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A novel and efficient route to thieno[3,4-c]pyrrole-4,6-dione (TPD) facilitating late-stage alkylation is presented. Four
copolymers with alkylated bithiophene (2T) are synthesised, with different TPD N−alkyl side-chain branching points. The
effect of steric bulk on solid-state properties is investigated (UV–VIS, differential scanning calorimetry, X-ray diffraction)
and C1-branching found to increase crystallinity and solid-state packing in TPD-2T.

Keywords: organic electronics; conjugated polymer; donor–acceptor copolymer; thieno[3,4-c]pyrrole-4,6-dione; alkyl side-
chain; branching point

1. Introduction
Organic semiconducting materials have potential as large-
scale, thin, flexible, lightweight and crucially low-cost
electronic devices, fabricated by printing techniques. Cur-
rently organic field-effect transistors and bulk hetero-
junction (BHJ) solar cells routinely utilise π -conjugated
polymers with donor–acceptor (D–A) hybridisation due
to their readily tunable optical and electronic properties,
with alkyl side-chains to afford the required solubility and
processability.[1–6]

However, the exact structure of the solubilising chain
is often overshadowed by energetic contributions that
influence the frontier orbital band gap, despite evidence
that considerations such as side-chain spacing, branch-
ing and length can prove vital.[7–12] The size of the
solubilising chain is a key factor to consider during
polymer synthesis: with a longer alkyl chain, solubil-
ity is generally gained.[13] However, this can come at
the detriment of other factors such as packing, blend
morphology and fullerene miscibility.[14,15] To improve
device microstructure attention has also been paid to the

∗Corresponding author. Email: jwrumer@imperial.ac.uk

comparison of branched and linear alkyl chains, evaluating
their effect on device performance, with the former pre-
ferred for organic photovoltaic applications and the latter
for transistors.[16,17] More recently, a number of studies
have begun to elucidate the effect of precision alkyl-chain
engineering by shifting the branching point position, which
has resulted in both improved photovoltaic efficiency and
charge carrier mobility in field-effect transistors.[18–20]
However, the preferred side-chain is largely dependent on
the exact polymer system. Our approach herein is to con-
duct a systematic study of the alkyl side-chain branching
point position, investigating the effects of overall steric
bulk on solid-state properties in a promising class of
semiconducting polymers.

The thieno[3,4-c]pyrrole-4,6-dione (TPD) unit is a
commonly used N−alkylated acceptor. The electron-
deficient nature of the TPD unit lowers the HOMO levels
of D–A copolymers and promotes intramolecular charge
transfer, while the thiophene–maleimide structure takes a
quinoidal form in the exicted state, lowering the bandgap.
In addition, the planarity and ability to hydrogen-bond

© 2013 Joseph W. Rumer, Christine K.L. Hor, Iain Meager, Chin P. Yau, Zhenggang Huang, Christian B. Nielsen, Scott E. Watkins, Hugo Bronstein and Iain
McCulloch. Published by Taylor & Francis.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been
asserted.
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encourages intermolecular interactions such as π–π stack-
ing. The relatively low cost of TPD further increases its
potential for commercial use.

When copolymerised with electronically coupled
electron-rich bithiophene (2T) – which also features rigid,
aromatic rings with a coplanar structure – crystalline mor-
phologies and enhanced charge transport are achieved. Use
of a bi(alkyl)thiophene aids solubility, though the tail-to-
tail configuration of the alkyl chains is vital in preserving
crystallinity.[21] Such alkylated TPD-2T polymers have
achieved efficiencies as high as 7.3% in BHJ photovoltaic
cells and field-effect transistors exhibit hole mobilities as
high as 0.6 cm2/V s.[22–27] In addition, these polymers
have recently been reported with both economic and green
syntheses.[28,29]

Here, we report a novel and efficient synthesis of the
TPD unit facilitating late-stage alkylation by haloalkanes
and direct C-H activation polymerisation. Four novel TPD-
2T polymers with different branching points in the N−alkyl
side-chain are prepared (Chart 1) and their optical (UV–
VIS) and thermal (differential scanning calorimetry (DSC))
properties, molecular models and X-ray diffraction (XRD)
data presented. The impact on solid-state (thin-film) mor-
phology is then analysed to derive a structure–property
relationship.

2. Results and discussion
Synthesis. The dibromo-TPD monomers were prepared in
four simple steps from 3,4-thiophene dicarboxylic acid with

Chart 1. Structures of the four thieno[3,4-c]pyrrole-4,6-dione
copolymers with alkylated bithiophene (TPD-2T) showing the
different N−alkyl side-chains.

late-stage alkylation and bromination (Scheme 1). Initially
thiophene anhydride 1 is prepared from the dicarboxylic
acid according to the literature procedure.[30] Typically a
ring-opening condensation with an alkyl-amine and sub-
sequent ring-closure then furnishes the N−alkylated TPD
heterocycle. Whilst Leclerc et al. have recently reported
an efficient one-step synthesis of TPD this requires the
use of alkyl-amines (RNH2), which are not always readily
available.[31] We were interested in removing the neces-
sity of alkyl amines from the synthesis of TPD. This would
allow access to a greater number of alkyl chains which have

Scheme 1. Synthesis of the TPD-2T copolymers.
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32 J.W. Rumer et al.

Scheme 2. Synthesis of 3-ethyl-iodoheptane.

Table 1. Properties of the TPD-2T copolymers.

λabs
max (nm) Energy levels (eV)d

TPD-2T N -alkyl Mn Mw Eopt
g

polymer side-chain (kDa)a (kDa)a PDIa Solutionb Filmc (eV) EHOMO ELUMO

P1 3-Ethylheptyl 7 9 1.3 471 543 1.77 −5.2 −3.4
P2 2-Ethylhexyl 6 9 1.4 469 541 1.81 −5.2 −3.4
P3 1-Ethylpentyl 8 11 1.4 470 563 1.72 −5.2 −3.5
P4 Octyl 5 7 1.4 472 535 1.77 −5.2 −3.4

aDetermined by gel permeation chromatography using polystyrene standards and PhCl as the eluent at 80◦C.
bSolutions in dilute PhCl.
cThin-films spin-coated from ∼5 mg/mL PhCl solutions on glass substrates.
dEHOMO found by AC2 (PESA) measurement; ELUMO = EHOMO + Eopt

g .

Figure 1. Normalised UV–VIS absorption spectra of the four thieno[3,4-c]pyrrole-4,6-dione-based (TPD-2T) copolymers as (left)
solutions in dilute chlorobenzene and (right) thin-films spin-coated on glass substrates from 5 mg/mL hot chlorobenzene solutions.

been shown to have a significant effect on device perfor-
mance. To this end we subjected the thiophene anhydride
to refluxing formamide, isolating the unalkylated TPD het-
erocycle 2 from a one-pot reaction in good yield.[32] This
novel route does not require prior bromination, which means
that alternative polymerisations conditions, such as direct
heteroarylations can also be performed.[28,33] Here we
proceeded with bromination, albeit non-facile, and subse-
quent alkylation of amide 3 with haloalkanes.[34] The use
of a C1-branched alkyl chain (from 3-bromopentane) results
in a lower yield, most likely as a result of increased steric
hindrance on alkylation. The C3-branched alkyl chain was
installed from 3-ethyl-iodoheptane (6) (Scheme 2), the key
step in preparation of which was the one-pot formation of
a Grignard reagent from 2-ethyl-bromohexane and subse-
quent addition to formaldehyde, the latter being prepared in
situ by decomposition of paraformaldehyde.

The four TPD-2T polymers were synthesised under
standard microwave Stille coupling conditions in
chlorobenzene. The polymers were purified by precipita-
tion from methanol followed by Soxhlet extraction using
acetone, hexane and finally chloroform. The latter frac-
tion was heated and stirred vigorously with aqueous sodium
diethyldithiocarbamate to remove residual catalytic metal
impurities. Stille polymerisation whilst versatile and reli-
able affords number-average molecular weights (Mn) below
10 kDa (Table 1), as has been observed with those reported
for similar copolymers.[26,29] It may be possible to
achieve higher molecular weights by direct heteroarylation
polymerisations.[28]

Optical properties. UV–VIS absorption spectra of the
TPD-2T polymers are shown in Figure 1 and key prop-
erties summarised in Table 1. Dilute solutions were in
chlorobenzene and thin-films spin-coated from ∼5 mg/mL
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chlorobenzene solutions on glass substrates. The polymers
all exhibited absorption maximum over 530 nm in thin-
films, being assigned to internal charge transfer between
the TPD and bithiophene units, while the vibronic shoul-
ders at ∼630 nm imply an ordered arrangement in the solid
state. The thin-film maxima are red-shifted by ∼70 nm in
comparison with their solutions due to increased π orbital
overlap in the planar, conjugated polymers, which reduces
the bandgap. The small difference in each of the UV–VIS
spectra could be explained by a different morphology in the
solid state and/or the different molecular weights. However,
the red-shift of the P3 thin-film absoption maximum could
be attributed to the reduction in steric bulk of the overall
shorter alkyl chain, reducing any distortion of bonds in the
pyrrolidone moiety and enhancing any planarising interac-
tion between the carbonyls and neighbouring sulphur atoms
of the bithiophene units.

Energy levels. Ionisation potentials are summarised in
Table 1, having been measured by Photo Electron Spec-
troscopy in air using the same polymer thin-film samples
as for optical analysis. The TPD-2T polymers all exhibited
Highest Occupied Molecular Orbital (HOMO) energy lev-
els of −5.2 eV, confirming the minimal impact of the alkyl
side-chain on ionisation potential. In addition, these rea-
sonably low HOMO energy levels (below −5 eV) could
lead to a high open-circuit voltage (Voc) in devices and
indicate good stability towards unintentional doping by
atmospheric oxidants. The TPD-2T polymers all exhib-
ited optical bandgaps of 1.8 eV, with the exception of
P3 which was 0.1 eV lower (1.7 eV), attributable to the
reduction in overall steric bulk aiding planarisation, as
aforementioned, resulting in increased π orbital overlap
and delocalisation of electrons stabilising the LUMO; the
LUMO levels were found by adding the optical bandgap
to the PESA-determined HOMO of the same sample. An
optimised structure of the TPD-2T polymer backbone
reveals this to be effectively fully planar, possibly as a
result of planarising intra-molecular interactions between
the carbonyl on the pyrroledione and sulphur on the
thiophene moieties[35] (Figure S1, Supplementary Infor-
mation) (modelled at the B3LYP/6-31G∗ level, for an
N−methyl substituted tetramer). Notably the HOMO and
LUMO densities are extensively delocalised along the poly-
mer chain, as opposed to being localised on the D–A
parts, respectively, which could facilitate enhanced charge
transport.

Thermal properties. The DSC thermograms exhibit
well-defined melt and crystallisation peaks (Figure 2)
(under a nitrogen atmosphere with a heating rate of
10◦C/min). There is a steady increase in melt and crys-
tallisation temperatures as the branch-point of the alkyl
side-chain is moved from C3 to C2 to C1. While this could
be attributed in part to molecular weight effects, the higher
melting points are more indicative of better stability in the
crystals as alkyl side-chain bulk is reduced. As expected, P4
which has a linear octyl side-chain – being isomeric with

Figure 2. DSC scans of the TPD-2T copolymers exhibit an
increase in crystallisation and melt temperatures with a reduc-
tion in steric bulk of the alkyl side-chain; (0 − 350◦C temperature
range; heating at 10◦C/min under a nitrogen atmosphere).

Figure 3. XRD diagrams of the TPD-2T copolymers exhibit a
higher degree of crystallinity with a reduction in steric bulk of the
alkyl side-chain; (polymers as drop cast thin-films on Si substrates
from 10 mg/mL hot chlorobenzene solutions).

the branched side-chain of P2, and containing one more
carbon than that of P3 – sits between the two, demonstrat-
ing the presence of both side-chain size and shape effect on
polymer properties.

Morphology. Thin-films of the TPD-2T copolymers
were investigated by XRD (Figure 3 and Table 2). Thin-
films were drop-cast from polymer solution (10 mg/mL
hot chlorobenzene) onto Si substrates and allowed to dry
in air. While the P1 and P2 films exhibited an out-of-plane
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Table 2. XRD data for the TPD-2T copolymers.

2θ(◦) d Spacing (Å) 2θ(◦) d Spacing (Å) 2θ(◦) d Spacing (Å) 2θ(◦) d Spacing (Å)

TPD-2T N -alkyl
polymer side-chain n = 1 n = 2 n = 3 n = 4

P1 3-Ethylheptyl 3.71 23.8 7.26 24.3 10.54 25.2 – –
P2 2-Ethylhexyl 3.68 24.0 7.46 23.7 10.87 24.4 – –
P3 1-Ethylpentyl 4.08 21.6 8.07 21.9 11.82 22.4 16.25 21.8

Note: Polymer thin-films were drop-cast on silicon substrates from 10 mg/mL hot chlorobenzene solutions and allowed to dry in air.

primary reflection peak at 2θ =∼ 3.7◦, this was slightly
larger for P3 being ∼ 4.1◦. The low angle diffraction peaks
are characteristic of lamellar-type crystallinity in π stacked
conjugated polymers, being associable with the interlayer
d-spacing distance, calculated to be ∼24 Å for P1 and P2
and ∼22 Å for P3. The reduced lamellar spacing (∼2 Å) for
P3 may be attributed to the reduction in steric bulk of the
alky side-chains allowing the polymer chains to pack closer
together. In addition, P3 appears to exhibit increased crys-
tallinity with higher intensities of the reflection peaks and a
discernible quaternary reflection peak, while the tertiary is
the highest order reflection peak readily observed for P1 and
P2. In common with previous studies, the (100), (200) and
(300) diffraction peaks dominate the spectra making indef-
inite any (010) peak, associable with facial π–π stacking
between polymeric backbones.[29] The difference in XRD
patterns mean the polymers are organised differently in the
solid state and as such the differences in optical absorption
spectra and DSC thermograms are unlikely to be attributed
to variations in molecular weight.

The increase in solid-state crystallinity for P3 may
be attributed to a reduction in side-chain steric bulk (as
opposed to length), promoting crystallisation of the poly-
mer. This has been shown to improve current in devices
by strengthening polymer/PCBM interactions and as such
the synthesis and device performance of high molecu-
lar weight N -1-ethylpentyl alkylated TPD-2T will be of
interest.[14,16]

3. Conclusions
In summary, we have described a novel and efficient route
to thieno[3,4-c]pyrrole-4,6-dione (TPD) allowing for late-
stage alkylation and direct C-H polymerisation. A series
of four copolymers with alkylated bithiophene are synthe-
sised, in this case by Stille polymerisation, with different
TPD N−alkyl side-chain branching points. The nature of
an alkyl side-chain has a minimal effect on the energetics
of the polymer, exhibiting greater influence over the mor-
phology. The exact position of a side-chain branch-point
(if any) and the length of the chain are two independent
factors, with the overall steric bulk induced at the side-
chain being responsible for changes in the properties of
a polymer series. The use of a C1-branched side-chain

promotes increased crystallinity and solid-state packing
effects in TPD-2T polymers. To conclude, high molecular
weight N -1-ethylpentyl alkylated TPD-2T polymers may
exhibit enhanced device performance in organic field-effect
transistors and BHJ solar cells.
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