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Abstract

We present results of lattice-Boltzmann (LB) simulations to calculate flow in real-
istic porous media. Two examples are given of LB simulations in two- and three-
dimensional rock samples. First, we show LB simulation results of the flow in quasi
two-dimensional micromodels. The third dimension was taken into account using
an effective viscous drag force. In this case, we consider a two-dimensional micro-
model of a Berea sandstone. We calculate the flow field and permeability of the
micromodel and find excellent agreement with micro Particle Image Velocimetry
(μ−PIV) experiments. Then, we use a particle tracking algorithm to calculate the
dispersion of tracer particles in the Berea geometry, using the LB flow field.

Second, we use lattice-Boltzmann simulations to calculate the flow in Bentheimer
sandstone. The data set used in this study was obtained using X-ray microtomogra-
phy (XMT). First, we consider single phase flow. We systematically study the effect
of system size and periodic boundary conditions and validate Darcy’s law from the
linear dependence of the flux on the body force exerted. We observe that the values
of the permeability measurements as a function of porosity tend to concentrate in a
narrower region of the porosity, as the system size of the computational sub-sample
increases. Finally, we consider immiscible flow in the XMT rock sample. We ob-
serve that the results for the relative permability calculations depend on the forcing
conditions.
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1 LB simulation of flow in 2-D porous media

A fundamental understanding of flow in porous media is of crucial impor-
tance in many applications, such as the recovery of hydrocarbons from oil
reservoirs. To characterise flow at the pore scale, it is convenient to use sim-
plified representations of porous media, such as physical micromodels, which
can be constructed in the form of pseudo two-dimensional capillary networks.
Because the experimental analysis is often very difficult, simulation can be
a useful complementary method. In particular, the lattice-Boltzmann (LB)
technique is very well suited for solving the flow in complex geometries, and
it has been successfully used in the study of flow in porous media at the pore
scale [1–3]. For a general introduction to the LB theory, we refer to [4]. In
two dimensions, LB simulations have been used to investigate viscous finger-
ing of binary immiscible fluids using the Shan-Chen model [5] and the flow of
non-Newtonian fluids in porous media [6,7]. In studies of viscous fingering in a
Hele-Shaw cell, the third dimension was taken into account using an effective
viscous drag force [8,9]. Recently, we used the effective viscous drag method to
compare LB simulations of single phase flow in micromodels with experimen-
tal results in the same geometry. [10] Here, we extend these calculations to
flow in a two-dimensional micromodel of a Berea sandstone. We calculate the
permeability of the micromodel and compare with experimental data. Then,
we use a particle tracking algorithm to calculate the dispersion of tracer par-
ticles in the Berea geometry, using the LB flow field. In this paper, we will
provide a summary of the results obtained.

1.1 Berea sandstone

We study the flow in a two-dimensional micromodel of a Berea sandstone.
This micromodel has been engineered at Schlumberger Cambridge Reserarch,
based on a thin section of a 3d Berea sandstone rock sample. The micromodel
has been discretised on a lattice, and bit-mapped (0 pore, 1 obstacle) to cre-
ate the matrix for the lattice-Boltzmann simulations. A picture of the Berea
micromodel is presented in Figure 1.1.

1.1.1 Single phase flow

We consider the lattice-Boltzmann method for flow in 2 dimensions, which
has been described in detail in [10]. In this work, we have shown that we
can make successful use of the Hele-Shaw viscous drag approximation when
the third dimension of the micromodel is small in comparison with the lateral
two dimensions. The micromodel described is pseudo-2D, and, for symmetry
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Fig. 1. Berea pattern as used in the lattice Boltzmann 2d simulations. The obstacles
are represented in black, and the pore space in white. The size is 1418 μm (X) x
1774 μm (Y ). The etch depth of the physical berea unit is 24.54 μm.

reasons, the fluid velocity is zero in the z direction (depth). We adopt an
approach used in the literature [11,8] to solve the flow field in such a geometry
using 2D LB simulations. This approach consists in introducing a drag force,
acting on the fluid, that represents the (approximate) effect of the bounding
walls in the third dimension. This viscous-drag force depends on the fluid
kinematic viscosity, ν, on the fluid velocity, u, and on a depth parameter, h,
which represents the distance between the walls bounding the implicit third
dimension. If the average velocity of the Poiseuille profile is used, the drag
force takes the expression used by Boon et al [8,9]

fdrag = −12ν

h2
u. (1)

This is the expression that we will use here.

1.1.2 Single phase permeability

We have carried out LB simulations to calculate the single phase permeability
of the micro-model, using Darcy’s law. For each case, we have performed
simulations for 5 different values of the pressure drop. As usual, the pressure
drop was implemented by a body force and the corresponding fluxes were
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Fig. 2. Flux versus force. Linear fit (dashed line) of the force/flux data points in the
region of forcing where Darcy’s law holds.

measured. Figure 2 shows an example of a typical force-flux plot. Let us define
the lateral resolution δx as the distance between lattice points in the plane
of the micro-model. We note that the best agreement with the experimental
value of 410-480 mD is obtained for a Hele-Shaw depth h=20 [l.u.]. The full
details of these calculations will be given in a forthcoming paper [12]. At a
lateral resolution δx = 1.16 [μm], this corresponds with an actual depth of
23.2 [μm]. This is in excellent agreement with the experimentally observed
etch depth of 24.54 [μm].

1.1.3 Single phase flow field

Now we present the single phase flow field and compare with experiments
available. In Figure 3, we show a direct comparison between the steady state
flow field in a Berea micromodel measured from PIV experiments [13] and
LB simulations (δx = 1.16 [μm] and h=20). We observe that the experimental
and computational flow field are in qualitative agreement, in the sense that we
identify the same regions of high flow rate in both experiment and simulation.
A similar degree of qualitative agreement was found by Zerai et al. [14] for a
simpler pore geometry. They studied velocity fields in a network model using
both PIV experiments and CFD calculations.
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(a) (b)

Fig. 3. Details of the flow field in Berea micromodel measured from (a) PIV exper-
iments [13] (b) LB simulation of a computational cell with lateral resolution δx =
2.32 [μm] and Hele-Shaw depth h=10. The colour coding runs from blue for low to
red for high flow rates.

1.2 Tracer dispersion

Here we describe a method to calculate the dispersion of tracer particles in
the flow field computed from 2d lattice-Boltzmann simulations, as described
in the previous section. These results can, in principle, be compared directly
with micromodel experiments of colloid dispersion [15], [16]. The probability
distributions of tracer displacement, or displacement propagators, from the
simulations can be compared with NMR propagators [17], [18].

Following Maier et al. [19], in their study of dispersion in sphere packings,
lattice-Boltzmann and Langevin equations can be used to model solvent flow
and solute transport, respectively.

We use the the velocity field obtained from the lattice-Boltzmann simulations
described in the previous section. Then tracer particles are immersed in this
velocity field and their evolution in time is computed. The random walk of a
tracer particle in an external velocity field is modelled by a stochastic differ-
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ential equation for the particle position:

dx(t) = v(x(t))dt + B · dW (t), (2)

where B · dW (t) is a random displacement vector. B is a constant diagonal
matrix whose components are proportional to the square root of the diffusion
coefficient and dW is a Gaussian process (Brownian motion), with zero average
and standard deviation equal to one. Equation 2 can be solved using an Euler
approximation of the form

x(t + Δt) = x(t) + v(x(t))Δt +
√

2dDmΔt ξ, (3)

where ξ is a unit vector with random orientation, d is the dimensionality of the
system, v(x) is the velocity computed from the lattice-Boltzmann simulation,
and Dm is the molecular diffusion (Dm=2.2e−9 m2/s for water). For a more
detailed description of the tracer dispersion algorithm, we refer to [12].

We studied the flow in a digitised image of a thin slice of Berea sandstone, as
discussed in the previous section. We show dispersion simulations for the best
results for the permeability calculations discussed above, at a resolution δx =
1.16 [μm] and h=20 corresponding with a size of 1224x1528 lattice sites. The
velocity field is shown in figure 4(a). The net flow is in the positive y direction.
The tracers are initialised randomly in the pore space of the micromodel. In
figure 4(b) the trajectory of a single tracer particle in this velocity field is
shown. Note that periodic boundary conditions are applied. However, the dis-
placement propagators are calculated using the total displacement. Typically,
we use 104 to 105 tracer particles to obtain statistically satisfying results.

In Figure 5 we show the tracer dispersion distributions for different observa-
tion times. The dispersion (or propagator) is the probability distribution of
the tracer particles displacement (final position minus initial position) after a
given amount of time. The shape of the propagators should be exponential at
short time, with a peak at zero displacement. The reason is that, for short ob-
servation times, the particles move within one pore. The distributions should
become Gaussian for longer times, as the particles start to travel longer dis-
tances and to sample more pores. Our results in Fig 5 show the exponential
behaviour at short times, and a broadening of the profile as the observation
time increases. However, even after 2000 [ms], when a fully Gaussian profile
is expected, the stagnant peak (Dy=0) is still observed. This might be due to
the fact that a two dimensional system has less connectivity than a 3D one,
hence the particles trapped in stagnant zones are less likely to diffuse into
zones with a non zero velocity. This is a hypothesis that should be validated
using micromodel experiments.
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(a) LB velocity field (b) Tracer trajectory

Fig. 4. (a) Velocity field in a two-dimensional slice of Berea sandstone. The rock
is shown in black and the velocity colour coding goes from zero velocity (pink) to
increasing velocity (blue) to maximum velocity (green). Note that the colour coding
is different from Fig. 3. Periodic boundary conditions are used in both dimensions.
(b) Trajectory of a tracer particle (in red) with Brownian motion in the velocity
field shown in figure (a).

2 LB simulation of flow in 3-D porous media

In this section, we report on the calculation of the flow in a realistic com-
plex three-dimensional porous medium, in this case Bentheimer sandstone. In
particular we study the dependence of the permeability measurement on the
system size of the computational sub-sample. With increasing sub-sample size,
we find that the values of the permeability as a function of porosity tend to
concentrate in a narrower region of the porosity. Finally, we calculate relative
permeability curves for the case of immiscible flow.
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Fig. 5. Tracer dispersion propagators in the direction of the fluid flow
(y-axis), for different observation times T and normalised with respect to the
displacement< ζ >0

2.1 Materials and methods

2.1.1 Bentheimer sandstone

The data sets used in this study were extracted from the image of a cylindrical
core of Bentheimer sandstone obtained by X-ray microtomography (XMT) at
the European Synchrotron Research facility in Grenoble. The XMT image
consists of voxels arranged in a three dimensional lattice. The full data set
consists of approximately 800x800x630 voxels, at a resolution of δx=4.9μm.
A 3d volume rendering of the data set is shown in figure 6. In the image

Fig. 6. 3d volume rendering of the XMT image of the Bentheimer sandstone used
in this study.

data, each voxel corresponds to a byte-value, which stores a greyscale value
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[0-255] that represents the attenuation of the rock at that point in space. This
value is proportional to the density of the material: the higher the value, the
denser is the system. Typically, the pore space has low attenuation values.
The permeability and porosity of this particular sample of rock have not been
measured. However, a permeability of 2 Darcy and a porosity of 22% are
typical values for Bentheimer sandstones. Using this estimated rock porosity,
it is possible to determine a threshold in the greyscale, to discriminate between
pores and rock, and byte-gate the XMT image to generate a binary (0 pore site,
1 rock site) representation of the rock and the pore space. This representation
can then be directly loaded into the lattice-Boltzmann code, and used as the
rock matrix (solid boundary) for the simulations. We also define the void
fraction φ in a rock sample as the number of “fluid” lattice points (i.e. the
lattice points which are not on a solid obstacle) divided by the total number
of lattice points. The void fraction is related to the porosity of the rock, which
can be characterised experimentally by e.g. mercury porosimetry.

2.1.2 Calculation of rock permeabilty

The permeability of a porous medium can be calculated from the empirical
Darcy law. This well known relation states that the flow rate, J , is propor-
tional to the force driving the fluid, the coefficient of proportionality being the
permeability of the medium, K, divided by the dynamic viscosity of the fluid
μ. Darcy’s law can be written as

J = −K

μ
(∇P − ρg), (4)

where J is the flow rate per unit area of cross section (flux), K is the per-
meability, ∇P is the pressure drop between inlet and outlet, ρ is the fluid
density, g is a body force (for example gravity), and μ is the dynamic viscos-
ity of the fluid (with the kinematic viscosity given by ν = μ/ρ). By measuring
(or calculating) the flux for different pressure drops (or body force values),
and using equation (4), the permeability K can be derived. The permeability
has dimensions of an area, and it is measured in units of Darcy.

2.1.3 Computational details

To estimate the single phase permeability of the sample, we impose a flow in
the positive z direction of the rock. The flow is driven only by a body force
g (and no pressure drop is explicitly present). A correspondence between the
body force, g, and the pressure drop, ∇P , can be defined using the following

9



equation,

∇P =
(Pi − Po)

L
= gρ (5)

where Pi and Po are the pressures at the inlet and outlet respectively, L is
the distance between inlet and outlet, and ρ is the fluid density. Equation (5)
can be used to compare the simulations with experiments, in which usually a
pressure drop is used to drive the fluid flow.

Each simulation is run until the steady state is achieved (i.e. until the aver-
age flux is constant in time). Then the flux across each slice in the xy-plane
(perpendicular to the direction of the flow) is calculated according to

J(z) =
1

nx ny

nx,ny∑
x,y=1

v(x, y, z), z = 1, ..., nz (6)

where x, y and z denote the coordinates of a lattice site, and nx, ny and nz

are the system sizes (in lattice points).

2.2 Results

2.2.1 Validation of Darcy’s law

Because of mass conservation and fluid incompressibility, the flux in each lon-
gitudinal slice parallel to the main flow direction (z-axis) should be constant.
However, small compressibility effects are observed in our lattice Boltzmann
simulations, resulting in a variation of the values of J(z) with z, as shown in
figure 7. The compressibility effects depend on the fluid velocity, and hence
these differences increase with increasing flow driving force. To take into ac-
count these fluctuations, we calculate the average flux, J̄ as

J̄ =
1

nz

nz∑
z=1

J(z). (7)

The average flux, J̄ , as a function of applied force, g, in a 1283 lattice sites
sample of the Bentheimer, shows linear behaviour (with zero intercept). This is
predicted by Darcy’s law for low forcing. The permeability can be calculated
from the slope of the plotted line in the region where linear behaviour is
observed.

We find good agreement between the calculated values of the flux as a function
of applied force and the linear behaviour predicted by Darcy’s law. This is
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Fig. 7. Flux, J(z), across each cross sectional area perpendicular to the forcing—and
main flow—direction (z-axis) with body force g=0.0001. The flux is expressed in
lattice units.

an example of how microscopic quantities, such as the velocity field at the
pore scale computed using the lattice Boltzmann method, can be related to
macroscopic, phenomenological laws.

Once the right forcing regime is found, it is sufficient to compute the flux
for one forcing level and the permeability can be directly calculated using
expression (4). For all the simulations presented in this study we have chosen
a value of the force g=0.0001.

The minimum number of LB steps required to reach steady state is, in general,
system size dependent. Using g=0.0001 as the driving force, and τ=1 as the
BGK relaxation parameter, we have verified that 5000 steps are sufficient for
equilibration, even in the largest sample (5123) that we have considered in this
work. For this number of steps, average quantities, such as flux, have reached
equilibrium. Note, however, that the local densities and velocities fields are
not yet fully equilibrated after 5000 steps, and it takes about 8000 steps for
the microscopic quantities to reach steady state.

We note that the measured permeability of porous media depends on the
selected relaxation parameter in case of the BGK approach. This has been
reported in the literature, e.g. by Pan et al. [20]. Also, we have reported on
this dependence in a recent paper. [10]. Here, we have chosen the relaxation
parameter accordingly.

2.2.2 Effect of system size

In this section we show how the permeability of a realistic rock sample depends
on the size of the sample, i.e. on the portion of rock used in the simulations to
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calculate the flux. The issue is addressed by considering samples of different
sizes, and by studying the distribution of permeability as the sample size
increases. The largest size we have considered is a 5123 cube, centered in the
middle of the full data set, then a 2563 cube, also centered in the middle of
the full data set. The 2563 sample has then been divided into 8 and 64 cubes
of size 1283 and 643, respectively. To give an idea of the physical size of these
samples, consider that a 643 cube has a linear size of 313 μm. The permeability
has been computed in all these samples. The values of permeability, K, as a
function of void fraction φ are reported in figure 8. Observe how the data
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Fig. 8. Permeability, K (in Darcys) as a function of void fraction, φ, for rock samples
of different size. The dotted line connecting the points for the systems of size 643 is
only a guide to the eye.

for the smaller size we have considered (643) are more spread-out, both in
φ and in permeability, while, as the system size increases, the data tend to
concentrate into a narrower region. On the average, we found that, based on
the 643 data, the permeability increases almost linearly with increasing void
fraction, although for the smallest samples we observed large fluctuations.

2.3 Phase Separation

In this section, we present results of immiscible fluid flow modeled using the
Shan-Chen model [21]. For more details, see [21,22]. We will first study phase
separation and wettability effects. Then we will describe calculations of relative
permeabilities in the Bentheimer rock sample.

The phase separation of a binary immiscible mixture depends on a number of
parameters of which the most important is the value of the coupling constant
gσσ̄ between the two phases. Previous studies have shown that the surface
tension increases linearly with increasing coupling constant [5]. LB simulations
of critical spinodal decomposition in binary immiscible fluids [23] were also
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carried out to determine the properties of a binary mixture as function of
different parameter sets. Different wettabilities are implemented in our model
by assigning to the solid sites (the surface) a fake density of the wetting
phase. For example, for water wettability, if the bulk density of the water
phase is ρ = 0.8, then a fake density between 0 (non wet) and 0.8 (maximal
wettability) can be assigned to the solid sites. Of course, this density is not
evolving with the LB equation, but exerts a force on the neighboring fluid
sites of the opposite phase, with the same coupling constant as the fluid-fluid
interaction. The value of the wettability is given by the solid site density
divided by the wetting fluid bulk density.

To verify that our implementation of two-phase flow simulations with the LB
method is able to model a wide range of wettability situations, we used a simple
model of a box containing two immiscible fluids above a surface with variable
wettability. The non-wetting fluid (oil, colored in red) is initially placed in a
cubic configuration at the center of the box and in contact with the surface,
then a LB simulation is performed until the non-wetting phase has reached
its equilibrium shape. The results are shown in figure 10 for oil concentration
of 25%. When the surface is non wet (wet=0), the non-wetting phase spreads
over the entire surface. As the wettability is increased, the non-wetting phase
starts to detach from the surface, and forms a contact angle with it. This
contact angle can be defined as the angle between the wet surface and a plane
tangent to the non-wetting phase droplet where the droplet starts to detach
from the surface. This contact angle increases with increasing wettability. At
high wettability (≥0.6) the non-wetting phase is completely detached from
the surface and forms a spherical bubble.

Fig. 9. Schematic illustration of how the contact angle θ is defined.
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(a) wet=0.0 (b) wet=0.1 (c) wet=0.2 (d) wet=0.3

(e) wet=0.4 (f) wet=0.5 (g) wet=0.6 (h) wet=0.8

Fig. 10. Equilibrium configurations (as 2d slices taken at the center of the 3d system)
of a binary immiscible fluid mixture as a function of increasing water wettability
of the bottom surface. Wetting phase (water) is depicted in blue and non-wetting
phase (oil) in red. Note the finite size effects in panel (c) where the detaching droplet
of oil touches the lateral boundaries of the box. In this case it is not possible to
determine the contact angle. However, there are no finite size effects for all the other
values of wettability.
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2.4 Relative permeabilities

We carried out an extensive parameter study to find the optimal value of
the total density that gives both phase separation and stability. Using this
parameter, we calculate the relative permeabilities for both oil and water,
forcing either oil or water or both. The results are shown in Figure 11. In all
cases, the rock is considered to be water-wet. We observe that the results for
the non-wetting fluid (oil) are independent of the details of the forcing. For
the case of the wetting fluid (water), the results depend on whether we force
water or both water and oil. The initial condition for the distribution of fluids
is a homogeneous saturation of the rock, where the saturation at each node is
fixed. This means that, at each lattice site, the fractions of oil and water are
fixed. In all cases, we run the simulations until a steady state is achieved. For
more details, we refer to [22].
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Fig. 11. Relative permeabilities in Bentheimer sandstone (1283).

3 Conclusions

We have used lattice-Boltzmann simulations to calculate the flow in complex
three-dimensional porous media. First, we calculate for a 2-d micro-model the
single phase permeability and detailed flow field. Using an effective drag force
to represent the third dimension, we find that hese are in agreement with
experiment. Tracer dispersion calculations were carried out and predictions
of the displacement propagator distributions were made. Second, we consider
flow in a 3-d rock sample. The data sets used in this study were obtained using

15



X-ray microtomography (XMT) on a cylindrical core of Bentheimer sandstone.
We systematically study the effect of system size and periodic boundary con-
ditions. First, we validate Darcy’s law from the linear dependence of the flux
on the body force exerted. Then, we find that, as the system size of the compu-
tational sub-sample increases, the values of the permeability measurements as
a function of porosity tend to concentrate in a narrower region of the porosity.
Finally, we consider immiscible flow and calculate relative permeabilities for
different forcing conditions.
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