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ABSTRACT  

 

We have developed a computer algorithm to generate Quantitative Molecular Representations (QMR) of 

asphaltenes based on experimental data. First, we generate  molecular representations using a Monte 

Carlo method. For this purpose, we use an extensive set of aromatic and aliphatic building blocks, which 

are sampled randomly from the corresponding distribution and then linked together using a connection 

algorithm. The building blocks can be taken from a pre-defined inventory or generated during  run-time. 

Manually pre-fabricated blocks ensure model flexibility while automatically generated blocks  allow us 

to build large aromatic sheets. We allow for both archipelago and peri-condensed structures to be 

generated. Then, we use a non-linear optimisation procedure to select a small subset of molecules that 

gives the best match with experimental data. These experimental data consist of Molecular Weight 

(MW), elemental analysis and NMR spectroscopy, including both 1H and 13C data.  First, we validate the 

method by testing a number of single model compounds. Then we use a real asphaltene data set 

available in the literature. Different values of the MW were used as input parameter. We tested two 

specific values of the MW in detail, representing the peri-condensed and archipelago structure 

respectively: MW= 750 and MW = 4190. For both MWs, we generated 10 sets of 5000 samples 

each.The samples were then optimized with respect to the experimental objective function. Then we 

calculate the value of the objective function as an average over all the simulation runs. It turns out that 

the value of the objective function is significantly smaller for MW=750 than for MW=4190. This means 

that the lower Molecular Weight of 750 provides the best match with the experimental data.  As an 

example, one of the optimised QMR asphaltene structures generated was then used as input in 

Molecular Dynamics (MD) simulations to study the formation of nano-aggregates.  

KEYWORDS Asphaltene, Quantitative Molecular Representation, QMR, Molecular Dynamics 

simulation. 
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1. Introduction  
 

  The chemical complexity and diversity of asphaltenes make the analysis and modeling of their 

chemical structures very challenging. Quantitative Molecular Representations (QMRs) based on 

analytical data can be used to provide a visual representation of the asphaltenes. They can also be used 

to generate highly versatile kinetic and reactivity models1 and to calculate properties such as density, 

boiling point1 and solubility2.  Molecular Dynamics (MD) can be used along with these representations 

to study how asphaltenes associate and interact with solvents3 and potential inhibitors. The “average 

molecule” approach to interpret petroleum analytical data began in the early 1960s. This approach uses 

correlations that rely on 1H NMR spectroscopy data to calculate average properties, including 

aromaticity and degree of substitution.4 When many different molecules represent a petroleum fraction, 

their process chemistry and product properties can be modeled. More detailed representations have been 

created using Monte Carlo methods based on data from 1H NMR spectroscopy, elemental analysis, and 

Vapour Pressure Osmometry (VPO) for various asphaltenes and residues.1,5
  The number of molecules 

contained in each of these representations ranges from 12 to 10 000 molecules. These methods have 

been extended to use structural data from quantitative 13C NMR spectroscopy by Sheremata et al.6  The 

goal of this work was to generate a quantitative molecular representation of asphaltenes that is consistent 

with data from elemental analysis, 1H  and 13C  NMR spectroscopy, and VPO. The Sheremata6 method 

of construction followed the Monte Carlo approach of Klein and co-workers1,5 but incorporated 13C   

NMR data, a distribution of aromatic cluster size following the archipelago framework and both alkyl 

and thioether bridges.  Note that the Sheremata model has been designed to generate archipelago models, 

due to the limited possibilities to form bridges. Here, we have generalised the Sheremata model and 

created a more generic model by allowing not only alkyl and thioether bridges, but also arbitrary bridges, 

within chemical reason.  In our model, we can put what we need into the aliphatic building blocks. Our 

method includes a further extension of the Sheremata method, in the sense that we allow for 3-
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dimensional in addition to 2-dimensional asphaltene structures. Particularly in the case of larger 

structures, it is important to allow for the third dimension because of conformational entropy reasons.   

Next, we note the ongoing controversy regarding the molecular weight (MW) of asphaltenes. We refer 

to a comprehensive recent paper7 and references therein, framing the discussion between supporters of 

the archipelago (large MW) and pericondensed (small MW) model. E.g. high resolution mass 

spectroscopy8 and Fluorescence Depolarisation measurements9 support the pericondensed model 

(MW=500-1000), whereas Vapour Pressure Osmometry (VPO) measurements seem to support the 

archipelago model (MW=4000).6 In our model, both archipelago and pericondensed model are described 

by the same chemical logic diagram, so we are in a position to sample both with appropriate selection of 

sampling parameters and building blocks. We will compare both MW assumptions in our model and we 

will see that the pericondensed model gives significantly better comparison with the experimental 

information available. In Appendix A, we present the aromatic building blocks used in our model. In 

Appendix B, a list of the different atom types, as used in reference 6, is given.  

2. Methods 

2.1 Model description – Overview 

The model is based on the approach described 1,5 and further developed by Sheremata et al. 6 The first 

two papers describe a stochastic approach to converting a set of analytical data into molecular 

representations of petroleum heavy ends. Molecular structures are generated using a Monte Carlo 

technique according to a chemical logic diagram which is a way to describe the chemical structure of 

asphaltenes. At present, there are two widely adopted models for asphaltene structures: pericondensed 

and archipelago. The pericondensed model is based on a heavy polyaromatic core with attached aliphatic 

chains. The archipelago model assumes that asphaltenes are formed from small aromatic groups linked 

by aliphatic chains. The model presented here allows to generate both archipelago and pericondensed 

structures within the same approach using different sets of input parameters. 
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2.2 Chemical logic diagram 

According to the archipelago model, asphaltene structures are composed of relatively small unit sheets, 

each built from 8-10 aromatic rings and linked via alkyl chains. In accordance with this approach each 

asphaltene molecule is described in terms of the following attributes:  

1. number of unit sheets 

2. number of aromatic rings per unit sheet 

3. number of naphthenic rings per unit sheet 

4. number of alkyl chains attached to each unit sheet  

5. length of each alkyl chain 

 

The scheme in Figure 1 outlines the building blocks for constructing asphaltene molecules. Each 

attribute is associated with a probability distribution function (hereafter PDF). The PDF can be defined 

either as a set of tabulated values or in analytical form. It has been shown1 that the gamma distribution 

can be successfully used to approximate many kinds of distributions, so we will use the analytical form 

of the gamma distribution. The gamma distribution function is defined over the (0, +∞) range, while the 

attributes are defined over a finite range, and are integers. For this reason, one has to elaborate a 

technique to project the gamma distribution to a finite region and derive the corresponding Cumulative 

Distribution Function (hereafter CDF). Because the CDF for the gamma distribution can not be 

expressed in analytical form, a spline approximation technique is employed. The corresponding 

algorithms are described in detail below. 

Each attribute requires five parameters to define the CDF: minimum (min) and maximum max) 

values, average value (average), standard deviation (stddev) and spline step size step. The last 

parameter defines how accurately the CDF is represented. The smaller the step, the more accurate the 

representation is. For most of the attributes, a step size of 0.1 is recommended. 
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Figure 1. Archipelago chemical logic diagram 
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2.3 Asphaltene molecule generation 

Asphaltene molecule prototypes are generated in accordance with the chemical logic diagram. Prior to a 

detailed description of the entire process of sampling molecular structures, we are going to explain the 

concept of building blocks. 

Building blocks are relatively simple molecular structures which are then assembled into asphaltenes. 

There are two types of building blocks: aromatic sheets and aliphatic chains. Aromatic sheets have 

been extended with naphthenic rings, serving as aromatic core of a single unit. Aliphatic chains are 

attached to the aromatic core, thus forming a single unit. Both types of building blocks (aromatic sheets 

and aliphatic chains) have a Size attribute. In case of an aromatic sheet, the Size attribute stands for the 

number of benzene rings in the sheet while in case of aliphatic chains it denotes the length of the chain 

(note that this is not always the same as the number of carbon atoms).  

The aromatic building blocks currently available are listed in Appendix A. The aliphatic building blocks 

include the n-alkanes from 1 to 50 carbons, a number of branched alkanes and chains containing 

heteroatoms. The additional aliphatics are listed in Appendix A. 

In order to successfully simulate archipelago molecules, the model was extended with an algorithm 

generating large polyaromatic sheets with inclusion of nitrogen atoms. First, the algorithm builds a set of 

connected aromatic rings. Then some of the carbon atoms are converted to nitrogen. The number of 

nitrogen atoms in the sheet is randomly sampled according to a distribution function.These structures 

generated are used along with predefined aromatic building blocks to build asphaltene molecules. The 

demand for such an algorithm originates from the fact that with an increasing number of aromatic rings, 

the number of possible isomeric structures grows dramatically, thus making it difficult to pre-define 

each of them. 
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It should be noted that neither the heteroatoms (N,S,O,V,..) nor C and H,  are generated / sampled 

according to the gamma distribution. Instead the building blocks are sampled.  

Note that there are two possible approaches to construct asphaltene molecules: 

1.  select a subset of building blocks and then connect them 

2. generate a set of atoms according to their fractions and then connect the atoms. 

 

The most significant drawback of the second approach is that the variety of possible structures is limited 

(actually hardcoded into the source code). If one wanted to include a new chemical structure, it is 

necessary to modify the source code (ensuring that the changes are consistent with the existing 

algorithms) and recompile the application. In this case the end user will not be able to add new kinds of 

compounds. Sheremata6 uses the second approach, while we use the first one for flexibility. However, 

this means more work for the subsequent optimization procedure.  We attempted to improve the 

building block selection algorithm to make the selection depending on the amount of heteroatoms in the 

building block instead of random selection. However, this resulted in sampling structures formed from 

the same subset of the building block. The reason is that the elemental composition of, e.g., aliphatic 

building blocks, significantly differs from the average over the entire molecule supplied with objective 

parameters. Thus, some building blocks become too favorable for the selection algorithm. Due to the 

small amounts of heteroatoms, the distribution function has sharp and narrow peaks at particular 

building blocks and stays nearly zero for the other ones. Currently, the improved selection algorithm is 

tuned to assign little weight to building blocks due to hereroatoms. 
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2.4 Optimisation 

The goal of this work is to represent an asphaltene fraction with a set containing a minimum number of 

molecules that is consistent with the experimental data. With the procedure, a relatively large number of 

molecules are generated. Subsequently, nonlinear optimization is used to select the best set of molecules 

from this population. Sheremata [6] employed an L1, absolute value, objective function for the 

optimization: 
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The parameters used in this equation will be described below. We found that the properties of the L1 

function are not favorable for non-linear optimization. First, the gradient of the function does not depend 

on the proximity to the minimum, thus causing the algorithm to pass the point and leading to problems 

with convergence. Second, the gradient at the point where the objective function has its minimal value is 

not a continuous function anymore. 

For the reasons mentioned above we chose an L2 form of the penalty (or objective) function F, defined 

as follows: 
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Here xi is the mole fraction of each molecule, in,µ′  is the value of the property n from the molecule i 

referring to the mean calculated value of property n from the molecular representation.  nµ  is the 

experimentally determined value of property n, nσ is the calculated input error of property n. J is a 
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scaling factor, and a function of in,µ′ , required to keep the aromaticity within experimental error 

boundaries.6 The properties n are listed in Table 2. Numbers 1-7 are related to elemental properties, 

whereas 8-18 describe the NMR parameters. Note that the contribution of the error in the NMR 

parameters to the objective function is weighed by a factor of 1/11 (see equation 1), whereas the 

elemental properties are weighed by a factor of 1. Lowering the importance of the NMR parameters with 

respect to MW and elemental analysis is reasonable: the elemental compositions have a much smaller 

experimental error and are more reliable, while the NMR parameters strongly depend on the 

interpretation of the peaks in the NMR spectra. 

A sequential optimization scheme was used to select molecules from the Monte Carlo set. First, the 

objective function was evaluated for each of the molecules in the population. The molecule that gave the 

lowest value for the objective function was then selected. In the next step, all combinations between the 

selected molecule and all of the other molecules in the population were examined. For each pair of 

molecules, nonlinear optimisation was used to optimize the mole fractions for each molecule against the 

experimental data (see Equation 1). The pair with the lowest associated value of the objective function 

was then selected. The algorithm continued adding molecules into the representation until the objective 

function reached a constant value with a tolerance of 1% or maximum allowed size of the set is reached. 

The sequential addition of “well fitting” molecules to the representative set is at the heart of the method, 

and important to making CPU times required for the optimization process manageable. For a discussion 

on this topic, we refer to the extensive literature on Bayesian statistics.10 

 

3. Results 

In order to test the methodology, we will first give results for single model compounds. Subsequently, 

we consider mixtures. We  briefly discuss the problems associated with mixtures of 2 or more model 

compounds. Finally, we will use the data set used by Sheremata et al.6 to show that our model works 

well and is an improvement compared with the existing model. 6 
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3.1 Single compounds 

For the cases of benzene, 2-ethyl-anthracene, tetradecyl-benzene and dibenzo-thiophene, we used the 

calculated properties of the single model compounds. For all four cases, the correct molecular structures 

emerged from the simulation. The calculated properties and results are presented  in Table 1. 

Table 1 Calculated properties of single model compounds 

 benzene 2-ethyl-
anthracene 

tetradecyl- 
benzene 

dibenzo-
thiophene 

MolWt (g/mol) 78  206 274 184 

%C (wt %) 92.3 93.2 87.59 78.26 

%H (wt %) 7.7 6.8 12.41 4.35 

%N (wt %) 0.0 0.0 0.0 0.0 

%S (wt %) 0.0 0.0 0.0 17.39 

%O (wt %) 0.0 0.0 0.0 0.0 

%V (wt %) 0.0 0.0 0.0 0.0 

Aromatic C      

Q1  0.0 6.25 5.0 0.0 

Q2 0.0 25.00 0.0 33.33 

C1 0.0 37.50 0.0 33.33 

C2 100.0 18.75 25.0 33.33 

Aliphatic C      

(chain) CH2 0.0 0.0 45.0 0.0 

n-CH2  0.0 0.0 0.0 0.0 

o-CH2  0.0 6.25 20.0 0.0 

CH 0.0 0.0 0.0 0.0 

a-CH3 0.0 0.0 0.0 0.0 

b-CH3 0.0 0.0 0.0 0.0 

g-CH3 0.0 0.0 5.0 0.0 
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3.2 Mixtures of model compounds 

Note that the current QMR model has not been designed to predict the unique structures and relative 

concentrations of mixtures of small numbers of model compounds. Here we consider numbers of model 

compounds which are small in comparison with the number of compounds in a realistic asphaltene 

mixture. This can be explained as follows:  The "error" parameters associated with the objective 

function parameters should reflect the experimental standard deviation. Now imagine that one sets the 

error for the molecular weight (MW) to be small. As an example we take a binary mixture of 2-ethyl-

antracene and tetradecyl-benzene. Obviously, the compounds we would like to obtain, have different 

MW (in this case 206 and 274). If the error one sets in the MW is too low, then a small deviation in 

weight will result in a high deviation in the objective function, according to the definition of the penalty 

or objective function F, given in Equation (1) so these compounds are effectively excluded from the list. 

The "error" parameter is of particular importance when sampling mixtures. For this reason, it is not 

possible to reproduce an exact mixture of e.g. 2-ethyl-antracene and tetradecyl-benzene. For example, a 

mixture of 2-tetradecyl-antracene and ethyl-benzene has nearly the same average properties (most 

important difference is in the weight). There is a chance to produce a single compound which is closer to 

the objective parameters than the mixture of these two compounds. 
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3.3 Sheremata results 

In Table 2, we present the optimised asphaltene representations consisting of molecules from starting 

populations of 3000 and 4000 molecules. The calculated aromaticity and elemental compositions of the 

molecular representation matched the experimental values almost to within the range of experimental 

error.  The calculated molecular weight was slightly smaller than the MW found from the VPO 

experiments. We note that an error of at least 15% is normally associated with these VPO measurements 

[3], so that our calculated results are within the experimental error margin. We also note that VPO 

measurements are carried out under conditions when non-covalent association is likely.13 

Table 2 Comparison between experimental and calculated properties of the molecular representations 

Property Objective 
Function 

Index 

EXPERIMENT 
Calculated Properties 

5 of 3000 
molecules 

6 of 4000 
molecules 

Property Error %Error Property %Error Property %Error 

Mol Weight (g/mol) 1 4190 630 15.04 3802.11 9.26 3541.79 15.47 
% C (wt %) 2 81.4 1.6 1.97 81.09 0.38 81.21 0.23 
% H (wt %) 3 8.45 0.17 2.01 9.04 6.98 8.97 6.15 
% N (wt %) 4 1.17 0.02 1.71 1.16 0.85 1.16 0.85 
% S (wt %) 5 7.95 0.16 2.01 7.68 3.40 7.65 3.77 
% O (wt %) 6 1.03 0.02 1.94 1.01 1.94 1.01 1.94 
V (PPM) 7 877 18 2.05 0.01 14.03 0.01 14.03 
Total Aromaticity (% mol C) 50.1 3 5.99 45.59 9.00 46.54 7.11 
Q1 (% mol C) 8 10.4 3.6 34.62 12.26 17.88 12.03 15.67 
Q2 (% mol C) 9 17.6 3.3 18.75 14.52 17.50 14.98 14.89 
C1 (% mol C) 10 10.8 3.3 30.56 12.02 11.30 12.53 16.02 
C2 (% mol C) 11 11.3 2.3 20.35 6.78 40.00 7 38.05 
Total Aliphatic Content (% mol C) 49.9 3 6.01 54.41 9.04 53.46 7.13 
Other aliphatic (% molC) 12 17.7 4.6 25.99 37.43 111.47 36.49 106.16 
Total a-CH3 (% mol C) 13 6.6 0.4 6.06 0 100.00 0 100.00 
b-CH3 (% mol C) 14 1.3 0.2 15.38 0.2 84.62 0.16 87.69 
Chain CH2 (% mol C) 15 7.7 0.3 3.90 8.8 14.29 8.94 16.10 
Aliphatic CH (% mol C) 16 9.8 2.1 21.43 1.25 87.24 1.2 87.76 
Naphthenic CH2 (% mol 
C) 17 4.5 0.3 6.67 0.64 85.78 0.66 85.33 
g-CH3 (% mol C) 18 2.3 0.2 8.70 6.1 165.22 6.01 161.30 

Objective function total       97.03   94.94   
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Table 3 lists the molecular weights and the elemental compositions of the individual optimized 

molecules (5 out of 3000). The same data for 6 optimized molecules out of 4000 generated is presented 

in Table 4. Note that the overall error (objective function total) decreases with the total number of 

molecules increasing from 3000 to 4000.  We note that most of the experimental parameters unrelated to 

the NMR experiments were modeled to within experimental error. This is due to the fact that the 

contribution of the error in the NMR parameters to the objective function is weighed by a factor of 1/11 

(see equation 1). Lowering the importance of the NMR parameters is reasonable:  the elemental 

compositions have a much smaller experimental error and are more reliable, while the NMR parameters 

strongly depend on the interpretation of the peaks in the NMR spectra. 

Table 3: MW and elemental compostion of optimised molecules (5 out of 3000) 

Molecule mol% 
Mol 

weight, 
g/mol 

Elemental composition, wt% 

C H N S O V 
1 20.2 911 84.3 8.89 1.54 3.51 1.76 0 
2 9.554 4060 80.1 8.62 1.03 10.25 0 0 
3 4.045 997 79.44 9.93 4.21 6.42 0 0 
4 65.63 4821 80.4 9.11 0.87 8.63 1 0 
5 0.572 4525 75.85 8.04 1.55 12.73 0.71 1.13 

 

Table 4: MW and elemental composition of optimised molecules (6 out of 4000). 

Molecule mol% 
Mol 

weight, 
g/mol 

Elemental composition, wt% 

C H N S O V 
1 17.949 911 84.3 8.89 1.54 3.51 1.76 0 
2 7.554 997 79.44 9.93 4.21 6.42 0 0 
3 53.152 4821 80.4 9.11 0.87 8.63 1 0 
4 0.605 4525 75.85 8.04 1.55 12.73 0.71 1.13 
5 13.144 4135 81.26 7.96 0.34 10.06 0.39 0 
6 7.596 2233 81.68 9.09 0.63 7.17 1.43 0 

 

The optimized molecules are presented in Table 3 and Table 4. Note that there is significant overlap 

between the molecular representations between both cases. This lends credibility to the optimisation 

process.  

To examine the ability of molecular representations to fit the experimental data, independent 

populations of 3000 and 4000 molecules were created. Each population was optimized using the 
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sequential optimization approach. For each independent population, the objective function decreased as 

the number of molecules in the representation increased from one to five. This is shown in Table 5 and 

Figure 2. This means that a good quality representation requires four to six asphaltene molecules 

depending on the complexity of the structure. Please note that the difference between the values of the 

objective function for MW=750 and MW=1028 is not statistically significant. 

Table 5: Value of objective function for different number of optimised molecules 

Number of 
optimized 
molecules 

  Objective function 

MW=750 MW=1028 MW=2055 MW=4190 

1 6275.7 5349 582.48 347.24 
2 2789.9 2826.95 109.24 150.19 
3 90.88 245.35 101.5 100.8 
4 66.84 14.81 90.71 95.63 
5 17.14 6.75 77.72 95.18 
6 14.73 5.59 77.7 94.94 
7 13.77 5.59     
8 12.42 5.59     

 

Figure 2: Value of the objective function as a function of increasing number of  optimised molecules for different 
Molecular Weights. 
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Molecular Weight  

As mentioned above, there is a serious controversy in the literature regarding the Molecular Weight 

(MW) of aspahltenes.  The following experimental observations have been made in the recent literature:   

• Mass Spectrometric and Molecular diffusion methods show that the MW of asphaltenes is 

approximately 750  ± 200 amu. 11 

• Molecular Orbital Calculations combined with Optical Spectroscopy shows that Petroleum 

asphaltenes consist of Polycyclic Aromatic Hydrocarbons (PAHs)  mostly with 6-8 Fused 

Aromatic Rings (FAR). 12 

In order to investigate this controversy, we examined the sensitivity of the molecular representations to 

the molecular weight.  Two additional different target molecular weights were selected: half the 

molecular weight  as determined by VPO (2055 g/mol) and one-quarter (1028 g/mol). The data in Table 

6 shows a comparison between the calculated properties at different target molecular weights and the 

experimental data.  From Table 5, it can be observed that our method gives significantly smaller values 

for the objective function for MWs of 1028 and 750, when the number of optimised molecules is 4 or 

larger. This means that we obtain a more reliable representation for lower values of the MW. Note that 

this result is different from Sheremata6, and is due to the fact that our linkage algorithm allows for both 

archipelago and pericondensed structures to be generated. In fact, the optimal values for the Mol. 

Weight of 1028 and 750 g/mol are supportive of the values suggested by Mullins13 et al., associated with 

pericondensed structures. The details of the optimized molecules from Table 6  for MW=1028 are shown 

in Table 7. The total number of sampled compounds is 1000; only 5 molecules were left after 

optimization. Note that we did not consider further reductions in the target MW, such as MW = 514. It 

is not clear whether the Hirsch model14 would still work for such low molecular weights. For such 

substances one has to set the sampling parameters explicitly. Also, we need to consider how to take care 
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of vanadium for such low MW. Currently, the only building block which contains vanadium is 

porphyrine. Therefore porphyrine is required to reduce the objective function deviation due to the 

presence of V. However, porphyrine is a relatively heavy compound, especially when long aliphatic 

chains are attached. This leads to a larger deviation in the molecular weight. To solve the problem, we 

will have to either introduce smaller building blocks containing vanadium or set the V fraction to zero.   

 

Table 6: Calculated properties of Asphaltene representations of different target molecular weights 

Property Experimental 
Target molecular weight, g/mol 

4190 2055 1028 

Calculated MW (g/mol) 4190 3541.79 1733.66 913.67 
C (wt %) 81.4 81.21 80.79 81.25 
H (wt %) 8.45 8.97 9.12 8.5 
N (wt %) 1.17 1.16 1.17 1.17 
S (wt %) 7.95 7.65 7.9 8.05 
O (wt %) 1.03 1.01 1.02 1.03 
Aromacity (% mol C) 50.1 46.54 43.86 50.23 

 

Table 7: Calculated Elemental composition of the molecules in the asphaltene representation: MW=1028 

Molecule mol% 
Mol 

weight, 
g/mol 

Elemental composition, wt% 

C H N S O V 
1 30.54 1082 79.85 8.50 1.29 8.87 1.48 0 
2 22.95 1033 82.48 8.42 1.36 6.20 1.55 0 
3 20.48 1252 86.26 8.95 2.24 2.56 0 0 
4 13.39 240 80.00 6.67 0 13.33 0 0 
5 12.64 1206 80.60 8.79 0 10.61 0 0 

 

 

Table 8: Calculated Elemental composition of the molecules in the asphaltene representation: MW=750. The average 
MW for this set is 549 

 

Molecule mol% 
Mol 

weight
, g/mol 

Elemental composition, wt% 

C H N S O V 
1 45.29 597 84.42 7.87 2.35 5.36 0 0 

2 26.32 520 80.77 10 0 6.15 3.08 0 

3 22.78 436 77.06 8.26 0 14.68 0 0 

4 5.61 749 83.31 6.28 1.87 8.54 0 0 
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In order to estimate the ability of the model to reproduce results, we did a set of 10 simulations with the 

same parameters, assuming MW=750 and MW=4190. First, we generated 5000 molecules for each 

simulation, then removed the duplicates, and optimized the results using sequential optimization, to 

obtain a maximum of 6 optimised structures for each run. We calculated the value of the objective 

function and molecular weight for each run. Finally the average values for both parameters were 

calculated as an average over the 10 simulations. The results are presented in Tables 9 and 10. It turns 

out that the value of the objective function is 29 (+/-8) for MW=750 and 59 (+/- 11) for MW=4190. This 

means that the lower MW of 750 provides the better match with the experimental data.  Please note that 

for MW=4190, the average QMR MW is significantly lower than the experimental value. This is due to 

the fact that the NMR parameters force the molecules generated to be small. Please note that the 

simulations in Tables 6 and 9 were done for different sampling parameters and MW errors. Therefore 

the resulting values are also different. 

 

 

 

Table 9: Reproducibility results for MW=750 from 10 simulations: # mol = number of molecules generated, #mol no 
dups=  number of molecules after duplicates have been removed, # mol opt = number of molecules after optimization, 
Obj dev = value of objective function. At the bottom, the average over the 10 runs and standard deviation is given for 
both the deviation from objective function and the Molecular Weight. 

 #mol #mol no dups  #mol opt Obj dev Average MW  
1 5000 4996 4 39 915  
2 5000 4998 5 27 745  
3 5000 4998 4 32 549  
4 5000 4997 4 26 1003  
5 5000 5000 5 29 687  
6 5000 4997 6 36 875  
7 5000 4998 5 37 650  
8 5000 4999 5 31 859  
9 5000 4994 4 18 595  
10 5000 5000 5 14 675  
 AVG    29 (+/- 8) 755 (+/- 150)     
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Table 10: Reproducibility results for MW=4190 from 10 simulations. See Table 9 for details. 

 #mol #mol no dups  #mol opt Obj dev Average MW  
1 5000 5000 5 44 1664  
2 5000 5000 4 57 1766  
3 5000 5000 5 69 1644  
4 5000 5000 4 67 2048  
5 5000 4999 4 56 2188  
6 5000 5000 5 63 1549  
7 5000 5000 4 63 1936  
8 5000 5000 4 36 1925  
9 5000 5000 4 70 1874  
10 5000 5000 5 63 1571  
 AVG.    59 (+/- 11) 1817 (+/- 213)     
 

 

We collected the final optimal structures with the heighest weight fraction. These are shown in Figure 3 

- Figure 10. Overall, the model demonstrated a good reproducibility with respect to deviation function, 

average molecular weight and similarity of the resulting asphaltene structures. 
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Figure 3. Optimized structure run 1, MW=727, 45 wt %. 

 

 

Figure 4. Optimized structure run 3 MW=597, 45 %. This molecule will be used in the subsequent MD simulations. 
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Figure 5. Optimized structure run 4,  MW=1443, 41 wt%. 

 

 

Figure 6. Optimized structure run 5 MW=755, 56 wt %. 
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Figure 7. Optimized structure run 7 MW=747, 61 wt %. 

 

 

Figure 8. Optimized structure run 8 –MW=755, 34 wt % 
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Figure 9. Optimized structure run 9, MW=567, 33 wt%. 

 

 

 

Figure 10. Optimized structure run 10, MW=1027, 35 wt % 
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Correlation between objective parameters 

One of the problems which can be investigated with the model application is the relations between the 

objective parameters (correlation) and feasibility of experimental data. The idea of the exercise is to first 

generate a broad set of asphaltene structures, providing a good representation of the most generic set. 

Then we calculate the average values, correlation coefficients and limits of the objective parameters and 

compare them with the experiment. This will help to evaluate the reliability and reveal systematic errors 

and inconsistencies of the experimental data. A representative set of asphaltenes is generated by setting a 

very flat distribution (high STD value) of the sampling parameters. To ensure the distributions are 

uniform, the standard deviation was set to twice the average value. A summary of the sampling 

parameters for the representation is given in Table 11. 

Table 11. Sampling parameters for feasibility check 

 Min Max Avg Std 

Unit sheets per asphaltene molecule 1 20 10 20 

Aromatic rings per unit sheet 1 15 8 16 

Number of naphthenic rings per unit sheet 0 10 5 10 

Alkyl chain length 1 25 12 24 

Substitution of aromatic atoms with alkyl chains (%) 0 40 20 40 

Substitution of naphthenic atoms with alkyl chains (%) 0 50 25 50 

 

The total number of asphaltene molecules generated was 100000. The results of the data processing are 

given in Table 12 and Table 13. We found a strong correlation between: 

• Molecular weight and number of units (0.96) 

• Q2 (see Appx. C) and number of aromatic rings per unit (0.73) 

• gamma-CH3 and the number of chains per unit (0.78) 

• naphthenic CH2 and number of naphthenic rings per unit (0.78) 
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This list allows us to state the following: 

1. The asphaltene MW is mostly controlled by the number of units the molecule is composed of. At the 

same time, the size of the units is about the same. 

2. The number of aromatic rings per unit is driven by the amount of bridgehead aromatic quaternary 

carbon (Q2), which is directly available from NMR experiments 

Table 13 contains averages, standard deviation, min/max values and expected ranges for all objective 

and sampling parameters. With some caution (one has to keep in mind that adding essential fractions of 

heteroatoms will shift/scale most of the values) this table may be used as a reference to validate 

experimental data. 

 

Having obtained representative structures for the asphaltene experimental data, it is now possible to use 

these structures in Molecular Dynamics and Monte Carlo simulations to measure physical properties 

from ensemble averages.  

In the following section, we will carry out Molecular Dynamics (MD) simulations for the optimized 

QMR structures generated.
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Table 12. Correlation coefficients 

 

Units Links 
Aromatic 

rings 

Naphthenic 

rings 
Chains 

Naphthenic 

rings/Unit 

Naphthenic rings 

/ Aromatic rings 

Aromatic 

rings / Unit 

Chains / 

Units 

Mol Weight 0.96 0.96 0.97 0.86 0.88 0.09 -0.08 0.13 0.14 

w%C -0.09 -0.09 0.01 -0.09 -0.20 -0.05 -0.21 0.42 -0.28 

w%H 0.19 0.19 0.08 0.25 0.39 0.26 0.39 -0.40 0.53 

w%N -0.08 -0.08 -0.12 -0.09 -0.11 -0.10 0.01 -0.25 -0.14 

w%S 0.05 0.05 0.02 0.03 0.10 -0.04 -0.01 -0.11 0.14 

w%O -0.04 -0.04 -0.06 -0.05 -0.06 -0.05 -0.01 -0.12 -0.08 

w%V 0.00 0.00 -0.02 -0.01 -0.02 -0.02 -0.01 -0.05 -0.04 

Ar Tot% -0.24 -0.24 -0.15 -0.36 -0.41 -0.44 -0.51 0.29 -0.51 

Ar Q1% 0.07 0.07 -0.02 0.28 0.02 0.67 0.77 -0.33 -0.03 

Ar Q2% -0.08 -0.08 0.09 -0.16 -0.18 -0.24 -0.54 0.73 -0.25 

Ar C1% -0.20 -0.20 -0.11 -0.36 -0.32 -0.54 -0.59 0.31 -0.38 

Ar C2% -0.22 -0.22 -0.24 -0.32 -0.29 -0.43 -0.28 -0.28 -0.32 

Al Tot% 0.24 0.24 0.15 0.36 0.41 0.44 0.51 -0.29 0.51 

Al aCH3% 0.05 0.05 0.03 0.03 0.20 -0.01 0.02 -0.06 0.37 

Al bCH3% -0.01 -0.01 -0.02 -0.01 0.14 0.01 0.03 -0.03 0.33 

Al gCH3% 0.03 0.03 0.03 0.05 0.40 0.04 0.03 -0.01 0.78 

Al CH2% 0.25 0.25 0.19 0.19 0.37 -0.01 -0.02 -0.10 0.41 

Naph CH2% -0.09 -0.09 -0.12 0.18 -0.18 0.67 0.78 -0.20 -0.24 

Al CH2o% 0.19 0.19 0.09 0.33 0.31 0.51 0.60 -0.32 0.40 

Al CH% 0.19 0.19 0.10 0.39 0.29 0.47 0.49 -0.22 0.33 
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Table 13. Objective parameters feasibility regions 

 MIN MAX STD AVG-STD AVG AVG+STD 

Units 1 20 5.17 1.55 6.71 11.88 

Links 0 19 5.17 0.55 5.71 10.88 

Aromatic rings 1 166 29.67 6.66 36.32 65.99 

Aromatic rings/Unit 1 15 2.13 3.28 5.41 7.55 

Naphthenic rings 0 60 8.50 0.62 9.12 17.62 

Naphthenic rings/Unit 0 10 1.03 0.33 1.36 2.38 

Naphthenic rings/Aromatic rings 0 3 0.29 0.00 0.29 0.58 

Chains 0 57 7.01 0.08 7.09 14.10 

Chains/Units 0 17 0.94 0.12 1.06 2.00 

Atoms 6 1255 232.05 49.34 281.39 513.43 

Mol Weight 78 16984 3118.20 656.22 3774.42 6892.63 

w%C 64 96.89 2.62 87.05 89.68 92.30 

w%H 3.11 13.47 1.39 7.04 8.43 9.82 

w%N 0 14.93 1.17 0 0.45 1.62 

w%S 0 21.62 1.54 0 1.20 2.75 

w%O 0 9.52 0.48 0 0.13 0.60 

w%V 0 13.6 0.61 0 0.11 0.73 

Ar Tot% 7.5 100 15.03 40.76 55.79 70.83 

Ar Q1% 0 33.33 4.30 6.56 10.86 15.16 

Ar Q2% 0 61.54 7.89 13.69 21.57 29.46 

Ar C1% 0 60 7.55 7.26 14.81 22.35 

Ar C2% 0 100 8.27 0.29 8.56 16.82 

Al Tot% 0 92.5 15.03 29.17 44.21 59.24 

Al aCH3% 0 25 0.91 0 0.84 1.75 

Al bCH3% 0 20 0.64 0 0.36 0.99 

Al gCH3% 0 16.67 1.34 0.44 1.78 3.12 

Al CH2% 0 64.52 9.70 5.79 15.49 25.19 

Naph CH2% 0 33.33 4.08 0.34 4.42 8.50 

Al CH2o% 0 54.55 6.38 13.01 19.40 25.78 

Al CH% 0 16.67 1.57 0.35 1.92 3.49 
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4. Molecular Dynamics Simulation of QMR Generated Asphaltene 
Structures. 

 

In recent years there has been an increasing effort to understand asphaltene aggregation on a molecular level using 

molecular simulation15,16,17,18,19,20. The Quantitative Molecular Representation (QMR) method is a vital tool for 

generating molecular structures for asphaltene simulation.6  It is only possible to conduct simulations on a small 

number of molecular structures due to the large amount of processor time required for each simulation. Therefore 

it is essential that we represent the full spectrum of asphaltenes by the smallest possible number of representative 

molecules. As shown in the previous sections, the QMR method provides a good  method of achieving this. A full 

study for a set of 3 molecules generated by QMR has been conducted by Headen et al22. Here we provide an 

example simulation of one molecule. The molecule chosen is asphaltene 2 of simulation run 3, its chemical 

structure is given in Figure 4. We carry out Molecular Dynamics simulations of 6 asphaltene molecules in toluene 

and heptanes. From these simulations, we obtain the distance-time relationship over 60 ns between asphaltene 

pairs in order to reveal the timescale of aggregation. We also obtain the asphaltene-asphaltene g(r) and average 

angle between the aromatic planes as a function of distance to directly detect the structure of asphaltene 

aggregation in dimers and trimers – this can indicate the structure of larger asphaltene nanoaggregates. Lastly we 

use the asphaltene-asphaltene g(r) to calculate the asphaltene-asphaltene potential of mean force (PMF).  
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4.1 Simulation Methods. 
 

 

Classical molecular dynamics uses well defined classical intra- and inter-molecular potentials to calculate 

interatomic forces. The system is allowed to evolve over time by stepwise integration of the equations of motion. 

It is important that the step-size be smaller than the time period of the fastest motion in the simulation. Using this 

method it is possible to simulate systems containing ~10000 atoms over a few nanoseconds on ~4 processor 

nodes in reasonable times. For this study the GROMACS MD code23 with the OPLS- AA force field 

parameters24,25 was used. The OPLS force field has been shown to work well for aromatic liquids in reproducing 

experimental data25. Rigid bonds were used to remove the fastest moving molecular motions, a time step of 2fs 

was used for all simulations.  Periodic boundary conditions with the minimum image convention were used so 

that a small box of ~10000 atoms can represent the bulk. Long range coulomb intermolecular forces are treated 

using the Particle-Mesh Ewald (PME)26 technique which allows the use of Fast-Fourier Transforms (FFT). Before 

the simulation cell was built, explicit hydrogen atoms where added to the asphaltene structure generated by the 

QMR algorithm followed by a geometry optimization using ArgusLab27. The 3-dimensional structure of the 

asphaltene is shown in Figure 11. Please note that the structure of the asphaltene molecule is sterically 

constrained; the aromatic core is curved out of shape due to a methyl group on the aromatic core pointing back 

towards an aromatic hydrogen. This emphasizes the need for allowing 3-d configurations. 
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Figure 11: 3-dimensional structure of asphaltene 2 from simulation 3 used from molecular dynamics 
simulations. Aromatic plane is curved out of shape due to methyl group pointing back towards adjacent 
aromatic ring. 

 

 

We carried out two set of simulations of 6 asphaltene molecules in either toluene or heptane at 7wt% over 20ns. 

Analysis of the trajectory of the full NVT simulation allows the calculation of the asphaltene-asphaltene radial 

distribution function, g(r). The g(r) is defined as ratio of the local density of atoms/molecules ρ(r) at distance r 

from an atom at the origin to the average density of atoms in the bulk, ρ: 

  (3) 

 

In this case r is the distance between a single atom defined on each asphaltene molecule to represent its centre. 

The cumulative coordination number can be calculated from the g(r) by integration over spherical shells of 

thickness dr: 

  (4) 
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In essence this is the number of asphaltene molecules within the sphere radius r centered on the original 

molecules. Another useful quantity that may be calculated from the g(r) is the Potential of Mean Force (PMF). In 

the low density limit, the pair potential u(r) is given by: 

  (5) 

This concept can be extended to dense fluids by defining the potential of mean force W as28: 

  (6) 

The PMF is equivalent to the Helmholtz free energy (plus a constant). We can therefore calculate the free energy 

of dimer formation by taking the difference of the potential of mean force at maximum separation and at 

equilibrium separation (where the PMF is a minimum).  

For the simulations, the system was created by periodically arranging the asphaltene molecules in a box of the 

appropriate size (dependent on how many solvent molecules needed to be added to make 7wt% asphaltene). A 

periodic arrangement of solvent molecules was then added with any molecules overlapping the asphaltene 

molecules being removed. The system was initially equilibrated by a 100ps NVT simulation, followed by a 500ps 

(NpT)  simulation for the system to reach equilibrium density. Sampling was conducted during the main 60ns 

(NVT)simulation. Here (NpT) and (NVT) indicate the isothermal-isobaric and constant volume ensembles 

respectively. The temperature was maintained at 300K using the Nose-Hoover thermostat, the Parrinello-Rahman 

barostat was used for the NPT equilibration. 
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4.2 Simulation Results and Discussion 
 

Over the course of the simulation, the atomic positions are recorded every 4 ps. From this the distance 

between the centre of mass of the asphaltene molecules over the course of the simulation can be obtained. Figure 

12 and Figure 13 show the distance between pairs formed between 1 asphaltene and the 5 others in the simulation 

box over a 60ns simulation, in toluene and heptane respectively. For all distance/time plots a running average 

every 500 ps is taken to reduce the scatter in the data. 

 

Figure 12: Distance between centre of mass of one asphaltene with 5 others in the simulation box 
during 60ns NVT simulation in toluene. 

 

 

 

Figure 13: Distance between centre of mass of one asphaltene with 5 others in the simulation box 
during 60ns NVT simulation in toluene. 
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The simulations in both toluene and heptane show that asphaltene dimers/trimers form, split apart and re-

aggregate with other asphaltenes. There are no dimers living longer than roughly 10ns. In an attempt to quantify 

the aggregation time of asphaltene dimers, we have defined a critical aggregation distance of 1nm and a critical 

aggregation time of 0.5 ns. When the distance between an asphaltene pair is below this critical aggregation 

distance for longer than the critical aggregation time, this is identified as an aggregation event. The length of time 

of each aggregation event is counted and then averaged over all the aggregation events yielding the average 

aggregation time. Table 14 gives the average aggregation times and number of aggregation events for simulations 

in toluene and heptane. Similar average aggregation times are seen in both toluene and heptane. There is a slight 

increase in the number of aggregation events in heptane indicating slightly enhanced aggregation. 

 

Table 14: Average aggregation time and number of aggregation events for asphaltene pairs during 60ns 

simulations in toluene and heptane. 

 Heptane  Toluene  

Average aggregation time (ps)  1129  1082 ± 128 

Number of aggregation events 
over 60 ns  

25 22  

 

 Figure 14 is a snapshot of the simulation in heptane showing the formation an asphaltene cluster at ~32ns. Here 

loose rather than rigid stacking of the aromatic cores is observed, i.e. over the course of the trajectory, a dimer 

pair will change conformations around each other continually. Although parallel stacking of the asphaltene 

aromatic cores is observed, this is not the only mode of aggregation: alkyl-alkyl, alkyl-aromatic and T-shaped 

aggregates are also observed. 
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Figure 14: Snapshot of MD simulation of 6 asphaltene molecules in heptane, showing formation of an 
asphaltene cluster at approximately 32ns. Heptane molecules are not shown for clarity. 

 

 

Figure 15: Asphaltene-asphaltene g(r) (solid line) and N(r) (dashed line) for simulations in toluene 
(grey) and heptane (black) 
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The asphaltene-asphaltene g(r) for simulations in toluene and heptane is shown in Figure 15. Interestingly, the 

g(r) shows 2 distinct peaks in heptane at ~0.60 and 0.78nm. The small peak at 0.6nm is most probably from a 

conformation of parallel stacked aromatic cores; this is not seen in toluene. This conclusion is supported by the 

average angle between the aromatic planes at the smallest distances between asphaltene centre of mass given in 

Figure 16. At ~0.6nm the average cosine of the angle between the aromatic planes is close to 1 in heptane, 

indicating mostly parallel arrangement of the aromatic planes. In toluene, the average cosine of the angle between 

the aromatic planes is ~0.65. Because the average value is larger than 0.5, we can argue that there is some 

preference for a parallel arrangement, but considerably less so than in heptane. The broader second peak centred 

at ~0.78nm in the g(r) is common to both simulations in toluene and heptane. At this distance there is little 

orientational preference for the aromatic planes. Therefore T-shaped and offset stacked dimer conformations are 

likely. The cumulative aggregation number, N(r), demonstrates that although there are distinct peaks in the g(r) at 

low r, these only correspond to a small number of molecules. Indeed it is only at 1.5nm separation that the 

average number of asphaltene molecules reaches one. 

 

 

 

Figure 16: Average cosine of the angle between aromatic planes as dunction of distance between 
asphaltene centre of mass for simulations in toluene (filled circle) and heptane (cross) 
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The potential of mean force between asphaltene molecules may be calculated from the asphaltene-asphaltene g(r) 

using equation 6.  This is shown in Figure 17. It is evident from the potential of mean force that the free energy of 

dimer formation between the asphaltene molecules is small, at most ~1kT. This is smaller than has been seen for 

other asphaltene molecules of this size generated by the QMR method22. A probable reason for this is that this 

molecule has a sterically constrained aromatic core, forcing it into a curved conformation and thus making it more 

difficult for asphaltene molecules to stack effectively. 

 

 

Figure 17: Asphaltene-asphaltene Potential of Mean force for simulations in toluene (grey) and heptane 
(black) 
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5. Conclusions and Discussion 

We have created an improved computer algorithm to generate molecular representations of asphaltenes. 

Three-dimensional molecular representations were generated using a Monte Carlo method, which 

constructs asphaltene molecules from aromatic and aliphatic building blocks.  The building blocks were 

sampled randomly and then linked together using a connection algorithm. We use a non-linear 

optimisation procedure to select a subset of molecules that gives the best match with experimental data. 

These experimental data consist of molecular weight, elemental analysis and NMR spectroscopy, 

including both 1H and  13C data.  First, we validate the method by testing a number of single model 

compounds, for which we have accurate input data available. For these small compounds, we are able to 

predict the structures correctly. Subsequently, we used a data set available in the literature for a real 

Athabasca asphaltene sample, containing a mixture of a very large number of asphaltene compounds. 

We generated sets of 3000 and 4000 samples, which were then optimized with respect to the 

experimental penalty or objective function. The optimization procedure shows that a set of 5 – 6 

asphaltene structures is sufficient to represent the experimental data. The method gives a significantly 

better match with the experimental data for a MW of 750 than for MW=4190, as measured by the value 

of the objective function averaged over 10 simulation runs. Note that this result is different from 

Sheremata,6 and due to the fact that our linkage algorithm allows for both archipelago and 

pericondensed structures to be generated. The optimal value for the MW of 750 g/mol is supportive of 

the values recently suggested by Mullins et al.9 associated with pericondensed asphaltene structures. 

Finally, the QMR structures generated from bulk asphaltene samples or deposits can be directly used to 

calculate the interaction between asphaltene molecules using MD simulations. As an example, we have 

done this for one of the optimized QMR structures in the final section of this paper. For a more 

extensive MD simulation study using QMR structures, we refer to ref. 22. 
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Appendix A: Building Blocks 

Here we present the predefined aromatic building blocks used in our model.  

 

 

 

 

 



 41

                                                                                                                                                                         

 Appendix B: Atom types 

The atom types are defined according to Sheremata6 : 

Atom type Description 

Aromatic 

Q1 Alkyl-substituted aromatic quaternary carbon 

Q2 Bridgehead aromatic quaternary carbon 

C1 Aromatic CH beside a Q2 carbon 

C2 All aromatic CH that are not a C1 carbon 

Aliphatic 

CH2 Chain CH2 

n-CH2 Naphthenic CH2 

o-CH2 Other aliphatic CH2 

CH Aliphatic CH 

a-CH3 α-CH3  

b-CH3 β-CH3 

g-CH3 γ-CH3 
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