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Abstract

Introduction: Animal studies demonstrate the importance of the E3 ubiquitin 

ligases, Muscle RING-Finger Protein 1 (MuRF-1) and atrogin-1, in muscle protein 

degradation during acute muscle atrophy. Small clinical studies suggest MuRF-1 

and atrogin-1 expression in the quadriceps muscle is also increased in stable 

patients with Chronic Obstructive Pulmonary Disease compared to controls. 

However, it remains unclear whether these ligases have a role in maintaining a 

muscle-wasted state in COPD patients. Methods: 32 stable COPD patients (16 with 

a low fat-free mass index (FFMI), 16 with a normal FFMI) and 15 controls underwent 

lung function and quadriceps strength tests and a percutaneous quadriceps biopsy. 

Quadriceps MuRF-1 and atrogin-1 protein were quantifi ed with western blotting. 

Quadriceps fi ber cross-sectional area (CSA) and fi ber proportions were determined 

by immunohistochemistry on muscle sections. MuRF-1 and atrogin-1 levels were 

compared between COPD patients with and without a low FFMI, and between patients 

and controls, and correlations between MuRF-1 and atrogin-1 levels and quadriceps 

fi ber CSA in the patients were investigated. Results: Atrogin-1 protein levels were 

lower in patients than controls, but similar in patients with a low and normal 

FFMI. MuRF-1 levels did not differ between any groups. MuRF-1 and atrogin-1 

levels were not associated with quadriceps fi ber CSA or quadriceps strength in 

patients. Conclusions: Chronic upregulation of ubiquitin ligases was not evident in 

the quadriceps muscle of stable COPD patients with a low muscle mass. This does not 

exclude the possibility of transient increases in ubiquitin ligases during acute catabolic 

episodes.
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Introduction

Loss of muscle bulk, particularly in the lower limb, is a common and impor-
tant complication of COPD (1) predicting a poor outcome independent of 
the severity of lung disease (2, 3). Th is has led to interest in the molecular 
mechanisms underlying muscle atrophy in COPD. 

Th e ubiquitin-proteasome pathway is a key fi nal pathway of muscle protein 
breakdown. Enzymes involved in this pathway, in particular Muscle RING-
Finger Protein-1 (MuRF-1) and atrogin-1, mediate acute muscle atrophy in 
experimental animal and cell models (4). MuRF-1 and atrogin-1 expression 
are induced by nuclear factor-kappa B (5) and P38 mitogen-activated protein 
kinase activation (6) respectively; activation of these pathways may or may 
not occur in the muscle of patients with COPD (7–11). 

In one study of 12 stable COPD patients, increased MuRF-1 and atrogin-1 
mRNA levels were found in the quadriceps of patients compared to controls 

LCPD_A_781577.indd   618LCPD_A_781577.indd   618 9/13/13   3:44:17 PM9/13/13   3:44:17 PM



 Quadriceps muscle MuRF-1 and atrogin-1 in COPD 619

www.copdjournal.com

but there were no diff erences in either mRNA between 
patients with low muscle mass and patients with normal 
muscle mass (12), no diff erences in atrogin-1 protein 
between patients with low muscle mass and patients 
with normal muscle mass, and MURF-1 protein was not 
measured. Another study reported increased atrogin-1 
mRNA and increased Nedd4 protein (another ubiquitin 
ligase), but not increased MuRF-1 protein, in the quad-
riceps of nine patients with muscle atrophy compared 
to nine controls. However in that study, the relationship 
between these proteins and muscle mass or quadriceps 
function were not explored (13). 

Th ere is, therefore, insuffi  cient data comparing MuRF-1 
and atrogin-1 protein levels in COPD patients with and 
without muscle atrophy to clarify whether these proteins 
are likely to have a role in determining muscle mass in 
stable COPD. Th erefore, we compared protein expression 
of MuRF-1 and atrogin-1 in quadriceps samples from 32 
COPD patients (16 with muscle atrophy as defi ned by a 
low global fat-free mass index using the Dutch criteria 
(14), 16 without muscle atrophy) and 15 healthy age-
matched controls, and examined relationships with mus-
cle mass and quadriceps fi ber size. Our conclusions were 
further supported by analysis of MuRF-1 and atrogin-1 
mRNA in another, overlapping cohort of COPD patients 
and controls (details in supplement). 

Methods

Ethical approval
Study numbers 06/Q0404/35 and 06/Q0410/54 were 
approved by the Royal Brompton & Harefi eld NHS 
Trust and Ealing and West London Mental Health Trust 
Research Ethics Committees and all participants gave 
written, informed consent.

Participants
First, 32 GOLD(15) Stage II to IV COPD patients were 
enrolled from respiratory clinics and 15 healthy controls 
were recruited by advertisement. A diagnosis of heart, 
renal or liver failure, a systemic infl ammatory, metabolic 
or neuromuscular disorder or a severe exacerbation (ie 
requiring antibiotics, oral steroids, or hospitalisation) 
within the previous 4 weeks or warfarin therapy (bleed-
ing risk from biopsy) were exclusion criteria. 

Physiological measurements and quadriceps biopsy
Post-bronchodilator spirometry (16), lung volumes 
(by plethysmography) (17), diff usion capacity (18) and 
arterialized capillary earlobe blood gas tensions were 
measured. Physical activity was measured using a tri-
axial accelerometer (Dynaport ADL; McRoberts BV, the 
Netherlands) for 12 hours/day for 2 days as validated 
by Pitta et al (19). Fat-free mass index (FFMI) was cal-
culated from bioelectrical impedance measurements 
(Bodystat 1500, UK) taken after participants had rested 
supine for 20 minutes, using a disease-specifi c regres-
sion equation (20). 

Patients were classifi ed as having a low or normal 
FFMI using the Dutch criteria [15 and 16 kg/m2 cut-off  
for females and males respectively (14)]. Quadriceps 
strength (dominant leg) was assessed by supine iso-
metric maximal voluntary contraction (MVC) (21) and 
unpotentiated twitch quadriceps force (TwQ) (22). Exer-
cise performance was assessed with a 6-minute walking 
test (6MW) performed according to ATS guidelines (23) 
and symptom-limited incremental cycle ergometry with 
metabolic testing as described previously (24). On a sep-
arate occasion, percutaneous needle biopsy of the vastus 
lateralis was performed using the Bergstrom technique 
and samples stored at –80°C (25) (see supplement).

Quantifi cation of MURF-1 and atrogin-1 protein in 
quadriceps muscle
Protein levels were determined by Western blot using 
anti-MuRF1, anti-atrogin-1 and anti-alpha tubulin anti-
bodies (see supplement).

Measurement of quadriceps muscle fi ber cross-
sectional area (CSA) from biopsy
Immunohistochemistry was performed on 10 μm 
transverse muscle sections using anti-type I myosin, 
anti-type IIa myosin and anti-laminin antibodies to 
determine type I, type I/IIa, IIa, IIx proportions and 
median CSA of each fi ber type (26, 27) from a minimum 
of 100 fi bers per subject (see supplement). Th e patients 
in this MS (in whom ubiquitin ligases) were measured 
were also participants in a larger study describing the 
heterogeneity of quadriceps biopsy appearances in 
COPD (28).

Statistical analysis
Sample size calculation
Using the MuRF-1 protein data from COPD patients and 
controls in the publication of Plant et al. (13), a sample 
size of 11 was required in both the COPD and control 
groups to achieve 90% power. A similar calculation using 
the atrogin-1 protein data from the paper of Doucet et al.
(12) suggested a sample size of 7. Atrogin-1 protein and 
MuRF-1 mRNA expression were not included in Doucet’s 
paper for the COPD patients with and without muscle 
wasting, so we were unable to calculate the sample size 
required for the low and normal FFMI groups.

Data analysis
Normally and non-normally distributed data are pre-
sented as mean (standard deviation) and median (25th

percentile, 75th percentile) respectively, and group dif-
ferences assessed with a t-test and the Mann–Whitney 
U-test respectively. Diff erences between categorical 
variables were tested with Fisher’s exact test. Spear-
man’s rank correlation coeffi  cient was calculated to 
assess correlations between MURF-1 and atrogin-1 lev-
els and FFMI and quadriceps fi ber CSA. A conventional 
2-tailed p-value of ≤ 0.05 was used to defi ne statistical 
signifi cance.
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Results

Th e clinical and physiological characteristics of the 
COPD patients and controls are shown in Tables 1 and 2. 
As expected, the COPD patients had signifi cantly poorer 
lung function, arterial oxygen tensions, FFMI, quadriceps 
strength, exercise performance and physical activity lev-
els than the controls (Table 1). Patients with a low FFMI 
had a signifi cantly lower TL

CO
, but not lower FEV

1
, than 

patients with a normal FFMI, and as expected quadri-
ceps strength was lower in the patients with a low FFMI 
compared to patients with a normal FFMI. Patients with 
a low FFMI also had a lower BMI and greater pack-year 

Table 1. Clinical characteristics of COPD patients and controls

  COPD (n = 32) Controls (n = 15) p-value Low FFMI (n = 16) Normal FFMI (n = 16) p- value

Age (yr) 65(8) 68(8) 0.19 64(8) 66(8) 0.60

Gender (% male) 57% 53% 1.0 44 71 0.16

Smoking history (pack-years) 42(29,75) 2(0,8) <0.0001 38(23,55) 48(35,75) <0.0001

Smoking status (% current: ex) 7:93 0:53 1.0 6:94 7:93 1.00

% on oral glucocorticoids 3% 0% 0.54 13 7 1.00

FEV
1
 (L) 0.92(0.64,1.29) 2.92(2.49,3.16) <0.0001 0.77(0.58,1.13) 1.00(0.68,1.70) 0.10

FEV
1
 (% predicted) 35(25,51) 111(101,122) <0.0001 30(25,41) 46(24,60) 0.24

TL
CO

 (% predicted) 39(16) 93(16) <0.0001 32(14) 46(16) 0.02

PaO
2
 (kPa) 9.2(1.1) 10.9(1.6) <0.0001 9.3(1.1) 9.1(1.2) 0.65

PaCO
2
 (kPa) 5.3(0.5) 5.2(0.5) 0.44 5.3(0.6) 5.4(0.5) 0.81

Body Mass Index (kg/m2) 23.2(3.9) 25.6(4.6) 0.09 20.6(2.6) 26.2(2.9) <0.0001

Fat-free mass(kg) 44(9) 47(9) 0.33 39(6) 49(8) <0.0001

Fat-free mass index (kg/m2) 15.7(2.0) 17.0(2.1) 0.02 14.1(1.0) 17.0(1.6) <0.0001

Quadriceps MVC (kg) 27(10) 36(11) 0.01 22(8) 33(8) 0.001

Quadriceps twitch force (kg) 7.5(3.1) 9.4(3.2) 0.08 6.5(3.1) 8.6(4.1) 0.07

Locomotion time (min/12h) 38(22,55) 96(61,128) <0.0001 30(23,41) 41(17,66) 0.19

6-minute walk distance (m) 391(137) 616(97) <0.0001 384(140) 398(139) 0.79

Peak VO
2
 (ml/kg/min) 12.6(9.6,14.6) 21.1(17.3,26.9) <0.0001 11.1(9.4,14.1) 13.6(9.7,15.1) 0.27

Results are mean(standard deviation), compared using the t test, or median(25th percentile, 75th percentile), compared using the Mann–Whitney U-test. 
Abbreviations: COPD Chronic Obstructive Pulmonary Disease, FEV

1 
= Forced Expiratory Volume in 1 second, TL

CO 
= carbon monoxide diffusing capacity, 

PaO
2
 = partial pressure of oxygen in arterial blood, PaCO

2
 = partial pressure of carbon dioxide in arterial blood, MVC = Maximal Voluntary Contraction, 

VO
2 
= oxygen consumption during maximal incremental cycle ergometry.

Table 2. Quadriceps muscle fi ber cross-sectional areas in COPD patients and controls

 COPD 
(n = 32)

Controls 
(n = 15) p-value

COPD low FFMI 
(n=16)

COPD normal FFMI 
(n=16) p-value

Type I fi ber CSA (μm2) 5020(3670,6060) 5130(4430,5850) 0.35 4650(3630,7230) 5070(3670,5720) 1.00

Type I/IIa fi ber CSA (μm2) 5390(3260,5860) 4770(4410,6000) 0.84 4690(2640,5740) 5470(5060,7640) 0.16

Type IIa fi ber CSA (μm2) 4030(2920,4750) 4230(30505350) 0.35 3520(2220,4850) 4130(3670,4750) 0.26

Type IIx fi ber CSA (μm2) 2490(1830,3240) 4790(2930,6190) 0.003 2550(1650,3370) 2490(1930,3920) 0.59

Proportion of type I fi bers (%) 28(19) 58(14) <0.0001 24(19) 32(19) 0.28

Proportion of type I/IIa fi bers (%) 4(1,6) 2(0,6) 0.19 5(0,7) 3(0,5) 0.23

Proportion of type IIa fi bers (%) 62(17) 37(14) <0.0001 65(18) 59(14) 0.28

Proportion of type IIx fi bers (%) 4(1,8) 0(0,4) 0.009 4(1,8) 4(2,9) 0.61

Results are mean(standard deviation), compared using the t test, or median(25th percentile, 75th percentile), compared using the Mann–Whitney U-test. Abbreviations: 
COPD Chronic Obstructive Pulmonary Disease, CSA: cross-sectional area, FFMI: fat-free mass index Muscle fi ber proportions do not add up exactly to a total of 100% 
as these are median values.

smoking history than patients with a normal FFMI but 
otherwise the low and normal FFMI groups did not dif-
fer signifi cantly, including the proportion of patients on 
long-term oral glucocorticoids (Table 1). 

Patients had signifi cantly reduced glycolytic type IIx 
fi ber CSA [2490(1830,3240) μm2 vs 4790(2930,6190)μm2, 
p = 0.003, Table 2], a reduced proportion of oxidative type 
I fi bers [28(19)% v 58(14)% p < 0.0001], and increased 
proportions of intermediate oxidative/glycolytic type IIa 
[62(17)% vs 37(14)% p < 0.0001] and glycolytic type IIx 
fi bers compared to controls [4(1,8)% vs 0(0,4)%% p = 0.009]. 
Quadriceps muscle fi ber CSA was not signifi cantly diff erent 
between patients with and without a low FFMI (type I fi bers 
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4650(3630,7230) μm2 vs 5070(3670,5720) μm2, p = 1.00, 
type IIa fi bers 3520(2220,4850) μm2 vs 4130(3670,4750) 
μm2, p = 0.26 and type IIx fi bers 2550(1650,3370) μm2 vs 
2490(1930,3920) μm2, p = 0.59, Table 2) and type I and II 
fi ber proportions did diff er between these groups.

Quadriceps MuRF-1 and atrogin-1 protein levels in 
the patient and control groups are displayed in Figure 1 
and representative images of the Western blots shown 
in Figure 2. Atrogin-1 protein levels were signifi cantly 
lower in COPD patients than controls [0.64(0.31,1.24)
AU vs 1.41(0.68,2.06)AU, p = 0.03, Figure 1A]. However, 
atrogin-1 protein levels were not signifi cantly diff er-
ent between COPD patients with and without a low 
FFMI [0.73(0.34,1.61)AU vs 0.74(0.12,1.34)AU, p = 0.46, 
Figure 1A], with a small subset of patients in both the 
normal and low muscle mass groups having extremely 
high and low values compared to controls. 

MuRF-1 protein in quadriceps was not signifi -
cantly diff erent between COPD patients and controls 
[0.56(0.45,1.30)AU vs 0.92(0.74,150)AU, p = 0.12, Fig. 1B] 
nor diff erent between COPD patients with and without 
a low FFMI [0.55(0.42,0.92) vs 0.59(0.53, 1.62), p = 0.35, 
Figure 1B]. Th ese results were consistent with our fi nd-
ings from a larger group of COPD patients (n = 49) and 
controls (n = 23) overlapping with this current cohort in 
which we observed that atrogin-1 mRNA levels were sig-
nifi cantly lower in patients compared to controls, while 
MuRF-1 mRNA levels were not signifi cantly diff erent 
between these groups, and neither atrogin-1 or MuRF-1 
mRNA levels were diff erent between patients with and 
without a low FFMI (see Tables E1 and E2 in supplement). 
In the COPD group there were no signifi cant correlations 
between quadriceps MuRF-1 and atrogin-1 protein and 
FFMI, quadriceps type I or type II fi ber CSA or quadri-
ceps strength (whether measured as MVC or TwQ).

Discussion

The main finding of the present study is that MuRF-1 
and atrogin-1 protein were not increased in the 
quadriceps of stable COPD patients with a reduced 
total muscle mass compared to patients with nor-
mal muscle mass. There were also no correlations 
between MuRF-1 and atrogin-1 protein and mRNA in 
the quadriceps with quadriceps fiber size. Similarly, 
MuRF-1 and atrogin-1 protein were not greater in the 
quadriceps of COPD patients compared to controls; 
in fact, controls had higher muscle atrogin-1 protein 
than patients. Therefore, our data are not supportive 
of a role of MuRF-1 and atrogin-1 in the maintenance 
of a chronic muscle-wasted state in stable patients 
with COPD.

Figure 1. Box plots of atrogin-1 and MuRF-1 protein levels in COPD patients with and without a low FFMI and healthy age-matched controls. Atrogin-1 protein levels in 
quadriceps muscle were lower in COPD patients than controls [0.64(0.31,1.24)AU vs 1.41(0.68,2.06)AU, p = 0.03, A] but not signifi cantly different in COPD patients with a 
reduced FFMI compared to patients with a normal [0.73(0.34,1.61)AU vs 0.74(0.12,1.34)AU, p = 0.46, A]. There was a subset of COPD patients with relatively high protein 
levels of these mediators compared to the controls but these patients were not confi ned to the low FFMI group. MuRF-1 protein levels were not signifi cantly different in 
quadriceps muscle from COPD patients compared to controls [0.56(0.45,1.30)AU vs 0.92(0.74,1.50)AU, p = 0.12, B], nor between COPD patients with and without a low 
FFMI [0.55(0.42,0.92)AU vs 0.59(0.54,1.62)AU, p = 0.35, B].

Figure 2. Representative images of western blots for atrogin-1 and MuRF-1 
protein in COPD patients and controls. The atrogin-1 band and MuRF-1 bands 
were seen on separate blots just below the 50 kDA marker. The atrogin bands are 
denser in the control samples than the COPD samples, with considerable variability 
between patients, while the MuRF-1 bands show no consistent density difference 
between COPD samples and controls.
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Signifi cance of the fi ndings
Since our data point away from maintenance of a 
chronic wasted state being associated with increased 
muscle ubiquitin ligases, why then do patients sustain 
a low muscle mass? In chronic wasting in humans, 
impaired protein synthesis may be the driver of reduc-
tion in muscle mass with muscle protein breakdown 
rates actually becoming suppressed as an adaptation to 
limit muscle loss (29). Our fi nding of reduced atrogin-1 
protein expression in the muscle of COPD patients 
compared to controls is consistent with this concept. 
In cancer cachexia, which has similarities to COPD-
related cachexia, the muscle loss is largely attributable 
to impaired muscle protein synthesis and not increased 
protein breakdown (30, 31). 

We acknowledge, however, that, despite our fi ndings, 
strategies to block the action of atrogin-1 further may 
still be eff ective in treating muscle atrophy in COPD by 
shifting the balance further in favour of muscle protein 
synthesis. In addition, our data do not exclude the pos-
sibility that muscle atrophy results from acute catabolic 
episodes involving increases in MuRF-1 and atrogin-1, 
for example during an exacerbation, which cannot then 
be fully resolved during convalescence. Apart from 
exacerbation, an acute catabolic event could potentially 
be triggered by restarting smoking (32) or stopping 
anti-infl ammatory medication such as steroids, for 
example. In this case, blockade of these mediators dur-
ing the catabolic episode may be eff ective in preventing 
development of a chronic wasted state.

Although our fi ndings, at fi rst glance, appear to con-
tradict data from other studies (12, 13), this is not the 
case. While the two prior studies are often cited, for 
example Kim et al. (33) or Rabinovich and Vilario (34), 
as evidence for a role for ubiquitin ligases in the quad-
riceps atrophy of COPD, they did not actually show any 
association between ubiquitin ligases and muscle atro-
phy in COPD. Doucet et al. did not fi nd a diff erence in 
atrogin-1 protein levels in COPD patients and controls, 
only in mRNA levels, and did not measure MuRF-1 pro-
tein. As with our research, Doucet et al. did not fi nd a 
diff erence in atrogin-1 or MuRF-1 mRNA levels between 
the 6 COPD patients with muscle wasting compared to 
5 patients without wasting (12). 

Plant et al. found that MuRF-1 protein levels did 
not diff er between muscle-wasted patients and healthy 
controls and did not measure atrogin-1 protein level 
(13). Th e diff erence between Nedd4 protein levels in 
patients and controls could have been related to muscle 
wasting and/or COPD itself; the question could have 
been answered if Nedd4 had been compared in COPD 
patients with and without muscle wasting. However, 
our data, for the fi rst time, expressly shows that muscle 
ubiquitin ligases are not increased in the specifi c context 
of stable muscle wasting in COPD. 

Our data are also not inconsistent with animal models 
if timing of ubiquitin ligase measurement in relation to 
the incidence and nature of the insult is considered. In 

animal models of acute muscle wasting due to denerva-
tion or complete immobilisation, MuRF-1 and atrogin-1 
mRNA levels peak 4 days after the insult then return to 
normal by day 14 (4). Similarly, following immobilisa-
tion in humans, quadriceps MuRF-1 mRNA is 3-fold 
lower than baseline 20 days after the result, though it 
is increased 3-fold at day 10 (35). In chronic wasting in 
humans, there is unlikely to be a single, sudden insult 
but a gradual accumulation of chronic factors (reduced 
physical activity, hypoxaemia, low-grade systemic infl am-
mation), which means that ubiquitin ligases may not be 
upregulated in the same way as in animal models. 

Lastly, the fi nding that atrogin-1 and MuRF-1 levels 
were not increased in patients with COPD compared 
to controls, nor specifi cally in patients with wasting, is 
consistent with our fi nding in patients from the same 
cohort that the P38 mitogen-activated kinase pathway 
was not activated in quadriceps (10) and data from 
Mercken et al. showing that in clinically stable COPD, 
muscle NF-κB is not activated in resting conditions(8).

Critique of the method
Th e study was designed to answer the question about 
whether MuRF-1 and atrogin-1 expression were diff er-
ent in COPD patients with and without muscle wast-
ing, and investigated this in respect to both total muscle 
bulk and atrophy of individual muscle fi ber types. Both 
MuRF-1 and atrogin-1 were quantifi ed at a protein 
level, in contrast to previous studies. Th e present study 
includes data from COPD patients with a wider range 
of lung disease severity, which means our data is more 
generalizable to the COPD population than if we had 
selected only the very severe group. We did not specifi -
cally select GOLD III and IV patients, since it is known 
that the muscle weakness (1) and wasting (36) in COPD 
are not confi ned to those with the worst lung function 
We ensured, however, that severity of lung disease was 
matched between the patients with and without muscle 
wasting.

Th e data would have been strengthened had muscle 
protein breakdown and muscle protein synthesis rates 
also been measured, although these techniques are com-
plex and would be diffi  cult to accomplish in a sample of 
this size (37). 

One criticism of our study is that because we studied 
stable outpatients we were unlikely to fi nd evidence of 
ubiquitin ligase activity, since this is a marker of active 
muscle atrophy. Although this is a pertinent criticism, it 
overlooks the following points. First, partially positive 
results had been reported prior to our study by Doucet 
et al. (12) and Plant et al. (13) in stable outpatients, sup-
porting the validity of our study question. Second, while 
muscle wasting is almost certainly accelerated during 
exacerbation (see later), reduced muscle strength occurs 
in the absence of exacerbation and is unrelated to exac-
erbation frequency (38). 

In this cohort, exacerbation frequency was not signif-
icantly different between the patients with a low FFMI 
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and patients with a normal FFMI (3.7 exacerbations 
per year versus 2.9 excaerbations per year respectively, 
p = 0.47). Last, we have recently demonstrated a 
relationship between muscle specific micro-RNA 
(miRNA) and muscle phenotype in COPD (39); pre-
liminary data confirm that muscle specific miRNA 
can also be detected in the blood of stable outpatients 
with COPD suggesting that active muscle atrophy is 
indeed occurring in apparently stable patients with 
COPD (40).

Strength loss is a feature of acute exacerbation (41), 
but we cannot comment on possible roles of MuRF-1 
and atrogin-1 in loss of muscle mass at the time of an 
exacerbation (38, 41) as we specifi cally excluded clini-
cally unstable patients who had suff ered a recent exac-
erbation. Our aim was to study clinically stable patients 
who were either maintaining or very slowly losing mus-
cle mass. Data on any changes in patients’ weight and 
FFMI in the months preceding this study would have 
been helpful to defi ne the exact nature of the patients 
(muscle mass maintaining or gradually decreasing) that 
this data relates to. Nevertheless, the cross-sectional 
study design we used, although also employed in the 
studies by Doucet et al. (12) and Plant et al. (13), would 
have been strengthened by a longitudinal arm. 

In conclusion, we do not fi nd any associations between 
MuRF-1 or atrogin-1 protein and global muscle atrophy, 
quadriceps muscle fi ber size or quadriceps weakness in 
a group of patients with stable COPD. Our data do not 
support the concept that chronically elevated muscle 
levels of MuRF-1 or atrogin-1 are key drivers of muscle 
wasting in stable COPD. 
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