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Abstract

Protein-protein interactions (PPIs) are vital for the function of a cell and the

evolution of these interactions produce much of the evolution of phenotype of an

organism. However, as the evolutionary process cannot be observed, methods are

required to infer evolution from existing data. An understanding of the resulting

evolutionary relationships between species can then provide information for PPI

prediction and function assignment.

This thesis further develops and applies the interaction tree method for mod-

elling PPI evolution within and between protein families. In this approach, a

phylogeny of the protein family/ies of interest is used to explicitly construct a his-

tory of duplication and speciation events. Given a model relating sequence change

in this phylogeny to the probability of a rewiring event occurring, this method can

then infer probabilities of interaction between the ancestral proteins described in

the phylogeny.

It is shown that the method can be adapted to infer the evolution of PPIs

within obligate protein complexes, using a large set of such complexes to validate

this application. This approach is then applied to reconstruct the history of the

proteasome complex, using x-ray crystallography structures of the complex as

input, with validation to show its utility in predicting present day complexes for

which we have no structural data.

The methodology is then adapted for application to transient PPIs. It is shown

that the approach used in the previous chapter is inadequate here and a new scoring

system is described based on a likelihood score of interaction. The predictive ability

of this score is shown in predicting known two component systems in bacteria and

its use in an interaction tree setting is demonstrated through inference of the



interaction history between the histidine kinase and response regulator proteins

responsible for sporulation onset in a set of bacteria.

This thesis demonstrates that with suitable modifications the interaction tree

approach is widely applicable to modelling PPI evolution and also, importantly,

predicting existing PPIs. This demonstrates the need to incorporate phylogenetic

data in to methods of predicting PPIs and gives some measure of the benefit in

doing so.
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Chapter 1

Introduction

The aim of this thesis is to explore computational methods for modelling protein-

protein interaction evolution and to show the applicability of these methods to

a range of data. As will be set out in this chapter, proteins are the most com-

mon class of macromolecule in the cell and are involved in all major functional

processes within the cell. However, proteins do not function alone but work in

concert, forming larger permanent protein machines and fleeting transient com-

plexes. Therefore, these interactions are vital to the functioning of an organism

and represent a link from the genotype to phenotype.

This chapter begins with some basic background, covering what a protein is and

how proteins evolve as a result of DNA mutation. Methods and approaches for

modelling the evolution of individual proteins are then described as these methods

become central to the later methods for modelling interactions between several

proteins. Finally, the chapter ends with a description of how protein evolution

leads to change in interaction partners over time and a motivation for why under-

standing of this process is important.
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1.1 Protein interactions

1.1.1 What is a protein?

Proteins are macromolecules found within every living cell. These macromolecules

are formed of linear chains of connected amino acids (polypeptide chains), the

content and ordering of which is referred to as the proteins sequence or its primary

structure. Varying protein sequences are produced by a cell in order to produce

varied proteins of differing length and of differing utility to the cell. Proteins are

often described as miniature machines that perform the vital functions required for

the survival and propagation of the cell [1]. For instance, during DNA replication

several proteins come together to form the replisome, an organic machine that

unwinds and copies the DNA, the separate protein subunits moving and performing

the task in concert [2]. The diversity of function of proteins in a cell is vast,

being responsible for such disparate tasks as DNA replication, transcription, signal

transduction, structure and protein degradation. To see how different protein

sequences, built from the same amino acid building blocks, can be responsible for

such a diverse set of functions, we have to consider what happens to the protein

inside the cell. The proteins produced do not exist within the cell as formless

chains of amino acids but curl up and pack in to a set 3D structure (Figure 1.1).

This process is known as protein folding and produces macromolecules of com-

plex 3D structure determined by the sequence of amino acids constituting the

protein. Within these varied structures we can identify local substructures which

are found in proteins from all kingdoms of life, the most prevalent being alpha

helices; right handed helices formed by the polypeptide chain and beta sheets;

parallel arrangements of sections of the chain in to sheet-like structures. Both

of these substructures are the result of hydrogen bonding between non-adjacent

amino acids in the chain. These recurring substructures and their arrangement
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Figure 1.1: A folded protein. On the left the line traces the shape of the polypeptide chain

in the folded protein coloured from red to blue along the length of the chain. On the right

is shown the surface of the protein, defined by the surface area accessible by a 1.4Å probe

along the polypeptide chain are known as the protein’s secondary structure and

the overall 3D structure of the whole, folded protein is its tertiary structure.

It is a proteins detailed tertiary structure that allows it to perform a specific

function for instance, the proteasome is a complex formed of many proteins in a

barrel shape that is responsible for degrading proteins that are misfolded or no

longer needed. To do this it brings the protein to be degraded in to the barrel and

disassembles it. It is the shape of the barrel structure and the positioning of the

amino acids responsible for disassembly that allow the proteasome to perform this

function. Or to give another example, actin is a protein that can assemble with

many copies of itself to form a chain. These actin filaments are able to support

the shape of cells like a macromolecular scaffold, because their long, thin shape

allows them to form structural supports between different parts of the cell.

In these two examples the proteins are not working alone in order to perform

a function but instead binding together with other proteins to perform complexes

3



Figure 1.2: The same protein as shown in Figure 1.2, shown in a cartoon representation

with alpha helices shown as wide helices and beta sheets as parallel arrows. The folded

protein contains four helices surrounding a beta sheet.

of many proteins capable of performing some task. This is true in general and the

majority of proteins function in concert with others. The event of two proteins

binding together to form larger assemblies like this is the result of non-covalent

binding between amino acids of either protein, at the protein-protein interface

(Figure 1.3). Such events are called protein-protein interactions (PPI) and, being

central to understanding how proteins perform cellular function, PPIs have been

the subject of much study

1.1.2 How do proteins interact?

Not only are PPIs important for the examples in the last section but in fact, most

of the biological processes within a cell are reliant on PPIs. Indeed, perturbation of

PPIs has been implicated in several diseases for instance Huntington’s disease [3],

prion diseases [4], sickle cell anemia [5] and cancer [6]. The interactions between

proteins can be categorised very broadly in to two types. The first type are per-

manent interactions, in which the proteins form a complex and remain so for the

4



Figure 1.3: Two proteins can bind together to form a complex (left), this is the result of

non-covalent binding between between residues in the binding site of each protein (coloured

pink, right).

duration of their existence. This type of interaction can be found when proteins

assemble into some larger macromolecular machine such as the replisome or the

proteasome. The function of these machines is impossible unless the proteins are

complexed and so the proteins remain bound in order to perform this function.

The second class of PPI is the transient interactions, in which the proteins

associate and disassociate repeatedly to perform some function. For example, in a

signal transduction pathway proteins often bind temporarily in order to pass the

signal, in the form of a phosphotase group, to the next protein in the cascade. In

this case the two proteins in question can be found in bound and unbound states

dependent on the signal in the system.

Several differences have been noted in the nature of these two classes of interac-

tion: the contact area of the interaction tends to be larger and more hydrophobic

in obligate interactions [7], with the residues mediating the interaction tending to

evolve more slowly [8]. However, the fundamental physicochemical laws govern-
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ing PPIs are the same for both types of interaction. For any physical process to

spontaneously occur there must be a negative change in free energy as a result,

the change in free energy being calculated according to

∆G = ∆H − T∆S (1.1)

with G equal to free energy, H enthalpy, S entropy and T the temperature

in kelvin. The association of two objects to form one larger object, as when

proteins bind to form a complex, represents a decrease in entropy and therefore

contributes positively to the change in free energy. This positive contribution

must be overcome for two proteins to bind and is counterbalanced by the in-

creased entropy of the solvent after binding and the reduction in enthalpy as a

result of salt bridges, hydrogen bonds and van der Waals interactions between

residues across the protein-protein interface [9]. This second factor is made pos-

sible by the complementary nature of the amino acid composition and shape of

the constituent proteins across the interface, for instance in matching hydrogen

bond donor with hydrogen bond acceptor residues at the interface, allowing for

energetically favourable hydrogen bonding. Thus when examining X-ray crystal-

lography structures of PPIs it is often seen that complementary residues allowing

such favourable interactions are found paired at the protein-protein interface [10]

[11], [12]. It is these residue level interactions that cause two proteins to become

bound in both permanent and transient interactions. Once bound the change in

free energy determines the strength of the binding and thus how long the proteins

remain complexed, resulting in interactions of differing permanence.
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1.1.3 Protein-protein interactions as networks

Traditionally reductionist biology attempts to elucidate knowledge of cellular func-

tion by studying isolated parts of the cell in detail, for instance in the study of

PPIs by examining in detail the structure of one interaction or by studying in

detail one linear signalling pathway. More recently the rise of systems biology has

encouraged study of the cell at the systems level, that is, by attempting to consider

many parts of the cell at once and the relationships between these parts in order

to get insights into how the system works as a whole to generate the observed

phenotype (e.g. [13]) . As applied to PPIs, this has led to the study of protein

interaction networks (PINs).

A PIN is a graph in which nodes represent proteins and the edges between the

nodes represent interactions between them, giving a formalised way of describing

the interactions amongst a set of proteins (Figure 1.4). An attempt has been made

in several organisms to experimentally find all PPIs within the proteome and to

represent these datasets as PINs. This has allowed a study of the global properties

of these networks, leading to insights into the organisation of cells that would

not be possible in studying interactions in isolation. For instance, experiments to

survey PINs in several organisms have looked at the distribution of the number

of interaction partners across proteins, finding that the distribution has a long

tail with some proteins having a very large number of interaction partners. These

proteins have been termed hubs and several studies have attempted to study their

particular properties, finding that these hubs are disproportionately essential for

the integrity of the overall network [14] [15]. These particular insights would not

have been possible without a systems level analysis. Of course such a large scale

treatment has its inherent problems, it has been noted that PIN datasets can

have poor accuracy, low coverage and present a sampling problem that has to
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Figure 1.4: A PIN representation of the interactions between a set of proteins, nodes

represent proteins and edge between nodes represent binding events.
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be considered in any analysis [16]. These factors affect the conclusions that can

be made from these datasets. There is also the problem that PIN generated in

in vitro assays may not represent the true functional interactions in the cell as,

in vivo, the proteins may be in separate cell compartments or have differential

expression, preventing the biochemically possible interaction from ever occurring.

This presents problems in interpreting PINs biologically, although recognition of

this problem has led to approaches that attempt to produce biologically relevant

PINs, for instance in producing specific PINs for each stage of the cell cycle in

yeast [17].

1.2 Protein evolution

Of course proteins and their interactions are constantly evolving and are not static

in time. Before considering the effect of evolution on PPIs, the evolution of in-

dividual proteins is described. An understanding of individual protein evolution

and the methods used to study this process will become vital later in the thesis

in relation to modelling PPI evolution as many of the ideas and algorithms are

co-opted for use.

1.2.1 How proteins evolve

Proteins are forever evolving in organisms producing the variety of polypeptide

sequences observed within and between species. This evolution begins with ran-

dom changes in the DNA sequence including single nucleotide substitutions, in-

sertions/deletions and gene duplications of the DNA. In the case of substitutions,

a single character in the genome is changed, if this change occurs within a cod-

ing region that will be transcribed and translated to protein then the mutation

can belong to one of two classes: synonymous mutations which do not change
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the resulting polypeptide sequence, as defined by the genetic code (Table 1.1), or

non-synonymous mutations which lead to a change in amino acid produced from

the tri-nucleotide that the mutation occurs in. For instance, if a gene contains

a CAT codon, this set of nucleotides will result in a histidine residue added to

the polypeptide chain by the ribosome during translation. If the final nucleotide

mutates to a C, a histidine is still produced (CAC). However, if the mutation pro-

duces CAA, a glutamine will result and so the final protein sequence of the gene is

changed. It is these non-synonymous changes that lead to evolution of the proteins

primary structure.

1st
2nd

3rd
T C A G

T

TTT
Phenylalanine

TCT

Serine

TAT
Tyrosine

TGT
Cysteine

T

TTC TCC TAC TGC C

TTA

Leucine

TCA TAA Stop TGA Stop A

TTG TCG TAG Stop TGG Tryptophan G

C

CTT CCT

Proline

CAT
Histidine

CGT

Arginine

T

CTC CCC CAC CGC C

CTA CCA CAA
Glutamine

CGA A

CTG CCG CAG CGG G

A

ATT

Isoleucine

ACT

Threonine

AAT
Asparagine

AGT
Serine

T

ATC ACC ACC AGC C

ATA ACA AAA
Lysine

AGA
Arginine

A

ATG Methionine ACG AAG AGG G

G

GTT

Valine

GCT

Alanine

GAT
Aspartic acid

GTT

Glycine

T

GTC GCC GAC GGC C

GTA GCA GAA
Glutamic acid

GGA A

GTG GCG GAG GGG G

Table 1.1: The genetic code determines how DNA triplets are translated in to amino acids

by the cellular machinery.

Non-synonymous substitutions lead to changes in the resulting protein; as the

amino acid sequence changes, the structure and physicochemical characteristics of
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the protein change and so it’s function can be altered. The change of phenotype

brought about can become the target of selection and overtime this evolutionary

process leads to diversity of protein.

It is also possible for base pairs to be inserted or removed from DNA via mu-

tation, these processes being called insertions and deletions respectively or indels

collectively. If indels occur in protein coding sequence the effect on the resulting

translated protein can be more dramatic. Specifically, if the length of the indel is

not a multiple of three, then the translation of the protein will be put out of phase

leading to potentially different codons and therefore amino acids at every position

downstream of the indel. This will most likely lead to a non-functional protein. If

however, the indel is of length multiple of three, then the mutation produces an

insertion/deletion of amino acids at that position in the final protein, potentially

altering its function.

A third important process driving protein evolution is that of gene duplication,

wherein the length of DNA coding a protein is duplicated leading to two identical

copies in the genome. Post-duplication, mutations can accrue in the duplicate

genes independently, producing two proteins with different functions. Two broad

scenarios have been proposed for how this differing function is produced. In the

first scenario, termed neofunctionalisation, the presence of one duplicate gene re-

laxes the selective pressure on the other to perform its function allowing previously

deleterious mutations to occur. This leads to a protein with some new function

that proves useful to the organism and could not have evolved without the pres-

ence of a duplicate gene. The second scenario, subfunctionalisation, describes a

situation in which the original function of the gene is split in to several parts or

roles (role a and role b say) and the presence of a duplicate allows each gene to

lose its ability to perform all roles and to instead perform those complementary to

its duplicate i.e. duplicate 1 only performs role a, duplicate 2 only performs role

11



b.

Together, these related processes produce the variety of protein sequences that

we can observe. Within these sequences we can identify protein families; groups of

proteins related across species that have a detectable sequence similarity. These

families are enlarged by gene duplication events, shrunk by gene loss events and

their variation is produced through mutation. Members of a protein family often

perform similar functions and have similar 3D structures once folded. Given such

a family of related protein sequences the starting point in understanding how

evolutionary processes created the family is to identify the substitutions, indels

and gene duplications that led to its existence. Methods for doing so are briefly

described in the next sections.

1.2.2 Building protein alignments

To discover the history of substitutions and indels between two related protein

sequences it is necessary to identify equivalent positions in the sequences i.e. po-

sitions that are derived from the same position in the common ancestor of the

two proteins, a task complicated by the fact that the residues at these positions

may now be different as a result of substitution. Having defined the equivalent

characters in the two sequences, indels then correspond to the characters with no

equivalent in the other sequence (although with only two sequences it will not be

clear if this is a result of an insertion in one sequence or a deletion in the other).

The resulting representation of the relationship is called an alignment and can be

represented by presenting aligned equivalent positions and using a gap character,

typically ”-”, as shown in Figure 1.5.

Alignments can be produced for large sets of related sequences, this extension

of pairwise alignment is called multiple sequence alignment, providing useful in-

12



Figure 1.5: Aligned protein sequences, equivalent characters are aligned vertically and a

gap character shows the believed position of indels.

Figure 1.6: An example of a protein alignment. Residues are coloured according to their

chemical characteristics and the gap character ”-” is used to show the position of indels.

Residues conserved across an alignment are often important for the functioning of the

protein and in this example, the conserved histidine at position 11 (blue column to the

left) is a phosphorylation site vital to the function of this group of related proteins.

13



formation about the proteins. For example, if the proteins are known to perform

some conserved function then the parts of the sequences that are highly conserved

could relate to this function, for instance constituting a binding site or phospho-

rylation site, as shown in Figure 1.6. Alignments can also be used to build profiles

and models of sequences from the family represented by the alignment, as is done

in the PFAM database for instance [18]. These can then be used to search protein

sequence databases for new sequences that have a significant probability to belong

to the family, proving important in genome annotation.

Several computational approaches exist for producing protein alignments. One

such approach uses dynamic programming along with a substitution matrix to pro-

duce optimal alignments between proteins. The substitution matrix is a 20 by 20

matrix with the (i, j) entry encoding our knowledge of the likelihood that residue

type i is substituted for residue type j during evolution, based on some model of

amino acid substitution [19] [20] [21]. These models are usually empirical and based

on alignments of closely related sequences in which we can be sure of the equiva-

lency of positions. The resulting matrix assigns a cost for each possible transition

between one amino acid to another, as for instance in BLOSUM matrices [22], and

show that physicochemically similar amino acids are more likely to be substituted

for each other during evolution. The Needleman-Wunsch dynamic programming

algorithm [23] takes this matrix and a given penalty for introducing indels in to the

alignment and is guaranteed to produce an optimally scoring alignment of the full

length of the sequences. Alternatively, the related algorithm of Smith-Waterman

[24] can be used to find optimally scoring alignments of subsequences within the

proteins. Despite the attractive quality of guaranteed optimality, this class of al-

gorithm proves prohibitively expensive computationally for aligning large groups

of sequences.

The advent of large amounts of sequencing data has seen the development of
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a range of suboptimal alignment algorithms that avoid the computational expense

of dynamic programming. The most popular of these is the heuristic BLAST [25]

algorithm which finds local alignments of two sequences by first finding matching

short subsequences, once again using a substitution matrix, and building align-

ments from these. Whilst not guaranteed to give an optimally scoring result, the

drastically reduced runtime of this algorithm makes it suitable for searching whole

proteome sets, for example when searching for homologs of a given protein. There

now exist a huge variety of sequence alignment algorithms, many are designed for

use in specific situations, for example PSI-BLAST [25] uses the results of a BLAST

search to build a profile and then iteratively looks for extra related sequences, this

can be used to find distantly related sequences or 3DCoffee [26], which uses struc-

tural information from related proteins to improve the quality of the alignment.

Suffice to say that whichever algorithm is used, no method is infallible; to produce

the highest confidence alignments manual curation and expertise is often required.

For instance, automated alignment may fail to align residues that are known to be

functionally important, such as known phosphorylation sites, especially if pairwise

alignment rather than multiple alignment is being used. In this situation, manual

edit would be required to align the positions correctly.

1.2.3 Building phylogenies

Having described how protein sequence alignments can be used to identify substi-

tutions and indels, methods will now be described for inferring the other process

important to protein evolution mentioned above: gene duplication. Sequence align-

ments give us a snapshot of existing proteins but to infer duplication events, the

history of the sequences must be inferred. This history consists of a sequence of

speciation and gene duplication events that produce a branching tree of sequence
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evolution, with the leaf nodes representing the sequences in the alignment, as

shown in Figure 1.7. This tree representation is called a phylogeny, nodes in this

tree represent proteins, whether ancestral or extant and edges represent evolution.

Several algorithms exist to infer the topology of this tree based on the sequence

alignment.

The most simple methods for reconstructing protein phylogenies are the dis-

tance based methods. To begin, pairwise distances between all protein sequences

are computed. Often these distances are estimated based on a model of amino acid

substitution and represent an estimate of the number of substitutions occurring

between two proteins. Given the matrix of distances between proteins, some algo-

rithm is then applied to produce the phylogenetic tree. Perhaps the most popular

algorithm to do so is the Neighbour-Joining (NJ) algorithm [27] which looks for

pairs of nodes that have a small distance between each other and a large distance

between themselves and the rest of the nodes, this pairing is then joined to form

a clade. This is repeated until a bifurcating tree is obtained. Whilst this method

is very fast its accuracy is sometimes poor.

To this end, more sophisticated methods have been developed that take into

account the differences at all sites in the protein alignment and attempt to find a

tree that best explains them, as an alternative to distance based methods which

only consider a whole sequence distance between proteins. The simplest of these

type of methods are parsimony methods based on the idea of least evolution. These

methods aim to reconstruct a phylogeny that requires a minimum of evolutionary

change to explain the variation in the sequences. This approach begun with [28],

with an algorithm to calculate the least number of substitutions required to pro-

duce a set of sequences given a tree topology. This was later expanded to weighted

parsimony in which a cost matrix, such as BLOSUM used for protein alignment, is

used to penalise improbable substitutions [29]. Reconstruction proceeds by search-
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FROG_A

Figure 1.7: An example of a protein phylogeny. The leaves of the tree represent the

existing proteins and the branching of the tree represents the evolutionary history of the

sequences. The tree shows that the mouse and human proteins diverged recently whereas

the frog protein is more distantly related.
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ing through possible tree topologies, calculating the minimum required change and

then finally selecting the tree requiring the least minimum change as the estimate

for the phylogeny. Although parsimony has several benefits, such as the ability to

reconstruct ancestral states, its simplicity can lead to documented inaccuracies in

reconstruction [30].

Maximum Likelihood (ML) approaches are more sophisticated and can avoid

some of these inaccuracies. Here a model of amino acid substitution is used to

define, for each site, the probability of observing the amino acid composition at

that site given a tree topology. This can be done by summing over all possible

ancestral states in the tree at that site (although in practice methods are used

that avoid calculating this entire sum) and if the sites are independent in the

model then the probability for observing the entire alignment can be obtained by

multiplying this probability across all sites. This quantity, known as a likelihood, is

the probability of observing the alignment given the tree topology and the model

of amino acid substitution. ML reconstruction searches through tree space and

attempts to find a tree that maximises the likelihood.

The final approach to phylogenetic reconstruction to be discussed is the Bayesian

approach, first introduced in [31]. Here Markov Chain Monte Carlo (MCMC) al-

gorithms are used to compute posterior probabilities for a set of parameters given

the sequence alignment. These parameters can include those used in the amino

acid substitution model and those describing the topology and branch lengths of

the phylogeny. Probably the most widely used of these approaches is the Mr.

Bayes package [32] which implements several models of amino acid substitution as

well as using methods for minimising tree search time to improve the convergence

of the MCMC algorithm. One benefit of the Bayesian approach is that the output

of a probability of a tree given the alignment avoids the need for bootstrapping to

produce confidence estimates as required by other methods, however, the MCMC
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algorithm needs to run for an extended time to converge for large datasets and so

whilst convenient and easy to interpret, this benefit may not necessarily save time.

Given a reconstructed phylogeny for a protein sequence alignment we are al-

most in a position to identify the gene duplications that lead to the observed

variation. Each interior node in the tree represents the diversion of one sequence

into two. This occurs when a gene is duplicated but also when a speciation event

occurs as defined by the species tree. If the protein phylogeny has the same topol-

ogy as the species tree then no duplications have occurred and all interior nodes

are speciation nodes. However more complicated situations will need an algo-

rithmic approach to decide which nodes are duplications. An example of such a

situation is given in Figure 1.8. This process of assigning interior nodes as duplica-

tion or speciation nodes is known as tree reconciliation and was first attempted in

[33]. Several methods exists for performing reconciliation including parsimony like

methods that seek to minimise the amount of duplications and/or losses [34], ML

and Bayesian approaches [35]. Once we have a reconciled tree we have an estimate

for the sequence of gene duplications that lead to a diverse set of proteins. This

has the benefit of giving precise orthology relationships between the proteins i.e.

orthologs are related by speciation events and represent equivalent proteins in dif-

ferent species whereas paralogs are related by duplication events. This distinction

is known to be important in determining the function of homologous proteins, for

instance see [36].

The ability to construct phylogenies is a powerful tool for understanding bi-

ology. On face value, it is a method for reconstructing the branching that led to

present day, observable sequences, this has for instance allowed attempts to recon-

struct species divergence [37] or reanalyse accepted taxonomy [38]. The informa-

tion contained in phylogenies has also proved useful in other areas, for instance, the

similarity of phylogenetic trees has been used fairly extensively to predict PPIs af-
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Figure 1.8: Gene tree reconciliation: Given a species tree (a), the aim of gene tree recon-

ciliation is to decide if internal gene tree nodes represent speciation or duplication events.

If the gene tree has the same topology as the species tree then all internal branching is a

result of speciation (b). If the gene tree disagrees with the species tree (c), then a more

complicated history is required to explain the disagreement (d). This includes prediction

of genes that have been lost, these genes are suffixed *LOST in (d).
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ter the observation that interacting proteins tend to belong to families with similar

phylogenetic trees [39].

Having described the processes by which proteins evolve and the computational

methods for analysing that evolution. Focus now moves to how PPIs can be said

to evolve, to be followed by a discussion of the methods used for analysing such

evolution.

1.3 Protein-protein interaction evolution

Having described the evolution of individual proteins and the tools for describ-

ing the process, the evolution of the interactions between proteins is considered.

Proteins are able to interact due to the physicochemical and shape complementar-

ity of the interacting proteins [10] [11] [12] which allows energetically favourable

interactions between residues across the protein-protein interface e.g. acidic and

basic residues forming salt bridges. As covered in section 1.2.1, protein evolution

begins with mutations in the coding DNA that change the resulting amino acid

sequence. These changes can then alter the binding affinity between the protein

and its interaction partners. For instance, a protein contains a tyrosine residue,

coded by a TAT codon, that forms a hydrogen bond with an asparagine residue

in its interaction partner. A mutation occurs that changes the TAT for a TTT

codon, resulting in a change from tyrosine to phenylalanine, which is not capable

of forming hydrogen bonds. The loss of the energetically favourable pairing of

residues at the interface of the two proteins could destabilise the interaction and

reduce the probability of observing the proteins interacting, perhaps completely.

If this leads to the loss of the PPI then the phenotype of the cell will be altered,

for instance this could remove a link in a signalling pathway. This variation can

become acted upon by natural selection. If the new phenotype has higher fitness,
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a selective sweep can occur leading to a removal of the PPI completely from the

population. Alternatively, for two non-interacting proteins, substitutions could

change the amino acid sequences and resulting tertiary structures sufficiently to

produce a de novo interaction between them.These two opposite processes of PPI

gain and loss have been termed rewiring events and the relative occurrence of both

PPI gains and losses has been studied and debated [40] [41] [42].

There is also another route by which PPIs can evolve. For two proteins to in-

teract they must be expressed at the same time and the same place in the cell and

so changes in expression patterns could lead to a given PPI being unobservable in

vivo. For instance, mutations in the transcription factor binding site governing ex-

pression of one of the proteins could lead to recruitment of a different transcription

factor, resulting in expression in some new tissue or cell compartment. Attempts

have been made to quantify the effects of these types of changes (e.g. [43]) but

this process is not the focus of this thesis.

An important consequence of the process of amino acid substitutions at the

interface of a PPI is the emergence of correlated mutations. Often, mutations at

the PPI interface that disrupt binding affinity will be removed from the population

by selection [8], however, a compensating mutation can occur subsequently in the

opposite protein, maintaining the affinity; the binding affinity may even increase.

This will lead to correlated changes in the protein sequences at these sites, termed

coevolution. These correlations are detectable [44] and can predict functionally

important pairings of residues across the PPI interface. This has proved valuable

for predicting which amino acids are physically close to each other for use in

structure prediction [45] and for finding specificity determining residues [46].
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1.4 Why is Protein-protein interaction evo-

lution important?

Before methods for studying PPI evolution are discussed in the next section, it

is firstly worth motivating interest in such methods with an argument of the im-

portance and utility of studying PPI evolution. Proteins and their interactions

within cells are responsible for the functioning and therefore the phenotype of the

organism. Therefore, purely for the fact of understanding how organisms evolve,

we need to understand how PPIs evolve, as this will explain the evolution of phe-

notype. To give a concrete example, it is thought that much of the diversity in

eukaryote proteomes is a result of gene duplication followed by divergent evolution

of the duplicates [47]. As mentioned in Section 1.2.1, after duplication it has been

proposed that a protein’s function can become subfunctionalised or a new function

can appear. Understanding the relative importance of these processes will tell us

if phenotypic roles in the cell tend to be shared among duplicates or if duplication

drives innovation and attempts to deduce the relative importance of each scenario

have been made, for example in [48]. Study of PPI evolution, particularly the

behaviour after duplication events, can answer these basic biological questions.

In terms of applications, understanding PPI evolution is important in that it

allows us to transfer knowledge between species by exploiting the evolutionary

links between proteins. In the common ancestor of two species, proteins existed

that interacted, forming complexes that performed the functions necessary for

the survival of that ancestral organism. After the speciation event the two lin-

eages leading to the present day species began evolving independently and their

proteomes and interaction networks began to look different as new proteins and

complexes appeared, evolving to perform new functions. However, there will ex-

ist conservation between the species as parts of the PIN are kept or co-opted to
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perform some new function. Understanding and subsequently modelling the pro-

cess that leads to this conservation will allow knowledge of PPIs to be transferred

between species, for instance in using some knowledge of the PIN of a species to

predict the PPIs in a related species.

To give a recent, concrete example of such reasoning, in [49] a group of inter-

actions conserved between yeast and humans was identified (in this case genetic

interactions not physical PPIs). The interactions were responsible for maintaining

the cell wall in yeast but had evolved to regulate blood vessel growth in verte-

brates. Blocking blood vessel growth is one tactic for fighting tumor growth and

it was found that a drug previously used to perturb the interactions in yeast could

be used to slow xenograft tumor growth by preventing blood vessel formation.

This is a good example of how an evolutionary approach can provide insights

relevant to understanding of disease by integrating knowledge across species. In

this particular application the modelling of evolution was limited to finding a

conserved subnetwork within two interaction networks. More complex approaches

are possible that incorporate more of the knowledge of PPI evolution. In the next

chapter approaches and methods for studying PPI evolution are described and

their various applications and limitations are discussed.

1.5 Studying Protein-protein Interaction Evo-

lution Computationally

As set out above, understanding PPI evolution is essential for understanding the

emergence of phenotype in biological systems [50] and can also be leveraged to

make predictions of present day PPIs [51]. However, because it is impossible to

measure the PPIs present in extinct species, designing experiments to test hy-

24



potheses of PPI evolution is often infeasible. As such, this is an ideal situation in

which computational approaches can be used to infer the processes shaping PPI

evolution. The following section describes some of the key research in this area

at the level of whole protein interaction networks, protein complexes and, finally,

individual interactions.

1.5.1 Network Level

As explained in Section 1.1.3, with the rise of systems biology has come a rise

in popularity of describing large sets of PPIs as networks of interactions. These

networks consist of nodes, representing proteins, and edges between the nodes,

representing PPIs between the proteins. The set of proteins in a PIN may con-

sist of, for instance, the complete proteome of a species and the edges some set

of measured interactions, for instance [52] was a first attempt to measure PPIs

genome-wide in yeast, producing a PIN with 3,278 nodes and 4,549 edges. There

have also been attempts to combine several datasets to produce networks of high

confidence interactions. The ultimate goal in producing such datasets is to produce

a global picture of the set of possible PPIs within an organism, often regardless of

the occurrence of the PPIs in vivo.

Given the large PIN datasets available for several organisms, for instance [52],

[53], [54], [55], those interested in PPI evolution would like to know how these sets

of interactions evolved from their most recent common ancestor (MRCA). Full

knowledge of this process would include the history of gene duplication and loss

relating the proteins in the PIN of the MRCA to those in the modern day PINS (i.e.

phylogeny, as described in section 1.2.3) along with the interaction rewiring events

that led to the differing sets of interactions in the existing species. Obtaining such

a description is a hard problem and much of the focus in the research literature
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has been on identifying the conserved regions amongst PIN datasets, i.e. finding

the equivalent interactions that have remained in all the PINs considered since the

MRCA. This problem is somewhat analogous to biological sequence alignment in

that it is looking for evolutionary conservation but computationally more complex

due to the non-linearity of PINs [56].

This approach is called network alignment (Figure 1.9) and as described above,

has the aim of finding conserved interactions in a group of two or more PINs.

To begin looking for conserved interactions, most algorithms first use sequence

alignment, e.g. BLAST, to look for homologous proteins across the PINs. Having

defined the protein orthologs algorithms then begin to look for interactions that

are conserved among orthologous pairs in each network. To give a simple example,

[57] looked for conserved PPIs across species by first finding the best BLAST hit

of each protein and then looking for interactions between two proteins in one PIN

for which their best hits interact in another PIN. The conserved interactions are

termed interlogs and are assumed to represent PPIs that have been retained since

the MRCA.

More complicated algorithms can detect conserved groups of interactions as

opposed to single conserved interactions. In an early example, Kelly et al [58]

used a network alignment approach to look for conserved PPI pathways between

Saccharomyces cerevisiae and Helicobacter pylori, that is conserved linear paths

in the PIN such as A interacts with B interacts with C interacts with D. The

algorithm, named PATHBLAST, uses BLAST searches to find putative homologs

between the two PINs and then uses a dynamic programming algorithm to find

conserved linear paths between homologs in each PIN. Due to the large divergence

time between the two species and the low coverage of the PINs, only 7 direct inter-

logs were found. The alignment algorithm found these as part of 5 larger conserved

pathways by allowing for some missing conservation in a pathway. This approach
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Figure 1.9: Schematic of network alignment applied to PINs. Starting with some ancestral

network a, PPI evolution proceeds by gene duplication/loss and interaction gain/loss to

produce the diverse PINs seen in existing species c, d, e. A complete model of this process

would include the phylogeny of gene duplication and loss events leading to the proteins

observed in each species (not shown), along with the history of interaction gains and losses.

Network alignment does not give such a model but attempts to find conserved parts of the

PINs that have remained intact throughout the evolutionary process (red lines).
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was later extended [59] to look for conserved, densely interacting subgraphs of the

same PINs studied above. It is known that groups of proteins in PINs that share

many interactions amongst themselves often correspond to protein complexes and

so the approach is applied to find 11 conserved complexes between the two PINs.

This kind of approach can suggest functions for proteins predicted as part of a

complex and can be used to predict complexes outright based on the results but,

in terms of PPI evolution, it is limited in what it can tell about the events that

led to the observed pattern of conservation as it does not attempt to model this

process.

Many other attempts have been made at the network alignment problem, for

instance [60], [61] [62], [63] [51] [56] [64]. These algorithms differ in the way

they measure similarity between nodes in the separate PINs and how conserved

edges are extracted. However, the focus of application has been overwhelmingly

on identification of conserved complexes based on comparison of PINs. In terms

of PPI evolution, this can give indication as to the timescales that PPIs can be

conserved over, for instance given the results in [59] it is clear the PPIs can be

conserved over large timescales, given the similarities found between a eukaryotic

and bacterial species. However, network alignment is ill equipped to answer the

more detailed questions concerning PPI evolution. For instance, with the low

coverage and often poor quality of PIN datasets [65], [66], it is hard to infer

rates of PPI loss given the amount of conservation between species as a lack of

conservation may simply be because an interaction was not tested or gave a false

negative in one species.

Besides the issue of data quality, the network alignment approach is essentially

a comparison of snapshots during PIN evolution that can show which parts of a

network have remained unchanged but cannot reconstruct the intermediate PINs

that led from the ancestor to the present day PINs, nor the process of change
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that led to this conservation. As described in section 1.3, a major part of this

process is the sequence of gene duplications/losses and PPI rewiring events that

occurred since the MRCA. Ideally, we would like to model these processes from

some ancestral PIN up until the observed, present day PINs under comparison.

This would allow estimation of gene duplication/loss rates and PPI gain/loss rates,

showing how relatively important each of these events is.

One attempt to model these processes has been in the use of PIN growth

models. This approach begins with some proposed ancestral PIN and then based

on some model of PIN evolution (Figure 1.10), proceeds to add proteins to this

network and rewire the interactions, artificially evolving the PIN according to

the proposed model. Once the artificial PIN has grown to the desired size, it

can then be compared, via various network statistics, to existing PINs based on

experimental data. If the model of PIN evolution assumed is representative of the

true evolutionary process then you might expect the artificial grown network to

resemble a real PIN and so this approach is used to evaluate competing models of

PIN evolution based on their ability to produce networks that resemble observed

datasets.

The history of this approach began in [67], in which the authors proposed a

preferential attachment model for PIN evolution. Under this model, new proteins

are added to the PIN and gain interactions preferentially to proteins with many

existing interaction partners. This model was used to generate artificial PINs and

compare to experimental PIN datasets via their degree distribution (the distribu-

tion of number of interaction partners over all proteins in the PIN). PINs contain a

few very highly connected ”hub” proteins giving the degree distribution a long tail

that would not be found if the interactions were distributed randomly through the

PIN. It was shown that the preferential attachment model could reproduce this

property and so the mechanism of new proteins tending to interact with existing
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Figure 1.10: Schematic of PIN evolution models. a shows the preferential attachment

model; starting with some seed PIN (leftmost), at each stage a new protein is added to the

network (green) and edges are added to pre-existing proteins with probability proportional

to their degree (their number of existing interaction partners). This ”rich get richer” model

in which proteins with many interactions tend to accumulate more interactions. b shows

an alternative, the duplication-divergence model, in which at each step a randomly chosen

protein is duplicated, an interactions is added between the duplicates with probability p,

interactions are added between the new protein and the interaction partners of the original

protein with probability q and the interactions of the original protein are removed with

probability r.

30



highly connected proteins was proposed as a defining feature of PIN evolution.

Whilst the preferential attachment model can reproduce the degree distribution

seen in PIN datasets, the model does not correspond to the known processes of PPI

evolution, such as gene duplication and interaction rewiring. As a result, models

that incorporate these known processes have been proposed, called Duplication-

Divergence models (DD models). In these models of PIN evolution, at each step

a protein is chosen in the network to be duplicated, with the duplicate inheriting

the same interaction partners as the source protein. The interactions of both

duplicates are then lost according to some probability. For instance, [68] proposed

a model in which at each step a node i is chosen randomly and duplicated to

give node i′, with an interaction between the duplicates added with probability

p. Then for each node j connected to i and i′, one of the two interactions is

chosen randomly and deleted with probability q. It was shown that this network

generating model produces PINs with similar degree distributions to those found

in an experimental PIN dataset [69] and that by tuning the parameters of the

model, artificial networks with high modularity, similar to the experimental data,

could be generated. Many other generative models have been described and their

generated PINs compared to PIN data, for example [70], [71], [56].

The use of generative PIN models in this way has shown that, in principle,

duplication of existing proteins and their interactions, followed by rewiring of the

duplicate interactions can produce networks that look similar to measured PINs

(in terms of degree distribution, clustering coefficient etc). The fact that the

underlying mechanics of the DD models mimic the processes of gene duplication

and interaction rewiring involved in PPI evolution has been used to argue for the

importance of these processes in generating PIN structure [72].

There are however some general limitations to this approach. Firstly, validation

of generative models has typically used comparison to the supposed power law
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degree distribution of experimental PIN datasets. This is problematic as a method

of model selection as PINs with the same degree distribution can look very different

if measured by other metrics and so it is not clear how to best describe a PIN

in terms of network statistics such as degree. Several statistical approaches to

this problem of model selection have been proposed, for instance, Approximate

Bayesian Computation was proposed as an approach to such model selection in [73].

The second, deeper limitation lies in the fact that, when comparing a simulated

PIN to a ’real’ PIN, the evolutionary process used to generate both networks may

be entirely dissimilar, for instance, the gene duplications occurring in the history of

each bear no relation to each other. This not only calls in to question the validity

of evolutionary reasoning based on these models but also as a result of this there

is no correspondence between the proteins in the simulated PIN and the ’real’ PIN

and so it is impossible to answer questions such as when a particular group of PPIs

appeared during evolution. As seen in section 1.2.3, computational tools exist for

reconstructing the evolutionary history (i.e. phylogeny) of a group of proteins and

so one possible approach to prevent this problem would be to use this evolutionary

history as a framework to model PPI evolution. That is, modelling the rewiring

events that occurred during the evolution described by a phylogeny, leading to the

present day PPIs. In contrast to the generative approach, this allows models of

PIN evolution that are consistent with a phylogenetic history of the proteins in

the PIN.

1.5.2 Complex Level

The methods described in the previous section focus on studying the evolution of

PPIs at the network level. This is the broadest level of detail in studying PPIs,

encompassing large groups of proteins (often the entire proteome of a species) and
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their interactions. At a higher level of detail, PINs contain protein complexes;

groups of proteins that associate to form larger assemblies capable of performing

some task. These complexes can be seen as the indivisible functional units of

the PIN; if some constituent protein is removed the complex will be unable to

perform its function. For larger complexes of more than two proteins, a description

of the evolutionary history of the complex will require an understanding of the

evolution of the component proteins and of the order in which the PPIs forming

the complex appeared. An attempt at deducing an evolutionary history has been

made for several specific protein complexes, for instance, [74] used arguments from

parsimony to propose a history of the proteasome complex. Similar analyses were

undertaken in [75] and [76].

More general attempts to model the evolution of protein complexes have been

made, particularly in describing the evolution of complexes formed of many copies

of the same subunit (homomeric complexes). These types of protein complexes

often display symmetry or quasi-symmetry. As described in [77], symmetry is ex-

tremely common within protein complexes and the symmetrical structures formed

can often be vital for the function of the complex. For instance the 6-fold rota-

tional symmetry of the sliding clamp of DNA polymerase allows formation of a ring

that can encircle the DNA strand. Larger complexes can have more complicated

symmetry, such as the GroEL complex having 7-fold dihedral symmetry, forming

a barrel structure big enough to contain another protein. Newly translated and

unfolded proteins are drawn in to this cavity and the hydrophobic conditions inside

coerce the substrate protein to fold [78]. These functions are contingent on the

symmetry of the complex [77].

Given the functional constraint of symmetry on complexes such as these, suc-

cessful modelling of their evolution must attempt to model the evolution of sym-

metry. Such an attempt was made in [79] to describe the possible evolutionary
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history of homomeric complexes in terms of their symmetry. Given a self interact-

ing protein forming a complex, mutations occurring at the surface of the protein

can form new binding sites and so change the quaternary structure of the com-

plex. The authors argue that the possible symmetry groups of the new complex

after emergence of a new binding site are dependent on the symmetry group of

the original complex. Using this argument, the authors formulate the evolution

of homomeric complexes as evolution between symmetry groups and use observed

structures to estimate the rate of conversion between each type. This model is use-

ful in describing the constraints of symmetry on complex evolution however their

are several limitations to this approach. Firstly, it can not infer the history of a

given complex, for instance given some protein complex with complicated sym-

metry, the method cannot infer the original ancestral complex nor the sequence

of evolution that lead to the existing complex. Secondly, this model is restricted

to homomeric complexes in which all subunits have the same evolving sequence.

In fact, symmetry plays a role in other classes of protein complex, such as those

formed of paralogs [80]. A general approach would be preferable in order to study

these complexes.

1.5.3 Interaction Level

At the highest level of detail, PPI evolution can be studied computationally in

terms of single interactions; that is, modelling and predicting how the sequence

and structure of interacting proteins evolve and how this effects their dynamics. An

important concept here is that of coevolution. As explained earlier in Section 1.1.2

PPIs are the result of specific and complementary interactions between residues

across the protein-protein interface. The residues responsible for making these

favourable interactions are crucial to the ability of the proteins to interact and thus
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to perform the function resulting from the interaction. Therefore, mutations at

these residues, disrupting the interaction are usually deleterious and removed from

the population by selection [50]. However, it is possible that after such a mutation,

a subsequent mutation in the interaction partner will restore complementarity

and so make the double mutation non-deleterious. This process can thus lead to

correlated mutations in interacting proteins.

Computational methods attempting to capture this process have mainly fo-

cussed on prediction of PPIs. One such approach is the MIRRORTREE method

[81] that attempts to predict whether two protein families interact by looking for

correlated evolutionary rates in the families. This is done by looking for correlated

branch lengths across two phylogenetic trees describing each family. The method

works as protein families that interact with each other tend to have more similar

phylogenetic trees compared to families that do not interact, however, this is not

necessarily due to the coevolutionary process described above and could be due to

factors such as shared expression rate during evolution [82], [83]. There are several

limitations of the MIRRORTREE approach; firstly, predictions can only be made

for proteins for which a phylogenetic tree can be built and secondly, the predictions

made are at the family level, that is, the method predicts whether there are any

inter-family PPIs between two protein families but not the exact pattern of PPIs

existing between the two families.

The existence of correlated mutations in interacting proteins has also been used

to predict the structure of PPIs. The compensatory mutations described above

often occur between residues that are close to each other at the PPI interface. It

has also been observed that the bound structure of a PPI is often conserved at

the level of the protein family, that is proteins from a given family have similar

interaction structure when binding to proteins from another given family. These

observations taken together have led to attempts to predict the binding structure
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between two protein families (or at least the residues important for the interaction)

by looking for correlated positions between multiple sequence alignments of those

families. One recent, successful attempt at such a prediction [45] used a statistical

method to find the correlated positions and then used these as constraints during

a subsequent 3D structure prediction of the bound proteins.

1.6 Phylogeny in Protein-protein Interaction

Evolution

As described in Section 1.3, PPI evolution is the result of changes in the proteins

present in an organism (through gene duplication, gene loss, horizontal transfer)

and changes in the interactions between those proteins, known as rewiring events.

Any attempt at a full model of PPI evolution will therefore include these processes.

The first process of gene gain and loss can be modelled by phylogenetics and the

second process of interaction rewiring can be modelled using any method that

can predict PPIs between individual proteins. Of the methods for modelling PPIs

mentioned so far, none attempt to explicitly model these processes simultaneously

(except perhaps for network growth models but here the phylogeny produced does

not describe the relationship between any real group of proteins). Therefore, in

order to produce a complete model of PPI history for a given group of proteins, a

different approach is required, specifically using phylogeny as a basis.

One recent such approach is the PARANA method [84] for predicting the

history of PPIs between two protein families, given the set of present day PPIs.

This algorithm starts by producing phylogenetic trees for the two families and

then given the known interactions at the leaves of the trees, attempts to find

the least set of PPI rewiring events that could generate these interactions. The
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resulting set of events form a proposed history of interaction and it was shown that

the method could be used to recover the history of PINs generated using various

network growth models [84]. This method may be preferable in some situations

but a parsimony based method will not be preferable in cases where we know more

about the PPIs than their existence. For instance, if the structure of the PPIs is

known or can be modelled then changes in the sequence at important locations

could be used to predict rewiring events. A more accurate and specific prediction

could be made by a methodology that incorporates this kind of knowledge about

the sequence and structure of the proteins.

1.6.1 The Interaction Tree

This research focuses on a novel model for describing the evolution of protein in-

teractions called the interaction tree. This approach takes protein phylogenies,

reconciled with a species tree, and produces a history of all possible interactions

throughout the species tree. This history is represented as an interaction tree in

which each node represents a pair of proteins (a possible interaction) and an edge

represents evolution between pairs of proteins. Importantly, the interaction tree

contains a node for every possible interaction i.e. for every pair of proteins that

were jointly present in an organism not just for every pair believed to be inter-

acting.This interaction tree can then be used as a framework in which interaction

rewiring events are predicted between pairs of proteins, as their sequences evolve.

This overcomes a major problem of previous, generative, models of PIN evolution

in that the interaction tree describes the evolution of a real set of proteins rather

than evolving an artificial network and then fitting network statistics to observed

values. It also avoids the problem of many traditional network alignment methods

in that the evolutionary processes leading to present day networks are explicitly
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modelled, allowing inferences to be made about these processes and ancestral PPIs

to be predicted.

The interaction tree framework has so far been applied to reconstruct ancestral

networks [85], [86], identify complexes conserved across species [62] and perform

data integration [87]. The flexibility of the approach allows models capable of

incorporating phylogenetic information, noisy or error prone data and the specific

structure and sequence of an interaction at the interface level. This type of model

is expected to increase the ability of current research to understanding evolution

of protein interactions by testing hypothesis and making predictions [88].

In this work, I firstly aim to apply the interaction tree framework to study

the evolution of protein-protein interactions in protein complexes. Many protein

complexes are built from paralagous subunits, related by gene duplication [80].

These subunits have a phylogenetic relationship that can be used as a basis for

the interaction tree method which can then predict the rewiring events occurring

between subunits during the phylogeny. For this to work, it is necessary to develop

a model of PPI rewiring that can predict gains and loss of interaction between the

paralogs of a complex, given some change in sequence in the phylogeny. The

development of such a model is the subject of the next chapter.
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Chapter 2

Adapting the interaction tree

for protein complexes

2.1 Introduction

Large protein complexes are present in all organisms and are responsible for some

of the core function of the cell e.g. DNA replication, protein synthesis, protein

degradation. The structure and pattern of interactions within these complexes is

divergent across species and so studying their evolution is important for under-

standing how and why such diversity arises.

One common type of multi subunit complex are those made of homologous

subunits. These can be formed of many copies of the same subunit or formed of

subunits from a family related by duplication. It is thought that such large com-

plexes made from related subunits arise from an original self-interacting subunit

which is duplicated to produce paralogs. These new paralogs are then incorporated

into the complex allowing a inhomogenous complex to arise, formed of interacting,

duplicate proteins [80]. This process is thought to be important in the evolution of
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protein complexes based on the number of observed self-interacting proteins and

the number of observed complexes containing paralogs [89], [90], [80], [91], [92].

Some ideas have been proposed to describe the evolution of these complexes

[79] but there is a lack of detailed modelling of the emergence of these complexes.

The interaction tree is a suitable methodology to use for this task as a phylogeny

can be constructed relating all of the subunits involved in a complex. The issue

to be decided in applying the interaction tree to this class of problem is how

to model the PPI rewiring events on the phylogeny. Previously, [87] used the

interaction tree approach with a constant probability of gain or loss of interaction

after duplication as a model of rewiring. This approach was used to model the

evolution of protein complexes, however using a constant probability across all

subunits led to no distinction between the interaction patterns of the subunits;

the complexes appeared as almost completely connected components. In fact,

paralogous complexes are not completely connected in this way but each paralog

has a distinct pattern of connections, vital to conferring function on the complex.

In order to detect interactions at this higher level of definition, a model of

rewiring that is specific to each subunit needs to be defined. Previously, [85] de-

fined such a model (based on branch lengths of the phylogeny) and applied it to

reconstructing the history of interactions amongst the bZip family of transcrip-

tion factors. In this chapter, this model is tested in its ability to predict rewiring

events in protein complexes along with two other models, one based on the popular

MIRRORTREE method and one based on a rough measure of the chemical com-

plementarity at the protein-protein interface. As a test case for these models the

proteasome complex is used as it is a well studied complex with many structural

examples.
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2.2 Methods

2.2.1 Building an interaction tree

The modelling of PPI evolution in this thesis uses the interaction tree framework,

the concept of which will be explained here. As mentioned in the previous chapter,

PPI evolution is the combination of changes to the set of proteins present in an

organism and changes to the set of interactions between them. Phylogenetics

can be used to model and predict the change in the set of proteins present in

an organism over evolutionary time, with gene tree reconciliation able to predict

the set of proteins present in ancestral organisms. Therefore, a sensible approach

to modelling PPI evolution (in cases where you can build a phylogeny for the

proteins) would be to use these phylogenetic predictions as a scaffold onto which

the changes in the PPIs between them are modelled. The problem here is that the

phylogenetic trees describe the evolution of single proteins but in order to model

PPI rewiring, changes between pairs of proteins need to be described.

The interaction tree offers a route around this problem; in situations where

the PPIs between two protein families are to be modelled, the method combines

the two phylogenetic trees and produces a new tree structure (an interaction tree),

in which each node represents a pair of proteins and edges represent evolution

between these pairs. It is then possible to take this structure and model the PPI

rewiring events occurring on its branches. An overview of this approach is shown

in Figure 2.1 and a step by step description of the construction of an interaction

tree for a toy example is shown in Figure 2.2

Interaction trees describe the totality of possible interactions amongst 1 or

more protein families and track this set of possible interactions in evolutionary

time using phylogenies constructed for each protein family (Figure 2.1). The

history of possible interactions is represented as a tree in which each node rep-
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extant 
species

ancestor 
species

gene tree A gene tree B

interaction tree

gene loss

evolutionary process

interaction

protein

Figure 2.1: Schematic showing the construction of an interaction tree. Here an interac-

tion tree is constructed describing the history of possible interactions between two protein

families. To begin we construct a gene tree for each protein family (top left) using MUS-

CLE [93]. These trees are reconciled with a species tree, using NOTUNG [34], in order

to classify each node in the gene trees as a duplication or speciation node (describing a

gene duplication event or speciation event respectively) and to assign proteins to ancestral

species. This allows description of all possible interactions between the two families in

each species, including ancestor species (coloured lines, bottom left). From here we can

construct a tree of interactions (bottom right), in which the coloured nodes represent the

possible interactions and each interaction is the child of one ancestor interaction. Each

node can be either ’on’ or ’off’, corresponding to presence of absence of interaction.
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Figure 2.2: Schematic of construction of an interaction tree. Starting from two reconciled

gene trees, a tree is constructed in which nodes represent possible interactions between

nodes in the gene trees. Beginning at 1, the two root nodes are combined to form the

root node of the interactions tree. This node represents the pair of ancestral proteins from

which all other proteins in the two families are derived from (note, this is not assuming

that the two ancestral proteins interacted, merely that they coexisted in some organism).

Now, take the left branches from the root nodes to reach A1’ from gene family 1, this gene

coexisted with a protein intermediate to A2 and B2 in gene family 2. To avoid introducing

an intermediate node on this branch, A1’ is paired with A2 to form the next interaction

node in 2. The interaction nodes added in 3 and 4 complete the description of all possible

pairings up to species B. Now the procedure is repeated on the right branches from the

root to give a description of all interactions up to species C. The resulting tree structure

describes all pairs of proteins thought to be coexisting in some organism at some time.

The pairs can either be either interacting or non-interacting.
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resents a possible interaction between 2 proteins and is the child of exactly one

parent interaction. Each interaction node can be in one of two states, ’on’ or ’off’,

corresponding to a present or absent interaction. The tree structure makes this

framework well suited for building probabilistic graphical models describing the

evolution of protein interactions. For instance, if we can find a probability function

that describes the probability of a child node being ’on’ or ’off’, given the state of

its parent node and the evolution between them, then message passing algorithms

[94] can be used to compute probabilities for ’on’ or ’off’ at every node in the tree.

Such a function would be written as

P
(
I(C) | I(A), D(A,C)

)
(2.1)

Where (as shown in Figure 2.3), A is the ancestor interaction node, C is the

child interaction node, I(A) is the interaction state (’on’ or ’off’) of interaction

node A and D(A,C) is some measure of the evolutionary change between inter-

action nodes A and C. For instance, suppose that D(A,C) is the total number

of substitutions in both proteins from the ancestral pair A to the pair C. That

is (from Figure 2.3), the number of substitutions on the branch from A1 to C1

plus the number of substitutions on the branch from A2 to C2. Then, given some

training set of PPI evolutionary histories, the probability function Equation 2.1

can be estimated and represented as a matrix (Table 2.1) for given values of D.

If such a relationship can be found then it can be used to deduce probabilities of

interaction at unobserved nodes given some observed interactions. In the simplest

case, if A is known to be ’on’ then the probability that C is also ’on’ can be read

from a matrix such as Table 2.1.

Previously such a function was defined based not on substitutions but similarly
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A A1

C

A2

C1 C2

Figure 2.3: Decomposing an interaction tree branch. A branch of an interaction tree de-

scribes evolution from an ancestral interaction A to a child interaction C. Each interaction

node can be decomposed into the two constituent proteins that make up the interaction

(right). We label these A1, A2, C1 and C2. A1 is the ancestor of C1 in the original gene

phylogenies used to build the interaction tree and likewise for A2 and C2.

D(A,C) = 10

P (C = on) P (C = off)

A = on 0.2 0.8

A = off 0.1 0.9

Table 2.1: A representation of Equation 2.1 in matrix form. The matrix shown is for some

measure of PPI evolution D and describes the probability of C given A when D=10. For

instance, if the ancestor node is non interacting, there is a 10% chance that the child node

is interacting if D=10, that is, there is a 10% chance of a gain of interaction. Given a

defined D, these probabilities can be estimated from some training set of observed PPI

rewiring events/non-events.
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on the distance between proteins in terms of the expected fraction of changed

amino acids [85], as calculated under the Jones-Taylor-Thornton model of protein

sequence evolution. The next section describes three possible D on which to base

such a function, when applied to protein complexes formed of homologous subunits.

Including that from [85] and two new candidates.

2.2.2 Scoring systems

Three possible D are described here with the the aid of some toy examples. Each

of these D are candidates for defining a model of PPI evolution as described by

Equation 2.1. The first model, Ddis is based on the the following quantity

Ddis(A,C) = E(A1, C1) + E(A2, C2) (2.2)

Where A, C are interaction nodes as shown in Figure 2.3 and E(i, j) is the

distance between protein sequences i and j restricted to the binding site under a

Jones-Taylor-Thornton (JTT) model [95] of amino acid substitution, as calculated

using PROTDIST [96]. This is the same function used to formulate an interaction

tree model of PPI evolution in [85]. The model assumes that larger values of Ddis

are more likely to produce rewiring events.

To demonstrate the calculation of Ddis, a toy example is used. Given two

protein families (Family 1 and Family 2) described by phylogenetic trees, we will

focus on C1, an existing protein from family 1, and C2, an existing protein from

family 2 (Figure 2.4). Now suppose that C1 and C2 interact; the distance Ddis

between the C1-C2 interaction and its ancestor interaction can be calculated and

used to predict if the ancestor proteins interacted. For instance, assume that given

a Ddis of between 2 and 3, it is determined from some training set that there is a

90% chance of PPI being maintained between two interacting proteins and a 50%
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chance of PPI gain between proteins that do not interact.

Figure 2.4 shows the toy example, the sequence distances under the JTT model,

between each ancestor-child protein are shown, on the respective branches of the

phylogenetic trees (this can be calculated using a variety of software packages, e.g.

PROTDIST). The Ddis between the ancestral A1-A2 pair and the C1-C2 pair is

then calculated as

Ddis = 1.0465 + 1.6988 = 2.7453 (2.3)

Now, given our previously described knowledge of the occurrence of rewiring

events given 2 < Ddis < 3, the probability of an ancestral interaction can be

inferred. To do this, we can use Bayes’ rule

P (A|C) =
P (C|A)P (A)

P (C)
(2.4)

where A is the event ‘A1 and A2 interact’ and C is the event ‘C1 and C2 inter-

act’. Here P (A) represents some prior belief that the ancestral proteins interact.

If there is thought to be a 50% prior probability of an ancestral interaction then

the posterior probability, given the observed Ddis is

P (A|C) = P (C|A)P (A)/P (C) =
0.9 ∗ 0.5

(0.9 ∗ 0.5) + (0.5 ∗ 0.5)
= 0.64 (2.5)

The prior belief of a 50% chance of an ancestral interaction has been revised

to a 64% chance, in light of the information contained in Ddis. Later, a training

set of PPI evolution will be defined. This will be used to observe the frequency

of interaction gain/loss, given changes in Ddis, which can then be examined to

determine the suitability of this measure in defining a model of PPI evolution.

The second model, Ddif is defined similarly to Ddis...
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Figure 2.4: A toy model, described in the text, used to demonstrate the calculation of

Ddis. Sequences for each described protein are shown, as are the relevant branch lengths

used in calculating the metric. This example assumes that ancestral protein sequences are

known with certainty. In reality, these sequences must be estimated using some sequence

reconstruction method.
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Ddif (A,C) =
∣∣∣∣E(A1, C1)− E(A2, C2)
E(A1, C1) + E(A2, C2)

∣∣∣∣ (2.6)

WIth E(i, j) once again representing the distance between proteins i and j.

Comparing this equation with the description of the previousDdis model (Equation

2.2) we can see that rather than measure the total of the branch distances, this

metric measures the asymmetry of the branches. Returning to the example shown

in Figure 2.4, calculation of Ddif can be demonstrated in the same way as for the

previous metric...

Ddif =
∣∣∣∣1.0465− 1.6988
1.0465 + 1.6988

∣∣∣∣ = 0.2376 (2.7)

This metric is larger for pairs of proteins with asymmetric evolutionary rates

and smaller for proteins evolving at a similar rate. It is hoped that this metric will

take advantage of the observation that pairs of interacting proteins tend to evolve

at similar rates, as described in [39], [97], [8]. To elaborate, if Ddif tends to be

very low for pairs of proteins maintaining a PPI over time, then this information

will be contained in the P (C|A) of Equation 2.4. This will then allow updating

of the probability of interaction for ancestral pairs, reflecting this information. In

order to determine the relationship between Ddif and the occurrence of rewiring

events, a training set of PPI evolution will again be required.

The final model, Dcom, is slightly more complicated than the previous two.

This model attempts to measure the change in chemical complementarity at the

protein-protein interface as the sequence of the proteins evolves. The metric that
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this model is based on is adapted from the SCOTCH [98] method for scoring

docked protein models.

We start by defining a measure of complementarity at the protein-protein inter-

face, called the complementary fraction. To calculate the complementary fraction

we first divide the 20 amino acids into 4 groups; (GLY, ALA, VAL, LEU, ILE,

MET, CYS, PHE, PRO, TRP, TYR), (SER, THR, ASN, GLN), (LYS, ARG, HIS),

(ASP, GLU). These are the hydrophobic, polar, positively charged and negatively

charged residues respectively. We define two amino acids to be complementary if

they are both hydrophobic, both polar or one positively and one negatively charged

(Figure 2.5).

We start with two protein sequences and a proposed interface between them rep-

resented as a list of interacting residue pairs (i, j) where i refers to residue position

i of the first sequence and j refers to residue position j of the second protein se-

quence. Here a pair of residues are defined as interacting if they contain heavy

atoms within 4.5Å of one another. An example of such an (i, j) pair is shown in

Figure 2.6.

To describe the complementarity of the interface, we will aggregate over all

(i, j) pairs, allowing for complementarity to also be maintained by nearby residues.

In detail, for each (i, j) pair in turn, we then find the two nearest structural

neighbours of both i and j, residing in the same chain. This requires a proposed

three dimensional structure for the interface, such as can be found in a solved

crystal structure of the constituent chains in complex. An example is shown in

Figure 2.6 where i1, i2 are the nearest two structural neighbours to i and j1, j2

are the nearest two structural neighbours to j. We then define positions i and

j to be complementary if any of the pairs (i, j), (i1, j), (i2, j), (i, j1), (i, j2) are

complementary as described in Figure 2.5.

For the example of Figure 2.6, the residues at each of the positions are listed
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Figure 2.5: The categorisation of pairings of residues as complementary or non-

complementary. All 20 amino acids are decomposed in to 4 groups; Hydrophobic, Polar,

Negative and Positive (described in the text). Pairings of residues are defined as comple-

mentary if the pairing of their groups falls in to one of four cases (right of figure). All

other pairings are non-complementary.

Position Residue

i ALA

j SER

i1 THR

i2 ARG

j1 ILE

j2 PRO

Table 2.2: A list of residues at relevant positions in the toy example of Figure 2.6. This

example is used to demonstrate the process of calculating the complementary fraction of

two proteins.
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in Table 2.2. So, we are examining the pairs (ALA, SER), (THR, SER), (ARG,

SER), (ALA, ILE) and (ALA,PRO). As at least one of these pairs is complemen-

tary (the 2nd, 4th and 5th are) we say that the positions (i, j) are complementary.

Notice that the positions (i, j) are declared complementary even though the ac-

tual complementary interaction is maintained by a neighbouring residue(s). This

process is repeated for all of the interacting (i, j) pairs at the protein-protein inter-

face. The extent of complementarity across the interface is then described by the

complementary fraction; the fraction of all interacting (i, j) pairs that are comple-

mentary. For instance, suppose for a given PPI there are 40 pairs of residues (one

from each chain) with heavy atoms within 4.5Å(note that a residue can appear in

more than one pairing here if there is more than one residue within the distance

threshold). Then suppose that of these pairs, 30 are found to be complementary,

taking in to account structural neighbours as described here. The complementary

fraction would then be calculated as 30
40 = 0.75.

This score works under the assumption that during coevolution of maintained

interactions, a residue mutation going to fixation at an interface will most likely

be physiochemically complementary (e.g. hydrophobic to hydrophobic) to the

residues it interacts with. However, this complementarity can be maintained within

clusters of residues at an interface and so does not have to be maintained through

specific pairs but can be conserved by nearby residues in the interface (i.e. the

structural neighbours). The complementary fraction aims to measure this coevo-

lution occurring between interacting proteins and so could be used here to detect

changes in interaction state as changes in complementary fraction.

In many situations, particularly when considering ancestral proteins, no struc-

ture of the PPI will be available. In this situation a strategy is proposed using

an homologous structure as a template. For instance, if we wish to compute the

complementary fraction for two proteins that are homologous to those shown in
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i

i2

i1

j1

j

j2

Figure 2.6: An example of residues pertinent for classifying two nearby residues as com-

plementary or not. The residues i (green protein) and j (purple protein) are within 4.5Å

of each other. To classify this pair of positions as complementary or not, their nearest

two structural neighbours in the same chain must be identified. These are i1 and i2 for i

(labelled on figure) and j1, j2 for j (also labelled). if any of the pairings of residues (i, j),

(i1, j), (i2, j), (i, j1), (i, j2) are complementary, as defined in Figure 2.5 then the positions

i and j are said to be complementary. The classification for this example is carried out

and described in the text.
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Figure 2.6. Suppose the sequences of these proteins are known but we do not have

a structure for their proposed PPI. The complementary fraction can be estimated

for our new proteins, using the original structure as a template. To do this, the

two new proteins are firstly aligned to their respective template proteins (Figure

2.7). For each (i, j) interacting pair in the template structure we can then identify

an analagous, aligned (i, j) pair in the new proteins. The same approach can be

used to estimate the nearest structural neighbours i1, i2, j1 and j2 (see Figure

2.7). The categorisation (as complementary of not) of each (i, j) pair of positions

in the new sequences can then be estimated using these analagous positions.

In the example shown in Figure 2.7, to decide if (i, j) are complementary we

must check if any of the (i, j), (i1, j), (i2, j), (i, j1), (i, j2) are complementary in

our new sequences. The new residues to be compared are listed in Table 2.3. In

this case that means checking (ALA, SER), (ALA, SER), (GLY, SER), (ALA,

THR) and (ALA, ASN) for at least one complementary pair. As each of these

pairs a hydrophobic and a polar residue, none are complementary. As such, the

positions (i, j) are not complementary in the new sequences. This process can be

repeated for all (i, j) pairs within 4.5Å in the template structure. The fraction of

these positions that are complementary in the new sequences is then an estimate

for the complementary fraction of the new sequences.

Now, having defined a measure of physicochemical complementarity between

proteins, there follows a description of how this measure can be used to model PPI

gains and losses during evolution. Given that interacting proteins are expected

to have a higher complementary fraction, it is proposed that changes in comple-

mentarity are tracked during evolution with the hope that increases correspond to

gains of interaction and opposite for PPI losses. Thus a model (the Dcom model)

is defined based on the following quantity
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i1 i i2

j2 j1 j

protein 1

Using a template structure to estimate the 
complementary fraction.

protein 2

template

new proteins

Figure 2.7: If a PPI structure is not available for two proteins (because the structure has

not been solved but also when the proteins do not interact) the complementary fraction

can be estimated using some homologous structure. Here the proteins from our original

example are shown in red and some new pair of proteins for which we have no PPI structure

is shown in blue. For a given interacting pair of positions (i, j) in the template sequence

there is an analagous aligned pair in the new sequences (ALA, SER in this example).

Equally, there are analagous residues to each of the structural neighbours. The comparison

of these analagous residues to classify (i, j) as complementary or not in the new sequences

is then as before. This is repeated for all interacting positions in the template to produce

an estimate of the complementary fraction in the new pair of sequences. An example of

such a calculation is given in the text.

55



Position Residue

i ALA

j SER

i1 ALA

i2 GLY

j1 THR

j2 ASN

Table 2.3: A list of relevant residues to be compared to classify the positions (i, j) as

complementary in the example given in the text. These residues are defined using a

template structure.

Dcom(A,C) = F (C1, C2)− F (A1, A2) (2.8)

Where F () is the complementary fraction as described above. To demonstrate

the use of this model in practice, a toy example is given once again (Figure 2.8).

This example has the same format as the example for the previous two models;

Two proteins C1 and C2 are known to interact and we wish to infer if their ancestral

precursors A1 and A2 also interacted. Assuming some known template structure

to which these proteins can be aligned, the complementary fraction of C1 and C2

is 0.7. After inferring the sequences of the ancestral proteins, their complementary

fraction is found to be 0.5. So the Dcom metric is calculated as

Dcom(A,C) = 0.7− 0.5 = 0.2 (2.9)
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C1 C2

F(A1,A2) = 0.5

F(C1,C2) = 0.7

Figure 2.8: A toy example of the calculation of Dcom in the context of PPI evolution. The

complementary fraction of C1 and C2 is calculated as 0.7 using either a structure for the

interaction or a template structure. The complementary fraction for the pair of ancestral

proteins is 0.5. Thus, Dcom here is 0.7 - 0.5 = 0.2.

As before, if, using some training set of PPI evolution, we can estimate the

probability of a PPI rewiring event given a Dcom of 0.2, then Bayes theorem can

be used to infer the probability of interaction between the ancestral proteins.

2.2.3 Proteasome data

In order to test the ability of these 3 models to infer the history of a protein

complex, a test case is required. For a test case, the 20S proteasome complex

from Saccharomyces cerevisiae is used (Figure 2.9). This complex is a multi-

subunit protease responsible for degrading proteins that have been tagged with
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Figure 2.9: The yeast 20S proteasome. The barrel structure is shown from the side (left)

and from above with the subunits coloured differently to distinguish. The four layers/rings

forming the barrel can be seen in the side-on view. The outer most ring is shown face on

in the right hand view. This is the alpha ring that controls access to the cavity in the

centre of the complex. Here the ring is in closed conformation and access to the cavity is

restricted.

ubiquitin. In doing so, the complex plays a major role in regulation of protein

levels in the cell, including degradation of misfolded or denatured proteins. All 28

subunits show homology and can be split in to two subtypes; the alpha and the

beta subunits. The complex itself is shaped like a barrel, formed of four stacked

heptameric rings with the outer rings of alpha subunits regulating access to a

cavity formed by the inner two rings of beta subunits. It is in this cavity that the

active sites responsible for the protease activity are found. The 1RYP structure

of this yeast protein complex was downloaded from the Protein Data Bank. From

this structure, PPIs are defined as existing between any two subunits having heavy

atoms within 4.5Å of each other. These PPIs are used as a starting test set for

comparison of the three models of PPI evolution previously defined.
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2.2.4 Clustering algorithm

Given a set of interfaces we use a clustering algorithm to identify interface types

that can then be treated separately. This clustering algorithm has been designed

to cluster interfaces between two protein families i.e. interfaces between protein

A and protein B where A belongs to the first family and B belongs to the second

family for all of the interfaces. We start by aligning all proteins involved, for each

family, to produce an alignment containing m columns for the first protein family

and n columns for the second. Then for each interface in our set, we produce a list

of residues within 4.5Å across the interface, each of which can be represented by an

(i, j) pair with i representing the relevant column number in the A alignment and

similarly for j in the B alignment. For each interface this gives a representation

P = {(i, j) : 0 < i ≤ m, 0 < j ≤ n} (2.10)

For two interfaces, with representations P1 and P2, the Jaccard distance be-

tween the interfaces can be defined as

J(P1, P2) =
|P1 ∩ P2|
|P1 ∪ P2|

(2.11)

i.e. the fraction of (i, j) pairs shared by the interfaces out of all observed

pairs from either interface. This distance is then used to produce average linking

clustering with a threshold of 0.1 for groups of interfaces. This produces clusters

of similar PPIs having different parts of their proteins responsible for mediating

the interaction.
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The clustering as applied to the yeast proteasome is shown in Figure 2.10. Six

clusters are identified within the stacked ring topology of the proteasome. These

clusters correspond to topologically consistent groupings within the structure of

the complex. For instance, one cluster contains the PPIs forming the alpha rings

and one cluster contains the PPIs forming the beta rings.

2.2.5 Training set of paralog complexes

After comparing the performance of each model using the yeast proteasome struc-

ture described above, the analysis is expanded to cover a larger set of PPIs. A

training set of PPIs taken from large, obligate complexes is used to define a train-

ing set of interaction tree branches which are then used to fit a model of PPI

evolution (i.e. by finding a conditional probability function of the form Equation

2.1). To build this training set of interaction tree branches we firstly take from 3D

complex [99], the list of protein complexes containing 14 or more subunits non-

redundant in topology and sequence to the QS30 level. The QS30 level comprises

protein complexes that are non-redundant in terms of their quarternary topology

and a 30% sequence identity threshold. The biological assemblies of these com-

plexes were downloaded from PDB [100]. From this list of complexes we now want

to identify those that are composed entirely of subunits from one paralogous gene

family.

To identify the complexes formed from paralogs, we employ pairwise BLAST [25]

searches. It is not sufficient to just identify those complexes in which every subunit

aligns to at least one other subunit as, for instance, this would mistakenly identify

complexes formed from two gene families as a complex of paralogs. Instead we

define a homology graph in which subunits are nodes and edges are placed between

nodes whose subunits produce an alignment, with E-value < 0.05 in a pairwise
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Beta Subunit
Alpha Subunit

Cluster 1 : 
Alpha ring interface

Cluster 2 : 
Alpha-beta interface A

Cluster 3 : 
Beta ring interface

Cluster 4 : 
Beta-beta interface A

Cluster 5 : 
Beta-beta interface B

Cluster 6 : 
Alpha-beta interface B

Figure 2.10: Visualisation of interaction clustering in the yeast proteasome. The nodes

represent proteins, black nodes are beta subunits and white nodes represent alpha sub-

units. Edges represent interactions between proteins with two proteins being classified as

interacting if any residue of one protein is with 4.5Å of any residue in the second protein.

For each cluster the interactions belonging to that cluster are highlighted red.
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BLAST search. Complexes formed from one family of paralogs correspond to

complexes whose homology graph is formed from one connected component. Ho-

mology graphs were constructed for each complex, allowing identification of 47

complexes of paralogs.

Given this set of complexes, interfaces are defined and then clustered as described

in Section 2.2.4. For each interface type defined by the clustering and given one of

these complexes, we can define interaction branches for our training set as follows:

take two subunits from the complex to form the ancestor interaction node, take

two subunits to form the child node and allow hypothetical sequence evolution be-

tween these two nodes. We can then define the interaction state of both nodes by

defining pairs of subunits that interact using the interface type under consideration

in the crystal structure to be interacting and to be non-interacting otherwise. We

now have a hypothetical or simulated interaction tree branch, for which we know

the ancestor and child interaction states. Using this method we produce a large

set of interaction tree branches from the set of complexes defined above.

2.3 Results

2.3.1 Interaction Trees for Globular Proteins

To begin, three models of PPI evolution, as modelled by an interaction tree (see

Methods) are compared, a complete description of each model can be found in

Methods. Each model attempts to predict PPI gains or losses on a branch of the

interaction tree based on the sequence changes along that branch (Figure 2.3).

An interaction tree branch describes the evolution from a pair of ancestral pro-

teins A1, A2 to a pair of proteins C1, C2 and can be decomposed into the two

phylogenetic branches from A1 to C1 and from A2 to C2. The first model, Ddis,
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predicts PPI rewiring on an interaction tree branch based on the total sequence

change across its two constituent phylogeny branches, as calculated under the

Jones-Taylor-Thornton model [20]. This is the same model used successfully to

model the history of interactions within the bZip transcription family in [85]. The

second model, Ddif is based on the observation that interacting protein families

tend to have similar phylogenetic trees and quantifying that similarity has been

used as the basis of PPI prediction [39]. As such, this model predicts PPI rewiring

based on the similarity in branch length of the two constituent phylogeny branches.

The final model considered, Dcom, is different in that it uses structural informa-

tion to predict PPI rewiring. This model requires a structural template to define

the residue-residue contacts believed to mediate a PPI, once these are defined, we

take a simple measure of chemical complementarity adapted from [98] and calcu-

late its change along an interaction tree branch. PPIs are made possible due to

the chemical complementarity between the contacting residues of the interacting

proteins and so we hypothesise that changes in this measure of complementarity

can predict PPI rewiring events.

2.3.2 Finding the Conditional Probability Distribution

Each of the three models considered here aims to predict rewiring events based

on some measure of the evolution occurring on a branch of the interaction tree.

Table 2.4 shows the expected behaviour of each model along an interaction tree

branch containing either type of rewiring event. These assumptions could be used

to predict the occurrence of events. For instance, Table 2.4 shows we expect the

largest values of Ddis when there is no gain of interaction along a branch (branch

type A). If trying to distinguish these from branches containing a gain of PPI, a

threshold α could be set and all branches having Dcom < α predicted as containing
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a gain of PPI.

However, in this case this description is not sufficient; a conditional probability

distribution of the type shown in Table 2.1 is required to describe the probability

of a rewiring event on a branch, given the change in D on that branch. This

probability distribution is required by the interaction tree (Equation 2.1) to infer

rewiring events during PPI evolution.These probabilities can be estimated directly

given a training set of interaction tree branches for which we know the ancestral

state, the child state and the value of D on each branch (Figure 2.11).

The problem here is that it is impossible to observe the ancestral state (or the

value of D) of a true interaction tree branch as the ancestral proteins no longer

exist. One solution to this problem is to produce hypothetical branches between

present day, existing nodes (Figure 2.12). For instance, in generating a training

set for the interaction tree shown in Figure 2.2 a hypothetical branch could be

constructed between B1a-B2 and B1b-B2, with B1a-B2 being the hypothetical an-

cestor. Evolution is then imagined between these two nodes, for which we can

observe the state of each node and calculate the value of D on the branch. We

would like to know whether the basic assumptions outlined in Table 2.4 remain

true for these branches. To begin, we consider how a hypothetical branch relates

to the true interaction tree (Figure 2.12).

Given this relationship we can then calculate the expected value of each mea-

sure on each type of hypothetical interaction branch (Figure 2.13). We can see

that for Dcom the expected value for each hypothetical branch type matches that

of the true branch types in Table 2.4 in every case. For Ddis and Ddif this is

not the case, however, the relationship between the values on each branch type

is maintained. This shows that despite the recourse to hypothetical evolution to

calculate the conditional probability distribution in Equation 2.1, the resulting
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Branch type Ddis Ddif Dcom

A + + 0

B δ δ +

C δ δ −

D ε 0 0

+ positive

δ small positive

� smaller positive

0 zero

− negative

Table 2.4: Expected behaviour of the three evolutionary measures on the four interaction

tree branch types. Interacting nodes are shown in green and non-interacting in white, for

instance branch type B shows a gain of interaction. For Ddis we assume that interacting

proteins evolve slower at the interface [101], leading to a prediction of the greatest distance

on branch type A, during which the proteins never interact, an intermediate distance on

branches B and C on which the proteins interact for some part of the branch and the

smallest Ddis for branch D throughout which the proteins interact. For Ddif , we assume

that interacting proteins evolve at similar rates and so have similar branch lengths in the

phylogeny [97]. This leads to prediction of positive Ddif in branches A,B and C and zero

Ddif on branch D (corresponding to symmetric branch lengths). Finally for Dcom we

assume that interacting proteins have a higher complementary fraction [98]. This leads to

a prediction of zero Dcom on branches A and D and positive/negative Dcom on branches

B/C. It is worth noting that Dcom is the only non-symmetric measure, in that branches

B and C have different predictions, meaning that the direction of the arrow in the branch

is important.
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Figure 2.11: Probabilities for gain and loss of interaction given a change in some measure

along a branch of an interaction tree. To compute these probabilities we first consider

individual branches of an interaction tree (top left, grey diamonds indicate no interaction,

green diamonds indicate interactions) and specifically what events can occur on a branch

e.g. no change in state, gain or loss of interaction. Given a set of such branches to use as a

training set, we first compute the change in our evolutionary parameter across each branch

and then bin the branches according to the amount of change (bottom, here we are using

ten bins). We then calculate a probability of gain of interaction for each bin by counting the

proportion of branches in each bin starting with non-interaction ancestor, that finish with

an interacting child (i.e. using the labels in the figure total(B)/total(B)+total(A)). Prob-

ability for interaction loss is computed in the same way as total(C)/total(C)+total(D). In

the plotted example we have some measure associated with interaction change e.g. change

in binding affinity, and after binning the branches in to ten bins we see that a positive

increase in this measure gives higher probabilities for interaction gain and vice versa for

interaction loss.
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true branch

hypothetical branch

Figure 2.12: A hypothetical interaction tree branch and its relation to the true interaction

tree. The hypothetical branch is represented as a dashed arrow between two existing

interaction nodes (white diamonds). These existing nodes have a most recent common

ancestor (MRCA) interaction (grey diamond) in the interaction tree, much in the same

way that sequences have a MRCA in sequence phylogenies. This allows us to describe

the evolution along our hypothetical branch as the sum of evolution across the two true

branches (solid arrow) linking the end nodes to their MRCA. This allows us to determine

if inferences made from hypothetical branches are valid given our assumptions in Table

2.4.
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probability distribution is still expected to reflect the true evolutionary process.

2.3.3 Evaluating the models

In order to evaluate the 3 models, a test case is first required. As a test system

we will be using the proteasome, a large, compartmentalised protease present in

eukaryotes and archaea with a homologous HslV protease in bacteria [74]. This

complex is responsible for degrading misfolded or damaged proteins that have been

targeted with ubiquitin and the protease activity of the complex is also responsible

for regulating cellular processes such as cell division. The proteasome consists of

a central 20S core particle along with associated regulatory complexes such as

AAA+ ATPases [102]. We consider here only the 20S core particle, consisting of

alpha and beta-type subunits arranged in four stacked heptameric rings, two outer

alpha subunit rings and two inner beta subunit rings. The homologous bacterial

HslV complex consists of two stacked hexameric rings of identical subunits. The

alpha, beta and HslV subunits are all homologous. This is a well studied complex,

with well understood structure and structural examples across a wide range of

organisms, making a useful system to evaluate the method.

Having defined these three models of PPI evolution, they are now evaluated

in their ability to predict PPI rewiring in the proteasome complex from Saccha-

romyces cerevisiae. To begin, structure 1RYP [103] was downloaded from the

Protein Data Bank [104] and the sequences of all subunits aligned with MUSCLE

[93], with some manual realignment. As explained above, the Dcom model of PPI

evolution requires a template structure for an interaction in order to be calculated.

The problem with defining such a structure for the proteasome is that proteasome

subunits interact in a variety of orientations and so in evaluating the Dcom score it

is required to specify the particular orientation. To classify all possible orientations

68



δ

�

++ δ+

δδ �

�

++

+ �

δ δ

2+ �2

A B C D

δ ++ δ+

δδ

++

+

δ δ

2+

00

0 0

0

+

00

0 0

0

0 0

0

0 0+ +

+

−
−
−

−

D
d
is

D
d
if

D
c
o
m

Figure 2.13: Expected value of the three measures of interaction evolution on each of the

four types of hypothetical interaction tree branch. We consider every possible combination

of ’on’ and ’off’ nodes for which only one change has occurred on either true branch since

the MRCA. Here we assume that +� δ � ε. So that, for instance, δ + ε ' δ. There are

differences to be noted when calculating the expected value on the hypothetical branch

for each measure. The value of Ddis and Ddif along the hypothetical branch is just the

sum of the distances across the true branches. This makes sense as evolutionary distance

is the same going up or down a branch. However, Dcom is not symmetric in this way

(see Table 2.4) and so the value of Dcom changes depending on which direction you travel

along a branch. When calculating Dcom on the hypothetical branches, this has the effect

of reversing the sign on the leftmost true branch, as we have to travel against this arrow

and then down the rightmost arrow to describe the evolution occurring on the hypothetical

branch.
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a clustering algorithm was applied based on overlapping amino acid contacts (see

Methods), identifying 6 PPI types in the proteasome, with symmetric arrangement

within the complex (Figure 2.10). For instance, cluster 3 contains all PPIs forming

the ring of beta proteins. All analysis can now proceed independently for each PPI

orientation.

To evaluate the three models of PPI evolution within the proteasome we re-

quire a set of interaction tree branches for which we know the interaction state of

the ancestral proteins and the child proteins. As explained in Section 2.3.2 it is

impossible to use true interaction tree branches for this task and so we construct

hypothetical branches between existing nodes. Using the yeast proteasome, a large

set of test branches is built in this way; two existing proteins are chosen to form

the ancestral interaction node and two to form the child node. This is repeated

until all combinations of existing proteins have been chosen to form an interaction

tree branch. For each of the branches in the training set, the nodes are classified

as interacting if their constituent proteins are within a distance of 4.5Å in the

1RYP structure. The value of D can also be calculated on each of these branches,

producing the required training set. Before the models are used to generate a

CPD, each model is evaluated on its ability to detect both types of rewiring, that

is gains of interaction (i.e. distinguishing branch type B from type A) and loss of

interaction (C vs D) and a ROC curve is produced for each (Figures 2.14, 2.15).

In predicting losses of interaction, the Dcom model performs best but all three

models perform better than random suggesting that a loss of PPI between two

proteins increases the rate and asymmetry of substitutions whilst decreasing the

chemical complementarity at the protein-protein interface. In predicting gains

however, Dcom clearly outperforms the other methods, the two models based on

sequence distances alone do not produce accurate predictions of interaction gains.

It is worth noting here that using hypothetical interaction branches in place of real
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Figure 2.14: ROC curves comparing each of the 3 models of PPI evolution in their ability

to predict both losses (left) and gains (right) of interaction.
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Figure 2.15: ROC curves comparing each of the 3 models of PPI evolution in their ability

to predict both losses (left) and gains (right) of interaction.
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branches could distort the behaviour of Ddis and Ddif as set out in Supplementary

Material.

2.3.4 Calibrating the Model

From the previous ROC analysis it is concluded that Dcom is the most promis-

ing candidate for developing an interaction tree model to apply to complexes of

paralagous subunits. The model will now be used to produce a CPD of the type

shown in Table 2.1. In order to do this in general and not just in the proteasome, a

large set of large protein complexes, composed of paralagous subunits was formed,

(Section 2.2.5) cluster the PPIs and construct hypothetical interaction branches

as before for each complex.

This allows plotting of changes in the Dcom score against probability of both

types of rewiring events, as described in Figure 2.11 across this large, non re-

dundant set of complexes (Figure 2.16). This shows that there is a generalisable

relationship between the Dcom score and rewiring events and suggests that a inter-

action tree model with branch-specific rewiring probabilities based on Dcom could

be applied to complexes of paralogs. Specifically, after a gene duplication event,

changes in the Dcom score between the duplicates and all other possible interaction

partners could be used to predict subfunctionalization (loss of interactions) and

neofunctionalization (gain of interactions). The probability of such events can be

defined according to fitted exponential functions as plotted in Figure 2.16.

The fitting of exponential curves to the results was done using the nls command

in R. The form of the exponential functions used are shown below in Equations

2.12, where D is the Dcom score and Ag, Bg, Al, Bl are parameters to be found.

The fit parameters were Ag = 0.670, Bg = −2.195, Al = 0.995, Bl = 23.314.
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Dcom(A,C) = x

P (C = on) P (C = off)

A = on 1− (Ag − Age
Bgx) Ag − Age

Bgx

A = off Age
Bg(1−x) − Age

Bg 1− (Age
Bg(1−x) − Age

Bg)

Table 2.5: A representation of Equation 2.1 in matrix form. The matrix shown is for

D=10 and describes the probability of C given A. For instance, if the ancestor node is

non interacting, there is a 10% chance that the child node is interacting if D=10, that is,

there is a 10% chance of a gain of interaction.

P (gain) = Age
Bg(1−D) −Age

Bg (2.12)

P (loss) = Ag −Age
BgD (2.13)

This now allows a description of the conditional probability distribution (as

described in Table 2.1) for any value of Dcom on an interaction tree branch. The

probabilities forming the probability table are taken from Equations 2.5 and 2.6,

substituting the Dcom value for that branch (Table 2.5) with the fact that the rows

of the table sum to 1 used to find the other two probabilities.

2.4 Discussion

This chapter presents a method for predicting PPIs and evolutionary history within

protein complexes, specifically obligate complexes formed of homologous subunits.

The method is based upon the previously described interaction tree approach which

attempts to explicitly model the process of PPI evolution, composed of rewiring
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events and protein gains and losses. Most previous interaction tree approaches

have modelled rewiring events uniformly throughout the evolution described, that

is the probability of a rewiring event is the same throughout the tree. The ex-

ception is [85] in which the probability of a rewiring event was related to the

substitution rates of the proteins in question, in particular that increased amino

acid substitution is predictive of rewiring events. This led to accurate evolutionary

inference in the bZip family of transcription factors.

The aim in this chapter is to apply a similar model of rewiring to protein com-

plexes. It was shown initially that a model based on substitution/ phylogeny

branch length as in [85] does not predict rewiring events in an example complex.

This could be due to the increased structural complexity of the interaction as

opposed to the simple coiled coil interactions studied in [85]. Prediction is also

attempted unsuccessfully based on similarity of branch length, as this has been

used to predict PPIs at the family level elsewhere. A successful model was found

based on a simple measure of physico-chemical complementarity that requires a

template structure for the interaction and predicts change in the complementarity

of two proteins as their sequences evolve. This allows prediction of rewiring events

between two proteins as their sequences change, the downside being the require-

ment of a structure for the interface.

2.5 Conclusion

The Dcom model of PPI evolution can predict gains and losses of interaction

(rewiring events) in complexes formed of homologous subunits. This is generally

true for a large set of such complexes and this relationship offers a way of re-

constructing the evolutionary history of such complexes using the interaction tree
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methodology. This can be done in a way that is branch specific unlike previous

attempts to model complex evolution using the interaction tree.
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Figure 2.16: The relationship between the change in interaction score and probability of

interaction gain and loss across the entire training set of paralog complexes. All data

is binned in the same way and over-plotted for all interaction clusters for all complexes

to produce the scatter plots shown above. We assume that for negative changes in the

interaction score the probability of interaction gain is 0 and for positive changes the prob-

ability of interaction loss is 0. Then, to each scatterplot we fit a logistic curve (red lines)

to describe the general relationship between change in Dcom score and interaction gain

and loss.
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Chapter 3

Modelling PPI rewiring in

protein complexes

3.1 Introduction

In the last chapter, a new approach to using the interaction tree method was de-

fined and validated. This methodology addressed several problems with previous

interaction tree applications, primarily the fact that previous attempts have as-

signed a constant probability of PPI rewiring after duplication across all proteins.

The approach described here bases the probability of rewiring on the change in

amino acid composition at the protein-protein binding site and so allows proba-

bility of rewiring, specific to each protein, dependent on the evolutionary events

happening in the sequence (amino acid substitution). This method was specifi-

cally designed with a problem in mind: the reconstruction of the history of protein

complexes of paralogs.

In this chapter the methodology is applied to that problem. As a test case ,

the proteasome and its homologues are chosen. The 20S proteasome is a multi-
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meric protease, responsible for degrading misfolded proteins and controlling gene

expression through targeting proteins tagged with ubiquitin for destruction. Some

eukaryotes have been observed to express a variety of proteasomes, with subunits

being substituted to produce a complex with subtly different function. Most bac-

terial species do not have a 20S proteasome but the related HslV complex. This

protease has a similar structure but is less complicated in terms of the number of

subunits and their variety. This variation throughout the tree of life, paired with

the large amount of solved crystal structures of this complex, make it a suitable

first test case for the methodology.

Previously, scenarios for the evolution of this complex have been proposed,

based on reasoning from the principle of parsimony. The detailed modelling here

will allow testing of these arguments and also, a deeper understanding of the

emergence of the topology of the complex. For instance, [105] proposed that a

complex with a barrel-like structure would have evolved either from a single ring

structure or a simple dimer structure. Each of these ancestral structures relates to

a specific binding site between the subunits of the complex, i.e. the site responsible

for forming a ring structure of the symmetric binding site responsible for forming

a dimer. The ancestral complex can then be predicted by predicting what is the

oldest binding site within the complex.

By clustering the interactions in a complex (as described in the last chapter),

these distinct binding sites can be defined and the interactions occurring at these

sites tracked. This allows predictions for PPI evolution for each interface type,

including predicting the probability of each binding site being ancestral. In this

chapter, the methodology is first validated through prediction of known interac-

tions in the cattle proteasome using evidence of interactions from other species.

Then, the method is used to infer the evolutionary history of the proteasome com-

plex. Insights are gained in to the evolution of the complex, including evidence as
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to what the ancestral complex’s quarternery structure may have been.

3.2 Methods

3.2.1 Structural and sequence data

In the previous chapter, the yeast 20S proteasome was used as a test set for proving

the suitability of the Dcom metric as a basis for a model of PPI evolution. A larger

training set of complexes was then used to fit the model. Now we return to the

proteasome, to apply this model to infer the evolutionary history of this complex.

Before showing how this inference can be performed using the interaction tree

methodology, a description of the distribution and variation of proteasomes across

species is given. As described in the previous chapter and shown here in Figure

3.1, the yeast proteasome consists of 4 stacked rings of 7 subunits. These subunits

can be categorised in to alpha or beta subunits based on sequence similarity. The

beta subunits being catalytically active and the alpha subunits regulating access

to the active sites of the beta subunits. In this structure there are 7 unique beta

subunits in each beta ring and similarly 7 unique alpha subunits in each alpha

ring. This gives a total of 14 unique proteasome proteins in this 28-mer.

This is the typical eukaryote 20S proteasome. Whilst all eukaryote proteasomes

are 28-mers built of 14 unique proteins, some variation is seen in the number of

proteins available in the genome for formation of proteasomes. For instance, in

mammals an alternative proteasome, the imunoproteasome, has been discovered.

This complex substitutes 3 of the beta subunits of the standard proteasome for 3

new subunits, altering the activity of the complex.

The archaeal proteasome is also formed of 28 subunits. However, in this case

all alpha subunits are identical, as are all beta subunits. Figure 3.1 shows a typical
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archaeal proteasome from T. acidophilum. The complex is also formed of 4 stacked

rings of 7 subunits, however, here the alpha subunits forming the end of the barrel

structure are in an ”open” conformation. As such, the channel leading to the

cavity containing the active sites can be seen in the top down view.

With a few exceptions, bacteria do not possess a 20S proteasome. However,

most do have the homologous HslV complex (bottom of Figure 3.1). This complex

is formed of just one repeated subunit that is homologous to the proteasome sub-

units and more similar to the beta subunits that the alpha subunits. This single

protein assembles into two stacked hexameric rings forming the HslV protease.

Given this variation amongst proteasomes and homologous structures there are

several questions concerning its evolution, such as; what was the ancestral com-

plex? was it some simpler HslV like structure? How did the eukaryotic structures

come to have extra subunits? Were these all gained in quick succession?

In order to answer some of these questions, in this chapter the Dcom model will

be used in conjunction with the interaction tree to infer the history of PPIs within

this complex. As before, the Dcom model requires some structural example(s)

of PPIs to be calculable. A set of proteasome structures listed in Table 3.1 are

included in this analysis for this purpose.

The interaction tree framework allows inference of the history of the interac-

tions in these structures, using the Dcom model. We already know the PPIs present

in these species (from the solved structures) however, the interaction tree can also

infer the PPIs present in species for which we do not have this information. To

this end, a set of extra proteasome sequences, from species for which we have

no structural information, are included in the analysis (Table 3.2) The expanded

set also contains some extra Bos taurus proteins that are absent from the solved

1IRU structure [106]. This set was generated by firstly choosing a set of species

with a wide coverage of the tree of life and then taking all sequences classified as
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text.
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PDB code Species Number of subunits Unique subunits

1NED Escherichia coli 12 1

1G3K Haemophilus influenzae 12 1

1M4Y Thermotoga maritima 12 1

1PMA Thermoplasma acidophilum 28 2

3H4P Methanocaldococcus jannaschii 28 2

1RYP Saccharomyces cerevisiae 28 14

1IRU Bos taurus 28 14

Table 3.1: List of proteasome structures used in the analysis, in increasing order of com-

plexity. The three bacterial complexes are HslV proteases formed of two stacked hexameric

rings of identical subunits. The two archaeal proteasomes are composed of four heptameric

rings, two stacked rings of beta subunits capped on either end by a ring of alpha subunits.

The alpha subunits are all identical in these complexes, as are the beta subunits. The

eukaryote complexes are the most complicated, having the same subunit topology as the

archaeal structures but 7 unique alpha subunits and 7 unique beta subunits.

belonging to the ”proteasome subunits” family in the Superfamily [107] database.

3.2.2 Phylogeny building

In order to build a phylogeny for the expanded set of proteasome sequences, the

set was first aligned using MUSCLE [93] with default parameters. As mentioned

in Table 3.2, P falciparum has a protein that appears most similar to the bacterial

HslV proteins (PfHslV) [108] and clustered with them in initial phylogeny building

attempts. It is postulated that this is the result of horizontal transfer and due to

the fact that the interaction tree algorithm can not currently incorporate horizontal

events, this protein was removed from the analysis.
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Species Alpha subunits Beta subunits

Bordetella bronchiseptica 0 1

Rickettsia prowazekii 0 1

Helicobacter pylori 0 1

Aquifex aeolicus 0 1

Bacillus subtilis 0 1

Haloferax volcanii 2 1

Natronomonas pharaonis 1 1

Pyrococcus furiosus 1 2

Plasmodium falciparum * 7 7

Arabidopsis thalania 14 14

Dictyostelium discoideum 7 7

Bos taurus ** 1 5

Table 3.2: List of extra proteasome sequences included in this analysis. Here the bacterial

HslV proteins are listed as Beta subunits as they are more similar to this subfamily. We

include H volcanii as this archaea has two alpha subunits compared to most archaea

which have one. We similarly include P furiosus, as this archaeon has 2 beta subunits. *

P falciparum also has a HslV-like protein (PfHslV) but this was removed from the analysis

due to problems including it in the phylogeny. ** These are extra proteasome proteins

found in B taurus but not present in the 1IRU structure described in Table 3.1
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This produces an alignment of 110 proteasome or HslV sequences, with an av-

erage pairwise identity of 25.94%. To begin phylogeny construction, 100 bootstrap

samples are taken using the SeqBoot program from the Phylip [96] suite for phy-

logenetics. A bootstrap sample consists 565 columns sampled with replacement

from the 565 columns of the alignment, to produce a bootstrap alignment. These

100 alignments were then used to generate 100 neighbour-joining trees using the

Neighbour program from Phylip. From these 100 trees a consensus tree is gener-

ated using the Consense program from Phylip, with the Majority Rule (extended)

algorithm. To summarise this algorithm, each internal node in a tree corresponds

to a set of proteins (the proteins present in the clade descendant from that node).

For each internal node, Consense counts how many of the 100 trees the clade is

present, with any clade present in more than 50% of the trees included in the final

consensus tree. From this initial consensus tree, internal nodes with less than 50%

support are then considered in decreasing order of support and added to the tree

if possible (some may be inconsistent with the internal nodes already added to the

tree, e.g. if (a,b,c) is a clade then (b,c,d) can not be). This is continued until the

tree is fully binary, that is, each internal node has exactly 2 descendants. This

produces a consensus tree in which each internal node has an associated bootstrap

value indicating the support for that node in the alignment. The resulting tree for

the proteasome data is described in the Results section.

Before a phylogeny can be used to construct an interaction tree, it must be

reconciled with a species tree, as described in Chapter 1. Each internal node

in the phylogeny corresponds to either a speciation event or a duplication event;

proteins can diverge either after duplication (within a species) or after speciation

(in separate species). Reconciliation classifies internal nodes as either the result

of speciation or duplication events and this in turn defines which proteins were

present in a species at the moment of speciation (the speciation nodes correspond
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to these). This knowledge of the proteins present at speciation is required to

construct the interaction tree as described in the previous chapter. To begin

reconciliation, a species tree is first required. Here, a species tree describing the

relationship between all species included in the analysis is downloaded from ITOL

[109] (Figure 3.2).

The reconciliation is then performed using the NOTUNG [34] program with

default parameters. A given reconciliation implies gene losses in certain species,

for instance, after a speciation event a gene/protein may be lost in one of the

species (see Chapter 1 for an example). NOTUNG performs reconciliation by

attempting to minimise both the number of duplication events and the number of

these gene losses in the resulting tree. Thus the reconciled tree follows the principle

of parsimony by containing the minimum number of events to explain the observed

gene phylogeny in terms of the species tree. NOTUNG weights the duplication

and loss events separately; by default a weight of 1.5 is given to duplication events

and a weight of 1 to loss events.

In parts of the phylogeny, inferring the correct branching order may be difficult

and low bootstrap values will result. For instance, if there are many speciation

events inferred in a short space on the tree, getting these events in the right

order and with a high bootstrap support may be difficult. Subsequently, during

reconciliation, extra duplication and loss events will be inferred by NOTUNG to

account for this discrepancy. To help in this situation, NOTUNG offers a rearrange

function that can reorder internal nodes with bootstrap values less than a given

cutoff, in order to agree with the branching order in the species tree. This follows

the principle of parsimony in that in cases where the bootstrap values do not

give strong support for a particular tree topology, the topology that requires less

duplication/loss events (i.e. the topology that follows that of the species tree)

should be preferred.
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Figure 3.2: The species tree used for reconciliation with NOTUNG, taken from the ITOL

website.
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3.2.3 Sequence reconstruction with PAML

Given a phylogeny that has been reconciled as above, an interaction tree can be

constructed as described in the previous chapter. Then, to use the Dcom model, the

Dcom score has to be calculated for every branch in the interaction tree. To do this

sequences are required for the interior nodes of the phylogeny. The PAML [110]

package can be used to reconstruct the ancestral sequences using a likelihood based

approach. This has an advantage over parsimony based methods (Fitch 1971) in

that rather than one likely sequence being inferred, a distribution of sequences is

produced at each node with a posterior probability assigned to each one. It has

been previously observed [111] that using such a distribution as opposed to point

estimates may be preferable.

In order to calculate the Dcom value on each branch, the complementary frac-

tion (F () in the previous chapter) has to be calculated at the ancestor node and

the child node of that branch. To estimate the complementary fraction at an in-

teraction node, the following procedure is undertaken; a sequence is sampled, for

each of the constituent proteins of the interaction node, from the sequence dis-

tribution calculated by PAML. The complementary fraction is calculated between

these sequences as usual, this process is repeated 1000 times and then the average

is taken over these 1000 samples. This gives an estimate of the complementary

fraction at an interaction node, allowing the change along an interaction branch

to be calculated, giving the Dcom value.
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3.3 Results

3.3.1 Proteasome phylogeny

To begin with the extended set of protein sequences, included those listed in Table

3.2, is aligned using muscle and a bootstrapped phylogeny built as described in

Section 3.2.2. As described in the Methods section, this tree contains all identi-

fiable proteasome subunits for each included species in Figure 3.2 except for P.

falciparum. This species has an extra proteasome subunit (PfHslV) which is more

similar to the bacterial HslV proteins than the Eukaryotic proteasome subunits.

It is postulated that this is the result of some horizontal transfer and so it has

been excluded as the interaction tree construction assumes vertical descent in the

phylogeny. The consensus phylogeny, before any reconciliation, is shown in Figure

3.3.

The tree as shown was then reconciled with the species tree, allowing for rear-

rangement of branches with low bootstrap support as described in Methods. The

reconciled and rearranged tree is shown in Figure 3.4. Clades corresponding to the

different types of proteasome or proteasome-like proteins are identified in the tree,

showing the phylogeny building process is working as expected. After rearrange-

ment the tree is more congruent with the species tree, for instance the B. subtilis

HslV branches first (red clade, right of Figure 3.4) in the reconciled tree as B.

subtilis branches first of the bacteria in the species tree. The sub clades within the

eukaryote Alpha and Beta clades, correspond to the seven distinct alpha and beta

subunits in eukaryotes, Figure 3.5. The tree shows that there were 6 consecutive

duplications of both the alpha and beta proteins, prior to the divergence of the

eukaryotic species but after the divergence from archaea, to produce the diverse

set of subunits in their proteasomes. The 7 alpha proteins come together to form

a heptemeric ring, as do the beta proteins. No such duplications happened in
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Figure 3.3: The bootstrap tree constructed for the set of proteasome subunits. Each

protein has been given a unique identifier and is suffixed by a short species id (listed in

Table 3.3). It can be seen that the proteins cluster as expected, for instance the bacterial

HslV proteins form a clade (right of diagram). However, the branching order differs in

most cases from that of the species tree, e.g. the HslV proteins branch in a different order.

90



Species Short ID

Escherichia coli ec

Haemophilus influenzae hi

Bordetella bronchiseptica bb

Rickettsia prowazekii rp

Helicobacter pylori hp

Aquifex aeolicus aa

Thermatoga maritima tm

Bacillus subtilis bs

Plasmodium falciparum pf

Arabidopsis thalania at

Dictyostelium discoideum dd

Saccharomyces cerevisiae sc

Bos taurus bt

Thermoplasma acidophilum ta

Methanococcus jannaschi mj

Haloferax volcanii aG

Natronomonas pharaonis np

Pyrococcus furiosus pu

Table 3.3: Long species names and two letter Superfamily species ids used in this analysis.
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the archaea and so it is that the archaeal species simply have one alpha protein

repeated 7 times in the alpha ring and one beta protein repeated 7 times in the

beta ring. There have also been lineage specific duplications, particularly in A.

thalania, producing extra subunits within some species.

3.3.2 Predicting present day structures

To begin, the ability of the method to predict present day structures will be tested.

The interaction tree approach can be used to infer the history of protein interac-

tions but can also be used to infer probability of interaction between existing

proteins; observed PPIs can be used as input and the evidence propagated up the

interaction tree and then, propagated back down to the leaves, in order to produce

probability of interaction between proteins in species for which we have no PPI

data.

To demonstrate the use of the interaction tree and the Dcom model in this way,

a simple toy example is used (Figure 3.6). This example can be thought of as a

simplified version of the proteasome data set. In this simplification only yeast and

cow are included in the analysis and each has one alpha subunit (CowA, YeastA in

diagram) and one beta subunit (CowB, YeastB in diagram). To begin, a phylogeny

is constructed, as described previously, for these proteins (top of figure). In the

previous chapter, the construction of an interaction tree to describe interactions

between two distinct protein families was described. In this example we wish

to look at interactions within a family and so the phylogeny is combined with a

duplicate of itself in order to produce the interaction tree structure (middle of

figure).

Now, assume that we are using crystal structures to decide which present day

proteins interact and a structure for PPIs between these proteins is only available
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Figure 3.4: The reconciled and rearranged tree of proteasome subunits. Clades are iden-

tified corresponding to HslV subunits (red), beta subunits from Archaea (blue), beta

subunits of eukaryotes (purple), alpha subunits from archaea (yellow) and alpha subunits

from eukaryotes (green). The tree has 35 inferred duplication events and 0 inferred gene

losses.
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in yeast. Firstly, we cluster the PPIs in the structure as before, giving the same

6 proteasome PPI clusters. We then consider each PPI cluster separately, let’s

say we start by looking at cluster 3: the beta ring interface. Using a distance

threshold as before, we know from the yeast structure that the YeastB protein

interacts with itself using a cluster 3 interaction. Equally, we observe that YeastA

does not interact with itself or YeastB using this cluster. This information is shown

in step 2 of the figure; known interactions (i.e. probability of interaction = 1) are

coloured green and known non-interactions are coloured red.

Now, after reconstructing the ancestral sequences for all ancestral proteins

in the phylogeny using PAML, the complementary fraction can be computed for

every interaction node in the interaction tree (each interaction node corresponds

to a pair of proteins). To do this we use the observed PPI structure from yeast as

a template, as was described in the previous chapter. Now, we can calculate the

change in complementary fraction on each branch of the interaction tree to give

the Dcom metric on each branch (blue numbers in figure). WIth these numbers

calculated, we can use the previously fitted model, as described in Figure 2.16, to

produce probabilities of PPI gain or loss on each of these branches, given Dcom. For

instance, given a Dcom of 0.4, looking at the previously fitted exponential curves

in Figure 2.16 gives probability of gain of interaction of around 0.1. Similarly, the

probability of loss of interactions is 0.

In the last chapter it was described how, given a simpler example, Bayes’

theorem can be used for inference given these probabilities. In this example, we

have observed probabilities for three nodes and wish to produce probabilities of

interaction for all other nodes in the tree. For this, the message passing algorithm

of [94] is used. This produces probabilities of interaction for each node given the

already observed probabilities and the conditional probability function on each

branch (as defined by Dcom). In this example, the final probabilities are shown
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in step 3 of the figure. Pairs of proteins with probability of interaction greater

than 0.5 are coloured green and other pairs coloured red. We see that the CowB

protein is also predicted to interact with itself using this interaction type and also

with CowA. It could be that the CowA-CowB interaction is a false positive or that

there is indeed a different pattern of interaction in this species.

Having elaborated on the use of the Dcom model to infer interaction histories,

we can now go ahead and test the method on some real data. Before proceeding we

first repeat the clustering of PPIs across our larger data set. The same clustering

algorithm is applied as earlier but now to cluster the PPIs across all 7 structures

simultaneously. Remarkably, the PPIs still fall into 6 main clusters showing the

high level of PPI structure conservation between even bacteria and eukaryotes in

the proteasome structures. Each PPI orientation is now treated independently

with the results combined in the final analysis unless stated otherwise.

For this part of the analysis, only the set of sequences in Table 3.1 are con-

sidered, thus reducing the phylogeny to include just proteins from 7 species. The

phylogeny is pruned to contain only these sequences and then ancestral sequences

are reconstructed for the pruned tree, using PAML, as described in the Methods

section. In order to test the predictive ability of the model, we propose a strategy

in which the one multicellular eukaryote structure (from cow) is removed from the

data and predicted using the other structures and the interaction tree model. This

is carried out as described in the example of Figure 3.6. The rationale behind this

is that the cow structure is the most complicated in terms of the number of avail-

able subunits and so a useful method would be able to predict this more complex

structure from the relatively simpler structures (for example in bacteria). Several

predictions are made; in order to test how the quality of the prediction depends

on the relatedness of the proteasome structures used as evidence PPIs. The first

prediction is made including only the distantly related bacterial species as evidence
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Step 2 : Build interaction tree, calculate Dcom on each branch

MRCA

CowA

MRCA-MRCA

YeastA CowB YeastB

CowA-CowA YeastA-YeastA

CowA-CowB YeastA-YeastB

CowB-CowB YeastB-YeastB

Step 1 : Protein phylogeny

known PPI

known non-PPI

0.020.05

0.1

-0.50.4

-0.5

0.1-0.3

Step 3 : Use Bayesian message passing to get probability of interaction

MRCA-MRCA

CowA-CowA YeastA-YeastA

CowA-CowB YeastA-YeastB

CowB-CowB YeastB-YeastB

high probability PPI

low probability PPI

0.020.05

0.1

-0.50.4

-0.5

0.1-0.3

-0.2

-0.2

Figure 3.6: A toy example showing use of the Dcom model, in conjunction with an inter-

action tree, to infer PPI histories.

97



PPIs, the second prediction uses bacterial and archaeal species as evidence and

the final prediction uses all data as input evidence.

ROC curves were produced for each prediction (Figure 3.7) and comparisons

were made with two other methods for predicting PPIs using evolutionary ar-

guments: a simple method based on interologs and a prediction based on the

PARANA algorithm for inferring PPI evolution. Predictions were also made using

just the complementary fraction from the Dcom model, with no interaction tree

inference. To do this, the complementary fraction was calculated for all pairs of

proteasome subunits and a threshold applied to these scores to predict which pairs

interact. One popular method for predicting PPIs using evolutionary information

is the MIRRORTREE method [39] [112], however, this algorithm predicts interac-

tion between protein families. In this case we are predicting the individual PPIs

at the protein level and so the MIRRORTREE algorithm is unsuitable.

The prediction based just on scores with no interaction tree performs better

than random but is the worst performing prediction in terms of the area under the

curve statistic (AUC). Using the interaction tree method we can see that including

just the very distant bacterial structures improves prediction over using the raw

scores. This is improved further when including the archaeal data (the archaeal

structures have a similar topology to the eukaryotic structures) and becomes a

perfect prediction when including the closest related structure from yeast and

predicting using all available structural data. These results clearly show the benefit

of using the phylogeny to explicitly model the PPI evolutionary process as opposed

to using just the scores.

A prediction is also made based on the PARANA algorithm [84]; this algorithm

takes present day PPIs as input and tries to infer the most parsimonious history of

rewiring events that can produce these PPIs, given the phylogeny of the proteins.

As packaged, this algorithm only supports predictions in ancestral species and
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does not support making predictions in other existing species as here. So, to make

a prediction in B. taurus using PARANA the following approach is taken: the

history of interactions are first inferred for the input evidence PPIs, then, the

nearest ancestor for which predictions were made is taken and using the principle

of parsimony (i.e. no rewiring events), all descendant pairs of interacting pairs in

the ancestor species are predicted to interact. This prediction adheres to producing

the most parsimonious history and can produce predictions in unobserved species.

The PARANA prediction shown in Figure 3.7 was made using default param-

eters, using all structural PPIs as input. In this prediction all PPIs are gained at

the leaves of the trees as this leads to the least number of rewiring events in the

history of the complex and this produces a prediction on no PPIs in the B. taurus

complex. This is certainly not the application that this algorithm was designed

for; the algorithm was designed to reconstruct large protein interaction network

histories, but this result highlights the unsuitability of parsimony arguments in

this example. This is a result of the large number of PPIs lost during the his-

tory of the proteasome: the complex began as homomeric, in which all subunits

interact, and in present day eukaryotes has 14 subunits which do not all interact

with each other, in fact of the 142 possible interactions only 70 exist in eukaryotes.

Parsimony is ill equipped to predict this large number of PPI losses.

Predictions are also made using an interolog approach [57], in which each

pair of B. taurus proteins are predicted as interacting if their nearest bacterial

proteins (from one of the bacterial structures) interact. Similar predictions are

made using the archaeal and eukaryotic structures. The eukaryotic interologs

produce a perfect prediction similar to the interaction tree, this suggests that

there has been no rewiring between the B. taurus and the nearby eukaryotic input

structures and explains why the interaction tree produces a perfect prediction in

this case. The archaeal and bacterial interolog predictions tend to overpredict
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interactions, producing a fairly high false positive rate.

3.3.3 Reconstructing the history of protein complexes

Aside from the predictions reported above, the interaction tree also allows predic-

tions of ancestral PPIs. To demonstrate this, an expanded analysis was performed

including the extra proteasome sequences described in Table 2.4. A phylogenetic

tree was constructed for all proteins and then the interaction tree was used, along

with the model of rewiring events, to predict all rewiring events between the pro-

teins described by the phylogeny. This history can then be used to produce predic-

tions for the PPIs present in the proteasome of each species, including the ancestral

species, Figure 3.8. This prediction broadly agrees with what we expect to see;

the method predicts high rates of loss of interaction at the base of the eukaryote

clade, this coincides with the gene duplication events that produce the variation

in the eukaryote complexes. If we assume that these duplications did not change

the topology of the complex then interactions between duplicates will have been

lost to maintain the correct number of subunits in the complex and the method

predicts this process. It is worth noting that this is in contrast to the parsimonious

predictions from PARANA wherein all interactions are gained near the tips of the

tree. This highlights the unsuitability of parsimony methods in reconstructing the

history of complexes formed of duplicates in this way.

The predictions shown in Figure 3.8 are for all PPIs across the 6 interaction

types classified by the clustering algorithm. It is also possible to look at the

history of PPIs for each interaction type separately, in particular this can predict

what binding site was the first to exist within the proteasome by looking at the

interactions predicted at the root of the phylogeny. Based on this prediction it can

be inferred if the original complex was a dimer or a ring structure. The history
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Figure 3.7: Validation of method in predicting B. taurus structure. On the right is shown

the 6 scenarios for which we test the method. Each scenario is illustrated by a species

tree showing the relationship of the 7 species for which we have structural data, the B.

taurus structure is show on the leftmost branch on each tree. In scenario 1 we leave out

all structural data except the most distantly related species (E. coli) and try to predict

the interactions in the B. taurus structure. In scenario 2 we include the next furthest

structure and repeat. At each stage we plot the effectiveness of our predictions using a

ROC curve as shown on the left.
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inferred here predicts 5 of the 6 possible interaction types to be present at the root

of the tree (Figure 3.8) and so is inconclusive as to what binding interface was

the original state of the proteasome (Table 3.4). The results do however clearly

predict that the interface forming the ring of alpha subunits in the proteasome

was the last to emerge.

These predictions can be compared to existing hypotheses of proteasome evo-

lution. The first attempt at a comprehensive description of proteasome evolution

was due to [74], in which, after a survey of proteasome-like proteins across a diverse

set of genomes, it was concluded that HslV was the ancestral complex with the

20S proteasome (from archaea and eukaryotes) derived from this simpler complex.

The exception to this hypothesis is the actinobacteria which contain 20S protea-

somes instead of the HslV (e.g. Mycobacterium tuberculosis). It was proposed in

[74] that this bacterial proteasome was the result of horizontal transfer, however

the source of the transfer could not be found. The results of the inference here

disagree somewhat with this hypothesis; the alpha-beta interactions are predicted

to be present in the Last Universal Common Ancestor (LUCA). However under

the hypothesis of [74], the LUCA is predicted to form an HslV-type complex, in

which these interaction types are not present (e.g. as in E coli).

A second hypothesis for proteasome evolution was recently proposed in [113].

Here, the authors surveyed a larger number of genomes than previously and looked

at the distribution of proteasome-like subunits across these genomes. In this analy-

sis, the authors demonstrate the existence of another sub-family of proteasome-like

proteins, distinct to the alpha, beta and HslV proteins. This sub-family is named

Anbu and after analysing its distribution across the tree of life, the authors con-

clude that this protein is the LUCA of the proteasome subunits superfamily. Under

this hypothesis, the predictions of the interaction tree analysis at the root refer to

the Anbu ancestor protein. In [113], homology modelling of Anbu proteins is used
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in an attempt to deduce the quaternary structure of the complexes they form. It

is argued that Anbu forms a barrel structure formed of heptameric rings, as in the

20S proteasome, as opposed to hexameric rings such as those found in HslV. The

authors then propose a strategy for determining whether the Anbu protein forms

a barrel of 4 stacked rings (as in the 20S proteasome) or 2 stacked rings (as in

HslV). However, it is not possible to determine which is the complex structure of

Anbu.

The predictions presented here are consistent with an ancestral Anbu com-

plex formed of 4 stacked rings. Such a complex would be formed of 28 subunits,

arranged in to four rings of seven, with binding sites between the subunits corre-

sponding to those found in the 20S proteasome. The only discrepancy here is the

prediction of no Alpha ring interface. This could be explained if the Alpha ring

interface was not present in the ancestral complex; alpha subunits could main-

tain a ring like structure through their association to the beta ring via interaction

clusters 4 + 5. The alpha ring interface could then have evolved later in the 20S

proteasome in order to strengthen/refine the structure of the complex (this is ex-

actly what is predicted using the interaction tree). This hypothesis is supported

in structures of bacterial 20S proteasomes, in which the contact area of the alpha

ring interface is much smaller (e.g. Rhodococcus proteasome [114]). It is possible

that that these 20S proteasomes have an alpha subunit interaction pattern similar

to the ancestral Anbu complex.

Taken together this analysis supports the hypothesis of [113] and provides fur-

ther evidence that the LUCA proteasome-like complex was formed of the Anbu

protein, arranged in 4 stacked rings of 7. This kind of detailed, structural predic-

tion is possible because of two advantages of the method presented here: firstly,

clustering of the interactions in the complex allows independent analysis of their

evolution. Each of these clusters plays a distinct topological role within the com-
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Cluster ID Description Probability of interaction at root

1 Alpha ring interface 0.065

2 Alpha-beta interface 1 0.704

3 Beta ring interface 0.998

4 Beta-beta interface 1 0.998

5 Beta-beta interface 2 0.999

6 Alpha-beta interface 2 0.948

Table 3.4: Probabilities of interaction at the root of the protein phylogeny.

plex and so analysis of their evolution individually allows insight in to the evolution

of the quaternary structure of the complex. Secondly, the method takes in to ac-

count the distinct sequences of the proteins whilst making predictions. To give a

good example, the evolution of both the alpha and beta subunits in eukaryotes

is explained by 6 consecutive duplications to produce 7 paralagous subunits. A

method such as [87], postulates a uniform probability of PPI rewiring after each of

these duplications and so the inferred pattern of PPI rewiring would be identical

for both the alpha and beta rings in this case. The method presented here bases

the probability of rewiring on changes in the sequence, this allows detection of the

differing rewiring behaviours of the alpha vs. beta subunits.

Two archaeal species with an unusual number of proteasome subunits were

included in this analysis: H volcanii has two alpha subunits compared to most ar-

chaea which have one, P furiosus has 2 beta subunits. These species were included

to test the interaction tree’s ability to deduce the role of the extra subunits in the

assembly of the complex. In H volcanii, the predictions of interaction are very

similar (using a probability cutoff of 0.5) for the 2 possible alpha subunits: both

are predicted to bind to the beta subunit and both are predicted to interact with
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Figure 3.8: Reconstructed history of interactions in the proteasome. This figure shows

the species tree relating all genes in the analysis with a number at each node representing

the number of predicted interactions across all 6 interface clusters. The predictions are

obtained by placing a 0.5 probability threshold on the results and marking every interaction

with a probability higher than this as a positive prediction. Species for which we have

interaction data in the form of the structures listed in Table 3.1 are marked with a black

circle. Edges on the tree are marked red if interactions are lost along this branch, blue if

they are gained and purple if interactions are both lost and gained along the branch with

the edge width representing the number of such events.

105



themselves and each other in forming the ring of alpha subunits. This prediction is

consistent with experimental results showing that both alpha subunits are capable

of forming rings within the 20s proteasome [115].

In P furiosus both beta subunits are predicted to bind to the alpha subunits

however the predictions for binding between the beta subunits, in forming the

catalytic ring, suggests differing roles for the two beta subunits, PF1404 (β1) and

PF0159 (β2). The probabilities for each pairing of beta subunits interacting using

the beta ring interface are shown in Table 3.5. Using a cutoff of 0.5 the method

predicts that β2 can interact with itself to form rings but β1 cannot, β1 instead

interacting with β2 to form mixed rings. This is consistent with experimental

results reporting that only β2 forms homomeric rings, with β1 being incorporated

into the structure at higher temperatures [116].

The ability of the interaction tree methodology to distinguish between the

interaction patterns of these recent duplications sets it apart from competing

methods. Firstly, the interolog method described in the previous section would

return identical predictions for the pair of beta subunits in P furiosus. Secondly,

competing interaction tree-type methods, e.g. [87] place a constant value on the

probability of rewiring in either duplicate after duplication. This means that the

inferred interaction probabilities for the duplicates are derived from the interaction

probabilities of their ancestor identically, the result being identical predictions for

the interactions of the duplicates. However, the method proposed here takes into

account the individual sequences of the duplicates, specifically the changes in the

sequences since the ancestral protein. This allows the subtle differences between

the duplicates to be recognised and used to predict the difference in interaction

patterns.
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Subunit 1 Subunit 2 Probability of interaction

β1 β1 0.278

β1 β2 0.530

β2 β1 0.301

β2 β2 0.530

Table 3.5: Probabilities of interaction using the beta ring interface (cluster 3) in P furiosus.

Note that the structure of the interaction is asymmetric and so both possible orientations

are reported.

3.4 Discussion

The first important finding in this chapter was presented in Figure 3.7. Here it was

shown that the Dcom score alone provides fairly weak ability of predicting PPIs in

the cattle 20S proteasome. However, inclusion of PPI evidence from even distantly

related bacterial species, via the interaction tree, improves these predictions. This

effect is magnified as evidence from closer species is incorporated. This result

highlights the relevant information present in protein phylogenies; PPI patterns

are often conserved by orthology relationships (and this is certainly true in the

proteasome). The modelling of the rewiring events on top of these phylogenetic

relationships allows boosting of a predictor that would not be very useful to a

predictor that is very useful, with comparable accuracy to other methods. The

success seen here echoes previous arguments that attempting to model the true

evolutionary process improves predictions of protein structure and function [117].

There is one factor central to the assembly (and evolution) of the proteasome

that is ignored by this model; that is the working of chaperones. Chaperones

are proteins that help with the assembly of multi subunit complexes such as the

proteasome but are not found in the final complex. In many cases, a chaperone’s
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main function is to prevent proteins from forming a non-functional aggregate (e.g.

[118]) but in other cases (e.g. [119]) the chaperone can be vital for the correct

assembly of the complex. That is, the complex will not assemble correctly in the

absence of the chaperone. This is true in complexes with a ring structure, for

which the chaperone can be important in determining the order of the proteins

in the ring. As such, it is not their sequence alone that determines the binding

patterns in these complexes but also the effect of the chaperones. This may make

prediction in these systems difficult.

In the final part of this chapter, some specific predictions are made about

ancestral topology of the proteasome. These predictions are made at the level of

the binding sites in the proteins and allow predictions such as what ring structures

were present in the ancestor. These predictions are easy to make from the results in

the ancestor as there is only one subunit at the root of the phylogeny. Predicting

the topology/quaternary structure in species containing several subunits is less

trivial. Therefore, an extension to this work would be to explore the feasibility of

an algorithm to infer quaternary structure from a list of pairwise scores between

proteins, for each binding site. A starter test for such an algorithm would be to

predict the topology of the cattle proteasome from the predictions presented in

this chapter.

3.5 Conclusion

This chapter has demonstrated the utility of the interaction tree approach in in-

ferring the evolution of a specific class of protein complexes. These complexes are

formed of paralagous subunits with obligate interactions between the subunits. An

obvious question now is whether the methodology can be extended to other classes

of PPI. As opposed to obligate, permanent PPIs, the other main class of interac-
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tion is the transient interaction. These interactions are temporary and prevalent in

functions that require dynamic, temporal PPIs e.g. in signalling networks. In the

next chapter, the method is extended to transient interactions. These interactions

are fundamentally different in terms of the energetics of their binding and so the

first question to answer is whether the Dcom measure described here is predictive

for this class of PPI.

109



Chapter 4

A method for predicting

transient PPIs

4.1 Introduction

Transient PPIs are an important class of interactions found within living organisms

[8], distinct from the obligate PPIs that were the subject of previous chapters.

The term transient is applied to interactions that are temporary, the component

proteins often being found separately in the cell and only coming together to

interact under some condition. This kind of PPI is utilised by the cell in situations

requiring response to some condition. For instance, sensory proteins embedded in

the cell membrane pass information of the external environment to the interior

of the cell via interactions with proteins in the cytoplasm. These interactions

are dependent on the presence of some external signalling molecule and so the

interaction will only happen under certain conditions. After the interaction has

occurred, the internal protein then disassociates from the sensory protein and then

goes on to effect some outcome. This class of interactions has been observed to
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be fundamentally different to obligate interactions in terms of the residues used

to mediate the interaction [120], [121]. Therefore, it is important to test the

robustness of the PPI rewiring model to these changes.

This chapter focuses on extending the interaction tree methodology described

previously to transient PPIs. The previous Dcom model of PPI rewiring, based

on the SCOTCH score [98], is taken as a starting point. This model worked in

the previous chapters because the SCOTCH score could successfully distinguish

interacting pairs from non-interacting pairs of proteins. As a result, tracking the

change of this score along a branch of the interaction tree allowed prediction of

rewiring events on that branch. For the model to work successfully for transient

interactions, the SCOTCH score used as its starting point needs to successfully

distinguish interacting from non-interacting pairs in transient systems. To test

the suitability of the Dcom model, the SCOTCH score is compared against several

competing metrics in order to find which is best for a model of PPI rewiring in

this case.

Several possible metrics exist for predicting PPIs. The only restriction for use

in the interaction tree is that the method be automatable and fast: when com-

puting the metric for ancestral proteins the sequence of the proteins is uncertain,

to deal with this uncertainty, a large number of sequences are sampled from a

distribution of sequences and the metric is computed in each case. This allows

computation of the mean of the metric across the samples. If the scoring system

used is not fast and automatable then this approach will not be feasible. Given

this restriction, 3 competing approaches are considered. The first uses residue level

statistical pair potentials, the second uses basic homology modelling and the last

uses a purely knowledge based approach (see Methods for details).

As a test case for these approaches, bacterial two component systems [122] are

used. Two component systems are formed of a histidine kinase (HK) embedded
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Figure 4.1: A cartoon representation of a two component system PPI. The Histindine

Kinase (HK) is embedded in the cell membrane. On receiving some external signal, this

protein auto-phosphorylates and subsequently phosphorylates a Response Regulator (RR)

via a PPI. This RR then becomes activated and goes on to produce some downstream

effect.

in the membrane and a response regulator (RR) in the cytoplasm (Figure 4.1). In

these systems, the HK receives some external signal and autophosphorylates as a

result. The transient interaction between the HK/RR allows passing of the phos-

phoryl group from the HK to the RR, activating the RR. The RR is a transcription

factor and on receiving the phosphoryl group is activated and able to interact with

the DNA, effecting some downstream response. This simple system is extremely

common in bacteria and represents the typical method by which bacteria sense

and respond to their environment. Understanding the evolution of these systems

is therefore key to understanding the evolution of bacterial sensing in response to

a changing environment.

There is an important property of these systems that makes them a good

test case for PPI prediction. In a large proportion of cases a HK is found to be
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neighbouring an RR. These pairs of co-located genes are known as cognate pairs

(illustrated in Figure 4.2)and the majority of them produce proteins that interact.

This means that a large number of examples of two component system PPIs can

be inferred from genome sequences alone, simply by finding neighbouring HK/RR

genes. Indeed, resources exist that have already performed this search [123]. In

addition, it has been observed [124] that the majority of cognate pairs only interact

with each other. This lack of crosstalk allows an equally simple strategy for finding

HK/RR pairs that are unlikely to interact; choose a HK and an RR from different

cognate pairs.

The fact that positive and negative PPI examples can be generated easily for

this system means that large training sets of PPIs can be defined, with some

confidence, and used as a basis for fitting a model of PPI evolution. Despite the

fact that many PPIs can be easily predicted using genome location, there is a

subset of two component systems that cannot be predicted in this way. These

HK/RR proteins are not paired with another RR/HK protein on the genome and

are called orphans (illustrated in Figure 4.2). For instance, an orphan HK is a HK

protein for which neither the downstream or upstream neighbour on the genome

is an RR protein. Similarly an RR protein can be an orphan. Given the lack of

syntenic information in these cases, alternative approaches to PPI prediction are

required. It is proposed that, using the cognates as a training set, a predictor can

be defined and used to predict the PPIs participated in by the orphan proteins of

a species.
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Figure 4.2: The difference between cognate and orphan two component system proteins.

Cognate proteins (top) are colocated on the genome as HK/RR pairs. These pairings

usually encode proteins that interact. Orphan HKs or RRs (bottom) are not found located

on the genome and their interacting partners can not be inferred by genome location.

4.2 Methods

4.2.1 Training data

Two training sets of two-component systems are used for benchmarking. The first

is taken from [125] and contains 1,299 pairs of two-component system proteins (a

histidine kinase and a response regulator) that are co-located in a given bacterial

genome (i.e. cognate pairs). In this training set the sequences of the histidine

kinases are aligned as described in [125] and the response regulators are aligned

similarly. The second training set is taken from [126] and contains 8,999 two-

component system cognate pairs (i.e. 8,999 histidine kinases and 8,999 response

regulators, arranged in cognate pairings) aligned as described in the above paper.

4.2.2 SCOTCH score

The first prediction method is adapted from the SCOTCH [98] method for scoring

docked protein models. This was explained in detail in Section 2.2.2 but is ex-
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plained again here briefly. To calculate the SCOTCH score we first divide the 20

amino acids into 4 groups; (GLY, ALA, VAL, LEU, ILE, MET, CYS, PHE, PRO,

TRP, TYR), (SER, THR, ASN, GLN), (LYS, ARG, HIS), (ASP, GLU). These

are the hydrophobic, polar, positively charged and negatively charged residues

respectively. We define two amino acids to be complementary if they are both

hydrophobic, both polar or one positively and one negatively charged. We start

with two protein sequences and a proposed interface between them represented as

a list of interacting residue pairs (i, j) where i refers to residue position i of the

first sequence and j refers to residue position j of the second protein sequence.

For each residue we then define the two nearest structural neighbours as the near-

est two residues in three dimensional space within the same chain in the interface.

This requires a proposed three dimensional structure for the interface such as can

be found in a solved crystal structure of the constituent chains in complex. We

then define positions i and j to be complementary if any of the pairs (i, j), (i1, j),

(i2, j), (i, j1), (i, j2) describe complementary amino acids as described above, where

i1, i2 are the nearest two structural neighbours to i and j1, j2 are the nearest two

structural neighbours to j. The SCOTCH score is then given by the fraction of

complementary pairs in the list of interacting residue pairs.

As mentioned above, to produce a SCOTCH score for a pair of proteins a

structure is needed for the interface (or at least a set of interacting residue pairs

responsible for the interaction). To do this a related interaction structure (called

the evidence structure) is used and aligned to the proteins to be scored. Then, a

4.5Å distance threshold is be applied to the evidence structure to produce a set

of interacting residue pairs. These can be used to propose the interacting residues

in the new pair of proteins by taking the residues aligned to the structure pairs in

each case.
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This score works under the assumption that during coevolution of maintained

interactions, a residue mutation going to fixation at an interface will most likely

be physiochemically complementary (e.g. hydrophobic to hydrophobic) to the

residues it interacts with. However, PPI interfaces can exhibit plasticity and this

complementarity can be maintained by nearby residues and does not have to be

maintained through specific pairs. The SCOTCH score aims to measure this co-

evolution occurring between interacting proteins and could be used here to detect

changes in interaction state as changes in SCOTCH score.

4.2.3 RPScore

Predictions are also made using the RPScore residue pair potential from [127].

The RPScore assigns to each pairing of amino acids a propensity for being within

8Å across the protein-protein interface. To score an interaction the scores for all

residue-residue pairs within this distance cutoff are added together to produce the

RPScore. To score an unlabelled pair of proteins it is necessary to have a proposed

set of residue-residue pairings; these are generated here using an evidence structure

as described above.

An adapted version of the RPScore, RPSmax, was also benchmarked. RPS-

max uses the same propensity matrix as the RPScore but each pair of interacting

positions i and j are scored as follows: firstly define i1, i2, j1, j2 as above, then take

the maximum propensity from the pairs of positions (i, j), (i1, j), (i2, j), (i, j1),

(i, j2). The maximum propensities are then added across the set of interacting

positions before. This scoring method aims to allow for some plasticity in the

structure of the PPI interface in the same way as the SCOTCH score above.
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4.2.4 MODELLER and FoldX energy

The PPI prediction methods described so far do not explicitly model the 3D struc-

ture of the interaction; instead protein alignments are used to define residue-residue

pairs in pairs of proteins that are equivalent to the residue-residue pairs responsi-

ble for maintaining an interaction in some related evidence structure. One obvious

limitation here is that the residue-residue pairs important for the PPI may be dif-

ferent in the unlabelled protein pairs when compared with the evidence structure.

One approach that could model these differences is homology modelling, in which

a template PPI structure is used to model the 3D structure of the potential inter-

action between two proteins.

This approach is tested using the MODELLER homology modelling suite [128]

to produce a predicted 3D structure for the interaction between two proteins.

Subsequently, the FoldX [129] energy function is used to estimate the change in free

energy on binding of the two proteins. This quantity is then used to discriminate

between PPIs and non-PPIs: true PPIs should have a reduction of free energy on

binding.

4.2.5 Likelihood Score

The final PPI prediction method uses the training sets of interactions described

in Section 4.2.1 to characterise the two-component system interaction. Firstly,

a 4.5Å distance threshold is applied to a known structure of the interaction (in

this case a known two component system interaction), as described above to give

a list of interacting residue pairs i, j responsible for mediating the interaction.

The sequences from this evidence structure are aligned to the training alignments,

allowing comparison of the interacting pairs for all interactions in the training set.

To begin the frequency of observing amino acids A, B at a pair of interacting
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positions i, j can be calculated from the training set of m interactions as

Fi,j(A,B) =
1

202 +m

( m∑
k=1

δi,j,k(A,B) + λ
)

(4.1)

where δi,j,k(A,B) = 1 iff there is amino acid A at position i, B at position j in

interaction k from the training set and λ is a pseudocount (equal to 1 throughout

the applications in this thesis) . This can be compared to the frequency of observing

amino acid A in column i of the alignment

Fi(A) =
1

20 +m

( m∑
k=1

δi,k(A) + λ
)

(4.2)

allowing definition of the log likelihood ratio

LLi,j(A,B) = log
Fi,j(A,B)
Fi(A)Fj(B)

(4.3)

which describes the likelihood of observing residues A and B at positions i, j

due to an interaction between the proteins as opposed to by chance in two non-

interacting proteins. This score can then be added across all i, j pairs to give a

likelihood of interaction for a given pair of sequences as

LLscore =
∑
(i,j)

LLi,j(Ai, Bj) (4.4)

where Ai is the amino acid at position i and Bj is the amino acid at position

j. It is known that amongst the interacting residue pairs i, j there are some

that are more important for maintaining the PPI. Previously the importance of

pairs has been described using Mutual Information (MI) calculations to identify

positions having correlated positions. In order to include this information, another

likelihood score is calculated using the MI to weight the contribution from each i,

j residue pair, as
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Species HK proteins RR proteins

Bacillus subtilus 35 33

Bacillus anthracis 46 46

Bacillus cereus 50 45

Clostridium acetobutylicum 35 40

Clostridium dificile 47 53

Clostridium botulinum 36 42

Clostridium perfringens 29 24

Table 4.1: List of species included in the analysis of this chapter and the number of

histidine kinase and response regulator proteins included from each. These represent all

known two component system proteins from these 7 species and the set for each species

contains both cognate and orphan proteins (the difference between cognates and orphans

is explained in the introduction to this chapter and Figure 4.2)

MILLscore =

∑
(i,j)MIi,j ∗ LLi,j(Ai, Bj)∑

(i,j)MIi,j
(4.5)

where MIi,j is the mutual information between columns i, j in the training

data, calculated as described in [130].

4.2.6 Test data

Several further datasets are then used to test the scoring methods. All HK/RR

proteins, as classified in MISTdb [123], were downloaded for all species listed in

Table 4.1. These proteins are used as a further test set and also as a system in

which to generate testable predictions. In addition, mutated sequences of a set of

E coli two component proteins are used, as described in [131].
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4.3 Results

For this analysis we use and compare two training sets of two component system

interactions taken from [125] (referred to as the Laub training set) and [126] (re-

ferred to as the Weigt training set). As explained in detail in the introduction to

this chapter, it has been observed that HK and RR proteins have a high specificity

with a given HK often only observed to interact with one RR (and vice versa)

and this pairing of genes being colocated on the genome. These pairs are termed

cognate pairs and it has been noted that crosstalk between these cognates is rare

[124]. The training sets are both made entirely of examples of these cognate pairs

of HK/RR that are assumed to be interacting. Each cognate HK/RR pair is con-

catenated to form one long sequence and these sequences are aligned to form the

training sets (the sets were each provided as aligned by their authors). These sets

will act as training and testing data in benchmarking various methods for predict-

ing interacting pairs from the sequences of the individual components. To begin

these training sets are compared in terms of their size and overlap (Figure 4.3)

and in terms of their redundancy (Figure 4.4).

It is clear that the two training sets differ in their size, composition and align-

ment. To test the effect of these differences on prediction of interaction, all bench-

marked prediction methods were applied to both training sets and also to both

training sets restricted to their intersection (as described in 4.4). 6 prediction

methods are tested in their ability to predict two component PPIs, they are re-

ferred to as SCOTCH, RPScore, RPSmax, FoldX, LLscore and MILLscore (see

Methods). The SCOTCH, LLscore and MILLscore methods require a proposed

PPI structure in order to calculate. For this, the 3DGE pdb structure (a two com-

ponent system interaction from Thermatoga maritima) is used. These methods

require a list of interacting residue pairs across the protein-protein interface. The
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8256 556743

Weigt

Laub

Figure 4.3: Venn diagram of the two training sets of aligned two component system inter-

actions used in this paper. Each interaction is a pairing of a Histidine Kinase(HK) and a

Response Regulator(RR) and two interactions are considered identical if the GI numbers

of both the HK and RR match between the two pairs. The training set from Weigt et al

is considerably larger than that from Laub et al, however there are still pairings present

in the smaller set that are not in the larger set.
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Figure 4.4: Redundancy in the training sets; the percentage of sequences left in each

training set is shown after filtering at various sequence identity thresholds. Results are

shown for the Laub set, the Weigt set and for each set restricted to the intersection (the

743 cases shown in Figure 4.3). Whilst the intersection contains the same set of sequence

pairs, the intersection sets can still differ in how the sequences are aligned. It is clear

that the Weigt training set contains a higher level of redundancy, with around 50% of the

sequences having over 95% similarity to another. However, even when restricting each set

to the 743 intersection cases differences are seen in the redundancy; the Weigt set still

appears more redundant. As the intersection contains the same set of sequences in each

case, this difference is due to the differing alignment in each case and shows that the Weigt

alignment tends to align identical residues more often.
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required pairs are defined, as in previous chapters, using a 4.5Å distance threshold,

producing 38 interacting residue pairs from the 3DGE structure. These pairings

are between 19 distinct residues in the histidine kinase and 15 residues in the re-

sponse regulator. The same templating procedure as previously (Figure 2.7) is

used to map sequences to the template 3DGE structure to calculate the SCOTCH

score, the LLscore and the MILLscore. The LLscore and MILLscore methods also

require a training set of interacting sequences (whereas the other methods require

no training). Thus in order to benchmark the 6 methods on the same test data,

the following approach is taken for each training set: the training set is divided

in to 10 equal parts, a part is chosen in turn to be the test set, the other 9 parts

are used as a training set for the LLscore and MILLscore. The test set contains

only positive examples, random selection of pairings from the test set is used to

generate an equal number of negative examples which are added to the test set.

All 6 scores are evaluated on the test set, the results recorded, then a new test set

is chosen and the process repeated until all 10 parts have been used as the test

set. This allows construction of a ROC curve for each of the 6 prediction methods

across each of the 4 training sets, Figure 4.5.

The SCOTCH scoring method was used in the preceding chapters as a basis

for predicting rewiring in obligate protein complexes. This was successful as the

score can discriminate between interacting and non-interacting proteins in these

systems. However, the SCOTCH score does not perform well in predicting these

transient PPIs. One hypothesis for this difference is that the SCOTCH score can

detect the hydrophobic pairings that are common at obligate interfaces. In the

case of transient interactions there tends to be a smaller set of specific contacts

that the coarse grained SCOTCH score may not be detecting.

The FoldX score also performs badly. This score is based on the change in

free energy on binding calculated from a homology model of the interaction. The
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Figure 4.5: ROC curve for each of the 6 prediction measures (plus a straight line showing

random prediction) across the 4 training sets. The likelihood based methods produce

consistently better results with the MILLscore marginally better in some cases.
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homology model was generated in an automated fashion with no human curation

or verification. This could be leading to poor quality homology models that are

uninformative or misleading in predicting interaction.

From these results it is clear that the two likelihood based predictions, LLscore

and MILLscore give by far the most accurate predictions with the other 4 pre-

diction methods performing slightly better than random guessing. MILLscore

performs marginally better than LLscore and although this is not the case for

the largest training set (weigt, bottom left Figure 4.5), these two scores perform

equally well here.

A similar predictive method (to MILLscore) was recently employed in [126] to

successfully predict interactions between HK and RR domains, given the fact that

MILLscore is consistently the best performing predictor, it remains to ask how it

compares to this approach. The full test data from this paper was unavailable, and

so to compare the method presented here, predictions were made, using MILLscore,

for two specific examples given in [126]. Firstly, predictions were made for the

orphan two component systems of Bacillus subtilus and secondly for the orphan

two component systems of Caulobacter crescentus.

4.3.1 Orphan Two Component Systems in Bacillus sub-

tilus

As mentioned earlier, many HK/RR proteins will be located adjacently on the

genome and interact solely with each other, these pairings are referred to as cognate

pairs. However, there are orphan HK and RR proteins that are not located with a

potential partner. For these orphan proteins, interactions can not be inferred based

on genome co-location and so it would be valuable to have some method to predict

the partners of a given HK/RR. The vast majority of these orphan HK/RRs are
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uncharacterised in terms of their interactions however the five orphan histidine

kinases responsible for the onset of sporulation in B. subtilius have all been shown

to interact with the Spo0F orphan response regulator. So one test of a method for

predicting the interactions of orphan two component systems would be to evaluate

the methods ability to predict these known PPIs. Previously in [126], predictions

identified Spo0F as the highest scoring orphan partner for 4 out of 5 of these

kinases.

Here, the same set of 5 orphan kinases are scored against the 4 orphan RRs

from B. subtilius using the MILLscore method, trained on the Weigt training set.

This score successfully predicts Spo0F as the partner (by assigning the interac-

tion with this RR the highest score) of all five of the kinases (Figure 4.6). Not

only does the MILLscore give improved predictions but it also obtains these in

vastly reduced computational time. The original predictions from [126] took 2

days of computer time to train the scoring system whereas the MILLscore cal-

culations take 15 minutes. This huge reduction in computation time comes as

the MILLscore method uses a template structure to estimate the residue-residue

contacts between two proteins whereas [126] estimates the residue-residue contacts

using computationally expensive direct-coupling analysis.

4.3.2 Predicting Specificity Rewiring

It has been shown experimentally that a small number of residues at the protein-

protein interface are responsible for the high specificity of two component system

interactions. Indeed it has been possible for the specificity of HK-RR pairings to be

changed by mutating a few important residues; [131] changed the specificity of the

EnvZ histidine kinase from the EnvZ/OmpR cognate pair to that of RstA from the

RstA/RstB pair, via a sequence of mutations in a small set of important residues.
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Figure 4.6: Interaction predictions for five orphan kinases in B. subtilius. Spo0F (green

triangle) is correctly predicted as the interacting partner of each of the five kinases. In B.

subtilis these interactions form part of a phosphorelay pathway in which Spo0F is phos-

phorylated by one of the kinases, then passing on the phosphate group to an intermediate

Spo0B which finally passes on to Spo0A, a downstream response regulator that initiates

sporulation. in many species (e.g. Clostridia) such a relay doesn’t exist; the HK phospho-

rylates Spo0A directly and so a good scoring method will be able to distinguish between

these two alternatives. The scores between each of the orphan kinases and Spo0A is shown

here (blue triangles); the score successfully discriminates between the two possible modes

of sporulation onset. 127



That is, after the sequence of mutations EnvZ was shown to phosphorylate RstB

but no longer OmpR. The set of residues mutated in this study are contained within

the set of residue pairings identified and included in the MILLscore procedure. To

test the ability of the MILLscore to predict changes in specificity at this resolution,

the MILLscore was evaluated after each mutation in the sequences, as presented

in [131].

The predictions of the MILLscore are shown in Figure 4.7. Each barchart

corresponds to one kinase, named according to the original paper, with wild type

kinases shown at the top and successive mutants shown below. Three residues of

the kinases were mutated from their wild type T,L,A in EnvZ and V,Y,R in RstB.

The mutants are named with the three amino acids in brackets if they differ from

the wild type i.e. EnvZ(TLR) has an arginine at the third position in place of an

alanine. Two trajectories are shown mutating the three residues of EnvZ to those

of RstB and vice versa and the CpxA/CpxR cogante pair are included as a control.

The predictions made by MILLscore (Figure 4.7) agree with the core experi-

mental findings of [131]; firstly, the cognate RR scores highest for each of the three

wild type HKs (although marginally so for the CpxA/CpxR pair). Secondly, the

control case CpxR maintains the lowest score throughout the mutations. Finally,

the sequence of mutations switches the highest scoring RR from OmpR to RstB

and vice versa, indeed the final mutant resembles the other wild type in both cases

(EnvZ(VYR) vs RstB and RstB(TLA) vs EnvZ).

4.3.3 Predicting Two-component Systems in 7 Bacte-

rial Species

Having demonstrated the applicability of the MILLscore in predicting two compo-

nent system interactions both in the training set and in some specific known cases,
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Figure 4.7: MILLscore for the mutant histidine kinases described in [124].
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predictions are now made in some unknown cases. Sequences for all HK/RR pro-

teins (as defined in MIST db [123]) were downloaded for the 7 species listed in

Table 4.1. The HKs and RRs were each then aligned using 3Dcoffee [26] with the

3DGE pdb structure as a template. This crystal structure is a two component

system from Thermatoga maritima. Each kinase can then be scored against all

RRs in a species in order to produce predictions of interaction in each species.

Before beginning, the coverage of the 7 species by each of the training align-

ments is explored as shown in Figure 4.8. The proportion of each training set being

from each of the species varies across the two training sets and in their intersection.

It can be seen, however, that the Weigt set is the only set containing representa-

tive sequences across the range of 7 species and so this training set remains the

set of choice in making predictions. It is important to mention that some of the

sequences downloaded from MIST may be present in the training set. However,

the training set only contains cognate pairs (known HK/RR partners) and so this

will only bias predictions for known pairs. Predictions of the interactions of orphan

HK/RR will not be biased in this way.

In particular, of interest here are the predictions of HK/RR pairs involved in

sporulation. The 7 species can be divided in to Bacilli and Clostridia and in each

case sporulation is initiated by activation of the orphan RR Spo0A, a conserved

RR that is easy to identify in each species due to its conserved nature. However,

due to their unconserved nature, the HKs responsible for this activation are largely

unknown. It is known that Bacillus species activate Spo0A by a phosphorelay [132]

(Figure 4.9) with the sensor kinase phosphorylating the Spo0F RR which then

transfers the phosphoryl group to Spo0A via the cytoplasmic phosphotransferase

Spo0B. In the model species B subtilus, the five orphan kinases responsible for

phosphorylation of Spo0F are known [133] (Figure 4.6), although their activating

signal is not. In Clostridia, there is a simpler model of sporulation onset; Spo0F
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Figure 4.9: A cartoon representation of the two component systems responsible for sporu-

lation onset in Bacteria. In the Bacilli a phosphorelay is used (right) and in Clostridia a

simpler, canonical pathway of two proteins is found.

proteins are easily identifiable due to their being conserved, Clostridia are lacking

Spo0F [134] and so the sensor kinases activate Spo0A directly (Figure 4.9). Some

work has been done to identify the kinases responsible [135], although the system

here is less well understood.

The identification of sporulation kinases is then a good problem to which to

apply the MILLscore. This can be done by scoring kinases against Spo0F in bacilli

and Spo0A in clostridia to look for high scoring pairs. As both Spo0F/Spo0A are

orphans, no cognate pairs exist and so computational predictions like this are

extremely useful in guiding experimentation to determine the kinases responsible.

To begin, predictions were produced for all kinases in B subtilus (Figure 4.12,

Appendix). A MILLscore was computed for every pairing of a HK with an RR in B

subtilis. These pairings are then split in to six types as described in Table 4.2. The

MILLscore performs well here in predicting the cognate pairs with 11 kinases (of 28

non-orphans) having their highest score with their cognate RR. More than 50% (17
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out of 28) have their cognate RR in their top 3 scores. To quantify the performance

of the prediction of PPIs between the cognate pairs in this species, standardised

z-scores are computed. A z-score is computed for the MILLscore of each HK with

its cognate RR, compared with the distribution of scores of the HK with all RRs

in the species. This measures the degree of separation between the MILLscore of

cognate pairs (which are known to interact) and an average MILLscore of pairs of

proteins thought not to interact. Such a z-score is not computed for the orphan

proteins in the set, as these, by definition, do not have cognate partners.

The average z-score for the cognate MILLscores across the B subtilus HKs is

1.56. Assuming that the MILLscore is normally distributed (Figure 4.10 shows

that this assumption is reasonable), this means that the MILLscore between an

HK and its cognate RR is, on average, higher than the score with 94% of the other

RRs in the species. As it is known that the vast majority of cognate pairs interact,

this shows that the MILLscore is strongly predictive of PPIs in B subtilus.

The orphan predictions also perform well here, with Spo0F being the top scor-

ing RR for 3 out of 5 of the known sporulation kinases and the second best scoring

for the 2 other known sporulation kinases. These are the same scores as seen in

Figure 4.6 except here scores against a larger set of RRs (i.e. including non-orphan

RRs) are shown. It is encouraging to see that the sporulation kinase predictions are

still accurate despite the much larger set of scores being compared; the MILLscore

is performing well for this understood model species.

Next, the same analysis is presented for Bacillus anthracis (Figure 4.13, Ap-

pendix). Here the cognate predictions are accurate with 15 of 34 kinases having

their cognate RR in their top 3 scores. These predictions are worse than those in

B subtilis, as measured by this metric. However, B anthracis has many more RRs

to score against than B subtilis and so achieving a top 3 score is harder. If the

threshold is lowered to top 5 predictions, 24 of the 34 non-orphan kinases have
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Type Description

Cognate A pairing of an HK and its cognate RR

Spo0A A pairing of any HK and Spo0A

Spo0F A pairing of any HK and Spo0F

RR orphan A pairing of a non-orphan HK and an orphan RR (not Spo0A/Spo0F)

Double orphan A pairing of an orphan HK and an orphan RR (not Spo0A/Spo0F)

Other A pairing of a non-orphan HK and a non-orphan RR (not cognates)

Table 4.2: List of six types of HK/RR pairings as shown in figure legends

their cognate RR as a top 5 scoring partner. By computing standardised z-scores

as before, the strength of the cognate PPI predictions can be compared directly

to those in B subtilis. The average z-score of the cognate predictions, calculated

as before, is found to be 1.57. This is comparable to the score of 1.56 in B subtilis

and shows that the MILLscore has similar performance in both species.

Less is known about which kinases are responsible for sporulation in B an-

thracis and so predictions here are useful to explore the possibilities and corrobo-

rate existing experimental results. Previously, [136] proposed a set of 9 candidate

sporulation kinases, based on their homology to the known B subtilis kinases (Ta-

ble 4.3). Of these 9 candidates, 8 have Spo0F in their top 3 scoring RRs, based on

the MILLscore. This shows striking agreement since these 8 kinases were the only

orphans with Spo0F as a top 3 prediction; the two sets of predictions show almost

perfect overlap. [136] went on to test the ability of some of these kinases to initi-

ate sporulation by measuring sporulation when inserted in to sporulation kinases

deficient B subtilis. Of the 7 candidates tested, 4 were able to produce sporulation

in the mutant strain. All 4 of these kinases have Spo0F in their top 3 MILLscores.

3 of the tested candidates were unable to recapitulate sporulation, however this
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B anthracis HK
Proposed as

candidate

Spo0F in

top 3 MILLscore

Experimental

evidence

BA 5029 Y Y Y

BA 4223 Y Y Y

BA 3702 Y Y N

BA 2644 Y Y -

BA 2636 Y Y N

BA 2291 Y Y Y

BA 1478 Y N -

BA 1356 Y Y Y

BA 1351 Y Y N

Table 4.3: Comparing existing evidence for PPIs between orphan kinases in B anthracis

and Spo0F. Each row describes a candidate orphan histidine kinase, proposed as likely to

interact with the Spo0F RR in [136]. It is shown which of these kinases has Spo0F in its

top 3 scoring RRs and which of these showed experimental evidence of Spo0F interaction

in [136]. 4 out of 7 of the kinases with Spo0F in their top 3 MILLscores have been

experimentally verified to have some interaction with Spo0F.

is not conclusive evidence that they are not sporulation kinases. The candidates

were tested only in their ability to produce sporulation in B subtilis i.e. to interact

with the B subtilis Spo0F. Based on the limited experimental data, the MILLscore

has produced accurate predictions of sporulation kinases in B anthracis.

Similar results were obtained for a third Bacillus species, Bacillus cereus. The

full set of predictions are shown in the Appendix to this chapter, Figure 4.14. The

average z-score of the cognate predictions was again calculated and found to be

1.46 in this species. Whilst the cognate PPI predictions are slightly worse in this
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species, this score meansthat , on average, the MILLscore between an HK and it’s

cognate RR is still higher than the score between the HK and 92% of the other

RRs in the species.

Having shown the ability of the MILLscore to predict the interactions and

thereby function of orphan kinases in Bacilli species, similar analysis is now un-

dertaken for the four Clostridia species considered in this study. In this case, the

sporulation pathway is simplified (Figure 4.9) with the sensory kinases activating

Spo0A directly. Thus, to find the sporulation kinases for these species, those in-

teracting with Spo0A need to be identified (as opposed to Spo0F as earlier in the

Bacilli).

To begin, results are shown for Clostridium acetobutylicum (Figure 4.15). Here

the cognate predictions display similar accuracy as in the earlier Bacilli predictions;

16 out of 27 non-orphan kinases have their cognate RR in their top 3 MILLscores

and the average z-score for the cognate predictions is 1.45. For sporulation pre-

dictions, only one orphan kinase has Spo0A in its top 3 scores, CA C0903. Less

is known about the exact set of kinases responsible for sporulation onset in this

species. In [135], the authors attempted to determine this experimentally, by

assessing the effect of knockdowns on sporulation and then by measuring the

phosphotransfer of various kinases to Spo0A. It was found that knockdown of

CA C0323, CA C0903 and CA C3319 all reduced sporulation activity. Follow up

experiments demonstrated the phosphotransfer from CA C0903 and CA C3319 to

Spo0A, with results unavailable for CA C0323. This is partially encouraging as

the CA C0903 prediction has been experimentally verified, however, the other two

probable sporulation kinases have not been predicted by the MILLscore.

The other 3 Clostridia species show slightly decreased accuracy in predicting

cognate pairs; the average z-score for cognate predictions is 1.40 in C botulinum,

1.36 in C difficile and 1.36 in C perfringens. Considering the predictions for
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the orphan proteins, these other 3 Clostridia do not generally show any strong

predictions for interaction with Spo0A. The exception is perhaps C difficile, in

which Spo0A is in the top 3 MILLscores for 4 orphan kinases (CD0576, CD1492,

CD1579, CD2492). So it appears that the MILLscore is less effective in uncovering

the sporulation pathway in Clostridia as compared to Bacilli. This is illustrated

in Figure 4.10. This figure shows the distribution of scores across the six types of

HK/RR pairs described in Table 4.2, across Bacilli and Clostridia. The distribu-

tions have the same colour coding as the scatter plots in this chapter (e.g. Figure

4.12) .Here it can be seen that in the Bacilli, there are some high scores (> 0.5) for

cognate pairs and high scores for some kinases against Spo0F but no high scores

against Spo0A. This is as expected given the structure of the sporulation pathway

in Bacilli.

In contrast, in the Clostridia species, high scores are only seen within the

cognate pair group. The distribution of Spo0A scores does not extend past the

0.5 mark, i.e. there are no strong predictions of Spo0A interacting kinases in

Clostridia, as we would hope to find. There are two immediate possible explana-

tions for this; firstly, there could be something different about the Spo0A proteins

that make them hard to predict. This could be the result several factors includ-

ing a different structure of the interaction with Spo0A, a bias of the training set

against detecting Spo0A interactions or poorer alignment of the Spo0A proteins.

Secondly, there could be something hard about predicting interactions of the or-

phan kinases in Clostridia. For instance, it might be the case that these proteins

tend to be poorly aligned and receive inaccurate scores as a result.
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Figure 4.10: The distribution of MILLscore for the different classes of HK/RR pairings

listed in Table 4.2, in Bacilli and Clostridia
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4.3.4 Effect of Alignment Quality on MILLscore

In order to explore one possible source of inaccuracy in the Clostridia sporulation

kinase predictions it is first noted that a kinase with inaccurate predictions tends

to have lower scores across all RRs and a lower score with its known partner RR

(if there is one). For instance, CA C0323 has consistently low scores across all

RRs and a low score against Spo0A (this was identified as a sporulation kinase in

[135]). The same is true for some kinases in B subtilis for which the MILLscore

failed, e.g. BSU07580 has consistently low scores and a low score with its cognate

RR.

It is hypothesised that this behaviour could be due to these kinases being

poorly aligned.The MILLscore procedure uses a template structure to define im-

portant residue pairings for predicting PPIs. As such, it is important that the

alignment of query sequences to this template is accurate to ensure the equivalent

residues are correctly identified. If this is not the case then the score against all

RRs will be affected, leading to the behaviour outlined above. In practice, query

sequences will be placed in a multiple alignment with the sequence from the tem-

plate structure. As such, the alignment of each query sequence to the template

can be assessed in terms of the robustness of alignment of the sequence, within

the multiple alignment.

To evaluate the effect of alignment quality on these scores, the GUIDANCE

score method [137] is used to measure how robustly each sequence is aligned within

the multiple alignment. The GUIDANCE score is calculated by perturbing the or-

der in which the sequences are aligned to produce the multiple alignment. This

produces an ensemble of alignments from which a measure of how consistently

each sequence is aligned is calculated. This is the GUIDANCE score and serves

as a measure of how robustly aligned each sequence is.
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The GUIDANCE score of each aligned protein can then be compared to its

MILLscore with its cognate and also to its mean MILLscore (Figure 4.11). This

can be done for both HK and RR subunits. Assuming that each two-component

subunit interacts only with its cognate, a useful predictor of specificity would

assign the interaction with the cognate a higher score than with non-cognate.

As expected, the MILLscore does so, however its ability to do so appears to be

dependent on alignment quality; the robustly aligned sequences have higher scores

with their cognate and a higher separation against the average score. Although the

HKs are universally less robustly aligned than the RRs, as shown by the difference

in GUIDANCE scores between the two groups, this relationship is true for both

HKs and RRs.

4.4 Discussion

Recently, a similar approach to the MILLscore was described in [126]. The test

set used in this paper was unavailable for comparison, however, several specific

examples were described in [126], to which the MILLscore can be applied. The

MILLscore produces more accurate predictions of the partners of 5 orphan ki-

nases in B. subtilus. The accuracy of the two approaches being similar, a big

advantage of the MILLscore is the time of computation. The previously described

approach uses an expensive computational approach (∼2 days) to estimate from a

training alignment, the residue-residue pairings important for mediating the PPI.

The MILLscore estimates these pairings directly from a template structure tak-

ing around 15 minutes for a similar computation. The obvious downside is the

requirement of a template structure, however, for many well studied systems for

which a large training set exists, interaction structures are available for at least 1
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Figure 4.11: Comparison of Guidance alignment scores with MILLscores against cognate

and average partners for both HK and RR subunits. The top frame shows, for each

histidine kinase in the data set, the average MILLscore across all RRs in the same species

(red points). The MILLscore for that kinase with it’s cognate is also shown in blue for

HKs having cognate pairs (i.e. there are no blue dots for orphans). We can see that as

expected, cognates are scored higher than average in the majority of cases. However, this

is less true of proteins that are hard to align. The x-axis shows the GUIDANCE score

and it can be seen that the gap between average and cognate scores is lower for proteins

with a low GUIDANCE score (i.e. they are hard to align). A similar pattern is seen when

considering the alignment of RR proteins (bottom frame)
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PPI.

Two component systems display high specificity, with most pairings of HK/RR

observed to be exclusive. It has been observed that a small number of residues are

responsible for maintaining this specificity and pairings can be rewired by a few

mutations at these positions. The ability of the MILLscore to predict the effect of

individual substitutions on PPI specificty was tested by comparison of MILLscore

predictions with the results from [131]. In [131], a sequence of mutations was

shown to convert the specificity of the RstA HK in E. coli to that of the OmpR

HK and vice versa. The MILLscore can accurately recapitulate the effect of this

sequence of mutations on specificity, however the specificity at intermediate steps

along the sequence appears to be less accurate.

One obvious application of the MILLscore, outside of its use for the interaction

tree, is prediction of interactions between orphan kinases and response regulators

in two component systems. The ability of the MILLscore to recapitulate the

interactions of known sporulation kinases in B subtilis was shown. Predictions

of interactions were then made for the orphan components in several Bacilli and

Clostridia species. In many cases, such as the prediction of sporulation kinases

in B anthracis, the MILLscore agrees with the available experimental evidence.

In other cases, such as the prediction of interaction for the orphan kinases of C

acetobutylicum, the agreement is not as strong. It is hypothesised that one possible

contribution to the failure of the MILLscore in some cases could be the unreliable

alignment of some kinases. It is then shown that the MILLscore is indeed sensitive

to alignment quality, as would be expected given the reliance on aligning query

sequences to a template structure. This could present a problem with hard to

align sequences. However, this also means that higher confidence can be assigned

to predictions of well aligned sequences, as measured by GUIDANCE.
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4.5 Conclusion

In conclusion, the MILLscore method is a fast and accurate approach to predicting

transient PPIs. The accuracy of this approach in predicting bacterial signalling

interactions is shown to equal that of [126] while the MILLscore is two orders of

magnitude faster . This speed up comes as the result of using available structural

information to inform predictions and so is only possible when such a structure is

available. The sensitivity of the predictions to alignment quality is demonstrated.
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Species Average z-score of cognate PPI prediction

Bacillus subtilus 1.56

Bacillus anthracis 1.57

Bacillus cereus 1.46

Clostridium acetobutylicum 1.45

Clostridium dificile 1.36

Clostridium botulinum 1.40

Clostridium perfringens 1.36

Table 4.4: The average z-score for the MILLscore of cognate HK/RR pairs in each of the

7 species included in the analysis. Although predictions are stronger in some species, in

all cases these scores mean that (on average) the MILLscore of an HK with it’s cognate

RR is higher than 90-94% of other RRs from that species.

4.6 Appendix : Full Predictions in 7 Bacte-

rial Species

This appendix contains the plots of two-component system predictions in the 7

species, presented in the same order as listed in Table 4.1. The standardised z-

scores of the prediction of PPIs between cognate HK/RR pairs are shown in Table

4.4. The calculation of these scores is explained in the main text.
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Figure 4.12: MILLscores for the full set of histidine kinases from Bacillus subtilis scored

against the full set of response regulators. The scored pairs fall in to 6 categories (described

in Table 4.2). Cognate pairs are shown as red points. Each row of points shows the

MILLscore of a given histidine kinase against every RR from the species. Given that

cognate pairs interact in the vast majority of cases, a high scoring cognate (i.e. red point

to the right of the whole set of points on that row) means that the MILLscore can predict

the PPI in this case.

145



 MILLscore

hi
sk

a

BA_0272
BA_0286
BA_0559
BA_0572
BA_0576
BA_0584
BA_0650
BA_0923
BA_1118
BA_1313
BA_1351
BA_1356
BA_1456
BA_1482
BA_1498
BA_1792
BA_1802
BA_1956
BA_1976
BA_2213
BA_2264
BA_2291
BA_2560
BA_2636
BA_2644
BA_2861
BA_3007
BA_3066
BA_3230
BA_3260
BA_3702
BA_3899
BA_4223
BA_4776
BA_4832
BA_4921
BA_5028
BA_5029
BA_5067
BA_5088
BA_5105
BA_5276
BA_5503
BA_5598
BA_5692
BA_5714

−1.0 −0.5 0.0 0.5

group

other

double_orphan

rr_orphan

spo0F

spo0A

cognate

Figure 4.13: MILLscores for the full set of histidine kinases from Bacillus anthracis scored

against the full set of response regulators. The scored pairs fall in to 6 categories (described

in Table 4.2). Cognate pairs are shown as red points. Each row of points shows the

MILLscore of a given histidine kinase against every RR from the species. Given that

cognate pairs interact in the vast majority of cases, a high scoring cognate (i.e. red point

to the right of the whole set of points on that row) means that the MILLscore can predict

the PPI in this case.
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Figure 4.14: MILLscores for the full set of histidine kinases from Bacillus cereus scored

against the full set of response regulators. The scored pairs fall in to 6 categories (described

in Table 4.2). Cognate pairs are shown as red points. Each row of points shows the

MILLscore of a given histidine kinase against every RR from the species. Given that

cognate pairs interact in the vast majority of cases, a high scoring cognate (i.e. red point

to the right of the whole set of points on that row) means that the MILLscore can predict

the PPI in this case
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Figure 4.15: MILLscores for the full set of histidine kinases from Clostridia acetobutylicum

scored against the full set of response regulators. The scored pairs fall in to 6 categories

(described in Table 4.2). Cognate pairs are shown as red points. Each row of points shows

the MILLscore of a given histidine kinase against every RR from the species. Given that

cognate pairs interact in the vast majority of cases, a high scoring cognate (i.e. red point

to the right of the whole set of points on that row) means that the MILLscore can predict

the PPI in this case
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Figure 4.16: MILLscores for the full set of histidine kinases from Clostridia dificile scored

against the full set of response regulators. The scored pairs fall in to 6 categories (described

in Table 4.2). Cognate pairs are shown as red points. Each row of points shows the

MILLscore of a given histidine kinase against every RR from the species. Given that

cognate pairs interact in the vast majority of cases, a high scoring cognate (i.e. red point

to the right of the whole set of points on that row) means that the MILLscore can predict

the PPI in this case
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Figure 4.17: MILLscores for the full set of histidine kinases from Clostridia botunlinum

scored against the full set of response regulators. The scored pairs fall in to 6 categories

(described in Table 4.2). Cognate pairs are shown as red points. Each row of points shows

the MILLscore of a given histidine kinase against every RR from the species. Given that

cognate pairs interact in the vast majority of cases, a high scoring cognate (i.e. red point

to the right of the whole set of points on that row) means that the MILLscore can predict

the PPI in this case
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Figure 4.18: MILLscores for the full set of histidine kinases from Clostridia perfringens

scored against the full set of response regulators. The scored pairs fall in to 6 categories

(described in Table 4.2). Cognate pairs are shown as red points. Each row of points shows

the MILLscore of a given histidine kinase against every RR from the species. Given that

cognate pairs interact in the vast majority of cases, a high scoring cognate (i.e. red point

to the right of the whole set of points on that row) means that the MILLscore can predict

the PPI in this case
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Chapter 5

Reconstructing PPI history for

transient interactions

5.1 Introduction

Previous interaction tree applications have considered transient interactions (in

much the same way as permanent interactions) but have assigned constant prob-

ability of rewiring events at each step of evolution. This assumption is clearly

wrong and leads to very coarse grained models that may miss the finer detail. For

instance, the previous model of [87] assigned a constant probability of rewiring

after a duplication/speciation event and used this in an interaction tree frame-

work. This was used to model PPIs in the proteasome complex, producing a dense

set of predicted PPIs amongst the proteasome subunits. The authors argued that

the detection of such a clustered set of PPIs shows the models ability to detect

protein complexes (as densely connected areas of a PIN). While this is certainly

true, there are many situations in which the fairly coarse grained question “What

are the protein complexes?” is replaced with the finer grained question “What are
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the interactions within the protein complexes?”. Quite clearly, the PPIs within

the proteasome do not form the densely connected set described in [87], on av-

erage a yeast proteasome subunit interacts only with 5 others, not with every

other subunit in the complex. In order to model the rewiring within a complex, a

model is required that can assign probabilities of rewiring independently for pairs

of proteins, based on their sequence change during evolution.

In chapters 2 and 3 such an approach that avoids assigning constant prob-

abilities to rewiring events was described and applied to model successfully the

evolution of obligate/permanent PPIs within a protein complex. This method

assigns probabilities of rewiring based on the sequence change seen at the protein-

protein interface allowing a more detailed model of PPI evolution. The method

of assigning probabilities here is based upon tracking the evolutionary change in a

simple measure of physicochemical complementarity that is predictive of interac-

tion between proteins, in the obligate examples. In the last chapter, it was shown

that this approach does not generalise to transient interactions (in particular, two-

component systems), as the previously used scoring measure is not predictive of

rewiring events in transient systems.

In the previous chapter, a major step in generalising the interaction tree ap-

proach was made. The MILLscore was shown to be able to predict transient

PPIs quickly and accurately, making it a good candidate to replace the use of the

SCOTCH score used in chapters 2/3. The MILLscore can be used to predict PPIs

between proteins of one family with proteins from another family. For instance,

given an alignment of proteins from family A and an alignment of proteins from

family B, which A-B pairs interact? The ability to produce predictions is depen-

dent on the existence of a known structure of a PPI and a set of pairs of A-B

sequences known to interact. These stipulations restrict the class of problems that

the MILLscore can be applied to, however there are systems of interest fulfilling

153



these requirements. For this chapter, the two component systems will remain the

PPI family of interest.

In order to complete the formulation of an interaction tree model, using the

MILLscore, the MILLscore needs to be used to describe a model of PPI rewiring.

This was acheived for the previous SCOTCH-based model by considering“hypothetical”

interactions between existing pairs of proteins. A similar approach is taken here to

define the probability of a rewiring event occuring given the change in MILLscore

between two proteins. This model can then be applied to transient PPIs, allow-

ing a protein specific (i.e. not a constant probability of rewiring) model of PPI

evolution for this class of interactions, where the previous model failed.

The model has two immediate uses which are explored here. Firstly, the model

is used to enhance, where possible, the prediction of interaction amongst existing

proteins. As shown in Chapter 3, the interaction tree can be used to produce a

probability of interaction for exsiting protein pairs. This approach is used here

in an attempt to improve on the predictions of sporulation kinases at the end of

the last chapter and progress is made in describing when this approach is suitable.

The second use is in reconstructing the history of two component system PPIs.

Of particular interest here is the evolution of the two component systems respon-

sible for sporulation in bacteria. As described in the previous Chapter, the PPIs

responsible for this process differ between the Bacilli and the Clostridia: Bacilli

employ a phosphorelay, Clostridia a single canonical two component interaction.

One open question is this: What was the ancestral state of the system? Bacilli -like

or Clostridia-like? The interaction tree offers answers to these questions and this

approach in the second part of this Chapter.
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5.2 Methods

5.2.1 Two component system sequences

The two component system remains the focus of application in this chapter. The

set of bacterial species included in the analysis of the previous chapter are once

again used as a test set when applying the interaction tree methodology. To

recap, the sequences of all HK/RR proteins were downloaded for the species listed

in Table 5.1. All HKs in this set are aligned using 3Dcoffee [26] and the RRs

are aligned similarly, using the 3DGE [138] structure from the Protein Data Bank

[104] (this is the structure of a two component system interaction from Thermatoga

maritima). This produces an alignment of 278 HKs and a separate alignment of

283 RRs to use as a test set for an interaction tree model in this system.

5.2.2 Phylogenetic trees

To build an interaction tree describing the evolution of PPIs in this set, phylo-

genetic trees must first be produced for both the HK and RR alignments. Each

of these tree describes a branching process that gives rise to the observed set of

HK/RR proteins and their sequence divergence, as shown in the multiple align-

ment. A tree was generated for both alignments using PHYML [139], with default

parameters, using 1000 bootstrap resamples to produce bootstrap values at each

internal branching node of the tree. Each internal node of a tree can be either the

result of a gene duplication event (a gene is duplicated to produce two genes in

a species) or a speciation event (a species becomes two species, with an indepen-

dent copy of the gene in each). In order to assign each node to one of these two

categories, NOTUNG [34] is used to reconcile the tree with a species tree taken

from ITOL [109]. Rearrangement of poorly supported branches to produce agree-
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Species HK proteins RR proteins

Bacillus subtilus 35 33

Bacillus anthracis 46 46

Bacillus cereus 50 45

Clostridium acetobutylicum 35 40

Clostridium dificile 47 53

Clostridium botulinum 36 42

Clostridium perfringens 29 24

Total 278 283

Table 5.1: List of species included in the analysis of this chapter and the number of

histidine kinase and response regulator proteins included from each. These represent all

known two component system proteins from these 7 species and the set for each species

contains both cognate and orphan proteins (the difference between cognates and orphans

is explained in the introduction to this chapter and Figure 4.2)
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ment with the branching order of the species tree is performed as before (reference

previous chapter), using a bootstrap threshold of 50%. This process produces a

phylogeny for both the HK and RR proteins in set of Table 5.1. The procedure

outlined in Chapter 3 can then be used to combine these trees to produce an

interaction tree.

5.3 Results

The utility of applying the interaction tree methodology to transient interactions

is twofold: firstly, the interaction tree can produce predictions of the evolution-

ary history of PPIs in a system. This allows the ancestral PPIs to be inferred.

For instance, as previously described in Chapter 4 the two component system

PPIs responsible for sporulation onset are fundamentally different in Bacilli versus

Clostridia; the Bacilli have a phosphorelay containing four proteins, the Clostridia

have just one PPI involving two proteins. An obvious question is this: what was

the ancestral state of this system? The interaction tree approach can answer this

question by predicting the PPIs present in an ancestral species.

The second use of the interaction tree is in predicting PPIs between existing

proteins. As shown earlier (Chapter 3) in the proteasome, the interaction tree

framework can use a model of PPI rewiring to predict existing PPIs. This is done

by modelling the rewiring events between some known set of PPIs and the PPIs

of interest. Previously, this approach was shown to improve predictions using a

PPI rewiring model based on the SCOTCH score compared to using the SCOTCH

score alone.

In order to apply the interaction tree in these ways to the transient interactions

of two component systems, a model of PPI rewiring based on the MILLscore needs

to be defined. Previously, such a model was produced based on the SCOTCH
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score by considering hypothetical evolution between existing pairs of proteins.

The same approach is taken here in order to relate changes in the MILLscore to

changes in interaction state between two proteins. The Weigt alignment used to

train the MILLscore is used to generate the training set of hypothetical interaction

tree branches required. This alignment consists of cognate HK/RR pairs which

are taken to be known PPIs and an equally sized set of non-interacting pairs is

generated by randomly choosing a HK and RR from the alignment, that are not

cognates. These observed interaction nodes are then combined as before to produce

a set of observed (hypothetical) interaction tree branches to be used as a training

set.

The probability of either a gain or loss of interaction between proteins, for a

given change in MILLscore , can then be calculated empirically from this training

set (Figure 5.1) in exactly the same way as done previously in Chapter 3. As

is expected, increases in MILLscore are associated with increasing probability of

gains of PPI. Conversely, decreasing MILLscore produces increasing probability of

loss of interaction. Unlike the previous SCOTCH based model, the two empirically

derived probability functions are almost perfectly symmetric about 0. This implies

that under this MILLscore model, negating the change in score switches P (gain)

and P (loss). In order to describe these functions formally, curves are fitted to the

points with the following form

P (gain|M) =
1

1 + e

(
(Ag−M)/Bg

) (5.1)

P (loss|M) =
1

1 + e

(
(Al+M)/Bl

) (5.2)

with fit parameters Ag = 2.032, Bg = 1.709 and Al = 2.313, Bl = 1.678
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Figure 5.1: The relationship between change in MILLscore and probability of rewiring

event. The points are the empirical probabilities derived as described in the text. The

curves are fitted functions of the form described in Equation 5.1
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using the nls function in R with default settings. The symmetry of the gain and

loss functions is captured in the similarity of the fit parameters in the two cases

(Ag ≈ Al and Bg ≈ Bl).

These functions define a model of the same type as the previously defined

SCOTCH model. Given an interaction tree structure, with reconstructed se-

quences at the ancestral nodes, this can model the gain and loss of PPIs during

evolution.

5.3.1 Predicting present day PPIs

The first application, of this new model of transient PPI evolution, is predicting

PPIs between existing proteins. Previously, in Chapter 3, the Dcom model was used

in this way to predict PPIs in the cattle proteasome. This provides an obvious

way to validate the model by generating predictions for known interacting pairs

and evaluating the agreement of predictions and reality. This approach can also

be used to generate new predictions of PPIs.

In the case of the MILLscore model, a similar approach is taken. Using the

two component systems of the species of Table 4.1 as a test set, the MILLscore

interaction tree model is applied to predict existing PPIs given some known input

PPIs. Producing results that can be directly compared to the predictions of the

last chapter, based on the MILLscore alone.

Unfortunately, in this scenario, the full set of 278 HKs and 283 RRs produces

an interaction tree that is too large for analysis in Matlab using the Bayes Net

Toolbox (producing an interaction tree of 23,239 interaction nodes). Instead of

considering the full phylogeny, a set of smaller, manageable analyses are under-

taken. Firstly, a smaller analysis is undertaken, in which the known two component

system interactions of B subtilis are used as input to predict the two component
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systems in B anthracis. To do this, the full phylogeny of the HKs and the full

phylogeny of the RRs are firstly pruned to contain only the proteins from these

two species (i.e. a tree of 81 HKs and a tree of 79 RRs). These are combined

to produce an interaction tree of 6,541 nodes. As before, these interaction nodes

can have state 1 corresponding to a PPI or state 0, corresponding to no PPI. As

input, all cognate pairs in B subtilis are taken as observed, as are the five known

sporulation kinases paired with Spo0A. This corresponds to assigning the corre-

sponding interaction nodes to state 1. All other pairings of a B subtilis HK and

RR are then taken to be observed with interaction state 0.

The interaction tree framework can then be used to model the PPI gains and

losses between these observed inputs and the two component proteins of B an-

thracis. This is achieved using the same message passing algorithm as before, with

the conditional probability function replaced by that described in Figure 5.1. The

output of this algorithm is a proabability for each HK/RR pairing in B anthracis

to be in state 1, i.e. to interact. This output is shown in Figure 5.2.

These predictions can be validated by assessing their ability to detect the

cognate pairs (Table 5.2). This ability can be measured, in the same way as in

the previous chapter, by examining the rank of the cognate RR amongst all scores

for non-orphan HKs. 15 out of 32 non-orphan HKs have their cognate RR as

their most probable interaction. This compares favourably with the predictions

of the previous chapter (using just the MILLscores with no interaction tree based

inference) in which 6 out of 32 of these cognates were predicted correctly. However,

when the threshold is extended to count any HK with it’s cognate RR in its top 5

scores, this situation is reversed: the interaction tree approach places the cognate

RR in the top 5 for 20 of the non orphan kinases, the previous approach in 24 cases

(Table 5.2). The average z-score of these predictions is computed (as described in

the previous chapter) and is found to be 1.37 for the interaction tree predictions.
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Figure 5.2: Interaction tree predictions of two component system interactions in B an-

thracis, using a model based on the MILLscore and the interactions of B subtilis as input.
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This shows that despite the increased number of top 1 predictions, on average the

cognate pairs are not predicted as strongly using the interaction tree method. A

score of 1.37 means that, on average, for a given HK, its cognate RR scores higher

than 91% of the other RRs.

Top 1

predictions

Top 3

predictions

Top 5

predictions
Avg Z-score

MILLscores 6 of 32 15 of 32 24 of 32 1.57

MILLscores + 15 of 32 16 of 32 20 of 32 1.37

interaction tree

Table 5.2: Comparison of two component system predictions in B anthracis using the

MILLscore alone and using the MILLscore interaction tree model. There are a total of

32 cognate histidine kinases in B anthracis so, for instace, 15 of 32 (47%) of kinases had

their highest probability of interaction with their cognate RR using the MILLscores +

interaction tree method.

It seems then that using the interaction tree approach produces more very high

confidence interactions than using the MILLscore alone. This shows the benefit of

including the phylogenetic information from the interaction tree in to predictions.

However, the predictions are also worse for a proportion of the kinases, as can

be seen by the deteriorating “Top 5 predictions” metric. It is clear then, that in

these cases the phylogenetic information is not helping the prediction, indeed it

may be misleading. To understand why the interaction tree drastically improves

predictions for some kinases and worsens for others, a successful prediction is first

examined.

BA 4776 has its cognate RR BA 4777 as its highest scoring RR. This is an

improvement from being the 8th highest scoring in the previous chapter, based
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on the MILLscore alone. The HK/RR phylogenies provide a clue as to why this

might be (Figure 5.3). The B anthracis HK BA 4776 neighbours the BSU02560

HK from B subtilis in the HK tree (left side Figure 5.3). Its cognate RR BA 4777

is neighbouring BSU02550 in the RR tree (right side Figure 5.3). This means that

the BA 4776−BA 4777 interaction node neighbours the BSU02550−BSU02560

interaction node in the interaction tree (Figure 5.4).
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Figure 5.3: Preservation of cognate relationships. The HK tree of B subtilis and B an-

thracis proteins is shown on the left, the tree of RRs is on the right. BA 4776 is highlighted

red in the HK tree and its cognate RR BA 4777 is highlighted red in the RR tree. In this

case, the orthologues of these proteins in B subtilis (highlighted in blue) are themselves

cognates.

The BSU02550 − BSU02560 node is itself a cognate pair and is included in

the input evidence. Given the short distance in the tree, this evidence is easily

transferred to the BA 4776 − BA 4777 node, resulting in a high probability of a

PPI at this node.

In contrast, the BA 1792 HK has a very low score against its cognate RR,
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BSU02550-BSU02560 BA_4776-BA_4777
Figure 5.4: As a result of the preserved cognate relationship in this example, there is a

local structure within the interaction tree as shown above. In this case the blue interaction

node is observed with state 1. The closeness in the tree of the red node means that this

information is easily transferred to this node, resulting in a useful prediction.
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BA 1791. Again, the phylogeny provides clues as to the cause of this: the cognate

relationship is not preserved in the tree structure in the same way for this pair

(Figure 5.5). It is not clear if this is because the reconstructed phylogeny is wrong

or the true phylogeny simply misleading in this case. It is clear however that the

interaction tree predictions are unreliable in such situations.
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Figure 5.5: In this example, the BA 1792 and BA 1791 cognate pair are highlighted in

red, as before. However, the closest ortholog of the BA 1792 HK (highlighted blue) has it’s

cognate located elsewhere in the RR tree (coloured blue). Conversely, the closest ortholog

of the BA 1791 RR (green) has it’s cognate HK located distantly from BA 1792. In this

case the cognate relationships are not preserved in the tree. That is, the orthologs of

cognate pairs are not themselves cognates.

This analysis also produces predictions for the interactions of the orphan ki-

nases. In the previous chapter, predictions were made based on the MILLscore, for

the orphan kinases of B anthracis. These predictions were then compared to the

experimental evidence available [136]. Now the predictions from this interaction

tree analysis can be added to the comparison (Figure 5.3). These predictions are

very consistent with the previous predictions, showing the same agreement to the
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B anthracis Proposed Top 3 Top 3 Experimental

protein as candidate MILLscore interaction tree evidence

BA 5029 Y Y Y Y

BA 4223 Y Y Y Y

BA 3702 Y Y Y N

BA 2644 Y Y Y -

BA 2636 Y Y Y N

BA 2291 Y Y Y Y

BA 1482 Y N N -

BA 1356 Y Y Y Y

BA 1351 Y Y Y N

Table 5.3: Comparison of the predictions of orphan kinases that interact with Spo0F based

on the interaction tree analysis (from Figure 5.2) with experimental evidence available from

[136]. The predictions agree precisely with the previous predictions based on MILLscore

alone and agree also with the experimental evidence.

experimental evidence. However, it is worth noting that this ability to predict the

orphan kinases disappears if the known orphan interactions from B subtilis are

removed from the input evidence, Figure 5.6 (i.e. the prediction is made based on

the cognate pairs of B subtilis alone).

5.3.2 Predicting Clostridial PPIs from a Bacillus

For the next application of the MILLscore interaction tree model, the two compo-

nent system interactions of C acetobutylicum are predicted using the same set of

input PPIs from B subtilis. To begin, the full phylogenies are pruned to contain
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Figure 5.6: Prediction of two component system interactions in B anthracis, using cognate

two component pairs from B subtilis as observed input. No information regarding the

sporulation kinases of B subtilis is included. The previous predictions of kinases that are

likely to interact with Spo0F disappear (compare to Figure 5.2), i.e. there are no green

triangles to the right of the figure.
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only two component proteins from B subtilis and C acetobutylicum. This produces

a tree of 70 HK proteins and a tree of 73 RR proteins that are combined to pro-

duce an interaction tree as before. This tree structure is then used to generate

probabilities of two component system PPIs as before but now in C acetobutylicum

Figure 5.7.

In the same way as before, these predictions can be compared to those made

in the last chapter based on the success in predicting cognate pairs (Table 5.4).

It is clear that in this case the interaction tree does not bring any benefit to the

predictions. Indeed, the phylogenetic information appears to be misleading. This is

also the case for the predictions of sporulation kinases amongst the orphan kinases:

CA 0317 has the highest probability of interaction of Spo0A but was found not to

interact with this RR in [135]. Of the three kinases linked to sporulation in [135]

(CA C0323, CA C0903 and CA C3319), only CA C0903 has Spo0A as its most

probable interactor.

So, the interaction tree can potentially produce more high confidence predic-

tions of PPIs in a Bacilli species, using known PPIs from another Bacilli as input

(whilst decreasing the average prediction accuracy). However, predictions in a

Clostridia species were not improved using Bacilli interactions as input. Consis-

tent with the findings of Chapter 3, it seems that the interaction tree works best

when PPI evidence is included from some closely related species. In this case, it

appears that evidence from the same genus is required to produce improvements

on predictions based on the MILLscore alone.

To test this hypothesis, the two component system interactions of a Clostridia

species are predicted using the known interactions in another Clostridia species.

To allow direct comparison with the above analysis, the two component system in-

teractions of C acetobutylicum are predicted using the cognate pairs of C botulinum

as the observed evidence PPIs (Figure 5.8).
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Figure 5.7: Predictions of two component PPIs in C acetobutylicum using the MILLscore

interaction tree model and the cognates in B subtilis as input.
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Figure 5.8: Predictions of two component PPIs in C acetobutylicum using the MILLscore

interaction tree model and the cognates in C botulinum as input.
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Top 1

predictions

Top 3

predictions

Top 5

predictions

Avg

Z-score

MILLscores 11 of 27 16 of 27 18 of 27 1.45

MILLscores + interaction 3 of 27 9 of 27 10 of 27 0.82

tree (B subtilis)

MILLscores + interaction 9 of 27 12 of 27 12 of 27 1.15

tree (C botulinum)

Table 5.4: A comparison of three methods of predicting the two component system inter-

actions of C acetobutylicum: Using the MILLscore alone, using the MILLscore interaction

tree model with the PPIs from B subtilis as input and using the MILLscore interaction

with the PPIs from C botulinum as input.

These predictions can be compared to the previous predictions in C aceto-

butylicum (Table 5.4). It is clear that including evidence from the more closely

related C botulinum, improves the interaction tree predictions over using evidence

from B subtilis. This is consistent with the findings in Chapter 4; including PPI

evidence from closely related species improves predictions from the interaction

tree. However, in this situation the interaction tree has not improved predictions

beyond using the raw MILLscores, even when including the closer evidence. This

is in contrast to B subtilis, in which the interaction tree increased the number

of “Top 1” predictions. One possible explanation is the different origin of two

component proteins in Bacilli and Clostridia. A higher proportion of the HK/RR

proteins in Clostridia are the result of horizontal transfer [140]. The process of

horizontal gene transfer is not modelled in the current implementation of the in-

teraction tree model. This could mean that this approach is less suitable in the
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Figure 5.9: A cartoon representation of the two component systems responsible for sporu-

lation onset in Bacteria. In the Bacilli a phosphorelay is used (right) and in Clostridia a

simpler, canonical pathway of two proteins is found.

Clostridia, producing inferior predictions compared to the Bacilli.

5.3.3 Predicting ancestral PPIs

The interaction tree can also be used to predict ancestral PPIs. As described in

the last chapter, sporulation onset is controlled by two component systems in both

Bacillus and Clostridia. In both types of Bacteria the Spo0A RR is responsible

for initiating sporulation however in Clostridia Spo0A is phosphorylated directly

by the sensory HKs, in Bacillus the sensor HKs phosphorylate Spo0F, with Spo0A

being activated downstream (Figure 5.9). One question here then is this: what was

the ancestral mode of sporulation activation? Did the sporulation HKs interact

with Spo0A directly in the ancestral species? or did the sporulation HKs interact

with Spo0F?

To test these competing hypotheses, firstly the RR phylogeny is used to iden-
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tify putative ancestral Spo0A and ancestral Spo0F (Figure 5.10). The known

sporulation interactions from B subtilis and the experimentally verified sporula-

tion interactions from C acetobutylicum [135] are used as evidence input (Table

5.5.

Species HK RR

B subtilis BSU31450 BSU37130 (Spo0F)

B subtilis BSU14490 BSU37130 (Spo0F)

B subtilis BSU13990 BSU37130 (Spo0F)

B subtilis BSU13660 BSU37130 (Spo0F)

B subtilis BSU13530 BSU37130 (Spo0F)

C acetobutylicum CA C0323 CA C2071 (Spo0A)

C acetobutylicum CA C0903 CA C2071 (Spo0A)

C acetobutylicum CA C3319 CA C2071 (Spo0A)

Table 5.5: The known sporulation PPIs used as input to the interaction tree in inferring

the ancestral sporulation interactions. This set includes the 5 known sporulation kinase

interactions with Spo0F (BSU37130) from B subtilis and the three experimentally verified

kinase-Spo0A (CA C2071) interactions from [135]

The HK and RR phylogenies are once again pruned to only include B subtilis

and C acetobutylicum. The interaction tree is then used to infer probability of

interaction with the ancestral Spo0A (aSpo0A) and ancestral Spo0F (aSpo0F) for

each kinase present in the ancestral species, at the point of speciation. The number

of ancestral kinases with aSpo0A/aSpo0F as their highest scoring partner can then

be counted (Table 5.6).

Taking just the kinases with aSpo0A or aSpo0F as their top predicted inter-

actor, only aSpo0A interacting kinases are predicted (Figure 5.11). The predicted
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Figure 5.10: Identifying ancestral Spo0A and Spo0F in the Clostridia/Bacilli ancestor.

The figure shows the RR phylogeny, restricted to B subtilis and C acetobutylicum. Spo0A

in both species is highlighted in blue, the ancestral Spo0A (aSpo0A) is identified as the

MRCA of these proteins, present in the ancestor (blue star). Spo0F from B subtilis is

highlighted in red, aSpo0F is defined as the ancestor of this protein, present at the point

of speciation in the ancestral species (red star).
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Top 1 Top 3 Top 5

predictions predictions predictions

aSpo0A 6 8 13

aSpo0F 0 1 1

Table 5.6: The number of kinases in the B subtilis/C acetobutylicum ancestor with aSpo0A

or aSpo0F in their top 1/3/5 most likely interaction partners, according to the interaction

tree model

interactors of aSpo0A include the ancestor of CA C0323/CA C0903. These two C

acetobutylicum sporulation proteins are identified as recent duplicates in the phy-

logeny and it appears that their ancestor also interacted directly with Spo0A. The

CA C3319 kinase forms a clade with the five sporulation kinases from B subtilis.

According to the phylogeny, all 6 of these proteins descend from one ancestral

kinase in the ancestor species. Interestingly, this ancestral kinase has aSpo0A as

it’s most probable RR partner. The probability that this kinase interacts with

aSpo0A is higher than that with aSpo0F (0.79 vs 0.59). If the threshold is relaxed

to include top 3 and top 5 most probable RR interactors, then aSpo0F is pre-

dicted as an interaction partner of this ancestral kinase (however the interaction

with aSpo0A obviously remains more probable).

This analysis suggests several things concerning the evolution of sporulation

activation. Firstly, the ancestor of Bacillus and Clostridia used the simpler method

of sporulation activation: direct interaction with Spo0A. Secondly, the B subtilis

sporulation kinases are all descended from one ancestral kinase that interacted

directly with Spo0A. At some point in evolution, these descendant kinases in B

subtilis developed the ability to interact with Spo0F.
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Figure 5.11: The figure shows the HK tree used in the ancestral reconstruction. The

B subtilis Spo0F interacting kinases are highlighted in red, the C acetobutylicum Spo0A

interacting kinases in blue. Ancestral kinases with aSpo0A as their most likely interaction

partner, according to the interaction tree model, are highlighted with blue stars. No

ancestral kinases had aSpo0F as their most likely interaction partner.
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5.4 Discussion

In this Chapter an interaction tree model of transient PPI evolution based on the

MILLscore was defined. Unlike many previous such models, this approach relates

evolutionary sequence change directly to probability of rewiring events. This allows

probabilities of such events to be assigned independently to pairs of proteins. As

mentioned in the introduction to this chapter, such an approach is likely to allow

a finer level of detail in modelling PPI evolution.

The first application of this model was in updating predictions of two compo-

nent system interactions between existing proteins. In the previous chapter, good

predictions were obtained for two component system interactions between existing

proteins although there were cases in which prediction was failing. The interaction

tree offers one solution to this prediction problem: by allowing known PPIs to be

included as observed in the interaction tree, this knowledge can be incorporated

in to predictions, via the phylogeny. Such an approach was shown to clearly im-

prove predictions of interaction in some subset of two component systems in B

subtilis. In some cases the interaction tree approach worsens the predictions and

this seems to be the result of the phylogeny being misleading in some way. It is

hard to say conclusively if this is a failing of the model or a failure of the phylogeny

reconstruction. One possible hypothesis is that the presence of horizontal transfer

(not taken in to account by the method of phylogeny reconstruction) is leading to

incorrect phylogeny and thus incorrect predicitions.

In support of this hypothesis, the interaction tree approach performs poorly in

predicting existing PPIs in Clostridia. Analysis by [140] shows that Clostridia have

a higher proportion of two component proteins resulting from horizontal transfer.

This would result in a more incorrect phylogeny as these events are not included

and so the tree structure misleads the interaction tree algorithm to make incorrect
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predictions.

The second application of the MILLscore interaction tree model was in predict-

ing ancestral two component PPIs. Of interest here are the two component system

PPIs responsible for sporulation initiation. The model was used to infer the PPIs

responsible for this process in the ancestor of Bacilli and Clostridia. The model

predicts that the ancestor used the simpler method: the sporulation kinases inter-

acted with Spo0A directly with the more complicated activation via Spo0F being

evolved subsequently in Bacilli alone. It is worth noting that such a switch to the

complicated pathway need not happen in one step. According to the predictions,

several ancestral kinases existed that interacted with Spo0A directly. It is possible

that the majority of these kinases remained responsible for sporulation whilst one

of them evolved the ability to interact with Spo0F, with the subsequent evolution

of the phosphorelay pathway. Once the phosphorelay pathway was established,

the Spo0F interacting kinases could duplicate and diversify to respond to a mix of

different external stimuli (producing the five sporulation kinases of B subtilis. The

other canonical Spo0A interacting kinases could then be lost from the organism, at

no point interrupting the ability to sporulate and allowing the Bacteria to adapt

to a changing environment at each step.

5.5 Conclusion

This chapter has demonstrated that the interaction tree approach of Chapters 2-3

can be extended to apply to transient PPIs. Using a model of PPI rewiring based

on the MILLscore, the interaction tree can improve predictions of PPI between

existing proteins. However, there are caveats to this application. Firstly, some

nearby PPI evidence is required to make good predictions using this model. Sec-

ondly, systems in which horizontal transfers are known to exist should perhaps
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be avoided until the model can incorporate such events. The interaction tree has

also been applied to infer the history of PPIs responsible for sporulation onset in

bacteria. These results seem to suggest that the more complicated phosphorelay

approaches to sporulation onset used by some species, evolved from an earlier,

simpler system, similar to that found in the Clostridia.
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Chapter 6

Discussion and conclusions

This thesis aimed to develop and apply a method for modelling the evolution of

protein-protein interactions. PPIs are a major link in the conversion of genotype

to phenotype (Figure 6.1) and so understanding the evolution of PPIs is to under-

stand the evolution of phenotype. This understanding provides insight in to how

living organisms adapt to their environment. The interaction tree models devel-

oped in this thesis can aid in understanding the PPI evolutionary process; after

reconstructing a probable history of PPI evolution, various characteristics of this

history can be measured. The key is in developing a model that can accurately

reproduce the evolutionary history.

6.1 Advantages of the approach

As set out in the introductory Chapter, there are several limitations to existing

approaches to modelling PPI evolution, specifically there is one major drawback to

previously described interaction tree models. These models assume that after gene

duplication events, there is a constant probability of a PPI rewiring event between
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Figure 6.1: The role of protein-protein interactions in producing phenotype. DNA se-

quence (genotype) is translated to protein. The protein sequence determines the folded

3D structure of the protein. The structure of a protein determines its interaction partner

and protein interactions produce functions (phenotype) within the cell.

any pair of proteins. This probability can be estimated in various ways and the

resulting models have been used to successfully model PIN evolution and predict

protein complexes. In [87] such an interaction tree model was used to predict

protein complexes within PINs, the resulting complexes were almost completely

connected subgraphs (this is far from the true, sparse pattern of interactions).

Whilst this is suitable for the task of predicting complex membership, it highlights

the drawback of the simple model; it is hard to model the rewiring events within

a complex (or some similar closed system of PPIs). As all proteins are treated

identically by the model, there is no distinguishing the pattern of gain and loss at

this level of detail.

Obviously the proteins modelled are different and what makes them different is

their differing sequences. A model that defines a probability of rewiring distinctly

to a pair of proteins must do so based on the sequences of the proteins. Such a

model would represent a mapping between changes in sequences and changes in
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interaction specificity. The first attempt at using such an interaction tree model

was in [85], defining a probability of interaction rewiring between proteins given

the total number of substitutions in both proteins. This thesis aimed to expand

this approach, extending the model to apply to a wider range of PPIs than in [85].

6.2 PPI evolution in obligate complexes

The interaction tree approach was first expanded to model PPIs within large obli-

gate protein complexes. Using the proteasome complex as a test system it was first

shown that the model of [85] could not predict rewiring within protein complexes.

It was hypothesised that this model was too simplistic to capture the behaviour of

this more complex system (the model was previously applied to simple coiled-coil

interactions of bZip transcription factors). A new model was formulated, linking

changes in interaction partner to changes in the SCOTCH score, a simple measure

of physicochemical complementarity. The model assumes that the structure of a

PPI remains constant during evolution allowing calculation of the change in com-

plementarity between two proteins as their sequences change (the assumption of

conserved PPI structure is reasonable given e.g. [141]). Probabilities for rewiring

events (i.e. gain or loss of PPI) can then be defined given this change in com-

plementarity, in this case using a large training set of protein complexes. This

model has obvious advantages over previous interaction tree approaches, primarily

the model is more detailed in that it treats PPIs uniquely, as described above.

The disadvantages here are the need of a known structure of the PPI family be-

ing modelled and the increased computational time needed, compared to simpler

approaches.

This model was then applied to reconstruct the history of rewiring within

the proteasome complex, given a set of known proteasome structures. The first
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outcome of this is predictions of PPIs amongst the proteasome subunits of species

for which no structure has been measured. Based on the validation in Chapter

3, these predictions appear to be reliable, especially when some phylogenetically

“nearby” structure is available. The case of prediction in the proteasome may be

complicated by the role of chaperone proteins in the formation of the complex.

These proteins influence the order in which subunits bind to form the complex

and influence the specificity of interaction between the subunits [119] [142]. As

such, it is not the sequence of the proteins alone that determine the PPIs and the

model may be ignoring an important determinant of interaction. A larger analysis

comparing predictions in complexes with/without chaperones would gauge the

extent of their detrimental effect on prediction.

The predictions themselves come in the form of probabilities of interaction

between each pair of proteins in a species. These can be converted to predictions

of interacting pairs by placing a threshold on these probabilities (say all pairs with

interaction probability > 0.5 are classified as interacting, for instance). However,

the resulting set of PPIs may not form the correct topology of the complex e.g.

in forming the rings of the proteasome. One obvious question (and opportunity

for further development) is this: can the quaternary structure of a complex be

inferred from these probabilities, given some “known” topology for the complex.

This is clearer with an example; if it is assumed that a eukaryotic proteasome is

formed of four stacked heptameric rings, can a probable structure be inferred from

a set of pairwise interaction probabilities? An example of this problem is given in

Figure 6.2

The second outcome of the analysis is a predicted history of PPIs in the pro-

teasome. This kind of reconstruction can potentially answer questions of how

protein complexes have evolved. Specifically, [79] predict that a complex such as

the proteasome is either descended from an ancestral dimer or an ancestral ring
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Figure 6.2: Producing structural predictions from the interaction tree predictions. Here

the example of predicting an alpha ring of the proteasome is given. The output of the

interaction tree algorithm are probabilities of PPI between every pair of proteins (a, prob-

abilities shown by thickness of connection). The problem is to infer the structure of the

alpha ring structure from these probabilities. Assuming that the alpha ring consists of

seven PPIs between seven proteins, an algorithm could predict the seven most probable

PPIs as true PPIs (b). The problem here is that these do not necessarily form a ring. A

better algorithm would constrain the predictions further to produce a ring structure that

is supported by the probabilities (c).
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complex (Figure 6.3). The power of the model presented here is in clustering the

PPIs in the complex before undertaking the reconstruction. This allows the model

to distinguish between the “dimer” interfaces (clusters 2, 4, 5 & 6 from Chapter

3) and the “ring” interfaces (clusters 1 & 3 from Chapter 3) in the complex. The

model can then predict which of these interfaces was the most probable to exist in

the ancestral proteasome subunit, at the root of the phylogeny.

In the case of the proteasome, the reconstructed history fails to produce a

clear prediction of the very first proteasome interaction and so can not distinguish

between the dimer/ring hypotheses. However, the prediction does indicate that

most of the interaction interfaces found in existing proteasomes were present in the

Last Universal Common Ancestor, challenging previous assumptions that existing

20S proteasomes evolved from a simpler HslV-like complex [74]. This finding is in

agreement with a recent study asserting the existence of a related proteasome-like

protein, named Anbu. In [113], the authors assert the existence of an ancestral

Anbu protein. The results here agree with this assertion and furthermore predict a

topology for the ancestral Anbu complex: 4 stacked rings, as in the 20S proteasome.

More work needs to be done to confirm this prediction, a starting point would be

solving a crystal structure of a present day Anbu complex. The structure of this

complex could then be compared to the predicted ancestral complex, specifically

the prediction that the complex consists of 4 stacked rings with a smaller (or at

least structurally different) alpha ring interface.

6.3 Transient PPI evolution

The methods developed in Chapters 2 and 3 were specifically for application to

obligate protein complexes. Of course only a subset of proteins participate in

these permanent PPIs; many proteins form transient, impermanent complexes in
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Figure 6.3: The PPIs of the present day yeast proteasome are shown in a. The structure

of the very first proteasome complex is determined by which PPI in the complex is the

oldest. If a ring forming PPI is the oldest, then the ancestral proteasome was a ring b. If

the oldest PPI was a dimer forming interface (c), then the ancestral proteasome complex

was a dimer.
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order to perform their function. These transient PPIs are known to have different

physical and permanent properties to permanent PPIs [143] [8]. Therefore, before

these transient PPIs can be modelled, it is first necessary to check that the model

is applicable given these differences.

In Chapter 4 it was shown that the Dcom does not accurately model tran-

sient PPIs. This was shown by demonstrating that the SCOTCH measure, that

the model is based on, cannot predict transient PPIs. This is likely due to the

chemical differences of the protein-protein interface of permanent vs. transient

PPIs. For example, it has been observed that permanent PPIs tend to utilise large

binding sites composed of hydrophobic residues. This means that these PPIs are

often mediated by contacts between hydrophobic residues, which are detected as

’complementary’ by the SCOTCH scoring measure. In contrast, transient interac-

tions tend to be mediated by specific hydrogen bonding across the interface [143].

For instance, it might be the case that a hydrogen bond between a serine and a

histidine becomes impossible when the serine is replaced by a tyrosine, due to the

different shape/orientation of the side chains. However, these two situations would

be judged as equally beneficial by the SCOTCH scoring (by pairing a polar with

a polar residue). It appears then that the previous model is not detailed enough

to capture the specificity of transient PPIs.

Due to this failure of the original model, the MILLscore was developed as a

basis for a model of transient PPI evolution. Taken on its own, the MILLscore is a

method for predicting if two proteins interact, based on their sequence (although

the training of the score uses extra sources of information in the form of large

alignments and interaction structures). This method of prediction is similar in

approach and accuracy to the recently described method of [126]. The MILLscore

has a key advantage in that it is much quicker to train the scoring method (minutes

vs days). The large reduction in computational time is due to one difference: the
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method of [126] uses a complex algorithm to estimate the important pairings of

residues mediating the interaction, the MILLscore observes these pairings directly

in a known structure of a homologous PPI. This approach is successful as these

pairings are conserved during sequence evolution; the same pairings of residue

positions are often important in the PPI to be predicted as in the homologous

structure.

An obvious drawback of the MILLscore is the need of a solved, homologous

crystal structure. In [144] it was estimated that a quarter of single domain protein

families have a solved crystal structure. Obviously, the coverage of PPIs in terms

of structures will be less than this, simply given the number of pairings of protein

families producing PPIs. Nevertheless, structures do exist for enough interactions

to make the MILLscore applicable in a number of cases. For instance, [145] iden-

tified a network of 873 yeast proteins, having 1,269 interactions, each of which

had a homologous interaction structure in the PDB. It is also worth noting that

in cases of interest where no structure is available, the scoring method of [126]

could be applied as a replacement of the MILLscore, in order to produce a similar

interaction tree model.

It is worth mentioning here that there are a range of other PPI prediction

methods that were not considered as a basis for the interaction tree model. In

particular there have been several attempts to use machine learning classification

to predict PPIs. This has the advantage of not needing a structural example of

a homologous PPI. However, it appears that this type of approach is good for

determining co-complex membership or functional association but not suitable for

determining direct, physical interaction [146]. In this thesis, the aim was to model

direct, physical interactions and their change within protein families. It would

seem that these general, machine learning approaches are not a good choice of

tool in this case.
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The MILLscore certainly does prove useful in predicting transient PPI specifici-

ties in two component systems. Many HK/RR proteins come in pairs, colocalised

on the genome, called cognate pairs. These cognate pairs interact with each other

to perform some function (for instance the EnvZ/OmpR cognate pair is responsi-

ble for osmoregulation in E coli [147]) and the majority of cognate pairs interact

only with each other [124]. Given this set of easily determinable interactions,

the knowledge to be gained using the MILLscore is in prediction of interactions

amongst orphan HKs and RRs. These are HK/RR proteins that are not colocalised

with an interaction partner, many having unknown interactions.

In these orphan cases the MILLscore has made several testable predictions.

Particular attention was paid to prediction of orphan HKs responsible for sporu-

lation onset via their interaction with the RRs Spo0A or Spo0F. The predictions

in bacterial species for which experiments are yet to be performed can be used

to guide the search for sporulation kinases in these species. For instance, in B

cereus, 4 orphan kinases have Spo0F as their highest scoring RR partner (Table

6.1). These 4 orphan kinases would be a good place to start in searching for the

HKs responsible for sporulation in this species. This could be investigated further

by gene knockdown to ascertain the effect on sporulation (as in [135]) or through

direct phosphotransfer assays (as in [131]). Similarly, there are 3 clear predictions

of sporulation kinases in C dificile and 1 in C perfringens. These predictions high-

light the role of computational PPI predictions in guiding efficient experimental

design.

In Chapter 5, the MILLscore was used as a basis for an interaction tree model

of PPI evolution. It was first investigated whether the interaction tree framework

could improve the prediction of existing PPIs. It was not clear if this is the case,

with some predictions appearing to be improved but others not. One possible

reason for the failure of the interaction tree is the failure to model horizontal
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Species Sporulation Kinase Target RR

B cereus BC1340 Spo0F

B cereus BC2619 Spo0F

B cereus BC4007 Spo0F

B cereus BC4771 Spo0F

C dificile CD0576 Spo0A

C dificile CD1492 Spo0A

C dificile CD2492 Spo0A

C perfringens CPF 1523 Spo0A

Table 6.1: The specific predictions of sporulation kinases made by the MILLscore. These

predictions consider orphan kinases in each species only. Reported are all orphan kinases

in a species for which Spo0A or Spo0F were the highest scoring RR. Refer to the appendix

of Chapter 4 for visualisation of these predictions.
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Figure 6.4: Horizontal gene transfer, shown on a species tree. In canonical, vertical evolu-

tion (a), genetic material is passed from organisms to their offspring and the relationship

of the genes follow the relationship of the species tree. However, it is possible that genetic

material is passed between species, in a process called horizontal transfer (b). This is es-

pecially common in bacteria and leads to genetic relationships that do not follow a species

tree.

transfer (Figure 6.4). Horizontal transfer is especially prevalent in Bacterial species

as are analysed here, although further investigation would be needed to show

the detrimental effect on prediction of this process. Although not implemented

now, horizontal transfer could be included in the model. The latest version of

the NOTUNG [34] package allows prediction of horizontal transfer, as do other

described reconciliation algorithms [148]. Given a phylogeny including predicted

horizontal transfers, the interaction tree construction algorithm could then be

modified slightly to incorporate this new type of event.

The interaction tree was also applied to predict the ancestral interactions re-

sponsible for sporulation onset. Here, a clear prediction was made: the ancestral

species had HKs that phosphorylated Spo0A directly (as in present day Clostridia)

as opposed to the more complicated phosphorelay system. In order to test this fur-

ther, a larger phylogenetic analysis could be undertaken to ascertain if components
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of the phosphorelay were present in the ancestral species. The phosphorelay con-

sists of a HK, the RR Spo0F, the phosphotransferase Spo0B and the RR Spo0A,

with the phosphate group passed in that order. If the ancestral species can be

shown to lack Spo0F and/or Spo0B, through a phylogenetic analysis, then this

would support the argument that the phosphorelay was not present in the an-

cestor. The ancestral predictions could also be tested further through recreating

the predicted ancestral Spo0A (aSpo0A) and Spo0F (aSpo0F), based on their re-

constructed sequences from the analysis. The same could then be done for the

predicted ancestral sporulation kinases and a phosphotransfer assay used to con-

firm the predicted ancestral interactions.

In retrospect, given the versatility of the MILLscore (it is agnostic to the

chemical differences of permanent vs transient PPIs for instance) it would be in-

teresting to return to permanent complexes and apply the MILLscore here. Having

a generally applicable method that can be applied across several classes of PPI is

appealing and the MILLscore is a good candidate for such a model. Given such a

generally applicable model of PPI evolution, it could then be applied to study PPI

evolution at the network level. This would give an interaction tree model of PIN

evolution, similar to [86] for instance, but with a much more detailed predictive

model of the PPI rewiring events. Given the need of a structure to compute the

MILLscore a starting point would be the dataset of [145]; a PIN with an interac-

tion structure associated with every edge. The MILLscore also requires a training

alignment of interacting protein pairs for each edge of the network. A starting

point here could be identifying extended sets of paralogs for each node of the PIN

(using [149] for instance) and then using publicly available PPI datasets such as

BIOGRID [150] or DIP [151] to identify interacting pairs of sequences from these

sets, for each edge. These paired sequences could form training alignments, giving

a trained MILLscore for each edge of the PIN.
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In summary, the interaction tree is a versatile methodological framework, useful

for modelling both transient and permanent PPIs. It has two main uses: predic-

tion of existing PPIs and making specific predictions about ancestral PPIs. It is

most useful when phylogenetically close PPI evidence exists to guide prediction, al-

though some benefit is seen even when including distant evidence. The MILLscore

developed in this thesis provides accurate predictions of specificity for transient

interactions which are promising avenues for further investigation. The applicabil-

ity of the MILLscore in interaction tree modelling can not be conclusively shown

here. This may be due to horizontal transfer not modelled during the analysis;

adaptation of the method could address this.
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