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Abstract

I study a simple model of synchronisation proposed by Jensen (2008). The relevant degrees of

freedom are expected to be strictly increasing functions of time, such as the total angle swept

out by an oscillator. The model is rooted in Winfree’s mean-field model for spontaneous syn-

chronisation; some of Winfree’s basic assumptions, such as identical or nearly identical dynamics

and identical couplings, are therefore retained. I investigated the behaviour of the present model

with respect to synchronisation without and in the presence of time delay.

The mathematical treatment focuses on characterising the synchronised state as either at-

tractive or repulsive, producing a theory (which ultimately leads to a phase diagram) that

compares well with numerics. I employed a perturbative approach, linearising in small time

delays and small phase differences. The interaction between individual oscillators is captured

by an interaction matrix, which does not require further approximation, i.e. lattice structure

enters exactly. To link with established results in the literature, a mean field theory, however,

is also studied.

The main result is that these typically systems synchronise due to a time delay.
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Chapter 1

Introduction

The first four paragraphs of this section are a summary of the introduction of the book

“Synchronisation : A universal concept in nonlinear science.” by Pikovsky et al. [51].

Originating from the Greek words συν (syn), meaning together, and χρoνoς (chronos),

meaning time; the word “synchronisation" means “together in common time”. Synchroni-

sation is defined as the state when a system of oscillating objects operates in unison by

adjusting their frequencies due to their weak interaction.

Dating back as far as the seventeenth century, the synchronisation phenomenon was

first observed and described by the Dutch researcher Christiaan Huygens, who became

aware of the synchronous behaviour between two clocks on his wall while he was sick in

bed. This discovery can be found in a collection of his letters and papers, which were

reprinted in 1967 [26]. In one of his letters to his father, Constantyn Huygens, of 26

February 1665, Christiaan Huygens [27] wrote: “The two clocks, while hanging [on the

wall] side by side with a distance of one or two feet between, kept in pace relative to each

other with a precision so high that the two pendulums always swung together, and never

varied.” (translation from Pikovsky et al. [51].)

For centuries, synchronisation was also known to occur in biological systems. In 1729,

the first observation of biological synchronisation was made by Jean-Jacques d’Ortous de

Mairan [17], who discovered that the leaves of haricot beans will move up and down in

unison despite the change of environment. This phenomenon was further developed into
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a formal study of circadian rhythm, which is now well known as biological clocks in living

systems.

Over half a century ago, a synchronisation phenomenon in acoustical systems was ob-

served by John William Strutt [Lord Rayleigh] - successor of Maxwell as the Cavendish

professor of experimental physics at Cambridge. Rayleigh [56] had not only observed

mutual synchronisation or unison in sound in two distinct but similar pipes, he also

discovered the effect of quenching, or oscillation death, which is when the coupling of

the interacting system actually suppresses the oscillations. Further investigations of syn-

chronisation were done by various mathematicians and physicists, including Engelbert

Kaempfer [32], Edward Appleton [3, 4] and Balthasar van der Pol [3, 68].

A theoretical breakthrough came about in 1966 when A. Winfree pointed out that the

oscillators will remain in the vicinity of their limit cycles at all times if the oscillators are

weakly coupled. Therefore, one may ignore the amplitude variations and only consider

the oscillator phase variations. In order to coalesce the oscillators are identical and the

difference among the oscillators, Winfree assumed that the natural frequencies of the

oscillators are drawn from a narrow probability density.

In recent decades, scientists have discovered many more populations of chemical and

biological oscillators that display mutual synchronous behaviour, and realised that syn-

chronisation phenomena are abundant in science and nature. Many of these authors also

looked into the stability analyses of synchronisation. These analyses are based on Hopf

bifurcation as Hopf bifurcation gives a good description of the transition when the sys-

tem is driven away from its rest point. Frequently, one finds the rest state splits into two

branches, namely the unstable rest state and the stable oscillation.

In particular, in 1975, Peskin proposed a highly schematic model on a cluster of

10,000 sinoatrial nodes symbolising the heart’s natural pacemaker. Peskin stated two

provocative conjectures about his model: (i) the system will always turn out in synchrony;

(ii) synchronisation will occur even when the oscillators are not identical. However, Peskin

was able to prove only his first claim in the simplest possible case of considering two

identical oscillators, via an idea introduced by Henri Poincaré. Later on, Strogatz and
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Mirollo [66] invested their time in Peskin’s work and they were able to show numerically

that the system will end up synchronised. From their numerical results, Strogatz and

Mirollo reviewed Peskin’s work and suggested a more abstract model for the individual

oscillators. They proved that for any given initial condition and any arbitrary number of

oscillators, their generalised system will always become synchronised via the absorption

method, which means a sequence of absorptions will eventually lock all the oscillators.

Other examples, mostly mentioned and cited by Strogatz [43], include collective

properties in clusters of pancreatic beta-cells [61, 62], the pacemaker cells of the heart

[29, 42, 50], menstrual synchrony [30, 57] and kinematic cues [16, 60]. One of the most

spectacular examples of synchronisation in nature is the flashing in synchrony of fireflies

on an unbroken line of mangrove trees in the middle of the night in Thailand [63].
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1.1 The Winfree Model

It was not until 1967 that the mathematical aspect of mutual synchronisation or col-

lective behaviour of limit-cycle oscillators was formulated by Winfree. Winfree studied

numerical synchronisation of a population of coupled phase oscillators with different nat-

ural frequencies by modelling the interaction strength with a coupling constant [70, 71].

Winfree observed that, for the spread of natural frequencies under certain critical values,

coherent behaviour emerged for some couplings.

The Winfree model [70], which describes collective locking in an ensemble of oscillators

to a single frequency, is defined as

θ̇i = ωi +
K

N

N∑
j=1

P (θj)R(θi) (1.1)

for i = 1, ..., N , where N � 1. θi(t) is regarded as the phase of the ith oscillator at

time t; and ωi is the corresponding natural frequency of the ith oscillator drawn from

a symmetric, unimodal density g(ωi). K is the coupling strength, which is constant.

The jth oscillator makes its presence felt through as influence function P (θj) while the

ith oscillator responds to the average influence of the whole population according to a

sensitivity function R(θi).

Recently, Ariaratnam and Strogatz [6] suggested an analytically solvable version of

Winfree model by considering

P (θ) = 1 + cos(θ), R(θ) = − sin(θ) (1.2)

with P (θ) a smooth but pulse-like function. This type of pulse-like coupling is commonly

found in biological systems such as flashing fireflies. In addition, Ariaratnam and Strogatz

draw the natural frequencies ωi from a symmetric, unimodal density g(ωi) with mean

equal to 1, and the width of g(ωi) is characterised by a parameter γ. The particular form

of R(θi) is chosen for its mathematical tractability [6].

Ariaratnam and Strogatz performed bifurcation analysis of the Winfree model by
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characterising the collective behaviour and the bifurcations of the Winfree model as a

function of two parameters, namely the coupling strength and the spread of natural

frequencies. Ariaratnam and Strogatz [6] found that there exists states of oscillators

other than incoherence, frequency locking, and oscillator death; which are the hybrid

states combining two or more of the three mentioned. Ariaratnam and Strogatz also

found analytically the boundaries of these hybrid states, namely the partial locking and

the partial death states.

In order to classify the oscillators being frequency locked or not, they define pi, the

rotation number pi = limt→∞
θi(t)
t
. If two or more oscillators have the same rotation

number the oscillators are frequency locked. From the analysis of bifurcation, Ariaratnam

and Strogatz [6] found that (i) the long-term behaviour of the system was independent of

the initial conditions; (ii) the partial death state, where the slower oscillators having their

frequencies and amplitudes suppressed and faster oscillators remain incoherent, bifurcates

from incoherence along the straight line κ = 1 − γ, which holds for all symmetric or

asymmetric frequency distribution g(ω); (iii) the boundary between death, when coupled

oscillators approaching a stable rest state, and partial death corresponds to an endpoint

bifurcation; (iv) a saddle-node bifurcation is responsible on the separation of death from

full and partial locking, where some coupled oscillators are frequency locked but faster

oscillators remain incoherent; (v) the boundary between locking and partial locking is

determined numerically.

If we consider the analytically solvable Winfree model as suggested by Ariaratnam

and Strogatz [6]; we can write the governing equation as

θ̇i(t) = ωi + σ(t) sin(θi(t)) (1.3)

where σ(t) = K(1 + X(t)) is the effective coupling with the order parameter X(t) =

1
N

∑N
j=0 cos(θj(t)). According to Basnarkov and Urumov [10] the order parameter X(t) is

an appropriate macroscopic observable for the state of the population. One can see that

if there is no ordering established, the effective coupling is K and the effective coupling

approaches 2K as coherence develops.
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If we now consider the system in steady state 1, where the effective coupling σ(t) = σ0

is constant, we introduce the density function, ρ(θ, t, ω), of drifting oscillators as the

probability to find a drifting oscillator at θ at time t conditional to it having frequency ω.

In the limit N →∞ we express the population using this density function. For example

the order parameter can be expressed as

X(t) =

∫ ∫
ρ(θ, t, ω)g(ω) cos(θ)dθdω . (1.4)

Consider the continuity equation with velocity u = ω − σ0 sin(θ). The distribution ρ is

trivially stationary if the velocity u is zero, otherwise if the distribution ρ is stationary if

ρu = C where C is a constant, which implies

ρ(θ, ω) =
C

u
=

C

ω − σ0 sin(θ)

and quantify the normalisation constant C, we solve for C with the normalisation condi-

tion using tangent half-angle substitution and the substitution X = 1
A

[
ω tan

(
θ
2

)
− σ0

]
,

then dX = ω
2A

[
1 + tan2

(
θ
2

)]
dθ where C subjects to the condition that A2 = ω2−σ2

0 the

integral is then

1 = C

∫ π

−π

1

ω − σ0 sin(θ)
dθ = C

∫
1

ω − σ0
2 tan( θ2)

1+tan2( θ
2

)

2A

ω

1

1 + tan2
(
θ
2

)dX
= C

∫
2AdX

ω2
[
1 + tan2( θ

2
)
]

+ 2ωσ0 tan
(
θ
2

) = C

∫
2AdX

(AX − σ0)2 + ω2 + 2σ0 (AX − σ0)

=
2C√
ω2 − σ2

0

[
lim
θ→π

arctan

(
ω tan

(
θ
2

)
− ω√

ω2 − σ2
0

)
− lim

θ→−π
arctan

(
ω tan

(
θ
2

)
− ω√

ω2 − σ2
0

)]

=
2πC√
ω2 − σ2

0

yields normalised distribution

ρ(θ, ω) =
1

2π

√
ω2 − σ2

0

ω − σ0 sin(θ)
. (1.5)

1A more detailed explanation will be stated in the Kuramoto section, Section 1.2.
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1.1.1 Order parameter analysis in terms of coupling strength

A situation when the slower oscillators having their frequencies and amplitudes sup-

pressed, i.e. stop moving altogether, and faster oscillators remaining incoherent, is re-

ferred to as partial death [6, 10, 46]. The corresponding phases of the phase-locked

oscillators are θ∗ = arcsin
(
ω
σ0

)
where ωmin ≤ ω ≤ σ0. This is the case because if

ωmin > σ0 holds then the natural frequencies will always dominate and the oscillators will

stay incoherent. The distribution of the phase-locked oscillators ρL is then given by a

delta function [9]

ρL = δ

[
θ − arcsin

(
ω

σ0

)]
. (1.6)

Then we calcuate the contribution of these phase-locked oscillators to the order parameter

by use of change of variables

XL =

∫ ∫
δ

[
θ − arcsin

(
ω

σ0

)]
cos(θ)g(ω)dθdω =

∫ σ0

ωmin

√
1− ω2

σ2
0

g(ω)dω .

Now we consider the contribution of the drifting oscillators

XD =

∫ ∫
1

2π

√
ω2 − σ2

0

ω − σ0 sin(θ)
cos(θ)g(ω)dθdω

=

∫ √
ω2 − σ2

0

2π
g(ω)dω

∫ 2π

0

cos(θ)

ω − σ0 sin(θ)
dθ = 0 .

To understand the behaviour of the system near the critical point, we assume the dif-

ference between σ0 and ωmin is small, i.e. δσ = σ0 − ωmin [10]. Due to the fact that the

drifting oscillators do not contribute to the order parameter, so if we let ε = σ0 − ω, and

by changing variables to ε

X = XL =

∫ δσ

0

√
1−

(
σ0 − ε
σ0

)2

g(σ0 − ε)dε =
1

σ0

∫ δσ

0

√
2σ0ε− ε2g(σ0 − ε)dε

≈ 1

σ0

∫ δσ

0

√
2σ0εg(σ0)dε =

2
√

2g(σ0)

3
√
σ0

(δσ)
3
2
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Therefore near the inception of partial death, the order parameter is

X ∼ (δσ)
3
2 g(σ0) = (σ0 − ωmin)

3
2 g(σ0) . (1.7)

In order to find the relationship between the order parameter X and the coupling parame-

ter K, one considers the vicinity of inception of oscillation death, then σc ≈ Kc (subscript

c refer to the critical value of the corresponding parameter), where oscillation death is

caused by excessively strong coupling. In the steady state, if we consider a coupling

strength which is slightly greater than the critical coupling strength, i.e. K = Kc + δK,

then subsequently the effective coupling will also be increased, say σ0 = σc + δσ. Using

the relation that σ(t) = K(1 + X(t)) in conjunction with the fact that we are in the

inception of oscillation death, then δσ ≈ δK. Therefore

X ∼ (K −Kc)
3
2 g(σ0) . (1.8)

The ultimate simplication of the Winfree model is that each oscillator is influenced by

the collective behaviour of the rest. Winfree found that the width of the frequency dis-

tribution governs the system’s behaviour. The system deteriorates when the spread of

the frequencies is large compared with the coupling, and the system will spring into syn-

chrony if the spread decreases below a critical value. However, a surprising phenomenon

was observed by Winfree [71] on an electrical firefly simulation which was established

on an accumulative voltage until threshold then discharges abruptly. Winfree discovered

that synchronisation will never be achieved if oscillators were coupled equally to one

another through a common resistor, regardless of the strength of the coupling. This ob-

servation has established the foundation of pulse-coupled, or integrate-and-fire, biological

oscillators and many other similar fields.
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1.2 The Kuramoto Model

Despite Winfree model’s historical importance the Winfree model has its limitations. It is

complex enough not to grant a full treatment analytically, yet it is not sufficiently sophis-

ticated to allow for the treatment of realistic systems. The former limitation overcame

by Kuramoto [37, 39] by subsequently refining the Winfree model. This simplification,

by introducing a mathematically tractable model, grants us access to understand popu-

lations of collective behaviour of coupled oscillators. The Kuramoto model, which can be

solved analytically in the mean-field approximation, is a generic and powerful mathemat-

ical model which can be used to examine the theoretical effects of temporal organisation

phenomenon in living systems, particularly in chemical, hydrodynamical, and mechanical

processes.

In 1974 when Kuramoto and Tsuzuki [39] found that a temporarlly organised system

may be represented by a population of N self-sustained oscillators Qi with different

natural frequencies ωi satisfying the following equations of motion

Q̇i = (iωi + α)Qi − β|Qi|2Qi (1.9)

with α, β > 0. In particular, they considered a distribution g(ωi) of ωi, where g(ωi) is a

Lorentzian

g(ωi) =
1

πγ

[
1 +

(
ωi−ω0

γ

)2
] =

1

π

[
γ

(ωi − ω0)2 + γ2

]
(1.10)

with the peak at ω0 and width γ.

Kuramoto later [37] introduced pairwise interactions
∑

j 6=i κjiQj where κji is the cou-

pling strength between the jth and ith oscillators, the system ofN self-sustained oscillators

Qi will now obey the equations of motion

Q̇i = (iωi + α)Qi − β|Qi|2Qi +
∑
j 6=i

κjiQj . (1.11)

Kuramoto [37] assumed that
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1. the coupling strengths are independent of j and i, κji = κ
N

2,

2. constants α, β →∞, however the values of α
β
, ωi and κ are finite, and

3. the population size tends to infinity, i.e. N →∞.

Similar to the Winfree model [70], θi(t) is regarded as the phase of the ith oscillator at

time t. By considering Qi = ρie
iθi and by setting all the amplitudes ρi =

√
α
β
, Eq. (1.11)

becomes

iρie
iθi θ̇i = iωiρie

iθi +
κ

N

N∑
j 6=i

ρje
iθj (1.12)

Since ρi = ρj =
√

α
β
and by considering the imaginary part of (1.12), we simplify to yield

the Kuramoto model

θ̇i = ωi +
κ

N

N∑
j=1

sin(θj − θi) (1.13)

for i = 1, ..., N , where N � 1. In the following sections we will retrace the theoreti-

cal work on Kuramoto model owing to Kuramoto’s incredible intuition and symmetry

arguments.

1.2.1 Remarks on Kuramoto’s derivation

Kuramoto [37] found that mutual synchronisation, or self-entrainment, depends on a

threshold condition η ≡ |2γ
κ
|, where η is the width of the distribution of the natural

frequencies. However, letting Qi =
√

α
β
eiθi constrains the original degrees of freedom to

lie on a circle on the complex plane with radius
√

α
β
. In fact, considering the real part of

(1.12) gives

0 =
κ

N

N∑
j 6=i

cos(θj − θi) (1.14)

Looking at the right-hand side of Eq. (1.14),

κ

N

(
N∑
j=1

cos(θj − θi)− 1

)
= − κ

N

2 κ ≥ 0, in order to ensure the model is well behaved as N →∞, the factor 1
N is required.
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which is generally unattainable. A natural question to ask is whether Qi can generally

be restricted on a circle.

1.2.2 Qi constraints on a circle

By considering the simplest form of (1.12) with interactions with two chemical oscillators

Q̇1 = iω1Q1 + κ21Q2 (1.15a)

Q̇2 = iω2Q2 + κ12Q1 (1.15b)

with real couplings κij. By using linear algebra, we can write the system as

Q̇ =

 Q̇1

Q̇2

 =

iω1 κ12

κ21 iω2


 Q1

Q2

 = MQ . (1.16)

Using the fact thatM |ei〉 = mi |ei〉, where mi are the eigenvalues ofM and 〈ei|, |ei〉 are

the corresponding left-hand and right-hand eigenvectors, if we assume |ei〉 are the basis

of M then one may write Q = q1 |e1〉+ q2 |e2〉 and therefore

q̇1 |e1〉+ q̇2 |e2〉 = Q̇ = MQ = q1m1 |e1〉+ q2m2 |e2〉 . (1.17)

By projecting Eq. (1.17) by 〈ei| we get q̇i = miqi which gives qi = Aie
mit and therefore

Q = A1e
m1t |e1〉+ A2e

m2t |e2〉 (1.18)

where m1 and m2 are the roots of m2 − im(ω1 + ω2)− ω1ω2 − κ12κ21 = 0, so

m1,2 =
1

2

[
i(ω1 + ω2)±

√
4κ12κ21 − (ω1 − ω2)2

]
.

Therefore, the eigenvalues only have real parts if and only if 4κ12κ21 > (ω1 − ω2)2. If the

Qi’s are restricted on a circle, then we can write Qi = Bie
ibi(t) where Bi and bi(t) are
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both real. By looking at Q1, we have

eib1(t) =
A1

B1

em1te11 +
A2

B1

em2te21 . (1.19)

If m1 and m2 have different real parts, then the right hand side of Eq. (1.19) will either

converge to 0 or diverge to infinity for t→∞ depending on the initial conditions. Hence

we conclude Qi constraints on a circle is only possible if m1 and m2 are purely imaginary.

Similarly, if we consider Q2 we get

eib2(t) =
A1

B2

em1te12 +
A2

B2

em2te22 . (1.20)

If we now substitute (1.19) and (1.20) into Eq. (1.15) we get

iḃ1 = iω1 + κ12
B2

B1

ei(b2−b1) (1.21a)

iḃ2 = iω2 + κ21
B1

B2

ei(b1−b2) , (1.21b)

and by separating the real and imaginary parts of Eq. (1.21a) give

ḃ1 = ω1 + κ12
B2

B1

sin(b2 − b1) (1.22)

0 = κ12
B2

B1

cos(b2 − b1) . (1.23)

If we now assume that A2 = 0 by initial condition, and let arg
(
A1

B1
e11

)
= φ1 and

arg
(
A1

B2
e12

)
= φ2, for some constants φ1 and φ2 we can find expressions for b1(t) and

b2(t) as

b1(t) =
m1t

i
+ φ1 , b2(t) =

m1t

i
+ φ2 (1.24)

which implies that b2(t) − b1(t) = φ2 − φ1 = (2n+1)π
2

, n ∈ N which is a constant, by

Eq. (1.23). This is necessary if we constraint Qi on a circle. However, if we consider the
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the modulo of Eq. (1.19) and Eq. (1.20)

1 =
∣∣eib1−m2t

∣∣ =

∣∣∣∣A1

B1

em1t−m2te11 +
A2

B1

e21

∣∣∣∣
1 =

∣∣eib2−m2t
∣∣ =

∣∣∣∣A1

B2

em1t−m2te12 +
A2

B2

e22

∣∣∣∣
then with the same initial condition A2 = 0, we have

∣∣∣∣A1

B1

e11

∣∣∣∣ = 1 ,

∣∣∣∣A1

B2

e12

∣∣∣∣ = 1 .

So in order to have Qi constraint on a circle, there are two sets of conditions, namely

A1

B1

e11 = 0 ∪ A2

B1

e21 = 0 ∪ m1 = m2 ,

A1

B2

e12 = 0 ∪ A2

B2

e22 = 0 ∪ m1 = m2 .

However, this does not coincide with what we get from the previous method of analysis,

namely that b2(t) − b1(t) should be constant. Looking back to (1.19) and (1.20) with

initial condition A2 = 0, we find

ei(b2−b1) =
1
B2
e12

1
B1
e11

=
B1e12

B2e11

.

Now consider again the expression of iḃ1 (1.21a), and noting that bj = 1
i
m1t+ φj implies

that iḃj = m1, the m1 is purely imaginary, then

m1 = iḃ1 = iω1 + κ12
B2

B1

ei(b2−b1) = iω1 + κ12
B2

B1

B1e12

B2e11

= iω1 + κ12
e12

e11

. (1.25)

Similarly if we consider the expression of iḃ2 (1.21b) then we obtain

m1
e12

e11

= iω2
e12

e11

+ κ21 . (1.26)
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By using Linear Algebra, we write Eq. (1.25) and Eq. (1.26) in the form

iω1 κ12

κ21 iω2


 1

e12

e11

 = m1

 1

e12

e11

⇔
iω1 κ12

κ21 iω2


 e11

e12

1

 = m1

 e11

e12

1


which gives either e12 = 0 or e11 = 0 so that <

[
e12

e11

]
, or else <

[
e11

e12

]
, is zero, therefore

cos(b2(t)−b1(t)) = (2n+1)π
2

is not a constraint but it is a natural consequence of the setup.

The derivation above may therefore be seen solely as an attempt to motivate the

Kuramoto model (1.13), rather than a derivation, as the parameterisation Qi =
√

α
β
eiθi

is incompatible with the original problem (1.12).

1.2.3 Order Parameters

Assume we have a system of N coupled nonlinear oscillators governed by the equations

of motion

θ̇i(t) = ωi +
κ

N

N∑
j=1

sin(θj(t)− θi(t)) . (1.27)

In order to understand the collective behaviour of the system, Kuramoto introduced the

order parameter r(t) via

r(t)eiψ(t) =
1

N

∑
j

eiθj(t) (1.28)

where r(t) measures the amount of collective behaviour in the system, i.e. the phase

coherence, and ψ(t) is the average phase. To visualise this, we can imagine all the oscil-

lators are placed around the unit circle in the complex plane where the order parameter

r varies along the radius and “points” at the centre of the oscillators and r rotates with

phase ψ. The magnitude of r(t) depends on the degree of clustering of the oscillators:

if all oscillators are moving on the unit circle as a batch then r ≈ 1, however, if all the

oscillators drift around incoherently then r ≈ 0.

Multiplying (1.28) by e−iθi(t) one obtains

r(t)ei(ψ(t)−θi(t)) =
1

N

∑
j

ei(θj(t)−θi(t)) (1.29)
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and by considering the imaginary parts

r(t) sin(ψ(t)− θi(t)) =
1

N

∑
j

sin(θj(t)− θi(t)) . (1.30)

Therefore, the Kuramoto model (1.13) can be rewritten as

θ̇i(t) = ωi + κr(t) sin(ψ(t)− θi(t)) . (1.31)

This simplifies the system dramatically as the phase θi is now pulled towards the average

phase ψ instead of the phases of other oscillators, and the effective coupling strength is

proportional to the coherence r(t). Strogatz [64] stated the importance of this propor-

tionality. This proportionality constitutes a positive feedback loop between the coupling

strength and coherence: if the system becomes more coherent, r grows and therefore

the effective coupling strength κr increases, which results in more oscillators joining the

synchronised batch. If the coherence is further increased by the newly joined oscillators

then the process will continue; in the opposite scenario, the process becomes self-limiting.

The oscillators with equations of motion of the form (1.31) look as if they are un-

coupled, however the oscillators are still coupled through r(t) and ψ(t), where r(t) =

1
N

∑
j e

i(θj(t)−ψ(t)) may be seen as the constraint.

In the present form, the analysis so far is applicable only to the mean field theory,

where the coupling of one oscillator to the other oscillator is effectively given by the order

parameter itself. If the κji of Eq. (1.11) implement a lattice structure, the interaction

term cannot generally be replaced by a multiple of r(t).

1.2.4 Linear Stability Analysis

The key to Kuramoto’s analysis is to consider the steady state solutions where the order

parameter r(t) is time independent and the phase ψ(t) rotates uniformly at an angular

frequency Ω, where

Ω =

∫
R
ωg(ω)dω (1.32)
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is the population mean of the distribution g(ωi), so that ψ(t) = Ωt+ψ0. This is reasonable

only when the system has reached the steady state, because if the system is in the

steady state, then the sample mean phase ψ ≈ 1
N

∑
j θj and

∑
i sin(θi) ≈ 0. Hence

ψ̇ ≈ 1
N

∑
j ωj = ω̄. By the Law of Large Numbers, in the limit of N →∞

ψ̇ ≈ ω̄ = lim
N→∞

1

N

∑
j

ωj =

∫
R
ωg(ω)dω = Ω . (1.33)

In the steady state, when the transient behaviour has died off, if we set the frame of

reference rotating with frequency Ω, r(t)eiψ(t) will then be completely stationary. By

performing a coordinate transform, ˙̃θi = θi − ψ and ω̃i = ωi − Ω, Eq. (1.31) becomes

˙̃θi + ψ̇ = ωi + κr(− sin(θ̃i)) ⇒ ˙̃θi = ω̃i − κr sin(θ̃i) .

Assuming ψ̇ = Ω, this is equivalent of setting ψ = 0 in Eq. (1.31) with the frame of

reference rotating at angular frequency Ω. Keeping the coordinate transform in mind, to

ease notation, we consider Eq. (1.31) with ψ = 0, which means:

θ̇i = ωi − κr sin(θi) . (1.34)

We proceed to identify the fixed points given by the governing equation (1.34) above.

Because | sin(x)| ≤ 1 ∀x ∈ R, then for θ̇i = 0, this implies the condition |ωi| ≤ κr.

Therefore, we can split the system of oscillators into two groups, where the oscillators in

each group exhibit different dynamics depending on the size of |ωi| relative to κr.

Oscillators θi with θ̇i = 0 are called frequency locked oscillators; while oscillators θi

with |ωi| > κr are called drifting oscillators. Drifting oscillators cannot be frequency

locked due to their nature, i.e. |ωi| > κr generally implies θ̇i 6= 0. One crucial question

to ask is whether the oscillators can neither be drifting nor be frequency locked. We

shall address this in the following section. However, by having drifting oscillators, which

cannot be frequency locked, seems to contradict the original assumption that r(t) = r

and ψ(t) = ψ as these quantities cannot generally be constant in the presence of drifting
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oscillators. For this reason, Kuramoto [38] demands the drifting oscillators to form a

stationary distribution around the unit circle, albeit they are moving.

1.2.5 Frequency locked vs. drifting

In the steady state, are all oscillators either frequency locked or drifting? This is equiv-

alent in asking whether a particular oscillator having |ωi| < κr, i.e. not drifting, implies

θ̇i ≡ 0.

To answer that question we consider, in the steady state, the equation of motion of

that oscillator

θ̇i = ωi − κr sin(θi)

with r constant and fixed, then all oscillators are effectively decoupled. If we assume there

are a vanishing fraction of oscillators are adhered at the unstable fixed point, owing to the

condition that |ωi| < κr, in some course of time, these oscillators will pass through the

stable fixed point and get stuck at the stable fixed point, i.e. in the cases of overdamped

harmonic oscillators. Therefore, we can classify the oscillators into two class, frequency

locked or drifting, depending on their dynamics.

1.2.6 Solving for κC Critical Coupling

In order to solve for the critical coupling κC in relationship with our order parameter

r, Kuramoto [38] pointed out that self-consistency condition is the key. We introduce

the density function, ρ(θ, t, ω), of drifting oscillators as the probability to find a drifting

oscillator at θ at time t conditional to it having frequency ω. From the continuity equation

∂ρ

∂t
+

∂

∂θ
(ρu) = 0 (1.35)

where u = θ̇ is the velocity of drifting oscillators located at θ at time t, then stationarity

gives that θ̇ is constant in time. As we require the distribution remains constant in time,

this implies ∂ρ
∂t

= 0. Therefore ρ is inversely proportional to the oscillators’ frequencies



1.2 The Kuramoto Model 36

at θ, resulting in the form

ρ(θ, ω) =
C

θ̇
=

C

|ω − κr sin(θ)|
(1.36)

which states clearly that ρ does depend on θ. Then, ρ(θ, ω)dθ gives the fraction of

oscillators with frequency ω that are found between θ and θ + dθ. In order to quantify

the normalisation constant C, we solve for C in

1 =

∫ π

−π
ρ(θ, ω)dθ = C

∫ π

−π

dθ
ω − κr sin(θ)

⇒ C =
1

2π

√
ω2 − (κr)2 .

As we have classified the oscillators into two groups, from Eq. (1.28) and having the frame

of reference rotating at frequency Ω (ψ = 0), we have

reiψ = r =
〈
eiθ
〉

=
〈
eiθ
〉
L

+
〈
eiθ
〉
D

(1.37)

with subscripts L and D denote frequency locked and drifting oscillators correspondingly,

and 〈·〉 denotes the population average. Then

〈
eiθ
〉

=

∫ π

−π

∫
W

eiθρ(θ, ω)g(ω)dωdθ (1.38)

where W is the range of ω defined for corresponding dynamics. We first consider the

contribution of the frequency locked oscillators. In the locked state θ̇ = 0, we have

sin(θ) = ω
κr
∀|ω| ≤ κr, which gives θ as a function of ω. Similar to Winfree model, then

ρL = δ
[
θ − arcsin

(
ω
κr

)]
. The distribution of ω is symmetric, i.e. g(Ω + ω) = g(Ω − ω),

equivalently g(ω) = g(−ω), in the rotating frame of reference. In the limit of large N , as

N →∞, the distribution of locked phases are symmetric about θ = 0, therefore

〈
eiθ
〉
L

= 〈cos(θ)〉L =

∫ π

−π

∫ κr

−κr
cos(θ(ω))ρ(θ, ω)g(ω)dωdθ

=

∫ π
2

−π
2

cos(θ)g(κr sin(θ))κr cos(θ)dθ = κr

∫ π
2

−π
2

cos2(θ)g(κr sin(θ))dθ .
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If we now consider the contribution of the drifting oscillators, then

〈
eiθ
〉
D

=

∫ π

−π

∫
|ω|>κr

eiθρ(θ, ω)g(ω)dωdθ

=

∫ π

−π

∫ −κr
−∞

eiθρ(θ, ω)g(ω)dωdθ +

∫ π

−π

∫ ∞
κr

eiθρ(θ, ω)g(ω)dωdθ

= −
∫ π

−π

∫ κr

∞
eiθρ(θ,−ω)g(−ω)dωdθ +

∫ π

−π

∫ ∞
κr

eiθρ(θ, ω)g(ω)dωdθ

by changing ω → −ω and using the property g(ω) = g(−ω). By substituting θ̂ = θ − π

and g(ω) = g(−ω), and using the fact that ρ(θ + π,−ω) = ρ(θ, ω), then

〈
eiθ
〉
D

= −
∫ 0

−2π

∫ κr

∞
eiθ̂ρ(θ̂ + π,−ω)g(ω)dωeiπdθ̂ +

∫ π

−π

∫ ∞
κr

eiθρ(θ, ω)g(ω)dωdθ

= −
∫ 0

−2π

∫ ∞
κr

eiθ̂ρ(θ̂, ω)g(ω)dωdθ̂ +

∫ π

−π

∫ ∞
κr

eiθρ(θ, ω)g(ω)dωdθ

= −
∫ π

−π

∫ ∞
κr

eiθ̂ρ(θ̂, ω)g(ω)dωdθ̂ +

∫ π

−π

∫ ∞
κr

eiθρ(θ, ω)g(ω)dωdθ = 0

Therefore, the self-consistency condition is reduced to

r = κr

∫ π
2

−π
2

cos2(θ)g(κr sin(θ))dθ . (1.39)

This equation defines the solutions but restrained to the fact that the order parameter

r is constant. The trivial solution of r = 0, regardless of the value of κ, corresponds to

the completely incoherent state where ρ(θ, ω) = 1
2π

for all values of θ and ω, i.e. it is

equally likely to find an oscillator anywhere on the unit circle. The other solution branch

bifurcates continuously from r = 0, corresponding to partially synchronised state, at the

critical coupling κ = κC . These solutions are obtained by letting r → 0+

1 = κC

∫ π
2

−π
2

cos2(θ)g(0)dθ =
1

2
κCπg(0) .

Therefore, the critical coupling [38, 64] of the Kuramoto model is found to be

κC =
2

πg(0)
.
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1.2.7 Bifurcation near the critical coupling κC

In order to study the effect on r as the coupling strength κ increases and the bifurcation

around the critical coupling κC , we expand the integrand of (1.39) about r = 0,

1 = κ

∫ π
2

−π
2

cos2(θ)

[
g(0) + g′(0)κr sin(θ) +

1

2
g′′(0) (κr sin(θ))2 + · · ·

]
dθ . (1.40)

Since the distribution of ω is unimodal and symmetric, i.e. g(Ω + ω) = g(Ω− ω) implies

Ω = 0 on the rotating frame of reference and therefore g(ω) has a maximum at 0.

Integrating Eq. (1.40) gives

1 =
1

2
κπg(0) +

1

16
κ3πr2g′′(0)

κC = κ+
κC
16
κ3πr2g′′(0) = κ+

1

16
κC (κ− κC + κC)3 πr2g′′(0)

≈ κ+
1

16
κ4
Cπr

2g′′(0) +O
(
(κ− κC)3

)
near the critical coupling. The normalised distance above the threshold is defined as µ

where

µ =
κ− κC
κC

∼ − 1

16
κ3
Cπr

2g′′(0)

therefore

r ∼

√
1

−g′′(0)

16µ

κ3
Cπ

=

√
1

−g′′(0)

16

κ4
Cπ

√
κ− κC (1.41)

which implies that r obeys the square-root scaling law near the critical coupling, and the

bifurcation is supercritical if g′′(0) < 0 and subcritical if g′′(0) > 0. In particular case of

a Lorentzian density g(ω) = γ
π(γ2+ω2)

, this gives κC = 2γ and

r =

√
1− κC

κ
. (1.42)
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1.2.8 Remarks on the Kuramoto model

However, Kuramoto model is designed to synchronise. Firstly, the interaction ceases for

θj = θi. Secondly, to linear order, synchronisation is essentially the exponential. This can

be seen in the N = 2 and ωi = ω case where ϕ̇ = 1
2
(θ̇1− θ̇2) = −κ

2
sin(ϕ). This differential

equation can be solved exactly and the solution is tan
(
ϕ
2

)
= tan

(
ϕ0

2

)
exp

(
−κt

2

)
. So

asymptotically, i.e. for κ > 0 and t large, ϕ ≈ 2 tan
(
ϕ0

2

)
exp

(
−κt

2

)
. If the initial difference

ϕ0 is small, the system will asymptotically behave like ϕ ≈ ϕ0 exp
(
−κt

2

)
. Lastly, the

Kuramoto model is capable of accommodating some diversity of the eigenfrequencies ωi.

This is surprising as synchronisation requires θ̇i = θ̇j and, to leading order, the net effect

of the sine term cancels over time.

Kuramoto-type of synchronisation (or equivalently a system entrainment) is well stud-

ied under weak coupling between identical or nearly identical oscillators [5, 51]. The

interactions in the Kuramoto model (1.13) depend, sinusoidally, on the phase difference

between each pair of oscillators. Over the last century, enormous literature [1, 64] has

been generated from the analysis of the Kuramoto model on synchronisation of large

emsembles of oscillators, including time-delayed interactions [34, 75]. However, it was

not until recently that Ariaratnam and Strogatz [6] unearthed the Winfree model in the

continuum limit as N →∞ and showed that Winfree’s model is also tractable under this

limit by having just one single Fourier component, namely

P (θ) = 1 + cos(θ), R(θ) = − sin(θ) (1.43)

as discussed in Section 1.1. Then, in the limit of weak coupling and nearly identical

natural frequencies suggested in the Kuramoto model, Winfree’s model reduces to Ku-

ramoto’s, i.e. one can show that the averaged equation of Winfree’s model is isomorphic

to Kuramoto’s model with coupling K = κ/2. Ariaratnam and Strogatz [6] also dis-

covered that, without taking the limit of weak coupling and the assumption of nearly

identical natural frequencies, the Winfree model displays collective behaviour not seen

in Kuramoto’s model such as quenching and various hybrid states combining incoherent,
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dead and frequency-locked oscillators. The oscillators are said to be frequency-locked

when they have the same average frequency (also known as the rotation number ρi,

where ρi = limt→∞(θi(t)/t)). A connection is also emerged between the Kuramoto model

and Landau damping when Strogatz, Mirollo and Mathews [66] studied the decay to in-

coherence in oscillator communities, in which the frequency distribution is too broad to

support synchrony.

Amony all living beings, time plays a key role. The rhythmical activities of living

beings are complex and may be rooted in their physical or biological origins. The ubiquity

of synchronisation would be a key factor on governing their individual or social behaviour,

of which are determinied by different cycles of duration. For example in physical system,

typical cycles of such will emit a pulse when the physical variable reaches a threshold, the

pulse is then transmitted across to the neighbourhood while the physical variable itself

will relax to its original state. Thereon, a new cycle commences. The emitted pulse will

alter the states of the system by lengthening or shortening the periods of the neighbouring

variables.
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1.3 Pulse-coupled Biological Oscillators

Winfree comprehended synchronisation as a threshold process among a population of

oscillators. Providing that the coupling between the oscillators are strong enough then

perceptible number of the oscillators will synchronise to a common frequency. Hence,

pulse-coupled, or integrate-and-fire, biological models were analysed extensively by many

authors interested in synchronisation of biological oscillators. In particular, Mirollo and

Strogatz [43] studied a model consisting of a population of identical integrate-and-fire

oscillators where the coupling between oscillators is pulsatile. They found that, for almost

all initial conditions, the system will develop into a state that all the oscillators will fire

synchronously. In their paper, they also discussed the moral and the implication of

the model in the real communities of biological oscillators. The model that the dual

studied was inspired by the idea proposed by Peskin [50], which was an augmentation on

Winfree’s work [70]. Winfree recognised that collective behaviour in biological or physical

systems such as mutual synchronisation is a cooperative phenomenon causing the phase

transitions encountered in statistical physics.

Peskin [50], on realising Winfree’s work on biological oscillators [70], considered a

self-synchronised cardiac pacemaker which consists of 10,000 sinoatrial nodes. Peskin

prognosticated that [50] “(i) for arbitrary initial conditions, the system approaches a

state in which all the oscillators are firing synchronously; (ii) this remains true even

when the oscillators are not quite identical.” Similar models have also been studied by

Knight [36], Keener et al. [33]. Although Peskin was only able to prove his first claim in

the simpliest possible case of considering two identical oscillators, his idea has triggered

many others to contribute in the biology field [2, 11, 23].

Based on a more general version of Peskin’s model [50] and keeping Peskin’s assump-

tions that all the oscillators are identical and coupled to all others in the system. In

addition, Mirollo and Strogatz [43] posed the condition that “the oscillators rise towards

threshold with a time-course which is monotonic and concave down”. They defined the
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behaviour of the system into two maps, the firing map

h(φ) = g(ε+ f(1− φ)) (1.44)

and return map

R(φ) = h(h(φ)) , (1.45)

where R has simple dynamics. Mirollo and Strogatz proved the system will always lead

to synchrony as the system is driven monotonically towards φ = 0 or φ = 1. Similar

argument has been posed for the N -oscillator case where synchronisation occurs via

absorptions. Absorption [43], defined by Mirollo and Strogatz, occurs when two oscillators

become synchronised, the system merges the two oscillators into one and amplify the pulse

strength of the coalescence. Therefore, a sequence of absorptions will eventually lock all

the oscillators. Mirollo and Strogatz proved that synchrony will be achieved as long as

all the pulse strengths are non-negative and non-trivial.

1.3.1 Integrate-and-fire Hodgkin-Huxley Model

Pulse oscillatory systems or integrate-and-fire models are widely studied from a theo-

retical aspect [44, 51, 65], particularly in the fields of mathematical biology and neuro-

sciences. Normally excitatory integrate-and-fire models may appear to be the natural

cause of synchronisation while inhibitory ones would result in anti-synchrony. However

Van Vreeswijk, Abbott and Ermentrout [69] showed that in some cases that frequent in-

hibitory, but not excitatory, synaptic couplings leads to synchronisation. Van Vreeswijk et

al. considered the synchronisation of two Hodgkin-Huxley model neurons with excitatory

and inhibitory synaptic couplings. The equations of motion are given by

ẋi(t) = X − xi(t) + Ei(t) (1.46)

where Ei(t) 7→ Ei(t) + Es(t − tj) with i 6= j is the synaptic input to neuron i. Time tj

defines the firing time of the jth neuron. They considered Es(t) to be a normalised, to
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value g, alpha function Es(t) = gα2te−αt as

lim
t→∞

[∫ t

0

Es(t
′)dt′

]
= gα2

∫ ∞
0

te−αt
′
dt′ = g .

We also note that the time taken by the function Es(t) to reach its maximum is propor-

tional to 1
α
as Ės(t) = gα2 [e−αt − αte−αt] for both excitatory and inhibitory synapses.
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0.6

Figure 1.1: Time evolution of infrequent excitatory synapses, for inhibitory
synapses are given by negative of these values. When the next firing occurs
the cumulative effect of previous firing is almost negligible. The time taken
to reach maximum per firing is proportional to 1

α .
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Figure 1.2: Time evolution of frequent excitatory synapses, for inhibitory
synapses are given by negative of these values. When the consecutive firing
times are close enough the effect of the firing accumulates. The blue (dotted)
lines illustrate the effect of the individual firings whereas the red curve indi-
cates the overall firing effect.The time taken to reach maximum per firing is
proportional to 1

α .

Excitatory synapses are given by positive values of g while inhibitory synapses are
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given by negative values of g, see Figure 1.1 and Figure 1.2. For excitatory synapses, the

system will not be able to synchronise unless the neurons started off synchronised. This is

because if one of the neurons is ahead of the other, the former one will push the latter one

causing the latter to push the former ahead when threshold is reached, see Figure 1.3.

Therefore the latter neuorn will not be able to catch up with the former and the two

neurons will stay a finite distance apart. On the other hand, see Figure 1.4, inhibitory

synapses will delay the firing time of the latter neuron compares to its own firing without

feedback. Hence, the system allows the former neuron to be one period ahead of the latter

and synchronisation is possible for certain values of α. This synchronisation phenomenon

is consequences of the following properties:

Property 1 For the synaptic couplings being inhibitory, when the slow down of x2(t) due

to x1(t)’s firing reaches its maximum, x2(t) is closer to zero compared to x1(t)

when its slow down due to x2(t)’s firing reaches the maximum. Therefore the

effect of the slow down on x2(t) will decrease more towards 0 by the time

x2(t) reaches 1, compared to the slow down of x1(t) by the time x1(t) reaches

1.

Property 2 The response function Ei(t) being augmented at a late stage in the life cycle

of xi(t) has a greater effect than augmentation at an early stage.

In order to analyse the behaviour of the system and how the two oscillators will

synchronise, in particular why inhibitory rather than excitatory synapses will result in

synchronisation, we integrate the equation of motion

ẋi(t)e
t = (X − xi(t))et + Ei(t)e

t

d
dt
[
(xi(t)−X)et

]
= Ei(t)e

t

xi(t) = X(1− e−t) + xi(0)e−t +

∫ t

0

Ei(t
′)et

′−tdt′ .

The last integral represents the accumulated effect of firings depending on the time se-

quence of the other neuron reaching its threshold. Without loss of generality, we assume
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Figure 1.3: Time evolution of the system with excitatory synapses with
neuron 1 (red) ahead of neuron 2 (green) at initialisation. Neuron 2 will never
be able to catch up with neuron 1 and therefore they do not synchronise.
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Figure 1.4: Time evolution of the system with inhibitory synapses with
neuron 1 (red) ahead of neuron 2 (green) at initialisation. Neuron 2 effectively
slows down relative to neuron 1 and therefore allows neuron 1 to advance a
period ahead.
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x1(t) is ahead of x2(t) at initialisation. If we only consider the effect of first firing of each

neuron, i.e. the integral of Ei(t) in the last equation above only get augmented once, then

∫ t

0

Ei(t
′)et

′−tdt′ =
∫ t

tj

H[t′ − tj]Es(t′ − tj)et
′−tdt′ =

∫ t−tj

0

Es(t
′′)et

′′+tj−tdt′′ (1.47)

where H[·] is a Heaviside step function, since Ei(t) is yet to charge before first firing and

i 6= j. If we have the system run for a considerable amount of time then we can approxi-

mate the upper limit of Eq. (1.47) by infinity, i.e. when tj is much smaller compared to

t. The effect of first firing is then

∫ t

0

Ei(t
′)et

′−tdt′ ≈ etj−t
∫ ∞

0

Es(t
′′)et

′′
dt′′ = etj−tI .

Therefore, if neuron x1(t) is ahead of neuron x2(t) and neither E1(t) nor E2(t) is charged,

then t1 < t2 where ti indicates the first firing of the ith neuron, gives

∫ t

0

E1(t′)et
′−tdt′ ≈ et2−tI > et1−tI ≈

∫ t

0

E2(t′)et
′−tdt′ ,

which is Property 2. From the analysis above we can readily deduce the relationship

between the first firing time and the time the neuron reaches its threshold after receiving

first response from the other neuron. Given that we know the solution of Eq. (1.46) is

xi(t) = X
(
1− e−t

)
+ xi(0)e−t + etj−tI (1.48)

where I =
∫∞

0
Es(t

′′)et
′′dt′′ and i 6= j. If we started off the neurons at zero, i.e. xi(0) = 0

for all i, and we denote the time the neuron first reaches its threshold after receiving first

response from the other as t̃i, then xi(t̃i) = 1. We obtain the following equation

1 = xi(t̃i) = X −
(
X − etjI

)
e−t̃i .

By solving for t̃i we get

t̃i = ln

(
X − etjI
X − 1

)
.
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Hence

t̃2 = ln

(
X − et1I
X − 1

)
> t̃1 = ln

(
X − et2I
X − 1

)
as t1 < t2, meaning that the time taken for neuron behind x2(t) to reach its threshold

is longer compared to the time taken for neuron ahead x1(t) to reach its threshold after

receiving the first response from each other; of which, this is Property 1.
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1.4 Synchronisation phenomena by time delay

“Kuramoto showed that as the coupling strength increased over a certain threshold, the

model exhibits a spontaneous transition from incoherence to collective synchronisation”

[38]. However, motivated by the significance of synaptic, dendritic and propagation de-

lays in neural networks [45], Yeung and Strogatz [75] showed that perfect synchrony can

be achieved in the Kuramoto model with time delay provided that all oscillators are iden-

tical. Yeung and Strogatz [75] generalised the Kuramoto model of coupled oscillators by

introducing time-delayed interactions in presence of noise, which was originally developed

as an analytically tractable version of Winfree’s mean-field model for large populations

of biological oscillators [70].

Yeung and Strogatz considered a system of N phase oscillators with noisy, randomly

distributed intrinsic frequencies, and with delayed mean-field coupling [75]

θ̇i = ωi + ξi(t) +
K

N

N∑
j=1

sin(θj(t− τ)− θi(t)− α) (1.49)

where θ(t) is the phase of the ith osciallator at time t, ωi is the intrinsic frequency drawn

randomly from a probability density g(ωi) with mean ω0. The frequency fluctuations

are reflected in ξi(t), a white noise with ensemble average 〈ξi(t)〉 = 0 and 〈ξi(s)ξj(t)〉 =

2Dδijδ(s − t). The coupling strength is K where K > 0; τ > 0 defines the time delay,

and α is a phase frustration parameter. Sakaguchi and Kuramoto [58, 59] have studied

the effects of frustration α and the noise correlator D separately without time delay, i.e.

by setting τ = 0 in the above model. In order to understand the macroscopic state of the

system, Yeung and Strogatz [75] studied the case, i.e. the oscillators are identical, where

g(ω) = δ(ω − ω0), and defined the complex order parameter

R(t)eiψ(t) =
1

N

N∑
j=1

eiθj(t) (1.50)

which measures the phase coherence of the system. Yeung and Strogatz [75] found that for

D = 0, the continuous spectrum is pure imaginary, which corresponds to neutrally stable
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rotating waves occuring in the full system. The fact that the continuous spectrum is pure

imaginary implies that the incoherent state is never linearly stable; instead, depends on

the (discrete) eigenvalues, the incoherent state is either unstable or neutral. If K and τ

satisfy

K <
ω0

2m− 1
,

(4m− 3)π

2ω0 −K
< τ <

(4m− 1)π

2ω0 +K
(1.51)

for m being an arbitrary positive integer, then the incoherent state is neutrally stable.

Yeung and Strogatz [75] also found that for given certain combinations of τ and K,

K <
ω0

2(2m− 1)
,

(4m− 3)π

2ω0 − 2K
< τ <

(4m− 1)π

2ω0 + 2K
(1.52)

for m being an arbitrary positive integer, where stable synchrony is impossible. Combin-

ing these results, one can find that for particular values of K and τ : (i) synchronisation -

one or more synchronised stable states exists where the incoherent state is unstable; (ii)

no synchronisation - incoherence is stable; and (iii) bistability - where one or more stable

synchronised states coexist with stable incoherence. Although it has never be proven,

numerics show that R(t) approaches a constant if g(ω) is unimodal and symmetric as in

the standard Kuramoto model. Yeung and Strogatz [75] later showed that if g(ω), i.e.

the probability density, is Lorentzian, similar results are obtained but only the case of

identical oscillators captures the essential features introduced by time delay.

1.4.1 Master stability equation with master stability function

In order to analyse and determine the stability of a synchronised state in chaotic and

complex time delayed networks is of interests to many [18, 19, 35, 47, 48], in particular in

terms of large time delayed couplings in laser applications [14, 20, 21]. Master stability

function, first introduced by Pecora and Carroll [49], has been developed in order to

determine the stability of a synchronous state at a given coupling strength.

Consider a system of N uncoupled identical nodes and they have the following equa-

tion of motion

ẋi = F (xi) (1.53)
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for each node, where xi denotes a m-dimensional vector of dynamical variables of the ith

node. Given an arbitrary function H : Rm → Rm, which is the response function of each

node’s variables that is used in the coupling. The dynamics of the ith node are given by

xi = F (xi) + σ
∑
j

GijH(xj) (1.54)

where σ is the coupling strength and Gij is the coupling coefficient between the ith

and jth node. Pecora and Carroll [49] defines the synchronisation manifold such that

x1 = x2 = · · · = xN under the following assumptions:

1. the coupled nodes are all identical,

2. the same function of the components from each node is used to couple to other

nodes,

3. the synchronisation manifold is an invariant manifold, and

4. the nodes are coupled in an arbitrary way which is well approximated near the

synchronous state by a linear operator.

Under Pecora and Carroll’s definition on synchronisation manifold and their assumption

that this synchronisation manifold is invariant, this will imply that
∑

j Gij = g is con-

stant, i.e. this sum is independent of i. Pecora and Carroll considered the matrix of

coupling coefficients G where this constant is zero, i.e.
∑

j Gij = g = 0.

Let x =
(
x1,x2, · · · ,xN

)
, F =

(
F (x1),F (x2), · · · ,F (xN)

)
, and H =

(
H(x1),

H(x2), · · · ,H(xN)
)
, and G be the coupling coefficients matrix, the system can be writ-

ten as

ẋ = F (x) + σG⊗H(x) (1.55)

where ⊗ is the Kronecker product. By assuming the collection of variation on each node

is ξ =
(
ξ1, ξ2, · · · , ξN

)
, then the variational equation of Eq. (1.55) is then

ξ̇ = [1N ⊗DF + σG⊗DH ] ξ (1.56)
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with DF and DH are the Jacobian functions [49] and 1N is the N -dimensional identity

matrix. Diagonalising the matrix G with unitary transformation U 3,

diag (γ0, γ1, · · · , γN−1) = UGU−1 (1.57)

would decouple the system into

ξ̇k = [DF + σγkDH ] ξk (1.58)

where γk is an eigenvalue of G with k = 0, 1, 2, · · · , N −1. As we know that the indepen-

dent row sums are equal and therefore
∑

j Gij = g = 0 is always an, longitudinal, eigen-

value of G with eigenvector (1, 1, · · · , 1). Given that we know one eigenvalue is γ0 = 0

and the corresponding eigenvector is (1, 1, · · · , 1) therefore if we let γ0 = g = 0, then for

k = 0 we obtain the variational equation for the synchronisation manifold with γ0 = 0 as

all systems are perturbed equally along this eigenvector. For variational equations with

other values of k correspond to transversal pertubations to the synchronisation manifold.

Therefore, the synchronisation manifold is stable if and only if all transversal pertuba-

tions die out. This is only possible if the maximum Lyapunov or Floquet exponent arising

from Eq. (1.58) is negative for all transversal eigenvalues γk with k = 1, 2, · · · , N − 1.

Consequently a divergence in the transverse direction means that the synchronised solul-

tion is chaotic. Since we evaluate Eq. (1.58) on the synchronised state, the only difference

in the transversal variational equation for each value of k = 1, 2, · · · , N − 1 will be the

scalar multiplier σγk. This has led Pecora and Carroll to the formulation of the master

stability equation

ζ̇ = [DF + (α + iβ)DH ] ζ (1.59)

where λmax ∈ C is the associated master stability function which maps the complex

number α + iβ to the maximum Lyapunov exponent arising from Eq. (1.59) [49]. The

master stability function will form a surface over the (α, β)-complex plane, see Figure 1.5,

3The unitary transformation does not affect the first term in Eq. (1.56) as it acts only on the matrix
1N .
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(ᾱ, β̄)

λmax(ᾱ, β̄)

α
β

λ
m

ax
Figure 1.5: Graphical illustration of the master stability function λmax
above the (α, β)-complex plane from the generic variational equation
Eq. (1.59). With a given value of scalar multiplier σγk = ᾱ + iβ̄, one can
locate the corresponding λmax and therefore immediately reveal the stability
of this particular scalar multiplier σγk.

where the stability of a particular scalar multiplier σγk = ᾱ + iβ̄ can be determined by

the sign of λmax of this particular point. In more general terms, once the sign of the

master stability function is found for a particular coupling σγk, we can tell whether the

synchronised solution is stable or chaotic.

1.4.2 Master stability function with large time delay couplings

As master stability function was introduced by Pecora and Carroll [49], a lot of interests

were paid towards the analyses of the complex network interactions [8, 12, 25, 28, 52,

67] and complex networks with time delays [18, 22, 35] with main application of chaos

synchronisation in coupled semiconductor lasers where the time delay quantity τ → ∞

[20]. Kinzel et al. [35] first considered dynamical systems with time delay dependence

and lately Flunkert et al. [22] considered synchronisation of delayed couplings in the large

limit of time delay τ by use of master stability equation and master stability function.

Similar to the work of Pecora and Carroll, Flunkert [20] considered a system of N

delayed coupled identical oscilators in a network, with xi ∈ Rn

ẋi(t) = f
[
xi(t)

]
+

N∑
j=1

gijh
[
xj(t− τ)

]
(1.60)

where the coupling matrix gij ∈ R determines the coupling topology and the correspond-

ing coupling strength between each system. The non-linear function f describes the
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dynamics of each individual isolated oscillator and h is a non-linear coupling function.

The synchronised solution, which has the form,

˙̄x(t) = f [x̄(t)] + σh [x̄(t− τ)] (1.61)

exists if and only if σ =
∑

j gij
4. In order to determine the stability of this synchronised

solution, we perturb the synchronised solution by a small quantity ξi(t) on each individual

system

xi(t) = x̄(t) + ξi(t) . (1.62)

Linearising Eq. (1.60) in ξi by using Eq. (1.62) and the synchronised solution (1.61) yields,

ξ̇i(t) = Df [x̄(t)] ξi(t) +
N∑
j=1

gijDh [x̄(t− τ)] ξi(t− τ) (1.63)

with Df and Dh the Jacobian functions. The linearised equation can be written in the

form

ξ̇(t) = 1N ⊗Df [x̄(t)] ξ(t) +G⊗Dh [x̄(t− τ)] ξ(t− τ) (1.64)

with ξ =
(
ξ1(t), ξ2(t), · · · , ξN(t)

)
, the coupling matrix G and N -dimensional identity

matrix 1N . Similar to the procedure laid out in Section 1.4.1 [49], taking the unitary

transformation U

diag (σ, γ1, γ2, · · · , γN−1) = UGU−1 (1.65)

with σ =
∑

j gIJ , yields the longitudinal variational equation

ξ̇0(t) = Df [x̄(t)] ξ0(t) + σDh [x̄(t− τ)] ξ0(t− τ) (1.66)

and the set of N − 1 transversal variational equations

ξ̇k(t) = Df [x̄(t)] ξk(t) + γkDh [x̄(t− τ)] ξk(t− τ) (1.67)

4A simple, yet sufficient, argument has been given in Section 3.3, see Property 1.
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where k = 1, 2, · · · , N − 1. As Pecora and Carroll [49] summerised, this synchronised

manifold is stable if and only if the maximum Lyapunov or Floquet exponent arising from

Eq. (1.67) is negative for all γk and therefore the master stability equation has the form

ξ̇(t) = Df [x̄(t)] ξ(t) + (α + iβ)Dh [x̄(t− τ)] ξ(t− τ) (1.68)

where λmax, the master stability function, maps the complex number α + iβ to the

max Lyapunov or Floquet exponent arising from the master stability equation (1.68).

This master stability function can be calculated numerically, however for more rigorous

understanding of the dynamics of the system we discretise time [35] for the synchronised

manifold (1.61) and the corresponding master stability equation (1.68)

xk+1 = f(xk) + σh(xk−τ ) (1.69)

ξk+1 = Akξk + reiψBk−τξk−τ (1.70)

where Ak := Df(xk), Bk−τ := Dh(xk−τ ), and (α + iβ) = reiψ [20]. Delay differential

equations of this type has been investigated widely with large time delay in literature

[22, 41, 72, 74], where Lyapunov method for delay differential equations [55] has been

recently generalised into the scaling of Floquet exponents or Floquet multiplier method

[31, 73]. Assume ξk takes the form ξk = zkξ0, taking the dynamics in the synchronised

manifold to be a fixed point [20] we get the multiplier equation for z as

det
[
A− zI + reiψBz−τ

]
= 0 (1.71)

where I is the identity matrix. If |z| < 1 then ξk → 0 as k → ∞ then sychronisation is

possible; on the other hand, if |z| > 1, in the limit of τ →∞, z must be an eigenvalue of A

in Eq. (1.71), then synchronisation is impossible. Let’s now study explicitly the behaviour

of z and therefore ξk in the limit of τ → ∞ where z ≈ 1. Assume z =
(
1 + δ

τ

)
eiω then
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limτ→∞ z = eiω [20] and

lim
τ→∞

z−τ = lim
τ→∞

[(
1 +

δ

τ

)−τ
e−iωτ

]
= e−δe−iωτ .

Multiplying Eq. (1.71) by the inverse of B and in the limit of large τ , we get

det
[
−B−1

(
A− Ieiω

)
− re−δei(ψ−ωτ)

]
= det

[
−B−1

(
A− Ieiω

)
− µ

]
= 0 (1.72)

gives a polynomial in eigenvalues µ in terms of ω, where µ(ω) = re−δei(ψ−ωτ). If B is not

invertible, then we use Eq. (1.71) explicitly to calculate the eigenvalues µ(ω) [20]. Then

one can define the branches

δ(ω) = ln

[
r

|µ(ω)|

]
= − ln |µ(ω)|+ ln r .

If there exists an incident that ω = ω0 where µ(ω) admits zero values, then Eq. (1.72)

tells us that this is corresponding to A having eigenvalues with |z| = 1, otherwise,

µ(ω) is bounded [22]. If no strongly unstable eigenvalue exists [7], then the sign of the

corresponding branch determines the stability in the limit of large τ . The sign of δ(ω)

depends on the values of r where r =
√
α2 + β2 in Eq. (1.68). As δ(ω) increases if we

increase r, so there exists a minimum radius r0 where the branch changes its stability

and therefore the master stability function λmax changes its sign accordingly. Therefore

one can determine the critical radius r0, where stability changes, for a fixed point in the

synchronisation manifold in limit of large values of τ .

We can see that the master stability function has a very simple structure in the limit

of large coupling delays, therefore in dynamic systems with large delay couplings master

stability function has been widely used [15, 24, 40].
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Figure 1.6: Graphical illustration of our system as oscillators on a circle.

1.5 Motivation

In this thesis, we are going to study a specific version of Winfree’s model [70], first

introduced by Prof. H. J. Jensen in 2008, and analyse the synchronous behaviour of

non-time delay and time delay coupled systems for all values of N . Using the differential

equation (1.1), we redefine the function K
N
R(θi) to be the coupling strength or magnitude

of feedback, Jij, between the ith and jth oscillators.

Our non-time delay model is then

θ̇i(t) = ωi +
N∑
j

Jijσ(θj(t)) (1.73)

and our corresponding time delay model, where the feedback function σ depends on some

past values of θ, is

θ̇i(t) = ωi +
N∑
j

Jijσ(θj(t− δt)) (1.74)

for i = 1, ..., N , where N � 1. Similar to Winfree’s model (1.1) and Kuramoto’s model

(1.13), θi(t), the degree of freedom in the system, is regarded as the phase of the ith

oscillator at time t. The feedback σ(θj(t)) is periodic, and ωi is the corresponding initial

frequency of the ith oscillator.

In our systems, the oscillators are coupled via the coupling strength Jij. We only make

one further assumption that the phases of all oscillators are monotonically increasing,
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i.e. the function θi(t) is monotonically increasing over time t 5. However, we will retain

Winfree’s assumptions of identical or nearly identical dynamics, and each oscillator is

coupled to all the others, but not to themselves, i.e. Jii = 0 for all i.

Definition 1.1. We define the synchronised state of our systems as θi = θ̄ + nξ for all

i, that is, when all of the oscillators are moving in the same phase or phases differ by

integer multiples of the period ξ of our function σ.

Since the equation of motion of our system is

θ̇i(t) = ωi +
N∑
j

Jijσ(θj(t)) (1.75)

if the system synchronises, then θi = θ̄ asymptotically and therefore θ̇i = θ̇k, which

implies

ωi + σ(θ̄)
N∑
j

Jij = ωk + σ(θ̄)
N∑
j

Jkj . (1.76)

For this to hold for all values of t, and the effect of the ω terms cannot be cancelled

by other terms and this implies (ωi − ωk) = 0 and
(∑n

j Jij −
∑n

j Jkj

)
= 0, that is, we

need ωi = ω̃ and
∑

j Jij = J̃. Therefore, θ̄ will also satisfy the same differential equation,

namely

˙̄θ = ω̃ + J̃σ(θ̄) (1.77)

where θ̄ is also a - strictly positive - monotonically increasing function in time t. However,

the main motivation comes from the clash between the analytic solution (Section 2.1) and

its numerical implementation using standard Euler scheme (Section 2.2) for the simplest

model with N = 2 obeys the equations of motion given by Eq. (1.75). Yet, more sophis-

ticated numerical schemes, such as Runge-Kutta, eliminates this pseudo synchronisation

effect (Section 2.2.3). Due to the fact that standard Euler is based on a forward derivative

and this hints to us that standard Euler scheme may have a self-implemented time delay

effect.

5In order to achieve this, all parameters are to be chosen so that θ̇i > 0 at all times. The easiest way
to ensure we do not violate the monotonic manner of θi(t) is to choose σ(θi(t)) > 0, therefore our choice
of σ introduced in Section 1.5.2.
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1.5.1 Two-oscillators Model with pulsating phases

To illuminate the effects of time delays, we first consider a system of two pulse oscillators

with shock amplitude J and σ(θ(t)) as periodic Dirac combs X(θ(t)). This setup is our

version of integrate-and-fire model with oscillators exchanging pulses according to time

delayed interactions

θ̇1(t) = ω + J
∑
n∈N

X(θ2(t− δt)− n) (1.78a)

θ̇2(t) = ω + J
∑
n∈N

X(θ1(t− δt)− n)) . (1.78b)
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Figure 1.7: Time evolution of two oscillators exchanging pulses according
to (1.78). Left panel: δt = 0 and right panel: δt = 0.5.

Integrating the set of Eq. (1.78) above, we can see that θ1(t) 7→ θ1(t)+J every time θ2

passes through an integer value at a referenced time, depending on the value of the time

delay δt. Similarly θ2(t) 7→ θ2(t)+J when every time θ1 passes through an integer value at

a referenced time. Without loss of generality, let θ1(0) > θ2(0) and in the case of δt = 0,

we can see from Figure 1.7 (left panel) that the two phases are unable to synchronise. In

this particular case of δt = 0 at most we can get is a leap-frogging synchronisation - in

fact, entrainment - if we increase the value of J . 6 Consequently if θ1(0)−θ2(0) > J then

6Leap-frogging entrainment is only possible when the jump of one oscillator makes the other phase
oscillator skips over an integer, therefore the former oscillator misses a jump from the latter. Without
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leap-frogging entrainment will not be possible. Another property to note is that if the

difference between θ1(0) and θ2(0) is out more than (and not equal to) nξ, n ∈ Z \ {0};

where ξ is the periodicity of X(θ(t)), then the system does not eventually synchronise or

entrain to less than nξ. On the other hand, in the case of δt 6= 0, Figure 1.7 (right panel),

we will get leap frogging entrainment independent of the value of J . An important note

is that, if the function σ(θ(t)) is a Dirac comb X(θ(t)) the solution is strictly periodic.

This fact contradicts our linearised solution of time delayed system in Section 2.4 where

we only see asymptotic entrainment.

1.5.2 Choice of σ(θ̄(t))

Obviously periodic Dirac delta spikes are unrealistic in real systems. Pulse emitted will

have a finite width and a smooth time dependence, therefore we have chosen our σ(θ̄(t))

to be a periodic, with period 1, gaussian of the form

σ(x) =
1√

4πw2

∞∑
n=−∞

exp

(
−(x+ n)2

4w2

)
(1.79)

where n ∈ R. The Poisson’s summation formula may be stated as

∞∑
n=−∞

f(n) =
∞∑

n=−∞

f̂(n) (1.80)

where f̂(n) is the Fourier Transform of f(n), i.e. f̂(n) =
∫∞
−∞ f(x) exp(−2πinx)dx. Ap-

plying Poisson’s summation formula to our function,

F (x) =
∞∑

n=−∞

1√
4πw2

exp

(
−(x+ n)2

4w2

)

gives

F (x) =
∞∑

n=−∞

∫ ∞
−∞

1√
4πw2

exp

(
−(x+ y)2

4w2

)
exp(−2πiny)dy .

the presence of time delay, this is only possible if J ≥ θ1(0) − θ2(0) but it is a natural outcome in the
time delayed integrate-and-fire systems.
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Now if we complete the square, this will give

F (x) =
∞∑

n=−∞

∫ ∞
−∞

1√
4πw2

exp

(
−(x+ y + 4πinw2)2

4w2

)
exp(−4π2n2w2) exp(2πinx)dy

We now let m = x+y+4πinw2

2w
and using the fact that

∫∞
−∞ exp(−z2)dz =

√
π, this will

imply

F (x) =
∞∑

n=−∞

exp(−4π2n2w2) exp(2πinx)

∫ ∞
−∞

1√
4πw2

exp(−m2)2wdm

=
∞∑

n=−∞

exp(−4π2n2w2) exp(2πinx)

= ϑ3(xπ, exp(−4π2w2))

where, ϑ3(z, q) is the Jacobi Theta Function. Therefore, we can write

∞∑
n=−∞

1√
4πw2

exp

(
−(x+ n)2

4w2

)
= ϑ3(xπ, exp(−4π2w2))

This would also mean that if n → nξ, where ξ defines the periodicity of σ, then we will

have
1

ξ

∞∑
n=−∞

1√
4πw

2

ξ2

exp

(
−(x

ξ
+ n)2

4w
2

ξ2

)
=

1

ξ
ϑ3

(
x

ξ
π, exp

(
−4π2w

2

ξ2

))
(1.81)

Therefore, by means of Poisson’s summation, we can rewrite our function in Jacobi Theta

Function representation. This is useful when we want to examine multiples of period, or

different periods, by considering different Jacobi Theta Functions.
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Figure 1.8: Periodic gaussian functions with period ξ, where ξ = 2. The
distance between the red/green dotted lines is one period, i.e. (c−a) = ξ and
(d − b) = ξ. By graphical argument and the periodicity/properties of σ, we
can show that Area(a, b) + Area(b, c) = Area(a, c) = F (ξ) = Area(b, d) =
Area(b, c) +Area(c, d). Therefore, this implies that Area(a, b) = Area(c, d),
and so if the value of C, in Eq. (2.3), is equal to nψ where ψ = F (ξ). This
would mean that the system would have started synchronised, where the
phases for the two oscillators will differ by multiples of the period ξ.
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Chapter 2

Two-oscillator Model

In this section, we consider two different types of systems. Firstly, we consider the non-

time delay system for two-oscillator models 1, then we scrutinise the corresponding time

delay system. Two-oscillator systems 2 consist of two oscillators which obey the equation

of motion (1.73) introduced above, and we set ω1 = ω2 = ω.

2.1 Non-time delay systems

For non-time delay two-oscillator systems, both θ1 and θ2 depend on the current time t.

For simplicity, we assume the amplitudes of the coupling are symmetric, i.e. J12 = J21 = J;

and Jii = 0 as part of assumptions of the system. Therefore we have the set of equations

of motion as

θ̇1 = ω + Jσ(θ2) (2.1)

θ̇2 = ω + Jσ(θ1) (2.2)

1This idea of two-oscillator models was introduced by Prof. H. J. Jensen., Imperial College London

2We lose a lot of detail by setting ωi = ω for all i. However, synchronisation in our system can
mean θi = θ̃ for all i where θ̃ 6= θ̄ as defined in (3.2). For this to be true forever we require ˙̄θi =

ωi +
∑
j Jijσ(θ̄) =

˙̃
θ, which will imply ωi = ω.
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As both θ1 and θ2 are strictly positive, we can write

θ̇2

θ̇1

=
dθ2

dθ1

=
ω + Jσ(θ1)

ω + Jσ(θ2)

and therefore, we can deduce that

∫ θ1(t)

θ1(0)

ω + Jσ(θ1)dθ1 =

∫ θ2(t)

θ2(0)

ω + Jσ(θ2)dθ2 .

By writing above integrals in the form of F (θ) =
∫ θ

0
ω + Jσ(θ′)dθ′, we can express the

above equation as

F (θ1)− F (θ2) = F (θ1(0))− F (θ2(0)) = C . (2.3)

where C is a constant. If we define time ψ as the time required for the oscillator θ1 to

travel one period ξ, i.e. θ1(t + ψ) = θ1(t) + ξ. From Eq. (2.3), we can rearrange the

equation to get

F (θ1(t)) = C + F (θ2(t)) (2.4)

which implies

θ1(t) = F−1 (C + F (θ2(t))) . (2.5)

By substituting this into θ1(t+ ψ) = θ1(t) + ξ, we have

F−1(C + F (θ2(t+ ψ))) = θ1(t+ ψ) = ξ + θ1(t) = ξ + F−1(C + F (θ2(t)))

and therefore

C + F (θ2(t+ ψ)) = F (ξ) + C + F (θ2(t)) = C + F (θ2(t) + ξ)

which implies

θ2(t+ ψ) = θ2(t) + ξ . (2.6)
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Note that F (θ) can be written as F (θ) = θΘ
ξ

+ F̃ (θ), where F̃ (θ) is a periodic function

with period ξ,

F (θ + ξ) = (θ + ξ)
Θ

ξ
+ F̃ (θ + ξ) = Θ + θ

Θ

ξ
+ F̃ (θ) = Θ + F (θ)

where Θ = F (ξ) =
∫ ξ

0
ω + Jσ(x)dx. If F (θ) takes the form F (θ) =

∫ θ
0
ω + Jσ(θ′)dθ′,

then F (θ) can be written as F (θ) = Θ
ξ
θ + F̃ (θ), where F̃ (θ) is a periodic function with

period ξ. To see this, it will be sufficient to show whether F̃ (θ) = F (θ)− Θ
ξ
θ is a periodic

function. Therefore, we look at F̃ (θ(t+ ψ))

F̃ (θ(t+ ψ)) = F̃ (θ(t) + ξ) = F (θ + ξ)− Θ

ξ
(θ + ξ)

= Θ + F (θ)− Θ

ξ
θ −Θ = F̃ (θ) .

Hence, we expect our F (θ) to be linear in θ, and therefore t 3, plus a periodic function.

If we want to understand the dynamics of such a system, we would need to consider

different values of C in the above expression (2.3) in order to analyse the behaviour of

such a non-time delay two-oscillator system.

If the constant C is equal to 0, and since the integrand of F is monotonically increasing

and strictly positive, this implies that θ1(t) = θ2(t) ∀t. Therefore the system would have

been synchronised at the start, and vice versa.

If the constant C = nΘ, where n ∈ Z and Θ = F (ξ) with ξ the period of the integrand

of F (see Figure 1.8). We then can rewrite (2.3) as

F (θ1 − nξ)− F (θ2) = 0 (2.7)

by using the periodicity of the integrand of F , such that F (θ + nξ) = F (θ) + nΘ. From

this, we can conclude that θ1(t)− nξ = θ2(t) ∀t. Therefore, the system would have been

synchronised at the start as well, and vice versa.

3Because θ is a monotonically increasing function in t, therefore there exists a bijection between θ
and t.
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This would leave us a final question of whether values of C, which are not equal to nΘ,

would lead to synchronisation in these kinds of non-time delay two-oscillator systems.

This is equivalent of asking whether F (θ1) − F (θ2) 6= nΘ would imply θ1 − θ2 6= mξ,

∀m,n ∈ Z with F (θ) =
∫ θ

0
ω + Jσ(θ′)dθ′. This can be proved by considering the contra-

positive statement; which is, ∃n∈ZF (θ1) − F (θ2) = nΘ ⇐ ∃m∈Zθ1 − θ2 = mξ, namely

when m = n. Therefore, we conclude that the system will not synchronise if the constant

is not equal to nΘ; and hence, the two-oscillator non-time delay systems should never

synchronise.

It is instructive to study a linearised solution of the above system. Section 2.3 follows

an analytic solution of a slight modification of our system with a concrete σ(θ). We define

ϕ, the average difference of the two oscillators, and θ̄, the average of the two oscillators,

we have

ϕ =
1

2
(θ1 − θ2) (2.8)

θ̄ =
1

2
(θ1 + θ2) (2.9)

which gives, by substituting our equations of motion,

ϕ̇ =
1

2
J(σ(θ2)− σ(θ1)) (2.10)

˙̄θ =
1

2
J(σ(θ2) + σ(θ1)) + ω . (2.11)

For synchronisation, we require ϕ to converge to a constant as t → ∞, which implies

ϕ̇ = 0. By writing θ1 and θ2 in terms of ϕ and θ̄, and substituting to ϕ̇ above gives

0 = ϕ̇ = 1
2
J(σ(θ̄−ϕ)−σ(θ̄+ϕ)). Therefore, ϕ = 0 is a fixed point as σ(θ̄−ϕ) = σ(θ̄+ϕ).

We now then consider the first order linearisation of this system by expanding in small

values of ϕ, and the above equations become

ϕ̇ ≈ −Jϕσ′(θ̄) (2.12)

˙̄θ ≈ Jσ(θ̄) + ω . (2.13)
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Since θ̄ is also strictly positive, we can write

ϕ̇
˙̄θ

=
dϕ
dθ̄

=
−Jϕσ′(θ̄)
Jσ(θ̄) + ω

= −ϕ d
dθ̄

[ln(Jσ(θ̄) + ω) + c1] (2.14)

for some constants c1. This gives,

ϕ(t) = ϕ0
[Jσ(θ̄(0)) + ω]

Jσ( ¯θ(t)) + ω
(2.15)

Both analytic result (2.3) and linearised result (2.15) suggest synchronisation would not

be observed in these kinds of non-time delay two-oscillator systems. However, when

we numerically integrate this set of equations using the standard Euler method (in Sec-

tion 2.2.1), synchronisation is attained. A question is then raised: why would the numerics

show synchronisation while analytically there should not be any?

To check whether this is a numerical issue, we seek an improvement of integrating

the set of equations numerically. Once we implement this slight improvement (see Sec-

tion 2.2.2), the unpredicted synchronisation effect will disappear; however, for some sets

of parameters, the system will still synchronise after a very long period of time. After

this slight improvement on the standard Euler scheme, we want to investigate whether

the numerics with higher order derivatives will match our analytical result. Therefore,

we look into applying the Runge-Kutta method (see Section 2.2.3) to our differential

equations, and indeed the system will no longer be synchronised. Further analysis and

detail will be discussed in Section 2.2.

In summary, the analytics suggests that no synchronisation would be obtained, while

the standard Euler numerics shows that the system would actually be synchronised.

However if we slightly improve the standard Euler numerical scheme, the numerics only

gives synchronisation after very long period of time; and if we go a step further by

considering higher order derivatives and using the Runge-Kutta method, the numerics

actually agrees with the analytics; that is, synchronisation will never take place in two-

oscillator non-time delay systems if the systems were not synchronised at the beginning.
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2.2 Numerics for Two-oscillator Non-time delay Model

In this section, we are going to find solutions of our systems by numerical integration.

We concentrate on applying the standard Euler method, our version of the Euler method

and Runge-Kutta integration on the two-oscillator non-time delay systems. The equation

of motion of two-oscillator non-time delay system is

θ̇i(t) = ωi +
N∑
j

Jijσ(θj(t)) . (2.16)

Same as we have introduced in the analytics, we set all the oscillators to have the same

initial frequencies, i.e. ωi = ω for all i, and we also set the amplitudes of the coupling to

be symmetric and equal, that is Jij = Jji = J, but Jii = 0.

2.2.1 Standard Euler Integration

In order to approximate the solution of the initial value problem

θ̇(t) = f(t, θ(t)), θ(t0) = θ0 (2.17)

we apply linear approximation around the point (t0, θ(t0)), that is, by using the first two

terms of the Taylor expansion of θ. One step of the Euler method from tn to tn+1 = tn+∆t,

with small values of time increment ∆t, is then

θ(t+ ∆t) ≈ θ + ∆tθ̇ . (2.18)

By implementing this numerical scheme on the equations of motion of two-oscillator non-

time delay systems as defined in Section 2.1, with σ(θ) a periodic gaussian function of

the form σ(θ) = 1
ζ
√

2π
exp

(
− θ2

2ζ2

)
, where ζ = w

√
2 in Eq. (1.79) and the values of θ are

modulo of the period ξ. Synchronisation is attained by standard Euler integration for such

systems (see Figure 2.1). If we improve the resolution, by a factor of 20, on our integration

time step ∆t, the synchronisation phenomenon still exists (see Figure 2.3 inset), but after
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a much longer time. However, the numerical results obtained from the standard Euler

integration does not seem to agree with our analytical solution Eq. (2.3).
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Figure 2.1: Trajectory of solution to the two-oscillator non-time delay systems using
standard Euler scheme with ∆t = 0.01, ξ = 1.0, ω = 1.0 and ζ = 0.1. Inset: trajectory
between time 0 to 100.
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Figure 2.2: Trajectory of solution to the two-
oscillator non-time delay systems using standard
Euler scheme with ∆t = 0.0005, ξ = 1.0, ω =
1.0 and ζ = 0.1.
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Figure 2.3: Same data as Figure 2.2 between
time 0 to 20.

2.2.2 Improved Euler Integration

In this section we seek an improvement of the standard Euler method when integrating

the two-oscillator non-time delay systems. The standard Euler method is relying on
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forward derivatives

θ̇ =
θ(t+ ∆t)− θ

∆t
(2.19)

which has a broken symmetry and only depends on the current time t. Since θ̇(t) is

actually a function depends only on θ, we can write θ̇ = f(θ). The standard Euler (2.18)

becomes

θ(t+ ∆t) ≈ θ + ∆tθ̇ = θ + ∆tf(θ) = θ + ∆θ0 , (2.20)

where θ0 is the old approximation of θ. We introduce the better approximation by taking

the average of current value of θ and a bad estimation of the future value of θ+ ∆θ0, that

is

∆θ1 =
1

2
∆tf(θ) +

1

2
∆tf(θ + ∆θ0)

∼=
1

2
∆tf(θ) +

1

2
∆t(f(θ) + ∆θ0f

′(θ))

= ∆tθ̇ +
1

2
(∆t)2θ̇f ′(θ) .

Since θ̇ = f(θ), then this implies θ̈ = θ̇f ′(θ) and therefore, the new approximation by the

improved Euler method is

θ(t+ ∆t) ≈ θ + ∆θ1 = θ + ∆tθ̇ +
1

2
(∆t)2θ̈ (2.21)

which is effectively taking the second derivative of θ, with respect to t, into account

when integrating. Similar to the standard Euler scheme, we take σ(θ) in form of a

periodic gaussian function, i.e. σ(θ) = 1
ζ
√

2π
exp

(
− θ2

2ζ2

)
. When we use this procedure

to integrate the two-oscillator non-time delay systems, with ∆t = 0.0005, the improved

Euler scheme resolves the numerical discrepancy to some extent, i.e. the system will no

longer synchronise (see Figure 2.4). However if we use a lower resolution of ∆t, i.e.

∆t = 0.01, the system would still synchronise after a comparatively long period of time

(see Figure 2.6).
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Figure 2.4: Trajectory of solution to the
two-oscillator non-time delay systems using im-
proved Euler scheme with 2ϕ0 = 0.2, ∆t =
0.0005, ξ = 1.0, ω = 1.0 and ζ = 0.1.
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Figure 2.5: Same data as Figure 2.4 between
time 0 to 20.
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Figure 2.6: Trajectory of solution to the
two-oscillator non-time delay systems using im-
proved Euler scheme with 2ϕ0 = 0.2, ∆t = 0.01,
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2.2.3 Interleaved integration with Runge-Kutta

After this slight improvement of the standard Euler scheme, we want to investigate

whether higher derivatives will give us the correct numerical results. Therefore, we look

into apply the Runge-Kutta forth-order method, more commonly known as RK4, to our

differential equations.

If we have an initial value problem

θ(t) = f(t, θ(t)), θ(t0) = θ0 ,

the RK4 method [53] for the full system is given by

θn+1 = θn +
1

6
(k1 + 2k2 + 2k3 + k4)

tn+1 = tn + ∆t

where θ(tn+1) is approximated by θn+1 using RK4; and,

k1 = (∆t)f(tn, θn)

k2 = (∆t)f

(
tn +

1

2
∆t, θn +

1

2
k1

)
k3 = (∆t)f

(
tn +

1

2
∆t, θn +

1

2
k2

)
k4 = (∆t)f(tn + ∆t, θn + k3)

where k1 is the slope at the beginning of the interval; k2 and k3 are the slopes at the

midpoint of the interval, with the intermediate θ values determined at the point tn + ∆t
2

via Euler’s method using slope k1 and k2 respectively; and k4 is the slope at the end of

the interval, using slope k3 to determine its θ value.

The next value of θn+1 is then determined by adding the current value of θn and the

product of the size of interval, ∆t, with estimated slope, s; where

s =
1

6
(k1 + 2k2 + 2k3 + k4) (2.22)
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is a weighted average of the slopes. Similar to other non-time delay systems, we take

σ(θ) = 1
ζ
√

2π
exp

(
− θ2

2ζ2

)
. We implement the RK4 method, via the numerical RK4 routine

by Press et al. [53], to our differential equation and the unpredicted synchronisation effect

will vanish, even with ∆t = 0.01 (see Figure 2.8). This means that the numerics of the

full system on N -oscillator non-time delay system will never synchronise, and this agrees

with the linearised solution (2.15) we found.
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oscillator non-time delay systems using RK4
method with 2ϕ + 0 = 0.2, ∆t = 0.01, ξ = 1.0,
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2.3 Analytical solution of a two-oscillator non-time delay system

In this section, we show how a coupled system, which consists of two non-time delay

oscillators, can be solved analytically. This particular system has equations of motion

θ̇1 = ω + σ(θ2)− σ(θ1) (2.23)

θ̇2 = ω + σ(θ1)− σ(θ2) (2.24)

with σ(x) = κ
2

sin(x). If we let ϕ be the average difference of the two oscillators, and let

θ̄ be the average of the two oscillators, we have

ϕ =
1

2
(θ1 − θ2) (2.25)

θ̄ =
1

2
(θ1 + θ2) . (2.26)

By writing θ1 and θ2 in terms of ϕ and θ̄, i.e. θ1 = θ̄ + ϕ and θ2 = θ̄ − ϕ, we get

ϕ̇ = σ(θ2)− σ(θ1) = σ(θ̄ + ϕ)− σ(θ̄ − ϕ) (2.27)

˙̄θ = ω (2.28)

which gives θ̄(t) = ωt+ θ̄(0) but we can always set θ̄(0) = 0 by having initially symmetric

setup of the oscillators; and so,

ϕ̇ =
κ

2
sin(ωt− ϕ)− κ

2
sin(ωt+ ϕ) = −κ sin(ϕ) cos(ωt) . (2.29)

Using separation of variables, we can obtain the analytic solution as

tan
(ϕ

2

)
= tan

(ϕ0

2

)
exp

(
−κ
ω

sin(ωt)
)

(2.30)

which gives,

ϕ(t) = 2 tan−1
[
tan
(ϕ0

2

)
exp

(
−κ
ω

sin(ωt)
)
.
]

(2.31)
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From this equation, we can obtain the range of the system as

− κ

ω
≤ ln

(
tan(ϕ(t)

2
)

tan(ϕ0

2
)

)
≤ κ

ω
. (2.32)

For this particular example, we can conclude that, the sign of tan
(
ϕ0

2

)
will need to be

the same as tan
(
ϕ(t)

2

)
since ln(x) is only defined for x > 0. On another note, if there

was a change of sign of tan
(
ϕ(t)

2

)
, we would think that it is possible on having ϕ = 0

but once that is reached, the system should stay there. From (2.31), we can also see that

ϕ(t) does not synchronise if t→∞, instead, it oscillates with frequency ω.

By comparing this particular model of two-oscillator non-time delay system to Ku-

ramoto’s model (1.13) of case N = 2 and ωi = ω, that is

θ̇1 = ω +
κ

2
sin(θ2 − θ1) (2.33)

θ̇2 = ω +
κ

2
sin(θ1 − θ2) . (2.34)

Instead of considering the sine of the difference between the oscillators, as introduced

in the Kuramoto model; we consider the difference of the sine of the oscillators in our

model. We can see a fundamental difference of our model compared to Kuramoto’s. The

Kuramoto model suggests synchronisation whereas our model oscillates with frequency ω,

i.e. our model does not synchronise. The reason of this fundamental difference is, although

both models are solved by linearisation, when θ1 and θ2 become large, sin(θ2)− sin(θ1) 6=

sin(θ2 − θ1) +O(sin)2.
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2.4 Timedelay Systems

The difference between the standard Euler and improved Euler numerics is that, the

standard Euler is based on the past values of t, but the improved Euler is based on an

average of past and estimated future values of t. Our method for obtaining the estimated

future values of t is discussed in Section 2.2.2. This slight change in the numerics suggests

that time delay may play a role in such systems for synchronisation, as standard Euler

only takes θ values at t to approximate the θ value at t+ ∆t. To verify this, we now look

into the time delay systems. In order to implement the time delay, we introduce δt into

the system, where δt is small but finite. The equations of motion are now

θ̇1 = ω + Jσ(θ2(t− δt)) (2.35)

θ̇2 = ω + Jσ(θ1(t− δt)) (2.36)

Similar to the non-time delay systems, we introduce ϕ and θ̄, such that

ϕ =
1

2
(θ1 − θ2)

θ̄ =
1

2
(θ1 + θ2)

To investigate this kind of systems, we first apply Perturbation Theory by expanding

about small values of δt. This gives

θ̇1 = ω + J[σ(θ̄ − ϕ)− δtθ̇2σ
′(θ̄ − ϕ) + ...]

θ̇2 = ω + J[σ(θ̄ + ϕ)− δtθ̇1σ
′(θ̄ + ϕ) + ...]

and we can rewrite ϕ̇ and ˙̄θ using our equations of motion, giving

ϕ̇ =
1

2
J[σ(θ2(t− δt))− σ(θ1(t− δt)]

˙̄θ =
1

2
J[σ(θ2(t− δt)) + σ(θ1(t− δt))] + ω
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At this point we consider small values of ϕ as we require ϕ to converage to a constant as

t→∞ for synchronisation. Hence, for small values of ϕ, expanding in σ gives

σ(θ1) = σ(θ̄) + ϕσ′(θ̄) +
1

2
ϕ2σ′′(θ̄) + ...

σ(θ2) = σ(θ̄)− ϕσ′(θ̄) +
1

2
ϕ2σ′′(θ̄) + ...

This implies that our equation, in first order of δt, of ϕ̇ becomes

ϕ̇ = −Jϕ(t− δt)σ′(θ̄(t− δt)) +O(ϕ)3

≈ −J(ϕ− δtϕ̇)σ′(θ̄(t− δt))

= −Jϕ(σ′(θ̄)− δt ˙̄θσ′′(θ̄)) + Jδtϕ̇σ′(θ̄) +O(δt)2

which gives,

ϕ̇ ≈ −ϕJ(σ
′(θ̄)− δt ˙̄θσ′′(θ̄))

1− Jδtσ′(θ̄)
= −ϕ(Jσ′(θ̄)− Jδt ˙̄θσ′′(θ̄) + J2δtσ′2(θ̄) +O(δt)2) (2.37)

Similar to ϕ, our equation of θ̄, in first order of δt, becomes

˙̄θ = Jσ(θ̄(t− δt)) + ω +O(ϕ)2

≈ Jσ(θ̄)− Jδt ˙̄θσ′(θ̄) + ω (2.38)

which gives,

˙̄θ =
Jσ(θ̄) + ω

1 + Jδtσ′(θ̄)
= ω + Jσ(θ̄)− Jδtσ′(θ̄)(ω + Jσ(θ̄)) +O(δt)2 (2.39)

Again, since θ̄ is strictly positive, in first order of δt, we can write

ϕ′ =
dϕ
dθ̄
≈ −ϕ(Jσ′(θ̄)− Jδt ˙̄θσ′′(θ̄) + J2δtσ′2(θ̄))

ω + Jσ(θ̄)− Jδtσ′(θ̄)(ω + Jσ(θ̄))
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Considering the derivative of ˙̄θ with respect to θ̄, we have

˙̄θ′ =
d
dθ̄

˙̄θ = Jσ′(θ̄)− Jδt ˙̄θσ′′(θ̄)− J2δtσ′2(θ̄)

By substituting the approximation of ˙̄θ, (2.39), and using this expression of ˙̄θ′, we can

simplify the equation of ϕ′, up to first order of δt, as,

ϕ′ = −ϕ

(
d
dθ̄

ln( ˙̄θ(θ̄)) +
2J2δtσ′2(θ̄)

˙̄θ(θ̄)

)
(2.40)

By separation of variables, we get

ϕ(t) = ϕ0

˙̄θ(0)
˙̄θ(t)

exp

(
−2J2δt

∫ θ̄

θ̄(0)

σ′2(θ̄′)
˙̄θ(θ̄′)

dθ̄′
)
,

containing θ̄(t), which can be obtained by integrating (2.39). A more practical form of

the equation above is found by considering θ̄ as the independent variable, consistent with

˙̄θ in (2.39), which is best interpreted as a function of θ̄ as well

ϕ(t(θ̄)) = ϕ0

˙̄θ(0)
˙̄θ(t(θ̄))

exp

(
−2J2δt

∫ θ̄(t(θ̄))

θ̄(0)

σ′2(θ̄′)
˙̄θ(θ̄′)

dθ̄′
)
. (2.41)

Clearly, from the linearised solution (2.41) above, the system will eventually be synchro-

nised with the presence of time delay. ϕ(t) goes to zero exponentially in δt. We can

also note that, the larger value of the time delay, the quicker the system is going to be

synchronised. If we turn off the time delay in (2.41), we recover the linearised solution

(2.15) of the two-oscillator non-time delay system, i.e. no synchronisation if δt→ 0.
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2.5 Numerics for Two-oscillator Timedelay Model

After we conclude that the non-time delay systems of our model will not synchronise, we

want to investigate whether the time delay systems of our model agree with the analytics.

In order to do this, we will implement time delay into our numerics. We will also apply

the various numerical methods: standard Euler, our version of the Euler method and

Runge-Kutta integration to our two-oscillator time delay systems. The reliability will

then be checked against the linearised solution of the two-oscillator time delay model.

The equation of motion of two-oscillator time delay system is

θ̇i(t) = ωi +
N∑
j

Jijσ(θj(t− δt)) (2.42)

Similar to the non-time delay system, we set all the oscillators to have the same initial

frequencies, i.e. ωi = ω for all i, and we also set the amplitudes of the coupling to be

symmetric and equal, that is Jij = Jji = J, but Jii = 0.

2.5.1 Standard Euler Integration

For two-oscillator time delay systems, our initial value problem is then

θ̇(t) = f(θ(t− δt)), θ(t0) = θ0 . (2.43)

We implement the time delay by introducing δt to our numerics such that our σ func-

tion depends on the past values of θ, that is σ = σ(θ(t − δt)). For our two-oscillator

time delay system, the numerics from the standard Euler scheme shows synchronisation

(see Figure 2.10). By comparing the standard Euler numerics of two-oscillator non-time

delay and standard Euler numerics of two-oscillator time delay systems (see Figure 2.11),

we conclude that the standard Euler scheme does indeed have a self-implemented time

delay feature; however, the tendency to synchronise in the standard Euler scheme is now

mixed with the effect of the time delay.
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Figure 2.10: Trajectory of the two-oscillator time delay systems using Euler method.
Parameters used: 2ϕ0 = 0.2, ∆t = 0.0005, ξ = 1.0, ω = 1.0, ζ = 0.1 and δt = 0.05.
Inset: Trajectories between time 0 and 100.
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Figure 2.11: Trajectory comparisons of of non-time delay (Figure 2.1, red) and
corresponding time delay systems (green) on top of each other, both numerics are
based on the standard Euler scheme. Parameters used: 2ϕ0 = 0.2, ∆t = 0.01, ξ = 1.0,
ω = 1.0, ζ = 0.1 and δt = 0.01. The two numerics match precisely to each other
suggesting that the standard Euler scheme has a self-implemented time delay feature.
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2.5.2 Improved Euler Integration

Since the standard Euler is not reliable for obtaining the correct numerical results for two-

oscillator non-time delay system, in order to verify whether our time delay systems will

synchronise numerically we look into our version of the Euler scheme, i.e. the improved

Euler integration method introduced in Section 2.2.2. Again, we implement the time

delay by introducing the variable δt into our numerics, such that our feedback function

σ depends on past values of θ.

Both the numerics from the standard Euler scheme and the improved Euler scheme

(see Figure 2.13) match closely with each other. Therefore, we expect our time delay

systems to synchronise with presence of time delay.

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0  5  10  15  20

2
ϕ

(t
)

Time t

-0.2

-0.15

-0.1

-0.05

 0

 0  20  40  60  80  100

Figure 2.12: Trajectory outputs of the two-oscillator time delay systems using im-
proved Euler integration. Parameters used: 2ϕ0 = 0.2, ∆t = 0.0005, ξ = 1.0, ω = 1.0,
ζ = 0.1 and δt = 0.05. Inset: Trajectories between time 0 and 100.

2.5.3 Interleaved integration with Runge-Kutta

Since both Euler’s method and the improved Euler scheme agree closely to each other,

we would want to confirm whether with higher order derivatives the numerics of our

time delay system will synchronise with the presence of time delay. Again, we apply the
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Figure 2.13: Trajectory outputs of standard Euler (red) scheme and improved Euler
(green) scheme match very closely on the two-oscillator time delay system. Parameters
used: 2ϕ0 = 0.2, ∆t = 0.0005, ξ = 1.0, ω = 1.0, ζ = 0.1 and δt = 0.01

numerical RK4 routine by Press et al. [53], to our full time delay system (see Figure 2.14).

We can see that the three numerics all show synchronisation and they match very closely

to each other (see Figure 2.15). Note that the Euler scheme deviates little compared to

the improved Euler scheme due to the self-implemented time delay feature in the Euler

scheme.

Since the RK4 method is the most reliable, we go on to investigate the synchronisation

behaviours of the systems and we look into draw a phase diagram of the system. In order

to cope with the large history data we are going to use, we introduce and utilise a circular

piece of memory so that we only go back as far as we need, i.e. one time step, and therefore

the history size of the circular piece memory is the ratio of time delay to the integration

time step, i.e. δt
∆t
. Most importantly the time delay therefore has to be an integer multiple

of the integration time step.

When we start to look into different values of initial phase difference between the

two oscillators, all time delay systems will indeed synchronise; however, we discover that

our time delay system may synchronise to different states, namely multiples of periods

of ξ (see Figure 2.16), depending on the initial phase difference. For convenience on
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Figure 2.14: Trajectory outputs of the two-oscillator time delay systems using RK4
method with interpolation approximation. Parameters used: 2ϕ0 = 0.2, ∆t = 0.0005,
ξ = 1.0, ω = 1.0, ζ = 0.1, and δt = 0.05. Inset: Trajectories between time 0 and 100.
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Figure 2.15: Trajectories outputs of the standard Euler scheme (red), the improved
Euler scheme (green) and RK4 method (blue) match very closely to one another of the
two-oscillator time delay system. Parameters used: 2ϕ0 = 0.2, ∆t = 0.0005, ξ = 1.0,
ω = 1.0, ζ = 0.1 and δt = 0.01.
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understanding the effect graphically, we consider θ2(t)− θ1(t) in see Figure 2.16, because

initially θ2(0) > θ1(0) in our setup. If (θ2(0) − θ1(0)) ∈ (0, nξ − ξ
2

+ ε) with ε = 0.004,

the system will synchronise to (n − 1)ξ while if (θ2(0) − θ1(0)) ∈ (nξ − ξ
2

+ ε, nξ), the

system will then synchronise to nξ. This is due to the stability of our unstable node of

the system, that is, at half of a period nξ + ξ
2
for n ∈ Z. Numerically, the unstable node

of the system appears to be nξ − ξ
2

+ ε rather than the analytic boundary nξ − ξ
2
is due

to the fact that we have no historic values of θi(t) for the first δt
∆t

steps, i.e. when the

circular piece of memory is still empty.
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Figure 2.16: Trajectories of 2-oscillator full system with different initial phase dif-
ference θ2(0)− θ1(0). The system will synchronise to two different states. With initial
difference of 0.503 (red) the system synchronises to 0, while with initial difference of
0.505 (green) the system synchronises to 1, which is one period of ξ. We have applied
RK4 routine with ∆t = 0.0001, ξ = 1.0, ω = 1.0, ζ = 0.1, δt = 0.004.

We also find that if we allow fast synchronisation, that is, for large values of time

delay δt, some systems will desynchronise (see Figure 2.17). We thought at first that

this was caused by the numerical precision of the program, e.g. the resolution of ∆t, or

accumulative errors in the history of the values of θi. However this issue will still remain

macroscopic even if we apply the highest precision available at the time and having a

fresh history halfway through the system 4. In fact, the issue is caused by the bias of how

4We reset all histories of θi(t) for a particular time while the programming is running. The macroscopic
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Figure 2.17: Trajectory output of RK4 with interleaved integration. After some time,
the system will desynchronise itself. We apply the RK4 routine with ∆t = 0.0001,
ξ = 1.0, ω = 1.0, ζ = 0.1, δt = 0.05 and 2ϕ0 = (θ1(0)− θ2(0)) = 0.503

t

t− δt

t− δt+ ∆t
2

t− δt+ ∆t t+ ∆t t+ 2∆t

Figure 2.18: Assume that we are on the, say, even timeline with whole ∆t
increments, then the timeline with 1

2∆t will be the odd timeline. If we want
to calculate t+ 2∆t from t+ ∆t, then we require historical values (with a δt
shift) on the timelines of t+∆t which are t−δ (from even timeline), t−δt+ ∆t

2
(from odd timeline) and t − δt + ∆t (from even timeline). This bias causes
the errors accumulate unevenly and therefore the system will desynchronise.
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Interpolation points Weighing of evenly spaced points
2 1

2 ,
1
2

4 − 1
16 ,

9
16 ,

9
16 ,−

1
16

6 3
256 ,−

25
256 ,

150
256 ,

150
256 ,−

25
256 ,

3
256

Table 2.1: Table of interpolation points and corresponding weighing

RK4 is implemented into our program, see Figure 2.18. For the RK4 routine to calculate

the value of θn+1, the program itself will require the value of θn and asks for a function

for an intermediate value of θ at n+ 1
2
. The way we implement the algorithm is to treat

all half -points as full points on the timeline 5. Therefore, we move in time steps of two

for the values we want to calculate numerically and move one time step back to obtain

the intermediate values, i.e. an interleaved scheme. In this case, we will need to rescale

the output by a factor of 1
2
. This suggests that the interleaved RK4 scheme is then biased

on calculating future values of θ as it either takes two half-points and one full point, or

two full points and one half-point; which will cause the errors accumulate unevenly and

hence the system desynchronises. In order to resolve this issue, we introduce the RK4

method with interpolation approximation.

desynchronisation effect still remains. By having all histories of θi(t) reset will certainly affect the system,
at least for time δt, since our system depends on the historical values of θi(t). However the purpose of
doing so is to check whether this particular desynchronisation effect is a numerical artefact or it is due
to accumulation of errors.

5We rescale the timeline by factor of 2, and therefore effectively making the “distance” between ∆t
2

and ∆t one integration time step. We then require to move in steps of two to get to the values with
the original integration time step. Moving forwards or backwards for step of one gives the intermediate
values.



2.5 Numerics for Two-oscillator Timedelay Model 86

2.5.4 RK4 method with Interpolation Approximation

Since RK4 is biased on calculating the future values of θ, we first take our timeline

back in steps of one and then we approximate the intermediate points via interpolation.

Interpolation means that we estimate the intermediate point by means of weighted average

over history of θ (see Table 2.1).

These values of weighing are determined by coefficients of a interpolation polynomial.

For the polynomial p to interpolate our data means to have p(xj) = yj,∀i ∈ {0, 1, ..., n},

and the polynomial interpolation has the form

p(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n . (2.44)

We will then get a system of linear equations in the coefficients ai,

yj =
n∑
i

aix
i
j, ∀j ∈ {0, 1, ..., n} (2.45)

which can be represented in matrix form



1 x0 x2
0 · · · xn0

1 x1 x2
1 · · · xn1

...
...

...
...

1 xn x2
n · · · xnn





a0

a1

...

an


=



y0

y1

...

yn


(2.46)

The xij matrix on the left is commonly known as a Vandermonde matrix [53]. We write

the above equation, (2.46), as V ~a = ~y. In order to find the weighing of each given points,

i.e. our coefficients of the interpolation polynomial, we would need to find the inverse of

V . The interpolation polynomial is then

p(x) =
n∑
i

aix
i =

n∑
i

[
V −1~y

]
i
xi . (2.47)

When we use this interpolation polynomial to approximate the mid-points required for
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the RK4 method, then the desynchronisation effect will disappear (Figure 2.19). Note

that in order to compare the trajectories for RK4 with and without interpolation, we will

need to rescale time by 1
2
for RK4 without interpolation as we are moving in steps of two

(interleaved) on our timeline.
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Figure 2.19: Trajectory comparisons of solutions to the two-oscillator time delay
systems using RK4 method with ∆t = 0.0001, ξ = 1.0, ω = 1.0, ζ = 0.1, δt = 0.05 and
2ϕ0 = 0.503. Main: with interpolation (red) and without (green). Inset: Trajectories
between time 0 and 6.

2.5.5 Interpolation approximation for four given points

We are going to demonstrate how we approximate the mid-point by interpolation polyno-

mial of four given points, say y−1, y0, y1, y2; and we want to approximate the mid-point,

i.e. y 1
2
. The Vandermode matrix is then

V =



1 −1 1 −1

1 0 0 0

1 1 1 1

1 2 4 8


⇒ V −1



0 1 0 0

−1
3
−1

2
1 −1

6

1
2
−1 1

2
0

−1
6

1
2
−1

2
1
6


(2.48)
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y−1

y0

y1
y2

Figure 2.20: Graphical illustration of the interpolation polyno-
mial with four given points (2.50).

and the coefficients of the interpolation polynomial will be

~a = V −1~y =



0 1 0 0

−1
3
−1

2
1 −1

6

1
2
−1 1

2
0

−1
6

1
2
−1

2
1
6





y−1

y0

y1

y2


=



y0

−1
3
y−1 − 1

2
y0 + y1 − 1

6
y2

1
2
y−1 − y0 + 1

2
y1

−1
6
y−1 + 1

2
y0 − 1

2
y1 + 1

6
y2


(2.49)

The interpolation polynomial is then p(x) =
∑3

0 aix
i, see Figure 2.20. As we want to

approximate the mid-point y 1
2
, we set x = 1

2
and simplify the expression to get

y 1
2

= p

(
1

2

)
= − 1

16
y−1 +

9

16
y0 +

9

16
y1 −

1

16
y2 (2.50)

and hence the weighings are − 1
16
, 9

16
, 9

16
,− 1

16
correspondingly. If we want to estimate the

half-point value θ
(

1
2

)
, then θ

(
1
2

)
= − 1

16
θ(−1) + 9

16
θ(0) + 9

16
θ(1) − 1

16
θ(2), where in our

case θ(i) with i ∈ Z are the corresponding historical values. Similarly we can obtain the

expressions for six-point or other interpolation polynomials.
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2.6 Phase diagram for Two-oscillator Timedelay systems

In our numerics, we define our system as synchronised if the phase difference between

the two oscillators drops below a certain value of threshold H. Due to the behaviour

of our systems, we define the first time that a whole period is below this threshold as

the synchronisation time τ(t) of our system. In order to understand how the initial

phase differences relates to the time delays δt, we look into the phase diagram of the

system of these two parameters, for a given fixed synchronisation time. In this section,

we will also compare the numerics of our full system, by using the RK4 method with

interpolation approximation, to the numerics of our linearised solution, by integrating

(2.41) numerically; and to what extend the linearised solution agrees with the full system.

2.6.1 Phase diagram by RK4 with interpolation approximation

Our current piece of program of RK4 with interpolation approximation returns a value

of synchronisation time τ(t) by a particular value of time delay δt. In order to plot the

phase diagram of the system, we implement an (naïve) root finding algorithm so that we

tune our values of time delay to obtain a particular synchronisation time, up to certain

error, for a given value of initial phase difference. We also need to implement our program

so that it returns the synchronisation time based on our criterion.

When we are trying to use our RK4 with interpolation approximation scheme to plot

the different initial phase differences against the time delays required to have the system

synchronised under certain values of threshold, we encounter a problem that a small

difference, of order 1.4×10−5, in the time delay will cause a massive difference of 0.424 in

the synchronisation time (see Table 2.2). We think that this is a matter of resolution and

therefore, instead of having ∆t = 0.0001, we increase the resolution by a factor of 200,

i.e. ∆t = 5×10−7, and we see an increase of 15% in the estimated time delay. The values

of time delays and corresponding synchronisation times are different suggesting that this

is indeed a matter of resolution of ∆t. However, the difference in the synchronisation

times are yet massive.
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Integration Time-step ∆t Time delay δt Synchronisation time τ
0.0001 0.00289066 10.413 600 00

0.0001 0.00290438 9.989 200 00

5× 10−7 0.00345337 10.306 121 00

5× 10−7 0.00345354 9.967 583 50

Table 2.2: Table of time delay δt, via root finding algorithm, with target
synchronisation time τ = 10.
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Figure 2.21: Trajectories of the two-oscillator
time delay system with two different time de-
lay, namely 0.00289066 (red) and 0.00290438
(green). Other parameters of the system are
∆t = 0.0001, ξ = 1.01, ω = 2.0, ζ = 0.1,
2ϕ0 = 0.5, τ = 10 and H = 0.01.
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Figure 2.22: Trajectories of the two-oscillator
time delay system with two different time de-
lay, namely 0.00289066 (red) and 0.00290438
(green). Other parameters of the system are
∆t = 0.00002, ξ = 1.01, ω = 2.0, ζ = 0.1,
2ϕ0 = 0.5, τ = 10 and H = 0.01.

In order to investigate why the synchronisation time is so sensitive to the value of

time delay, we look into the trajectories of the two systems with threshold H = −0.01

(see Figure 2.21 and Figure 2.22), or H = 0.01 if you consider θ2(t) − θ1(t). We can

see that, with ∆t = 0.0001, the trajectory of δt = 0.0028906 sits above the threshold

around t = 10 while the trajectory of δt = 0.0029043 sits below. Although we increase

the resolution to ∆t = 2×10−5 and the two trajectories sit much closer to each other, the

massive difference in synchronisation time still persists, as one trajectory still sits above

and one sits below the threshold H. One may notice that the difference of the trajectories

of θ2(t)−θ1(t) in Figure 2.21 and Figure 2.22 with δt = 0.00289066 is much more affected

compared to those with δt = 0.00290438, despite the change in integration time steps

∆t. The reason of this is because our memory size is an integer given by δt
∆t
. Therefore

with ∆t = 0.0001 the effective time delay implemented numerically by the memory is

0.0028 and 0.0029 as opposed to 0.00288 and 0.00290 with ∆t = 0.00002. Hence, the

visible difference between ∆t = 0.0001 and ∆t = 0.00002 for δt = 0.00289066 but not for
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δt = 0.00290438.

From these figures, we find that the enormous difference in synchronisation time is

actually a result of how we define synchronisation in our numerical systems. Therefore,

we will need to redefine the synchronisation criterion of our numerics.

Since the phase difference has a (somewhat periodic) trend of decreasing values over

time, we consider our synchronisation time as a function of ϕ, where ϕ = 1
2
(θ1−θ2). This

means that now the function τ is τ = τ(t(θi)). Therefore, we redefine our criterion for

our numerical systems as when the average over a window size of historical values of ϕ

reaches below the thresholdH, as the average over this window size of ϕ is a monotonically

decreasing function in time. This particular value of window size t̂ is define by

θ̄(t)− ξ = θ̄(t− t̂) (2.51)

where ξ is the period of the function σ. Then ϕ̃, our window averaged ϕ, has the form

ϕ̃ =
1

t̂

∫ t

t−t̂
ϕ(t′)dt′ =

1

t̂

∫ θ̄(t)

θ̄(t)−ξ

ϕ(θ̄′)
˙̄θ(θ̄′)

dθ̄′ ,

where t̂ is determined by Eq. (2.51). Numerically, t̂ is simply equal to t− t(θ̄(t)− ξ).

By use of this new definition of synchronisation, we can obtain the phase diagram

by the RK4 method with interpolation approximation (see Figure 2.23) with threshold

H = 0.05 6. This phase diagram makes sense because the two oscillators see each other

on a periodic ξ-track. This means that if θ1 is at nξ and θ2 is at mξ+ a where ∀m,n ∈ Z

and a ∈ (0, ξ), the system synchronises the same way as if θ1 is at nξ and θ2 is at mξ−a;

however, the systems synchronise to different periods of ξ. This is why the time taken

for initial phase difference of 0.11 to synchronise is similar to the time taken for initial

phase difference of 0.9 to synchronise (our period ξ = 1.01). We can also see that the

trajectories of our phase diagram only start around 0.12. This is because our initial phase

difference 2ϕ0 = (θ2(0) − θ1(0)), and therefore, if 2ϕ0 = (θ2(0) − θ1(0)) < 2H, i.e. the

6It does not really matter for the two-oscillator case if we consider θ2(0) − θ1(0) or θ1(0) − θ2(0) as
the initial phase difference, but for consistency to previous arguments, for the rest of this section we will
take θ2(0)− θ1(0) as the initial phase difference, and therefore consider positive values of H.
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initial phase difference θ2(0)− θ1(0) is less than twice of the value of the threshold, then

our criterion of synchronisation is already satisfied and so the numerics sees this as a

violation, that is, any values of time delay will make the system synchronised. Hence,

our trajectories of the phase diagram only starts at around those values where the initial

phase difference is larger than twice of the value of the threshold. 7 Therefore, although

our systems with time delay will always synchronise, we require certain (or valid) initial

condition, i.e. 2H < 2ϕ0 = θ2(0)− θ1(0), for us to obtain the corresponding value of time

delay achieve synchronisation in a particular time t.
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Figure 2.23: Full system phase diagram for time delay found, for particular synchro-
nisation time τ to a certain threshold H = 0.05, versus various values of inital phase
differences 2ϕ0. Parameters used: ∆t = 1 × 10−6, ξ = 1.01, ζ = 0.1, ω = 2.0, and
J = 2. Phase diagram for initial phase differences between 0 and 1 using RK4 outputs:
target synchronisation time τ = 5 (red), τ = 7.5 (green) and τ = 10 (blue).

2.6.2 Phase diagram by linearised solution

In order to check our linearised solution (2.41) against the full system, we examine the

linearised solution by numerically integrating (2.41).

When we try to integrate the linearised solution, we first apply the Romberg’s in-

7This argument also applies to the phase diagram obtained from the linearised solution.
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Figure 2.24: Trajectories outputs from the qsimp (red) and qromb (green) routines
[53], where the qromb routine gives a numerical artefact at the 16th period.
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Figure 2.25: Linearised solution phase diagram for time delay found, for particular
synchronisation time τ to a certain threshold H = 0.05, versus various values of initial
phase differences 2ϕ0. Parameters used: ∆t = 1 × 10−6, ξ = 1.01, ζ = 0.1, ω = 2.0,
and J = 2. Phase diagram for initial phase differences between 0 and 1 using Simpson’s
rule: target synchronisation time τ = 5 (red), τ = 7.5 (green) and τ = 10 (blue).
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tegration, the qromb routine by Press et al. [53], which can be treated as the natural

generalisation of integration schemes that are of higher order than the Simpson’s rule.

Press [53] said, “The routine qromb is quite powerful for sufficiently smooth integrands,

integrated over intervals which contain no singularities, and where the endpoints are also

nonsingular.” However it turns out our integrands are not as smooth as we think since

the our sigma function peaks up sharply at half periods, i.e. at (2n+1)ξ
2

with n ∈ Z, and

the qromb routine will produce a numerical artefact on the trajectories of the system at

powers of two (see Figure 2.24 for comparison). Therefore, instead of Romberg’s integra-

tion, we apply the Simspson’s rule, the qsimp routine [53], to our numerical integration

of the linearised solution. The Simpson’s rule is

∫ x3

x1

f(x)dx = h

[
1

3
f1 +

4

3
f2 +

1

3
f3

]
+O(h5f (4)) (2.52)

where h is the integration time step and f (4) means the fourth derivative of the function

f evaluated at an unknown place in the interval. We can also note that the formula gives

the integral over an interval of size 2h, so the coefficients add up to 2 [53]. If we apply

(2.52) to successive, non-overlapping pairs of intervals, we get the extended Simpson’s

rule [53], namely

∫ xN

x1

f(x)dx = h

[
1

3
f1 +

4

3
f2 +

2

3
f3 +

4

3
f4 + · · ·+ 2

3
fN−2 +

4

3
fN−1 +

1

3
fN

]
+O

(
1

N4

)

By use of this qsimp routine [53], we can obtain the trajectories of the system. Similar

to the RK4 method, for a given value of initial phase difference, we implement a root

finding algorithm so that we can tune the values of the time delay to obtain a particular

synchronisation time; again up to certain error. Then we will be able to obtain the phase

diagram of the linearised system (see Figure 2.25). The phase diagram of linearised

solution makes sense because the two oscillators do not see each other on the periodic

ξ-track, instead they are two forever increasing objects that talk to each other via the

coupling J. Therefore, the time taken for initial phase difference of 0.9 to synchronise is

much longer than the time taken for initial phase difference of 0.11. For the same reason
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Figure 2.26: Trajectories of full system (RK4 with interpolation, red) and linearised
solution (qsimp, green) according to the time delay found on each system respectively.
Parameter used: ∆t = 0.000001, ξ = 1.01, ω = 2.0, J = 2 and ζ = 0.1

as the full system, the trajectories of the phase diagram only start if 2H < 2ϕ0 (see

Section 2.6.1).

If we now set the target synchronisation time as t = 10 with initial phase difference

of 0.1, i.e. the two oscillators are 0.1 apart when the system starts and the RK4 method

with interpolation approximation will return a time delay of value 0.00082278 while the

linearisation method gives 0.00081299 as the time delay for the same parameters. However

we can see that the two trajectories match very closely to each other (see Figure 2.26). We

then try to obtain the trajectory from the RK4 method with interpolation approximation

by applying the time delay we found via the linearised solution (and vice versa). Again,

the plots of these trajectories match very closely (see Figure 2.27 and Figure 2.28).

If we now look at the two phase diagrams of the full system and our linearised system,

they agree fairly closely for initial phase difference less than or equal to 0.2. (see Fig-

ure 2.29 and inset). This is expected as our linearised solution is only valid for small

values of ϕ.
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Figure 2.27: Trajectories of full system (RK4
with interpolation, red) and linearised solu-
tion (qsimp, green) according to the time de-
lay found by RK4 method. Parameter used:
∆t = 0.000001, ξ = 1.01, ω = 2.0, J = 2 and
ζ = 0.1
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Figure 2.28: Trajectories of full system (RK4
with interpolation, red) and linearised solution
(qsimp, green) according to the time delay found
by qsimp routine. Parameter used: ∆t =
0.000001, ξ = 1.01, ω = 2.0, J = 2 and ζ = 0.1
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Figure 2.29: Phase diagram comparison for time delay found, for particular synchro-
nisation time τ to a certain threshold H = 0.05, versus various values of inital phase
differences 2ϕ0. Parameters used: ∆t = 1 × 10−5, ξ = 1.01, ζ = 0.1. Inset: phase
diagram for initial phase differences between 0 and 1. RK4 outputs: target synchroni-
sation time τ = 5 (red), τ = 7.5 (blue) and τ = 10 (cyan). Linearised solution outputs:
τ = 5 (green), τ = 7.5 (purple) and τ = 10 (brown).
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2.7 Discussion

We have showed that our linearised solution is a very good approximation of our system

with equations of motion defined by Eq. (2.35) and Eq. (2.36). If we now define the

quantities ψ and S such that

ψ =

∫ ξ

0

dθ̄′

ω + σ(θ̄′)
≈
∫ ξ

0

dθ̄′

˙̄θ(θ̄′)
(2.53)

S =

∫ ξ

0

σ′2(θ̄′)dθ̄′

ω + σ(θ̄′)
(2.54)

where ψ is, to leading order, the time which takes σ to go through one period, i.e.

θ̄(t+ ψ) ≈ θ̄(t) + ξ. Time t in our system is given by

t =

∫ θ̄(t)

θ̄(0)

dθ̄′

˙̄θ(θ̄′)
≈ θ̄(t)− θ̄(0)

ξ
ψ (2.55)

for large time t. Since our θ̄ can be written as θ̄ = θ̄(0) + nξ − b, where 0 ≤ b < ξ, then

for large time t, we can approximate the integral in Eq. (2.41) by

∫ θ̄(t)

θ̄(0)

σ′2(θ̄′)
˙̄θ(θ̄′)

dθ̄′ =
∫ θ̄(0)+nξ

θ̄(0)

σ′2(θ̄′)
˙̄θ(θ̄′)

dθ̄′ +
∫ b

0

σ′2(θ̄′)
˙̄θ(θ̄′)

dθ̄′

= nS +

∫ b

0

σ′2(θ̄′)
˙̄θ(θ̄′)

dθ̄′ =
θ̄(t)− θ̄(0)

ξ
S +

b

n
S +O(S) ≈ t

ψ
S .

Then Eq. (2.41) can be written as

ϕ(t) = ϕ(0)
˙̄θ(0)
˙̄θ(t)

e−
t
τ (2.56)

where τ is the characteristic synchronisation time, the time taken to reduce the amplitude

of ϕ(t) by a factor of 1
e
,

τ =
ψ

2J2δtS
(2.57)

which is inversely proportional to the time delay δt. The synchronisation time thus

cannot be made arbitrarily small since this approximation is only valid for small values
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of δt compared to ψ, the time taken over one period of σ. In the cases that our σ is

constant, which implies S = 0, the characteristic synchronisation time diverges which

corresponds to lack of interaction. Then, trivially, ϕ(t) = ϕ(0) for all time t.

We have studied a simple model, similar to the Winfree model [70], of synchronisation

with and without presence of time delay. We have gone in detail with the two-oscillator

cases. We retained Winfree’s assumptions of identical or nearly identical dynamics, and

each oscillator is coupled to all the others, but not to themeselves, i.e. Jii = 0 for all

i. We only assume that the phases of all oscillators are monotonically increasing over

time t. Our main result is that, to leading order, a time delay causes synchronisation

and systems without time delay should never synchronise. The analytical solution reveals

the importance of the assumption on monotonically increasing function θi. Our analysis

on the numerics also shows consistency with the analytics; however the standard Euler

scheme disagrees due to its self-implemented time delay feature.

In hindsight it may seem obvious that our time delay models will always synchronise.

We have made some strong assumptions, such as setting all initial frequencies to be

the same, i.e. ωi = ω; assuming all the oscillators are identical or nearly identical in

dynamics; each pair of the oscillators is coupled by the coupling strength which are equal

and symmetrical. On the other hand, we might well have imagined that the system would

contain two, or more, alternating synchronisation states or other various hybrid states

such as the oscillators being frequency-locked.
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Chapter 3

N-oscillator Model

We have discovered that without the presence of time delay, our model of the two-

oscillator systems should never synchronise and with the presence of time delay, our

model of two-oscillator systems will eventually be synchronised. Now we try to extend

our analysis to a large ensemble of oscillators with size N .

3.1 Non-Time Delay systems and Mean-Field Theory

For N -oscillator non-time delay systems, the equation of motion is

θ̇i = ωi +
N∑
j=1

Jijσ(θj) . (3.1)

To cope with this kind of large ensembles of oscillators, we can implement the coupling

strength Jij on a lattice so that each [i, j] entry of the lattice corresponding to the coupling

strength between the ith and jth oscillator.

For convenience, we set ωi = ω for all i and the amplitudes of the coupling are

symmetric and the same among all oscillators, i.e. Jij = Jji = J
N−1

for all pairs of

oscillators but Jii = 0. We now define the corresponding value of θ̄, the average of N
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oscillators, and ϕi, the difference between the ith oscillator and θ̄, such that

θ̄ =
1

N

N∑
i=1

θi , (3.2)

ϕi = θi − θ̄ . (3.3)

From our definition of synchronisation, see Definition 1.1, this means that our system will

result in synchrony if and only if all values of ϕi(t) converge to 0 as t → ∞. Therefore,

using Eq. (3.3) and by expanding σ for small values of ϕi gives

σ(θi) = σ(θ̄ + ϕi) = σ(θ̄) + ϕiσ
′(θ̄) +O(ϕi)

2 . (3.4)

Using this expression of σ, up to first order in ϕi, we can express our equation of motion,

in terms of θ̄ and ϕi, as

θ̇i = ω +
J

N − 1
(σ(θ1) + · · ·+ σ(θN)− σ(θi))

= ω +
J

N − 1

[
(N − 1)σ(θ̄) +

(
N∑
j=1

ϕjσ
′(θ̄)

)
− ϕiσ′(θ̄)

]

= ω + Jσ(θ̄)− ϕi
N − 1

Jσ′(θ̄)

since
∑N

j=1 ϕj = 0. We now find the expressions of ˙̄θ and ϕ̇i as

˙̄θ =
1

N

N∑
i=1

θ̇i = ω + Jσ(θ̄)

ϕ̇i = θ̇i − ˙̄θ = − ϕi
N − 1

Jσ′(θ̄) .

As θi(t) is strictly positive and monotonically increasing, therefore so does θ̄, then we can

define ϕ′ where

ϕ′i =
ϕ̇i
˙̄θ

=
−ϕi
N − 1

Jσ′(θ̄)

ω + Jσ(θ̄)
=
−ϕi
N − 1

d
dθ̄
[
ln(ω + Jσ(θ̄)) + Ci

]
(3.5)

with Ci an integration constant. Therefore, by using separation of variables, we can
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obtain the linearised solution for our N -oscillator system as

ϕi(θ̄) = ϕi(0)
[ω + Jσ(θ̄(0))]

1
N−1

[ω + Jσ(θ̄)]
1

N−1

(3.6)

From this linearised solution (3.6), we can see that the system will never be synchronised

as σ(θ̄) is a periodic function and θ̄ is a monotonically increasing in time t. Then ϕi

itself is periodic with same period as σ. We can also note that if we set N = 2, i.e. a

two-oscillator system, then we recover our linearised solution (2.15), of the two-oscillator

non-time delay system.
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3.2 Time Delay systems and Mean-Field Theory

For N -oscillator time delay systems, the equation of motion is defined as

θ̇i = ωi +
N∑
j=1

Jσ(θj(t− δt)) (3.7)

where δt is the time delay, which is small but finite. Similar to the non-time delay system,

we have the values of θ̄ and ϕi defined as in (3.2) and (3.3) correspondingly. Since time

delay does not enter the derivation of ˙̄θ and ϕ̇i expressions, in order to implement the

time delay system, we would only need to have t → t − δt in the expression of ϕ′i (3.5),

therefore we have

ϕ′i =
ϕ̇i(t)
˙̄θ(t)

=
−ϕi(t− δt)Jσ′(θ̄(t− δt))

(N − 1)(ω + Jσ(θ̄(t− δt)))

≈ −(ϕi(t)− δtϕ̇i(t))J[σ′(θ̄(t))− δtσ′′(θ̄(t)) ˙̄θ(t)]

(N − 1)(ω + J[σ(θ̄(t))− δtσ′(θ̄(t)) ˙̄θ(t)])
+O(δt)2

=
−J

N − 1

ϕiσ
′ − δt(ϕiσ′′ ˙̄θ + ϕ̇iσ

′) +O(δt)2

ω + J(σ − δtσ′ ˙̄θ) +O(δt)2

≈ − ϕi
N − 1

J(σ′ − δt(σ′′ ˙̄θ − Jσ′2

N−1
))

ω + J(σ − δtσ′ ˙̄θ)
. (3.8)

If we let T (θ̄) = ω+ J(σ− δtσ′ ˙̄θ), i.e. T (θ̄) = ˙̄θ(t) up to first order in δt, and consider the

derivative of T (θ̄) with respect to θ̄, this gives

d
dθ̄
T (θ̄) = J

[
σ′(θ̄)− δt

(
σ′′(θ̄) ˙̄θ + σ′

d
dθ̄
T

)]

which yields,
d
dθ̄
T (θ̄) = J[σ′(θ̄)− δt(σ′′ ˙̄θ + Jσ′2)] +O(δt)2 .

By using the expressions of T and d
dθ̄T (θ̄), we can simplify (3.8) into

ϕ′i = − ϕi
N − 1

T ′ + δtJ2σ′2 + δtJ2 σ′2

N−1

T
= − ϕi

N − 1

(
T ′

T
+

N

N − 1
δtJ2σ

′2

T

)
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giving a differential equation in T and ϕi, namely

ϕ′iT +
ϕi

N − 1
T ′ = − N

(N − 1)2
ϕiδtJ

2σ′2 . (3.9)

By inspection, we try a solution of ϕ̃i such that ϕ̃i = T
1

N−1ϕi, yields

ϕ̃′i =
1

N − 1
T

1
N−1

−1T ′ϕi + T
1

N−1ϕ′i = T
1

N−1
−1

(
1

N − 1
T ′ϕi + Tϕ′i

)
= −ϕiT

1
N−1

−1 N

(N − 1)2
δtJ2σ′2 = − ϕ̃i

T

(
N

(N − 1)2
δtJ2σ′2

)
.

Therefore, the differential equation (3.9) can be solved by using this particular function

ϕ̃i and by separation of variable, this gives the solution

ϕ̃i(θ̄) = ϕ̃i(0) exp

(
− N

(N − 1)2
δtJ2

∫ θ̄

0

σ′2(θ̄′)

T (θ̄′)
dθ̄′
)

(3.10)

where the solution of ϕi is given by

ϕi(t) = ϕi(0)
[T (θ̄(0))]

1
N−1

[T (θ̄(t))]
1

N−1

exp

(
− N

(N − 1)2
δtJ2

∫ θ̄(t)

0

σ′2(θ̄′)

T (θ̄′)
dθ̄′
)
. (3.11)

Since T (θ̄(t)) = ˙̄θ(t) to first order in δt, hence if we set N = 2, i.e. a two-oscillator system,

we then recover our linearised solution (2.41), of the two-oscillator time delay system; if

we have N = 2 and we turn off the time delay, we then recover the linearised solution

(2.15) of two-oscillator non-time delay models. From the linearised solution (3.11) above,

we can conclude that for our system, all oscillators will be synchronised after some time

and the larger value of the time delay, the quicker the system will synchronise. From here

onwards, we are only interested in the time delay systems as the non-time delay systems

can be obtained by setting δt = 0 in the time delay systems.
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3.3 General case with Arbitrary Jij for N-oscillator Time Delay

Model

In order to analyse more rigorously on how our system will behave if we have arbitrary

couplings Jij, we turn ourselves to eigenvalues and eigenvectors of the coupling matrix J ,

where each [i, j] entry, Jij, of J corresponding to the coupling strength between the ith

and jth oscillator. In this section, we still retain the fact that all the initial frequencies

are the same, i.e. ωi = ω. Using linear algebra, we can write the equation of motion of

our N -oscillator time delay model as

θ̇i = ω +
N∑
j=1

Jijσ(θj(t− δt)) ⇒
∣∣∣θ̇〉 = ω |1〉+ J |σ(θ(t− δt))〉 (3.12)

where |σ(θ(t))〉 = (σ(θ1(t)), σ(θ2(t)), · · · , σ(θN(t)))T . We define the mean field quantity

|ϕ〉 such that

|ϕ〉 = |θ〉 − θ̄ |1〉 (3.13)

for which θ̄ satisfies the equation of motion

˙̄θ = ω + J̃σ(θ̄) . (3.14)

Similar to previous sections, synchronisation means that all values of ϕi(t) converge to 0

as t→∞.

Property 1 For synchronisation, we require
∑N

j=1 Jij = J̃ which is independent of i.

To see Property 1 should always hold for synchronisation, suppose J̃ is dependent of i,

i.e. J̃i =
∑N

j=1 Jij, the sums over the columns of J are different. Then in the synchronised

state, which means θj = θ̄ for every value of j, two different oscillators i and k will have

the equations of motion θ̇i = ω+ J̃iσ(θ̄) and θ̇k = ω+ J̃kσ(θ̄) respectively. Since i 6= k and

therefore J̃i 6= J̃k, this suggests that the system is not synchronised, which contradicts to

our assumption that all the oscillators are in the synchronised state. Hence synchrony is

achievable if and only if
∑N

j=1 Jij = J̃.
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3.3.1 Remarks on the arbitrary adjacency matrix J

Since we have learnt that synchronisation can only be accomplished by having the row

sums of matrix J independent of row, then given that
∑N

j=1 Jij = J̃ we can write

J |1〉 = J̃ |1〉 (3.15)

where |1〉 denotes a column vector with all entries equal to 1 with corresponding eigenvalue

J̃ 1. Now we consider the function fλ where

fλ = 〈e|ϕ〉 (3.16)

such that 〈e| is an eigenvector of J with eigenvalue λ, i.e. 〈e|J = λ 〈e| with λ 6= J̃. By

differentiating and by use of Eq. (3.13), we get ḟλ = 〈e|ϕ̇〉 =
〈
e|θ̇
〉
− 〈e| ˙̄θ|1〉 . If we

consider
〈
e|θ̇
〉
and 〈e| ˙̄θ|1〉 separately then

〈
e|θ̇
〉

= 〈e|
(
ω |1〉+ J |σ(θ)〉

)
= 〈e|ω|1〉+ 〈e|J |σ(θ)〉

= ω 〈e|1〉+ λ 〈e|σ(θ)〉

〈e| ˙̄θ|1〉 = 〈e|
(
ω + J̃σ(θ̄)

)
|1〉 = ω 〈e|1〉+ 〈e|̃Jσ(θ̄)|1〉

= ω 〈e|1〉+ 〈e|σ(θ̄)J̃|1〉 = ω 〈e|1〉+ 〈e|σ(θ̄)J |1〉

= ω 〈e|1〉+ 〈e|Jσ(θ̄)|1〉

= ω 〈e|1〉+ λσ(θ̄) 〈e|1〉 . (3.17)

However, 〈e| ˙̄θ|1〉 can also be written as

〈e| ˙̄θ|1〉 =
(
ω + J̃σ(θ̄)

)
〈e|1〉 = ω 〈e|1〉+ J̃σ(θ̄) 〈e|1〉 . (3.18)

By comparing Eq. (3.17) and Eq. (3.18), if and only if 〈e| is the corresponding left-hand

eigenvector of |1〉 then λ = J̃. However, this is not true in our case as λ 6= J̃; since for

1Due to this independence, we can always rescale or set the constant J̃ to be 1.
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any non-degenerate matrix M , we have 〈e|M = µ 〈e| and M |1〉 = ν |1〉, for which µ

and ν are distinct eigenvalues. Then µ 〈e|1〉 = 〈e|M |1〉 = ν 〈e|1〉 2 implies that 〈e|1〉 = 0.

Hence the derivative of fλ is simplified down to

ḟλ = λ
〈
e|σ(θ̄)

〉
.

Therefore, our system can be rewriten into a new function fλ by means of the eigenvectors

of the adjacency matrix J ,

fλ = 〈e|ϕ〉 ⇒ ḟλ = λ
〈
e|σ(θ̄)

〉
. (3.19)

This property is convenient in further development since time delay does not enter the

derivation.

3.3.2 Linearised solution in first orders of δt and ϕ

In the light of the above, we have a matrix J , an N ×N matrix with entries equal to Jij.

Since we require
∑N

j=1 Jij to be constant, say J̃, to have synchronisation; similar to the

Markov matrices, our matrix J has an eigenvalue J̃ and for this particular eigenvalue, we

know that the corresponding right-hand eigenvector |1〉 is a column vector with all entries

equal to 1. We denote the corresponding left-hand eigenvector of J , with eigenvalue J̃,

as 〈1|. We also denote the other eigenvalues by λi, and its corresponding left-hand and

right-hand eigenvectors as 〈ei| and |ei〉 respectively. For our system, we have mean field

quantity |ϕ〉 defined as in Eq. (3.13), and θ̄ defined 3 as

θ̄ =
1

q
〈1|θ〉 (3.20)

2If M is Hermitian then the scalar product 〈e|1〉 = 0 always.

3This definition does not contradict with previous definitions of θ̄ as for our matrix J , the property
〈1|J = 〈1| J̃, then Eq. (3.21) is the same as Eq. (3.14) since 〈1| is a row vector with all entries equal to 1.
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which implies

˙̄θ =
1

q

〈
1|θ̇
〉

=
1

q
〈1|(ω |1〉+ J |σ(θ)〉)〉 = ω +

1

q
〈1|J |σ(θ(t− δt))〉 (3.21)

where q is the scalar product 〈1|1〉. It is quite straight forward to see that, for our system

as defined above, the projection of |ϕ〉, and its derivatives, onto the left-hand eigenvector

〈1| always vanishes, since 〈1|ϕ〉 = 〈1|θ〉 − θ̄ 〈1|1〉 = 〈1|θ〉 − qθ̄ = 0. Now, if we define a

new variable ϕ′ such that

|ϕ′〉 =
|ϕ̇〉

˙̄θ
.

If we have |ϕ′〉 projected onto any left-hand eigenvectors 〈ei|, i.e. all eigenvectors except

the left-hand eigenvector with eigenvalue J̃, and apply the property we had from Eq. (3.19)

yields

〈ei|ϕ′〉 =
λi 〈ei|σ(θ(t− δt))〉

ω + 1
q
J̃ 〈1|σ(θ(t− δt))〉

. (3.22)

Now if we look into expanding the vector |σ(θ(t− δt))〉 in small values of δt and ϕi, we

have

|σ(θ(t− δt))〉 =σ(θ̄(t− δt)) |1〉+ σ′(θ̄(t− δt)) |ϕ(t− δt)〉+O(ϕ2
i )

=σ(θ̄(t)) |1〉 − δt ˙̄θ(t)σ′(θ̄(t)) |1〉

+ σ′(θ̄(t)) |ϕ(t)〉 − δt ˙̄θ(t)σ′′(θ̄(t)) |ϕ(t)〉

− δtσ′(θ̄(t)) |ϕ̇(t)〉+O(δt2) .

Again, for simplicity, we will denote θi = θi(t) for non-time delay θ variables, and we shall

explicitly use θi(t− δt) for time delay θ variables; similarly for all other time dependent

variables. Now, if we look into the projections of this expansion onto 〈ei| and 〈1|, where

〈ei|1〉 and 〈1|ϕ〉, and its derivatives, all vanish, we have

〈1|σ(θ(t− δt))〉 = q
[
σ(θ̄)− δt ˙̄θσ′(θ̄)

]
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and

〈ei|σ(θ(t− δt))〉 = 〈ei|ϕ〉σ′(θ̄)− δt
[
σ′′(θ̄) ˙̄θ 〈ei|ϕ〉+ σ′(θ̄) 〈ei|ϕ̇〉

]
= 〈ei|ϕ〉σ′(θ̄)− δt

[
σ′′(θ̄) ˙̄θ 〈ei|ϕ〉+ λiσ

′2(θ̄) 〈ei|ϕ〉
]

since 〈ei|ϕ̇〉 =
〈
ei|θ̇
〉
− ˙̄θ 〈ei|1〉 = λi 〈ei|σ(θ(t− δt))〉 = λiσ

′(θ̄) 〈ei|ϕ〉+O(δt). Therefore,

Eq. (3.22) becomes

〈ei|ϕ′〉 =
λi 〈ei|ϕ〉

[
σ′(θ̄)− δt[σ′′(θ̄) ˙̄θ + λiσ

′2(θ̄)]
]

ω + J̃
[
σ(θ̄)− δt ˙̄θσ′(θ̄)

] . (3.23)

If we now let T (θ̄) = ω + J̃
[
σ(θ̄)− δt ˙̄θσ′(θ̄)

]
, this will imply

T ′(θ̄) = J̃
(
σ′(θ̄)− δt[σ′′(θ̄) ˙̄θ + σ′(θ̄)T ′]

)
= J̃

(
σ′(θ̄)− δt[σ′′(θ̄) ˙̄θ + J̃σ′2(θ̄)]

)
+O(δt2) .

We can rewrite Eq. (3.23) using this expression of T = T (θ̄) and T ′ = T ′(θ̄),

〈ei|ϕ′〉 = 〈ei|ϕ〉
1

T

λi

J̃

(
J̃
(
σ′(θ̄)− δt[σ′′(θ̄) ˙̄θ + J̃σ′2(θ̄)]

)
+ δtσ′2(θ̄)(J̃2 − λiJ̃)

)

and hence,

〈ei|ϕ′〉 = 〈ei|ϕ〉
λi

J̃

[
T ′

T
+
δtσ′2(θ̄)(J̃2 − λiJ̃)

T

]

and by rearranging this equation, we obtain a differential equation in 〈ei|ϕ〉 using lineari-

sation approximation

〈ei|ϕ′〉T −
λi

J̃
〈ei|ϕ〉T ′ = δtσ′2(θ̄)

[
λi(J̃− λi)

]
〈ei|ϕ〉 .

If we now let |ϕ̃〉 = T
−λi

J̃ |ϕ〉 and we differentiate with respect to θ̄, we get

〈ei|ϕ̃′〉 = −λi
J̃
T
−λi

J̃
−1
T ′ 〈ei|ϕ〉+ T

−λi
J̃ 〈ei|ϕ′〉 = T

−λi
J̃
−1

(
−λi

J̃
〈ei|ϕ〉T ′ + 〈ei|ϕ′〉T

)
=
T
−λi

J̃

T

(
δtσ′2(θ̄)

[
λi(J̃− λi)

]
〈ei|ϕ〉

)
=

1

T
δtσ′2(θ̄)

[
λi(J̃− λi)

]
〈ei|ϕ̃〉 ,
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gives the solution of the form

〈ei|ϕ̃〉 = Ai exp

(
λi(J̃− λi)δt

∫ θ̄

0

σ′2(θ̄′)

T (θ̄′)
dθ̄′
)

where Ai is given by initial condition. Therefore, our general solution in first orders of δt

and ϕ is

〈ei|ϕ〉 =
AiT

λi
J̃

T
λi
J̃

0

exp

(
λi(J̃− λi)δt

∫ θ̄

0

σ′2(θ̄′)

T (θ̄′)
dθ̄′
)
. (3.24)

For non-time delay systems, i.e. when δt = 0, we have an oscillating solution as T =

T (θ̄) is periodic and bounded and consequently the non-time delay systems will not

synchronise.

3.3.3 Numerics for N -oscillator Time Delay Model

The key in the linearisation method above is to relate the eigenvalues, and the correspond-

ing eigenvectors, of the associated arbitrary adjacency matrix J in order to approximate

the behaviour of our system. In order to obtain the eigenvalues λi, where λi 6= J̃ we have

chosen the method introduced by Press et al. [53], where we first reduce our matrix J into

(upper) Hessenberg Form, say J̄ , then apply QR transformation on J̄ . The hqr function

[53] will then output the corresponding eigenvalues, of J̄ and therefore, J , see Section

11.5 and 11.6 of [53]. In order to obtain the associated eigenvectors, we implemented

numerically the method Press et al. outlined in Section 11.7 of [53]. A reference of our

implementation can be found in Appendix B.1.

According to Eq. (3.24), for coupling matrices J which have negative eigen-products,

E(λi) = λi(J̃ − λi) < 0, we expect to synchronisation once the transient behaviour has

died off. Numerics of N = 3 and N = 4 cases can be found in Figure 3.1 - 3.4 with RK4

with interpolation and our linearised solution using qsimp routine. The coupling matrix

J for these systems has the form Jij = 1
N−1

and Jii = 0, therefore
∑

j Jij = 1. However if

we compare the trajectories of full system and the linearised solution, see Figure 3.5 and

Figure 3.6, the trajectories of the linearised solution is perfectly symmetric while the full

system has some asymmetric transient behaviour. This might seem to be a second order
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Figure 3.1: Trajectories of full system with N = 3 by using RK4 method
with interpolation approximation. Parameters used: ∆t = 1×10−6, ξ = 1.01,
ζ = 0.1 and δt = 0.01.
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Figure 3.2: Trajectories of full system with N = 4 by using RK4 method
with interpolation approximation. Parameters used: ∆t = 1×10−6, ξ = 1.01,
ζ = 0.1 and δt = 0.01.
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Figure 3.3: Trajectories of linearised solution with N = 3 by using qsimp
routine. Parameters used: ∆t = 1× 10−6, ξ = 1.01, ζ = 0.1 and δt = 0.01.
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Figure 3.4: Trajectories of linearised solution with N = 4 by using qsimp
routine. Parameters used: ∆t = 1× 10−6, ξ = 1.01, ζ = 0.1 and δt = 0.01.
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Figure 3.5: Trajectories comparisons between full system and linearised
solution with N = 3, where the linearised solution is perfectly symmetric
while the full system has asymmetric transient behaviour. Parameters used:
∆t = 1× 10−6, ξ = 1.01, ζ = 0.1 and δt = 0.01.
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Figure 3.6: Trajectories comparisons between full system and linearised
solution with N = 4, where the linearised solution is perfectly symmetric
while the full system has asymmetric transient behaviour. Parameters used:
∆t = 1× 10−6, ξ = 1.01, ζ = 0.1 and δt = 0.01.
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effect coming from ϕ, which is being considered in Section 3.3.4, where the linearised

solution is not capable to capture.

3.3.4 Linearised solution in first order of δt and second order of ϕ

It seems that the linearisation suggests synchronisation is only achievable while the eigen-

product E(λi), where E(λi) = λi(J̃ − λi) with λi 6= J̃, is negative. Interestingly while

we were investigating different forms of J , it occurs to us that the linearisation fails to

predict somewhat synchronisation-like behaviours for some particular J . For example,

taking a 2-oscillator model with coupling matrix J

J =

 1 0

1
2

1
2

 (3.25)

where the two eigenvalues are 1 and 1
2
correspondingly. Our eigen-product is then E(1

2
) =

1
4
and therefore our linearisation suggests that the system will not synchronise, instead

it diverges, see Figure 3.7. However the numerics of the full system using RK4 displays

somewhat synchronisation-like behaviour, see Figure 3.8.
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Figure 3.7: Trajectories of linearised solution
by using qsimp routine, where linearised solution
suggests unstable behaviour of the system.
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Figure 3.8: Trajectories of full system by using
RK4 method with interpolation approximation.
As compared to the numerics of the linearised
solution, RK4 seems to suggest some sort of
entrainment even for negative values of eigen-
product E(λi).

Possible answer for this phenomenon is that, although according to linearisation the

system is unstable, i.e. E(λi) = λi(J̃− λi) > 0, linearisation does not apply when 〈ei|ϕ〉

gets too big. Therefore we suspect that this is due to the second order behaviour of ϕ
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which our linearisation does not capture. Hence, instead of looking into expanding the

vector |σ(θ(t− δt))〉 up to the first order in ϕ, we expand the vector |σ(θ(t− δt))〉 up to

the second order in ϕ. The expansion of |σ(θ(t− δt))〉 is then

|σ(θ(t− δt))〉 = σ(θ̄(t− δt)) |1〉+ σ′(θ̄(t− δt)) |ϕ(t− δt)〉

+
1

2
σ′′(θ(t− δt))

∣∣ϕ2(t− δt)
〉

+O(ϕ3
i )

= σ(θ̄) |1〉 − δt ˙̄θσ′(θ̄) |1〉+ σ′(θ̄) |ϕ〉 − δt ˙̄θσ′′(θ̄) |ϕ〉 − δtσ′(θ̄) |ϕ̇〉

+
1

2
σ′′(θ̄)

∣∣ϕ2
〉
− 1

2
δt ˙̄θσ′′′(θ̄)

∣∣ϕ2
〉
− δtσ′′(θ̄) |ϕϕ̇〉+O(δt2) .

Again, if we look into the projections of this expansion onto 〈ei| and 〈1|, where scalar

products 〈ei|1〉 and 〈1|ϕ〉 vanish, we have

〈1|σ(θ(t− δt))〉 = qσ(θ̄) +
1

2
σ′′(θ̄)

〈
1|ϕ2

〉
− δt

[
q ˙̄θσ′(θ̄) + σ′′(θ̄) 〈1|ϕϕ̇〉+

1

2
˙̄θσ′′′(θ̄)

〈
1|ϕ2

〉]

and

〈ei|σ(θ(t− δt))〉 = σ′(θ̄) 〈ei|ϕ〉+
1

2
σ′′(θ̄)

〈
ei|ϕ2

〉
− δt

[
σ′(θ̄) 〈ei|ϕ̇〉+ ˙̄θσ′′(θ̄) 〈ei|ϕ〉+ σ′′(θ̄) 〈ei|ϕϕ̇〉+

1

2
˙̄θσ′′′(θ̄)

〈
ei|ϕ2

〉 ]
.

Hence, by neglecting small quantities such as O(δtϕϕ̇) and O(δtϕ2), we obtain

〈ei|ϕ′〉 =
λi 〈ei|σ(θ(t− δt))〉

ω + 1
q
J 〈1|σ(θ(t− δt))〉

=
λi
[
σ′(θ̄) 〈ei|ϕ〉+ 1

2
σ′′(θ̄) 〈ei|ϕ2〉

]
− λiδt

[
σ′(θ̄) 〈ei|ϕ̇〉+ ˙̄θσ′′(θ̄) 〈ei|ϕ〉

]
ω + 1

q
J̃
(
qσ(θ̄) + 1

2
σ′′(θ̄) 〈1|ϕ2〉 − δt

[
q ˙̄θσ′(θ̄)

]) .

In order to solve this analytically, we will require 〈1|ϕ2〉 = 0, which equivalently means

ϕ2 are negligible, and 〈ei|ϕ2〉 = µ2
i 〈ei|ϕ〉

2 4, which means that we hunt for a value µi for

4We demand that µi to be constant in time t.
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each λi which minimises 〈ei|ϕ〉. In addition, we use 〈ei|ϕ̇〉 =
〈
ei|θ̇
〉
−〈ei| ˙̄θ|1〉 =

〈
ei|θ̇
〉

=

λi 〈ei|ϕ〉σ′(θ̄) +O(δt), our expression of 〈ei|ϕ′〉 therefore becomes

〈ei|ϕ′〉 =
λi
[
σ′(θ̄) 〈ei|ϕ〉+ 1

2
σ′′(θ̄)µ2

i 〈ei|ϕ〉
2]− λiδt [λiσ′2(θ̄) 〈ei|ϕ〉+ ˙̄θσ′′(θ̄) 〈ei|ϕ〉

]
ω + J̃

[
σ(θ̄)− δt ˙̄θσ′(θ̄)

]
(3.26)

by dividing both sides of the equation by 〈ei|ϕ〉2 and rearrange, we have

〈ei|ϕ′〉
〈ei|ϕ〉2

=
λi
〈ei|ϕ〉

σ′(θ̄)− δt
[
λiσ

′2(θ̄) + ˙̄θσ′′(θ̄)
]

ω + J̃
[
σ(θ̄)− δt ˙̄θσ′(θ̄)

] +
1
2
λiµ

2
iσ
′′(θ̄)

ω + J̃
[
σ(θ̄)− δt ˙̄θσ′(θ̄)

] .
Now, if we let Ω = 1

〈ei|ϕ〉 and therefore, dΩ
dθ̄ = −1

〈ei|ϕ〉2
〈ei|ϕ′〉 which gives a first order

differential equation in Ω

dΩ

dθ̄
+ λiΩ

σ′(θ̄)− δt
[
λiσ

′2(θ̄) + ˙̄θσ′′(θ̄)
]

ω + J̃
[
σ(θ̄)− δt ˙̄θσ′(θ̄)

] =
−1

2
λiµ

2
iσ
′′(θ̄)

ω + J̃
[
σ(θ̄)− δt ˙̄θσ′(θ̄)

] .
If we now write this equation in the form of

dΩ

dθ̄
+ λiΩhi

(
σ(θ̄), σ′(θ̄), σ′′(θ̄), ˙̄θ; δt, λi, ω, J̃, t

)
=

−1
2
λiµ

2
iσ
′′(θ̄)

ω + J̃
[
σ(θ̄)− δt ˙̄θσ′(θ̄)

] (3.27)

then by similar approach we have before, i.e. let T (θ̄) = ω + J̃[σ(θ̄) − δt ˙̄θσ′(θ̄)], with

T (θ̄) = ˙̄θ up to first order in δt, which yields 5

d
dθ̄
T (θ̄) = T ′(θ̄) = J̃

(
σ′(θ̄)− δt[σ′(θ̄)T ′ + ˙̄θσ′′(θ̄)]

)
= J̃

(
σ′(θ̄)− δt[̃Jσ′2(θ̄) + ˙̄θσ′′(θ̄)] +O(δt2)

)
.

5In the following it is useful to assume that T has only one sign, even when, strictly, this does not
follow from T (θ̄) = ˙̄θ +O(δt2). In fact, we could have done much of the following on the basis of ˙̄θ and
introduced its expansion without claiming anything about its sign.
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By use of this expression of T ′(θ̄), we can write our function hi as

hi =
1

T

λi

J̃

[
J̃
(
σ′(θ̄)− δt[̃Jσ′2(θ̄) + ˙̄θσ′′(θ̄)] + δt(J̃2 − λiJ̃)σ′2(θ̄)

)]
=
λi

J̃

[
T ′(θ̄)

T (θ̄)
+ (J̃2 − λiJ̃)δt

σ′2(θ̄)

T (θ̄)

]

we obtain our integrating factor as

exp

(∫
hidθ̄

)
= exp

(
λi

J̃

∫ [
T ′(θ̄)

T (θ̄)
+ (J̃2 − λiJ̃)δt

σ′2(θ̄)

T (θ̄)

]
dθ̄
)

= exp

(
λi

J̃
ln(T )

)
exp

(
λi(J̃− λi)δt

∫
σ′2(θ̄)

T (θ̄)
dθ̄
)

= T
λi
J̃ exp

(
λi(J̃− λi)δt

∫
σ′2(θ̄)

T (θ̄)
dθ̄
)
.

Hence, we can solve Eq. (3.27) by use of this integrating factor

∫ θ̄

θ̄0

(
Ω exp

(∫ θ̄′′

θ̄0

hidθ̄′
))′

dθ̄′′ =
∫ θ̄(t)

θ̄0

(
−1

2
λiµ

2
iσ
′′(θ̄′′)

1

T (θ̄′′)
exp

(∫ θ̄′′

θ̄0

hidθ̄′
))

dθ̄′′ ,

and therefore, the solution to Eq. (3.27) is

〈ei|ϕ0〉
〈ei|ϕ(t)〉

T
λi
J̃

T
λi
J̃

0

e

(
λi (̃J−λi)δt

∫ θ̄
θ̄0

σ′2(θ̄′)
T (θ̄′) dθ̄′

)
=

∫ θ̄(t)

θ̄0

−1

2
λiµ

2
iσ
′′(θ̄′′)T

λi
J̃
−1
e

(
λi (̃J−λi)δt

∫ θ̄′′
θ̄0

σ′2(θ̄′)
T (θ̄′) dθ̄′

)
dθ̄′′

which yields a solution to our system 6

〈ei|ϕ(t)〉 =
〈ei|ϕ0〉T

λi
J̃

T
λi
J̃

0

e

(
λi (̃J−λi)δt

∫ θ̄
θ̄0

σ′2(θ̄′)
T (θ̄′) dθ̄′

)
∫ θ̄(t)
θ̄0
−1

2
λiµ2

iσ
′′(θ̄′′)T

λi
J̃
−1
e

(
λi (̃J−λi)δt

∫ θ̄′′
θ̄0

σ′2(θ̄′)
T (θ̄′) dθ̄′

)
dθ̄′′

(3.28)

where |ϕ0〉 = (ϕ1(0), ϕ2(0), · · · , ϕN(0)), T0 = T (0), and θ̄0 = θ̄(0). At first sight, one

might wonder whether this is an algebraic decay in θ̄, brought about by the denomina-

tor. The reason why we are not seeing synchronisation in the numerics of the linearised

solution would then be explained by the algebraic decay being very slow. However we

6Clearly, now that T is taken to some arbitrary power, we should have a statement about the sign of
T , which we have made above.
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can rewrite Eq. (3.28) as

〈ei|ϕ(t)〉 = −2T
λi
J̃

(∫ θ̄(t)

θ̄0

λiµ
2
iσ
′′(θ̄′′)T

λi
J̃
−1

exp

(
−λi(J̃− λi)δt

∫ θ̄(t)

θ̄′′(t)

σ′2(θ̄′)

T (θ̄′)
dθ̄′
)
dθ̄′′
)−1

.

(3.29)

We would like to investigate whether this result coincide with our numerics, such that this

kind of system will eventually have synchronisation-like behaviour; therefore we would

like to evaluate the right hand side of Eq. (3.29). Note that the inner integrand in the

exponential will behave like A(θ̄ − θ̄′′), where A = 1
ξ

∫ ξ
0
σ2(θ̄′)
T (θ̄′)

dθ̄′ and ξ is the periodicity

of σ, then

〈ei|ϕ(t)〉 ∼= −2T
λi
J̃

(∫ θ̄(t)

θ̄0

λiµ
2
iσ
′′(θ̄′′)T

λi
J̃
−1

exp
(
−Ãi(θ̄ − θ̄′′)

)
dθ̄′′
)−1

where Ãi = λi(J̃− λi)δtA. Observing that the sign of Ãi is solely depending on the sign

of the eigen-product E(λi). If Ãi < 0 then the integral increases as we increase t, since

all expressions in the integrand are either constant or periodic and bounded, we recover

the behaviour of our linearised solution in Section 3.3.2; the system will synchronise, i.e.

〈ei|ϕ〉 converges to 0, if the eigen-product is negative. If now we consider the case that

Ãi > 0, by change of integration limits such that Ãi(θ̄ − θ̄′′) = 1, then the exponential

acts as an effective cut-off of our integration

〈ei|ϕ(t)〉 ∼= −2T
λi
J̃

(∫ θ̄(t)

θ̄(t)− 1
Ãi

λiµ
2
iσ
′′(θ̄′′)T

λi
J̃
−1dθ̄′′

)−1

∼= −2T
λi
J̃

(
1

CiÃi

)−1

= −2T
λi
J̃ CiAiλi(J̃− λi)δt .

Since T (θ̄) is periodic and bounded, the system indeed does not synchronise. Rather,

it displays a form of entrainment, with the projection having an amplitude proportional

to the time delay. This explains why the systems we looked at numerically “almost”

synchronised: the phase difference was very small, but that’s just because δt is very

small. The phase difference is thus proportional to δt.

We have learnt that our N -oscillator time delay model will eventually be synchronised
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if the eigen-product E(λi) is negative otherwise the system will end up be entrained to

an amplitude proportional to the time delay δt. Comparing Eq. (3.23) and Eq. (3.26),

the term
1
2
λiµ

2
iσ
′′(θ̄) 〈ei|ϕ〉2

ω + J̃
[
σ(θ̄)− δt ˙̄θσ′(θ̄)

] (3.30)

in the second order approximation is responsible for this entrainment phenomenon. In

hindsight, by realising the fact that any pair of oscillators θi and θj will never know

that each other are too far apart as θi is bounded by the periodicity of σ, therefore

our linearisation in first orders of ϕ and δt bound to fail on predicting this entrainment

behaviour.

One may think that this second order approximation is also responsible for the asym-

metric transient behaviour of the full system as mentioned in Section 3.3.3. For the

coupling matrices J used in Section 3.3.3, one of the eigenvalues is J̃ = 1 and the rest

of the eigenvalues are equal with λi = − J̃
N−1

= − 1
N−1

, which means that all the eigen-

products are negative. Therefore, no explicit approximations can be made for Eq. (3.29)

and the problem remains unsolved. The reasoning of the assymmetric transient behaviour

occur in the numerics of the full system is probably more challenging as the transient

behaviour will die off in finite time.

In regards to linear stability, in technical terms we say a system is linearly stable or

unstable by referring stability to a particular structure of ordinary differential equation,

for example an ordinary differential equation of the form ϕ̇ = −H(t)ϕ with H(t) a

non-periodic function of t, then ϕ → 0 when t → ∞. In fact, we have taken linear

approximation to obtain Eq. (3.23) which is similar, but not quite, to this particular form

of ordinary differential equation. As a result, one has to take great care that whether

linearisation applies for this particular form of equation as our H(t) is not that simple

and it may not be straight forward to show that ϕ→ 0 when t→∞.
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3.4 General case with Arbitrary Jij with different eigen-frequencies

for N-oscillator Model

We have a better understanding on how our systems behave under certain constraints, we

continue to investigate the effects of our systems with different initial (eigen-)frequencies

as introduced in the Winfree model and the Kuramoto model.

3.4.1 General case with different eigen-frequencies for 2-oscillator model

Before we proceed ahead for an N -oscillator model, in order to get a better understanding

of the behaviour in the simplest model, we first consider a 2-oscillator model with different,

but fixed, eigen-frequencies ω1 and ω2:

θ̇1 = ω1 + Jσ(θ2(t− δt))

θ̇2 = ω2 + Jσ(θ1(t− δt)) .

We can always generalise the above equations into

θ̇1 = ω + ε+ Jσ(θ2(t− δt)) (3.31)

θ̇2 = ω − ε+ Jσ(θ1(t− δt)) (3.32)

with average eigen-frequency ω and the deviation ε; where ω = 1
2
(ω1 + ω2) and ε =

1
2
(ω1 − ω2). Note that this pair of equations of motion only different to the 2-oscillator

time delay model with same initial eigen-frequency, (2.35) and (2.36), up to a constant

ε. Therefore if we define θ1 = θ̄ + ϕ and θ2 = θ̄ − ϕ, then ˙̄θ = 1
2
(θ̇1 + θ̇2) and the

approximation of ˙̄θ stay unaffected as ε averages out, while ϕ̇ = 1
2
(θ̇1− θ̇2) will be shifted

by ε in comparison to the 2-oscillator time delay model with same initial eigen-frequency.
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If we then expand in first order of small δt and ϕ of our function σ will give

˙̄θ =
1

2
(θ̇1 + θ̇2) = ω + J

(
σ(θ̄)− δt ˙̄θσ′(θ̄)

)
(3.33)

ϕ̇ =
1

2
(θ̇1 − θ̇2) = ε+ J

(
−ϕσ′(θ̄) + δt(ϕ ˙̄θσ′′(θ̄) + ϕ̇σ′(θ̄))

)
. (3.34)

We now rearrange and simplify the expression of ϕ̇

ϕ̇ =
[
ε+ J

(
−ϕσ′(θ̄) + δtϕ ˙̄θσ′′(θ̄)

)] [
1 + Jδtσ′(θ̄) +O(δt2)

]
=
[
ε− Jϕ

(
σ′(θ̄)− δt ˙̄θσ′′(θ̄)

)]
+ εJδtσ′(θ̄)− J2δtϕσ′2(θ̄) +O(δt2)

∼= ε[1 + Jδtσ′(θ̄)]− ϕ
(
Jσ′(θ̄)− Jδt ˙̄θσ′′(θ̄) + J2δtσ′2(θ̄)

)
.

Using the expression of d
dθ̄ (

˙̄θ) (2.39) and let T = ˙̄θ = ω + Jσ(θ̄)− Jδt ˙̄θσ′(θ̄),

ϕ′ =
dϕ
dθ̄

=
ε[1 + Jδtσ′(θ̄)]− ϕ

(
Jσ′(θ̄)− Jδt ˙̄θσ′′(θ̄) + J2δtσ′2(θ̄)

)
T

=
ε[1 + Jδtσ′(θ̄)]

T
−
ϕ
(
Jσ′(θ̄)− Jδt ˙̄θσ′′(θ̄)− J2δtσ′2(θ̄) + 2J2δtσ′2(θ̄)

)
T

=
ε[1 + Jδtσ′(θ̄)]

T
− ϕ

(
d
dθ̄

ln(T ) +
2J2δtσ′2(θ̄)

T

)
.

By writing g(θ̄) =
(

d
dθ̄ ln(T ) + 2J2δtσ′2(θ̄)

T

)
, we can rewrite the above equation as

ϕ′ = −ϕg(θ̄) +
ε[1 + Jδtσ′(θ̄)]

T
. (3.35)

From Section 2.4, we know the solution to ϕ′ + ϕg(θ̄) = 0 is

ϕ(t) = ϕ0

˙̄θ(0)
˙̄θ(t)

exp

(
−2J2δt

∫ θ̄(t)

θ̄(0)

σ′2(θ̄′)

T
dθ̄′
)
. (3.36)

Therefore, in order to solve the ODE we have, we multiply the above equation by

exp
(∫ θ̄(t)

θ̄(0)
g(θ̄′)dθ̄′

)
; and therefore

d
dθ̄

(
ϕe
∫ θ̄(t)
θ̄(0)

g(θ̄′)dθ̄′
+ C

)
=
ε[1 + Jδtσ′(θ̄)]

T
e
∫ θ̄(t)
θ̄(0)

g(θ̄′)dθ̄′
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where C is an integration constant. The solution is then

ϕ = −Ce−
∫ θ̄(t)
θ̄(0)

g(θ̄′)dθ̄′
+ e

−
∫ θ̄(t)
θ̄(0)

g(θ̄′)dθ̄′
∫ θ̄(t)

θ̄(0)

ε[1 + Jδtσ′(θ̄′′)]

T (θ̄′′)
e
∫ θ̄′′(t)
θ̄(0)

g(θ̄′)dθ̄′dθ̄′′

= −Ce−
∫ θ̄(t)
θ̄(0)

g(θ̄′)dθ̄′
+ ε

∫ θ̄(t)

θ̄(0)

[1 + Jδtσ′(θ̄′′)]

T (θ̄′′)
e
−
∫ θ̄(t)
θ̄′′(t) g(θ̄

′)dθ̄′dθ̄′′ . (3.37)

The first term of Eq. (3.37) will converge to 0 as t → ∞ therefore the dynamics of ϕ

is linearly approximated by the second term. By taking approximation for the inner

integrand of the second term 7, the inner integral then becomes e(−K(θ̄−θ̄′′)), where K =

1
ξ

∫ ξ
0
g(θ̄′)dθ̄′. Since this exponential will suppress any θ̄(t) < θ̄′′(t) asymptotically as

t → ∞, we need only consider the outer integral limit from θ̄′′ = θ̄ − 1
K
, therefore the

solution becomes

ϕ(t) = −Ce−
∫ θ̄(t)
θ̄(0)

g(θ̄′)dθ̄′
+ ε

∫ θ̄(t)

θ̄(t)− 1
K

[1 + Jδtσ′(θ̄′′)]

T (θ̄′′)
dθ̄′′ ∼=

ε

KL
(3.38)

where 1
L

= 1
ξ

∫ ξ
0

[1+Jδtσ′(θ̄′′)]
T (θ̄′′)

dθ̄′′. Therefore, ϕ ∼= ε
KL

asymptotically as t → ∞. The

numerics agrees quite well (in absolute terms) with this approximation, see Figure 3.9,

despite a consistent percentage error of roughly 12.7% between the numerics of the full

system (column 2) and the linear approximation (column 3), see Table 3.1. This consistent

percentage error is possibly an fallout of not taking the effect of second order behaviour

of ϕ(t) into consideration in our analysis. However, if we average the phase differences

once the transient behaviour died off, we have a very good agreement, in the margin of

3-5%, between the linear approximation (column 3) (3.38) and our numerical averages

(column 4). If we look at the trajectories of the full system, see Figure 3.9 inset, we can

notice that there are sloping in the phase difference. These slopings are caused by θ1

travelling faster than θ2 from the effect of ε.

One may then ask what is the maximum sustainable value of ε a system like this

can result in entrainment. In order to give a reasonable explanation, we look into the

asymptotic behaviour, i.e. for large values of t, over one characteristic period. Similar to

7See Section 3.3.4 for similar but more detailed explanation.
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Figure 3.9: Window averaged trajectories of full system (RK4) and linearisation
approximation of the asymptotic values from Table 3.1 with parameters ∆t = 1×10−6,
ξ = 1.01, ζ = 0.1 and δt = 0.01. Inset: trajectories of ϕ with ε = 0.001 (red), 0.0025
(green) and 0.005 (blue) between time 0 to 6.

ε ϕ(t) ε
KL Numerical averages

0.00050 3.0386×10−4 2.6529×10−4 2.7569×10−4

0.00075 4.5579×10−4 3.9794×10−4 4.1559×10−4

0.00100 6.0773×10−4 5.3059×10−4 5.5401×10−4

0.00250 1.5194×10−3 1.3265×10−3 1.3978×10−3

0.00500 3.0395×10−3 2.6529×10−3 2.7993×10−3

0.00750 4.5609×10−3 3.9794×10−3 4.1418×10−3

0.01000 6.0843×10−3 5.3059×10−3 5.5693×10−3

Table 3.1: Table of numerics outputs of asymptotic values of ϕ, linearisation
approximation of ε

KL , and numerical averages after transient behaviour died
off. Parameters used: ∆t = 1 × 10−6, ξ = 1.01, ζ = 0.1, δt = 0.01 and
2ϕ0 = 0.1.
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Section 2.7, we define the quantities ψ and S such that

ψ =

∫ ξ

0

dθ̄′

T (θ̄′)
, S =

∫ ξ

0

σ′2(θ̄′)dθ̄′

T (θ̄′)
(3.39)

where T (θ̄) = ˙̄θ = ω + Jσ(θ̄) − Jδt ˙̄θσ′(θ̄) to linear order in δt. If we assume limt→∞

1
t

∫ t
0
ϕ(t′)dt′ = ϕ̃, where ϕ̃ is the asymptotic phase difference, then by Eq. (2.56) (lin-

earised solution with ε = 0) and Eq. (3.38) (linearsed solution with ε 6= 0), after one

characteristic period ψ, we have ϕ̃e−
ψ
τ and ϕ̃ correspondingly. τ is defined as the char-

acteristic synchronisation time where τ = ψ
2J2δtS

. If we then equate the contribution of

desynchronisation, effectively the entrainment strength, per period of σ, to the contribu-

tion of synchronisation per cycle yields

εψ = ϕ̃
(

1− e−
ψ
τ

)
(3.40)

ϕ̃ =
εψ

ψ
τ
− 1

2

(
ψ
τ

)2
+ · · ·

≈ ετ . (3.41)

It is intuitive to check whether this holds for large values of t in comparison to Eq. (3.38),

i.e. τ ≈ 1
KL

. Since our g(θ̄) has the form g(θ̄) =
(

d
dθ̄ ln(T ) + 2J2δtσ′2(θ̄)

T

)
and therefore

1

KL
=

1
ξ

[
ψ + Jδt

∫ ξ
0
σ′(θ̄′′)
T (θ̄′′)

dθ̄′′
]

1
ξ

[
ln
(
T (ξ)
T (0)

)
+ 2J2δtS

] ≈ ψ

2J2δtS
= τ .

The ratio T (ξ)
T (0)

= 1 since T is periodic with period ξ. In particular, we require ϕ̃ < ξ
2
,

and consequently ε < ξ
2τ

to have the system remains entrained asymptotically. However

this condition is necessary but not sufficient. In fact we require ε � ξ
2τ

in order to

keep the system entrained. The necessary condition ϕ̃ < ξ
2
arises due to the fact that

our linearised solution (2.41) assumes synchronisation strength is linear, somewhat in

the form of ϕ̇ = −ϕ
τ
, according to the displacement in θi. Keeping in mind that our

linearsation only valid for small values of ϕ and δt, therefore linearisation breaks down

for ϕ ≥ ξ
2

8.

8As indicated in Section 2.5.3, for any (θ2(0) − θ1(0)) ∈
(
nξ − ξ

2 , nξ
)
then the system should syn-
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Figure 3.10: Graphical illustration of synchronisation behaviour, i.e. E(λi) is negative, of our
linearised solution (thick red) in comparison to our full system (thick orange). Figure 3.10a: if
2ϕ0 = θ2(0)−θ1(0) is small then both linearisation and full system will synchronise to zero phase
difference. Figure 3.10b: if 2ϕ0 = ξ

2 , linearised solution shows convergence but analytically the
system will be stuck at the unstable fixed point. Figure 3.10c: linearised solution continues to
predict convergence to 0 proportional to the displacement but the full system should synchronise
to 1.

Subsequently we could take a step further to have time dependent ε = ε(t), the

logic in the derivation above holds however our ϕ̃ will then also be time dependent,

i.e. ϕ̃ = ϕ̃(t). This comes naturally as we expect oscillatory behaviour if the system

remains in entrainment. The contribution of desynchronisation is then
∫ ψ

0
ε(t)dt while

the contribution of synchronisation is ϕ̃
(

1− e−ψτ
)
≈ ϕ̃

τ
ψ = ϕ̃

τ

∫ ψ
0
dt per period of σ. If we

now consider the rate of the varying ϕ̃ in terms of the rivalry between desynchronisation

and synchronisation, this gives

ε− ϕ̃

τ
= ˙̃ϕ (3.42)

which has a general solution of the form, with integration constant C,

ϕ̃(t) = −Ce−
t
τ +

∫ t

0

e−
t−t′
τ ε(t′)dt′ ≈

∫ t

0

e−
t−t′
τ ε(t′)dt′ (3.43)

as the first term is negligible if t is large. In the cases that we have t = ψ and ε is

constant in time, then we recover the approximation by Eq. (3.41). If we now consider

chronise to nξ because of the unstable fixed point at nξ − ξ
2 but our linearisation (2.41) suggested that

the phase difference always converges to 0 in the presence of time delay.
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ε(t) = a sin
(
t
b

)
, after some calculus Eq. (3.43) yields

ϕ̃ =
aτ(

τ
b

)2
+ 1

[
sin

(
t

b

)
− τ

b
cos

(
t

b

)
+O(e−

t
τ )

]
∈

[
−
aτ
(
1 + τ

b

)(
τ
b

)2
+ 1

,
aτ
(
1 + τ

b

)(
τ
b

)2
+ 1

]
. (3.44)

This gives a description of the system when the transient behaviour has died off, that is;

when the first term of Eq. (3.37) is approximately zero. The system will be oscillating

but encapsulated within a periodic function, see Figure 3.11.

If the value of b � τ , adequately means that the effect of sine function is diluted by

factor b, this gives the necessary, but not sufficient, condition that a < ξ
2τ
. If the value

of b is significantly large, then due to the fact that limx→∞
(
x sin

(
1
x

))
= 1 then we are

effectively implementing ε(t) = a, see Figure 3.12.
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Figure 3.11: Trajectories of full system (RK4) with a = 0.005 and different values of
b: b = 10 (red), b = 25 (green) and b = 50 (blue). Parameters used: ∆t = 1 × 10−6,
ξ = 1.01, ζ = 0.1 and δt = 0.01.
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Figure 3.12: Trajectories of full system (RK4) with ε = 0.005 (red) and ε(t) =
0.005 sin

(
t

1000000

)
(green). Parameters used: ∆t = 1 × 10−6, ξ = 1.01, ζ = 0.1 and

δt = 0.01. Inset: trajectories between time 16 and 18.

3.4.2 General case with different eigen-frequencies for N -oscillator model

If we now extend our analysis into N -oscillator time delay system with different, but

fixed, initial eigen-frequencies, our equations of motion for our system are

θ̇i = ωi +
N∑
j=1

Jijσ(θj(t− δt)) . (3.45)

In the light of the 2-oscillator case, we can express our ωi = ω + εi; with average eigen-

frequency ω and the deviations εi and therefore we can write the equations of motion in

vector form

θ̇i = ω + εi +
N∑
j

Jijσ(θj(t− δt)) ⇒
∣∣∣θ̇〉 = ω |1〉+ |ε〉+ J |σ(θ)〉 . (3.46)
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Similarly, we define |ϕ〉 = |θ〉 − θ̄ |1〉 and θ̄ = 1
q

〈
1|θ̇
〉
, where q = 〈1|1〉. We then define

|ϕ′〉 = |ϕ̇〉
˙̄θ
, and since 〈ei|1〉 = 0 (see Section 3.3.2), we have

〈ei|ϕ′〉 =
〈ei|ϕ′〉

˙̄θ
=

〈ei|ε〉+ 〈ei|J |σ(θ(t− δt))〉
1
q

(qω + 〈1|ε〉+ 〈1|J |σ(θ(t− δt))〉)

=
〈ei|ε〉+ λi 〈ei|σ(θ(t− δt))〉

ω + 1
q
〈1|ε〉+ J̃

q
〈1|σ(θ(t− δt))〉

(3.47)

where 〈ei| are the corresponding left-hand side eigenvectors of eigenvalues λi; and 〈1| is

the left-hand side eigenvector of eigenvalue J̃ where J̃ = J̃i =
∑

j Jij. Comparing Eq. (3.47)

to Eq. (3.33) and (3.34), the term 〈ei|ε〉 is expected as it corresponds to the projection of

〈ei| onto the deviations |ε〉. However there is an extra term, namely the 〈1|ε〉 term, in the

˙̄θ expression, where it does not exist in Eq. (3.33), this is just because the scalar product

〈1|ε〉 vanishes 9 in Eq. (3.33). Combining the results from Section 3.3.2 and Section 3.4.1,

this directly yields

〈ei|ϕ′〉 = 〈ei|ϕ〉 gi(θ̄) + 〈ei|ε〉
[
1− λiδtσ′(θ̄)

]
T

(3.48)

where gi(θ̄) = λi
J̃

[
T ′

T
+

δt(−J̃λiσ′2(θ̄)+J̃2σ′2(θ̄))
T

]
and T (θ̄) = ˙̄θ = ω+1

q
〈1|ε〉+J̃

[
σ(θ̄)− δt ˙̄θσ′θ̄)

]
.

The factor [1−λiδtσ′(θ̄)]
T

comes from rearranging the expansion in the linearisation of 〈ei|ϕ〉,

see Appendix A for the full derivation. Eq. (3.48) coincides with Eq. (3.35) since the other

eigenvalue of the matrix
(

0 J
J 0

)
is −J. We solve our equation by using the integrating factor

exp
(
−
∫ θ̄(t)
θ̄(0)

gi(θ̄
′)dθ̄′

)
, which gives

〈ei|ϕ〉 = −Cie
∫ θ̄(t)
θ̄(0)

gi(θ̄
′)dθ̄′

+

∫ θ̄(t)

θ̄(0)

〈ei|ε〉
[
1− λiδtσ′(θ̄′′)

]
T (θ̄′′)

e
∫ θ̄(t)
θ̄′′(t) gi(θ̄

′)dθ̄′dθ̄′′ (3.49)

where Ci is the integration constant. Again, since our g(θ̄) has the form

gi(θ̄) =
λi

J̃

T ′
T

+
δt
(
−J̃λiσ′2(θ̄) + J̃2σ′2(θ̄)

)
T

 =
d
dθ̄

lnT
λi
J̃ +

λi(J̃− λi)δtσ′2

T
(3.50)

9Indeed, our matrix in Section 3.3.2 is J =
(

0 J
J 0

)
and therefore the eigenvector 〈1| is (1 1) with

associated eigenvalue J. For |ε〉 = (ε,−ε) and then 〈1|ε〉 vanishes.
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then our linearised solution suggests that whether the system will result in effective

entrainment 10 will be solely depended on the sign of the eigen-product E(λi). If the

eigen-product is negative, then we can consequently simplify Eq. (3.49) to obtain the

asymptotic behaviour of such system, i.e. the system will effectively entrained to a certain

amplitude 〈ei|ϕ〉 ∼= 〈ei|ε〉
KiLi

withKi = 1
ξ

∫ ξ
0
gi(θ̄

′)dθ̄′ and 1
Li

= 1
ξ

∫ ξ
0

[1+λiδσ
′(θ̄′′)]

T (θ̄′′)
dθ̄′′ as proposed

in the two-oscillator model. However as suggested by our findings in Section 3.3.4, this

linearised solution (3.49) will not capture the entrainment behaviour, instead it suggests

unstable behaviour as long as the eigen-product is positive, disregard the effect of ε. In

order to capture the entrainment behaviour for positive values of eigen-products, we will

need to include the second order approximation of ϕ (3.30) then Eq. (3.48) becomes

〈ei|ϕ′〉 =
〈ei|ε〉

[
1− λiδtσ′(θ̄)

]
T

+ 〈ei|ϕ〉 gi(θ̄) + 〈ei|ϕ〉2
1
2
λiµ

2
iσ
′′(θ̄)

T
. (3.51)

For ordinary differential equation in the form of Eq. (3.51), neither a Berloulli’s equation

nor Abel equation of the first kind, is very difficult to solve. However as we know that

the system should still remain in entrainment as both second order approximation of

ϕ (entrainment) and effect of ε (effective entrainment) produce entrainement effects,

the overall effect should still be periodic, despite there may have some rivalrous, or

even additive, development between these quantities. We expect 〈ei|ϕ〉 to be linear

in t plus a periodic function, so one may consider the (Fourier sum) ansatz 〈ei|ϕ〉 =

θ̄ +
∑

j Aj sin
(
jπθ̄
ξ

)
to solve Eq. (3.51) however an explicit solution is yet to be found.

One may think that the system should behave the same if we have εi to be time

dependent, εi = εi(t), however the solution (3.49) is not true for all functions εi(t) due to

the fact that d
dθ̄ 〈1|ε(t)〉 only vanishes if and only if 〈1|ε(t)〉 is constant. Generally this is

not the case unless we compose ε(t) in a way that by knowing 〈1|, i.e. the structure of the

coupling matrix, and we weigh the corresponding ε(t) so that the scalar product 〈1|ε(t)〉

vanishes. However it will be unrealistic to put constraints on our initial eigen-frequencies.

10If the eigen-product is negative then this entrainment phenomenon is produced by the effect of ε and
therefore we regard this as the effective entrainment as compared to the entrainment captured by the
second order approximation of ϕ.
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If we take this into account, then an extra term should be contemplated in the expression

of gi(θ̄), namely the term 11

− λi

J̃

1

T

1

q

d
dθ̄
〈1|ε(t)〉 . (3.52)

We are able to determine this term because we have bijection between θ̄ and t. However

it will be very difficult to characterise or interpret the effect of this term unless εi(t) is

periodic and bounded. This is because as long as εi(t) is periodic and bounded then it

is sufficient to show that for negative values of eigen-products, the system will remain in

effective entrainment asymptotically 12.

11See Section 3.5 for the derivation: to replace η by ε(t) as no properties of Gaussian white noise η
has been used .

12If the eigen-product is negative, e.g. Ei(λi) < 0 and εi(t) is periodic and bounded then the

contribution of Eq. (3.52), i.e. e
(∫ θ̄(t)
θ̄(0)
−λi

J̃

1
T

d
dθ̄′ 〈1|ε(t)〉dθ̄

′
)
which is also periodic, will be suppressed by

e
∫ θ̄(t)
θ̄(0)

Ei(λ)δtσ′2
T dθ̄′ in the first term of our linearised solution (3.49) while adding additional oscillation to

the integrand in the second term, which can then be absorbed into, and therefore approximated by, the
function Ki, asymptotically as t→∞.
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3.5 General case with Arbitrary Jij with Gaussian White Noise

for N-oscillator Model

We have considered N -oscillator time delay model with different initial eigen-frequencies

and explicitly for time dependent initial eigen-frequencies, due to the difficulty posted by

the extra effect from Eq. (3.52) in the time dependent case, we suspect that if we consider

εi(t) as white noises then taking the ensemble averages can facilitate an explicit solution.

Therefore in the following section we look into noisy systems whether synchronisation

can be obtained or under what condition these N -oscillator models can be synchronised

or entrained (with a certain deviation). For simplification, we consider all oscillators has

the same initial eigen-frequency. Our equation of motion with white noise added is then

θ̇i = ω +
N∑
j=1

Jijσ(θj(t− δt)) + ηi ⇒
∣∣∣θ̇〉 = ω |1〉+ J |σ(θ(t− δt))〉+ |η〉 . (3.53)

with |η〉 = (η1(t), η2(t), · · · , ηN(t)), where white noise ηi(t) is a random Gaussian process

with properties

E [η(t)] = 0 , (3.54)

E [η(t)η(t′)] = 2Γ2δ(t− t′) <∞ . (3.55)

In terms of derivation, we do not require any properties of the white noise to obtain the

expression of 〈ei|ϕ′〉, therefore by comparing Eq. (3.46) and (3.53), which directly gives

〈ei|ϕ′〉 =
〈ei|η〉+ λi 〈ei|σ(θ(t− δt))〉

ω + 1
q
〈1|η〉+ J̃

q
〈1|σ(θ(t− δt))〉

and similarly for our linear approximation of first orders in ϕ and δt

〈ei|ϕ′〉 =
〈ei|η〉

[
1− λiδtσ′(θ̄)

]
+ λi 〈ei|ϕ〉

[
σ′(θ̄)− δt

(
˙̄θσ′′(θ̄) + λiσ

′2(θ̄)
)]

ω + 1
q
〈1|η〉+ J̃

[
σ(θ̄)− δt ˙̄θσ′(θ̄)

] .
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If we now let T (θ) = ω + 1
q
〈1|η〉+ J̃

[
σ(θ̄)− δt ˙̄θσ′(θ̄)

]
, then

T ′ =
d
dθ̄
T =

1

q

d
dθ̄
〈1|η〉+ J̃

[
σ′(θ̄)− δt

(
˙̄θσ′′(θ̄) + σ′(θ̄)T ′(θ̄)

)]
=

1

q

d
dθ̄
〈1|η〉+ J̃

[
σ′(θ̄)− δt

(
˙̄θσ′′(θ̄) + J̃σ′2(θ̄)

)]
+O(δt2) .

Using this expression of T and T ′, 〈ei|ϕ′〉 can be written as

〈ei|ϕ′〉 =
λi

J̃
〈ei|ϕ〉

1

T (θ̄)

[
d
dθ̄
T (θ̄) + J̃2δσ′2(θ̄)− λiJ̃δtσ′2(θ̄)− 1

q

d
dθ̄
〈1|η〉

]
+
〈ei|η〉

[
1− λiδtσ′(θ̄)

]
T (θ̄)

.

Let g̃i(θ̄) = gi(θ̄)− λi
J̃

1
T (θ̄)

1
q

d
dθ̄ 〈1|η〉, where gi(θ̄) as defined in Eq. (3.50), and by using the

integrating factor exp
(
−
∫ θ̄(t)
θ̄(0)

g̃i(θ̄
′)dθ̄′

)
yields the general solution

〈ei|ϕ〉 = −Cie
∫ θ̄(t)
θ̄(0)

g̃i(θ̄
′)dθ̄′

+

∫ θ̄(t)

θ̄(0)

〈ei|η〉
[
1− λiδtσ′(θ̄′′)

]
T (θ̄′′)

e
∫ θ̄(t)
θ̄′′(t) g̃i(θ̄

′)dθ̄′dθ̄′′ . (3.56)

If we now calculate the expectation of the first term in Eq. (3.56) with θ̄0 = θ̄(0),

E

[
−Cie

∫ θ̄(t)
θ̄0

g̃i(θ̄
′)dθ̄′
]

= −Cie
∫ θ̄(t)
θ̄0

gi(θ̄
′)dθ̄′

E

[
e
−λi

J̃

∫ θ̄(t)
θ̄0

1
T (θ̄)

1
q

d
dθ̄ 〈1|η〉dθ̄

′
]

= −Cie
∫ θ̄(t)
θ̄0

gi(θ̄
′)dθ̄′

E

[
e
−λi

J̃

1
q

∫ t
0

1
T (t′)

d
dt 〈1|η〉dt

′
]

= C̃iE

[
exp

{
−λi

J̃

1

q

(
〈1|η〉
T (t′)

∣∣∣∣t
0

−
∫ t

0

〈1|η〉 d
dt

(
1

T (t′)

)
dt′
)}]

.

(3.57)

If we put our noise in stochastic calculus terms, our stochastic differential equation is

a scalar Wiener process with zero drift and the diffusion coefficient is Γ2, i.e. dXt =
√

2Γ2dWt. Therefore the corresponding Fokker-Planck equation is ∂p
∂t

= Γ2 ∂2p
∂X2

t
which

has the solution p(Xt, t) = 1√
4πΓ2t

e−
X2
t

4Γ2t with initial condition p(Xt, 0) = δ(Xt). Then

by using this probability density function p(Xt, t), we can compute E
[
eXt
]

= eΓ2t. If

we now use Feynman path integral, with properties of white noises (3.54) and (3.55), to
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determine

E
[
e−

∫ t
0 η(t′)y(t′)dt′

]
=

1

C

∮
e−

1
4Γ2

∫ t
0 η

2(t′)dt′e
∫ t
0 η(t′)y(t′)dt′Dη

=
1

C

∮
e−

1
4Γ2

∫ t
0 (η(t′)+2Γ2y(t′))

2
dt′Dη · eΓ2

∫ t
0 y

2(t′)dt′ = eΓ2
∫ t
0 y

2(t′)dt′ (3.58)

where C is the normalisation constant. Therefore the expectation on the right hand

side of Eq. (3.57), by inspection, is somewhat periodic and bounded, of the form eΓ2Y (t)

with appropriately defined Y (t). Hence, if the eigen-product E(λi) is negative, then

the term e
E(λi)δt

∫ θ̄(t)
θ̄0

σ′2
T

dθ̄′ in gi(θ̄) will suppress all terms and therefore the expectation of

contribution of the first term in Eq. (3.56) is 0 as t→∞. The second term of Eq. (3.56) is

much harder to deal with. However, to some extend, the integrand has the form of Xte
Xt ,

of which we can determine the expectation E
[
Xte

Xt
]

= 2Γ2teΓ2t by use of Eq. (3.58)

with y(t) constant in time. Yet, we are not able to deduce an explicit approximation for

Eq. (3.56) but the asymptotic behaviour seems to be related with the diffusion coefficient.

In order to find a suitable measure, we look into the desynchronisation strength versus

the synchronisation strength as discussed in Section 3.4.1 and Section 3.4.2. We define

the quantity d such that, in Riemann sum representation, d =
∑N

i=0 εi∆t with N = ψ
∆t

is

the effect of εi for time ψ, the time for σ to travel through one period. If εi is Gaussian

white noise, then d =
∑N

i=0Rηi∆t where R is the rescaling factor. By property (3.54) we

have d̄ = E [d] = 0, and by property (3.55)

Var [d] = E
[
d2
]

= E

[
N∑
i=0

Rηi∆t

]
E

[
N∑
j=0

Rηj∆t

]
= R2∆t2E

[
N∑
i=0

ηi

]
E

[
N∑
j=0

ηj

]

= R2∆t22Γ2
∑
i,j

δij = 2Γ2R2∆t2
ψ

∆t
= 2Γ2ψR2∆t

since Gaussian white noise is uncorrelated. For standard Gaussian, the second moment is

2Γ2t therefore the rescaling factor is 1√
∆t
. If we consider the variance as the average value

of the quantity (d2−d̄)2, by dimensional analysis , the desynchronisation strength must be
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the standard deviation 13. On the same page, note that one may write the right hand side

of Eq. (3.40) in the form of ϕ̂(ψ) =
∫ t=ψ

0
ϕ̃
τ
e−

t
τ dt. By defining E [ϕ̂n(ψ)] = 1

ψ

∫ ψ
0
ϕ̂n(t)dt,

i.e. the moments of ϕ̂, then

E [ϕ̂(ψ)] =
1

ψ

∫ ψ

0

ϕ̂(t)dt =
1

ψ

∫ ψ

0

∫ t

0

ϕ̃

τ
e−

t′
τ dt′dt

= ϕ̃+
ϕ̃

ψ/τ

(
e−

ψ
τ − 1

)
∼= 0 +O

(
ψ

τ

)2

,

Var [ϕ̂(ψ)] = E
[
ϕ̂2(ψ)

]
− (E [ϕ̂(ψ)])2

=
ϕ̃2

2ψ/τ

(
1− e−

2ψ
τ

)
− ϕ̃2

(ψ/τ)2

(
1− e−

ψ
τ

)2 ∼=
ϕ̃2

12

ψ2

τ 2
+O

(
ψ

τ

)3

.

Hence Eq. (3.40) in noisy systems becomes
√

2Γ2ψ = ϕ̃ ψ

τ
√

12
and therefore we obtain the

necessary condition for noisy system on the standard deviation such that

√
2Γ2 <

ξ
√
ψ

2
√

12τ
. (3.59)

If we now consider the rate of the varying ϕ̃ in terms of the rivalry between desynchro-

nisation and synchronisation, Eq. (3.42) is then

dϕ̃t = − ϕ̃t
τ
dt+ dWt (3.60)

a stochastic differentital equation which has drift towards zero at an exponential rate 1
τ
.

We seek a change of variable in the form of zt = ϕ̃te
t
τ then zt statisfies the stochastic

differential equation dzt = e
t
τ dWt which gives the solution of ϕ̃t as

ϕ̃t = ϕ̃0e
− t
τ +

∫ t

0

e−
t−u
τ dWu .

13One may think that, by use of dimensional analysis, we can approximate the desynchronisation
strength by the standard deviation, i.e.

√
2Γ2ψ = ϕ̃

(
1− e−

ψ
τ

)
∼= ϕ̃ψ

τ , then
√

2Γ2 < ξ
√
ψ

2τ is only a (very)
rough estimate as compared to Eq. (3.59).
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Then E [ϕ̃t] = ϕ̃0e

− t
τ ∼= 0 as t → ∞. We can also compute the variance, by use of Itô’s

isometry,

Var [ϕ̃t] =

∫ t

0

e−
2(t−u)
τ 2Γ2du = Γ2τ

(
1− e−

2t
τ

)
∼= Γ2τ

as t → ∞. Consequently our system with noise, asymptotically, will hover around zero

with variance of order Γ2τ , given that our initial phase difference ϕ and time delay δt are

small.
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Figure 3.13: Numerical comparisons of different random number generators. Main:
Our implementation of Guassian noise outputs, slope = 0.3884. Left inset: ran1 out-
puts, slope = 0.3488. Right inset: gasdev outputs, slope = 1.3643.

If we now look into the numerical implementation of our system, for any random

number generator, say ran(i) which will return the ith random number between 0 and

1. In order to have the mean at zero, we will need to shift ran(i) by −1
2
. If we have,

say, Hd =
∑ t

∆t
i=0 ηi∆t a Riemann sum of the cumulative effect of the noise terms, ηi =

A√
∆t
ran(i) where A defines the noise amplitude, then

E
[
H2
d

]
=
∑
i,j

∆t2E[ηiηj] =
∑
i,j

A2

∆t
δij

∫ 1
2

− 1
2

x2dx =
A2

12
t .
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Comparing this to E [H2
c ], where lim∆t→∞Hd =

∫ t
0
η(t′)dt′ = Hc,

E[H2
c ] = E

[∫ t

0

η(t1)dt1
∫ t

0

η(t2)dt2
]

= 2Γ2t .

then the relationship 2Γ2 = A2

12
should hold. Therefore another, numerical, interpretation

of the necessary condition (3.59) is then

A <
ξ
√
ψ

2τ
. (3.61)

One should note that the condition that 2Γ2 = A2

12
will generally depend on the random

number generator you use. However A should be proportional to
√

2Γ2. Figure 3.13 and

insets show the relationships between A and
√

2Γ2
√

12 for random generators ran1 [53],

gasdev by Press et al. [53] and our implementation of Gaussian noise. A reference of our

implementation can be found in Appendix B.2. We can see that our naïve implementation

has a good approximation on the proportionality while ran1 and gasdev have perfect fits.
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Figure 3.14: Trajectories of noisy systems by RK4 with different noise amplitudes
A: A = 0.01 (red), A = 0.025 (green) and A = 0.05 (blue). Inset: trajectories between
time 16 and 18. Parameters used: δt = 0.01, ξ = 1.01, ω = 2.0 and ζ = 0.1.

A series of trajectories of noisy system with N = 2 can be found in Figure 3.14. If

the noise amplitude is relatively large, then the asymptotic behaviour, or in some cases
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Noise Amplitude A Expected Std. Dev. A Numerical Std. Dev.
0.0010 0.00082757 0.00077960
0.0025 0.00206894 0.00198046
0.0050 0.00413789 0.00380735
0.0075 0.00620683 0.00564561

Table 3.2: Table of numerical outputs of expected standard deviation and
the numerical outputs of standard deviations.

that even the transient behaviour, of the system are affected due to large noise amplitude

and the behaviour will be purely governed by the noise and therefore chaotic. If this is

the case, then one may wonder if the necessary condition (3.61) is ever true, i.e. whether

we will see some sort of effective entrainment encapsulated between noise amplitudes, as

compared to the time dependent ε(t) = a sin
(
t
b

)
case that effective entrainment being

encapsulated in sine waves. We should remind ourselves that the necessary condition

(3.61) is only valid for small values of time delay δt (see Section 2.7), therefore large

values of τ , compared to ψ (3.39). If we decrease the value of δt, effectively decreasing

the necessary condition by same order as τ is inversely proportional to δt, we can see

oscillations which are encapsulated within noise amplitudes, see Figure 3.15. However for

relatively large values of noise amplitudes A, some point in time the noise will dominate

the behaviour (Figure 3.15 inset) while systems with small values of A continues the same

behaviour through time (Figure 3.16). If we now look at the expected standard deviation,

which is calculated based on the slope factor m of the random number generator (in our

case ran1) i.e. S.D. = A
m
√

12
, and the standard deviations from the numerics, we observed

that the percentage errors increases as the noise amplitude A increases (from 4% with

A = 0.001 to 9% with A = 0.0075), see Table 3.2. Despite the fact that there will

be numerical errors, for δt = 0.0001, τ ≈ 54.83 (time taken to reduce the initial phase

difference by a factor of 1
e
without noise) and with noise coming into play it will be

hard to determine when the transient behaviour has totally died off. Notwithstanding

the latter concern, we can see reasonable behaviour of our noisy system, therefore the

necessary condition (3.61) indeed holds but only if δt is small compared to ψ and small

noise amplitude A.
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Chapter 4

Conclusion

We have studied a simple model, which is rooted in Winfree’s mean-field model for

spontaneous synchronisation [70], with N coupled oscillators with equations of motion

θ̇i(t) = ω + εi(t) +
N∑
j=1

Jijσ(θj(t− δt)) . (4.1)

For synchronised state to exist indefinitely, then the constraint
∑

j Jij = J̃ needs to

be fulfilled. In the cases when εi(t) = 0, for which we have studied extensively, one

might think time delay is insignificant, however it turns out that time delay δt plays a

crucial role in synchronisation. We extended our analysis to arbitrary coupling matrices

J where J has each [i, j]-entry to be the corresponding coupling strength between the

ith and jth oscillators. We denote the eigenvalues as λi with associated left 〈ei| and right

|ei〉 eigenvectors; in the case that the eigenvalue has value J̃, due to the Markov property

of J , the right eigenvector, denoted as |1〉, is a column vector with entries equal to 1.

Assume the eigenvectors of J are normalised, so that 〈ei|ej〉 = 0 for i 6= j, and span the

basis of J . We define an appropriate parameterisation of the system |ϕ〉 = |θ〉 − θ̄ |1〉,

which is the deviation of |θ〉 from the asympototic synchronised state θ̄ where θ̄ is defined

by the scalar product 〈1|θ〉. Then the linearised solution of Eq. (4.1) with ε(t) = 0 is

〈ei|ϕ(t)〉 = Ci

(
T (θ̄(t))

T0

)λi
J̃

e
λi (̃J−λi)

∫ θ̄(t)
θ̄0

σ′2(θ̄′)
T (θ̄′) dθ̄′ (4.2)
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with T0 = T (θ̄(0)), θ̄0 = θ̄(0) and T (θ̄) = ˙̄θ to first order in δt. The linearised ap-

proximation (4.2) suggests that the time evolution of 〈ei|ϕ〉 will either converge to zero

(synchronisation) or diverge (instability), depending on the sign of the eigen-product

E(λi) = λi(J̃− λi) because T (θ̄) is periodic. If E(λi) < 0, the characteristic synchronisa-

tion time can be approximated, to leading order, as

τi ≈
ψ

−λi(J̃− λi)δtS
(4.3)

where ψ =
∫ ξ

0
dθ̄′
T (θ̄′)

and S =
∫ ξ

0
σ′2(θ̄′)
T (θ̄′)

dθ̄′. However, numerical integration of the full

system by RK4 scheme [53] suggests something contrasting. For positive values of eigen-

products, the numerics of the full system shows that the system will result in entrainment

while linearised solution (4.2) proposed that the system diverges. We have showed that

this entrainment behaviour correspond to the second order effect of ϕ, where the system

will be entrained to a certain phase difference proportional to the time delay.

In the cases of ε is constant, we found that the system will result in effective entrain-

ment, where entrainment is caused by the effect of ε, to an amplitude proportional to ε.

The numerical averages, excluding the transient behaviour, of the full system match very

well with the linearised approximation. We use our numerics of the linearised solution to

obtain the linear approximation of ε
KiLi

and compare this approximation to the numerics

of the full system. We have obtained an explicit approximation of the full system for

eigen-products being negative, and we have argued that for negative eigen-products then

with ε constant the full system will always result in effective entrainment. For positive

values of eigen-products, the linearised solution is not capable to capture the entrainment

behaviour unless we include the second order approximation of ϕ. Since both the second

order behaviour and the effect of ε are periodic, we expect 〈ei|ϕ〉 to be linear in time plus

a periodic function, but we were not able to obtain an explicit solution.

If we now make ε(t) to be time dependent, this poses extra difficulty on the linearised

solution as we are not able to characterise or interpret the extra , namely the d
dθ̄ 〈1|ε(t)〉,

term produced when we differentiate the expression of T (θ̄) with respect to θ̄. However,
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it is sufficient to argue that if ε(t) is periodic and bounded, then the full system will result

in oscillations encapsulated within a periodic function. We have considered the case that

ε(t) = a sin
(
t
b

)
and we found that for significantly large values of b, we are effectively

implementing ε(t) = a. We have also compared the desynchronisation strength to the

synchronisation strength which generally has the form

∫ ψ

0

ε(t′)dt′ =
∫ ψ

0

ϕ̃

τ
e−

t
τ dt′ . (4.4)

We could simplify Eq. (4.4) according to the structure of ε(t), hence we were able to

find necessary, but not sufficient, conditions such that the system can remain in effective

entrainment.

Lastly, we considered ε(t) as white noise in Eq. (4.1), hoping that we can deduce an

explicit (linear) approximation to the full system by taking ensemble averages. But the

difficulty, again, lies in the 〈1|ε(t)〉 term of the T (θ̄) expression. Noting that T (θ̄) = ˙̄θ to

first order in δt, and by our very definition θ̄ = 〈1|θ〉, this implies ˙̄θ =
〈

1|θ̇
〉
. If we try

to get our ordinary differential equation in the form of ϕ′ = −H(t(θ̄))ϕ then the term

d
dθ̄ 〈1|ε(t)〉 is unavoidable; otherwise 〈1|ε(t)〉 is constant, which is generally unattainable.

In hindsight, we may want to consider working with 〈ei|ϕ̇〉 instead of 〈ei|ϕ′〉. However

we made some progress when we considered the desynchronisation strength in terms

of standard deviation of the white noise as opposed to the standard deviation of the

solution of Eq. (4.4) in stochastic form with asymptotic phase difference ϕ̃, where ϕ̃ =

limt→∞
1
t

∫ t
0
ϕ(t′)dt′. The first and second moments of the solution of Eq. (4.4) give

a good description of what is happening in the full system. A necessary condition of

having oscillation encapsulated in noise amplitude was also derived.
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Appendix A

Derivation of Ordinary Differential

Equation of linearised 〈ei|ϕ〉 in first of

ϕ and δt

We take the system of equations of motion in the form of Eq. (3.46)

θ̇i = ω + εi +
n∑
j

Jijσ(θj(t− δt))⇒
∣∣∣θ̇〉 = ω |1〉+ |ε〉+ J |σ(θ)〉

then one can obtain Eq. (3.47)

〈ei|ϕ′〉 =
〈ei|ε〉+ λi 〈ei|σ(θ(t− δt))〉

ω + 1
q
〈1|ε〉+ J̃

q
〈1|σ(θ(t− δt))〉

where |ϕ〉 = |θ〉 − θ̄ |1〉 and θ̄ = 1
q

〈
1|θ̇
〉
with q = 〈1|1〉. By expanding |σ(θ(t− δt))〉,

|σ(θ(t− δt))〉 = σ(θ̄) |1〉 − δt ˙̄θσ′(θ̄) |1〉+ σ′(θ̄) |ϕ〉 − δt ˙̄ϕσ′′(θ̄) |ϕ〉 − δtσ′(θ̄) |ϕ̇〉
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Now, we consider the projections of the left-hand side eigenvectors,

〈1|σ(θ(t− δt))〉 = q
[
σ(θ̄)− δt ˙̄θσ(θ̄)

]
〈ei|σ(θ(t− δt))〉 = 〈ei|ϕ〉σ′(θ̄)− δt

[
〈ei|ϕ〉 ˙̄θσ′′(θ̄) + 〈ei|ϕ̇〉σ′(θ̄)

]
= 〈ei|ϕ〉σ′(θ̄)− 〈ei|ϕ〉 δt

[
˙̄θσ′′(θ̄) +

〈ei|ε〉
〈ei|ϕ〉

σ′(θ̄) + λiσ
′2(θ̄)

]

where here 〈ei|ϕ̇〉 = 〈ei|ε〉 + λiσ
′(θ̄) 〈ei|ϕ〉 + O(δt). Therefore, our expression of 〈ei|ϕ′〉

becomes

〈ei|ϕ′〉 =
〈ei|ε〉+ λi 〈ei|ϕ〉

[
σ′(θ̄)− δt

(
˙̄θσ′′(θ̄) + 〈ei|ε〉

〈ei|ϕ〉σ
′(θ̄) + λiσ

′2(θ̄)
)]

ω + 1
q
〈1|ε〉+ J̃

[
σ(θ̄)− δt ˙̄θσ′(θ̄)

]
〈ei|ϕ′〉
〈ei|ϕ〉

=

[
〈ei|ε〉
〈ei|ϕ〉 −

〈ei|ε〉
〈ei|ϕ〉λiδtσ

′(θ̄)
]

+ λi

[
σ′(θ̄)− δt

(
˙̄θσ′′(θ̄) + λiσ

′2(θ̄)
)]

ω + 1
q
〈1|ε〉+ J̃

[
σ(θ̄)− δt ˙̄θσ′(θ̄)

]
We then now let T (θ̄) = ˙̄θ = ω + 1

q
〈1|ε〉+ J̃

[
σ(θ̄)− δt ˙̄θσ′θ̄)

]
and we can obtain T ′(θ̄)

T ′(θ̄) =
d
dθ̄
T (θ̄) = J̃

[
σ′(θ̄)− δt

(
˙̄θσ′′(θ̄) + σ′(θ̄)T ′(θ̄)

)]
= J̃

[
σ′(θ̄)− δt

(
˙̄θσ′′(θ̄) + J̃σ′2(θ̄)

)]
+O(δt2)

Hence,

〈ei|ϕ′〉
〈ei|ϕ〉

=
λi

[
σ′(θ̄)− δt

(
˙̄θσ′′(θ̄) + J̃σ′2(θ̄)

)
− δtλiσ′2(θ̄) + J̃δtσ′2(θ̄)

]
T

+
1

T

[
〈ei|ε〉
〈ei|ϕ〉

− 〈ei|ε〉
〈ei|ϕ〉

λiδtσ
′(θ̄)

]
=
λi

J̃

[
T ′

T
+
−J̃δtλiσ′2(θ̄) + J̃2δtσ′2(θ̄)

T

]
+

1

T

[
〈ei|ε〉
〈ei|ϕ〉

− 〈ei|ε〉
〈ei|ϕ〉

λiδtσ
′(θ̄)

]

If we let g(θ̄) = λi
J̃

[
T ′

T
+ −J̃δtλiσ′2(θ̄)+J̃2δtσ′2(θ̄)

T

]
and the above equation will become

〈ei|ϕ′〉 = 〈ei|ϕ〉 g(θ̄) +
1

T

[
〈ei|ε〉 − 〈ei|ε〉λiδtσ′(θ̄)

]
.
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Appendix B

Code for numerical implementations

B.1 Numerical implementation of Eigenvector-finding Method

#define FT_TYPE double

#define FT_OUT "%10.20g"

#define MALLOC(a,n) {if ((a=malloc ((n)*sizeof (*(a))))==NULL) \

{fprintf(stderr , "Fatal error (%s::%i) malloc (3) ing %i bytes for

variable %s: %i (%s).\n", \

__FILE__ , __LINE__ , (int)(n*sizeof (*(a))), #a, errno ,

strerror(errno)); exit(EXIT_FAILURE);}}

#define OUT(a) printf("# %s: " FT_OUT "\n", #a, (FT_TYPE)(a))

FT_TYPE ** left_eigvec_matrix(FT_TYPE **J, FT_TYPE *lambda , int N){

int i, j, k;

FT_TYPE ** eigen_matrix;

FT_TYPE *left_ev;

MALLOC(eigen_matrix ,N);

MALLOC(left_ev ,N);

for (i=0; i<N; i++){

MALLOC(eigen_matrix[i],N);

}

for (k=0; k<N; k++){

left_ev = left_eig_vectors(J,lambda[k],N);
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normalise_vector(left_ev ,N);

for (j=0; j<N; j++) eigen_matrix[k][j] = left_ev[j];

for (i=0; i<N; i++){

for (j=0; j<N; j++) J[i][j] = ORIG_J[i][j];

}

}

return(eigen_matrix);

}

FT_TYPE ** right_eigvec_matrix(FT_TYPE **J, FT_TYPE *lambda , int N){

int i, j, k;

FT_TYPE ** eigen_matrix;

FT_TYPE *right_ev;

MALLOC(eigen_matrix ,N);

MALLOC(right_ev ,N);

for (i=0; i<N; i++){

MALLOC(eigen_matrix[i],N);

}

for (k=0; k<N; k++){

right_ev = right_eig_vectors(J,lambda[k],N);

normalise_vector(right_ev ,N);

for (j=0; j<N; j++) eigen_matrix[j][k] = right_ev[j];

for (i=0; i<N; i++){

for (j=0; j<N; j++) J[i][j] = ORIG_J[i][j];

}

}

return(eigen_matrix);

}

FT_TYPE *left_eig_vectors(FT_TYPE **J, FT_TYPE lambda , int N){

int i;

int cnt = 0;

FT_TYPE tau;

FT_TYPE *y;
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FT_TYPE *b;

FT_TYPE **inv;

MALLOC(y,N);

MALLOC(b,N);

MALLOC(inv ,N);

for (i=0; i<N; i++) MALLOC(inv[i],N);

b = rand_vector(N);

/* We need to divide drand48 () by 1000;

* since drand48 () can return any number in the interval [0 ,1]. */

tau = lambda + drand48 () /1000.;

for (i=0; i<N; i++) J[i][i] -= tau;

inv = mat_inverse(J,N);

y = vecmatmult(b,inv ,N);

/* Apprroximation of eigenvector after one iteration. */

// print_vector(y,N);

while (cnt <600){

normalise_vector(y,N);

for (i=0; i<N; i++) b[i] = y[i];

// normalise_vector(y,N);

y = vecmatmult(b,inv ,N);

cnt ++;

}

return(y);

}

FT_TYPE *right_eig_vectors(FT_TYPE **J, FT_TYPE lambda , int N){

int i;

FT_TYPE tau , y_norm;

FT_TYPE *y;

FT_TYPE *y_old;

FT_TYPE *b;
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FT_TYPE **inv;

FT_TYPE deviation;

FT_TYPE sign;

int loop =0;

MALLOC(y,N);

MALLOC(y_old ,N);

MALLOC(b,N);

MALLOC(inv ,N);

for (i=0; i<N; i++) MALLOC(inv[i],N);

b = rand_vector(N);

/* We need to divide drand48 () by 1000;

* since drand48 () can return any number in the interval [0 ,1]. */

if (lambda !=0.)

tau = lambda * (1.+ drand48 () /1000.);

else

tau = drand48 () /1000.;

for (i=0; i<N; i++) J[i][i] -= tau;

inv = mat_inverse(J,N);

y = matvecmult(inv ,b,N);

/* Apprroximation of eigenvector after one iteration. */

// print_vector(y,N);

y_norm = norm(y,N);

for (i=0; i<N; i++) y[i]/= y_norm;

do {

loop ++;

for (i=0; i<N; i++) y_old[i] = b[i] = y[i];

y = matvecmult(inv ,b,N);

normalise_vector(y,N);

/* To catch sign flipping: */
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for (sign=1, i=0; i<N; i++) if ((y[i]!=0) && (y_old[i]!=0)) {

sign=y[i]/y_old[i]; break; }

for (deviation =0., i=0; i<N; i++) {

deviation += SQUARE(y[i]*sign -y_old[i]);

// printf ("%i %g %g %g\n", loop , y[i], y_old[i], deviation);

}

deviation=sqrt(deviation);

// printf ("loop %i %g\n", loop , deviation);

} while (deviation >EPS);

return(y);

}

void normalise_vector(FT_TYPE *v, int N){

int i;

FT_TYPE v_norm;

v_norm = norm(v,N);

for (i=0; i<N; i++) v[i] /= v_norm;

}

FT_TYPE norm(FT_TYPE *v, int N){

int i;

FT_TYPE x = 0.;

for (i=0; i<N; i++) x += SQUARE(v[i]);

return(sqrt(x));

}

FT_TYPE *rand_vector(int N){

int i;

FT_TYPE *v;

MALLOC(v,N);

for (i=0; i<N; i++) v[i] = drand48 ();

return(v);

}
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FT_TYPE ** mat_inverse(FT_TYPE **J, int N){

int i, j, *indx;

FT_TYPE d, *col;

FT_TYPE **M, **tmp1 , **tmp2;

MALLOC(M,N);

MALLOC(tmp1 ,N+1);

MALLOC(tmp2 ,N+1);

MALLOC(indx ,N+1);

MALLOC(col ,N+1);

for (i=0; i<N; i++){

MALLOC(M[i],N);

}

for (i=0; i<=N; i++){

MALLOC(tmp1[i],N+1);

MALLOC(tmp2[i],N+1);

}

/* Brute force the matrix (J) to start at (1,1) as matrix tmp1. */

for (i=1; i<N+1; i++) tmp1[i] = J[i-1] -1;

ludcmp(tmp1 ,N,indx ,&d);

for (j=1; j<=N; j++){

for (i=1; i<=N; i++) col[i] = 0.0;

col[j] = 1.0;

lubksb(tmp1 ,N,indx ,col);

for (i=1; i<=N; i++) tmp2[i][j] = col[i];

}

/* Here tmp2 is the inverse matrix of tmp1. */

/* Replace the values of tmp2 into M, starting at (0,0). */

for (i=0; i<N; i++) M[i] = tmp2[i+1]+1;

// print_matrix(M,N,N);

// printf ("# After printing the inverse matrix. \n");

return(M);

}

find_eigenvectors.c
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B.2 Numerical implementation of Gaussian Noise

#define FT_TYPE long double

#define FT_OUT "%10.20 Lg"

void gaussian_noise(FT_TYPE *eta , int iterations){

int i, j;

FT_TYPE x;

for (i=0; i<NO_OF_OSCILLATORS; i++) eta[i] = 0;

for (i=0; i<NO_OF_OSCILLATORS; i++){

for (j=0; j<iterations; j++){

x = (FT_TYPE)(rand()) / (( double)(RAND_MAX));

eta[i] += x;

}

eta[i] -= (FT_TYPE)(iterations)/2;

eta[i] *= sqrt (12/(( FT_TYPE)(iterations)));

}

}

gaussian_noise.c


