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Abstract 

 

Chronic Obstructive Pulmonary Disease (COPD) is a cigarette smoke (CS)-driven 

inflammatory airway disease with an increasing global prevalence. Currently, there are no 

effective therapies to stop the relentless progression of this disease. In the inflammatory 

milieu present in the lungs of animal models of, and human patients with COPD are increased 

levels of cytokines (IL-1/IL-18) linked to activation of the NLRP3-Inflammasome. It has 

been postulated that exposure to CS leads to the release of endogenous danger signals (e.g. 

ATP) activating the NLRP3-Inflammasome via the P2X7 receptors driving the maturation and 

release of IL-1β and IL-18. The literature suggests that these cytokines are central to the 

chronic inflammation in the airway which drives the pathological changes seen in COPD. My 

hypothesis is that blockade of the P2X7 - NLRP3-Inflammasome pathway will attenuate the 

inflammation present in CS-induced airway inflammation. 

 

I developed an acute (3-day) model of COPD-like inflammation to investigate the role of the 

P2X7 receptor in this pathway. I demonstrated that CS-induced neutrophilia in a pre-clinical 

model is temporally associated with markers of Inflammasome activation (increased caspase 

1 activity and release of IL-1β/IL-18) in the lungs. I used genetically modified mice lacking 

functional P2X7 receptors to show attenuation in caspase-1 activity, IL-1β release and airway 

neutrophilia in response to acute CS exposure but not LPS-induced airway inflammation. 

These findings were validated using a specific P2X7 receptor antagonist. Furthermore, I 

confirmed that the role of this pathway was not restricted to early stages of disease 

development by showing increased caspase-1 activity in lungs from a more chronic exposure 

to CS (28-day) and patients with COPD. This translational data suggests the P2X7-

Inflammasome pathway plays an on-going role in disease pathogenesis. 
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These results advocate the crucial role of the P2X7 – caspase-1 axis in CS-induced 

inflammation, highlighting this as a possible therapeutic target in combating COPD. 
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1.1 COPD 

 

1.1.1 Background 

 

Chronic Obstructive Pulmonary Disease (COPD) is an inflammatory disease of the airways, 

characterised by a progressive and irreversible decline in lung function caused by airflow 

obstruction (Rabe et al., 2007; MacNee, 2005) with cigarette smoking being identified as the 

largest single causative agent associated with COPD  (Pauwels et al., 2001).   In 2005 COPD 

alone caused 3 million deaths worldwide (WHO 2007). Furthermore, the disease is currently 

reported to be the fourth leading cause of death worldwide and is predicted to be the third 

ranked disease in the year 2020 (Lopez & Murray, 1998). Significantly, COPD is the only 

leading global cause of death that is on the increase, in part due to the fact there are currently 

no treatments that can slow or prevent the progression of the disease or alternatively provide 

patients with relief from the symptoms. The current gold standard treatment for COPD is a 

combination of long-acting bronchodilators and/or inhaled glucocorticoids. Unfortunately, 

bronchodilators provide limited symptomatic relief (Cazzola & Donner, 2000), whilst 

steroids are ineffective in reducing the inflammation seen in COPD patients (Culpitt et al. 

1999; Keatings et al., 1997). COPD healthcare costs globally have become a massive burden, 

in 2007 alone the disease cost the US economy $47 billion (American Lung Association, 

2007). The majority of these vast costs are due to acute exacerbations of COPD that require 

hospitalisation and extensive medical attention. Therefore finding therapies to aid patients 

suffering from these airway diseases is a matter of urgency. 
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1.1.2 Definition & Symptoms 

 

1.1.2.1 Definition 

 

The Global Initiative for Chronic Obstructive Lung Disease (GOLD) defines COPD as "a 

disease state characterized by airflow limitation that is not fully reversible. The airflow 

limitation is usually progressive and associated with abnormal inflammatory response of the 

lungs to noxious particles or gases". 

 

1.1.2.2 Disease Progression 

 

COPD is directly related to three underlying disorders characterised by three distinct 

pathologies; emphysema, chronic bronchitis and small-airway disease. The GOLD 

classification divides COPD into 4 phases. The mild phase has few signs or symptoms, 

although there may be occasional shortness of breath following exercise, recurrent respiratory 

infections and morning cough. In the moderate phase these symptoms are seen more 

frequently with an increase in severity. In the severe form severe cough, constant wheezing, 

and shortness of breath following minimal exertion can be witnessed. These symptoms of 

COPD appear in patients due to airway obstruction, loss of lung elasticity and destruction of 

lung parenchyma (Barnes, 2000). 

 

1.1.2.3 Chronic Bronchitis 

 

Chronic bronchitis results from an immune response to toxic particles and gases that are 

inhaled during cigarette smoking. The pathology of the disease includes inflammation in the 

epithelium of central airways and in the mucus secreting glands. Hypertrophy (enlargement) 
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and hyperplasia (increased numbers) of the globlet cells leads to increased secretion and 

mucus production (sputum). Chronic hyper secretion may contribute to the later stages of the 

disease (Hogg, 2004). Coughing is a symptom of COPD although the mechanism remains 

unknown. 

 

1.1.2.4 Emphysema 

 

Emphysema is a term used to describe the enlargement of distal airspaces beyond the 

terminal bronchioles (alveoli), caused by destruction of the airway walls. The alveolar walls 

collapse during exhalation, leading to effort-independent airflow limitation (meaning no 

matter how hard the patient breathes, airflow does not increase). This has the detrimental 

effect of reducing the maximal expiratory flow by decreasing the elastic recoil force driving 

air out of the lungs making it difficult for the patient to breath. The surface of the lung is 

reduced causing a reduction in the area available for gaseous exchange causing hypoxemia 

(Barnes et al., 2003). 

 

1.1.2.5 Small airways disease 

 

Small airways disease involves the smaller conducting airways, which are less than 2mm in 

diameter. This pathology is difficult to diagnose in patients. Recent studies have highlighted 

that there are structural abnormalities in the small airways of smokers (Figure 1.1) (Hogg et 

al., 2004). The severity of the COPD also determines the level of occlusion of airway lumen 

by inflammatory mucous. Airway obstruction in the small airways may also result from 

peribronchial fibrosis and inflammation, whilst progression in the inflammation will lead to 

destruction of the alveolar attachments on the outer walls of the small airways (restricting the 

amount the airways can open or close) (MacNee, 2005). 
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Figure 1.1 – Small Airway Obstruction: (A) - Normal small airway. (B) - Occluded small 

airway in COPD patient (Adapted from Hogg, 2004). 

 

1.1.3 Aetiology 

 

Recent studies have documented that 25% of smokers develop COPD therefore there must be 

a strong link to environmental and genetic factors. Cigarette smoking leads to loss of lung 

function, however, increasing age has also been shown to play a significant role. It is 

interesting to note that whilst all smokers develop lung inflammation, not all smokers develop 

COPD. This suggests there is a genetic predisposition to developing COPD as a result of 

smoking. Though these genetic factors remain unidentified, several hypotheses have been 

suggested. Due to a complex mixture of over 4,700 chemical compounds including high 

concentrations of free radicals (10
17

 radicals per puff) and other oxidants it is difficult to 

determine the main causative agents (Pryor & Stone, 1993). Recently identified candidate 

genes that are potentially responsible for COPD are α-1-anti-trypsin, α-1-quimitrypsine and 

α-2-macroglobuline genes. A definite association has only been found in the α-1-anti-trypsin 

gene (Sandford et al., 1999). Though studies remain inconclusive, there is an indication of an 

increased risk of COPD in females. Studies of two cohort populations (13,897) in Denmark 

A B 
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showed that the risk of hospital admission due to COPD was higher in females than in males 

(Prescott et al., 1997). 

 

Air pollution has also been linked to COPD for many years with studies conducted in panels 

of patients suffering from chronic bronchitis in the UK and USA confirming an association 

between pollution and increase in chronic bronchitis cases (Lawther et al., 1970). The 

increased levels of oxidants and protease to anti-protease levels detected in the lungs have 

been associated with COPD. Proteases function by breaking down of connective tissue 

components in the lung parenchyma, particularly elastin, affecting a critical mechanism in the 

pathogenesis of emphysema particularly in smokers. This may occur as a result of an 

imbalance of proteases and endogenous anti-proteases (Barnes et al., 2003). The roles of 

matrix-degrading proteases have been investigated in COPD and linked to loss of lung 

function. Application of gene-targeted macrophage elastase (MMP-12) and neutrophil 

elastase (both proteases) in mouse models of emphysema have uncovered the roles of these 

proteases in airspace enlargement (Shapiro et al., 2003). 

 

Pollution also contributes to COPD with a large range of oxidants known to cause oxidative 

stress in the lungs e.g. sulphur dioxide and ozone. Oxidants such as ozone are free radicals 

that play a role in redox reactions within the lung to produce harmful secondary and tertiary 

products (Barnes, 2000). An association between inhalation of smoke from fires and wood 

smoke (used in third world countries) has also been established. Other pollution factors 

include occupational chemicals e.g. cadmium (MacNee & Donaldson, 2000). 

 

Further studies have demonstrated that apoptosis in human emphysematous lungs may be a 

cause of alveolar wall destruction in emphysema patients (Aoshiba et al., 2003). It must be 
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recognized that no single mechanism can be responsible for the complex pathology witnessed 

in COPD. It is more likely to be due to interactions between complex mechanisms. 

 

1.1.4 Exacerbations of COPD 

 

Patients suffering from COPD are known to endure periods of disease exacerbation. In the 

clinic acute exacerbations of COPD (AECOPD) are considered a worsening of a patient’s 

symptoms from their stable COPD state that is maintained and requires a change in 

medication (Rodriguez-Roisin, 2000). Episodes of AECOPD lead to declined lung function 

and an acute deterioration of respiratory health. Studies have shown that respiratory 

infections were associated with a more rapid decline in FEV1 (Kanner et al., 2001). 

Furthermore, a wide variation in the frequency of exacerbations exists among patients, with 

the average figure reported to be one to two episodes annually (Hurst et al., 2010), thus 

AECOPD are considered a significant cause of death (Soler-Cataluna et al., 2005).  

Interestingly, various inflammatory expression profiles have been reported in AECOPD that 

are dependent on the cause of the exacerbation (Dal Negro et al., 2005). 

 

The two main causes of AECOPD are reported to be viral and bacterial infections (Wedzicha, 

2001), whilst environmental factors such as air pollution are believed to play a less 

significant role (Papi et al., 2006). It is reported that 40 – 60% of AECOPD incidents are 

caused by respiratory viral infections (Mallia & Johnston, 2005). As COPD patients are 

always under threat of viral and bacterial infections and that airway inflammation in COPD 

patients is further amplified in AECOPD, a better understanding of how CS contributes to the 

inflammatory response may provide valuable insight into COPD pathogenesis. 
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1.2 LUNG ANATOMY AND FUNCTION 

 

The lungs are located inside the thoracic cavity surrounded by a double walled sac (pleura) 

whilst being protected by the rib cage. The outer layer of the sac (parietal pleura) is attached 

to the chest cavity whilst the inner layer (visceral pleura) is tightly bound to the lungs. The 

layers are separated by a space called the pleural cavity that is filled with pleural fluid 

allowing the layers to slide over each other without friction and to prevent them being 

separated. The lungs are attached to the trachea and heart via the bronchi and pulmonary 

vessels. The left and right lungs can be easily distinguished as the right lung has three lobes 

and the left lung has two. 

 

The lungs are connected to the trachea by the bronchi. The trachea is located at the front of 

the neck and runs down to the sternal angle. Here it divides into the left and right bronchi. 

The right bronchus, considered the main one, is shorter and runs more vertical. The bronchi 

enter the lung and branch out forming a bronchial tree that divides further into smaller 

bronchioles (8 – 24 divisions) that end at the alveoli. This is where gaseous exchange takes 

place in the lungs. The inhalation (inflow) and expiration (outflow) of air into the lungs is 

controlled by muscular action. The diaphragm as well as the intercostal muscles (to some 

extent) force ventilation by changing the intra-thoracic properties such as volume and 

pressure. Inspiration is achieved by increasing volume and decreasing pressure within the 

lungs. Expiration however is caused by reducing volume and increasing pressure. 

 

The lungs have several functions, predominantly serving as a respiratory organ with the 

primary function being gaseous exchange.  Many other functions include acid-base balance, 

phonation, pulmonary defence and metabolism. 
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The blood supply to the lungs is from two sources: the pulmonary vessels and the bronchial 

vessels. The bronchial vessels support the non-respiratory tissue whilst the pulmonary vessels 

provide support to the respiratory tissue. The function of the pulmonary arteries is to carry 

deoxygenated blood that has returned to the heart from the venous system to the lungs to be 

oxygenated. The pulmonary veins carry oxygenated blood back to the heart to go to the 

arterial system. The right and left pulmonary arteries arise from the pulmonary trunk and 

carry blood to the lungs. The pulmonary veins, two on each side, carry blood to the left 

atrium of the heart. The bronchial arteries supply the non-respiratory tissue of the lung. The 

left bronchial arteries branch away from the thoracic aorta; however, the right bronchial 

artery has a variable source. 

 

Air is brought into the lungs by the airways, oxygen (O2, O=O) that is required for respiration 

diffuses into the bloodstream in the alveoli across the thin alveolar membranes, and carbon 

dioxide (CO2, O=C=O) a by-product of respiration moves from the blood into the alveoli by 

diffusion. The removal of CO2 from the blood causes a change in blood pH levels; this is 

related to the lung’s acid-base balance function. The increase levels of CO2 causes an 

increase in levels of H
+
 ions due to the following reaction. 

 

CO2 + H20 ↔ H2CO3 ↔ H
+
 + HCO3

- 

 

The cerebrospinal fluid and arterial blood contain sensors for CO2 and pH levels that 

constantly monitor these levels and send signals to the areas that control breathing in the 

brain in a feedback system. 
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To aid with clinical diagnosis of pulmonary disorders, lung function measurements can be 

assessed. The volume of gas exhaled in one second by a forced expiration is identified as the 

forced expiratory volume in one second or FEV1.  The amount of gas that can be exhaled 

after a full inspiration is identified as the forced vital capacity or FVC. These measurements 

are analysed clinically by calculating the ratio of FEV1/ FVC.  In a healthy individual this 

ratio is expected to be around 80%, but as the FEV1 drops so does the ratio. COPD patients 

usually portray a drop in FEV1 and FEV1/ FVC ratio, with declining FEV1 values with the 

progression of the disease (Levitsky, 1999). 

 

1.3 CELLULAR AND INFLAMMATORY COMPONENTS OF COPD 

 

1.3.1 The immune response in the lung 

 

The immune system can be divided into two types, the innate response and the adaptive 

response.  The innate response is comprised of germ-line encoded components that provide 

an immediate "first-line" defence to continuously remove noxious influences (pathogens) or 

microorganisms faced on a daily basis. The “first-line” of defence involves physical barriers 

to infection that prevent any interaction between the pathogen and the host. The “second-

line” of defence involves the action of phagocytic cells. This response can destroy any of 

these microorganisms within a matter minutes or hours following their entry into the body. It 

involves certain mediators that take part in this type of response that include histamine, 

prostaglandins, leukotrienes, platelet-activating-factor (PAF) and particularly interleukins. 

This response often leads to inflammation (witnessed by oedema) and the accumulation of 

white blood cells at the site of entry. (Janeway et al., 2001). 
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Alternatively the adaptive immune response is the provision of long lasting and specific 

protection against formerly encountered pathogens, which takes days to develop, achieving 

specificity through somatic recombination and selection of pathogen (antigen) receptors. If 

any pathogens are not removed by the innate response then the adaptive response will be 

activated. This response ensures immunity to further illness following an initial infection 

caused by that same pathogen. This response is specific to the particular pathogen and 

involves several cell types, the most prominent being lymphocytes. 

 

Lymphocytes can be divided into three different cell types; B cells, T cells and natural killer 

(NK) cells. The adaptive response consists an induction phase and an effector phase. During 

the induction phase both B and T cells recognise the pathogen through surface receptors. 

Division of these cells occurs to produce a large colony of cloned cells that can recognise the 

pathogen. These cloned cells then form the effector response and have the ability to 

differentiate into plasma cells (B cells) that produce antibodies or take part in the cell-

mediated response (T cells). Some cells become antigen-sensitive memory cells, such that if 

the same antigen enters the body there will be a greater immune response (Rang et al., 1999). 

 

The immune response also includes the significant role performed by chemokines and 

cytokines. Their particular role is to attract specific inflammatory cells when activated, thus 

mediating the inflammatory response (Rang et al., 1999). Typically an inflammatory 

response is a positive response targeted at protecting the host’s normal biological functions; 

however, chronic inflammation that is associated with disease can have a negative impact on 

the host.  

 



32 

 

1.3.2 Lung repair and fibrosis 

 

The lung, with its massive surface area and unique gas exchange function remains the 

frontline of defence against harmful environmental pathogens/factors. Therefore, injury to 

large conducting airways through to terminal air exchange alveoli is a recurrent process over 

time for every living individual and related repair and remodelling processes are crucial in 

maintaining normal lung function (Strieter, 2008). There are a wide variety of epithelial cells 

lining the airway and alveolar surfaces to serve as the first line of defence against harmful 

foreign agents/pathogens. As described previously, this defensive approach includes mucus 

secretion, ciliary movement, electrolyte and fluid transportation across respiratory surface 

membranes and surfactant production. During lung injury, damaged epithelial cells are 

released from the lining surface, which leaves a bared epithelial surface with disrupted barrier 

function. In order to restore normal functions a regeneration process is initiated. In distal 

lung, resident progenitor cells inherited from developing lung cell lineages and/or recruited 

circulating stem cells migrate, proliferate, and differentiate to re-epithelialize the surface, and 

replace the original cell types and functions if the structural scaffold is not extensively 

damaged. The state of the underlying extracellular matrix may be crucial in guiding repair of 

injury, which may provide niches for appropriate cell expansion and differentiation.  

 

Studies in lung injury-repair have identified changes in cell behaviour and gene expression 

that are indicative of specific developmental processes in the lung. However, lung repair has 

its own unique features in addition to these growth factors. For example, the involvement of 

pulmonary inflammation and the secretion of cytokines/chemokines related to the process. 

The process of lung fibrosis may be regarded as an abnormal healing process related to 

failure of resolution of lung damage and restoration of normal structure (Strieter, 2008). 
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1.3.3 The cellular and inflammatory responses in COPD 

 

Within the complex vapour and particulate matter that makes up cigarette smoke are more 

than 4700 various compounds (Ingebrethsen, 1986). Following cigarette smoke inhalation, 

this wide range of carcinogens and oxidants are believed to exert biological effects by 

stimulating the epithelial cells and resident immune cells leading to the recruitment and 

activation of a host of various inflammatory cell types (Figure 1.2). In similar fashion to an 

infection, the recruitment of cells into the lung in response to cigarette smoke is due to pro-

inflammatory mediators that are produced locally (Janeway et al., 2001). The process is 

further facilitated by the increased permeability of the endothelium, allowing the leakage of 

plasma proteins, complement and clotting factors into the tissue and consequently leads to 

increased adhesion molecule expression on the endothelial cells. This facilitates the 

recruitment of leukocytes to the site of injury or infection. 

 

1.3.4 The cellular components of COPD 

 

Studies suggest that the inflammation in the lungs of COPD patients appears to be a 

magnification of the normal inflammatory response following exposure to insults such as 

cigarette smoke (Pauwels et al., 2001). The first line of defence in the face of the inhaled 

insults is the epithelium, which produces inflammatory mediators initiating the chemotaxis 

and accumulation of a selection of inflammatory cells including neutrophils, macrophages 

and lymphocytes. Furthermore, oxidative stress and proteases further amplify this 

inflammatory response and drive the classic pathological changes seen in COPD patients. 

However, COPD is a complex disease; therefore the types of inflammatory cells involved and 

their patterns or sequences of appearance are relatively poorly understood. Studies examining 
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the lungs of COPD patients show infiltration by immune cells including CD8+ T-cells and a 

large number of neutrophils and macrophages (Grumelli et al., 2004). Macrophages are 

considered a key cell in the pathogenesis of COPD since they are located in areas of active 

tissue destruction (Barnes, 2004). 

Figure 1.2 – Cigarette smoke and inflammatory processes in the lung. 

 

1.3.4.1 The epithelium 

 

As the first line of defence against invading pathogens is the barrier between host and the 

environment, the epithelium plays a major role in responses to inhaled insults such as 

cigarette smoke. An important role in the defence of the airways is the production of mucus 
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from goblet cells to trap bacteria and inhaled particulates (Adler & Li, 2001). Various 

hypotheses have been suggested for a role of the epithelium in initiating and maintaining the 

inflammatory responses following cigarette smoke inhalation. Epithelial cells are activated by 

cigarette smoke to produce inflammatory mediators, including TNF-α, IL-1β, GM-CSF, and 

IL-8 (Mio et al., 1997; Hellermann et al., 2002; Floreani et al., 2003). Primary human 

bronchial epithelial cells have been shown to release increased levels of inflammatory 

chemokine IL-8 in response to treatment with cigarette smoke condensate (Fields et al., 

2005). In addition, human bronchial epithelial cells have also been demonstrated to be 

responsive to very low levels of IL-1β, when examining IL-8 release in culture (Coulter et al., 

1999). Furthermore, primary epithelial cells from patients with COPD have been 

demonstrated to release more IL-8 than those from smokers without airflow limitation 

(Schulz et al., 2004). These findings suggest that the epithelium plays an important role as the 

first line of defence by producing inflammatory mediators required for the chemotaxis of 

immune cells into the lung. 

 

1.3.4.2 Neutrophils 

 

Neutrophils are one of the dominant cell types recruited into the lung in COPD, however, 

their role in this disease is not yet fully understood. The percentage of neutrophils in samples 

taken from COPD patients are increased with GOLD stage (Singh et al., 2010). Studies have 

shown increased numbers of activated neutrophils are found in sputum and BAL fluid of 

patients with COPD (Lacoste et al., 1993; Keatings et al., 1996), however, this increase is not 

mirrored in the airways or lung parenchyma (Finkelstein et al., 1995). Smoking may also 

increase neutrophil retention in the lung (MacNee et al., 1989). Furthermore, the literature 

suggests that neutrophils recruited to the airways of COPD patients are activated, based on 



36 

 

the increased concentrations of granule proteins, such as myeloperoxidase and human 

neutrophil lipocalin, in the sputum supernatant (Keatings & Barnes, 1997; Yamamoto et al., 

1997; Peleman et al., 1999). 

 

Although neutrophils are believed to be predominantly involved in the control of bacterial 

and viral infections of the lung (Laws et al., 2010; Tate et al., 2009), they have also been 

shown to provide a source of serine proteases such as neutrophil elastase (NE), matrix 

metalloproteinases (MMPs) and cathepsins, which may contribute to alveolar destruction. 

These serine proteases also potentiate mucus hypersecretion (Geraghty et al., 2007). 

 

1.3.4.3 Macrophages 

 

Macrophages are derived from blood borne monocytes and mature into macrophages when 

they enter tissue. In the lung they function as long-lived effector cells. They play a crucial 

role in the pathogenesis of COPD defending against endogenous and exogenous stimuli. 

Furthermore, they produce mediators to initiate or alternate the actions of other local cells as 

well as being responsible for the clearance of apoptotic neutrophils (Tetley, 2002). The 

numbers of alveolar macrophages are increased between 5 – 10 fold in the airways, 

parenchyma, bronchoalveolar lavage (BALF) and sputum of smokers and patients with 

COPD (Finkelstein et al., 1995). This is further supported by the correlation between 

macrophage numbers in the airways and COPD disease severity (Di Stefano et al., 1998). 

Examination of macrophages taken from smokers identified that there are morphological and 

functional changes in this cell type (Harris et al., 1970). 
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Macrophages are activated upon exposure to cigarette smoke to release inflammatory 

mediators, thus providing a cellular mechanism that links smoking with inflammation in 

COPD. Alveolar macrophages also secrete elastolytic enzymes, including MMP-2, MMP-9, 

MMP-12, cathepsins K, L, and S, and neutrophil elastase taken up from neutrophils 

(Punturieri et al., 2000; Russell et al., 2002). Another function of macrophages is to ingest 

apoptotic cells; therefore, the reported decreased phagocytic activity of alveolar macrophages 

in COPD patients may explain the increased numbers of neutrophils in the airways (Hodge et 

al., 2003). 

 

1.3.4.4 T Lymphocytes 

 

The role of T lymphocytes in COPD is a relatively unknown area. Recent studies have 

demonstrated an increase in the total numbers of T lymphocytes; particularly the sub-type 

cluster of differentiation (CD) 8
+
 T cells, in lung parenchyma and airways of patients with 

COPD (Finkelstein et al., 1995; Saetta et al., 1999; Retamales et al., 2001). Furthermore, a 

correlation between the numbers of T cells, the degree of airflow obstruction and the amount 

of alveolar destruction exists. An increase in the absolute number of CD4
+
 T cells has been 

shown in COPD patients, but the ratio of CD4
+
/CD8

+
 cells is reversed in COPD. This finding 

has been demonstrated in smokers with COPD but not smokers that do not show signs of 

airflow limitation (Majo et al., 2001). 

 

Dendritic cells may migrate from the airways to regional lymph nodes and stimulate 

proliferation of CD8
+
 and CD4

+
 T cells. CD8

+
 T cells are typically increased in airway 

infections, and it is possible that bacterial and viral pathogens, occupying the lower 

respiratory tract of COPD patients, are responsible for this inflammatory response (Hill et al., 
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1999). Current dogma suggests that the epithelium plays a role in the recruitment of cells into 

the airways in response to oxidative DNA damage to lung epithelial barrier cells. One 

possible hypothesis is that upon damage of the lung epithelial barrier cells, dendritic cells 

mistake these as foreign, leading to the clonal expansion of CD8
+
 T cells upon entering the 

lymph nodes. This in turn leads to proliferation of cytotoxic CD8
+
 T cells and the subsequent 

release of perforin and granzyme, which can attack altered epithelial cells thus propagating 

the immune response (Tzortzaki & Siafakis, 2009). 

 

1.3.5 Inflammatory mediators in COPD 

 

Although much effort has been placed on identifying the variety of cell types involved in the 

pathogenesis of COPD, there has also been extensive research focused on identifying the 

presence and role of various pro-inflammatory mediators (cytokines and chemokines) in 

samples taken from COPD patients. Several cytokines have been implicated in COPD 

(Churg, 2001); the most well characterised mediators will be discussed in the following 

section. 

 

1.3.5.1 TNF-α 

 

The primary function of TNF-α is in the regulation of immune cells. It also functions as a 

pro-apoptotic cytokine that is secreted from macrophages and epithelial cells (Carswell et al., 

1975). Sputum from COPD patients contains high concentration of TNF-α (Keatings et al., 

1996), that is potentiated in exacerbations of the disease (Aaron et al., 2001). However, 

although it is highly abundant in samples from COPD patients blocking TNF-α using 

infliximab (a monoclonal antibody against human TNF-α) failed to improve the symptoms or 
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respiratory function of COPD patients (van der Vaart et al., 2005; Rennard et al., 2007). This 

finding taken into account, one could determine that other cytokines are possibly more 

fundamental in driving the inflammation seen in COPD patients. 

 

1.3.5.2 IL-1β 

 

A member of the IL-1 family of cytokines, the functions of IL-1β are similar to those of 

TNF-α as a potent activator of alveolar macrophages in COPD patients. IL-1β is an important 

cytokine that plays a significant role in the initiation and persistence of the inflammatory 

response. The effectiveness of IL-1β as an inflammatory cytokine means that unregulated 

release could cause considerable tissue damage and situations of chaotic inflammation 

witnessed in many diseases including COPD. For this reason the release of IL-1 needs to be 

tightly regulated. IL-1 expression in macrophages via LPS-stimulation may be controlled at 

a number of levels (Meylan et al., 2006). LPS binds to toll-like receptor 4 (TLR4) causing the 

up-regulation of IL-1β mRNA and protein. The IL-1 produced however, is a 31 kDa pro-

protein and must be enzymatically cleaved to produce a 17 kDa active form of the cytokine 

(Giri et al., 1985; Bayne et al., 1986). The cleavage process of IL-1β is mediated by caspase 

1, which itself is produced as a catalytically inactive pro-enzyme requiring enzymatic 

cleavage (Thornberry et al., 1992). Caspase 1 activation requires the assembly of the 

inflammasome of which there are a number of different types, the best characterised being 

the NLRP3 inflammasome a protein complex present within the cytosol (Martinon et al., 

2004). 

 

Elevated IL-1β levels are found in induced sputum and BAL fluid from COPD patients 

(Ekberg-Janssen et al., 2001; Zeidel et al., 2002). More recently Singh et al. demonstrated 
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that IL-1β levels were significantly raised in COPD patients, with IL-1β showing a negative 

correlation with FEV1 suggesting that in COPD, IL-1β serum levels correlate with clinical 

aspects of disease severity (Singh et al., 2010). Furthermore mice over-expressing IL-1β in 

lung epithelium display a COPD-like phenotype consisting of lung inflammation, 

emphysema and airway fibrosis (Lappalainen et al., 2005). In contrast, mice lacking IL-1 

Receptor type 1 (IL-1R) exhibited a significant decrease in airway neutrophilia in response to 

cigarette smoke (CS) (Doz et al., 2008; Churg et al., 2009). Based on this evidence, IL-1 is 

believed to play an important role in the pathogenesis of COPD. 

 

1.3.5.3 IL-6 

 

Although it is known to have anti-inflammatory properties, its role in COPD it believed to be 

pro-inflammatory in nature. Released mainly by T cells and macrophages to stimulate 

immune responses, IL-6 is important in initiating the immune response to specific microbial 

molecules, known as pathogen associated molecular patterns (PAMPs). IL-6 concentrations 

have been demonstrated to be increased in induced sputum, BALF, and exhaled breath 

condensate of COPD patients, particularly during exacerbations (Bhowmik et al., 2000; Song 

et al., 2001; Bucchioni et al., 2003). Furthermore, blood serum from COPD patients contains 

increased levels of IL-6 (Debigare et al., 2003; Godoy et al., 2003). Aldonyte et al., 

demonstrated that monocytes from COPD patients release more IL-6 following LPS 

stimulation when compared to healthy subjects (Aldonyte et al., 2003). 

 

1.3.5.4 IL-8 
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As a potent chemoattractant for neutrophils, it is no surprise that IL-8 plays a significant role 

in COPD. It is produced by a wide range of cell types, mainly epithelial cells, macrophages, 

and neutrophils, in response to stimulation of these cells by various inflammatory agents 

(Mukaida, 2003). IL-8 levels are significantly increased in induced sputum of COPD patients 

and this correlates with increased neutrophilia (Keatings et al., 1996; Yamamoto et al., 1997). 

Emphysema patients with a α1-antitrypisn deficiency exhibit even more elevated levels of IL-

8 (Woolhouse et al., 2002). Furthermore, during acute exacerbations of COPD the 

concentrations of IL-8 in induced sputum are increased further which may contribute to the 

increased neutrophilia in these patients (Crooks et al., 2000; Gompertz et al., 2001). BALF 

samples taken from COPD patients also exhibit elevated levels of IL-8 (Nocker et al., 1996). 

 

In the clinic, anti-IL-8 antibodies have been demonstrated to have a partial effect in reducing 

the neutrophil chemotactic activity of COPD sputum (Crooks et al., 2000; Beeh et al., 2003). 

Furthermore, Yang et al, developed a monoclonal antibody to IL-8 that showed little efficacy 

in COPD patients (Yang et al., 1999). Although IL-8 is a potent neutrophil chemoattractant, 

limited success in treating COPD symptoms has be achieved by targeting this chemokine. 

Another complexity is that mice do not express a homologue to IL-8; therefore, utilising KO 

animals to examine its role in animal models is not possible. 

 

1.3.5.5 IL-18 

 

Although it is a member of the IL-1 family of cytokines, the role and significance of IL-18 in 

inflammatory disease is not as well characterised as IL-1β. IL-18 is produced by a whole host 

of cells including macrophages, monocytes, neutrophils and T and B cells under varying 

conditions (Reddy, 2004). IL-18 receptor which is identical in sequence to a member of the 
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IL-1 receptor
 
family previously designated IL-1 receptor-related protein (Torigoe

 
et al., 1997) 

have been identified on T, B, NK, epithelial and a whole host of immune cells (including 

macrophages and neutrophils). It is thought to activate p38 MAPK (mitogen activated protein 

kinases), the transcription factor AP-1 (activation protein 1) and stimulate the production of 

GM-CSF, TNF, CXCL8, IL-1 and IFN, highlighting the important role that IL-18 may 

play in the recruitment and activation of neutrophils (Tschoeke et al., 2006). The production 

of mature IL-18 from its precursor is also controlled by NLRP3 dependent caspase 1 function 

(Muneta et al., 2001). 

 

Recent studies have discovered elevated levels of IL-18 in plasma, skeletal muscle and 

circulation in COPD patients in comparison to healthy subjects (Petersen et al., 2007; Imaoka 

et al., 2007). It has been demonstrated that CS activates the release of IL-18 in humans and 

mice, furthermore, IL-18 knockout mice show significantly decreased inflammation and 

emphysema compared to wild-type mice following CS exposure (Kang et al., 2007). 

Additionally, it has also been demonstrated that over expression of IL-18 in the mouse lung 

leads to a COPD like phenotype (Hoshino et al., 2007). 

 

1.3.5.6 GM-CSF 

 

The granulocyte-macrophage colony-stimulating factor (GM-CSF) has been implicated in 

airway disease. Released by alveolar macrophages, GM-CSF is believed to be important for 

neutrophil and macrophage survival and priming (Culpitt et al., 2003), and it may play an 

enhancing role in neutrophilic inflammation (Vlahos et al., 2006). GM-CSF has been shown 

to be increased in BALF samples from COPD patients and those with exacerbations. These 

increases have been linked to increased neutrophilia (Balbi et al., 1997). Furthermore, GM-
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CSF has been implicated to play an important role in CS-induced inflammation. Animals 

treated with anti-GM-CSF and exposed to smoke show markedly less neutrophilia and 

macrophages in the BALF (Vlahos et al., 2010). 

 

1.3.5.7 Other pro-inflammatory mediators 

 

As a complex inflammatory disease, a vast range of inflammatory mediators are proposed to 

play a role in the recruitment of inflammatory cells into the lungs. Bronchial biopsies from 

COPD patients have highlighted an increased expression of IL-12 (Di Stefano et al., 2004). 

Monocyte chemoattractant protein 1 (MCP-1) is expressed by epithelial cells, macrophages 

and T cells and has been shown to be increased in BALF, sputum and lung tissue from COPD 

patients (de Boer et al., 2000; Traves et al., 2002). The monocyte chemoattractant, CCL2 and 

growth related oncogene alpha (GRO-α) have both been demonstrated to be markedly 

increased in induced sputum from COPD patients. 

 

Interestingly, overexpression of IL-13 and interferon-γ in murine lungs has been shown to 

unexpectedly cause emphysema believed to be mediated by increased expression of MMPs 

and cathepsins (Wang et al., 2000; Zheng et al., 2000). Furthermore, the expression of IL-13 

is increased in bronchial biopsies of smokers with mucus hypersecretion compared with 

normal smokers (Miotto et al., 2003). 

 

1.3.6 Protease/Antiprotease imbalance 

 

Increases in the production (or activity) of proteases or inactivation (or reduced production) 

of antiproteases causes an imbalance. It is hypothesised that exposure to CS and 
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inflammation in general leads to conditions of oxidative stress, which initiates the release of a 

combination of proteases and inactivates several antiproteases by oxidation. The major 

proteases and anti-proteases believed to be involved in COPD pathogenesis are listed below 

(Figure 1.3). 

 

Proteinases Antiproteinases 

Serine proteinases α-1-antitrypsin 

Neutrophil elastase Secretory leukoprotease inhibitor 

Cathepsin G Elafin 

Proteinase 3 Cystatins 

Cysteine proteinases Tissue inhibitors of MMP (TIMP1-4) 

Cathepsins B, K, L, S  

Matrix metalloproteinases (MMP-8, MMP-9, 

MMP-12) 

 

Figure 1.3 - List of Proteinases and antiproteinases involved in COPD 

 

The leading mechanism of alveolar destruction in the lung is believed to be via the 

breakdown of the lung elastin. This process is facilitated by the release of neutrophil elastase 

and metalloproteinasese from neutrophils and macrophages infiltrating the lung in response 

to an inflammatory insult being inhaled (Turino, 2002). The natural antiprotease defences in 

the lung are overpowered by excessive proteolytic activity which the final outcome being 

destruction of the lung tissues. In the clinic, a study examining COPD patients with 

emphysema showed that they had increased levels of neutrophil elastase that correlated with 

reduced lung function (Betsuyaku et al., 2000). Animal models have been using neutrophil 

elastase to obtain emphysematous changes and neutrophilia in the lung for many years 
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(Senior et al., 1977). Recently, CS exposed mice deficient in neutrophil elastase were shown 

to be resistant to emphysematous changes and demonstrated less inflammation in the lung 

(Shapiro et al., 2003). These finding all support the hypothesis that an imbalance in 

proteases-antiproteases may contribute to the emphysematous changes seen in COPD. 

 

1.3.7 Oxidative Stress 

 

Oxidative stress is a major factor in the pathogenesis of COPD. The lung is a unique organ in 

that it has large epithelial surfaces that are constantly exposed to external sources of oxidative 

stress. Considering a typical adult inhales an average of 10,000 litres of air per day containing 

a wide variety of oxidants, particulates and infectious agents, this leaves individuals highly 

susceptible to the effects of oxidants entering the body through the lungs. However, both the 

airways and alveolar septa are designed to manage normal levels of oxidative stress that 

result from daily environmental exposures. There are two main sources of oxidative stress 

causing agents, atmospheric pollutants and endogenous oxidants. The lung does however 

contain defences in the form of enzymatic and non-enzymatic anti-oxidants that can protect it 

from the damaging effects of oxidative stress. 

 

Cigarette smoke is a potent mix of highly concentrated soluble and
 
gaseous electrophiles that 

place the lungs at high risk of protein and lipid oxidation, endoplasmic reticulum (ER) stress
 

and cell death (Babior, 2000). Cigarette smoke is believed to contain up to 10
15

 free radicals 

per puff, thus greatly increasing the oxidative burden of the lung (Pryor & Stone, 1993). 

Many markers of oxidative stress are increased in stable COPD and further in exacerbations 

of the disease. Various studies have shown increased markers of oxidative stress in the lungs 

of patients with COPD when compared with healthy patients and with smoking patients 
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without COPD (Ceylan et al., 2006; Kanazawa et al., 2005). Oxidative stress can lead to 

inactivation of antiproteinases and stimulation of mucus production. Inflammation can also 

be further increased under conditions of oxidative stress by the activation of various 

inflammatory pathways including leading to increased gene expression of pro-inflammatory 

mediators. 

 

1.4 RESPIRATORY HOST DEFENSE 

 

The lung features a complex set of systems in order to protect the host from potentially 

harmful foreign agents that threaten normal biological functions. The combination of physical 

barriers and the innate and adaptive immune systems provide this protection. Upon entering 

the lung, foreign agents attach to the mucociliary surface, which provides the first line of 

fence and propels objects upwards in order to clear them from the lungs. However, CS has 

been demonstrated to have a negative effect on the ability of cilia to beat and therefore reduce 

mucociliary clearance (Foster, 2002). As a result other defence systems must be employed in 

order to maintain the protection of the lung from inhaled foreign objects. 

 

The next level of protection is provided by the innate immune system (Section 1.3.1). The 

adaptive system, whilst playing an equally important role is dependent on the innate immune 

response in the lung (Martin & Frevert, 2005). Therefore, the innate immune response is 

primarily responsible for protecting the lung from the vast range of potentially harmful 

microbes that we are exposed to on a daily basis. 
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1.4.1 PAMPs and DAMPs 

 

Recent studies have suggested that apart from differentiating between self and non-self the 

immune system must identify if a molecule represents a potential threat (Matzinger et al., 

1994). The innate immune system functions as the primary defence against invading 

infections, a crucial function for survival. Initially the innate immune response is non-

specific; however, it activates the adaptive immune functions leading to specific pathogen 

directed humoral and cellular responses. A crucial property of the innate immune system is 

the ability to distinguish invading microbes from ‘self’ via germline-encoded pattern 

recognition receptors (PRRs), capable of recognising conserved markers specific to microbes 

referred to as pathogen associated molecular patterns (PAMPs) such as lipopolysaccharide 

(LPS), flagellin, peptidoglycan and microbial nucleic acids (Medzhitov & Janeway, 1997; 

Ishii et al., 2008). These receptors include Toll-like receptors (TLRs), Nod-like receptors 

(NLRs), RIG-I-like RNA helicases (RLHs), C-type lectin receptors (CLRs) (Trinchieri & 

Sher, 2007) and the recently identified HIN-200 family members (Palsson-McDermott & 

O'Neill, 2007; Hornung & Latz, 2010). TLRs are known to recognize PAMPs on the cell 

surface, whereas NLRs sense microbial molecules in the cytosol of the host (Franchi et al., 

2006). 

 

The functions of the innate immune response extend beyond patrolling for the presence of 

microbes or invading pathogens. There are also PRRs that function to sense danger signals 

produced by cells in response to pathogenic conditions or invasion. These are referred to as 

danger signals or danger associated molecular patterns (DAMPs) and are released in response 

to cellular damage, conditions of stress or are produced by modification of host proteins by 

pathogens and can be recognized by the PRRs of the innate immune system. This provides 
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the innate immune system with an ability to identify pathology occurring independent of 

infection. In response to recognition of microbial or danger stimuli, these receptors activate 

downstream signalling events that trigger the necessary immune response (Creagh & O'Neill, 

2006). Some examples of molecules believed to function as DAMPs include adenosine 

triphosphate (ATP), monosodium urate crystals, silica and asbestos (Dostert et al., 2008; 

Cassel et al., 2008; Hornung et al., 2008). The role played by DAMPs has been identified as 

vital in sterile inflammatory responses, where the innate immune system responds to tissue 

injury independent of microbial infection (eg. trauma or ischemia) (Kono & Rock, 2008). It 

has been postulated that the presence of an endogenous “danger signal” to indicate when 

tissue is undergoing damage would provide the immune system with a mechanism to 

distinguish between harmless bacteria and harmful pathogenic bacteria. Many endogenous 

proteins are proposed to play the role of danger signals, however, it is yet to be determined 

the range of specific receptors that mediate the activation of inflammatory responses 

(Skoberne et al., 2004). 

 

1.4.2 The inflammasomes 

 

The NLR family of cytoplasmic proteins is composed of 22 family members in humans, 

whereas the mouse genome contains at least 34 NLR-encoding genes (Ting et al., 2008; 

Dostert et al., 2008; Mariathasan & Monack, 2007). This family has a unique structure 

composed of a central nucleotide-binding domain called NACHT, which is located between 

an N-terminal protein-binding domain (CARD (Caspase-Recruitment Domain) or PYD 

(Pyrin Domain)), and a C-terminal LRR (Leucine-Rich Repeat) domain. These molecules are 

a given the NLR prefix, with a suffix of P or C dependent on the N-terminal moiety, PYD or 

CARD and an ensuing number. A selection of NLRs have been demonstrated to form a 
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complex with two pro-inflammatory molecules, caspase 1 and ASC (apoptosis associated 

speck-like protein containing a CARD), to form a complex known as the inflammasome. 

Each particular inflammasome is given a prefix name dependent on the NLR molecule within 

the complex (e.g. NLRP1 inflammasome). The fundamental molecule bringing about the 

effects of an inflammasome is the cysteine protease caspase 1. 

 

Present within the cell, caspases are a family of cysteine proteases that function to cleave a 

select number of substrates. Their function has been well examined in apoptosis, where they 

are believed to play a vital role in the processes involved in apoptotic cell death (Nicholson, 

1999). A selection of caspases including human caspase 1, caspase 4 and caspase 5 as well as 

mouse caspase 1, caspase 11 and caspase 12, are involved in the maturation, processing and 

release of pro-inflammatory molecules and thus referred to as 'pro-inflammatory caspases' 

(Martinon & Tschopp, 2007). Caspase 1 was the first member of this family to be identified, 

and upon stimulation by microbial and endogenous signals the inactive pro-caspase 1 is 

activated by proteolytic cleavage into an active heterodimer (composed of two 10- and 20-

kilodalton subunits) referred to as active caspase 1 (Martinon & Tschopp, 2004). The active 

form caspase 1 plays a crucial role in the cleavage of two potent pro-inflammatory cytokines 

pro–interleukin 1β (pro-IL-1β) and pro-IL-18 into their mature, biologically active forms. 

These two cytokines are members of the IL-1 family and play an significant role in 

modulating the adaptive immune response (Dunne & O’Neill, 2003). 

 

IL-1β is an important cytokine that plays a significant role in the initiation and persistence of 

the inflammatory response. The effectiveness of IL-1β as an inflammatory cytokine means 

that unregulated release could cause considerable tissue damage and situations of chaotic 

inflammation witnessed in many diseases. The role and significance of IL-18 in inflammatory 
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disease is not as well characterised as IL-1β. IL-18 is produced by a whole host of cells 

including macrophages, monocytes, neutrophils and T and B cells under varying conditions 

(Reddy, 2004). IL-18 receptor which is identical in sequence to a member of the IL-1 

receptor
 
family previously designated IL-1 receptor-related protein have been identified on T, 

B, NK, epithelial and a whole host of immune cells (including macrophages and neutrophils). 

It is thought to activate p38 and AP-1 as well as stimulating the production of GM-CSF, 

TNF, CXCL8, IL-1Β and IFN, highlighting the important role that IL-18 may play in the 

recruitment and activation of neutrophils (Tschoeke et al., 2006). The role of caspase 1 in the 

processing of IL-1β and IL-18 is seen as a fundamental finding. Three key NLR molecules 

have been shown to modulate caspase 1 activity including NLRP1, NLRP3, and NLRC4. 

Furthermore, a selection of other NLR molecules including, NLRP2, NLRP6, NLRP7, 

NLRP10, and NLRP12 have been shown to modulate caspase 1 activity in vitro. However, 

current literature focuses on NLRP1, NLRP3, and NLRC4 (Mariathasan & Monack, 2007). 

 

A link between mutation in both NLRP1 and NLRP3 genes and human diseases has been 

established. Variances in sequences of the NLRP1 gene have been linked to automimmune 

and autoinflammatory diseases including vitiligo (Jin et al., 2007). Furthermore, there is 

evidence to suggest that NLRP3 mutations are responsible for a host of autoinflammatory 

syndromes including Muckle-Wells syndrome, familial cold autoinflammatory syndrome and 

neonatal-onset multisystem inflammatory disease referred to as cryopyrin associated periodic 

syndrome (CAPS) (Hoffman et al., 2001; Dodé et al., 2002). Interestingly, mutations 

identified within the NLRP3 gene have been linked with CAPS, resulting in a predominant 

active form of NLRP3 leading to potentiated activation of the inflammasome and increased 

secretion of IL-1β (Ting et al., 2006). The use of recombinant human IL-1 receptor 
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antagonist (IL-1Ra) Anakinra has been shown to be successful in inhibiting IL-1β production 

and therefore reducing disease severity (Hoffman et al., 2004). 

 

1.4.2.1 NLRC4 inflammasome 

 

Upon activation the NLRC4 (IPAF) inflammasome leads to rapid cell death. The components 

of NLRC4 are an N-terminal CARD, a central NACHT domain and C-terminal LRRs. This 

complex may also regulate caspase 1 activation and the release of mature IL-1β. Many recent 

studies have established possible routes for activation of the NLRC4 inflammasome through 

Gram-negative bacteria (type III or type IV), Salmonella, Shigella, Legionella, and 

Pseudomonas. This is supported by the reduced caspase 1 activation and subsequent IL-1β 

secretion following the infection of ASC-deficient macrophages with Salmonella, Shigella, 

and Pseudomonas (Mariathasan et al., 2004; Zamboni et al., 2006; Suzuki et al., 2007; 

Sutterwala et al., 2007; Franchi et al., 2007). Although it remains a vital component of the 

NLRC4 inflammasome, ASC is required for the processing and release of IL-1β, but in its 

absence the NLRC4 may recruit another caspase in order to mediate cell death. Further 

investigation of the system is required in order to decipher these NLRC4-dependent but 

caspase 1-independent cell death programs. 

 

1.4.2.2 NLRP1 inflammasome 

 

The NLRP1 (NALP1) inflammasome is a complex composed of caspase 1, caspase 5, and the 

adaptor molecule ASC (Martinon et al., 2002). It has recently been suggested that NLRP1 

activation is dependent on a two-step process, firstly the bacterial cell wall component 

muramyl dipeptide (MDP) leads to a conformational change in NLRP1, allowing the protein 
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to bind ribonucleotide triphosphates and oligomerize (Faustin et al., 2007). The physiologic 

role of MDP activation of the NLRP1 inflammasome has yet to be addressed. Surprisingly, 

ASC was not required for NLRP1 inflammasome activation although caspase 1 activation 

was potentiated in its presence. Caspase 1 activation and IL-1β production can be suppressed 

by the interactions of anti-apoptotic proteins Bcl-2 and Bcl-XL with NLRP1. It has been 

demonstrated that macrophages that lack Bcl-2, exposed to MDP, show increased caspase 1 

activity and IL-1β release, however, overexpression of Bcl-2 led to an inhibition of caspase 1 

activity and IL-1β production (Bruey et al., 2006). A lethal toxin (LT) Bacillus anthracis has 

been shown to cause caspase 1 dependent cell death of macrophages. Furthermore, a murine 

paralogue of the NLRP1, Nlrp1b gene is accountable for this susceptibility of macrophages to 

LT (Boyden & Dietrich, 2006). 

 

1.4.2.3 NLRP3 inflammasome 

 

Often referred to simply as “the inflammasome”, the NLRP3 (NALP3 or cryopyrin) 

inflammasome is the most well understood of the three main inflammasome complexes. It is 

well documented that NLRP3 can form a multimeric protein complex with ASC, caspase 1 

and Cardinal, which is referred to as the “NLRP3 inflammasome” (Martinon et al., 2002). 

There are still discrepancies between the human and murine NLRP3 inflammasomes based 

around the role and function of Cardinal, that is present in the human complex but not in the 

murine version with no homolog having been identified. Several reports have indicated the 

fundamental role of the NLRP3 inflammasome in activating caspase 1 in response to both 

microbial and non-microbial stimuli (Franchi et al., 2010). A combination of LPS and 

extracellular ATP activates caspase 1 in a NLRP3-dependent fashion leading to the 

subsequent processing and release of pro-inflammatory cytokines IL-1β and IL-18 
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(Mariathasan et al., 2006). This is achieved by the activity of the ATP on the P2X7 purinergic 

receptor, which in turn leads to a potassium efflux and the recruitment of the pannexin-1 

channel forming a membrane pore, required for caspase 1 activation (Pelegrin & Surprenant, 

2006; Brough et al., 2009). Recent studies have demonstrated that the NLRP3 inflammasome 

can also be activated by many crystalline molecules. This has been shown with monosodium 

urate crystals and calcium pyrophosphate dihydrate, both involved in the development of 

gout (Martinon et al., 2006). Furthermore, silica and asbestos have been demonstrated to 

cause fibrotic lung disorders silicosis and asbestosis through a similar pathway (Dostert et al., 

2008; Cassel et al., 2008). Interestingly, the actions of a known adjuvant aluminium 

hydroxide have also been demonstrated to be dependent upon its activity on the NLRP3 

inflammasome (Eisenbarth et al., 2008; Kool et al., 2008). 

 

Activation of the NLRP3 inflammasome can also be triggered by the actions of various 

toxins. The actions of nigericin (bacterial potassium ionophore), maitotoxin (marine toxin), 

and various bacterial pore forming toxins such as listeriolysin O from Listeria 

monocytogenes, aerolysin from Aeromonas hydrophila and Staphylococcus aureus 

hemolysins (Mariathasan et al., 2006; Gurcel et al., 2006). Activation of the NLRP3 

inflammasome can also be achieved by the actions of Mycobacterium tuberculosis, whilst 

others have demonstrated the M. tuberculosis gene, zmp1, can reduce inflammasome 

activation (Koo et al., 2008; Master et al., 2007). Furthermore, DNA, bacterial RNA and two 

antiviral imidazoquinoline compounds (R837 and R848) also induce the NLRP3 

inflammasome activation independent of TLR and RIG-I (Kanneganti et al., 2006; Muruve et 

al., 2008). 
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1.4.3 Mechanisms of inflammasome activation 

 

Although it remains unclear if a direct ligand activates the NLRP3 inflammasome, a few 

mechanisms of activation have been postulated (Figure 1.4). The majority of these 

mechanisms are based around pore formation on the cell membrane, an action which can be 

performed by a host of stimuli that include ATP (in combination with pannexin-1) and many 

bacterial pore-forming toxins. There are two predominant theories as to how pore-formation 

activated the NLRP3 inflammasome. Firstly disruption of the membrane may release an 

endogenous molecule that can stimulate the NLRP3 inflammasome (Mariathasan & Monack, 

2007; Ogura et al., 2006). Secondly, microbial molecules access the intracellular cytosol 

through these pores and thus can interact directly with the NLRP3 inflammasome (Petrilli et 

al., 2007). It has been demonstrated that silica, alum and amyloid-β lead to lysosomal 

damage and the subsequent release of cathepsin B that activated the NLRP3 inflammasome 

(Hornung et al., 2008; Halle et al., 2008). Although this finding promotes the theory that 

membrane damage is the major event in the activation of the inflammasome, it provides no 

insight into the action of molecules such at ATP in NLRP3 inflammasome activation. 

 

Uric acid is a product of purine catabolism that has been identified in dying cells. It is 

believed that the active form of Uric acid is monosodium urate (MSU), which functions by 

promoting immune responses, through stimulation of dendritic cells (Shi et al., 2003). Uric 

acid can form crystals in high localised concentrations, as seen in clinical gout. These crystals 

can activate the NLRP3 inflammasome leading to the maturation of caspase 1 and subsequent 

production of active IL-1b (Martinon et al., 2006). It could be hypothesised that cell/tissue 

injury and necrosis can lead to the production of Uric acid and the production of MSU 

crystals. These MSU crystals at the site of the injury may subsequently present a danger 
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signal thus activating the inflammasome and leading to the ensuing inflammation. But this 

effect may not be universal as Kool et al., show that UA-mediated Th2 responses in the 

airway are not mediated through the inflammasome (Kool et al., 2001). 

 

The activation of the NLRP3 inflammasome via toxins and crystals appears to be dependent 

on two factors, an intracellular potassium efflux and the production of reactive oxygen 

species (ROS). It has been suggested formation of the NLRP3 inflammasome may be 

dependent on decreased potassium levels within the cell (Petrilli et al., 2007). Additionally, 

the capacity of ATP, silica and asbestos to activate the NLRP3 inflammasome are diminished 

by blocking ROS production using chemical inhibitors (Dostert et al., 2008; Cassel et al., 

2008; Cruz et al., 2007). However, NLRP3 inflammasome activation by ROS may be 

dependent on mitochondrial sources. A recent paper published by Zhou et al., NLRP3 

inflammasome activation can be achieved through the generation of mitochondrial reactive 

oxygen species. Furthermore, macrophages treated with NLRP3 activators resulted in the 

recruitment of NLRP3 proteins to the mitochondria-associated ER membrane (MAMs). This 

is the site on which the adaptor protein ASC is recruited in order to form a functional NLRP3 

inflammasome complex (Zhou et al., 2010). Studies have demonstrated mice deficient in 

NOX2 (gp91phox), a component of the NADPH oxidase system, still undergo inflammasome 

activation (Hornung et al., 2008; Meissner et al., 2008). More recently it has been shown that 

monosodium urate crystals activate spleen tyrosine kinase (Syk) kinase-dependent signalling 

pathways through actions with rich cellular membranes (Ng et al., 2008). This area requires 

further investigation to determine if it plays a significant role in NLRP3 inflammasome 

activation. 
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Figure 1.4 – Activation of the NLRP3 inflammasome. An overview of the signalling cascade 

associated with the NLRP3 Inflammasome illustrating the array of ways it can be activated 

(Adapted from Franchi et al., 2009). The processing and subsequent release of pro-

inflammatory cytokines IL-1 and IL-18 via caspase 1 can be dependent on the activation of 

the NLRP3 Inflammasome. 
 

 

1.4.4 The inflammasome in COPD 

 

A growing number of recent publications have suggested a role for the NLRP3 

inflammasome and its products in the inflammation seen in COPD patients. The NLRP3 

inflammasome can be activated through ATP acting on the P2X7 receptor (Mariathasan et al., 

2006; Sutterwala et al., 2007). Extracellular concentrations of ATP are maintained at low 

physiological concentrations by ectonucleotidases, but these concentrations increase under 
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conditions such as infection or inflammation. This increase can be due to either greater 

release of non-neuronal ATP from cells such as epithelial or leukocytes, and/or down-

regulation of ectonucleotidases (Lazarowski et al., 2003; Robson et al., 1997). Recently, 

increases in ATP levels have been reported in in vitro/in vivo models of COPD and pre-

clinical smoke-exposure models (Mohsenin & Blackburn, 2006; Polosa & Blackburn, 2009; 

Mortaz et al., 2010; Lucatelli et al., 2010). Additionally, increased ATP levels in the lungs of 

patients with COPD have been shown to be associated with a decline in lung function and an 

increase in inflammatory cellular burden (Lommatzsch et al., 2010; Cicko et al., 2010). This 

increase in ATP levels has been suggested to play a role in the chemotaxis and activation of 

inflammatory cells, such as neutrophils, through P2Y receptors (Cicko et al., 2010; Mortaz et 

al., 2010). Further evidence for a role of the ATP- P2X7 axis comes from the fact that the 

expression of the P2X7 receptor is increased in disease tissues/cells (Cicko et al., 2010; 

Lucatelli et al., 2010). Interestingly, P2X7 Inhibitors have reached phase II clinical trials 

specifically for rheumatoid arthiritis and COPD. One trial in moderate to severe COPD 

patients, carried out across 5 countries (28 centres) was unsuccessful. The trial showed no 

clinically significant findings in any patients for any of the clinical parameters examined 

during the course of the trial (Arulkumaran et al., 2011). 

 

Although Couillin et al., (2009) have shown a role for the ASC and the IL-1R in an elastase 

driven model of airway inflammation and associated emphysema, the role of the 

inflammasome components (NLRP3 and ASC) in smoke driven models of COPD has not 

been investigated but there is some indirect downstream evidence. A study has shown that CS 

induced inflammation was blocked with the caspase 1 inhibitor Z-WEHD-FMK (Churg et al., 

2009). 
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In the inflammatory milieu present in the lungs of human patients with COPD and animals 

exposed to CS are increased levels of cytokines linked to the activation of the NLRP3 

inflammasome i.e. IL-1β and IL-18. Furthermore, there is some evidence to suggest that these 

cytokines are central to the inflammation seen in models of COPD (Kang et al., 2007; Lucey 

et al., 2002; Churg et al 2009). Elevated IL-1β levels are found in induced sputum and BAL 

fluid from COPD patients (Ekberg-Janssen et al., 2001; Zeidel et al., 2002). More recently 

Singh et al. demonstrated that IL-1β levels were significantly raised in COPD patients, with 

IL-1β showing a negative correlation with FEV1 suggesting that in COPD, IL-1β serum 

levels correlate with clinical aspects of disease severity (Singh et al., 2010). Furthermore 

mice over-expressing IL-1β in lung epithelium display a COPD-like phenotype consisting of 

lung inflammation, emphysema and airway fibrosis (Lappalainen et al., 2005). In contrast, 

mice lacking IL-1 Receptor type 1 (IL-1R) exhibited a significant decrease in airway 

neutrophilia in response to CS (Doz et al., 2008; Churg et al 2009). A recently published 

paper by Pauwels et al., suggests that the inflammation seen in response to cigarette smoke 

exposure is dependent on IL-1β, however, the release of IL-1β in this model is independent of 

NLRP3/caspase 1 signalling (Pauwels et al., 2011). 

 

Elevated IL-18 levels have also been found in COPD patients (Petersen et al., 2007). These 

findings are further corroborated by recent publications demonstrating significantly increased 

levels of IL-18 in sputum supernatants of COPD patients compared to healthy smokers and 

non-smokers, suggesting that IL-18 may be implicated in the pathogenesis of COPD (Imaoka 

et al., 2008; Rovina et al., 2009). Furthermore, IL-18 knockout mice show significantly 

decreased inflammation and emphysema compared to wild-type mice following CS exposure 

(Kang et al., 2007), whilst mice over-expressing IL-18 in the lung display a COPD-like 
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phenotype (Hoshino et al., 2007). In view of these findings, a strong argument can be made 

for a role of the inflammasome in the inflammation observed after exposure to CS. 

 

1.5 EXPERIMENTAL MODELS OF COPD 

 

Experimental models provide crucial tools that allow us to investigate and better comprehend 

the development of disease. Furthermore, they are important for the development and pre-

clinical testing of drug discovery efforts that aim to target specific pathways involved in 

disease progression and exacerbation. In a disease such as COPD, where very few effective 

therapies exist, models provide an essential tool to obtain vital insight into the underlying 

mechanisms that drive the disease progression. The complexity of COPD as a disease makes 

replicating the pathophysiological changes seen in the disease very challenging, particularly 

the diverse features such as emphysema and small airway disease that are yet to be 

convincingly reproduced in an animal model. A further degree of complication is introduced 

by the fact that COPD is exacerbated by viral and bacterial agents. 

 

Currently, there are no standard models (using standardised exposure protocols, chambers or 

smoking machinery) used to study COPD making the comparison or interpretation of data 

from various studies very difficult. The limitation of these various modelling systems must be 

carefully examined and considered before drawing conclusions about disease pathology or 

linking finding to human health. 
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1.5.1 In vitro models 

 

As cigarette smoke is the primary etiological factor driving the pathogenesis of COPD, 

various in vitro models have incorporated cigarette smoke (CS) to determine its effects on 

particular pathways of interest. Cigarette smoke contains more than 4700 identified 

compounds in its vapour and particulate phases (Ingebrethsen, 1986; Green et al., 1996). 

Examination of the literature indicates a wide variety in the methods used to expose cell lines 

or cultures to CS by different research groups, including exposure to constituents of CS 

(either purified or extracted from cigarette smoke vapour), whole cigarette smoke or cigarette 

smoke condensate. In more recent times, various groups have examined the effect of CS on in 

vitro cultures using cigarette smoke conditioned media (CSM) that has been disputed to 

deliver a more physiologically relevant method of exposure (Bernhard et al., 2004). 

 

A wide range of different cell types within the lung are exposed to CS following inhalation, 

therefore a plethora of cells in the literature have been exposed to CS in culture including cell 

lines and primary cells. A study demonstrated differences in CS exposure of cell lines and 

primary cells, where cell lines did not secrete any inflammatory cytokines in response to CS, 

however, primary epithelial cells secreted two cytokines implicated with COPD, IL-6 and IL-

8 (Kode et al., 2006). Conversely, alveolar type II cells isolated from normal lung tissue from 

carcinoma resection surgeries no longer basally expressed IL-8, TNF-α and monocyte 

chemotactic protein (MCP)-1 following cigarette smoke extract treatment (Witherden et al., 

2004). Furthermore, Birrell et al., demonstrated that exposure of cell lines and primary cells 

to CSM inhibits LPS-induced inflammatory cytokine release (Birrell et al., 2006). These 

differences in responses to CS in various cell types and cell preparations can be attributed to 

difference in the preparations of CS, type of cigarettes used and the duration (protocol) of 
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exposure. Studies in the past have typically focused on single cell type cultures for simplicity 

purposes, however, more recently the effects of CS on certain disease phenotypes are being 

examined in more complex cell cultures. 

 

Complex cell cultures incorporating two or more cell types allow a wider range of cell types 

to be examined to mimic the exposure of various cell types to CS following inhalation. As 

different cell types may have varying inflammatory profiles depending on the expression of 

biological components required for inflammatory processes, combining two or more cell 

types in cultures may paint a more accurate picture of the conditions that are seen in vivo. In 

vitro cell systems offer a simple and cost-effective way to test particular tools and targets 

prior to moving research into a complex in vivo setting. However, the valuable insight 

provided by in vitro cell cultures in dissecting the mechanisms and pathways involved in 

COPD pathogenesis does not mimic the complexity of an in vivo system. Therefore the data 

obtained from these studies must also be carefully considered. 

 

1.5.2 In vivo models 

 

The data provided by a clinical sample demonstrating a specific result or particular 

association with a disease or its progression is considered crucial for validating a particular 

target for drug discovery purposes. However, in order to obtain powerful evidence that 

highlights a specific cause-effect relationship between a target and disease-like phenotype 

animal models have historically proven to be the best tool. For decades animal have played 

an instrumental role in broadening our understanding of disease mechanisms and 

pathogenesis. Various approaches have been attempted in order to replicate the phenotype of 

COPD in animal models, including exposure of animals to CS, inflammatory stimuli (e.g. 
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LPS) or instilling proteolytic enzymes into the airways and studying the effects of specific 

KO animals (Mahadeva & Shapiro, 2002; Groneburg & Chung, 2004; Stevenson & Birrell, 

2010). However, as the studies in this thesis will be utilising CS, the primary etiological 

factor for COPD, background will be focused around animal models of CS exposure. 

Furthermore, the inflammation seen in this model has also been shown to be insensitive to 

glucocorticoid inhibition both rats and mice (Marwick et al., 2004; Wan et al., 2010), 

providing the most accurate model of disease phenotype in animals. The second model used 

in this thesis is driven by lipopolysaccharide (LPS), a model previously shown to be sensitive 

to glucocorticoid inhibition (Birrell et al., 2005), that will facilitate paralleling experiments 

using a stimulus of the normal innate defence system that induces airway neutrophilia. 

 

1.5.2.1 Models of cigarette smoke exposure 

 

A wide range of CS exposure models are commercially available, whilst some groups also 

create or adapt their own. Although models vary predominantly around the way animals are 

exposed to CS, either nose-only or whole body, other variations include the concentration of 

smoke, duration and frequency of the exposures. The length of the CS exposure protocol is 

typically believed to replicate different aspects of the disease; acute (3 day) exposures 

typically produce a neutrophilic inflammatory response (Stevenson et al., 2005), whereas 

chronic (>6 month) exposure are required to bring about emphysematous changes in the lung 

(Churg et al., 2004). 

 

The concentration of CS used to induce inflammation in the lungs of laboratory animals 

varies from model to model in the literature. Although most report a value using the TSP 

(total suspended particulate) standard, these figures vary significantly based on the type of 
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cigarette used and the amount of CS being drawn/pumped into the chamber at any given time. 

The duration and frequency of exposures is also variable, however, typically a 1 hour 

exposure twice daily seems to be the standard used by most research groups. 

 

1.5.2.2 Choice of animal species 

 

Various species have been used to investigate CS-induced inflammation, including guinea 

pigs, rats and mice (Churg et al., 2008). It has been demonstrated that chronic CS exposure in 

guinea pigs led to progressive emphysematous changes that were associated with changes in 

lung function consistent to those observed in human emphysema patients (Wright & Churg, 

1990). Whilst there are many advantages to working with guinea pigs, the disadvantages 

working with this species outweigh using others. Guinea pigs are expensive, and there is a 

serious lack of tools and antibodies commercially available that cross react with guinea pig 

proteins. Therefore most laboratories use rodents in order to develop CS-driven models of 

inflammation. 

 

Most of the complex features of COPD have been replicated in mice, rats and guinea pigs 

including chronic inflammation, emphysema and small airway remodelling (Churg et al., 

2004; Wright et al., 2007). However, other aspects of the disease such as mucus 

hypersecretion have been difficult to reproduce, although they have been reported in rats 

(Zheng et al., 2009). The literature affirms that most models of CS exposure have 

preferentially selected mice over rats as mouse models offer many advantages. These include, 

cost effectiveness, extensive gene and protein sequences and a wide range of biological 

tools/antibodies available. More importantly, the ability to produce mice with specific gene 
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modifications provides major insight into the underlying mechanisms driving the 

pathogenesis of COPD (Wright et al., 2008). 

 

1.5.2.3 Limitations of CS models  

 

One of the limitations of the CS exposure as an in vivo model is that there is currently no 

standardised method or protocol by which animals are exposed. There are many variations in 

how different groups expose animals, these include differences in strains or species used, 

different cigarettes used to generate smoke (commercial vs. research cigarettes), differences 

in the component of the smoke animals are exposed to (mainstream vs. sidestream), different 

delivery systems (whole body vs. nose-only) and most significantly the dose of smoke that is 

delivered to the animals. Variations in the dose of smoke delivered to the animals can be 

attributed to many design or mechanical factors in the various cigarette smoke exposure 

apparatus, however, the puff profile of each system may also vary. Many groups however, 

attempt to replicate the FTC (Federal Trade Commission) puff profile which suggests that 

smokers draw smoke for 2 seconds. Variations in the length of time air is drawn through a 

cigarette can affect the composition of the smoke generated as the temperature of the tip may 

vary. These differences make comparisons between findings of different research groups 

extremely difficult, although many groups have used different systems and reported similar 

findings (Vlahos et al., 2006; Morris et al., 2008). The protocol and dosing regimen 

developed here is similar to that of Morris et al., and produced similar results with 3 days of 

acute cigarette smoke exposure in C57BL/6 mice causing an increase in neutrophils peaking 

at 24 hours after challenge, followed later by macrophages (Morris et al, 2008). 
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Another limitation observed with CS models of inflammation is that the disease phenotype 

produced is typically mild, corresponding to GOLD I or II of human COPD (Hogg et al., 

2004). Furthermore, most in vivo studies have examined a single aspect of COPD, such as 

inflammation, emphysema or mucus hypersecretion, but not the entire disease with all its 

features. This has the effect of making it difficult to model AECOPD as there is a lack of a 

comprehensive model of COPD. To address this problem, studies have begun to focus on 

factors that are associated with both COPD and AECOPD, and incorporate them in 

combination into experimental models (Gaschler et al., 2009; Kang et al., 2009) 

 

Approximately 25% of smokers develop COPD, whilst 80% of COPD patients are smokers. 

Therefore there is a portion of COPD patients who get COPD independently of smoking. 

This model of COPD does not take into account patients who have a genetic predisposition to 

COPD development, or suffer from the disease as a result of alternative causative agents such 

as pollution. As models of CS exposure aim to replicate a complex disease that manifests 

itself over a long period of time, it is imperative to carefully interpret the data in order to 

provide insight into the mechanisms behind a very complex disease. 

 

1.6 TREATMENTS FOR COPD 

 

1.6.1 Smoking Cessation/Alternatives 

 

Smoking cessation has been shown to slow the progress of COPD; however this will not 

terminate the progression of the disease (Barnes, 2000). Quitting smoking addiction is a 

difficult process and most smokers will require additional aid, as very few manage to quit 

through will power alone. There are currently two commonly available therapies to battle 
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nicotine addiction; nicotine-replacement therapy (available as gum, inhaler or a transdermal 

patch) and Bupropion (Zyban®), a noradrenergic anti-depressant. Nicotine-replacement 

therapy is often the first option, however if this is unsuccessful, treatment of bupropion 

chewing can be administered. Studies have shown that following a nine week course of 

bupropion 30% of subjects had successfully quit smoking compared to 15% taking the 

placebo (12 months following course) (Jorenby et al., 1999). Recently, Varenicline 

(Champix®) an α4β2 nicotinic cholinergic receptor partial agonist has been marketed to have 

a 44% success rate at smoking cessation (Jorenby et al., 2006), however, many argue that this 

figure is closer to 1 in 5 (Mahvan et al., 2011). Furthermore, many side-effects have been 

linked to Varenicline administration, including nausea, headaches, difficulty sleeping and 

abnormal dreams. The psychiatric side-effects of this drug associated with suicidal behaviour 

have raised question marks about its ethical use as a smoking cessation drug (Gunnell et al., 

2009; Moore & Furberg, 2009). 

 

The Hookah (water pipe) is growing in popularity worldwide as a fashionable social smoking 

activity, with the general population erroneously assuming that the water in the pipe is able to 

filter the harmful agents in the smoke. Two recent studies reported an association between 

WPS and lung cancer, decreased respiratory function and respiratory illness (Raad et al., 

2011; Hakim et al., 2011; Chan & Murin, 2011). 

 

An alternative approach to combat nicotine addiction is the use of nicotine delivery systems, 

such as electronic cigarettes. Electronic cigarettes (e-cigarettes) use a battery-powered 

atomiser to produce vapour that is passed through cartridges containing nicotine, flavouring 

agents and humectants (e.g. glycerol) (Flouris & Oikonomou, 2009; Hadwiger et al., 2010). 

They are often marketed as the “safe way” to smoke as they don’t contain the harmful 
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substances found in cigarette smoke, however, recent studies have demonstrated that the 

humectants in e-cigarettes often contain diethylene glycol a harmful agent found in 

antifreeze. At this current time the long-term effects of e-cigarette use remain unclear and 

further investigation into its components and effects must be examined (Etter & Bullen, 

2010). Other smoking cessation options include unproven treatments such as hypnosis and 

Chinese herbal remedies which may be successful for some individuals. 

 

1.6.2 Long-term oxygen treatment 

 

Long-term oxygen treatment (LTOT) has been documented to reduce COPD mortality; 

however, this has only been successful in patients suffering from advanced COPD, 

particularly severe hypoxemia but with little co-morbidity. A large proportion of the costs of 

treating COPD patients is due to home oxygen therapy. It is estimated that there are 

approximately 800,000 patients in the United States alone receiving LTOT, at a cost of $1.8 

billion annually (O’Donohue & Plummer, 1995). The mortality of stable COPD patients with 

a resting pO2 of less than 7.3 kPa (Kilopascals) can be reduced by oxygen therapy for 15 

hours or more a day (Calverley, 2001). However, this is seen as a major disadvantage as 

patients must remain on oxygen for the majority of the day. LTOT reduces mortality from 

secondary vascular complications; however it has no effect on the progression of the disease 

and limited impact on the survival of these patients (Crockett et al., 2001).  

 

1.6.3 Pulmonary Rehabilitation 

 

In patients with severe COPD, introduction of a weekly routine made up of education, 

exercise and physiotherapy has been shown to produce some improvements in exercise 
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capacity (longer walking distances and reduced fatigue) and health-related quality-of-life 

(HRQL) (Lacasse et al., 1996; Boueri et al., 2001). 

 

1.6.4 Lung-volume reduction surgery 

 

Lung-volume reduction surgery (LVRS) necessitates removal of the emphysematous parts of 

the lung. Patient selection is an important part of this procedure and patients with localised 

upper-lobe emphysema and low lung resistance during inspiration are preferred and have 

been shown to respond best to this treatment (Ingenito et al., 1998). The overall effect is a 

reduction in the volume required to fill by each inspiration, aiming to achieve full inflation of 

the lungs. This reduction in hyperinflation has the effect of improving the mechanical 

efficacy of the inspiratory muscles. Functional improvements in FEV1, ventilatory function, 

function of respiratory muscles, exercise capacity and overall quality of life have all been 

documented (Gaissert et al., 1996). However there are several drawbacks to LVRS that 

include the risk associated with surgery in patients that are already compromised and the 

expenses associated with the procedure, with lifetime costs following surgery estimated to 

reach approximately $100,000 in the United States (Patel et al., 2008).  

 

1.6.5 Lung transplant  

 

Lung transplantation is now an established end-point for various respiratory diseases. 

Refinements in surgical techniques and medical management have been effective in 

increasing the success rate of most lung transplants (Gomez & Reynaud-Gaubert, 2010). 

Patients also report a significant improvement in quality of life following a successful lung 

transplant operation (Ramsey et al., 2005). However, the lifetime costs of surgery and post-
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operative care are significant; with the average costs in the United States reported to be 

approximately $450,000 (Ramsey et al., 1995; Anyanwu et al., 2002). Post-transplantation 

survival rates for COPD patients undergoing lung transplantation are approximately 80% at 

year 1, 65% at 3 years and 49% at 5 years (Trulock et al., 2007). The availability of lungs for 

transplantation does not meet the numbers required by patients suffering from COPD or other 

diseases of the lung. Furthermore, there are many difficulties and risks involved with lung 

transplant surgery including variable waiting-list times and post-transplantation 

complications such as opportunistic infections, organ rejection and side-effects to post-

transplantation medication (Trulock et al., 2007; Patel et al., 2006). 

 

1.6.6 Bronchodilators 

 

Bronchodilators have not been shown to have an effect on the progression of COPD; but they 

are proven to be useful symptom controllers. There are two types of bronchodilators used to 

treat COPD, β2-adrenoceptor agonists (β2-agonists) and anti-cholinergics. 

 

β2-agonists activate the β2-adrenoceptors on smooth muscle, causing relaxation of the 

bronchi. β2-agonists themselves are further sub-categorised into short and long-acting groups. 

Shorter-acting β2-agonists agonists, e.g. salbutamol, are not as effective in treating COPD 

with less than 15% improvement as the disease encompasses irreversible airflow obstruction 

(Hay, 2000). Long-lasting β2-agonists agonists (LABA) such as salmeterol are now used and 

shown to provide modest improvements in lung function and symptom control clinically 

associated with an improvement in well-being (Jones & Bosh, 1997; Leckie et al., 2000). 
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Anti-cholinergic drugs act upon muscarinic receptors. They are used as bronchodilators in 

treating COPD and are also thought to inhibiting mucus secretions in the airways (Kerstjens 

& Postma, 2003). In COPD patients, Tiotropium Bromide achieves a significant and 

prolonged bronchodilation, lasting up to 32 hours (Maesen et al., 1995). However, similar to 

β2-agonists, there is no evidence that anticholinergic bronchodilators impact the rate of 

decline in lung function (FEV1) in COPD patients; therefore, they do not alter disease 

progression (Anthonisen et al., 1994). Anti-cholinergics however, are often used in 

conjunction with β2-agonists as a combination therapy, proving to be more effective than 

anti-cholinergic treatment alone (Rennard et al., 2001). 

 

1.6.7 Corticosteroids 

 

COPD, like asthma, has an inflammatory component; therefore inhaled corticosteroids are 

commonly administered as part of treatment. There is little evidence that suggests 

corticosteroids are effective in treatment of COPD. Four large trials (ISOLDE – Burge et al., 

2000; EUROSCORE – Pauwels et al., 1999; COPENHAGEN – Vestbo et al., 1999; Lung 

Health Study Research Group, 2000) conducted over three-year periods administering 

inhaled corticoid steroids showed little effect in improving lung function in COPD patients. A 

reduction in the number of exacerbations has been demonstrated (Alsaeedi et al., 2002), 

however, recent meta-analysis suggests that inhaled corticosteroids have little effect on the 

decrease in lung function that is characteristic of the disease in patients with no evidence of 

concomitant asthma (Highland et al., 2003). 

 

Corticosteroids do slow the progression of COPD. The current GOLD standard treatment for 

COPD in the clinic is a combination of corticosteroids and long-acting β2-agonists (Adcock et 
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al., 2010). Furthermore, studies have demonstrated that combination therapy of 

corticosteroids and the methylxanthine drug theophylline may attenuate airway inflammation 

in patients with COPD (Ford et al., 2010). Much recent work into its in-effectiveness has 

been related to the action of histone deacetylases, such as histone deacetylase 2 (HDAC-2) 

which has been shown to have decreased levels in COPD patients (Barnes et al., 2004). The 

current dogma suggests that corticosteroids can inhibit the activation of inflammatory genes 

through the recruitment of HDAC-2 which in turn can deacetylate histones to allow the 

chromatin structure to remain tightly bound thus decreasing the binding of transcription 

factors (Barnes, 2006; Adcock et al., 2005). Furthermore, the actions of ROS and CS can 

inhibit HDAC-2 activity, leading to reduced responses to corticosteroids in COPD patients 

(Barnes, 2009). 

 

1.7 THESIS AIMS 

 

Although giant leaps have been made over the last decade in understanding the immune 

responses and identifying the underlying mechanisms driving the pathophysiological changes 

seen in COPD, there is still a large area of uncertainty with regards to the causative factors or 

agents. Furthermore, there are currently no effective therapies to combat the relentless 

progression of this disease therefore novel pharmacotherapies are a crucial requirement. 

However, the proposal of the inflammasome as a possible pathway involved in the 

inflammation associated with chronic inflammation of the airways is a logical one given the 

convincing evidence to suggest its involvement in COPD.  

 

The aim of this thesis was to investigate the role of the P2X7 – inflammasome pathway in 

CS-induced inflammation associated with COPD. The broad hypothesis within this thesis was 



72 

 

that exposure of the lung to an insult such as cigarette smoke leads to the release of 

endogenous danger signals such at ATP, which activate the P2X7 receptor leading to 

inflammasome activation. Upon activation of the inflammasome, caspase 1 matures into its 

active form facilitating the processing and release of the two potent inflammatory cytokines 

IL-1β and IL-18. These cytokines in turn drive the ensuing inflammation within the lung and 

bring about the acute changes seen in COPD. Upon repeated exposure to the insult, this 

process becomes chronic leading to the long term changes seen in COPD patients such as 

emphysema and small airways disease. 

 

The studies in this thesis were completed in a sequential manner with each study building on 

the findings of the previous. In chapter 3, in order to determine the role of the pathway in CS 

driven models of airway inflammation my first step was to optimise and characterise the 

airway responses to CS exposure. I chose to do this in the C57BL/6 strain as this is the 

background strain the genetically modified mice our group has access to. I began with a dose 

response to CS and from this data I selected a sub-maximal exposure protocol to adopt for my 

future work. I then performed a detailed characterisation (i.e. cellular burden, mediator 

production at the mRNA and protein level) of the temporal inflammatory changes in the lung 

after acute (3 days) CS exposures. In parallel to the CS driven model I wanted to compare the 

role of the pathway in the inflammation evoked by a different stimulus. For this I chose an 

endotoxin challenge (lipopolysaccharide, LPS) as the inflammatory profile has similarities to 

the CS model i.e. reported increase in IL-1 and neutrophilia in the lung. I observed temporal 

increases in airway neutrophilia and inflammasome linked cytokines (IL-1 and IL-18) in 

both the LPS and CS models. When I measured caspase 1 activity, as a marker of pathway 

activation, in the lung samples, I could only detect increases in the CS models and not the 

LPS model. In chapter 4, I found that the increased caspase 1 activation, IL-1 production 
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and neutrophils seen following acute CS exposure were attenuated in the P2X7 KO mice; 

however these mice did not have decreased levels of IL-1 or neutrophils after LPS 

challenge. 

 

In chapter 5, I wanted to confirm the effect observed in the genetically modified mice using 

pharmacological inhibitors of the P2X7 receptors. Before performing the in vivo studies I first 

wanted to demonstrate that the inhibitors I acquired would block murine receptors. Therefore 

I developed human and mouse cell based assay systems, using disease relevant cells, in which 

the pathway played a central role. I showed that the combination of LPS and ATP exhibited 

an enhancement in the release in IL-1β and IL-18 when compared to the sum of the two 

individual treatments alone. In these assay systems I showed that one of the inhibitors (A-

438079) was effective at blocking murine P2X7 receptors. What is more the data 

demonstrated that the inhibitor had no impact on other non-pathway linked mediators like 

TNF and IL-6. Using this inhibitor in the smoke driven murine model I was able to parallel 

the findings with the genetically modified mice. Together these data are strong evidence for a 

role of the P2X7 receptor in this murine model of CS induced inflammation. 

 

COPD is a chronic disease that manifests itself over a prolonged period of time, therefore it 

was essential to investigate the involvement of the pathway in a more chronic model. In 

chapter 6, I performed a detailed characterisation of the temporal inflammatory changes in 

the lung after sub-chronic (28 days) CS exposures. I demonstrated an increase in caspase 1 

activity, inflammasome-linked cytokines and neutrophilia throughout the 28 day exposure 

protocol. Furthermore, macrophages were also seen 14 days into the exposure protocol. In an 

attempt to translate these findings in the human disease, the same assay utilised in the in vivo 

models was used to measure caspase 1 activity in donors or recipients lung tissue samples 
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collected from lung transplant surgery performed on end stage emphysema/COPD patients. 

Whilst there are some issues as to whether a direct comparison is appropriate, i.e. the groups 

are not age matched, there appears to be an increased level of caspase 1 activity in the 

diseased lung. 
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Chapter 2 
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2.1 Animals 

 

All studies were conducted using C57BL/6 mice (18 – 20 g) as this is the background strain 

of the knockout mice used in this thesis. The animals were obtained from Harlan-Olac 

(Bicester, UK) and housed for at least 5 days prior to any experimental procedures being 

carried out.  Food and water was supplied ad libitum throughout housing and experimental 

periods. All experimental protocols were approved by a local ethical review process and 

conformed to the strict Animals (Scientific Procedures) Act 1986 (UK Home Office 

guidelines). 

 

2.2 In vivo models 

 

The various challenging and exposure protocols for the in vivo experiments performed for the 

purpose of this thesis are described in more detail in their specific chapters. This chapter 

provides an overview of the general methodologies used in all the models. 

 

2.2.1 LPS-induced airway inflammation 

 

A lipopolysaccharide (LPS) challenging system (Figure 2.1) was set up using a Perspex 

chamber (600 x 240 x 350 mm) and a System 22 nebuliser (Medic-Aid Ltd., Pagham, Sussex) 

driven by a high-flow-rate compressor (Medic-Aid Ltd., Pagham, Sussex). Animals were 

exposed to either aerosolised LPS (Escherichia coli, serotype 0111:B4, Sigma-Aldrich Ltd. 

Poole, UK) or endotoxin free saline (Fresenius Kabi, Warrington, UK) blown into the 

Perspex chamber for a 30 minute challenge period. 
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Figure 2.1: LPS challenging system 

 

2.2.2 Cigarette smoke-induced airway inflammation 

 

A whole body cigarette smoke exposure system (Figure 2.2) was developed consisting of a 

Time-Set Pinch Valve (C Lee Machining, Horsham, UK), Exposure Chambers (Teague 

Enterprises, CA, USA), Extraction Unit (Grainger Industrial Supply, USA) and TSP 

Sampling Unit (Teague Enterprises, CA, USA). 

 

Animals were exposed to either room air or cigarette smoke using 3R4F cigarettes (Tobacco 

Health Research Institute, University of Kentucky, Lexington, KY). Cigarette smoke is 

generated using a negative pressure system (flow-rate set at 1500 ml/min through the system) 

and timer pinch-valve to pump in smoke for pre-determined times based on the concentration 

Nebuliser 

Chamber 

Pump 
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of smoke required within the chambers. Room air is continuously pumped into the chamber 

for the remaining period between puffs. The duration of exposure periods was 50 minutes 

followed by a 10 minute venting period at the end where the flow is increased to maximum.  

Exposures for each group will take place in one of the Teague chambers (136 L) chambers.  

A fan is placed at the bottom of the chamber on the left side where the smoke enters the 

chamber to ensure that the smoke is well dispersed throughout the chamber. Total suspended 

particulate (TSP) levels are assessed for each chamber at 15 minute intervals (15, 30, 45 

minutes - 1 min sampling period) in order to validate the consistency of the smoke 

concentration within the chambers. 
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Figure 2.2: Cigarette smoke exposure system 

 

2.3 General Experimental Protocols 

 

2.3.1 Bronchoalveolar lavage and lung tissue processing 

 

Mice were euthanized at specified time-points with an overdose of intraperitoneal (i.p.) 

sodium pentobarbitone (200 mg/kg). To facilitate the recovery of cells from the airway 

lumen, the trachea was isolated by blunt dissection and cannulated. Brochoalveolar lavage 
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was performed by instilling the lungs with 0.3 ml of Roswell Park Memorial Institute 1640 

medium + GlutaMAX-I (RPMI, Invitrogen, Paisley, UK,) and then removing the media 30 

seconds later. This process was repeated three times and the samples pooled for each animal. 

For each individual sample, aliquots were taken for total cell counts and differential cell 

counts (described in section 2.3.2). The remaining BALF samples were spun at 1900 rpm 

(Mistrall 3000i, MSE) for 10 minutes at 4°C. The supernatant was then removed and stored at 

-20°C for future analysis. 

 

After BAL was performed, the thorax of the animal was opened and the lungs were surgically 

removed. Lungs were either flash frozen in liquid nitrogen (stored at -80°C) or weighed and 

finely chopped using a McIlwain tissue chopper (Campden Instruments Ltd, Loughborough, 

UK), and transferred to 1 ml RPMI 1640 / 10% Foetal Bovine Serum (FBS) (Gibco, 

Invitrogen Ltd., Paisley, UK) for enzymatic digestion (Underwood et al. 1997). 

 

Enzymatic digestion was performed by incubating the samples in a water bath (37°C for 1 

hour) with gentle agitation with a further 4 ml of RPMI / 10% FBS containing collagenase (1 

mg/ml, Roche Diagnostics, Mannheim, Germany) and DNAse (0.025 mg/ml, Roche 

Diagnostics, Mannheim, Germany). The samples were then filtered using a cell sieve (70 μm 

mesh size) and washed twice by centrifuging for 10 minutes at 1900 rpm, discarding the 

supernatant each time and re-suspending the pellet in 10 ml RPMI / 10% FBS. After the 

second wash, the sample was centrifuged again for 10 minutes at 1900 rpm, the supernatant 

was discarded and the cells re-suspended in 1 ml RPMI / 10% FBS with 

penicillin/streptomycin (Roche Diagnostics, Mannheim, Germany). This was then used for 

the total tissue cell count and differential cell counts (described in section 2.3.3) the samples 

underwent a further 1:5 dilution in RPMI / 10% FBS. 
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2.3.2 Blood sampling 

 

Cardiac puncture was performed using heparinised syringes in order to extract one millilitre 

of blood. The samples were centrifuged at 2500 rpm (Mistrall 3000i, MSE) for 10 minutes at 

4°C. Plasma was collected and stored at -20°C for future analysis. 

 

2.3.3 Cell counts 

 

Total cell counts were performed on the cells recovered in the BALF from the airway lumen 

and lung tissue using an automated Sysmex cell counter (Sysmex UK Ltd, Milton Keynes, 

UK). The automated cell counter was calibrated with a reference blood sample containing a 

known number of white and red blood cells prior to every experiment. 

 

Furthermore, differential cell counts were performed on the cells recovered in the BALF from 

the airway lumen and lung tissue by light microscopy (x40 magnification) utilising cytospin 

preparations. These were prepared by centrifuging 100 μl aliquots in a cytospin (Shandon, 

Runcorn, UK) at 700 rpm with low acceleration for 5 minutes at room temperature. The 

slides were then fixed and stained on a Hema-tek 2000 (Ames Co., Elkhart, USA) using 

modified Wright-Giemsa stain. Differential cell counts on 200 cells per slide were carried out 

using standard morphological criteria and the percentage of neutrophils, eosinophils, 

lymphocytes and macrophages/monocytes were determined. The staining allows each cell 

type to be identified based on unique characteristics (Figure 2.3). Neutrophils are medium 

sized cells that can be identified by their polymorph multi-lobed nucleus, whilst their 

cytoplasm is faintly stained. Eosinophils are unique due to their “figure eight” or bilobed 

nucleus that stains dark blue, whilst their cytoplasm stains a unique shade of pink due to the 
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presence of granules. Lymphocytes cells are the smallest of all cell types and can be 

characteristically identified due to their dark staining nucleus and almost no presence of 

cytoplasm. Macrophages/monocytes are larger cells that have a dark staining nucleus and 

rather large cytoplasm that is slightly darker staining in monocytes when compared to 

macrophages. 

 

 

 

 

 

 

 

Figure 2.3: Differential inflammatory cell staining 

 

 

Throughout this thesis cell counts from LPS exposure studies will be performed using a 3-

way cell count (neutrophils, eosinophils and lymphomononuclear cells) where lymphocytes 

and monocyte/macrophages were grouped in one category. However, cell counts from CS 

exposure studies will be performed using the above detailed 4-way cell count. 

  

2.3.4 Measurement of cytokine release 

 

In order to accurately determine the levels of cytokine/chemokine release in samples, two 

assays were used based around the enzyme-linked immunosorbant assay (ELISA) techinique. 

The simple ELISA facilitates the accurate determination of cytokine/chemokine levels in 

samples. However, in experiments where a wider range of cytokines was to be investigated, 
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the more complex MSD platform was used as it requires a much smaller amount of sample to 

examine a wider range of targets. 

 

2.3.4.1 ELISA – Enzyme-linked immunosorbant assay 

 

The presence of various cytokines of interest in BALF supernatants were determined by 

ELISA. The mouse DuoSet kits were purchased from R&D Systems Europe (Oxfordshire, 

UK) and performed according to manufacturer’s instructions. These assays employ the 

quantitative sandwich enzyme immunoassay technique. This involves a monoclonal antibody, 

specific for the cytokine of interest, being coated onto a microplate. Standards and samples 

which contain the cytokine present are bound to the immobilised antibody. After a wash step 

of removing any unbound substance, an enzyme-linked polyclonal antibody specific for the 

cytokine of interest is then added to the wells. Following another wash step to remove any 

unbound antibody-enzyme reagent, the assay is visualised using a streptavidin-enzyme, an 

ensuing chromagenic substrate reaction and stopped using an acid solution (H2SO4). The 

plate is read at 405 nM using a spectrophotometer (Biotek PowerWave XS Plate Reader, 

Potton, UK). The amount of cytokine detected in each sample is compared to a standard 

curve of the cytokine of interest, which demonstrates a direct relationship between the 

absorbance measured and cytokine concentration. The higher the cytokine concentration, the 

darker the colour intensity, hence the higher the absorbance value. The accuracy of the 

ELISA is restricted by the detection limit of the assay, these being the concentrations of the 

lowest and highest standards. 
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2.3.4.2 MSD multiplexed cytokine assay 

 

The advantage of using the MSD system to measure BALF cytokines is that a small volume 

of sample (10 μl/well) can be used to measure multiple targets in a single well. Each target 

binds to the plate via a specific capture antibody and is detected using a SULFO-TAG-

labelled secondary antibody. SULFO-TAG labels emit an electrochemiluminescent signal 

following electrochemical stimulation at electrodes integrated into each well. 

 

Cytokine measurements were made using a Mouse TH1/TH2 96-well, 9-plex Ultrasensitive 

plate (Mesoscale Discovery, Cat. No: N05013B-1, Gaithersburg, ML, USA) and two 

multispot 96-well high binding 5-plex and single-plex prototype plates (Mesoscale discovery, 

Cat. No: N75ZB-1, Gaithersburg, ML, USA). The cytokines measured on each plate are 

summarised in Figure 2.4. Analysis was carried out according to the manufacturer’s 

instructions using a SECTOR
®
 Imager 2400 (Mesoscale Discovery, Cat. No: N05013B-1, 

Gaithersburg, ML, USA) at UCB-Celltech, Slough, UK. 

 

MSD Plate Name Cytokines & Chemokines measured 

Mouse TH1/TH2 96-well, 9-plex 

Ultrasensitive plate 

KC, IL-1β, TNFα, IFNγ, IL-4, IL-5, IL-2, 

IL-10 & IL-12 

Mouse multispot 96-well high binding 5-

plex prototype plate 

Eotaxin, G-CSF, IL-13, IP-10 &  

MIP-1α 

Mouse multispot 96-well high binding 

single-plex prototype plates 

IL-18 

Figure 2.4: Summary of cytokines measured using MSD technology. 
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2.3.5 Measurement of Caspase-1 Activation 

 

Caspase 1 is an enzyme that is responsible for the proteolytic cleavage of other proteins, such 

as the precursor forms of the inflammatory cytokines IL-1β and IL-18, into their mature 

active forms. This enzyme has been demonstrated to be present in the cytoplasmic fraction of 

cells. Therefore, in order to determine the activity of this protein in various samples, the 

cytoplasmic fraction must be isolated first. 

 

2.3.5.1 Isolation of cytosolic and nuclear cell fractions 

 

Nuclear and cytosolic fractions were prepared using an NXTRACT CelLytic NuCLEAR 

Extraction kit (Sigma-Aldrich Ltd., Poole, UK) according to the manufacturer’s instructions. 

The procedure for the nuclear protein extraction method is to allow cells to swell with 

hypotonic buffer. The cells are then disrupted, the cytosolic fraction is removed, and the 

nuclear proteins are released from the nuclei by a high salt buffer. Following the extraction of 

both the cytosolic and nuclear fraction, the total protein concentration of each fraction was 

determined by Bradford assay (Biorad, Munich, Germany, 500-0006). 

 

2.3.5.2 Caspase 1 activity assay 

 

The level of caspase 1 activation in samples was determined using a commercially available 

caspase 1 Colorimetric Assay Kit (Enzo Life Sciences, Exeter, UK) performed according to 

manufacturer’s instructions in a 96 well plate. The assay facilitates examining the activity of 

caspase 1 via its ability to recognize the YVAD sequence. The assay is based on 

spectrophotometric detection of the chromophore p-nitroaniline (pNA) after cleavage from 
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the labelled substrate YVAD-pNA. The light emission of pNA is detected using a 

spectrophotometer at 405 nm. By comparing the absorbance of pNA from control and treated 

groups, the fold increase in caspase-1 activity can be determined. 

 

2.3.6 Measurement of ATP release 

 

The ATPlite luminescence ATP detection system (Perkin Elmer, Cambridge, UK) was used 

according to manufacturer’s protocol to determine the levels of ATP in various samples. The 

advantages of this assay being its rapid, simple and highly sensitive. The ATPLite assay 

system is based light emitted by the reaction of ATP with added luciferase and D-luciferin. 

This is illustrated in the following reaction scheme: 

Thus, the amount of light emitted is proportional to the ATP concentration. 

 

2.3.7 Measurement of NAD+/NADH 

 

To determine the levels of NAD+/NADH the Amplite Colorimetric NAD/NADH Assay Kit 

(Stratech Scientific, Suffolk, UK) was used according to the manufacturer’s instructions. 

Similar to the ATP assay described in previously (section 2.3.6) the advantages of this assay 

are its sensitivity, speed and simplicity. The assay functions by utilising specific enzymes that 

recognize NAD/NADH in an enzyme cycling reaction that significantly increases detection 

sensitivity (Figure 2.5). 
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Figure 2.5: Principle of the Amplite NAD+/NADH Colorimetric Assay 

 

2.3.8 Quantification of mRNA expression 

 

2.3.8.1 RNA extraction 

 

Total cellular ribonucleic acid (RNA) was isolated from mouse lung using Tri Reagent, a 

mixture of guanidine thiocyanate and phenol in a non-phase solution. Tri Reagent dissolves 

RNA, DNA and protein facilitating the simultaneous isolation of these different components, 

and subsequent addition of chloroform will separate the RNA, DNA and proteins in 3 

different phases. As only RNA was required for gene expression analysis, 50-100 mg of 

mouse lung tissue was ground using a pestle and mortar to create a powder. The powder was 

then transferred to an eppendorf tube and 1 ml of Tri Reagent was added to the tube followed 

by centrifugation at 15000 x g for 15 minutes at 4ºC in a benchtop microcentrifuge (Sigma 

2K15, Sigma-Aldrich Co., Poole, UK). The clear supernatant was collected and 200 μl of 

chloroform was added. This was followed by another centrifugation step, and the aqueous 

fraction was collected and isopropanol was added (one tenth of the aqueous fraction). 

Samples were then centrifuged at 12000 g for 10 minutes at 4
o
C. In the next step, the 
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supernatants were transferred to a new eppendorf prior to the addition of isopropanol (500 l) 

that will cause precipitation of RNA.  The samples were centrifuged at 12000 g for 10 

minutes at 4ºC and the supernatant discarded, consequently leaving the RNA pellet. This 

RNA pellet was washed by adding 70% (v/v) ethanol followed by centrifugation at 12000 g 

for 5 minutes at 4ºC. Taking care not to disturb the pellet, the ethanol was removed and the 

samples were left to dry in room air. The RNA pellet was resuspended in 50 μl of nuclease-

free water. To assess the purity and integrity of the RNA samples, A260/A280 

spectrophotometric measurements on a GeneQuant RNA/DNA quantifier (Amersham 

Pharmacia Biotech, U.K.) were performed. 

 

2.3.8.2 Reverse transcription and gene expression analysis 

 

Reverse transcription of the RNA (1 g/ml) to cDNA  was performed using 50 µl of master 

mix (Taqman reverse transcription reagents) containing 1 x Taqman reverse transcription 

buffer, 5.5 mM MgCl2, deoxyNTP mixture (500 µM per NTP), 2.5 M Random hexamers, 

0.4 U/µl RNAse inhibitor and 1.25 U/µl multiscribe reverse transcriptase. Tubes were 

incubated for 10 minutes at 25
o
C followed by 30 minutes incubation at 48

o
C in a Perkin 

Elmer 480 thermal cycler (Perkin Elmer, Boston MA, USA). Reverse transcriptase was 

inactivated by incubation of sample for 5 minutes at 95
o
C. This product (10 ng/l) of the 

reverse transcription process was diluted one in four for the purpose of analysis by real time 

polymerase chain reaction (PCR). 

  

Transcriptional expression of target messenger (m)RNA transcripts in the cRNA samples 

created previously were detected by PCR amplification and quantified by 5'-nuclease assay 

utilising fluorescent labelled Taqman probes and analysed using real time quantitative PCR 
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with the ABI PRISM 7000 Sequence Detection System (Applied Biosystems, Warrington, 

UK). TaqMan probes have a fluorescent reporter dye (i.e. FAM or VIC) covalently linked to 

its 5'-end and a downstream quencher dye (TAMRA) that is linked to its 3'-end. The 

quenching of the fluorescence is dependent on the spatial proximity of the reporter and 

quencher dyes. The advantage of Real Time PCR is that since two different dyes can be used, 

i.e. FAM and VIC, the reactions can be internally controlled by an endogenously expressed 

gene, such as 18S. For the experiments performed in this thesis, reactions
 
were internally 

controlled using the 18S RNA assay. The 18S uses VIC as the reporter dye whereas all of the 

target genes have a FAM reporter dye. 

 

PCR
 
reactions were performed in a total reaction volume of 25 µl. This volume contained 3 µl 

of sample cDNA (2.5 ng/l), with the designed reverse primer, forward primers and the probe 

or alternatively the purchased Assay on Demand of the target gene, 2x TaqMan universal 

master mix and 18S internal control. The specific products were amplified and detected using 

the ABI PRISM 7000 Sequence Detection System (Applied Biosystems, Warrington, 

Cheshire, U.K.) and an amplification protocol consisting of 1 cycle for 2 minutes at 50C, 1 

cycle for 10 minutes at 95C, 40 cycles for 15 seconds at 95C, and 1 minute at 60C. The 

results were analysed
 
using a Sequence Detection Software (Applied Biosystems, Warrington, 

Cheshire, U.K.), and the relative amount of target gene transcript was normalised to the 

amount of 18S internal control transcript in the same cDNA sample. The critical threshold 

cycle (Ct), simply defined as the cycle at which the fluorescence from the TaqMan probe 

becomes detectable above background, is inversely proportional to the logarithm of the initial 

number of template molecules. Therefore, the higher the concentration of the target, the lower 

the number of amplification cycles required to detect the rise above baseline. The ct, which 

following guidelines from Applied Biosystems is manually determined by the operator, will 
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always be set during the exponential phase of amplification and will thus be unaffected by 

reaction components becoming limited in the plateau phase and consequently leading to false 

results. 

 

The PCR reaction is exponential, therefore, the data has been expressed as arbitrary values 

with the exponential reaction taken into account, using the following equation: 2
-delta ct

 i.e. 2
-

(target ct – 18s ct)
, written as 2

-ct
.  

 

Assays on demand were obtained from Applied Biosystems for mouse IL-1β, IL-18 and KC. 

 

2.3.8.3 Validation of Multiplexed Reactions 

 

To ensure that the assay worked efficiently, the assays on demand were validated in a 

reaction carried out in the presence of an 18S internal control (multiplex reaction). Using a 

panel of tissues from mouse, target gene rich samples were identified for the purposes of 

validation. The tissue containing the highest level of gene was selected and a cDNA standard 

curve was created using the concentrations 25, 8.333, 2.778, 0.926, 0.309, 0.103, 0.034 and 

0.011 ng/25 μl. Once the Ct values for both the target gene and the 18S internal control were 

plotted, the efficiency was examined. Typically, an efficient reaction will have a slope of 

about -3.3 and an R
2
 value close to 1, but no lower than 0.98. For an efficient multiplex 

reaction the slope of the graph when the delta Ct values (change in Ct values between 18S 

and target) are plotted against RNA concentration will be less than 0.1. 

 

Using guidelines from the manufacturer (Applied Biosystems), the Ct value can be obtained 

for each reaction from the corresponding amplification plot. The baseline is set to incorporate 
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the range of cycles in which the PCR product is not amplified. To avoid the results being 

affected by the reaction components becoming limited in the plateau phase, the threshold line 

is set in the centre of the exponential phase of amplification. For each reaction, the Ct value is 

the cycle number at the point where the threshold line crosses the amplification plot.  

Throughout this thesis the data was expressed as arbitrary values using an equation (2
-delta Ct

, 

i.e. 2
-(Target Ct – 18S Ct)

) that allows for the exponential nature of the PCR reaction. 

 

2.4 In vitro models 

 

2.4.1 Culture of cell lines 

 

The THP-1 human monocytic cell line was originally derived from the peripheral blood of a 

1 year old human male with acute monocytic leukemia. Whilst this cell line is monocytic, 

they can be differentiated into alveolar macrophages-like cells. Furthermore, they have TLR4 

and P2X7 receptors and have been shown to produce IL-1β and IL-18, both cytokines of 

interest associated with inflammasome activation (Grahames et al., 1999). 

 

To provide a link between the human cell based assays and the in vivo mouse modelling 

systems I also used a mouse monocyte cell line to investigate the pathway using in vitro cell 

based assays. The J774.2 mouse macrophage cell line was originally recloned from the 

original ascites and solid tumour J774.1. Similar to the THP-1 human monocytic cell line, 

these cells express both TLR4 and P2X7 receptors and have been demonstrated to produce 

IL-1β and IL-18. However, whilst the THP-1 cell line is non-adherent, the J774.2 mouse 

macrophages are semi-adherent. 
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Both cell lines were purchased from the European Collection of Cell Cultures (ECACC, 

Salisbury, Wiltshire, UK) and the frozen ampoule was left at room temperature for 

approximately 1 minute and then transferred to a 37C water bath for 1-2 minutes until fully 

thawed. The cells were then cultured in RPMI 1640 with glutamax I (Invitrogen Ltd, UK) 

supplemented with 10% FCS and 1% antibiotic and antimycotic solution 

(Penicillin/Streptomycin – Sigma-Aldrich Co., Poole, UK) at 37C in a humidified 

atmosphere (95% air, 5% (v/v) CO2). They were cultured into 75 cm
3
 flasks, and the media 

was replaced after 3 days and thereafter every 48 hours. The J774.2 cell line must be scraped 

from the bottom of the flask before replacing the media. The media was changed by 

centrifuging the cell suspension at 800 x g for 5 minutes at room temperature, in a centrifuge 

(Mistrall 3000i, MSE). The supernatant was discarded, and the pellet of cells was 

resuspended in 1 ml of RPMI 1640 with glutamax I, supplemented with 10% FCS and 1% 

antibiotic and antimycotic solution. Trypan Blue exclusion was performed to determine cell 

viability and cells were passaged into 2 x 75 cm
3
 flasks when cell numbers reached 10 x 10

6
 

cells/ml. Both cell lines have a doubling time of approximately 48 hours. 

 

2.4.2 Cell viability assays 

 

For the purpose of determining cell viability in these studies, two different techniques were 

used. Conventionally, cell growth determination is undertaken by counting viable cells after 

staining with a vital dye. 
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2.4.2.1 Trypan blue exclusion 

 

The cell viability of non-adherent cell (e.g. THP-1 human monocytic cell line) was 

determined using the Trypan Blue (Sigma-Aldrich Co., Poole, UK) exclusion method. 10 l 

of cell suspension was added to 90 l of Trypan Blue solution, mixed and left at room 

temperature for 5 minutes. 10 l was then added to an Improved Neubaur haemocytometer 

and observed under a light microscope at x40 magnification. Viable cells will exclude the dye 

and appear unstained, whilst dead cells are stained blue. Cell viability was calculated as a 

percentage by dividing the number of viable cells by the number of dead and viable cells. 

 

2.4.2.2 MTT Assay 

 

An alternative method to determine cell viability is by measuring mitochondrial 

dehydrogenase activity in living cells. A technique used when assessing the cell viability of 

adherent cells (e.g. J774.2 mouse macrophage cell line). At the end of each experiment cell 

viability of these adherent macrophages were examined by measuring the mitochondria-

dependent reduction of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) 

to formazan. Mitochondrial dehydrogenases of viable cells cleave the tetrazolium ring, 

yielding purple MTT formazan crystals which are insoluble in aqueous solutions. The 

crystals can be dissolved in acidified MTT solvent, such as dimethylsulphoxide (DMSO). 

The resulting purple solution is then measured spectrophotometrically. The supernatant from 

adherent macrophages were removed and retained for ELISA and 500 µl of RPMI containing 

1 mg/ml MTT (Sigma-Aldrich Co., Poole, UK) was added to each well. Cells were then 

incubated for 15 minutes at 37°C. The MTT-containing RPMI was removed by inverting the 

plate and 500 µl of DMSO was added to each well. The plate was shaken to allow formazan 
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to dissolve in the DMSO, and the absorbance was read in a plate reader at a 540 nM. An 

increase in cell viability results in an increase in the amount of MTT formazan formed and 

therefore, results in an increase in absorbance measured. 

 

2.5 Human Tissue 

 

Human lung tissue samples were obtained from a transplant programme. Ethical approval for 

the study was obtained from the Royal Brompton and Harefield ethics committee. Patient 

details will be reported where necessary in the appropriate section of this thesis. 

 

2.6 Statistical Analysis 

 

All values are expressed as mean ± S.E.M. of n observations. The data was assessed for 

statistical significance by applying an unpaired t-test for parametric data or alternatively 

Mann-Whitney U-test for non-parametric data with independent groups compared with their 

specific time-matched controls. For multiple comparisons tests, statistical analysis was 

performed by applying a one-way ANOVA (analysis of variance) with a Dunnett’s or 

Bonferroni’s multiple comparisons post-test for parametric data or alternatively a Kruskal-

Wallis incorporating Dunn’s multiple comparison post-test for non-parametric data. In all 

tests, statistical analysis was performed by comparing treatment groups with relevant vehicle 

controls. A p-value of less than 0.05 was considered statistically significant. All statistical 

analysis was performed in ‘GraphPad Instat’ as part of the GraphPad software.  

 

 



95 

 

2.7 Materials 

 

Amersham Pharmacia Biotech, U.K - GeneQuant RNA/DNA quantifier 

Applied Biosystems, Warrington, UK - 18S endogenous control, universal mastermix, 

reverse transcription kit, assays on demand for target genes, optical reaction plates and 

optical adhesive covers. 

AstraZeneca – AZ11645373 

Biorad, Munich, Germany – Bradford assay 

CP Pharmaceuticals Ltd, Wrexham, UK - Heparin 

ECACC, Salisbury, Wiltshire, UK - human THP-1 monocytic cell-line, mouse J774.2 

macrophage cell-line 

Enzo Life Sciences, Exeter, UK - Caspase 1 colorimetric assay 

Fisher Scientific, Loughborough UK - Nunc 96 well maxisorb ELISA plates 

Fresenius Kabi, Warrington, UK - Endotoxin free saline 

Harlan-Olac, Bicester, UK - C57BL/6 mice 

Invitrogen Ltd, Paisley, UK - Foetal calf serum, Foetal bovine serum, RPMI-1640,  

Mesoscale Discovery, Gaithersburg, ML, USA - MSD ultrasensitive plates, reagents 

National Veterinary Services Ltd, Stoke-on-Trent, UK - Sodium pentobarbitone (Euthatal) 

Peakdale Molecular – A-438079 

Perkin Elmer, Cambridge, UK - ATPlite luminescence ATP detection system 

R&D Systems, Abingdon, UK - ELISA kit Duoset for human (IL-1β, TNF-α, IL-6, IL-8 and 

IL-18) and mouse (IL-1β, TNF-α, IL-6, KC and IL-18), streptavidin horse radish peroxidase. 

Roche Diagnostics, East Sussex, UK - Collagenase, DNAse, penicillin/streptomycin 

Sigma-Aldrich Co Ltd, Poole, UK - 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium 

bromide (MTT), bovine serum albumin (BSA), chloroform, dimethylsulphoxide (DMSO), 
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isopropanol, lipopolysaccharide, modified Wright-Giemsa stain, methyl cellulose, 

NXTRACT CelLytic NuCLEAR Extraction kit, Penicillin/Streptomycin, phosphate buffered 

saline (PBS), T-75 cell culture flask, Tri-reagent, Trypan Blue solution, tween80 

Stratech Scientific, Suffolk, UK - Amplite Colorimetric NAD/NADH Assay Kit 

Tobacco Health Research Institute, University of Kentucky, Lexington, KY - 3R4F 

cigarettes 

VWR International LTD, Lutterworth, UK – 24-well cell culture plate, ethanol, glucose, 

magnesium chloride (MgCl2), magnesium sulphate, potassium chloride (KCl), sodium 

chloride (NaCl), sulphuric acid. 
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Inflammasome Activation in Acute Models of 

Airway Inflammation 

Chapter 3 
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3.1 Rationale 

 

It has been demonstrated that the inflammation seen in the lungs of COPD patients is initially 

driven by neutrophils in the acute phase, with the phenotype of the disease changing to 

incorporate the actions of macrophages and lymphocytes in more chronic conditions (Di 

Stefano et al. 1996; Saetta et al., 1997), in particular CD8
+
 T cells and B cells (Hogg et al., 

2004; Van der Strate et al., 2006). Recent publications have also shown that airway 

neutrophilia is involved in animal models of the disease (Shapiro, 2000; Churg & Wright, 

2007). In order to determine the role of the P2X7 – inflammasome signalling axis in COPD, I 

wanted to characterise in vivo modelling systems in animals that could replicate the disease 

phenotype.  

 

Two acute models of COPD-like inflammation that elicit neutrophilia were characterised in 

C57BL/6 mice, as this is the background strain on which the P2X7 receptor knockout mice 

are bred. Male mice were used as they would eliminate a range of physiological variables. 

The first model selected is driven by exposure to cigarette smoke, the primary etiological 

factor driving the pathogenesis of the disease. This model will provide the most accurate 

model of disease phenotype in animals. The second model is driven by lipopolysaccharide 

(LPS), which will facilitate paralleling experiments using a stimulus of the normal innate 

defence system that induces airway neutrophilia. Preliminary dose-response experiments 

would aim to establish a sub-maximal challenge to cigarette smoke and LPS that would 

induce inflammation in the lungs of mice in order to detect any modulation of the 

inflammatory response. This would then be followed with temporal characterisation of these 

models to identify an optimal time point at which to assess inflammatory end-points of 

interest. By comparing the differences in the inflammatory profiles of both insults, it will be 
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possible to identify if particular differences are specific to the disease or as a result of a more 

general immunological phenomenon. Markers of NLRP3 inflammasome activation, such as 

caspase 1 activity and the processing and release of IL-1β/IL-18, will then be examined to 

determine if these are linked to the inflammation seen in response to these stimuli. 
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3.2 Methods 

 

3.2.1 Determination of a sub-maximal dose of cigarette smoke to induce airway 

inflammation in C57BL/6 mice. 

 

The aim of this preliminary experiment was to establish a sub-maximal exposure challenge to 

cigarette smoke that would induce an inflammatory response in the lungs of mice. This sub-

maximal challenge would allow us to determine the role of the inflammasome, by using 

specific P2X7 receptor antagonists and knockout animals and examining any modulation of 

the inflammatory response. 

 

Male C57BL/6 mice (18-20 g) to either room air or 250, 500 or 750 ml (maximum smoke 

challenge possible in this system) mainstream cigarette smoke per minute using 3R4F 

cigarettes (Tobacco Health Research Institute, University of Kentucky, Lexington, KY) for a 

total exposure period of 50 minutes (excluding 10 minute venting period), either once or 

twice daily, for three consecutive days (as detailed in section 2.2.2). Each group consisted of 

n=8 animals. The total suspended particulate (TSP) levels within the chamber were assessed 

at 15, 30 and 40 minutes (sampled over a 1 minute period) in order to confirm the consistency 

of the exposures. 

  

Mice were culled 24 hours after the last challenge with an overdose of intraperitoneal (i.p.) 

sodium pentobarbitone (200 mg/kg) and the lungs were lavaged (as described in section 

2.3.1) for total cell counts and 4-part differential cell counts (neutrophils, eosinophils, 

monocytes/macrophages and lymphocytes, see section 2.3.3). 
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3.2.2. Determination of a sub-maximal dose of aerosolised LPS to induce airway 

inflammation in C57BL/6 mice. 

 

An appropriate sub-maximal challenge of LPS was determined by challenging  animals (male 

C57BL/6 mice, 18-20 g) with either 0.1, 1 or 10 mg/ml aerosolised LPS (Escherichia coli, 

serotype 0111:B4, Sigma-Aldrich Ltd. Poole, UK) or endotoxin free saline (Fresenius Kabi, 

Warrington, UK) in a Perspex treatment box (600 x 240 x 350 mm) for 30 minutes using a 

System 22 nebuliser (Medic-Aid Ltd., Pagham, Sussex) driven by a high-flow-rate 

compressor (Medic-Aid Ltd., Pagham, Sussex) (as detailed in section 2.2.1). Each group 

consisted of n=6 animals. 

 

Mice were culled 4 hours after the LPS challenge with an overdose of intraperitoneal (i.p.) 

sodium pentobarbitone (200 mg/kg) and BALF was collected (as described in section 2.3.1) 

for total cell counts and 3-part differential cell counts (neutrophils, eosinophils and 

lymphomononuclear cells, see section 2.3.3). 

 

3.2.3. Temporal characterisation of cigarette smoke-induced airway inflammation in 

C57BL/6 mice. 

 

Having previously identified a robust sub-maximal exposure level of cigarette smoke, further 

temporal characterisation of this model would facilitate the process of identifying an optimal 

time point at which to assess inflammatory end-points of interest including cellular 

infiltration, pro-inflammatory mediator release and caspase 1 activity. These markers of 

“inflammasome activation” will provide essential end-points to evaluate the role of the 
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inflammasome in the inflammation associated with COPD by using specific P2X7 receptor 

antagonists and knockout animals. 

 

To track the inflammatory response to cigarette smoke exposure, mice were exposed to either 

room air or a sub-maximal (500 ml/min) dose of cigarette smoke (as detailed in section 2.2.2) 

for a total exposure period of 50 minutes (excluding 10 minute venting period), twice daily, 

for 3 consecutive days. Each group consisted of n=18 animals at each time point. Mice were 

euthanised with an overdose (200 mg/kg) of i.p sodium pentobarbitone at various time points 

after challenge (2, 6, 24, 48, 72, 96 and 168 hours). BALF and lung tissue samples were 

collected for analysis as follows; 

 

 BALF (processed as described in section 2.3.1): 

- Total cell counts and 4-part differential cell counts (neutrophils, eosinophils, 

monocytes/macrophages and lymphocytes, as described in section 2.3.3), n=8. 

- Cytokine analysis in BALF determined by MSD technology, n=5 (as described in 

section 2.3.4.2). 

- ATP levels were analysed in the BALF by using a commercially available assay, 

n=6 (as described in section 2.3.6) 

 

 Lung tissue (processed as described in section 2.3.1): 

- Collagenase digest (as described in section 2.3.1) for total cell counts and 4-part 

differential cell counts (neutrophils, eosinophils, monocytes/macrophages and 

lymphocytes, as described in section 2.3.3), n=6. 

- Flash frozen in liquid nitrogen for cytosolic and nuclear cell fraction extraction (as 

described in section 2.3.5.1), determination of caspase 1 activity (as described in 
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section 2.3.5.2) and quantification of mRNA expression (as described in section 

2.3.7), n=6. 

 

3.2.4. Temporal characterisation of LPS-induced airway inflammation in C57BL/6 

mice. 

 

By tracking the inflammatory response following acute LPS exposure an optimal time point 

at which to measure key inflammatory end points can be determined. This will facilitate the 

process of identifying if the inflammasome pathway is involved in the innate immune 

response activated in response to an endotoxin challenge by utilising pharmacological tools to 

target the P2X7 receptors and knockout animals. 

 

To track the inflammatory response, male C57BL/6 mice (18-20 g) were challenged with 

endotoxin free saline (Fresenius Kabi, Warrington, UK) or a sub-maximal dose of 1 mg/ml 

LPS (Escherichia coli, serotype 0111:B4, Sigma-Aldrich Ltd. Poole, UK) for 30 minutes (as 

detailed in section 2.2.1). Animals were euthanised with an overdose of i.p sodium 

pentobarbitone (200 mg/kg) at various time points after challenge (2, 6, 24, 48, 72, 96 and 

168 hours). BALF and lung tissue samples were collected for analysis as detailed in section 

3.2.3. 

 

3.2.5. Statistical analysis 

 

Data is expressed as mean ± S.E.M of n observations. For data where each independent group 

is compared to its time matched control, statistical significance was determined using a 

Student’s t-test for parametric or a Mann-Whitney U-test (or Wilcoxon rank test) for non-
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parametric data. For multiple comparisons tests, statistical analysis was performed by 

applying a one-way ANOVA (analysis of variance) with a Dunnett’s (comparing with a 

single control group) or Bonferroni’s (multiple comparisons) post-test for parametric data or 

alternatively a Kruskal-Wallis incorporating Dunn’s multiple comparison post-test for non-

parametric data. A P value < 0.05 was taken as significant and all treatments were compared 

with the appropriate control group. 
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3.3. Results 

 

3.3.1 Determination of a sub-maximal dose of cigarette smoke to induce airway 

inflammation in C57BL/6 mice. 

 

To establish a sub-maximal exposure of cigarette smoke that would elicit an inflammatory 

response, mice were exposed to increasing doses of cigarette smoke (250, 500, 750 ml/min) 

once or twice daily, for three consecutive days. Mice were culled 24 hours after challenge 

with an overdose of intraperitoneal (i.p.) sodium pentobarbitone. This time point was chosen 

based on findings in the literature that demonstrate that neutrophilia is increased at this time 

point (Morris et al, 2008). 

 

No increases in BALF neutrophilia were seen in mice exposed to CS once daily at any dose. 

In contrast, a significant dose-dependent increase in BALF neutrophilia was shown in mice 

exposed twice daily at the higher doses of 500 and 750 ml/min of cigarette smoke (Figure 

3.1) when compared to the air exposed animals. Interestingly, monocytes/macrophages 

(Figure 3.2) numbers recovered in the BALF exhibited significant decreases at all three 

cigarette smoke doses, in both once and twice daily exposure groups when compared to their 

air exposed controls groups. A similar decrease was also observed for BALF lymphocyte 

numbers in both once and twice daily exposure groups; however this did not reach 

significance when compared to the air exposed groups (Figure 3.2). 

 

Based on these findings, 500 ml/min cigarette smoke, administered twice daily was selected 

as the sub-maximal exposure dose to use in the temporal characterisation of this model as it 

provided a significant increase in BALF neutrophilia. 
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Figure 3.1 – Effect of cigarette smoke exposure on airway neutrophilia in the BALF. C57BL/6 mice were 

challenged with room air or cigarette smoke at 250, 500 or 750 ml/min, once or twice daily for 3 consecutive 

days and BALF neutrophilia was determined by differential counting under light microscopy. Data represented 

as Mean ± SEM for n=8 observations. Statistical significance determined with a Kruskal-Wallis incorporating 

Dunn’s post-test for non-parametric data. * = P<0.05 and denotes a significant difference to the air exposed 

control group. 
 

 

 1x Daily 2x Daily 

Cells (103/ml) Room Air 250 500 750 Room Air 250 500 750 

Eosinophils 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.06±0.06 0.0±0.0 

Monocyte/ 

Macrophage 
159.80±11.6 102.20±12.3 70.81±5.0* 79.93±5.1* 181.70±23.9 82.68±10.8* 68.62±12.3* 58.62±9.3* 

Lymphocytes 
8.48±3.0 3.96±1.0 3.47±0.9 4.99±1.0 13.35±6.7 3.76±1.1 4.67±1.0 6.14±0.8 

Figure 3.2 – Effect of cigarette smoke exposure on inflammatory cell recruitment in the BALF. C57BL/6 

mice were challenged with room air or cigarette smoke at 250, 500 or 750 ml/min once or twice daily for 3 

consecutive days and numbers of neutrophils, eosinophils, monocytes/macrophages and lymphocytes recovered 

from the BALF was determined by differential counting under light microscopy. Data represented as Mean ± 

SEM for n=8 observations. Statistical significance determined with a Kruskal-Wallis incorporating Dunn’s 

post-test for non-parametric data. * = P<0.05 and denotes a significant difference to the air exposed control 

group. 
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3.3.2 Determination of a sub-maximal dose of LPS to induce airway inflammation in 

C57BL/6 mice. 

 

Having identified an appropriate sub-maximal exposure limit to elicit an inflammatory 

response to cigarette smoke, the same was determined for the endotoxin challenge utilising 

LPS. Mice were challenged with either saline or increasing doses of aerosolised LPS (0.1, 1, 

or 10 mg/ml) for 30 minutes. Mice were culled 4 hours after challenge with an overdose of 

intraperitoneal (i.p.) sodium pentobarbitone. 

 

Animals exposed to LPS showed a significant dose-related increase in BALF neutrophilia 

(Figure 3.3) when compared to the saline challenged control group at the four top doses. This 

increase was also mirrored with increased numbers of BALF eosinophils (Figure 3.4) 

compared to saline challenged controls. In contrast however, a significant decrease in 

lymphomononuclear cell number was also seen in response to the LPS challenge (Figure 3.4). 

These findings suggest that the 1 mg/ml dose of LPS will provide the most appropriate 

submaximal exposure limit in order to examine the temporal changes seen in the 

inflammatory response following endotoxin challenge. 
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Figure 3.3 – Effect of LPS exposure on airway neutrophilia in the BALF. C57BL/6 mice were challenged 

with saline or LPS (0.03, 0.1, 0.3, 1, 3 or 10 mg/ml) and BALF neutrophilia was determined by differential 

counting under light microscopy. Data represented as Mean ± SEM for n=6 observations. Statistical 

significance determined with a Kruskal-Wallis incorporating Dunn’s post-test for non-parametric data. * = 

P<0.05 and denotes a significant difference to the saline exposed control group. 
 

 

 

Cells (10
3
/ml) Saline 0.1 1 10 

Eosinophils 
0.0±0.0 33.0±5.0 92.0±15.0* 61.0±18.0* 

Lymphomononuclear 
63.0±6.0 11.0±3.0* 18.0±4.0* 31.0±6.0 

Figure 3.4 – Effect of LPS exposure on inflammatory cell recruitment in the BALF. C57BL/6 mice were 

challenged with with saline or LPS (0.03, 0.1, 0.3, 1, 3 or 10 mg/ml) and numbers of neutrophils, eosinophils 

and lymphomononuclear cells recovered from the BALF was determined by differential counting under light 

microscopy. Data represented as Mean ± SEM for n=6 observations. Statistical significance determined with a 

Kruskal-Wallis incorporating Dunn’s post-test for non-parametric data. * = P<0.05 and denotes a significant 

difference to the saline exposed control group. 
 

  



109 

 

3.3.3. Temporal characterisation of cigarette smoke-induced airway inflammation in 

C57BL/6 mice. 

 

To track the inflammatory response to elicited by sub-maximal exposure to cigarette smoke, 

mice were exposed to either room air or a sub-maximal (500ml/min) dose of cigarette smoke 

for 50 minutes, twice daily, for 3 consecutive days. Mice were euthanised with an overdose 

(200 mg/kg) of i.p. sodium pentobarbitone at various time points after challenge (2, 6, 24, 48, 

72, 96 and 168 hours). 

 

A significant increase in BALF neutrophils was exhibited at 24, 48 and 72 hours following 

the final smoke exposure when compared to their time matched controls (Figure 3.5) that 

peaked 48 hours following the final smoke exposure. There were no significant changes in 

eosinophil numbers at any time point following cigarette smoke exposure in the BALF 

(Figure 3.6). The monocyte/macrophages were significantly elevated at the 2, 24 and 72 

hours time points when compared to their time-matched air exposed controls however, this 

increase was less profound compared to the neutrophilia in response to the smoke exposure 

(Figure 3.6). The lymphocytes demonstrated increases at similar time points; however, these 

were smaller in magnitude when compared to that of the neutrophils (Figure 3.6) 

 

Examination of the differential counts in the lung tissue indicated no significant increases in 

neutrophils (Figure 3.7) eosinophils, monocyte/macrophages and lymphocytes (Figure 3.8). 

 

A significant increase in caspase 1 activity in the lung tissue was shown at 24 and 48 hours 

following the final smoke exposure when compared to their time matched controls (Figure 

3.9). Moreover, increases at these time points were mirrored in the levels of IL-1β and IL-18 
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detected in the BALF following CS exposure that were shown to be increased at 24 and 48 

hours following the exposure when compared to their time matched controls (Figure 3.10B & 

3.11B). This suggests that there appears to be a correlation between the increase in airway 

neutrophilia, caspase 1 activity and IL-1/IL-18 release. These increases were not reflected at 

the gene level, as examination of mRNA expression in the lung tissue saw no significant 

increases (Figure 3.10A & 3.11A).  

 

Interestingly, a significant increase in KC expression was shown at all time points following 

the final smoke exposure at both the gene (Figure 3.12A) and protein (Figure 3.12B) levels. 

However, this increase in KC production did not seem to temporally correlate with cellular 

inflammation. I could not detect an increase in ATP levels in the BAL fluid in response to CS 

exposure. To check whether the processing techniques or storage conditions could be 

masking the levels of ATP, I performed a series of tests and examined the level of ATP 

(Figure 3.13). Increasing concentrations of ATP were dissolved in the following preparations: 

1. Water 

2. Water – Frozen and thawed 

3. RPMI 

4. RPMI – with ATP level assessed 2 hours later 

5. RPMI - Frozen and thawed 
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Figure 3.5 – Temporal characterisation of cigarette smoke exposure on airway neutrophilia in the BALF. 
C57BL/6 mice were challenged with room air or 500 ml/min cigarette smoke, twice daily for 3 consecutive days. 

Samples were collected at 2, 6, 24, 48, 72, 96 and 168 hours after challenge and the BALF neutrophilia was 

determined by differential counting under light microscopy. Data represented as Mean ± SEM for n=8 

observations. Statistical significance determined with a Mann-Whitney U-test for non-parametric data. * = 

P<0.05 and denotes a significant difference to the time-matched air exposed control group. 

 

 
Cells 

(10
3
/ml) 

Eosinophils 
Monocytes/ 

Macrophages 

Lymphocytes 

2 hrs 
Air 0.00±0.00 81.56±7.74 3.93±0.83 

Smoke 0.00±0.00 150.10±13.85* 4.26±1.19 

6 hrs 
Air 0.65±0.48 103.50±12.18 4.98±1.01 

Smoke 0.25±0.17 98.95±6.95 4.96±0.98 

24 hrs 
Air 0.00±0.00 59.31±11.05 1.79±0.41 

Smoke 0.00±0.00 137.70±17.20* 5.73±1.35* 

48 hrs 
Air 0.13±0.13 90.35±4.79 6.08±2.43 

Smoke 2.80±2.80 117.90±9.70 4.45±1.05 

72 hrs 
Air 0.00±0.00 91.70±12.43 4.79±1.13 

Smoke 0.00±0.00 166.10±22.43* 6.34±1.18 

96 hrs 
Air 0.08±0.08 92.09±18.26 3.00±0.79 

Smoke 0.00±0.00 107.40±14.63 7.78±1.74* 

168 hrs 
Air 1.88±1.88 69.91±3.99 2.93±0.97 

Smoke 0.00±0.00 108.80±10.50* 5.98±1.42 

Figure 3.6 – Temporal characterisation of cigarette smoke exposure on inflammatory cell recruitment in the 

BALF. C57BL/6 mice were challenged with room air or 500 ml/min cigarette smoke, twice daily for 3 

consecutive days. Samples were collected at 2, 6, 24, 48, 72, 96 and 168 hours after challenge and the numbers 

of neutrophils, eosinophils, monocytes/macrophages and lymphocytes recovered from the BALF was determined 

by differential counting under light microscopy.  Data represented as Mean ± SEM for n=8 observations. 

Statistical significance determined with a Mann-Whitney U-test for non-parametric data. * = P<0.05 and 

denotes a significant difference to the time-matched air exposed control group. 
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Figure 3.7 – Temporal characterisation of cigarette smoke exposure on neutrophilia in the lung tissue. 
C57BL/6 mice were challenged with room air or 500 ml/min cigarette smoke, twice daily for 3 consecutive days. 

Samples were collected at 2, 6, 24, 48, 72, 96 and 168 hours after challenge and the neutrophilia in the lung 

tissue was determined by differential counting under light microscopy. Data represented as Mean ± SEM for 

n=8 observations. Statistical significance determined with a paired student’s t-test for parametric data. * = 

P<0.05 and denotes a significant difference to the time-matched air exposed control group. 

 

 
Cells 

(10
3
/ml) 

Eosinophils 
Monocytes/ 

Macrophages 

Lymphocytes 

2 hrs 
Air 636±136.9 3965±561.2 1742±255.1 

Smoke 391±96.55 4075±975.6 1595±383.4 

6 hrs 
Air 334±190.6 3282±657.4 1205±275.3 

Smoke 205±37.69 1519±356.0 901±227.7 

24 hrs 
Air 1701±122.6 1484±158.1 755±137.3 

Smoke 1669±252.3 1690±229.4 738±125.5 

48 hrs 
Air 1268±236.5 1533±234.2 589±89.61 

Smoke 1781±258.2 2166±394.9 858±113.5 

72 hrs 
Air 1338±67.02 1595±265.7 564±93.62 

Smoke 1744±229.4 1990±177.2 666±115.3 

96 hrs 
Air 1584±432.7 1833±471.9 1393±231.0 

Smoke 1842±263.3 2100±228.3 1232±252.2 

168 hrs 
Air 3416±584.3 2791±592.0 2144±456.1 

Smoke 1923±159.9* 2560±85.01 1152±150.3 

Figure 3.8 – Temporal characterisation of cigarette smoke exposure on inflammatory cell recruitment in the 

lung tissue. C57BL/6 mice were challenged with room air or 500 ml/min cigarette smoke, twice daily for 3 

consecutive days. Samples were collected at 2, 6, 24, 48, 72, 96 and 168 hours after challenge and the numbers 

of neutrophils, eosinophils, monocytes/macrophages and lymphocytes in the lung tissue was determined by 

differential counting under light microscopy.  Data represented as Mean ± SEM for n=8 observations. 

Statistical significance determined with a Mann-Whitney U-test for non-parametric data. * = P<0.05 and 

denotes a significant difference to the time-matched air exposed control group. 
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Figure 3.9 – Temporal characterisation of cigarette smoke exposure on Caspase 1 activity in the lung tissue. 
C57BL/6 mice were challenged with room air or 500 ml/min cigarette smoke, twice daily for 3 consecutive days. 

Samples were collected at 2, 6, 24 and 48 hours after challenge and the Caspase 1 activity in the cytosolic 

fraction of the lung tissue was determined by a commercially available colourimetric assay. Data represented 

as Mean ± SEM for n=6 observations. Statistical significance determined with a Mann-Whitney U-test for non-

parametric data. * = P<0.05 and denotes a significant difference to the time-matched air exposed control 

group.. 
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A – Lung Tissue IL-1β mRNA Levels B – BALF IL-1β Levels 

Figure 3.10 – Temporal characterisation of cigarette smoke exposure on IL-1β levels in the lung. C57BL/6 

mice were challenged with room air or 500 ml/min cigarette smoke, twice daily for 3 consecutive days. Samples 

were collected at 2, 6, 24 and 48 hours after challenge and the expression of IL-1β mRNA levels in lung tissue 

(A) and cytokine release in the BALF (B) were determined. Data represented as Mean ± SEM for n=6 

observations. Statistical significance determined with a Mann-Whitney U-test for non-parametric data. * = 

P<0.05 and denotes a significant difference to the time-matched air exposed control group. 
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Figure 3.11 – Temporal characterisation of cigarette smoke exposure on IL-18 levels in the lung. C57BL/6 

mice were challenged with room air or 500 ml/min cigarette smoke, twice daily for 3 consecutive days. Samples 

were collected at 2, 6, 24 and 48 hours after challenge and the expression of IL-18 mRNA levels in lung tissue 

(A) and cytokine release in the BALF (B) were determined. Data represented as Mean ± SEM for n=6 

observations. Statistical significance determined with a Mann-Whitney U-test for non-parametric data. * = 

P<0.05 and denotes a significant difference to the time-matched air exposed control group. 
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Figure 3.12 – Temporal characterisation of cigarette smoke exposure on KC levels in the lung. C57BL/6 mice 

were challenged with room air or 500 ml/min cigarette smoke, twice daily for 3 consecutive days. Samples were 

collected at 2, 6, 24 and 48 hours after challenge and the expression of KC mRNA levels in lung tissue (A) and 

cytokine release in the BALF (B) were determined. Data represented as Mean ± SEM for n=6 observations. 

Statistical significance determined with a Mann-Whitney U-test for non-parametric data. * = P<0.05 and 

denotes a significant difference to the time-matched air exposed control group. 
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Figure 3.13 – Examination of various processing conditions on the detection of ATP using a commercially 

available assay. Various mediums were prepared with increasing concentrations of ATP. The levels of ATP in 

these solutions were then assessed in response to various processing conditions. Water, Water – Frozen and 

thawed, RPMI, RPMI – with ATP assessed 2 hours later, RPMI – Frozen and thawed. Data represented as 

Mean ± SEM for n=2 observations. 
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3.3.4 Temporal characterisation of LPS-induced airway inflammation in C57BL/6 mice. 

 

To identify an appropriate time point following LPS challenge to examine the end-points of 

interest, an inflammatory response was elicited in animals by exposure to either saline or 1 

mg/ml LPS for 30 minutes. Mice were euthanised with an overdose (200 mg/kg) of i.p. 

sodium pentobarbitone at various time points after challenge (2, 6, 24, 48, 72, 96 and 168 

hours). 

 

BALF neutrophilia peaked at 24 hours after LPS exposure but was only increased at all time-

points up to and including 48 hours when compared to the time matched controls (Figure 

3.14). Furthermore, the numbers of eosinophils in the BALF were significantly increased 

when compared to the time matched controls, peaking at 2 hours and returning to normal 

levels 48 hours post challenge (Figure 3.15). Initially, lymphomononuclear cells were 

significantly reduced in response to the LPS exposure at 2 and 6 hours post challenge, 

however, they become significantly increased between 24 and 96 hours post challenge when 

compared to the time matched controls (Figure 3.15). 

 

Differential cell counts of the lung tissue samples demonstrated a significant increase in lung 

tissue neutrophilia when compared to the time matched controls at 2 hours post challenge that 

is resolved by 72 hours (Figure 3.16). Similar to the neutrophils, the eosinophils peaked early 

on in response to the LPS challenge and were resolved by 48 hours post exposure (Figure 

3.17). The lymphomononuclear cells were also significantly increased in LPS exposed 

groups, however they peaked at the later 48 hour time point (Figure 3.17). 
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Determination of caspase 1 activity in the lung tissue highlighted that there was no increase 

in response to LPS exposure at any time point following LPS exposure when compared to 

their time matched controls (Figure 3.18). The inflammasome linked cytokines IL-1β and IL-

18 were both increased but unlike in response to CS exposure, these increases did not seem to 

temporally correlate with an increase in caspase 1 activity or neutrophilia. The mRNA 

expression of IL-1β was increased at 2 and 6 hours following LPS exposure (Figure 3.19A). 

This finding was mirrored in the release of IL-1β and in the BALF, peaking at 2 hours 

following LPS exposure and gradually attenuating (Figure 3.19B). The mRNA expression of 

IL-18 was shown to be unaffected in response to LPS exposure (Figure 3.20A); however, IL-

18 production was significantly increases at the 24 and 48 hour time points when compared 

to the time matched controls (Figure 3.20B). 

 

In similar fashion to IL-1β, a significant increase in KC gene expression and release was 

demonstrated that peaked at 2 hours post LPS exposure and gradually decreased (Figure 

3.21). Furthermore, attempts to examine the levels of ATP released into the BALF following 

LPS exposure proved to be unsuccessful as seen previously with samples from the CS model. 
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Figure 

3.14 – Temporal characterisation of LPS exposure on airway neutrophilia in the BALF. C57BL/6 mice were 

challenged with endotoxin free saline or 1 mg/ml LPS for 30 min. Samples were collected at 2, 6, 24, 48, 72, 96 

and 168 hours after challenge and the BALF neutrophilia was determined by differential counting under light 

microscopy. Data represented as Mean ± SEM for n=6 observations. Statistical significance determined with a 

paired student’s t-test for parametric data. * = P<0.05 and denotes a significant difference to the time-matched 

saline exposed control group. 
 

 
 Cells (10

3
/ml) Eosinophils Lymphomononuclear 

2 hrs 
Saline 0.01±0.01 138.50±16.95 

LPS 31.06±2.61* 26.83±2.48* 

6 hrs 
Saline 0.01±0.01 86.25±10.85 

LPS 19.61±3.00* 52.70±7.71* 

24 hrs 
Saline 0.01±0.01 92.40±8.21 

LPS 12.55±1.60* 163.30±15.03* 

48 hrs 
Saline 0.19±0.12 84.18±3.37 

LPS 1.65±1.22 178.00±25.93* 

72 hrs 
Saline 0.01±0.01 58.69±4.81 

LPS 1.24±0.87 165.40±22.25* 

96 hrs 
Saline 0.11±0.11 70.95±3.87 

LPS 0.69±0.53 198.80±17.57* 

168 hrs 
Saline 0.08±0.08 60.81±5.18 

LPS 0.01±0.01 91.18±9.38* 

Figure 3.15 – Temporal characterisation of LPS exposure on inflammatory cell recruitment in the BALF. 
C57BL/6 mice were challenged with endotoxin free saline or 1 mg/ml LPS for 30 min. Samples were collected at 

2, 6, 24, 48, 72, 96 and 168 hours after challenge and the numbers of neutrophils, eosinophils and, 

lymphomononuclear cells recovered from the BALF was determined by differential counting under light 

microscopy.  Data represented as Mean ± SEM for n=6 observations. Statistical significance determined with a 

Mann-Whitney U-test for non-parametric data. * = P<0.05 and denotes a significant difference to the time-

matched saline exposed control group. 
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Figure 3.16 – Temporal characterisation of LPS exposure on neutrophilia in the lung tissue. C57BL/6 mice 

were challenged with endotoxin free saline or 1 mg/ml LPS for 30 min. Samples were collected at 2, 6, 24, 48, 

72, 96 and 168 hours after challenge and the numbers of neutrophils in the lung tissue was determined by 

differential counting under light microscopy. Data represented as Mean ± SEM for n=6 observations. Statistical 

significance determined with paired student’s t-test for parametric data. * = P<0.05 and denotes a significant 

difference to the time-matched saline exposed control group. 
 

 
 Cells (10

3
/ml) Eosinophils Lymphomononuclear 

2 hrs 
Saline 239.0±97.15 2734±609.8 

LPS 1161.0±165.3* 1802±190.7 

6 hrs 
Saline 384.3±73.28 2235±310.8 

LPS 865.3±164.7* 3070±373.7 

24 hrs 
Saline 380.0±43.05 2978±466.0 

LPS 678.2±66.72* 3747±425.5 

48 hrs 
Saline 455.4±97.04 4334±491.6 

LPS 455.8±87.36 8130±913.5* 

72 hrs 
Saline 248.8±45.92 2953±470.7 

LPS 668.5±303.2 5884±947.6* 

96 hrs 
Saline 242.8±52.27 2401±487.8 

LPS 348.0±32.92 5319±551.1* 

168 hrs 
Saline 544.2±127.7 6898±481.2 

LPS 633.5±79.22 7861±599.3 

Figure 3.17 – Temporal characterisation of LPS exposure on inflammatory cell recruitment in the lung 

tissue. C57BL/6 mice were challenged with endotoxin free saline or 1 mg/ml LPS for 30 min. Samples were 

collected at 2, 6, 24, 48, 72, 96 and 168 hours after challenge and the numbers of neutrophils, eosinophils and 

lymphomononuclear cells in the lung tissue was determined by differential counting under light microscopy.  

Data represented as Mean ± SEM for n=6 observations. Statistical significance determined with paired 

student’s t-test for parametric data. * = P<0.05 and denotes a significant difference to the time-matched saline 

exposed control group. 
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Figure 3.18 – Temporal characterisation of LPS exposure on Caspase 1 activity in the lung tissue. C57BL/6 

mice were challenged with endotoxin free saline or 1 mg/ml LPS for 30 min. Samples were collected at 2, 6, 24 

and 48 hours after challenge and the Caspase 1 activity in the cytosolic fraction of the lung tissue was 

determined by a commercially available colourimetric assay. Data represented as Mean ± SEM for n=6 

observations. Statistical significance determined with paired student’s t-test for parametric data. * = P<0.05 

and denotes a significant difference to the time-matched saline exposed control group. 
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Figure 3.19 – Temporal characterisation of LPS exposure on IL-1β levels in the lung. C57BL/6 mice were 

challenged with endotoxin free saline or 1 mg/ml LPS for 30 min. Samples were collected at 2, 6, 24 and 48 

hours after challenge and the expression of IL-1β mRNA levels in lung tissue (A) and cytokine release in the 

BALF (B) were determined. Data represented as Mean ± SEM for n=6 observations. Statistical significance 

determined with a Mann-Whitney U-test for non-parametric data. * = P<0.05 and denotes a significant 

difference to the time-matched saline exposed control group. 
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Figure 3.20 – Temporal characterisation of LPS exposure on IL-18 levels in the lung. C57BL/6 mice were 

challenged with endotoxin free saline or 1 mg/ml LPS for 30 min. Samples were collected at 2, 6, 24 and 48 

hours after challenge and the expression of IL-18 mRNA levels in lung tissue (A) and cytokine release in the 

BALF (B) were determined. Data represented as Mean ± SEM for n=6 observations. Statistical significance 

determined with a Mann-Whitney U-test for non-parametric data. * = P<0.05 and denotes a significant 

difference to the time-matched saline exposed control group. 
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Figure 3.21 – Temporal characterisation of LPS exposure on KC levels in the lung. C57BL/6 mice were 

challenged with endotoxin free saline or 1 mg/ml LPS for 30 min. Samples were collected at 2, 6, 24 and 48 

hours after challenge and the expression of KC mRNA levels in lung tissue (A) and cytokine release in the BALF 

(B) were determined. Data represented as Mean ± SEM for n=6 observations. Statistical significance 

determined with a Mann-Whitney U-test for non-parametric data. * = P<0.05 and denotes a significant 

difference to the time-matched saline exposed control group. 
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3.4 Discussion 

 

Animal models of inflammation have long provided valuable insight in better understanding 

the underlying mechanisms driving disease pathophysiology and provided major 

contributions in drug discovery efforts. A wide range of in vivo models have been developed 

and utilised to tackle the growing problem that is COPD, including elastase, LPS and more 

recently cigarette smoke. Acute exposure to cigarette smoke elicits a neutrophil-driven 

inflammatory response; it remains the benchmark for in vivo models of COPD-like 

inflammation. In recent times, in vivo models of cigarette smoke induced lung inflammation 

have quickly become the preferred systems for investigating the underlying mechanisms 

driving the pathogenesis of COPD. With cigarette smoke being the primary etiological factor 

driving the pathogenesis of the disease combined with the fact that cigarette smoke contains 

over 4000 individual chemicals in every puff (Pryor and Church, 1993). More importantly, 

this model mimics disease pathogenesis more accurately and is in line with clinical findings. 

Furthermore, as seen in the clinic the inflammation seen in smoke exposure models is 

reported to be resistant to corticosteroid treatment (Marwick et al., 2004; Wan et al., 2010). 

 

The aim of these studies was to develop and characterise two acute models of airway 

inflammation. This would enable the role of the inflammasome to be investigated in a 

disease-like setting utilising the primary etiological factor known to drive the pathogenesis of 

COPD, cigarette smoke. In addition, I wanted to parallel my investigation in the LPS driven 

model as it too is a predominantly neutrophilic model, but one that is known to activate the 

innate immune response rather than replicate the disease phenotype. 
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To characterise an acute model of airway inflammation driven by cigarette smoke, dose-

response studies were performed to identify a robust sub-maximal exposure limit. These 

studies showed a significant dose-related increase in BALF neutrophilia in response to the 

twice daily exposures. This increase was not seen in the once daily exposure groups. 

Interestingly, although no changes were seen in the infiltration of eosinophils or lymphocytes 

in response to once or twice daily smoke exposure, the numbers of monocyte/macrophages in 

the lavage fluid demonstrated a significant decrease in the twice daily exposed animals. 

  

An appropriate sub-maximal dose of cigarette smoke was selected (twice daily, 500 ml/min) 

in order to examine the temporal changes in response to acute (3 day) cigarette smoke 

exposure, and determine the profile of the inflammatory response and resolution of the 

inflammation. A significant increase in BALF neutrophilia was seen between the 24 and 72 

hours time points that peaked at 48 hours following the final smoke exposure. As expected 

there were no differences in the eosinophil numbers when comparing the smoke exposed 

groups with their time-matched controls across all time-points. Monocyte/macrophage 

infiltration into the airway was shown to be significantly elevated at the 2, 24 and 72 hours 

time points when compared to their time-matched air exposed controls. Since the 

monocyte/macrophages demonstrated a variable response in the time course and showed 

decreased levels in the initial dose response study, the focus will be aimed at the neutrophil 

compartment of the cellular inflammation. 

 

This discrepancy between the BALF monocyte/macrophages numbers in the dose response 

and time course studies is a peculiar finding, howeve, others have reported it previously 

(Stevenson et al., 2007). One possible explanation for this finding is that the observed 

decrease in BAL monocyte/macrophages numbers in the dose response is possibly due to the 
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variances in the activation of these cells in response to CS exposure. Additionally, oxidant 

modification to matrix proteins by CS extract has also been proposed to enhance the adhesion 

of macrophages to matrix (Kirkham et al., 2003). Furthermore, macrophages are damaged by 

oxidants and could become overloaded with particulate matter following repeated exposure to 

CS. These changes can result in reduced migration and enhanced activation of macrophages 

(Morrow et al., 1988, Nikula et al., 2001). The above described findings may explain the 

variability in the numbers of monocyte/macrophages recovered in the BALF in my model. 

 

Lymphocytes showed a similar pattern of increased infiltration as that of the 

monocyte/macrophages however, these increases were less profound. Examining the cellular 

burden in the lung tissue showed no significant changes in any cell type at any time point 

when compared to their time matched controls. Closer examination of the numbers of cells in 

the BALF in comparison with the lung tissue demonstrates a ten-fold difference. This would 

make it difficult to identify any changes in the lung tissue since the increases in cellular 

burden in response to CS exposure are usually mild. Furthermore, upon activation these 

inflammatory cells might not be released into the tissue digest. Since no changes to cellular 

burden were seen in the lung tissue, from this point forward the inflammation in subsequent 

acute exposure experiment will be assessed in the BALF. 

 

The pathophysiological changes seen in COPD are believed to be due to the progressive, 

persistent low-level inflammation in response to cigarette smoke. It has previously been 

reported that the inflammatory response to smoke exposure in animal models appears to have 

to two distinct phases. The acute phase, which is defined by neutrophilia in the first week 

following the initial exposure to cigarette smoke, followed by the progressive chronic phase 

that is made up of neutrophils, macrophages and lymphocytes infiltrating the lung after 
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approximately one month of consistent exposure (D’hulst et al., 2005; Stevenson et al., 

2007). The protocol and dosing regimen developed here is similar to that of Morris et al., and 

produced results in line with those reported with 3 days of acute cigarette smoke exposure in 

C57BL/6 mice causing an increase in neutrophils peaking at 24 hours after challenge, 

followed later by macrophages (Doz et al., 2008; Morris et al, 2008). 

 

Examining markers of inflammasome activation in response to CS exposure revealed some 

interesting findings. A significant increase in caspase 1 activity in the lung tissue was seen 24 

and 48 hours following the final smoke exposure when compared to their time matched 

controls. Furthermore, the increases at these specific time points were mirrored in the 

elevated levels of IL-1β and IL-18 detected in the BALF in response to CS exposure when 

compared to their time matched controls at 24 and 48 hours following the exposure. This 

finding suggests that there appears to be a temporal correlation between the increase in 

caspase 1 activity, IL-1/IL-18 release and airway neutrophilia. The markers of 

inflammasome activation were only examined up to and including the 48 hour time point due 

to the expense involved with these specific assay kits. 

 

Interestingly, increases in IL-1β were not reflected at the gene level upon examination of 

mRNA levels in the lung tissue. This finding may help explain why the inflammation 

observed in these models, and perhaps in COPD patients is resistant to glucocorticoid 

treatment, as their mechanism of action is believed to be via blockade of 

transcription/translation of inflammatory cytokines. Thus, if the inflammation in the disease 

is driven by a mechanism that is independent of transcription/translation this could explain 

why steroid treatment has limited impact on the inflammation. Alternatively, it could be 

proposed that the site of release of IL-1β in this model is different to the site at which the 
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gene expression was examined. If the IL-1β levels detected in the BALF are released from 

the epithelial and endothelial cells in the outer layers of the airways in response to the smoke, 

then this would mean that we would need to examine the mRNA expression of IL-1β in that 

specific cell type or cell layer. 

 

A significant increase in KC expression was shown at all time points following the final 

smoke exposure at both the gene and protein levels. Interestingly, this increase in KC 

production did not seem to temporally correlate with the cellular inflammation. This may 

suggest that KC may not play an important role in driving the inflammation seen in this 

model. 

 

Intriguingly, examination of ATP levels in the BALF in response to CS exposure proved to 

be unsuccessful. This was surprising as other groups have reported successfully detecting 

increased ATP levels in the lavage fluid in following CS exposure using the same assay kit 

(Mortaz et al., 2010; Lucattelli et al., 2010). It is unclear why ATP levels could not be 

detected following CS exposure, however, the literature suggests that ATP is rapidly broken 

down by ectonucleotidases (Robson et al., 1997). To address the notion that ATP was being 

broken down rapidly following sample collection or the sample preparation techniques were 

affecting the ATP presence in these samples breakdown experiments were performed. These 

highlighted that ATP levels were maintained under various sample preparation 

techniques/conditions. There are alternate techniques to examine ATP levels in biological 

samples, including many novel techniques that will provide data in real-time and in live 

animals. Some of these are currently being investigated in order to determine the role of ATP 

in this CS driven model. 
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The LPS-induced airway inflammation model has previously been shown to induce a large 

influx of neutrophils to the lung (Poynter et al., 2003; Birrell et al., 2006). As performed with 

the cigarette smoke model, the LPS model in mice was characterised initially with dose-

response to LPS followed by a time-course to examine the temporal changes in the 

inflammation. The initial dose-response studies highlighted dose-related increases in 

neutrophils and eosinophils but not lymphomononuclear cells. Having selected the 

appropriate sub-maximal dose (1 mg/ml), the temporal changes following this LPS challenge 

were examined. Neutrophils peaked 24 hours after LPS exposure and were resolved by 48 

hours post challenge. Eosinophils peaked at 2 hours post challenge and were back to baseline 

by 48 hours as well. Initially, lymphomononuclear cells were significantly reduced in 

response to the LPS exposure at 2 and 6 hours post challenge, however, they become 

significantly increased between 24 and 96 hours post challenge when compared to the time 

matched controls. Examination of the cellular burden in the lung tissue showed more 

profound changes when compared to the data from the cigarette smoke model. Increases in 

neutrophils, eosinophils and lymphomononuclear cells were seen that mirroring those seen in 

the BALF. 

 

Examination of caspase 1 activity in the lung tissue highlighted that there was no increase in 

response to LPS exposure at any time point following LPS exposure when compared to their 

time matched controls. However, there was an increase in IL-1β and IL-18 levels. It is 

possible that the increase in caspase 1 activity responsible for the elevated levels of 

inflammasome linked cytokines may have taken place at an earlier time point than those 

examined following the LPS exposure. Alternatively, in this model the release of both IL-1β 

and IL-18 is not dependent on an increase in caspase 1 activity. Although caspase 1 may not 

be responsible in this LPS model, the literature suggests that neutrophil-derived serine 
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proteases such as cathepsin G, neutrophil elastase (NE) and proteinase 3 in addition to mast 

cell derived serine proteases granzyme A and chymase cleave the IL-1β precursor to produce 

a biologically active form (Black et al., 1991; Mizutani et al., 1991; Dinarello et al., 1986; 

Hazuda et al., 1990; Irmler et al., 1995). More recently, chromogranin A has also been 

demonstrated to process IL-1β into its mature active form (Terada et al., 2009). 

 

The expression of IL-18 at the mRNA level was shown to be unaffected in response to LPS 

exposure, yet IL-18 levels were still significantly increased at the 24 and 48 hour time points 

when compared to the time matched controls. Once again, as in the CS exposure model, the 

release of IL-18 seems to be independent of increased mRNA expression. Another difference 

between the LPS and CS exposure model is the increase in IL-1β mRNA expression in 

response to LPS exposure. Combined with the lack of increase in caspase 1 activity, it could 

be suggested that IL-1β may be processed differently in this model. It is also possible that the 

increase in pro- IL-1β in response to LPS driven NFκB activation and basal levels of caspase 

1 may be sufficient for IL-1β processing. 

 

A role for IL-1β in TH17 development has recently been proposed (Wilson et al., 2007). 

Furthermore, IL-1β is required for TH17 production of IL-17 and the subsequent neutrophilia 

(Burgler et al., 2009). The levels of IL-17 have been shown to be increased in COPD and 

correlate with both neutrophila and the severity of lung function decline (Alcorn et al., 2010). 

Animal models have shown that IL-17 production and neutrophilia is enhanced in mice 

exposed to CS (Melgert et al., 2007; Van Der Deen et al., 2007) whilst IL-17RA
-/-

 mice are 

protected against lung emphysema induced by CS.  It is possible that IL-1β production may 

drive TH17 development and influence the neutrophilic phenotype seen in these models and 
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explain some of the discrepancies with regards to the expression and production of IL-1β in 

both models. 

 

Similarly to IL-1β a significant increase in KC gene expression and protein was 

demonstrated, peaking at 2 hours post LPS exposure. It is well documented that LPS-induced 

lung inflammation, characterised by a large influx of neutrophils to the lung is regulated by 

the release of chemokines, such as KC (Frevert et al., 1995). This correlates with the time 

course of this model, where neutrophilic chemokines such as KC are increased in the BALF 

at 2 hours, followed by an increase in lung tissue neutrophils (between 2 and 24 hours) and 

finally by an accumulation of neutrophils in the BALF. 

 

  CS Exposure Model LPS Challenge Model 

BALF Inflammatory 

Cells 

Neutrophils Peak at 48 hours Peak at 24 hours 

Eosinophils No change Peak at 2 hours 

Monocytes/ 

Macrophages 

Variable increases 

Variable 

Lymphocytes Variable increases 

Tissue Inflammatory 

MCells 

Neutrophils No change Peak at 2 hours 

Eosinophils 
No change Peak at 2 hours 

Monocytes/ 

Macrophages 
No change 

Peak at 48 hours 

Lymphocytes No change 

Inflammasome 

Markers 

Caspase 1 Activity Increase at 24 & 48 hours No change 

IL-1β (BALF) Increase at 24 & 48 hours Peak at 2 hours 

IL-1β mRNA (Lung 

Tissue) 
No change Increased at 2 & 6 hours 

IL-18 (BALF) Increase at 24 & 48 hours Peak at 24 hours 

IL-18 mRNA (Lung 

Tissue) 
No change No change 

KC (BALF) Peak at 24 hours Peak at 2 hours 

KC mRNA (Lung 

Tissue) 
Peak at 24 hours Peak at 2 hours 

Figure 3.22 – Comparison table of time-course following CS and LPS driven models of inflammation. 
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Attempts to examine the levels of ATP released into the BALF following LPS exposure 

proved to be unsuccessful as seen previously with samples from the CS model. 

 

The differences in the inflammatory responses and markers of inflammasome activation in 

the two models would suggest that the signalling axis in the two models is not the same 

(summarised in figure 3.22). With these two models characterised, it is now possible to 

examine the role of the P2X7-inflammasome axis. In order to do this, the pathway will be 

manipulated using pharmacological and genetic tools. 
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4.1 Rationale 

 

Activation of the NLRP3 inflammasome can be achieved via different routes, however, the 

best characterised is through the actions of ATP on the P2X7 purinergic receptor (Perregaux 

& Gabel, 1994; Sutterwala et al., 2006; Qu et al., 2007). Recent publications have reported 

elevated ATP levels in both in vitro and in vivo models of COPD and in clinical samples 

(Mohsenin et al., 2006; Polosa & Blackburn, 2009). It has been proposed that increased 

levels of ATP are involved in the chemotaxis and activation of inflammatory cells (e.g. 

neutrophils) via P2Y receptors (Mortaz et al., 2009; Cicko et al., 2010). Conversely, as the 

expression of the P2X7 receptor has been shown to be increased in disease tissues and cells 

(Cicko et al., 2010; Lucattelli et al., 2010), an alternative hypothesis could be that the ATP is 

acting on the P2X7 receptor leading to NLRP3 inflammasome and caspase 1 activation, 

sequentially processing IL-1and IL-18 from their precursors into their mature active forms 

and facilitating their release. These cytokines then play a central role in the inflammation 

observed in COPD. 

 

The findings of the previous chapter, specifically the increases in markers of inflammasome 

activation in response to CS exposure suggests a crucial role for the P2X7 – inflammasome 

signalling axis in directing the inflammation associated with COPD pathogenesis in a disease 

relevant model. Therefore, modulation of this P2X7 - inflammasome axis could attenuate CS-

induced inflammation. In the clinic, patients suffering from COPD have been shown to have 

increased levels of ATP in the BALF which suggests that it may be driving this inflammation 

through activation of the P2X7 receptor. Although levels of ATP could not be determined due 

to an absence of detection in the samples from the previous chapter, this does not rule out the 

possibility that it or an alternative activator of the P2X7 receptor may still ultimately be 

driving this response.  



133 

 

 

The aim of this chapter is to manipulate activation of the P2X7 – inflammasome signalling 

axis in response to cigarette smoke exposure by utilising genetically modified mice lacking 

the P2X7 puringergic receptor from birth. Both wild-type (C57BL/6) and P2X7
-/-

 mice will be 

exposed to cigarette smoke. By comparing the differences in the inflammatory responses and 

markers of NLRP3 inflammasome activation (e.g. caspase 1 activity and IL-1β/IL-18 release) 

in both the wild-type and P2X7
-/-

 mice, it will be possible to elucidate the role of the P2X7 – 

inflammasome signalling axis and more specifically the P2X7 receptor in driving the 

inflammation in response to cigarette smoke exposure. These KO animals will also be 

paralleled in the LPS driven model to determine if these receptors play a role in the normal 

innate neutrophilic response. 

 

  



134 

 

4.2 Methods 

 

4.2.1. The role of the P2X7 receptor in cigarette smoke-induced airway inflammation. 

 

In order to validate our previous finding that increases in markers of inflammasome 

activation temporally correlate with the inflammatory cell burden in response to CS exposure, 

the role of the P2X7 – inflammasome pathway was further investigated by comparing the 

inflammatory responses to CS exposure in both wild-type and P2X7
-/-

 mice. Assessment of 

inflammatory end-points of interest including cellular infiltration and the markers of 

inflammasome activation, including pro-inflammatory mediator release and caspase 1 

activity, will provide insight into the role of this receptor and its linked pathway in the 

inflammation associated with COPD using a disease relevant model. 

 

To examine the role of the P2X7 receptor, wild-type C57BL/6 mice and P2X7
-/-

 mice (bred on 

a C57BL/6 background) were exposed to either room air or a sub-maximal (500 ml/min) dose 

of cigarette smoke (as detailed in section 2.2.2) for a total exposure period of 50 minutes 

(excluding 10 minute venting period), twice daily, for 3 consecutive days. Each group 

consisted of n=18 animals. Mice were euthanised with an overdose (200 mg/kg) of i.p 

sodium pentobarbitone 24 hours after the final challenge. BALF and lung tissue samples were 

collected for analysis as follows; 

 

 BALF (processed as described in section 2.3.1): 

- Total cell counts and 4-part differential cell counts (neutrophils, eosinophils, 

monocytes/macrophages and lymphocytes, as described in section 2.3.3), n=8. 
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- Cytokine analysis in BALF determined by standard ELISA, n=6 (as described in 

section 2.3.4.3). 

- NAD+ levels in the BALF examined by utilising a colorimetric assay, n=6 (as 

described in section 2.3.7) 

 

 Lung tissue (processed as described in section 2.3.1): 

- Flash frozen in liquid nitrogen, n=6, for cytosolic and nuclear cell fraction 

extraction (as described in section 2.3.5.1) for determination of caspase 1 activity 

(as described in section 2.3.5.2). 

 

4.2.2. The role of the P2X7 receptor in LPS-induced airway inflammation. 

 

Previous findings had suggested that the inflammatory response seen following an endotoxin 

challenge is independent of the P2X7 – inflammasome pathway based on the absence of 

correlation in the markers of inflammasome activation i.e. caspase 1 activity and IL-1β/IL-18 

processing and subsequent release. To further investigate this I compared the inflammatory 

responses to LPS exposure in both wild-type and P2X7
-/-

 mice. 

 

To examine the role of the P2X7 receptor in response to an endotoxin challenge, wild-type 

C57BL/6 mice and P2X7
-/-

 mice were challenged endotoxin free saline (Fresenius Kabi, 

Warrington, UK) or a sub-maximal dose of 1 mg/ml LPS (Escherichia coli, serotype 

0111:B4, Sigma-Aldrich Ltd. Poole, UK) for 30 min (as detailed in section 2.2.1). Mice were 

euthanised with an overdose (200 mg/kg) of i.p sodium pentobarbitone 6 hours after the final 

challenge. BALF and lung tissue samples were collected for analysis as detailed in section 

4.2.1. 
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4.2.3. Statistical analysis 

 

Data is expressed as mean ± S.E.M of n observations. For multiple comparisons tests, 

statistical analysis was performed by applying a one-way ANOVA (analysis of variance) with 

a Dunnett’s (comparing with a single control group) or Bonferroni’s (multiple comparisons) 

post-test for parametric data or alternatively a Kruskal-Wallis incorporating Dunn’s multiple 

comparison post-test for non-parametric data. A P value < 0.05 was taken as significant and 

all treatments were compared with the appropriate control group.  
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4.3. Results 

 

4.3.1. The role of the P2X7 receptor in cigarette smoke-induced airway inflammation. 

 

In response to cigarette smoke exposure, markers of inflammasome activation were shown to 

be decreased in smoke exposed P2X7
-/-

 mice when compared to the smoke exposed wild-type. 

As expected, caspase 1 activity in the lung tissue was significantly increased in the smoke 

exposed wild-type when compared to the air exposed wild-type (Figure 4.1A).  Additionally, 

smoke exposed P2X7
-/-

 showed decreased caspase 1 activity when compared to the smoke 

exposed wild-type (Figure 4.1A). The levels of IL-1β and IL-18 in the BALF following 

cigarette smoke exposure showed similar responses to the caspase 1 activity. The levels of 

both IL-1β (Figure 4.1B) and IL-18 (Figure 4.1C) were significantly increased in the smoke 

exposed wild-type when compared to the air exposed wild-type. Furthermore, smoke exposed 

P2X7
-/-

 showed decreased IL-1β and IL-18 levels in the BALF when compared to the smoke 

exposed wild-type. These findings further validate the temporal correlation in the activation 

of caspase 1 and the production/release of IL-1β and IL-18. 

 

Interestingly, levels of KC production were significantly increased in both smoke exposed 

wild-type and P2X7
-/-

 animals when compared to the air exposed wild-type (Figure 4.1D). A 

significant increase in BALF neutrophils was seen in the smoke exposed wild-type when 

compared to the air exposed wild-type (Figure 4.2A). This increase in the smoke exposed 

wild-type was completely attenuated in smoke exposed P2X7
-/-

 animals (Figure 4.2A). 

Determination of the levels of NAD+ in the BALF was unsuccessful, although the assay 

conditions were validated (Figure 4.4). 
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Figure 4.1 – The role of the P2X7 receptor on markers of inflammasome activation in the lung following 

cigarette smoke exposure. Wild-type C57BL/6 mice and P2X7
-/-

 mice were exposed to room air or 500 ml/min 

cigarette smoke, twice daily for 3 consecutive days. Samples were collected 24 hours after the final exposure 

and caspase 1 activity in the cytosolic fraction of the lung tissue (A) and the release of inflammatory cytokines 

IL-1β (B) IL-18 (C) and KC (D) in the BALF were measured using commercially available assays. Data 

represented as Mean ± SEM for n=6 observations. Statistical significance determined with a Kruskal-Wallis 

incorporating Dunn’s post-test for non-parametric data. * = P<0.05 and denotes a significant difference to the 

air exposed wild-type group. # = P<0.05 and denotes a significant difference to the smoke exposed wild-type 

group. 

 

 

 

 

 

 

 

 

 

 

 



139 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 – The role of the P2X7 receptor on airway neutrophilia in the BALF following cigarette smoke 

exposure. Wild-type C57BL/6 mice and P2X7
-/-

 mice were exposed to room air or 500 ml/min cigarette smoke, 

twice daily for 3 consecutive days. Samples were collected 24 hours after the final exposure and the BALF 

neutrophilia was determined by differential counting under light microscopy. Data represented as Mean ± SEM 

for n=8 observations. Data represented as Mean ± SEM for n=8 observations. Statistical significance 

determined with a Kruskal-Wallis incorporating Dunn’s post-test for non-parametric data. * = P<0.05 and 

denotes a significant difference to the air exposed wild-type group. # = P<0.05 and denotes a significant 

difference to the smoke exposed wild-type group. 

 

 BALF 

 Air Exposed Smoke Exposed 

Cells (10
3
/ml) WT P2X7

-/-
 WT P2X7

-/-
 

Eosinophils 
0.23±0.16 0.06±0.06 0.35±0.24 0.0±0.0 

Monocyte/ 

Macrophage 
59.88±7.16 53.40±4.28 93.74±5.51* 89.89±5.46 

Lymphocytes 
8.53±1.63 6.40±1.30 3.39±1.38* 2.20±0.78 

Figure 4.3 – The role of the P2X7 receptor on inflammatory cell recruitment in the lung following cigarette 

smoke exposure. Wild-type C57BL/6 mice and P2X7
-/-

 mice were exposed to room air or 500 ml/min cigarette 

smoke, twice daily for 3 consecutive days. Samples were collected 24 hours after the final exposure and the 

numbers of neutrophils, eosinophils, monocytes/macrophages and lymphocytes recovered from the BALF and 

lung tissue were determined by differential counting under light microscopy. Data represented as Mean ± SEM 

for n=8 observations. Data represented as Mean ± SEM for n=8 observations. Statistical significance 

determined with a Kruskal-Wallis incorporating Dunn’s post-test for non-parametric data. * = P<0.05 and 

denotes a significant difference to the air exposed wild-type group. # = P<0.05 and denotes a significant 

difference to the smoke exposed wild-type group. 
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Figure 4.4 – Examination of various processing conditions on the detection of NAD+ using a commercially 

available assay. Various mediums were prepared with increasing concentrations of NAD+. The levels of NAD+ 

in these solutions were then assessed in response to various processing conditions. Water, Water – Frozen and 

thawed, RPMI, RPMI – with NAD+ assessed 2 hours later, RPMI – Frozen and thawed. Data represented as 

Mean ± SEM for n=2 observations. 
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4.3.2. The role of the P2X7 receptor in LPS-induced airway inflammation. 

 

As previously seen, the levels of IL-1β in the BALF following LPS challenge were 

significantly increased in the LPS challenged wild-type when compared to the saline 

challenged wild-type (Figure 4.4A). However, unlike in the CS model, this increase was 

maintained in the LPS exposed P2X7
-/-

 mice (Figure 4.4A). IL-18 levels in the BALF 

following LPS exposure were significantly increased; however, this was significantly reduced 

in the P2X7
-/-

 mice (Figure 4.4B). KC production was significantly increased in both LPS 

exposed wild-type and P2X7
-/-

 animals when compared to the air exposed wild-type (Figure 

4.4C), but interestingly the LPS challenged P2X7
-/-

 animals showed a significant increase 

when compared to the LPS challenged wild-type animals (Figure 4.4C). 

 

BALF neutrophilia was significantly increased in the LPS challenged wild-type when 

compared to the air exposed wild-type group (Figure 4.5A). Surprisingly, this increase was 

more profound in the LPS challenged P2X7
-/-

 mice that were significantly elevated when 

compared with the LPS challenged wild-type group (Figure 4.5A). The lymphomononuclear 

cells in the BALF were significantly decreased in both LPS challenged groups when 

compared to their saline exposed controls, however, this decrease was less significant in the 

LPS challenged P2X7
-/-

 animals (Figure 4.6). 
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Figure 4.5 – The role of the P2X7 receptor on markers of inflammasome activation and airway neutrophilia 

in the lung following an endotoxin (LPS) challenge. Wild-type C57BL/6 mice and P2X7
-/-

 mice were 

challenged with endotoxin free saline or 1 mg/ml LPS for 30 min. Samples were collected 6 hours after the 

challenge and the release of inflammatory cytokines IL-1β (A), IL-18 (B) and KC (C) in the BALF were 

measured using commercially available assays. BALF neutrophilia (D) was determined by differential counting 

under light microscopy. Data represented as Mean ± SEM for n=6 (A-C) and n=8 (D) observations. Statistical 

significance determined with a Kruskal-Wallis incorporating Dunn’s post-test for non-parametric data. * = 

P<0.05 and denotes a significant difference to the air exposed wild-type group. # = P<0.05 and denotes a 

significant difference to the smoke exposed wild-type group. 
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 BALF 

 Saline Challenged LPS Challenged 

Cells (10
3
/ml) WT P2X7

-/-
 WT P2X7

-/-
 

Eosinophils 
0.24±0.17 0.27±0.19 6.33±1.87* 3.23±1.34 

Lymphomononuclear 
76.02±4.32 91.44±9.72 38.98±4.14* 64.70±7.33

#
 

 

Figure 4.6 – The role of the P2X7 receptor on inflammatory cell recruitment in the lung following an 

endotoxin (LPS) challenge. Wild-type C57BL/6 mice and P2X7
-/-

 mice were challenged with endotoxin free 

saline or 1 mg/ml LPS for 30 min. Samples were collected 6 hours after the challenge and the numbers of 

neutrophils, eosinophils and lymphomononuclear cells recovered from the BALF and lung tissue were 

determined by differential counting under light microscopy. Data represented as Mean ± SEM for n=8 

observations. Data represented as Mean ± SEM for n=8 observations. Statistical significance determined with a 

Kruskal-Wallis incorporating Dunn’s post-test for non-parametric data. * = P<0.05 and denotes a significant 

difference to the air exposed wild-type group. # = P<0.05 and denotes a significant difference to the smoke 

exposed wild-type group. 
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4.4 Discussion 

 

Having established temporal correlative data to suggest a role for the P2X7-inflammasome 

pathway in CS-induced in vivo pre-clinical modelling system, I wanted to further my 

investigation. The aim of this chapter was to manipulate the activity of the P2X7 – 

inflammasome signalling axis in response to CS exposure using genetically modified mice 

missing a functional P2X7 receptor. Both wild-type (C57BL/6) and P2X7
-/-

 mice were 

exposed to CS in the in vivo pre-clinical modelling system developed in the Chapter 3. By 

comparing the differences in the inflammatory responses and markers of NLRP3 

inflammasome activation (e.g. caspase 1 activity and IL-1β/IL-18 release) in both the wild-

type and P2X7
-/-

 mice, it will be possible to elucidate the role of the P2X7 – inflammasome 

signalling axis and more specifically the P2X7 receptor in driving the inflammation in 

response to CS exposure. These P2X7
-/-

 mice were also examined in the LPS driven model to 

validate that this particular finding is specific to the disease, or less likely, as a result of a 

more general impact on airway neutrophilia. 

 

Determining the effects of CS exposure on markers of inflammasome activation in the wild-

type and P2X7
-/-

 mice produced some very interesting results. As expected, CS exposure 

significantly increased caspase 1 activity in wild-type mice; however, it failed to increase 

caspase 1 activity in P2X7
-/-

 animals. This effect was mirrored in the release of both IL-1β 

and IL-18, which were shown to be elevated in the smoke exposed wild-type, but not the 

P2X7
-/-

 animals. Surprisingly, it seems that basal levels of IL-18 in the P2X7
-/-

 mice were 

generally higher than in the wild-types, as seen in the air exposed animals; however this will 

require further investigation. This general increase in basal levels of P2X7
-/-

 mice might be 
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due to a biological compensatory mechanism that aims to protect these mice as they lack the 

functional P2X7 receptors required for IL-18 processing and release. 

 

Increases in KC production in response to CS exposure were seen in both wild-type and 

P2X7
-/-

 animals. This observation that KC levels remained unaffected by blockade of the 

P2X7–inflammasome axis is intriguing. It would suggest that the CS-induced 

production/release of KC is via an alternative mechanism possibly being sourced from either 

recruited monocyte/macrophages or cells present in the lung, as opposed to the neutrophils 

being recruited as this observed neutrophilia in response to CS exposure was completely 

attenuated in the P2X7
-/-

 mice yet the increased KC levels in the BALF were maintained. 

Interestingly, P2X7
-/-

 animals show a non-significant increase in KC levels in response to CS 

exposure, possibly as a compensatory immunity mechanism as to compensate for the lack of 

inflammasome activity. 

 

Examination of inflammatory cell burden in the lung demonstrated increased BALF 

neutrophilia following CS exposure in the wild-type mice. Remarkably, the BALF 

neutrophilia in response to CS exposure was completely attenuated in the P2X7
-/-

 mice. This 

finding highlights the importance of the P2X7 receptor in driving the inflammation associated 

with CS exposure. A significant increase in BALF monocyte macrophages was seen in the 

smoke exposed wild-type and that was still maintained in the P2X7
-/-

 animals. Upon 

examination of eosinophils and lymphocytes, no differences in the numbers of cells could be 

identified when comparing the smoke exposed wild-type and P2X7
-/-

 animals. 

 

Samples from both the clinic and animal models of COPD have been used to illustrate an 

increase in the levels of ATP in the disease, linked to activation of the P2X7 – inflammasome 
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axis. I attempted to examine the release of ATP in this investigation and as we were unable to 

detect it previously (Chapter 3), I also examined the release of an alternative activator of the 

pathway, NAD+. Both ATP and NAD+ were not detected in any samples across all groups. 

As shown previously in chapter 3, the NAD+ assessment was conducted with all the correct 

controls to determine if our sampling techniques would affect the detection or sensitivity of 

the assay. I will continue to investigate the role of activators of the P2X7 receptor using 

various techniques in order to identify what component of this pathway is responsible  

 

In order to validate that the reduction in markers of inflammasome activation seen in the 

P2X7
-/-

 animals is specific to the disease, these animals were also challenged with LPS and 

the inflammatory responses were examined. P2X7
-/-

 animals failed to reduce the increased 

production of both IL-1β and KC in response to an endotoxin challenge. Interestingly, the 

release of KC in response to LPS was significantly increased in the P2X7
-/-

 when compared to 

the wild-type animals. Although unclear, this increase may be due to developmental changes 

in the P2X7
-/-

 mice from birth, though, this must be investigated further. By incorporating KC 

knockout mice into our models, we can then elucidate the role of this chemokine in driving 

the inflammatory responses seen in these in vivo models. 

 

BALF neutrophilia in response to an endotoxin challenge was shown to be significantly 

increased in the P2X7
-/-

 when compared to the wild-type mice. Interestingly, the increases in 

both BALF neutrophilia and KC levels correlate, with similar proportional increases as KC is 

a known activator of neutrophils (Frevert et al., 1995). Interestingly, BALF eosinophils in 

LPS challenged groups were significantly reduced in the P2X7
-/-

 when compared to the wild-

type mice. This is an interesting finding as much of the previous P2X7 – inflammasome axis 

work has focused on neutrophils and monocyte/macrophages. This finding will require 
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further investigation, particularly examining the general immune response in these knockout 

mice, which may have adapted with developmental changes over time. 

 

Having established there was temporal correlative data to suggest a role for the P2X7-

inflammasome pathway in CS driven inflammation, I further investigated its role by 

comparing wild-type and P2X7
-/-

 mice. CS exposure failed to increase caspase 1 activity, IL-

1 and airway neutrophilia in P2X7
-/-

 mice. This is strong evidence for a role of the P2X7-

inflammasome axis in CS-induced airway neutrophilia. This data is consistent with data 

published recently by other groups, where P2X7
-/-

 mice were demonstrated to be protected 

against CS-induced inflammation (neutrophilia and macrophages) as well as the release of the 

inflammatory cytokine IL-1 (Lucattelli et al., 2010). This pathway, however, was not 

involved in a similar inflammatory response (i.e. IL-1 release and neutrophilia) observed 

following LPS induced activation of the normal innate immune response suggesting that this 

pathway is only activated in disease settings. These significant findings must be supported 

using a pharmacological tool, to validate that they data seen in the P2X7
-/-

 mice is indeed due 

to blockade of the P2X7-inflammasome axis and not developmental or physiological changes 

in the P2X7
-/-

 animals from birth. This will be the focus of the next chapter of this thesis. 
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Pharmacological Modulation of the 

Inflammasome Pathway 

Chapter 5 
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5.1 Rationale 

 

The data presented in this thesis thus far advocates a crucial role for the P2X7-inflammasome 

signalling axis in driving the inflammation seen in response to CS exposure. With CS 

exposure being the primary etiological factor driving the pathogenesis of the disease, it is 

envisaged that blocking this inflammation provides a huge therapeutic benefit to combat the 

relentless progression of COPD. 

 

In the previous chapter, it was demonstrated that deletion of the P2X7 receptor significantly 

reduced the markers of inflammasome activation, and more importantly, the ensuing 

inflammation in response to CS exposure. To confirm the finding with the P2X7
-/-

 mice, the 

aim of this chapter was to parallel the study using a selective small molecular weight receptor 

inhibitor. To achieve this, an appropriate tool to use in the in vivo murine models must be 

identified and validated. Cell based assays were developed in appropriate human (to compare 

to published data) and mouse (as the in vivo model is developed in this species) cells to 

develop a P2X7-inflammasome driven in vitro assay. The human THP-1 monocytic and 

mouse J774.2 monocytes/macrophages cell lines were selected to perform this work from a 

range of cell types based on positive expression of key inflammasome targets: the P2X7 

receptor (Humphreys & Dubyak, 1998; Coutinho-Silva et al., 1997) and caspase 1 (Miller et 

al., 1993; Karahashi & Amano, 2000). Furthermore, both cell lines have been extensively 

used to investigate inflammation in response to activation of the NLRP3 inflammasome 

through the activity of LPS and ATP (Martinon et al., 2004; Pelegrin & Surprenant 2007; Hu 

et al., 2010). 
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Selection of an appropriate pharmacological tool was made based on findings in the literature 

combined with the efficacy and selectivity of the compounds. Two specific P2X7 receptor 

antagonists that are reported to block the activity of the receptor were selected. The first 

compound produced by AstraZeneca (AZ11645373) is a highly selective antagonist that is 

reported to function only at the human P2X7 receptor (Stokes et al., 2006). The second 

inhibitor, produced by Abbott Laboratories (A438079) is also a highly selective P2X7 

receptor antagonist that is reported to function at both the human and murine variants of the 

receptor (Donnelly-Roberts et al., 2009). The in vitro cell based assays will investigate the 

effect of two different P2X7 inhibitors on the enhanced release of inflammasome-linked 

cytokines (and inflammasome independent cytokines i.e. TNF and IL-6) in response to LPS 

and ATPS combination treatment. 

 

Once an appropriate pharmacological tool to block murine P2X7 receptors was identified, it 

was then be utilised to determine its effect on the inflammatory response to cigarette smoke 

exposure. By comparing the differences in the inflammatory responses and markers of 

NLRP3 inflammasome activation in both the vehicle and P2X7 inhibitor treated groups, it 

was possible to validate the role of the P2X7 – inflammasome signalling axis and more 

specifically the findings using the P2X7
-/-

 mice. The selected P2X7 inhibitor was also tested in 

the LPS driven model to parallel the data generated with the genetically modified animals in 

chapter 4. 
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5.2 Methods 

 

5.2.1 In vitro system development in human and mouse cell based assays. 

 

In vitro cell based assays were developed using the human monocytic THP-1 and mouse 

J774.2 monocyte/macrophage cell lines. The cell lines were maintained (as described in 

section 2.4) and conditions for this assay were optimised (Birrell et al., 2006). 400,000 cells 

were added to each well in a 24 well plate. The cells were treated and incubated for 24 hours 

at 37C in a humidified atmosphere (95% air, 5% (v/v) CO2). Where necessary the cells were 

pre-treated with relevant antagonist/vehicle and incubated for 1 hour. The following day (24 

hours) the cell suspension was removed and cell viability was determined (as described in 

section 2.4.2). The cell suspension was then centrifuged at 800 x g and the supernatant 

removed and stored at -80°C until required for cytokine analysis. All studies were repeated 

on three separate experimental days. 

 

The release of the inflammatory cytokines in the cell culture supernatant was determined by 

using specific sandwich ELISA kits for both human and mouse cytokines. IL-1β and IL-18 

release was measured as it is a reported product of inflammasome activation. Other known 

inflammatory cytokines such as TNF-α, IL-6 and IL-8 (human) or KC (mouse) were 

measured as negative controls since they are not believed to be released upon inflammasome 

activation. Results were obtained by reading the signal on the ELISA plate at 450nm. 
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5.2.1.1 Determining the optimum concentration of LPS for sub-maximal release of 

inflammatory cytokines from THP-1 cells. 

 

LPS is a well characterised endotoxin that induces potent immune responses from immune 

cells via the activation of the TLR4 receptor and the subsequent NFκB activation. The aim of 

these preliminary cell based assays was to determine the optimum concentration of LPS for 

sub-maximal release of inflammatory cytokines from both human THP-1 and mouse J774.2 

cells. 

 

5.2.1.2 Determining the optimum concentration of ATPγS for sub-maximal release of 

inflammatory cytokines from THP-1 cells. 

 

Recent evidence has highlighted the possible role of ATP as an activator of the 

inflammasome via the P2X7 receptor. For the purpose of these studies, a stable ATP 

analogue, ATPγS (Sigma, Poole, UK) was used to target the P2X7 receptor. The aim is to 

establish an appropriate sub-maximal concentration of ATPγS for sub-maximal release of 

inflammatory cytokines from both human THP-1 and mouse J774.2 cells. 

 

5.2.1.2 Determining the optimum concentration of LPS and ATPγS for sub-maximal 

release of inflammatory cytokines from THP-1 cells. 

 

Once appropriate sub-maximal concentrations of LPS and ATPγS had been established, the 

aim was to use both stimuli in combination to activate the inflammasome. 
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5.2.2 In vitro P2X7 inhibitor testing in human and mouse cell based assays. 

 

Having developed a cell based system that models P2X7 receptor mediated activation of the 

NLRP3 inflammasome and the subsequent release of IL-1β and IL-18; I was ready to 

examine the activity of the two P2X7 receptor antagonists. 

 

5.2.3 Determining the effect of P2X7 receptor antagonist on cigarette smoke-induced 

airway inflammation. 

 

Previous data using genetic manipulation had highlighted an important role for the P2X7 

receptor in driving the inflammation associated with CS exposure (Chapter 4). In order to 

validate this finding, two specific P2X7 receptor antagonists were tested in cell based assays 

to determine their activity at the receptor. The cell based assays identified A438079 as an 

appropriate tool to block murine P2X7 receptors.  The role of the P2X7 – inflammasome 

pathway was investigated using this pharmacological tool and comparing the inflammatory 

responses to CS exposure in mice treated with either vehicle or increasing doses of the 

inhibitor A438079. Assessment of inflammatory end-points of interest including cellular 

infiltration and the markers of inflammasome activation, including pro-inflammatory 

mediator release and caspase 1 activity, would validate the previous findings utilising P2X7
-/-

 

mice and determine whether the effects seen in the P2X7
-/-

 mice can be achieved using 

pharmacological tools. Therefore the aim of this section was to parallel the effect of A438079 

in the CS driven model. 

 

C57BL/6 mice were treated with vehicle (0.5% methyl cellulose and 0.2% tween80 in 

distilled H2O, 10 ml/kg) or A438079, 1 hour prior to the first exposure and 1 hour after the 



154 

 

second exposure on each of the 3 exposure days. The animals were also given a final dose of 

the compound 1 hour prior to the cull on the fourth day. Animals were exposed to either room 

air or a sub-maximal (500 ml/min) dose of cigarette smoke (as detailed in section 2.2.2) for a 

total exposure period of 50 minutes (excluding 10 minute venting period), twice daily, for 3 

consecutive days. Mice were euthanised with an overdose (200 mg/kg) of i.p sodium 

pentobarbitone 24 hours after the final challenge. BALF and lung tissue samples were 

collected for analysis as follows; 

 

 BALF (processed as described in section 2.3.1): 

- Total cell counts and 4-part differential cell counts (neutrophils, eosinophils, 

monocytes/macrophages and lymphocytes, as described in section 2.3.3), n=8. 

- Cytokine analysis in BALF determined by standard ELISA, n=6 (as described in 

section 2.3.4.3). 

 

 Lung tissue (processed as described in section 2.3.1): 

- Flash frozen in liquid nitrogen, n=6, for cytosolic and nuclear cell fraction 

extraction (as described in section 2.3.5.1) for determination of caspase 1 activity 

(as described in section 2.3.5.2). 

 

5.2.4 Determining the effect of P2X7 receptor antagonist on LPS-induced airway 

inflammation. 

 

The results from the previous chapter identified that the inflammatory response seen 

following an endotoxin challenge is independent of the P2X7 – inflammasome pathway based 

on the absence of correlation in the markers of inflammasome activation and sustained 
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inflammation in P2X7
-/-

 mice. Furthermore, LPS challenged P2X7
-/-

 mice showed an 

increased numbers of neutrophils in the BALF when compared to the LPS exposed wild-type 

mice. To validate these findings highlighted above I examined the effects of a P2X7 receptor 

antagonist on the inflammatory response in mice seen following LPS exposure. 

 

C57BL/6 mice were treated with vehicle (0.5% methyl cellulose and 0.2% tween80 in 

distilled H2O, 10 ml/kg) or A438079, 1 hour prior to the first exposure and 1 hour after the 

LPS challenge. Animals were challenged with endotoxin free saline (Fresenius Kabi, 

Warrington, UK) or a sub-maximal dose of 1 mg/ml LPS (Escherichia coli, serotype 

0111:B4, Sigma-Aldrich Ltd. Poole, UK) for 30 min (as detailed in section 2.2.1). Mice were 

euthanised with an overdose (200 mg/kg) of i.p sodium pentobarbitone 24 hours after the 

final challenge. BALF and lung tissue samples were collected for analysis as detailed in 

section 5.2.4. 

 

5.2.5 Statistical analysis 

 

Data is expressed as mean ± S.E.M of n observations. For data where each independent group 

is compared to its time matched control, statistical significance was determined using a 

Student’s t-test for parametric or a Mann-Whitney U-test (or Wilcoxon rank test) for non-

parametric data. For multiple comparisons tests, statistical analysis was performed by 

applying a one-way ANOVA (analysis of variance) with a Dunnett’s (comparing with a 

single control group) or Bonferroni’s (multiple comparisons) post-test for parametric data or 

alternatively a Kruskal-Wallis incorporating Dunn’s multiple comparison post-test for non-

parametric data. A P value < 0.05 was taken as significant and all treatments were compared 

with the appropriate control group. 
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5.3 Results 

 

5.3.1 In vitro system development in human and mouse cell based assays. 

 

5.3.1.1 Determining the optimum concentration of LPS for sub-maximal release of 

inflammatory cytokines from THP-1 cells. 

 

To establish an appropriate sub-maximal concentration of LPS that would elicit inflammatory 

cytokine release, both human THP-1 and mouse J774.2 cells were treated with either vehicle 

(RPMI) or increasing concentrations of LPS (0.00001 – 10 μg/ml). 

 

LPS increased the release of inflammatory cytokines from both THP-1 (Figure 5.1A - D) and 

J774.2 (Figure 5.2A - D) cells in a concentration-dependent manner. A submaximal LPS 

concentration of 0.1g/ml was chosen to perform subsequent studies involving a combination 

of stimuli. The Trypan Blue Exclusion test showed that both THP-1 (Figure 5.1E) and J774.2 

(Figure 5.2E) cells were still viable even at the high concentration of LPS. 
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E – Cell Viability  

Figure 5.1 – Characterisation of LPS-mediated release of inflammatory cytokines from human THP-1 cells. 

The release of inflammatory cytokines by THP-1 cells in response to increasing concentrations of LPS. Cytokine 

levels in the cell culture supernatant were measured by ELISA in ρg/ml. Cell viability was determined as a 

percentage of viable cells from the cell pellet sample. All studies were repeated on three separate experimental 

days, n=6, with data represented as mean ± SEM. Statistical significance determined with One-way ANOVA 

incorporating Dunnett’s post-test for parametric data. * = P<0.05 and denotes a significant difference to the 

vehicle treated control group. 
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Figure 5.2 – Characterisation of LPS-mediated release of inflammatory cytokines from mouse J774.2 cells. 

The release of inflammatory cytokines by J774.2 cells in response to increasing concentrations of LPS. Cytokine 

levels in the cell culture supernatant were measured by ELISA in ρg/ml. Cell viability was determined as a 

percentage of viable cells from the cell pellet sample. All studies were repeated on three separate experimental 

days, n=6, with data represented as mean ± SEM. Statistical significance determined with One-way ANOVA 

incorporating Dunnett’s post-test for parametric data. * = P<0.05 and denotes a significant difference to the 

vehicle treated control group. 
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5.3.1.2 Determining the optimum concentration of ATPγS for sub-maximal release of 

inflammatory cytokines from THP-1 cells. 

 

To establish an appropriate sub-maximal concentration of ATPγS that would elicit 

inflammatory cytokine release, both human THP-1 and mouse J774.2 cells were treated with 

either vehicle (RPMI) or increasing concentrations of ATPγS (10
-5

 – 10
-2.5 

M). 

 

Increasing concentrations of ATPγS treatment were shown to proportionally increase the 

release of inflammatory cytokines IL-1β and IL-18 from THP-1 cells (Figure 5.3A & D) and 

J774.2 cells (Figure 5.4A & D) cells, whilst an ATPγS concentration of 10
-3

M was 

demonstrated to provide a sub-maximal release of inflammatory cytokines.  No changes in 

the release of TNF-α or IL-6 in THP-1 cells (Figure 5.3B & C) or J774.2 cells (Figure 5.4B & 

C) was seen in response to ATPγS treatment. The Trypan Blue Exclusion test confirmed no 

cell death up to the highest concentration of ATPγS tested (10
-2.5 

M) in both THP-1 (Figure 

5.3E) and J774.2 (Figure 5.4E) cells. 
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E – Cell Viability  

Figure 5.3 – Characterisation of ATPγS-mediated release of inflammatory cytokines from human THP-1 

cells. The release of inflammatory cytokines by THP-1 cells in response to increasing concentrations of ATPγS. 

Cytokine levels in the cell culture supernatant were measured by ELISA in ρg/ml. Cell viability was determined 

as a percentage of viable cells from the cell pellet sample. All studies were repeated on three separate 

experimental days, n=6, with data represented as mean ± SEM. Statistical significance determined with One-

way ANOVA incorporating Dunnett’s post-test for parametric data. * = P<0.05 and denotes a significant 

difference to the vehicle treated control group. 
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Figure 5.4 – Characterisation of ATPγS-mediated release of inflammatory cytokines from mouse J774.2 

cells. The release of inflammatory cytokines by J774.2 cells in response to increasing concentrations of ATPγS. 

Cytokine levels in the cell culture supernatant were measured by ELISA in ρg/ml. Cell viability was determined 

as a percentage of viable cells from the cell pellet sample. All studies were repeated on three separate 

experimental days, n=6, with data represented as mean ± SEM. Statistical significance determined with One-

way ANOVA incorporating Dunnett’s post-test for parametric data. * = P<0.05 and denotes a significant 

difference to the vehicle treated control group. 
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5.2.1.2 Determining the optimum concentration of LPS and ATPγS for sub-maximal 

release of inflammatory cytokines from THP-1 cells. 

 

Having identified appropriate sub-maximal concentrations to elicit the release of 

inflammatory cytokines in THP-1 and J774.2 cells, the stimuli were combined. Treatment of 

the cells with the sub-maximal concentration of ATPγS (10
-3 

M) and increasing 

concentrations of LPS appears to result in greater release of IL-1β compared to the sum of its 

two parts in both THP-1 (Figure 5.5A) and J774.2 (Figure 5.6A) cells whilst IL-18 showed 

only additive effects in both the THP-1 (Figure 5.5C) and J774.2 (Figure 5.6C) cell lines. 

This effect was not seen in the release of TNF-α in THP-1 (Figure 5.5B) or J774.2 (Figure 

5.6B) cells. Trypan Blue exclusion following the combination treatment showed no effects on 

cell viability in both THP-1 (Figure 5.5D) and J774.2 (Figure 5.6D) cell lines. 

 

In reverse, using the previously determined sub-maximal concentration of LPS (0.1 g/ml) 

and treating the cells with increasing concentrations of ATPγS again demonstrated greater 

release of IL-1β compared to the sum of its two parts in both THP-1 (Figure 5.7A) and J774.2 

(Figure 5.8A) cells whilst IL-18 showed only additive effects in both the THP-1 (Figure 

5.7C) and J774.2 (Figure 5.8C) cell lines. This effect was not seen in the release of TNF-α in 

THP-1 (Figure 5.7B) or J774.2 (Figure 5.8B) cells. Trypan Blue exclusion following the 

combination treatment showed no effects on cell viability in both THP-1 (Figure 5.7D) and 

J774.2 (Figure 5.8D) cell lines.  
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C – IL-18 D – Cell Viability 

Figure 5.5 – The effects of a combination treatment of LPS and ATPγS on the release of inflammatory 

cytokines from human THP-1 cells. Examining the possible synergistic effects of the combination treatment 

with increasing concentrations of LPS versus a sub-maximal concentration of ATPγS (10
-3

M) on the release of 

inflammatory cytokines from THP-1 cells. Cytokine levels in the cell culture supernatant were measured by 

ELISA in ρg/ml. Cell viability was determined as a percentage of viable cells from the cell pellet sample. All 

studies were repeated on three separate experimental days, n=6, with data represented as mean ± SEM. 

Statistical significance determined with a Kruskal-Wallis incorporating Dunn’s post-test for non-parametric 

data. * = P<0.05 and denotes a significant difference to the air exposed control group. 
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Figure 5.6 – The effects of a combination treatment of LPS and ATPγS on the release of inflammatory 

cytokines from mouse J774.2 cells. Examining the possible synergistic effects of the combination treatment with 

increasing concentrations of LPS versus a sub-maximal concentration of ATPγS (10
-3

M) on the release of 

inflammatory cytokines from J774.2 cells. Cytokine levels in the cell culture supernatant were measured by 

ELISA in ρg/ml. Cell viability was determined as a percentage of viable cells from the cell pellet sample. All 

studies were repeated on three separate experimental days, n=6, with data represented as mean ± SEM. 

Statistical significance determined with a Kruskal-Wallis incorporating Dunn’s post-test for non-parametric 

data. * = P<0.05 and denotes a significant difference to the air exposed control group. 
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C – IL-18 D – Cell Viability 

Figure 5.7 – The effects of a combination treatment of ATPγS and LPS on the release of inflammatory 

cytokines from human THP-1 cells. Examining the possible synergistic effects of the combination treatment 

with increasing concentrations of ATPγS versus a sub-maximal concentration of LPS (0.1 μg/ml) on the release 

of inflammatory cytokines from THP-1 cells. Cytokine levels in the cell culture supernatant were measured by 

ELISA in ρg/ml. Cell viability was determined as a percentage of viable cells from the cell pellet sample. All 

studies were repeated on three separate experimental days, n=6, with data represented as mean ± SEM. 

Statistical significance determined with a Kruskal-Wallis incorporating Dunn’s post-test for non-parametric 

data. * = P<0.05 and denotes a significant difference to the air exposed control group. 
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C – IL-18 D – Cell Viability 

Figure 5.8 – The effects of a combination treatment of ATPγS and LPS on the release of inflammatory 

cytokines from mouse J774.2 cells. Examining the possible synergistic effects of the combination treatment with 

increasing concentrations of ATPγS versus a sub-maximal concentration of LPS (0.1 μg/ml) on the release of 

inflammatory cytokines from J774.2 cells. Cytokine levels in the cell culture supernatant were measured by 

ELISA in ρg/ml. Cell viability was determined as a percentage of viable cells from the cell pellet sample. All 

studies were repeated on three separate experimental days, n=6, with data represented as mean ± SEM. 

Statistical significance determined with a Kruskal-Wallis incorporating Dunn’s post-test for non-parametric 

data. * = P<0.05 and denotes a significant difference to the air exposed control group. 
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5.3.2 Establishing optimum concentration of P2X7 inhibitor in human and mouse cell 

based assays. 

 

Having shown that a combination of endotoxin (LPS) and a P2X7 receptor agonist (ATP) 

leads to enhanced release of inflammasome-linked cytokines, I then wanted to use this assay 

system to test two specific P2X7 receptor antagonists. Cells were treated with a sub-maximal 

concentration of both LPS (0.1 g/ml) and ATPγS (10
-3 

M) in the presence of the P2X7 

antagonist (1 hour pre-treat). Where necessary the appropriate vehicle was used to treat the 

cells as a replacement (LPS or ATPγS – RPMI, AZ11645373 or A438079 - DMSO). 

 

In the THP-1 cell line, AZ11645373 significantly inhibited the enhanced release of both IL-

1β and IL-18 (Figure 5.9A & D) but not the release of TNF-α (Figure 5.9B). Production of 

IL-1β in response to ATP-alone was attenuated (50% inhibition) by treatment with a P2X7 

antagonist, whereas LPS-induced IL-1β release was not affected by the inhibitor. The effects 

seen with AZ11645373 in the THP-1 cell line were not seen in the murine cell line. The 

compound failed to inhibit the enhanced release of both IL-1β and IL-18 (Figure 5.10A & C). 

Furthermore, it had no impact on the release of TNF-α (Figure 5.10B). The antagonist had a 

minor effect on cell viability in either cell line when treated alone or with the combination 

(LPS & ATPγS) (Figure 5.9D & 5.10D). 

 

 

The alternative P2X7 receptor antagonist, A438079, failed to inhibit the release of both IL-1β 

and IL-18 in response to the combination treatment in the THP-1 cell line (Figure 5.11A & 

C). Furthermore, it had no impact on the standard release of TNF-α (Figure 5.11B). In the 

J774.2 cell line, however, the increases in the production of IL-1β and IL-18 in response to 

the combination treatment were both significantly inhibited by 58 and 42% respectively 
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(Figure 5.12A & C) but not the standard release of TNF-α (Figure 5.12B). Production of IL-

1β & IL-18 in response to ATP-alone was attenuated by treatment with a P2X7 antagonist. 

Furthermore, A438079 showed minor toxic effects on cell viability in either cell line when 

treated alone or with the combination (LPS & ATPγS) (Figure 5.11D & 5.12D). 

 

Based on the results obtained testing both antagonists in human and mouse cell lines, 

A438079 was selected as the appropriate pharmacological tool to use in our in vivo murine 

models of inflammation. 
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C – IL-18 D – Cell Viability 

Figure 5.9 – The effect of the specific P2X7 antagonist AZ11645373 on inflammatory cytokine release in 

response to a combination treatment of LPS and ATPγS in human THP-1 cells. Examining the release of 

inflammatory cytokines from human THP-1 cells in response to a combination treatment of LPS (0.1 μg/ml) and 

ATPγS (10
-3

M) in the presence of a P2X7 antagonist. Cytokine levels in the cell culture supernatant were 

measured by ELISA in ρg/ml. Cell viability was determined as a percentage of viable cells from the cell pellet 

sample. All studies were repeated on three separate experimental days, n=6, with data represented as mean ± 

SEM. Statistical significance determined with a Kruskal-Wallis incorporating Dunn’s post-test for non-

parametric data. * = P<0.05 and denotes a significant difference to the air exposed control group. 
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C – IL-18 D – Cell Viability 

Figure 5.10 – The effect of the specific P2X7 antagonist AZ11645373 on inflammatory cytokine release in 

response to a combination treatment of LPS and ATPγS in mouse J774.2 cells. Examining the release of 

inflammatory cytokines from mouse J774.2 cells in response to a combination treatment of LPS (0.1 μg/ml) and 

ATPγS (10
-3

M) in the presence of a P2X7 antagonist. Cytokine levels in the cell culture supernatant were 

measured by ELISA in ρg/ml. Cell viability was determined as a percentage of viable cells from the cell pellet 

sample. All studies were repeated on three separate experimental days, n=6, with data represented as mean ± 

SEM. Statistical significance determined with a Kruskal-Wallis incorporating Dunn’s post-test for non-

parametric data. * = P<0.05 and denotes a significant difference to the air exposed control group. 
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Figure 5.11 – The effect of the specific P2X7 antagonist A438079 on inflammatory cytokine release in 

response to a combination treatment of LPS and ATPγS in human THP-1 cells. Examining the release of 

inflammatory cytokines from human THP-1 cells in response to a combination treatment of LPS (0.1 μg/ml) and 

ATPγS (10
-3

M) in the presence of a P2X7 antagonist. Cytokine levels in the cell culture supernatant were 

measured by ELISA in ρg/ml. Cell viability was determined as a percentage of viable cells from the cell pellet 

sample. All studies were repeated on three separate experimental days, n=6, with data represented as mean ± 

SEM. Statistical significance determined with a Kruskal-Wallis incorporating Dunn’s post-test for non-

parametric data. * = P<0.05 and denotes a significant difference to the air exposed control group. 
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C – IL-18 D – Cell Viability 

Figure 5.12 – The effect of the specific P2X7 antagonist A438079 on inflammatory cytokine release in 

response to a combination treatment of LPS and ATPγS in mouse J774.2 cells. Examining the release of 

inflammatory cytokines from mouse J774.2 cells in response to a combination treatment of LPS (0.1 μg/ml) and 

ATPγS (10
-3

M) in the presence of a P2X7 antagonist. Cytokine levels in the cell culture supernatant were 

measured by ELISA in ρg/ml. Cell viability was determined as a percentage of viable cells from the cell pellet 

sample. All studies were repeated on three separate experimental days, n=6, with data represented as mean ± 

SEM. Statistical significance determined with a Kruskal-Wallis incorporating Dunn’s post-test for non-

parametric data. * = P<0.05 and denotes a significant difference to the air exposed control group. 
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5.3.3 Determining the effect of P2X7 receptor antagonist on cigarette smoke-induced 

airway inflammation. 

 

A significant increase in BALF neutrophils was seen in the smoke exposed vehicle-treated 

group when compared to the air exposed vehicle-treated animals (Figure 5.14). This increase 

in the BALF neutrophilia in response to CS exposure was significantly decreased in a dose 

dependent manner in smoke exposed inhibitor-treated animals (Figure 5.14). The 

monocyte/macrophages in the BALF were significantly elevated in smoke exposed groups 

when compared to their air exposed controls (Figure 5.15); however, the antagonist did not 

have any effect on this increase in response to smoke exposure. There were no significant 

changes in eosinophil or lymphocyte numbers in response to cigarette smoke exposure in the 

BALF (Figure 5.15).  
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Figure 5.13 – The effect of a P2X7 receptor antagonist on airway neutrophilia in the BALF following 

cigarette smoke exposure. C57BL/6 mice were treated with vehicle or A438079 and exposed to either room air 

or 500 ml/min cigarette smoke, twice daily for 3 consecutive days. Samples were collected 24 hours after the 

final exposure and neutrophilia was determined by differential counting under light microscopy. Data 

represented as Mean ± SEM for n=8 observations. Data represented as Mean ± SEM for n=8 observations. 

Statistical significance determined with a Kruskal-Wallis incorporating Dunn’s post-test for non-parametric 

data. * = P<0.05 and denotes a significant difference to the air exposed vehicle-treated group. # = P<0.05 and 

denotes a significant difference to the smoke exposed vehicle-treated group. 

 

Cells 

(10
3
/ml) 

Group Eosinophils 
Monocytes/ 

Macrophages 
Lymphocytes 

Air 

Exposed 

Veh 0.35±0.26 77.98±5.93 2.19±0.53 

1000 0.00±0.00 68.74±3.46 2.15±0.93 

Smoke 

Exposed 

Veh 0.43±0.28 119.40±11.70* 1.73±0.59 

30 0.73±0.36 131.90±12.58 2.50±0.56 

100 0.69±0.35 107.90±8.87 1.61±0.32 

300 0.36±0.24 121.20±9.20 1.38±0.53 

1000 0.16±0.16 138.90±9.28 1.30±0.21 

P2X7
-/-

 0.00±0.00 120.90±10.94 2.40±0.54 

Figure 5.14 – The effect of a P2X7 receptor antagonist on airway neutrophilia in the BALF following 

cigarette smoke exposure. C57BL/6 mice were treated with vehicle or A438079 and exposed to either room air 

or 500 ml/min cigarette smoke, twice daily for 3 consecutive days. Samples were collected 24 hours after the 

final exposure and the numbers of eosinophils, monocytes/macrophages and lymphocytes recovered from the 

BALF was determined by differential counting under light microscopy.  Data represented as Mean ± SEM for 

n=8 observations. Statistical significance determined with a Kruskal-Wallis incorporating Dunn’s post-test for 

non-parametric data. * = P<0.05 and denotes a significant difference to the air exposed vehicle-treated group. 

# = P<0.05 and denotes a significant difference to the smoke exposed vehicle-treated group. 
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5.3.4 Determining the effect of P2X7 receptor antagonist on LPS-induced airway 

inflammation. 

 

The LPS challenge elicited a significant increase in BALF neutrophils (Figure 5.16). This 

increase in the neutrophilia in response to LPS exposure was unaffected in the groups treated 

with the P2X7 inhibitor (Figure 5.15). Similarly, increases in BALF eosinophil numbers in 

response to the endotoxin challenge were also unaffected in the P2X7 inhibitor treated 

animals (Figure 5.16). The monocyte/macrophages in the BALF were significantly increased 

in the P2X7 inhibitor treated groups in an almost dose dependent manner (Figure 5.16). 

Conversely, the lymphocytes demonstrated no significant changes in the following LPS 

exposure (Figure 5.16). 
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Figure 5.15 – The effect of a P2X7 receptor antagonist on airway neutrophilia in the BALF following LPS 

challenge. C57BL/6 mice were treated with vehicle or A438079 and challenged with endotoxin free saline or 1 

mg/ml LPS for 30 min. Samples were collected 6 hours after the final exposure and neutrophilia was determined 

by differential counting under light microscopy. Data represented as Mean ± SEM for n=8 observations. Data 

represented as Mean ± SEM for n=8 observations. Statistical significance determined with a Kruskal-Wallis 

incorporating Dunn’s post-test for non-parametric data. * = P<0.05 and denotes a significant difference to the 

air exposed vehicle-treated group. # = P<0.05 and denotes a significant difference to the smoke exposed 

vehicle-treated group. 

 

 

 

Cells 

(10
3
/ml) 

Group Eosinophils 
Monocytes/ 

Macrophages 
Lymphocytes 

Air 

Exposed 

Veh 0.31±0.15 69.30±5.23 7.53±2.28 

1000 0.23±0.15 96.24±7.99 5.85±1.60 

Smoke 

Exposed 

Veh 18.16±3.61* 38.94±6.42 8.70±2.02 

30 18.25±5.67 44.86±5.54 19.79±4.96* 

100 14.75±4.97 56.68±7.28 4.96±2.34 

300 13.26±2.11 48.60±3.94 9.06±1.80 

1000 5.43±1.56 88.64±56.65 9.06±1.56 

P2X7
-/-

 23.77±5.69 54.10±7.29 7.77±3.84 

Figure 5.16 – The effect of a P2X7 receptor antagonist on airway neutrophilia in the BALF following LPS 

challenge. C57BL/6 mice were treated with vehicle or A438079 and challenged with endotoxin free saline or 1 

mg/ml LPS for 30 min. Samples were collected 6 hours after the final exposure and the numbers of neutrophils, 

eosinophils, monocytes/macrophages and lymphocytes recovered from the BALF was determined by differential 

counting under light microscopy.  Data represented as Mean ± SEM for n=8 observations. Statistical 

significance determined with a Kruskal-Wallis incorporating Dunn’s post-test for non-parametric data. * = 

P<0.05 and denotes a significant difference to the air exposed vehicle-treated group. # = P<0.05 and denotes a 

significant difference to the smoke exposed vehicle-treated group. 
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5.4 Discussion 

 

Previously I have shown that markers of inflammasome activation are increased in response 

to CS exposure, and the ensuing inflammation in response to CS exposure is significantly 

inhibited in mice lacking a functional P2X7 receptor, thus advocating a crucial role for the 

P2X7-inflammasome signalling axis in driving the inflammation seen in response to CS 

exposure. To confirm this I wanted to use a pharmacological tool that can block the P2X7 

receptor. 

 

To establish an appropriate pharmacological P2X7 tool to use in the murine models, human 

and murine cell based assays were developed using appropriate human and mouse cells lines 

(human THP-1 monocytic and mouse J774.2 monocytes/macrophages cell lines) based on 

positive expression of key inflammasome targets. Both cell lines were stimulated with 

combination treatments of LPS and ATPγS which elicited IL-1 release that was greater than 

the sum of the stimuli individually. This in vitro modelling system allowed me to 

demonstrate that the P2X7 receptor was involved in this enhanced release of IL-1 that has 

been demonstrated previously by various groups (Grahames et al., 1999; Solle et al., 2001; 

Labasi et al., 2002; Ferrari et al., 2006; Qu et al., 2007). Upon testing the efficacy of both 

P2X7 receptor antagonists, it was apparent that AZ11645373 failed to impact murine cells, 

whilst A438079 was only active murine cells and not the human receptor as reported by 

others (Donnelly-Roberts et al., 2009). Although A438079 was shown in my cell based 

assays to lack activity on the human P2X7 receptor it was still the ideal tool to use in the in 

vivo models as it was demonstrated to have high efficacy in vitro.  
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In the CS driven model, A438079 managed to attenuate the significant increase BALF 

neutrophilia in response to CS exposure in a dose dependent manner providing further 

validation to the results seen in chapter 4 using the P2X7
-/-

 mice. No changes were seen in 

other inflammatory cell types, particularly the monocyte/macrophages that were significantly 

increased in response to CS exposure. These finding provide further validation to the results I 

have demonstrated in the previous chapter, where deletion of the function P2X7 receptor, 

significantly attenuated the inflammatory response following CS exposure. These findings 

are in line with those reported by Lucattelli et al., where an alternative P2X7 inhibitor (KN62) 

was demonstrated to significantly reduce the inflammation in mice following acute (3 day) 

CS exposure (Lucattelli et al., 2010). 

 

Conversely, the compound had no apparent effect on the airway neutrophilia seen in response 

to the endotoxin challenge, different from the response seen in the P2X7
-/-

 animals where 

increased neutrophilia was seen in response to an endotoxin challenge. However, this 

difference in response comparing genetic knockouts and pharmacology may be one that has 

arisen due to developmental issue in the KO mice that is avoided by using pharmacological 

tools. Therefore, one could postulate that a P2X7 receptor antagonist would have therapeutic 

benefit in combating inflammation in response to the disease progression, without affecting 

the general innate immune defence system. 

 

Having determined that the P2X7 – inflammasome axis may play a crucial role in the acute 

phase of disease pathogenesis (induction of inflammation), it would be interesting to examine 

whether the change in phenotype of the disease under more chronic conditions will alter the 

role or involvement of the pathway. This will require extended exposure protocol of the 
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current CS driven in vivo pre-clinical modelling system. However, this may provide crucial 

insight into the role of the inflammasome in the latter stages of disease pathogenesis. 
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Inflammasome Activation in Sub-Chronic 

Models of Airway Inflammation 

  

Chapter 6 
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6.1 Rationale 

 

The studies in this thesis so far have focused on acute neutrophilia; however, COPD is a 

slowly progressive inflammatory disease that manifests itself over a prolonged period of time 

with a cellular phenotype that features a large macrophage component. Thus, it is envisaged 

that the development of more chronic models of CS exposure (4 weeks or more) in mice may 

more closely resemble human disease. Whilst the data strongly suggests that the P2X7-

inflammasome axis may play an important role in the acute neutrophilia, it is important to 

study its role in a more chronic disease setting. Therefore I wanted to look for evidence of a 

role of the “axis” in longer-term smoke models and in human tissue from donors and patients 

with COPD.  
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6.2 Methods 

 

6.2.1. Characterisation of a sub-chronic model of cigarette smoke induced-inflammation 

in C57BL/6 mice. 

 

The data obtained thus far strongly advocates a central role for the P2X7-inflammasome axis 

in driving the inflammation in response to cigarette smoke exposure. To validate whether this 

pathway is involved in sustaining the on-going inflammation seen clinically in COPD 

patients and not just restricted to the initial induction stage, we measured markers of the 

pathway in a more chronic 28 day exposure model. Assessment of inflammatory end-points 

of interest including cellular infiltration and the markers of inflammasome activation, 

including pro-inflammatory mediator release and caspase 1 activity, will identify it this 

receptor and its associated pathway are involved in sustaining the inflammation associated 

with COPD using a more chronic disease model. 

 

To examine the role of the inflammasome in a more chronic inflammatory setting, mice were 

exposed to either room air or a sub-maximal (500 ml/min) dose of cigarette smoke (as 

detailed in section 2.2.2) for a total exposure period of 50 minutes (excluding 10 minute 

venting period), twice daily, for 28 consecutive days. Each group consisted of n=12 animals 

at each time point. Mice were euthanised with an overdose (200 mg/kg) of i.p sodium 

pentobarbitone 24 hours after the final smoke exposure at 3 and 7 day intervals during the 

sub-chronic 28 day exposure (3, 7, 10, 14, 17, 21, 24 and 28 days). BALF and lung tissue 

samples were collected for analysis as follows; 

 

 



183 

 

 BALF (processed as described in section 2.3.1): 

- Total cell counts and 4-part differential cell counts (neutrophils, eosinophils, 

monocytes/macrophages and lymphocytes, as described in section 2.3.3), n=6. 

- Cytokine analysis in BALF determined by standard ELISA, n=6 (as described in 

section 2.3.4.3). 

 

 Lung tissue (processed as described in section 2.3.1): 

- Flash frozen in liquid nitrogen, n=6, for cytosolic and nuclear cell fraction 

extraction (as described in section 2.3.5.1) for determination of caspase 1 activity 

(as described in section 2.3.5.2). 

 

6.2.2. Examination of inflammasome axis expression in human tissue. 

 

Thus far, the data from the in vivo models suggests a major role for the P2X7 – 

inflammasome pathway in driving the inflammation seen in a COPD-like setting. To 

determine if the observations seen in the pre-clinical models translated into the human 

disease, caspase 1 activity in lung tissue from non-smoking donors, smoking donors and 

emphysema patients was investigated. 

 

Human tissue samples were obtained with support of the NIHR Biomedical Research Unit in 

Advanced Lung Disease at the Royal Brompton and Harefield NHS Foundation Trust and 

Imperial College London and partly funded by the NIHR Biomedical Research Unit funding 

scheme. 
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Parenchyma from human lung tissue samples was flash frozen in liquid nitrogen and stored at 

-80°c upon receipt. Samples were then selected for caspase 1 activity analysis based on 

patient data. Cytosolic and nuclear cell fraction extraction was performed (as described in 

section 2.3.5.1) for determination of caspase 1 activity (as described in section 2.3.5.2). 

 

6.2.3. Statistical analysis 

 

Data is expressed as mean ± S.E.M of n observations. The data was assessed for statistical 

significance by applying an unpaired t-test for parametric data or alternatively Mann-Whitney 

U-test for non-parametric data with independent groups compared with their specific time-

matched controls. For multiple comparisons tests, statistical analysis was performed by 

applying a one-way ANOVA (analysis of variance) with a Dunnett’s or Bonferroni’s multiple 

comparisons post-test for parametric data or alternatively a Kruskal-Wallis incorporating 

Dunn’s multiple comparison post-test for non-parametric data. A P value < 0.05 was taken as 

significant and all treatments were compared with the appropriate control group. 
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6.3. Results 

 

6.3.1. Characterisation of a sub-chronic model of cigarette smoke induced-inflammation 

in C57BL/6 mice. 

 

A significant increase in BALF neutrophils in response to CS exposure was seen at all the 

time points throughout the 28 day exposure period when compared to their time matched 

controls (Figure 6.1A). This increase peaked at 10 days and remained elevated at all later 

time points (Figure 6.1A). The monocyte/macrophages began to infiltrate the BALF at 10 

days and remained elevated at all later time points (Figure 6.1B). They were significantly 

elevated at the 10, 14 and 21 day time points when compared to their time-matched air 

exposed controls (Figure 6.1B). Furthermore, lymphocytes demonstrated increases at similar 

time points to the monocyte/macrophages, shown to be significantly elevated from 10 days 

until the final 28 day time point when compared to their time matched controls (Figure 6.2). 

There were no significant changes in eosinophil numbers in response to CS exposure in the 

BALF at any time point throughout the 28 days exposure period (Figure 6.2). 

 

Determining markers of inflammasome activation in this sub-chronic model demonstrated an 

increase in caspase 1 activity in the lung tissue at all time points (significant at 14, 21, 24 and 

28 days) following the final smoke exposure when compared to their time matched controls 

(Figure 6.3A). Furthermore, this increase in caspase 1 activity throughout the 28 day CS 

exposure period was mirrored in the levels of IL-1β and IL-18 detected in the BALF in 

response to CS exposure (Figure 6.3B & Figure 6.3C). Additionally, the levels of IL-1β in the 

BALF were shown to be significantly increased at the 7 – 28 day time points, whilst IL-18 
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was significantly increased at the 10 – 28 day time points when compared to their appropriate 

time matched controls (Figure 6.3B & Figure 6.3C). 

 

Efforts to determine the levels of the ATP released into the BALF following sub-chronic CS 

exposure proved to be unsuccessful. 
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A – BALF Neutrophilia 
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B – BALF Macrophages 

Figure 6.1 – The effect of 28 day sub-chronic CS exposure on airway inflammatory cell burden in the BALF. 
C57BL/6 mice were challenged with room air or 500 ml/min cigarette smoke, twice daily for 28 consecutive 

days. Samples were collected 24 hours after the final smoke exposure at 3 and 7 day intervals and the BALF 

neutrophil (A) and monocyte/macrophage (B) numbers were determined by differential counting under light 

microscopy. Data represented as Mean ± SEM for n=8 observations. Statistical significance determined with a 

Mann-Whitney U-test for non-parametric data. * = P<0.05 and denotes a significant difference to the time-

matched air exposed control group. 
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Cells (10

3
/ml) Eosinophils Lymphocytes 

3 days Air 0.17±0.17 2.73±0.73 

Smoke 0.93±0.33 2.87±1.00 

7 days 
Air 0.25±0.16 6.33±1.58 

Smoke 2.27±1.04 11.78±3.83 

10 days 
Air 0.00±0.00 4.03±1.19 

Smoke 3.48±1.85 47.72±17.99* 

14 days 
Air 0.00±0.00 4.75±1.25 

Smoke 0.80±0.80 94.95±33.24* 

17 days 
Air 0.00±0.00 5.03±2.17 

Smoke 0.80±0.51 26.88±2.70* 

21 days 
Air 0.15±0.15 3.18±0.86 

Smoke 1.55±0.71 40.58±7.17* 

24 days 
Air 0.00±0.00 6.68±1.86 

Smoke 2.37±0.90 56.80±9.48* 

28 days 
Air 0.00±0.00 4.92±0.75 

Smoke 2.23±0.93 27.67±2.80* 

Figure 6.2 – The effect of 28 day sub-chronic CS exposure on airway inflammatory cell burden in the BALF. 
C57BL/6 mice were challenged with room air or 500 ml/min cigarette smoke, twice daily for 28 consecutive 

days. Samples were collected 24 hours after the final smoke exposure at 3 and 7 day intervals and the numbers 

of eosinophils and lymphocytes recovered from the BALF were determined by differential counting under light 

microscopy. Data represented as Mean ± SEM for n=8 observations. Data represented as Mean ± SEM for n=8 

observations. Statistical significance determined with a Mann-Whitney U-test for non-parametric data. * = 

P<0.05 and denotes a significant difference to the time-matched air exposed control group. 
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A – Caspase 1 Activity 

3 3 7 7 10 10 14 14 17 17 21 21 24 24 28 28
0

1

2

3

4

5

Number of days exposed (d)

Air

Smoke
*

* *


g

/m
l *

*

*
*

*
*

 
B – BALF IL-1β Release 
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C – BALF IL-18 Release 

Figure 6.3 – The effect of 28 day sub-chronic CS exposure on markers of inflammasome activation in the 

lung. C57BL/6 mice were challenged with room air or 500 ml/min cigarette smoke, twice daily for 28 

consecutive days. Samples were collected 24 hours after the final smoke exposure at 3 and 7 day intervals and 

caspase 1 activity in the cytosolic fraction of the lung tissue (A) and the release of inflammatory cytokines IL-1β 

(B) and IL-18 (C) in the BALF were measured using commercially available assays. Data represented as Mean 

± SEM for n=8 observations. Statistical significance determined with a Mann-Whitney U-test for non-

parametric data. * = P<0.05 and denotes a significant difference to the time-matched air exposed control 

group. 
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6.3.2. Examination of inflammasome axis expression in human tissue. 

 

Although the numbers are limited, the data illustrates that caspase 1 activity is increased in 

both smoking donors and emphysema patients when compared to non-smoking donors 

(Figure 6.4). Furthermore, there seems to be minimal difference in caspase 1 activity when 

comparing the increased levels seen in the smoking donors and emphysema patients (Figure 

6.4). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 – Caspase 1 activity in human lung tissue samples. Parenchyma from human lung tissue samples 

was flash frozen in liquid nitrogen and stored at -80°c upon receipt. Cytosolic and nuclear cell fraction 

extraction was performed and the cytosolic fraction was used to determine caspase 1 activity. Data represented 

as Mean ± SEM. Statistical significance determined with One-way ANOVA incorporating Bonferroni’s post-test 

for parametric data.  * = P<0.05 and denotes a significant difference to the non-smoking donor group. 
 

 

Disease Group Age (years) Sex (M/F) 

Non-Smoking Donor 
27 - 72 3/9 

Smoking Donor 
22 - 62 7/3 

Emphysema 
49 - 69 17/8 

Figure 6.5 – Human lung tissue patient details list. Details of patient sex, age and condition for samples used 

to assess caspase 1 activity in lung tissue from human patients with various disease conditions. 
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6.4 Discussion 

 

The positive data highlighting the important role of the P2X7-inflammasome axis in driving 

acute CS induced inflammation raised further questions with regards to the function of this 

pathway in more chronic conditions associated with the development of COPD. The 

phenotype of the disease in the clinic has been shown to shift from being driven 

predominantly by neutrophils in the acute phase, to include the actions of macrophages in 

chronic phase (O’Donnell et al., 2006). Thus, it is envisaged that the development of more 

chronic models of CS exposure (4 weeks or more) in mice may more closely resemble human 

disease. Furthermore, the role of the inflammasome is unclear in the response to the shift in 

the phenotype of the disease in chronic conditions. 

 

To validate the role of the inflammasome in the on-going inflammation in a more chronic 

model of CS exposure, markers of inflammasome activation were investigated in the sub-

chronic (28 day) exposure model. Additionally, caspase 1 activity was examined in human 

lung tissue samples from non-smoking donors, smoking donors and emphysema patients to 

establish if the previous findings in the in vivo pre-clinical models translate into the human 

disease. 

 

Both neutrophil and monocyte/macrophage numbers in the BALF were demonstrated to be 

elevated in response to sub-chronic CS exposure, with the later becoming involved at a later 

10 day time point. Furthermore, lymphocyte numbers were also significantly increased in 

response to the CS exposure, following a similar profile to that of the monocyte/macrophage 

component of the airway inflammation. These findings support those reported by other 

groups utilising chronic models of CS exposure in mice (D’Hulst et al., 2005; Maes et al., 
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2006). Temporally correlated with the increase in neutrophils and macrophages observed in 

the BALF, an increase in caspase 1 activity, IL-1 and IL-18 levels was also seen in response 

to the CS exposure throughout the 28 day exposure protocol. This suggests that the P2X7-

inflammasome axis is not only central to the induction of CS-induced inflammation but also 

in the on-going inflammation. 

 

A similar increase in caspase 1 activity was observed in lung tissue from patients with COPD 

and smokers. Although the numbers are limited this data clearly demonstrates that as seen in 

the pre-clinical models, caspase 1 activity is increased in diseased tissue.  Therefore, it can be 

assumed that the pre-clinical model reflects the clinical disease and that the role of caspase 1 

is not restricted to the induction of the inflammation but is chronically elevated. This finding 

supports those reported by others investigating markers of inflammasome activation, 

demonstrating that IL-1β (Ekberg-Jansson et al., 2001; Zeidel et al., 2002; Singh et al., 2010) 

and IL-18 (Petersen et al., 2007; Imaoka et al., 2008; Rovina et al., 2009) are both increased 

in clinic samples taken from COPD patients. Based on these findings, it can be assumed that 

the increases in markers of inflammasome activation seen in these clinical samples from 

COPD patients advocate a central role for the P2X7-inflammasome axis in driving the 

inflammation seen in COPD patients. 

 

These results clearly promote the critical role of the P2X7 - inflammasome axis in CS induced 

inflammation. Testing the P2X7 KO mice in the 28 day sub-chronic model would provide 

further validation of the importance of this “axis” in CS-induced inflammation. Furthermore, 

the data suggests that the pathway has an on-going role in the pathogenesis of COPD with 

translational data in human tissue from both donors and patients to validate this hypothesis. 

Further investigation of the pathway in a more chronic (6 month) CS exposure model will 
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provide further justification for the role of the inflammasome in the chronic stages of the 

disease to validate the findings in the human patient samples. 
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Summary & Future Directions 

  

Chapter 7 
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7.1 Summary 

 

COPD remains a severe healthcare problem globally, with the incidence of the disease 

predicted to further increase. Although much research focus has been aimed at better 

understanding the disease, there still remains much that is unknown about the cellular 

components and molecular mechanisms that drive COPD pathogenesis. The aim of this thesis 

was to attempt to elucidate the mechanisms that promote the pathogenesis of the disease by 

examining how CS exposure leads to the inflammation linked with markers of inflammasome 

activation that have been reported to be increased in both the clinic and animal models of 

COPD.  

 

I developed an acute CS driven model of inflammation in C57BL/6 mice and characterised 

the inflammatory response elicited. The data was consistent with those of other groups (Doz 

et al., 2008; Morris et al., 2008). Having validated the model, markers of inflammasome 

activation were then investigated. The data clearly suggests that acute exposure to CS causes 

an increase in caspase 1 activity as well as the release of the NLRP3 inflammasome linked 

cytokines IL-1 and IL-18. Surprisingly, no increases were seen in cytokine mRNA levels. 

However, as the glucocorticoids are believed to function by blocking the 

transcription/translation of inflammatory cytokines (Barnes et al., 2009) this lack of increase 

in cytokine mRNA levels may explain why the inflammation seen in COPD patients has been 

shown to be resistant to steroid treatment. Since, the release of inflammatory cytokines in this 

pathway may be independent of transcription/translation; the actions of steroids would have 

limited impact on the inflammation driving the disease. 
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The inflammatory chemokine KC was seen to be increased in response to cigarette smoke at 

both the gene and protein level. However, the increase in KC production did not temporally 

correlate with the cellular inflammation suggesting that KC may not play an important role in 

driving the inflammation in this model. Surprisingly, I was also unable to detect increased 

ATP levels in the samples, a finding that is reported by other groups using CS models of 

inflammation (Mortaz et al., 2009; Lucattelli et al., 2010). Furthermore, as I was unable to 

detect an increase in ATP production I attempted to investigate an increase in an alternative 

P2X7 receptor activator NAD+ oxidase. Both P2X7 receptor ligands were not detected in any 

samples across all groups. 

 

I wanted to parallel my investigation in an alternative neutrophilic model of inflammation to 

validate that the increases seen in the markers of inflammasome activation are specific to 

inflammation associated with the disease and not through the normal innate immune 

response. I examined changes in markers of inflammasome activation in response to an LPS 

challenge. Although significant increases were seen in neutrophilia and inflammasome linked 

cytokines, these were not temporally correlated and more significantly, not linked to any 

increase in the central inflammasome processing protein caspase 1. This suggests that 

activation of the inflammasome is specific to the inflammation associated with the disease 

and not triggered by activation of the innate immune response. 

 

Intriguingly, the release of the two inflammasome-linked cytokines IL-1 and IL-18 seems to 

differ in this model as the release of IL-18 seems to be independent of increased mRNA 

expression. The lack of caspase 1 activity would suggest that IL-1 may be processed 

differently in this model. In parallel, increases in the production of the neutrophilic 
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chemokine KC at both the gene and protein levels were seen that temporally correlated with 

the neutrophilia in this model. 

 

In order to define the integral role played by the P2X7 – NLRP3 inflammasome pathway in 

CS-induced inflammation, I incorporated mice lacking a functional P2X7 receptor into both 

in vivo models of inflammation. These mice showed decreases in caspase 1 activity and the 

release of IL-1 and IL-18 in response to CS exposure. Furthermore, the airway neutrophilia 

in response to the CS exposure was completely attenuated in the P2X7
-/-

 mice. All these 

findings are consistent with those of other groups investigating P2X7
-/-

 mice in CS exposure 

(Lucattelli et al., 2010). The basal levels of IL-18 in these P2X7
-/-

 mice were higher than in 

the WT mice in air exposed groups. It is envisaged that this increase in the P2X7
-/-

 mice might 

be due to a biological compensatory mechanism that aims to protect these mice as they lack 

the functional P2X7 receptor required for inflammatory cytokine processing. Interestingly, 

BALF KC production was unaffected by blockade of the P2X7 – inflammasome axis whilst 

the neutrophilia was completely attenuated. Furthermore, these KO animals show an increase 

in KC levels when compared to the CS exposed WT animals. This finding will require further 

investigation particularly as the neutrophilia in these KO animals is completely attenuated in 

the presence of an increase in the chemokine KC. 

 

I examined the role of the P2X7 receptor in LPS-induced inflammation to find that the 

inflammation was similar in both wild-type and P2X7
-/-

 mice. In contrast to the CS model, 

P2X7
-/-

 mice failed to reduce the increased neutrophilia or production of IL-1 in response to 

LPS exposure. Furthermore, the release of KC in response to LPS was significantly increased 

in the P2X7
-/-

 mice when compared with the WT, which provides further evidence of a 

developmental change in the KO animals from birth. 
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I wanted to validate the findings seen using the P2X7
-/-

 mice in the CS model of inflammation 

using a small molecular weight inhibitor to block the P2X7 receptor. In order to identify an 

appropriate pharmacological tool to use in my in vivo models, I tested the P2X7 inhibitors in 

human and murine in vitro cell based assays. The release of both IL-1 and IL-18 was 

examined in response to treatment with LPS and ATP and shown to be greater than the sum 

of both stimuli individually. This significant increase in the release of inflammasome linked 

cytokines in response to the combination treatment was significantly attenuated in the 

presence of a P2X7 antagonist. However, AZ11645373 failed to impact on the murine cells, 

whereas A438079 only impacted on the murine system, even though it is reported to act on 

the human receptor. These studies allowed me to select A438079 as the appropriate tool to 

use in the murine models. 

 

The integral role of the P2X7 – NLRP3 inflammasome pathway in CS-induced inflammation 

was further validated by the fact that very similar data was obtained by blocking the P2X7 

receptor using a pharmacological tool as with the P2X7
-/-

 mice in the CS model of 

inflammation. Moreover, the P2X7 inhibitor did not affect neutrophilia induced by endotoxin 

challenge. This finding combined with the lack of caspase 1 activity seen in this model 

suggests that the P2X7 – NLRP3 inflammasome axis is not critical in the inflammatory 

response driven by the innate immune response. This is a highly significant finding as it 

suggests that utilising a P2X7 antagonist in the clinic would attenuate the inflammation linked 

to the disease whilst not affecting any essential innate defence mechanisms. 

 

In order to investigate the role of this pathway in a more chronic setting, I exposed mice to 

CS for a longer (sub-chronic) 28 day period. A significant increase in airway neutrophilia, 
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and more interestingly, macrophages was seen in this sub-chronic model. This is similar to 

what is seen in the clinic, where macrophages are present in the inflammatory milieu seen in 

COPD patient lungs. Increases in caspase 1 activity and release of inflammasome linked 

cytokines IL-1 and IL-18 were also seen. To support these findings I wanted to examine the 

role of the pathway in the human disease so I investigated caspase 1 activity in human lung 

tissue samples and demonstrated that it was elevated in samples from smokers and patients 

with COPD, which suggests that the pre-clinical model reflects the clinical disease and that 

the role of caspase 1 is not restricted to the induction of the inflammation but is chronically 

elevated. To my knowledge the role of caspase 1 has not been previously investigated in 

human disease, thus this finding provides valuable insight into the role of this pathway in 

chronic conditions. 

 

When studied as a whole, the data presented in this thesis provides valuable insight into the 

underlying processes that drive the pathogenesis of COPD. Furthermore, the data in all the 

chapters provides in vivo insight into the role of this pathway in driving the inflammation 

associated with the disease. Furthermore, the results in Chapter 6 indicate that this pathway 

plays a role in chronic disease and the pathogenesis of COPD thus highlighting the potential 

of this pathway and its components as possible therapeutic targets in battling this fatal 

disease.  
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7.2 Future Directions 

 

7.2.1 Investigate activation of the inflammasome 

 

As of yet there is currently no conclusive evidence in the literature to validate what factor or 

mediators drive the activation of the inflammasome in response to P2X7 ligand binding. 

Current dogma suggests that this process may be dependent upon pore formation or 

membrane disruption in response to receptor activation (Mariathasan & Monack, 2007). It is 

envisaged that identifying this missing step in the pathway will facilitate better understanding 

of the underlying mechanisms as well as provide further potential therapeutic targets. 

 

Furthermore, I have attempted to validate the reported increased in ATP in response to CS 

exposure that may lead to inflammasome activation (Lucattelli et al., 2010). However, 

although the same methods and materials were used, the results reported by other groups 

could not be replicated in our in vivo model. I further investigated the possibility that an 

alternative activator of the inflammasome such as NADPH oxidase might responsible; 

however I was also unable to detect it in any of my samples. Therefore it will be important to 

identify if ATP is truly responsible for driving this inflammasome mediated inflammation or 

whether it is dependent on another activator of the pathway. 

 

To elucidate the role of ATP in this modelling system, I suggest using alternative methods to 

detect its levels; such as in vivo bioluminescence imaging to detect the presence of ATP in a 

whole living animal. Bioluminescence is the process of light emission in living organisms, 

which uses native light emission from an organism that bioluminesce. I have attempted to use 

this technique to determine ATP levels in the BALF samples from CS exposed mice, 

however it was unsuccessful. This detection of ATP via luciferin-luciferase assay in 
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supernatants is both laborious and inaccurate due to the presence of endogenous 

ectonucleotidases that break down the ATP at a very fast rate. Recently, various groups have 

demonstrated the ability to engineer specific cell/membrane-targeted luciferase to allow in 

vivo real-time imaging of extracellular ATP by detecting a change based on an 

increase/decrease in activity that will be represented in the change of light emitted (Pellegatti 

et al., 2008). This technique would remain non-invasive and thus have limited impact on the 

physiology of the animals whilst they are exposed to the various challenges in these in vivo 

models. 

 

Alternatively, if these ectonucleotidases are indeed breaking down the ATP at a rapid rate in 

the BALF samples this could be prevented by using an inhibitor of ectonucleotidases in the 

lavage fluid. Dipyridamole, a thromboxane synthase inhibitor is reported to inhibit the 

breakdown of ATP (Connolly et al., 2000). This may preserve the ATP produced as a result 

of CS exposure and facilitate it’s detection in the BALF samples using the standard luciferase 

assay I used in this thesis.  

 

7.2.2 The role of the inflammasome in chronic model of CS exposure 

 

Having seen the increases in markers of inflammasome activation in the sub-chronic CS 

exposure model, it would be of great interest to examine whether the inflammasome is truly 

activated chronically in response to prolonged 6 – 9 months CS exposure. A more chronic 

model will also provide more disease like changes in the lungs of these animals, including 

emphysema, mucus production and lung function changes. Furthermore, it would be of great 

interest to compare the findings/observations of this chronic exposure to those of the disease 

in the clinic. This would provide further insight into how accurate this in vivo model is in 
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replicating the disease phenotype as well as provide a platform to investigate activation of the 

inflammasome. Other end-points of interest would also include investigating histopathology 

to measure mucus production and airway remodelling (emphysema) as well as investigating 

markers of inflammasome activation using IHC (immunohistochemistry). Moreover, it would 

also facilitate examining other markers of COPD currently investigated in the clinic, such as 

lung function changes (e.g. FEV1, residual volume and exercise ability). 

 

7.2.3 Genetic manipulation of the inflammasome 

 

Due to time constraints I was only able to utilise the P2X7
-/-

 mice in our in vivo models of 

inflammation to investigate the role of the NLRP3 inflammasome. However, I have recently 

obtained animals lacking other components of the P2X7 – NLRP3 inflammasome axis 

including NLRP3, ASC and caspase 1. These animals will provide valuable insight into the 

importance of each component in driving the inflammation seen in response to 

inflammasome activation. Furthermore, there are also animals lacking the adaptor molecules 

for other inflammasome complexes including AIM2, NLRC4 and NLRP1. To my knowledge 

none of these inflammasome complexes have been investigated in in vivo models of airway 

inflammation or investigated in this disease area. This would provide novel data and insight 

into the roles these other inflammasome complexes, which remain poorly understood, may 

play in inflammation. 

 

Other available knockout mice that would provide valuable assets to this project include mice 

lacking receptors and proteins for the inflammasome linked cytokines that include IL-1β and 

IL-18. There are currently available IL-1 receptor KO and IL-18 receptor KO animals, as 

well as mice that do not produce both cytokines. By investigating the inflammation in 
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response to CS exposure in these animals it would be possible to identify if therapies targeted 

at these cytokines may be of clinical benefit. 

 

7.2.4 Pharmacological manipulation of the inflammasome 

 

Having seen the successful effects of a P2X7 antagonist in reducing the inflammation in 

response to CS exposure, I wish to further examine the role of the inflammasome by using 

pharmacological tools to target various components of the inflammasome and its products. 

This will provide valuable insight in validating therapeutic targets and tools that can be used 

in the clinic to meet this urgent need for therapies to combat this relentless disease. These 

include inhibitors of NLRP3 (Glyburide), caspase 1 (VX-765, Parthenolide, Thimerasol and 

Auranofin) and anti-bodies to neutralise IL-1β and IL-18. Using these anti-bodies will 

circumvent the developmental issues of using KO mice and also provide a therapeutic benefit 

in the clinic. There are also antagonists available that can target the receptors of the 

inflammasome linked cytokines IL-1β (IL-1R e.g. ANAKINRA) and IL-18 (IL-18R). 

 

7.2.5 The role of KC in cigarette smoke-induced inflammation 

 

Whilst investigating the role of the inflammasome in these in vivo models, I saw intriguing 

results with regards to the role of the neutrophilic chemokine KC in these in vivo models. 

Whilst it was shown to be increased in response to CS at both the gene and protein level it did 

not temporally correlate with the cellular inflammation suggesting that KC may not play an 

important role in driving the inflammation in this model. In the LPS model increases in KC at 

both the gene and protein levels temporally correlated with the neutrophilia. Furthermore, 

BALF KC production in response to CS exposure was unaffected by P2X7 receptor blockade 
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whilst the neutrophilia was completely attenuated. Surprisingly, these KO animals showed a 

significant increase in KC levels when compared to the CS exposed WT animals. 

 

Thus it is important to elucidate the role of the chemokine KC that is believed to function as a 

neutrophil chemoattractant. This can be achieved by incorporating KC
-/-

 mice into both in 

vivo models and investigating the effects on the different mechanisms of inflammation. 

 

7.2.6 The role of other inflammasomes in COPD 

 

As it stands the inflammasome family of intracellular receptors still remains a poorly 

understood field. Although various inflammasome complexes have been identified that all 

vary based on the main adaptor molecule that constitutes the complex, the differences in their 

function and activation is still poorly understood. Investigating the role of various 

inflammasome in our in vivo disease models may highlight differences in their roles, or 

alternatively identify any possible similarities in their functions. This still remains an unmet 

need, particularly with interest in this field gathering pace. 

 

7.2.7 Investigating the pathway in samples from COPD patients 

 

The data obtained from examining the activity of caspase 1 in donors, smokers and 

emphysema patients was promising. Obtaining a better range and wider selection of samples 

from patients across all stages of the disease (GOLD I – IV) would facilitate better 

investigating activity of various components of the pathway throughout different stages of 

disease development. 
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