of different systems which involve these modules and their in-

teraction. Specific biological examples of the interaction of transient signals with bistable

signalling modules are found in Bhalla and Iyengar (1999); Hayer and Bhalla (2005). Sim-

ilarly, the network involved in osmotic stress response in yeast shows adaptive responses

of components such as Hog1 Klipp et al. (2005); Muzzey et al. (2009). Hog1 plays an

important role in triggering gene expression, where threshold effects may be expected.

Figure 5.1: A schematic of the interaction of the adaptive and threshold (monostable/bistable) modules is
shown. In (a) the adaptive module is upstream of the threshold module while in (b) the order is reversed.
Schematics of the modules input-output behaviour are shown in (c) (a transient pulse in response to a step-
change in input), and (d) (the steady state response curve).

Since our goal is to try to achieve a systems understanding of the interaction of adaptive

and threshold modules, rather than focus on various specific details of a single biological

process/system (which would obscure rather than illuminate some of the issues under con-

sideration), we isolate representative modules of adaptation and monostable and bistable

switching behaviour. The modules chosen are compact representations which possess the

essential characteristics of the relevant signal processing. In each case we examine more

than one representative module to check if our analysis depends in any essential way on the
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particular choice of module. Simplified models are also employed to shed direct light on

key aspects of our analysis. In all cases we use a combination of analytical results as well as

numerical simulations and bifurcation analysis to elucidate key aspects of the interaction.

Some of the questions we address are: what are the ways in which adaptive and threshold

processes can interact and how does this depend on their time scales? Can a transient signal

lead to the permanent activation of a switch and what factors does that depend on? What

kinds of signal processing may be generated from the interaction of these processes? Over-

all a dynamical-systems approach underpins the way in which we organize our analysis of

these modules and their interaction.

This chapter is organized as follows. In the next section we present and discuss the

different modules which we employ. In the following sections we carefully analyse the

interaction of adaptive signals with monostable and bistable threshold modules. We then

examine the processing of multiple pulse signals by these threshold modules. We then

analyse some issues relating to the interaction of adaptive signal processing and bistability.

We also study the response of the combined system to time varying signals. Following this,

we examine alternate interconnections of these modules, and conclude with a summary of

our results.

5.2 Models

In this section, we discuss the representative modules of adaptation, monostable threshold

and bistable threshold modules which we use in our study, and how they interact. Schematic

diagrams depicting the interaction topologies of the biochemical models used are given in

Fig. 5.2. MATLAB code used to simulate these models in their various combinations is

provided in the digital appendices, documented in Appendix E.0.4. Parameter values are

detailed in Appendix C.

5.2.1 Modules of adaptation

Adaptive modules convert a sustained steady change in input to a transient change in out-

put. Different models of adaptation in signal transduction exist in the literature, some of

which have been developed in the context of specific biological processes. Some of these

models lead to exact adaptation Drengstig et al. (2008); Sontag (2010); Yi et al. (2000)

while others display approximate (inexact) adaptation Behar et al. (2007); Ma et al. (2009).
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Figure 5.2: This figure shows the interaction topologies of the biochemical models of adaptation and thresh-
olds which were used. (a) depicts the excitation/inhibition model of adaptation, where R∗ is the output. (b)
depicts the Behar model of adaptation, where K∗ is the output, (c) depicts the Goldbeter-Koshland switch,
where K∗ is the output (denoted by u in the text, after normalization of the concentration). (d) depicts the
MAPK cascade, where MAPK∗ is the output (denoted by x3 in the text, after normalization of concentra-
tions). (e) depicts the bistable switch with saturated degradation, where K∗ is the output (denoted by u in the
text, after normalization of concentrations).
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Further, of the models which display exact adaptation, some models display exact adap-

tation without fine tuning parameters in the model. This feature is called robust exact

adaptation. A detailed parametric analysis of three node networks leading to adaptation

Ma et al. (2009) suggests that two common ways in which adaptation may be achieved are

incoherent feedforward and negative feedback regulation.

In this chapter we employ two representative models of adaptation. The first is a generic

feedforward adaptive model involving a response element (the output of the module) being

regulated by two opposing pathways, an activator and an inhibitor, each of which is regu-

lated by an input signal. This model was suggested and qualitatively analysed in the bio-

logical literature by Koshland Koshland (1977), and has been subsequently expanded and

mathematically modelled to explain adaptation and spatial sensing Levchenko and Igle-

sias (2002). For our purposes, we employ the temporal adaptation network here without

concerning ourselves with spatial sensing. The model equations are

dA/dt = kaS − k−aA

dI/dt = kiS − k−iI

dR/dt = −kfAR + krIR
∗

dR∗/dt = kfAR− krIR∗ (5.1)

The equations are non-dimensionalized so that R + R∗ = 1 initially(note that the total

amount is conserved) and so the last two equations can be collapsed to

dR∗/dt = kfA(1−R∗)− krIR∗ (5.2)

This module displays robust exact adaptation, as has been noted earlier. The steady state for

R∗ (the module output), depends on the ratio A/I , which is independent of the upstream

signal S. Thus a step change in signal will cause the system to recover to basal levels.

Earlier analysis reveals that such parallel regulation of opposite pathways places restrictions

on the dynamic range of the output of this system Krishnan (2009).

A second representative module which we use is the adaptation model developed by

Behar and co-workers, henceforth called the Behar model Behar et al. (2007). The key

elements are two proteins, a kinase and a phosphatase, each of which can exist in active

and inactive forms. The input signal (denoted by S) activates the kinase, which activates

the phosphatase. The latter in turn negatively regulates the kinase. This is thus an example
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of adaptation resulting from negative feedback. Denoting the active form of the kinase by

K∗ (the output of the module) and that of the phosphatase by P ∗, the equations for this

model are

dK∗/dt =
k1S(1−K∗)
k1m + (1−K∗)

− V2K
∗

k2m +K∗
− k3P

∗K∗

k3m +K∗

dP ∗/dt =
k4K

∗(1− P ∗)
k4m + (1− P ∗)

− V5P
∗

k5m + P ∗
(5.3)

These equations describe the reactions using Michaelis-Menten kinetics. The equations are

normalized so that K + K∗ = P + P ∗ = 1 and that is implicit in the above description

(see (Behar et al., 2007)). The Behar model exhibits adaptation which is not strictly exact.

However, the deviation from exact adaptation is very small for a wide range of signals.

While the results in this chapter are shown for the activator/inhibitor module, qualitatively

very similar results were obtained with the Behar module, unless otherwise mentioned. We

note that both these models capture the key essential dynamic and input-output behaviour

of adaptive signalling: a transient change in response to stimuli followed by a monotonic

recovery to the basal state (with no damped oscillations). Since it is the input-output sig-

nal processing behaviour which is important for our study here (rather than any structural

characteristics of the network), these models serve as good representatives of adaptive sig-

nalling.

Finally, while we employ the above modules as representative modules of adaptive

signalling, at various points in the chapter we also employ idealized pulse-like signals

(square pulses, pulse signals representing sharp jumps with exponential decay) to obtain

analytical insight into how pulse-like signals (such as the output of an adaptive module)

interact with threshold modules.

5.2.2 Modules of monostable thresholds

Monostable threshold modules possess only one stable steady state output for each input,

and the steady state input-output response shows a sharp increase when the input crosses

the threshold value. In this chapter we employ two representative modules of monostable

threshold modules. The first is a simplified version of a single-stage model of zero-order ul-

trasensitivity which was introduced by Goldbeter and Koshland (Goldbeter and Koshland,

1981) and may be regarded as a benchmark model of a monostable threshold. This model
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involves the reversible conversion of a species from its inactive to active form. The enzymes

that regulate the forward and reverse reactions act close to saturation. This combined effect

results in a steady state response which is a sharp sigmoidal function of the input, and pro-

vides the characteristic of a monostable switch. The Goldbeter-Koshland model involves

the description of the activation of a protein by an input signal S. The concentration of the

active form of the species (the output of the module) is denoted by u. Both forward and

backward reactions involve Michaelis-Menten kinetics. The equation for the concentration

of active form of the species is

du/dt = S.
V1(1− u)

Km1 + (1− u)
− V2u

Km2 + u
(5.4)

The various constants denote the relevant Michaelis-Menten parameters, S denotes the

regulating signal and u is the output. The sigmoidal steady state response of this model in

response to the signal is depicted in figure 5.3 d).

A second representative module of a monostable switch which we employ is a model

of a MAP kinase cascade. MAPK cascades are a well-known example of systems which

exhibit switch-like behaviour and models of MAPK cascades have been developed over

the years by a number of researchers (for e.g. see(Huang and Ferrell, 1996; Kholodenko,

2000)). The model which we will use is based on the paper (Huang and Ferrell, 1996). The

MAPK module involves a cascade of reactions with the output of the upstream reaction

regulating the reaction in the cascade immediately below it. The enzymatic reactions are all

modelled using Michaelis-Menten equations. The essence of this model is that, while each

stage in the cascade has only a weakly sigmoidal input-output response, the compound

effect is a very sharp, switch-like input-output response. The equations for the MAPK

cascade are given below (parameter values are provided in Appendix C.

dx1/dt = S.
V1(1− x1)

Km1 + (1− x1)
− V2x1
Km2 + x1

dx2/dt = x1.
V3(1− x2)

Km3 + (1− x2)
− V4x2
Km4 + x2

dx3/dt = x2.
V5(1− x3)

Km5 + (1− x3)
− V6x3
Km6 + x3

(5.5)

where x3 is the output. In addition to these modules, a simple model which captures the

signal processing essence of a monostable switch was also used to clarify the analysis and
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provide analytical insight, especially related to the response of such modules to transient

signals. This model is given by

du/dt = K(H(S − St)− u) (5.6)

where H denotes the Heaviside function and u is the output. This is a simple module which

indicates the presence of a switch with respect to the upstream signal S at the value St. The

timescale of the response depends on the constant K.

An important issue which immediately arises while considering the interaction of adap-

tive modules with the biochemical threshold modules, is exactly how the signal from the

upstream module regulates or interacts with the downstream module. In both the biochem-

ical modules above the integration with the upstream signal is clear: the output of the up-

stream module acts as the activating signal for the threshold module. A couple of points are

worth mentioning. Firstly, the upstream modules chosen are scaled so that their output is

between 0 and 1. Clearly, the effect of the absolute concentration of output of the upstream

module can be absorbed in the kinetic constant accompanying this signal in its regulation

of the downstream module. Secondly, by introducing another additive constant where this

signal appears in the downstream module it is possible to alter the range of regulation of

the downstream module by the upstream signal. This also has a natural interpretation, of

simply altering the basal value of the output of the downstream module in the absence of

upstream signal.

5.2.3 Modules of bistable thresholds

Bistable threshold modules, in contrast to monostable threshold modules, possess two sta-

ble steady states for a range of inputs and parameters. They also exhibit switch-like be-

haviour, but embody very different dynamical characteristics than are seen in the monos-

table case. Bistable behaviour has been observed in various contexts in cell biology and

different models underlie these various processes. However, a common feature for gener-

ating bistability in signalling is positive feedback (or double negative feedback). Different

simple models using positive feedback have been shown to generate bistable behaviour.

Some of these models involve strongly co-operative feedback with high Hill coefficients.

We examined and analysed a number of representative modules of bistability. The one

which we use to present computations is a module of saturated degradation, along with
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positive feedback (Ferrell, 2002). The upstream signal plays a role in catalysing this pos-

itive feedback pathway (either exclusively or along with the some other existing enzyme).

This model describes the variation in concentration of the active form of a protein u by ac-

tivation and deactivation reactions, with a positive feedback loop acting to further activate

inactive protein. Here, again, the total concentration of the protein is normalized to be 1.

The governing equations are

du/dt =
V1(1− u)

Km1 + (1− u)
+ S.kfbu(1− u)− V2u

Km2 + u
(5.7)

Here the various constants are Michaelis-Menten parameters, S is the upstream input sig-

nal, kfb is a kinetic parameter which parametrizes the feedback strength, and u is the output

of the module. Some basic analysis of this module is seen by examining the steady state

response in this module to the signal S. This is presented in the bifurcation diagram in Fig.

5.4. We clearly see that there are regions of monostability and a finite range of parameter

values corresponding to bistability.

One important aspect of our study here is to understand the response of such bistable

threshold modules to transient signals. In general owing to both the non-linearity of the

modules and the transient nature of the signal, it is difficult to obtain analytical insight

into how transient signals are processed by such modules. Thus, we also examine a sim-

ple model which possesses the essential characteristics of bistable modules, but is more

tractable analytically. This model, which displays the familiar z-shaped nullcline, is given

by

dz/dt = −αz, S < 0

dz/dt = αz(1− z)(z − 1 + S), 0 < S < 1

dz/dt = α(1− z), S > 1 (5.8)

In the above equations, z is the output variable and S is the regulating input signal. It

is clear that for 0 < S < 1 we have bistable dynamics, with three steady states for z:

z = 0, 1− S, 1, of which z = 0 and z = 1 are both stable. Outside this region there is only

one steady state.

It is worth pointing out again an important aspect of the interaction of the upstream

signal with the bistable module. The basal value of the upstream signal is a non-zero value

which lies either in the monostable or bistable region of the bifurcation diagram for the
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bistable module. The upstream signal can vary in a finite region and so, for a particular

choice of parameters, the upstream signal can regulate the bistable module so that it can be

either in both monostable and bistable regions, or only in the bistable region (the case where

bistability is never encountered is not of interest). It is also worth pointing out that for the

case S = 0, the module may in general be either monostable or bistable. In considering the

interaction of an adaptive module with a bistable module, the basal steady state conditions

for both modules usually correspond to a nonzero value of S, and for the bistable module

this state is different from the one corresponding to S = 0 (i.e. zero upstream signal).

In general, the location of the basal signal value on the bifurcation diagram depends on

the various kinetic parameters of the bistable module (including parameters embodying the

possible presence of positive feedback in the absence of an upstream signal).

5.2.4 Example equations for interconnected modules

We present example equations for the combined systems of interconnected modules - one

example for each order of interconnection. The excitation/inhibition model of adaptation

and the saturated degradation model of bistability are used here. The interconnection of

other modules is similar, with the output of the upstream module feeding into the input of

the downstream module.

Adaptive module upstream of bistable threshold module

dA/dt = kaS − k−aA

dI/dt = kiS − k−iI

dR∗/dt = kfA(1−R∗)− krIR∗

du/dt =
V1(1− u)

Km1 + (1− u)
+R∗.kfbu(1− u)− V2u

Km2 + u
(5.9)
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Bistable threshold module upstream of the adaptive module

du/dt =
V1(1− u)

Km1 + (1− u)
+ S.kfbu(1− u)− V2u

Km2 + u

dA/dt = kau− k−aA

dI/dt = kiu− k−iI

dR∗/dt = kfA(1−R∗)− krIR∗ (5.10)

5.3 Results

5.3.1 Interaction of adaptive and monostable threshold modules

We investigate the interaction of adaptive modules and monostable threshold modules. This

is done as follows. The adaptive module is regulated by an external signal and the output

of the adaptive module in each case is an input to the threshold modules as outlined in the

previous section (see Fig. 5.1 (a)). We analyse the interaction of modules in general using

both simulations and analytical work. We first start by subjecting the composite system

to a step change in input. The response of the adaptive module to this change in input is

shown in Fig. 5.3 (a). If the response of the adaptive module is always below the threshold,

effectively no output is seen. On the other hand, if the output of the adaptive module

transiently exceeds the threshold then an output may be seen, depending on the relative

speed of dynamics of the adaptive and monostable threshold modules. We consider two

different cases, concentrating for the time being on the Goldbeter-Koshland model. In the

first case (shown in Fig. 5.3(b)), the adaptive module dynamics are slower than that of

the threshold module, and so an output is seen once the threshold is crossed. This output

eventually decays back to zero, and the decay starts once the threshold is crossed in the

reverse direction. In the second case, if the adaptive dynamics are much faster than that of

the threshold module, a negligible output response is obtained.

Similarly, we examined the interaction between adaptive signalling and the MAPK

cascade model of a monostable threshold. Fig 5.3(c) shows the behaviour of the output as a

function of cascade length. We see that the output of the one step reaction cascade actually

has a higher amplitude than that of the three-stage cascade. While the three step cascade

acts as a sharper switch, this comes at the cost of slowing down of the dynamics, and thus

the less sensitive switch acts as a better transient amplifier in this case for such adaptive
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Figure 5.3: Interaction of the adaptive module with monostable threshold module (a) The response of
the adaptive module to a step-change in input (at t=0) is shown. This output of this module is then the input to
the downstream monostable threshold modules. The location of the threshold is marked by the dashed line.
(b) The response of the downstream monostable threshold module for the case of the Goldbeter-Koshland
switch is shown. (c) The responses of single- and multiple- stage MAPK cascades are shown, indicating
a decreased amplitude of pulse with increasing cascade length. (d) The steady state characteristics of the
Goldbeter-Koshland switch, and one- and three-stage MAPK cascades, are shown. Note the very similar
steady state characteristics of the Goldbeter-Koshland and three-stage MAPK cascades.
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signals. We note further that, in contrast to the Goldbeter-Koshland threshold, there is a

delay before the MAPK cascade output begins to decrease, after the input decreases below

the threshold. This is because, in the MAPK cascade, several switch-like stages must

be successively switched off before the output will begin to decrease. We note that the

differences observed between the behaviour of the Goldbeter-Koshland model and MAPK

cascade cannot be the result of differences in the steady-state signal processing, as these

are very similar for the parameter values used (see Fig. 5.3(d)).

Analytical work provides additional understanding of the signal transduction above.

This is done for two cases, one the Goldbeter-Koshland model, and another the simpli-

fied model describing the switch by a Heaviside function described previously. For the

Goldbeter-Koshland model, the amplitude of the response depends on the time T during

which the upstream signal is above the threshold. We note that, for the duration that the

signal is above the threshold and the output satisfies u� 1, Eq. 5.4 can be simplified to:

du/dt = S.V1 −
V2
Km2

(5.11)

Thus, once the threshold is crossed, the Goldbeter-Koshland module exhibits linear-

in-time dynamics for a particular input signal value. This is true only when the module

operates away from complete conversion. This means that, for a square-pulse input, the

amplitude of the response is given by A = (S.V1 − V2/Km2)T , up to the maximal output

of the Goldbeter-Koshland threshold. In contrast, the simplified model with a Heaviside

function results in an amplitude given by A = 1− exp(−KT ), as is found from an analyt-

ical solution for this model. We see that in this case the dependence of amplitude on time

is different from that of the Goldbeter-Koshland model. This feature is important when we

re-examine the response of these modules to multiple pulse signals.

5.3.2 Interaction of adaptive and bistable threshold modules

In this subsection we analyse the interaction of the adaptive and bistable modules. Fig. 5.4

shows three cases depicting this interaction. In each case, the adaptive module is subjected

to a step change in input, and an adapting output is produced on three different timescales,

corresponding to different pulse durations (Fig. 5.4(a)). In the first case, where the step

change in input produces a short pulse from the adaptive module, the output from the
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bistable module also adapts (Fig. 5.4(b)). In the second case, where an intermediate pulse

is produced by the adaptive module, the output of the bistable module again adapts, but

there is a prolonged excursion before the system recovers to the basal state (Fig. 5.4(b)).

In the third case, where the adaptive module produces a long pulse, there is a qualitative

difference – the output of the bistable module does not adapt, and instead asymptotes to a

new value (Fig. 5.4(c)).

Figure 5.4: Interaction of the adaptive module with the bistable threshold module(a) The response of the
adaptive module to a step change in input (at t = 0) for different rates of adaptation, resulting in pulses which
we call short, medium and long. (b) The response of the downstream bistable module to short and medium
pulses is shown. Switching does not occur. (c) The response of the downstream bistable module to a long
pulse is shown, in which switching occurs. (d) The bifurcation diagram for the bistable switch is shown. The
solid lines represent stable steady states, and the dashed line represents unstable steady states.

This behaviour can be understood intuitively as follows. In the last case, the output

of the adaptive module causes the regulation of the bistable module into a regime where

it is monostable. Further, this leads to the variables in the bistable module increasing in

value in the monostable region. In the time taken for the output of the adaptive module to
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essentially reach its basal value, the output of the bistable module (now back in the bistable

region) is now in the basin of attraction of the upper stable steady state and eventually

reaches this upper steady state. This behaviour can be systematically examined in greater

depth. Intuitively, looking at the dynamics of the two modules, we recognize that the mere

regulation of the output of the adaptive module into a regime where it corresponds to the

monostable regime of the downstream module is not sufficient to induce this switching of

steady states. For example, if the adaptive dynamics were much faster than the threshold

dynamics, the switching behaviour would not be observed. Thus we expect that not only

crossing into the monostable regime, but also spending sufficient time in the monostable

regime, is needed for this switching to happen (for e.g. also see (Bhalla and Iyengar, 1999)).

The critical case which acts as a boundary between recovery to the basal steady state

and switching to the elevated steady state corresponds to a special situation where the sys-

tem asymptotes to the intermediate unstable steady state. We can now explore the critical

amplitude or time duration of a pulse of a particular profile to result in switching. This is

shown in a plot of critical pulse amplitude versus pulse duration for switching for different

specific pulse profiles (Fig. 5.5). One specific case was that of a square pulse (Fig. 5.5

(a)). The second profile, which more closely resembles the output of an adaptive module,

corresponds to a sharp increase followed by an exponential decay to basal levels. This is

shown in Fig. 5.5(b). For a pulse (of a fixed rate of decay) whose amplitude is greater

than the critical threshold shown in Fig.4(b), the output of the bistable module will result in

switching. This critical curve was obtained using two methods. One was using simulations,

varying the pulse amplitude systematically for each decay rate, analysing the asymptotic

state and hence estimating the critical amplitude. A second way of estimating this curve

was from the dynamic equations, by starting at the intermediate unstable steady state (at

basal parameter values) and performing backwards time integration for the parameter vari-

ation (away from the basal value). The location (i.e. parameter value) at which the state

variable reaches the basal prestimulus value provides an estimate for the critical amplitude.

These two methods yielded indistinguishable results. The critical curve is plotted in Fig.

5.5(b). Also plotted in this figure is a conservative estimate for the amplitude of a pulse

required to induce switching (see below): this is a sufficient condition for the amplitude of

the pulse to result in switching, which can in certain cases be estimated analytically.

In general, it is difficult to analytically describe the signal processing and dynamics

resulting from a transient signal interacting with a bistable system. In order to obtain some

analytical insight into the interaction of adaptive signals with bistable switch-like modules,
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Figure 5.5: (a) We see the effect of pulse duration and amplitude to induce switching for a square pulse. The
switching threshold is located at an input value of 1. We see that the critical duration needed becomes larger
as the amplitude gets smaller as the bistable switch location is approached. (b) shows the critical curve for an
exponential pulse, in terms of the amplitude and signal decay rate (solid curve). Also shown is the sufficient
condition (dashed curve) needed to induce switching (see text). (c) A similar plot as (b), for the toy bistable
switch.
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we examine the simplified model of bistability discussed earlier.

Basic insight into the interaction of adaptive signals with this module can be obtained

by varying S in a pulse-like manner starting from S = S0 (and z = 0), where 0 < S0 < 1.

We examine different pulse-like profiles for the temporal variation of the input S. The first

is a square-pulse profile, where the input is changed to S = S1 (S1 > 1) for a time interval

τ , and then immediately brought back to the basal value. Since, for this time interval, z

is in the monostable regime and evolves according to the above equations, it immediately

follows that at the end of this interval

z = 1− exp(−ατ) (5.12)

We immediately see that the condition for the upper steady state to be (asymptotically)

reached is that, when the input is returned to basal values, z must be in the “basin of attrac-

tion” of the upper steady state (the “basin of attraction” of a stable steady state is defined

as the set of states which asymptotically approach that steady state as time progresses), and

so must be greater than the unstable intermediate state (1− S0). Thus we must have

exp(−ατ) < S0 (5.13)

for switching, with equality in the above equation being the critical condition for switching.

Clearly for any τ greater than the critical value switching will occur. Notice that for this

model of bistability and for a square pulse, the condition for switching does not depend

on the amplitude of the pulse. Equation 5.13 shows explicitly that a critical time duration

for the activating signal to push the bistable module into a monostable regime is needed to

activate the switch.

We now examine a profile similar to that examined above: the parameter is given an

instantaneous jump to a value S1 after which it decreases to its basal level at an exponential

rate γ. Clearly, for a fixed amplitude a lower value of γ will work towards switching

between steady states. This is seen in Fig. 5.5(c) where a plot of critical amplitude versus

critical decay rate is shown. While it is difficult to estimate this curve analytically, for any

particular decay rate it is possible to get a bound on the amplitude. This is done as follows.

From the discussion above we note that a condition for the variable z to switch steady

states is that it ends up in the basin of attraction of the upper steady state - it must attain a

value greater than the intermediate steady state when S has essentially recovered to basal
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value. Estimating the behaviour of z explicitly as a function of time in the bistable regime is

difficult. However, a sufficient condition for the variable to end up eventually in the upper

steady state is that when the parameter returns to the bistable regime (S = 1), the variable

value is already above that of the intermediate unsteady state of the basal parameter value.

This will guarantee switching to the elevated steady state. Note that for exponential decay,

the time spent in the monostable region is

τ = (1/γ)ln(S1) (5.14)

Therefore a sufficient condition for switching is (1/α)ln(1/S0) < (1/γ)ln(S1). This pro-

vides a bound on the critical amplitude and any S1 above this value will result in switching.

The above analysis is easily generalised to any arbitrary variation of S(t). If T is

the time spent by the parameter in the monostable regime, then a sufficient condition for

switching is

exp(−αT ) < S0 (5.15)

Note that this sufficient condition coincides with the necessary condition for switching for

a square pulse signal.

5.3.3 Consequences of under- and overadaptation

While we have been concerned with analysis of exact adaptation, there exist a broad class

of systems which exhibit only partial, or inexact, adaptation. In these systems, when the

input is changed, there is a transient response in the output before it comes back to a new

steady state, different from its initial steady state. In underadaptation this final steady

state is above (below) the initial steady state after a transient increase (decrease), while in

overadaptation the final steady state is below (above) the initial steady state after a transient

increase (decrease). We note that the classification of a system as partially adapting, as

opposed to simply being a system which overshoots its ultimate steady state, is an arbitrary

one, but a reasonable distinction can be made based on the relative magnitude and duration

of the overshooting (see Ma et al. (2009) for an example). Thus under- and overadapting

systems possess two signalling processing abilities - steady state signal transduction, and

pulse generation in response to rapid changes in input.

In this section we analyse the effects of under- and overadaptation for the two alternate
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interconnections of adaptive and threshold modules - first with adaptation occurring up-

stream of the threshold, then with adaptation occurring downstream of the threshold. We

pay particular attention to the differences between these systems and exactly adapting ones.

Adaptation upstream of the threshold

If the adaptive output begins below the threshold (so the switch is off), and the adaptive

module is then subjected to a signal, there are two possible outcomes. As in the main

text, similar results hold for the reversed case, where the adaptive output begins above the

threshold (so the switch is on), and the adaptive module is then subjected to a decreased

signal.

In the first case, the new steady state of the adaptive module may be located above the

threshold. In this case switching will occur for both monostable and bistable threhsolds,

whatever the timescale of changes in the input signal. This differs from the situation with

an exactly adapting module, where switching depends on the characteristics of the pulse,

and thus on the timescale of changes in the input signal. Here, no pulse is required -

the switching is the result of the steady state signal transduction. We note further that,

in the case of overadaptation, this provides a way for a decrease in the input to activate

the switch. This happens because, while a decrease in the input will produce a negative

pulse, the ultimate steady state lies above the original steady state, which may lie above the

threshold and thus lead to activation.

In the second case, the new steady state of the adaptive module may remain below the

threshold. Where the threshold is monostable, the system output will be very similar to

that obtained with exact adaptation - pulses or no response, depending on the timescales

involved (see Fig. 5.12). Where it is bistable, the adaptation to a new steady state may

affect the duration and magnitude of the pulse required to achieve switching. This can

be seen by analysing the response of bistable thresholds to square pulses with different

initial and final states (square pulses are chosen because the location of the final steady

state can be modified separately from the rest of the dynamics of the system). Fig. 5.6

shows a comparison of the bistable module responding to an exactly adapting step pulse

(no switching occurs) and an underadapting one (switching does occur). This is due to the

change in location of the unstable steady state before and after the pulse for underadaptation

as opposed to exact adaptation - it comes down, rather than remaining the same. Thus

during the pulse the system with exact adaptation cannot rise above its final unstable steady
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Figure 5.6: This figure shows how the output from an underadapting module may switch a downstream
bistable module where an exactly adapting module will not.
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state, while the system with underadaptation, with its new, lower unstable steady state, is

able to rise above it. This can be seen by a simple modification of the expression for critical

pulse duration (equation 5.13) for the toy model of bistability given by equation 5.8:

τ > α ln (1/Sf ) (5.16)

In this case, Sf is the final steady state, replacing S0 in the original expression (S0

there represented both the initial and final steady states, but here the initial steady state is

irrelevant because all lower stable steady states have the same location). This result shows

how the duration of the pulse required for switching decreases for underadaptation, and

increases for overadaptation. We note that these results depend not only on the properties

of the bistable switch and, in particular, on the variation of the location of its stable and

unstable steady states with the input.

Adaptation downstream of the threshold

When inexact adaptation occurs downstream of the threshold, the results are similar to

those found for exact adaptation. The only difference is that inexact adaptation provides a

mechanism for information on the current state of the threshold (on or off) to be propagated

downstream of the adaptive module.

5.3.4 The processing of multiple-pulse (pulse train) signals by threshold

modules

The analysis of the previous sections essentially focussed on the interaction of a pulse-like

signal (output of the adaptive module) with threshold modules. In this section, we extend

the analysis of the previous section by examining the response of these threshold modules

to multiple-pulse (pulse train) signals, since this is also relevant to how threshold modules

process transient input signals.

Processing of multiple-pulse signals by monostable threshold modules

We first examine how multiple-pulse signals are processed by monostable threshold mod-

ules. To do this we examine square pulse signals where the signal period is T , and a fraction

of this period α corresponds to the pulse, where the signal strength is S1; the signal strength



Chapter 5. A modular systems approach to understanding the interaction of
adaptive, monostable, and bistable threshold processes 133
is the basal level S0 for the remaining time. The systematic variation of the parameter α al-

lows us to examine the effect of different signal pofiles, ranging from narrow pulses (small

α) to broad pulses (α closer to 1). The monostable threshold responds to narrow pulse

inputs with periodic, small increases from the lower steady state, and responds to broad

pulses with periodic, small decreases from the upper steady state. Examples of these two

situations are seen in Fig. 5.7 in the case of the Goldbeter-Koshland switch. We note that

α = 1 corresponds to permanent elevation of the signal.

Figure 5.7: This figure shows how the monostable Goldbeter-Koshland switch responds to multiple-pulse
inputs. (a) shows how the output may oscillate about either extreme state, depending on the duration of the
pulses. (b) shows the corresponding return map. The linearity of this return map across a wide range of states
outside the extreme states explains the observation of (a). (c) shows the location of the stable periodic output
as a function of α. (d) shows a plot analogous to (c) but for the MAPK model. We see that in contract to (c),
this curve as a function of α is less sharp.

Simulations were also performed with intermediate values of α. Two cases are ob-

served regarding the periodic solutions centred around intermediate values of the output

for intermediate values of α, depending on the model of the monostable threshold used.
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In the case of the Goldbeter-Koshland model of the monostable threshold, such solutions

are rarely found. This is shown in the bifurcation diagram shown in Fig. 5.7(c), where,

interestingly, the periodic solutions tend to be centered around the upper and lower steady

states.

We studied this further by examining the result of time integration of the module for a

time equal to the period of the pulse train (y1) and how it depended on the starting point

(y0). We note that if the result of integration for this period equals the initial value, then

this implies that the trajectory is a periodic trajectory of the forced dynamical system.

The result is plotted in Fig. 5.7(b) for two different α values. Plotted on the y-axis is

the variable value after one time period as a function of its starting level. This result can

in fact be estimated analytically for a whole range of y-values. Due to the behaviour of

the Goldbeter-Koshland model, the dynamics of the variable on either side of the switch

threshold is linear. This results in a plot of this function (i.e. the final value as a function

of the initial value) which is in fact linear for a range of y-values. Thus for α = 0.3, we

see a linear plot for a wide range of y-values which does not intersect the line y = x. This

line is curved near the extremities, and intersects this line very close to (x, y) = (0, 0).

This in turn corresponds to a periodic solution which represents relatively small amplitude

perturbations about the base (zero) state. An exactly analogous result may be seen for

high values of α = 0.8 where the intersection is close to (x, y) = (1, 1). Examining an

intermediate value α = 0.6 shows however that the intersection is still quite close to the

upper extremity. In fact, owing to the shape of the function under consideration and that it is

linear for a wide range (and parallel to y = x), we may expect intersections relatively close

to the extremities. The function above may also be explicitly written analytically when y0
is far away from the extremities (under which conditions dy/dt is practically constant). In

fact, for the case of a periodic signal between S = 0 and S = 1 (chosen for simplicity) we

find that

y1 = y0 + (V1 − V2)αT − V2(T − αT ) (5.17)

We see here that the second term on the right hand side corresponds to the increase for the

fraction of the time the signal is above the threshold and the third term corresponds to the

decrease for the fraction of the time the signal is at basal levels (below the threshold). The

main point is that irrespective of α and T, this curve is a straight line parallel to y = x.

Thus for y0 values away from the extremities (where this analysis holds) this curve will not
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exhibit any fixed point (i.e. cross the line y = x), and so no periodic solutions away from

the extremities may be observed. This is clearly seen in Fig. 5.7(c), showing the location

of the stable periodic output (as the solution of the fixed point of the return map y1 = y0)

as a function of α.

In the case of the MAPK and Heaviside function models of monostable thresholds,

periodic solutions centred around intermediate values of the output are observed. This is

seen for the MAPK cascade in the bifurcation diagram shown in Fig. 5.7(d), and we further

note that increasing the number of stages in the cascade leads to a considerable reduction

in the amplitude of the response (as in Fig. 5.3c)). For the Heaviside function model, the

intermediate periodic solution may be obtained explicitly by analysis of the return map

(which is a plot of the result of integration of the module, for one time period, as a function

of the starting point). This results in

y1 = exp(−kT (1− α))− (1− y0)exp(−kT ) (5.18)

where y1 represents the output integration for one time period, starting from y = y0. The

above equation reveals that a nontrivial fixed-point of the return map (y1 = y0) –which

corresponds to a periodic response–may be obtained explicitly. The fact that this fixed

point exhibits intermediate values between 0 and 1 as the parameters are varied provides a

direct indication that a periodic output whose maximum and minimum lie between 0 and 1

is the result.

Processing of multiple-pulse signals by bistable threshold modules

We now examine the analogous situation in the context of the bistable module. Fig.5.8(a)

shows two situations. In the first case, for relatively small α we have (relatively small

amplitude) periodic perturbations about the basal state, these being induced by periods in

the monostable regime. In Fig.5.8(a) we also see the response of the system to broader

pulses, and we see that after a few periods the system evolves to a periodic solution which

is based about the upper steady state. A few things must be pointed out in this context.

Firstly, this periodic pulse-like signal in effect induces switching. Thus even if the pulse

signals were subsequently switched off, the system would end up in the upper steady state.

Secondly, this switching occurs in response to this multiple-pulse input even though it did

not occur in response to a single pulse of the same amplitude and duration as one of these
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pulses. This is an example of switching induced by a finite number of pulses, and indicates

another aspect of the interaction of pulse-like signals and bistable modules.

Figure 5.8: (a) We see the effect of two different multiple pulse inputs to the bistable module α = 0.3 and
α = 0.8 –the latter induces switching while the former doesn’t. This is explained by the return map (b),
indicating two stable fixed points for α = 0.3 and one for α = 0.8. (c) displays the solution of the return map
as a function of α. The solid curves correspond to points in attracting periodic solutions, while the dashed
curve corresponds to points in repelling periodic solutions.

Further insight into the response of this bistable module can be obtained by examining

the return map constructed numerically by evaluating the output at the end of a single pulse

period. Fig. 5.8(b) shows the return map for two different values of α. We notice here

that for low α there are three intersections of the return map with the line y = x. Thus we

have two periodic solutions roughly based about the stable steady states, but also another

intermediate periodic solution. This intermediate solution is in fact unstable. Thus this is

not observed in simulations. Gradually increasing the α value results in this intermediate

periodic solution getting extinguished in a saddle-node bifurcation at a critical value of α.

For higher values of α only the periodic solution based about the upper branch exists. This
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is seen in the bifurcation diagram shown in Fig. 5.8(c). For low values of α, the return

map suggests that any finite number of pulses (of this amplitude) will not result in the other

stable steady to be reached. On the other hand for higher values of α, as noted above, the

return map has only one fixed point. Here a finite number of pulses can indeed guarantee

that the upper steady state is reached eventually.

To summarize, the analysis of the return map complements the analysis performed for

the monostable situation. In contrast to that case, the bistable threshold module exhibits two

stable periodic solutions and an intermediate unstable periodic solution. As the parameter

α is increased, a saddle node bifurcation results in only one stable periodic solution. Thus,

there is a sharp transition leading to qualitatively different periodic output.

5.3.5 Inducing switching in bistable networks

The previous sections highlighted many aspects of the interaction of adaptive signal trans-

duction and threshold processes, both monostable and bistable. We analyzed this interac-

tion by means of specific representative modules of adaptation and bistability. In particular,

this entailed postulating specific regulation of a bistable process. In the case we considered,

the adaptive signal was able to activate a bistable switch by pushing the system into the

monostable regime transiently. Bistable switches (in response to steady signals) also rely

typically on a signal pushing them into a monostable regime. In taking a systems approach

to the interaction of adaptive signals and bistable networks, other questions arise. Do other

interconnections of adaptive signals and bistable networks result in switching of steady

states? Does the switching necessarily occur through an essentially similar scenario? Is it

possible for bistable networks to be induced to switch steady states without ever transiently

leaving the bistable regime?

We will examine whether a transient upstream signal (such as that arising from an

upstream adaptive module) can result in switching of steady states in a bistable network

without ever pushing this network into a monostable regime. To obtain some insight into

these systems questions, rather than build specific examples of bistable networks, we will

work with simplified models which distil the dynamical systems essence of the problem.

A bistable network is typically some system involving one or more variables which is

governed by an underlying dynamical system (governing the kinetics of the reactions of

the network). This network, by assumption, has two stable steady states. Furthermore, an

adaptive signal regulates this network by modulating or affecting one or more reaction rates
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(enzymatic regulation). This is done so that the network never leaves the bistable regime.

This means that at any instant, the instantaneous value of the parameter is one which results

in bistability.The variables of the network respond dynamically to the change in network

dynamics induced by this signal.

We describe the bistable network dynamics in the simplest possible way by means of

a bistable model. From our point of view, we work with a single variable model, which

has three steady states, two of which are stable. Since we anticipate that the location of the

roots plays an important role we choose a simple explicit form for the model:

du/dt = −a(u− u1(S))(u− u2(S))(u− u3(S)) (5.19)

The variable u represents a typical variable of the network which responds under its dy-

namics. Its dynamics is modulated by some upstream signal S. This upstream signal may

regulate the location of the roots u1, u2, u3 (we assume that u1 < u2 < u3), and we will

assume that it will do so in an adaptive way. Thus these parameters will display adaptive

dynamics and recover to basal values exactly. The variable u will be assumed to be initially

at the stable steady state u1, but all the essential insights carry through when starting at the

other stable steady state, u3.

This setting allows us to examine a few issues in a more general manner. The signal

could regulate each of these parameters in an independent and very different way. We

start by considering the case where the system starts at the lower steady state u = u1

and u1, u2, u3 are all subject to a transient increase before reaching their basal state. This

describes the dynamics of a bistable system with a particular class of adaptive modulation.

Using this model, we can immediately make some quite general conclusions. Firstly, if

the adaptive dynamics are much faster than the intrinsic dynamics of the bistable network

(parametrized by a), the system barely registers the change and the system remains very

close to the basal state. The other extreme case, where the adaptive dynamics are much

slower than the intrinsic dynamics of the bistable network, is also worth examining. In

this case, u1, u2, u3 are slowly varying and so the system instantaneously adjusts to these

slowly varying parameters. Since the system starts out at u = u1, it ends up tracking

the slow variation of this steady state. Thus, neither of these extreme cases will lead to

switching of steady states. We then look at the intermediate case, where the dynamics of

the two modules are of comparable timescales. The resulting behaviour is shown in Fig.

5.9. In this case, we see that the bistable network variable, u, starts to decrease to basal
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values after an initial increase (this corresponds geometrically to the root u1 crossing below

the trajectory of u). However, as it decreases, the root u2 also crosses the trajectory of u,

and thus the system is in the basin of attraction of the upper steady state u3, and eventually

reaches this steady state. This is an example of steady state switching induced by the

adaptive modulation of a bistable network without the system ever leaving the bistable

regime. An examination of this case reveals the core underlying factors responsible: the

system evolves in such a way that it ends up in a region which belongs to the basin of

attraction of a different steady state at basal conditions.

Figure 5.9: We see the effect of adaptive module of the features of the simple model and how switching of
steady states can be induced by a transient signal without every leaving the bistable regime. Depicted are the
adaptive dynamics of the parameters u1, u2, u3 (dashed lines) and the system response (dark line).

Other scenarios can similarly be examined. For instance, in the above example, a very

similar situation can be observed if all the roots decrease to a point such that the system ends

up in the basin of attraction of the upper steady state and remains there in the subsequent

recovery to basal conditions. This suggests the key elements involved in switching steady

states through adaptive signalling. There are two possibilities. In one case the location

of the roots initially changes rapidly, so that the system is in the basin of attraction of a

different steady state. This is followed by a slow recovery of the roots to their basal values,

ensuring that for all subsequent instants the system is in the basin of attraction of the new

steady state. In the second case the location of the roots initially changes slowly, with the
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system tracking the root at which it started out. This is followed by a rapid recovery of the

roots to their basal values, putting the system in the basin of attraction of a different steady

state. These represent non-trivial insights into how transient signals can induce switching

in bistable networks without the networks ever transiently becoming monostable.

The above examples all dealt with cases of roots increasing or decreasing together. Ob-

viously this is not necessary, as the main point is that this behaviour pushes the system

into the basin of attraction of a different steady state. Clearly, different examples with dif-

ferent variations of the three roots can be analyzed which give rise to the same switching.

Finally, another point to be emphasized is that while our discussion above was based on

one-dimensional systems, all the relevant points essentially generalize to multiple dimen-

sional systems. Again, transient signals may regulate the relevant steady state locations and

basins of attraction (corresponding to the instantaneous value of the signal) and possibly

orchestrate a transition between steady states similar to that discussed above.

While our discussion of transitions between steady states in the bistable regime was

discussed in terms of movement of the location of steady states of a simple model, it is

worth asking if there are biochemical systems which exhibit such behaviour. We have not

identified such a system, and the simple biochemical models considered here do not seem to

allow for this behaviour, but it will be interesting to see whether some of the more complex

bistable networks postulated in the literature (e.g. (Bhalla and Iyengar, 1999; Thomson and

Gunawardena, 2009)) are capable of being controlled in this manner.

In summary, our studies suggest that it is possible for transient signals to induce switch-

ing between steady states in bistable networks (which always remain bistable) under certain

conditions. In essence, our analysis reveals a few points. The modulation of the bistable

network must neither be too fast nor too slow (relative to its intrinsic timescale) for this to

happen. In fact, two parallel scenarios have been demonstrated. In the first, the modulation

of the bistable network involves a fast change followed by a slow recovery to basal values.

In the second, the modulation involves a slow change followed by a relatively fast recovery.

Thus we notice that a concatenation of slow and fast modulation can induce switching in

this bistable network even though neither fast modulation nor slow modulation by them-

selves can achieve this.
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5.3.6 Analysis of the processing of time-varying signals

Thus far, we have only examined the response of the combined system of adaptive and

threshold modules to step changes in input. In this section, we examine the nature of signal

processing of the same connection of modules to complex temporal signals. This is impor-

tant for several reasons. Firstly, it expands our understanding of signal transduction through

this composite module. Secondly, in understanding the role of adaptive signal transduc-

tion in complex cellular systems, a key point is to understand how upstream time-varying

signals are received and processed into pulse-like signals. Thirdly, adaptation is often pos-

tulated as a key element in gradient sensing (either temporal or spatial) and it has been

suggested that downstream amplification may occur through some threshold processes. Fi-

nally, understanding how the upstream adaptive module deals with temporal signals will

provide insight into how the adaptive module deals with inputs when it is the downstream

module (see following section). With these points in mind we analyze the response of the

modules to inputs which vary with time.

We begin by noting that it can be shown analytically for the model of adaptation inves-

tigated here that the output adapts to a constant linear temporal gradient (see (Seaton and

Krishnan, 2011a) for details). With this as a basis we can understand the output of the com-

bined modules in response to a constant temporal gradient. If the gradient is very weak,

then hardly any change from the basal state is observed. This is because for practically all

the time evolution, A and I are essentially proportional and slowly varying, and hence the

adaptive module produces a very small deviation from basal conditions. When the gradi-

ent is strong then a non-trivial response is observed. We first examine the response of the

adaptive module connected to a monostable threshold module. In this case we find that a

transient output is obtained provided the output of the adaptive module crosses the thresh-

old of the downstream module. Thus if the gradient is weak no output response is observed

(results not shown). Another point to be noted is that if a negative gradient were given (for

a finite time), no output would be observed either, simply because the output of the adaptive

module moves further away from the threshold. In the case of a bistable module, two kinds

of non-trivial behaviour may be observed. If the gradient is not too strong, then the output

may result in a transient change before a recovery to the basal state. On the other hand if

the gradient is strong, it may be possible for the system to asymptote to the other stable

state purely in response to the gradient. These scenarios are depicted in Fig. 5.10. This re-

sponse indicates that gradient sensing can lead to switching steady states, provided that the
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gradient is steep enough. This is of importance with regard to how a system may process

further time varying signals. While the analysis of adaptation to linear gradients above is

based on the activator-inhibitor model, very similar behaviour is obtained for other adapta-

tion models in sensory transduction like the well-known Barkai-Leibler model (Barkai and

Leibler, 1997) of bacterial chemotaxis. We also note that some temporal adaptive modules

may display a response where a non-adaptive response dependent on the gradient strength

may be obtained.

Figure 5.10: The effect of two different ramp signals is shown here.(a) When the signal is increased from
S = 1 to S = 10 in 3 time units, the output from the bistable module adapts. (b) When the same increase is
effected over 2 time units, the output of the bistable module indicates switching. Thus the steepness of the
gradient could have a substantial effect on downstream response.

Taken together, we can make a few conclusions about the gradient response of the com-

bined modules. The output of the adaptive module considered to a constant gradient is in

fact adaptive. Thus a monostable module will provide a transient response, acting as a sim-

ple threshold filter. Furthermore, negative gradients are not registered by this combination

of modules, at least in the case considered, where the threshold module begins in the lower

state. In the bistable case, a gradient could also induce switching of steady states, if the

gradient is strong enough. Overall this analysis points to the possible qualitative changes

in signal propagation in adaptive signalling pathways in response to gradients, in particular

when interacting with downstream thresholds.
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5.3.7 Alternate interconnection of modules

Another aspect which directly relates to the interaction of adaptive and threshold modules

is the order in which they are connected. In all the cases considered so far the adaptive

module was upstream of the threshold module. In this subsection, we will analyze the

opposite case. In order to do this, we consider the case where the external signal regulates

the threshold module and the output of the threshold module is the input to the adaptive

module. Thus, the adaptive module receives a time-varying signal. We now examine the

effect of a step change in input to the threshold module. If the step change in input is still

below the threshold of the switch module, the response from the threshold module is, at

best, very weak and the output of the adaptive module is negligible. This is true for both

the monostable and bistable threshold modules. If the step change in input results in the

threshold being exceeded, the threshold module reaches a markedly elevated steady state.

The response of the downstream adaptive module then depends on the relative timescales

of the adaptive and threshold modules. If the adaptive module is much slower than the

threshold module, the response will be a transient increase followed by recovery to basal

levels (see Fig. 5.11). The amplitude of the transient jump is related to the magnitude of

the switch, and the speed of switching. We observe from Fig. 5.11 that if the upstream

switch is effected quickly, the output of the downstream module is a sharp robust pulse.

This robustness is the result of the fast transition between the two states of the switch being

processed as a step change by the adaptive module. On the other hand, if the switch is

effected relatively gradually, a much smaller pulse is seen from the downstream module.

If the adaptive module dynamics are much faster than the threshold module, then even a

switch will elicit very little response.

Exactly the same kinds of conclusions can be reached regarding the response of mod-

ules to step decreases. In this case, the monostable module will register a decrease, and the

response of the adaptive module is to cause a transient decrease. In the case of the bistable

threshold module, if the system is originally in the upper branch of steady states, then a

step decrease can lead to the system ending up in the lower branch of steady states, and in

this case the adaptive module (if slower than the threshold module) will convert this signal

into a transient decrease.

In summary the presence of the adaptive module downstream of threshold modules has

a completely different effect when compared to being upstream of the threshold module.

The adaptive module converts switch-like signals to transient pulse like signals and also
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Figure 5.11: The response of the system in this alternate interconnection of modules is shown, when subject
to a step change in input at t = 0. (a)We see that the output is a pulse-like signal which registers when the
upstream threshold is crossed (b) If the threshold module is relatively slow, a smaller amplitude pulse is seen.

encodes information about the direction of the switch. Thus this interconnection could be a

way to generate robust pulse-like signals. When the adaptive module has slower dynamics,

the output of this system is essentially a binary pulse. A summary of the interaction of

adaptive and threshold modules is presented in Fig. 5.12.

5.4 Conclusions

In this chapter we performed an investigation of the interaction of adaptive and threshold

processes from a modular systems perspective (see Fig. 5.12). Given the ubiquitous pres-

ence of adaptive as well as threshold processes and their importance in signal transduction

in reaction networks, this is a natural systems investigation from the perspective of signal

transduction. Our aim was to understand the essential ways in which adaptive and thresh-

old modules interacted from the perspective of signal processing, and to distill some basic

insights which may be broadly applicable in biological signal transduction. To analyze the

interaction of adaptive and threshold modules, we chose representative modules for each

case.

In general, while we made specific choices for our modules, our insights are more

general than the context in which they were obtained. A dynamical systems approach is

implicit in the choice of modules and simplified models, the kinds of analysis performed,

and it is the insights from such an approach which suggest that many of these conclusions

are generalizable to more complex networks.
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Figure 5.12: This figure shows how the functionality of the system depends on the interconnection of system
modules and on their relative timescales, in some limiting cases. Other cases, in which timescales of the
different modules are comparable, are less clear-cut. Note that the input in all cases is considered to be
a simple step - inputs such as ramp or oscillatory inputs are not considered here and the amplitude of the
input signal is assumed to be sufficient to activate downstream processes. Very small inputs, whatever their
timescale, will not produce any response.
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Both threshold modules acted as filters for the transient, pulse-like signals. In contrast

to the monostable module, the bistable module was able to result in switching even from

transient signals, and we analysed how this switching depends on the characteristics of the

transient signal. This suggests that altering some basic, even apparently minor, charac-

teristics of the signalling which generates the pulse-like signal can cause a fundamentally

different downstream response. An examination of multiple-pulse regulation of threshold

modules revealed similar characteristics; in addition, it was shown that a finite number

of pulses may induce switching where a single pulse did not. These insights are broadly

relevant to the triggering of switches by transient signals.

While our analysis of bistable modules revealed that steady state switching could be

induced by transient signals by regulation to a monostable regime, we also investigated a

broader issue – whether steady state switching could be induced in bistable systems by tran-

sient signals without the bistable network ever transiently leaving the region of bistability.

The analysis was performed on a simplified generic model, and revealed that such steady

state switching could indeed be induced by transient signals without leaving the bistable

regime. It was found that if the dynamics of the modulating adaptive signal were either

too fast or too slow compared to the bistable module such switching would never occur.

Switching induced by the adaptive module could be induced under certain circumstances

via a combination of slow and fast signals. The additional significance of this point is that,

while bistable modules/networks in cells may work as switches in response to some signals

in the usual way, other signals could modulate these networks to induce switching without

the system leaving a bistable regime. The above analyses thus reveal different aspects of

the interaction of pulse-like signals with bistable networks.

Further to our analysis of the response of the combined modules to step changes in

input, our investigation of the response to a temporal gradient revealed that the output was

adaptive in some cases, whereas switching could be induced in other cases if the down-

stream threshold module was bistable. It should be pointed out that, for certain adaptive

modules, a gradient may not always lead to adaptation. Finally, we investigated the effect of

having a threshold module upstream of an adaptive module. This configuration was shown

to produce pulsatile signals when the threshold is crossed. We have also suggested that such

a configuration could be a mechanism for robust pulse generation in signal transduction.

It is worth examining what kinds of signal processing capabilities are generated by both

of the sequential interconnections of modules that we have analyzed, and what possible ad-

vantages each configuration may have. Adaptive and threshold modules represent opposites
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from a steady state signalling perspective. In general it is worth asking what the presence

of the downstream module brings to the upstream module. If the upstream module is an

adaptive module then a downstream threshold module acts as a filter; more importantly, a

downstream bistable threshold module may lead to switching and non-adaptive dynamics.

Further, this switching is triggered by sufficiently fast varying input signals, of sufficient

amplitude. On the other hand, if the adaptive module is downstream of the threshold mod-

ule, then this allows for the possibility of counteracting the permanent elevation of signals

and masking certain downstream targets from this. In each case the presence of the down-

stream module brings a very distinct mode of signal processing, which is very different

from alternative (essentially) linear modules. It is possible that both these modules may be

present as downstream pathways in addition to (essentially) linear modules, thus offering

differing modes of signal propagation.

In conclusion, we have demonstrated a range of complex behaviours that may be gen-

erated by the combination of two simple and ubiquitously seen components of cellular

signalling networks - adaptive and threshold modules. This chapter has provided insights

which may be relevant in a number of biological contexts. It shows how monostable and

bistable switches respond to transient signals, and how these may have a permanent ef-

fect. It also provides insights into how these threshold modules may amplify signals in the

context of specific biological processes, such as gradient sensing.
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Chapter 6

Principles of dynamic regulation of the
budding yeast cell cycle

6.1 Introduction

The cell cycle is the process by which cells alternate replication of their DNA with cell

division. As a central process in the life of a cell, it is subject to multiple forms of regula-

tion. These range from hormonal and growth factor signals in higher organisms, down to

nutrient and temperature signals in micro-organisms. Together, these combined regulations

dictate not only the lifetime of a single cell, but the distribution of cell cycle progression

across a population of cells, whether in culture or in tissue. While there has been progress

in understanding the mechanisms driving cell cycle progression, and identification of some

signalling pathways responsible for the modulation of this progression, a system-level un-

derstanding of how signals regulate the progression of the cell cycle has been lacking. In

this chapter, a framework is developed and applied to the investigation of the dynamic

response of the cell cycle to perturbations. In particular the coordination of external condi-

tions with the cell cycle of a particular model organism - the budding yeast Saccharomyces

cerevisiae - with cell growth and environmental conditions is investigated through a de-

tailed sensitivity analysis of multiple mathematical models of the process, taken from the

literature.

The progression of the cell cycle in eukaryotic cells can be divided into four phases:

G1, S, G2, and M phase. Cells are born in G1 phase, and remain in G1 phase until DNA

synthesis is initiated. This event marks the beginning of S phase. Upon completion of DNA
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replication, the cell enters G2 phase, until progressing through mitosis in M phase. The

G1 and G2 (“gap”) phases then mark the pauses between the essential processes of DNA

duplication and separation. A wide variety of checkpoint mechanisms regulate progression

through the cell cycle. These checkpoints act to ensure that progression through the cell

cycle occurs only when the cell is in a suitable environment, and has adequately completed

the previous stages of the cell cycle. For example, cells in G1 (with unreplicated DNA)

must pass a checkpoint to go into S phase and begin synthesising DNA. This checkpoint

is regulated by factors such as nutrient availability, growth rate, and the size of the cell

(Ferrezuelo et al., 2012; Jorgensen and Tyers, 2004). Similarly, cells in the G2 phase must

pass through checkpoints to enter mitosis (one such checkpoint requires that the DNA

has been duplicated), and checkpoints exist at different stages of mitosis (e.g. the spindle

alignment checkpoint).

The prevailing view of the cell cycle mechanism is one of interlocking positive and

negative feedback loops which trigger this cascade of transitions (Tyson and Novak, 2008).

One of the central components in the cell cycle network is cyclin-dependent kinase (CDK).

A pre-requisite for the kinase activity of Cdk1 during the cell cycle is the presence of

cyclins. Different cyclins are expressed in different phases of the cell cycle and lend speci-

ficity to the CDK-cyclin complex, allowing regulation of many transcription factors and

other processes (Csikasz-Nagy et al., 2009). These cyclins may be broadly divided into

Starter cyclins, responsible for the transition from G1 into S phase, and Mitotic cyclins,

responsible for the transition from G2 into M phase. The abundance of cyclins is heavily

regulated at the levels of transcription, translation, and degradation. In addition, the CDK-

cyclin complex may be rendered inactive by phosphorylation, or inhibited by binding to

stoichiometric inhibitors such as Far1 and Sic1. These additional regulatory factors also

form feedback loops, and as a result their levels also oscillate with the cell cycle progres-

sion. The cell cycle is completed by an increase in the activity of the Anaphase Promoting

Complex (APC), which degrades cyclins, allowing the cell to progress through anaphase

and cytokinesis. The basic progression through the cell cycle is then guided by these os-

cillations, and is shown in figure 6.1. As shown, the cell is born with low but increasing

levels of Starter cyclins. When the level of Starter cyclin reaches a threshold, S-phase is

initiated. Levels of Starter cyclins then decrease, with a complementary increase in Mitotic

cyclins maintaining Cdk activity. After sufficient time for progression through mitosis and

the satisfaction of additional checkpoints, CDK inhibitors and components responsible for

cyclin degradation (such as the APC) become active. This rapidly depletes CDK activity,
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Figure 6.1: a) A schematic of the essential characteristics of the budding yeast cell cycle is shown, illustrating
the coordination between cell cycle progression and changes in cell morphology (i.e. budding). b) The
dynamics of some key cell cycle components are shown, along with the changes in cell volume, across two
cycles. The discontinuous change in volume marks the point of cell division. c) A schematic of the essential
signalling structure is shown, emphasising the centrality of the cell cycle as a complex process capable of
processing information in sophisticated ways.

allowing cytokinesis to occur and a new cell to be produced.

Cell cycle progression is a complex and highly regulated process. This is a result of

the importance of the processes it coordinates, and of the flexibility of response required

in changing conditions. Extracellular signals such as nutrients and osmotic stress change

the rate of progression through different phases. Cell cycle progression is also regulated by

other complex intracellular processes - for example, a gating effect of circadian rhythms on

the cell cycle has been observed in cyanobacteria (Yang et al., 2010). In higher organisms

cell division is regulated by signals such as growth factors (Schwank and Basler, 2010; Ul-

loa and Briscoe, 2007) and cell-extracellular matrix interactions (Streuli, 2009), allowing

patterning and control over properties such as organ size. In addition to these levels of

complexity in regulation of the cell cycle in normally proliferating cells, there is also the
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role the cell cycle plays in allowing differentiation to other cell types or modes of devel-

opment. A striking example of this is the switch to meiotic cycles, in which two rounds of

division are performed without an intervening round of DNA replication. In some species,

including yeast, this switch precedes sporulation. Another clear example is the (reversible)

switch from proliferation to quiescence. In summary, the diversity of regulation of the

cell cycle, and its plasticity across species, cell types, and environments, demonstrates the

complexity which must be dealt with in studying this process.

The complexity inherent in cell cycle regulation has been addressed, in part, by ex-

perimental investigation of cell cycle progression in model organisms such as the budding

yeast, Saccharomyces cerevisiae, which is the particular case studied here. The budding

yeast cell cycle follows a simple pattern of growth and division, as depicted in figure 6.1.

After birth, the cell grows isotropically during the G1 phase. The duration of this phase is

strongly correlated with the size of the cell as a result of a “cell size checkpoint”. Beyond

this checkpoint, the cell is allowed to pass into S phase. Upon entry to S phase, DNA repli-

cation begins and a bud forms. Cell growth continues, but now all new growth is directed

into the bud. The cell then passes through the G2 and M phases and begins the process of

cytokinesis. This results in the bud splitting from the mother cell, producing a new daugh-

ter cell. The size of this daughter is generally smaller than the mother cell, and under some

conditions it is much smaller than the mother cell. The fraction of cell mass passed on to

the daughter cell depends in a simple way on the durations of the cell cycle phases post-

and pre- budding (see following sections, and (Charvin et al., 2009)).

The distinct morphology of budding yeast - in particular the correspondence between

the initiation of S-phase and the appearance of the bud - mean that it has been a useful

model organism for the study of the cell cycle. The budding yeast cell cycle has been

observed to respond to a wide variety of changes in external conditions. For example,

addition of glucose to cells growing in ethanol elicits changes in both the average size of

the cells at bud initiation, and the duration of the cell cycle. The cell cycle is also regulated

by changes in other nutrient signals (Broach, 2012; Cai and Tu, 2012; Zaman et al., 2008,

2009), osmotic stress (Hohmann, 2002), and temperature (Spriggs et al., 2010). In addition,

it has long been known that under certain conditions the cell cycles of a population of

budding yeast cells can spontaneously exhibit partial synchronisation with an oxidative

metabolic cycle (Tu et al., 2005). Finally, manipulation of cell cycle controls to make cyclin

production inducible by an externally controlled signal has demonstrated the feasibility of

mode locking the cell cycle to a periodic stimulus (Charvin et al., 2009).
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Despite the rapid accumulation of knowledge of the molecular details of the cell cycle

mechanism and its regulation, such are the number of pathways and the complexity of the

cell cycle engine that it is difficult to predict a priori how the cell cycle will respond to

changes in conditions. As a result, it is also difficult to evaluate the significance of exper-

imental observations and determine whether an observed phenomenon can be accounted

for by the known regulatory mechanisms. To this end, mathematical modelling approaches

are useful to investigate hypotheses about regulation of the cell cycle. Models describing

the dynamics of essential cell cycle components have been around for some time, and have

reached high levels of complexity in the past decade (Barik et al., 2010; Chen et al., 2000,

2004). In this chapter, a systems framework is developed for the investigation of the dy-

namic regulatory capabilities of cell cycle models, and by extension the cell cycle. In this

chapter we develop an input-output systems framework to understand the interaction and

co-ordination between size, growth and growth landmarks and the cell cycle, and their reg-

ulation by extracellular signals. This is developed in the concrete case of budding yeast,

to understand the interaction of external signals, the cell cycle, size and budding. Working

within this framework, we examine how the cell cycle might respond to changes in condi-

tions, both dynamic and sustained and employ a selection of models for this purpose. In

this investigation, particular focus is placed on analysis of the most recent model of the

Tyson group (Barik et al., 2010). However, by performing this analysis on all parame-

ters in several models, behaviours and characteristics displayed by multiple models can be

identified. This allows several key questions about cell cycle regulation to be addressed.

For example: to what extent can key cell cycle characteristics such as period and size at

division be regulated independently? What qualitative behaviours can be observed in the

response of the cell cycle to a sudden change in conditions? How flexible can this dynamic

response be for a given eventual change in behaviour?

6.2 Models of the cell cycle

In this section, a basic mathematical description of the budding yeast cell cycle is given.

This describes the phenomenology of cell cycle progression, rather than the biochemical

details. Specifically, under some simple assumptions about the growth of the cell, it is

possible to interrelate macroscopic cell cycle properties such as daughter cell size, cell

cycle duration, and cell size at budding. This mathematical description then provides a

basic framework for understanding the detailed models that follow. These detailed models
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are ODE models of the cell cycle, including both budding-yeast specific models and general

models adapted here for use with budding yeast. The nature of the alterations made here to

the cell cycle models, amounting merely to the setting of thresholds for the occurrence of

budding at appropriate times during the cell cycle, is also discussed.

6.2.1 Basic mathematical description of the cell cycle

All of the models considered share the same essential behaviour, alternating between divi-

sion and budding. The volume of the cell at these points, and their relative timing, constitute

a simple description of the dynamics. This model incorporates the assumptions that growth

is exponential (Di Talia et al., 2007) (growing at an exponential rate µ), that all growth after

budding is localised to the bud, and that the daughter cell receives all of the mass of the

bud. The variables of interest are the cell cycle period (i.e. the time from birth to division,

denoted Tdiv), the time from birth to budding (denoted Tbud), the size of the cell at division

(denoted Vdiv), at budding (denoted Vbud), the size of the daughter cell (also the size of the

cell at birth, denoted Vdau), and the fraction of the cell volume given to the daughter cell af-

ter division (denoted f ). At constant growth rate, these variables are interrelated according

to the following expressions:

Vdiv = Vdaue
µTdiv

Vbud = Vdaue
µTbud

f = Vdau/Vdiv (6.1)

All models considered here give a pattern of behaviour that can be related directly to

this simple description, after slight alteration to include a budding event where appropriate.

The differences between the models of the budding yeast cell cycle then come from the

quantitative details of their parameters and their dynamic response.

6.2.2 Selection of suitable models to investigate

In this section, the models analysed are described, concentrating on the intended purpose

of the models, and their level of detail. The number of variables and parameters used in

each model are also given. For more complete descriptions, schematics, model equations,
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and basal parameter values, reference should be made to the appropriate papers. The three

models of the Tyson group are listed first, in chronological order, followed by two simpler,

less mechanistic models, from Sriram et al (Sriram et al., 2007) and Pfeuty and Kaneko

(Pfeuty and Kaneko, 2007). The models of the Tyson group are chosen so that they span

approximately five-year intervals in the development of the models. This automatically in-

troduces variation in the model structures, allowing evaluation of which model properties

are generic and which are specific to a particular model. The most recent detailed of the

Tyson group appears in (Barik et al., 2010), and it is that model on which many example

analyses are performed. Examples of other types of models of the budding yeast cell cycle

in the literature include Boolean and stochastic models . The ODE formalism of models is

chosen for several reasons. First, several models have been developed using this formal-

ism. Second, it provides a level of detail that allows the investigation of how incremental

changes in parameters change the system behaviour. Such investigation is not possible

with Boolean network models. Third, a useful and straightforward framework exists for

the calculation and interpretation of sensitivity analysis. Such analysis is necessarily more

complex in the stochastic case. It should further be noted that models that just consider

particular phases of the cell cycle (e.g. models of the G1-S transition (Adrover et al., 2011;

Barberis et al., 2007) or mitosis are not suitable for investigation here, since they cannot be

run across multiple cycles. The code used to simulate and analyse all models is provided

in the digital appendices, as documented in Appendix E.0.5.

The Chen model

The first detailed model of the budding yeast cell cycle considered is that of Chen et al

(Chen et al., 2000) (more specifically, the moderately reduced version of this model con-

sidered in (Battogtokh and Tyson, 2004)), referred to here simply as the Chen model. This

model brought together a large quantity of literature data to give a molecular cell cycle

model that displayed the correct pattern of behaviour in the wild type, and in a large num-

ber of cell cycle mutants.

This model contains multiple “hybrid” aspects, in which multiple events are controlled

by concentrations of cell cycle components passing through specified checkpoints, at which

point a rule is applied. These aspects make the original Chen model substantially different

from the other models considered here. However, a simplification of the Chen model is

derived by Battogtokh et al (Battogtokh and Tyson, 2004) for the purpose of bifurcation
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analysis. Multiple simplifications of the Chen model are derived in (Battogtokh and Tyson,

2004) - the most complex variation is used here in order to represent the Chen model.

The Csikasz-Nagy model

The Ciskasz-Nagy model of the cell cycle (Csikasz-Nagy et al., 2006) was developed in

a modular form to establish the manner in which the same model structure can describe

the cell cycle of different eukaryotes simply by changing the choice of parameters and the

selection of modules. The parameter set used here, therefore, is the parameter set identified

in (Csikasz-Nagy et al., 2006) as being capable of representing the dynamics of the budding

yeast cell cycle.

The Barik model

The Barik model of the cell cycle was based upon the previous models of the Tyson group,

with several modifications. The model contains pure mass-action kinetics. This was done

so that stochastic simulations of the model could be performed to relate the noise char-

acteristics of the model’s performance to experimental observations. The model contains

the main cell cycle mechanisms, such as the positive feedback between starter cyclins and

Whi5. While it is a complex model, and contains many unknown parameters constrained

by a relatively small quantity of experimental data, it contains multiple simplifications of

known biology. These include the lumping of many species considered to have partially

redundant roles (such as Cln1/2, the cyclins involved in S phase initiation, and Bck2, which

is partially redundant with Cln3). Further, some cell cycle regulatory elements are missing

completely from this model, even if they were present in previous models (e.g. the Cdk

inhibitor Sic1).

The Sriram model

The Sriram model of the cell cycle consists of parallel negative and positive feedback loops.

The negative feedback loop consists of a three species joined by three negative regula-

tory interactions (a so-called “repressilator” structure ), representing the post-translational

mechanisms of regulation between the Cln-Cdk, Clb-Cdk, and Sic1. The positive feedback

loop consists of three species joined by three positive regulatory interactions, representing

the transcriptional regulation of the cell cycle .
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This model is only an abstract representation of the cell cycle mechanisms. This is

clear from the symmetry of the model structure, the abstract nature of the species (the

components are not assigned to specific cell cycle components), and the symmetry of the

parameter choices (which are the same for many of the regulatory interactions). Nonethe-

less, it is useful to include in the present investigation since it captures much of the essential

behaviour of the cell cycle. Therefore, it provides some idea of what features of the cell

cycle are specific to the series of models developed by the Tyson group, and which are

more general, and may be features of many other models of the cell cycle with the same

basic behaviour.

The Pfeuty model

The Pfeuty model is the simplest model considered here, and was developed as a generic

model of the eukaryotic cell cycle in order to study the coordination of growth with cell

cycle progression (Pfeuty and Kaneko, 2007). In this case, there are three variables: one

representing the mass of the cell, and two variables representing cell cycle components, in

a negative feedback. In this case, one variable represents components involved in the tran-

sition into S-phase, whose activity is suppressed by a component responsible for instigating

mitosis and, eventually, cytokinesis, as represented by the second variable.

This model is included in this investigation in order to give an idea of which cell cycle

features identified in complex models can be captured by very simple models such as this

one.

6.2.3 Adapting models to include the effects of budding

One of the key aspects of the budding yeast cell cycle is the asymmetric division of the

cells. As discussed above, growth following budding is localised to the bud, meaning that

the duration of the budded phase determines the size of the daughter cell. The daughter

cell will then, in general, be different in size to its mother. This asymmetry has important

implications for the regulation of cell size and period in different conditions. For example,

the extent of asymmetry decreases with increasing growth rate (Charvin et al., 2009). How-

ever, in the models listed, asymmetry was either not taken into account, or the asymmetry

was fixed.

In order to capture the relevant behaviour, it is necessary to modify the models so that
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asymmetric division occurs, and so that the extent of asymmetry depends on the dynamics

of the cell cycle. Given the role of the cyclins Cln1,2 in regulating the initiation of budding,

it is natural to include a threshold mechanism whereby budding is initiated when Cln1,2

increase beyond a critical concentration. By recording the size of the cell at budding and

comparing it to the size at division, it is then possible to simulate the regulation of asym-

metric division. The species chosen as initiating budding, and the value of the thresholds,

are listed in table.

The values of the thresholds were chosen such that the mass fraction of the cell given to

the daughter was in the biological range (taken to be 0.35-0.45) for the growth rates chosen.

An additional constraint on this choice was the dynamics of the species responsible for

initiating budding - it needs to pass through an appreciable threshold at an appropriate time

during the cycle.

6.3 Steady state sensitivity analysis

As a first step towards understanding how the cell cycle may respond to signals, a paramet-

ric sensitivity analysis of the cell cycle models is performed. This allows identification of

the types of control that may be exerted on the cell cycle through modulation of particular

parameters. In order to be confident of the generality of the results, it is important to find

patterns in the sensitivity which can be observed for multiple parameters and models, rather

than analysing the consequences of one model’s sensitivity to changes in one parameter.

We begin by analysing the sensitivity of the cell cycle at steady state. Here, the term

“steady state sensitivity analysis” is used to refer to the situation in which parameters are

constant with time and the oscillations have converged to a consistent, well-defined oscilla-

tory behaviour (recognising the distinction with a scenario in which a system as converged

to a fixed point). In contrast, “dynamic sensitivity analysis” refers to the response of the

system as parameters are varied dynamically (see section 6.4 for details). The sensitivity

analysis is done locally, using the basal set of parameters originally used in the develop-

ment of each model, as published. The extent to which the models respond linearly to

changes in parameters is evaluated by comparing the accuracy of first- and second-order

approximations of behaviour. It is then shown that cell cycle characteristics such as the

cell cycle period and size at division can be controlled in identical ways by many different

combinations of parameters.

Given the asymmetric division of budding yeast, the generation-on-generation increase
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in size of mother cells, and the consequent diversity of cells in a real population, it is

necessary to define precisely what is meant by the “steady state” conditions at which the

sensitivity analysis is performed. Simulations of asymmetrically dividing cells must neces-

sarily choose one cell lineage to track as the basal case, as the alternative is to simulate all

cells in a population. This is infeasible for models of the complexity considered here. As

mentioned, in this case, the mother cell retains whatever mass it creates before budding with

each generation, meaning that its size at the beginning of each new cycle increases steadily.

A lineage of mother cells is then clearly unsuitable as the basal state, as the size/state of the

cells at birth diverge over time. On the other hand, a lineage of daughters-of-daughters do

converge to a constant state at birth for all models considered, making this the natural state

to consider as the basal state. Other choices might include daughters of an alternating se-

quence of mothers and daughters, but such choices are less natural. Of course, the fraction

of cells that are the progeny of first daughters going back several generations is likely to be

very small in any population.

The sensitivity of an observable quantity, Q, to relative changes in a parameter, ki, is

defined by:

CQ
ki

= ki
dQ

dki
(6.2)

Here, Q can be any of several observable quantities, such as the relative phases of

the peaks of different cyclins, the magnitude of the peak level of cyclin inhibitors, or the

timing of cell cycle events such as kinetochore attachment. Such a general approach has

been taken in the analysis of circadian rhythms (Rand et al., 2004). However, in the case of

Saccharomyces cerevisiae, as discussed above, most experiments on the behaviour of the

cell cycle have concentrated on the changes in the timing of budding and division and their

coordination with the cell’s size. This is also true of the theoretical investigations. For the

purposes of simplicity, therefore, these are the characteristics investigated here.

In order to perform sensitivity analysis for a sustained change in parameters, the models

are first simulated from given initial conditions over multiple cycles until the state of the

cell at the beginning of the cell cycle had converged. At this point, the parameter is changed

in a step-wise fashion and the simulation continued, again until convergence of the state at

the beginning of one cycle. For the step change, the parameter under consideration was

multiplied by a factor of 1.001, corresponding to a 0.1% change in the parameter. This

was found to be a large enough change to make the sensitivity measurements unaffected by
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numerical errors in the ODE solver, but small enough to give an accurate measure of the

first-derivative of the observables to changes in the parameter. The solver used was ode15s,

in MATLAB, run with absolute and relative tolerances of 10−10. Repeating the analysis

with tolerances of 10−13 had no significant effect on the results. The code used to perform

this analysis is provided in the digital appendices, as documented in Appendix E.0.5.

Having simulated cell cycle behaviour with the basal and perturbed sets of parameters,

it is possible to calculate the sensitivity of the observables to changes in the parameter in

question according to:

CQ
ki
≈ ki

∆Q

∆ki
(6.3)

Where ∆Q = Qperturbed−Qbasal and ∆ki/ki = 0.001. For a given parameter perturba-

tion, this sensitivity gives a first-order estimate of the change in behaviour:

∆Q1st =
∆ki
ki

.CQ
ki

(6.4)

The second derivative of an observable quantity with respect to a parameter change,

labelled DQ
ki

, can be approximated numerically as follows:

DQ
ki

=
k2i (Qperturbed,2 − 2Qperturbed,1 +Qbasal)

2∆k2i
(6.5)

Here, Qperturbed,1 and Qperturbed,2 denotes the behaviour after parameter changes of ∆ki

and 2∆ki, respectively. When combined with the sensitivity, CQ
ki

, this provides a second-

order estimate of the change in behaviour:

∆Q2nd =
∆ki
ki

.CQ
ki

+
∆k2i
k2i

.DQ
ki

(6.6)

Comparisons of the predictions produced using first- and second-order approximations

to the sensitivity of the cell cycle period (denoted Tdiv) are shown in figure 6.3 for several

parameters. The difference in magnitude of ∆Tdiv,2nd compared to ∆Tdiv,1st gives an idea

the extent to which the linear approximation is useful. It is possible to calculate the relative

change in a parameter required to produce a given relative difference between the first- and

second-order approximations (labelled “x” below) as follows:
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∆Tdiv,1st −∆Tdiv,2nd

∆Tdiv,1st
= x

⇒ (1− x).
∆ki
ki

.CQ
ki

=
∆ki
ki

.CQ
ki

+
∆k2i
k2i

.DQ
ki

⇒ −x.∆ki
ki

.CQ
ki

=
∆k2i
k2i

.DQ
ki

⇒ ∆ki
ki

= −x.
CQ
ki

DQ
ki

(6.7)

The cumulative distribution of parameter perturbations required to give a 10% differ-

ence (x = 0.1) between ∆Tdiv,1st and ∆Tdiv,2nd is shown in figure 6.2. This demonstrates

that the model responses to parameter perturbations are significantly nonlinear. For exam-

ple, a majority of parameters display a greater than 10% difference between ∆Tdiv,1st and

∆Tdiv,2nd for a parameter perturbation of 10%. This significant nonlinearity is as expected

from the model structures and behaviour. Nevertheless, the application of linear analysis to

these models can serve as a first step towards understanding how they work.
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Figure 6.2: The cumulative distribution of the proportion of parameters in the Barik model for which a relative
parameter change of less than x(= ∆k/k) (i.e. x = 1 corresponds to a 100% change in the parameter) results
in difference in the estimates of less than 10%.

As mentioned above, the variables of interest are the cell cycle period (i.e. the time from

birth to division, denoted Tdiv), the time from birth to budding (denoted Tbud), the size of
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Figure 6.3: Examples of how the first- and second-order estimates diverge for some example parameters
are shown. The parameters involved are a) the rate of translation of mitotic cyclin, ksbm, b) the rate of
phosphorylation of Whi5 by starter cyclins, kpi5p, c) the rate of Whi5 dephosphorylation by Hi5, kdi5, and d)
the rate of degradation of Ht1 mRNA gdmht1.

the cell at division (denoted Vdiv), at budding (denoted Vbud), the size of the daughter cell

(also the size of the cell at birth, denoted Vdau), and the fraction of the cell volume given

to the daughter cell after division (denoted f ). As discussed previously, at constant growth

rate, these variables are interrelated according to the following expressions:

Vdiv = Vdaue
µTdiv

Vbud = Vdaue
µTbud

f = Vdau/Vdiv (6.8)
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From equation 6.8 it is clear that these variables are not independent of one another.

For example, the budded duration and daughter cell size can be calculated directly from the

cell cycle period and division size, according to:

Vdau = Vdive
−µTdiv

Tdiv − Tbud =
ln(Vdau/Vbud)

µ
=

ln(Vdau/(Vdiv − Vdau))
µ

(6.9)

Therefore, there are only two independent variables under constant conditions. This

means that the sensitivity of the cell cycle to a perturbation of parameter ki under constant

conditions can be reduced to the sensitivity of Vdiv and Tdiv to this parameter (denoted

CVdiv
ki

and CTdiv
ki

, respectively). It should be emphasised that the cell cycle “behaviour” in

this context is the pattern of phase durations and cell sizes in those phases. Other character-

istics, such as the amplitude and phase of the various cell cycle components, will in general

be different between perturbations even when the timing and sizes are the same, but the

analysis described here can be applied to these other characteristics in a similar way.

The results of performing this sensitivity analysis on all models are shown in figure

6.4. This figure summarises information about how these cell cycle characteristics can be

modified under constant conditions by the parameters in each model. In particular, given

a perturbation δη (= (δki/ki, δkj/kj)
T ), the resultant change in the cell cycle behaviour is

given by: (
δVdiv

δTdiv

)
=

(
δki/ki

δkj/kj

)(
CVdiv
ki

CVdiv
kj

CTdiv
ki

CTdiv
kj

)
(6.10)

In the case where the sensitivities CVdiv
k and CTdiv

k are linearly independent for the two

parameters, ki and kj , it is possible to calculate the perturbation of these two parameters

necessary to produce a given change in behaviour (note that there are many parameters

which are linearly dependent - this property will be evaluated quantitatively in a subsequent

section):

δη =

(
δki/ki

δkj/kj

)
=

(
CVdiv
ki

CVdiv
kj

CTdiv
ki

CTdiv
kj

)−1(
δVdiv

δTdiv

)
(6.11)

The solution to this equation is unique - there is only one perturbation of these two
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Figure 6.4: The CTdiv

k and CVdiv

k for parameters in a) the Barik model, b) the Csikasz-Nagy model, c) the
Chen model, d) the Sriram model, and e) the Pfeuty model. The spread of sensitivities, especially in the case
of the Barik model, give some indication of the regulatory flexibility available.
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parameters which produces the given change in behaviour. If a third parameter, k, is intro-

duced, however, a vector of parameter perturbations is obtained through:

δη =

 δki/ki

δkj/kj

δkk/kk

 =

C
Vdiv
ki

CVdiv
kj

CVdiv
kk

CTdiv
ki

CTdiv
kj

CTdiv
kk

0 0 1


−1δVdivδTdiv

θ

 (6.12)

In this case, θ parameterises the vector of perturbations which produce the same even-

tual change in behaviour, such that θ = δkk/kk. An equivalent representation which makes

this explicit is given by:

δη =

(
δki/ki

δkj/kj

)
=

(
CVdiv
ki

CVdiv
kj

CTdiv
ki

CTdiv
kj

)−1 [(
δVdiv

δTdiv

)
− θ

(
CVdiv
kk

CTdiv
kk

)]
(6.13)

This equation can be generalised to cases in which more than three parameters are

perturbed:

δη = C−1(i,j)(δQ− C(k1,k2,...,kn)θ) (6.14)

where C(i,j) is 2 × 2 matrix of sensitivities of the characteristics Q with respect to the

parameters i and j, while C(k1,k2,...,kn) is a 2 × n matrix of sensitivities of the additional

parameters k1, k2, ..., kn, perturbed by the strengths given in the n× 1 vector θ.

6.4 Dynamic response of the cell cycle to changes in parameters

The previous section considered how the eventual behaviour of the cell cycle model (de-

fined in terms of properties of the size and timing of key cell cycle events) could be mod-

ified by changes in model parameters. It is now of interest to consider how the dynamics

of the system as the cell cycle behaviour changes from its initial state to the eventual be-

haviour. This investigation is done in three stages. First, exhaustive dynamic sensitivity

analysis is applied to each parameter in each of the models in turn. This allows identifi-

cation of the basic properties of the dynamic responses, and how they depend on the time

at which a perturbation is applied. Since a given perturbation of a particular parameter

will result in the same change in the steady state behaviour, the different approaches to

this eventual behaviour allow the calculation of quantities such as the phase shift. Sec-

ond, the fact that multiple combinations of parameters can be chosen to provide the same
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change in the steady state behaviour is used to compare sets of parameter perturbations to

one another. This allows the significance of the dynamical sensitivity to be evaluated by

comparing many different sets of responses to one another. Finally, the effects of a more

complex dynamic modulation of parameters - specifically a steady increase or decrease of

parameters - on the cell cycle are considered.

6.4.1 Methodology

Dynamic sensitivity analysis of an oscillating system can be performed in a variety of

ways, and can provide a variety of different types of information. The objective here is to

understand how the cell cycle models respond to step changes in parameters at different

times during the cell cycle. This response is characterised by changes in the duration of

the cell cycle, and the size of the cell at budding and division, over several generations.

Looking at the change in a cell cycle characteristic,Q, in the jth subsequent cycle following

the application of the step change at time t, the dynamic sensitivity of Qj to perturbations

in parameter k is given by:

S
Qj

k (t) = k
dQj

dk
(t) (6.15)

This applies whether k is a vector of parameters, or a single parameter.

It is also possible to represent the same information in the form of a sensitivity to

perturbations of infinitesimal duration at time t, as given by:

Z
Qj

k (t) =
dS

Qj

k (t)

dt
(6.16)

This gives an idea of how the function SQj

k (t) is changing over time during the cell

cycle. The dynamic sensitivities can be related to the sensitivities under constant conditions

calculated in the previous section:

S
Qj

k (t)→ CQ
k as j →∞ (6.17)

Numerical approximations to these quantities can be calculated similarly to the sensi-

tivities under constant conditions. First, the initial conditions were found by running the

simulation over multiple cell cycles until the state of the cell at the beginning of the cell

cycle had converged. The model was then simulated across a single cell cycle under the
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basal set of conditions, with the state of the system at each of m equally spaced timepoints

(with m = 60 here) spanning the period of the cell cycle recorded. Then, simulations were

run for each parameter perturbation from each of these initial conditions, with the differ-

ence in behaviour across multiple cycles recorded and the resulting sensitivity calculated

according to:

S
Qj

k (t) ≈ k(∆Qj)

∆k
(6.18)

Where ∆Qj = Qj,perturbed − Qj,basal. As before, absolute and relative tolerances of

10−10 in the MATLAB ODE solver ode15s were used. Again, the parameter perturbations

∆ki/ki were 0.001 (equal to 0.1% of the basal parameter value). Alternative methods of

calculating the same properties (e.g. simulating responses to pulse-like perturbations and

summing) were found to produce the same results. It should be noted that the numerically

efficient algorithms which exist for calculating these properties for limit cycle oscillators

(e.g. (Rand, 2008)) are not directly applicable to the cases considered here as a result of

the discrete state transitions and discontinuous changes in the cell volume.

Furthermore, the eventual difference in timing between division events, as a function

of the time at which a perturbation was applied, can be calculated. This quantity is referred

to as the “phase shift” of the cell cycle, by analogy with literature on circadian and neural

oscillators . In these cases, the change in timing of an event (e.g. the peak in oscillation of

a particular species) after a perturbation is referred to as a “phase shift” arising from this

perturbation.

Since the eventual period of the cell cycle after a step change in a parameter is in general

different from the original period, it is necessary to choose a basal case against which to

compare the approach to the new conditions. This is taken to be the approach when a step

change is applied at t = 0. The phase shift is then given by:

Rk(t) =
∞∑
j=1

(
S
Tdiv,j
k (t)− STdiv,jk (0)

)
(6.19)

This sum converges since the eventual value of Tdiv is the same regardless of the time

during the cell cycle at which the perturbation was applied. Good approximations of the

phase shift only require the summation of these values over at most five generations for the

models considered here.
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6.4.2 Dynamic sensitivity to changes in individual parameters

The analysis described above provides information on the approach to the steady state

behaviour over several generations. Unlike the analysis of behaviour under constant condi-

tions, in which the sensitivities of all of these characteristics can be reduced to, for example,

just the sensitivity of Vdiv and Tdiv (CVdiv and CTdiv , respectively), in this case there are ad-

ditional degrees of freedom. For the ith division:

Vdiv,i = Vdau,i−1e
µTdiv,i

Vbud,i = Vdau,i−1e
µTbud,i

Vdau,i = Vdiv,i − Vbud,i (6.20)

This reduces to the converged constant cycling conditions when Qi = Qi−1 for the var-

ious characteristics considered. The consequences of these additional degrees of freedom

are precisely what make the investigation of dynamic responses interesting, as they indicate

the potential for many alternative dynamic approaches to the same eventual behaviour.

There are a wide variety of ways of visualising the data generated by the application

of the analysis to the models considered. The most basic unit of information is that de-

rived from tracking the changes in cell cycle behaviour after modulating a single specific

parameter at a specified time during the cell cycle. Some examples of these results are

shown in figures 6.5 and 6.6 for two different parameters (the rate of translation of starter

cyclins (ksn3) and the rate of translation of mitotic cyclins (ksbM ), respectively) modulated

at two different times (t = 83mins and t = 41mins, respectively) in the Barik model.

An important observation from these figures is that the approaches to the new behaviour

are not necessarily monotonic down generations. For example, the cell size at division

can decrease in the first generation, even if eventually the cells are larger at division, as

in figure 6.6. This demonstrates some unintuitive aspects of the underlying dynamics, and

also suggests that experiments done on a population of synchronised cells, with a perturba-

tion applied at only one time and with observations made over one subsequent cycle may

incorrectly infer the type of regulation that is occurring.

In order to understand the dynamic response of the cell cycle in greater generality,

these responses can be plotted as functions of the time at which the perturbation is applied,

as shown in figures 6.7 and 6.8, again for the same parameters as were shown in figures
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Figure 6.5: The sensitivity of some cell cycle characteristics down generations to a perturbation of the pa-
rameter determining the rate of translation of starter cyclins ksn3 applied at t = 83mins during the first
generation. The dashed black line marks the eventual change in the value of the characteristic. a) The cell
cycle duration is decreased over the first two generations, before recovering to its initial value. b) The cell
volume at division decreases monotonically down generations, approaching the asymptotic value at a smaller
cell size. c) The duration of the budded phase displays similar behaviour to that of the overall cell cycle
duration. d) The daughter cell size displays similar behaviour to that of the cell size at division.

6.5 and 6.6, respectively. These display changes in behaviour as a function of the time at

which the perturbation is applied (e.g. the functions STdiv,1k (t), STdiv,2k (t), and STdiv,3k (t)).

From these curves, it is possible to identify some basic patterns in the dynamic sensitivity

of the models to changes in parameters, which are valid beyond just the two examples

shown. For example, it is clear that the sensitivities of timing of the division events can

display biphasic behaviour (e.g. in figure 6.6a)). This means that the same perturbation

can either delay or advance a given division event (or, alternatively, increase or decrease

the cell size at that event), depending on the time at which the perturbation is applied. This

is also true for budding events, and these differences in timing inevitably affect the sizes
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Figure 6.6: The sensitivity of some cell cycle characteristics down generations to a perturbation of the pa-
rameter determining the rate of translation of mitotic cyclins ksbM applied at t = 41mins during the first
generation. The dashed black line marks the eventual change in the value of the characteristic. a) The cell
cycle duration displays nonmonotonic approach to its eventual value, including overshooting this value. b)
The cell size at division decreases in the first generation before monotonically increasing to its eventual value,
above the initial value. c) The duration of the budded phase monotonically approaches its eventual, shorter
duration. d) The daughter cell size overshoots in its approach to its eventual, smaller value.
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at which budding and division occur. This biphasic property of the sensitivity curves is

observed in many biological oscillators, including neural (Brown et al., 2004) and circadian

oscillators (Pfeuty et al., 2011). Furthermore, a relationship between the timing of budding

and division is evident from these curves - a delay in budding is often accompanied by a

delay in division, and vice versa (compare figures 6.6a) and e)). This implies that there

is an inherent inflexibility to the system, whereby the timing of different events cannot be

arbitrarily modulated by parameters.

Of particular interest is the dependence of the phase shift of the cell cycle on the timing

of the perturbations, some examples of which are shown in figure 6.9. As with the dy-

namic sensitivities, these curves display biphasic characteristics. Interestingly, there also

appears to be a strong correspondence between the relative phase shift and the mass frac-

tion donated to the daughter cell. In particular, stronger phase advances (i.e. negative phase

shifts) appear to be correlated with a higher fraction of mass being donated to the daughter

cell. Note that the phase responses in figure 6.9 are not comparable to one another as the

eventual changes in behaviour (i.e. the converged state of the cell cycle) will be different.

Sensible comparisons can only be made between phase shifts at different points in the cell

cycle for the same perturbation. For example, it is clear from figure 6.9 that the parameter

perturbation marked in blue leads to stronger phase delays when the perturbation is ap-

plied late in the cell cycle, and that this correlates with the time at which the mass fraction

donated to the daughter cell is higher.

These results can be understood in a general setting by a cell cycle which initially has a

period T0, a size at division Vdiv,0, and a daughter size Vdau,0, meaning the resulting fraction

of volume given to the daughter cell is f0 = Vdau,0/Vdiv,0. Two perturbations are applied

which result in changes in these characteristics down generations. The first set of char-

acteristics are labelled T1, T2, T3, ..., VDiv,1, Vdiv,2, Vdiv,3, ..., Vdau,1, Vdau,2, Vdau,3, ..., giving

daughter fractions f1, f2, f3, ..., while the second are labelled τ1, τ2, τ3, ..., νdiv,1, νdiv,2, νdiv,3, ...,

and νdau,1, νdau,2, νdau,3, ..., giving daughter fractions ρ1, ρ2, ρ3, .... These two perturbations

result in the same eventual behaviour, such that, for sufficiently large n:
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Figure 6.7: The sensitivity of some cell cycle characteristics down generations to a perturbation of the param-
eter determining the rate of translation of starter cyclins ksbM , as a function of the cell cycle time at which
it is applied. The dashed black line marks the eventual change in the characteristics. The shapes mark the
generations for the case shown in figure 6.5. The basic behaviour observed in this figure is seen to hold for
the same perturbation applied over a wide range of times. Specifically, there is a nonmonotonic approach to
the eventual values of cell cycle period and timing of other cell cycle events, and a monotonic approach of
the cell size at these events to their eventual values.
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Figure 6.8: The sensitivity of some cell cycle characteristics down generations to a perturbation of the pa-
rameter determining the rate of translation of starter cyclins ksn3, as a function of the cell cycle time at
which it is applied. The dashed black line marks the eventual change in the characteristics. The shapes mark
the generations for the case shown in figure 6.6. In this case, the correspondence between the observations
made in figure 6.6 do not hold over a wide range of cell cycle times, with the dynamics down generations of
characteristics displaying a myriad of different patterns of approach to their eventual values.
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Figure 6.9: a) The phase response curves (Rk(t)) are shown for four different parameters in the Barik model.
Note that these curves are not directly comparable to one another, since the eventual behaviour of the cell
cycle in response to these perturbations is different. (b) The change in mass fraction donated to the first
daughter cell after the perturbation is applied is shown as a function of the time at which that perturbation is
applied.
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Tn ≈ τn (6.21)

Vdau,n ≈ νdau,n (6.22)

Vdiv,n ≈ νdiv,n (6.23)

fn ≈ ρn (6.24)

Using the equality of daughter sizes after n generations and the basic description of the

cell cycle given in equation 6.8:

fnVdau,n−1e
Tnµ = ρnνdau,n−1e

τnµ (6.25)

This assumes a constant growth rate, µ. In general, going back k generations:

(
k∏
i=0

fn−i

)
.Vdau,n−k−1.e

(
∑k

i=0 Tn−i)µ =

(
k∏
i=0

ρn−i

)
.νdau,n−k−1.e

(
∑k

i=0 τn−i)µ (6.26)

Since Vdau,0 = νdau,0, going back n− 1 generations:(
n−1∏
i=0

fn−i

)
e(

∑n−1
i=0 Tn−i)µ =

(
n−1∏
i=0

ρn−i

)
e(

∑n−1
i=0 τn−i)µ (6.27)

Giving:

µ
n∑
i=1

(τi − Ti) = ln(

∏n
i=1 fi∏n
i=1 ρi

) (6.28)

The quantity on the left hand side is the phase shift. For a phase shift to be observed, the

products of the fractions of mass given to the daughter cell must be different. In particular,

the perturbation which is phase advanced (i.e. a phase shift with negative value) has a larger

product of these mass fractions. One immediate consequence of this is that phase shifts are

not possible when cells divide symmetrically, since in that case f = 0.5 in all cycles (this

will be of particular interest when considering the response of cell populations to signals

- see section 6.7). This also explains the distinction between how perturbations which act

to rapidly increase the size of daughter cells can result in phase advances, since larger
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daughter cells are an immediate consequence of the daughter obtaining a more significant

fraction of mass of the cell at division. Similarly, it explains why perturbations that rapidly

decrease the size of daughter cells result in phase delays.

Having considered how timing differences in perturbations affect the approach to the

new steady state behaviour, it is natural to compare the dynamics of different parameter per-

turbations. For the individual parameter perturbations considered above, it is not possible

to compare the dynamic responses in any meaningful way, since their eventual behaviours

are, in general, different. For example, it is unclear how to understand the consequences of

differences in the dynamic responses of two parameter perturbations if one leads to a sig-

nificant change in cell cycle period while the other does not. However, as discussed in the

steady state analysis, it is possible to find combinations of parameter perturbations which

produce the same change in steady state behaviour, and it is these which are considered

next.

6.4.3 Dynamic sensitivity to changes in combinations of parameters

Having established how parameters can be combined to obtain specified changes in be-

haviour in the cell cycle under constant conditions, it is interesting to ask how to dis-

criminate between alternative sets of parameter changes which produce the same eventual

behaviour. This is done by analysis of the dynamic response of the cell cycle to these pa-

rameter changes at different times, averaged over the entire cell cycle. This allows us to

perform controlled comparisons of the way in which different parameter changes approach

this new behaviour. It should be emphasised again that the “behaviour” in this context is

the pattern of phase durations and cell sizes in those phases. Other characteristics, such

as the amplitude and phase of the various cell cycle components, will in general be differ-

ent between perturbations even when the timing and sizes are the same, but the analysis

described here can be applied to these other characteristics in a similar way.

To begin with, given two parameters with linearly independent sensitivities and a spec-

ified change in behaviour, the change in parameters required is given by equation 6.11.

As mentioned previously, it is also possible to obtain a range of parameter perturbations

applied to a set of three parameters which give a specified change in behaviour by parame-

terising a set of perturbations by θ, as given in equation 6.12. This provides another way to

identify parameter perturbations which produce the same change in behaviour under con-

stant cycling conditions, but which have different dynamic response profiles. This results
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in the following expressions for the approach to the new behaviour, for example as a sum

of two sustained-perturbation sensitivities:(
δVdiv,l(t)

δTdiv,l(t)

)
=

(
δki/ki

δkj/kj

)(
S
Vdiv,l
ki

(t) S
Vdiv,l
kj

(t)

S
Tdiv,l
ki

(t) S
Tdiv,l
kj

(t)

)
(6.29)

The sensitivity profiles obtained describe the approaches of different combinations of

parameter perturbation to the same eventual behaviour, as a function of the time at which

the perturbation is applied. This gives a set of response curves to the sustained pertur-

bations. As expected when combining two sensitivity curves, there is a greater variety

in the shapes of these response curves than was the case in the response curves of single

parameters. A particular point of interest in this respect is that the qualitative properties

of a combined response needn’t be the same as the qualitative properties of the individual

responses. This is illustrated in figure 6.10, in which two parameters with monophasic

sensitivities counteract one another to produce a response which is biphasic overall.
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Figure 6.10: The combination of regulation of two parameters (kdcm in blue and kdnt in green) with
monophasic sensitivities (as shown in a)) can produce a biphasic response (as shown in b)). These parame-
ters are regulated to counteract one another, with the difference in timing in their sensitivities giving rise to a
biphasic response.

As before, it is possible to calculate the phase shift observed between these different

combinations of parameters. For the case with three parameters the “basal” case against

which the phase shift is measured is taken as t = 0, θ = 0, meaning that the phase shift is

given by:
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Rk(t) =
(
δki/ki, δkj/kj, δkk/kk

)
.

Rki(t)

Rkj(t)

Rkk(t)

− (δki/ki, δkj/kj

)
.

(
Rki(0)

Rkj(0)

)
(6.30)

The significance of these different response curves can be assessed in a number of

ways. As an example, we consider three different “metrics” that in some sense summarise

the dynamics, and that may be considered biologically relevant. These are: the speed at

which the new daughter size is achieved (denoted Mdau), the speed with which the new

cell cycle period is achieved (denoted Mperiod), and the phase shift of the cell cycle as a

whole (denoted Mphase). In a biological context it is to be expected that a perturbation may

occur at any time during a cell cycle. It is therefore sensible to consider properties of the

approach to the new steady state that are averaged over perturbations applied at all points

during the cell cycle.

To begin with, the speed of approach to an eventual behaviour given a perturbation

applied at a particular time t can be given by the functions mdau(t) and mperiod(t) for the

daughter size and cell cycle period, respectively. These quantities are given by:

mdau(t) =
∞∑
j=1

(δVdau,j(t)− δVdau)2 (6.31)

and:

mperiod(t) =
∞∑
j=1

(δTdiv,j(t)− δTdiv)2 (6.32)

For a given change in behaviour, these functions fulfil the basic property that a pertur-

bation in which the characteristic immediately attains the eventual value will have a lower

metric than a perturbation which takes several cell cycles to attain the eventual value.

As mentioned above, it is sensible to average these metrics across perturbations occur-

ring at all times during the cell cycle. This has the advantage of removing the dependence

of the metric on the time at which the perturbation is applied. Therefore, the speed with

which the eventual daughter size is achieved, measured by the metric Mdau, defined by

equation 6.33:
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Mdau =

∫ Tdiv

t=0

mdau(t)dt

=
∞∑
j=1

[∫ Tdiv

t=0

(δVdau,j(t)− δVdau)2 dt
]

(6.33)

The speed with which the eventual cell cycle period is achieved is measured by the

metric Mperiod, and is defined by equation 6.34:

Mperiod =

∫ Tdiv

t=0

mperiod(t)dt

=
∞∑
j=1

[∫ Tdiv

t=0

(δTdiv,j(t)− δTdiv)2 dt
]

(6.34)

These metrics are insensitive to the transformation δk = −δk0 (which merely results in

a change in sign in the vector δQ, and to any combination of parameter perturbations that

produce the same eventual change in behaviour. As in equation 6.12, such combinations of

parameters can be generated that vary linearly with the auxiliary parameter θ. The resulting

linear variation of δQj(t) with θ (note that the eventual change in behaviour, δQ, remains

constant) means that Mdau and Mdiv vary quadratically with θ. As a result, it can be shown

that there exists values of θ for which Mdau or Mperiod are at a minimum.

This generalises in a straightforward way to the case where θ is a vector and more than

three parameters are combined. This means that a unique minimum exists for a given set

of parameters and a given perturbation of Vdiv and Tdiv. Examples of combined response

curves for three parameters which minimise the metric Mdau and Mperiod are shown in fig-

ures 6.11 and 6.12, respectively. Note that in both cases, the same sets of three parameters

are shown, and the speed of their approach to the relevant quantity (δVdau and δTdiv, respec-

tively) can be observed. Interestingly, all of these curves make use of the biphasic property

identified earlier as common in the response of an oscillating system to a change in param-

eters at different times. The parameter perturbations minimising these two metrics are in

general different from one another, but the dynamic responses display some similarities, as

shown in figure 6.13, especially compared to randomly chosen examples which do not min-

imise these metrics. This suggests that rapid response is in some sense a general property,
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with certain parameter perturbations achieving rapid responses in several metrics, although

locally one metric may be minimised at the expense of another. While the examples shown

are all taken from the Barik model, the results of a similar analysis of the Sriram model are

given in Appendix D (figures D.1, D.2, and D.3).

The third metric of interest is the phase shift between different combinations of param-

eter perturbations reaching the same eventual cycling behaviour. As before, this is averaged

over a cycle, and is given by equation 6.35.

Mphase =

∫ Tdiv

t=0

Rk(t)dt (6.35)

This metric depends on the choice of the basal case, and therefore is used here only to

compare different choices of perturbations for a given set of parameters, as given by the

chosen value of θ, with the basal case as t = 0, θ = 0. In contrast to Mdau and Mperiod, this

metric is sensitive to the transformation δk = −δk0 (since equation 6.35 is linear rather

than quadratic).

The difference in how Mdau and Mphase change with the direction of δk means that

there is a balance to be found between controlling the phase advance and controlling the

daughter size. This is shown for two separate sets of parameters in figures 6.14 and 6.15.

This agrees with what is expected based on the analysis in the previous section. Specif-

ically, rapid daughter size adjustment requires rapid change of f = Vdau/Vdiv. When the

daughter size is increasing, rapid response means f goes up quickly, and there is a phase

advance. However, in the reverse case, f is decreased equally quickly, and there is a phase

delay.

The sensitivity analysis considered above allows analysis of the response of the cell

cycle to simultaneous step changes in sets of parameters. However, there are several other

types of signal which the cell cycle may observe. Analysis of these cases is a first step

towards considering how the cell cycle may behave when coupled to a complex signalling

network capable of a wide variety of signalling behaviours. Given the number and com-

plexity of signalling pathways leading to the cell cycle, it is also reasonable to investigate

how it might respond to more complex signals. The case of a steadily increasing or de-

creasing signal is a sensible first case to look at.
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Figure 6.11: Changes in daughter size down three generations for different combinations of different sets of
three parameters which achieve the same eventual change in behaviour, and all of which achieve minimal
Mdau compared to other combinations of those three parameters. The dashed line gives the eventual change
of behaviour, which is the same in all examples. The curves approach this behaviour asymptotically though,
as noted, not necessarily monotonically. Strikingly, these curves all display some degree of biphasic response.
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Figure 6.12: Changes in cell cycle period down three generations for different combinations of different sets
of three parameters which achieve the same eventual change in behaviour, and all of which achieve minimal
Mperiod compared to other combinations of those three parameters. The dashed line gives the eventual change
of behaviour, which is the same in all examples. The curves approach this behaviour asymptotically. As in
the case for the approach of parameter perturbations exhibiting minimal Mperiod, these curves all display
some degree of biphasic response.
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Figure 6.13: The dynamic responses of Vdau over the first generation are compared for the examples con-
sidered in figures 6.11 and 6.12, minimising Mdau (blue) and Mperiod (green), respectively. Examples of
responses far from minimising these metrics, chosen at random, are also displayed (red). The similarity in
the response curves exhibiting minimal Mdau and Mperiod suggests a common principle in the attainment of
rapid approach to the eventual change in behaviour of the cell cycle.
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Figure 6.14: The phase responses for different combinations of the three parameters ksbS , kpcmp, and kdt1
are plotted alongside the change in the mass fraction donated to the daughter cell in the first generation for
cases of increasing and decreasing daughter sizes. The lines of the same colour in the plots are parameter
perturbations which are coordinated in the same way with the imposed objective. a) and c) display the case
in which the mass fraction donated to the daughter cell is increased, while b) and d) display the case in which
the reverse regulation is applied. It is clear that rapid modulation of daughter size leads to phase advance in
the case of increasing daughter size, but that the reverse is true for decreasing daughter size. In particular, the
regulation providing the most rapid change in f (the purple line, with the rapid regulation seen in c) and d))
leads to the most significant phase advances in one case (shown in a)), but also to the most significant phase
delays in the reverse case (shown in b)).
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Figure 6.15: Another example of the case plotted in figure 6.14 is shown, for a different choice of three
parameters (in this case, kdbMi, kpi5p, and ksn3). Again, the lines of the same colour in the plots are parameter
perturbations which are coordinated in the same way with the imposed objective. a) and c) display the case
in which the mass fraction donated to the daughter cell is increased, while b) and d) display the case in which
the reverse regulation is applied. As was seen in figure 6.14, rapid modulation of daughter size leads to phase
advance in the case of increasing daughter size, but that the reverse is true for decreasing daughter size.



Chapter 6. Principles of dynamic regulation of the budding yeast cell cycle 185

6.4.4 Response to steadily increasing or decreasing signals

One important class of dynamic signal which might regulate the cell cycle is a steadily

increasing or decreasing signal. This type of signalling can occur in several different sce-

narios. For example, it may take a signalling network some time to reach its new steady

state after a change in the cell’s environment, or the environment itself may be undergoing a

steady change. This case is particularly interesting since in this case differences in response

can be interpreted as differences in how the cell predicts future conditions. In addition to

the biological relevance of this particular type of perturbation, it also provides an example

for the investigation of the consequences of temporally varying perturbations in general.

Controlled comparisons between different combinations of parameter perturbations which

achieve the same eventual response can again be performed, this time for parameter pertur-

bations which are steadily increasing or decreasing with time. For example, the response

of a characteristic Q to a parameter change with time with relative gradient of size m

(= ∆k/(k0t) = ∆η/t).

∆Q =

∫ Tdiv

t=0

dη

dt

dQ

dη
dt

= m

∫ Tdiv

t=0

dQ

dη
dt (6.36)

Therefore the sensitivity to gradients (denoted here as WQ
k (t)) can be calculated as:

WQ
k (t) =

dQ

dm
(t) =

∫ Tdiv

τ=t

SQk (τ)dτ

When t = 0, this is similar to the expression given in 6.33. It can immediately

be seen that, if SQk1(t) > SQk2(t)∀t for the parameter perturbations k1 and k2, then also

WQ
k1

(t) > WQ
k2

(t), meaning that rapidly responding parameters also respond rapidly to

gradually changing conditions. An example of such a comparison is shown in figure 6.16

for perturbations with identical eventual effects, with rapid response to step changes lead-

ing to more emphatic responses to gradient changes, regardless of the time at which the

steady change in parameters begins, as expected. It should also be noted that the functions

WQ
k (t) have fewer stationary and inflection points than the corresponding SQk (t) - this is

simply a result of integration over time.

One interesting interpretation of this observation is that there may exist perturbations
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which cause the cell cycle to “anticipate” future conditions by responding rapidly and

strongly in the anticipated direction of regulation, while other parameter perturbations ex-

hibit “inertia”, whereby the cell cycle maintains its previous behaviour for some time.
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Figure 6.16: The correspondence between the sensitivity to step changes (SQ
k (t)) and the sensitivity to tem-

porally graded perturbations (WQ
k (t)) is shown. As expected, the perturbation with the more pronounced

response to step-changes (marked in green) also displays a more pronounced response to temporal gradi-
ents. Further, the dependence of WQ

k (t) on the time integral of SQ
k (t) results in a more monotonic function.

Both of the parameter perturbations applied in this case consist of differently weighted combinations of the
parameters gdbM , kdh1, and kdh1p.

As before, the analysis in equation 6.36 and the simulated examples in figure 6.16 apply

to the case where the parameter perturbations are small. When looking at step changes

in parameters, it was possible to extend this reasoning somewhat to include cases where

parameter perturbations were somewhat larger, and still perform controlled comparisons of

the different perturbations. In the case of steadily changing parameters, however, this is

not possible, since it is inevitable that after some time the parameter change compared to

the basal case will be significant. Thus, here the response depends on the nonlinearities in

parameter responses, rather than just the shape of the response curves. This means that it is

not possible to ascribe differences in the response to differences in the qualitative features

of the response curves.

Overall, it is seen that the dynamic sensitivity analysis performed provides an entry

point to understanding the consequences of more complex types of regulation on the cell

cycle, and that this can connect in a natural way to biological questions. Other biologically

motivated investigations, perhaps in context where multiple parameters are perturbed at

different times, or change over time in different ways, can be considered in a similar way

on a case-by-case basis.
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6.5 Case study: Glucose regulation of the cell cycle

A wide range of suggestions have been made for the action of pathways on the cell cycle,

very few of which have been characterised quantitatively. Nonetheless, it is important to

consider how such suggestions may be evaluated in the context of the preceding analysis.

The example chosen here as a case study is the glucose-sensing pathway. While this path-

way is itself complex, understanding the interface between elements of this pathways and

the cell cycle is a first step towards understanding broader combinatorial regulation. The

consideration of a particular case study here also demonstrates some ways in which the

preceding sensitivity analysis can be used to interrogate model behaviours.

There are multiple proposed pathways through which glucose can affect the cell cycle,

both through direct sensing (Broach, 2012; Busti et al., 2010; Zaman et al., 2008, 2009),

and indirect effects via metabolism (Broach, 2012; Cai and Tu, 2012). Here, direct sig-

nalling pathways are considered, since these are generally the fastest to respond to changes

in conditions. Three particular forms of regulation are considered. The first mechanism

of cell cycle regulation by glucose involves the control of translation of Cln3 - a cyclin

responsible for inducing G1-S transition. The regulation of Cln3 translation is mediated in

part through the direct regulation of the translation initiation factor eIF4E (Danaie et al.,

1999), and can also be controlled through the relief of competition for translation initiation

factors due to rapid degradation of GAL1 transcripts (Baumgartner et al., 2011). The rate

of translation of Cln3 is represented in the Barik model by the parameter ks,n3. Secondly, it

is known that glucose-sensing pathways lead to repression of Cln2 expression (Flick et al.,

1998). In the Barik model, Cln2 falls within the class of starter cyclins, denoted by ClbS.

The rate of ClbS transcription is represented by the parameter ks,mbS . Finally, it is known

that signalling through the TOR kinase complex is capable of modulating the activity of

the PP2A phosphatase complex (Castermans et al., 2012; Santhanam et al., 2004). Upon

phosphorylation by the TOR1C complex, this phosphatase dephosphorylates a wide range

of targets, including Net1. Net1, in turn, is responsible for sequestering the cell-cycle

phosphatase Cdc14, which is required for progression through mitosis. The dephosphory-

lation of Net1 in the Barik model is represented by the constitutive activity of a generic

phosphatase, Ht1. The model parameters representing this activity are kd,t1 and kd,nt, reg-

ulating free Net1 and Net1 in the RENT complex, respectively. A natural assumption is

that regulation of this pair of parameters is coupled, and therefore that they are modulated

proportionally to one another. The above summary of some regulatory mechanisms is by
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no means complete, partly as a result of some pathways regulating components not present

in this model (e.g. the regulation of Cdk1 phosphorylation by Cdc25 and Swe1 (Enders,

2010)), but it provides a useful illustration.

The above information on regulatory mechanisms can be summarised by the following

constraints on the parameter perturbations applied through this pathway (where the “sig-

nal”, assumed to be proportional in some way to the glucose availability, is represented by

X):

1

ks,n3

dks,n3
dX

> 0

1

ks,mbS

dks,mbS
dX

< 0

1

kd,t1

dkd,t1
dX

=
1

kd,nt

dkd,nt
dX

> 0 (6.37)

These constraints imply a certain attainable range of responses in Vdiv and Tdiv, meaning

that only particular changes in Vdiv and Tdiv are possible in response to changes in X . In

the context of the actual system, the strengths of these regulations are dependent on the

structure, dynamics, and sensitivity of the complex, branching signalling pathways linking

glucose levels to the cell cycle. In general, given a set of parameters and whether they are

up- or down-regulated by a given pathway, the attainable range of responses will be given

by any convex combination of those perturbations. In this case, this range is depicted as the

shaded region in figure 6.17 b). Here, the regulatory mechanisms suggested are limited to

speeding up the cell cycle with increasing glucose levels (i.e. δTdiv/δX < 0). Additionally,

while this form of regulation can freely decrease the cell size without having a significant

impact on the cell cycle period, there must be a decrease in periodicity to affect an increase

in cell size. This runs contrary to the intuitive notion that increasing the duration of cell

growth would result in increased cell sizes, but is a natural result of the combined effects

of parameter changes on the size checkpoint and the relative timing of budding. It should

be noted that the parameter combinations suggested here are capable of reproducing some

of the basic qualitative behaviours of the cell cycle in response to glucose i.e. a shortened

period with a larger cell size . Using this observation, the analysis can be honed further

to look at combinations of these three parameters which give this qualitative change in

behaviour.
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Another interesting aspect of the attainable region is that it is bounded by the opposing

effects of stimulation of Cln3 translation and inhibition of ClbS transcription. This means

that regulation of Net1 dephosphorylation does not affect the range of behaviours that can

be bought about through the suggested pathway. However, there are clear changes in the

dynamic sensitivity when this parameter is more strongly regulated, as shown in figure

6.17. Here, three cases with various strengths of up-regulation of Net1 dephosphorylation

with glucose levels (through kdt1 and kdnt) are shown, in which a balance of the coun-

teracting parameters ksn3 and ksmbS means that the same eventual change in behaviour is

attained (as discussed above), namely a specific instance of a shortened period and a larger

cell size. Specifically, as the strength of regulation through Net1 increases, the strengths of

regulation through Cln3 and ClbS decrease. The resultant changes in the dynamic sensitiv-

ity (STdivk (t)) shown in figure 6.17d) are the result of differences in the timing of sensitivity

of the cell cycle to the different parameters (see figure 6.17 c) for the individual sensitivity

profiles), whereby regulation of Cln2 transcription and Cln3 translation alone is only ca-

pable of modulating cell cycle progression around the G1-S transition, while regulation of

Net1 dephosphorylation modulates progression through mitosis.

It has been noted previously that glucose levels act predominantly to modulate duration

of the G1 phase of the cell cycle (Porro et al., 2003). An important conclusion arising from

the work presented here is that this form of regulation does not in any way exclude active

regulation of processes occurring during mitosis (or other phases of the cell cycle). Indeed,

it suggests that, as long as counteracting pathways can be modulated in tandem, regulation

of processes occurring in mitosis may be a useful strategy for dynamic adjustment of cell

cycle characteristics after a change in conditions. In the particular example of strong Net1

regulation shown in figure 6.17d), this is seen to lead to much more rapid modulation of cell

cycle duration than would be possible if only Cln2 and Cln3 were regulated. Observations

of cell populations under constant conditions (e.g. the chemostat experiments in (Brauer

et al., 2008; Porro et al., 2003)) are not capable of distinguishing between these strategies

of regulation.

Finally, it should be recognised that application of this analysis to particular cases/pathways

is made difficult by several factors. First, the models presented here have not been con-

structed to take into account all forms of regulation a given pathway may exert on the cell

cycle (e.g. a regulated component may not be present in any of the models considered here).

Development of new models, perhaps including additional components, may be required.

Secondly, even when a parameter is present in several of the models, there is often a lack of
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even qualitative agreement concerning the regulation exerted by that parameter (see above).

Thirdly, experimental data on the response of the cell cycle to changes in a given pathway

is not generally available, meaning that reasoning about pathway responses is relatively

unconstrained. This is a problem especially given the noted flexibility of regulation of be-

haviour. While there are prospects for such data becoming available as novel experimental

techniques become more widely adopted (e.g. quantitative single-cell imaging technology

(Charvin et al., 2008; Spiller et al., 2010)), for the moment it is sufficient to describe in

principle how regulatory flexibility might exist in some known signalling pathways. As

demonstrated here, this type of understanding can be obtained in a straightforward way by

use of the preceding sensitivity analysis.

6.6 Comparison of sensitivities for analogous parameters across mod-
els

Up to this point, the analysis has been very general - the analysis has been applicable to

all models considered, and general properties of these models have been identified. It is

then sensible to ask whether the models also share similarities in the responses of particular

parameters that are shared by all models. In many cases it is not possible to identify sets of

parameters that should be considered directly comparable between the models considered.

For example, only the Csikasz-Nagy model contains the protein Swe1, meaning that pa-

rameters in this model relating to the functions of Swe1 are not directly comparable to any

parameters in the other models. Despite this, there are some classes of parameters that can

be used as examples to investigate these properties: the production of starter and mitotic

cyclins (i.e. cyclins responsible for promoting the G1-S transition and G2-M transition, re-

spectively). These components are common to all models considered, and provide a useful

basis for direct model comparison.

6.6.1 Starter cyclin production

The starter cyclins, Cln1, Cln2, Clb5, and Clb6, stimulate the transition to the budded

phase. The representation of these components differ between models. For example,

the Csikasz-Nagy model differentiates between Cln1,2 and Clb5,6, while the Barik model

lumps all starter cyclins under the pseudo-component “ClbS”. In all of these models, how-

ever, there are parameters responsible for the production of these cyclins. The question
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Figure 6.17: a) A schematic of glucose regulation. Glucose is known to act on the cell cycle and many
other processes through a diverse range of signalling pathways. b) The feasible region is given by any
convex combination of the three regulations, and is marked by the shaded region. This is determined by the
intrinsic regulatory capabilities of the parameters, constrained by the direction in which they are known to be
regulated by increases in glucose levels. c) The dynamic sensitivities of the pathways are shown (parameter
sensitivities are combined as stipulated in equation 6.37. d) The consequences of different balances of these
three parameter perturbations are shown, all of which have the same eventual change in behaviour. The
inclusion of strong regulation in mitosis (through Net1) allows dynamic response to changes in glucose levels
late in the cell cycle.
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then arises as to whether the regulation applied by these parameters is consistent between

models.

An overview of the steady state and dynamic sensitivities (in terms of SVdauk ) for these

sets of parameters are shown in figure 6.18. As is clear from figure 6.18a), there is little

agreement at even the qualitative level between the sensitivities. While increases in any of

these parameters reduce the size of the cell at division, the cell cycle duration may increase

or decrease. At the same time, however, there is some agreement between the models on the

qualitative properties of the dynamic sensitivity of the timing of the first division event after

the perturbation is applied, agreeing with the intuitive notion that stimulating production of

starter cyclins should cause earlier division.

6.6.2 Mitotic cyclin production

Like the cyclins associated with the G1-S transition, the cyclins associated with mitosis

(namely, Clb1 and Clb2) are present in the Chen, Csikasz-Nagy, Barik, and Sriram models,

and an analogously acting component can be identified in the Kaneko model. Similarly,

parameters controlling the rate of mitotic cyclin production can be identified in each model.

The results of the comparison are shown in figure 6.19. Again, it is clear that there is

no qualitative agreement between the different models in the steady state sensitivities. It

is interesting to note the biphasic properties of several of the dynamic sensitivity of the

timing of the first division event after the perturbation is applied. This fits with the intuitive

notion that production of mitotic cyclins is necessary for mitosis, but at the same time

rapid degradation of cyclins is required to allow cytokinesis. Stimulation of mitotic cyclin

production slows the overall depletion of mitotic cyclins during this late stage of the cell

cycle.

In conclusion, in both of the classes of parameters investigated, the models disagree

even at the qualitative level in many cases. This suggests that it is difficult to make any

conclusions about the responses of the cell cycle to any particular pathway based on agree-

ment across multiple models. On the other hand, it also suggests that qualitative differences

in response to sustained perturbations may provide a useful discriminating factor between

multiple models.
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Figure 6.18: Comparison of parameter sensitivities between models - starter cyclin production parameters.
The spread of steady state sensitivities is shown in a). The dynamic sensitivities are displayed for b) the Barik
model, c) the Chen model, d) the Csikasz-Nagy model, e) the Sriram model, and f) the Kaneko model.
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Figure 6.19: Comparison of parameter sensitivities between models - mitotic cyclin production parameters.
The spread of steady state sensitivities is shown in a). The dynamic sensitivities are displayed for b) the Barik
model, c) the Chen model, d) the Csikasz-Nagy model, e) the Sriram model, and f) the Kaneko model.
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6.7 Application of analysis to subpopulations of cells

Many interesting phenomena are observed at the level of cell populations, and the control

of cell populations is a topic of relevance to industrial biotechnology. Furthermore, the

quantities of biomass required for application of many commonplace experimental tech-

niques (e.g. Western blotting, microarrays, and qRT-PCR) mean that many measurements

are made at the level of cell population. It is therefore of interest to examine the conse-

quences of the preceding analysis to the behaviour of populations of cells.

The preceding numerical analysis has been performed on a lineage of daughters-of-

daughter cells, meaning that analysis of populations in this context must be limited to pop-

ulations of such cells. In contrast, the structure of populations of budding yeast consists of

a complicated mixture of generations of mother and daughter cells , with different sizes and

at different cell cycle stages. As a first step, however, towards understanding the dynamic

response of populations of cells, the subpopulation of daughter cells can be examined in

terms of the dynamic sensitivity analysis performed above.

Upon application of a step-change in parameters, the relative timing of cell cycle events

changes according to the phase shifts given by equation 6.30. These cause a permanent

transformation in the distribution of cells across cell cycle stages. The phase shift functions

Rk(phi) describe the transformation from one cell cycle stage to another, such that the

phase shift of a cell at cell cycle position φ subjected to a perturbation ∆k is given by the

function h(φ) as follows:

h(φ) = φ+Rk(φ).∆k (6.38)

This expression can be used to numerically evaluate the consequences of perturbations

for populations of cells, under the assumption that linear approximations are reasonable.

Some examples of the effects of three example perturbations on a uniformly distributed

population of daughter cells are shown in figure 6.20. The key observation that can be made

is that step-changes in parameters can partially synchronise the population, as seen in the

peaks which develop in the distribution (labelled f(φ)) of cell cycle phases. These peaks

appear at times in which the slope of the phase shift curve (in figure 6.20 a)) is negative.

Intuitively, this is because the cells later are more delayed in their progression than earlier

cells, meaning that there is an accumulation of cells around this phase. Similarly, depleted

regions in the distribution are the result of a positive slope of the phase shift curve. A
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simple corollary of these observations is that it is also possible to partially desynchronise a

partially synchronised population of cells if a correctly timed perturbation is applied.

It should be emphasised that the distribution of phases in the population is relative to

a reference cell, meaning that the distribution of a population observed at any time will be

a phase-shifted version of these distributions. Specifically, this means that the observed

distribution of cell cycle phases will match the shape of the given distribution, but that this

distribution will be shifted depending on the time at which the observation is made. Even

so, different perturbations do, in general, lead to different phases of partially synchronised

populations. An example of this is shown in figure 6.20b), in which the perturbation of

the parameter kph1p (displayed in green) partially synchronises the population to a later cell

cycle phase than do either of the other perturbations.

This demonstrates clearly that differences in phase shifts observed in cells at different

stages of their cell cycles result in compression of cells into particular phases of the cell

cycle, and depletion of cells at other phases. This modulation of the population-level be-

haviour is the key aspect allowing populations of cells to be mode-locked to a periodic

external stimulus, as described in (Charvin et al., 2009). Indeed, in (Charvin et al., 2009),

it is the daughter cell subpopulation that is mode-locked to periodic stimulation of cyclin

production. It is also likely to be significant in the partial synchronisation of yeast cells

undergoing metabolic cycling (Tu et al., 2005). Furthermore, it is significant to note that

the previous observation that phase shifting of cells is not possible in cell types which

divide symmetrically would suggest that attempts to synchronise populations of cells by

techniques utilising perturbations of the cell cycle are unlikely to be successful. This is in

agreement with previous observations (Cooper, 2004).

Note that while the numerical evaluation of the partial synchronisation of a population

of cells can be complemented by analytical results, this is made difficult by the ability

of cells to overtake one another in their cell cycle position (i.e. the ordering of cell cycle

stages is not preserved upon the application of a step-change in parameters), and is therefore

outside the scope of the present investigation.

6.8 System-wide comparisons of models

The preceding analysis has focussed on some examples of ways in which the cell cycle

models suggest dynamic regulation of the cell cycle might occur, and the models have been

compared to one another in a relatively limited way, in terms of sensitivities of analogous
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Figure 6.20: (a) The phase responses of the system in response to the three example parameters considered
here (gdbM in blue,kph1p in green, and kdh1p in red). (b) The partial synchronisation of cells that are initially
uniformly distributed across cell cycle stages is shown. It is seen that distribution resulting from the pertur-
bation of kph1p (green) is, on average, phased later in the cell cycle than the other two perturbations. Further,
it is clear that perturbation of gdbM (blue) has the strongest overall synchronising effect, as can partly be
expected by the greater magnitude of phase shifting occurring in this case (as displayed in a)).
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parameters in the models. It is also possible, however, to investigate some more general

properties of these models. This is useful for understanding more about what the models

have in common in their essential behaviours, irrespective of which particular parameter is

being looked at. The properties investigated here are the dynamic flexibility of the models,

and the timing of biphasic sensitivity responses.

6.8.1 Comparison of model flexibility

A first step towards making system-wide comparisons between models is to evaluate the

dynamic “flexibility” of the models. One way of quantitatively measuring this is to cal-

culate the singular value decomposition (SVD) of a matrix of sensitivities, as described in

(Rand et al., 2006). The first step is to define a relationship between observable character-

istics Q and the parameter perturbations δη through a sensitivity matrix A:

δQ = Aδη (6.39)

Where δη is a vector of relative changes in parameters (so δk = δη∆k, where ∆k is

the diagonal matrix diag(k1, k2, ..., kn)). The SVD of the matrix A can then be computed

easily. How rapidly the relative singular values, σ, of this matrix decrease gives a measure

of how flexible the model structure is. If there are many large singular values then this

suggests that there are several dimensions which the parameters of the model can regulate

independently, and the model is flexible. On the other hand, if the singular values decrease

in magnitude rapidly then this suggests that the parameters are not capable of independent

regulation of the characteristics Q examined, and the model is inflexible. This method

of analysis has previously been applied to evaluate models of circadian oscillators (Rand

et al., 2006).

In this case, δQ can be chosen in several different ways. One way is to make it a vector

of the changes in cell volume at division and the cell cycle period at the end of one cycle:

δQ =


δVdiv

δTdiv

δVdiv,1(t)

δTdiv,1(t)

 (6.40)

The relevant sensitivity matrix is then given by:
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A =


CVdiv
k1

CVdiv
k2

... CVdiv
kn

CTdiv
k1

CTdiv
k2

... CTdiv
kn

S
Vdiv,1
k1

(t) S
Vdiv,1
k2

(t) ... S
Vdiv,1
kn

(t)

S
Tdiv,1
k1

(t) S
Tdiv,1
k2

(t) ... S
Tdiv,1
kn

(t)

 (6.41)

Here, n gives the number of parameters for the model in question. Since the calculations

use discrete values, and dynamic functions have been included in equations 6.40 and 6.41,

the functions SQk (t) are replaced by vectors containing 60 values each (SQk (t1), S
Q
k (t2), ...S

Q
k (t60)),

equally spaced in time. Having defined the vector of characteristics, it is now possible to

describe the specific meaning of the relative magnitude of the singular values of A: they

describe how independently the cell size and timing of division can be varied, if any com-

bination of parameters is allowed to be perturbed. It therefore quantifies the intuitive idea

that the model behaviour is modulated along fewer dimensions than the dimensions of the

parameter space. While the specific meaning of the singular value decomposition in this

case is determined by equations 6.40 and 6.41, it should be noted that including additional

outputs (e.g. Tbud,3) does not significantly affect the results of the analysis. This is ex-

plained by the fact that the SVD is insensitive to the inclusion of additional data that can

be expressed as a linear function of data already present.

The results of applying the above analysis to the models considered (except the Pfeuty

model) is shown in figure 6.21. Interestingly, there do not appear to be substantial differ-

ences in the flexibility observed in these models, with the exception of the Sriram model,

which appears slightly less flexible. This is in broad agreement with the idea that more

complex models, with multiple forms of feedback regulation, exhibit greater flexibility

(Rand et al., 2006).

Given the qualitative observation made of the steady state sensitivities previously, in

which the Csikasz-Nagy model did not appear to have much capacity for independent mod-

ulation of Vdiv and Tdiv (i.e. many of the pairs of sensitivities (CVdiv
k , CTdiv

k ) appeared to be

linearly dependent), it is somewhat surprising that the Csikasz-Nagy model shows at least

as much flexibility in response as the other models considered. This can be explained by the

relatively insignificant weight placed in the flexibility analysis on the steady state response.

It is not possible to apply the above analysis to just the steady state characteristics, since

the singular value decomposition requires that the number of parameters be fewer than

the number of characteristics (hence the inclusion of dynamic response functions above).

However, the analysis may be adapted by considering the average flexibility of regulation
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Figure 6.21: The flexibility of the models is plotted according to the fraction of singular values σi of the
matrix A which obey the relationship σi/σmax > λ, in which σmax is the maximal singular value of A. The
more rapidly this fraction drops off with λ, the more rapidly the singular values decline, and the less flexible
the mode is. Thus, it is seen that the Sriram model displays noticeably less flexibility than the other models
considered here. This is partially expected as a result of the smaller number of parameters and species in the
Sriram model.
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Table 6.1: Flexibility of modulation of Vdiv and Tdiv

Model Average σ2/σ1
Barik 0.1762

Csikasz-Nagy 0.0021
Chen 0.0032

Sriram 0.0377
Kaneko 0.0694

of all possible pairs of parameters, so that the quantities in equation 6.39 are defined by:

δQ =

(
δVdiv

δTdiv

)
(6.42)

A =

(
CVdiv
k1

CVdiv
k2

CTdiv
k1

CTdiv
k2

)
(6.43)

This provides a pair of singular values (or, equivalently in this case, eigenvalues) for

each pair of parameters. The relative magnitude of the smaller singular value (compared to

the larger singular value), averaged across all pairs of parameters, is then a measure of how

flexible the steady state behaviour is. The results of this analysis are shown in table 6.1.

This gives quantitative backing to the observations made above that the Csikasz-Nagy

model has a relatively inflexible steady state response. It further demonstrates that the

Pfeuty and Sriram models, included here as examples of more abstract models of the cell

cycle, are quite flexible, and that the Barik model is the most flexible in this sense.

6.8.2 Post-G1-phase dynamics as a source of biphasic responses

An observation that can be made from surveying the wealth of sensitivity data available

is that the ZQ
k (t) of parameters associated with species involved in the early stages of the

cell cycle (G1 phase, pre-budding) are monophasic, meaning they are strictly positive or

negative (and, therefore, that SQk (t) is strictly increasing or decreasing, respectively). In

contrast, the dynamic sensitivities of parameters associated with species involved in post-

G1 phases often appear to display some degree of biphasic response, where they increase

and decrease. This qualitative observation can be made quantitative by dividing the cell

cycle into pre- and post-budded stages and asking what fraction of model parameters exhibit

biphasicity above a given threshold, γ. Specifically, this asks what fraction of parameters
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obey the relationships:

max(ZQ
k (t)) > 0

min(ZQ
k (t)) < 0

||log2

(
|max(ZQ

k (t))|
|min(ZQ

k (t))|

)
||∞ < γ (6.44)

The first two conditions require that there is a change in the direction of ZQ
k (t), while

the second requires that the fold-change between the peak and trough of ZQ
k (t) is less than

γ. Varying γ varies how strenuous this requirement is. Figure 6.22 displays the variation in

these proportions for the Barik, Csikasz-Nagy, Chen, and Sriram models (the Pfeuty model

is excluded here since it only makes use of 8 parameters), with the characteristic taken to

be Q = Tdiv,1.
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Figure 6.22: Fraction of parameters for each model with a biphasic response below the threshold γ in the
post-budded phase (green lines) compared to the fraction with biphasic response in the pre-budded phase
(blue lines). In all cases, a significant fraction of parameters are observed to exhibit biphasic responses in the
post-budded phase, and in all cases except the Sriram model this fraction is much greater than the fraction of
parameters observed to exhibit biphasic responses in the pre-budded phase.
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As can be seen, there is a general trend towards parameters being biphasic in the post-

budded phase - only in the Sriram model are a greater fraction of parameters biphasic in the

pre-budded phase compared to the post-budded phase, and even in this case a significant

fraction of sensitivities are biphasic in the post-budded phase. The Chen and Csikasz-Nagy

display no biphasic responses in the pre-budded phase whatsoever across the range of γ

considered. This observation can be understood at a simplified level as resulting from the

dynamic structure of the models, as studied through bifurcation analysis previously .

Bifurcation analysis of all of the models discussed here has shown that their behaviour

is characterised by a size threshold. When the cell volume is below this threshold, the cell

cycle sits at a stable steady state. Upon passing through a bifurcation at a critical size,

the cell cycle leaves this steady state, entering an oscillatory regime. The frequency of

these oscillations depends on the parameters. The cell cycle is therefore divided into two

regimes - a regime in which a stable steady state dominates the dynamics, and an oscillatory

regime. As a simple approximation, these regimes can be identified as the pre- and post-

budded stages of the cell cycle, respectively, since the budding threshold is passed during

the first “upswing” in starter kinase activity in the oscillatory regime. A detailed analysis

of these properties is beyond the scope of this work.

6.9 Conclusions

In this chapter a systems framework was developed and employed to understand dynamic

regulation of the cell cycle and growth in budding yeast. The budding yeast is a model or-

ganism for the study of the cell cycle, and its progression through the cell cycle is marked

by the appearance of a growing bud, which eventually forms the daughter cell after divi-

sion. The budding event is coordinated by the cell cycle, but also feeds back on it, since

the timing of these events has consequences for the size of daughter cells in subsequent

generations. The investigation of the connections and coordination between the cell cy-

cle and these developmental events across changing environmental conditions provide the

motivation for the application of the analytical framework developed here.

Working within the framework developed, a detailed sensitivity analysis was employed

to investigate five different models of the budding yeast cell cycle (two of which are adapted

from more general models of the eukaryotic cell cycle). While these models disagree on

some of the details of mechanisms, and represent varying levels of abstraction, it has been

shown here that there are some common properties between the models which can be taken
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advantage of to look at principles of dynamical regulation. While some results are specific

to models of the budding yeast cell cycle, it is likely that other results are more general. This

is especially true given that some of the models considered (the Sriram and Pfeuty models)

were not developed to be specific to the budding yeast cell cycle, but were intended to

represent a more general picture of the eukaryotic cell cycle.

In order to develop some basic understanding to the regulation of the cell cycle, linear

sensitivity analysis was performed of a set of cell cycle models. Implicitly, this represents

a signal regulating the cell cycle as a change in a model parameter. The advantage of lin-

ear analysis is that sensitivities of the system to combinations of parameters, or a series of

changes, arise automatically from analysis of the individual parameter sensitivities. The

sensitivity analysis performed here can be divided into the steady state and dynamic analy-

ses. The steady state analysis investigated the eventual behaviour of the system in response

to a sustained change in parameters, while the dynamic analysis investigated the dynamic

approach to that eventual behaviour.

In the steady state analysis, it was shown that there exists a capacity for independent

modulation of the size and timing of division in budding yeast. This is in part a result of

the flexibility of regulation demonstrated by parameters in the model, but relies especially

on the asymmetric division of budding yeast, and thus the ability to alter the fraction of

mass donated to the daughter cell upon division. In exponentially growing, symmetrically

dividing species and cell types, it is clear that under constant conditions the division time

must equal the mass doubling time. It is interesting to note, however, that the concept of

“asymmetric division” needn’t be restricted to asymmetric division of mass, but may also

involve other factors that are preferentially donated to one cell after division (for example,

sequestration of damaged proteins ). The consequences of other sources of asymmetry in

other cell types is a subject for future investigation.

Building on the changes in cell cycle behaviour under constant condition, an exhaustive

dynamic sensitivity analysis was performed, looking at changes in division and budding

times and sizes across multiple generations. Some simple qualitative properties of these

sensitivity curves were described, such as biphasicity. This property means the application

of a perturbation may either increase or decrease the observable characteristic, depending

on the time of application, and is a property common to the phase response of biological os-

cillators. In addition, the dynamic sensitivity analysis automatically provided information

on the phase shift of the cell cycle observed after a perturbation has been applied, and a re-

lationship was identified between daughter size and these phase shifts. In particular, phase
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advances are observed when a greater fraction of mass is donated to the daughter cell,

while phase delays are observed in the reverse case. Further investigation of the properties

of dynamic sensitivity was then performed by building upon the observation of flexibility

of regulation of the cell cycle behaviour under constant conditions. In particular, this flex-

ibility allowed multiple sets of parameter perturbations to be chosen that shared the same

change in behaviour under constant conditions, but displayed widely varying differences

in their dynamic responses. By considering a continuum of particular subsets of parameter

perturbations with the same eventual behaviour, it was then possible to ask what charac-

teristics might be shared by parameter perturbations which achieve optimally fast (under a

defined metric) approach to this eventual behaviour. An apparent similarity was observed

between the “optimal” parameter perturbations under two metrics - optimising the speed of

attainment of the change in cell cycle duration, and in daughter cell size. This is interesting

in that it suggests an underlying rigidity in regulation. For example, it may not be possible

to both rapidly change the cell cycle duration, and slowly modulate the daughter size at the

same time. Finally, the dynamic analysis was further extended by considering the effects

of a steady, linear change in parameters over time. In such a scenario, it was demonstrated

that signalling mechanisms can again be seen as rapidly or slowly adapting to changes in

conditions. One interpretation of this is that signalling mechanisms can operate so as to

anticipate future changes, or remember previous conditions.

The preceding analysis has demonstrated some interesting principles which may be

important for the regulation of the cell cycle. However, given that in most practical cases

there will be only one model and one signalling pathway of interest, it was necessary to

consider a case study in which aspects of the analysis were applied to a specific example

of cell cycle regulation. The example chosen here was the interaction of glucose signalling

pathways with the cell cycle - a physiologically important pathway which allows the cell

to rapidly respond to changes in nutrient availability.

The evaluation of sensitivities across multiple models allowed confidence that some pat-

terns of behaviour seen (e.g. nonmonotonic relaxation to the eventual cell cycle behaviour)

were generic. It was then of interest to perform some systematic comparison of the differ-

ent model behaviours. This was first done by comparing the sensitivity of different models

to changes in sets of parameters that can reasonably be considered to be analogous to one

another. The set of parameters chosen was the sets of parameters regulating the production

of different cyclins. This showed that there was some agreement between models, but also

that there were some serious qualitative differences between models. The comparison of
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analogous parameters here was a special case, since most parameters do not exist anal-

ogously in all models considered. Therefore, it was necessary to consider more general,

system-level properties of the models. The first such comparison made was at the abstract

level of evaluating the regulatory flexibility of the models. The models displayed similar

dynamic regulatory flexibility, but dissimilar steady state regulatory flexibility, with two

models in particular - the Csikasz-Nagy and Chen models - showing a more restricted set

of parameters available for independent modulation (see 6.1). The lack of flexibility can-

not immediately be explained by differences in the complexities of the models, since the

Csikasz-Nagy model is of comparable structural complexity to the other detailed models.

Instead, it seems likely that the Csikasz-Nagy model has a reduced dimension of dynamics

as a result of a separation of timescales. In addition to this, an evaluation of the timing of

the biphasic property of dynamic sensitivities was performed, finding that in most models it

is predominantly localised to the budded phase of the cell cycle (the exception is the Sriram

model).

There are two key ways in which the work presented here can be built upon in the

future - extension of the theoretical results, and application of the results for experimental

investigations. In the first case, there are numerous ways in which the results here can be ex-

tended. The most obvious extension is to investigate other cell types. While, as discussed,

the most information is available to constrain models of Saccharomyces cerevisiae, there

have also been modelling investigations of Saccharomyces pombe, Xenopus laeviae, and

mammalian cells. This is particular important given the role that asymmetric division had

in the preceding analysis here. Another important aspect to be investigated will be the con-

sequences of regulation of population-level behaviour. This is a natural extension given the

importance of population-level behaviours in general processes such as colony establish-

ment and organ growth, and the fact that cell cycle progression automatically determines

the dynamics of these processes. Finally, it will be interesting to investigate possible con-

sequences of growth patterns which are not strictly exponential. Such patterns have been

known for some time in fission yeast (Baumgartner and Tolic-Norrelykke, 2009), and have

recently been identified in some cases in budding yeast (Goranov and Amon, 2010), and

mammalian cells (Son et al., 2012). Overall the use of systems frameworks, complemented

by experiments, to understand the interaction between cell cycle growth and growth land-

marks, the environmental regulation and the consideration of population level effects will

provide important insights into these issues in multiple systems.

The feasibility of applying the results presented here to interpret experimental results
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depends crucially on the current state-of-the art. Recently, an investigation of the interac-

tion between osmotic stress signalling and the G1-S transition has been performed (Adrover

et al., 2011) (note that the mathematical model developed in this paper is not suitable for

the analysis performed here as it only represents the G1-S transition). While these results

are interesting, they make extensive use of population-level measurements, and do not link

changes in one cell cycle to subsequent cycles. However, the essential motivation for the

work - looking for how different combinations of regulation explain the dynamic regula-

tion at different cell cycle times - is in common with the approach taken here, and it is to

be expected that further work along these lines will connect closely with aspects discussed

here. An important factor in the success of future investigations along these lines will be the

technology available. Here, there are two aspects which should be highlighted: the ability

to observe behaviour at the single-cell level, and the ability to precisely control the appli-

cation of perturbations to cells being observed in this way. Live-cell imaging techniques

are becoming widely available (Larson et al., 2009; Locke and Elowitz, 2009; Spiller et al.,

2010), and much excellent work has already been performed in budding yeast making use

of such technology (Baumgartner et al., 2011; Bean et al., 2006; Charvin et al., 2009, 2008,

2010; Muzzey et al., 2009). Furthermore, advances in microfluidics (Bean et al., 2006;

Charvin et al., 2008; Rowat et al., 2009) allow previously infeasible degrees of control to

be applied to perturbations of these cells. In summary, the basic experimental techniques

are available to probe the questions raised by this analysis, at least at the qualitative level,

in a variety of cell types.

The most interesting possibility raised by the advancement of experimental techniques

for investigating controlled perturbation of the cell cycle is the potential identification of

common properties across the different signalling pathways to the cell cycle. For example,

the regulation of the cell cycle by nitrogen- and glucose-sensing signalling pathways, which

have both evolved to play similar roles, may be expected to exhibit similarities at the level

of dynamic regulation. The evaluation and comparison of such control mechanisms is

naturally facilitated by the framework established here.

In conclusion, a systems framework has been developed to understand different aspects

of the regulation of the cell cycle and interaction of growth and growth landmarks in bud-

ding yeast. This provides various insights into the dynamic regulation of the cell cycle in

budding yeast. The development and use of such systems frameworks, complemented by

experiments, is expected to be very useful in understanding the interaction between the cell

cycle and various other cellular processes, in multiple systems.
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Chapter 7

Conclusions and future work

This thesis has presented a range of studies seeking to understand a wide variety of different

aspects of cellular signalling. In each case, a specific example system was identified, and

exhaustive analysis applied to discover the range of behaviours the system was capable of

producing. These example systems spanned a wide range of signalling systems, from the

simple to the complex.

Beginning at the level of models of generic signalling systems, Chapter 3 investigated

the consequences of coupling between two pathways by the sharing of a common compo-

nent between these pathways. This simple motif is seen across a wide range of biological

systems, in which proteins are often involved in multiple functions at the same time. The

analysis of the signalling capabilities of this system are thus of broad interest. As such,

interesting behaviours such as ultrasensitive and adaptive behaviours were identified. This

analysis was then built upon to include other features common to signalling networks, such

as post-translational modification, spatial variation, and allosteric control. These elabora-

tions provided biologically motivated example systems with a richer variety of behaviours,

and interesting properties of these systems were identified. For example, it was found that

two molecular switches sharing the same modifying enzyme could be robustly coordinated

with one another by this coupling.

The identification of interesting behaviours resulting from the combination of protein-

protein interactions and enzymatic reactions then motivated the investigation of a series

of models of a simple two-stage cascade of post-translational modifications in Chapter 4.

These models represent another class of generically seen motifs in biological signalling net-

works. Here, it was shown that some nontrivial transformations in the signalling behaviour
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of these systems could result from the incorporation in these models of some additional

protein-protein interactions other than those usually considered in models of these systems.

These additional protein-protein interactions include product inhibition, and the interaction

of inactive enzyme with its substrate. In particular, product inhibition was found to allow

biphasic signalling behaviour, while binding of inactive enzyme to substrate facilitated ad-

ditional sensitivity of signalling. These results were robust to the choice of parameters, and

even to further elaboration of the model structure (e.g. by including multiple modification

of substrate by enzyme).

Having established a range of behaviours possible in some systems, it was then of

interest to consider the consequences of connecting signalling modules with different be-

haviours to one another (Chapter 5). In this case, rather than asking what the behaviour

is of a particular module, it is assumed from the start that a module exhibits a particu-

lar behaviour - in this case either adaptive or threshold responses - and the objective is

then to identify the behaviours exhibited by combinations of these modules. In the case of

the combination of adaptive and threshold modules considered here, behaviours including

switching in response to temporal gradients and robust pulsing of signalling were identi-

fied. By casting the interaction of these processes in a modular systems framework, we

have taken the first steps towards understanding how these fundamental elements interact.

In complex networks additional effects or pathways may further alter the output from each

module. The possibility of more complex interaction as well as feedback between these

modules points to the possibility of more complex temporal patterns. The study presented

here will be used as a basis for further expansion, as well as a systematic exploration of

these additional features. It could also provide interesting insights in the emerging area

of synthetic biology, especially in the context of circuits which may involve the elements

discussed here. More generally, we believe that a modular systems-based approach can

provide valuable new insights and the basis of a systematic exploration the possible variety

of roles of different elements in cell signalling.

The first three chapters of results were able to establish robust, interesting conclusions

by considering representations of signalling behaviours and mechanisms that are ubiqui-

tous in biological systems. In contrast, the final chapter of results (Chapter 6) involves a

detailed analysis of a particular process - the budding yeast cell cycle. This is of interest

due to the central role played by the cell cycle in the lifetime of cells, and detailed inves-

tigation is made possible by the availability of detailed information on the mechanism of

progression of the budding yeast cell cycle. This knowledge has been consolidated in the
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literature in the form of a variety of mathematical models of the cell cycle. In this chapter,

a framework is developed and applied for the investigation of the dynamic response of the

cell cycle to external perturbations. This framework involved detailed sensitivity analysis

of a selection of cell cycle models taken from the literature. This demonstrated the link be-

tween cell size control and cell cycle synchronisation of a population of cells in a changing

environment. It also demonstrated a variety of interesting dynamic responses of the cell

cycle to changes in conditions. Such dynamics remain to be identified experimentally, but

the analysis performed here provides a framework within which such experiments might

be performed.

In conclusion, this thesis has, in the first place, utilised a wide range of mathematical

modelling and analysis to investigate the essential capabilities of some simple biochemical

signalling mechanisms, and the behaviours resulting from the composition of such mecha-

nisms. In the second place, it has established a framework for understanding the regulatory

mechanisms underlying the complex process of cell cycle progression. The continued de-

velopment of approaches along these lines is expected to expedite biological discovery as

the discipline fulfils its potential as a fully quantitative science.
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Appendix A

Coupling of pathways: Parameter values

The parameter values for the simulations shown in the figures are listed below.

Figure 3.2

Total amounts of A and B were maintained ([AT ] = [BT ] = 1), and the simulations were

run to steady state. The affinities used were KA = 103, KB = 70.

Figure 3.3

KA = 103, KB = 70. All degradation constants were equal: kdx = kda = kdb = kdax =

kdbx = 0.01. Production of A and B was set at the same rate: kpa = kpb = 0.02. Initially,

no X is produced (kpx = 0), but at the start of the simulation it is stepped up to kpx =

0.08. In a) the timescales of both interactions, set by the disassociation rates, are equal:

ka2 = 1/τB = kb2 = 1/τB = 1. In b), ka2 = 1/τA = 1, kb2 = 1/τB = 0.001. In c),

ka2 = 1/τA = 0.001, kb2 = 1/τB = 1. In d) ka2 = 1/τA = 0.001, kb2 = 1/τB = 1, with

0.5 X being added at t = 0.

A.0.1 Figure 3.4

The affinities here are equal, KA = KB = 1, while the timescales differ: ka2 = 1/τA =

1000, kb2 = 1/τB = 0.1. The production and degradation of all species are initially equal:

kdx = kda = kdb = kdax = kdbx = kpx = kpa = kpb = 0.01. The production rate of X is

then pulsed up to a peak of 0.11 over a time of 1 (arbitrary units).



Appendix A. Coupling of pathways: Parameter values 212

Figure 3.5

The affinities used were KA = 103, KB = 70. All degradation constants were equal:

kdx = kda = kdb = kdax = kdbx = 0.01. Production of X was the same: kpx = 0.01. In

a), production of A was stepped up from kpa = 0 to kpa = 0.02 at t = 0, while production

of B was maintained at kpb = 0.02. In b), production of B was stepped up from kpb = 0 to

kpb = 0.02 at t = 0, while production of A was maintained at kpa = 0.02.

Figure 3.6

The parameters were identical as those for figure 3.5, except that here the production of

both A and B was stepped up from kpa = kpb = 0 to kpa = kpb = 0.02 at t = 0.

Figure 3.8

In part a), KA1 = 5, KA2 = 20, KB = 10. In part b), KA1 = 20, KA2 = 20, KB = 10.

In c), just A, X, and Y were considered, and KA1 = 20, KA2 = 20 was taken for both

mechanisms, allowing comparisons to be drawn. In d), KA1 = 1, KA2 = 1, KB = 10,

α = 100.

Figures 3.9 and 3.10

Here, the kinetics of the two switches differ only in the rate of association between enzyme

and substrate. The complete parameters are: ka1 = 100, ka2 = 1, ka3 = 10, ka4 = 1,

Kma4 = 0.01, kb1 = 10, kb2 = 1, kb3 = 10, kb4 = 1, Kmb4 = 0.01. There is no production

and degradation of proteins involved, since we look at the steady state response.

Figure 3.11

The parameters used for the multiphosphorylation (activating A) are identical to those given

in Markevich et al Markevich et al. (2004). These are: k1 = 0.02, k−1 = 1, k2 = 0.01,

k3 = 0.032, k−3 = 1, k4 = 15, h1 = 0.045, h−1 =, h2 = 0.092, h3 = 1, h−3 = 0.01,

h4 = 0.01, h−4 = 1, h5 = 0.5, h6 = 0.086, h−6 = 0.0011. The parameters for the

monophosphorylation (activating B) are kb1 = 0.02, kb2 = 1, kb3 = 0.4, kb4 = 1, Kmb4 =

0.1.
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Figures 3.12 and 3.13

Here, the interactions are all equal affinities and timescales, KA = KB = 70. The degra-

dation rates for all components, and production rates of A and B, are equal: kdx = kda =

kdb = kdax = kdbx = kpa = kpb = 0.01. Non diffusible components had D = 0, while

diffusible components had D = 100. Production of X was varied as indicated. A Gaussian

production term was used for localised production, with a standard deviation of 5% of the

domain size.

Figure 3.14

Here, the conditions are as in figures 3.12 and 3.13, except for the affinities, which are

varied. Here the low affinity component had K = 5, while the high affinity component

had K = 50. Where affinities are equal, they are each set to K = 5. Production of X was

maintained constant at, kpx = 0.001.
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Appendix B

Multiple enzyme-substrate interactions:
Parameter values

Basic model

The basic model uses mass action kinetics to model the interactions and reactions between

a signal, S, an enzyme, A, its substrate, B, and two proteins, X and Y, responsible for deacti-

vation of A and demodification of B, respectively. We have chosen a basal set of parameters

for use with the model, corresponding to an enzymatic cascade with X and Y acting close

to saturation. In addition, we look at an alternative parameter set with X and Y far from

saturation. All concentrations and dissociation constants (the reciprocal of affinities) are

made dimensionless by being scaled to one another. The dissociation constants are given

by Kd = kr/kf , where the parameter subscripts “f ” and “r” denote binding and unbinding

rates, respectively. Here, we use concentrations of A and B of dimensionless order 1 (see

below), with the dissociation constant of their interaction of order 0.1. This corresponds

to an interaction between A and B where their overall concentrations are 100 nM and

the dissociation constant is 10 nM, as discussed in the text. Catalytic reaction rates are

dimensionless, the key point being that the interactions are on a faster timescale than the

catalytic reactions (the degree of timescale separation was one of the factors investigated,

and found to have little effect on the results).

For the basal parameter set, the initial conditions determine the quantities of S, A, B, X,

and Y available during the simulations. In particular, the basal conditions were [AT ] = 3,

[BT ] = 1, [XT ] = 0.05, [YT ] = 0.1. In the dynamic case, the initial conditions before

the step change in [ST ] were set by allowing the system to reach its steady state at low
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signal levels [ST ] = 0.01, before applying a step change (to [ST ] = 0.5, except in the

case of figure 4b), where the step change, following the direction of the black arrow, is

made to [ST ] = 0.05, 0.043, 0.04, 0.037, 0.035). The basal parameters used were as follows

(given in the order: association reactions, dissociation reactions, and catalytic reactions):

k1f = 10, k3f = 10, k5f = 50, k7f = 10, k9f = 0, k10f = 0, k11f = 0, k1r = 1, k3r = 1,

k5r = 1, k7r = 1, k9f = 1, k10f = 1, k11f = 1, k2 = 0.1, k4 = 0.1, k6 = 0.5, and k8 = 0.1.

In order to show the effects of the additional interactions (as shown in figures 4.2, 4.3,

4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, and 4.15) the parameters responsible

for these interactions were varied in a set way. In the case of product inhibition, inactive

enzyme interference, and the interaction of inactive enzyme with modified substrate, the

parameters k9f , k10f , and k11f , respectively, took the values 0, 1, 2.5, 5, and 10. In or-

der to show the effects of changing [AT ] (in figures 4.4 and 4.10), [AT ] was varied in the

range from 1 to 5. For figures 4.5 and 4.12, which illustrate the effects of affinity variation,

the high and low affinity cases were examined by uniformly doubling and halving (respec-

tively) the values of k9f (for product inhibition) and k10f (for inactive enzyme interference).

For figure 4.11, illustrating the case of inactive enzyme interference with [BT ] > [AT ], the

basal parameter set was used, but with [AT ] = 1 and [BT ] = 3. In the investigation of

the effects of the variation of the relative timescales of catalysis and complex formation,

simulations with different relative timescales were performed by uniform fold-changes in

the catalytic rates (i.e. k2,k4,k6, and k8).

The alternative basal conditions (used for figures 4.3 and 4.8) were [AT ] = 3, [BT ] = 1,

[XT ] = 1, [YT ] = 1. This is the same as for the basal case, except for [XT ] and [YT ], which

are substantially higher. The alternative parameter set was k1f = 0.1, k3f = 0.1, k5f = 0.1,

k7f = 10, k9f = 0, k10f = 0, k11f = 0, k1r = 1, k3r = 1, k5r = 1, k7r = 1, k9f = 1,

k10f = 1, k11f = 1, k2 = 0.05, k4 = 0.1, k6 = 0.5, and k8 = 0.1. This is the same as the

basal set, except for k1f , k3f , k5f , and k2.

The graded response shown being modulated by inactive enzyme interference in figure

4.9 was obtained using parameters identical to the basal parameter set, except for the kinet-

ics of demodification of B (k5f = 1, k5r = 1,k6 = 0.1), and with the total quantity of the

enzyme responsible for that reaction changed (so [YT ] = 1). This corresponds to a situation

in which Y is much less saturated than in the basal case.
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Double modification of substrate

The parameter values and component concentrations used in the double modification of

substrate model (figure 4.16) were identical to the basal set of parameters described above

(only one set was used in this case) - the additional reaction has the same kinetics as the

original reaction, and so no additional parameters are required. In figure 9, for the cases of

product inhibition and inactive enzyme interference, the parameters k9f and k10f , respec-

tively, took the values 0, 1, 2.5, 5, and 10 (as was the case for the analogous study in the

basic model).

Scaffold-mediated signalling

The concentrations of the components used for the scaffold-mediated signalling model

were the same as those used in the basic model (simulation results shown in figure 4.17).

The new component, C, is present in concentration [CT ] = 1. The parameters used (again,

given in order of type), were: k1f = 10, k3f = 10, k5f = 50, k7f = 10, k8f = 10, k9f = 0,

k10f = 0, k1r = 1, k3r = 1, k5r = 1, k7r = 1, k9r = 1, k10r = 1, k2 = 0.1, k4 = 0.1,

k6 = 0.5, and k11 = 0.1. In figure 10, for the cases of product inhibition and inactive

enzyme interference, the parameters k9f and k10f , respectively, took the values 0, 1, 2.5, 5,

and 10 (as was the case for the analogous study in the basic model).
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Appendix C

Interaction of modules: Parameter
values

We briefly present the parameter values which are used in this study, module by module.

We note that these parameters are dimensionless, as only their relative values are important.

The initial conditions in each simulation were the steady state of the system under the initial

value of the input signal, S.

Adaptive module The parameter values used were: ka = 1, k−a = 1, ki = 0.2,

k−i = 0.05, kf = 1000, kr = 1000. The initial input signal was S = 0.1. This was stepped

up to S = 10 at t = 0. This set of parameter values was used for all simulations, with

scaling parameters κ (multiplying all kinetic parameters) and λ (multiplying the output,

R∗) used to scale the timescale and amplitude of the pulse, respectively. This allowed

the effects of signal duration and magnitude on the downstream module to be analysed

independently of changes in the shape of the pulse. For the results shown in figure 5.3,

κ = 3 and λ = 1. In figure 5.4 the short pulse was obtained by taking κ = 80, the medium

pulse was obtained by taking κ = 66, and the long pulse was obtained by taking κ = 66

(all with λ = 2.8). In figure 5.9 and 5.11, κ = 10 and λ = 2.8.

Goldbeter-Koshland switch The parameters used for the Goldbeter-Koshland switch

were V1 = 2, V2 = 1, Km1 = 0.01, and Km2 = 0.01.

MAPK cascade The equations for each stage of the MAPK cascade involve standard

Michaelis-Menten kinetics. The parameters used for each stage of the MAPK cascade were

all chosen to be the same: V1 = 2, V2 = 1, Km1 = 0.1, and Km2 = 0.1.

Bistable switch with saturated degradation The parameters used for the bistable
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switch were V1 = 250, V2 = 4.25, Km1 = 100, Km2 = 0.01, and kfb = 27.1. In the

case of figure 5.11(b), where it is desired to show how an adaptive module responds to a

very fast switch, the dynamics of the bistable switch are sped up by multiplying the kinetic

parameters V1, V2, and kfb by a factor of 40.

Toy bistable switches For the toy model of bistability given by equation 5.8 and used

in Fig. 5.5c, α = 1. For the toy model of bistability given by equation 5.19 and used in

Fig. 5.9, α = 40 and the basal states of the roots are u1 = 0, u2 = 0.5, and u3 = 1. The

adaptive pulse output in this case is added onto the location of the roots directly.

Parameter values for square and exponential pulses The basal states of the input

pulses used to obtain figures 5.5a,b and c were held at Sb = 0.63, Sb = 0.55, and Sb = 0.5,

respectively. Note that figure 5.5a was obtained for a square pulse input, while figures 5.5b

and c were obtained for the exponential pulse input.

Response of bistable module to multiple pulses The square pulses used to obtain

figure 5.8 had period, T = 0.14, basal state, Sb = 0.63, and peak value, Sp = 1.18.

Response of monostable module to multiple pulses The square pulses used to obtain

figure 5.7 had period, T = 0.1, basal state, Sb = 0, and peak value, Sp = 1.

Alternate interconnection of modules Simulations were performed for the alternate

order of interconnection of modules. The modules (described in the main text) have a clear

input and output. Thus when the adaptive module is connected upstream of the threshold

module, the output of the adaptive module is the input to the threshold module (and the

input to the composite module is the input to the adaptive module). This is used to solve

the (now coupled) differential equations.
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Appendix D

Cell cycle: additional plots
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Figure D.1: Changes in daughter size down three generations for different combinations of different sets
of three parameters (from the Sriram model) which achieve the same eventual change in behaviour, and all
of which achieve minimal Mdau compared to other combinations of those three parameters. The dashed
line gives the eventual change of behaviour, which is the same in all examples. The curves approach this
behaviour asymptotically though, as noted, not necessarily monotonically. As is the case in the examples
shown for the Barik model, these curves all display some degree of biphasic response.
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Figure D.2: Changes in cell cycle period down three generations for different combinations of different sets
of three parameters (from the Sriram model) which achieve the same eventual change in behaviour, and all
of which achieve minimal Mperiod compared to other combinations of those three parameters. The dashed
line gives the eventual change of behaviour, which is the same in all examples. The curves approach this
behaviour asymptotically. Again, and similarly to the case with the Barik model, these curves all display
some degree of biphasic response.
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Figure D.3: The dynamic responses of Vdau over the first generation in the Sriram model are compared for
the examples considered in figures D.1 and D.2, minimising Mdau (blue) and Mperiod (green), respectively.
The similarity in the response curves exhibiting minimal Mdau and Mperiod suggests a common principle in
the attainment of rapid approach to the eventual change in behaviour of the cell cycle.
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Appendix E

Description of digital appendices -
MATLAB simulation code

This Appendix lists simulation code for each chapter, and the figures which they were used

to generate (where relevant).

E.0.2 Chapter 3: Coupling of pathways and processes through shared

components

Basic interactions

The basic model of X interacting with A and B is simulated (Eq. 3.3) (see Fig. 3.1 for the

model schematic). Used for Fig. 3.2.

Combinatorial signalling

The three model variants of combinatorial signalling (depicted in Fig. 3.7) are simulated.

Used for Fig. 3.8.

Dynamic response to pulsatile change in X production

Simulates the response of the basic model to a temporary step up in the rate of production

of X. Used for Fig. 3.4.
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Multiple switching (bistable)

Simulates the interaction between the double phosphorylation and single phosphorylation

models described in Sections 3.2.2 and 3.2.2, respectively. Used for Fig. 3.11.

Multiple switching (monostable)

Simulates the interaction between two single phosphorylation modules, as described in

Section 3.2.2 in order to demonstrate how enzyme competition may improve signalling

specificity. Used for Fig. 3.9.

Simple membrane complex formation

Simulates complex formation on a membrane with different combinations of diffusion

rates, affinities, and spatial distributions of species synthesis. Used for Figs. 3.12, 3.13,

and 3.14.

Temporal ordering of switching

Simulates the interaction between two single phosphorylation modules, as described in

Section 3.2.2 in order to demonstrate the robust ordering of activation. Used for Fig. 3.10.

Temporal response to a step-change

Simulates the response of the basic model to step-changes in production of X, A, and B.

Used for Figs. 3.3, 3.5, and 3.6.

E.0.3 Chapter 4:Effects of multiple enzyme-substrate interactions in basic

units of cellular signal processing

Note that, throughout this directory, scripts with the prefixes “PI” and “IEI” perform simu-

lations of product inhibition and inactive enzyme interference, respectively.
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Basic model

The model dynamics for the model of two single-modification cycles described by Eq. 4.1

are described in GK GK dynamics.m . Used for Figs. 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9,

4.10, 4.11, 4.12, 4.13, and 4.15.

Multisite modification model

The model dynamics for the model of a single-modification cycle upstream of a double-

modification cycle described by Eq. 4.2 are described in GK MP dynamics.m. Used for

Fig. 4.16.

Scaffold model

The model dynamics for the model of scaffold-mediated signalling described by Eq. 4.3

are described in scaffold dynamics.m. Used for Fig. 4.17.

E.0.4 Chapter 5: A modular systems approach to understanding the inter-

action of adaptive, monostable, and bistable threshold processes

The different modules and combinations of modules are provided in folders according to

the key provided below. Model dynamics are supplied as function files with the name of

the module, followed by the postfix “ dynamics.m”, with model parameters supplied as

scripts with the postfix “ parameters.m”.

Adaptive modules

• AIR – Adaptive module, with incoherent feedforward look (Activator, Inhibitor, Re-

sponse)

• BEHAR – Adaptive module, with negative feedback

Threshold modules

• CAS – Cascade of post-translational modifications

• ZOU – Zero-order ultrasensitivity module (i.e. a Goldbeter-Koshland switch)
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• BISD – Bistable module, with positive feedback

• Z – Toy model of bistability (steady states are chosen parameters)

Input types

• EXP – Exponentially decaying pulse input signal

• STEP – Step change in input

• VI – Time varying input (linear gradient)

E.0.5 Chapter 6: Principles of dynamic regulation of the budding yeast

cell cycle

Model structure

Each of the five models investigated ((Barik et al., 2010) labelled “barik”, (Csikasz-Nagy

et al., 2006) (labelled “generic”),(Pfeuty and Kaneko, 2007) (labelled “kaneko”), (Sriram

et al., 2007) (labelled “sriram”), and (Battogtokh and Tyson, 2004) (labelled “chen”)) is

described by a combination of four files:

• model cc.m This function takes as input the cell state and returns a vector of time

derivatives of all species (as required by the MATLAB ODE solvers).

• events cc.m This function takes as input the state of the cell cycle and checks

whether key cell cycle events (i.e. budding and division) have occurred.

• reset rule.m This function takes as input the cell state at division and the mass

fraction to be taken by the new daughter cell, and returns initial conditions for simu-

lations of the daughter cell’s cell cycle.

• solver.m This function takes as input initial conditions, time interval of simula-

tion, and model parameters, and outputs the cell state at the final time (along with

information of any events that occurred during the simulation). This function makes

use of the above functions, and provides the common interface between all models

and the systematic model analysis functions (see below).
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Systematic model analysis

• ss sensitivity.m This function takes as input a cell cycle solver function (see

above) and returns the steady state sensitivities of cell division and budding sizes and

times of all parameters, as described in Section 6.3.

• step sensitivity.m This function takes as input a cell cycle solver function

(see above) and returns the dynamic sensitivities of cell division and budding sizes

and times of all parameters at all cell cycle times, as described in Section 6.4.

• temporal sensitivity.m This function takes as input a cell cycle solver func-

tion (see above) and returns the sensitivities of cell division and budding sizes and

times of all parameters to temporary changes in parameters at all cell cycle times, as

described in Section 6.4. Used to verify correctness of step sensitivity.m.
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