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Abstract: In continuous chemical processes, disturbances travel along propagation paths in the

direction of the control path or process flow. This article applies a method based on the nearest

neighbors of embedded vectors to historical process data for the purpose of identifying the direction

of propagation of disturbances. The resulting measure is sensitive to directionality even in the

absence of an observable time delay. Its performance is studied in two industrial case studies and

default settings for the parameters in the algorithm are derived so that it can be applied in a large

scale setting.
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1 Introduction

A fault occurring in a continuous process often results in variations in the local process measure-

ments, and the disturbance can also travel and affect other more remote process measurements.
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It is then called a plant-wide or whole-plant disturbance and will have a negative impact on the

economic performance of the process. In the best case, the plant cannot be run at the desired set

points and in the worst case it may have to be shut down. In their study on industrial processes,

Desborough and Miller [1] identified common root causes of plant-wide disturbances as

• Process and constraint problems;

• Controller tuning problems;

• Control valve problems.

While the analysis of valve and tuning problems has been widely addressed for single loops [2, 3, 4, 5],

few systematic approaches to analyze a whole process are available [6, 7]. The contribution of this

article is a data-driven method to find the root cause of a plant-wide disturbance by investigating

relationships between pairs of process measurements and thus tracing the fault propagation path.

The work presented here focuses on dynamic plant-wide disturbances that persist over a time

horizon of hours or days. The onset of the disturbance is often hard to find, however, especially

if it started some time earlier or if it grew gradually. The dynamic nature of these disturbances

motivates the treatment of the measurements as time series rather than the use of static methods

such as principal component analysis and contribution charts which have had success in on-line

fault detection and diagnosis of slowly-developing faults such as catalyst degradation or fouling of

a heat exchanger. Papers from industrial commentators [1, 8] emphasise that dynamic plant-wide

disturbances are common and very problematical in continuous processes.

When a disturbance propagates along the process flow passing through process equipment, its

nature changes. For instance, deviations with sharp spiky features tend to become smoother because

of low-pass filtering due to the process dynamics, and there may also be measurement delays. A

method that is sensitive to these features in the time series can therefore give information about

the propagation path. A number of recently developed statistical measures [9, 10, 11, 12, 13, 14, 15]

exploit this information using a method referred to as generalized synchronization [16, 17]. Of two
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related variables, one is identified as the driver and the other as the response variable [18]. The

relationship is described through a mutual phase space representation which is constructed from

historical data and the nearest neighbors of the mutual variables. A recent review [19, 20] discussed

the construction of digraphs from process models. By contrast, directional information obtained

from the analysis proposed in this paper can be used directly without the need for a process model.

The application of a nearest neighbors method to process data gives a directionality measure

for retracing the fault propagation path in the chemical process. It was proposed by the authors

in a conference publication [21] and the contribution of this article is to present the method in

depth and to suggest default parameter settings. The methods are tested on two industrial case

studies with plant-wide disturbances. One of the disturbances investigated is oscillatory in nature

while the other disturbance shows an irregular pattern. The directionality measure is applied to

both kinds of disturbances. The results are compared to those from a related and established fault

diagnostic tool which uses nonlinearity [22] to show that the directionality measure is able to resolve

ambiguous nonlinearity results.

2 Nearest Neighbors Methods

Nearest neighbour methods are data-driven and operate on the process measurements stored in a

data historian. This section describes the concept of embedded vectors and shows how the nearest

neighbors of embedded vectors can be used to detect interdependence and directionality.

2.1 Embedded Vectors

For each variable X measurements xi at time instances i = 1 . . . N are taken where N is the number

of samples. In this context, X refers to the stochastic variable while xi refers to a sample value

of that stochastic variable. The objective is to find information about the state of the process

and the relationship between process measurements. A time series method based on the nearest
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neighbors of a phase state representation called an embedding is investigated to provide a measure

of interdependence between two variables.

Embedded vectors give a generic, high dimensional representation of a dynamic system [23].

They are constructed from the measurements by stacking m values in sequential order. At time

instance i, the embedded vector is defined as xi =
[
xi, xi−κ, . . . xi−(m−1)κ

]
where the embedding

delay κ can be viewed as a sub-sampling interval. The embedded vectors of a measurement X with

N samples can be arranged in the following matrix:

X =




x(m−1)κ+1

x(m−1)κ+2

...

xN




=




x(m−1)κ+1 . . . x1

x(m−1)κ+2 . . . x2

...
...

xN . . . xÑ




(1)

where Ñ = N − (m− 1)κ is the number of embedded vectors. The Euclidean norm measuring the

distance between embedded vectors i and j is denoted as di,j = ||xi−xj ||. Suggested default values

for the embedding parameters m and κ as well as the prediction parameter h are given in Section

4. All measurements are treated equivalently regardless of their mean value and engineering units

by scaling them to zero mean and unit variance.

The nearest neighbors of xi are defined as the embedded vectors xj that have the smallest values

of di,j . Altogether, K nearest neighbors are sought and the indices of the K nearest neighbors are

denoted as ri,j , where j = 1 . . . K, and ri,j is the index for the jth nearest neighbor of the ith

embedded vector xi. Embedded vectors are used for prediction as follows. A future value called the

prediction value is assigned to each embedded vector. For instance, in the case of self-prediction,

the vector xi is assigned the prediction value xi+h where h is the prediction horizon.
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Figure 1: Find the nearest neighbors of xi and yi to predict future values xi+h and yi+h.

The same formulations are made for a second variable Y such that

Y =




y(m−1)κ+1

y(m−1)κ+2

...

yN




=




y(m−1)κ+1 . . . y1

y(m−1)κ+2 . . . y2

...
...

yN . . . yÑ




. (2)

To each embedded row vector yi, the nearest neighbors indices si,j and the prediction value yi+h

are assigned accordingly.

2.2 Directionality Measures

Figure 1 shows the concept of a directionality measure using cross-prediction based on nearest

neighbors. The method evaluates how well the embedded vectors in X anticipate the prediction

values yi+h, and vice versa. The prediction value yi+h is now assigned to the embedded vector of

the first sequence xi instead of being assigned to yi . The prediction value yi+h is then compared to

the predicted values yri,j+h of the nearest neighbors xri,j . If yi+h and all yri,j+h have similar values

this means that X is a good predictor of Y . The prediction from Y to X is measured similarly by
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assigning to each embedded vector yi a predicted value xi+h and comparing the predicted value

with the prediction of the nearest neighbors. If one variable is a better predictor of the other

variable then a directional relationship is inferred.

For clarification, an example is considered. Assume two time sequences xi and yi are available

with i = 1 . . . N and that m = 4 and κ = 1. Suppose that the nearest neighbor of row 1 of the

embedded matrix X in Equation 1 is row 50. That is, the nearest neighbor of x4 = [x4, x3, x2, x1]

is x53 = [x53, x52, x51, x50]. If the difference between the prediction values y4+h and y53+h are small

then X is a good predictor of Y . Similarly, suppose that the nearest neighbor of row 1 of the

embedded matrix Y from Equation 2 is row 50. If the difference between the prediction values

x4+h and x53+h is large then Y is a poor predictor of X.

Directionality measures based on nearest neighbors have been developed only recently, with the

first methods being applied to long data sequences in the mid 1990s. The reason for this is that it is

not an analytical method and its computation requires a large number of numerical calculations that

were only available with the advancement of modern PC technology. Among the first to propose

measuring interdependency in this way were Le Van Quyen et al. [9]. Schiff et al. [11] presented

a similar method that measured generalized synchrony by assigning to each embedded vector xi

the corresponding vector yi and finding the nearest neighbors. Variations of the methods proposed

in [9] and [11] were compared by Arnhold et al. [15]. Two recent methods [10, 12] successfully

investigated the scaling to take account of self-predictability. Self-predictability assesses whether

the time series is predictable from its own past history by assigning a prediction value xi+h to each

embedded vector xi.

2.3 Algorithm

The directionality measure as adapted from [13] determines the differences between the prediction

value of each time instance i and the prediction values of the nearest neighbors si,j of yi. The
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algorithm incorporates self-predictability and is based on a distance measure:

Di(X|Y ) =
1
K

K∑

j=1

|xi+h − xsi,j+h|. (3)

where j is the index of the jth nearest neighbor. In Equation 3, xi+h is the prediction value of x

assigned to yi and xsi,j+h is the prediction value assigned to the j’th nearest neighbor of yi. For

robustness in the presence of outliers, the measure is summed over K nearest neighbors instead

of choosing just one single nearest neighbor. Outliers can distort the result by accidentally being

a particularly good or poor predictor and without averaging over the K nearest neighbors, the

impact of an outlier would be significant. If Di(X|Y ) is small then Y is a good predictor of X and

if Di(Y |X) is large then Y is a poor predictor. The distance measure is scaled by a self-predictability

factor:

Di(X) =
1
K

K∑

j=1

|xi+h − xri,j+h| (4)

where xi+h is the prediction value of x assigned to xi and xri,j+h is the prediction value assigned

to the j’th nearest neighbor of xi. The quantities Di(X|Y ) and Di(X) are computed for all

embedded vectors and time instances i. The result are then scaled and averaged to give the

following accumulated interdependence measure:

H(X|Y ) =
1
Ñ

Ñ∑

i=1

Di(X|Y )
Di(X)

. (5)

The complementary measure H(Y |X) is defined similarly by exchanging X and Y in the formu-

lation. To establish whether X influences Y more than Y influences X, these two measures are

compared to give a directionality measure HX→Y :

HX→Y = H(X|Y )−H(Y |X). (6)

A positive value of HX→Y is taken to mean that X influences Y , if it is negative then Y influences X.

The formulation given above in Equations 3 to 6 broadly follows that of [13]. The main difference

is that the algorithm of [13] sums the square of the differences in Equations 3 and 4 while in this
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Figure 2: Construction of the directionality measure from Di(X|Y )/Di(X) and Di(Y |X)/Di(Y )

for the Hénon map, a = 1.4, b = 0.3. (m = 5, κ = h = 1, K = 10, N = 200).

paper, the absolute value is summed. This modification was introduced since the absolute value is

more intuitive as a measure of difference.

The construction of the causality measure is illustrated in Figure 2 for the Hénon map. The

Hénon map is a dynamic system that generates two related time series which are often used as a

reference [15]. The equations of the dynamic system are given by xi+1 = yi+1−ax2
i and yi+1 = bxi.

The resulting time series are chaotic with X influencing Y to a greater extent than Y influences

X, as discussed in [15], [24] and elsewhere. The normalized time series are plotted in Figure 2.
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The distance measure Di is computed and Di(X|Y )/Di(X) as well as Di(Y |X)/Di(Y ) are plotted

for each time instance i. Figure 2 shows that Di(X|Y )/Di(X) is significantly larger, especially at

some time instances which result in large peaks. The values of the interdependence measures are

H(X|Y ) = 1.57 indicating Y is a poor predictor of X, and H(Y |X) = 0.65 which means that X is

a better predictor of Y . The directionality measure HX→Y is positive, showing directionality from

X to Y , as expected.

2.4 Significance Level

A threshold is needed to determine whether a value of HX→Y is significant. The approach used in

this paper is to test whether the asymmetry of the interdependency measures is significant. If it is

not significant, then a directional relationship can be ruled out. If the asymmetry is significant then

a directional relationship cannot be ruled out. Pereda et. al. [30] explain that it can be difficult

to be sure that asymmetry in the interdependence measures H(X|Y ) and H(Y |X) is attributable

to a directional dependence. They warn that other factors such as differences in the dynamics of

the time series may contribute to the asymmetry. In the plant-wide case, a dynamic disturbance

arises in one location and spreads through the process. The dynamics of the time series measured

at different locations are therefore likely to be similar, suggesting that asymmetry can in practice

reasonably be attributed to directionality.

A basic approach would be to create a set of random sequences two at a time and to compute

their HX→Y values. If the HX→Y value for the X and Y time series under test is significantly dif-

ferent from those of the random sequences, then one cannot rule out the possibility that directional

dependence might be present between X and Y . While random sequences do not have any inter-

dependence, their disadvantage is that they do not generally resemble the test time series. There

is thus no logical basis for choosing the settings for the parameters in the algorithm because these

depend on the nature of the time series. A set of surrogate time series may be used to overcome

this shortcoming [25], [26].
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An surrogate time series has a power spectrum, autocorrelation function and probability den-

sity function that are well matched to those of the time series under test, but with the phases

of the frequency components randomized. The amplitude adjusted Fourier transform method [25]

provides surrogates of this type. They key steps are: (i) nonlinear scaling to convert the ampli-

tude distribution to Gaussian, (ii) adding random phases to the arguments of the discrete Fourier

transform (DFT), and (iii) re-inversion via the inverse DFT and rescaling to restore the original

amplitude distribution. Such surrogate time series derived from X and Y have no interdependence

because of phase randomization, but they retain the key aspects of the original time series that

influence the choice of embedding parameters. Computational aspects such as dealing with the

aliased components of the DFT and end-matching are explained in [27], while practical examples

using process data are demonstrated in [22].

The null hypothesis is that X does not influence Y and is denoted by λ0 = HX→Y . Suitable

alternative numbers are values of the directionality measure generated by computing the measure

from surrogate time series of xi and yi, i = 1 . . . N : λk = Hk
xsurr→ysurr

for k = 1 . . . Nsurr. The

null hypothesis is rejected if λ0 varies considerably from all surrogates values λk. The significance

level is estimated to measure the deviation of the directionality measure of the original from the

surrogate as follows:

ΩX→Y =
λ0 − µλ

σλ
(7)

with mean value

µλ =
1

Nsurr

Nsurr∑

k=1

λk (8)

and variance

σ2
λ =

1
Nsurr − 1

Nsurr∑

k=1

(λk − µλ)2 . (9)

If ΩX→Y is large then the null hypothesis that X does not influence Y can be rejected. The threshold

for ΩX→Y in Theiler et al. is set to three which indicates that the distance of the directionality

measure to the mean of the measure for the surrogates is three times the standard deviation of the
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surrogate distribution. In the following, the threshold is set accordingly to ΩX→Y ≥ 3.

Detailed discussion of surrogates for interdependence testing can be found in [28], [29] and [30].

The test outlined above uses univariate surrogates and therefore tests only the null hypothesis that

the X and Y time series are independent linear stochastic processes. It concludes that interdepen-

dence exists if the null hypothesis is rejected but would require the use of bivariate surrogates to

determine the nature of the interdependence. For instance, as explained in [29], the significance

test described here does not distinguish between the nonlinear interdependence that is present in

the dynamic equations for the Hénon map and linear interdependence such as when two sources

are combined in a linear manner to give the coupled X and Y time series.

2.5 Nonlinearity Measure

A property that can assist in finding the root cause of a plant-wide disturbance is the nonlinearity

of a time series [22]. As established in [22] and demonstrated in several industrial case studies, the

closer a measurement is to a nonlinear root cause, the more nonlinear is its resulting time series.

The basic reason for the observation is that nonlinear features of the time series such as phase

coupling and harmonics are reduced as the disturbance propagates through the process. Thus, the

variable which shows the highest nonlinearity is most likely to be closest to the root cause. A

nonlinearity measure can be constructed as follows based on [26]:

Γx =
1
Ñ

Ñ∑

i=1


xi+h − 1

K

K∑

j=1

xri,j+h




2

(10)

where ri,j is the index of the jth nearest neighbor of xi. A significance level ΩX is computed for

each time series in the same fashion as the computation of ΩX→Y through Equations 7 to 9 only

with a scaling factor of three, that is, ΩX = λ0−µλ

3σλ
. Since the nonlinearity index is an established

method and based on the same dynamical features as the directionality measure, it will be used to

give insights into the results in the case studies. The 3σλ term in the denominator scales the index
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Figure 3: Process schematic of Case Study I.

so that ΩX ≥ 1 indicates nonlinearity.

3 Applications

In this section, two case studies of industrial processes with plant-wide disturbances are introduced.

The root cause of each disturbance as well as the propagation path are known in both cases.

3.1 Case Study I

Case Study I is a distillation unit within a larger production plant at Eastman Chemical Company.

Figure 3 shows the process schematic. Altogether nine temperature measurements, two of them

controlled variables, and one controlled level measurement were available. A feed enters the top of

the column and is separated into the desired product that exits the column at the bottom and a

by-product that exits the column at a side draw not shown in Figure 3. Heating fluid is pumped

through a piping system along the length of the column and exits at the top. The heating fluid
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Figure 4: Segment of the process measurements of Case Study I, with nonlinearity index.

flow is controlled by the heating fluid temperature because the heating fluid is a shared facility

with a varying temperature. The temperature in the column is controlled by a cascade loop for

which the master controller (TC1) measures the temperature in the middle of the column and

the slave controller (TC2) uses the temperature of the heating fluid. The flow out of the column

is the manipulated variable for the bottom tray level (LC1) and is adjusted through a pump.

Temperatures are additionally measured along the upper part of the column (TI1 to TI5), at the

bottom tray (TI6) and downstream (TI7).

A periodic disturbance affected all process measurements, as can be seen in Figure 4 which

shows a segment of the process measurements that were analyzed. The disturbance affects all

measurements, most distinctively TI1 to TI5 and LC1 as well as TI7. The sampling interval is

20 seconds and the period of oscillation is around 61 samples, roughly 20 minutes. Although all

measurements share the same period of oscillation, suggesting that it is indeed the same plant-wide

disturbance, the shape of the waveform is different for each variable. TI1 and TI2 show spiky peaks

while TI3, TI4 and TI5 exhibit a smoother trend and TI7 shows an oscillation with an almost

triangular shape.

For the nearest neighbors analysis, the time sequences are sub-sampled by a factor of three. A

time frame of 500 samples is considered comprising 25 full cycles with a period of oscillation of
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20 samples. Reducing the number of samples to be analyzed keeps the computation time within

bounds, and sub-sampling enables more cycles to be analyzed using a limited data ensemble.

The root cause of the disturbance was a process problem in an upstream reactor. A pressure

set point was set too high and was suspected to lead to flow surges. The uneven flow affected the

heating of the product along the top part of the column and thus the temperature. The level was

upset by flow surges as well, and once the upstream pressure set point was corrected the disturbance

went away. The data set shown in Figure 4 was captured before the root cause was eliminated.

The expectation for Case Study I is that the nearest neighbors method should point to temper-

ature measurements TI1 and TI2 at the top of the distillation column as closest to the root cause

because these measurements are closest to the upstream disturbance. This is also supported by

the nonlinearity index that is indicated on the right hand side of Figure 4. All the temperature

indicators in the top half of the column (TI1 to TI5) show high nonlinearity. While the nonlinearity

index ΩX points to the top of the column, the directionality measure can additionally point to the

origin and propagation of the disturbance. Results of the nearest neighbors analysis for this case

study are presented in Section 5.1.

3.2 Case Study II

While the first case study showed a periodic disturbance, the disturbance of the second case study

is non-oscillatory. The unit is a reactive distillation column at Eastman Chemical Company which

is shown in Figure 5. The head outflow of the column is recycled via the condenser and reflux tank

and the pressure in the column is controlled through the inert gas flow via PC1. To prevent the

reflux tank from overflowing an exit line outflow is supervised by LC1. The temperature in the

column is critical for the chemical reaction to take place and therefore not only controlled by TC1

and TC2 but also observed by TI1 and TI2. A pressure and temperature gradient can be observed

along the column. PI1 and PI2 measure steam and inert gas pressure into the reboiler and flash

pot.
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Figure 6: Process measurements for Case Study II, with nonlinearity index.
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A disturbance affected the measurements around the acid column. Measurements participating

in the disturbance are shown in Figure 6 with a sampling interval of 10 seconds. A common pattern

can be observed in all time trends. Sharp spikes occur at around the same time in level, pressure and

temperatures throughout the process. The spikes are followed by periods of more steady operation

of varying length so that the disturbance exhibits an irregular pattern. Visual inspection shows that

the spikes are part of the same disturbance since the peaks line up in the various measurements.

Level measurement LC1 was distorted by random noise and has been filtered with a sixth order

moving-average low pass filter prior to analysis and plotting. The acausal nature of the filter did

not introduce a time delay that would interfere with the interdependence analysis.

The disturbance was due to fluctuations of the inert gas pressure caused by a split valve controller

further upstream in the inert gas inlet. Investigations showed that the pressure controller had

oversized split settings which caused the inflow to be upset thus affecting temperatures and pressures

in the process. The process schematic in Figure 5 shows that PI2 and PC1 are two pressures

connected to the inert gas flow. The expectation for the result of the nearest neighbors method for

this case study is that it should show the two pressures PI2 and PC1 are closest to the root cause.

This expectation is supported by the nonlinearity index as shown in Figure 6. The nonlinearity

index has the highest value (ΩX = 2.32) for PI2 and the second highest (ΩX = 1.86) for PC1. Thus

it is expected that PI2 and PC1 cause the other measurements of Case Study II. Again, the nearest

neighbors method will enhance the root cause analysis by showing the propagation path. Results

of the nearest neighbors analysis for this case study are presented in Section 5.2.

4 Parameter Settings

The values selected for the parameters in the algorithm are those which give high significance levels

ΩX→Y for the directionality measure. When constructing the embedded vectors, the following

parameters have to be selected:
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• Embedding dimension m;

• Embedding delay κ;

• Prediction horizon h;

• Number of samples N ;

• Number of nearest neighbors K;

• Number of surrogates Nsurr.

The first three parameters capture the dynamics of the time series. The number of samples N

has an impact on the magnitude of the results but not on the direction since more data should

give a better and thus more pronounced directionality. The number of nearest neighbors K and

the number of surrogates Nsurr are expected to have only a limited impact on the measure above

a certain threshold since these variables are statistical averages. The obvious choice of K is to set

it equal to the number of cycles that are analyzed in case of an oscillatory disturbance. In case

of a non-oscillatory disturbance, as in Case Study II, the number of repetitive peaks is an equally

straightforward choice. The number of surrogates Nsurr is set to 20 as this is expected to give

statistically relevant results while keeping the computational effort within a feasible limit. The

number of samples is chosen as 500, however, since the number of samples has the strongest impact

on the computation time, the minimum number of samples is investigated later on in this section.

The selection of default parameters is carried out in three steps. First, the embedding dimension

m is varied while the embedding delay κ and the prediction horizon h are kept at a fixed value. The

value of embedding dimension m for which the significance level has its maximum for the majority

of relationships is selected. In the second step, the best value of embedding delay κ is found by

varying κ while the embedding dimension m is kept at the specified best value. The prediction

horizon h is varied in the last step with the same procedure. The minimum number of samples is
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Figure 7: Parameter setting: maximizing significance level ΩX→Y of nearest neighbors algorithm

for the directionality measures of Case Study I (N = 500, K = 25, Nsurr = 20).

then investigated using the best values of m, κ and h. The results of this procedure are shown in

Figures 7 and 8 which show the significance levels ΩX→Y for Case Studies I and II.

4.1 Embedding Dimension m

In the first step of the parameter setting procedure, the embedding dimension is varied from 1 to

20 while the embedding delay and prediction horizon are fixed to κ = h = 1. The result for the two

case studies can be seen in the left hand columns of Figures 7 and 8. The result of a directionality

calculation is accepted if the significance level ΩX→Y is above the threshold of 3, as discussed in

section 2.3 and indicated by the dashed lines. For Case Study I, an intuitive choice of m would be to
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Figure 8: Parameter setting: maximizing significance level ΩX→Y of nearest neighbors algorithm

for the directionality measures of Case Study II (N = 500, K = 8, Nsurr = 20).
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set it to the oscillation period which is 20 samples (m = 20). The experimental results, however, do

not confirm this choice. Instead, the significance level is highest for smaller embedding dimensions

at around m = 4 indicating that the directionality result is most robust when predicting small

stretches of the oscillation. Case Study II gives a different result. The duration of the irregular

sharp spikes of the disturbance is around 11 samples and the intuitive choice of m would be the

length of the duration of the irregular feature, that is, m = 11. The plots in the left hand column

of Figure 8 show that the significance level is consistently large if m is between 4 and 14. The

maximum value of the average of significance levels is at m = 11. The recommended choice of m

for the irregular disturbances is therefore the length of the irregular features.

4.2 Embedding Delay κ

Once the embedding dimension is fixed, the embedding delay κ is varied in the second step of the

parameter selection procedure. The results are shown in the second columns from the left of Figures

7 and 8 in which κ is varied from 1 to 20. For Case Study I, the embedding dimension is set to

m = 4 while the prediction horizon is still kept at h = 1. The threshold of ΩX→Y is only exceeded

for all directionality relationships if κ equals to 1 or 2 samples. Best results are obtained if κ = 1.

This suggests that short term dynamics are most relevant for contributing to the directionality

result. For Case Study II, m is set to 11 samples while h is kept at 1 sample. The results look

similar to Case Study I, that is, the significance only exceeds the threshold for small value of κ.

The best value is again at κ = 1.

4.3 Prediction Horizon h

After finding values for embedding dimension and embedding delay, the prediction horizon h is

varied in the third step of the parameter selection procedure. The results are shown in the second

column from the right of Figures 7 and 8. The significance level shows a similar relationship

to the prediction horizon as it did to the embedding delay κ. As a general trend for both case

20



studies, ΩX→Y decreases with prediction horizon h. The largest value of the significance level for

all relationships in both case studies, with the exception of PI2→TI2 in Case Study II, is at h = 1.

Thus, the prediction horizon is set to h = 1.

4.4 Minimum Number of Samples N

As a general rule, the directionality measure HX→Y and its significance ΩX→Y increase with in-

creasing number of samples used for the computation. The reason for this is that a good predictor

can find better prediction values because the number of similar near neighbors grows while the

poor predictor remains unchanged. The number of samples N was varied in order to find the value

Nmin above which the significance level is robustly above the 3 threshold. For this purpose, the

significance level is computed for a number of data sub-sets constructed from the original sequence,

and averaged over these sub-sets. The result is shown in the right hand columns of Figures 7 and 8

for the two case studies. The results indicate the threshold value is reached at about Nmin = 400.

N > 400 is therefore the recommended value. As the computational effort increases significantly

with the number of samples, a compromise must be made depending on the application. If the

number of samples is too low, however, not all directional dependencies in the investigated process

might be detected. For instance, the significance levels in the lowest panel of the right hand column

of Figure 7 is on the threshold if N = 400.

4.5 Parameter Summary

The guideline parameters used for the directionality measure and which result from the parameter

setting procedure in this section are summarized in Table 1.
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Embedding dimension m = 4 (oscillatory)

m = Np (non-oscillatory)

embedding delay κ = 1

Prediction horizon h = 1

Number of samples N > 400

Number of nearest neighbors K = the number of peaks or cycles

Number of surrogates Nsurr = 20

Table 1: Guideline parameters for nearest neighbors one-step-ahead-prediction algorithm. Np is

the duration of the non-oscillatory irregular disturbance.

5 Results

The directionality measure HX→Y is now applied to the relationships for all combinations of process

measurements in Case Studies I and II to determine the fault propagation paths in the two processes.

For p variables, p(p−1)
2 values of the directionality measure are computed representing the re-

lationship between all combinations of these variables. The results are visualized in a chart that

places all potential causes on the vertical axis and all potential effects on the horizontal axis. If a

directional relationship between PV1 and PV2 is established then an entry is made at the intersec-

tion of PV1 on the vertical axis and PV2 on the horizontal axis. The entries are circles whose sizes

represent the relative values of the directionality measure HX→Y for those HX→Y values which are

statistically significant. The resulting graph is referred to as bubble plot. The root cause is then

taken to be the variable that causes most other variables while not being the effect of any other

variable. Thus, the column associated in the bubble graph with the root cause variable will have no

entry while its row will have one or more entries. Algorithms for the construction and manipulation

of the bubble plots are discussed in [31].
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Figure 9: Results of Case Study I, directionality measure HX→Y with significance level above the

threshold for m = 4, κ = h = 1, N = 1000, K = 25, Nsurr = 20.

5.1 Case Study I

Figure 9 shows the bubble plot for all process measurements in Case Study I. Most entries occur

above the main diagonal. TI1, the temperature at the top of the distillation column in Figure 3

has no column entry but six row entries and is therefore most likely to be close to the root cause

because it influences the highest number of other variables. A further conclusion from the bubble

plot is the order of occurrences of the fault. The disturbance happens first in TI1 which then

propagates to TI2, TI2 propagates to TI3, TI3 propagates to TI4 and TI4 propagates to TI5. Also,

TC2 propagates to the level in the bottom tray of the distillation column, LC1, which means that

the level is upset because of the disturbance in the temperature in the column and not vice versa.

These findings match the expectations for Case Study I that were outlined at the end of Section

3.1.

The temperature TC2 causes the temperature further downstream in the process (TI7) to be

upset. An additional detected directional dependence is the relationship between LC1 and TI4, TI5
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Figure 10: Results of Case Study II, directionality measure HX→Y with significance level above the

threshold for m = 11, κ = h = 1, N = 1000, K = 8, Nsurr = 20.

which can be seen as a pair of bubbles in the lower part of Figure 9. When examining the time series

in Figure 4 in detail, flat stretches in LC1 can be observed. This could be explained by a further

disturbance such as a valve being stuck to a limit value. The results suggest the directionality

measure is capturing the effects of two different disturbances.

5.2 Case Study II

The results for Case Study II are shown in Figure 10. For this case study, all detected dependencies

are above the main diagonal. Pressure PI2 and PC1 appear to be closest to the root cause since no

other variable influences these, and they influence all the other variables. The order of the other

events is ambiguous since, for example, no dependency is detected among the group of variables

TC1, TI1 and TI2. It is, however, clear that TC2, the controlled temperature at the reactor column

and PI1, the pressure at the inflow of the re-boiler, occur last in the chain of events because they

are influenced by many other variables.

The known root cause of Case Study II was given in Sections 3.2. The directionality results
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presented here point to the known cause, suggesting that the nearest neighbors analysis of mea-

surements from routine operation is capable of determining the source and direction of propagation

of the plant-wide disturbance.

6 Conclusions

Plant-wide disturbances in a process affect many measurements and thus pose the problem of

identifying the source of the disturbance. This paper has shown how the fault propagation path

can be traced through the plant from the root cause by detecting interdependency between the time

series of measurements from the process and determining the directionality of the relationship. The

performance of the method, which is based on nearest neighbors, was investigated using real data

from two industrial processes at Eastman Chemical Company. Guidelines for the selection of the

parameters were developed through the application to selected variables of the industrial data and

the consecutive variation of the parameters. The directionality measure was then applied to the full

case studies and shown to be effective in identifying the known root causes and the fault propagation

paths.
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Figure Captions

Figure 1: Find the nearest neighbors of xi and yi to predict future values xi+h and yi+h.

Figure 2: Construction of the directionality measure from Di(X|Y )/Di(X) and Di(Y |X)/Di(Y )

for the Hénon map, a = 1.4, b = 0.3. (m = 5, κ = h = 1, K = 10, N = 200).

Figure 3: Process schematic of Case Study I.

Figure 4: Segment of the process measurements of Case Study I, with nonlinearity index.

Figure 5: Process schematic of Case Study II.

Figure 6: Process measurements for Case Study II, with nonlinearity index.

Figure 7: Parameter setting: maximizing significance level ΩX→Y of nearest neighbors algorithm

for the directionality measures of Case Study I (N = 500, K = 25, Nsurr = 20).

Figure 8: Parameter setting: maximizing significance level ΩX→Y of nearest neighbors algorithm

for the directionality measures of Case Study II (N = 500, K = 8, Nsurr = 20).

Figure 9: Results of Case Study I, directionality measure HX→Y with significance level above the

threshold for m = 4, κ = h = 1, N = 1000, K = 25, Nsurr = 20.

Figure 10: Results of Case Study II, directionality measure HX→Y with significance level above

the threshold for m = 11, κ = h = 1, N = 1000, K = 8, Nsurr = 20.

Table Caption

Table 1: Guideline parameters for nearest neighbors one-step-ahead-prediction algorithm. Np is

the duration of the non-oscillatory irregular disturbance.
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