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ABSTRACT

We have developed a computer algorithm to gen€asmtitative Molecular Representations (QMR) of
asphaltenes based on experimental data. First,ewergte molecular representations using a Monte
Carlo method. For this purpose, we use an extessivef aromatic and aliphatic building blocks, evhi

are sampled randomly from the corresponding distioln and then linked together using a connection
algorithm. The building blocks can be taken fropre-defined inventory or generated during run-time
Manually pre-fabricated blocks ensure model fldkipiwvhile automatically generated blocks allow us
to build large aromatic sheets. We allow for botbhgelago and peri-condensed structures to be
generated. Then, we use a non-linear optimisationgaure to select a small subset of molecules that
gives the best match with experimental data. Theegeerimental data consist of Molecular Weight
(MW), elemental analysis and NMR spectroscopyuditig both'H and**C data. First, we validate the
method by testing a number of single model compsurithen we use a real asphaltene data set
available in the literature. Different values oetMW were used as input parameter. We tested two
specific values of the MW in detail, representirtge tperi-condensed and archipelago structure
respectively: MW= 750 and MW = 4190. For both MWg generated 10 sets of 5000 samples
each.The samples were then optimized with respetid experimental objective function. Then we
calculate the value of the objective function asaaerage over all the simulation runs. It turns that

the value of the objective function is significgngimaller for MW=750 than for MW=4190. This means
that the lower Molecular Weight of 750 provides test match with the experimental data. As an
example, one of the optimised QMR asphaltene sirest generated was then used as input in

Molecular Dynamics (MD) simulations to study thenfiation of nano-aggregates.

KEYWORDS Asphaltene, Quantitative Molecular Repregagon, QMR, Molecular Dynamics

simulation.



1. Introduction

The chemical complexity and diversity of asphade make the analysis and modeling of their
chemical structures very challenging. Quantitativielecular Representations (QMRs) based on
analytical data can be used to provide a visuakesgmtation of the asphaltenes. They can alsodx us
to generate highly versatile kinetic and reactivitpdel$ and to calculate properties such as density,
boiling point and solubility. Molecular Dynamics (MD) can be used along witese representations
to study how asphaltenes associate and interaht seivent3 and potential inhibitors. The “average
molecule” approach to interpret petroleum analytiza began in the early 1960%is approach uses
correlations that rely ofH NMR spectroscopy data to calculate average pitiegerincluding
aromaticity and degree of substitutibivhen many different molecules represent a petroléaction,
their process chemistry and product propertiesbeamodeled. More detailed representations have been
created using Monte Carlo methods based on data'fftoNMR spectroscopy, elemental analysis, and
Vapour Pressure Osmometry (VPO) for various asphett and residués. The number of molecules
contained in each of these representations ramgas I2 to 10 000 molecules. These methods have
been extended to use structural data from quamatsiC NMR spectroscopy by Sherematal.’ The
goal of this work was to generate a quantitativéemidar representation of asphaltenes that is stargi
with data from elemental analysf$) and**C NMR spectroscopy, and VPO. The Sherefhatethod
of construction followed the Monte Carlo approadhktein and co-workers® but incorporated®C
NMR data, a distribution of aromatic cluster sibldwing the archipelago framewodnd both alkyl
and thioether bridgedlote that the Sheremata model has been desigrgEh&vate archipelago models,
due to the limited possibilities to form bridgeserd, we have generalised the Sheremata model and
created a more generic model by allowing not otdyland thioether bridges, but also arbitrary bed,
within chemical reason. In our model, we can phaiwe need into the aliphatic building blocks. Our

method includes a further extension of the Sheranma¢thod, in the sense that we allow for 3-



dimensional in addition to 2-dimensional asphaltesteictures. Particularly in the case of larger

structures, it is important to allow for the thaotmension because of conformational entropy reasons

Next, we note the ongoing controversy regardingniséecular weight (MW) of asphaltenes. We refer
to a comprehensive recent papand references therein, framing the discussiowesst supporters of
the archipelago (large MW) and pericondensed (smvll/) model. E.g. high resolution mass
spectroscoply and Fluorescence Depolarisation measuremestpport the pericondensed model
(MW=500-1000), whereas Vapour Pressure OsmometBQ)Nmeasurements seem to support the
archipelago model (MW=40008)In our model, both archipelago and pericondensedeairare described
by the same chemical logic diagram, so we aregaosition to sample both with appropriate selectbn
sampling parameters and building blocks. We withpare both MW assumptions in our model and we
will see that the pericondensed model gives sigaifily better comparison with the experimental
information available. In Appendix A, we presené thromatic building blocks used in our model. In

Appendix B, a list of the different atom typesuased in reference 6, is given.

2. Methods
2.1 Model description — Overview

The model is based on the approach descriBead further developed by Sheremetal. ° The first
two papers describe a stochastic approach to ciomyea set of analytical data into molecular
representations of petroleum heavy ends. Molecsiiarctures are generated using a Monte Carlo

technique according to a chemical logic diagnahich is a way to describe the chemical structfre

asphaltenes. At present, there are two widely adbptodels for asphaltene structures: pericondensed
and archipelago. The pericondensed model is basecheavy polyaromatic core with attached aliphatic
chains. The archipelago model assumes that aspbaltge formed from small aromatic groups linked
by aliphatic chains. The model presented here alltwgenerate both archipelago and pericondensed

structures within the same approach using diffesetg of input parameters.



2.2 Chemical logic diagram

According to the archipelago model, asphaltenecgiras are composed of relatively small unit sheets
each built from 8-10 aromatic rings and linked ailyl chains. In accordance with this approach each

asphaltene molecule is described in terms of thewong attributes

1. number of unit sheets

2. number of aromatic rings per unit sheet

3. number of naphthenic rings per unit sheet

4. number of alkyl chains attached to each unit sheet

5. length of each alkyl chain

The scheme in Figure 1 outlines the building bloéss constructing asphaltene molecules. Each
attribute is associated with a probability disttibn function (hereafter PDF). The PDF can be defin
either as a set of tabulated values or in analytizan. It has been showrhat the gamma distribution
can be successfully used to approximate many lohdsstributions, so we will use the analyticalrfor

of the gamma distribution. The gamma distributiondtion is defined over the (O} range, while the
attributes are defined over a finite range, andiaregers. For this reason, one has to elaborate a
technique to project the gamma distribution torgtdi region and derive the corresponding Cumulative
Distribution Function (hereafter CDF). Because tBBF for the gamma distribution can not be
expressed in analytical form, a spline approxinmatiechnique is employed. The corresponding

algorithms are described in detail below.

Each attribute requires five parameters to defiee@DF: minimum rfiin) and maximunmax)
values, average valueaerage, standard deviations{ddev) and spline step sizetep. The last
parameter defines how accurately the CDF is reptede The smaller the step, the more accurate the

representation is. For most of the attributesep size of 0.1 is recommended.
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2.3 Asphaltene molecule generation

Asphaltene molecule prototypes are generated iordance with the chemical logic diagram. Prior to a
detailed description of the entire process of sargpinolecular structures, we are going to explam t

concept obuilding blocks.

Building blocks are relatively simple molecularustiures which are then assembled into asphaltenes.
There are two types of building blocka:omatic sheetsandaliphatic chains. Aromatic sheets have
been extended with naphthenic rings, serving amatio core of a single unit. Aliphatic chains are
attached to the aromatic core, thus forming a singit. Both types of building blocks (aromatic stse
and aliphatic chains) haveSazeattribute. In case of an aromatic sheet, the &itzéoute stands for the
number of benzene rings in the sheet while in cdsdiphatic chains it denotes the length of thaich

(note that this is not always the same as the nuoflEarbon atoms).

The aromatic building blocks currently available &sted in Appendix A. The aliphatic building bksc
include then-alkanes from 1 to 50 carbons, a number of brancilkdnes and chains containing

heteroatoms. The additional aliphatics are listedppendix A.

In order to successfully simulate archipelago malex; the model was extended with an algorithm
generating large polyaromatic sheets with inclugibnitrogen atoms. First, the algorithm buildea
connected aromatic rings. Then some of the carlbemsaare converted to nitrogen. The number of
nitrogen atoms in the sheet is randomly sampledrdarg to a distribution function.These structures
generated are used along with predefined aromatidibg blocks to build asphaltene molecules. The
demand for such an algorithm originates from tto¢ flaat with an increasing number of aromatic rjings
the number of possible isomeric structures grovesndtically, thus making it difficult to pre-define

each of them.



It should be noted that neither the heteroatom$&,®lV,..) nor C and H, are generated / sampled
according to the gamma distribution. Instead the ildlmg blocks are sampled.

Note that there are two possible approaches tarmhgsphaltene molecules:
1. select a subset of building blocks and then canihecn

2. generate a set of atoms according to their frastéord then connect the atoms.

The most significant drawback of the second apgrasthat the variety of possible structures igtkah
(actually hardcoded into the source code). If orated to include a new chemical structure, it is
necessary to modify the source code (ensuring tiatchanges are consistent with the existing
algorithms) and recompile the application. In tase the end user will not be able to add new kifds
compounds. Sheremétases the second approach, while we use the fiestfar flexibility. However,
this means more work for the subsequent optimimapoocedure. We attempted to improve the
building block selection algorithm to make the séteh depending on the amount of heteroatoms in the
building block instead of random selection. Howevhbis resulted in sampling structures formed from
the same subset of the building block. The reasahat the elemental composition of, e.g., alighati
building blocks, significantly differs from the aage over the entire molecule supplied with obyecti
parameters. Thus, some building blocks become daworéble for the selection algorithm. Due to the
small amounts of heteroatoms, the distribution fiamc has sharp and narrow peaks at particular
building blocks and stays nearly zero for the othaes. Currently, the improved selection algoriikm

tuned to assign little weight to building blocksediw hereroatoms.



2.4 Optimisation

The goal of this work is to represent an asphalfeastion with a set containing a minimum number of
molecules that is consistent with the experimeddgh. With the procedure, a relatively large nundser
molecules are generated. Subsequently, nonlingamniaption is used to select the best set of madéscu
from this population. Sheremata [6] employed lahy absolute value, objective function for the

optimization:
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The parameters used in this equation will be deedrbelow. We found that the properties of ltlie
function are not favorable for non-linear optimieat First, the gradient of the function does nepehd

on the proximity to the minimum, thus causing tkgpathm to pass the point and leading to problems
with convergence. Second, the gradient at the pdietre the objective function has its minimal vakie

not a continuous function anymore.

For the reasons mentioned above we chode2dorm of the penalty (or objective) functiéh) defined

as follows:
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Herex; is the mole fraction of each moleculg,; is the value of the propertyfrom the molecule
referring to the mean calculated value of propertifom the molecular representationy, is the

experimentally determined value of propenty o, is the calculated input error of propertyJis a



scaling factor, and a function ofz,;, required to keep the aromaticity within experitarerror

boundarie$. The propertie1 are listed in Table 2. Numbers 1-7 are relate@lémental properties,
whereas 8-18 describe the NMR parameters. Note theatcontribution of the error in the NMR
parameters to the objective function is weighedabjactor of 1/11 (see equation 1), whereas the
elemental properties are weighed by a factor abfvering the importance of the NMR parameters with
respect to MW and elemental analysis is reasonéideelemental compositions have a much smaller
experimental error and are more reliable, while tHBIR parameters strongly depend on the

interpretation of the peaks in the NMR spectra.

A sequential optimization scheme was used to sehtecules from the Monte Carlo set. First, the
objective function was evaluated for each of théemdes in the population. The molecule that géree t
lowest value for the objective function was thelested. In the next step, all combinations betwiten
selected molecule and all of the other moleculethen population were examined. For each pair of
molecules, nonlinear optimisation was used to agtnthe mole fractions for each molecule against th
experimental data (see Equation 1). The pair wighlowest associated value of the objective functio
was then selected. The algorithm continued addialpeules into the representation until the objectiv
function reached a constant value with a tolerarid®o or maximum allowed size of the set is reached
The sequential addition of “well fitting” moleculés the representative set is at the heart of taéhaoa,

and important to making CPU times required fordp&mization process manageable. For a discussion

on this topic, we refer to the extensive literatomeBayesian statisticS.

3. Results

In order to test the methodology, we will first givesults for single model compounds. Subsequently,
we consider mixtures. We briefly discuss the peots associated with mixtures of 2 or more model
compounds. Finally, we will use the data set use@herematat al.® to show that our model works

well and is an improvement compared with the exgsthodel®
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3.1 Single compounds
For the cases of benzene, 2-ethyl-anthracenedéslygbenzene and dibenzo-thiophene, we used the
calculated properties of the single model compouRds all four cases, the correct molecular stmasu

emerged from the simulation. The calculated progednd results are presented in Table 1.

Table 1 Calculated properties of single model compmds

benzene 2-ethyl- tetradecyl- dibenzo-
anthracene benzene thiophene

MolWt (g/mol) 78 206 274 184
%C (wt %) 92.3 93.2 87.59 78.26
%H (wt %) 7.7 6.8 12.41 4.35
%N (wt %) 0.0 0.0 0.0 0.0
%S (wt %) 0.0 0.0 0.0 17.39
%0 (wt %) 0.0 0.0 0.0 0.0
%V (wt %) 0.0 0.0 0.0 0.0
Aromatic C
Q1 0.0 6.25 5.0 0.0
Q2 0.0 25.00 0.0 33.33
C1 0.0 37.50 0.0 33.33
C2 100.0 18.75 25.0 33.33
Aliphatic C
(chain) CH 0.0 0.0 45.0 0.0
n-CH2 0.0 0.0 0.0 0.0
0-CH2 0.0 6.25 20.0 0.0
CH 0.0 0.0 0.0 0.0
a-CH3 0.0 0.0 0.0 0.0
b-CH3 0.0 0.0 0.0 0.0
g-CH3 0.0 0.0 5.0 0.0
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3.2 Mixtures of model compounds

Note that the current QMR model hast been designed to predict the unique structuresrelative
concentrations of mixtures of small numbers of nh@denpounds. Here we consider numbers of model
compounds which are small in comparison with thenlbber of compounds in a realistic asphaltene
mixture. This can be explained as follows: Therder parameters associated with the objective
function parameters should reflect the experimesi@hdard deviation. Now imagine that one sets the
error for the molecular weight (MW) to be small. As example we take a binary mixture of 2-ethyl-
antracene and tetradecyl-benzene. Obviously, thgpoands we would like to obtain, have different
MW (in this case 206 and 274). If the error ones setthe MW is too low, then a small deviation in
weight will result in a high deviation in the obje@ function, according to the definition of theralty

or objective functior, given in Equation (1) so these compounds aretffdy excluded from the list.
The "error" parameter is of particular importanceew sampling mixtures. For this reason, it is not
possible to reproduce an exact mixture of e.gh@tetntracene and tetradecyl-benzene. For exaraple,
mixture of 2-tetradecyl-antracene and ethyl-benzkas nearly the same average properties (most
important difference is in the weight). There ishance to produce a single compound which is claser

the objective parameters than the mixture of tisecompounds.
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3.3 Sheremata results

In Table 2, we present the optimised asphalteneeseptations consisting of molecules from starting
populations of 3000 and 4000 molecules. The caledlaromaticity and elemental compositions of the
molecular representation matched the experimeratialeg almost to within the range of experimental
error. The calculated molecular weight was sligtgimaller than the MW found from the VPO
experiments. We note that an error of at least E5Bdrmally associated with these VPO measurements
[3], so that our calculated results are within theperimental error margin. We also note that VPO

measurements are carried out under conditions whefcovalent association is likely.

Table 2 Comparison between experimental and calculad properties of the molecular representations

Calculated Properties
P~ EXPERIMENT 5 of 3000 6 of 4000
Property (;Sjnecitig/r? molecules molecules

Index Property | Error ‘ %Error | Property | %Error | Property | %Error
Mol Weight (g/mol) 1 4190 630 15.04 | 3802.11 9.26 | 3541.79 15.47
% C (wt %) 2 81.4 1.6 1.97 81.09 0.38 81.21 0.23
% H (wt %) 3 8.45 0.17 2.01 9.04 6.98 8.97 6.15
% N (wt %) 4 1.17 0.02 1.71 1.16 0.85 1.16 0.85
% S (wt %) 5 7.95 0.16 2.01 7.68 3.40 7.65 3.77
% O (wt %) 6 1.03 0.02 1.94 1.01 1.94 1.01 1.94
V (PPM) 7 877 18 2.05 0.01 14.03 0.01 14.03
Total Aromaticity (% mol C) 50.1 3 5.99 45.59 9.00 46.54 7.11
Q1 (% mol C) 8 10.4 3.6 34.62 12.26 17.88 12.03 15.67
Q2 (% mol C) 9 17.6 3.3 18.75 14.52 17.50 14.98 14.89
C1 (% mol C) 10 10.8 3.3 30.56 12.02 11.30 12.53 16.02
C2 (% mol C) 11 11.3 2.3 20.35 6.78  40.00 7 38.05
Total Aliphatic Content (% mol C) 49.9 3 6.01 54.41 9.04 53.46 7.13
Other aliphatic (% molC) 12 17.7 4.6 25.99 37.43 111.47 36.49 106.16
Total a-CH3 (% mol C) 13 6.6 04 6.06 0 100.00 0 100.00
b-CH3 (% mol C) 14 1.3 0.2 15.38 0.2 84.62 0.16 87.69
Chain CH2 (% mol C) 15 7.7 0.3 3.90 8.8 14.29 894 16.10
Aliphatic CH (% mol C) 16 9.8 2.1 21.43 1.25 87.24 1.2 87.76
Naphthenic CH2 (% mol
C) 17 4.5 0.3 6.67 0.64 85.78 0.66 85.33
g-CH3 (% mol C) 18 2.3 0.2 8.70 6.1 165.22 6.01 161.30

Objective function total 97.03 94.94
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Table 3 lists the molecular weights and the elealenbmpositions of the individual optimized
molecules (5 out of 3000). The same data for énupad molecules out of 4000 generated is presented
in Table 4. Note that the overall error (objectiumction total) decreases with the total number of
molecules increasing from 3000 to 4000. We nadé itiost of the experimental parameters unrelated to
the NMR experiments were modeled to within expentakerror. This is due to the fact that the
contribution of the error in the NMR parametershe objective function is weighed by a factor df11/
(see equation 1). Lowering the importance of the RNldarameters is reasonable: the elemental
compositions have a much smaller experimental emdrare more reliable, while the NMR parameters

strongly depend on the interpretation of the péaltse NMR spectra.

Table 3: MW and elemental compostion of optimised wiecules (5 out of 3000)

Mol Elemental composition, wt%
Molecule | mol% weight,
g/mol C H N S 0 V
1 20.2 911 84.3 8.89 1.54 3.51 1.76 0
2 9.554 4060 80.1 8.62 1.03 10.25 0 0
3 4.045 997 79.44 9.93 4.21 6.42 0 0
4 65.63 4821 80.4 9.11 0.87 8.63 1 0
5 0.572 4525 75.85 8.04 1.55 12.73 0.71 1.13
Table 4: MW and elemental composition of optimisedanolecules (6 out of 4000).
Mol Elemental composition, wt%
Molecule | mol% weight,
g/mol C H N S 0o Vv
1 17.949 911 84.3 8.89 1.54 3.51 1.76 0
2 7.554 997 79.44 9.93 4.21 6.42 0 0
3 53.152 4821 80.4 9.11 0.87 8.63 1 0
4 0.605 4525 75.85 8.04 1.55 12.73 0.71 1.13
5 13.144 4135 81.26 7.96 0.34 10.06 0.39 0
6 7.596 2233 81.68 9.09 0.63 7.17 1.43 0

The optimized molecules are presented in TabledBTable 4. Note that there is significant overlap
between the molecular representations between dagbs. This lends credibility to the optimisation

process.

To examine the ability of molecular representatidos fit the experimental data, independent

populations of 3000 and 4000 molecules were crediadh population was optimized using the
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sequential optimization approach. For each indepeindopulation, the objective function decreased as
the number of molecules in the representation aszd from one to five. This is shown in Table 5 and
Figure 2. This means that a good quality representaequires four to six asphaltene molecules
depending on the complexity of the structure. Rleaste that the difference between the valuesef th

objective function for MW=750 and MW=1028 is naatistically significant.

Table 5: Value of objective function for differentnumber of optimised molecules

Number of Objective function

optimized

molecules MW=750 MW=1028 MW=2055 MW=4190
1 6275.7 5349 582.48 347.24
2 2789.9 2826.95 109.24 150.19
3 90.88 245.35 101.5 100.8
4 66.84 14.81 90.71 95.63
5 17.14 6.75 77.72 95.18
6 14.73 5.59 77.7 94.94
7 13.77 5.59
8 12.42 5.59

Figure 2: Value of the objective function as a funion of increasing number of optimised moleculesof different
Molecular Weights.

3000
—a—VIW=1028
MIW=2055
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= 2000 ——MW=750
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Molecular Weight

As mentioned above, there is a serious controvierdie literature regarding the Molecular Weight

(MW) of aspahltenes. The following experimentas@lvations have been made in the recent literature:

* Mass Spectrometric and Molecular diffusion methetiew that the MW of asphaltenes is

approximately 750+ 200 amu!

* Molecular Orbital Calculations combined with Opticapectroscopy shows that Petroleum
asphaltenes consist of Polycyclic Aromatic Hydrbocass (PAHsS) mostly with 6-8 Fused

Aromatic Rings (FAR)*?

In order to investigate this controversy, we exadithe sensitivity of the molecular representatimns
the molecular weight. Two additional different gar molecular weights were selected: half the
molecular weight as determined by VPO (2055 g/raal} one-quarter (1028 g/mol). The datadnle

6 shows a comparison between the calculated prepeat different target molecular weights and the
experimental data. Fromable 5, it can be observed that our method gives sigamtiy smaller values
for the objective function for MWs of 1028 and 7%@hen the number of optimised molecules is 4 or
larger. This means that we obtain a more reliadypeasentation for lower values of the MW. Note that
this result is different from Sherem3tand is due to the fact that our linkage algoritifows for both
archipelago and pericondensed structures to beraede In fact, the optimal values for the Mol.
Weight of 1028 and 750 g/mol are supportive ofwakies suggested by Mulliiet al., associated with
pericondensed structures. The details of the optichmolecules frommable 6 for MW=1028 are shown

in Table 7. The total number of sampled compounds is 1000y &nhmolecules were left after
optimization.Note that we did not consider further reductionshia target MW, such as MW = 514. It
is not clear whether the Hirsch motfelvould still work for such low molecular weightsofFsuch

substances one has to set the sampling paramgfgictly. Also, we need to consider how to takeeca

16



of vanadium for such low MW. Currently, the onlyilding block which contains vanadium is

porphyrine. Therefore porphyrine is required toue the objective function deviation due to the

presence of V. However, porphyrine is a relativiebavy compound, especially when long aliphatic

chains are attached. This leads to a larger dewmidti the molecular weight. To solve the problens, w

will have to either introduce smaller building bksccontaining vanadium or set the V fraction taozer

Table 6: Calculated properties of Asphaltene repremntations of different target molecular weights

Sy Ecatremil Target molecular weight, g/mol
4190 2055 1028
Calculated MW (g/mol) 4190 3541.79 | 1733.66 913.67
C (wt %) 81.4 81.21 80.79 81.25
H (wt %) 8.45 8.97 9.12 8.5
N (wt %) 1.17 1.16 1.17 1.17
S (wt %) 7.95 7.65 7.9 8.05
O (wt %) 1.03 1.01 1.02 1.03
Aromacity (% mol C) 50.1 46.54 43.86 50.23

Table 7: Calculated Elemental composition of the mlecules in the asphaltene representation: MW=1028

Mol Elemental composition, wt%
Molecule mol% weight,

g/mol C H N S O
1 30.54 1082 79.85 8.50 1.29 8.87 1.48 0
2 22.95 1033 82.48 8.42 1.36 6.20 1.55 0
3 20.48 1252 86.26 8.95 2.24 2.56 0 0
4 13.39 240 80.00 6.67 0 13.33 0 0
5 12.64 1206 80.60 8.79 0 10.61 0 0

Table 8: Calculated Elemental composition of the mecules in the asphaltene representation: MW=750.he average
MW for this set is 549

Mol Elemental composition, wt%
Molecule | mol% | weight
, g/mol C H N S O V
1] 45.29 597 84.42 7.87 2.35 5.36 0 0
2| 26.32 520 80.77 10 0 6.15 3.08 0
3| 22.78 436 77.06 8.26 0 14.68 0 0
4 5.61 749 83.31 6.28 1.87 8.54 0 0
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In order to estimate the ability of the model tprozluce results, we did a set of 10 simulation wie
same parameters, assuming MW=750 and MW=4190., kustgenerated 5000 molecules for each
simulation, then removed the duplicates, and opghithe results using sequential optimization, to
obtain a maximum of 6 optimised structures for eagl We calculated the value of the objective
function and molecular weight for each run. Finalhe average values for both parameters were
calculated as an average over the 10 simulatioms.r@&sults are presented in Tables 9 and 10.n§ tur
out that the value of the objective function is(288) for MW=750 and 59 (+/- 11) for MW=4190. This
means that the lower MW of 750 provides the bettatch with the experimental data. Please note that
for MW=4190, the average QMR MW is significantlyder than the experimental value. This is due to
the fact that the NMR parameters force the molecgenerated to be small. Please note that the
simulations in Tables 6 and 9 were done for difieampling parameters and MW errors. Therefore

the resulting values are also different.

Table 9: Reproducibility results for MW=750 from 10 simulations: # mol = number of molecules generatedtmol no
dups= number of molecules after duplicates have ba removed# mol opt =number of molecules after optimization,
Obj dev = value of objective function. At the botton, the average over the 10 runs and standard devian is given for
both the deviation from objective function and theMolecular Weight.

#mol  #mol no dups #mol opt Obj dev Average MW

1 5000 4996 4 39 915
2 5000 4998 5 27 745
3 5000 4998 4 32 549
4 5000 4997 4 26 1003
5 5000 5000 5 29 687
6 5000 4997 6 36 875
7 5000 4998 5 37 650
8 5000 4999 5 31 859
9 5000 4994 4 18 595
10 5000 5000 5 14 675
AVG 29(+/-8) 755 (+/- 150)
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Table 10: Reproducibility results for MW=4190 from 10 simulations. See Table 9 for details.
#mol  #mol no dups #mol opt Obj dev Average MW

1 5000 5000 5 44 1664
2 5000 5000 4 57 1766
3 5000 5000 5 69 1644
4 5000 5000 4 67 2048
5 5000 4999 4 56 2188
6 5000 5000 5 63 1549
7 5000 5000 4 63 1936
8 5000 5000 4 36 1925
9 5000 5000 4 70 1874
10 5000 5000 5 63 1571
AVG. 59 (+/- 11) 1817 (+/- 213)

We collected the final optimal structures with tireghest weight fraction. These are shown in Figure
- Figure 10. Overall, the model demonstrated a gepdoducibility with respect to deviation functijon

average molecular weight and similarity of the hsg asphaltene structures.
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Figure 3. Optimized structure run 1, MW=727, 45 wt%.

Figure 4. Optimized structure run 3 MW=597, 45 % This molecule will be used in the subsequent MDrsulations.
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Figure 5. Optimized structure run 4, MW=1443, 41 w%b.

Figure 6. Optimized structure run 5 MW=755, 56 wt %
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Figure 7. Optimized structure run 7 MW=747, 61 wt %.

Figure 8. Optimized structure run 8 -MW=755, 34 wt%
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Figure 9. Optimized structure run 9, MW=567, 33 wt%

Figure 10. Optimized structure run 10, MW=1027, 35wt %
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Correlation between objective parameters

One of the problems which can be investigated wighmodel application is the relations between the
objective parameters (correlation) and feasiboitgxperimental data. The idea of the exercise fg$t
generate a broad set of asphaltene structuresidprgva good representation of the most generic set
Then we calculate the average values, correlatefficients and limits of the objective parametansl
compare them with the experiment. This will helet@luate the reliability and reveal systematiomsr
and inconsistencies of the experimental data. Aessmtative set of asphaltenes is generated hygatt
very flat distribution (high STD value) of the saimg parameters. To ensure the distributions are
uniform, the standard deviation was set to twice #verage value. A summary of the sampling

parameters for the representation is given in Table

Table 11. Sampling parameters for feasibility check

Min Max Avg Std
Unit sheets per asphaltene molecule 1 20 10 20
Aromatic rings per unit sheet 1 15 8 16
Number of naphthenic rings per unit sheet 0 10 5 10
Alkyl chain length 1 25 12 24
Substitution of aromatic atoms with alkyl chains (%) 0 40 20 40
Substitution of naphthenic atoms with alkyl chains (%) 0 50 25 50

The total number of asphaltene molecules genera#sd100000. The results of the data processing are

given in Table 12 and Table 13. We found a stramgetation between:

* Molecular weight and number of units (0.96)

Q2 (see Appx. C) and number of aromatic rings pér(0.73)
* gamma-CH3 and the number of chains per unit (0.78)

* naphthenic CH2 and number of naphthenic rings p&r(0.78)
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This list allows us to state the following:

1. The asphaltene MW is mostly controlled by the numdfeunits the molecule is composed of. At the

same time, the size of the units is about the same.

2. The number of aromatic rings per unit is driventbg amount of bridgehead aromatic quaternary

carbon (Q2), which is directly available from NMRperiments

Table 13 contains averages, standard deviatior/nmai values and expected ranges for all objective
and sampling parameters. With some caution (onedhksep in mind that adding essential fractions of
heteroatoms will shift/scale most of the valuedy ttable may be used as a reference to validate

experimental data.

Having obtained representative structures for #phaltene experimental data, it is now possiblest®
these structures in Molecular Dynamics and MontddCsimulations to measure physical properties

from ensemble averages.

In the following section, we will carry out Mole@sl Dynamics (MD) simulations for the optimized

QMR structures generated.
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Table 12. Correlation coefficients

Units | Links Argmatic Naphthenic Chains nghthenjc Naphtheqic rings Aromatig Chai.ns /
rings rings rings/Unit [ Aromatic rings | rings / Unit Units
s I 00| 01| ou
w%C -0.09 | -0.09 0.01 -0.09 -0.20 -0.05 -0.21 0.42 -0.28
w%H 019 | 0.19 0.08 0.25 0.39 0.26 0.39 -0.40 0.53
w%N -0.08 | -0.08 -0.12 -0.09 -0.11 -0.10 0.01 -0.25 -0.14
w%$S 0.05| 0.05 0.02 0.03 0.10 -0.04 -0.01 0.1 0.14
w%O -0.04 | -0.04 -0.06 -0.05 -0.06 -0.05 -0.01 -0.12 -0.08
w%V 0.00 | 0.00 -0.02 -0.01 -0.02 -0.02 -0.01 -0.05 -0.04
Ar Tot% 024 | -0.24 -0.15 -0.36 -0.41 -0.44 -0.51 0.29 -0.51
Ar Q1% 0.07 | 0.07 -0.02 0.28 0.02 0.67 0.77 -0.33 -0.03
Ar Q2% -0.08 | -0.08 0.09 -0.16 -0.18 -0.24 -0.54 -E
Ar C1% -0.20 | -0.20 -0.11 -0.36 -0.32 -0.54 -0.59 0.31 -0.38
Ar C2% -0.22 | -0.22 -0.24 -0.32 -0.29 -0.43 -0.28 -0.28 -0.32
Al Tot% 024 | 024 0.15 0.36 0.41 0.44 0.51 -0.29 0.51
Al aCH3% 0.05| 0.05 0.03 0.03 0.20 -0.01 0.02 -0.06 0.37
Al bCH3% -0.01 | -0.01 -0.02 -0.01 0.14 0.01 0.03 -0.03 0.33
Al gCH3% 0.03 | 0.03 0.03 0.05 0.40 0.04 0.03 -0.01 -I
Al CH2% 025 | 025 0.19 0.19 0.37 -0.01 -0.02 -0.10 0.41
Naph CH2% | -0.09 | -0.09 -0.12 0.18 -0.18 0.67 _I -0.20 -0.24
Al CH20% 019 | 0.19 0.09 0.33 0.31 0.51 0.60 -0.32 0.40
Al CH% 019 | 0.19 0.10 0.39 0.29 0.47 0.49 -0.22 0.33




Table 13. Objective parameters feasibility regions

MIN MAX STD AVG-STD AVG AVG+STD
Units 1 20 517 1.55 6.71 11.88
Links 0 19 517 0.55 5.7 10.88
Aromatic rings 1 166 29.67 6.66 36.32 65.99
Aromatic rings/Unit 1 15 213 3.28 5.41 7.55
Naphthenic rings 0 60 8.50 0.62 9.12 17.62
Naphthenic rings/Unit 0 10 1.03 0.33 1.36 2.38
Naphthenic rings/Aromatic rings 0 3 0.29 0.00 0.29 0.58
Chains 0 57 7.01 0.08 7.09 14.10
Chains/Units 0 17 0.94 0.12 1.06 2.00
Atoms 6 | 1255 | 232.05 49.34 281.39 513.43
Mol Weight 78 | 16984 | 3118.20 656.22 3774.42 6892.63
w%C 64 | 96.89 2.62 87.05 89.68 92.30
w%H 311 | 13.47 1.39 7.04 8.43 9.82
w%N 0| 14.93 1.17 0 0.45 1.62
w%S 0| 21.62 1.54 0 1.20 2.75
w%0 0| 952 0.48 0 0.13 0.60
whV 0 13.6 0.61 0 0.11 0.73
Ar Tot% 75 100 15.03 40.76 55.79 70.83
Ar Q1% 0] 3333 4.30 6.56 10.86 15.16
Ar Q2% 0| 6154 7.89 13.69 21.57 29.46
ArC1% 0 60 7.55 7.26 14.81 22.35
Ar C2% 0 100 8.27 0.29 8.56 16.82
Al Tot% 0| 925 15.03 29.17 4.1 59.24
Al aCH3% 0 25 0.91 0 0.84 1.75
Al bCH3% 0 20 0.64 0 0.36 0.99
Al gCH3% 0| 16.67 1.34 0.44 1.78 3.12
Al CH2% 0 | 64.52 9.70 5.79 15.49 25.19
Naph CH2% 0| 33.33 4.08 0.34 4.42 8.50
Al CH20% 0 | 54.55 6.38 13.01 19.40 25.78
Al CH% 0| 16.67 1.57 0.35 1.92 3.49
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4. Molecular Dynamics Simulation of QMR Generated Asphaltene
Structures.

In recent years there has been an increasing &ffariderstand asphaltene aggregation on a motdeukd using
molecular simulatiotr*®!"81920The Quantitative Molecular Representation (QMRStimod is a vital tool for
generating molecular structures for asphaltene lation® It is only possible to conduct simulations onmza#
number of molecular structures due to the largeusnhof processor time required for each simulatiimerefore
it is essential that we represent the full spectairasphaltenes by the smallest possible numbespoésentative
molecules. As shown in the previous sections, thR@nethod provides a good method of achieving thiull
study for a set of 3 molecules generated by QMRH®E conducted by Headen ef.aHere we provide an
example simulation of one molecule. The moleculesen is asphaltene 2 of simulation run 3, its chami
structure is given in Figure 4. We carry out Moleciynamics simulations of 6 asphaltene molecindsluene
and heptanes. From these simulations, we obtairigtance-time relationship over 60 ns between agie
pairs in order to reveal the timescale of aggregativVe also obtain the asphaltene-asphaltene gdraaerage
angle between the aromatic planes as a functiodisitbnce to directly detect the structure of agehal
aggregation in dimers and trimers — this can indithe structure of larger asphaltene nanoaggredaastly we

use the asphaltene-asphaltene g(r) to calculatesihiealtene-asphaltene potential of mean force JPMF
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4.1 Simulation Methods.

Classical molecular dynamics uses well definedsata$ intra- and inter-molecular potentials to o#te
interatomic forces. The system is allowed to evalver time by stepwise integration of the equatiohsiotion.
It is important that the step-size be smaller ttientime period of the fastest motion in the sirtiata Using this
method it is possible to simulate systems contginih0000 atoms over a few nanoseconds on ~4 pucess
nodes in reasonable times. For this study the GROBIAMD codé® with the OPLS- AA force field
parameter$*>was used. The OPLS force field has been showrpt& well for aromatic liquids in reproducing
experimental dafd Rigid bonds were used to remove the fastest ngowinlecular motions, a time step of 2fs
was used for all simulations. Periodic boundamditions with the minimum image convention weredise
that a small box of ~10000 atoms can represenbtlie Long range coulomb intermolecular forces tagated
using the Particle-Mesh Ewald (PMEjechnique which allows the use of Fast-Fourien$farms (FFT). Before
the simulation cell was built, explicit hydrogeromis where added to the asphaltene structure geddogitthe
QMR algorithm followed by a geometry optimizatiosing ArgusLab’. The 3-dimensional structure of the
asphaltene is shown in Figure 11. Please note ttiatstructure of the asphaltene molecule is st@rica
constrained; the aromatic core is curved out opsladue to a methyl group on the aromatic core pmritack

towards an aromatic hydrogen. This emphasizesdbd for allowing 3-d configurations.

29



Figure 11: 3-dimensional structure of asphaltene 2 from sitda3 used from molecular dynamics
simulations. Aromatic plane is curved out of shdpe to methyl group pointing back towards adjacent
aromatic ring.

We carried out two set of simulations of 6 asplmatenolecules in either toluene or heptane at 7wi&6 80ns.
Analysis of the trajectory of the full NVT simulati allows the calculation of the asphaltene-asphaltradial
distribution function, g(r). The g(r) is defined e#io of the local density of atoms/molecuf#s) at distance

from an atom at the origin to the average dengigta@ms in the bulkp:

o) =20 )

In this case is the distance between a single atom definedash asphaltene molecule to represent its centre
The cumulative coordination number can be calcdldtem the g(r) by integration over spherical shedf

thicknesdr:

r 4)
N(r) =ng(r).4n2dr
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In essence this is the number of asphaltene magcwithin the sphere radiuscentered on the original
molecules. Another useful quantity that may beudated from the g(r) is the Potential of Mean FaieMF). In
the low density limit, the pair potentiafr) is given by:

u(r) = -KTIn(g(r)) ®)
This concept can be extended to dense fluids bigidgfthe potential of mean fordl as™

W = ~KT In(g(r) (6)

The PMF is equivalent to the Helmholtz free endpys a constant). We can therefore calculate réne énergy

of dimer formation by taking the difference of tpetential of mean force at maximum separation and a

equilibrium separation (where the PMF is a minimum)
For the simulations, the system was created bygeally arranging the asphaltene molecules in»adidhe

appropriate size (dependent on how many solveneecntds needed to be added to make 7wt% asphalfene).

periodic arrangement of solvent molecules was tadded with any molecules overlapping the asphaltene

molecules being removed. The system was initiajlyildrated by a 100ps NVT simulation, followed &%b00ps

(NpT) simulation for the system to reach equilibriuensity. Sampling was conducted during the main 60ns

(NVT)simulation. Here NpT) and (NVT) indicate the isothermal-isobaric and constantum@ ensembles
respectively. The temperature was maintained aK3@0ng the Nose-Hoover thermostat, the ParrinRédHman

barostat was used for the NPT equilibration.
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4.2 Simulation Results and Discussion

Over the course of the simulation, the atomic pmss$t are recorded every 4 ps. From this the distanc
between the centre of mass of the asphaltene nietecuer the course of the simulation can be obthifigure
12 and Figure 13 show the distance between painsefd between 1 asphaltene and the 5 others inrthaagion
box over a 60ns simulation, in toluene and heptaspectively. For all distance/time plots a runnavgrage

every 500 ps is taken to reduce the scatter ile.
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Figure 12: Distance between centre of mass of one asphalt@heSwothers in the simulation box
during 60ns NVT simulation in toluene.
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Figure 13: Distance between centre of mass of one asphaltithe5 others in the simulation box
during 60ns NVT simulation in toluene.
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The simulations in both toluene and heptane shat #isphaltene dimers/trimers form, split apart aad
aggregate with other asphaltenes. There are naglilmeng longer than roughly 10ns. In an attengguantify
the aggregation time of asphaltene dimers, we have defined a critiggtegation distance of 1nm and a critical
aggregation time of 0.5 ns. When the distance l&twan asphaltene pair is below this critical agafieg
distance for longer than the critical aggregatioret this is identified as an aggregation evene Emgth of time
of each aggregation event is counted and then gedraver all the aggregation events yielding therage
aggregation timeTable 14 gives the average aggregation times and numbaggregation events for simulations
in toluene and heptane. Similar average aggregétioes are seen in both toluene and heptane. Therslight

increase in the number of aggregation events itahegndicating slightly enhanced aggregation.

Table 14 Average aggregation time and number of aggregatients for asphaltene pairs during 60ns

simulations in toluene and heptane.

Heptane Toluene

Average aggregation time (ps) 1129 1082 + 128

Number of aggregation evert25 22
over 60 ns

Figure 14 is a snapshot of the simulation in heptshowing the formation an asphaltene clusteBahns. Here
loose rather tharrigid stacking of the aromatic cores is observesl,over the course of the trajectory, a dimer
pair will change conformations around each othemtiooally. Although parallel stacking of the aspgkak
aromatic cores is observed, this is not the onlglenof aggregation: alkyl-alkyl, alkyl-aromatic ameshaped

aggregates are also observed.
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Figure 14 Snapshot of MD simulation of 6 asphaltene molesuh heptane, showing formation of an
asphaltene cluster at approximately 32ns. Heptasieaules are not shown for clarity.
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Figure 15: Asphaltene-asphaltene g(r) (solid line) and N(@sfted line) for simulations in toluene
(grey) and heptane (black)
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The asphaltene-asphaltene g(r) for simulation®lmene and heptane is shown in Figure 15. Interglgti the
g(r) shows 2 distinct peaks in heptane at ~0.60@A8nNm. The small peak at 0.6nm is most probaioiy fa
conformation of parallel stacked aromatic coress th not seen in toluene. This conclusion is sufgobby the
average angle between the aromatic planes at thlbesindistances between asphaltene centre of ginass in
Figure 16. At ~0.6nm the average cosine of the eahgitween the aromatic planes is close to 1 inanept
indicating mostly parallel arrangement of the arbenplanes. In toluene, the average cosine of tiggesbetween
the aromatic planes is ~0.65. Because the averalge Vs larger than 0.5, we can argue that thesoise
preference for a parallel arrangement, but conaiilgress so than in heptane. The broader secasd gantred
at ~0.78nm in the g(r) is common to both simulation toluene and heptane. At this distance therétlis
orientational preference for the aromatic plandgeré&fore T-shaped and offset stacked dimer confiiwnsgare
likely. The cumulative aggregation number, N(rmamstrates that although there are distinct peakisa g(r) at
low r, these only correspond to a small number of médscundeed it is only at 1.5nm separation that the

average number of asphaltene molecules reaches one.
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Figure 16: Average cosine of the angle between aromatic plasegdunction of distance between
asphaltene centre of mass for simulations in ta@y&hed circle) and heptane (cross)
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The potential of mean force between asphalteneaulge may be calculated from the asphaltene-agieat(r)
using equation 6. This is shown in Figure 17s kvident from the potential of mean force thatftee energy of
dimer formation between the asphaltene moleculemall, at most ~1kT. This is smaller than has ls=am for
other asphaltene molecules of this size generatelebQMR methotf. A probable reason for this is that this
molecule has a sterically constrained aromatic,doreing it into a curved conformation and thusking it more

difficult for asphaltene molecules to stack effeely.
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Figure 17: Asphaltene-asphaltene Potential of Mean forcesifmulations in toluene (grey) and heptane
(black)
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5. Conclusions and Discussion

We have created an improved computer algorithmeteate molecular representations of asphaltenes.
Three-dimensional molecular representations wemergéed using a Monte Carlo method, which
constructs asphaltene molecules from aromatic Aplatic building blocks. The building blocks were
sampled randomly and then linked together usingoanection algorithm. We use a non-linear
optimisation procedure to select a subset of mdédsdhat gives the best match with experimentad.dat
These experimental data consist of molecular weighgmental analysis and NMR spectroscopy,
including both'H and **C data. First, we validate the method by testimmumber of single model
compounds, for which we have accurate input dagéabte. For these small compounds, we are able to
predict the structures correctly. Subsequently,used a data set available in the literature foea r
Athabasca asphaltene sample, containing a mixtueevery large number of asphaltene compounds.
We generated sets of 3000 and 4000 samples, where then optimized with respect to the
experimental penalty or objective function. Theimjation procedure shows that a set of 5 — 6
asphaltene structures is sufficient to representettperimental data. The method gives a signifigzant
better match with the experimental data for a MW8® than for MW=4190, as measured by the value
of the objective function averaged over 10 simafatruns. Note that this result is different from
Sherematd, and due to the fact that our linkage algorithmowdl for both archipelago and
pericondensed structures to be generated. The alptmtue for the MW of 750 g/mol is supportive of
the values recently suggested by Mulleisal.” associated with pericondensed asphaltene strscture
Finally, the QMR structures generated from bulkhadigne samples or deposits can be directly used to
calculate the interaction between asphaltene mi@easing MD simulations. As an example, we have
done this for one of the optimized QMR structurasthe final section of this paper. For a more

extensive MD simulation study using QMR structuses,refer to ref. 22.
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Appendix B: Atom types

The atom types are defined according to Sherémata

Aromatic
Q1 Alkyl-substituted aromatic quaternary carbon
Q2 Bridgehead aromatic quaternary carbon

Ci1 Aromatic CH beside a Q2 carbon

C2 All aromatic CH that are not a €arbon

Aliphatic

CH2 Chain CH

n-CH2 Naphthenic CH

0-CH2 Other aliphatic CH

CH Aliphatic CH

a-CH3 | a-CHs

b-CH3 | B-CHs

g-CH3 | y-CH,
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Chain CH, =

Alipahtic €7 [hioetherS

G.-CH3 —

Aliphatic CH Aliphatie CH

Waphtheme CH. »

0-CH: e

Maphthemie CH,
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