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Abstract 
Paralysis has a severe impact on a patient’s quality of life and entails a high emotional burden and 

life-long social and financial costs. More than 5 million people in the USA suffer from some form of 

paralysis and about 50% of the people older than 65 experience difficulties or inabilities with 

movement. Restoring movement and communication for patients with neurological and motor 

disorders, stroke and spinal cord injuries remains a challenging clinical problem without an adequate 

solution. 

A brain-machine interface (BMI) allows subjects to control a device, such as a computer cursor or an 

artificial hand, exclusively by their brain activity. BMIs can be used to control communication and 

prosthetic devices, thereby restoring the communication and movement capabilities of the 

paralyzed patients. So far, most powerful BMIs have been realized by extracting movement 

parameters from the activity of single neurons. To record such activity, electrodes have to penetrate 

the brain tissue, thereby generating risk of brain injury. In addition, recording instability, due to small 

movements of the electrodes within the brain and the neuronal tissue response to the electrode 

implant, is also an issue. In this thesis, I investigate whether electrocorticography (ECoG), an 

alternative recording technique, can be used to achieve BMIs with similar accuracy. 

First, I demonstrate a BMI based on the approach of extracting movement parameters from ECoG 

signals. Such ECoG based BMI can further be improved using supervised adaptive algorithms. To 

implement such algorithms, it is necessary to continuously receive feedback from the subject 

whether the BMI-decoded trajectory was correct or incorrect. I show that, by using the same ECoG 

recordings, neuronal responses to trajectory errors can be recorded, detected and differentiated 

from other types of errors. Finally, I devise a method that could be used to improve the detection of 

error related neuronal responses. 
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Chapter 1 

Introduction 
Paralysis, a loss of muscle function of one or more muscles, is a widespread chronic medical 

condition. A recent study by Christopher and Dana Reeve Foundation (2009) revealed that 

approximately 1.9% of USA population has some form of paralysis. Main causes for paralysis (Figure 

1) are stroke (29%), spinal cord injury (23%) and multiple sclerosis (17%). Patients suffering from 

paralysis have to rely on help from their friends and family. It is estimated that more than 50 million 

people in the USA or around 20% of USA population provide this kind of care. Based on a study by 

Arno (Arno et al., 1999), economic costs of health care for paralyzed patients were estimated to be 

$306 billion in 2006. In UK, it is estimated that more than 500,000 people suffer from paralysis and 

special care annual costs are estimated at more than £500 million. These numbers demonstrate that 

paralysis dramatically affects not only the lives of the patients and their social environment, but 

society as a whole. 

 

Figure 1. Distribution of causes for paralysis in the USA. Taken from One Degree of Separation: Paralysis and Spinal Cord 
Injury (2009). 

Brain-machine interfaces (BMIs), also called brain-computer interfaces, allow subjects to control a 

device, such as a computer cursor or an artificial hand, exclusively by their brain activity (Vidal, 1973; 

Wolpaw et al., 2002). A number of paralyzed patients completely lose the ability to move or speak, 

thereby losing all means of communication with the outside world. In some studies, BMIs have been 

used to establish a novel way of communication for such paralyzed patients (Birbaumer, 2006; 

Krusienski and Shih, 2011; Kubler et al., 2001), restoring their ability for social interaction. In 
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addition, BMIs can be used to establish the connection between the subject’s brain and a prosthetic 

device (Figure 2), thereby restoring movement capabilities of paralyzed patients (Daly and Wolpaw, 

2008; Donoghue et al., 2007; Lebedev and Nicolelis, 2006b; Schwartz et al., 2006). 

 

Figure 2. A possible application for a BMI. Here, BMI is used to re-establish the broken nerve connection between the 
brain and the arm. Figure provided by Mehring, Ball, Rickert and Rau. 

BMIs can be characterized by the technique used to record the brain signals and by the approach 

used to translate brain signals into the control of the external device (Wolpaw et al., 2002; Lebedev 

and Nicolelis, 2006; Waldert et al., 2009). 

1.1. Recording techniques 

Different recording techniques have been used to realize BMIs (Figure 3). One can use recordings of 

spike trains of single neurons (single unit activity; SUA) or several neurons together (multiunit 

activity; MUA) in the close vicinity of the recording electrode (Carmena et al., 2003; Fraser et al., 

2009; Guenther et al., 2009; Hochberg et al., 2006; Moritz et al., 2008; Serruya et al., 2002; Velliste 

et al., 2008) and local field potentials (LFP) mainly reflecting synaptic activity of a neuronal 

population around the microelectrode (Hwang and Andersen, 2009; Mehring et al., 2004; Zhuang et 

al., 2010). To record such signals for BMI use, it is necessary to implant microelectrodes or arrays of 

microelectrodes into the brain tissue (Figure 4). The process of implantation requires opening the 

skull and penetrating the cortical tissue, resulting in substantial medical risk. SUA and MUA 

recordings also exhibit problems with recording stability. Small movements on a micrometre scale of 

the implanted microelectrodes can move it away from a previously nearby neuron, thereby loosing 

the signal from this neuron. In addition, tissue reactions at the surface of the implanted electrode 

(Bjornsson et al., 2006; Shain et al., 2003) creates an insulation layer that can effectively distance the 

recording electrode from neighbouring neurons, thereby reducing the signal to noise ratio of the 

recorded signal or losing the signal altogether. Furthermore, neurons can change coding relationship 
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between their activity and the corresponding behaviour over time (Dickey et al., 2009; Donoghue et 

al., 2004). For all of these reasons, it is difficult to realize reliable long-term operation of a BMI based 

on intracortical spike recordings. 

 

Figure 3. Overview of recording techniques used to achieve BMI control. Microelectrode arrays are used to record 
activity from multiple single neurons (SUA, MUA) and local field potentials (LFP). Electrocorticography (ECoG) records 
electrical potentials from the surface of the brain. Non-invasive recording techniques, such as MEG and EEG, record 
neuronal activity outside of subject’s skull. Figure taken from (Waldert et al., 2009). 

Alternatively, it is possible to record SUA or MUA signals using neurotrophic electrodes (Bartels et 

al., 2008). In this technique, recording electrodes reside within glass capillaries filled with 

neurotrophic factor. Both capillaries and electrodes are implanted in the cortex and, thanks to the 

neurothophic factor, branches of nearby axons grow into the capillaries and around the electrodes. 

Such an implant provides stable recordings but, unfortunately, an array of such electrodes, capable 

of recording signals from a large enough populations of neurons, is still not available. Therefore, 

BMIs using this recording technique have not yet been realized. 

Often, a couple of neurons with similar signals will be recorded by one of the microelectrodes. 

Therefore, to record SUA, it is necessary to identify and extract signals originating from a particular 

neuron within the compound signal. This method is called spike sorting (Buzsaki, 2004; Lewicki, 

1998; Quiroga, 2012) and, while it can successfully identify different neurons, it occasionally 

mislabels neuronal spikes (Wood et al., 2004), thereby adding to the instability of the SUA based 

BMIs. 
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Figure 4. Blackrock microelectrode array used for intracortical recordings of neuronal activity. A: Implant and the scull 
interface shown next to one United States penny coin for scale. B: Example of implanted Blackrock array. Figure taken 
from brochure for Blackrock MicrosystemsTM. 

Non-invasive recording techniques can also be utilized for a BMI. Electroencephalography (Maulsby 

et al., 1963; Niedermeyer and Lopes da Silva, 2005; Nunez and Srinivasan, 2006) records electrical 

potentials from the surface of the subject’s scalp. Due to simplicity, low cost and the non-

invasiveness of EEG recordings, it has been the most widespread technique to record neural signals 

from humans. Therefore, it has often been used for BMI research (Birbaumer et al., 1999; Machado 

et al., 2010; Wolpaw and McFarland, 2004). Magnetoencephalography (MEG; Cohen, 1972) records 

the magnetic fields from outside of the subject’s head. Since magnetic fields, produced by currents 

in the brain, are rather small, recordings have to be made within a shielded room and using highly 

sophisticated sensors, which make this technique expensive and immobile (for MEG based BMI see 

Mellinger et al., 2007). BMIs have also been realized using functional magnetic resonance imaging 

(fMRI; Huettel et al., 2008; for fMRI based BMI see Weiskopf et al., 2004), a recording technique 

where neuronal activity is measured indirectly through changes in the blood oxygenation levels 

(BOLD signal) in small parts of the cortex. fMRI signals are measured using a large superconductive 

magnet, which also makes the method expensive and immobile. Compared to electrophysiological 

recording techniques, it has a very low temporal resolution (around 25Hz), but has the ability to 

record BOLD signals from the whole brain at once. Another recording technique, near infrared 

spectroscopy (NIRS; Brazy, 1991; Smith, 2011), has recently been utilized for a BMI (Abdelnour and 

Huppert, 2009). This technique records the absorption of the near infrared light that is passed 

through the cortex using emitters and sensors on the top of the skull. Absorption depends on the 

blood oxygenation levels in the part of the cortex light travels through. As in the fMRI, these 

measurements are correlated to neuronal activity in the corresponding part of the cortex. 

In the case of all non-invasive electrophysiological methods, sensors are far from the source of the 

signal. Therefore, these recording techniques suffer from poor spatial resolution compared to 

intracortical recording methods (Nunez and Srinivasan, 2006). In addition, the magnitude of noise 

from the environment is usually comparable to or even higher than the recorded signal, which 
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makes it challenging to operate it in a mobile BMI system. While recording, subjects’ movements can 

create strong recording artefacts that further hinder the use of non-invasive BMIs. 

Another possibility for BMI is to use electrocorticography (ECoG), epicortical implants that record 

electrical potentials from the surface of the brain (Kellis et al., 2010; Leuthardt et al., 2004; Pistohl et 

al., 2008; Schalk et al., 2008). As for intracortical implants, an opening of the skull is necessary during 

the implantation procedure (Figure 5). On the other hand, implanted electrodes reside on the 

surface of the cortex instead of penetrating the cortex. The recorded signals are analogue and, like 

the LFP, largely represent synaptic input. Therefore, no spike sorting is required. A recent study by 

Chao et al. (Chao et al., 2010) showed that ECoG recordings also possess long term stability and that 

motor coding of these signals does not change even over several months. In comparison to non-

invasive recording techniques, ECoG has a higher spatial resolution (Nunez and Srinivasan, 2006; 

Slutzky et al., 2010), can record signals in higher frequencies (Staba et al., 2002), has a higher signal 

to noise ratio (Ball et al., 2009a) and is less prone to movement artefacts (Ball et al., 2009a). 

Therefore, ECoG might provide an adequate compromise of signal quality, information content, and 

invasiveness between intracortical and non-invasive recording. ECoG recordings are presently used 

in standard clinical procedures (e.g. presurgical epilepsy assessment, electrical stimulation mapping 

and stroke assessment) which makes it possible to conduct ECoG studies with human subjects 

without additional medical risk. 

 

Figure 5. Example of an ECoG implant for epilepsy assessment. A: Scheme of an 112 electrode ECoG grid implant drawn 
over a planned implantation location. B: Photograph of ECoG implant taken during surgery. Figure taken from (Mehring 
et al., 2004). 

1.2. BMI approaches 

A number of approaches can be used to realize BMI control. BMIs can use brain activity elicited in 

response to external stimuli, such as light flashes or sounds. These BMIs rely on the fact that 
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neuronal responses to such stimuli can be modulated by attention. By changing the attending from 

one stimulus to another, a subject can communicate with the surroundings. This approach includes 

BMIs based on steady state visual evoked potentials (SSVEP; Allison et al., 2008; Middendorf et al., 

2000) and visual (Farwell and Donchin, 1988; Hoffmann et al., 2008) and auditory (Sellers et al., 

2006) P300 BMIs. It requires little or no training and has already been implemented in a reliable 

fashion (Birbaumer et al., 1999; Brunner et al., 2011), but exerts constant pressure on the subjects 

to indirectly communicate their intentions. Therefore, it has mainly been used for BMI speller 

devices, useful only for the completely paralyzed patient unable to use other ways of 

communication. 

Subjects can also be trained to self-regulate certain aspects of their brain activity. Voluntary up and 

down regulation of slow cortical potentials (Birbaumer et al., 1999) and voluntary modulation of the 

amplitude of µ (8-13Hz) or β (13-20Hz) frequency bands (McFarland et al., 2008; McFarland et al., 

2010; Moritz et al., 2008; Wolpaw and McFarland, 2004; Wolpaw et al., 1991) have been used in this 

way. This approach can be used to operate the BMI with three degrees of freedom, but only after an 

extensive training of several months (McFarland et al., 2010). In addition, many subjects do not 

show the ability to self-regulate their brain ability. More complex and more reliable control might be 

possible using this method but extensive training hinders its possible use for paralyzed patients. 

Neuronal activity during movement imagination has also been used to control different degrees of 

freedom of a BMI controlled device (Blankertz et al., 2007; Pfurtscheller et al., 1993; Pfurtscheller 

and Neuper, 2006; Schalk et al., 2008). In this approach, little or no subject training is needed. On 

the other hand, such signals are often very noisy and can depend on the subjects’ ability to 

consistently imagine the movement. 

Another approach uses the property of neurons in motor related areas to directly code for 

parameters of active movements. Using this approach, movements of an external effector (e.g. 

movement of arm prosthesis to the right) are controlled by motor cortical signals that control the 

equivalent movements of the corresponding body part (e.g. arm movement to the right). This 

approach was initially motivated by findings in monkey studies (Georgopoulos et al., 1983; 

Georgopoulos et al., 1986; Moran and Schwartz, 1999) which showed that the direction and speed 

of arm movements can be inferred from the firing rates of motor cortical neurons. More recently, it 

has been shown, using offline analysis, that movements of a limb can be inferred from monkey SUA 

(Vargas-Irwin et al., 2010), monkey MUA (Stark and Abeles, 2007), monkey LFP (Ince et al., 2010; 

Mehring et al., 2003; Zhuang et al., 2010), human ECoG (Ball et al., 2009b; Leuthardt et al., 2004; 

Mehring et al., 2004), monkey ECoG (Chao et al., 2010), human EEG (Waldert et al., 2008) and 

human MEG (Georgopoulos et al., 2005; Waldert et al., 2008). The most powerful BMIs to date, 
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continuous online BMIs controlling multiple degrees of freedom with high accuracy, have been 

realized using this approach and SUA signals (Carmena et al., 2003; Fraser et al., 2009; Hochberg et 

al., 2006; Serruya et al., 2002; Taylor et al., 2002; Velliste et al., 2008). BMIs with the same approach 

have not yet been realized using less invasive recording method. 

1.3. BMI algorithms 

BMIs essentially translate the neuronal activity into the control signal for the device that is being 

interfaced. The part of the BMI that does this translation is called the BMI algorithm. A large number 

of BMIs are designed to translate neuronal activity into discrete commands. Output of such an 

interface is a selection amongst several possible choices. In that case, one uses classification 

algorithms. Algorithms that output a continuous variable are called regression algorithms. To 

continuously control a complex device, such as a prosthetic hand with the possibility of moving 

individual fingers, it is necessary to use regression algorithms with several degrees of freedom. 

During the active use of a BMI device, subjects receive feedback about its operation. Due to 

neuronal plasticity, neurons can modify their activity to improve the reliability of BMI control (Fetz, 

1969; Ganguly and Carmena, 2009). After only several days, a population of neurons can modify its 

coding behaviour to achieve two dimensional BMI control (Ganguly and Carmena, 2009). If a larger 

neuronal population is recorded using EEG, evidence suggests that longer time is needed for 

modifying neuronal coding behaviour to achieve similar levels of control (McFarland et al., 2010). 

One can also allow BMI algorithm to change, thereby incorporating the knowledge gathered during 

the online operation of the BMI device. Often, a large amount of data is needed to train a BMI 

algorithm. By re-training the algorithm after a period of time, using the data recorded during the 

BMI use, it is possible to improve the BMI operation. By using adaptive algorithms, one can 

continuously incorporate information available from the use of BMI. Adaptive algorithms can be 

separated into three groups. Unsupervised algorithms receive no feedback on the accuracy of their 

decoding. They modify the algorithm according to some assumptions about the recorded signals and 

output variables. For instance, in a two class problem, distributions of neural recordings that code 

for these classes can start to move. A simple algorithm can continuously fit Gaussian distributions on 

the last 100 recorded examples, thereby tracking the movements of the distributions (Blumberg et 

al., 2007). 

Reinforcement learning algorithm relies on the binary feedback usually related to the final outcome 

of the task. For instance, if a subject had BMI control of a computer cursor on the screen and was 

trying to guide the cursor to one out of several targets, reinforcement algorithms would not receive 

any feedback about the decoded trajectory, but only whether the correct target was reached or not. 
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This information is then used to modify the algorithm in such a way to make less incorrect target 

selections (DiGiovanna et al., 2009). 

Supervised adaptive algorithms receive the more informative or full feedback about the decoded 

outcome. Such feedback can then be used to modify the algorithms in a more direct way, leading to 

faster improvement of BMI operation. Both reinforcement learning and supervised adaptive 

algorithms rely on feedback information. Such information is provided either by assuming the 

intention of the subject or by reading out the discrepancy between the subjects’ intention and the 

decoded outcome from the neuronal activity. Former approach can be used successfully only when 

the optimal choice or trajectory is obvious and straightforward. For instance, if subject has two 

possible, equally short trajectories that can be used to reach the target, it will not be possible to 

reliable estimate subject’s intention. Even in the cases where design of the task is such that the 

optimal trajectory is always easy to predict, subjects might not choose to use such trajectory. 

Furthermore, during the real-life application, where there are numerous obstacles and target 

choices are known only to the subject, it is impossible to correctly estimate the subjects’ intention. 

On the other hand, neuronal responses to errors, such as discrepancy between the subjects’ 

intention and the decoded outcome, have been identified using a number of different recording 

techniques (Diedrichsen et al., 2005; Krigolson et al., 2008; Ojemann et al., 2004; van Veen and 

Carter, 2006). This led to several successful uses of the former approach, where neuronal responses 

to error signals were used to modify BMI classification algorithms, which then improved their 

accuracy of classification (Blankertz et al., 2003; Buttfield et al., 2006; Ferrez and del R Millan, 2008; 

Parra et al., 2003). Even though error signals related to trajectory errors have also been recorded 

(Diedrichsen et al., 2005), the same approach was never used to try to adapt regression BMI 

algorithms. 

1.4. Outline of the thesis 

In the second chapter, I will demonstrate an online BMI based on the approach of extracting 

movement parameters from ECoG signals. Such BMI has not been demonstrated before and is the 

first step towards ECoG based continuous brain control of a dexterous hand and arm prosthesis. 

Such device could restore hand and arm movements in paralyzed patients. 

To move the ECoG based BMIs further in this direction, I explore the possibility of using error related 

neuronal signals (ERNRs) as a source of feedback for supervised adaptive trajectory decoding BMI 

algorithms. To this end, in the third chapter, I demonstrate that it is possible to record neuronal 

responses to incorrectly achieved goals, called outcome errors, and incorrectly decoded trajectories, 

called execution errors. 
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In the fourth chapter, I show that afore identified error types can be reliably detected from ECoG 

recordings over motor cortex. This is of great importance for BMI applications since motor cortex is a 

primary target for implants used to drive trajectory decoding BMIs. I also show that, by using only a 

small subset of 4 electrodes, it is possible to retain most of the detection information compared to 

using the whole ECoG implant containing 64 electrodes. Using a smaller implant can reduce the size 

of the wound necessary for the implantation, thereby reducing the medical risk of such a procedure. 

Efficient improvement of BMI operation by the adaptive algorithm using detection of error signals 

depends on the reliable detection. To improve the reliability of detection, I have devised an 

algorithm that can improve the alignment of ERNRs. Using properly aligned ERNRs for training the 

detection algorithm could improve the error detection algorithm. This algorithm is presented in 

chapter 5. 

Finally, chapter 6 gives the overview of the presented results and draws conclusion about the future 

prospects of ECoG as a method for BMIs.  
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Chapter 2 

An online BMI using decoding of movement 
direction from the human ECoG 
Summary. A brain-machine interface (BMI) can be used to control movements of an artificial device, 

e.g. movements of an arm prosthesis, by motor cortical signals that control the equivalent 

movements of the corresponding body part, e.g. arm movements. This approach has been 

successfully applied in monkeys and humans by accurately extracting parameters of movements 

from the spiking activity of multiple single neurons. I demonstrate that the same approach can be 

realized using brain activity measured directly from the surface of the human cortex using 

electrocorticogrpahy (ECoG). Significant BMI control was achieved in 4 out of 5 subjects with correct 

directional decoding in 69%-86% of the trials (75% on average). The results show the feasibility of an 

online BMI using decoding of movement direction from human ECoG signals. Thus, to achieve such 

BMIs, ECoG signals might be used in conjunction with or as an alternative to intracortical neural 

signals. 
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2.1. Introduction 

A brain-machine interface (BMI) is a device that translates neural activity of the brain into signals 

controlling a machine. Different techniques exist to record brain activity for BMIs and there are 

different approaches to translate brain signals into movements of an external effector (Lebedev and 

Nicolelis, 2006a; Waldert et al., 2009; Wolpaw et al., 2002). 

Some of the  most powerful BMIs have been realized using the spiking signals of multiple neurons 

recorded with intracortical electrode implants (Carmena et al., 2003; Fraser et al., 2009; Hochberg et 

al., 2006; Moritz et al., 2008; Santhanam et al., 2006; Serruya et al., 2002; Velliste et al., 2008). 

However, recordings from intracortical implants can be unstable due to the response of brain tissue 

to the implant (Bjornsson et al., 2006; Shain et al., 2003) and due to changes of the neuronal activity 

- behaviour relationship across time (Dickey et al., 2009; Donoghue et al., 2004). BMIs have also 

been implemented using non-invasive recording techniques, where the neural activity is recorded 

outside of the subject’s skull using EEG, MEG, fMRI or NIRS (Abdelnour and Huppert, 2009; 

Birbaumer et al., 1999; McFarland et al., 2010; Mellinger et al., 2007; Weiskopf et al., 2004; Wolpaw 

and McFarland, 2004).  

In addition to afore mentioned recording techniques, ECoG recordings have also been used for BMIs 

(Leuthardt et al., 2004; Schalk et al., 2008). Compared to intracortical implants, ECoG signals can be 

recorded without implanting the electrodes into the cortex, do not require spike sorting and exhibit 

potential advantages with regard to long-term recording stability (Chao et al., 2010). In comparison 

to non-invasive recording techniques, ECoG has a higher spatial resolution (Freeman et al., 2000; 

Slutzky et al., 2010), higher  bandwidth (Staba et al., 2002), higher signal to noise ratio (Ball et al., 

2009a) and is less prone to artefacts (Ball et al., 2009a). In addition, ECoG recordings are presently 

used in standard clinical procedures making it possible to conduct ECoG studies with human subjects 

without additional medical risk. 

Previous online brain-control studies using ECoG decoded the execution or imagery of different parts 

of the body (e.g. right vs. left hand) to control an external actuator (Leuthardt et al., 2004; Schalk et 

al., 2008). In addition, it has been shown that different movements of the same limb (e.g. the 

direction of an arm movement) can also be inferred from ECoG (Ball et al., 2009b; Chao et al., 2010; 

Leuthardt et al., 2004; Mehring et al., 2004; Miller et al., 2009; Pistohl et al., 2008; Schalk et al., 

2007; Wang et al., 2009). For example, continuous position and velocity of 2D arm movements 

(Pistohl et al., 2008; Schalk et al., 2007), continuous finger position (Kubanek et al., 2009) and 

different grasping movements (Pistohl et al., 2012) have been decoded. However, all these studies 
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decoded these movement parameters offline. An online BMI using the decoding of kinematic 

movement parameters from ECoG has not been realized until now. 

 In this chapter, I demonstrate brain-control of a computer cursor using the decoding of movement 

direction from ECoG recordings in humans. 

2.2. Methods 

2.2.1. Subjects and recordings 

Five subjects (S1-S5) suffering from intractable pharmaco-resistant epilepsy (Table 1) voluntarily 

participated in the study after having given their informed consent. The study was approved by the 

Freiburg University Ethics Committee.  

For pre-neurosurgical epilepsy diagnostics, the subjects were implanted with an 8×8 grid of subdural 

surface electrodes (Ad-Tech, Corp., 1cm inter-electrode distance, 4mm electrode diameter) covering 

parts of the primary and pre-motor cortex (Figure 6). S1, S2, S3 and S4 had additional ECoG stripes 

implanted. In addition to the signal from the subdural electrodes, 21 surface EEG electrodes, two to 

four electrooculography (EOG) electrodes, two electrocardiography (ECG) electrodes and several 

electromyography (EMG) electrodes were recorded. Signals from the ECoG electrode stripes, EEG, 

ECG and EMG electrodes were not analyzed in this study. 

Recordings from all electrodes were digitized at 1024Hz sampling rate for S1, S2 and S3 (Brainbox 

EEG-1164 amplifier, Braintronics B. V., Almere, Netherlands) and at 2500Hz sampling rate for S4 and 

S5 (AC441-01 Neuvo amplifier, Compumedics Limited, Abotsford, Australia). Recordings for S1, S2 

and S3 were made using a hardware high-pass filter with 0.032Hz cutoff frequency. Recordings for 

S4 and S5 were made without the hardware high-pass filter. Experiment control and paradigm 

presentation were performed using BMIsoft software package developed in the research group of 

Dr. Mehring. Subsequent data analysis was performed using MATLAB (MATLAB versions 7.4-7.11, 

Natick, Massachusetts: The MathWorks Inc., 2007-2011). 
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Figure 6 Position of the implants on the neocortex and in relation to the Sylvian fissure, precentral, central and 
postcentral sulci. Brain outlines were reconstructed from the pre-implantation MRI of the subjects. Electrodes (red and 
black dots) and sulci were reconstructed from the post-implantation MRI of the subjects. Note that, due to local 
pressure in the region of the implant, brain tissue can be partially compressed and the brain surface can be slightly 
deformed relative to the pre-implantation state. Therefore, a mismatch between the sulci on the pre-implantation MRI 
and sulci reconstructed from the post-implantation MRI is possible. I analyzed the signals from the electrode grid 
implants only (red dots). 
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Subject Age Sex Handedness Electrode location Seizure focus 

S1 33 M R Grid right fronto-central; 
Right fronto-lateral strip; 
4 right inter-hemispheric strips 

Right frontolateral; 
Right parietal; 
Right interhemispheric 

S2 22 M R Grid left frontal;  
3 left dorsolateral-prefrontal and 
frontal strips;  
4 interhemispheric strips 

Left frontal 

S3 41 F L Grid left fronto-lateral; 
2 left frontal strips 
4 interhemispheric strips 

Left precentral 

S4 17 M R Grid right frontal; 
2 depth electrodes to right insula and 
hippocampus; 
2 right occipital and temporo-basal 
strips 

Rest of gyrus 
temporalis superior 
(after resection); 
Right hippocampus; 
Right posterior insula; 
Right frontal lobe 

S5 23 M R Grid right fronto-central; 
5 interhemispheric strips; 
right parieto-occipital strip; 
2 posterior parietal strips 

Right frontal 

Table 1 Clinical profiles of the subjects taking part in the experiment. 

2.2.2. Task 

Subjects interacted with an experimental paradigm shown on a computer screen (Figure 7). The 

experiment was carried out in sessions, defined as uninterrupted time epochs in which subjects 

continuously interacted with the paradigm. Each session consisted of 50 or 25 trials after which the 

subject stopped performing the task. Each trial consisted of a pause phase (1-2 sec, random, 

uniformly distributed) followed by a preparatory informative cue presentation (displayed for 1-2 sec, 

random, uniformly distributed), which informed the subject to prepare for moving a joystick to the 

left (purple rhomboid) or to the right (red rhomboid) using the hand contra-lateral to the 

implantation site. After a delay of 2-3 sec (random, uniformly distributed), a go cue (green dot) was 

presented and subjects had to initiate the movement during the next 1 second. During the 

movement, no visual feedback was given to the subject. After reaching the joystick end position, 

they had to keep it in this position for additional 2 seconds. If subjects did not follow this sequence 

correctly, the trial was stopped and not used. This was done to ensure stereotypical movements of 

the subjects after the go cue and no movements before the go cue. Subsequently, the cursor on the 

screen moved in the direction in which subjects moved the joystick (feedback phase). 
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Figure 7 Subjects interacted with an experimental paradigm shown on a computer screen. One session consisted of 50 or 
25 trials. Each trial consisted of a pause phase (1-2 sec, random, uniformly distributed), informative cue presentation (1-
2 sec, random, uniformly distributed), a delay phase of (2-3 sec, random, uniformly distributed), a movement phase 
initiated by a go cue and a feedback phase. The screen showed a fixation cross during pause and delay phases, a 
coloured rhomboid (purple: movement to the left, red: movement to the right) during the informative cue presentation 
and a green dot during the movement phase, all in the centre of the screen. In the feedback phase the cursor changed to 
the colour of the informative cue, and was moved in the direction of the subjects’ joystick movement. In addition, a 
thick line in the colour of the informative cue would appear in the path of the cursor. If the cursor crossed the line, the 
word “Tor” (German for “goal”) would be written on the screen. If subjects did not perform stereotypic movements 
after the go cue or performed movements before the go cue, an error message would appear and the trial would be 
terminated. Subjects were then asked to resume the initial position and the next trial would start. 

Each experiment started with an introduction session in which the subject was familiarized with the 

task. Subjects were encouraged to perform correct as well as incorrect trials, so that they would get 

used to the task and to the error messages written on the screen. Once the subject was familiar with 

the task, the introduction session was stopped and one or two training sessions followed. During the 

feedback phase of the training sessions, the cursor always moved over to the maximum distance 

from the centre in the correct direction. Once the training sessions were finished, a model was built 

from the collected data. One or more brain control sessions followed, identical to the training 

sessions, except for the feedback phase. In the brain control sessions, the distance travelled by the 

cursor was proportional to the posterior probability for the cued movement direction as decoded 

with the trained decoding model. A vertical line was positioned at the half of the maximum distance 

the cursor could travel, signifying posterior probability of 0.5. Every time the posterior probability 

was higher than 0.5, the cursor would cross the line and the word “Tor” (German for “goal”) was 

written on the screen, providing positive feedback to the subject. After every brain control session 
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the model was re-built using one or more of the previous sessions as training data, sometimes with a 

change in the selection of electrodes. Table 2 summarizes the experiments for all subjects. 

 Session 
Number of trials 

Model trained on Number of 
electrodes Electrodes used 

R L Tot 

S1
 

S1s1 – training 23 27 50    
S1s2 – training 23 22 45    
S1s3 – brain control 24 21 45 S1s1 & S1s2 16 ESM H&A motor 
S1s4 – brain control 23 22 45 S1s3 6 Visual inspection 
S1s5 – brain control 16 24 40 S1s4 6 Visual inspection 

S2
 

S2s1 – training 24 20 44    
S2s2 – brain control 18 23 41 S2s1 16 ESM H&A motor 
S2s3 – brain control 12 29 41 S2s1 & S2s2 16 ESM H&A motor 
S2s4 – brain control 24 22 46 S2s1, S2s2 & S2s3 16 ESM H&A motor 

S3
 S3s1 – training 24 23 47    

S3s2 – brain control 20 27 47 S3s1 8 Visual inspection 
S3s3 – brain control 21 28 49 S3s1 & S3s2 2 Visual inspection 

S4
 S4s1 – training 26 20 46    

S4s2 – brain control 13 9 22 S4s1 12 Visual inspection 

S5
 S5s1 – training 21 29 50    

S5s2 – brain control 11 11 22 S5s1 19 ESM H&A motor 

Table 2 Summary of the online closed loop experiment. Number of left (L), right (R) and total (Tot) number of correctly 
performed trials is shown for every session. Sessions, number of selected electrodes and electrode selection strategy (all 
ESM H&A motor electrodes, or selecting the electrodes by visual inspection of the neural responses) used for model 
building are listed for every brain control session. 

2.2.3. Model building for decoding in brain control sessions 

Data from relevant (Table 2) sessions was common average referenced using recordings from all 

electrodes on the 8x8 ECoG grid that did not have any defects or did not record epileptic activity. 

First, I chose the strategy for selecting the electrodes to be used in model building. I either selected 

all electrodes that showed a hand or arm motor response during the electrical stimulation mapping 

(ESM; ESM H&A motor electrodes; Foerster, 1931; Uematsu et al., 1992) or chose the electrodes by 

visual inspection of the recorded ECoG amplitudes for each movement direction (Table 2). 

Decoding model used in my study was based on several features of low-pass filtered ECoG signals 

(2nd order symetric Savitzky-Golay filter with window length optimized between 0.25 and 1 second; 

Savitzky and Golay, 1964; Steinier et al., 1972). Following filtering, features were taken at different 

time points with respect to the go cue. Model building consisted of testing different values of 

parameters defining the feature selection and the decoder used for classification. Feature selection 

consisted of selecting: (i) the window length of the Savitzky-Golay filter, (ii) the number of features 

from one electrode, (iii) the time of the first feature relative to the go cue, and (iv) the temporal 

distance between the first and the last feature. For decoding, I used regularized linear discriminant 
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analysis (RLDA; Friedman, 1989), which uses an additional parameter, the regularization coefficient 

(v), to improve generalization. ECoG recordings for S4 and S5 were not high-pass filtered by the 

recording system. Therefore, to remove low frequency potential drifts for S4 and S5, I subtracted the 

low-pass filtered ECoG signal that was obtained by filtering using a causal running average filter. In 

addition to other model parameters, for S4 and S5, I also selected between different values of (vi) 

the window length of the running average filter. For each of these parameters, I defined a set of 

values and tested every combination of these values using 5-fold cross validation. The set of 

parameter values which gave the highest estimated normalized decoding accuracy (DA) was used to 

build the model on the entire set of training data: 

 1

1 classN
i

iclass i

cDA
N n=

= ∑
 (2.1) 

where Nclass is the number of classes (in this case 2; left and right movements), ci is the number of 

correct trials for a given class and ni is the total number of trials for a given class. 

2.2.4. Offline data analysis 

During the online experiment, the time for model building was limited. Therefore, the number of 

tested parameter values was reduced. In the offline analysis, I always used a more exhaustive range 

of parameter values: (i) Savitzky-Golay filter window length: ¼, ½, ¾ and 1 seconds; (ii) number of 

features from one electrode: 1, 2, 3, 4 and 6; (iii) temporal distance of the first feature relative to the 

go cue: from 0 till 1.4 seconds after the go cue in steps of 0.1 seconds; (iv) time interval between the 

first and the last feature: 1/16, 1/8, ¼, 3/8, ½, ¾ and 1 seconds; (v) regularization parameter: 0, 

0.001, 0.1, 0.3, 0.5, 0.7, 0.9 and 0.99; (vi) window length of the running average filter: 5, 10 and 20 

seconds (for S4 and S5 only). 

2.2.5. Comparison of electrode selection strategies 

To optimize decoding, electrode selection can be important (Demirer et al., 2009; Lal et al., 2004; 

Muller et al., 2000). In the case of patients recovering after intracranial surgery, an additional 

restriction is that the model has to be built in the short amount of time available for experiments 

and, hence, has to be based on only a small amount of training data. This restricts the number of 

possible electrode selections that can be tested. For this reason, before the brain control sessions, I 

selected the electrodes used for model building based either on ESM or on visual inspection of the 

neural responses, thereby not optimizing the electrode selection on the basis of DA. 

Offline analysis was used to test whether selecting the electrodes in a different manner could have 

increased the DA. I restricted the electrode selection to the ESM H&A motor electrodes, trying to 
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avoid electrodes where information could be a result of some kind of artefact (e.g. eye movements) 

and minimizing the influence of sensory feedback induced by the subjects’ movements. To further 

minimize the influence of sensory input, I also considered the subset of the ESM H&A motor 

electrodes that lay over the motor cortex according to the sulci reconstruction (ESM H&A motor + SR 

motor electrodes). 

Thus, two electrode sets were considered for the offline electrode selection strategy: (a) all ESM 

H&A motor electrodes and (b) ESM H&A motor + SR motor electrodes. For each of these sets, I 

considered (i) single electrodes belonging to the electrode set (a or b), (ii) electrode pairs (vertical or 

horizontal) within the electrode set, (iii) three neighbouring electrodes within the electrode set, (iv) 

four neighbouring electrodes within the electrode set and (v) all electrodes together belonging to 

the electrode set. I evaluated the DA of all electrode subsets for all parameter values (see above) by 

5-fold cross validation on the training data and selected the parameter values and electrode subset 

yielding the highest DA for (i), (ii), (iii), (iv) and (v) separately. These subsets and parameter values 

were then used to decode the brain control sessions offline. Sessions used for training and testing 

the model were chosen in the same way as in the online experiment (Table 2). 

2.2.6. Significance testing of neural responses 

To confirm that neural responses to left and right movements were significantly different from each 

other and from baseline activity, a Mann–Whitney–Wilcoxon test was applied between neural 

responses at every time point. Neural activity recordings were first low pass filtered with the 

Savitzky-Golay filter (symmetric, 2nd order, 0.5 seconds window length). Since the response had to 

be present within a limited time after the trigger, I tested the epoch of the neural activity from the 

go cue until 2 seconds after the go cue. Baseline neural activity was defined as all neural activity 

outside the epochs described above. To sample the baseline activity distribution properly, I removed 

the autocorrelation of the low-pass filtered activity arising from the filtering procedure by sampling 

the baseline activity only every 0.5 seconds (window length of the filter). To reduce the computation 

time of the significance testing, I tested significance of the neural responses every 31.25ms 

(corresponding to 32Hz), instead of testing for every recorded time point. 

Due to the large number of statistical tests, correction for multiple testing was necessary to control 

the number of falsely rejected null hypotheses. I used the Benjamini-Hochberg procedure (Benjamini 

and Hochberg, 1995) with a correction for dependent statistics (Benjamini and Yekutieli, 2001) to set 

the false discovery rate for one subject at the level of 5% for all tests. A neural response to the go 

cue on a certain electrode was considered significant if there was at least one time point for which 

the neural response to the go cue for right movements was significantly different from baseline 
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neural activity or, alternatively, at least one time point for which the neural response to the go cue 

for left movements was significantly different from baseline neural activity. This condition needed to 

be satisfied after a correction for multiple testing was applied, taking into account all time-point-

wise tests for both conditions. A neural response to the go cue was considered significantly different 

between left and right movements if there was at least one time point for which the neural response 

to the go cue for right movements was significantly different from the neural response to the go cue 

for left movements, after the correction for the multiple testing was made. 

2.2.7. Movement onset versus go cue alignment 

Since the neural signal epochs used for decoding were aligned to the go cue, differences in 

movement reaction times and, hence, in the onset times of neural responses time-locked to 

movement onset, could have quite different effects on DA, depending on whether they originate 

from trials of the same movement type (either left or right) or whether they stem from a systematic 

difference in reaction times for different movement types (left vs. right). In the latter case, the 

systematic difference in response onset by itself would allow for correct directional decoding, even 

for otherwise identical neural responses. Removing the systematic reaction time difference by 

aligning the neural signal epoch on movement onset instead of on go cue should then reduce the 

DA, or even eliminate it. On the other hand, differences in reaction times for trials of the same 

movement type would increase the variability of the neural responses of both movement types 

when aligned to go cue and, hence, lead to a reduction in DA. Removing the effect of reaction time 

variability by aligning the signal epochs on movement onset, instead of on go cue, would then be 

expected to result in an increase of DA. 

To test which of these two scenarios were true, I realigned the neural responses to movement onset, 

thereby removing, or at least reducing, both response onset variability and systematic response 

onset latencies due to reaction times differences. I ran the whole experiment offline as if it was an 

online experiment, i.e. using the same sessions for training and testing (Table 2). 

2.2.8. Electrical stimulation mapping (ESM) and neuroanatomical electrode 

assignment 

Electrical cortical stimulation through the electrode grid was performed using an INOMED NS 60 

stimulator (INOMED, Germany) as a part of the clinical procedure. Stimulation trains of 7s duration 

consisted of 50Hz pulses of alternating polarity square waves of 200μs each. The intensity of 

stimulation was gradually increased up to 15mA or to the induction of sensory and/or motor 

phenomena. Subjects were unaware of the timing of stimulation, unless these phenomena occurred. 

Phenomena were reported by the subject, specifying the limb of origin and the type of sensation 
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(motor or somatosensory). Consequently, ESM maps were created and used to select the electrodes 

used for online brain control (Figure 8). 

 

Figure 8. Overview of the electrode selection for the online brain control combined with ESM results and sulci 
reconstruction. For each subject, an 8x8 electrode grid (circles represent electrodes) is shown, oriented in the same 
manner as the grid in Figure 6. Arrows above the top right corner point in the frontal direction. Red circles mark the 
electrodes initially used for brain control, blue circles mark the electrodes used after the electrode selection was 
changed. Electrode selection was changed only once for S1 and only once for S3. Letters above the electrodes mark the 
type of the ESM response elicited: A: arm, H: hand, L: leg, E: eye and F: oro-facial responses. Black letters mark motor 
responses, white letters mark somatosensory responses. Solid green lines mark the Sylvian fissure, precentral, central 
and postcentral sulci reconstructions. 

Data from post-implantation MRIs was used to reconstruct the positions of the Sylvian fissure, 

central sulcus, postcentral sulcus and precentral sulcus with respect to the electrodes (Figure 6 and 

Figure 8). The reconstruction was used to see if an electrode was lying over one of the reconstructed 

sulci or not. I defined the sulci reconstruction (SR) motor electrodes, as those electrodes laying over 

the central sulcus, over the precentral sulcus, or in-between the central and the precentral sulci 

according to the sulci reconstruction. Sulci reconstruction was available only after the online 

experiment had finished. 
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2.3. Results 

 

Figure 9 A: Mean ± standard error of the mean of the low-pass filtered neural activity (2nd order symmetric Savitzsky-
Golay filter, 0.5 second length) for S3 for left (blue) and right (red) movements relative to the go cue (0 sec) over the 
electrode grid. Every subplot represents one electrode with the top left subplot corresponding to the top left grid 
electrode as shown in Figure 6. The arrow points in the frontal direction. Solid green lines in the background show sulci 
reconstructions. B: Low-pass filtered neural responses recorded from two selected electrodes for every subject (same 
filter as in A). 0 sec marks the go cue. For S1, S2 and S3 mean ± standard error of the mean of the neural response is 
shown for the first training session (T 1) and the first and the second brain control session (BC 1 and 2). For S4 and S5, 
only one brain control session was recorded. Therefore, only T 1 and BC 1 are shown. Green background marks the times 
when the neural response for left and right movements were significantly different from each other for all three 
sessions. 
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2.3.1. Neuronal responses 

I found significant neural responses to go cue (Figure 9) on a large number of electrodes (47 out of 

64 for S1, 37 out of 64 for S2, 52 out of 64 for S3, 19 out of 64 for S4 and 44 out of 64 for S5; 62% of 

the electrodes on average). In contrast, only a small number of electrodes showed significant 

differences between neural responses to left and right movements (8 electrodes for S1, 1 for S2, 7 

for S3 and none for S4 and S5, 5% of the electrodes per subject on average). These results show that, 

even though the neural response to hand movements are widely distributed, only a small fraction of 

the responses contained directional information. 

2.3.2. Decoding accuracy in online closed loop experiments 

During the online experiment, I ran 2 training and 3 brain control sessions with subject S1, 1 training 

and 3 brain control sessions with S2, 1 training and 2 brain control sessions with S3 and 1 training 

and 1 brain control session with S4 and S5 each (Table 2). Table 3 shows the overview of the chosen 

parameter values during the model building phase for each of the brain control sessions. 

Session Filter 
window 

Features per 
electrode 

Time of the 
first feature Time length Regularization High-pass 

filter 

S1s3 1 2 1.4 1/4 0.7 x 
S1s4 1 3 1 1/16 0.1 x 
S1s5 1/2 2 0.9 3/8 0.01 x 

S2s2 1/2 2 0.3 1/16 0.3 x 
S2s3 3/4 1 0.4 x 0.01 x 
S2s4 2/3 1 0.5 x 0.01 x 

S3s2 1/3 1 1 x 0.1 x 
S3s3 1/2 1 0.9 x 0.5 x 

S4s2 1/2 1 1.3 x 0.3 5sec 

S5s2 3/4 1 0.7 x 0 20sec 

Table 3 Summary of the parameter values used for building the model before each of the brain control sessions during 
the online experiment. The high-pass filter, implemented by subtraction of the low-pass filtered signal using running 
average filter, was used for subjects S4 and S5 only. 

I achieved significant (p<0.01, binomial test) directional decoding in online closed loop hand 

movement direction decoding in 4 out of 5 subjects and 8 out of 10 sessions (Figure 10a, Table 4) 

with average DA of 75%. I used two different strategies to select the electrodes used for model 

building. For the first brain control session for S1 and all brain control sessions for S2, S4 and S5, I 

used all ESM H&A motor electrodes (average DA 71%). For the other brain control sessions, I 

selected the electrodes which showed strongest tuning during training, not necessarily restricting 

myself to ESM H&A motor electrodes (average DA 80%). The difference in DA between these two 

strategies was significant (p<0.05, Fisher’s exact test). On the other hand, I found no significant 
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difference (p=0.48, Fisher’s exact test) between strategies of using only the last preceding session to 

train the model (average DA 77%) and using multiple sessions (average DA 74%). 

 

Figure 10. A: Overview of the DA in the online brain control experiment. B: Offline analysis of DA for different electrode 
sets (ESM H&A motor, ESM H&A motor + SR motor) and their subsets (single electrode, electrode pair, electrode 
quartet, all electrodes) and comparison to DA from the brain control sessions. For each or the electrode sets, the 
optimal electrode subset and the corresponding set of parameters were chosen by maximizing DA evaluated using 5-fold 
cross-validation on the sessions used for model building. Histograms show the average DA evaluated on the testing 
sessions with error bars showing 95% confidence intervals of the mean. Choice of sessions used for model building and 
testing sessions was identical to those used in the online experiment (Table 2).   

In the second brain control session of S3, I used neural activity measured with only two neighbouring 

electrodes, 1cm apart, for decoding (Figure 10a, electrodes marked in Figure 8). The DA of 76% 

achieved by using only these two electrodes was not significantly different from the DA in the 

remaining sessions (mean DA=75%, p=1, Fisher’s exact test). 

Brain-control session 
Successful trials 

DA P value 
R L 

S1s3 15/24 11/21 0.58 0.12 
S1s4 16/23 21/22 0.83 < 0.001 
S1s5 9/16 22/24 0.74 < 0.001 
S2s2 17/18 14/23 0.78 < 0.001 
S2s3 8/12 23/29 0.76 < 0.001 
S2s4 22/24 17/22 0.85 < 0.001 
S3s2 18/20 23/27 0.87 < 0.001 
S3s3 18/21 19/28 0.76 < 0.001 
S4s2 9/13 7/9 0.74 0.009 
S5s2 5/11 6/11 0.50 0.42 

Table 4. Summary of DA in the online closed loop experiment. For every brain control session, I listed the number of left 
(L) and right (R) successful/total trials and significance level (p) testing a chance level decoder hypothesis using a 
binomial test. 
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2.3.3. Comparison of electrode selection strategies 

I evaluated the DA from different electrode selection strategies and smaller electrode sets (Figure 

10b). For ESM H&A motor + SR motor electrodes, the DA from four neighbouring electrodes 

(average DA 78%) was not significantly different from the DA from all subset electrodes (average DA 

76%; p=0.61; Fisher’s exact test) or the DA from the brain control sessions (average DA 76%; p=0.56; 

Fisher’s exact test). This shows that most of the directional information was already present in the 

signals recorded from small sets of four neighbouring electrodes (contained within a 2cm x 2cm 

area). Additionally, ESM and SR give strong indication that all four of these electrodes recorded from 

the hand and arm area of the motor cortex. 

Using all ESM H&A motor electrodes yielded the highest DA (average DA 81%), with a tendency to be 

higher than the DA from brain control sessions (p=0.07; Fisher’s exact test) and the DA from using 

only all ESM H&A motor + SR motor electrodes (p=0.07; Fisher’s exact test). Note that the ‘all ESM 

H&A motor electrode set’ can include electrodes that lay over pre-motor and somatosensory cortex 

according to the sulci reconstruction (see section 2.2.8). 

2.3.4. DA topographies 

Figure 11 shows the spatial distribution of DA over the electrode grid when electrode quartets were 

used for decoding. For all subjects, the maxima of the DA had at least one electrode in the quartet 

belonging to the ESM H&A motor electrode set, with other high DA quartets grouped around the 

locations of the maxima. This is expected for a task involving hand and arm movements and confirms 

that the neural responses used for decoding were not the product of artefacts. 

2.3.5. Movement onset versus go cue alignment  

Inspection of the joystick movements (Figure 12a) revealed that, apart from reaction time and 

movement direction, rightward and leftward movements were quite similar, both across movement 

types (left vs. right) and across trials within the same movement type (either left or right). Following 

the go cue, subjects initiated the movements (defined as crossing 15% of the maximum joystick 

deflection in horizontal direction) after 415±87ms (S1 304±12 ms; S2 156±12 ms; S3 439±13 ms; S4 

661±33 ms; S5 513±16 ms). I observed a significant difference in reaction time between left and right 

movements (p<0.05; Mann–Whitney–Wilcoxon test) for some sessions of S2 and S4 (Figure 12b). 
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Figure 11 Topographies of DA, averaged over all brain control sessions, for all subjects with respect to the ESM 
responses (letters) and sulci reconstruction (solid green lines). The colour of each square indicates the DA achieved 
when using recordings from four electrodes located at the edges of the square. DA was calculated by selecting 
parameter values that gave the highest DA on the sessions used for model building (5 fold cross-validation), using these 
to build a model on the complete set of the same sessions and decoding using this model on the testing sessions. Choice 
of sessions used for model building and testing sessions was identical to those used in the online experiment (Table 2). 
White circle marks the electrode quartet with the highest DA. Arrows above the top right corner point in the frontal 
direction. 

To test whether response onset variability has an effect on the DA, I re-aligned the neural responses 

to movement onset and re-ran the experiment using the same sessions for training and testing 

(Table 2). I found that, in all subjects, the resulting DA was higher after alignment to movement 

onset than during the brain control sessions where trials were aligned on the go cue (Figure 12c; DA 

increase 0.08±0.03%, p<0.05; signed Mann–Whitney–Wilcoxon test). This indicates that the selected 

neural responses were indeed coding for movement direction and that correct decoding was not 

due to systematic response latency differences for different movement types.  
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Figure 12. A: Horizontal and vertical joystick deflection for S3 (normalized to a range of -1 to +1). Movements are shown 
as average ± standard error of the mean. B: Average movement onset time (15% of joystick deflection) following the go 
cue for every subject and every training (T) and brain control (BC) session. Error bars show standard error of the mean. 
Stars mark significant differences (Mann–Whitney–Wilcoxon test) between left and right movement onset times. C: 
Comparison of DA from online brain control experiment and DA from trials realigned to movement onset. Thin black 
lines show DA chance level. 

2.4. Discussion 

Here I showed that it is possible to realize online brain-control using the directional tuning of human 

ECoG signals. Brain control was achieved for 4 out of 5 subjects. For the subject where no control 

was obtained (S5), I could run only one brain control session. Eventually, due to medical reasons, the 

experiments with S5 had to be stopped and no additional brain control sessions could be performed 

later on. For S1, the first brain control session was also unsuccessful. In the subsequent sessions for 

S1, I changed the electrode selection and achieved significant control. In case more experimental 

time had been available for S5, I would have employed the same strategy, hoping that it might have 

worked for S5 as well. 
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I also examined DA based on signals from a small subset of neighbouring electrodes. In the second 

brain control session of S3, I showed that brain control is possible using signals from only two 

neighbouring electrodes. DA obtained with these two electrodes was the same as the average DA 

from other online brain control sessions. Moreover, offline analysis revealed that, across all sessions 

and subjects, already four neighbouring electrodes provide almost all the available movement 

information. This supports the idea that most of the informative signals in the experiment presented 

in this Chapter can be recorded from area that is relatively small compared to the size of the entire 

ECoG grid. This is consistent with offline analyses of previous studies showing high DA from local 

ECoG electrode quartets (Ball et al., 2009b), thereby indicating the feasibility of using ECoG implants 

with small, possibly dense electrode grids for BMI applications. 

One of the possible BMI applications is to control movements of hand and arm prosthesis. Such 

prosthesis might not provide proprioceptive feedback. Moreover, sources of the BMI control signals 

for the hand/arm prosthesis should not interfere with movements of other body parts. Thus, I 

focused on neural activity in the hand and arm area of the motor cortex. ESM was used as an 

indication which electrodes recorded neural activity predominantly related to hand and/or arm 

movements while sulci reconstruction was used to determine which of these electrodes were lying 

over the motor cortex (Figure 8). Here presented online experiment demonstrated that using all ESM 

H&A motor electrodes lead to a significant DA of 71% on average. When the identical experiment 

was repeated offline, now on all brain control sessions and with a complete search over all model 

parameters, DA increased to 81%. According to sulci reconstruction, some of the ESM H&A motor 

electrodes were lying over somatosensory cortex and some over the pre-frontal cortex. Thus, neural 

activity related to somatosensory feedback and cognitive processes may have contributed to 

decoding performance in the online control condition. To test whether this was the case, I used sulci 

reconstruction to determine a more restrictive set of electrodes by using only ESM H&A motor 

electrodes within the anatomically defined motor cortex. I demonstrated that one can still achieve a 

significant DA of 76% from this smaller electrode set. Even though neural activity related to visual 

and somatosensory feedback is present in motor cortex as well (Fetz et al., 1980; Merchant et al., 

2001; Naito et al., 1999), neural activity in the motor cortex mainly codes for motor execution 

(Suminski et al., 2009). Therefore, this result suggests that BMI using decoding of movement 

kinematics from ECoG recordings in humans may be possible, even without somatosensory 

feedback. 

In previous offline studies, higher DA was found when using low-pass filtered ECoG activity as 

compared to power in several frequency bands (Ball et al., 2009b; Pistohl et al., 2008; Schalk et al., 

2007). Schalk et al. showed that using low-pass filtered ECoG signals greatly increases DA when 
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added to power modulations in different frequency bands. Pistohl et al. showed that decoding two 

dimensional arm movement trajectories from the low-pass filtered signal component (LFC) of the 

ECoG recordings provided greater accuracy than decoding from power in different frequency bands. 

However, it is not clear how conclusions from these offline studies would generalize to online 

experiments. Schalk et al. (Schalk et al., 2008) showed that online closed loop control is possible 

using power modulations in different frequency bands of the ECoG recordings. Here, I showed that 

online closed loop control is possible using the LFC of the ECoG recordings as well. Further studies 

are needed to reveal which feature of the ECoG recordings, LFC or power modulations in different 

frequency bands, provides a better signal for online closed loop control and weather these two 

features can be used together to improve accuracy.  

In previous study by Ball et al. (Ball et al., 2009b), it was shown that it is possible to decode multiple 

directions of arm movement from ECoG recordings. While Ball et al. used offline decoding, here I 

demonstrate that it is possible to realize an online BMI based on decoding movement direction from 

ECoG signals. Schalk et al. (Schalk et al., 2008) realized an online cursor control using the human 

ECoG using either movement execution or movement imagery of different parts of the body. In the 

experiment presented in this Chapter, movements of a single limb (arm contralateral to the 

implantation site) were used to generate the neural control signals. Furthermore, recordings from a 

rather small area of the motor cortex were sufficient to extract most of the decoded movement 

information. Therefore, the size of a future electrode implant covering the relevant cortical area can 

likely be kept rather small as well. This is supported by the results of the second brain control session 

of S3, in which brain control was achieved using the recordings from only two neighbouring 

electrodes. The area covered by a hypothetical future implant with two electrodes, using the same 

design as in the implant used in this study, would be around 2cm2 only (the total area of the 

implants used in this study is approximately 64cm2). Further support comes from offline analysis 

which revealed that, across all sessions and subjects, recordings from four neighbouring electrodes 

(area of approximately 4cm2) already provided the maximum movement information. 

When movements of different body parts are used, I expect that, due to a roughly somatotopic 

representation of the motor cortex, the required size of the implant to achieve BMI would be larger. 

Furthermore, in the approach used by Schalk et al., subjects have to learn how to transform 

movements of different body parts to the desired movements of a cursor, e.g. that tongue 

protrusion is mapped to the cursor going up. In the experiment presented in this Chapter, learning of 

such transformations is easier since the control is intuitive: movement of the arm to the left moved 

the cursor to the left and movement of the arm to the right moved the cursor to the right. Schalk et 

al. demonstrated a higher level of brain control compared to the level of brain control presented 
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here: subjects controlled computer cursors continuously in two dimensions, whereas here, subjects 

could only generate a binary control signal. However, the earlier study by Pistohl et al. (Pistohl et al., 

2008) demonstrated that continuous decoding of two dimensional arm movement trajectories is 

possible using ECoG. Thus, the approach of using decoding of motor kinematics from ECoG might be 

extendable to continuous control and to more degrees of freedom. Findings presented in this 

chapter constitute a first step in this direction, confirming that online brain control using ECoG 

recordings with such approach is indeed possible. Future studies should reveal whether raising the 

level of brain control to continuous multidimensional control will be possible. 

Experiment presented in this Chapter was performed using ECoG recordings aligned to the go cue. 

Offline analysis revealed that part of the decoding errors was a result of reaction time variability. 

When I reran the experiment offline, aligning the recordings to movement onset, DA increased 

significantly. This shows that signals used for decoding contained information about movement 

direction and not just information about the reaction time. In addition, it also suggests that DA could 

be substantially improved during online brain-control if movement onset triggers, rather than the go 

cue, were used for signal alignment. This could be implemented by tracking the joystick positions 

and using the moment where the joystick passed a certain threshold as a reference point for the 

decoder. Such movement onset detection could not be used in the case of movement imagery 

needed for the application for paralyzed patients. In that case, the neural response onset, a purely 

internal event, would need to be detected and used as a trigger. 

Here presented results provide a proof of concept that BMI using directional tuning of ECoG 

recordings can be realized. I used recordings from an ECoG implant designed for epilepsy 

assessment, with electrode diameter of 0.4 cm and 1cm distance between electrodes. Recent 

studies recorded ECoG using high-resolution implants with electrode diameters and inter-electrode 

distances on the order of micrometers (µECoG), showing that epicortical potentials have spatial 

variability on a millimetre scale or less (Kim et al., 2007; Leuthardt et al., 2009; Slutzky et al., 2010). 

Therefore, due to the implant design used in the present study, it can be assumed that a large 

amount of informative signal was not recorded. Moreover, my findings indicate that most of the 

decoded movement information can already be obtained from a small area of the motor cortex. 

Thus, using high density µECoG implants over a small cortical area could potentially increase the 

accuracy of brain-control. 

Studies using intracortical recording techniques showed better accuracy of brain control than 

predicted from respective offline studies. This increase can be attributed to neuronal plasticity which 

changes the neuronal representations of movements to improve BMI control (Ganguly and Carmena, 

2009). These learning effects typically occur across days or weeks while, in hereby described 
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experiment, the available experimental time was limited to a few hours during one or two days. I 

expect that, with longer experimental time, the BMI accuracy would have significantly improved due 

to neuronal plasticity and learning. 

Previous studies have shown that movements of individual fingers (Kubanek et al., 2009; Miller et 

al., 2009) as well as natural grasping movements (Pistohl et al., 2012) can also be decoded from 

ECoG. Future research will therefore reveal whether utilizing high-resolution recordings from µECoG 

implants together with subject training will increase the accuracy and the number of degrees of 

freedom of brain-control, so that the ECoG control of a dexterous hand and arm prosthesis becomes 

possible. If successful, such a BMI can be used to restore reaching and grasping function in paralyzed 

patients (e.g. after spinal cord injury or stroke) or amputees. 
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Chapter 3 

Error related neuronal responses 
Abstract. Brain-machine interface (BMI) devices make errors in decoding. Detecting these errors 

online from neuronal activity can improve BMI performance by modifying the decoding algorithm 

and by correcting the errors made. Here, I investigate the neuronal correlates of two different types 

of errors which can both be employed in BMI: (i) the execution error, due to inaccurate decoding of 

the subjects’ movement intention; (ii) the outcome error, due to not achieving the goal of the 

movement. I demonstrate that, in electrocorticographic (ECoG) recordings from the surface of the 

human brain, strong error related neural responses (ERNR) for both types of errors can be observed. 

ERNRs were present in the low and high frequency components of the ECoG signals, with both signal 

components carrying partially independent information. Moreover, the observed ERNRs can be used 

to discriminate between error types, with high accuracy (≥83%) obtained already from single 

electrode signals. I found ERNRs in multiple cortical areas, including motor and somatosensory 

cortex. As the motor cortex is the primary target area for recording control signals for a BMI, an 

adaptive motor BMI utilizing these error signals may not require additional electrode implants in 

other brain areas. 
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3.1. Introduction 

Current brain-machine interface (BMI) devices make errors in decoding. Decoding errors can be 

recognized by the subject and can evoke an error related neural response, ERNR. Such ERNRs could 

be utilized in two ways to improve the performance of a BMI: (1) to correct the error that was made 

and (2) to modify the decoding algorithm to decrease decoding errors in the future. The first strategy 

has already been applied in on-line BMI studies (Blankertz et al., 2003; Parra et al., 2003; Schalk et 

al., 2000), but thus far only in trial-based task designs. However, many powerful BMIs, such as the 

brain control of a prosthetic arm (Carmena et al., 2003; Hochberg et al., 2006; Velliste et al., 2008) 

and the brain control of a computer cursor (Serruya et al., 2002; Taylor et al., 2002; Hochberg et al., 

2006) use continuous movement control of the effector. The principal feasibility of the second 

strategy has, thus far, only been demonstrated in computer simulations applying decoding 

algorithms which adapt using error signals (Blumberg et al., 2007; Rotermund et al., 2006). 

Both strategies for improving the performance of BMIs require appropriate ERNRs. Most previous 

ERNR studies concentrated on trial-based tasks with human EEG. Several types of ERNRs were 

reported: response error related negativity (rERN) (Falkenstein et al., 1991; Gehring et al., 1993), 

feedback error related negativity (fERN) (Miltner et al., 1997), observation error potential (oErrP) 

(van Schie et al., 2004) and interaction error potential (iErrP) (Ferrez and del R Millan, 2008). 

By contrast, only a small number of studies investigated ERNRs in continuous movement tasks. 

Again, different types of errors in continuous tasks were reported: target error in fMRI (Diedrichsen 

et al., 2005), execution error in fMRI (Diedrichsen et al., 2005), and outcome error in EEG (Krigolson 

et al., 2008). Target errors occur when the movement environment goes through unexpected 

changes, such as a target jump. Execution errors occur when the ongoing motor commands result in 

an unexpected movement, due to changes in the movement dynamics or kinematics. Such error 

occurs in BMI when, for example, the decoding algorithm decodes incorrect movements and, hence, 

the prosthesis does not perform the intended movement (Figure 13). If the difference between the 

intended and the decoded movement is large enough, it can be recognized by the subject and evoke 

an execution ERNR.  Finally, an outcome error appears when the desired goal of a movement is not 

achieved. Such error would occur in BMI when the prosthesis reaches a wrong target. 

Diedrichsen et al. (Diedrichsen et al., 2005) found fMRI correlates of execution errors and did not 

investigate outcome errors. Moreover, due to the low temporal resolution, fMRI would only allow 

for a rather slow BMI control. Krigolson et al. (Krigolson et al., 2008) observed EEG correlates of 

outcome errors but did not address the question of execution errors. 
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Figure 13 Application of neuronal error signals to improve the performance of a continuous BMI control. Subjects intend 
to move a cursor towards the top left target (white arrow). If the decoding is correct, the cursor performs the intended 
movement and no neuronal error signal is elicited in a subject. If there is a discrepancy between the intended and the 
decoded movement, an ERNR can be elicited. If the discrepancy is large enough, it can elicit an execution ERNR. If the 
execution error is detected by the BMI system, decoding algorithm can be adapted to reduce the number of errors in 
decoding in the future. If the unwanted movement causes the cursor to reach an unwanted target, an outcome ERNR 
might be evoked. If the outcome ERNR is detected by the BMI system, it can change the decoding algorithm as well, this 
time in a different way. 

Here, I show that both execution and outcome ERNRs can be observed and differentiated in ECoG 

signals during a continuous movement task, similar to typical BMI control tasks. The semi-invasive 

ECoG is an attractive recording technique for BMIs as it does not require the implantation of 

electrodes into the cortex and offers a higher spatial and spectral resolution than the non-invasive 

EEG and MEG   

I found ERNRs above different cortical areas, including motor cortex. Both low pass filtered ECoG 

signals and high gamma ECoG signals yielded execution and outcome ERNRs, with both signal 
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components carrying partially independent information. In addition, execution and outcome ERNRs 

can be differentiated with high decoding accuracy, even based on the responses from only one 

electrode. 

3.2. Methods 

3.2.1. Task 

Subjects (S) played a simple video game in which they controlled a spaceship with a small analogue 

joystick on a gamepad (Logitech® Rumblepad™ 2, Logitech Europe S.A., Morges, Switzerland) in the 

horizontal dimension (left-right; Figure 14a). The task was to evade blocks dropping from the top of 

the screen at a constant speed. The game was challenging enough so that the spaceship collided 

with a block from time to time (collision event, Figure 14b, mean and standard error of the mean, 

sem, of time between events: S1: 26.25±1.80 s, S2: 38.57±3.11 s, S3: 47.62±4.80 s, S4: 15.83±0.96 s). 

After the collision event, the spaceship and all blocks stopped moving for 2 seconds, to allow 

subjects recognize the collision. Afterwards all blocks disappeared and the spaceship started to 

move again.  

 

Figure 14 A: Picture of the paradigm as seen by the subjects. Subjects played a video game in which they moved a 
spaceship in the horizontal direction (left-right) to evade the blocks dropping from above. Every time the spaceship 
collided with a block (collision event; B) one life was lost. From time to time, the spaceship moved in the opposite 
direction of the joystick movement for 500ms (movement mismatch event; C). Performance of the subject was 
measured by a score shown in the bottom right of the screen. The number of remaining lives was shown in the bottom 
left corner. The game (and the experimental session) ended when all lives were lost. 

Occasionally, the spaceship moved in the opposite direction to the joystick movement for the 

duration of 500ms (movement mismatch event, Figure 14c, mean and sem of time between events: 

S1: 18.46±1.08 s, S2: 13.17±0.49 s, S3: 30.36±2.52 s, S4: 24.79±2.33 s). Movement mismatch event 

was introduced to study neuronal responses to execution errors. To make these events noticeable 



41 

 

and to also make them look as part of the natural movement, they were triggered only when the 

following conditions were fulfilled: (i) the spaceship was not close to the paradigm borders, (ii) the 

joystick position was between 60% and 70% of the maximum deflection, (iii) the joystick velocity 

(first derivative of joystick deflection) was in the direction of the joystick deflection, and (iv) the 

blocks were not too close to the spaceship. Condition (iv) was introduced to minimize the chance of 

a block collision following an unexpected change in the spaceship movement direction due to the 

movement mismatch event. For the first two subjects, condition (iii) was not imposed and a 

movement mismatch event was triggered only during joystick movements to the right. 

Points were awarded for moving the spaceship, and subjects were instructed to gather as many 

points as possible. The number of points increased linearly with the distance the spaceship travelled. 

To control the attention of the subjects the colour of the spaceship changed between red and blue 

at random instants, events which subjects were asked to orally report. Subjects correctly reported 

on colour changes except on a very few occasions. For the last two subjects, screen freeze events 

were added where, at a random instant (mean time between events: S3: 36.67±0.89 s, S4: 

36.15±1.09 s), the spaceship and all blocks stopped moving for 2 seconds in the same manner as 

after a collision event. I added screen freeze events to serve as a visual and surprise control (see 

section 3.2.2. for detailed description). 

To avoid mixing between neuronal responses to different events, all triggered events (movement 

mismatch, screen freeze and colour change) were triggered at least 2 seconds away from the last 

preceding event of any kind (movement mismatch, screen freeze, colour change, collision, paradigm 

restart after collision and end of screen freeze event). This procedure was not enough to remove the 

mixing completely, since the timing of the collision events could not be controlled. Therefore, events 

were classified after the experiment as “clean” if no other event was closer than 2 seconds. 

Subjects Sessions 
Collision events Mismatch events Color ch. events Freeze events 

All Clean All Clean All Clean All Clean 

S1 8 160 120 195 155 101 63 0 0 
S2 4 80 38 227 185 125 85 0 0 
S3 4 80 51 121 92 139 134 109 109 
S4 6 120 87 71 38 71 62 62 62 

Table 5 Number of recorded sessions and events for each of the subjects. For subjects S1 and S2 freeze event was not 
implemented in the experiment. 

Subjects started the game with 20 “lives”. Each time the spaceship collided with a block, the number 

of “lives” was reduced by one. When the number of “lives” reached 0, the game, together with the 

recording session, ended. Recording sessions of all subject lasted between 5 and 24 minutes. There 
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were no auditory stimuli presented during the experiment. Summary of the number of recorded 

sessions and the number of recorded events is given in Table 5. 

3.2.2. Error and control events 

To play the game as long as possible and, thereby, earn more points, subjects needed to evade 

hitting the blocks falling down from the top. Therefore, every collision event that occurred 

presented a clear disadvantage in reaching the goal of the game. Thus, collision events reflect 

outcome errors. During the movement mismatch event, the ongoing motor command resulted in an 

unexpected movement due to the change in movement kinematics. Thus, movement mismatch 

events reflect execution errors. 

Neuronal responses triggered on collision or movement mismatch events might also, partly or 

entirely, be the result of specific behaviours and/or visual inputs related to the error event, rather 

than only the neuronal response to the errors themselves. Hence, to identify ERNRs, the responses 

to collision or movement mismatch events need to be compared to the neuronal responses during 

behaviour and visual stimuli specific to the collision or movement mismatch events, but without the 

error context.  Any significant deviation between the two responses may then be assumed to 

present an ERNR.  I considered the following controls: 

(1) Movement control: All subjects in this study had implants over the motor and the somatosensory 

related areas. Therefore, neuronal responses to collision or movement mismatch events can be 

movement related. To minimize the influence of movement related neuronal responses (MRNR), 

subjects were asked to relax and perform a minimum amount of movement. The only movements 

they had to perform were thumb movements to move the joystick. Thumb movements were always 

carried out with the thumb contra-lateral to the brain hemisphere where the electrode grid was 

located. Subjects occasionally made eye movements to observe what was happening on the screen. 

To remove the influence of the eye and thumb movements from the recorded neuronal signals, 

MRNR were removed using the subtraction method described in section 3.2.4. 

(2) Visual control: Specific visual feedback provided by the paradigm can generate part of the 

neuronal response triggered by collision or movement mismatch events. Screen freeze events 

presented identical visual stimuli as collision events, the only difference being that, in the screen 

freeze event, the spaceship did not touch one of the blue blocks on the screen. Therefore, screen 

freeze events were used as a visual control for the collision events. This visual control was 

implemented for S3 and S4 only. 

(3) Surprise control: Great care was taken to make movement mismatch events look as part of the 

undisturbed spaceship movement, unrecognizable from watching the paradigm only. Therefore, no 
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visual stimulus was specific to the movement mismatch events. On the other hand, movement 

mismatch events could not be predicted by the subject and, hence, could trigger a surprise related 

neuronal response. Therefore, I used freeze events, which could also not be predicted by the 

subject, as a control event for the movement mismatch events. This surprise control was 

implemented for S3 and S4 only. 

3.2.3. Subjects and recordings 

Four subjects (3 male, 1 female) suffering from intractable pharmaco-resistant epilepsy voluntarily 

participated in the study after having given their informed consent. The study was approved by the 

University Hospital's Ethics Committee.  

For pre-neurosurgical epilepsy diagnosis, the subjects were implanted with an 8 x 8 grid of subdural 

surface electrodes covering parts of the primary and pre-motor cortex (Figure 15). In addition, S1, S2 

and S3 had the following implanted electrodes: S1 had two strips, with 6 electrodes each, implanted 

subdurally over the prefrontal cortex and 4 strips, with 4 electrodes each, implanted subdurally in 

the interhemisphere region touching the left hemisphere. S2 had two strips, with 6 electrodes each, 

implanted subdurally over the bottom of the cerebellum and 4 strips, with 4 electrodes each, 

implanted subdurally over the temporal and prefrontal cortices. S3 had two strips, with 4 electrodes 

each, implanted subdurally over the prefrontal cortex. The sites of all electrode implantations were 

exclusively based on the requirements of the clinical evaluation. In S2, the signals from the top row 

of electrodes in the grid implant and from one of the strips over the bottom of the cerebellum (TBd) 

were not recorded from due to the limited number (128) of available channels in the recording 

system. In addition to the subdural surface electrodes electrodes, additional intracortical electrodes 

were implanted and signals from 22 EEG electrodes, two to four EOG electrodes, two ECG and two 

EMG electrodes were recorded simultaneously. Signals from the intracortical, EEG, ECG and EMG 

electrodes were not analyzed in this study. 

Recordings from all electrodes were digitized at 256 Hz sampling rate for S1 and S2 and at 1024 Hz 

sampling rate for S3 and S4, in all cases using a clinical AC amplifier (Brainbox EEG-1164 amplifier, 

Braintronics B. V., Almere, Netherlands). No analogue filters were used during the data acquisition. 

Power line frequency was 50Hz. Experiment control and paradigm presentation was performed 

using in house laboratory software. Subsequent data analysis was performed using MATLAB 

(MATLAB version 7.4-7.11, Natick, Massachusetts: The MathWorks Inc., 2007-2011). 
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Figure 15 Locations of implanted electrodes (red, green and black circles). Electrode positions were reconstructed from 
the post-implantation MRI scan and positioned over the pre-implantation MRI scan (Kovalev et al., 2005). For S1, S3 and 
S4 red (green) circles represent electrodes that showed motor (somatosensory) response from electrical stimulation 
mapping (ESM). For S2 motor and somatosensory electrodes were determined from sulci reconstruction. Central sulci, 
Sylvian fissures and, for S2 only, pre and post central sulcus are shown as blue lines. These were drawn by hand to 
resemble sulci reconstruction from the post-implantation MRI scan. S1 was implanted with an 8 x 8 ECoG grid over the 
parts of frontal and parietal lobe, two 6 electrode ECoG strips over the frontal lobe (FLa and FLb) and four 4 electrode 
ECoG strips inter-hemispherically (IHa, IHb, IHc and IHd). S2 was implanted with an 8 x 8 ECoG grid over parts of 
temporal, parietal and frontal lobe, two 6 and three 4 electrode ECoG strips on the basal temporal cortex (TL, TBa, TBb, 
TBc and TBd) and two 4 electrode and one 6 electrode ECoG strips on the basal frontal lobe (FL, FBa and FBb). In S2 no 
recordings were made from the top row of the 8 x 8 electrode grid and from the TBd ECoG strip. S3 was implanted with 
8 x 8 ECoG grid over the parts of frontal and parietal lobe and two 4 electrode ECoG strips (FBa and FBb) over the frontal 
lobe. S4 was implanted with an 8 x 8 ECoG grid over parts of parietal and frontal lobe. In all pictures the red star marks 
the edge of the electrode grid corresponding to the top left corner in the spatial distribution pictures shown in Figure 19, 
Figure 25, Figure 26, Figure 27. 

3.2.4. Data analysis 

Preprocessing 

Common-average referencing for grid electrodes was made using all grid electrodes that showed no 

artefacts (one electrode for both S3 and S4 had to be excluded). Electrode strips above frontal cortex 

of S1 were re-referenced using all electrodes on those two strips. Inter-hemisphere electrodes for S1 

were re-referenced using all electrodes on those four strips. For S2, electrode strips above the 

bottom of the cerebellum, temporal and frontal areas were re-referenced together. For S3, 

electrode recordings from two strips above frontal areas were re-referenced together. To correct for 



45 

 

changes in channel offsets between sessions, the mean voltage over the entire session was 

subtracted for every session and for every channel after re-referencing. 

Low frequency signal component 

I extracted low and high frequency components of the recorded ECoG signals. To analyze the low 

frequency component of the signal, the preprocessed ECoG signals were smoothed using a 

symmetric Savitzky-Golay filter (Savitzky and Golay, 1964; Steinier et al., 1972). The Savitzky-Golay 

filter is not a filter designed with a specific cut-off frequency. It is a smoothing filter that performs 

least-square fitting of a polynomial of the certain order (2nd order in the case of this study) to the 

signal in a certain time window (250ms of recorded data points in the case of this study). Even 

though the frequency domain properties of a Savitzky Golay filter do not resemble that of a typical 

low-pass filter (Schafer, 2011) a nominal 3dB cut off frequency can be determined and was, in the 

case of this study, 7.85Hz for S1 and S2 and 7.59Hz for S3 and S4. 

To show that the chosen filter was suitable for extracting ERNRs contained in the low frequency 

signal, I compared the SNR of ERNRs gained from using the chosen filter with the SNR of ERNRs 

gained by other low and band pass filters. Recordings were filtered with low and band pass 8th order 

Butterworth filters with low and high cuttoff frequencies taking all possible combinations of values 

from 0Hz to 127Hz in steps of 1Hz. To measure the ERNR strength, I calculated the SNR of the 

filtered neural responses to collision and to mismatch events against the baseline activity. Collision 

and movement mismatch SNR was pooled over subjects and then averaged across channels, for all 

tested Butterworth filters and for the chosen Savitzky-Golay filter (Figure 16). For both collision and 

mismatch SNR, the low pass Butterworth filter had a higher average SNR than any bandpass 

Butterworth filter. The difference between maximum SNR for Butterworth filter (average collision 

SNR: 0.34, cutoff frequency of 6Hz; average mismatch SNR: 0.202, cutoff frequency 10Hz) and the 

SNR for the chosen Savitzky-Golay filter (collision: 0.35; mismatch: 0.199) was not significant 

(p<0.05; Wilcoxon signed-rank test). Therefore, I conclude that here used Savitzky-Golay filter was a 

good choice for extracting the low frequency component (LFC) of the ERNRs. 
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Figure 16 Average collision (left) and movement mismatch (right) SNR for low and band pass filtered signals. SNRs were 
pooled over subjects and averaged across electrodes and are shown for all possible choices of bottom and top cutoff 
frequency of the Butterworth filter used to filter the signal. Cutoff frequencies that provided the highest average SNR 
are shown with black circle. Inset square shows the average SNR gained by using the Savitzky-Golay filter used for 
defining the low frequency component of the ERNRs in my study. 

High frequency signal component 

To analyze the high frequency component of the signal, time-resolved Fourier transformation (TRFT) 

using a Hamming window (333ms window width, shifted in steps of 31ms) was applied to the 

preprocessed signals, and the amplitudes were used for further analysis. To investigate event 

induced changes in amplitudes and to account for the general decrease in amplitude with increasing 

frequency, the amplitudes of every frequency bin were normalized by dividing them by the average 

baseline amplitude of the same frequency bin in the respective session. Afterwards, the average 

amplitude across a frequency range was computed for further analysis. 

I defined a window around each event (movement mismatch, screen freeze, colour change, 

collision), starting 3 seconds before each event and lasting until 3 seconds after each event. The 

signals outside all of these windows were used as baseline activity. To enable a clear comparison to 

baseline, the average baseline activity was subtracted from the average amplitudes in each session 

for each channel. The resulting signal was defined as the high frequency component (HFC) of the 

signal. 
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Figure 17 Average collision (left) and movement mismatch (right) SNRs for the amplitudes of different frequency bands. 
SNRs were pooled over subjects and averaged across electrodes and for all possible choices of bottom and top 
frequencies of the frequency band used to construct the signal. Recordings for S1 and S2 were made at sampling 
frequency of 256Hz, and recordings for S3 and S4 were made at 1024. Therefore, I averaged SNR for S1 and S2 (top row) 
independently from the averaging for S3 and S4 (bottom row). Frequency bands were tested until the respective Nyquist 
frequency (128Hz for S1 and S2; 512Hz for S3 and S4). I marked the band with the highest average SNR (black circle) and 
the band used in this study for the high frequency component of the neural response (black rhomboid). 

I computed the SNR (event vs. baseline) of the amplitudes in different frequency bands for collision 

and mismatch events. Collision and movement mismatch SNRs were pooled over subjects and then 

averaged across channels (Figure 17). For S1 and S2, where the Nyquist frequency was 128Hz, the 

average collision SNR peaked at the band starting at 51Hz and ending at 117Hz (average SNR: 0.35), 

while the average movement mismatch SNR peaked at the band staring at 54Hz and ending at 126Hz 

(average SNR: 0.172). For S3 and S4, where the Nyquist frequency was 512Hz, the average collision 

SNR peaked at the band starting at 60Hz and ending at 174Hz (average SNR:0.351), while the 

average movement mismatch SNR peaked at the band staring at 60Hz and ending at 226Hz (average 

SNR:0.281). For all subjects and both events, SNR peaks were rather broad and small changes of the 
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upper and lower bounds of the frequency bands did not affect the SNR considerably. Given the 

lower Nyquist frequency in S1 and S2, it is not surprising that the upper bound of the optimal 

frequency band in these subjects is lower than in S3 and S4. Indeed the optimal upper bound for S1 

and S2 is close to the Nyquist frequency in S1 and S2. 

 
Figure 18 Examples of the averaged normalized spectrograms to collision and to mismatch events for one electrode for 
each of the subjects. Channels used as examples are marked in red for collision and green for mismatch events on the 
small depictions of the subjects’ brains below the spectrograms. Black horizontal lines indicate the bottom and top 
frequencies of the band used for the high frequency component of the signal. In S1 and S2 the upper boundary of this 
band was at the Nyquist frequency. 

To choose a common band for both events and a band which has the same lower border for all 

subjects, I decided to use the band 60Hz-200Hz in S3 and S4 and the band 60Hz-128Hz in S1 and S2 

(Figure 18). For S1 and S2, collision and mismatch SNR was not significantly different between the 

peak frequency band and the band that I chose to use (band spans from 60Hz to 128Hz; average 

collision SNR: 0.33; average mismatch SNR: 0.169; p<0.001; Wilcoxon signed-rank test). For S3 and 
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S4, collision and mismatch SNR was significantly different between the peak frequency band and the 

band that I chose to use (band spans from 60Hz to 200Hz; average collision SNR: 0.348; average 

mismatch SNR: 0.279; p<0.19; Wilcoxon signed-rank test), but the differences between the average 

collision and mismatch SNR for the optimal band and the band I chose is below 1% of the average 

collision and mismatch SNR for the optimal band. 

MRNRs were then subtracted from both signal components as described in the following. 

MRNR subtraction 

As described above, I considered that thumb and eye movements might be correlated with error 

events. If so, parts of the neuronal responses correlated to error events, might not be evoked by 

error events but by accompanying eye and thumb movements. 

To remove the movement related component of the neuronal response following a mismatch or a 

collision event, I derived a model relating the signals to the movements using only non-event data 

(i.e. all data which was at least 1s before and 3s after any event) and then subtracted the signals 

predicted by this model for the movements during the events from the recorded event-related 

signals. The required thumb movements were tracked indirectly through the joystick movements, 

while the required eye movements were tracked through the horizontal and vertical EOG. 

Two types of models were considered, linear and non-linear models. Linear models assumed a linear 

relationship between the neuronal response at time t, YCH(t), and the joystick position X, the 

absolute joystick position |X|, the joystick velocity V, the absolute joystick velocity |V|, the 

horizontal EOG heog and the vertical EOG veog at different time points around t: 
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where N is the number of used data points for each movement parameter, L is the length of the 

movement information provided to the decoder, a0
CH, b1

CH,…, bN
CH, c1

CH,…, cN
CH, e1

CH,…, eN
CH, f1

CH,…, 

fN
CH, g1

CH,…, gN
CH are the model coefficients and ∆ti are the time lags relative to the neuronal 

response. Time lags ∆ti were such that the times of the N movement data points entering the model 

were spread equidistantly on a time stretch of length L centred on the time t. 
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Non-linear models try to address a possibly non-linear relationship between the neuronal response 

at time t, YCH(t), and the joystick position X, the joystick velocity V, the horizontal EOG heog and the 

vertical EOG veog at different time points around t: 

 ( ) ( ) ( ) ( )( )( ) ,..., ,..., ,..., ,...CH i i i iY t F X t t V t t heog t t veog t t= + ∆ + ∆ + ∆ + ∆  (3.3) 

Time lags ∆ti were the same as used in the linear model. Absolute position and absolute velocity 

were not used since non-linear modelling is able to account for the non-linear absolute value 

transformation. In the case of the linear models, for a certain value of L and N, the model 

coefficients can be fitted by linear least-squares regression. For non-linear models more complex 

algorithms have to be used. Here, I used the epsilon-SVR algorithm, part of the LIBSVM library (Fan 

et al., 2005). 

Optimal values of L and N are not known a priori: if many time lags are used (high value of N), the 

model might overfit the data and, therefore, the model predictions might poorly generalize due to 

inaccurate model coefficients. If only few time lags are used (low value of N), the model predictions 

might also generalize poorly as not all available information for predicting the movement related 

neuronal responses is incorporated into the model. Similarly, if the time stretch (L) is too small, the 

information contained in points further away in time would not be used, whereas nearby points 

might contain redundant information. Using large time stretches, on the other hand, might result in 

a miss of information contained between two time lags. Therefore, I needed to determine the values 

of L and N which yield optimal model prediction. To this end, I split the non-event data into two 

halves: the first half was used to estimate the model coefficients for certain values of L and N. These 

model coefficients were then used to predict the signals of the second half of the data. To determine 

the performance of the model, I computed r2 values between the model predictions and the real 

neuronal responses in the second half of the data: 

  

This measure was computed for different values of L (62.5ms, 109.4ms, 156.2ms, 203.1ms, 250ms, 

375ms, 500ms, 750ms, 1000ms, 1250ms, 1500ms, 1750ms and 2000ms) and N (1, 2, 3, 4, 6, 10, 14, 

18 and 22) for both linear and non-linear models and the one yielding the highest r2 values was then 

used for the MRNR subtraction. These optimal values were determined for each channel individually 

(Figure 19). Channels yielding an r2 below 0.01 were considered as being not movement related; for 

these channels nothing was subtracted from the event-related signals. 
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Figure 19 Spatial distribution of r2 values for each subject, signal component, model type and electrode in relation to the 
individual anatomy of the subject. Purple lines depict the central sulcus, the Sylvian fissure and, for S2 only, the pre and 
post central sulci. Letters in the squares mark the functional subarea (A – arm, H – hand, L – leg, E – ocular, O – oro-
facial) in motor (purple) and somatosensory (black) cortex as determined by ESM. Every small square represents one 
electrode. As no recordings were made from the top row of grid electrodes for S2, this row is shown as white. TBd ECoG 
strip from S2 was also not recorded from and is, therefore, not shown. The top left square in the ECoG grids correspond 
to the electrode closest to the red star in Figure 15. In the case of the ECoG strips, the bottom square corresponds to the 
first electrode of the strip. Colours of the squares depict the highest r2 value over number of used data points (N) and 
length of the movement information (L); white squares represent channels with highest r2 values below 0.01. 
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Error related neuronal responses 

To avoid mixing of neuronal responses to different events only epochs from clean events (see 

section 3.2.1.) were used for subsequent analysis. After the MRNR subtraction, the remaining signal 

should predominantly contain the neuronal responses to errors. Therefore, the neuronal responses 

to collision and mismatch events are called outcome and execution ERNRs after MRNR subtraction. 

Signal to noise ratio analysis 

To compare the event triggered neuronal response ΦEVENT  to the baseline activity ΦBASELINE  or to 

the event triggered neuronal response of another event ΦEVENT2, the signal to noise ratio (SNR) was 

used. Let n be the event index, t the time within the event epoch, m the index of the baseline 

measurement, E the expectation operator, and std the standard deviation operator. I defined the 

SNR as follows: 
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For limited numbers of trials, the SNR is positively biased (Mehring et al., 2003). To correct for this, I 

used a bootstrap bias correction (Efron and Tibshirani, 1993), with 1000 times re-sampling of the 

event data to remove this bias. 

The above computations yielded, for each type of ERNR, an SNR against baseline and an SNR against 

the control event. Since, to detect ERNRs, I needed to differentiate them from baseline and control 

events, I quantified the SNR of an ERNR by the minimum among these two SNR values. This yielded 

one SNR value for each point in time. To describe the strength of the ERNR by a single number, I 

introduced the outcome SNR and the execution SNR as the maximum of these SNR values between 

100ms and 800ms after the trigger. 

To be able to differentiate between outcome and execution error events, outcome ERNRs have to be 

different from the execution ERNRs. Since outcome and execution ERNR may have different delays 

with respect to the trigger, these two signals cannot be directly compared. Therefore, I computed 

the outcome vs. execution SNR as follows: 
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where t runs from 100ms to 800ms after the trigger, µO is the average outcome ERNR, µE is the 

average execution ERNR, σO is the standard deviation of the outcome ERNR across trials, and σE is 

the standard deviation of the execution ERNR across trials. 

Classification analysis 

To see how well ERNRs can be differentiated from baseline activity on a single-trial basis, I 

performed a binary classification analysis of outcome or execution ERNRs vs. baseline activity using 

regularized linear discriminant analysis (RLDA) (Friedman, 1989). The class representing baseline 

activity contained all baseline activity recordings. The other class representing either outcome or 

execution ERNR was composed of outcome (execution) ERNRs at the time of the average outcome 

(execution) ERNR peak. Only single signal components from single channels were used as inputs to 

the RLDA. Trials were shuffled and divided into a training set, which contained 2/3 of the data, and a 

test set, which contained the remaining 1/3 of the data. The training set was used to train the RLDA 

model which was then used to classify the test set. The decoding accuracy (DA) was computed as 

described in equation (2.1). The regularization parameter of the RLDA was optimized on the training 

data by five times five-fold cross validation.  

Additionally, I classified outcome vs. execution ERNR using the same classification procedure as 

above. Instead of using only one time point to differentiate between two signals, I allowed for 1-4 

points cantered around the time of the ERNR peak. The number of time points and the temporal 

distance between the first and the last time point (between 31ms and 281ms) together with the 

regularization parameter of the RLDA were optimized on the training set using five times five-fold 

cross validation. 

Significance testing of neural responses 

To confirm that ERNRs were significantly different from neural responses during baseline and to 

freeze events the Mann–Whitney–Wilcoxon test was applied between an ERNR in every time point 

and the baseline activity. To avoid the autocorrelation of the low frequency component arising from 
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the filtering procedure, I sampled low frequency component baseline activity every 250ms and high 

frequency component baseline activity every 333ms. To confirm that ERNRs were significantly 

different from freeze events the Mann–Whitney–Wilcoxon test was applied between an ERNR and 

the neuronal response to freeze event in every time point after the event trigger. Since ERNR had to 

be present within a limited time after the trigger, I tested the epoch of the neural response from 

100ms till 800ms after the event trigger.  To reduce the calculation time of the significance testing, I 

tested significance of the neural responses every 31ms (roughly 32Hz) instead of testing for every 

recorded time point .  

Due to the large number of statistical tests, correction for multiple testing was necessary to control 

the number of falsely rejected null hypotheses. I used the Benjamini-Hochberg procedure (Benjamini 

and Hochberg, 1995) with a correction for dependent statistics (Benjamini and Yekutieli, 2001) to set 

the false discovery rate for one subject at the level of 5% for all tests. A neuronal response from a 

single channel/frequency component was declared significant if there was at least one time point for 

which the ERNR was significantly different from the baseline and significantly different from the 

freeze neuronal response after the correction for multiple testing was made. 

To test whether the used statistical test for the significant event responses was not detecting large 

number of false positives, I made 100 repetitions of the procedure for significance testing. In each 

repetition, I assigned random time to every event (collision, movement mismatch, freeze and colour 

change), respecting the rule that all paradigm triggered events (movement mismatch, freeze and 

colour change) have to come at least 20 seconds after any event (movement mismatch, screen 

freeze, colour change, collision, paradigm restart after collision and end of screen freeze event). To 

remove the MRNR, I used the same models that were used in the analysis of data using non-shuffled 

triggers. 

3.2.5. Neuroanatomical analysis 

To determine whether the motor or the somatosensory cortex played a more distinctive role in 

generating ERNR, I classified electrodes into motor cortex electrodes, somatosensory cortex 

electrodes, and other electrodes. Classification was performed combining the results of sulci 

identification on the post-implantation MRI scans with the results of direct cortical electrical 

stimulation mapping (ESM) (Foerster, 1931; Uematsu et al., 1992).  

Electrical cortical stimulation through the electrode grid was performed using an INOMED NS 60 

stimulator (INOMED, Germany). Trains of 7 s duration consisted of 50 Hz pulses of alternating 

polarity square waves of 200μs each. The intensity of stimulation was gradually increased up to 15 
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mA or to the induction of sensory and/or motor phenomena. The patients were unaware of the 

timing of stimulation unless motor symptoms or somatosensory sensations occurred. 

Electrical stimulation of by-passing paths may indeed lead to functional responses that are not 

directly related to the cortex under a given electrode contact. To reduce such effects, electrical 

stimulation was carried out against different reference electrodes, such as directly neighbouring 

ones or electrodes with a large distance to the stimulated ones. As stimulation against difference 

reference electrodes will cause different current distributions, such effects may be reduced, albeit 

not completely excluded, in this manner. Only effects that were consistently observed, 

independently of the choice of the reference electrode, were used to generate the maps shown in 

the manuscript. 

Data from post-implantation MRIs was used to reconstruct the positions of central sulcus and Sylvian 

fissure with respect to the electrodes. The central sulcus was used to generate a border between 

motor and somatosensory cortex, while the Sylvian fissure was used to generate a border between 

the temporal lobe and the frontal and parietal lobe, containing motor and somatosensory cortex, 

respectively. Results of ESM were used to define a border between motor cortex and the remainder 

of the frontal lobe on the one hand, and somatosensory cortex and the rest of the parietal lobe on 

the other hand. S2 did not go through the ESM. Therefore, in that case, I used the pre and 

postcentral sulci, as derived from post-implantation MRI, to define the borders of the motor and the 

somatosensory cortex.  

In addition, I used the ESM results to further classify motor and somatosensory electrodes into hand, 

arm, leg, ocular and oro-facial subgroups. This classification was performed solely on the basis of 

ESM results. S2 was excluded from this analysis since ESM was not carried out for this subject. Leg 

motor electrodes only existed in S1 and, for the other three subjects where ESM was performed, 

ocular and leg somatosensory electrodes were not found.  

3.3. Results 

I present my results in the following order. First, I show that significant outcome and execution ERNR 

can be found in all subjects and that these ERNRs are widespread over the part of the cortex that I 

recorded from. Second, temporal distribution of ERNR peaks is presented and the reason for my 

choice of the time analysis window, from 100ms after the event until 800ms after the event is shown 

to be plausible. Third, I provide the evidence that, for every subject, ERNRs can be differentiated 

from baseline and between each other. Next, I show the spatial distribution of the ERNRs and look 

whether there is a clear focus of outcome or execution ERNRs over motor or somatosensory cortex. 



56 

 

Finally, I present the results of the classification analysis, showing that both outcome and execution 

ERNRs can be classified from baseline and between each other with high DA. 

3.3.1. Widespread ERNRs 

For the outcome error, 63% (397 out of 632; S1: 161 out of 184, S2: 92 out of 176, S3: 72 out of 144, 

S4: 72 out of 128) and for the execution error, 41% (259 out of 632; S1: 117out of 184, S2: 73 out of 

176, S3: 53 out of 144, S4: 16 out of 128) of channels/signal components had significant ERNR. When 

using shuffled times of the events, none of the channels were found significant for any of the errors 

and any of the signals components in all shuffles for S1 and S2. For S3 and S4, 0.03 and 0.0025 

channels were found significant for any error/signal component on average. This shows that out 

statistical test is highly conservative and that the expected number of falsely detected ERNRs is very 

low. 

 

Figure 20 Temporal distribution of the ERNR peaks of channels/signal components with significant response when 
significance was check on a window between 500ms before till 1500ms after the error event. Number of the outcome 
ERNR peaks is shown in blue, while the number of the execution ERNR peaks is shown in red. Green background depicts 
the time interval (100ms after the error event until 800ms after the error event) used to calculate the outcome and 
execution SNR. 

3.3.2. ERNRs latencies 

To quantify the response strength, I computed the SNR at the peak of the outcome or execution 

ERNR within the time window from 100ms to 800ms after the error event. To verify that this window 

captured the majority of the responses I calculated the temporal distribution of the peaks of the 
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ERNRs (Figure 20). This distribution clearly peaks within the time window chosen for the ERNR 

analysis in my study (100-800ms). Furthermore, 90% of all ERNRs significant between 500ms before 

and 1500ms after the event were also significant within the chosen time window. Thus, the chosen 

time window captured essentially all ERNRs. 

3.3.3. Differentiating ERNRs from baseline and between each other 

Every channel and signal component can either have a strong response to both error types (outcome 

and execution), a strong response to either one of the errors and a weak or no response to the other 

one, or a weak or no response to both errors. If a signal is strongly responsive to both errors, the 

outcome vs. execution SNR shows whether the response to both errors is similar or dissimilar. To 

fully utilize all information from the ERNR, one needs to find a combination of channels/ signal 

components for every subject that can be used to detect execution and outcome ERNRs and to 

differentiate between the two. This would be possible if one of the following three conditions is met: 

(1) separate signals with strong outcome ERNR and weak execution ERNR and with strong execution 

ERNR and weak outcome ERNR co-exist in the same subject, (2) one or more signals with strong but 

dissimilar ERNRs to execution and outcome errors co-exist in the same subject, (3) one or more 

signals with strong and similar ERNRs for both error events co-exist in the same subject with at least 

one other signal with a strong ERNR for only one of the error events. 

For all subjects at least one of the required conditions was met, even when a very high threshold of 

SNR>=0.5 was applied. Condition 1 was met for S3 only, condition 2 was met for all of the subjects 

and condition 3 was met for all subjects except S1 (see Figure 21 and Figure 22 for examples). 

To be able to detect and differentiate outcome and execution errors from only one channel/signal 

component, high outcome SNR and high execution SNR is required simultaneously with highly 

different responses to both errors. Figure 23a shows the outcome vs. execution SNR against the 

minimum between outcome SNR and execution SNR for all channels and signal components for each 

of the subjects. Points far from the origin with regard to both axes indicate channels that can be 

used to detect and differentiate ERNRs. For each subject such channels/signal components were 

found. 
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Figure 21 Example of two channels for S1 and two channels for S2 that could be used to detect both execution and 
outcome errors and differentiate between them. Channels selected as examples are shown as red dots on the small 
depictions of subjects’ brains on the right side. Left panels show outcome ERNR (blue) and execution ERNR (red) as 
mean ± sem. Right panels show outcome vs. baseline SNR (blue) and execution vs. baseline SNR (red) for both channels. 
For both subjects the channel shown in the top panel exhibited a strong outcome ERNR, while the channel in the bottom 
panel exhibited a strong outcome ERNR and a strong execution ERNR. 
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Figure 22 Example of two channels for S3 and two channels for S4 that could be used to detect both execution and 
outcome errors and differentiate between them. Channels selected as examples are shown as red dots on the depictions 
of the subjects’ brains on the right side. Left panels show outcome ERNR (blue), execution ERNR (red) and freeze 
neuronal response (black) as mean ± sem. Right panels show outcome vs. baseline SNR (blue), execution vs. baseline 
SNR (red), outcome vs. freeze SNR (black) and execution vs. freeze SNR (green). For S3 the channel shown in the top 
panel exhibited a strong outcome ERNR, while the channel in the bottom panel exhibited a strong outcome ERNR and a 
strong execution ERNR. In the case of S4 the channel in the top panel exhibited a strong outcome ERNR, while the 
channel in the bottom panels exhibited a strong outcome ERNR and a strong execution ERNR. 

In addition, information from multiple channels and signal components can be used to improve the 

detection of outcome and execution errors and the discrimination between the two. Figure 23b 
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shows the distribution of the execution SNR against the outcome SNR of all channels/signal 

components for each of the subjects. Note that each of the subjects had several channels/signal 

components with both strong outcome SNR and strong execution SNR. On average, the outcome 

SNR was significantly higher than execution SNR for all subjects, except for S4 (S1 p<10-17, S2 p<10-18, 

S3 p<10-3, S4 p=0.94, all subjects pooled p<10-38, Mann–Whitney–Wilcoxon test). For every subject, 

at least one channel could be found with outcome SNR of 0.93 or higher (highest SNRs: S1: 1.26, S2: 

1.18, S3: 1.02, S4: 0.93) and with execution SNR of 0.50 or higher (highest SNRs: S1: 0.54, S2: 0.84, 

S3: 0.63, S4: 0.50). Importantly, for each subject a large number of electrodes with high execution 

SNRs and/or high outcome SNRs could be found: on average, 68% of channels exhibited a significant 

ERNR for at least one signal component (average calculated over subjects and signal components). 

Interestingly, I found strong ERNRs in the low as well as in the high frequency component. For the 

outcome error, SNR of the low frequency component (0.36±0.01) had a tendency to be higher than 

the SNR of the high frequency component (0.35±0.01; p=0.054, Mann–Whitney–Wilcoxon test). In 

the case of the execution error, SNR of the low frequency component (0.207±0.005) was 

significantly higher than the SNR of the high frequency component (0.206±0.007; p<0.05, Mann–

Whitney–Wilcoxon test). 

 

Figure 23 A, Scatter plot showing outcome vs. execution SNR against the minimum between outcome SNR and execution 
SNR (min error SNR). One dot represents one signal component of one channel. Red dots depict channels/signal 
components with a significant outcome, execution and outcome vs. execution SNR. B, Scatter plot showing execution 
SNR against outcome SNR. Red dots depict channels/signal components that had both significant outcome ERNR and 
execution ERNR. 
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Differences between outcome and execution ERNRs on the single channel and signal component 

were investigated by looking at the outcome vs. execution SNR. For every subject I found at least 

one channel and signal component that showed outcome vs. execution SNR of 0.70 or higher 

(maximum outcome vs. execution SNR: S1: 1.05, S2: 0.83, S3: 0.81, S4: 0.70). 

I also investigated whether low and high frequency components from the same electrode contained 

independent information about errors. Figure 24 shows scatter plots of the low frequency 

component SNR vs. the high frequency components SNR of the same channel. For every subject one 

can find channels that are far from the diagonal, indicating that low and high frequency components 

can be used as partially independent sources of information for the purpose of ERNR detection and 

differentiation. 

 

Figure 24 Scatter plot showing the low frequency component SNR against the high frequency component SNR. Results 
are shown separately for outcome ERNR (A) and for execution ERNR (B). One dot represents one channel. 

3.3.4. Spatial distribution of ERNRs 

Next, I investigated in which cortical areas ERNRs could be found (Figure 25). Electrodes were 

classified as motor, somatosensory or other using the ESM (described in Methods). For outcome 

error, 70% of the motor, 70% of the somatosensory and 60% of the electrodes from other areas 

showed a significant ERNR (Table 6).  For execution errors, the proportions were: 50% for motor, 

44% for somatosensory and 38% for other areas (Table 7). There were no significant differences in 

the proportions of the electrodes with significant ERNR between the motor and somatosensory 

areas for both error types (p>0.47, Fisher’s exact test) and between somatosensory and other areas 
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(p>0.07, Fisher’s exact test). Proportion of electrodes with significant ERNR was significantly higher 

for motor area compared to other areas for both error types (p<0.05, Fisher’s exact test). For both 

error types, the average SNRs of electrodes showing significant responses (outcome error: motor 

SNR 0.46±0.02, somatosensory SNR 0.46±0.03, SNR of other areas 0.40±0.01; execution error: 

motor SNR 0.29±0.02, somatosensory SNR 0.28±0.02, SNR of other areas 0.24±0.01) was not 

significantly different (p>0.81, Mann–Whitney–Wilcoxon test) between motor and somatosensory 

areas for both error typesand was significantly higher for motor compared to other areas (p<0.05, 

Mann–Whitney–Wilcoxon test) and for somatosensory compared to other areas (p<0.05, Mann–

Whitney–Wilcoxon test). 

 Motor Somatosensory Other 
S1 93% (41/44) 89% (32/36) 85% (88/104) 
S2 50% (3/6) 50% (2/4) 52% (87/166) 
S3 61% (22/36) 55% (12/22) 44% (38/86) 
S4 45% (10/22) 61% (17/28) 58% (45/78) 

Pooled 70% (76/108) 70% (63/90) 59% (258/434) 

Table 6 Number and proportion of electrodes with significant outcome ERNR (see Methods for details of significance 
criteria). For each of the subjects, electrodes were pooled across two signal components (low and high frequency 
bands). In the bottom row, electrodes were additionally pooled across subjects. 

 Motor Somatosensory Other 
S1 68% (30/44) 72% (26/36) 59% (61/104) 
S2 50% (3/6) 50% (2/4) 41% (68/166) 
S3 50% (18/36) 41% (9/22) 30% (26/86) 
S4 14% (3/22) 11% (3/28) 13% (10/78) 

Pooled 50% (54/108) 44% (40/90) 38% (165/434) 

Table 7 Number and proportion of electrodes with significant execution ERNR. See legend of Table 6 for details. 

In motor (somatosensory) cortex outcome SNR was above 0.62 (0.65) while execution SNR was 

above 0.18 (0.18) for at least one electrode in each subject. S2 had a poor coverage of motor cortex 

with only 3 electrodes recording from that area (see Figure 15). Disregarding this subject increased 

the minimum SNR values to 0.62 (0.73) for outcome error and 0.40 (0.41) for execution error. 

Therefore, it was always possible to find electrodes with significant ERNR with SNR above 0.40 in 

motor cortex for both outcome and execution error if the electrode grid had a good coverage of the 

motor cortex. 

In addition, I found outcome vs. execution SNR of 0.53 or higher for at least one channel and signal 

component in the motor cortex (S1: 1.05, S2: 0.65, S3:0.76, S4: 0.54) and 0.50 or higher for at least 

one channel and signal component in the somatosensory cortex (S1: 0.81, S2: 0.54, S3: 0.81, S4: 

0.50) for every subject. Therefore, outcome and execution ERNRs in the motor cortex are not only 
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different from baseline, but one can also find electrodes where these ERNRs are different between 

each other. 

 

Figure 25 Spatial distribution of outcome SNR and execution SNR for low and high frequency components in relation to 
the individual anatomy of the subject (see caption of Figure 19 for details). Colours of the squares depict the SNR 
according to the colour bar; white squares represent channels/signal components that did not show a significant 
response. 
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I also compared the ERNR strength of different functional subareas of the motor and somatosensory 

cortex. To this end, the percentage of electrodes exhibiting a significant ERNR and the average SNRs 

of these electrodes were computed for the different subareas (Table 8 and Table 9). Responses were 

pooled over frequency components. Therefore, each electrode was counted twice. For motor and 

somatosensory cortex no significant differences in the SNRs or in the electrode proportions between 

the subareas were found; neither for outcome nor for execution error (Fisher’s exact test to 

compare proportions; Mann–Whitney–Wilcoxon test to compare SNRs) after the correction for the 

multiple testing (Benjamini-Hochberg procedure with false discovery rate of 5%). 

 Outcome error Execution error 
 Percent Count SNR Percent Count SNR 

Hand 61% (11/18) 0.42±0.12 61% (11/18) 0.29±0.11 
Arm 80% (16/20) 0.50±0.19 60% (12/20) 0.28±0.12 

Ocular 93% (13/14) 0.42±0.25 57% (8/14) 0.29±0.12 
Oro-facial 68% (38/56) 0.40±0.20 38% (21/56) 0.26±0.09 

Leg 100% (6/6) 0.63±0.36 83% (5/6) 0.27±0.09 

Table 8 Number, percentage and SNR (average ± standard deviation) of electrodes with significant responses, separately 
for electrodes recording from different subareas of motor cortex (see Methods for details of significance criteria). 
Anatomical information was gained from ESM (see Methods for details). Electrodes were pooled over subjects and 
frequency components. 

 Outcome error Execution error 
 Percent Count SNR Percent Count SNR 

Hand 72% (36/50) 0.49±0.19 58% (29/50) 0.33±0.13 
Arm 79% (11/14) 0.37±0.06 14% (2/14) 0.27±0.08 

Oro-facial 61% (17/28) 0.44±0.18 25% (7/28) 0.24±0.06 

Table 9 Number, percentage and SNR (average ± standard deviation) of electrodes with significant responses, separately 
for electrodes recording from different subareas of somatosensory cortex. See legend of Table 8 for details. 

3.3.5. Classification analysis 

I investigated how well outcome or execution ERNRs can be differentiated from baseline activity on 

a single trial basis (see section 3.2.4. for methodological details). Signals from single electrodes were 

already information-rich enough to obtain high classification accuracies (Figure 26). For each subject 

and both errors at least one electrode existed which yielded an accuracy of 80% or higher (outcome 

error: S1: 0.85, S2: 0.91, S3:0.85, S4: 0.80; execution error: S1: 0.88, S2: 0.86, S3: 0.83, S4: 0.88; 

Figure 26). When signals from all motor electrodes were used, decoding accuracy remained high, 

77% or higher, except for execution ERNRs for S2 (outcome error: S1: 0.97, S2: 0.79, S3:0.79, S4: 

0.86; execution error: S1: 0.77, S2: 0.60, S3: 0.92, S4: 0.80). 
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Figure 26 Spatial distribution of DA of classifying outcome SNR against baseline and execution SNR against baseline for 
low and high frequency components in relation to the individual anatomy of the subject (see caption of Figure 19 for 
details). Colours of the squares depict the DA according to the colour bar. 

Next, I classified outcome vs. execution ERNR on a single-trial basis (see section 3.2.4. for 

methodological details). Again, high classification accuracies could be obtained with signals from 

single electrodes (Figure 27), where for each subject at least one electrode yielded an accuracy of 

83% or higher (S1: 0.87, S2: 0.88, S3:0.83, S4: 0.85; Figure 27). When signals from all motor 
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electrodes were used, decoding accuracy remained high, at 76% or higher (S1: 0.97, S2: 0.76, 

S3:0.83, S4: 0.80). 

 

Figure 27 Spatial distribution of DA of classifying outcome SNR against execution SNR for low and high frequency 
components in relation to the individual anatomy of the subject (see caption of Figure 19 for details). Colours of the 
squares depict the DA according to the colour bar. 

3.4. Discussion 

In this chapter, I showed that neural correlates of outcome and execution errors can be found in 

ECoG recordings from the motor, somatosensory, parietal, temporal and pre-frontal cortex. For each 

subject, I found electrodes whose signals can be used to differentiate outcome and execution errors 

from the baseline activity and to differentiate between the two error types.  

I observed neuronal responses to errors both in the low pass filtered ECoG signal and in the high 

gamma activity. ERNRs in low pass filtered signals have been found before in a large number of EEG 

(for review see Bechtereva et al., 2005; Jocham and Ullsperger, 2009; van Veen and Carter, 2006) 

and MEG (Koelewijn et al., 2008) studies. Jung et al. (Jung et al., 2010) discovered ERNRs in high 

frequency activity. In that study intracortical stereoencephalography (SEEG) was used, method that 

measures field potentials in the cortex, in contrast to the recording method used here (ECoG) which 

records field potentials from the cortical surface. 
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In addition, I showed that the low and high frequency signal components of the same electrode can 

carry partially independent information about the errors, as for many electrodes only one of the 

components showed a strong response to one of the errors, while the other component did not. 

Therefore, low and high frequency components of the ERNR might be used in conjunction for error 

detection and discrimination. Moreover, I observed a wide distribution of error response strength 

across different cortical areas. For both error types, there was at least one electrode per subject 

yielding a high SNR (0.93 or higher for outcome error and 0.50 or higher for execution error) and 

more than half of the recorded electrodes exhibited a significant ERNR. In addition, decoding 

analysis revealed that, based on signals from single electrodes, one can decode outcome or 

execution ERNR from the baseline activity at the level of 80% or higher. This implies widespread 

neuronal responses to error events. However, not all responses were specific to only one type of 

error. Reconstruction of the electrode locations demonstrated that, for every subject and for both 

error types, at least one electrode exhibited a strong (SNR>0.40) ERNR over the motor cortex. 

Furthermore, decoding outcome or execution ERNR from the baseline activity, using only channels 

over the motor cortex, was possible with DA of 77%. An exception was the execution error for S2 

where, due to the placement of the implant and more conservative electrode selection criteria, only 

3 electrodes were located over the motor cortex and a DA of only 60% was reached. An implant 

position similar to those of other subjects would have provided more electrodes over the motor 

cortex and, thus, might have provided recordings of more informative signals. 

I also investigated the differences between outcome and execution ERNRs. For every subject, it was 

possible to find an electrode with outcome vs. execution SNR of 0.53 or higher. In addition, for every 

subject, outcome and execution ERNRs could be decoded with DA of at least 76%. If S2, who had a 

poor coverage of motor cortex, is excluded, each subject had a channel with DA of 80% or above. 

These results show that it is possible to decode outcome and execution ERNRs between each other 

and against baseline activity. 

Screen freeze events were used as a control for specific visual stimuli in the case of outcome ERNR 

and as a control for the surprise in the case of execution ERNR. This control was not present for the 

first two subjects. Thus, one might speculate that outcome and execution average SNR for the first 

two subjects would not be as high, had the freeze event been included as a control event, as it was 

for the last two subjects. This was, however, not the case: for the outcome error no significant 

differences were found between the average SNRs (first two subjects: average SNR 0.48±0.04, last 

two subjects: average SNR 0.43±0.03, p=0.41, Mann–Whitney–Wilcoxon test). In the case of 

execution error the average SNR of the last two subjects was even significantly higher than for the 

first two subjects (first two subjects: average SNR 0.26±0.02, last two subjects: average SNR 
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0.34±0.03, p<0.01, Mann–Whitney–Wilcoxon test). Therefore, I conclude that (1) including the 

freeze event control improved the sensitivity of ERNR detection and (2) that the SNRs of outcome 

and execution error of the first two subjects were representative as well, even though the freeze 

control was missing. 

3.4.1. Spectro-temporal characteristics of neuronal error responses  

Following an error event, one can observe stereotypical spectral responses in which the amplitude in 

very low frequencies (0-4 Hz) and in high gamma frequencies (above 40Hz) is increased in relation to 

the baseline (Figure 18). I found that changes in the low frequencies can better be described using 

the low pass filtered signal, since in that case phase information is included as well. The high gamma 

response was present in a wide frequency band where amplitudes changed across many frequencies 

homogeneously. Therefore, computing the average amplitudes over these frequencies yields a less 

noisy response. I chose a frequency band from 60 Hz to 200 Hz because this band exhibited a 

common behaviour across subjects, channels and error events (Figure 17). For subjects S1 and S2 the 

upper boundary of the high frequency band was limited to 128 Hz due to the sampling frequency of 

the recording amplifier. 

Jung et al. (Jung et al., 2010) studied intracortical SEEG signals in a reaction time task where negative 

feedback was given if timing requirements were not met. They reported high gamma neuronal 

responses with spectro-temporal characteristics similar to the ones I found in response to outcome 

and execution errors during my continuous control task. Even though task and recording method 

were both different, neuronal responses are, in essence, error event neuronal responses and could, 

therefore, be related. 

On the other hand, neuronal responses to non-error events can also exhibit similar spectro-temporal 

characteristics: onset of arm movements (Ball et al., 2009b), self paced individual finger movements 

(Kubanek et al., 2009; Miller et al., 2009; Wang et al., 2009), thumb button press (Crone et al., 2006), 

hand movements (Leuthardt et al., 2004; Wisneski et al., 2008), tongue, fist and foot isometric 

contraction (Crone et al., 1998a; Crone et al., 1998b), onset of auditory stimuli (Boatman-Reich et 

al., 2010; Crone et al., 2001; Ray et al., 2008), tactile stimulus (Ray et al., 2008), face recognition 

(Lachaux et al., 2003), attention and short term memory (Jensen et al., 2007), mental calculation  

(Vansteensel et al., 2010) and word recognition (Jerbi et al., 2009). To test how well ERNRs can be 

differentiated from all such non-error events, further ECoG experiments with freely behaving 

subjects, where ERNRs can be compared to neuronal responses to other events, have to eventually 

be conducted. Such differentiation may be possible as ERNRs could be evoked on different 

electrodes and exhibit different time courses compared to neural responses to non-error events.  
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This is supported by my finding of different ERNRs to different types of errors (outcome and 

execution) and by different responses to different non-error events in some of the before 

mentioned studies (Ball et al., 2009b; Boatman-Reich et al., 2010; Wang et al., 2009). 

3.4.2. Comparison to previous ERNR studies and widespread ERNR 

ERNR have previously been reported over motor cortex in the low frequency range (0-4Hz; van Schie 

et al., 2004) using EEG recordings and in the beta (15-23Hz) range (Koelewijn et al., 2008) using MEG 

recordings. In addition, increased brain activation correlated to execution errors has been reported 

in the motor cortex using fMRI (Diedrichsen et al., 2005). In line with these studies, I found strong 

outcome and execution ERNR in both low and high frequency components of the signal. To the best 

of my knowledge, this study is the first showing high gamma ERNRs in the motor cortex. 

Increased fMRI activation correlated to execution errors has also been reported in the 

somatosensory cortex (Diedrichsen et al., 2005). I showed that correlates of execution errors and, 

moreover, outcome errors are present in electrophysiological signals from somatosensory cortex 

both in low and high frequency signal components. 

Besides in motor and somatosensory cortex, I also found widespread ERNRs to outcome and 

execution errors in other brain areas, including frontal, parietal and temporal cortex. This is 

consistent with previous studies. Increased fMRI activation in response to negative feedback was 

found in dorsolateral pre-frontal cortex (Jung et al., 2010; Zanolie et al., 2008), medial pre-frontal 

cortex (Ullsperger and von Cramon, 2003; Zanolie et al., 2008), orbito-frontal cortex (Jung et al., 

2010; Walton et al., 2004; Zanolie et al., 2008), pre-suplementary motor area (Jung et al., 2010) and 

insula (Jung et al., 2010; Zanolie et al., 2008). Diedrichsen et al. (Diedrichsen et al., 2005) found fMRI 

activations in response to execution errors in multiple parietal areas. In the lateral temporal cortex, 

responses to errors in identification and memory tasks were found in single-unit activity (Ojemann, 

2003; Ojemann et al., 2004). Task used in my study did not have any identification or memory 

component but it is possible that there are areas in the temporal lobe responsive to errors in 

general.  

Most of the earlier ERNR studies concentrated on the activation of anterior cingulate cortex (ACC) 

and its functional meaning (for review see Bechtereva et al., 2005; Jocham and Ullsperger, 2009; van 

Veen and Carter, 2006). In only one of out of four subjects, 2 electrodes were implanted in the 

vicinity of the ACC. Therefore, I did not investigate the activation of ACC. Involvement of ACC in error 

processing during continuous tasks deserves further clarification by future studies. 

I measured the strength of ERNRs of different cortical areas (motor, somatosensory and pooled data 

from all other areas) by computing the proportion of electrodes exhibiting significant ERNR and the 
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average SNR of these electrodes. My results show that, for both error types, the proportion of 

channels with a significant ERNRs and their response strength (as quantified by SNR) is not different 

between motor and somatosensory cortex. Compared to all other cortical areas that were 

investigated, the response strength of motor cortical ERNRs is significantly higher. By further 

evaluating ERNRs in different functional subareas of the motor and the somatosensory cortex, I 

showed that significant ERNRs were present in different functional subareas that I recorded from 

(hand, arm, ocular, oro-facial). I also found significant ERNRs in the leg area of the motor cortex. As 

the leg electrodes were in immediate vicinity of arm electrodes this finding might be explained by 

ERNRs originating in the arm area and being also picked up on leg electrodes due to spatial spread of 

the electrical signals. Furthermore, ERNRs on leg motor electrodes were found only in one subject. 

This makes the statistics of the ERNR activity in the leg motor area much more unreliable than the 

statistics for the other subareas, where electrodes were available from several patients. Within 

motor cortex, all functional subareas exhibited the same response strength to outcome errors. For 

execution errors the response strength was also not different among different motor cortical 

subareas. The same result was found for the functional subareas of the somatosensory cortex. 

One might suspect that some of these ERNRs were caused by movements correlated with error 

events and, thus, did not directly reflect error-related neuronal responses. To distinguish ERNRs 

from movement-related responses, I subtracted responses evoked by eye and thumb movements 

using the best out of linear and non-linear models relating ECoG signals to these movements (see 

Methods). Therefore, I conclude that these movements cannot explain the ERNRs I observed.  

On the other hand, due to technical and clinical limitations, movements of other parts of the body or 

the respective muscle activations could not be tracked.  Even though such movements did not play a 

role for the task and, thus, there is no a priori reason to expect these movements to be correlated 

with error events, I cannot completely disprove that parts of the observed neuronal error signals 

were confounded by such movements.  

3.4.3. Relevance for brain machine interfaces 

One motivation for this study was to investigate whether ERNRs can be used to improve the 

performance of continuous movement BMIs (Carmena et al., 2003; Hochberg et al., 2006; Kim et al., 

2008; McFarland and Wolpaw, 2005; Serruya et al., 2002; Taylor et al., 2002; Velliste et al., 2008). 

Study presented in this Chapter provides a significant first step in this direction, showing that strong 

error-related neuronal responses could be found in ECoG recordings during a continuous control 

paradigm which mimicked a continuous BMI control task. In addition, I demonstrated that it is 

possible to differentiate between execution (Diedrichsen et al., 2005) and outcome (Krigolson et al., 
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2008) errors. These two types of errors provide independent sources of information. Moreover, both 

of them can be used to improve the performance of the BMI in different ways. An outcome error can 

be used to correct an error after it has been made (Blankertz et al., 2003; Buttfield et al., 2006; 

Ferrez and del R Millan, 2008; Parra et al., 2003) and as a critic for a reinforcement learning adaptive 

algorithm (DiGiovanna et al., 2009). An execution error, on the other hand, can be used as a direct 

indicator of when the decoded trajectory was decoded improperly, thereby providing useful 

information for adaptive decoding algorithms (Rotermund et al., 2006). 

Motor cortex is one of the primary target areas for the implantation of electrodes for invasive BMIs. 

I showed that strong ERNRs for both error types can be found in motor cortical signals. Therefore, 

movement decoding and error detection may be implemented using the same electrode implants. 

Consequently, no additional implants over other cortical areas would be required for BMIs 

employing such neuronal error signals. This would substantially reduce the burden of implantation 

for such BMIs.  
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Chapter 4 

Detection of ERNRs recorded by ECoG in humans 
during continuous movements 
Summary. Brain-machine interfaces (BMIs) can translate user’s movement intentions into 

movements of an artificial effector, using user’s neuronal activity only. In spite of continuous 

advancement of BMI systems, errors in movement decoding are still present. If the difference 

between decoded and intended movements becomes noticeable, it leads to execution error. 

Outcome errors, where subjects fail to perform a certain movement goal, are also present during 

online BMI operation. Detecting such errors can be beneficial for BMI operation: (i) errors can be 

corrected online after being made and (ii) BMI decoding algorithm can be updated to make less 

errors in the future. Here, I show that error events can be detected from human ECoG during 

continuous tasks with high precision, given a temporal tolerance of 300-400 milliseconds. I 

quantified the detection accuracy and showed that, using only a small set of 2x2 ECoG electrodes, 

82% of detection information for outcome error and 74% of detection information for execution 

error available from all ECoG electrodes can be retained. Using a smaller electrode implant for 

detection could significantly reduce the medical risk of implantation. 
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4.1. Introduction 

Even though the control of prosthetic devices using brain-machine interfaces (BMIs) has highly 

improved during the last several years (Kim et al., 2008; Koyama et al., 2010; Velliste et al., 2008), 

such devices are still prone to decoding errors. Decoding errors can elicit error related neuronal 

responses (ERNRs). Detecting these errors can be beneficial for the BMI performance. If detected, 

errors can be subsequently corrected, recognizing that a certain effector movement was not 

intended. This strategy has already been implemented in on-line BMI studies (Blankertz et al., 2003; 

Parra et al., 2003; Schalk et al., 2000), but only in externally paced BMIs. However, many powerful 

BMIs are used to continuously decode and control the movements of the effector. Most prominent 

examples are the BMI control of a prosthetic arm (Serruya et al., 2002; Taylor et al., 2002; Hochberg 

et al., 2006) and the brain control of a computer cursor (Carmena et al., 2003; Hochberg et al., 2006; 

Velliste et al., 2008). 

Error detection can also be used to modify the decoding algorithm to make less decoding errors in 

the future. This approach is far more suitable for BMIs decoding continuous movements, since 

subjects correct for movement discrepancy by producing corrective movements, thereby making 

subsequent error correction outdated. Feasibility of this strategy has been demonstrated only by 

computer simulations (Blumberg et al., 2007; Rotermund et al., 2006). 

To apply error detection to continuous BMI control, it is necessary to show that errors are indeed 

elicited during such tasks. A number of studies looked at errors during continuous movement tasks, 

identifying neuronal activity elicited to three different error types: (i) target error (Diedrichsen et al., 

2005), elicited when task environment goes through unexpected changes such as target jumps, (ii) 

execution error (Diedrichsen et al., 2005), elicited when the ongoing motor commands result in an 

unexpected movement, and (iii) outcome error (Krigolson et al., 2008), elicited when the desired 

goal of a movement is not achieved. Outcome and execution errors are of special interest for BMI 

application, since both error events can occur during the online BMI control. For example, execution 

error can occur when the decoding algorithm decodes incorrect movements, thereby moving the 

cursor or the prosthesis in an undesirable direction (Figure 13). If the difference of intended and 

executed movements is large enough, it can evoke an execution ERNR. If the incorrectly decoded 

movement causes the effector to reach an unintended goal or perform an unintended function, this 

can elicit an outcome ERNR (Figure 13). 

In recent years, electrocorticography (ECoG) emerged as a possible alternative to intracortical 

recordings as a recording technique that can be used for a continuous BMI (Moran, 2010; Schalk, 

2010; Schalk and Leuthardt, 2011). Continuous BMI controlling two degrees of freedom has already 
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been realized using ECoG (Schalk et al., 2008). Other recent studies shown that many other 

movements primitives can be decoded offline from ECoG signals, such as 7 degrees of freedom of 

the arm movements (Chao et al., 2010), individual finger movements (Kubanek et al., 2009) and 

natural grasps (Pistohl et al., 2012). Therefore, ECoG is a suitable platform for implementing a 

continuous BMI. 

To use error signals in a ECoG based BMI, one needs to show that ERNRs can be detected from the 

ECoG signal with sufficient reliability. In Chapter 3, I showed that both outcome and execution ERNR 

are present in human ECoG recordings during a continuous task. In this Chapter, I show that times of 

the events that elicited these ERNR can indeed be detected with high accuracy. 

4.2. Methods 

Experimental task, recording technique, properties of the recoded data, movement related neuronal 

response subtraction method and neuroanatomical procedures used to divide ECoG electrodes into 

anatomical subsets are described in details in Chapter 3. In this Chapter, I analyzed the recordings 

from the 8 x 8 grid of subdural surface electrodes only. 

4.2.1. Measures of detection accuracy 

One can imagine a process where a subject is actively observing and, when a given stimulus appears, 

a neuronal response is elicited. Neuronal activity is continuously recorded and a detection algorithm 

is continuously estimating whether a stimulus appeared, given the neuronal activity. Efficiency of a 

detector can then be measured by comparing two point processes, set of time points when the 

stimulus was presented and a set of time points when the detector detected the stimulus from the 

neuronal recordings. 

Due to the internal processes in the brain and other sources of noise, even the perfect decoder will 

have a temporal noise in the detected times of events. On the other hand, detected event will still 

be useful if the times of detections are not perfectly aligned to the times of the events. For some 

applications, high temporal precision is not necessary. I describe this requirement on a detector as 

temporal tolerance. 

If detected events are tolerated within the time Δt from the real events, than any detection within 

this time window will be counted as a true positive detection. Every event window in which there 

are no detected events will be counted as false negative detection. To measuring the detection 

accuracy, it is also necessary to know the ability of the detector at predicting non-events. To get a 

fair estimate of such ability, the area between the event time windows has to be divided in the 

windows of the same size, 2Δt. Every non-event time window in which there are no detected events 
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will be counted as a true negative detection and every non-event time window in which there is a 

detected event will be counted as false positive detection. 

Sensitivity and specificity of a detector 

Accuracy of a detector can be described by measuring how well it performs in two different tasks: (i) 

detecting events when events are present and (ii) not detecting events when events are not present. 

One way to describe the first property is by measuring the sensitivity of the detector by calculating 

the true positive ratio (TPR; Solis-Escalante et al., 2008) as a number of true positive detections (NTP) 

divided by the total number of real events. Since the total number of real events is given by the sum 

of true positive detections and false negative detections (NFN), true positive ratio is given by: 
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The second property can be described by measuring the specificity of the decoder by calculating the 

false positive ratio (FPR; Solis-Escalante et al., 2008) as the ratio of false positive detections (NFP) 

divided by the number of all detections. Since the total number of all detections is given by the sum 

of true positive detections and false positive detections (NFP), false positive ratio is given by: 
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Disadvantage of measuring the detection accuracy by TPR and FPR is that one cannot directly 

compare two different detectors where both TPR and FPR of one detector is higher than the TPR 

and FPR of another detector. Therefore, a metric incorporating both sensitivity and specificity of the 

detector is needed. One such metric is the mutual information. 

Mutual information of a detector 

One way to measure the performance of a detector is to calculate the mutual information between 

a dataset containing times of real events and a dataset containing times of detected events. Mutual 

information is given by: 
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where X and Y are the sets of all possible states of the real and detected events datasets and x and y 

are specific states from those sets, p(x) and p(y) are the probabilities of specific states and p(x,y) is 

the joint probability that states x and y happen at the same instance. In my case, set of real event 

states consists of “real event” (re) and “real non-event” (rne), while the set of detected events 
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consists of “detected event” (de) and “detected non-event” (dne). Joint and marginal probabilities 

used to calculate the mutual information are given by: 
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 (4.4) 

Given a certain dataset of real event times and certain tolerance, maximum value of the mutual 

information is obtained when detected event times perfectly match real event times. This value is 

identical to the entropy of real event times H(X): 

 ( ) ( ) ( )( )2log
X

H X p x p x= −∑  (4.5) 

To compare the mutual information over different tolerances, I calculated the normalized mutual 

information, CYX: 
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Calculating mutual information and entropy from a recorded dataset will give a good estimate of 

their true values, as long as the calculated probabilities are good estimates of the real probabilities. 

However, recorded datasets have a finite length, which will make the estimated probabilities 

fluctuate around their real values. Using the estimated probabilities to calculate the mutual 

information and entropy leads to a bias in the estimation (Treves and Panzeri, 1995). To remove the 

bias of the mutual information, I used the first and the second order of the mutual information bias 

expansion derived in the study by Treves and Panzeri (Treves and Panzeri, 1995): 
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where IN(X,Y) is the mutual information estimated from a dataset of length N. Here, the values of 

joint and marginal distributions have also been estimated from the same dataset. To remove the 

bias of the entropy, I used the first and the second order of the entropy bias expansion derived in 

the study by Victor (Victor, 2000): 

 1 2( ) ( ) C C
NH X H X H H= + +  (4.10) 
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Therefore, the bias corrected value of the normalized mutual information was calculated as: 
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4.2.2. Signal components 

I analyzed the low and high frequency components of the recorded ECoG signals. Low frequency 

component was extracted by smoothing the preprocessed ECoG signals using a symmetric 2nd order 

Savitzky-Golay filter (Savitzky and Golay, 1964; Steinier et al., 1972) with a time window of 250ms 

(nominal 3dB cut off frequency: 7.85Hz for S1 and S2, 7.59Hz for S3 and S4; estimated using table 

from Schafer, 2011). I defined a window around each event of any kind, starting 3 seconds before 

each event and lasting until 3 seconds after each event. The signals outside all of these windows 

were used as baseline activity. To enable a clear comparison to baseline, the average baseline 

activity was subtracted from the filtered recordings in each session for each electrode. The resulting 

signal was defined as the low frequency component of the signal (LFC). 

To analyze the high frequency component of the signal, time-resolved Fourier transformation using a 

Hamming window (333ms window width, shifted in steps of 31ms) was applied to the preprocessed 

signals, and the amplitudes were used for further analysis. To account for the general decrease in 

amplitude with increasing frequency, the amplitudes of every frequency bin were normalized by 

dividing them by the average baseline amplitude of the same frequency bin in the respective 

session. I then extracted the average amplitude across a frequency band from 60Hz to 128Hz for S1 

and S2 (Nyquist frequency 128Hz) and from 60Hz to 200Hz for S3 and S4 (Nyquist frequency 512Hz). 

Amplitudes calculated from ECoG signals recorded at least 3 seconds from any event were labelled 

as baseline. To enable a clear comparison to baseline, the average baseline activity was subtracted 

from the extracted amplitudes in each session for each electrode. The resulting signal was defined as 

the high frequency component of the signal (HFC). 

Due to different scaling, when LFC and HFC were used together for detection, I normalized every 

electrode and signal component to zero mean and unit variance. 
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4.2.3. Detection algorithm 

To detect error events from the neural activity, I derived a set of models that tried to capture the 

features of the ERNRs. To be sure that these features are captured from ERNRs that are not mixed 

with neural responses to other events, I used ERNRs elicited by “clean” events only. Each model 

could be described by an array of time points (t1, ..., tn) in relation to the collision or movement 

mismatch events. Array of time points was defined by a set of parameters: (i) a time of the first 

feature in relation to the error event, t1, (ii) a number of features, n and (iii) a time distance between 

the first and the last feature, tn-t1. Therefore, neuronal response in every trial and every electrode in 

one of the signal components was represented by a vector of features. I labelled the extracted 

feature vectors as “positive” class. All the features vectors extracted using the same array of time 

points, but this time shifted in time, were labelled as “negative” class. 
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where δt is the time resolution of the signal component (LFC: 4ms for S1 and S2, 1ms for S3 and S4; 

31ms when HFC or both components were used) and ch(1), ..., ch(m) is a list of electrodes/frequency 

components used in the feature extraction. These classes were used to build either a regularized 

linear discriminant analysis (rLDA) model or a regularized quadratic discriminant analysis (rQDA) 

model (Friedman, 1989). QDA model is built by fitting a Gaussian distribution to each of the classes 

and gives the probability to belong to one of the classes for any arbitrary point in the feature space. 

Each Gaussian is represented by a class mean and a covariance matrix. LDA is a simplification of 

QDA, where only fitted Gaussian distributions share a common covariance matrix. Regularization is 

implemented by modifying the covariance matrix of the fitted Gaussian distributions and has the 

purpose to improve the accuracy of the discriminant analyses on a new, independent set of data. I 

used the regularization of the form: 

 ( ) ( )1RC C diag C Iγ γ= − + ⋅ ⋅  (4.15) 

where C is the covariance matrix of the fitted Gaussian distribution, CR is the regularized covariance 

matrix, γ is the covariance coefficient and I is the identity matrix of the same size as C. In the case of 

rQDA, the number of vectors in the negative class is much higher than the number of vectors in the 

positive class. Therefore, I regularized the covariance matrix of the Gaussian fitted to the positive 

class only. Model was then used to calculate the probability of every feature vector F in the testing 

dataset to belong to the positive class. 
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where tF is time point corresponding to the calculated probability and tend is the time length of the 

tested dataset. I then extracted all local maxima of the probabilities and assigned a ‘dne’ state to 

remaining points. Threshold value was then selected and I assigned a ‘dne’ state to all time points for 

which the value of the maxima was below the threshold. Finally, I assigned a ‘dne’ state to all 

remaining maxima points for which there was a higher maximum point within the neighbourhood of 

1 second. I assigned a ‘de’ state to all remaining maxima. Since the model should be able to detect 

error events whose ERNRs are only slightly mixed with neuronal responses to other events, I 

calculated the detection measures between the times of detected events and the times of all real 

events within the testing dataset, instead of just using the “clean” events. 

To properly validate the models, I divided the recorded data into three similarly long parts by 

splitting each session into three parts, each containing one third of the “clean” events. First, I chose 

a set of parameter values consisting of: (i) a time of the first feature in relation to the error event, t1, 

(ii) a number of features, n and (iii) a time distance between the first and the last feature, tn-t1, (iv) 

regularization coefficient, γ, and (v) probability threshold. rLDA or rQDA model was then built using 

the first part of the dataset. Using the build model, I detected the events on the second part of the 

data and calculated the CYX. Values of the parameters were then changed and the process was 

repeated, until all parameter values from the parameter grid were tested. I used a following grid of 

parameter values: (i) t1: from -667ms to 667ms in steps of 56ms; (ii) n: 1, 3, 4, 5 and 8 when using 

single electrodes and electrode quartets for detection and 1, 2 and 3 when using anatomical 

electrode subsets or all grid electrodes for detection; (iii) tn-t1: 100ms, 125ms, 250ms, 500ms, 750ms 

and 1000ms; (iv) γ: 0, 0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99 and 1; and (v) probability threshold: from 0.5 

to 1 in steps of 0.17. Model that gave the maximum CYX on the second part of the dataset was used 

to detect the events on the third part of the dataset and TPR, FPR and CYX were then calculated 

from this detection. The same process was repeated, now using third part of the dataset for testing 

the grid of parameter values and second part of the dataset for model testing. Average of the final 

TPR, FPR and CYX was then reported as the measured detection accuracy. 

Different tolerance values were used to bin the experiment time into non-overlapping time bins, as 

described in section 4.2.1. Tolerance value directly determines the length of the dataset and, for 

used tolerance values, Table 10 gives the corresponding dataset lengths. 
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 Tolerance 
 50ms 155ms 261ms 366ms 472ms 577ms 683ms 788ms 894ms 1s 

D
at

as
et

 
le

ng
th

 LFC 34 253 10 898 6 233 4 347 3 326 2 724 2 274 1 947 1 701 1 503 
HFC 31 041   9 892 5 665 3 953 3 030 2 482 2 076 1 780 1 557 1 381 

LCF & 
HFC 31 041   9 892 5 665 3 953 3 030 2 482 2 076 1 780 1 557 1 381 

Table 10. Total dataset length for different temporal tolerances. 

4.2.4. MRNR subtraction 

To remove the movement related neuronal responses (MRNRs) following a mismatch or a collision 

event, I used the MRNR subtraction method described in Chapter 3. MRNR were identified by 

deriving and testing a set of models relating the signals from one electrode to the movements using 

only non-event data (i.e. all data which was at least 1s before and 3s after any event). The most 

predictive model was selected and used to predict the MRNR for the whole recording, this time 

including the event data. MRNR signals were then subtracted from the initial signal, and result was 

termed MRNR-free signals. All reported results were achieved by using MRNR-free signal for 

detection, unless specified otherwise. 

4.2.5. Neuroanatomical analysis 

To determine whether the motor or the somatosensory cortex played a more distinctive role in 

generating ERNR, I classified electrodes into motor cortex electrodes, somatosensory cortex 

electrodes, and other electrodes (Figure 15) in the same way as done in Chapter 3. 

4.3. Results 

4.3.1. Detection of error related neuronal responses 

To quantify how well outcome and execution events can be detected, I used signals from all ECoG 

grid electrodes and in both signal components as an input for my detection algorithm (Figure 28). 

When detecting outcome error with tolerance of 366ms and across all four subjects, average CYX 

was 0.65 with average TPR of 0.83 and average FPR of 0.30 (for individual subject values see Table 

11). For detection of execution error with the same tolerance, average CYX was 0.35 with average 

TPR of 0.61 and average FPR of 0.59 (for individual subject values see Table 11). Over all tolerance 

values, outcome error CYX values were higher than execution error CYX when both frequency 

components were used (CYX difference: S1: 0.50±0.05, S2: 0.12±0.01, S3: 0.11±0.03, S4: 0.33±0.01, 

p<0.05; signed Mann–Whitney–Wilcoxon test). These results show that detection of outcome errors 

works better than the detection of execution errors. 
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Figure 28. Overview of detection results when signal from all ECoG electrodes are used for detection of outcome (A) or 
execution (B) errors. For detection, I used low frequency component (dashed line), high frequency component (dotted 
line) or both frequency components together (full line). Top row of panels show the TPR (blue lines) and FPR (red 
lines), while the bottom row of panels show the normalized mutual information CYX (black lines). Different columns 
show results for different subjects. 

 Outcome error Execution error 
 S1 S2 S3 S4 S1 S2 S3 S4 
CYX 0.82 0.50 0.72 0.55 0.24 0.33 0.57 0.25 
TPR 0.92 0.79 0.87 0.73 0.52 0.66 0.81 0.43 
FPR 0.13 0.58 0.23 0.24 0.73 0.62 0.46 0.56 

Table 11. Detection accuracy when both LFC and HCF signals from all ECoG electrodes are used for detection using rLDA. 

Using both signal components gives higher CYX then when using either one of the components (CYX 

difference: outcome error: LFC & HFC vs. LFC: 0.22±0.02; LFC & HFC vs. HFC: 0.18±0.01; execution 
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error: LFC & HFC vs. LFC: 0.18±0.02; LFC & HFC vs. HFC: 0.08±0.01; p<0.05; signed Mann–Whitney–

Wilcoxon test). Using HCF gives higher CYX than when LFC is used, although difference is statistically 

significant for execution error only (CYX difference: outcome error: 0.03±0.02, p=0.41; execution 

error: 0.10±0.02; p<0.05; signed Mann–Whitney–Wilcoxon test). 

 

Figure 29. Spatial distribution of normalized mutual information of outcome and execution error events for low and high 
frequency components in relation to the individual anatomy of the subject. Purple lines depict the central sulcus, the 
Sylvian fissure and, for S2 only, the pre and post central sulci. Letters in the squares mark the functional subarea (A – 
arm, H – hand, L – leg, E – ocular, O – oro-facial) in motor (purple) and somatosensory (black) cortex as determined by 
ESM. Every coloured square represents one quartet of electrodes with the electrodes at the corners of the square. 
Colours of the squares depict the normalized mutual information according to the colour bar. Since no recordings were 
made from the top row of grid electrodes for S2, I show the top row of quartets as white. The top left square in the ECoG 
grids correspond to the electrode closest to the red star in Figure 15. 



83 

 

4.3.2. Topographical distribution of informative signals for error detection 

To find out the topographical distribution of signals that are informative for the error detection, I 

performed detection using signals recorded from electrode quartets (Figure 29). For most of the 

subjects, several isolated, often quite distant peaks of CYX could be found over the cortical regions I 

recorded from. Locations of these peaks often differed for different errors and different signal 

components. Thus, no topographical location was systematically beneficial for detection of either 

outcome or execution errors. 

4.3.3. Error detection using signals from motor or somatosensory areas 

I also wanted to see if recordings from motor or somatosensory areas provided enough information 

for high accuracy of error detection. To this end, I divided the ECoG grid electrodes into sets of 

motor, somatosensory and other electrodes. Detection was then performed using both signal 

components with rLDA models (Figure 30). For all subjects and tolerance levels, CYX using all ECoG 

grid electrodes was higher than the CYX of the best anatomical subsets (CYX difference: outcome: 

0.06±0.01; execution: 0.04±0.01; p<0.05; signed Mann–Whitney–Wilcoxon test). 

 

Figure 30. CYX for outcome and execution error events using signals recorded from electrode sets containing all 
electrodes over motor cortical areas (blue), somatosensory cortical areas (red) and all remaining electrodes (green). 

For S2, there are only 3 electrodes assigned to the motor set and only 2 electrodes assigned to the 

somatosensory set (Table 12). Therefore, I considered CYX values for S2 not representative and 

removed them from comparison of CYX for different anatomical regions. When taking the remaining 

three subjects, the CYX of outcome error was not significantly different for all three electrode 



84 

 

subsets (p>0.47; signed Mann–Whitney–Wilcoxon test). When detecting execution error, CYX for 

motor and other subsets was higher than CYX for somatosensory subset, while the small difference 

of CYX between motor and other subsets was not significant (CYX difference: motor vs. 

somatosensory: 0.10±0.01; p<0.05; motor vs. other: 0.03±0.02; p=0.21; other vs. somatosensory: 

0.06±0.02; p<0.05; signed Mann–Whitney–Wilcoxon test). 

Anatomical sets S1 S2 S3 S4 
Motor 22 3 18 11 
Somatosensory 18 2 11 14 
Other 20 51 35 39 

Table 12. Number of electrodes belonging to motor, somatosensory and other anatomical sets for each of the subjects. 

Next, I investigated the change of detection performance if restricted to signals from one of the 

anatomical regions only. For each of the tolerances, I calculated the percentage of CYX achieved 

when using signals from electrodes belonging to one of the anatomical sets in comparison to CYX 

achieved when using signals from all ECoG grid electrodes. When averaged over tolerances, 

detection from motor subsets achieves 72% for outcome error and 78% for execution error of CYX 

achieved when all electrodes are used for detection. CYX from somatosensory subsets is 65% for 

outcome error and 50% for execution error of CYX from using all electrodes. When signals from other 

electrode subsets are used, CYX is 69% of CYX achieved when all electrodes are used for both 

outcome and execution errors. 

4.3.4. Detection from smaller electrode sets 

I investigated whether one can detect error events with smaller electrode sets with accuracy similar 

to detection when all ECoG grid electrodes are used (Figure 31). When both frequency components 

are used, maximum CYX from single electrodes was 60% for outcome error and 66% for execution 

error of the CYX when all electrodes are used. For electrode quartets and both frequency 

components, maximum CYX is 82% for outcome error and 74% for execution error of CYX when all 

electrodes were used. 

4.3.5. Effect of MRNR subtraction on the normalized mutual information 

I also investigated whether MRNR subtraction affected the detection of the error events (Figure 32). 

Averaged over subjects and tolerance values, difference of CYX when MRNR subtraction was and was 

not used is not significant if both LFC and HFC are used for detection (p=0.09; signed Mann–

Whitney–Wilcoxon test). When only LFC is used for detection, using MRNR subtraction leads to a 

slight improvement (CYX difference: 0.089±0.008; p<10-13; signed Mann–Whitney–Wilcoxon test). 

For the high frequency component, I observed a slight, but still significant, reduction of mutual 
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information when the MRNR subtraction was used (CYX difference: -0.028±0.006; p<10-4; signed 

Mann–Whitney–Wilcoxon test).  

 

Figure 31. CYX of outcome and execution error events for different electrode set sizes, maximized over all possible 
electrode sets and averaged over subjects. I compared electrode subsets containing single electrodes (blue line), 
electrode quartets (red line) and set of all grid electrodes (black line) when using low frequency component, high 
frequency component or both frequency components. Detection was made using rLDA. Error bars show standard error 
of the means. 

4.3.6. Selection of the model type for detection: rLDA vs. rQDA 

I compared the detection performance between rLDA and rQDA (Figure 33). rQDA is more flexible, 

but has a drawback that more free parameters have to be estimated from the training dataset. The 

number of free parameters is a quadratic function of the number of signal features, which is, in turn, 

a product of the number of electrodes and a number of features taken from each single electrode. 

Therefore, if the dataset is quite large and the total number of features used to build the model is 

quite small, rQDA might outperform rLDA. On the other hand, if the data is limited and the total 
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number of features is quite high, rLDA might outperform rQDA. I wanted to find out in which one of 

these two regimes was my dataset. 

 

Figure 32. Normalized mutual information from signals with (red) and without (blue) MRNR subtraction when using 
signals from all electrodes. Different columns show detection mutual information when low frequency component 
(dashed lines), high frequency component (dotted lines) or both signal components (full line) were used for detection. 
Error bars show standard error of the means. 

Electrode subsets 
Outcome error Execution error 

LFC HFC LFC & HFC LFC HFC LFC & HFC 

Single 
electrodes 

CYX 
diff. (9±6)·10-4 (-17±6)·10-4 (86±7)·10-4 (-27±5)·10-4 (-15±5)·10-4 (-26±5)·10-4 

p 0.79 <10-2 <10-2 <10-2 <10-2 <10-2 

Electrode 
quartets 

CYX 
diff. (45±1)·10-3 (11±1)·10-3 (57±2)·10-3 (19±1)·10-3 (9±1)·10-3 (27±1)·10-3 

p <10-2 <10-2 <10-2 <10-2 <10-2 <10-2 

All 
electrodes 

CYX 
diff. 0.32±0.01 0.09±0.02 0.42±0.02 0.15±0.01 0.11±0.01 0.30±0.02 

p <10-2 <10-2 <10-2 <10-2 <10-2 <10-2 

Table 13. CYX differences between detections using rLDA and rQDA. Each field shows differences and standard error of 
the means across subjects, all possible electrode subsets and all tolerances, together with the p value for testing equal 
medians using Mann–Whitney–Wilcoxon test.  

If only LFC or HFC signals from single electrodes were used for detection and for both error types, 

rQDA either significantly outperformed rLDA, or there was no significant difference in performance 

(Table 13). When using both signal components for outcome error detection, rLDA significantly 
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outperforms rQDA, while opposite is true for execution error detection. If signals from electrode 

quartet or all electrodes were used, rLDA always significantly outperformed rQDA. 

 

Figure 33. Normalized mutual information of outcome and execution error events for different electrode set sizes, using 
LFC (blue lines), HFC (red lines) or both components together (black lines) and for rLDA (full lines) and rQDA (dotted 
lines) based detection algorithms, averaged over all subjects and all possible electrode subsets. Error bars show 
standard error of the means. 

4.4. Discussion 

In the previous Chapter (Chapter 3), I demonstrated that ECoG signals reflect outcome and 

execution ERNRs and are not related to movements or caused by visual stimuli or surprise effects. 

Here, I show that both outcome and execution error events can be detected from continuous 

neuronal activity measured with ECoG electrode implants. For a tolerance windows of 366ms, 
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outcome error events were detected with an average TPR of 0.79 and an average FPR of 0.31. 

Execution error events were detected slightly less reliable, with an average TPR of 0.61 and an 

average FPR of 0.60 for the same temporal tolerance. These results suggest that, for both error 

types, it is possible to detect more than half of the errors and that the number of false positive 

detections is comparable to the number of true positive detections. In the experiment presented 

here, error events were extremely sparse. Therefore, these results suggest that error events can be 

detected with high reliability. This notion is supported by the values of the normalized mutual 

information that show that the timing of the error events, reproduced by detection process and with 

a tolerance of 366ms contain 61% of the information contained in the timing of the outcome errors 

and 34% of the information contained in the timing of the execution errors on average. 

Signals informative about the time of error events were not found in one isolated cortical area but 

rather in several various areas.  Often, it was possible to find several, mutually isolated CYX peaks on 

one subject for the same error type and the same frequency component. In addition, CYX peaks 

often had different locations for different error types and different location for different frequency 

components. This suggests that neuronal responses coding for outcome errors might be 

independent from the neuronal responses coding for execution errors. In addition, it suggests that 

low and high frequency component of the neuronal responses coding for the same error might also 

be independent. This is consistent with the results of the previous Chapter where it was shown that 

topographical distribution of ERNR’s signal to noise ratio had the same property. 

I also tested whether signals from a particular anatomical area gave more or less informative signals 

for detection. To this end, I divided the ECoG electrodes for each of the subjects into three sets: 

motor set, somatosensory set and the ‘other’ set. In S2, the ECoG grid was implanted over the more 

ventrally than for other subjects, thereby covering only the ventral motor and somatosensory areas. 

In addition, ESM was not performed on S2. Therefore, for S2, I had to use sulci reconstruction to 

determine which electrodes belong to motor and somatosensory sets. This resulted in motor set of 

only 3 electrodes and somatosensory set of only 2 electrodes (Table 12). Due to the low number of 

electrodes in these sets, and due to more ventral location of the ECoG implant, I decided that 

detection results of motor and somatosensory sets for S2 are not representative as these areas were 

not sufficiently covered and, therefore, excluded S2 from the anatomical area specific analysis.  For 

the remaining subjects none of the anatomical sets provide better signals for detecting outcome 

errors. In the case of execution error, detection using motor and other electrode sets was similar 

and only a bit better then detection from somatosensory subset. On average, using signals from 

motor areas achieves 72% of CYX when using all grid electrodes to detect outcome errors and 78% of 

CYX when using all grid electrodes to detect outcome errors. 
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A complete 8x8 electrodes ECoG grid covers a surface of around 64cm2. To implant such grids, an 

open wound of similar size has to be made at the side of the skull. Reducing the size of the implant 

would reduce the medical risk of ECoG implantations. Therefore, I investigated whether similar 

detection accuracy can be obtained using signals from smaller parts of the grid only. Signals from 

single electrodes gave much lower detection accuracy in comparison to using all ECoG electrodes, 

but 60% of CYX when using all grid electrodes to detect outcome errors and 66% of CYX when using 

all grid electrodes to detect execution errors could still be obtained. Detection based on signals from 

electrode quartets, 2x2 neighbouring electrodes, was almost at the level of the detection obtained 

by using signals from all electrodes, obtaining 82% of CYX when using all grid electrodes to detect 

outcome errors and 74% of CYX when using all grid electrodes to detect execution errors. These 

results suggest that, if the optimal location for an implant is known in advance, one could safely 

reduce the size of the electrode by 16 fold, with only a small loss of detection accuracy. 

Besides medical risk, there are additional benefits when reducing the number of electrodes used for 

the detection. The numerical complexity of the detection algorithm is a quadratic function of the 

number of used electrodes. Therefore, reducing the number of electrodes by 16 fold could reduce 

the numerical complexity of the detection algorithm by up to 256 times, which could drastically 

reduce the hardware requirement of the detection process, allowing the process to be run on a less 

powerful computers, or freeing computational resources for other tasks. To find out which 

electrodes or electrode quartets are best for detection, one could run the whole detection process 

on a set of data recorded for such calibration purpose. On the other hand, such an optimization 

process might take a considerable amount of computation time.  

A high proportion of electrodes were located above the motor and somatosensory cortical areas. 

Therefore, it is expected that some proportion of the recorded signal is movement related. In the 

previous Chapter, analysis revealed that large amounts of variance on some of the electrodes can be 

explained by a model predicting neuronal signals from eye and hand movements. Movement related 

part of the signal was then removed by using MRNR subtraction procedure (see Chapter 3 for 

details). In the analysis presented in this Chapter, I detected the error events using both MRNR-free 

signals and signals where MRNR subtraction was not used. On average, MRNR subtraction did not 

significantly change the detection accuracy, demonstrating that here presented detection is based 

on error related and not any movement related neuronal signals.  

I also compared detection accuracy between detection using rLDA and rQDA. In my experiment, 

subjects performed around one hour of recordings, which left around 20 minutes of recordings for 

training the detector. In these experimental conditions, detector using rLDA clearly outperformed 

detector using rQDA when signals from all ECoG electrodes were used. In this case, number of 
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possible features used for detection greatly outnumbered the number of ERNR examples used for 

building the model. Since rQDA models have to estimate much higher number of parameters than 

the rLDA models, it is no surprise that detection based on rLDA showed better results. On the other 

hand, when signals from only one electrodes and single signal component were used for detection, 

using rQDA was as accurate or better than using rLDA. Already by using signals from 4 electrodes, 

detection accuracy was significantly higher when rLDA was used. In this case of low numbers of 

features, detection benefited from the higher flexibility of rQDA models. For larger datasets 

containing more ERNR examples that could be used for detection model building, rQDA might 

further outperform rLDA models although, based on the results presented in this Chapter, one 

would rather include signals from larger number of electrodes since, by doing so, gain of detection 

accuracy becomes higher. 

4.4.1. Characteristics of signal components used for detection  

Here, I used both low (0-8Hz) and high (60 Hz to 128 Hz for S1 and S2 and 60 Hz to 200 Hz for S3 and 

S4) frequency component of the neuronal signals to detect the error events. Results from the 

previous Chapter show that these signal components gave two different, possibly independent, 

sources of information about errors. Other studies showed that neuronal responses with similar 

spectro-temporal characteristics can be evoked by non-error events, such as different movements 

(Ball et al., 2009b; Crone et al., 1998a; Crone et al., 1998b; Crone et al., 2006; Leuthardt et al., 2004; 

Wang et al., 2009; Wisneski et al., 2008), somatosensory and auditory stimuli (Boatman-Reich et al., 

2010; Crone et al., 2001; Ray et al., 2008), word recognition (Jerbi et al., 2009), face recognition 

(Lachaux et al., 2003) and attention and short term memory (Jensen et al., 2007). One could argue 

that detecting ERNR in a more natural environment, compared to my highly controlled task, will be 

hard as the ERNRs would not be differentiable from the neural responses to the non-error events. 

This will not necessarily hinder the applicability of the error detection system. If subjects are focused 

on the task at hand, they will perform minimal amount of additional movements, receive minimal 

amount of additional tactile stimuli and will probably not perform additional cognitive tasks. In my 

task, subjects were merely asked not to move too much and to try to remain focused on the task. I 

argue that they would show similar behaviour if they were motivated to do the task for their 

personal benefit, such as navigating the cursor or artificial hand towards the target. I therefore think 

that ECoG signals can be applied for the online continuous error detection. 

Detection of error events might still be likely possible even in the environment where more 

somatosensory stimuli are present and more different tasks have to be made at once. ERNRs used in 

this study are evoked on different, often quite distant, electrodes and these evoked responses 
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exhibit different time courses. This makes the ERNR responses highly redundant and differentiable 

to other, non-error neuronal responses. Some of the before mentioned studies already used these 

signal properties to differentiate between neuronal responses to different non-error events (Ball et 

al., 2009b; Boatman-Reich et al., 2010; Wang et al., 2009) and the same principal could work for 

ERNRs as well. Further studies are required to test the accuracy of error detection in such noisy 

environments. 

4.4.2. Comparison to previous detection studies 

Several studies investigated the detection of epileptic seizures from neuronal recordings (Lee et al., 

2007; Rana et al., 2012). Since epileptic seizures occur very rarely and cause hospital staff alarms 

during the epileptic assessment periods, there is a strong requirement to keep the number of false 

positive detections at a minimum. Therefore, when measuring accuracy of seizure detections, TPR is 

usually combined with the number of false positives per hour. Since frequency of decoding errors 

during normal BMI continuous control is much higher than the number of epileptic seizures, using 

the number of false positives per hour as a measure of performance does not apply well to error 

detection. A number of other studies used neuronal signals to detect movement related events, such 

as movement onset (Awwad Shiekh Hasan and Gan, 2010; Bashashati et al., 2007; Hwang and 

Andersen, 2009; Levine et al., 2000), movement planning phase (Achtman et al., 2007) and periods 

of movement related synchronization and desynchronization (Solis-Escalante et al., 2008). These 

studies mainly used TPR and FPR to visualize the detection results, while some of them used the 

Youden index i= TPR-FPR (Sokolova et al., 2006) as a single measure of detection performance 

(Awwad Shiekh Hasan and Gan, 2010; Levine et al., 2000). Solis-Escalante et al. used mutual 

information to report their final results, but still used the Youden index to calibrate their detector. 

Here, due to its strong theoretical foundations, I used normalized mutual information to both 

calibrate the detector and measure its accuracy.  

Afore mentioned studies used a wide variety of algorithms for detection: expectation maximization 

Gaussian mixture model (Awwad Shiekh Hasan and Gan, 2010), k nearest neighbours (Bashashati et 

al., 2007), linear discriminant analysis (Bashashati et al., 2007), local field potential β-band power 

threshold crossing (Hwang and Andersen, 2009), cross-correlation threshold crossing (Levine et al., 

2000), support vector machine (Solis-Escalante et al., 2008), recursive Bayesian model (Achtman et 

al., 2007) and phase slope index threshold crossing (Rana et al., 2012). Here, I used regularized 

versions of linear and quadratic discriminant analyses with a variable threshold. This makes my 

detection algorithms quadratic in nature. Use of more complex and flexible algorithms might 

improve the detection, although my results show that simpler rLDA algorithms outperformed more 



92 

 

complex rQDA algorithms. More robust, linear algorithms might also provide improvements, but, 

due to the large variability of all neuronal activity not related to errors, finding an efficient linear 

decision boundary might prove impossible. 

In addition, afore mentioned studies detecting movement states also failed to investigate the effect 

of tolerance on the precision of the detector. In this Chapter, I show that detection accuracy rises 

with the tolerance until it saturates at around 300-500ms. This implies that ERNRs used to detect 

error events are not perfectly synched with those events, and that variability or ERNRs in response 

to error events is on the level of 300-500ms. Cause of such variability in ERNRs response time might 

be the variability in the time subjects need to recognizinge the error. This is in line with the 

measurements of choice reaction time variability (Kirkeby and Robinson, 2005) where 95% of 

reactions fell within approximately 400ms around the mean reaction time. In any case, variability 

caused by limited detection frequency of 32Hz should be negligible compared to other effects. 

4.4.3. Comparison to previous ERNR studies 

Most of the earlier ERNR studies concentrated on the activation of anterior cingulate cortex (ACC) 

and its functional meaning (for review see Bechtereva et al., 2005; Jocham and Ullsperger, 2009; van 

Veen and Carter, 2006). ERNRs have also previously been found in motor cortex (Diedrichsen et al., 

2005; Koelewijn et al., 2008; van Schie et al., 2004), somatosensory cortex  (Diedrichsen et al., 2005) 

and in other cortical areas (Diedrichsen et al., 2005; Jung et al., 2010; Ojemann, 2003; Ojemann et 

al., 2004; Ullsperger and von Cramon, 2003; Walton et al., 2004; Zanolie et al., 2008). My study 

extends on the findings from the previous Chapter by showing that error related neuronal responses 

recorded by ECoG can be detected in continuous neuronal activity recordings. Furthermore, I 

demonstrated that outcome errors can be detected with higher accuracy than execution errors. 

4.4.4. Relevance for brain machine interfaces 

One motivation for this study was to investigate whether ERNRs can be used to improve the 

performance of continuous movement BMIs (Carmena et al., 2003; Hochberg et al., 2006; Kim et al., 

2008; McFarland and Wolpaw, 2005; Serruya et al., 2002; Taylor et al., 2002; Velliste et al., 2008). 

To improve the continuous movement BMIs, (i) error related signals have to be present in the given 

recording of neuronal activity, (ii) these errors related signals would have to be detectable, (iii) 

proper errors would have to be differentiable from other error types and (iv) adaptive algorithms 

facilitating error detection would have to be available. Extensive research in error related signals 

already showed that error related signal can be recorded with wide range of recording techniques. 

Previous chapter shows that error signals can be recorded using ECoG during continuous tasks and 
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that execution errors can be differentiated from outcome errors, thereby resolving points (i) and (iii) 

in the case of ECoG based BMIs. Rotermund et al. (Rotermund et al., 2006) showed that adaptive 

algorithms decoding continuous movements can indeed benefit from error detection, resolving the 

point (iv). In this Chapter, I showed that error detection is possible, thereby resolving the point (ii). 

Even though all points have now been resolved, it is still necessary to demonstrate the proposed 

continuous BMI decoding system that facilitates error detection in an online study, making this an 

interesting topic for a future study. 

My study also shows that both outcome and execution errors can be reliably detected. Instead of 

just providing binary information, whether decoding error has been made or not, detection of 

multiple error types could further improve BMI operation. Outcome error detection can be used to 

subsequently correct the errors (Blankertz et al., 2003; Buttfield et al., 2006; Ferrez and del R Millan, 

2008; Parra et al., 2003). Such use might not be used to directly correct the decoded trajectory, since 

BMI users will try to correct the decoding mistake using corrective movements. On the other hand, 

in a task where movements are made to perform some kind of selection, e.g. guiding a cursor to one 

of several target locations, detecting that such selection was incorrect might make such BMI more 

efficient. In addition, outcome errors can also be used as a critic within the reinforcement learning 

algorithm (DiGiovanna et al., 2009). Such algorithms tend to require long recording sessions, making 

them much slower in their adaptation towards more efficient BMI decoder. 

Detection of execution errors can be used to directly label the incorrectly decoded trajectories and 

the part of the recordings that were incorrectly interpreted. Such information can be used to 

facilitate BMI algorithm adaptation (Rotermund et al., 2006).  

For most invasive BMIs, motor cortex is the target area for the implantation of electrodes whose 

signals are to be used to extract intended motor actions. I demonstrated that one can detect error 

signals with high accuracy based on motor cortical signals only. Therefore, movement decoding and 

error detection may be implemented using the same electrode implants. Consequently, no 

additional implants over other cortical areas would be required for BMIs employing such neuronal 

error signals, thereby removing additional medical risk when adding error detection to a BMI system. 
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Chapter 5 

Inference based method for re-alignment of 
single trial neuronal responses 
Summary. Many neuroscientific studies are trying to identify neuronal responses to certain stimuli 

or neuronal signals that code for certain behaviours. Usual way to extract such neuronal responses is 

to average neuronal activity over large number of experimental trials in order to reduce the noise. If 

observed neuronal responses are jittered in time with respect to the corresponding stimulus or 

behaviour, averaging over trials distorts the estimation of the underlying neuronal response. In this 

Chapter, I present a novel algorithm (dTAV algorithm) for realigning the recorded neuronal activity 

to an arbitrary internal trigger based on an inference algorithm and time averaging of variance 

across trials. Using simulated data, I show that dTAV algorithm can reduce the jitter of neuronal 

responses for signal to noise ratios of 0.2 or higher. In addition, I demonstrate that dTAV algorithm 

outperforms another competitive algorithm published by Nawrot et al. {Nawrot, 2003 #548}. 
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5.1. Introduction 

Large numbers of neurophysiological studies are investigating neuronal responses to external 

events. These studies range from simple stimulus evoked neuronal responses in the corresponding 

primary sensory areas, e.g. neuronal responses to light flashes in the primary visual cortex (Dagnelie 

et al., 1989), to neuronal activity correlates to complex behaviours, e.g. neuronal correlates of 

abstract problem solving (Gaona et al., 2011; Gunduz et al., 2011). In such studies, neuronal 

responses are usually extracted by averaging the neuronal signal in order to reduce the noise non-

correlated to the neuronal responses. Extraction of the neuronal responses by averaging relies on 

the assumption that neuronal responses are similar and time locked to the corresponding stimulus 

or behaviour. On the other hand, neuronal responses show temporal variability in relation to the 

corresponding stimulus or behaviour (Radons et al., 1994; Requin et al., 1988; Seal et al., 1983; 

Seidemann et al., 1996; Vaadia et al., 1988). Depending on the amount of such temporal jitter, 

underlying neuronal response estimated by averaging will be distorted (Figure 34), possibly leading 

to mistakes in subsequent analysis and mistakes in conclusions of the studies. 

In this chapter, I propose an inference based algorithm for realignment of neuronal responses (dTAV 

algorithm). It is a parametric algorithm that uses the reduction of variability, integrated over the 

time course of the neuronal response, to select the parameter values and, therefore, optimize the 

realignment procedure. In addition, I show, by means of analytic calculations, that the reduction of 

time averaged variability can be used as a measure of jitter reduction and, therefore, the amount of 

neuronal response alignment. To show this, I built a simple model of neuronal responses and 

demonstrated the usability of my algorithm in variety of noise levels using simulated data. dTAV 

algorithm is also compared to another non-parametric realignment algorithm published by Nawrot 

et al. (Nawrot et al., 2003). 

5.2. Methods 

Methods section is presented in the following order. First, I construct a simple model of neuronal 

responses to a given external stimulus. Next, I present the analytic tools used to predict the jitter 

reduction after the algorithm finished with the re-alignment procedure. Since the underlying brain 

triggers are not known, it is necessary to design such unsupervised measure of jitter reduction in 

order to optimize the values of the dTAV algorithm parameters. In the following section, I describe 

dTAV realignment algorithm in detail. Finally, I describe the details of simulated data used to assess 

the usefulness of dTAV realignment algorithm and to compare it to a realignment algorithm 

published by Nawrot et al. (Nawrot et al., 2003). 
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Figure 34. Effect of neuronal response jitter on estimation of the underlying neuronal response. A: Neuronal responses 
follow the stimulus onset (S), but are triggered (R) by some internal stochastic process. B: A certain amount of noise is 
recorded together with the relevant neuronal response. C: During the experiment, stimulus presentation is repeated 
many times. Following every stimulus presentation, neuronal signal is recorded. D: When neuronal responses are 
aligned on the response onset, trial average response (F: blue line) is going to approximate the real neuronal response. 
But the response onset is not known. Average response over trials aligned on the stimulus onset triggers (F: red line) will 
badly reproduce the real neuronal response. In addition, when stimulus onset triggers are used, calculated standard 
deviation (F: blue and red shaded tubes) badly estimates the noise. 

5.2.1. Neuronal response model 

I constructed the neuronal signal as a convolution of neuronal responses r(t) triggered at times ti 

with the addition of Gaussian white noise η: 

 ( )( )       (0, )i
i

signal t r t t N ηη η σ= − + ∈∑  (5.1) 

where ση is the standard deviation of the noise. After recording the neuronal signal, one can 

estimate the neuronal response by calculating the response-triggered average ˆ( )r t : 
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where M is the number of responses used to calculate the average and ŝη  is the random variable 

drawn from a Gaussian distribution that follows from the presence of noise. Estimated variance of 

the signal ( )ˆ ( )V r t  is given by: 

 ( ) ( )( ) ( )22 2 2
,

1 1

1 1ˆ ˆ ˆ ˆ( ) ( )
1 1

M M

i i t V
i i

V r t signal t t r t s s
M M η ηη σ

= =

= − − = − = +
− −∑ ∑  (5.4) 

where V̂s  is the random variable drawn from a Gaussian distribution. Expected variance of the 

estimated variance is given by: 

 ( )( ) ( ) ( )( )2
2

4 23 3

1 1 3ˆ ˆ ( )
M M M

V V r t m m
M M
− − −

= −  (5.5) 

where m2 and m4 are the second and fourth moments of the distribution (Kenney and Keeping, 1951; 

Rose and Smith, 2002). For the Gaussian distribution, this reduces to: 
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 (5.6) 

During the experiments, onsets of the neuronal responses are not known, since these are triggered 

by brain-internal processes. Experiments are usually designed in such a way that the studied 

neuronal responses are elicited as a response to a certain stimulus. Time elapsed between the 

stimulus times tsi and the times of the neuronal response onset ti can be regarded as a stochastic 

process. In my model, difference between the stimulus times and the neuronal response onsets are 

modelled by a Gaussian distribution: 

 ( ),i i J Jt ts N µ σ− ∈  (5.7) 

where µJ and σJ are mean and the standard deviation of the distribution. If one has access to 

stimulus times only, it is possible to estimate the neuronal response by calculating the stimulus-

triggered average ( )r t : 

 ( ) ( )( ) ,
1 1 1

1 1 1 ˆ( ) ( )
M M M

i i i i i t
i i i

r t signal t ts r t t t ts r t s
M M M ηη

= = =

= − = − + − + = +∑ ∑ ∑  (5.8) 

where ( )r t  is the average signal in the presence of the jitter, independent of the noise. Variance is 

given by: 
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where ˆJs  is drawn from a distribution that depends on the neuronal response r(t), but is 

independent of the noise, and ˆCovs  is the random variable drawn from a Gaussian distribution that 

follows from the covariance term. Using the identity (Unnikrishnan et al., 2007): 

( ) ( ) ( )( ) ( ) ( )

( )( )( )

2 2

2

1 1,
1

2         
1

V Cov X Y E X X Y Y V X V Y
M M

M E X X Y Y
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∧   = − − +   −  
− − − − − 

 (5.10) 

it can be shown that ˆCovs is drawn from: 

 ( )ˆ ˆ0,
1Cov Js N V s

M
ησ 

∈  
− 

 (5.11) 

Since ( )ˆJV s  goes down with M-1, variance of the ˆCovs  drops down with M-2. Therefore, for all 

practical purposes, ˆCovs  is negligible. 

5.2.2. Time-average of signal variance 

To measure the amount of temporal jitter of the neuronal responses, one can use jitter standard 

deviation (jitter std, σJ). But, in order to use parametric models, it is necessary to estimate the 

amount of jitter without the knowledge of the neuronal response triggers ti. One could simply 

measure the variance of the stimulus triggered response ( )( )V r t  (Equation 5.9) at one particular 

time point and compare the measured values before and after the realignment procedure. If the 

realignment was successful, ˆJs  will be smaller after the realignment. But, since the V̂s term, arising 

from the noise in the signal, comes from a stochastic process, its value might go up and mask the 

reduction in ˆJs . Neighbouring time points of the neuronal response are correlated in time and so is 

the variance term ˆJs arising from the jitter. On the other hand, noise often exhibits correlation on a 
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smaller time scale. Therefore, to improve the reliability of the jitter measure, I have averaged the 

variance of the stimulus triggered response over time (time-averaged variance, TAV): 

 ( ) ( ) ( )1( ) ( )
E

S

T

E S T

TAV V r t V r t dt
T T

= =
− ∫  (5.12) 

Variance of the TAV can be estimated by: 
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1 ( ) , ( )

E E
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T TE S

V TAV Cov V r t V r t dt dt
T T

′ ′′ ′ ′′=
− ∫ ∫  (5.13) 

From equation (5.9) it follows that TAV is a stochastic measure of the jitter in a sense that: 

 ( ) 0.5J J p TAV TAVσ σ′ ′′ ′ ′′> ⇒ > >  (5.14) 

where σJ’ and σJ’’ are the initial and the final jitter std. 

As discussed before, averaging over time can reduce the variance of the TAV, thereby increasing the 

reliability of the measure. On the other hand, integrating over periods of time where neuronal 

response is low compared to the noise, or not present at all, will clearly reduce the TAV faster than 

reducing its variance. Therefore, the optimal integration time interval, for which the TAV measure 

shows highest reliability, exists. 

I measured the jitter reduction using a difference of TAV (dTAV):  

 ( ) ( ) ( ),J J J JdTAV TAV TAVσ σ σ σ′ ′′ ′′ ′= −  (5.15) 

and used these assumptions to perform calculations: 

 ( )( ) ( )( ) ( )( ),J J J JV dTAV V TAV V TAVσ σ σ σ′ ′′ ′ ′′= +  (5.16) 

 ( )( ) ( ) ( )( )( ), 0 , , ,J J J J J Jp dTAV dTAV V dTAVσ σ σ σ σ σ′ ′′ ′ ′′ ′ ′′> = Φ −  (5.17) 

where Φ is the cumulative distribution function of the Gaussian distribution. 

5.2.3. Reliability of dTAV as a measure of jitter reduction 

For the purposes of analytic calculations, I have modelled the distribution of the shifts ρJ as Gaussian 

with zero mean and standard deviation σJ: 

 ( )( ) 0,J i i Jt t ts Nρ σ∆ = − =  (5.18) 

Noise is modelled as white Gaussian noise with zero mean and standard deviation ση: 

 ( )( ) 0,Nη ηρ η σ=  (5.19) 

Expectation and variance of the stimulus-triggered neuronal response are then given by: 
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∞ ∞
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In the case of limited number of trials M, variance needs to be estimated. Such estimation is also a 

normally distributed random variable with the variance given by: 

 ( )( ) ( )2
42 ( )ˆ ( )

1
V r t mV V r t

n n
= +

−
 (5.22) 

where m4 is the fourth central moment of the distribution: 
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As a model for neuronal responses, I designed mono-phasic and bi-phasic signals using one or two 

Gaussian functions: 

 ( )
2

221( ) 0,
2

R

t

mono R
R

r t N e οσ
πσ

−

= =  (5.24) 

 ( ) ( )( ) 0, 1.5 5 ,3bi R R Rr t N Nσ σ σ= −  (5.25) 

Using the convolution theorem and the simple identity: 
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this choice of neuronal responses significantly simplified the calculations in equations (5.22-5.25): 

 ( )2 2( ) 0,mono R Sr t N σ σ= +  (5.27) 
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 ( ) ( )2 2 2 2( ) 0, 1.5 5 , 9bi R S R R Sr t N Nσ σ σ σ σ= + − +  (5.29) 
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Using equations (5.14) and (5.15), I calculated the expectation and the variance of the TAV for 

different times of integration, noise levels and amounts of jitter. In my calculations, integration time 

was symmetric around 0: 
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To calculate the covariance function of the stimulus-triggered response variance (Equation 5.32), I 

simulated 1000 repetitions of the 100 trial experiment. Reliability of the dTAV as a measure of the 

jitter depends on the initial and the final amounts of the jitter. I used the value of 100ms for the 

initial jitter standard deviation and calculated the reliability of the dTAV using equation (5.19) for 

values of final jitter standard deviation of 0ms to 120ms in steps of 1. Calculations were made for 

integration times ranging from 30ms to 850ms in steps of 30ms. To define different noise levels, we 

used signal to noise ratio (SNR) defined as the ratio of the peak of the signal and the standard 

deviation of the noise. Standard deviation of the noise was chosen such that SNR values were 0.03, 

0.05, 0.08, 0.13, 0.20, 0.32, 0.50, 0.79, 1.26 and 2.00 for both mono and bi-phasic responses. 

5.2.4. dTAV realignment algorithm 

dTAV realignment algorithm (Figure 35) relies on the assumption that the distribution of shifts in the 

recorded neuronal signal is unimodal and that the neuronal responses can be represented with a 

small number of discrete features (f1,...,fn). In my case, these features were neuronal signals 

recorded at different time points after the stimulus (τ1,...,τn): 

 ( ) ( ) ( ) ( )1, , ,,...,         i i i n i k i i ksignal t r t t f f f signal t τ= − ⇔ = +  (5.33) 
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First step of my realignment algorithm is to select a subgroup of trials S that are already well aligned. 

In that case, stimulus times and neuronal response onset times can be used interchangeably, given 

an arbitrary bias. I selected a subgroup of trials containing half of the total number of trials, with the 

property of smallest variance in the Euklidian space spanned by the features of all possible such 

subgroups. I labelled the features from this trial subset as “positive” class (Pclass). All the features 

from the same trial subset, but shifted arbitrarily in time, were labelled as “negative” class (Nclass). 
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 (5.34) 

These classes were used to build a quadratic discriminant analysis (QDA) model, which fits Gaussian 

distributions to each of the classes and gives the probability to belong to one of the classes for any 

arbitrary point in the feature space. 

One could have selected a larger or a smaller trial subset, but certain issues arise from building the 

QDA model. If the number of the subset trials is two small, it will be hard to make a reliable 

estimation of the Gaussian distribution that fits the positive class. If the subset is too large, the mean 

of the positive Gaussian distribution will not represent the neuronal response properly, but rather 

the stimulus-triggered average neuronal response. Furthermore, the covariance matrix of the 

positive distribution will be overestimated, since it will include the larger jitter contribution. I found 

that using half of the trials worked well for the 100 trial experiment. 

In the next step, QDA model is used to give a probability that a feature set from a given trial belongs 

to a positive class. I located the time of the maximum probability in a certain time range: 

 ( ) ( )( )( )( ), 1max arg ,..., ,i MAX P i i n S Ep signal ts signal ts t t
τ

τ τ τ τ τ τ= + + + + < <  (5.35) 

and used it to re-align the stimulus-triggered neuronal responses and calculate dTAV: 

 ( ),
1

1( )
M

i i MAX
i

r t signal t ts
M

τ
=

= − −∑  (5.36) 

 ( ) ( )1 1, ,,..., ,...,n START MAX M MAXdTAV TAV TAVτ τ τ τ= −  (5.37) 

The whole procedure is then repeated for a different selection of features representing the neuronal 

response. 
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Figure 35. Steps of the dTAV inference realignment algorithm. First step: Response is represented by a small number of 
features. Left: Selected features are determined by the chosen array of equidistant time points parameterized by the 
time of the first feature t1, number of features n and the temporal length of the array tn- t1. Values of these parameters 
are chosen arbitrarily. Right: Five example trials and the values of the chosen response features (blue and magenta 
circles). Second step: Subset of trials with the smallest within-subset variance is selected. Left: Values of the chosen 
response features for every trial shown in the feature space. Green stars show the chosen subset. Right: Five example 
trials with trials belonging to the chosen subset shown in green. Red circles in the left panel show the feature values of 
the five example trials. Third step: QDA model is built from the population of values extracted by the time sliding 
template. Left: Feature values for the model building are taken only from the selected subset of trials. Right: Positive 
class is made by extracting features using the previously chosen array (left: blue and magenta dots; right: red stars), 
while the “negative” class is made by sliding the same array in time (left: black and gray dots; right: black stars). Blue 
ellipses show the estimated standard deviation for “positive” and “negative” class. Fourth step: Posterior probability of 
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belonging to the “positive” class is calculated for every set of features extracted by sliding the chosen array in every 
trial. Left: Extracted features in one trial and in feature space. Red circle and red star represent the feature with the 
maximum probability for “positive” class. Right: Features with maximum probability for “positive” class are found in 
each trial (white dots). Fifth step: Left: Trials are realigned to the points of maximum probability. Right: Five example 
trials realigned to the point of maximum probability. 

In addition to parameters that determine feature extraction, it is possible to introduce other 

parameters in the realignment algorithm, such as the integration time used to calculate the TAV or 

the size of the trial subgroup used to build the QDA model. After all the parameter values have been 

exhausted, a set of time shifts is chosen by maximizing dTAV: 

 ( ) ( )1, ,,..., max argMAX M MAX Chosen parameters
dTAVτ τ =  (5.38) 

According to equation (5.19), using these time shifts gives the highest probability that the jitter is 

reduced. 

5.2.5. Simulated data 

I used dTAV realignment algorithm to realign the neuronal responses in a range of simulated 

experiments to identify the range of noise levels for which dTAV algorithm reduces the jitter. In 

addition to dTAV algorithm, I also used the algorithm published by Nawrot et al. (Nawrot et al., 

2003) and compared the results. 

Simulations were made for two neuronal responses, mono-phasic and bi-phasic response, whose 

shape resembled a large number of reported neurophysiological responses. Each simulation 

consisted of 100 simulated experiments, each consisting of 200 trials. In each trial, single channel 

neuronal response to an arbitrary stimulus was recorded at 1KHz. Neuronal responses were 

modelled as (Figure 36): 
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Noise in the recordings was simulated as white Gaussian noise with standard deviation ση of: 31.62, 

19.95, 12.59, 7.94, 5.01, 3.16, 2.00, 1.26, 0.79 and 0.50 (SNR of 0.03, 0.05, 0.08, 0.13, 0.20, 0.32, 

0.50, 0.79, 1.26 and 2.00). Temporal distances between the stimulus times were drawn from a 

Gaussian distribution N(10000,10000). To keep neuronal responses from overlapping, values bellow 

3000 were redrawn. Times of the neuronal response offset were drawn from a Gaussian distribution 
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N(0,100). To keep the recorded triggers from being too far from the real triggers, all shift values 

smaller than -300 or bigger than 300 were redrawn. Therefore simulated data can be shown in form: 
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To fairly simulate the outcome of the experiment, I assumed that the person analyzing the data 

would filter the data using a low-pass filter, since neuronal responses are present in a narrow low 

frequency band. Therefore, I filtered the simulated recordings using the 2nd order symmetric 

Savitzky-Golay filter (Savitzky and Golay, 1964; Steinier et al., 1972) with a time window of 100ms, 

250ms, 500ms or 1000ms. 

 

Figure 36. Simulated mono-phasic (left) and bi-phasic (right) neuronal responses.  

Array of time points used to extract features of neuronal responses was controlled by three 

parameters: time of the first feature in respect to the stimulus τ1 (used values from -125ms to 

1324ms in steps of 63ms), temporal distance between first and the last feature τ1- τn (100ms, 250ms, 

500ms or 1000ms) and the number of features n (2, 4, 8 or 12). I used the integration TI of 350ms 

and the probability maximum was searched in the time range from 300ms before the stimulus till 

300ms after the stimulus. 

To fit the quadratic function in the algorithm published by Nawrot et al. (Nawrot et al., 2003), I used 

the neighbourhood of 10ms. Since the data was filtered before using the algorithm, I assumed that 

size of the neighbourhood will not have a large effect on the precision of the 1st and 2nd derivative 

estimate at the point of the function maximum. In their study, Nawrot et al. do not specify how to fit 

the quadratic function and do not discuss the algorithm’s behaviour in respect to the neighbourhood 

used for fitting. 
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5.3. Results 

5.3.1. Analytical analysis 

Assuming the neuronal responses model defined in section 5.2.1, I calculated the dependence of 

dTAV on the reduction of the jitter for different noise levels and integration times. Results are 

summarized on Figure 37 for mono-phasic signal and on Figure 38 for bi-phasic signal. 

For integration times similar to the width of the response, expectation of the dTAV increases almost 

linearly with the reduction of the jitter standard deviation (Figure 37a, Figure 38a). Expectation of 

the dTAV does not depend on the level of the noise. On the other hand, standard deviation of dTAV 

(Figure 37b, Figure 38b) is, in my examples, dominated by noise for high noise levels and comparable 

or bigger than the estimation of the dTAV. For low noise levels, dTAV becomes dominated by the 

jitter. In such cases the realignment problem becomes trivial. 

 

Figure 37. Reliability of dTAV as a measure of jitter reduction for different SNRs and for mono-phasic neuronal 
response. Calculation is made experiment consisting of 100 trials. A: Expectation of dTAV as a function of jitter std 
reduction. Function is independent of the noise. B: Standard error of the dTAV as a function of jitter std reduction for 
different SNRs. Standard errors of dTAV for SNR of 0.13 and lower are above 5.5 x 10-4 and are, therefore, not shown. C: 
Probability of correct dTAV prediction as a function of jitter std reduction for different SNRs. D: Values of jitter std. 
reduction and integration times in which probability of correct dTAV prediction reaches 90% for different SNRs. For all 
pairs of jitter std reduction values and integration times above the line correct dTAV prediction is above 90%. For SNRs 
of 0.13 and lower, probability of correct dTAV prediction never reaches 90%. 

To measure how well can one rely on the dTAV as a measure of jitter reduction, I calculated the 

probability of correct dTAV prediction, defined as probability that the dTAV is positive if the jitter is 

reduced (Figure 37c, Figure 38c). As the noise level is reduced, the probability increases up to 1, 
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even for the smallest jitter reductions. If the noise level is high, probability will never reach 1, even 

when the jitter is completely removed. 

To give an insight on the dependence of the probability of correct dTAV prediction on the 

integration time, I calculated the values of integration times and reductions of jitter std for which 

the probability of correct dTAV prediction reaches 90% (Figure 37d, Figure 38d). For each noise level 

there is an optimal integration time. dTAV prediction improves sharply for times smaller than the 

optimal integration time, while it is dropping slowly for integration times bigger than the optimal 

integration time. Therefore, choosing a short integration times could be more disadvantageous than 

choosing a longer integration time. 

 

Figure 38. Reliability of dTAV as a measure of jitter reduction for different SNRs and bi-phasic neuronal response. See 
Figure 36 caption for details. 

5.3.2. Re-alignment of simulated data 

I ran dTAV and Nawrot realignment algorithms on 100 simulated experiments for mono-phasic and 

by-phasic neuronal responses and different levels of noise (Figure 39). For high levels of noise (filter 

window of 250ms; mono-phasic signal: SNR<0.2; bi-phasic signal: SNR<0.32) both algorithms 

increase the amount of jitter, rather than decrease it. For medium noise levels (filter window of 

250ms; mono-phasic signal: 0.2<SNR<0.75; bi-phasic signal: 0.32<SNR<1.26) dTAV algorithm 

outperforms the Nawrot algorithm (p<10-9, Mann–Whitney–Wilcoxon signed test). For low noise 

conditions (mono-phasic signal: 0.8<SNR; bi-phasic signal: 1.5<SNR), both algorithms remove almost 

all jitter from the recorded signal. In some of the low noise cases Nawrot algorithm achieves higher 
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jitter reduction, but the difference is very small (<0.08) and significant only in the case of mono-

phasic signal for SNR=0.79 (p=0.026, Mann–Whitney–Wilcoxon signed test). 

Choice of the filter can be important for successful re-alignment. For both algorithms, re-alignment 

worked best when filter length of 250ms was used. For dTAV algorithm, differences in the jitter 

reduction between using filter window length of 250ms and using filter window lengths of 100ms 

and 500ms were small. For Nawrot algorithm, variability of jitter reduction with the choice of filter 

window length was much larger. When filter window length of 1000ms was used, jitter reduction 

was much smaller than when using other filter window lengths for both algorithms. 

 

Figure 39. Reduction of jitter standard deviation for dTAV algorithm (full lines) and the algorithm published by Nawrot 
et al. (dashed lines) for mono-phasic (left) and bi-phasic (right) simulated neural responses and different SNRs. 
Reduction is shown for different low-pass filters, averaged over the simulation repetitions. In addition, for dTAV 
algorithm, reduction is shown when the filter length is optimized as one of the algorithm parameters (dotted lines). 
Error bars show the standard errors of the mean. 

When filter window length is included as an additional parameter whose value was chosen by 

maximizing dTAV, final jitter reduction is not significantly different from the jitter reduction when 

only filter length of 250ms is used (Figure 1). Thus, dTAV algorithm can automatically select the 

proper filter length if filter length is included as an additional parameter. On the other hand, Nawrot 

algorithm has no way of estimating whether the filter length was correctly chosen. The success of 

such non-parametric algorithm depends on the proper choice of the person performing the data 

analysis. 

5.4. Discussion 

In this chapter, I presented a novel method, dTAV inference based algorithm for realignment of 

neuronal responses. Algorithm is based on using dTAV as a measure of jitter reduction and inference 

algorithms for recognizing the temporal shifts of single trial neuronal responses. I show that, by 
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using dTAV algorithm, it is possible to realign mono and bi-phasic single trial neuronal responses for 

the noise levels commonly present in the neurophysiologic experiments. 

As examples of neuronal responses, I used mono and bi-phasic responses composed out of one and 

two Gaussian functions. Realignment results on simulated data show differences between mono and 

bi-phasic response shapes, suggesting that signal shape plays a role on the applicability of the dTAV 

algorithm. Still, the success of the method in reducing the jitter in the medium and low noise levels 

(SNR>0.32), frequently reported in neurophysiological studies (Hu et al., 2011; Matsuo et al., 2011; 

Maynard et al., 1997; Pistohl et al., 2012; Rohde et al., 2002), suggests that the algorithm can still be 

used in large number of cases. 

My simulations used an example of a neurophysiologic study where the recorded signal is analogue. 

On the other hand, many neuroscietific studies have been performed by recording and analyzing the 

spikes of neuronal cells (Boraud et al., 2002; Georgopoulos et al., 1986; Hochberg et al., 2006; Hubel 

and Wiesel, 2009), essentially a point process signal. Even though my algorithm cannot be directly 

applied to the point processes, single unit spike times can be used to estimate instantaneous 

neuronal firing rates (Cunningham et al., 2007), which is an analogue function. By using such 

methods, it is possible to apply my realignment algorithm to spike signals. 

I compared my dTAV algorithm to the algorithm published by Nawrot et al. (Nawrot et al., 2003) 

which was designed for the same purpose of reducing the temporal jitter in the neuronal responses. 

dTAV algorithm outperformed the algorithm by Nawrot et al. dTAV algorithm works with a large 

number of parameters whose values have to be determined. This process may be computationally 

demanding and, therefore, may be time consuming. On the other hand, optimal parameter values 

can provide additional information about the underlying neuronal response. Integration time TI and 

time of the first and the last feature t1 and tn can provide a good estimate on the temporal location 

and duration of the stimulus related neuronal response, while the number of features n can give an 

insight into response complexity. In contrast, algorithm published by Nawrot et al. has no 

parameters. Therefore, in the case of limited computational resources, Nawrot et al. algorithm 

might be the only possible solution. One should take into account that, and my simulation results 

suggest that, in the case of medium and high noise levels (SNR<1) Nawrot et al. algorithm might 

even be counterproductive, increasing the amount of jitter in the signal. 

In general, realignment algorithms can be used to improve the analysis of neurophysiologic signals 

by improving the estimation of the underlying neuronal responses. The obvious case is the 

estimation of the neuronal responses by calculating trial averages. As shown in my example (Figure 

34), even for the case where all neuronal responses are identical and the noise is uncorrelated to the 
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signal, averaging the jittered neuronal responses can lead to distorted estimation of the neuronal 

responses and the incorrect estimation of the amount of noise. In such simple situation, removing 

the jitter improves the estimation of the neuronal response and improves the estimation of the 

noise. A large number of neurophysiologic studies look at neuronal responses to different stimuli. In 

studies looking at the sensory brain regions, neuronal responses seem to be well locked to the 

stimulus (Richmond and Optican, 1990). Therefore, realignment methods might be of limited use for 

studies looking at sensory neuronal responses. On the other hand, neuronal responses related to 

higher level processing may not solely depend on the stimulus and, therefore, might be initiated 

with variable lags after the stimulus presentation. In such cases, temporal jitter may be present. 

Therefore, realignment algorithms could largely improve the examination of such neuronal 

response, making it easier to analyze the recordings and compare the results with other studies. 

Additionally, systems using detection of events based on neuronal recordings (Achtman et al., 2007; 

Awwad Shiekh Hasan and Gan, 2010; Bashashati et al., 2007; Hwang and Andersen, 2009; Levine et 

al., 2000; Solis-Escalante et al., 2008) might benefit from re-alignment algorithms. Such systems 

require a certain number of trials containing the neuronal responses to build the model used to 

detect the events related to those neuronal responses. If the jitter or the neuronal responses used 

to train the model is removed, detection may perform better. 

In summary, I showed that dTAV realignment algorithm can reduce the jitter of the analogue 

neuronal responses for the commonly encountered neuronal response shapes and in commonly 

reported noise levels. Use of this algorithm could improve data analysis and comparison of neuronal 

responses and improve the performance of asynchronous detection systems. 

  



111 

 

Chapter 6 

Conclusions 
In this thesis, I presented the first online BMI based on extracting movement parameters of a 

subject’s arm from ECoG recordings. The same approach has been used to achieve the most 

powerful BMIs up to date (Hochberg et al., 2006; Kim et al., 2008; Santhanam et al., 2006; Velliste et 

al., 2008). Unlike the BMI presented here, these powerful BMIs used SUA recordings. To record SUA 

signals, it is necessary to implant electrodes into the cortex, making the implantation procedure 

highly invasive. In addition, SUA recordings require spike sorting and can be unstable (Moran, 2010), 

which can lead to reduced reliability of operating such BMIs. On the other hand, ECoG does not 

require penetration of the cortex and shows stability of recordings over several months (Chao et al., 

2010). Therefore, ECoG is a possible alternative for achieving BMIs (Schalk, 2010). 

The BMI presented here is not capable of providing multidimensional continuous control needed to 

operate hand and arm prosthesis, such as shown to be controlled using SUA based BMIs (Hochberg 

et al., 2006; Velliste et al., 2008). BMI presented here merely demonstrates a proof of concept that 

approach of using movement parameters of a subject’s arm from ECoG recordings can be used to 

achieve a BMI. To reach the level of control currently shown by SUA based BMIs, it is necessary to 

improve on the demonstrated level of control. There are numerous reasons why this is highly likely 

to be possible. 

Most of the ECoG studies so far have been conducted by performing studies on human patients 

undergoing epilepsy assessments (Keene et al., 2000). Benefit of such procedures is an ability to 

perform human invasive recordings without additional medical risk. On the other hand, these 

studies are restricted on using epilepsy assessment ECoG implants that feature electrodes of 4mm in 

diameter and 1cm apart. Large number of studies suggested that epicortical potentials recorded 

with higher spatial resolution would be more informative (Slutzky et al., 2010; Weliky et al., 2003). 

These studies led to the development of ECoG implants with spatial resolution on the level of 

micrometers (µECoG; Gierthmuehlen et al., 2011; Leuthardt et al., 2009; Rubehn et al., 2009; Wang 

et al., 2009). A number of such implants are currently undergoing clinical evaluation and should soon 

be used in clinical trials designed to help paralyzed patients control prosthetic devices though BMIs 

(Thongpang et al., 2011; Wang et al., 2010). 

BMI studies have shown that subjects can improve BMI control through repeated use (Ganguly and 

Carmena, 2009; McFarland et al., 2010; Wang et al., 2010). These studies shown that improvement 
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in control can be quite slow and requires at least several days to make a significant impact. 

Unfortunately, this principle could not be used with the here presented BMI, since patients 

undergoing epilepsy assessment were allowed to dedicate only a couple of hours for research 

experiments. If the ECoG grids were implanted for BMI use, subjects would use BMIs continuously 

during every day. This would improve the accuracy of the current level of control or even increase 

the level of control of such BMIs. 

Such improvement through learning and continuous use would be greatly facilitated if the BMI 

algorithm could recognize whether it is consistently making decoding errors (Blumberg et al., 2007; 

Rotermund et al., 2006). A number of studies showed that error related neuronal responses (ERNR) 

are present in the brain (Bechtereva et al., 2005; Diedrichsen et al., 2005; Krigolson et al., 2008). In 

the third chapter of this thesis, I demonstrated that ERNRs to two different types of errors, outcome 

error and execution error, can be recorded using the ECoG and can also be differentiated based on 

the same signals. Outcome error appears when subject fails to achieve the intended goal (Krigolson 

et al., 2008), while execution error arises when the decoded trajectory is different enough from the 

intended trajectory (Diedrichsen et al., 2005). Both of these errors can be used to facilitate the 

adaptation of the BMI decoder in a separate way. Outcome error can provide a more general 

feedback on the BMI performance, possibly serving as critic in the reinforcement learning 

algorithms. Execution errors provide a more direct feedback, possibly marking the part of the 

trajectory that BMI decoded incorrectly. 

Findings presented in chapter 3 were used in chapter 4 to demonstrate that ERNRs can be used for 

detection of outcome and execution error events. In both chapters 3 and 4, I showed that there is no 

specific cortical region that is a source of ECoG ERNR signals, but that both outcome and execution 

ERNRs could be identified and detected in motor cortex. This is of high importance since motor 

cortex is a primary target for BMI implants. Future ECoG implants implanted for the purpose of BMI 

could be much smaller in size (Leuthardt et al., 2009; Rubehn et al., 2009; Wang et al., 2009), 

thereby covering only a limited part of the cortex. Using the same ECoG implant for both BMI control 

and error detection will greatly reduce the size of the open wound necessary during the 

implantation procedure, thereby reducing the medical risk of the surgical procedure. Such 

advancement would make ECoG based BMIs safer for future users. 

Whether the here shown detection accuracy is good enough to improve the BMI decoder is an open 

question. To fully answer this question, one would need to demonstrate an online ECoG based BMI 

with an adaptive algorithm using error detection and show that it superior to ECoG based BMI not 

using error detection. This is an interesting topic for future studies, but some other simulation 

studies suggest that error signals carrying some information about the decoding errors could be 
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beneficial for the BMI operation (Blumberg et al., 2007; Rotermund et al., 2006). These studies have 

also showed that improving the reliability of the detector increases the speed of the BMI decoder 

improvement. In chapter 5, I presented a method for re-alignment of neuronal responses. This 

method is designed to reduce the variability of neuronal responses. Results from chapter 4 suggest 

that most of the ERNR can be reliably detected given the tolerance of less than 400ms, while using a 

much smaller tolerance of 50ms greatly reduces detection. This suggests that variability of ERNRs in 

respect to the error events that elicited those ERNRs is not negligible. When designing a detection 

algorithm in Chapter 4, I assumed that all ERNR are synced with corresponding error events. Training 

the detection algorithm under such assumptions may have caused some detection errors. Re-

alignment method presented in chapter 5 might be used to re-align ERNRs used to train error 

detection algorithm and, therefore, possibly improve the error detection accuracy. 

This thesis demonstrates a proof of concept for a BMI based on extracting movement parameters of 

a subject’s arm from ECoG recordings. It also demonstrates that error events can be identified and 

detected from ECoG recordings. Detection of error events can be used to improve the accuracy and 

level of control of a ECoG based BMI. In addition, a novel method for re-alignment of neuronal 

responses is presented. This method could further improve ECoG based error detection and, 

therefore, improve the ECoG based BMIs as well. Taken together, presented research significantly 

improves the prospects that ECoG based BMI may be used to provide paralyzed patients with a 

medically safe way to operate anthropomorphic hand and arm prosthetic devices in the future. 
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