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Abstract 

This thesis describes the production of two types of hierarchical macroporous 

polymers using the emulsion templating technique. The first are those with a 

hierarchy of macroporous, defined as the efficient packing of pores with multi-

modal pore size distributions. The second are macroporous polymers containing a 

hierarchical particulate network, defined by an interconnected particle network 

within the polymer matrix. 

In the first section of the thesis, macroporous hierarchy was achieved using 3 

different methods. In the first method, the properties of surfactant stabilised high 

internal phase emulsion (HIPE) were optimised by varying selected emulsification 

parameters such as the surfactant concentration and stirring rate. The Finite Element 

Method (FEM) was subsequently used to qualitatively compare and validate the 

effect of pore hierarchy on the Young’s modulus of macroporous polymers. It was 

believed that the hierarchical arrangement of macropores facilitated the load transfer 

during compression, which improved its mechanical properties.  

The second method involved the use of a mixed surfactant and particle emulsifier 

system to prepare w/o HIPEs. The mixture of surfactants and particles in the 

emulsion produced synergistic effects which resulted in a hierarchical macroporous 

arrangement after polymerisation. The hierarchical porous materials prepared using 

this method showed high gas permeabilities while maintaining high crush strengths 

and Young’s moduli compared to ‘conventional’ poly(merised)HIPEs. The 

improvement in mechanical strength despite the high interconnectivity was attributed 

to the efficient packing of macropores in a hierarchical configuration.  
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The third approach was to mechanically-froth viscous air in w/o emulsion templates. 

A bio-based monomer, acrylated epoxidised soyabean oil (AESO) was chosen as a 

component of the continuous phase of the emulsion for its high viscosity and ability 

to trap air bubbles during mechanical frothing. Medium Internal Phase Emulsions 

(MIPEs) containing varying concentrations of AESO were mechanically frothed to 

incorporate air bubbles, prior to polymerisation. This was found to generate a multi-

modal distribution of droplets and air bubbles which polymerised into hierarchical 

foams with high porosities of up to 81%. 

In the second section of the thesis, a hierarchical particulate network within the 

polymer matrix of a porous material was produced using Pickering HIPEs stabilised 

by varying the concentrations of thermally reduced graphene oxide (rGO) flakes. 

Macroporous nanocomposites containing 0.006 vol.% of rGO had a conductivity of 

1.2 10
-5

 Sm
-1

, demonstrating the presence of an interconnected, conducting rGO 

network within the polymer matrix. The rGO-network created an additional level of 

hierarchy in these macroporous materials which also improved the overall 

mechanical properties (viscoelastic properties, Young’s modulus and crush strength).  
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1 Introduction  

‘Macropores’, defined under IUPAC standards as pores greater than 50 nm in size,
1
 

impart distinctive characteristics to bulk polymers such as porosity, permeability or 

buoyancy (depending on their interconnectivity), low density and weight. These 

traits make macroporous polymers an important class of materials that are widely 

used in numerous consumer products and engineering applications. Depending on 

the method(s) used to fabricate macroporous polymers, they can be interconnected or 

permeable to gases and could possess high surface areas due to their convoluted 

internal pore architectures. As a result of their unique properties, applications for 

macroporous polymers range from membranes for separation,
2
 catalyst supports,

3
 to 

scaffolds for tissue engineering and cell culture.
4
 They are also attractive for 

specialty applications in composites, for example, in high performance sandwich 

composite structures such as Rohacell® and Divinycell. There are a variety of 

methods available to produce macroporous polymers such as gas foaming,
5
 

thermally induced phase separation (TIPS)
6
 and the use of super critical carbon 

dioxide.
7
 However, finding a production method which allows control over the 

interconnectivity (open or closed-cell), porosity, pore size and arrangement 

simultaneously remains a realistic challenge in the community. A method which 

could potentially overcome some of these constraints is emulsion templating. This 

novel technique has already proven itself to be versatile and robust, allowing the user 

flexibility to impart control over the final porous structure and to create bespoke 

shapes depending on the intended function.
8
  

High porosity, permeability and mechanical integrity are important design elements 

considered during the production of synthetic porous materials using emulsion 
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templating. However, porosity and permeability are mutually exclusive to 

mechanical strength, which is known to decrease exponentially with an increase in 

porosity and/or permeability.
9
 This is why the superior mechanical properties of 

naturally occurring porous materials such as wood, coral and spongy bone,
10

 which 

are strong despite their high porosity (50 – 90%) and low density (approximately 

1.5 g/cm
3
) is intriguing.

11
 On closer inspection, it is apparent that these natural 

porous materials have high load bearing strength
12

 because they consist of pores that 

have different sizes or a multi-modal pore size distribution, arranged optimally to 

enhance its overall mechanical properties.
10

 An example of this hierarchical porous 

structure is exemplified in hardwoods (which have a hierarchical arrangement of 

pores), distinguishing it from softwoods (which are not hierarchical and possess a 

monomodal pore size distribution) (Figure 1-1).  

  

Figure 1-1: Micrograph images of softwood (left) with monodispersed cells versus 

hardwood (right) with a hierarchical cell structure or mixture of smaller and larger 

cells arranged in an optimised pattern to improve the overall mechanical strength 

(adapted from Wiedenhoeft et al.
13

)  

Driven by this naturally occurring phenomenon, a biomimetic approach – i.e. 

learning from the hierarchical arrangement of strong porous materials that exist in 

nature, such as hardwood, was taken. It was hypothesised that introducing 

hierarchical arrangement to synthetic porous polymers would also result in improved 

physical properties, such as compressive strength and stiffness, without 

compromising porosity. This is the idea that motivated us to reinvent traditional 
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emulsion templating techniques to develop new methods to produce synthetic porous 

materials which mimic the hierarchical structure of natural porous materials. This 

was approached strategically, first creating a hierarchy of macropores, by: 

(i) Tuning emulsification parameters such as the stirring rate and surfactant 

concentration in order to generate multi-modal pore size distributions.  

(ii) Combining surfactants and particles in a mixed emulsifier system to 

stabilise HIPE templates which polymerise to form macroporous 

structures with the characteristics of both polyHIPEs and poly-Pickering 

HIPEs. 

(iii) Using a foamed emulsion, i.e. an air in water-in-oil, template system to 

produce new multi-modal porous structures.  

The second approach was to formulate materials with a hierarchical particulate 

network, defined by an interconnected particulate network within the polymer 

matrix. This was carried out by:  

(i) Using 2D graphene oxide flakes, acting both as emulsifiers as well as 

nano-reinforcements, to produce conductive macroporous 

nanocomposites. 

Synthetic hierarchical macroporous polymers are anticipated to be desirable for 

many practical uses where high porosity and mechanical integrity are both 

imperative. These include the porous core of sandwich materials used for insulation 

purposes, solid supports for catalytic reactions, separating adsorbents and porous 

electrodes for thin film batteries. 
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1.1 Motivations and Objectives of This Project 

The main aim of the project is to create macroporous polymers with hierarchical 

structures, achieved either by (i) producing a hierarchical arrangement of macropores 

or; (ii) creating an interconnected particulate network by emulsion templating. 

The specific objectives of the project are to:  

1. Establish reproducible experimental protocols and optimised process 

parameters for the formulation of hierarchical macroporous polymers by 

adapting and optimising ‘classical’ methods of emulsion templating at a 

‘laboratory-scale’, for this purpose.  

2. Prove that the analogy of hierarchical porous materials in nature is applicable 

to synthetic porous materials, by showing that hierarchical macroporous 

polymers outperform conventional emulsion templated macroporous 

polymers.  

3. Demonstrate qualitatively, using a simulation study, the influence of 

macroporous hierarchy on the Young’s modulus of hierarchical macroporous 

polymers compared to conventional emulsion templated ones. 

4. Devise a new procedure to formulate hierarchical emulsion templates with 

high porosities using a bio-based monomer.  

5. Create an interconnected particle hierarchy using nano-particulate emulsifiers 

to create a interconnected network within the polymer matrix of a 

macroporous polymer.  
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1.2 Structure of This Thesis 

This thesis is divided into 7 chapters. The introduction (Chapter 1) provides a broad 

overview of the entire thesis and elucidates the motivation and objectives for this 

research. In this chapter, the hypothesis for the research is stated and the strategy for 

proving the hypothesis is also outlined. Chapter 2 provides relevant background 

information and the governing principles of emulsions, emulsifiers and emulsion 

templating. This chapter also summarises important literature necessary to set the 

context for the rest of the work. It is from here that the thesis is divided into two 

main sections following the strategy decided for this research. The first section, 

made up of Chapter 3 to 5, each an independent publication, describes novel 

methods to synthesise macroporous polymers with a hierarchy of macroporous. 

Subsequently, the second section, consisting of Chapter 6, also a standalone 

publication, describes a method to introduce a further level of hierarchy in the 

polymer matrix in the form of a hierarchical particulate network. 

The first section starts with Chapter 3, which introduces a method to produce 

hierarchical macroporous polymers by optimising emulsification parameters such as 

the stirring rate and emulsifier concentration of surfactant-stabilised emulsion 

templates. Following this, Chapter 4 describes the use of both surfactants and 

particles in synergy to stabilise emulsions to create a hierarchical arrangement of 

pores. By combining open and closed pore structures found in conventional 

surfactant stabilised and particle stabilised emulsion templates respectively, a hybrid 

structure was created and shown to have a positive influence on the physical 

properties of the resulting hierarchical porous polymers. After studying hierarchical 

macroporous structures produced using emulsion templates stabilised by surfactants 

and a combination of surfactants and particles, a new method to generate hierarchy 
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in emulsion templates was conceptualised and executed in Chapter 5. This chapter 

describes a novel method of producing hierarchical macroporous structures by 

polymerising mechanically frothed bio-based, particle-stabilised emulsion templates 

with medium internal phase volumes. 

Having studied three different ways to produce hierarchy at the macroporous level in 

section one, the second section of the thesis, Chapter 6, describes a method to 

produce a further level of hierarchy in the form of an interconnected particle network 

within the polymer matrix of macroporous polymers. Graphene oxide flakes (also 

referred to as ‘particles’) were used as particulate emulsifiers and polymer 

nanofillers simultaneously. Conductivity of the final macroporous materials 

indicated the presence of an interconnected network of graphene oxide flakes 

throughout the polymer matrix. 

After validating the hypothesis proposed through the analysis and discussion of 

results obtained from these four independent studies, conclusions and 

recommendations for further work are summarised in Chapter 7. 
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2 Background 

2.1 Introduction to Emulsions  

Emulsions are classically defined as dispersions of droplets of one liquid (known as 

the dispersed or internal phase) in another liquid (known as the continuous phase) 

with which it is not miscible
1
 (IUPAC 1972). Since they are dispersions, emulsions 

are also considered as colloidal systems, although emulsion droplets often exceed the 

colloidal size limit of 1000 nm. Emulsions are thermodynamically unstable mixtures, 

a concept that can be understood by considering the change in the Gibbs free energy 

during the dispersion of one liquid in another liquid, given by: 

           

Equation 2-1
14

 

Where G = Change in Gibbs free energy (J);  = Surface or interfacial tension 

(N/m); A = increment of area (m
2
); T = Temperature (K); S = Change in entropy 

(J/K) 

The dispersion process generates new interfaces, producing very high interfacial 

energies () and an increment in area (A). Considering that the change in entropy 

resulting from the breaking up of droplets from its constituent phases is relatively 

small, the overall G is greater than zero since        . This translates to a 

large thermodynamic driving force for the emulsion to separate into its original 

constituent phases. Although this means that emulsions are inherently 

thermodynamically unstable, kinetic stability can still be promoted by the addition of 

an emulsifier. The emulsifier, by adsorbing at the interface between the two liquid 
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phases, reduces the overall interfacial tension in the system and thus slows down the 

rate of emulsion destabilisation. Emulsifiers can be surface active agents 

(surfactants), particulate emulsifiers (also known as Pickering emulsifiers), or a 

combination of both surfactants and particulate emulsifiers, details of which will be 

described in later sections of this thesis.  

2.2 The Emulsification Process 

The process of emulsification is aptly summarised in Figure 2-1, where mechanical 

energy is input to an ‘emulsion system’ comprising the continuous phase, the 

dispersed phase and an emulsifier. The dispersed phase is mechanically broken into 

individual droplets, generating many interfaces where the emulsifier adsorbs. 

Depending on the total free energy of the system, the dispersed phase droplets would 

(i) come together and undergo liquid film rupture, coalescing to form larger, more 

stable droplets, increasing the    or (ii) continue to exist as small, stable droplets if 

adsorption of the emulsifier has sufficiently lowered the  . Both effects cause 

         and a reduction in the total free energy of the system, forming a 

(kinetically) stable emulsion.  

 

Figure 2-1: Schematic representing the process of emulsification and droplet 

stabilisation, adapted from Karbstein.
15
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Although emulsions can be kinetically stable, over time, they will destabilise by 

undergoing mechanisms schematically described in Figure 2-2:. These include: 

(i) Creaming, when dispersed droplets of one phase (oil) separate from the 

emulsion due to large enough differences in densities. Occurs in o/w 

emulsions. 

(ii) Flocculation, when individual droplets aggregate with one another due to 

Brownian motion or electrostatic interactions.  

(iii) Sedimentation which is essentially the ‘opposite’ of creaming, when 

droplets sink due to the effects of gravity. Occurs in w/o emulsions. 

(iv) Coalescence, which is the rupture of the liquid film that separates each 

dispersed phase droplet from the next. Since processes (i) to (iii) have 

brought dispersed phase droplets closer to each other, coalescence is 

more likely to occur. Droplet coalescence results in the production of a 

separate oil layer or destabilisation of the emulsion.  

 

Figure 2-2: Diagram summarising the mechanisms governing the destabilisation of 

emulsions. Adapted from Bismarck.
16
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An additional effect to those represented in Figure 2-2: is the growth of larger 

droplets at the expense of smaller droplets or the coarsening of small droplets over 

time, a process termed Ostwald ripening. Ostwald ripening occurs when dispersed 

phase molecules diffuse from ‘smaller’ dispersed phase droplets to the ‘larger’ ones 

through the continuous phase, driven by the pressure difference between the inside 

and outside of a curved interface, as shown by the Laplace equation (Equation 2-2), 

   
  

 
 

Equation 2-2 

Where       the pressure difference between the inside and outside of a curved 

interface, also known as the Laplace pressure,   is the interfacial tension and   is the 

radius of the curvature of the interface. From this relationship (Equation 2-2), it can 

be inferred that the greater the radius of the curvature, the lower the pressure 

difference and hence the free energy of the system. The rate of Ostwald ripening is 

dependent on the solubility of the dispersed phase in the continuous phase, governed 

by a relationship based on the Kelvin equation (Equation 2-3),  

    
 

  
  

    
   

 

Equation 2-3 

Where   and    are the solubilities of the dispersed phase in the continuous phase 

for the bulk liquid and droplets with radius   respectively,   is the interfacial tension 

between the two liquid phases and    is the molar volume of the dispersed phase,   

and   refer to the gas constant and the temperature for the system.  
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Over time, the coarsening of droplets due to Ostwald ripening manifests as droplet 

coalescence, contributing to the destabilisation of an emulsion. The rate of Ostwald 

ripening can be circumvented by adding electrolytes such as calcium chloride 

dihydrate to the dispersed aqueous phase in a w/o emulsion. This lowers the 

solubility of the dispersed aqueous phase in the continuous oil phase,
17

 reducing the 

rate of Ostwald ripening and hence coalescence.  

It is important to note that the destabilisation processes described hence far are all 

happening simultaneously. However, the properties of the emulsion dictate which 

destabilisation mechanism dominates. For example, when two phases in an emulsion 

are extremely immiscible or when the continuous phase is very viscous compared to 

the dispersed phase, emulsion destabilisation will likely be dominated by the 

coalescence due to phenomena (i) to (ii) in Figure 2-2:.  

2.3 Classification of Emulsions 

There are many ways of classifying emulsions. They can be categorised according to 

type (oil in water, water in oil or multiple phase systems etc.), application (drugs, 

cosmetics, food, industrial processes etc.) and according to droplet sizes (micro 

verses macro emulsions). This section deals with two such main categories of 

emulsions which helps to contextualise the emulsion types discussed in this thesis.  

2.3.1 Continuous Phase  

Emulsions are most often classified according to the dispersed or continuous phase. 

Usually one phase is an organic or oil phase (such as decane or cyclohexane), often 

non-polar in nature while the other is an aqueous phase which is polar (such as a 

calcium chloride aqueous solution). Emulsions of aqueous droplets dispersed in a 

continuous oil phase are known as water in oil emulsions or w/o (Figure 2-3 left).  
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Figure 2-3: Schematic representation of o/w (left) and w/o (right) emulsions 

Some examples of w/o emulsions are butter, margarine and certain salad dressings 

with a ‘greasier’ formulation. When the emulsion consists of droplets of oil 

dispersed in a continuous aqueous phase (Figure 2-3 right), it is referred to as oil in 

water emulsions or o/w. Some examples are milk, low-fat mayonnaise and certain 

face lotions which have a more watery texture.  

The type of emulsion formed can be determined using different methods such as a 

‘drop test’ which involves dropping a small amount of the emulsion into water 

observing how it behaves macroscopically. If the emulsion mixes well with water 

and turns the solution cloudy, the emulsion is o/w. The same cloudy effect would be 

seen when w/o emulsions are dropped into an oil phase. Another method to test the 

type of emulsion formed involves the use of an oil-based dye such as Sudan Red, 

which is added to the emulsion. If the continuous phase is oil (w/o emulsion), the 

dye quickly spreads, colouring the emulsion. However, if the emulsion is o/w, the 

colour from the dye will not transfer.  

The type (o/w or w/o) of emulsion that forms is dependent on various parameters. 

These include the volume ratio of each phase, the nature of the emulsifier, the 

miscibility of the two phases and the rate and order of mixing the components in the 

emulsion system. Bancroft’s rule is a rule of thumb used when predicting the type of 
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emulsion that may form. The rule states that the type of emulsion (o/w or w/o) 

formed should be such that the internal phase is the one of higher solubility.
18

  

This thesis is focused on the preparation of macroporous polymers using oil-soluble 

monomers, thus, reference is often made to w/o emulsions, where the continuous 

phase consists of the monomer solution (usually a mixture of styrene and the cross-

linker divinylbenzene), emulsifier and a free radical initiator and the dispersed phase 

is made up of an aqueous salt solution.  

2.3.2 Internal Phase Volume Ratio 

Emulsions can also be classified according to the internal phase volume ratio. When 

the internal phase volume used is below 30 vol.% with respect to the total emulsion 

volume, they are known as Low Internal Phase Emulsions or LIPEs. Between 30 to 

74 vol.% with respect to the total emulsion volume, they are known as Medium 

Internal Phase Emulsions or MIPEs. High internal phase emulsions or HIPEs, are 

defined as emulsions with greater than 74.05 vol.% internal phase with respect to the 

total emulsion volume.
19

 This specific percentage corresponds to the maximum 

packing fraction of uniformly distributed, perfect and rigid spheres (representing 

dispersed phase droplets). As the internal phase volume fraction increases past 

74.05 vol.%, the dispersed phase droplets compress causing areas where 

neighbouring droplets are in close contact with each other to thin out and flatten. The 

perfect spherical shape becomes lost and droplets become more polyhedral in shape. 

A 2D representation of the shape and packing of emulsion droplets as the 

concentration of the dispersed phase increases is represented in Figure 2-4.  
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Figure 2-4: Diagrams representing the shape and packing of dispersed phase droplets 

in a (a) Dilute emulsion (b) Concentrated emulsion (c) HIPE with deformed droplets, 

each droplet is represented by a hexagon.
16

 

In reality, HIPEs can hold a much greater internal phase volume, sometimes as high 

as 99 vol.%. This is due to the imperfect shapes and non-uniform sizes of real 

emulsion droplets and the arrangement of smaller droplets squeezed in the interstitial 

spaces between larger droplets, as seen in Figure 2-5 (right). The properties of these 

highly concentrated emulsion systems have been studied in detail, particularly by 

Lissant
19

 and Princen.
20, 21

  

 

Figure 2-5: Diagram of an ideal HIPE represented by monodispersed spheres (left). In 

reality, HIPE droplets are polydispersed (right).
16

 

Concentrated emulsions often have a polydispersed droplet size distribution, usually 

modelled with mathematical and empirical relationships used to describe other 

colloidal systems such as sprays or atomised droplets. These include the Nukiyama-

Tanasawa equation, the Rosin-Rammler equation
22, 23

 and the lognormal probability 
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distribution function.
24

 Although each of these models have limitations, an 

adaptation of the lognormal distribution, described in Equation 2-4, gave arguably 

the most satisfactory fit for concentrated emulsion systems prepared using 

mechanical stirring.
25, 26

 Having said that, it was apparent from the studies published 

on this topic that no one distribution function can be applied across all emulsion 

systems. This is indicative of the sensitivity of emulsion droplet sizes to variations in 

emulsification parameters (stirring rate, concentration and type of emulsifier used 

etc.) from one emulsion system to the next. It remains that any model used would 

have to be ‘optimised’ using an iterative process of experimental data fitting before it 

can serve as a predictive tool to determine the droplet distribution in a concentrated 

emulsion system. This discussion on the choice of distribution function to accurately 

fit a droplet size distribution has implications in later parts of this thesis where the 

pore size distribution (assumed to have the same distribution as the droplet size 

distribution of the emulsion template used to prepare it
27

) was found to be fitted well 

by a variation of the lognormal function (Equation 2-4) as a starting point.  

  
 

     
    

        

    
  

Equation 2-4
28

 

Where p is the probability distribution function for a log-normal distribution,   is the 

droplet radius,    is the mean droplet radius and         ) 

The unique consistency and high viscosity of most HIPEs make it a favourable 

choice for formulations such as paints, cosmetics and food products. HIPEs have 

also been lauded as a possible vehicle for drug delivery in pharmaceuticals
29

 and a 

solution to challenging engineering problems, such as in enhanced petroleum 

recovery.
30

 One of the up and coming applications of HIPEs is the preparation of 
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macroporous polymers via a versatile technique called emulsion templating which 

will be discussed in Section 2.5.  

2.4 Emulsifiers 

The type of emulsifier used has implications on the properties of the final emulsion 

formulation. In this section, surfactants and particulate emulsifiers as well as the 

synergistic effects when both these emulsifiers are combined are described, with a 

focus on reported mechanisms for emulsion stabilisation or destabilisation.  

2.4.1 Surfactants  

2.4.1.1 Properties and Examples of Surfactants  

Surfactants are surface active agents which adsorb at interfaces (and surfaces) due to 

its amphiphilic molecular structure, i.e., each molecule has both a polar, hydrophilic 

‘head’ and a non-polar, hydrophobic ‘tail’, represented in Figure 2-6. When 

surfactants are allowed to equilibrate in an oil-water dispersion, the hydrophilic 

‘head’ tends to associate with the water phase and the hydrophobic ‘tail’ with the oil 

phase. This adsorption effect lowers the high interfacial tension created in the 

dispersion which in turn lowers the Gibbs free energy (Equation 2-1), making it 

energetically favourable to form stable emulsions.  

 

Figure 2-6: General representation of a surfactant molecule consisting of the polar, 

hydrophilic head and a hydrophobic tail.  
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Surfactants are often classified based on the molecular structure of their hydrophilic 

head group as they often have different properties and hence applications. 

Hydrophilic head groups can be ionic (anionic or cationic), non-ionic (usually 

polymeric), amphoteric or Zwitterioninc (usually phospolipids) while the 

hydrophobic tail is a long hydrocarbon chain in a straight or branched configuration. 

Ionic surfactants can be cationic salts, characterised by a positively-charged head 

group (Figure 2-7) and are commonly used in fabric softening formulations. Anionic 

surfactants are identifiable by a negatively charged head group and a long 

hydrocarbon chain as the lipophilic group. They are commonly found in dishwashing 

liquids, shampoos and laundry detergents (Figure 2-8).  
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Figure 2-7: Examples of cationic surfactants 

 

Figure 2-8: Examples of anionic surfactants 

Non-ionic surfactants are uncharged but have a polar headgroup which is usually a 

polyhydric alcohol or ethylene oxide and the lipophilic group which is usually a fatty 

acid or a fatty alcohol (Figure 2-9). Examples of non-ionic surfactants include 

commercially available, non-ionic ones such as SPAN™ and TWEEN™ families 

which are biocompatible sorbitan derivatives. They are usually components of 

kitchen grease removers and other household cleaners. 
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Figure 2-9: Examples of nonionic surfactants 

 Amphoteric or Zwitterionic surfactants have headgroups that contain both positive 

and negative charges and are commonly lipids (Figure 2-10). They are frequently 

used in cosmetics, shampoos and handwash products. 

 

Figure 2-10: Examples of amphoteric surfactants 

 

2.4.1.2 Stabilisation Mechanisms in Surfactant Stabilised Emulsions 

Depending on the nature and concentration of the surfactant and other external 

factors such as temperature, presence of electrolytes etc., surfactants self-assemble to 

form structures known as micelles. These structures, represented in Figure 2-11, start 

to form after the critical micelle concentration (CMC). The CMC is detectable by an 

abrupt change in properties (surface or interfacial tension, turbidity, conductivity, 
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refractive increment etc.) with increasing surfactant concentration of the surfactant 

solution
31

 (represented in Figure 2-12). It usually lies in the very dilute range of 

0.001 to 0.005 wt.%
31

 

 

Figure 2-11: Representative schematic of micelle and reverse micelle (hydrophilic 

heads in the ‘core’) 

 

 

Figure 2-12: Representative curve for defining the CMC according to the sudden 

change in physical properties (such as osmotic pressure, turbidity, surface tension etc.) 

of the surfactant solution with increasing concentration.  

During emulsification, many interfaces are generated due to the input of mechanical 

energy. Surfactants will adsorb at the oil-water interface of droplets in emulsions and 

serve to reduce the interfacial tension thereby promoting emulsion stability. At the 

same time, surfactants also prevent droplet (re)coalescence by the Gibbs-Marangoni 
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effect.
32

 This occurs when two emulsion droplets approach one another, attracting 

surfactants to the droplet surface during their progress. When the droplets are at their 

closest, the surfactant available for adsorption in the continuous phase solution (the 

surface excess) reduces to a minimum. This creates a gradient in the interfacial 

tension between the droplets, which causes a flow of liquid towards the site of higher 

interfacial tension. This movement of liquid causes the droplets to move apart from 

each other, preventing coalescence and promoting emulsion stability. Furthermore, if 

surfactants themselves impart characteristics to the droplet surface dependent on 

their properties (ionic, non-ionic etc.). This also encourages repulsive interactions 

which contribute to overall emulsion stability.  

2.4.1.3 Surfactant Selection  

There are a few heuristics used to decide what surfactant, or in some cases, blend of 

surfactants to use when preparing emulsions. The determination of the hydrophilic-

lipophilic balance (HLB) was one of the first methods introduced by Griffin in 

1949.
33

 The HLB is a dimensionless number which can be calculated for a surfactant 

at 20°C using Equation 2-5. It quantifies the influence of both the hydrophobic and 

hydrophilic portions of the surfactant based on its chemical structure and is only 

applicable to non-ionic surfactants.  

      
  

     
 

Equation 2-5 

Where MH refers to the molecular weight of hydrophilic portion and ML is the 

molecular weight of lipophilic portion.  

When two or more surfactants are blended together, the HLB is determined using 

Equation 2-6. 
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Equation 2-6 

Where HLBmixture is the HLB of the surfactant mixture, Xi is the mass fraction of 

component i and HLBi is the HLB of component i.  

Generally, w/o emulsifiers have a low HLB of 3 – 8 while o/w emulsifies have a 

higher HLB in the range of 8 – 18. Ionic surfactants have very high HLB values in 

excess of 20. The HLB for surfactants commonly used in the emulsion templating 

community and reported in this thesis are summarised in Table 2-1. 

Table 2-1 Summary of some commonly surfactants and their HLB number
34

 

 

 

As per Bancrofts’ rule, the solubility of surfactants in water (Table 2-2), when used 

together with the HLB range, also provides useful insight for the type of emulsions 

expected for certain proprietary surfactants or surfactant blends for which the exact 

molecular structure is unknown.  

Table 2-2 Water solubility of surfactants in relation to the HLB range
35

 

Behaviour in Water HLB Range Type of Emulsifier 

No dispersibility 1 – 4 

w/o emulsifier Poor dispersion 3 – 6 

Milky dispersion after vigorous agitation 6 – 8 

Stable milky dispersion 8 – 10 Wetting agent 

From translucent to clear 10 – 13 
o/w emulsifier 

Clear Solution 13+ 

Surfactant HLB 

Oleic acid 1 

Sorbitan monooleate (SPAN™ 80) 4 

Hypermer
 TM

 2296  4.9 

Hypermer
 TM

 246SF  6 

Sorbitan monolaurate (SPAN™ 20) 9 

Polyoxyethylene sorbitan monooleate (TWEEN™ 80) 15 

Sodium Dodecyl Sulfate (SDS) 40 
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Although the HLB is deemed a quick guide for selecting an emulsifier, experience 

has shown that it should be considered with caution. In reality, external factors such 

as impurities in the oil phase, electrolytes in the water phase and the presence of co-

surfactants or other additives present in the surfactant all have an effect on the type 

of emulsions that form. Other external factors such as temperatures, oil to water 

ratios and stirring rates etc., also affect the type of emulsion that forms, in addition to 

the choice of surfactant. Hence, it is common practice in this research group to test a 

range of surfactants (or mixtures of different surfactants) at the required conditions 

before deciding on the best suited one for any emulsion system studied. 

In this report, two commercially available low HLB non-ionic polymeric surfactants 

were used to prepare w/o HIPEs. They are Hypermer
TM

 2296 and Hypermer
TM

 

B246SF, specialty surfactants used to aid steric stabilisation and curb the 

aggregation of asphaltene molecules in oilfield operations. Since the Hypermer 

‘family’ of surfactants are propriety products of Croda International PLC, 

information on the exact chemical composition and structure of these surfactants is 

limited. However, Croda has revealed that Hypermer
TM

 2296 is a blend of a sorbitan 

ester (hydrophobic portion) and a polyisobutenyl succinic anhydride (PIBSA) based 

derivative (hydrophilic portion). Whilst Hypemer
TM

 B246SF is a polymeric stabiliser 

consisting of hydrophobic polyhydroxy fatty acid and hydrophilic poly(ethylene 

glycol) blocks. 

2.4.2 Particles 

Another class of emulsifiers are solid colloidal particles. Emulsions stabilised by 

particles are known as particle-stabilised, Ramsden or Pickering emulsions, named 

after the two scientists who discovered them.
36, 37

 Particulate emulsifiers have 
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generated much interest, mostly driven by the cheaper unit cost of particles 

compared to surfactants but more importantly, the immense stability of particle-

stabilised emulsions. This stability creates a great potential for use in industrial 

applications where emulsions are subjected extreme physical conditions (temperature 

and pH) such as in oil recovery operations
38

  and pharmaceutical applications.
39

  

2.4.2.1 Particle Stabilisation mechanisms  

2.4.2.1.1 Particle Adsorption at the Interface 

The wettability of the particles at the oil-water interface is used to characterise its 

hydrophobicity or tendency to like the oil or water phase, analogous to the HLB of a 

surfactant.
40

 Wettability is quantified by the contact angle (θ) between particles and 

the oil-water interface and is generally considered a key descriptive property for 

particulate emulsifier behaviour.
41

 The contact angle is related to the interfacial 

tensions in an oil-water-solid system by the Youngs’ equation (Equation 2-7). 

     
       

   
 

Equation 2-7 

Where  = contact angle of particle at the oil-water interface,            = 

interfacial tension between the oil-solid, solid-water and oil-water phases 

respectively.  

When particles adsorb at the interface, a certain curvature is adopted based on its 

contact angle as seen in Figure 2-13. When θ < 90 (measured with respect to the 

water phase), particles are preferentially ‘wetted’ by the water phase or more 

hydrophilic and likely to stabilise o/w emulsions. When θ > 90 particles are 
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preferentially ‘wetted’ by the oil phase or more hydrophobic and hence more likely 

to stabilise w/o emulsions.  

 

Figure 2-13: Schematic of particle orientation and its effect on the curvature of the oil-

water interface
42

 

Different types of particles have been tested for their ability to stabilise emulsions. 

Silica
43

, titania,
44, 45

 laponite clay,
46

 polystyrene latex
47

 and carbon particles
48

 are 

examples of particles which have been reported to stabilise emulsions prepared from 

oils such as alkanes, silicones, alcohols and esters with water. Depending on the type 

of emulsion intended, particles are chosen based on their commercial availability, 

size and surface properties. Arguably, the most extensively investigated particulate 

emulsifier by far is silica, mainly for its commercial availability but also for its well-

known surface chemistry. The silica surface consists of silanol groups (SiOH, 

Si(OH)2 etc.) which can be manipulated to varying degrees of hydrophobicity by 

chemical modification, for example. Silanes (alkylaminosilanes and 

alkylchorosilanes etc.) react with the hydrophilic –OH groups on the silica surface 

forming hydrophobic Si-O-Si bonds, thereby changing its wettability. Depending on 

the concentration and time of exposure to these silane substrates, the degree of 

modification and hence the surface hydrophobicity can be controlled.
49, 50
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Another method to modify the silica particle surface is by adsorption (physisorption 

or chemisorption).
51

 This involves the adsorption of reagents on the surface of silica 

particles via physical interactions such as van der Waals, hydrophobic interactions or 

chemical interactions such as hydrogen bonding which changes the wettability of the 

particle surface. One approach is to adsorb cationic surfactants such as 

cetyltrimethylammonium bromide (CTAB) onto silica. The positively charged polar 

CTAB ‘head’ associates with the surface of the silica particles, exposing a 

hydrophobic tail which improves the dispersion state of silica and reduces 

agglomeration.
51

 Oleic acid is another reagent used to increase the hydrophobicity of 

silica particles since it is an amphiphilic molecule due to its hydrophilic, polar head 

and a hydrophobic, hydrocarbon tail (Figure 2-14).
38, 44, 45, 52

 In solution, the polar 

head group of oleic acid adsorbs to the hydroxyl groups on the surface of silica, 

leaving the hydrophobic tail ‘exposed’ increasing the hydrophobicity of the 

otherwise hydrophilic silica surface by the attachment of long alkyl chain. Evidence 

exists for hydrogen bonding of oleic acid to free SiOH groups on the surface of silica 

but also physisorption of oleic acid caused by dipole-dipole interactions.
53

  

 

Figure 2-14: Chemical structure of oleic acid 

 

In the case of nanoparticles that are small enough such that the effects of gravity are 

negligible, the free energy gained by losing an area of liquid-liquid interface due to 

the adsorption of a spherical particle at the interface is calculated by a relationship 

between the free energy gained from adsorption of a particle and the contact angle of 

the particle at the interface, proposed by Koretsky and Kruglyakov (Equation 2-8).
54
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E=                

Equation 2-8 

Where E = free energy gained, r = effective particle diameter,    = interfacial 

tension between the oil (o) and water (w) phase,  = contact angle of particle at the 

oil-water interface. The choice of sign inside the brackets is determined by the 

preferential removal of the particle into the oil (+) or water (-) phase.  

Taking fumed silica particles with a radius of 10
-8

 m as an example, for particles 

with a contact angle of 90° (perpendicular to the toluene-water interface with an 

interfacial tension of 0.036 Nm
-1

), the adsorption energy barrier reaches a maximum 

of almost 3000 kT (Figure 2-15). A large energy input is necessary to dislodge these 

particles from the interface. Thus, adsorption is considered almost irreversible and 

emulsions prepared using these particles with contact angles at or near 90° will 

remain stable over a relatively long time compared to surfactants. If particles with a 

contact angle of between 0 and 20 or 160 and 180, the energy required to 

dislodge them from the interface is much lower, below 10 kT, making them 

thermodynamically less stable.  
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Figure 2-15: E vs contact angle relationship for small particles adsorbed at the oil 

water interface (image taken from Binks et al.
40

) 

2.4.2.1.2 Capillary Forces 

A geometric analysis carried out by Megias-Alguacil et al.
55, 56

 considered both the 

capillary and van der Waals forces between uncharged colloidal particles linked by a 

liquid bridge. The study concluded that capillary forces are the dominant 

stabilisation force most of the time but the van der Waals force becomes noticeable 

when the distance between the particles is very small. Capillary forces can be 

described by Equation 2-9 which is derived from the analysis of Figure 2-16.  

                                 
 

 
 

 

 
   

Equation 2-9
56

 

The first component of the equation (indicated by {} on the left) refers to the surface 

tension at the wetting perimeter of the particles and the second component (indicated 

by {} on the right) is essentially a version of the Laplace-Young equation describing 
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the pressure drop across the gas-liquid interface with respect to the wetted particle 

area 

 

Figure 2-16: Sketch of liquid bridge geometry used for the analysis of capillary forces 

for coalescence between two partially wetted particles.
56

  

Where R = solid particle's radius, α = half-filling angle, θ = wetting angle, ρ = 

density of the liquid, L = the principal radius of the liquid meniscus, H = surface to 

surface distance between the solid particles, d = wetted portion of each hemisphere, 

h = distance between elements of integration used in the calculation of the van der 

Waals force, r = radius, xa, ya = coordinates of the contact point between the solid 

and liquid profile,  = interfacial tension between the oil and water phases. 

This mathematical relationship demonstrates the effect of capillary forces on the 

stability of the dispersion system. It also highlights the implication of particle 

wettability (quantified by the contact angle) on the relatively energy of dispersed 

particle systems. However, this theory cannot be considered in isolation since in 

reality, particles are never statically located at the interface but their location 

depends on the flow and drainage of fluid in the system. Furthermore, the theory 
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considers the particle-interface interaction but does not take into consideration the 

significance of inter-particulate interactions such as stabilisation by the electric 

double layer, dipole dipole repulsion and van der Waals attractions.  

2.4.2.1.3  Particle Networks 

Particles are known to stabilise emulsions by adsorbing at the droplet interface, 

creating as a physical barrier to prevent droplet coalescence. At particle 

concentrations high enough to cover droplets with dense (concentrated) particle 

monolayers (Figure 2-17a), steric stabilisation dominates since these layers create a 

‘shell’ of particles which hinder droplet coalescence. It was also postulated that at 

higher particle concentrations, inter-droplet particle networks form, affecting the 

viscosity of the continuous phase, thus increasing the stability of the emulsion. At 

lower particle concentrations, an alternative stabilisation mechanism is bridging 

stabilisation where a bridging monolayer of particles exists between adjacent 

emulsion droplets (Figure 2-17b). The strong capillary attraction caused by the 

menisci between particles (Figure 2-17c) stabilises the thin liquid film between the 

emulsion droplets, thus preventing coalescence. This also explains why emulsions 

are stable even at dilute particle concentrations when droplet coverage is sparse. 
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Figure 2-17: Summary of the steric stabilisation mechanisms present in particle-

stabilised emulsions including particle bilayer (a), bridging monolayer (b) and capillary 

attraction due to the menisci around each particle (c).
57

 

In comparison to surfactant systems, certain particles do not have much effect on the 

interfacial tension of oil-water systems. This was first observed by Vignati et al.,
58

 

who noted that varying the hydrophobicity and concentration of silica particles on 

iso-octane-water and octanol-water systems had no influence on the interfacial 

tension. This was later affirmed by Drelich et al.,
59

 who observed the same effect 

using hydrophobic silica particles in a paraffin oil-water system. These reports are in 

contrast to the theoretical study by Levine et al.,
60

 who proposed a strong 

dependence of interfacial tension on the particle concentration based on the 

hydrophobicity of the particles. Levine’s study was validated by the work of Glaser 

et al.
61

 using amphiphilic particles (Janus particles) which appeared to lower the 

interfacial tension for n-hexane/water systems. More recently, Kim et al.
62

 reported 

on the behaviour of graphite oxide particles in a toluene-water system and observed 

a decrease in interfacial tension as the particle concentration increased, at various 

pHs. From these two schools of thought on the effect of particles on the interfacial 

tension, it is apparent that the influence of particles on the interfacial tension is 
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largely dependent on its size, shape and surface chemistry. The more particles 

resemble amphiphilic surfactant molecules chemically, the more likely they are to 

have an effect on reducing the interfacial tension when adsorbed at the oil-water 

interface.  

2.4.3 Combining Surfactants and Particles 

Another category of emulsions are those stabilised by both surfactant and particulate 

emulsifiers. The mixing of both particles and surfactants is an important topic in 

industry since many emulsion formulations available commercially contain both 

these components.
63

 Thus there is continual interest on maintaining the balance 

between the advantages that surfactants and particulate emulsifiers bring to the 

emulsion system while controlling emulsion destabilisation and separation by 

understanding the interactions between surfactant and particles. Generally, 

surfactants and particle still act as they would in their respective emulsion systems 

(eg. amphiphilic surfactants adsorb at the oil-water interface to reduce interfacial 

tension; Particles adsorb almost irreversibly at the oil-water interface and create a 

mechanical barrier again droplet coalescence). However, since the number of 

components in the emulsion has increased, the emulsion system is more complex and 

interactions between particulate and surfactant emulsifiers exert an important effect 

which has proven to be synergistic or antagonistic, depending on a number of factors 

which will be revealed in this section. 

Weakly aggregated or flocculated particles are formed by the addition and 

adsorption of surfactants onto the surface of particles or the presence of a salt and 

proven to be more effective emulsifiers compared to isolated particles. In the first 

case, addition of a surfactant or polymer was shown by Hassander et al. 
64

 to 

encourage the aggregation of Ludox type silica particles. This aggregation of 
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particles encouraged them to adsorb in a favourable configuration at the oil-water 

interface, improving the stabilisation of o/w emulsions. In the latter case, the 

presence of salt in solution is said to be crucial for the formation and stability of 

particle-stabilised emulsions, as shown in studies by Ashby and Binks et al.,
46

 Binks 

and Lumsdon et al.
43

 and Yang et al.
46

 In these studies, the addition of salt lowered 

the zeta potential of the particles, favouring weak particle flocculation which also 

enhanced emulsion stabilisation. Evidence also exists for the orientation of the 

particles into a three-dimensional network in the continuous phase due to the 

addition of salt. This network promotes emulsion stability by increasing the 

continuous phase viscosity and preventing the coalescence of droplets.  

Binks and Rodrigues et al.,
65

 performed a systematic study on dodecane-water 

emulsions stabilised by a cationic surfactant, CTAB, and hydrophilic silica particles 

exclusively, then mixed the two to study the effects on the type and stability of the 

final emulsion formed. It was found that a mixture of both surfactant and particulate 

emulsifiers worked best to stabilise emulsions when there was sufficient surfactant 

adsorbed on the surface of the particles, causing them to become more hydrophobic. 

An additional effect of mixing surfactants and particulate emulsifiers in this case was 

the promotion of particle flocculation which enhanced emulsion stability. In an 

extension of this idea of enhanced flocculation, Binks and Rodrigues et al. 

experimented with chargeless alumina-coated silica and an oppositely charged 

surfactant, anionic SDS, was used together to form stable emulsion droplets. The 

reasons for this are due to adsorption of the surfactants on the improved flocculation 

and/or changing the wettability of the particles so they adhere better at the oil-water 

interface.  
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Another method was to modify the wettability of a particle, promoting its adsorption 

at the oil-water interface, therefore encouraging emulsification. This was 

demonstrated in another study by Binks et al.
66

 who found that using both the 

cationic surfactant CTAB to the hydrophobicity of silica nanoparticles at various 

pHs. Wang et al.
67

 found that adding the lipophilic non-ionic surfactant Span 80 

together with Laponite particles improved the long-term stability of emulsions by 

rendering the particles more hydrophobic which aids in the formation of a three-

dimensional network of particle aggregates among emulsion droplets. However, 

some researchers have also discovered that mixing both surfactant and particle 

emulsifiers could also destabilise emulsions. Vashisth et al.
68

 studied the influence of 

anionic SDS on the stability of o/w emulsions initially stabilised by partially 

hydrophobised silica. As the SDS concentration increased above the CMC, particles 

were displaced from the interface and therefore destabilised. In another study, 

Drelich et al.
59

 also showed that the addition of the surfactant Span 80 to a silica-

stabilised w/o emulsion served to displace particles from the interface, destabilising 

the emulsion. It is also worth mentioning that the order of addition of emulsifier as 

well as the choice of the phase in which the emulsifier is dispersed into are important 

factor for the final emulsion stabilisation. Eskandar et al.
69

 discovered that the order 

of adding particles (and phase the particles are added into) had affected the stability 

of the final emulsion. In particular, he noted that smaller droplet size distribution and 

stable emulsions were observed for initially surfactant-stabilised emulsions when 

particles were first added to the oil phase. Whitby et al.
70

 also reported that the phase 

where the surfactant is present is also crucial for emulsion stability. This was 

attributed to the influence of the surfactant on the extent of particle flocculation 

which in turn affects the stability of emulsions formed. 
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2.5 Introduction to Emulsion Templating 

There are numerous ways of preparing porous materials but emulsion templating is 

arguably one of the most versatile and flexible methods to produce bespoke materials 

for use in advanced scientific materials.
29

 In general, the method involves the 

formation of a w/o emulsion using a continuous (oil phase) containing monomers 

and a suitable initiator emulsified with a dispersed (aqueous) phase. At the gel point 

of polymerisation, the continuous phase polymerises ‘around’ the dispersed aqueous 

droplets. After polymerisation is complete, the aqueous phase is removed, resulting 

in a final solid porous structure. Since the dispersed aqueous droplets act as a 

template for the final porous structure, the process is termed ‘emulsion templating’. 

Different ‘types of emulsions could be used in this technique. For example, o/w 

emulsion templates prepared using oil soluble monomers polymerise to yield 

beads,
71, 72

 water soluble monomers in an o/w emulsion template polymerise to 

produce hydrophilic porous polymers,
73, 74

 low and medium internal phase emulsions 

(<74 vol.% internal phase dispersed in oil soluble monomers) polymerise to produce 

porous polymers with lower porosities
75, 76

 etc. The focus of this thesis is on the 

production of hierarchical, highly porous materials achieved by polymerising high 

internal phase w/o emulsion templates which can be stabilised by surfactants, 

particulate emulsifiers or a combination of both.  

2.5.1 Polymerised High Internal Phase Emulsions (PolyHIPEs) 

In the 1980s, polymerised HIPEs or ‘polyHIPEs’ was patented by Barby and Haq 

from Unilever PLC.
77

 W/o emulsions (an aqueous salt solution dispersed in styrene 

and divinylbenzene in the oil phase) stabilised by the non-ionic surfactant Span 80 

were polymerised to form solid polymers. The terminology used to describe 

polyHIPE structure is still inconsistent within the community,
78

 with some 
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investigators referring to pores as ‘cells’ or ‘voids’ and pore throats as ‘windows’, 

‘interconnects’ or ‘interconnecting holes’. For clarity, a labeled SEM of a typical 

polyHIPE structure is presented in Figure 2-18 (right) to demonstrate the 

terminology that will be used throughout this thesis.  

 

 

Figure 2-18: SEM of conventional polyHIPE (left)
38

 and the terminology used to 

describe polyHIPE structure (right)
79

  

Generally, polyHIPEs have the same porosity as the internal phase volume used to 

prepare them which can sometimes be as high as 97%
80, 81

 It has also been shown 

that the interconnectivity of the polyHIPE (open or closed cell) is dependent on the 

surfactant concentration used to prepare the emulsion templates.
81-83

 Closed cell 

porous polymers were synthesised from templates prepared with lower than 5 wt.% 

of surfactants and open cell or interconnected above 7 wt.%.
83

 regardless of the ratio 

of internal phase used. PolyHIPE pore sizes range from 5 – 100 µm, generaaly, and 

the interconnecting pore throats are often about a third the size of the pore.
8
 A 

number of studies aimed at investigating the parameters which affect the average 

pore and pore throat size in polyHIPEs exist in literature. Some suggest that varying 

the concentration of crosslinking DVB or surfactant in the organic phase has an 

effect on the average pore and pore throat size.
82

 Others point towards the effect of 

varying the electrolyte concentration on the emulsion and hence final porous 
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structure.
17

 In principle, it remains that these parameters contribute to the stability of 

the emulsion which dictates the structure of the emulsion at the gel point of 

polymerisation, hence affecting the final porous structure. 

The mechanism for the formation of pore throats remains an on-going discussion in 

the polyHIPE community. Barby and Haq
77

 stated that since surfactants are non-

polymerisable and insoluble in the aqueous phase, they aggregate in the polymer 

phase while the HIPE polymerises, resulting in weakened areas of the polymer film 

which succumb to mechanical stress and break, forming pore throats. Williams and 

Wrobleski
83

 were the first to observe the relationship between surfactant 

concentration and the open or close celled nature of the resulting polyHIPE. 

Increasing surfactant concentrations led to the reduction of emulsion droplet sizes, 

which made the liquid monomer films that separate adjacent emulsion droplets 

thinner. When monomers are converted to polymer chains during curing, volume 

contraction occurs, producing pore throats between adjacent droplets. Cameron et 

al.
80

 investigated the hypothesis of pore throat formation via volume contraction in 

an insightful cryo-SEM study. Liquid nitrogen frozen sections of HIPE were 

polymerised over different times and were imaged. The pore throat sizes were then 

analysed with respect to polymerisation time. It was observed that pore throats form 

at the gel point of polymerisation, agreeing with the postulate that pore throats form 

due to volume contraction during the conversion of monomers to polymer. However, 

the study does not explain the absence of pore throats in polyHIPEs synthesised from 

emulsion templates stabilised by low surfactant concentrations of <5%. An 

alternative explanation from Menner et al.,
79

 is represented in Figure 2-19. The study 

proposed that the emulsion phase separates as the solubility of surfactant in the 

organic phase decreased with polymerisation. Since surfactants aggregate at the oil-
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water interface between neighbouring droplets, the separation of the surfactant from 

the polymerising continuous phase resulted in weakened areas in the solid polymer 

film.
84

 Mechanical rupture of this thin and weakened polymer film is more likely to 

occur during post-polymerisation processing, which resulted in the formation of pore 

throats. This mechanism also accounts for why the size of the pore throats decrease 

with decreasing surfactant concentration.  

 

Figure 2-19: Schematic of pore throat preparation as proposed by Menner et al. 

(Adapted from Bismarck
16

)  

The presence of interconnecting pore throats makes polyHIPEs open cell and 

permeable to gases and non-wetting liquids.
76

 However, pore throats are essentially 

gaps or holes in the pore walls, a feature that reduces the load bearing capabilities of 

the polyHIPEs and negatively affects its mechanical strength. This limits the 

applicability of polyHIPEs in industry to a large extent. Therefore the challenge still 

exists to improve the mechanical properties of polyHIPEs without compromising on 

its high porosity and interconnectivity.  

2.5.2 Polymerised-Pickering HIPEs (Poly-Pickering HIPEs) 

When Pickering HIPEs are polymerised, poly-Pickering HIPEs are obtained. Poly-

Pickering HIPEs are distinguishable from polyHIPEs by their larger average pore 

size distribution and the lack of interconnecting pore throats, making them closed 

cell (Figure 2-20, left). In addition to the stability of particle-stabilised emulsion 
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templates, particulate emulsifiers also double up as reinforcements to the polymer 

matrix, improving its mechanical properties. A close-up of a pore wall of a typical 

poly-Pickering HIPE shows particles located at the pore wall (Figure 2-20 right). 

  

Figure 2-20: SEM of polystyrene-divinylbenzene poly-Pickering-HIPE (left) and higher 

magnification of the pore walls (right)  

Menner et al.
45

 first described the successful synthesis of poly-Pickering MIPEs 

from carbon nanotubes (CNTs). The study described the ability of CNTs to act as 

‘surfactant-like’ particles stabilising the oil-water interfaces in the emulsion during 

polymerisation. Not only did the presence of CNTs mechanically reinforce the 

polymer foams, they also imparted conductivity to the materials, creating additional 

functionality. Colver et al.
85

 then reported on the use of Pickering HIPEs stabilised 

by microgel particles as templates for the production of highly porous poly-Pickering 

HIPEs. In his study, emulsion templates were centrifuged to ‘force’ sedimentation of 

Pickering medium internal phase emulsions (MIPEs) with an original internal phase 

volume ratio of less than 0.5. The continuous phase that was separated (supernatant) 

was discarded and the remaining emulsion phase (sediment) polymerised. Although 

resulting materials were closed cell, the occasional interconnecting pore throats was 

observed (Figure 2-21), which was attributed to the breakage of the fragile polymer 

film connecting two adjacent pores.  
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Figure 2-21: Field-emission SEM image of poly-Pickering HIPE monoliths with 

poly(divinylbenzene)
85

 

Menner et al. 
45

 then reported on the production of poly-Pickering HIPEs directly by 

polymerising Pickering HIPEs stabilised by low concentrations of titania 

nanoparticles functionalised with oleic acid (2.5 wt.%). Resulting poly-Pickering 

HIPEs had larger average pore sizes ranging from 100 – 400 µm
52

 when compared 

with conventional polyHIPEs. There were also no pore throats, rendering them 

impermeable to gases.  

The preparation of poly-Pickering-HIPEs also provided insight into the mechanism 

behind pore throat formation. In an earlier study, Menner et al.
79

 observed a small 

number of pore throats in SEM images of purely particle stabilised emulsion 

templated poly-Pickering-HIPEs in addition to what appeared as thinner films 

covering potential pore throat ‘sites’ on the pore walls (Figure 2-22). This suggests 

that although varying the surfactant concentration appeared to affect the size of the 

pore throats, surfactants are not vital for pore throat formation.  

Other studies have since been published on the synthesis of poly-Pickering HIPEs 

with the aim of imparting additional functionalities to the macroporous polymers via 

the use of specific particles. Besides the poly-pickering HIPEs produced from 
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inorganic particles such as CNT, modified titania and silica mentioned earlier, other 

noticeable ones include the production of poly-Pickering (o/w) HIPEs using polymer 

nanoparticles such as poly(styrene-methyl methacrylate-acrylic acid) and 

poly(urethane urea) nanoparticles 
86, 87

 and magnetic poly-Pickering HIPEs using 

iron oxide nanoparticles.
88, 89

  

 

Figure 2-22: Image of Pickering polyHIPE with a partial open pore (image taken from 

Menner et al.
79

) 

2.5.3 Hierarchical PolyHIPEs 

Currently, the different methods used to synthesise hierarchical polyHIPEs can be 

summarised into two main strategies: Firstly, using a silica or carbon-containing 

dispersed phase to prepare a polyHIPE, followed by drying then calcination at 

temperatures exceeding 600°C. Sintering silica or carbon at such high temperatures 

promotes a condensation reaction to produce powder-like solids with very high 

surface areas. This can be seen in work by Zhang et al,
90

 where porous 

polyacrylamide (PAM)/silica composite beads of about 1.5mm in diameter were 
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prepared via sedimentation polymerisation of o/w/o HIPEs. The beads were 

immersed in inorganic precursor solutions for a period of time, then filtered, washed 

and dried. They were then calcined to obtain a silica ‘skeleton’ which had very high 

surface areas and large macropores of about 10m, on average. The method was also 

applied to transition metal oxide beads such as alumina and titania beads. Following 

a similar principle, Li et al.
91

 used poly (N-isopropylacrylamide) or PNIPM-based 

microgel particle to stabilise HIPEs containing silica nanoparticles. The oil and water 

components were removed via freeze-drying resulting in a porous material which 

were consolidated by calcination at temperatures up to 1400C. Besides achieving 

the conventional polyHIPE pore size of (10 – 30 m) and pore throats (3 – 5 m), 

the microgel particles initiated the formation of nanosized (80nm) pores across the 

pore walls, creating a hierarchy of pores across three length scales. In another study, 

Gross et al.
92

 produced hierarchical macroporous foams with mesoporous carbon 

xerogels using emulsion templates which contained silicon oil as the internal phase 

and a resorcinol-formaldehyde precursor solution as the continuous (external) phase. 

The precursor solution was cured to obtain a gel which was dried, and underwent 

solvent exchange to remove water. Finally, it was pyrolysed to obtain the 

hierarchical product of foams with mesopores with an average of 5 – 8nm diameter 

and macropores with an average of 0.7 – 2.1 m interconnected by macropores with 

an average diameter of 0.18 – 0.53 m. 

The second strategy for creating hierarchical polyHIPEs involves the use of a 

‘double templating’ technique where two colloidal templates with different 

dimensions are used in synergy to produce hierarchically organised materials. This 

was presented by Carn et al.,
93

 who produced a porous inorganic monolith using a 

direct emulsion template to generate a macro-scale pore structure and a micellular 
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template at the nano-scale to produce pores of a much smaller size range. Whilst 

Schwab et al.
94

 induced swelling in polyHIPE precursors, then hypercrosslinked the 

resulting polymeric network, producing a secondary micro- structure in the pore 

walls. This massively increased the BET surface area, which when superimposed 

with the macro- structure of the polymeric monolith, produced a hierarchical 

poyHIPE structure. 

The production of hierarchical pores in the macro- range via emulsion templating is 

a topic that has not been explored hence far. As described before, current work on 

hierarchical porous polymers is focused on achieving high surface areas by 

manipulating synthesis conditions to produce secondary pores in the nano- range in 

addition to pores in the micro- and macro- range. This creates a rougher texture in 

the walls of the porous polymer, as seen in Figure 2-23. Also this increases the 

surface area by two to three orders of magnitude. The highly convoluted pore wall 

has drawbacks as resulting materials are delicate and unable to withstand much 

mechanical stress. An alternative definition of hierarchy proposes considers the 

arrangement of pores in natural porous materials. It is believed that a hierarchical 

macroporous arrangement is believed to improve the resulting physical properties of 

macroporous polymers.  

 

Figure 2-23: SEM images of poly (4-vinylbenzene chloride- divinylbenzene) polyHIPEs 

showing the largely mono-modal pore size distribution (left) and at higher 

magnification, a ‘roughened’ polymer wall due to hypercrosslinking (right) which 

increases the surface area.
94
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3 Hierarchical Polymerised High Internal Phase 

Emulsions Synthesised from Surfactant-Stabilised 

Emulsion Templates 

3.1 Summary 

In building construction, structural elements, such as lattice girders, are positioned 

specifically to support the main frame of a building. This arrangement provides 

additional structural hierarchy, facilitating the transfer of load to its foundation while 

keeping the building weight down. The same concept was applied when synthesising 

hierarchical open celled macroporous polymers from High Internal Phase Emulsion 

(HIPE) templates stabilised by varying concentrations of a polymeric non-ionic 

surfactant. These hierarchical poly(merised)HIPEs have multimodally distributed 

pores, which are efficiently arranged to enhance the load transfer mechanism in the 

polymer foam. As a result, hierarchical polyHIPEs produced from HIPEs stabilised 

by 5 vol.% surfactant showed a 93% improvement in Young’s moduli compared to 

conventional polyHIPEs produced from HIPEs stabilised by 20 vol.% of surfactant 

with the same porosity of 84%. Finite Element Method (FEM) was used to 

determine the effect of pore hierarchy on the mechanical performance of porous 

polymers under small periodic compressions. Results from FEM showed a clear 

improvement in Young’s moduli for simulated hierarchical porous geometries. This 

methodology could be further adapted as a predictive tool to determine the influence 

of hierarchy on the mechanical properties of a range of porous materials.  
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3.2 Introduction 

Macroporous polymers are a unique class of materials valued for their high 

porosities, light weight and low densities. Some methods currently used to produce 

macroporous polymers include physical or chemical blowing or foaming 

(frothing),
95-97

 solvent casting and particle leaching,
98

 thermally induced phased 

separation (TIPS),
6
 the use of super critical fluids (including supercritical carbon 

dioxide)
99-101

 and emulsion templating. Of these methods, emulsion templating is 

particularly notable for its simplicity and versatility. Since the (liquid) emulsion 

takes the shape of its casting mould, it is possible to create different forms of 

macroporous polymers ranging from solid porous monoliths
102

 and thin membranes
2
 

to micrometre-sized beads
103

. Furthermore, pore morphologies of emulsion 

templated macroporous polymers are tuneable by varying the emulsion 

composition.
27

 Due to their interconnectivity, post polymerisation functionalisation 

of emulsion templated macroporous polymers is also possible.
104

 As a result of these 

traits, there is growing interest to develop emulsion templated macroporous 

polymers for various engineering applications. To date, studies have been carried out 

to explore the use of emulsion templated macroporous polymers as 

microbioreactors,
105

 catalyst supports,
106

 ion exchange modules
107

 and scaffolds for 

tissue engineering
108

 or setting retarded cements
109, 110

 to name just a few. The 

production of macroporous polymers (using hydrophobic monomers) via emulsion 

templating involves the use of water-in-oil (w/o) emulsions. W/o HIPE templates 

consist of an internal phase made up of an aqueous electrolyte solution, dispersed in 

a continuous phase containing monomer(s) and crosslinker(s), initiator and 

emulsifier(s), which can be surfactants, particles
52, 85, 111, 112

 or a combination of 

both.
113

 Since the arrangement of droplets in the emulsion acts as template for the 
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final macroporous polymer structure at the gel point of polymerisation, the technique 

is thus termed emulsion templating. 

In this study, high porosity open-celled porous materials were prepared by 

polymerising HIPEs stabilised solely by surfactants. HIPEs are emulsions that have 

an internal phase volume of greater than 74 vol.%, a value equal to the maximum 

packing ratio of monodispersed spheres, after which the aqueous droplets dispersed 

in the continuous phase are modelled, just before they start to deform.
8, 114, 115

 Using 

a suitable initiator, the monomers in the continuous phase polymerise around the 

aqueous internal phase droplets. After vacuum drying, a solid, highly porous material 

called poly(merised)HIPE is produced. Conventionally, polyHIPEs have average 

pore sizes ranging from 5 to 100 µm interconnected by spherical pore throats that are 

about a third the size of a pore in diameter.
114-116

 Pore throats in the polyHIPEs make 

them interconnected or open-celled and, therefore, permeable to gases and/or liquids. 

However, as the size of pore throats (and interconnectivity) increase while porosity 

and average pore size remain constant, the load bearing capability of highly porous 

polyHIPEs will also decrease since pore throats are essentially gaps or discrepancies 

in the pore wall.
117

 Therefore, the challenge is to improve the mechanical properties 

while maintaining the high porosity and interconnectivity of polyHIPEs. 

Previous studies aimed at improving the mechanical properties of polyHIPEs include 

the use of nanofillers
75, 118-121

 to reinforce the polymer matrix, thereby improving the 

crush strength and Young’s modulus of resultant macroporous polymer composites. 

Another approach was the use of alternative monomers that polymerised into tougher, 

stronger polymers; for instance, hydrophilic 1-vinyl-5-amino [1,2,3,4] tetrazole was 

polymerised with N, N’-methylenebisacrylamide as a crosslinker using dodecane as 

the dispersed phase.
122

 Poly(dicyclopentadiene), which has a large number of double 
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bonds, hydroxyl, hydroperoxy groups and carbonyl groups, was used to prepare 

polyHIPEs with high Young’s moduli as the functional groups facilitate covalent and 

hydrogen bonding to improve the cross-linking density of the polymer.
123

 More 

recently, Luo et al.
117

 utilised living radical polymerisation to produce polyHIPEs to 

increase the homogeneity of styrene polymerisation, which resulted in improved 

overall mechanical strength of these polyHIPEs.  

An alternative strategy to improve the mechanical integrity of polyHIPEs is to mimic 

the hierarchical structure of naturally occurring strong highly porous materials, such 

as wood and spongy bone tissue.
10

 These natural porous materials consist of 

structural units which differ in size and are arranged to provide optimal conditions 

for effective load transfer.
10

 Drawing inspiration from this, the term ‘hierarchy’ in 

this study refers to a pore structure with a multi-modal pore size distribution, 

arranged such as to improve the mechanical properties of the final porous product. 

This definition of hierarchy was first referred to in an earlier study discussing 

macroporous polymers produced from emulsions stabilised simultaneously by both 

particles and surfactants, which showed a clear influence of multimodal pore size 

distribution on mechanical properties.
113

 This is in contrast to other reports on 

‘hierarchical’ polyHIPEs, which contain pores in the nanometre range and are, 

therefore, highly textured with high surface areas. A major drawback of these highly 

intricate ‘hierarchical’-type materials is the inability to withstand much mechanical 

stress,
90-94

 making them too delicate for any real application.  

Encouraged by our earlier findings,
113

 a methodology to produce new hierarchical 

polyHIPEs by polymerising HIPE templates solely stabilised by surfactant is 

presented in this paper. By optimising the surfactant content and the emulsification 

process, the droplet size distribution of resulting emulsions were controlled to 
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produce hierarchical polyHIPEs. Since the concept of ‘structural hierarchy’ is often 

applied to the architecture of roofs and bridges, which consist of lattice girders 

positioned strategically to transfer load to the foundation while maintaining a 

relatively light design,
124

 it was further extrapolated that the hierarchical 

arrangement of pores in our materials would facilitate effective load transfer during 

compression, improving the crush strength and Young’s modulus without 

compromising interconnectivity. A finite element method (FEM) analysis was used 

on simulated 2D geometries of hierarchical porous materials to validate the 

favourable effect of hierarchy on the mechanical properties of porous materials.  

3.3 Experimental 

3.3.1 Materials 

Styrene (≥ 99%), divinylbenzene (DVB; 80 vol.% m- and p- divinylbenzene) and 

calcium chloride dihydrate (CaCl2·2H2O) were purchased from Sigma Alrich 

(Gillingham, UK). The non-ionic polymeric surfactant Hypermer 2296 was kindly 

supplied by CRODA (Wirral, UK). The free-radical initiator ,’-

azoisobutyronitrile (AIBN) was purchased from Camida (Tipperary, Ireland). 

Deionised water was used for the preparation of the aqueous phase and for the 

purification of polyHIPEs. All chemicals were used as received.  

3.3.2 HIPE Preparation 

The aqueous internal phase (80 vol.% with respect to total emulsion volume, 40 ml) 

containing CaCl2.2H2O (5 g/L, 0.034 M) as electrolyte to suppress Ostwald ripening 

was added drop wise to the continuous phase consisting of styrene (50 vol.% with 

respect to total monomer volume, 5 ml) and DVB (50 vol.% with respect to total 

monomer volume, 5 ml). Various concentrations of surfactant Hypermer 2296 and 1 
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mol-% of the radical initiator AIBN (with respect to monomers) was also added. 

Whilst the aqueous phase was being added, the mixture was stirred by a glass paddle 

rod connected to an overhead stirrer maintained at a constant speed of 500 rpm. 

After all the aqueous phase had been added, the stirring speed was increased to 

2,000 rpm for 30 s (or 5 min where stated) to obtain a homogeneous emulsion. Five 

emulsions (two of each) containing 0.75 w/vol%, 1 w/vol.% (DS1), 2 w/vol.% (DS2), 

5 w/vol.% (DS5), 10 w/vol.% (DS10) and 20 w/vol.% (DS20) of surfactant with 

respect to monomer volume were prepared for polymerisation. It was assumed the 

surfactant was removed during the purification step and, therefore, the volume of 

surfactant was not taken into consideration for the calculation of the internal phase 

volume. 

3.3.3 PolyHIPE Preparation 

Emulsions were transferred immediately after preparation to 50 ml free-standing 

polypropylene centrifuge tubes (Falcon™ tubes), sealed and polymerised in a 

convection oven for 24 h at 70°C. The resulting polyHIPEs were removed from their 

tubes and washed with deionised water followedF by acetone to remove all 

unreacted monomers, surfactants, residual CaCl2.2H2O and other impurities. The 

polyHIPEs were then dried in a vacuum oven at 100°C to constant weight. 

3.3.4 Characterisation of PolyHIPEs  

3.3.4.1 Density and Porosity  

Helium displacement pycnometry (Accupyc 1330, Micrometrics Ltd, Dunstable UK) 

was used to measure the matrix or skeletal density (m) of the polymer foams. The 

envelope or foam density (f) was measured using an envelope density analyser 
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(GeoPyc 1360, Micrometrics Ltd, Dunstable, UK) and the percentage porosity (P) 

was then calculated using equation: 

         
  

  
      

Equation 3-1 

At least six samples from two repeat samples of each of the polyHIPEs DS1 to DS20 

were analysed to obtain statistically relevant data.  

3.3.4.2 Pore Structure, Pore and Pore Throat Dimensions 

The microstructure of the polyHIPEs was studied by imaging fracture surfaces using 

a SEM (Hitachi High Technologies, S3400N VP SEM) at an accelerating voltage of 

5 kV. Prior to SEM, approximately 0.5 cm
3 

of each dry sample was fixed onto an 

aluminium stub using a carbon sticker and gold coated at 20 mA for 60 s (Scan Coat 

Six SEM Sputter Coater, Edwards Ltd., Crawley, UK) to ensure electrical 

conductivity. Images were taken from fractured surfaces taken from the top, middle 

and bottom sections of a sample in order to account for the variations in pore 

morphology due to droplet coalescence and sedimentation. Since the differences in 

pore and pore throat size distributions for DS1 to DS20 are minimal, the pore and 

pore throat dimensions (at least 250 from each polyHIPE) were analysed using the 

imaging software ImageJ. The data is processed into frequency distribution curves 

and when necessary, fitted using the Gauss Amp function (Equation 3-2) to 

determine the average pore throat size (xc): 

       
 
      

 

    

Equation 3-2 
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where x is the pore throat size (µm), y the count, y0 the offset, xc the average pore 

throat size (µm),  the width of the distribution and A the amplitude of the 

distribution.  

3.3.4.3 Surface Area  

Surface areas of the polyHIPEs were determined from nitrogen adsorption isotherms 

(77K) using the Brunauer-Emmet-Teller (BET) model using a surface area analyser 

(Micrometrics ASAP 2010, Micromeritics, Dunstable, UK). Prior to gas adsorption, 

contaminants were removed via a ‘degassing’ step where approximately 200 mg of 

each polyHIPE was heated to 110C in glass sample cells overnight.  

3.3.4.4 Gas permeability  

A pressure rise technique was used to measure the gas permeability using a custom 

built system reported earlier.
76

 PolyHIPEs characterised using this technique are 

required to be strong enough to withstand the shear forces exerted by a N2 pressure 

difference of up to 1.4 bar required for measurements. PolyHIPEs disks of 

approximately 15 mm in diameter were cast in sealed samples cells to avoid cross 

flow around the edges. Gas pressure was kept low on one side of the porous medium 

while at the other side, a constant higher pressure was maintained. Gas flowed 

through the pores of the sample from the high to the low pressure side where it was 

collected in a vessel with a fixed, known volume. The rates of pressure rise were 

measured and the data points used to determine the viscous permeability of the 

polyHIPEs using the equation: 

  
     

   
 

  
   

  
  

   
 

 

 
   

 

 
   

   

  
 

Equation 3-3 
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where Q2 is the volumetric flow rate on low pressure side, p2 the downstream 

pressure, L the sample length, A the sample cross sectional area, p the pressure 

difference across sample, V the known vessel volume, T the time; k the viscous 

permeability; pm the mean pressure; p1 the gas inlet pressure; µ the gas viscosity; Ko 

the Knudsen permeability coefficient; R  the gas constant, T the temperature and M 

is the molar mass of Nitrogen gas. Measurements were performed on two different 

samples for each polyHIPE and repeated six times per side of each sample. 

3.3.4.5 Mechanical Properties 

Compression tests were carried out at room temperature using the Lloyds 

instruments universal testing machine (Lloyds EZ50, Lloyds Instruments Ltd 

Fareham, UK) equipped with a 50 kN load cell at an extension rate of 1 mm/min. 

The plates were sprayed with a dry polytetrafluroethylene (PTFE) spray (ROCOL, 

West Yorkshire, UK). A minimum of five cylindrical pieces with a diameter of 

25.3  0.3 mm and height of 10.5  0.4 mm were cut from each formulation. 

Absolute care was taken to ensure that the sample surfaces were parallel. The 

samples were compressed until the thickness was reduced to approximately 50% of 

its original value. The Young’s modulus was then determined from the slope of the 

initial linear elastic region in the stress/strain plot and the crush strength was 

computed from the maximum compressive strength of the foam sample at the end of 

the initial linear elastic region, normalised with respect to the cross sectional area.  
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3.3.5 Simulated Porous Microstructures and Determination of Young’s 

Modulus Using Finite Element Method (FEM)
1
 

A simulation study was carried out to investigate the effect of hierarchical pore 

arrangement on the Young’s modulus of macroporous materials. To begin, 2D 

images representing the porous structures of our polyHIPEs were generated using a 

packing algorithm developed with the Processing Software Version 2.0 Beta 3. This 

algorithm was designed to position circles (representing pores) into an illustrative 

100 x 100 µm
2
 box. Each circle was modelled by a spring-and-dashpot force model 

considering elastic repulsion forces and a viscous damping force but no frictional 

forces. Elastic repulsive forces, represented by areas where circles overlapped, were 

minimised. Using pore size distribution curves obtained for DS1 to DS20 determined 

by SEM image analysis (Section 3.3.4.2) as a reference, twenty randomly generated 

microstructures with a constant porosity of 80 ± 1% were analysed for each pore 

structure (namely Geometry 1 to Geometry 5). These pore geometries (representing 

the pore structures of polyHIPEs DS1 to DS20) produced using this ‘packing 

algorithm’ were then fed into the software Abaqus using Python to script a code that 

generated output data via the Finite Element Method (FEM). The code was 

specifically designed to solve two-dimensional (2D) plane strain problems with 

periodic boundary conditions for a mesh of individual units that make up the pore 

structures derived earlier. An average Young’s modulus of 3.2 GPa and Poisson’s 

ratio of 0.33, both values extracted from literature for (bulk) crosslinked 

polystyrene
125, 126

 were used as input parameter for polymer properties. Using FEM, 

                                                 

 

1
 This work described in this section and all associated results are mainly the work of a research 

collaborator, Dr Pedro Baiz Villafranca, Department of Aeronautics Imperial College London. 



Chapter 3 

75 

 

small periodic compressive displacements were applied to the top edge of each unit, 

keeping the bottom edge fixed in the vertical direction. Horizontal displacements 

were allowed, except at the bottom right corner to avoid rigid body motion (Figure 

3-1). Nodal degrees of freedom for the right and left edges of each unit were scripted 

to move by the same amount in the analysis. The total reaction load output from this 

finite element system was used to compute the overall Young’s modulus associated 

with these pore structures, assuming that they obeyed Hooke’s Law, i.e. a linear 

relation between stress and strain for small strains.  

 

Figure 3-1: Schematic representing FEM analysis 

3.4 Results and Discussion 

Our group previously showed that HIPEs with an internal phase volume ratio of 74%, 

prepared with a surfactant concentration of 20 vol.% with respect to monomer 

volume and a stirring time of 10 min at 2,000 rpm resulted in viscous emulsions, 

which after polymerisation and purification resulted in polyHIPEs with an average 
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pore size of 4.9  1.9 m and a porosity of 82%.
76

 It was hypothesised that adjusting 

the surfactant concentration and the energy input during emulsification, i.e. the 

stirring time, would influence the droplet size distribution and resulting pore sizes. 

Thus, to produce pore hierarchy, our strategy was to vary the surfactant 

concentration and emulsification time independently to investigate how this affected 

the rate of droplet break up and coalescence. By first keeping the stirring rate 

constant and the surfactant concentration below 20 vol%, the rate of droplet breakup 

was expected to be lower and the rate of droplet coalescence higher, resulting in a 

multi-modal droplet size distribution. It was found that the lowest concentration of 

surfactant used to prepare homogenous emulsions, which remained stable during 

polymerisation was 0.75 w/vol.%. These HIPEs polymerised to yield polyHIPE 

monoliths, which were interconnected by pore throats (Figure A0-1). At this 

surfactant concentration, emulsion droplets underwent rapid sedimentation resulting 

in a large pore size gradient, with pores excess of 2 mm (even after stirring for 10 

min), making the polyHIPEs unsuitable for mechanical testing. Therefore, emulsions 

stabilised by 1 w/vol.% surfactant were the next lowest surfactant concentration that 

produced polyHIPEs that could be successfully cut into intact pieces for mechanical 

testing. Surfactant concentration was further varied from 1 to 2, 5, 10 and 20 w/vol.% 

to study its effects on the resulting pore morphology of polyHIPEs. 

Optical microscopy images of HIPEs with an internal phase volume ratio of 75% 

stabilised by 1 w/vol.% surfactant showed a polydisperse droplet distribution when 

emulsified under said conditions for 10 min (Figure 3-2). When the two phases were 

emulsified for a shorter period of 30 s, the result was an even broader droplet size 

distribution (Figure 3-3) as the emulsion consisted of a greater number of droplets, 

which were much larger than the ones observed in Figure 3-2, interspersed with 
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smaller droplets. This establishes that besides surfactant concentration, a shorter 

emulsification time is another factor that further encouraged the formation of 

emulsions with a very broad droplet size distribution.  

 

  

 

Figure 3-2: Optical micrograph of a 

HIPE stabilised with 1 w/vol.% stirred 

for 10 min 

Figure 3-3: Optical micrograph of a 

HIPE stabilised with 1 w/vol.% stirred 

for 30 s 

 

These emulsion templates polymerised into white solid macroporous monoliths DS1, 

DS2, DS5, DS10 and DS20, respectively. The polymerised specimens could be 

handled without breaking easily but were chalky due to the high crosslinking density; 

a result of the high DVB content. Skeletal (1.10  0.03 g/cm
3
) and envelope (0.18  

0.01 g/cm
3
) densities were constant for all polyHIPEs despite the increasing 

surfactant concentration used to stabilise the HIPE templates. This indicated that the 

parasitic surfactant was removed from the macroporous polymers during post-

polymerisation purification and drying. Porosities were constant at 84  1 % since all 

specimens were prepared from emulsion templates with the same internal phase 

volume. The average porosity measured was higher than the internal phase volume 

used (80 vol.%) due to the presence of unreacted monomers. 
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SEM micrographs representative of the microstructures of polyHIPEs DS1 to DS20 

are presented in Figure 3-4.  
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DS 
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Figure 3-4: SEM micrographs of polyHIPEs synthesised from emulsion templates stabilised with surfactant concentrations ranging from 1 w/vol.% 

(DS1), 2 w/vol.% (DS2), 5 w/vol.% (DS5), 10 w/vol.% (DS10) and 20 w/vol.% (DS20). SEM images are representative of the pore morphology across 

the entire polymer monolith. 
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The pore size distributions of all the macroporous polymers synthesised are 

presented in Figure 3-5 and the BET surface areas are tabulated in Table 3-1. To 

clearly visualise any macro-scale hierarchy (defined earlier as macroporous polymer 

with a multimodal pore size distribution with optimally arranged pores) observed in 

these structures, Figure 3-4 and Figure 3-5 are discussed together.  

 

Figure 3-5: Pore size distribution of DS1 to DS20. 
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The pore size distributions for DS1 and DS2 look similar since they both have 

largest peaks at approximately 6.4 µm. However, DS1 has a higher proportion of 

small pores that lie in the range from 0 and 5 µm when compared to DS2, which also 

explains its larger BET surface area when compared to DS2. DS1 also has a 

generally wider pore size distribution, with a broader, flatter right tail and a peak at 

approximately 125 µm, which is not seen in DS2. In DS2, a greater proportion of 

pores were in the range of 12.5 to 50 µm when compared to DS1. In DS5, the pore 

size distribution curve could be described as bimodal, with peaks centred around 

4.7 m and 7.7 m. The percentage of pores that fall between 0 and 5 µm in DS5 is 

at least 20% higher compared to DS1 and DS2, also accounting for its larger BET 

surface area. DS10 also has also a bimodal pore size distribution, with a downward 

shift of peaks (compared to DS5) to 4.1 m and 6.4 m as the increased surfactant 

concentration in the HIPE template from which the polyHIPEs were synthesised 

favours the stabilisation of smaller droplets. This increase in the proportion of 

smaller droplets also correlates with the increase in BET surface area for DS10 

compared to DS5. In contrast to DS1 to DS10, the pore structure observed in DS20 

is that of a typical polyHIPE, with pores that are more uniform in size (Figure 3-4). 

The pore size distribution for DS20 is monomodal, with a distinct peak at 

approximately 2.6 µm (Figure 3-5). Hence DS20 is not classified as polyHIPE with a 

hierarchical pore structure. DS20 also has the largest surface area as it has the 

smallest pores out of all the samples. 

From higher magnification SEM images taken of DS1 to DS20 (Figure 3-4), it is 

apparent that all polyHIPEs synthesised are open celled with pores being 

interconnected by pore throats. The pore throat distribution curves of DS1 to DS20 

are presented in Figure 3-6.  
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Figure 3-6: Frequency of occurrence of pore throat sizes for DS1 to DS20. A 

GaussAmp function is fitted to them to calculate the mean pore throat size.  

Even though some of the polyHIPEs prepared in this study have a hierarchical pore 

arrangement, the distribution of the pore throat diameters is monomodal. This does 

not come as a surprise as all larger pores are always surrounded by smaller pores, 

which ultimately limits the size of the pore throats. Average pore throat sizes were 

determined from the GaussAmp fit and summarised in Table 3-1 (parameters used 

for fitting are tabulated in Table A0-1). Generally, the pore throat size distribution 

becomes narrower with increasing surfactant concentration used to stabilise the 

HIPE templates. The average pore throat size increases slightly between DS1 to DS5 
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before decreasing to its smallest value in DS10 and DS20. Although much is up for 

dispute on the mechanism for pore throat formation in polyHIPEs, it is believed that 

as the continuous phase of the surfactant stabilised emulsion polymerises, the 

solubility of the surfactant in the polymerising organic phase decreases, causing the 

surfactant to form a separate phase in the polymer-rich monomer phase in the 

thinned film regions (usually the region found when droplets are pressed together) of 

the polymerising HIPE. This creates fragile areas in the contact points between the 

droplets. After polymerisation, these fragile areas break open, leaving behind pore 

throats.
48

 In hierarchical polyHIPEs, the pore throat diameter is limited by the size of 

the internal phase droplets in the liquid HIPE template that are packed in between 

larger droplets, as it is more likely for large droplets to come into contact with 

smaller droplets than with other large droplets. Since the proportion of smaller pores 

in DS1 is higher compared to DS2 (Figure 3-5) the average area of contact between 

two pores in DS1 would also be smaller, therefore the average pore throat diameter 

for DS1 is smaller than DS2. The proportion of smaller pores increased with 

increasing surfactant concentration used to stabilise the HIPE templates from DS2 to 

DS10 (Figure 3-5), thus the average contact areas between adjacent pores also 

decreases, resulting in smaller average pore throat diameters. It is worth noting that 

the average pore throat diameter of DS10 and DS20 is almost identical because the 

size of the smaller pores in DS10, which limits the size of pore throats formed, is the 

same as the average pore size in DS20. 
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Table 3-1: Summary of surface area, average pore throat diameter and gas 

permeability of DS1 to DS20. 

 

% 
based on Gaussian distribution * standard error over 250 counts 

# 
standard deviation 

Gas permeability was used to characterise the interconnectivity of these polymer 

foams. In general, gas permeability is limited by the smallest pore throat in a series 

of interconnected pores.
76

 DS1 has the highest gas permeability, which suggests that 

it has the largest limiting pore throat diameters of all polyHIPEs prepared (Table 

3-1). Gas permeability decreases by about 60% from DS1 to DS2 as the limiting 

pore throat size decreases. Since DS2 and DS5 have very similar pore throat size 

distributions, they are likely to have approximately the same limiting pore throat 

diameter and hence similar gas permeability. Gas permeability drops by a further 60% 

in DS10 as the proportion of small pores increases dramatically (Table 3-1), 

decreasing the limiting pore throat diameter. Since DS10 and DS20 also have an 

almost identical pore throat size distribution (and average pore throat value), the 

limiting pore throat diameter for the two samples are likely to be the same, 

accounting for the similar gas permeability measured. 

Sample 

ID 

Surface area 

(m
2
/g)

#
 

Average
%

 pore 

throat diameter 

dpt 

(m)* 

Gas 

Permeability 

 

(mD)
 #
 

DS1 3.59  0.02 1.06  0.02 261  69 

DS2 2.28  0.02 1.13  0.02 98  22 

DS5 4.86  0.02 1.16  0.02 105  54 

DS10 5.95  0.01 0.76  0.02 44  11 

DS20 7.64  0.12 0.77  0.01 32  21 
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Figure 3-7: Summary of Young’s modulus and crush strength of (hierarchial) 

poly(styrene-co-divinylbenzene)HIPEs. 

From earlier work, it is known that the pore and pore throat size distribution play an 

important role in determining the overall ability to resist longitudinal compressive 

forces.
113

 In this study, since the densities and porosities of DS1 to DS20 remain 

constant, the influence of pore size hierarchy on the overall mechanical properties of 

the polyHIPEs can be further validated.  

DS1 has the highest interconnectivity, determined by analysing the gas permeability, 

which as mentioned earlier, is related to the size of the limiting pore throat diameter 

and a factor that affects the homogeneity of the pore walls and greatly affects the 

load bearing ability of the macroporous polymer.
117

 This explains why DS1 has the 

lowest crush strength and Young’s modulus amongst all hierarchical polyHIPEs 

(Figure 3-7). Compared to DS1, DS2 had almost twice the crush strength and the 

Young’s modulus increased by 40% (Figure 3-7) as DS2 had lower interconnectivity 



Chapter 3 

88 

 

compared to DS1. The packing arrangement of pores in DS2 is also more effective at 

withstanding compressive loads. As the surfactant concentration increased in the 

HIPE templates from which DS2 to DS5 were synthesised, the polyHIPEs still had 

the same interconnectivity but DS5 had a distinctive bimodal pore size distribution 

in contrast to the monomodal pore size distribution observed for DS2. The pore 

hierarchy of DS5 appears to be an optimal balance between large and small pores, 

improving the load transfer mechanism of the porous microstructure under 

compression. As interconnectivity decreases from DS5 to DS10, the Young’s 

modulus of DS10 decreased by about 16% and the crush strength dropped to the 

same strength as DS2. This is a result of the less apparent pore hierarchy observed in 

DS10. DS20 exhibited a further 40% drop in crush strength and Young’s modulus 

compared to DS10, despite having the lowest interconnectivity. This indicates that 

the reduced average pore size and the absence of pore hierarchy (distinctive 

monomodal pore size distribution) has a profound effect on the mechanical integrity 

of DS20 as it is the macroporous polymer with the lowest mechanical properties in 

this series. It is also clear that the influence of pore hierarchy on the mechanical 

properties surpasses that of the pore throat size distribution in this system of 

macroporous polymers. It is worth mentioning here that the mechanical properties of 

various macroporous materials are known and might indeed by better but is not 

relevant to prove our concept of hierarchy for this study.   

A simulation study was designed to determine if a hierarchical arrangement of pores 

could indeed result in increased mechanical properties of porous materials. The first 

step was to create 2D porous microstructures based on experimentally determined 

pore size distributions (Figure 3-5) using a ‘circle packing algorithm’. ‘Snapshots’ of 

representative geometries are displayed in Figure 3-8.   
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Geometry 1 (modelled after DS1) 

 

Geometry 2 (modelled after DS2) 

 

Geometry 3 (modelled after DS5) 

 

Geometry 4 (modelled after DS10) 
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Figure 3-8: Porous geometries generated to describe DS1 to DS20 (each side of the 

square corresponds to 100 µm) 

To generate output data demonstrating the effect of pore hierarchy on the mechanical 

properties of these porous polymers, simulated geometries based on pore size 

distributions measured for DS1 to DS20 were fed into a Python-scripted model 

which generated reaction loads using FEM. There are some assumptions and 

limitations of the model that should be considered when analysing the results. Firstly, 

a 2D computational model was assumed, which although may not seem realistic, 

however it is believed to be an efficient and acceptable method to provide qualitative 

comparisons with our measured data. Also, for this complex system of equations to 

converge, maximum porosities were limited to 80 ± 1%, which is slightly lower than 

porosities measured from actual samples (Table 3-1). Furthermore, these 2D 

microstructures were designed to only account for the pore arrangement (hierarchical 

vs. non-hierarchical) and do not yet consider the effect of pore throats on the overall 

mechanical properties. Bearing these abovementioned assumptions and limitations of 

the model in mind, a qualitative approach was used to interpret the data generated. 

Reaction loads (output) were used to calculate Young’s moduli, which were then 

normalised with the Young’s modulus of the bulk polymer (3.2 GPa) to obtain 

 

Geometry 5 (modelled after DS20) 
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representative relationships) which effectively demonstrate any dependency of the 

pore geometry’s elastic response on changes in porous morphology. 

 

Figure 3-9: Qualitative comparison between normalised Young’s moduli obtained from 

compressing 2D porous geometries (Geometries 1 to 5) generated to represent HIPE 

templates with varying concentrations of surfactant (DS1 to DS20). 

The mean and standard error of 20 simulated Young’s moduli per sample are 

displayed in Figure 3-9. Geometry 3 (DS5) has the highest computed (20% variation 

from the lowest value) Young’s modulus compared to the rest of the geometries. 

This proves that a significant improvement of elastic properties is observed by 

introducing hierarchy into the pore structure of porous materials with constant 

porosity. Therefore, this preliminary simulation study shows that the hierarchical 

pore structure of DS5 (Geometry 3) does indeed provide favourable mechanical 

properties; it had the highest Young’s modulus out of all the polyHIPEs prepared, a 

result which is in line with our experimental observations.  
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3.5 Conclusions 

Inspired by hierarchical porous structures in nature, hierarchical polyHIPEs were 

synthesised from surfactant stabilised emulsion templates. Hierarchical polyHIPEs 

are defined as having a multimodal pore size distribution, arranged in an optimal 

packing configuration. This hierarchical arrangement of pores is comparable to the 

role of lattice girders positioned specifically to provide structural hierarchy in 

building construction. The girders facilitate the transfer of load to the foundation 

while keeping the overall building light. Highly porous and lightweight hierarchical 

polyHIPEs were found to be permeable yet mechanically stronger than conventional, 

polyHIPEs with a monomodal pore size distribution but the same porosity. Using 

simulated 2D porous geometries modelled after hierarchical and non-hierarchical 

polyHIPEs prepared in this study, their corresponding elastic behaviour was 

predicted qualitatively using FEM. Small compressive displacements were applied to 

individual units making up the entire porous geometry and the resulting reaction load 

was analysed. This preliminary simulation study showed a clear beneficial influence 

of pore hierarchy on the Young’s modulus of macroporous polymers, encouraging 

further investigation to determine a more accurate predictive tool that could elucidate 

any load transfer mechanics responsible for the improvement. Lessons learnt from 

our study will aid future, 3D simulations that could allow us to study the load 

transfer mechanisms of both hierarchical and non-hierarchical porous structures, 

explaining in greater detail the dependency of pore hierarchy on the mechanical 

properties of porous materials. 
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4 Macroporous Polymers with Hierarchical Pore 

Structure from Emulsion Templates Stabilised by 

Both Particles and Surfactants  

4.1 Summary 

Natural porous materials, such as wood, bamboo and spongy bone consist of 

individual structural units, which are hierarchically arranged to optimise mechanical 

properties such as strength and toughness. This was the inspiration to create 

synthetic macroporous polymers with enhanced compressive strength at a fixed 

porosity, by creating a hierarchical pore arrangement using emulsion templating. It 

was shown that hierarchical poly(merised) High Internal Phase Emulsions (HIPE) 

can be synthesised from HIPEs stabilised simultaneously by particles and a 

surfactant. In these HIPEs, surfactant stabilised and particle stabilised water droplets 

coexist. Upon polymerisation of the minority oil phase, macroporous polymers with 

a hierarchical pore structure are produced. The polymer foams reported in this 

chapter have characteristics of both, poly-Pickering-HIPEs with predominantly large 

closed pores and conventional polyHIPEs, commonly with interconnected small 

open pores. An improvement of the mechanical properties of reported hierarchically 

structured macroporous polymers at equal porosity was observed. This was 

attributed to a more efficient packing of pores in a configuration that improves 

mechanical strength despite the presence of interconnecting pore throats. Moreover, 

the permeability of the hierarchically structured polyHIPEs exceeds those measured 

for conventional polyHIPEs made surfactant only stabilised HIPEs. 
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4.2 Introduction 

Porous materials found in nature such as wood, bamboo and spongy bone consist of 

individual structural units, which are hierarchically arranged to optimise mechanical 

properties such as strength and toughness.
10, 127

 It is our aim to enhance the physical 

properties, such as the compressive strength of synthetic polymer foams by creating 

a hierarchical pore arrangement, inspired by what is observed in nature. Since 

emulsion templating is an effective way to produce synthetic polymer foams with 

tailored properties, it is a viable method to produce hierarchically arranged 

macroporous polymer, an area that remains unexplored.  

High internal phase emulsions (HIPEs) are concentrated mixtures of liquid droplets 

dispersed in another liquid medium, defined by a minimum droplet volume fraction 

of 74 vol-%.
80

 HIPEs are commonly stabilised by surfactants although particles can 

also be used.
45

 Water in oil (w/o) HIPEs, which consist of monomers and 

crosslinkers 
19

 as continuous phase and an electrolyte solution as internal phase, can 

be polymerised. The emulsion structure at the gel point of polymerization is a 

template for the pore structure of the resultant macroporous polymer, the so-called 

polyHIPE, after the internal phase is removed. Typically, a surfactant stabilised 

HIPE results in a conventional polyHIPE after polymerization and has pore sizes 

between 1 and 20 µm 
116

 interconnected by pore throats, which are around 20-50% 

of the pore diameter.
80

 PolyHIPEs have porosities up to 95% 
81-83

 and are permeable 

to gases and wetting liquids 
76

 since they are highly interconnected. In contrast to 

conventional polyHIPEs, so called poly-Pickering-HIPEs, which are obtained from 

particle stabilised emulsion templates, have larger closed-cell pores ranging from 

200 to 700 µm.
52
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There have been attempts to make hierarchical polyHIPEs, which can be summarised 

into a few main strategies, one of which is to create conventional polyHIPEs, with 

rougher, textured pore walls, increasing its overall surface area. This is done by 

adjusting the level of the crosslinker divinylbenzene or adding inert porogens such as 

toluene and petroleum ether.
116

 Zhang et al. synthesised porous emulsion-templated 

polymer/silica composite beads and then calcined them to produce the desired degree 

of hierarchy in pore size with by forming both meso- and macro-pores.
90

 Carn et al. 

93
 created hierarchical porosity by synthesising inorganic monoliths using an 

emulsion template at the macroscale and micellular templates at the mesoscale, while 

Schwab et al. 
94

 swelled a polyHIPE precursor and then generated microporosity via 

hypercrosslinking of the polymers, massively increasing the specific surface area of 

the macroporous polymer. To synthesise interconnected porous silica materials with 

macro- and nano-pore dimensions, Li et al. used silica-stabilised HIPE droplets and 

microgel particles to stabilise emulsion templates, producing hierarchical materials 

with high surface areas.
39, 91

 Although hierarchical nano-, micro- and meso-porous 

polyHIPEs have high surface areas due to the presence of very small pores in the 

walls of the polymer foam, they are considerably weaker than conventional 

polyHIPEs synthesised from surfactant-stabilised emulsion templates.  

Based on the enhanced properties of the naturally occurring hierarchical 

macroporous polymers,
10

 it is believed that the use of emulsion templates to generate 

macro-scale hierarchy in polyHIPEs could result in enhanced mechanical strength. 

We, therefore, focus on the creation of macroporous polymers with hierarchical pore 

structures by combining open and closed pore structures found in conventional 

polyHIPEs and poly-Pickering-HIPEs, respectively. Evidence exists for synthetically 

produced hierarchical macroporous polymers to have improved mechanical 
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performance, just like their naturally occurring counterparts,
10

 improving their 

viability as a material in practical applications where mechanical strength and 

interconnectivity are important,
128

 such as tissue engineering scaffolds, solid support 

for reactions, adsorbents and electrodes.  

4.3 Experimental 

4.3.1 Preparation of HIPEs and PolyHIPEs 

Oleic acid modified titania particles were first dispersed in a 7:5 mixture of styrene 

(Sigma Aldrich Gillingham, UK) and PEGDMA (Cognis, Southampton UK) using a 

homogenizer (Kinematica Luzern, CH) at 15000 rpm for 10 min to make up the 

monomer phase. Free-radical polymerization was initiated by 1 mol% (with respect 

to monomers) of -’-azobisisobutyronitrile (AIBN, Camida, Belgium). To this 

suspension, the surfactant Hypermer B246SF (Uniqema Wirral, UK) dissolved in 

styrene and the aqueous internal phase of 0.27 M CaCl2.2H2O (Sigma Aldrich 

Gillingham, UK) were both added simultaneously drop-wise under gentle stirring 

at 500 rpm. Resulting HIPEs were free-flowing and could be easily transferred to 

standing Falcon™ tubes to be polymerised at 70°C for 24 h. After polymerization, 

the resulting solid macroporous monoliths were cut from the tubes and purified by 

Soxhlet extraction to remove the parasitic surfactant. Macroporous polymers were 

then first dried in a convection oven at 110˚C for 24 h then in vacuum at 110˚C until 

a constant weight was reached.  

4.3.2 Characterisation of PolyHIPEs 

SEM images of Au-coated macroporous polymers were taken with a Hitachi Science 

Systems, S-3400N VP SEM. The macroporous polymers were embedded in epoxy 

resin (Araldite 2020), cured and sliced using a Reichert Jung Ultramicrotome into 
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about 60 nm thick sections. These sections were placed on a holey copper grid and 

TEM images taken using the JEOL 2000 TEM operating at 200 kV. Skeletal density 

was measured using a helium pycnometer (Accupyc 1330, Micrometric Ltd., 

Dunstable, UK) and the foam density and porosity of the macroporous polymer were 

measured using a foam density analyser (Geopyc 1360, Micrometrics Ltd., 

Dunstable UK). Gas permeability was measured with a home-built permeability 

apparatus using the pressure rise technique.
76

 Mechanical properties were measured 

according to BS ISO 844 using Lloyds EZ50 (Lloyds Instruments, Fareham, UK). 

The Young’s modulus was determined from the initial linear slope of the stress-

strain plot.
118

  

4.4 Results and Discussion 

In order to create hierarchical macroporous polymers, Pickering stabilised emulsions 

and surfactant stabilised emulsions were combined by using particulate emulsifiers 

and a traditional surfactant simultaneously, a novel method of preparing hierarchical 

macroporous polymer foams which has not been reported before.  

To understand the influence of each emulsifier on the resultant emulsion templated 

hierarchical macroporous polymers, either the surfactant concentration (M2 to M5) 

or the particulate concentration (M3, M6 and M7) was varied but the volumes of all 

other components (monomers and aqueous phase) were kept constant. Titania 

particles modified with 3.5  0.1 wt% oleic acid 
52

 were used as particulate 

emulsifiers and, therefore, dispersed in a 7:5 mixture (by volume) of styrene and 

poly-ethylene glycol dimethylacrylate (PEGDMA). Styrene is a commonly used 

monomer in polyHIPE preparation, while PEGDMA is a flexible crosslinker used to 

reduce the brittleness of the resulting polymer.
45

 The non-ionic polymeric surfactant 
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Hypermer B246SF was used as a traditional molecular emulsifier. However, it was 

not dissolved in the monomer phase but added at the same time as the aqueous phase 

(77 vol% 0.27M CaCl22H2O) into the monomer phase. This emulsion preparation 

technique results in significant differences in the structural morphology and physical 

properties of the resultant macroporous polymers which are unique when compared 

to conventional polyHIPEs and poly-Pickering-HIPEs as well as a previously 

reported study from the same group.
52

 Furthermore, a solely particle stabilised 

Pickering HIPE containing 0.8 w/v% particles with respect to continuous phase was 

prepared as control (M1). The particle and surfactant concentrations of the emulsion 

templates used to prepare the polyHIPEs are summarised in Table 4-1.  

The foam densities and porosities of the control poly-Pickering-HIPE M1 and the 

hierarchical macroporous polymers M2 to M7 are identical within error at 

0.25 ± 0.02 g/cm
3
 and 79 %, respectively, since all the emulsion templates contained 

the same internal phase volume. The skeletal densities of samples in Series 1 (M1 – 

M5), where only the surfactant concentrations within the emulsion templates were 

varied, are constant at 1.145 g/cm
3 

since the polymer composition is the same. 

Within Series 2, (M3, M6 – M7), the surfactant concentration was kept constant at 

4.2 w/v % (with respect to the continuous phase) but the particle concentration was 

increased from 0.8 to 4.2 w/v% (with respect to the continuous phase). This causes 

the skeletal density to increase from 1.143 g/cm
3
 (M3) to 1.193 g/cm

3
 (M7) as titania 

particles contribute to the density of the polymer matrix. 
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Table 4-1: Summary of the porosity (P), skeletal density (SD), gas permeability (k), 

crush strength () and Young’s modulus (E) of macroporous polymers synthesised 

from emulsion templates stabilised simultaneously by various particle (cp) and 

surfactant concentrations (cs): 

Macroporous 

Polymer 

cp 

[w/v%]
[a] 

cs 

[w/v%]
[b] 

P
 

[%] 

SD  

[g/cm
3
] 

k 

[D]
 

 

[MPa] 

E
 

[MPa] 

M1 0.8 0.0 781 1.1440.001 0 1.70.1 122 

M2 0.8 0.8 791 1.1490.007 0.67±0.14 3.60.1 272 

M3 0.8 4.2 781 1.1430.004 1.16±0.63 2.90.1 222 

M4 0.8 8.4 791 1.1510.008 0.97±0.51 3.00.1 232 

M5 0.8 17 791 1.1370.004 0.13±0.04 0.90.1 52 

M6 2.5 4.2 781 1.1750.009 0.81±0.29 3.60.4 192 

M7 4.2 4.2 791 1.1930.004 1.16±0.49 3.20.4 212 

Percentage of particles [a] and surfactant [b] with respect to continuous phase. Highlighted 

rows M3, M6 – M7 summarise the properties of macroporous polymers from emulsion 

templates increasing particle concentration at constant surfactant concentration. 

 

 

Table 4-2: Summary of x1, xT1 and N1, which are the average pore size, average pore 

throat size and number of pore throats in the smaller pores typical for conventional 

polyHIPEs and  x2, xT2 and N2 which are the average pore size, average pore throat size 

and number of pore throats per bigger pore typical for poly-Pickering HIPEs. 

Macroporous 

Polymer 

x1 

[μm] 

xT1 

[μm] 
N1 

x2 

[μm] 

xT2 

[μm] 
N2 

M1 0 0 0 297±21 0 0 

M2 17±1 4.3±0.2 2.1±0.2 399±17 0.9±0.1 2.0±0.8 

M3 13±1 5.1±0.5 8.4±1.0 395±28 1.4±0.5 3.2±0.4 

M4 17±1 5.8±0.7 15.8±1.4 304±18 1.3±0.3 2.8±0.4 

M5 13±1 3.0±0.4 16.8±1.3 0 0 0 

M6 29±4 8.7±1.3 4.7±1.7 207±10 5.1±1.4 3.4±0.8 

M7 32±6 8.9±1.1 4.5±1.2 161±7 6.4±1.7 3.4±0.5 
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Figure 4-1: SEM of hierarchical macroporous polymers. A: Closed-cell poly-Pickering-

HIPE M1. B:  M3 with hierarchical structure consisting of distinctly open and 

predominantly closed-cell pores. C: M5 with conventional polyHIPE structure of small 

pores and numerous interconnecting pore throats. D: M6 with hierarchical structure 

consisting of distinctly open and predominantly closed-cell pores. Note that M3 is 

representative for M2 – M4 and M6 is the representative image for M6 – M7. 

 

Figure 4-2: TEM of sections taken from hierarchical macroporous polymers. A: M1, B: 

M3, C: M5, D: M6. 



Chapter 4 

101 

 

Statistical analysis was carried out on SEM images of all macroporous polymers to 

obtain average pore and pore throat sizes, which are summarised in Table 4-2. 

Control M1 prepared from a solely particle-stabilised emulsion template has a 

typical impermeable poly-Pickering-HIPE morphology (Figure 4-1A) consisting of 

large, closed cell pores with pore sizes broadly distributed around 297 μm (Table 

4-2); none of the pores are interconnected via pore throats. The TEM image of 

control poly-Pickering-HIPE M1 (Figure 4-2A) shows a layer of particles situated 

near the boundary of a large pore and no particles can be seen inside the pore walls, 

demonstrating that particles adsorbed at the oil-water interface of Pickering emulsion 

droplets, which when polymerised, form the large, closed cell pores.  

The addition of varying amounts of surfactant as co-emulsifier to the emulsion 

templates of M2 - M4 leads to the formation of a hierarchical pore structure as can 

be seen in Figure 4-1B. The morphology of M2 - M4 is characterized by large, 

predominantly closed cell pores (> 100 µm) typical for poly-Pickering-HIPEs, which 

are surrounded by highly interconnected small pores (< 20 µm), characteristic for 

conventional polyHIPEs. Since the microstructure of the emulsion templated 

macroporous polymer reflects the structure of the emulsion at its gel point 
129

 It was 

concluded that particle and surfactant-stabilised water droplets co-existed in the 

emulsion template, which upon polymerization of the continuous phase gave rise to 

macroporous polymers with hierarchically arranged pores. In the TEM image of M3 

(Figure 4-2B) one can see a section of a large pore whose walls are partially covered 

by particles, some dispersed particles within the polymer matrix forming the pore 

walls. However, there are also small pores which do not contain any particles. This 

indicates particle and surfactant stabilised droplets coexisted in the corresponding 

emulsion template. It is worth noting that surfactant also adsorbs onto the particles, 
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changing its wetting properties, causing some particles to migrate into the polymer 

matrix as observed.  

The smaller of the hierarchically arranged pores have pore sizes of about 15 µm and 

are interconnected via pore throats; the number of pore throats per pore as well as the 

pore throat size increases with increasing amount of surfactant added to the emulsion 

template (Table 4-2 x1, xT1, N1). It is worth noting that although the large poly-

Pickering-HIPE-type pores observed for M2 to M4 appear to be predominantly 

closed-cell, they do in fact have on average 2.7 pore throats per pore (N2), which are 

about 1.2 µm (xT2) in diameter. This is due to the dense packing of small surfactant-

stabilised emulsion droplets around large particle stabilised droplets in the templates, 

which leads to the thinning of the monomer phase films in the area of close contact 

between neighbouring surfactant and particle stabilised droplets Although the 

mechanism of pore throat formation is not fully understood, sufficiently thin films 

between neighbouring droplets and the presence of surfactant are the key 

requirements.
130

 Therefore, pore throats form in M2 - M4 upon polymerisation of the 

emulsion templates or purification/drying of the resulting macroporous polymers. 

M2 has the lowest permeability at 0.67 D as it has the smallest xT1 and xT2 and the 

least amount of pore throats per pore. The increase in permeability to 1.16 D for M3 

is due to the increase in the pore throat sizes (xT1 and xT2) as well as the number of 

pore throats per pore (N1 and N2) caused by the increasing amount of surfactant in 

the emulsion template. However, the permeability decreases to 0.97 D for M4 

although the pore throat size and especially the number of pore throats per small pore 

increases significantly. It is a well-known fact that it is not the average pore throat 

size that limits permeability, but the smallest pore throat size of an alignment of 

pores which interconnect the sample from one end to the other.
76

 Since the pore size 
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of the large pores (x2) for M4 is smaller than for M2 and M3, there are a larger 

number of small, interconnected pores typical for conventional polyHIPEs packed 

into the same volume of material. Therefore, there is a higher likelihood that the 

limiting pore throat diameter in a series of interconnected pores in M4 is 

significantly smaller than the average pore throat size (xT1), which causes the 

reduction in gas permeability. However it is also possible that there are a larger 

number of closed pores and therefore fewer interconnected pathways throughout the 

sample. At a surfactant concentration of 17 w/v% with respect to continuous phase, 

the surfactant becomes the dominating emulsifier and the hierarchical pore structure 

is lost in M5 (Figure 4-1C). Its structure now resembles that of a conventional 

polyHIPE. 
116

 A TEM image of M5 (Figure 4-2C) verifies that there were no 

particle-stabilised interfaces in the emulsion template; instead, the particles were 

dispersed within the organic phase and, therefore, can now be found within the 

polymer matrix of the wall.  

Small pores of about 13 μm are highly interconnected by about 16.8 pore throats per 

pore, which have an average diameter of about 3 μm. M5 also has the lowest gas 

permeability at 0.13 D, indicating that not only its average pore throat size but more 

importantly its flow limiting pore throat size is the smallest among M2 – M5. 

Macroporous polymers M3, M6 - M7 (Series 2) were prepared from emulsion 

templates with increasing particle concentration but a constant surfactant 

concentration of 4.2 w/v% with respect to the continuous phase. Increasing the 

particle concentration minimizes limited coalescence of particle-stabilised water 

droplets,
42, 131

 allowing for smaller droplet sizes. This leads to a significant reduction 

of the poly-Pickering-HIPE-type pore size (x2, Figure 4-1D). Surprisingly, however, 

the size of smaller conventional-polyHIPE-type pores (x1) seems to increase with 
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increasing particle concentration while their degree of interconnectivity (N1) 

decreases. This indicates that it becomes more and more difficult to distinguish 

between very small poly-Pickering-HIPE-type pore and conventional-polyHIPE-type 

pores.  

The TEM image of M6 (Figure 4-2D) shows an alignment of particle aggregates at 

the former w/o interface now forming the surface of a large pore. This confirms that 

the large droplets have been predominantly stabilised by particles. Similar to M3, a 

small amount of particles is also found dispersed in the polymer matrix, as a result of 

the changes in the wettability of the particles due to surfactant adsorption.  

The gas permeability of M3 and M7 is with 1.16 D identical showing that the flow 

limiting pore throat size is relatively constant, despite an increase in average pore 

throat size (xT1, xT2) and decrease in number of pore throats per small pore (N1) with 

increasing particle concentration. However, the flow limiting pore throat size of M6 

must be significantly smaller since its gas permeability is dramatically reduced 

compared to M3 and M7. 

The mechanical properties of M1 - M7 are summarised in Table 4-1. In general, it 

was observed that the hierarchically structured macroporous polymers M2 - M4, M6 

and M7 had higher crush strengths and Young’s moduli than both, the closed-cell 

M1 and conventional polyHIPE M5, despite the constant porosity. This is due to the 

efficient packing of liquid droplets in the emulsion templates which resulted in a 

more efficient arrangement of pores in the macroporous polymers after 

polymerization. M5 had the lowest crush strength and Young’s modulus and was 

also the most brittle, placing it in the same range as polyHIPEs synthesised from 

purely surfactant stabilised emulsion templates.
76, 118

 The low mechanical strength of 
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M5 compared to M1 is due to the high degree of interconnectivity resulting from the 

large number of pore throats per pore.  

Within the set of hierarchically structured macroporous polymers M2 outperforms 

M3, M4, M6 and M7; M2 has with 3.6 MPa and 27 MPa the highest crush strength 

and Young’s modulus, respectively. However, it also has the lowest gas permeability 

indicating that it is the least interconnected sample. The increase in surfactant (M3, 

M4) as well as particle concentration (M6, M7) within the emulsion templates 

induced significant structural changes in the resulting macroporous polymers, which 

generally improved their interconnectivity and, therefore, their gas permeability but 

reduced their mechanical performance; the Young’s moduli of M3, M4, M6 and M7 

decreased by approximately 22% compared to M2. Furthermore, a 17% reduction in 

crush strength can be observed for M3 and M4 compared to M2. However, the crush 

strengths of M6 and M7 are similar to that of M2. This indicates that the increased 

concentration of particles, which reinforce the polymer matrix, negate some of the 

loss of mechanical integrity caused by the increasing number and size of pore throats. 

4.5 Conclusions 

Inspired by hierarchical porous structures in nature such as wood and spongy bone, 

which have enhanced physical characteristics due to their hierarchical macroporous 

structure, hierarchical macroporous polymers were synthesised using particles and 

surfactant as emulsifiers simultaneously. Our macroporous polymers display a 

hierarchical pore structure as they have characteristics of both, poly-Pickering-HIPEs 

(predominantly closed pores) and conventional polyHIPEs (interconnected open 

pores). By studying the location of particles within the macroporous polymer foams 

using TEM, it can be inferred that the hierarchical pore morphology observed is 
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indeed a result of predominantly particle-stabilised emulsion droplets and surfactant-

stabilised droplets co-existing with one another in the emulsion template.  

An improvement in the mechanical properties of our macroporous polymers was 

observed, due to a more efficient packing of pores in a configuration that improves 

mechanical strength despite the presence of interconnecting pore throats, making this 

material attractive for applications where both mechanical strength and 

interconnectivity are important. 
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5 Air in Water-in-oil Emulsion Templates: 

Developing Highly Porous Greener Hierarchical 

Macroporous Nanocomposite Foams 

5.1 Summary 

Highly porous, bio-based macroporous polymers were produced using a novel take 

to the traditional emulsion templating technique. A bio-based monomer, acrylated 

epoxidised soyabean oil (AESO), was used to prepare water-in-oil (w/o) emulsions 

with an internal phase volume of 50% stabilised by 3 w/vol.% of a particulate 

emulsifier. The emulsions were thermally polymerised to produce macroporous 

polymers with a maximum porosity of 55%. To increase the porosity further, the 

emulsion templates were mechanically frothed to incorporate air bubbles, producing 

what are called air in w/o templates. By varying the composition of the continuous 

phase, the emulsion viscosity was modified, which in turn influenced its ability to 

incorporate and stabilise air bubbles produced during the frothing process. Both 

emulsion droplets and air bubbles acted as ‘templates’ for the final porous structure. 

This resulted in highly porous bio-based macroporous polymers with a hierarchical 

pore arrangement after polymerisation. It was found that mechanically frothing w/o 

emulsions containing an internal phase volume ratio of 50% using a 1:1 ratio of 

AESO and trimethylbenzene (TMB) as a diluent in the continuous phase resulted in 

a final porosity of 81%. Scanning electron micrographs, viscoelastic properties as 

well as thermal degradation temperatures of these hierarchical porous structures were 

analysed and discussed.  
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5.2 Introduction 

Highly porous macroporous polymers are sought after for their distinctive properties, 

including low densities and lightweight. They are often identified by unique internal 

architectures of pores packed into a solid polymer matrix, bestowing properties that 

make them an important class of materials for many consumer goods and 

engineering applications. Currently, macroporous polymers are produced using 

physical or chemical blowing agents,
6, 132

 solvent casting and particle leaching,
98

 

thermally induced phase separation (TIPS)
6, 133-136

 and using supercritical carbon 

dioxide foaming.
100, 137, 138

 Depending on the number, size and interconnectivity of 

the pores, porous polymers can be used as absorbents,
139

 catalyst supports,
3
 scaffolds 

for tissue engineering
108

 and as sandwich core for building and construction 

materials.
140

 In recent years, the need for sustainable development has motivated a 

transition to ‘greener’ polymers produced using renewable monomers and/or 

processing techniques that are environmentally friendlier.
141-143

 Non-biodegradable 

polymer foams, traditionally associated with numerous recycling issues, have created 

a negative environmental backlash.
144

 This is the driving force for the choice of a 

bio-based monomer and processing methods used in this study.  

The bio-based monomer chosen for this study was acrylated, epoxidised soyabean oil 

(AESO), synthesised by an epoxidation reaction between acrylic acid and the 

naturally occurring triglycerides found in soyabean oil.
145, 146

 The acrylated, 

epoxidised triglycerides in AESO provided sites for crosslinking during 

polymerisation, resulting in highly-crosslinked polymers that have and tensile 

modulus of 0.4 GPa and tensile strength of 4.1 MPa as previously reported.
147

 Some 

researchers have explored the potential of AESO to produce polymer foams. Guo et 

al.
19, 20

 first reported on the formation of rigid soyabean oil based polyurethane 
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foams synthesised using polyolys derived from soyabean oils, which became a 

popular route for the production of polymer foams using other vegetable oils.
 148, 149 

148, 149 146, 14722, 23,145, 146 
Bonnaillie et al.

150
 reported on the use of a carbon dioxide 

pressurising foaming process using AESO as a component as another route to 

synthesise bio-based polymer foams.  

Alternatives methods used to produce bio-based foams using emulsion and ‘air’ 

templating techniques were introduced by our group recently. The first was 

described by Blaker et al.
111

 where water-in-oil (w/o) emulsions were prepared by 

dispersing varying amounts of aqueous phase in AESO, stabilised by hydrophobised 

bacterial cellulose fibrils. The bacterial cellulose acted as a ‘green’ Pickering 

emulsifier for the w/o emulsion template. Using a free radical initiator and UV 

stimulus, the emulsions were UV polymerised, retaining the droplet structure at the 

gel point of polymerisation, hence the process was termed ‘emulsion templating’. 

50 vol.% (internal phase) w/o emulsions were polymerised and vacuum dried to 

yield macroporous polymers with up to 76% porosity. Since the internal phase 

volume dictated the final porosity of the porous material, the authors attributed this 

unexpected increase in porosity to the trapping of air in the emulsion during the high 

energy, homogenisation process.
111

 Another study by Lee et al.
151

 described a solvent 

and surfactant free ‘air templating’ process. This involved mechanically frothing 

AESO with dissolved lauryl peroxide as a radical initiator followed by microwave 

curing to produce three-dimensional (3D) bio-based porous materials with a 

maximum porosity of 59%. It was found that adding bacterial cellulose to the air-

AESO templates not only increased the stability index of the foams, it further 

improved the compressive properties of the final ‘green’ polymer nanocomposites 

formed by acting as nanoreinforcement.
151
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These two studies showed promising results for the production of bio-based porous 

materials using templating methods. However, the practical difficulty of producing 

air-in-AESO templates with internal phase volumes greater than 50 vol.% limited the 

production of highly porous polymer foams with clearly defined pore morphologies 

and high (>50%) porosities. In the case of water-in-AESO emulsion templates, 

increasing the internal phase volume to 70 vol.% resulted in phase inversion from 

water-in-AESO to AESO-in-water emulsions, which polymerised to porous 

structures consisting of fused polymer beads.
111

 Increasing the concentration of 

hydrophobised bacterial cellulose (Pickering stabiliser) past 4 wt.% drastically 

increased the viscosity of the continuous phase. This high viscosity made it 

practically impossible to prepare emulsions with internal phase volumes higher than 

50%.
111

  

The synergy between the emulsion and air templating techniques was recognised and 

ued a combination of the two was used to synthesise highly porous foams in this 

study. More specifically, thick and viscous particle-stabilised water-in-AESO 

emulsions can be mechanically frothed to incorporate air bubbles. The use of a 

second phase such as water and/or air would increase the overall ‘internal’ phase 

volume of the template and thus the final porosity. Resulting macroporous polymers 

would be closed cell and hence expected to possess better dimensional stability, 

lower moisture absorption and better compressive strength compared to open celled 

materials. These are desirable properties for a variety of applications such as thermal 

and sound insulation, flotation devices and coatings as well as specialty materials for 

sandwich cores etc.
152
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5.3 Experimental  

5.3.1 Materials  

Acrylated epoxidised soyabean oil, AESO (8500 ppm monomethyl ether 

hydroquinone as an inhibitor), oleic acid (OA, ≥99%), trimethylbenzene (TMB, 

98%), styrene, calcium chloride dehydrate and methanol were purchased from Sigma 

Aldrich (Kent, UK). Polyethylene glycol dimethylacrylate (PEGDMA, 330 gmol
-1

) 

was kindly supplied by Cognis (Hampshire, UK). The free radical initiator α, α’-

azobisisobutyronitrile (AIBN) was purchased from Camida (Tipperary, UK). 

Hydrophilic silica particles (Technical data sheet: 20 nm) were kindly supplied by 

Ortiwin-Rave Produkte + Dienstleistungen (Rhineland-Palatinate, Germany). 

Deionised water was used in all the experiments. All chemicals were used as 

received, without purification unless stated otherwise.  

5.3.2 Preparation of Polymer Foams Using Emulsion Templates       

In order to encourage the silica to adsorb at the oil-water interface during 

emulsification, the particles were modified with OA, using a method previously 

reported.
45

 The OA-functionalised silica (3 wt.% with respect to continuous phase 

volume, OA content of 2.5±1.0 wt.% by TGA) was homogenised with the 

continuous phase consisting of varying amounts of AESO, TMB, Styrene and 

PEGDMA (composition summarised in Table 5-1) using a homogeniser (Kinematica, 

Luzern, CH) at 10,000 rpm in an ice bath for 10 min. The continuous phase mixture 

was then transferred to a glass reaction vessel and stirred continuously using a glass 

paddle rod connected to an overhead stirrer controlling the speed of emulsification. 

1 mol-% AIBN (with respect to the monomers) was added to the vessel, followed by 

the drop-wise addition of 50% (with respect to total emulsion volume) 2.5 M 



Chapter 5 

112 

 

aqueous calcium chloride dihydrate solution (dispersed phase), continuously stirring 

at a constant rate of 500 rpm. After all the dispersed phase was added, the rate of 

stirring was increased to 2,000 rpm for 30 s. The resulting emulsions were 

transferred to individual Falcon™ tubes for polymerisation in a convection oven at 

70C for 24 h. After polymerisation, the solid samples were removed from the 

Falcon™ tubes and washed in DI water followed by methanol to remove, as much as 

possible, any residual monomers and TMB since the materials are closed cell. TMB 

appeared to have a plasticising effect on the porous materials, causing shrinkage if 

dried in vacuum at 70C for 24 h, which is the typical drying procedure reported for 

macroporous polymers by our group
52, 111, 112

. In order to minimise shrinkage, freeze 

drying was carried out at a constant temperature of -196C to remove water, 

methanol, TMB and unreacted co-monomers until a constant weight was achieved, 

or what is termed the modified freeze drying process.  

5.3.3 Preparation of Polymer Foams by Mechanically Frothing Emulsion 

Templates from 5.3.2  

Mechanical frothing of w/o MIPEs prepared was carried out using a hand mixer 

operating at maximum power output (100 W) for 5 min. Air was incorporated into 

the emulsions until they approximately doubled in volume using a technique 

previously described elsewhere.
151

 The aerated emulsions were then transferred 

gently, so as not to lose any trapped air, into freestanding polypropylene centrifuge 

(Falcon
®
) tubes for polymerisation in a convection oven at 70C for 24 h. After 

polymerisation, the solid samples were removed from the Falcon tubes and washed 

as previously described. To reduce shrinkage, the modified freeze drying method 

mentioned earlier was used as the final drying step. 
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5.3.4 Characterisation of Polymer Foams 

5.3.4.1 Density and Porosity of Polymer Foams  

Helium displacement pycnometry (Accupyc 1330, Micrometrics Ltd, Dunstable UK) 

was used to measure the skeletal density (ρs) of the polymer foams. Prior to the 

measurement, approximately 20 mg of polymer foam was crushed into a powder and 

dried in a vacuum oven at 120C until weight constancy. Envelope densities (ρe) 

were determined by taking the ratio between the mass (m) and the volume (V) of 

cubical samples with known dimensions (ρe=m/V). The percentage porosities (P) 

were calculated using the following equation: 

     
  

  
       

Equation 4 

5.3.4.2 Structure and Morphology of Polymer Foams 

The morphology of the macroporous polymers was characterised using variable 

pressure scanning electron microscopy (SEM, Hitachi High Technologies, S3400N 

VP SEM) using an accelerating voltage of 5 kV. Dried macroporous polymers were 

fractured to reveal the internal structures using a surgical blade. Each sample was 

mounted on individual aluminium stubs fixed with carbon adhesive stickers. The 

samples were then gold coated at 20 mA for 60s (Scan Coat Six SEM Sputter Coater, 

Edwards Ltd., Crawley, UK) to ensure electrical conductivity during imaging. Pore 

dimensions (at least 200 for each sample formulation) were analysed using the 

imaging software ImageJ (Version 1.46).  
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5.3.4.3 Thermogravimetric Analysis (TGA) of Polymer Foams 

Thermal degradation of the polymer foams were characterised using TGA (TGA 

Q500, TA Instruments, UK). Approximately 20 mg of sample was heated from 25C 

to 800C under a flow of 40 mL/min nitrogen atmosphere at a heating rate of 

10C/min. the degradation temperature was defined as the temperature whereby the 

weight decreased by 50%.  

5.3.4.4 Dynamic Mechanical Thermal Analysis (DMTA) of Polymer Foams  

DMTA was used to determine the viscoelastic properties of the polymer foams in 

compression mode. Five specimens of each polymer foam formulation were cut to 

5 5  5 mm
3
 pieces and subjected to small cyclical deformations at a frequency of 

1 Hz. The temperature was increased at a rate of 4C/min from -90C to 200C. The 

storage (E’) and loss moduli (E’’) were computed from the viscoelastic response 

measured from each polymer sample. The loss factor tan  was calculated from the 

ratio between the two (tan=E’/E’’).  

5.4 Results and Discussion 

To prepare the emulsions, 3 wt.% of a particulate emulsifier, functionalised silica 

prepared using a previously reported method
112

 (with respect to the continuous phase 

volume) and 1 mol.% free-radical initiator (with respect to monomers) were 

dispersed in the monomer solution, forming the continuous phase. To this, a 

maximum internal phase volume of 50% with respect to total emulsion volume was 

added drop wise under stirring to produce homogenous medium internal phase 

emulsion (MIPE) templates, which were thermally polymerised in a convection oven 

at 70C. A MIPE with 100% (by volume) of AESO as the continuous phase was first 

prepared as a control sample (sample number 0). The high viscosity of pure AESO 
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increased the rate of emulsion destabilisation during polymerisation. This resulted in 

phase separation and the formation of a thin, sticky polyAESO coating around the 

porous polymer after polymerisation. After drying at 120 C in a convection oven, 

the sample shrank severely and developed large cracks (Figure A0-3), making it 

unsuitable for characterisation. To synthesise stable emulsion templates, 

trimethylbenzene (TMB) was chosen as a diluent to decrease the viscosity of the 

continuous phase for emulsification (Sample A1). To promote cross-linking and 

avoid the large cracks observed in pure polyAESO foams (seen in control Sample 0), 

styrene and polyethylene glycol dimethylacrylate (PEGDMA) were chosen for 

copolymerisation with AESO. The concentration of AESO, TMB, styrene and 

PEGDMA were then varied (Sample A2 and Sample A3) to determine the effect of 

varying the composition and hence the viscosity of the continuous phase on the pore 

morphology of the final porous product. The composition of the emulsion templates 

prepared are summarised in Table 5-1. These AESO-based emulsion templated 

foams were observed to shrink when dried in a convection oven at 120C (Figure 

A0-5), which is the drying protocol typically used and reported previously.
52, 111, 112

 

Therefore, a modified freeze-drying method was developed to dry the samples with 

minimal shrinkage. This involved freeze-drying the sample under vacuum, 

maintained at a low temperature of -196C using liquid nitrogen. 

A maximum of 50% internal phase emulsions were used as phase separation was 

observed when the internal phase volume was increased beyond 50% for emulsions 

having the same particulate emulsifier concentration (in the continuous phase 

volume). Phase separation or inversion is quite typically observed for Pickering 

emulsions stabilised by dilute particulate emulsifier concentrations at or near these 

concentrations.
40
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To formulate air in water-in-oil emulsion templates, emulsions used to produce 

samples A1 to A3 were mechanically frothed using an electrical hand-held mixer, 

incorporating air until the total volume was approximately doubled (visually). The 

resulting air in water-in-oil templates were then polymerised to produce the samples 

A1* to A3*, respectively, in Series II. Macroporous polymers were then dried under 

vacuum via the modified freeze drying process.  

Table 5-1: Summary of composition of emulsion templates used, including the 

concentration of emulsifying particles (Cp) before (Series I) and after (Series II) 

mechanical frothing 

S
er

ie
s 

Sample 

Aqueous 

Internal phase 

(vol.%^) 

Continuous phase (50 vol.%^) 

Cp 

(w/vol.%) 
AESO 

(vol.%@) 

TMB 

(vol.% @) 

ST 

(vol.% @) 

PEGDMA 

(vol.% @) 

N
/A

 

0 50 100 0 0 0 3 

I 

A1 50 50 50 0 0 3 

A2 50 40 40 10 10 3 

A3 50 30 30 20 20 3 

II
 

A1* 50 50 50 0 0 3 

A2* 50 40 40 10 10 3 

A3* 50 30 30 20 20 3 

^ with respect to total emulsion volume, 
@

 with respect to volume of continuous phase 
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5.4.1.1 Skeletal Densities and Porosities of Macroporous Polymer Foams  

Skeletal densities, summarised in Table 5-2, were constant within and also between 

Series I and II (e.g. A1 with A1*, A2 with A2* etc.). Envelope densities appeared 

constant when comparing samples A3 with A3*, but a noticeable reduction in 

envelope density was seen in A2* (reduced by 22% from A2) and A1* (reduced by 

60% from A1). As skeletal and envelope densities are related to porosity using 

Equation 4, this decrease in envelope density in turn resulted in the increase in 

porosity for A2* and A1* compared to A2 and A1, respectively (Table 5-2). 

Table 5-2: Summary of porosity (P), skeletal density (S) and envelope density (E) 

measured before (Series I) and after (Series II) mechanical frothing. 

S
er

ie
s 

Sample 

P
& 

(%) 

S
#
 

(g/cm
3
) 

E
&

 

(g/cm
3
) 

N
/A

 

0 - - - 

I 

A1 541 1.140.01 0.530.01 

A2 522 1.140.01 0.540.02 

A3 551 1.130.01 0.510.01 

II
 

A1* 811 1.140.01 0.210.01 

A2* 631 1.130.01 0.420.01 

A3* 571 1.130.01 0.480.02 
&
standard deviation for 5 measurements, 

#
standard deviation for 10 measurements  

Generally, it was observed that the porosity of the mechanically frothed emulsions 

increased with increasing AESO concentration (A1*>A2*>A3*). It was 

hypothesised that this upward trend in porosity was related to the viscosity of the 

emulsions before mechanical frothing. This hypothesis holds, assuming that the rate 

of emulsion destabilisation is much slower than the rate of destabilisation of air 

bubbles trapped during the frothing process. The viscosity of the continuous phase 

affected the emulsion’s ability to stabilise air bubbles. When more air bubbles are 

formed and stabilised by the viscous surrounding emulsion phase, it increased the 
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ultimate internal phase volume consisting of both emulsion droplets and air bubbles. 

A higher emulsion viscosity reduces the rate at which air bubbles rise through the 

emulsion by decreasing the rate of drainage from the liquid film between bubbles 

due to gravity and capillary forces.
153

 Therefore, the rate of smaller bubbles 

coalescing into larger bubbles over the course of polymerisation is lowered. Since 

the emulsion template for A1 was observed to be the most viscous, it had the slowest 

rate of bubble coalescence compared to the other emulsion templates when 

mechanically frothed. This resulted in the greatest reduction in envelope density and 

consequently highest porosity of 81% observed for A1*. 

Another stabilisation mechanism of bubbles in dispersions is the reduction of 

interfacial tension due to the adsorption of particulate stabilisers at the air/oil and 

air/water interfaces.
154

 However, since all the emulsions were prepared with 3 w/vol.% 

of particles, any reduction in interfacial forces due to particle adsorption at the oil-air 

interface was considered to be the same across all the emulsions in the series. 

Furthermore, the stabilisation of oil-air interfaces requires extremely hydrophobic 

particles,
141

 which is not a characteristic of the oleic-acid functionalised silica used 

in this study. Therefore, it is unlikely that the particulate emulsifiers contribute 

significantly to the stability of the foam. 

5.4.1.2 Pore Morphology of Polymer Foams  

The SEM images of macroporous polymers prepared from emulsion templates 

before and after mechanical frothing are displayed in Figure 5-1. By comparing 

Series I (A1 to A3), there is a clear influence of the continuous phase composition on 

the final morphology of the macroporous polymers, keeping the internal phase 

volume, emulsifier concentration and emulsification parameters, such as the stirring 
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time and rate constant. Comparing between Series I and II (Samples A1 with A1*, 

A2 with A2* etc.), it is apparent that the action of mechanical frothing changed the 

pore size distribution and pore arrangement of the resulting macroporous polymers 

(Figure 5-1). In A1, a multi-modal pore size distribution was observed as smaller 

pores in the range of 5 – 20 m were packed between larger pores having diameters 

in the range of 100 – 200 m. After mechanical frothing (A1*), the range of large 

pores decreased to 50 – 100 m and a significant increase in the number of smaller 

pores in the range of 2 – 20 m packed between the larger pores was seen, which is 

what is termed a hierarchical pore structure (defined as a multimodal pore size 

distribution packed in an efficient arrangement as described in a previous study by 

our group
113

). A2 had almost no pores in the range of 5 – 20 m in the polymer walls 

separating the large pores, which were as large as 500 m. Comparing A2 with A2*, 

a much greater number of smaller pores in the range of 5 – 20 m were found in the 

polymer walls separating larger pores in the range of 300 – 500 m after mechanical 

frothing. In A3, pores in the range of 5 – 20 m were packed in between larger pores 

in the range of 200 – 300 m. After mechanical frothing, the pore size distribution 

shifts downwards as the range of the larger pores decreased to 100 – 300 m for A3* 

and the number of small pores in the range of 5 – 20 m packed in between the large 

pores increased.  

When emulsions are mechanically frothed, the system becomes complex as foams 

and emulsions coexist in the same formulation. The pore arrangement after 

mechanical frothing could, therefore, be a result of a combination of (i) the 

inevitable breakup of emulsion droplets due to the energy input during frothing or (ii) 

coalescence and/or sedimentation of emulsion droplets and air bubbles concurrently. 
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Evidence also exists for the stabilising effects from the accumulation or adsorption 

of emulsion droplets at the surface of air bubbles trapped in viscous emulsions.
155

 

Although the exact mechanism describing how this works is not clear yet,
156

 this 

could mean the smaller pores (2 – 20 m) found accumulated near the larger pores 

(between 100 and 500 m) seen in all the mechanically frothed samples could be a 

result of trapped air bubbles stabilised by smaller emulsion droplets.  

  

A1 A1* 

  

A2 A2* 

  

A3 A3* 

Figure 5-1: Representative SEMs of Series I and II from emulsion templated porous 

materials before (left) and after (right) mechanical frothing.  
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5.4.1.3 Viscoelastic Properties of Polymer Foams  

DMTA was used to investigate the viscoelastic behaviour of the polymer foams. 

Uniformly cut and dried samples were heated from -90C to 200C, keeping the 

heating rate and frequency of vibration in compression mode constant at 4C/min 

and 1 Hz, respectively. Representative curves showing the temperature dependence 

of the storage moduli and damping behaviour (tan) of samples A1 to A3 are 

displayed in Figure 5-2.  

 

A1 
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A2 

 

A3 

Figure 5-2: Representative curves of the storage modulus (black) and tan (red) with 

respect to temperature of A1 (top) to A3 (bottom) subjected to oscillations at a constant 

frequency of 1 Hz. 

The polymers appears to weaken with increasing temperature for all three samples, 

seen from the gradual decrease in storage moduli. This is possibly due to the relaxing 

of thermal stresses in the polymer samples as temperature increases. Differences in 

the temperature at which a peak in the tan curve was observed for the three samples 
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show the effects of varying the formulation composition and the amount of 

plasticiser on the damping behaviour of the polymer foams. A3 had the highest tan 

peak in the series, at 105C, suggesting the lowest amount of plasticiser present in 

the polymer foams. From A2 to A1, the tan peak decreased to 92C and 89C, 

respectively, which suggests an increasing amount of plasticiser trapped in the 

polymer foam which consequently lowered the transition temperature. The range of 

transition temperatures recorded for A1 to A3 are generally higher than the glass 

transition temperature of pure polyAESO previously reported
95

 (Figure A0-4) due to 

the differences in polymer composition. 

This explained the noticeable shrinkage when the polymerised samples were 

subjected to the typical drying protocol using a convection oven (Figure A0-5).
52, 111, 

112
 While being heated to a high temperature of 120C, the polymer foams softened 

and started relaxing in response to thermal stresses, which resulted in shrinkage. 

Therefore, it was necessary to keep drying temperatures below the temperature at 

which a peak in the tan was observe, which was achieved by using the modified 

freeze drying process, minimising shrinkage during the course of drying. 

5.4.1.4 Thermal Degradation Behaviour of Polymer Foams 

The thermal degradation behaviour was determined by using Thermogravimetric 

Analysis (TGA). Representative curves of weight loss as function of temperature for 

A1 to A3 are shown in Figure 5-3.  
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Figure 5-3: Representative graphs for the mass loss (%) with increasing temperature 

for A1 (top) to A3 (bottom) in nitrogen. 

All polymer foams underwent single step degradation in nitrogen. Between 0C and 

300C, residual water and TMB still trapped in the closed cell materials were 

removed. As the temperatures increased further past 330C, a drastic decrease in 

mass was observed, which is indicative of polymer degradation via random chain 

scission.
157

 Volatilisation and removal of the degraded by-products resulted in the 

decrease in sample mass between 330C and 500C. Since the same degradation 

temperature of approximately 405C was observed for all three samples, it can be 

said that varying the composition of AESO did not have a significant effect on the 
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overall thermal degradation behaviour. The residual mass content were 6.5 wt.%, 

7 wt.% and 7.5 wt.%, respectively, possibly due to the increasing carbon content 

remaining in the nanocomposite foams after pyrolysis.  

5.5 Conclusions 

A unique templating process was used to synthesise highly porous macroporous 

polymer foams using a bio-based monomer (AESO) blended with a diluent (TMB) 

and co-monomers (styrene and PEGDMA). AESO-based emulsion templates were 

then mechanically frothed, introducing air bubbles into w/o medium internal phase 

(ratio) emulsions (MIPEs). Increasing the concentration of AESO in the continuous 

phase increased the viscosity of the continuous emulsion phase. This in turn 

influenced the ability of the emulsion to entrap and stabilise air bubbles, increasing 

the overall internal phase volume, in this case, an aqueous phase and air. Thus, 

resulting in an increase in the final porosity of the polymer foam obtained after 

polymerisation. A modified freeze-drying process was used to dry the porous 

materials after polymerisation to minimise foam shrinkage. A comparison of SEM 

images of the macroporous polymers before and after mechanical frothing showed 

noticeable changes in the porous morphology. After mechanical frothing of the 

emulsion templates, a greater frequency of small pores in the range of 2 – 20 m and 

much higher porosities for template systems of up to 81% by frothing 50% internal 

phase w/o MIPEs were observed. The temperature at which a peak in the tan was 

observed decreased with increasing AESO and TMB content of the organic phase of 

the template. 
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6 Nanocomposite Macroporous Polymers and Beads 

Synthesised from Emulsion Templates Stabilised 

by Chemically Modified Graphene 

6.1 Summary 

Chemically Modified Graphene (CMG) has been studied extensively as a 

nanoreinforcement for nanocomposites, a conductive nanofiller and more recently as 

an emulsion stabiliser. This work links these multiple functionalities to develop 3D 

nanocomposite structures (in the form of macroporous polymers and beads) via 

emulsion templating. High internal phase emulsions with an internal phase volume 

fractions exceeding 74 vol.% were prepared using CMG in the form of reduced 

Graphene Oxide (rGO). rGO proved to be an efficient emulsion stabiliser, since very 

low concentrations of 0.2 mg/ml (with respect to oil phase) were required to stabilise 

water-in-oil High Internal Phase Emulsions. After polymerisation of the monomer 

(oil) phase, highly porous macroporous polymers with tunable microstructures were 

obtained. Stiffness increased by an order of magnitude by increasing the rGO 

concentration in the emulsion templates from 0.4 mg/ml to 0.8 mg/ml. Moreover, the 

macroporous polymers exhibited an extremely low rGO percolation threshold, 

showing electrical conductivity at 0.006 vol.% (related to the total volume of 

nanocomposites) compared to 0.1 vol.% for dense nanocomposites previously 

reported. This provided evidence for the efficient arrangement of the rGO creating a 

conducting network within the macroporous polymer nanocomposite. Resulting 

CMG based nanocomposites retained the useful properties of two-dimensional CMG, 

yet displayed unique structure-property relationships in the three-dimensional form. 
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This is a potentially viable method to manufacture conductive macroporous polymer 

nanocomposites by incorporating two-dimensional materials. 

6.2 Introduction 

Graphene, a two-dimensional (2D) flake formed by a monolayer of sp
2
 carbon atoms 

packed into a honeycomb lattice, has attracted much scientific attention during the 

last years due to its exciting properties including high elasticity and stiffness and 

extremely high electron mobility and thermal conductivity.
158-163

 However, the usual 

synthesis methods for pure graphene, such as chemical vapor deposition, are 

impractical for the synthesis of the large quantities required to produce three-

dimensional (3D) materials such as macroporous materials or composites. In contrast, 

chemically modified graphene (CMG) namely graphene oxide (GO) and reduced 

graphene oxide (rGO) can be fabricated in bulk quantities through the chemical 

exfoliation of graphite.
164, 165 

GO, the direct product of the exfoliation process, is an 

insulator due to the sp
3
 C-O bonds but many of the C-C sp

2
 bonds are restored by 

chemical or thermal reduction of the functional groups leading to a semiconductor 

state.
163, 166, 167 

The resulting rGO offers similar electrical, thermal and mechanical 

properties to pristine graphene.
166 

The processing of CMG allows the controlled formation of covalently bonded 

oxygen functionalities on its surface, such as hydroxyls and epoxides on the basal 

plane and carboxyl groups at flake edges.  These functionalities enable the surface 

chemistry of CMG to be widely tuneable, enabling its decoration with metal-

oxide/sulphides nano-particles,
168, 169 

facilitating its incorporation into different 

polymeric matrices and improving the adhesion to polymers in nanocomposites.
161, 

170, 171
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Due to the hydrophilic ionisable groups on the basal plane edges and the 

hydrophobic unoxidised graphitic nano-islands within the basal plane, CMG exhibits 

hydrophilic and hydrophobic regions in an edge to centre configuration, making it 

surface active.
62, 172, 173

 It has been shown that CMG adsorbs at the air/water and 

oil/water interface leading to the formation of large-scale 2D assemblies and 

stabilising o/w emulsions respectively.
62, 173, 174,175  

Initial attempts have been made to incorporate 2D CMG into 3D structures for 

application as advanced materials.
161, 176-179 

However, since CMG is also surface 

active, it can multi-task as a particulate emulsifier and a nanoreinforcement to 

fabricate 3D, functional macroporous polymers via an up-and-coming technique 

called emulsion templating. This is an exciting concept that has not yet been 

explored until now. 

Emulsion templating is a versatile method to synthesise macroporous composite 

materials with tuneable pore structures.
38, 44, 52, 180-190 

Macroporous polymers have 

unique properties that cannot be achieved by a dense material with the same 

composition. These include increased surface area and low foam density. The 

addition of CMG into macroporous polymers is expected to enhance its mechanical, 

thermal and electrical properties.
191-194

 In conventional emulsion templating to 

produce polymer foams, a dispersed aqueous phase, often containing an electrolyte, 

is emulsified within an oil phase consisting of monomers and crosslinkers, such as 

styrene and divinylbenzene (DVB), a suitable initiator and emulsifier(s). This forms 

a water-in-oil (w/o) emulsion. Since the continuous oil phase polymerises around 

each dispersed water droplet, the individually dispersed water droplets act at the gel 

point of the polymerisation as a template for the final macroporous structure – hence 

the name emulsion templating.
19  
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W/o emulsions with a internal phase volume greater than 74 vol.% are termed High 

Internal Phase (ratio) Emulsions (HIPEs). After HIPEs are polymerised and dried to 

remove the water phase, very porous polymers known as poly(merised)HIPEs, are 

produced.
36 

 PolyHIPEs are lightweight, have a low foam density and low thermal 

conductivity. Since the emulsion templates are liquid, they can be injected or molded 

into any desired shape or cast into thin membranes, facilitating the applicability of 

the materials after polymerisation. 

Depending on the emulsifier used, the morphology of the synthesised macroporous 

polymers differs. Macroporous polymers synthesised from surfactant stabilised 

HIPEs are recognizable by their high degree of pore interconnectivity. Pores have 

diameters ranging from 5 – 100 µm with interconnecting pore throats that have 

diameters ranging from 20-50% of the pore size, connecting each individual pore. 

The high surfactant concentration used to produce HIPEs is a major cost factor and if 

not removed properly from resultant polyHIPEs, has been shown to reduce the 

mechanical properties.
195 

Particles can also stabilise emulsions by adsorption at liquid-liquid interfaces.
196, 197

 

They tend to adsorb almost irreversibly (with very high associated energy) at oil-

water interfaces resulting in very stable emulsions. Emulsions stabilised by particles 

are termed Pickering HIPEs and after polymerisation, poly-Pickering-HIPEs. A 

range of different modified inorganic and organic particles including silica, titania, 

carbon nanotubes (CNT) and nanocellulose have been used as particulate stabilisers 

in emulsions.
185, 198, 199 

In contrast to polyHIPEs, poly-Pickering-HIPEs are close-

celled (not interconnected by pore throats). This unique property makes these 

moldable macroporous polymers interesting for many applications, ranging from 

thermal or acoustic insulation, packaging to specialty applications in composites, in 
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which currently high performance closed cell polymer foams, such as Rohacell® and 

Divinycell, are being used in sandwich composite structures. Moreover, the particles 

dispersed within the polymer matrix also act as reinforcement, improving the 

mechanical properties of poly-Pickering-HIPEs when compared to conventional 

polyHIPEs.
190  

In this work the surface activity of CMG made it possible to stabilise emulsions to 

produce beads and macroporous polymers via the emulsion templating technique. 

Our approach is to adjust the hydrophobicity/hydrophilicity of CMG through 

controlled thermal reduction in order to decrease its basal plane wettability by water, 

making the preparation of w/o emulsions possible. The structure of the resulting 

polyHIPEs and its influence on the mechanical and electrical properties were also 

analysed. 

6.3 Experimental 

6.3.1 Processing of Chemically Modified Graphene (CMG) Flakes 

CMG suspensions were obtained by the exfoliation of graphite using the modified 

Hummers method.
200

 The resulting liquid was transferred into 85 ml PC centrifuge 

tubes (Nalgene) and purified by centrifugation at 9000-10000 rpm, removal of the 

supernatant and addition of deionized water. This process was repeated at least 15 

times. Non-exfoliated particles were then removed by centrifugation at lower speeds 

(1000-3000 rpm). The efficiency of the process was monitored via optical 

microscopy.  

GO flakes were obtained by freeze-drying GO suspensions (Freezone 4.5, Labconco 

Corporation) for 48 h below 0.1 mbar. rGO flakes were produced by thermally 

reducing GO at 800ºC in a 10%H2/90%Ar atmosphere in a tubular oven (Carbolite 
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Furnances). For this purpose 60-90 mg GO flakes were placed in an alumina boat 

forming a compact layer of material. The crucible was inserted in the middle of a 

quartz tube, which was then placed into the tubular oven. This thermal reduction 

procedure was used to obtain more hydrophobic and electrically conductive flakes. 

6.3.2 Preparation of Nanocomposites Beads and Macroporous Polymers 

The general methodology developed for the fabrication of GO-polystyrene- 

divinylbenzene (GO-P(S-co-DVB)) beads and rGO-P(S-co-DVB) macroporous 

polymers is illustrated in Figure 6-1.  

 

Figure 6-1: Schematic summarizing the fabrication procedure for nanocomposite 

beads and macroporous polymers. 

To prepare beads, o/w emulsions stabilised with 0.4 mg/ml GO with respect to the 

water phase were prepared by first homogenising GO in deionized water 

(Kinematica Luzern, CH) in an ice bath. A 1:1 by volume mixture of styrene and 

divinylbenzene (St:DVB) (40 vol.% with respect to total emulsion volume) was then 

slowly added to the aqueous phase and emulsified using a vortex mixer (Genie 2 ™, 

Scientific Industries, USA) until an emulsion was obtained. The free-radical initiator 

α,α’-azoisobutyronitrile (AIBN, Camida, Tipperary, Ireland) (1 mol-%) was added to 

the freshly prepared emulsions. The emulsions were then transferred into 15 ml 

polypropylene SuperClear™ centrifuge tubes (VWR UK), which were sealed and 
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placed into a convection oven at 70C for 24 h for polymerisation. After 

polymerisation, the beads were separated by filtration and washed with deionized 

water before drying in a vacuum oven at 110C in between two pieces of filter paper 

until constant weight.  

To fabricate macroporous polymers, rGO-stabilised w/o emulsions were prepared by 

homogenising rGO at concentrations ranging from 0.1 to 5 mg/ml with respect to 

organic phase in a 1:1 (by volume) mixture of St:DVB in an ice bath using an 

ultrasonic tip for 30 min to an hour until aggregates were no longer visible with the 

naked eye. As controls, 25 mg/ml of oleic acid modified titania prepared using a 

method previously reported,
62

 was dispersed in the same 1:1 (by volume) mixture of 

St:DVB using a homogeniser (Kinematica Luzern, CH) at 15000 rpm for 10 min 

(control 1) while 200 mg/ml of the nonionic polymeric surfactant Hypermer 2296 

(Uniqema Wirral, UK), was dissolved in the same monomer mixture by shaking 

(control 2). AIBN (Camida, Tipperary, Ireland) (1 mol-%) was added to all the 

freshly prepared suspensions. This was followed by the slow, drop-wise addition of 

75 vol.% with respect to total emulsion volume of 5g/L CaCl2 2H2O aqueous 

solution under continuous stirring using a vortex mixer (note that 80 vol.% of the 

same aqueous phase was used to prepare the controls). Finally the stirring rate was 

increased until an emulsion was formed. In the case of the two control samples, the 

aqueous solutions were added using experimental setups reported previously.
44, 76

 All 

emulsions were then transferred into 15 ml polypropylene SuperClear™ centrifuge 

tubes, which were sealed and polymerised in the same way as before to obtain 

macroporous P(S-co-DVB). The macroporous polymer nanocomposites were 

removed from the centrifuge tubes and dried in a vacuum oven at 110C until 

constant weight.  
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6.3.3 Characterisation of Nanocomposite Beads and Macroporous Polymers 

Scanning Electron Microscopy (LEO Gemini 1525 and JEOL JSM 5610 LV) was 

used for the microstructural analysis of the nanocomposites macroporous polymers 

and beads. The macroporous polymers were fractured to reveal the internal surfaces. 

Pore sizes were measured using the linear intercept method with the software Linear 

Intercept (TU Darmstadt). A minimum of 150 pores were measured for each sample 

in order to calculate the characteristic pore sizes (d90, d50 and d10) from the 

cumulative pore size distribution curves. 

The skeletal densities ρs of the nanocomposites were measured using He 

displacement pycnometry (Accupyc 1330, Micrometrics Ltd, Dunstable UK) by 

placing approximately 20 mg of powdered macroporous nanocomposite into a vessel 

of known volume. The envelope densities ρe were calculated from the measured 

mass m and volume V of cubes of macroporous nanocomposites (ρe=m/V). The 

percentage porosity P was calculated using Equation 6-1:  

     
  

  
       

Equation 6-1 

Dynamic mechanical properties of the macroporous polymer nanocomposite were 

investigated using dynamic mechanical analysis (DMA 8000 MA, USA). Specimens 

were cut to 555
 
mm

3
 cubes and a controlled strain was applied at a constant 

frequency of 1 Hz while keeping the temperature constant at 30C. The storage 

modulus or stiffness was computed from the amount each specimen deformed.  

Uniaxial compressive tests were performed (Lloyds EZ50, Lloyds Instruments Ltd., 

Fareham, UK) at room temperature following the industrial standard BS ISO 844. 

The samples were cut into cylinders with a diameter to height ratio of 1 using a 
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bench saw (Titan SF8R Screwfix). These cylinders were then machined until the 

edges were parallel. The bottom and top part of each sample was filled with a thin 

layer of liquid paraffin wax at 60C and connected to a glass slide. This preparation 

methodology ensured that the load was homogeneously transferred onto the 

macroporous nanocomposites during compression. The compression platens were 

sprayed with Teflon (Rocol, Swllington Leeds UK) prior to each measurement and 

each specimen was loaded at a crosshead speed of 1 mm/min until a maximum 

displacement of about 50% was reached or until the specimen fractured abruptly 

down the centre, whichever occurred first. The Young’s modulus was obtained from 

the slope of the linear portion of the stress-strain curve. The crush strength was 

calculated from the maximum strength at the end of the initial linear elastic region. 

To measure electrical conductivity, macroporous polymer nanocomposites were cut 

into disks of 13 mm diameter and 5 mm thickness and the upper and bottom surfaces 

coated with silver paint (Ernest F. Fullam inc). The electrical resistance R of the 

macroporous polymers was measured using the 2-point method with a digital 

multimeter (KM-320). The resistivity ρ was calculated taking into account the cross 

sectional area A and the sample thickness t according to Equation 6-2. The 

conductivity was then calculated as the inverse of resistivity. 

    
 

 
 

Equation 6-2 

6.4 Results and Discussion 

Although the focus of this study was the preparation of macroporous polymer 

nanocomposites from emulsion templates stabilised by the reduced form of GO 

(rGO), it is valuable to include a sample demonstrating the versatility of GO as 
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emulsifier for o/w emulsions. A concentration of 0.4 mg/ml was used to prepare 

homogeneous o/w emulsions with an internal phase (monomers) volume of 40%. 

The emulsions were then polymerised, washed and dried to yield polymer beads with 

diameters ranging from 200 – 300 m (Figure 6-2, left). Using high resolution SEM, 

GO flakes covering the outer surface of each bead (Figure 6-2, right) were observed. 

This provides evidence that GO flakes, though initially well-dispersed in the aqueous 

phase, adsorbed at the o/w interface to lower the interfacial tension, stabilising the 

emulsion throughout polymerisation. The physical characteristics of these beads are 

tuneable by changing various parameters such as GO concentration, hence 

optimising this system; however, this was not the focus of this study and was 

reserved for future work.  

 

Figure 6-2: SEM of GO-P(S-co-DVB) nanocomposites beads synthesised by 

polymerising o/w emulsions containing 40 vol.% of internal phase (monomers) 

dispersed in 0.4 mg/ml GO suspensions. Well-dispersed GO flakes, clearly seen on the 

surface of the beads, are indicated with an arrow. 

The following discussion will focus on the preparation and characterisation of highly 

porous macroporous polymer nanocomposites by polymerisation of HIPE templates 

stabilised by the reduced form of GO (rGO). The rGO concentration required to 

emulsify 75 vol.% water in the organic phase was found to be as low as 0.1 mg/ml 

(with respect to the organic phase). HIPEs stabilised by such a low rGO 
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concentration were initially homogeneous but underwent fast droplet coalescence 

and consequently phase separation, before polymerisation could be completed. This 

was evident from the separate ‘layers’ observed when the emulsion was left on the 

bench at room temperature for about 30 s after preparation (Figure 6-3(a) left). Thus 

was impossible to produce polyHIPE monoliths required for further characterisation. 

A close up of the emulsion revealed the extent of droplet coalescence (Figure 6-3(a) 

right). In comparison to HIPEs stabilised by 0.1 mg/ml rGO, HIPEs prepared with 

0.2 mg/ml rGO dispersions remained stable on the bench at room temperature and 

during the course of polymerisation. Once this ‘lower limit’ was established, 

emulsion templates with increasing rGO concentrations (from 0.4 to 5 mg/ml) were 

prepared to determine its influence on the microstructure and properties of resultant 

macroporous polymer nanocomposites. The photo of an emulsion stabilised by 1.2 

mg/ml of rGO is shown in Figure 6-3(b). A close-up photo shows individual water 

droplets surrounded by a black-coloured liquid layer containing rGO flakes (Figure 

6-3(b) right) in contrast to separate phases previously observed for the HIPEs 

stabilised with 0.1 mg/ml rGO (Figure 6-3(a)).  
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Figure 6-3: Comparing rGO stabilised HIPEs at different concentrations. HIPEs 

stabilised by 0.1 mg/ml rGO dispersed in the organic phase (top) showed rapid droplet 

coalescence within 30 s of preparation while HIPEs prepared with 1.2 mg/ml rGO 

dispersed in the organic phase (bottom) remained stable for at least 30 days on the 

bench, representative of the behaviour shown by all other HIPEs prepared in this 

series. 

Polymerising the rGO stabilised HIPE templates followed by washing and drying 

resulted in highly porous rGO-P(S-co-DVB) macroporous polymer nanocomposites. 

All porosities measured (Table 6-1) were higher than the internal phase volume 

fraction used to prepare the emulsions (75 vol.%). This was attributed to a 

combination of the inevitable loss of organic phase via evaporation during dispersion 

and transfer of the viscous continuous phase between containers as well as the effect 

of emulsion sedimentation. Skeletal densities (Table 6-1) were constant within error 

since the very small amounts of rGO added did not significantly change the overall 

nanocomposite mass. RGO0.2 had the lowest envelope density and consequently the 
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highest porosity at 86%. Porosity decreased from 86% to 84% as the rGO 

concentration used to stabilise HIPEs was increased to 0.8 mg/ml due to a reduced 

rate of emulsion sedimentation. The porosity continued to decrease to 82% for 

rGO1.2 and remained constant from rGO1.2 to rGO5 as the rate of emulsion 

sedimentation stabilised.  

Table 6-1: Summary of porosity and densities of macroporous rGO-P(S-co-DVB) 

nanocomposites and control samples 1 and 2. The emulsifier was dispersed in a 1:1 

St:DVB solution (25 vol.%) with 1 mol% AIBN and emulsified with 5 g/L of aqueous 

electrolyte (75 vol.% for rGO and 80 vol.%  for the controls ). All emulsifier 

concentrations quoted are with respect to the organic monomer volume. 

Specimen name Emulsifier 

Emulsifier 

concentration 

(mg/ml)
* 

Porosity 

(%) 

Skeletal 

Density 

(g/cm
3
) 

Envelope Density 

(g/cm
3
) 

rGO 0.2 rGO 0.2 86.0±0.3 1.081±0.007 0.1513±0.0005 

rGO 0.4 rGO 0.4 85.5±0.2 1.076±0.007 0.1568±0.0005 

rGO 0.8 rGO 0.8 83.8±0.3 1.073±0.003 0.1738±0.0002 

rGO 1.2 rGO 1.2 81.7±0.3 1.080±0.009 0.1967±0.0004 

rGO 1.6 rGO 1.6 82.7±0.3 1.080±0.007 0.1866±0.0002 

rGO 2 rGO 2 81.7±0.2 1.073±0.004 0.1976±0.0007 

rGO 2.4 rGO 2.4 83.0±0.3 1.083±0.007 0.1823±0.0007 

rGO 5 rGO 5 82.0±0.3 1.081±0.004 0.1946±0.0004 

poly-Pickering HIPE 

‘Control 1’ 
Titania 25 85±2 1.12±0.02 0.246±0.010 

polyHIPE 

‘Control 2’ 

Hypermer 

2296 
200 84±1 1.10±0.03 0.180±0.010 

*
Calculated with respect to monomer volume. 

High resolution SEM was used to elucidate the microstructures of macroporous 

rGO-P(S-co-DVB) nanocomposites. A representative image of rGO 1.2 is shown 

Figure 6-4. The pore structure was mainly closed-cell, typical for poly-Pickering-

HIPEs.
52, 112

 A few pore throats were present across the porous structure alongside 

areas in the pores that had an obviously thinner polymer wall (seen from the 

difference in colour contrast on SEM images). This was seen in macroporous 

polymers made from very concentrated emulsions since the internal phase droplets 
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were separated by very thin liquid films, which become even thinner during 

polymerisation.
79

  

 

Figure 6-4: SEM of macroporous rGO-P(S-co-DVB) nanocomposite synthesised by the 

polymerisation of 75 vol.% w/o HIPEs stabilised by 1.2 mg/ml rGO. The 

nanocomposite macroporous polymer pore throats and the well-dispersed rGO flakes 

covering the internal surface of the macroporous polymer are indicated with an arrow. 

Higher magnification of the pore walls revealed some rGO flakes covering a section 

of a pore (Figure 6-4, right). Since the emulsion structure was ‘frozen’ at the gel 

point of polymerisation, it indicated that rGO did indeed segregate to the w/o 

interface. The ultrasonication process used to prepare the organic phase for 

emulsification was effective in dispersing rGO flakes (as no large agglomerates were 

observed) while maintaining the flake integrity. However, the image suggests that 

the surface of the pores were not completely covered by a monolayer of rGO flakes. 

Rather, there were gaps in between noticeable rGO flakes. Any observable flakes 

were partially folded or adsorbed on the interface as aggregates in a ‘pack ice’ like 

manner, stacked on top of one another, a configuration, which was sufficient to 

stabilise HIPEs. 

SEM images were analysed to obtain pore size distributions of the macroporous 

rGO-P(S-co-DVB) nanocomposite as a function of rGO content, shown in Figure 

6-5. 



Chapter 6 

140 

 

 

Figure 6-5: Average pore sizes of macroporous rGO-P(S-co-DVB) nanocomposites as 

function of rGO content. d10, d50 and d90 correspond to the pore diameter at a 

cumulative size percentage of 10, 50 and 90% (number distribution), respectively. 

Macroporous polymer nanocomposite rGO0.2 presented the largest average pore size 

at 636 m with the broadest pore size distribution. This was due to a much faster rate 

of droplet coalescence experienced by HIPEs stabilised by such a low concentration 

of rGO flakes. The pore size distributions became narrower and the average pore size 

smaller as the rGO concentration increased since more rGO was available to cover 

the surface of smaller droplets, slowing down the rate of droplet coalescence. A 

minimum average pore size of 192 m was reached for rGO1.2 and stayed constant 

as the rGO concentration used to stabilise HIPEs increased until 2 mg/ml (rGO2). 

When the rGO concentration in HIPEs was increased further to 5 mg/ml (rGO5), the 

pore size distributions became broader (Figure 6-5). At concentrations as high as 2.4 

to 5 mg/ml, the amount of energy supplied during ultrasonication was no longer 

sufficient to completely disperse rGO in the organic phase. As a result, flakes tended 

to agglomerate, reducing their effectiveness to stabilise small droplets.  
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A combination of compression testing and dynamic mechanical analysis (DMA) was 

used to determine the mechanical properties of the macroporous polymer 

nanocomposites. Results from these mechanical tests serve to explain the influence 

of rGO concentration and pore morphology on the crush strength, Young’s modulus 

and storage modulus of the macroporous polymer nanocomposites. As control 

samples, conventional poly-Pickering-HIPEs prepared by the polymerisation of 

emulsion templates stabilised by a particulate emulsifier (control 1) and a surfactant 

(control 2), prepared using an emulsion system consisting of water (80%) in a 1:1 

(by volume) mixture of St to DVB (20%) were chosen. This resulted in controls with 

porosities in the same range as those of the rGO samples reported herein. Porosities, 

skeletal and envelope densities of the control samples are summarised in Table 6-1. 

The crush strength and the Young’s modulus were determined from stress-strain 

profiles obtained from compression testing and summarised in Figure 6-6.  

 

Figure 6-6: Crush strength and Young’s modulus of macroporous rGO-P(S-co-DVB)  

nanocomposites as function of rGO concentration in the organic phase. 
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Both crush strength and Young’s modulus showed a general increase with increasing 

rGO concentration. As the concentration of rGO dispersed in the polymer matrix 

increased, the wrinkly and creased rGO flakes mechanically interlocked with 

themselves and other flakes within the polymer matrix in a favourable configuration, 

creating a secondary structure which improved the load transfer of the entire 

macroporous polymer during compression, resulting in the generally increasing trend. 

The crush strength of the macroporous polymer nanocomposites prepared from 

HIPEs stabilised by 0.2 mg/ml (rGO0.2) and 1.2 mg/ml (rGO1.2) increased by 41%. 

The reason for this improvement was a combination of the decrease in porosity 

(Table 6-1) and average pore size (Figure 6-5) in addition to the reinforcing effect of 

rGO. Increasing the rGO concentration in HIPEs from 1.2 mg/ml to 2 mg/ml 

(rGO1.2 to rGO2) resulted in a further increase of the crush strength of the produced 

macroporous polymer nanocomposites by 30%. Since the average pore size 

plateaued at 190 µm (Figure 6-5) and porosity remained constant, this provided 

evidence for the significant, reinforcing effect of rGO. The pore size distribution 

broadened (Figure 6-5) while porosity remained constant in the polyHIPEs produced 

from HIPEs stabilised by rGO concentrations ranging from 2 mg/ml to 5 mg/ml 

(rGO2 to rGO5) (Table 6-1). In this range, the crush strength increased the most, by 

70%. Besides the reinforcing effect of rGO for rGO2 to rGO5, the broadly 

distributed pore sizes in a hierarchical pore arrangement (Figure 6-7) led to the 

improvement in crush strength observed. It has previously been shown that when 

there is a combination of larger and smaller pores for structures with the same 

porosity, the hierarchical arrangement enhances the mechanical properties as it is 

believed to improve the load transfer mechanism during compression.
113
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Figure 6-7: SEM of macroporous rGO-P(S-co-DVB) nanocomposite synthesised by the 

polymerisation of 75 vol.% w/o HIPEs stabilised by 5 mg/ml rGO.  

Control 1, a poly-Pickering-HIPE synthesised from a w/o HIPE stabilised by oleic 

acid modified titania, had a crush strength of 3.2 ± 0.8 MPa, 65% higher than the 

maximum achieved by rGO5. This came as no surprise as a much higher 

concentration (by one magnitude) of emulsifying particles imparted also a significant 

reinforcing effect on the polymer matrix, which manifested itself in a higher crush 

strength. However when compared with rGO5, the Young’s modulus of control 1 is 

still 68% lower at 21 ± 3 MPa despite possessing a similar porosity. Control 2, a 

conventional polyHIPE obtained by the polymerisation of a HIPE stabilised using 

200 mg/ml of a non-ionic polymeric surfactant (Hypermer 2296), had a 55% lower 

Young’s modulus at 29 ± 4 MPa and 23% lower crush strength at 1.5 ± 0.2 MPa 

compared to that of rGO5,
201

 Moreover, any surfactant remaining in the polyHIPE is 

likely to act as a plasticizer and the presence of interconnecting pore throats also 

weakened the overall porous structure.
113

 As such, rGO was not only a more efficient 

emulsifier at lower concentrations, it also resulted in better Young’s moduli and 

crush strengths of poly-Pickering-HIPEs (in the case of control 2) when compared to 
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porous materials prepared via conventional emulsion templating using particle 

stabilised and surfactant stabilised emulsions.  

Generally, the storage modulus was seen to show the same trend as the crush 

strength and storage modulus with increasing rGO concentration (Figure 6-8). Due to 

the extremely brittle nature of samples prepared with 0.2 mg/ml stabilised HIPEs 

(rGO0.2), it was difficult to cut and measure the storage modulus accurately and so 

the data was excluded. However, it was interesting to note that doubling the rGO 

concentration in HIPE templates from 0.4 mg/ml to 0.8 mg/ml already resulted in an 

order of magnitude increase in the storage modulus. An increase in rGO 

concentration from 0.8 mg/ml to 5 mg/ml (rGO0.8 to rGO5) further doubled the 

stiffness. This was a result of a combination of the reinforcing effect of increased 

rGO in the polymer matrix as well as the positive influence of pore size and 

arrangement on the storage modulus. In comparison, both controls 1 and 2 had 

significantly lower storage moduli; 77% lower at 11 ± 9 MPa for control 1 and 66% 

lower at 16 ± 3 MPa for control 2 compared to the maximum storage modulus 

recorded amongst the poly-Pickering-HIPEs prepared from rGO stabilised HIPEs 

(47 ± 3 MPa for rGO5). 
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Figure 6-8: Storage modulus of macroporous rGO-P(S-co-DVB) nanocomposites as 

function of rGO concentration (with regards to organic phase) obtained from dynamic 

mechanical analysis at constant temperature of 30C. 

Since CMG has a very low, reported percolation threshold of 0.1 vol.%,
161

 it is a 

highly efficient nanofiller to prepare conductive, dense composites. However, there 

are no previous reports on the percolation behaviour of CMG in macroporous 

materials. The electrical conductivity of macroporous nanocomposite with varying 

concentrations of rGO are displayed in Figure 6-9 to determine the percolation 

threshold. 
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Figure 6-9: Conductivity of macroporous rGO-P(S-co-DVB) nanocomposites σ as a 

function of rGO volume fraction ϕc (with respect to the total volume of the 

macroporous nanocomposites). The solid line is the fit of experimental data to the 

conductivity equation (inserted equation in Figure 6-9),
202

 where σc is the conductivity 

of the filler, ϕc is the percolation threshold and t percolation exponent.  The fitted 

parameters are: ϕc=0.005 vol.%, σc=0.020, t=0.7. rGO volume fraction in the 

macroporous polymers (vol.%) are calculated using the value of 2.2 g/cm
3
 as the 

density of rGO.
161

 

PolyHIPEs rGO0.2 and rGO0.4 were non-conductive, i.e. insulators, rGO 0.8 

(corresponding to a filler content of 0.006 vol.% rGO in the macroporous 

nanocomposite) presented an antistatic response with a conductivity of 1.2 10
-5

 Sm
-1

. 

Further increasing the concentration of rGO led to a gradual increase of electrical 

conductivity up to 1.3 10
-4

 Sm
-1

 for the sample with the highest rGO concentration 

studied here (rGO5, with 0.0041 vol.% rGO).  

The percolation threshold ϕc extracted from a fitting of the measured conductivity 

data to the conductivity equation is 0.005 vol.%. Since these conductive 

macroporous materials are highly sought after for many industrial applications,
170, 

203-206
 the percolation behaviour of macroporous rGO-P(S-co-DVB) nanocomposites 
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were studied and compared with dense CMG polystyrene nanocomposites previously 

reported.
161

 It was observed that the macroporous materials developed in this study 

had a percolation threshold which was two orders of magnitude lower. This was 

potentially due to the efficient assembly of rGO flakes into a network during the 

emulsion templating process. Since rGO aligned at the o/w interface during 

emulsification, an ‘ordered’ segregation of flakes to the o/w interface was favoured. 

This created a ‘shell’ of connected rGO flakes, which froze into position during the 

polymerisation. In addition, the presence of interconnected rGO flakes dispersed in a 

suitable orientation within the polymer matrix further facilitated the formation of a 

continuous, conductive network at much lower concentrations compared to dense 

nanocomposites.  

6.5 Conclusions 

The multi-functionality of graphene oxide flakes both as an emulsifier and a 

conductive nanoreinforcement was utilised for the formulation of emulsion 

templated nanocomposite beads and macroporous polymers. By using very 

hydrophilic GO (synthesised using a modified Hummers method) as the emulsifier, 

o/w emulsions were prepared with a pure monomer oil phase dispersed in 0.4 mg/ml 

GO aqueous suspensions. After polymerisation and vacuum drying, nanocomposite 

beads with diameter size ranging from 200-300 µm were obtained. However, the true 

challenge was to tune the hydrophobicity of GO in order to produce w/o HIPEs that 

would act as a template for the synthesis of macroporous polymers. It was found that 

rGO, produced by controlled thermal reduction of GO, allowed the successful 

preparation of rGO-stabilised w/o HIPEs. These HIPEs remained stable over the 

course of polymerisation at 70C for 24 h without phase separating. Following 

polymerisation and vacuum drying, highly porous closed cell macroporous polymers 
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with interesting properties were produced. The mechanical interlocking of the rGO 

flakes in the polymer matrix created structural networks which were able to provide 

increased mechanical resistance to compression. The developed materials showed an 

impressive increase in the storage modulus by an order of magnitude just by 

doubling the amount of rGO in HIPE templates from 0.4 to 0.8 mg/ml. The 

maximum Young’s and storage moduli determined for poly-rGO-stabilised-HIPEs 

were also significantly higher compared to those for control samples prepared 

particulate and surfactant stabilised HIPEs.  

Despite the low rGO loading of the macroporous materials produced, they had an 

extremely low percolation threshold of 0.005 vol% compared to dense 

nanocomposites previously studied, providing evidence of the efficient arrangement 

of rGO within the polymer matrix to aid emulsification yet maintain a conducting 

network of flakes. This is a potentially viable method to manufacture closed-cell 

macroporous polymer nanocomposites with conductive properties attractive for a 

range of specialty applications, avoiding the use of large concentrations of expensive 

surfactants.  
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7 Conclusions and Suggestions for Future Work 

7.1 Summary of Findings 

Emulsion templating, a versatile method to produce bespoke porous materials, was 

explored as a viable way to synthesise hierarchical macroporous polymers in this 

thesis. The main aim of this work was to produce hierarchical macroporous polymers 

inspired by those found in nature such as hardwood and bone, using the emulsion 

templating technique. The type of hierarchical porous materials produced was further 

classified into two types. Firstly, the production of materials displaying hierarchy at 

the macroporous level, which was achieved by optimising current protocols for 

emulsion templating, described in Chapter 3, the use of a mixed particle and 

surfactant emulsifier system in Chapter 4 and by mechanically frothing bio-based 

emulsion templates in Chapter 5. The second type of hierarchical porous materials 

displayed hierarchy at the particle network level. This was described by the 

interconnected conductive particulate network of rGO flakes found in the 

macroporous nanocomposites in Chapter 6. Characterisation of the macroporous 

polymers produced using the approaches mentioned above were reported and 

discussed in comparison with non-hierarchical macroporous polymers to 

demonstrate the effectiveness of hierarchy on the physical properties of the final 

porous material. The findings are summarised as follows: 

7.1.1 Hierarchical PolyHIPEs Synthesised from Surfactant-Stabilised 

Emulsion Templates 

By optimising selected emulsification parameters such as stirring rate and emulsifier 

concentration, hierarchical, opened-cell macroporous polymers with multi-modal 

pore size distributions packed in an efficient arrangement were produced. Just as 
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lattice girders in buildings support its main frame, the hierarchical arrangement of 

pores was believed to provide additional structural integrity to the porous materials, 

facilitating the transfer of load and improving its overall mechanical properties. 

Hierarchical polyHIPEs produced from HIPEs containing a 1:1 mixture of styrene 

and DVB in the continuous phase stabilised by 5 vol.% surfactant (Hypermer 2296) 

showed a 93% improvement in Young’s moduli compared to conventional 

polyHIPEs produced from HIPEs stabilised by 20 vol.% of surfactant with the same 

porosity of 84%. A 2D simulation study using FEM showed qualitatively that the 

geometry with a hierarchical arrangement had a higher Young’s modulus during 

compression, validating the experimentally obtained results. The study showed that 

the macroporous polymers with hierarchically arranged pores did indeed display 

better mechanical properties. 

7.1.2 Macroporous Polymers with Hierarchical Pore Structure from Emulsion 

Templates Stabilised by Both Particles and Surfactants  

A mixed surfactant and particle emulsifier system was used to prepare high internal 

phase w/o emulsions, composed of a continuous phase containing the monomer 

styrene and flexible crosslinker PEGDMA. The surfactant (Hypermer B246SF) was 

added simultaneously to the continuous phase containing dispersed particles (titania 

particles modified with 3.5  0.1 wt% oleic acid), producing a mixture of large and 

small emulsion droplets which polymerised into a hierarchical macroporous structure. 

Characteristics of both poly-Pickering-HIPEs (predominantly closed pores) and 

conventional polyHIPEs (interconnected open pores) could be seen in SEM images 

of the hierarchical macroporous polymers. TEM of very thin sections of the 

macroporous polymers located the particles in the polymer matrix. From this, it was 

inferred that the hierarchical pore structure was a result of predominantly particle-
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stabilised emulsion droplets and surfactant-stabilised droplets that co-existed with 

one another at the gel point of polymerisation. It was found that within the series of 

hierarchical macroporous polymers with the same porosity of 79%, samples prepared 

with 0.8 w/vol.% of surfactants and 0.8 w/vol.% of particles (both with respect to the 

monomer volume) had the highest crush strength and Young’s modulus, at 3.6 MPa 

and 27 MPa respectively despite a high gas permeability of 0.67 D. This measured 

value of crush strength and Young’s modulus was 3-4 times higher compared to 

conventional surfactant stabilised structures which also had a comparatively lower 

permeability of 0.13 D. This noticeable improvement in mechanical properties 

despite a higher gas permeability and pore throat interconnectivity was attributed to 

efficient packing of pores in a hierarchical configuration. Thus, macroporous 

hierarchy was shown to enhance mechanical strength while maintaining a higher gas 

permeability, making this material attractive for applications where both mechanical 

strength and interconnectivity are important. 

7.1.3 Air in Water-in-oil Emulsion Templates: Developing Highly Porous 

Greener Hierarchical Macroporous Nanocomposite Foams 

A viscous w/o 50% medium internal phase emulsion system was prepared using a 

titania stabilised Pickering emulsion template composed of a continuous phase 

containing varying volumes of bio-based AESO monomer, TMB (diluent), styrene 

and PEGDMA (cross-linkers). The emulsion templates were mechanically frothed 

using a hand-held electric mixer to incorporate air bubbles into the emulsion 

template. Both emulsion droplets and air bubbles acted as ‘templates’ for the final 

porous structure. After polymerisation, bio-based macroporous polymers with a high 

porosity of 81%, displaying a hierarchical pore arrangement were produced. These 

materials showed higher porosity than typical polyMIPEs prepared using Pickering 
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emulsion templates stabilised by the same 3 w/vol.% of particles, due to the 

hierarchical packing of macro-pores. The microstructures of these highly porous 

materials both before and after mechanical frothing shed insight on the stabilisation 

mechanisms that occurred during the mechanical frothing of emulsions. This 

included the importance of continuous phase viscosity on the emulsion stability as 

well as its ability to trap air bubbles created during the mechanical frothing process. 

The temperature at which a peak in the tan was observed was also seen to increase 

with decreasing AESO concentration, from 89C (50% AESO) to 105C (30% 

AESO). 

7.1.4 Nanocomposite Macroporous Polymers and Beads Synthesised from 

Emulsion Templates Stabilised by Chemically Modified Graphene 

Nanocomposite beads and solid foams were produced using emulsion templates 

stabilised by a network of 2D graphene oxide flakes acting both as particulate 

emulsifiers as well as conductive nano-reinforcements. By first using hydrophilic 

GO (synthesised using a modified Hummers method) as an emulsifier, o/w 

emulsions were prepared with 0.4 mg/ml GO-aqueous suspensions emulsified with a 

styrene-DVB containing continuous phase. After polymerisation and vacuum drying, 

nanocomposite beads with diameter size ranging from 200-300 µm were obtained. 

RGO, produced by controlled thermal reduction of GO, was used to prepare rGO-

stabilised w/o HIPEs which were polymerised to form highly porous closed cell 

macroporous polymers. An increase in the storage modulus by an order of magnitude 

was achieved just by increasing the amount of rGO in the HIPE templates from 0.4 

to 0.8 mg/ml. The maximum Young’s modulus and crush strength determined for 

poly-rGO-stabilised-HIPEs (5 mg/ml of rGO) was significantly higher by 55% and 

23% respectively compared to those for control samples with the same porosity, 
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prepared using conventional surfactant stabilised HIPEs (200 mg/ml Hypermer 

2296). Macroporous materials produced also showed a low percolation threshold of 

0.005 vol% compared to dense nanocomposites previously studied. This provided 

evidence of the efficient arrangement of rGO and presence of a hierarchical network 

of flakes within the polymer matrix.  

7.2 Future work 

7.2.1 Optimising Hierarchical PolyHIPEs Synthesised from Surfactant-

Stabilised Emulsion Templates  

 Test hierarchical hypothesis on alternative monomer systems 

Optimising emulsification parameters such as the concentration of surfactant 

and emulsification time showed a profound effect on the droplet structure of 

the emulsion templates (as seen in Chapter 3). It was possible to demonstrate 

improvements in mechanical properties due to the presence of a hierarchical 

structure. However, mechanical properties were still limited by the inherent 

properties (brittleness) of highly crosslinked polystyrene-co-DVB. A next 

step would be to optimise the crosslink density or test alternative monomer 

systems which will yield to materials with better mechanical properties. 

Possible options for the continuous phase include PEGDMA or even tough 

resin systems such Bisphenol A. 

 Develop the current 2D mathematical model  

In Chapter 3, a 2D computational model was assumed, which provided 

qualitative comparisons with our measured data. This would serve as a 

springboard for further efforts directed at building 3D models which would 

not only account for the pore arrangement (hierarchical vs. non-hierarchical) 

but also the effects of pore throats on the overall mechanical properties of 
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simulated macroporous polymers. Furthermore, a range of values were input 

to the current 2D model to generate results. To improve the model, it is 

suggested that the bulk modulus and crush strength of crosslinked 

polystyrene-co-DVB films are measured and used input values. This will 

generate a more realistic, quantitative model for future purposes. 

7.2.2 Further Characterisation of Hierarchical Macroporous Polymers from 

Emulsion Templates Stabilised by Particles and Surfactants  

 Dependency of emulsion structure on particle-surfactant interactions  

It was found that by adding surfactants simultaneously to a particle-

containing continuous phase resulted in the particle arrangement as shown in 

Figure 4-2 in Chapter 4. Further research could be directed at understanding 

how particles are arranged at the oil-water interface based on the order at 

which the surfactant is added. Other factors such as the time allowed for 

emulsification could also play a part on the final emulsion droplet 

arrangement and hence final pore arrangement. To take this a step further, the 

components of the monomer phase could also be varied and its effect on the 

particle-surfactant interaction studied as a part of this investigation. This 

would be useful to understand the particle-surfactant interactions occurring 

during emulsification and its effect on the formation of hierarchical structures.  

 Determination of liquid permeability of macroporous polymers 

The work in Chapter 4 highlighted the gas permeability of hierarchical 

macroporous polymers produced. The size of the flow limiting pore throat 

was inferred from a combination of the gas permeability measurements as 

well as the pore throat size distribution. It is suggested that the flow limiting 
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pore throats are quantified and compared using the integrated apparatus for 

mercury penetration permeability, previously reported by Manley et al.
76

 

7.2.3 Developing Highly Porous Hierarchical Macroporous Nanocomposites 

by Mechanically Frothing Viscous Emulsions  

 Determination of emulsion rheology 

Although the focus was on the characterisation of the macroporous polymers, 

the viscosity of the emulsion templates used to prepare the macroporous 

polymers in Chapter 5 was observed to have a noticeable effect on emulsion 

stability and the emulsions ability to trap air bubbles. A more detailed study 

of the emulsion rheology (viscosity, shear modulus and yield stress) would 

be of interest to quantify the effect of emulsion rheology on the final droplet 

hierarchy. 

 Investigating the feasibility of alternative bio-based monomers 

In Chapter 5, AESO was found to display a peak in the tan curve close to 

room temperature, which resulted in issues with shrinkage and cracking 

during the post-polymerisation purification process. To minimise these 

problems, the existing drying protocol was modified from the use of a 

convection oven at 120C to a freeze-drying technique, which was 

maintained at -196C. The size of the container used for freeze-drying 

limited the size of the samples that could be dried completely. This drying 

protocol is also not economical when considering the scaled-up production of 

these materials. Thus, research efforts should be directed at seeking 

alternative bio-based monomer(s) with a higher Tg (yet compatible polarity 

and viscosity) to overcome these challenges. 
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7.2.4 Graphene Oxide Hierarchical Macroporous Nanocomposites  

 Exploring further GO Properties 

During the course of the work described in Chapter 6, it was discovered that 

the surface properties of GO was sensitive to environmental factors such as 

temperature, exposure to light and atmosphere, which affected the 

hydrophobicity of GO and hence its emulsifying properties. Thus, it would be 

interesting to investigate the changes in GO surface active properties with 

respect to some of the environmental factors state above, such as reduction 

temperature and controlled exposure to light (UV rays). An investigative 

study on the changes in interfacial tension (measured using pendant drop 

analysis or Du Noüy ring) could be carried out to quantify these effects. 

Following which macroporous nanocomposites could be produced using GO 

flakes with varying surface functionalities and its effect on the pore size 

distribution, conductivity, and mechanical properties etc., studied in a 

systematic way. 

 Visualising the arrangement of GO in polymer matrix 

 In addition to the SEM images presented in Chapter 6, the visualisation of the 

hierarchical arrangement of GO within the polymer matrix could be further 

explored by TEM. In particular, the use of electron diffraction to determine 

the presence of graphene oxide at or near the pore walls. This could provide 

an understanding of the arrangement of GO across the polymer matrix.  

The above mentioned works will be undertaken as part of a collaborative 

study on ‘Graphene three-dimensional networks’ with Professor Kang Li 

from the Department of Chemical Engineering, Imperial College London, in 

a follow-on project funded by the EPSRC. 
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Appendices 

 

Figure A0-1: Left: Macroporous polymer prepared using 0.75 w/vol.% surfactant 

stabilised emulsion template with pore size gradient. Right: SEM showing different 

pore size distributions taken from corresponding areas of the macroporous polymer 

sample on the left, a result of sedimentation at the low surfactant concentration of 

0.75 w/vol.%. 
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Figure A0-2:  Optical micrograph of HIPE used to prepare DS5 (5 w/vol.% surfactant) 

fresh after emulsification (top) and a day later (bottom). The negligible change in 

droplet size in the emulsion after a day showed that the effects of droplet coalescence 

on the final hierarchical structure were small.      

 

Table A0-1: Table summarising fitting parameters for pore throat distribution curves 

(Figure 3-6) 

Sample  A 

DS1 0.42 ± 0.04 28.2 ± 1.6 

DS2 0.38 ± 0.02 33.8 ± 2.3 

DS5 0.38 ± 0.03 34.5 ± 1.9 

DS10 0.25 ± 0.02 27.6 ± 2.5 

DS20 0.27 ± 0.02 36.0 ± 1.6 
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Figure A0-3: Image of control sample 0 (above) after drying using convection oven in 

relation to the size of the Falcon tube (below) used for polymerisation.  
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Figure A0-4: DMTA profile of pure polyAESO (bulk) showing a peak in tan δ at 

approximately 50C 
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Figure A0-5: Photos of A3 before and after drying using convection oven (left top and 

bottom) v.s. modified freeze drying (right top and bottom). Shrinkage is halved and 

cracking is reduced by using a different drying protocol.  
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A3 

Figure A0-6: Representative curves of the Dynamic Mechanical behaviour (Storage 

modulus and Tan Delta vs T) of A1 (top) to A3 (bottom) with respect to increasing 

temperature, subjected to constant frequency oscillations. 

 


