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Abstract 

 

Harmonia axyridis has been used as an efficient biological control agent worldwide but is 

causing concern because of adverse impact on native species biodiversity predominantly 

through intra-guild predation and competition. There is thus a need to understand the 

ecological, biological and physiological factors that primarily contributed to the accelerated 

invasiveness and establishment of this species over a wide range of agricultural systems. The 

main focus of this project was to investigate various life-history traits and their interaction 

with external environments cues. The first part of this project was designed to investigate 

various biological aspects of this ladybird under controlled environmental measures and fixed 

prey availability. First, it demonstrated the sexual body size-dimorphism and highlighted 

which traits showed greater dimorphism than others between sexes. In addition, the 

reproductive performance and the association between the body size and the life-time 

fecundity, egg hatchability and non-viable eggs was investigated. Several hypotheses were 

revaluated by this study by direct experiments. The developmental responses of the juveniles 

were performed under similar controlled measures by monitoring both the stage weight and 

duration in order to abstract the intra-specific variations among females as well as the 

significance of each larval stage relative to the final adult size. This species has gained 

additional advantage due to the presence of the 5
th

 instar reflecting an elevation in fitness and 

the evolution of the predation and competitive proficiency. Although the genetic and 

evolutionary characteristics of this ladybird were only covered theoretically,  a number of 

experiments has revealed the intra-specific variability among female body mass, nutrient 

allocation to reproduction strategies, and growth patterns that might be partially constrained 

by genetic background. Another important aspect of this project was to emphasize the 

influence of mating choice and frequency on lifespan, egg hatchability and viability of singly 
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mated, multiply mated as well as virgin females. It was shown that H. axyridis is able to be 

fertile throughout their life-span from a single mating without significant costs on either 

longevity or life time fecundity. Nevertheless, multiple mating was found to impose some 

constraints on the proportion of fertile eggs. These reproductive features may help to 

understand the success of population establishment and persistence under constantly 

fluctuating environment. A novel method was described in this study in which the sex of 

pupae could be easily identified prior to adult emergence based on pupal pattern dimorphism 

when pupae were reared in the laboratory or directly collected from the field. This simple 

method is highly effective and could be implemented in several studies without manipulating 

adults although care must be taken when inspecting the patterns of colouration. Behavioural 

characteristics of this species that facilitated intra-guild dominancy and interference 

competitions were also investigated by simple methods. This was performed by testing the 

avoidance responses mediated by olfactory organs and semio-chemicals towards the presence 

of tracks of con- and hetero-specific-larvae and adults as well as con-specific adults. The 

results suggest that H. axyridis has a highly specialized sense organ that functions efficiently 

in selecting suitable patches and tends to refrain larvae or adults from foraging in 

contaminated patches by certain species.  In the second part of this project, the characteristics 

of developmental and behavioural traits were also investigated by subjecting successive 

larval instars to a brief period of food manipulation protocols. This unravelled the 

compensation patterns, and short- and long-term trade-offs on life-history traits across 

generations. The results suggest that H. axyridis is able to exhibit phenotypic plasticity in 

several traits that are important for successful adaptation and colonizing a new habitat.  In 

summary, the results of this study showed that H. axyridis is a highly competitive species 

owing to their reproductive tactics and unique immediate strategies in regulating reproductive 

performance and in optimizing off-spring fitness after food restoration. Females were able to 
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optimize their fecundity after one mating and possess evolved defence strategies to avoid 

being attacked by other species.  Nevertheless, the results of this study may contribute in 

understanding the evolution of life-history traits in this species and could be incorporated in 

intra- and inter-specific comparative studies. In conclusion, the study predicts that this 

species will continue to spread and become more widely distributed with more ecological 

consequences if effective control measures and protocols are not incorporated almost 

immediately. 
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Chapter 1 

General Introduction 

  

Like many other exotic species, Harmonia axyridis (Pallas, 1773) (Coleoptera: 

Coccinellidae) has become a very well known insect, not only for its potential as an efficient 

biological control agent (Brown et al., 2008a), but also because of its notorious invasiveness 

(Soares et al., 2008). This ladybird has quickly become invasive, threatening biodiversity, 

ecosystem integrity (Olden et al., 2004), agriculture, fisheries (Pimentel et al., 2001), public 

health (Ruiz et al., 2000) and with a massive potential impact on the future of the global 

community (Burgiel et al., 2006). Unfortunately, institutions and scientists currently lack 

sufficient scientific knowledge regarding the invasion process and its associated factors 

(Williamson, 2006). Ecologists have been trying to predict and mitigate the common 

characteristics of this highly invasive species and its impacts on both native biodiversity and 

human communities (Mooney and Drake, 1989, Hengeveld, 1989, Kareiva, 1996), yet 

predicting the causes and the outcome of invasions remains a daunting task (Brown, 1989, 

Pimm, 1991, Lodge, 1993). This is partially due to the difficulty involved in determining the 

important details of an introduction event - such as its date, the number of organisms 

involved and the locations affected (Yates et al., 2011). 

 

Harmonia axyridis has exceptional capacities and features, thus allowing it to be successful 

in any new habitat. Some of these characteristics include phenotypic adaptive plasticity and 

dispersal ability (Soares et al., 2008). In particular, phenotypic plasticity has been seen as a 

potentially important factor in successfully colonising diverse habitats (Maron et al., 2004), 

since it ultimately enhances trait function and maximises fitness (Sultan, 2003). Several 



15 
 

studies have stressed the biological characteristics that make H. axyridis a strong invader; 

among them, the increased developmental rate, fecundity and fertility are regarded as 

important factors for successful establishment (Sakai et al., 2001, Marco et al., 2002, Shea 

and Chesson, 2002, Lanzoni et al., 2004). Focus has often been given to fitness-related 

phenotypic plasticity, thought to be associated with the ability to colonise (Stearns, 1992, 

Soares et al., 2008). Although considerable research has been conducted into plasticity, little 

consensus exists regarding the association between plasticity and colonisation (Grill et al., 

1997). Considering the wide range of published data on phenotypic plasticity, little attention 

appears to have been given to adaptive plasticity (Gotthard and Nylin, 1995). Furthermore, 

confusion exists regarding the terminology that should be applied to plasticity-whether 

adaptive or adaptation.  This confusion may be one reason why the focus of many studies is 

not as clear as it could be (Gotthard and Nylin, 1995). This particular issue will be dealt with 

in detail later in this thesis. Researchers have considered invasions from a number of different 

aspects, including the characteristics of invaders, the characteristics of the invaded habitat, 

resources and natural enemies (Shea and Chesson, 2002). As these levels are independent, 

this study selected the biological characteristics of the invader for investigation, since that is 

the main element that initiates the problem of invasion. 

 

Harmonia axyridis is considered an excellent candidate for studying the association between 

phenotypic plasticity and successful colonisation. The successful spread of this species after 

encountering new habitats reflects the great genetic variability underlying its life history 

traits, allowing them to overcome and withstand unpredictable resources. Evaluating some 

fitness-related traits (such as developmental, morphological and behavioural characteristics), 

as well as their plastic responses towards stressed conditions would be of great importance in 

partially explaining the invasion process and colonising success.  
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This ladybird species represents an ideal opportunity for greater international co-operation 

between the scientists that have been studying this species in its native range in Asia and 

those studying it in Europe, America and Africa, where it is an invasive exotic (Mori et al., 

2005). Invasive species also offer excellent opportunities to study basic processes in 

population biology. For example, life-history studies and demographic models may be 

valuable when examining the introduction of invasive species and identifying those life 

history stages at which management and control will be most effective (Sakai et al., 2001). 

1.1 Invasion - processes and impacts 

 

Acceptance of the biological invasion phenomenon started becoming much more widespread 

in the early 1900s (Richardson and Pysek, 2007). In 1958 Charles S. Elton published a book 

on “The Ecology of Invasions by Animals and Plants”, a text that has since become the 

generally accepted starting point for considering the importance of biological invasions.  

 

'Biological invasion' is defined as the study of the human-mediated introduction of organisms 

to areas outside their potential range (Mack et al., 2000, Pimentel et al., 2000, Davis, 2006). 

These organisms range from fungi to plants, nematodes and mammals, including exotic pests 

used for biological control purposes (Venette and Carey, 1998). Richardson and Pysek (2006) 

noted that this branch of science deals with all aspects of the released organisms, particularly 

their ability to establish, naturalise and interact with native species in their new location. 

Furthermore, consideration should be made of the trade-offs that result from their presence, 

with reference to the human value system (Richardson and Van Wilgen, 2004, Pysek et al., 

2006, Richardson, 2006). 
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The invasion process is a natural phenomenon that includes several sequential processes - 

namely, importation, introduction, establishment, geographical expansion and integration of a 

species into a new region (Vermeij, 1996, Shigesada and Kawasaki, 1997). The establishment 

of non-native species is the second highest threat to worldwide biodiversity, after habitat 

destruction, generating substantial costs, both in terms of the control of such species and in 

lost conservation values and ecosystem functionality (Pimentel et al., 2000, Pimentel et al., 

2002). Effects on the ecosystem can include changes in the availability of resources, such as 

water and nutrients, altered trophic structure and altered disturbance regimes (Vitousek, 1990, 

Holdsworth et al., 2007). The invasion of the earthworm, Lumbricus rubellus (Hoffmeister, 

1843) (Haplotaxida: Lumbricidae), contributed to a dramatic shift in the herbaceous plant 

community from forb to oak sedge, Carex pensylvanica (Lamarck, 1792) (Poales: 

Cyperaceae), dominance (Hale et al., 2005). 

 

Understanding the factors that accelerate biological invasions has become of major interest 

over the past few decades, following the recent rise in human activities, which has greatly 

accelerated the invasion rate (Mack et al., 2000). It has been hypothesised that human 

perturbations to native communities can reduce the adaptation of native species to the current 

environment by reducing their competitive ability, thus resulting in better-adapted exotic 

species (Mack et al., 2000, Keane and Crawley, 2002). Building a clear picture of the 

characteristics of release attempts and considering the variable pathways of introduction is 

crucial to predicting the success of establishment (Kolar and Lodge, 2001) and may help to 

enhance controlling and regulation measures (Pysek et al., 2011). It is widely accepted that 

most exotic species are spread throughout the world by a combination of intentional and 

unintentional means (McAusland and Costello, 2004). Intentional introductions include 

imports of a variety of agricultural crops, ornamental plants and animals, as well as the 
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release of biological control agents. Unintentional introductions include those in relation to 

transport of commodities, people and shipping containers, or introductions that occur due to 

contaminated objects (McAusland and Costello, 2004). Pysek et al. (2011) noted that 

introducing exotic species deliberately for biological control purposes may result in easier 

naturalisation and faster invasion, in comparison with unintentional means, given that the 

introduced species have been selected previously for their survival ability in the environment 

into which they are being introduced (Lonsdale, 1994, Smith, 1999). Ensrink (1999) noted 

that repeated introduction for species that are marketed over a long period of time have a 

greater probability of spreading and becoming established. The number of attempts and the 

number of individuals introduced are thought to increase the probability of a species 

becoming established (Kolar and Lodge, 2001).  

 

The initial phase of invasion - the introduction or release stage - is considered the longest and 

most critical stage (Venette and Carey, 1998). It is difficult to detect biological invasions at 

this point, as the introduced population may remain at low densities for a long period of time 

without being detected, while it adapts to the newly invaded habitat (Grevstad, 1999, Carey, 

1996). For instance, the western corn rootworm, Diabrotica virgifera virgifera (LeConte, 

1868) (Coleoptera: Chrysomelidae), which is native to Mexico and the east coast of North 

America (Branson and Krysan, 1981), has been resident in the western half of the Great 

Plains since at least 1867 (Krysan et al.,1983). In 1992 an infestation of western corn 

rootworm was found within a small maize field near Belgrade Airport (Baca, 1993). By 2007 

the presence of this insect pest had been confirmed in 20 European countries (Gray et al., 

2009). It is still expanding in central and eastern Europe at a rate of 100km year
-1

 (Miller et 

al., 2005, Ciosi et al., 2008). The Asian ladybird beetle, Harmonia axyridis, was first brought 

into Europe in 1982 (Brown et al., 2008a). It failed to become established, however, until the 
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1990s, when it started to spread into Germany and Belgium (Lombaert et al., 2007). Soares et 

al. (2008) explained that the lag phase in establishment success is dependent on the number 

of repeated introductions. Crawley (1989) stressed the importance of chance and timing, 

which may differ between cases and processes and may explain the long time taken by some 

species to establish and spread. Marco et al. (2002) presented a set of factors detrimental to 

the invasion process, such as species biological traits and invasibility. The latter determines 

the susceptibility to invasion, depending on the interaction between invaders, non-invaders 

and the local habitat.  

 

Multiple introductions are a common feature of biological invasions (Handley et al., 2011). 

Lavergne and Molofsky (2007) noted that repeated introductions of a single species may have 

high adaptive potential, resulting in a rapid selection of genotypes and higher colonisation 

ability and phenotypic plasticity. Such species will be able to evolve in response, with an 

increasing impact on native communities. The first direct evidence that multiple introductions 

are primarily responsible for providing most of the evolutionary potential of an invasive 

population came from the freshwater snail the red-rimmed melania, Melanoides tuberculata 

(Müller, 1774) (Gastropoda (class): Thiaridae) which demonstrated an accumulation of 

variants and generation of the novel variant combination amplified by interbreeding (Facon et 

al., 2008). The brown anole, Anolis sagrei (Duméril & Bibron, 1837) (Squamata: 

Polychrotidae), a small, diurnal lizard native to the Caribbean, was first established in South 

Florida, but took more than 30 years to spread northward (Williamson, 1996, Lee, 1985). The 

lizard's expansion probably resulted from a combination of northward movement following 

early introductions in southern Florida, and additional introduction attempts. Genetic analyses 

have indicated that at least eight introductions have occurred in Florida from across this 

lizard’s native range and that blending genetic variation from different geographic source 

http://en.wikipedia.org/wiki/Thiaridae
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populations resulted in substantially more genetic variation than native populations (Koble et 

al., 2004).  It has been reported that most of the separate outbreaks of the western corn 

rootworm, D. virgifera, resulted from repeated trans-Atlantic introductions (Miller et al., 

2005, Ciosi et al., 2008).  

 

Despite the importance of multiple introductions, particularly when populations are 

genetically divergent (Facon et al., 2003, Kolbe et al., 2004) exact explanation for the high 

genetic diversity in invasive species is disputed (Lavergne and Molofsky, 2007). Indeed, in 

some cases the high genetic diversity may not be an essential component of invasion success 

(Dlugosch and Parker, 2008). For instance, Eales et al. (2010) noted that the high genetic 

diversity in the invasive population of anole lizards, Anolis cristatellus (Duméril & Bibron, 

1837) (Squamata: Iguanidae), was a consequence of a single introduction event; therefore, 

other contributing factors may have been responsible for increasing the number of genotypes, 

such as the reproduction rate.  

 

When introducing an exotic species, the decision will reflect several aspects, such as social 

customs, the incentive effects of existing institutions, human interference, trade rules and 

regulations, relative prices and wealth (Mack et al., 2000, Perrings et al., 2000). Globalisation 

is also recognised as playing a substantial role in increasing the impact of invasive species on 

the ecosystem (Perrings et al., 2005), with the development of a system of world trade 

increasing the number of new invasive species being introduced to ecosystems. The risk of 

invasion is known to have a negative consequence on economic activity and human welfare 

(Perrings et al., 2002). The economic implications of these impacts have been intensively 

studied (Perrings et al., 2005), but more work is still needed (Perrings et al., 2002).  
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Carey (1996) noted that not all invasions will have adverse effects. Even when the invasion is 

potentially severe, the range of expansion and the impact will vary in response to host and 

climate suitability. Many deliberately or accidentally introduced species fail to become 

established in their new habitat (Roy and Wajnberg, 2008). Of those species that do become 

established, many have negligible effects and some are even considered beneficial or 

desirable, such as those introduced with agriculture food crops and livestock (Williamson, 

1999). Pimentel et al. (2000) and Pimentel et al. (2004) noted that in the United States 90% of 

crops are introduced and only a small fraction become invasive, affecting native species and 

ecosystem levels negatively (Pimentel et al., 2000). Simberloff (1989) stressed the 

importance of habitat modifications for the success or failure of insect invasion. For example, 

conversion of land to agricultural use in Hawaii may decrease the suitability of the habitat for 

native birds, while increasing the suitability for introduced species (Williamson and Fitter, 

1996). Holdsworth et al. (2007) stressed that the impact of an invasive population varies with 

species, population size, recipient community and ecosystem level. A number of studies have 

presented examples on the suitability of recipient habitat, biotic resistance and life-history 

traits in influencing the genetic variability, degree of expansion and adaptation ability of 

introduced species (Soares et al., 2008, Handely et al., 2011).  

 

Despite the growth in models for understanding the causes and ecological impacts of 

invasion, improved modelling frameworks are still required in order for the responses of 

invasive species towards global changes to be understood. For example, global climatic 

warming is predicted to continue by up to 5.8°C this century (IPCC, 2001). Several studies 

have indicated that some species have responded to the warming and shifted their 

distributions (Walther et al., 2002, Parmesan and Yohe, 2003). When tracking climatic 

changes in those species, an evolutionary increase in dispersal ability was revealed in the 
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established population. This characteristic may have significant consequences, altering the 

relative costs and benefits of dispersal ability versus reproduction (Niemela and Spence, 

1991, Hanski et al., 2002, Thomas et al., 2001). Such trade-offs have been shown in many 

insect species, particularly wing dimorphic species (Zera and Denno, 1997). Likewise, a 

recent study by Hughes et al. (2012) demonstrated that increased dispersal is associated with 

reduced investment in reproduction in the invasive populations of the speckled wood 

butterfly, Pararge aegeri (Linnaeus, 1758) (Nymphalidae: Lepidoptera). This helped to 

increase their potential colonisation ability into areas beyond their native ranges. According 

to Shine (2012), in an invasive population, both mating patterns and genetic diversity 

undergo divergent selection in their interaction with the determinants of dispersal rate. Thus, 

the direct relationship between dispersal, gene flow and population structure has already 

become established in most invasive species (Heimpel and Asplen, 2011).  

 

Global climatic changes have already elevated CO2 and other elements, such as nitrogen and 

phosphorous; it is therefore important to understand the likelihood of invader adaptation 

success in this context (Richardson and Pysek, 2008). The increase in the magnitude of these 

compounds plays a significant role in influencing insect population dynamics and predator-

prey and plant-insect interactions (Fagan et al., 2002, Woods et al., 2003). Likewise, nitrogen 

and phosphorus have lately been proven to have major consequences for herbivore success, 

consumer-driven nutrient cycling and the fate of primary production in ecosystems (Fagan et 

al., 2002).   

 

Predictions and ecological theory in respect of successful introductions of insect species are 

still imprecise (Borges et al., 2006), with much research focusing on the establishment stages, 

but neglecting other stages, such as the spread phase (Duncan et al., 2003). The probability of 
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a species spreading and expanding depends on both species-specific traits, such as the 

dispersal capacity, and on the environmental conditions of the targeted habitat (Sakai et al., 

2001). Venette (1997) noted that the species that are more likely to be invasive and become 

established are those that are characterised by high growth rates, rapid maturation and 

reproduction and a greater dispersal ability across a wide range of environmental conditions. 

For example, the widespread distribution of the ash whitefly, Siphoninus phillyreae 

(Halliday, 1835) (Hemiptera: Aleyrodidae), in California is due to its ability to reproduce and 

develop at wide temperature ranges (between 10°C and 30°C) and to its capability to 

maintain itself on several hosts (Venette, 1997).  

 

Another factor that has long been studied is the genetic make-up of the released species 

(Rejmanek, 1996ab).  It was reported previously by Moyle and Light (1996ab) that invasions 

are most likely to succeed in sites that are highly disturbed or have a mild climate. A 

disturbed climate often reduces the number of established predators or/and increases the 

availability of resources per individual. For example, the mild climate and rapid urbanisation 

of southern and coastal California make these regions vulnerable to invasion by exotic 

vascular plants. Furthermore, the survival rate of H. axyridis overwintering inside human 

houses has been found to be greater than that of individuals remaining outside during winter 

(McClure, 1987, Labrie et al., 2008).  

 

To date, humans have altered the modern environment in several ways that affect 

biodiversity, of which habitat destruction and alteration are the most noteworthy. Both have 

likewise substantially affected populations by changing the entire structure of local habitat 

assemblages, with subsequent downstream effects on ecosystem functionality (Rickman and 

Connor, 2003, Stefanescu et al., 2004). A study has revealed that the current motors of global 
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change will have a negative effect on Mediterranean Catalan butterfly assemblages by 

transforming land use and fragmenting the landscape into a less suitable matrix for 

butterflies. Loss of diversity over the coming years is predictable, due to the negative 

correlation between species richness and temperature, posing a serious threat to biodiversity 

(Stefanescu et al., 2004). 

 

The replacement of natural habitats by urbanisation has caused the disappearance of some 

insect species. For example, in San Francisco, only 57% of the native butterfly species have 

been seen in the past 10 years, as a consequence of continuous urbanisation (Hafernik and 

Reinhard, 1995). Furthermore, it has been reported that the abundance of Dryseriocrania 

auricyanea (Walsingham, 1882) (Lepidoptera: Eriocraniidae) has been found to be lower at 

highly urbanised sites (Rickman and Connor, 2003). Replacement of natural habitats by 

urban land use may alter food availability or create a microclimate, leading to changes in 

habitat quality and serious impacts on the diversity of native insects. Altered water or nutrient 

regimes may affect the abundance of folivorous insects (Connor, 1988, McQuate and Connor, 

1990). The effects of the introduction of species as biological control agents can often be 

subtle initially, with more pronounced impacts accumulating slowly through time, causing 

substantial changes to system functioning (Mack et al., 2000, Goulson, 2003). These 

intentional or unintentional interferences have substantive impacts on insect populations, 

promoting changes to life-history characteristics and the extension of some species (Chown 

and Terblanche, 2007, Chown et al., 2009). 

 

The climate-matching hypothesis states that greater invasion success often occurs when 

species are released into areas with a similar climate to that of their natural origin (Greathead, 

1971, Williamson, 1996, Mack et al., 2000). Samways et al. (1999) however, have argued 
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that there is always a problem in accurately predicting whether a species will become 

established based on the climate. The authors claimed that climate is not always the limiting 

factor in predicting invasion; other determinants, such as a localised response to 

microclimate, host availability, occurrence of natural enemies and hibernation sites also play 

a major role (Samways et al., 1999). Richardson and Pysek (2008) explained that predicting 

an accurate potential range of invasion is problematic, since most invasive species have had 

insufficient time in their new range, thus sampling the invisible habitats at this stage would be 

unreliable. In conclusion, to best understand invasion mechanisms, the approach should 

integrate climatic suitability models and other relevant factors, such as predation, host 

suitability and behavioural plasticity (Samways et al., 1999).  

 

Kolar and Lodge (2001) have noted that in order to achieve the best prediction, several 

quantitative methods have long been used, although they have only been applied to the 

species for which their certainty was approved. Based on this, the authors suggested that 

these quantitative approaches should be applied more widely to allow patterns of invading 

species to be predicted with greater success. They have argued that the probability of bird 

establishment increases with the number of individuals released and the number of release 

events; and that the probability of plant invasiveness increases if the species already has a 

history of invasion. Richardson and Pysek (2006) argued that invasion is context-specific, 

and that generalisation and theories are therefore often not beneficial. Although methods have 

been developed to quantify expansion, a high-quality computing database, such as the 

DAISIE database (Daisie, 2008), is needed instead to improve models predicting 

distributions, and hence to lead to new progress in understanding invasion success 

(Richardson and Pysek, 2008). Although interest in preventing and controlling such 

biological invasions has led to an increase in the number of studies related to invasion over 
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the past few decades, satisfactory explanations of differential introduction success remain 

elusive (Richards et al., 2006).  

 

Several hypotheses have been proposed to explain the success or failure of introduced species 

in recipient communities. One is the biotic resistance hypothesis, which posits that the strong 

biotic interactions between native and introduced species often limit the latter's impact 

(Maron and Vilà, 2001). Alternatively, the enemy release hypothesis suggests that only some 

naturalised species have a large impact (Keane and Crawley, 2002, Mitchell and Power, 

2003, Colautti et al., 2004), due to liberation from their co-evolved predators, pathogens and 

herbivores (Maron and Vilà, 2001). The success of some species in invasion, such as H. 

axyridis, may be partly linked to this hypothesis, which states that “the potential invader is 

successful because of the inefficacy of natural enemies in the new area” (Keane and Crawley, 

2002). Therefore, the introduced species will be successful in expansion as it experiences a 

decrease in regulation by natural enemies (Keane and Crawley, 2002). This implies that 

natural enemies are important regulators of native populations, have a greater influence on 

native than on exotic species and are able to capitalise based on a reduction in enemy 

regulation. The extent to which this hypothesis can be applied varies between species, 

particularly when dealing with community disturbance (Shea and Chesson, 2002). 

 

One mechanism that predisposes a species to successful establishment and colonisation is its 

phenotypic plasticity (Kaufman and Smouse, 2001, Yeh and Price, 2004, Richards et al., 

2006, Ghalambor et al., 2007). This is considered one of species' intrinsic responses, 

alongside evolutionary adaptation to the varying environment (Lee et al., 2007). Many 

studies have also suggested that the evolution of plasticity may be beneficial in novel sites 

after colonisation or migration (Agrawal, 2001, Yeh and Price, 2004). In general, rapid 
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evolutionary change appears to be common in invasive species (Sakai et al., 2001, Lee, 2002, 

Bossdorf et al., 2005), and rapid evolution of plasticity could play an important role in 

explaining their success (Richards et al., 2005). It has been proposed in this context that, after 

the release of an exotic species, it rapidly evolves to be less defensive but more competitive, 

thereby increasing the species vigour in introduced populations (Bossdorf et al., 2005). 

 

Populations vary in their phenotypic plasticity responses, with some having greater plasticity 

than others (Carroll et al., 2001ab). Furthermore, other populations may act as part of a 

complex strategy as a result of the influence by both phenotypic plasticity and evolutionary 

selection (Lee, 2002).  Price (2006) argued that although plasticity has a significant role in 

some cases, natural selection will act in the absence of plastic responses, which makes it 

difficult to ascribe a definite role to plasticity in these cases. Adaptive phenotypic plasticity 

confers responses that ultimately maximises fitness; such responses may comprise 

physiological, morphological and reproductive adjustments, thus enhancing the trait of 

coping well in diverse environments (Gotthard and Nylin, 1995, Sultan, 2000, 2003). 

Therefore, invasion can more appropriately be described by adaptive plasticity than 

phenotypic plasticity. The former helps genotypes of invaders to acclimatise to the diverse 

environment, reducing the necessity for local adaptation (Sultan, 2003) and leading to 

phenotypic tolerance in fitness, an important trait for successful invasion (Alpert and Simms, 

2002, Chun et al., 2007). For example, the Mediterranean fruit fly, Ceratitis capitata 

(Wiedemann, 1824) (Diptera: Tephritidae), originated from East Africa and has become 

established in many countries worldwide (Baliraine et al., 2004, Malacrida et al., 2007).  

 

Colonisation of a new environment often affects the development, physiology, behaviour and 

morphological traits (such as body size) of invader species, as a consequence of phenotypic 

http://en.wikipedia.org/wiki/Christian_Rudolph_Wilhelm_Wiedemann
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adaptive plasticity (Gienapp et al., 2008). Waddington (1953) has argued, for example, that 

the appearance of novel wing patterns in Drosophila after experiencing heat shock were 

favoured by selection and later became genetically assimilated. West-Eberhard (2003) 

stressed that the loss of genetic assimilation or evolution related to plasticity after successful 

colonisation of a novel environment should also be taken into account. 

 

A number of studies have revealed that appropriate plastic responses to environmental 

variation allow organisms to express advantageous phenotypes in a broader range of 

environments, thus enhancing the ecological niches (Donohue et al., 2001). Nevertheless, 

these selective responses may represent modifications in novel sites after colonisation or 

migration have altered community patterns and expanded evolutionary potential of species 

(Agrawal, 2001). Studies have previously addressed the role of plasticity in invasions, noting 

that the levels of adaptive phenotypic plasticity increased in invasive species, in comparison 

with biological control species, such as H. axyridis (Lombaert et al., 2007).  

 

Invasion biologists refer to phenotypic plasticity in two distinct ways when attempting to 

explain invasions. First, invasive species may be more plastic than non-invasive or native 

ones (McDowell, 2002). Second, populations in the introduced range of an invasive species 

may evolve greater plasticity than populations in the native range (Kaufman and Smouse, 

2001, Parker et al., 2003). Widely successful invaders are characterised by high levels of 

genetic variance, high outcrossing rates and the creation of novel genotypes independent of 

the number introduced (Parker et al., 2003). A successful invader often has a high growth 

rate, captures limited resources more efficiently and is able to adjust its physiology according 

to spatial and temporal changes in recourse activity, particularly in a chronically disturbed 

habitat (Durand and Goldstein, 2001). The invasive Australian tree fern, Sphaeropteris 
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cooper (Tryon, 1970) (Cyantheales: Cyatheaceae), has been compared with the native 

Hawaiian tree fern, Cibotium menziesii (Hook & Arn., 1844) (Cyantheales: Dicksoniaceae) - 

the former appeared to be more efficient at capturing and utilising light than the latter, 

particularly in high-light environments such as those associated with high levels of 

disturbance (Durand and Goldstein, 2001).  

 

The arrival of an invasive species can initiate a rapid change in genotype frequencies, until 

the challenge exerted results in adaptation (Stockwell et al., 2003, Buswell et al., 2011). 

Likewise, the intense selection exerted by an invader may cause a reduction in the population 

size of the native species, resulting in extension in some cases (Lee et al., 2007). Stockwell et 

al. (2003) have noted that intensively managed species may reduce their fitness in native 

habitats. For some invaders, the continued active selection for stable expression of a trait 

under new environmental conditions may result in a genetically invariant response, leading to 

a less-plastic genotype after colonisation (Pigliucci and Murren, 2003, West-Eberhard, 2003). 

Richards et al. (2006) noted that plasticity is beneficial only in the initial stage of an invasion; 

at later stages it comprises more cost than benefit (VanTienderen, 1991, DeWitt, 1998). They 

alternatively suggested that the progressive reduction in plasticity in a selected trait after 

colonisation is due to a random accumulation of non-lethal mutations.  

 

Despite ongoing research in this field, the relative importance and fitness trade-offs of 

invasive species need more investigation, since some plastic responses may involve costs that 

constrain their evolution (Weinig and Delph, 2001). High levels of phenotypic plasticity may 

enhance colonisation success (Brown et al., 2011), but environmentally induced flexibility 

may sometimes reduce, rather than enhance, fitness (Yeh and Price, 2004, Richards et al., 

2006, Ghalambor et al., 2007). Some traits may benefit from flexibility whereas others do 
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not. For example, cane toads, Rhinella marina (Linnaeus, 1758) (Anura: Bufonidae), native 

to Central and South America were introduced to north-eastern Australia in 1935 (Shine, 

2010). The toad showed adaptive behaviour plasticity that facilitated its colonisation in the 

new range, reflecting significant evolutionary changes in growth rates (Brown et al., 2011). 

Analyses of progeny from adult toads showed a reduction in immunocompetence, with a high 

susceptibility to bacterial infection (Brown et al., 2008a), as well as a lower metabolic 

investment in response to a standardised immune challenge (Llewellyn, 2009). Richards et al. 

(2006) have reviewed most of the conceptual and empirical progress detailed in literature 

with regard to plasticity and evolution. Their review demonstrates a lack of clarity when 

describing that some species are more plastic than others. The authors based their view on the 

fact that every invasion success is species-specific and has its own scenario that could lead to 

different predictions and methodology. Identifying conditions that allow for a successful 

invasion has become a crucial research area (Cote et al., 2010). One of the characteristics that 

predispose a species to becoming a successful invader is its dispersal ability (Bubb et al., 

2006). In terms of dispersal and spread, high dispersal rate and long-distance dispersal are 

likely to be key traits for successful invasion (Shine, 2010, 2012). The greater movement and 

dispersal by the crayfish, Pacifastacus leniusculus (Dana, 1852) (Decapoda: Astacidae), 

recorded by Cote et al. (2010) found evidence supporting the hypothesis that invaders are 

better dispersers than displaced native species. 

 

Dispersal is fundamental to invasion success, since it influences the genetic makeup, the 

demographic structure and the ability of species to adapt to a new environment (Brown et al., 

2011, Handley et al., 2011). Few studies have however, concentrated on the dispersal role in 

biological invasions, except in the context of biological control (Heimpel and Asplen, 2011). 

Travis and Dytha (2002) found that during range expansion, selection favours individuals 

http://en.wikipedia.org/wiki/James_Dwight_Dana
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with a higher propensity for dispersal, resulting in a more rapid spread than that expected by 

the evolutionary theory assumption. Rapid dispersal can evolve non-adaptively, by spatial 

sorting of genes within the invading species (Shine et al., 2011). High levels of variation may 

occur in dispersal-relevant morphological traits, such as seed shape, wing size and 

musculature, leg length and foot size and movement types, as detailed by Shine et al. (2011). 

Thus, traits that influence rates of dispersal are likely to evolve faster, facilitating rapid 

expansion. The range of species expansion may be enhanced by more evolved phenotypic 

traits, such as locomotors and dispersal ability, high reproductive rate and rapid population 

growth rate (Cassey, 2001, Thomas et al., 2001). Cassey (2002) noted that the strong 

significant variations in the successful establishment of introduced land bird species could be 

explained by strong selective pressure on the life history and ecological traits, including 

increased habitat generalism, lack of migratory tendency and sexual monochromatism. 

 

A growing literature provides examples of dispersal facilitating traits accumulating at 

expanding range edges. Recolonisation of metapopulations of insular voles, Microtus agrestis 

(Linnaeus, 1761) (Rodentia: Cricetidae), on islands in the Stockholm archipelago in Sweden, 

showed larger body size and had longer feet than expected for their body size, when 

compared with voles from the mainland (Forsman et al., 2010). Likewise, speckled wood 

butterflies, Pararge aegeria (Linnaeus, 1758) (Lepidoptera: Nymphalidae), had colonised 

many areas in north and east England, and in the south. In the colonising populations, the 

body was larger in size and had a longer thorax with broader wings than conspecifics in more 

central parts of the species' range (Hill et al., 1999). Two species of bush crickets showed 

distinct changes in dispersal with expanding ranges. Colonised populations at the range 

margin showed increased the length of wing compared with the longer-established 

populations in the range (Simmons and Thomas, 2004). Cane toads, Bufo marinus (Linnaeus, 

http://en.wikipedia.org/wiki/Carolus_Linnaeus
http://en.wikipedia.org/wiki/Carolus_Linnaeus
http://en.wikipedia.org/wiki/Carolus_Linnaeus
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1758) (Anura: Bufonidae), in Australia evolved a faster dispersal during their invasion than 

conspecifics from long-colonised areas. This was accompanied by an increase in locomotor 

activity levels and relative leg length (Llewellyn et al., 2010). The above examples indicate 

that individuals' colonisation success is highly related to evolution in flight morphology. This 

feature could be used to predict the dispersal rate and may be an important determinant of 

range expansion that is likely to affect responses to the changing climate.  

 

The two main known dispersal patterns are long- and short-distance pathways. Long-distance 

dispersal, facilitated by either wind or human activities, can accelerate the rate of range 

expansion (Shigesada et al., 1995, Ciosi et al., 2011). A combination of both short-diffusion, 

and long-distance dispersal - known as stratified dispersal - may be considered as the 

common feature of invasions (Heimpel and Asplen, 2011). Patterns of the invasion of the 

corn-crop pest western corn rootworm, Diabrotica virgifera virgifera (LeConte, 1868) 

(Coleoptera: Chrysomelidae), in its largest area of expansion in central and southeastern 

Europe was mainly by stratified dispersal, involving both continuous diffusion and 

discontinuous long-distance dispersal (Ciosi et al., 2011). Stratified dispersal has been 

described in several species of invasive insect, such as the firethorn leaf miner, 

Phyllonorycter leucographella (Zeller, 1850) (Lepidoptera: Gracillariidae), which colonised 

Great Britain in the 1980s (Nash et al., 1995). It has been demonstrated that the emerald ash 

borer beetle, Agrilus planipennis (Fairmaire, 1888) (Coleoptera: Buprestidae), has spread 

across North America - in Ontario, Michigan and Ohio - through a combination of diffusive 

range extension involving local flights, and long-distance dispersal associated with human 

activities (Muirhead et al., 2006). The leaf miner moth, Cameraria ohridella (Deschka & 

Dimić, 1986) (Lepidoptera: Gracillariidae), which invaded most of central and western 

Europe, has spread by both short-distance and long-distance dispersal (Gilbert et al., 2004). 

http://en.wikipedia.org/wiki/John_Lawrence_LeConte
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Saastamoinen and Hanski (2008) studied the flight ability of the Glanville fritillary butterfly, 

Melitaea cinxia (Linnaeus, 1758) (Lepidoptera: Nymphalidae), and demonstrated that 

dispersal and flying ability is heritable and associated with variation in the allele at a PGI 

gene encoding for phosphoglucose isomerase. This enzyme is known as a 'temperature 

sensitive glycolytic enzyme' (Haag et al., 2005). The study revealed a fitness advantage to the 

heterozygous genotype in low temperatures, in which those heterozygous butterflies move 

longer distances at lower ambient temperatures than homozygous individuals (Saastamoinen 

and Hanski, 2008, Niitepold et al., 2008). Generally, this will be an essential starting point for 

understanding the factors underlying enhanced dispersal ability during invasions (Handley et 

al., 2011). 

 

Ladybirds are generally observed as active flyers (Brown et al., 2011). For example, H. 

axyridis is characterised by a high dispersal capacity. Following its spread from Asia, it has 

become established in at least 38 countries in its introduced range - three in North America, 

six in South America, 26 in Europe and three in Africa (Osawa, 2000, Roy and Wajnberg, 

2008, Brown et al., 2011). The harlequin beetle is capable of actively dispersing over long 

distances to overwintering sites (Hodek and Honek, 1996, Osawa, 2000).  

 

Determining the probability of long- and short-distance dispersal is important for estimating 

population dynamics and essential for predictive models (Urban et al., 2008, Handley et al., 

2011).  Harmonia axyridis has an estimated spread rate of 442 km year
-1

 in North America 

(McCorquodale, 1998) and a maximum spread rate of approximately 200 km year
-1

 in Europe 

(Brown et al., 2011). More detailed calculations for Great Britain reveal a northerly spread 

rate of 105 km year
-1

 and a rather faster westerly spread rate of 145 km year
-1

. In South 

Africa, H. axyridis spread at a rate of approximately 500 km year
-1

, as calculated by Stals 

http://en.wikipedia.org/wiki/Carl_Linnaeus
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(2010). Harmonia axyridis demonstrates two types of migratory behaviour - autumn and 

spring migration to and from overwintering sites, and summer migrations during food 

scarcity. The former migrations are directional, away from the afternoon sunlight and heading 

northeast. The latter migrations are random (Nalepa et al., 2005, Poutsma et al., 2008). The 

pattern of dispersal is species-specific - for example, the flight of female mosquitoes, Aedes 

aegypti (Linnaeus, 1762) (Diptera: Culicidae) and Aedes albopictus (Skuse, 1894) (Diptera: 

Culicidae) is influenced by several factors, such as oviposition, site availability, climate and 

blood source (Alves Honório et al., 2003). It was found that the females dispersed at least 

800m in a dengue endemic area within a six-day period. If such females are infected, there 

will be a high potential for the virus to spread rapidly (Alves Honório et al., 2003).  

 

The goal of invasive species research is to increase the understanding of invasion success, 

and hence the ability to predict and prevent invasions at an early stage. Although interest in 

preventing and controlling such biological invasions has led to an explosion of scientific 

studies over the past few decades, satisfactory explanations of differential introduction 

success remain elusive (Richards et al., 2006). Venette and Carey (1998) noted that more 

attention should be directed towards designing public policies in order to prevent invasions 

and further infestation, particularly for potential pests that are not yet established and whose 

biology is rarely described.  

 

Williamson (1999) has stated that despite the versatile method for controlling and preventing 

new invasion, eradication is usually impossible when it comes to insects. The rapidly 

developing field of applied entomology has initiated an eradication programme based on 

trapping adult insects only, by using pheromones or semiochemical attractants. Other life-

stages such as eggs or larvae, which are known for their aggressiveness and voracity, should 

http://en.wikipedia.org/wiki/Carl_Linnaeus
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also be studied. Likewise, several and diversified mechanical, biological and chemical 

methods have been used within eradication programmes, including mechanical removal, the 

construction of barriers, pesticides, sex pheromones and habitat management (all explained in 

detail in Gherardi and Angiolini, 2004). Most of the methods described are species-specific 

and, despite their benefits, have highly pronounced limitations; hence generalisation is 

impossible.  

 

Despite these problems, there have been some cases of successful eradication. First, the 

removal of introduced rabbits from Pacific islands off Mexico and the United States resulted 

in the recovery of two declining native succulent species, Dudleya linearis (Britton & Rose, 

1903) (Saxifragales: Crassulaceae) and Dudleya traskiae (Rose, 1942) (Saxifragales: 

Crassulaceae) (Clark and Halvorson, 1987, Zavaleta et al., 2001). Second, the successful 

removal of the exotic little red fire ant, Wasmannia auropunctata (Roger, 1863) 

(Hymenoptera: Formicidae), from Santa Fe Island in the Galapagos resulted in an increase in 

the population of several native ant species (Abedrabbo, 1994). However, other cases might 

not result in the desired level of successful eradication or recovery of native species.  

 

A study has shown that species eradication can lead to unexpected changes to other 

ecosystem components, known as secondary effects. These effects include the further 

substantial elimination of native species and their functional role (Zavaleta et al., 2001). For 

instance, in a Mediterranean desert ecosystem, high soil salinity caused by the invasive ice 

plant, Mesembryanthemum crystallinum (Linnaeus, 1753) (Caryophyllales: Aizoaceace) 

makes it difficult for salt-sensitive native species to recover and re-establish (El-Ghareeb, 

1991). There is however, a limitation on the quantitative data available regarding such 

ecosystem impacts. Without such quantitative data collection, pre-eradication assessment and 

http://en.wikipedia.org/w/index.php?title=Julius_R_oger&action=edit&redlink=1
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sufficient planning, it is difficult to establish effective methodologies. Successful eradications 

may therefore result in adverse impacts (Innes and Barker, 1999, Blossey et al., 2001). 

Blossey (1999) further noted that there is an urgent need to collect and publish quantitative 

evidence for the ecosystem impacts of non-indigenous species, in order to guide management 

decisions. 

 

1.2 Invasive species  

 

According to the Convention on Biological Diversity (CBD), invasive alien species (IAS) are 

those that have been introduced, then become established, naturalized and expanded outside 

of their native range, causing significant harm to native species and ecosystem assemblages 

(Perrings et al., 2002). Likewise, Williamson and Fitter (1996) conferred the term 'invasive 

species' only upon those non-native populations that have become self-sustaining and have 

negative biological or economic impacts. These alien species are of a major concern in 

conservation biology, as well as to agriculture and human health (Mack et al., 2000, Mooney 

and Cleland, 2001, Koch, 2003). Invasive species are recognized as major drivers of 

biodiversity loss (Roy et al., 2011), causing significant environmental damage and leading to 

changes in the structure, diversity and composition of communities, as well as alteration of 

ecosystem-level processes and services (i.e., the biological availability of nitrogen) (O'Dowd 

et al., 2003, Whitney and Gabler, 2008). The combined annual cost of invasive species for six 

large nations has been estimated as US$335 billion, as reported by Pimentel et al. (2000). At 

the species level, the direct effects of invasive species occur through predation, competition 

and pathogen and parasite transmission to native individuals, often leading to population 

decline and displacement (Loehle, 2003). 
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Invasions frequently comprise rapid evolutionary events, resulting in populations that are 

genetically dynamic, both temporally and spatially (Reznick and Ghalambor, 2001). A 'rapid 

evolutionary change' was defined by Hairston et al. (2005) as "genetic change occurring 

rapidly enough to have a measurable impact on simultaneous ecological change".  Tsutsui et 

al. (2000) called attention to the fact that genetic characteristics of invasive populations have 

profound impacts on their capacity for range expansions. They further stressed the influences 

of natural selection and genetic drift in altering the genetic structures of invading populations 

in ways that modify their tolerance capability or behaviour. Multiple evidence supports the 

importance of genetic attributes for invasion success, such as additive genetic variance or 

genomic rearrangements, which has a great role in evolutionary adaptation in response to 

environmental change (Reznick, et al., 1997, Prevosti et al., 1988, Carroll et al., 2001). For 

instance, Pappert et al. (2000) reported that the high levels of additive genetic variance within 

the population of Pueraria lobata (Maesen, 1985) (Fabales: Fabaceae) facilitated its invasive 

capability in south-eastern United States. 

 

There are several species of insect that have become invasive after being used as a biological 

agent, such as the Japanese beetle, Popillia japonica (Newman, 1841) (Coleoptera: 

Scarabaeidae), which was introduced to the United States in 1911 from Japan. This species 

spread over the eastern United States and became a major pest, affecting crops, soybeans, 

apples and peaches, and defoliating over 250 tree species (Elton, 1958). The rice water 

weevil, Lissorhoptrus oryzophilus (Kuschel, 1952) (Coleoptera: Curculionidae), which was 

detected in Japan in Tokoname near Nagoya City in 1976. Ten years later, this weevil had 

extended over all the Japanese islands and had become the common insect pest of rice crops 

(Sato et al., 2005). In another example, the flatworm, Platydemus manokwari (De 

Beauchamp, 1962) (Tricladida: Geoplanidae), which is native to China, was introduced to 

http://en.wikipedia.org/wiki/Edward_Newman_(entomologist)
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control populations of another invasive species, the giant African snail, Achatina fulica 

(Férussac, 1821) (Gastropoda: Achatinidae) (McNeely, 1999). Although P. manokwari had a 

successful role as an efficient biological control agent, it is now considered a significant 

threat to native snail fauna (Chibaa and Roy, 2011). 

 

1.3 Harmonia  axyridis as model of  invasive species  

 

One of the worst invasive alien species in North America and Western Europe, is the Asian 

multicoloured ladybeetle Harmonia axyridis, the harlequin ladybird. Harmonia axyridis is a 

Palearctic species that is native to continental, temperate and subtropical parts of east and 

central Asia (Bazzocchi et al., 2004). This beetle occurs in Korea, Japan, the Bonin Islands, 

China, the Himalayas, Formosa and Siberia (Dobzhansky, 1933). Harmonia axyridis was first 

introduced as a classical biological control agent in 1916 in the United States, but it was not 

until the 1980s that it became established there and regarded as an invasive alien species 

(Koch et al., 2003). The first records for the establishment of this beetle were in North 

America in 1988 and in South America in 1998 (Chapin and Brou, 1991).  Within five to six 

years, it had spread across the east coast of North America (Koch et al., 2006). Since the 

beginning of the 20th century this species has been sold commercially as a classical 

biological control agent across different parts of the world (Katsoyannos et al., 1997). 

 

In Europe, between the 1980s and 1990s, H. axyridis was widely used as a biological control 

for aphids and coccids (Trouve et al., 1997, Adriaens et al., 2003, Brown et al., 2008ab). This 

beetle is now established in Europe - across France, Holland, Germany and Luxembourg 

(Brown et al., 2008ab). Harmonia axyridis threatens the diversity of native aphidophagous 

species through direct intraguild competition and by voracious predation (Majerus et al., 

http://en.wikipedia.org/wiki/Andr%C3%A9_%C3%89tienne_d%27Audebert_de_F%C3%A9russac
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2006).  In a risk assessment of 31 exotic natural enemies of pest species used in biological 

control in Europe, H. axyridis had the second highest environmental risk index (Mochizuki, 

2010).  This risk index was estimated based on its polyphagous ability to establish, its 

dispersal activity and by negative effects on native species. 

  

Three categories of hazards caused by this invasive ladybird have been reported (Koch, 

2006). First, it was found that some people have suffered from an allergic reaction to the 

yellow defensive chemicals secreted from the femoro-tibial joints when the ladybirds were 

aggravated (Yarbrough et al., 1999, Magnan et al., 2002). There have also been a few 

reported cases of people showing hyper-allergic symptoms manifesting as allergic rhino-

conjunctivitis (Yarbrough et al., 1999, Albright et al., 2006). This ladybird often overwinters 

at high densities in or on buildings and is regarded as a human nuisance (Kovach, 2004). 

Second, it was noticed that when large numbers of H. axyridis were harvested and crushed 

with grape crops, their alkaloid defensive chemicals seriously tainted the vintage (Pickering 

et al., 2004). For instance, in the United States, this ladybird is considered as a pest species 

because it adversely affects the wine and fruit-growing industries (Kovach, 2004, Koch et al., 

2004). Finally, H. axyridis have been found to affect biodiversity by influencing many native 

species assemblages, such as hetero-specific ladybirds, non-pest aphids and various 

herbivorous insects (Koch and Galvan, 2008).  

 

The negative impacts of H. axyridis on native species provide opportunity for many studies 

focusing on assessing the role of intraguild predation (Roy and Wajnberg, 2008, Pell et al., 

2008), as well as cannibalism, which is considered the determinant role in maintaining the 

dominance of H. axyridis and the displacement of other aphidophagous and native species 

(Osawa, 2011). Harmonia axyridis is a coccinellid that has induced hundreds of studies over 
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many decades (Sloggett, 2005). In recent years, H. axyridis has become a very popular insect 

among biological control practitioners and scientists, not for its potential to be an efficient 

biological control agent, but due to its invasiveness. Harmonia axyridis became an invasive 

species affecting the dynamics and composition of various guilds (Soares et al., 2008). A 

review of 24 studies on the impact of H. axyridis on competitors, showed 15 cases where a 

negative impact on native species by intraguild predation or competition occurred (Lucas et 

al., 2007). Therefore, H. axyridis is a suitable biological model to test phenotypic traits 

related to fitness, because the diversity in level of phenotypic plasticity has already been 

described (Lombaert et al., 2007).  Results from phenotypic plasticity studies indicate that 

plasticity could play an important role in invasion by allowing the invasive species to express 

advantageous phenotypes in a broader ecological niche (Sultan, 2001, Richards et al., 2005). 

 

One feature that has been frequently mentioned is that H. axyridis is a strong intra-guild 

predator, interfering with other ladybirds' foraging activity and oviposition behaviour 

(Agarwala et al., 2003, Felix and Soares, 2004, Alhmedi et al., 2010). The dramatic decline 

of Adalia bipunctata (Linnaeus, 1758) (Coleoptera: Coccinellidae) following the arrival of H. 

axyridis is of particular note (Facon et al., 2008). This species is now near the threshold of 

extinction, in both North America (Harmon et al., 2007) and Europe (Brown et al., 2011). 

Adriaenes et al. (2008) argued that H. axyridis appears to pose a threat to biodiversity and 

ecosystem integrity by displacing the native ladybirds with which it shares a high niche 

overlap, such as A. bipunctata. Facon et al. (2008) noted that some species, such as Halyzia 

sedecimguttata (Linnaeus, 1758) (Coleoptera: Coccinellidae), a mychophagous ladybird that 

is not in competition with H. axyridis, have undergone a dramatic increase in distribution in 

Britain (Roy et al., 2011) and Belgium, indicating a recent shift in habitat preference (Roy et 

al., 2011). The shift reflects, to some extent, the predation activity of H. axyridis on the 

http://en.wikipedia.org/wiki/Carolus_Linnaeus
http://en.wikipedia.org/wiki/Carolus_Linnaeus
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immature stages of the Halyzia ladybird (Facon et al., 2008). In another example, the 

establishment of H. axyridis in natural agricultural communities in Michigan has drastically 

reduced the native ladybird populations of the orange-spotted ladybird, Brachiacantha ursine 

(Fabricius, 1787) (Coleoptera: Coccinellidae), the spotless ladybird, Cycloneda munda (Say, 

1835) (Coleoptera: Coccinellidae), and the two stabbed ladybird, Chilocorus stigma (Say, 

1835) (Coleoptera: Coccinellidae) (Colunga-Gracia and Gage, 1998). Various functional 

traits that have made H. axyridis an effective biological control agent have further implicated 

it as an intra-guild predator with a significant impact on ecological diversity (Snyder and 

Evans, 2006, Majerus et al., 2006). Biological features are known to be one of the 

determinants of a successful invader - these include dispersal ability, aggressiveness, various 

defence strategies and exploitative or interference competition (Lucas et al., 1998, Yasuda et 

al., 2000, Yasuda et al., 2001, Pell et al., 2008), as well as colonisation efficiency (Osawa, 

2000, With et al., 2002). Another important feature is the higher conversion efficiency of 

prey into biomass, which results in the gain of a higher energy reserve and greater 

competition ability (Labrie et al., 2006). This feature is already present in the ladybird H. 

axyridis. Considered to be highly polyphagous, it possesses a high predation efficiency 

(Osawa, 2000, Labrie et al., 2006) and is able to consume a wide range of food, including 

fruit, fungi, eggs and pollen (Ferran et al., 1997, Berkvens et al., 2010b).  

 

Cannibalism is another functional trait that appears to play an important role in influencing 

the population dynamics of H. axyridis (Osawa, 1993). Wagner (1999) showed that 

cannibalism is heritable and varies between lineages. It was noticed that cannibalism and 

predation by H. axyridis occurred even when prey was abundant (Majerus et al., 2006). 

Adults and larvae of H. axyridis find eggs of many insect species acceptable as prey (Cottrell, 

2007). There is evidence suggesting that larvae of H. axyridis can successfully complete their 

http://en.wikipedia.org/wiki/Thomas_Say
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developmental stages on a range of various foods, including the eggs, larvae, and pupae of 

many insects and con-specifics (Tedders and Schaefer, 1994, Koch, 2003).  

 

One further advantage is attributed to its eurytopic ability to exploit resources in various 

agricultural habitats, including crops of corn, soybean and wheat (Colunga-Garcia and Gage, 

1998). This definitely reflects the capability of this ladybird to invade a wider range of 

ecosystems (Majerus et al., 2006, Roy et al., 2006). The greater foraging efficiency often 

facilitates its ability to cope with various types of competition. Larvae and adults of this 

species have been found to have a greater predation ability and foraging efficiency when 

compared with indigenous species (Yasuda and Ohnuma, 1999, Yasuda et al., 2001, Lanzoni 

et al., 2004, Labrie et al., 2006). The foraging efficiency in H. axyridis was found 

significantly greater  than indigenous species such as Coccinella septempunctata (Linnaeus, 

1758) (Coleoptera: Coccinellidae), Coleomegilla maculata (De Geer, 1775) (Coleoptera: 

Coccinellidae),  Hippodamia variegata (Goeze, 1777) (Coleoptera: Coccinellidae) and Adalia 

bipunctata (Coleoptera: Coccinellidae) (Yasuda et al., 2001, Lucas et al., 2002, Lanzoni et 

al., 2004, Labrie et al., 2006). 

 

Furthermore, the wide natural latitudinal ranges of H. axyridis from Asia-extending to the 

cold temperate regions of Canada-allows it to breed in both warm and cool climates (Koch, 

2003). In Oregon, it was recognised that H. axyridis is well adapted to both cold winter 

temperatures below freezing and summer temperatures up to 30°C (LaMana and Miller, 

1996). This wide climatic tolerance and potential adaptability reflect its competitive 

advantage over other native ladybirds, as well as over other predators (Labrie et al., 2008). 

Another key factor is its physiological ability to withstand unfavourable environmental 

http://en.wikipedia.org/wiki/Carl_Linnaeus
http://en.wikipedia.org/wiki/10th_edition_of_Systema_Naturae
http://en.wikipedia.org/wiki/Charles_De_Geer
http://en.wikipedia.org/wiki/Johann_August_Ephraim_Goeze
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conditions. In this context, Sakurai et al. (1992) reported that H. axyridis shows two types of 

diapause-hibernation and aestivation (i.e., facultative dormancy). The aestivation may not 

occur when food is available. This feature may add to the success of H. axyridis in invasion 

in comparison to other species.  

 

A number of morphological features of H. axyridis beetles have been reported as promoting 

the invasion ability of the species into new habitats (Michaud, 2002ab) by providing a 

protection from predation (Yasuda et al., 2001). One of these features is the relatively large 

body size (Soares et al., 2001, Osawa, 2000, Michaud 2002a, Labrie et al., 2006). H. axyridis' 

adult body size is often larger than that of most Coccinellidae species, such as A. bipunctata 

(Mills, 1981) and Hippodamia quinquesignata (Kirby, 1837) (Coleoptera: Coccinellidae) 

(Kaddou, 1960). Individuals of H. axyridis collected from fields showed that adult body size 

was significantly different for each colour pattern and between the sexes. In non-melanic 

form, the variation of size between sexes was 30.3% of median size in males, and 35.2% in 

females. The size variation in the melanic type was 21.7% in males and 28.5% in females 

(Seo, 2008).  Majerus (1994) noted that the large size of H. axyridis undoubtedly contributes 

to its success as a strong intra-guild predator, despite the few reports that C. septempunctata 

larvae have successfully managed to attack larvae of H. axyridis (Pell et al., 2008). Evidence 

suggests that H. axyridis larvae are more resistant to reciprocal attacks, attributed to their 

higher attack rates and greater escape ability (Yasuda et al., 2001). This ladybird is highly 

equipped with effective defence mechanisms, including chemical and physical cues 

(Agarwala and Dixon, 1992, Hemptinne and Dixon, 2000). For instance, the presence of 

spines on the back of third and fourth larval instars provides physical protection (Ware and 

Majerus, 2008). Furthermore, the existence of surface semio-chemicals on eggs of H. axyridis 
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and pupae (Felix and Soares, 2004) make these stages less vulnerable to predation by other 

aphidophages (Sato and Dixon, 2004, Alam et al., 2002).  

 

Reproductive performance and the number and size of offspring are considered as further 

significant traits of this ladybird compared with others. A laboratory study showed that, 

during its lifespan, a single female can lay between 703 and 3,800 eggs (Stathas, 2001). 

Mignault et al. (2006) noted that the fecundity of H. axyridis reared on soybean aphids was 

about 2,008 eggs per female - significantly higher than indigenous Coleomegilla maculata 

(De Geer, 1775) (Coleoptera: Coccinellidae) (390 eggs/female), A. bipunctata (720.2 

eggs/female) in Canada and the invasive Propylea quatuordecimpunctata (Linnaeus, 1758) 

(Coleoptera: Coccinellidae). The rapid rate of ovarian development and oosorption process in 

the predatory H. axyridis has acted to optimise the potential reproductive output compared 

with other ladybirds (Osawa, 2005). A key factor in the invasion process is juvenile growth 

and development, as safe conditions in this vulnerable stage promote high population growth 

in the new environment (Marco et al., 2002). It was demonstrated that second larval instars of 

H. axyridis developed in a shorter time compared to the native species C. maculata and H. 

axyridis reached the fourth instar more rapidly than C. maculata (Labrie et al., 2006). The 

adults of this ladybird become active early in the season (eg, in April) and both larvae and 

pupae are commonly documented in November (Majerus et al., 2006). 

 

Another feature that is believed to have a significant role in H. axyridis's invasion successes 

is the colour polymorphism. This feature is hereditary with great plasticity (Dobzhansky, 

1933, Komai et al., 1951, West-Eberhard, 1989, Soares et al., 2003). Other life history traits, 

such as elytral patterns, body shape and size may also show phenotypic variability towards 

adverse conditions (Dobzhansky, 1933, Soares et al., 2003). The pattern of colouration of the 

http://en.wikipedia.org/wiki/Charles_De_Geer
http://en.wikipedia.org/wiki/Carolus_Linnaeus
http://en.wikipedia.org/wiki/Systema_Naturae
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pronota and elytra of adult H. axyridis has been shown to have a genetic basis, controlled by 

both a multi-allelic gene and genetic variation in reaction norms. This allows different 

families to respond differently in response to environmental factors (Felix and Soares, 2004, 

Michie et al., 2010). There are three main colour forms of adult H. axyridis in Europe-Forma 

succinea, Forma spectabilis and Forma conspicua (Dobzhansky, 1933).  

 

Strong evidence has suggested a link between environmental factors and colour patterns in 

this coccinellid, or within a form (Majerus, 1998). The degree of melanisation is often 

inversely correlated with temperature (Abbas et al., 1988, Majerus, 1998). For instance, the 

lower the temperature experienced by the final larval instar, the darker the pupa (Majerus, 

1994, 1998). Despite the genetic basis, colour polymorphism was also shown to vary 

seasonally and geographically (Osawa and Nishida, 1992, Soares et al., 2003). Research by 

Osawa and Nishida (1992) revealed a decrease in the frequency of the non-melanic 

phenotype from summer compared with spring, in relation to non-random mating among 

different phenotypes.  

 

It appears that the ladybird H. axyridis had different responses in relative fitness between 

melanics and non-melanics in response to climate (Soares et al., 2003). Melanic forms of H. 

axyridis showed a greater fitness in response to climate fluctuations, which would be an 

advantage over non-melanic elytra. During cold days, melanic forms are therefore able to 

attain higher body temperatures than non-melanic forms (Koch et al., 2006). Furthermore, it 

was noted that the pattern of elytral colouration indicates a signal of chemical defence in H. 

axyridis (Bezzerides et al., 2007). This was based on the positive significant correlation that 

exists between the degree of melanin and alkaloid content (i.e., it is considered a defensive 

chemical) (Bezzerides et al., 2007). In addition to the above, the elytral phenotypes showed 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC524671/#i1536-2442-003-32-0001-osawa6
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variation in response to suitability of host plants and aphid quality and quantity (Komai and 

Hosino, 1951, Soares et al., 2005). Soares et al. (2005) noted that H. axyridis showed 

considerable intra-specific variation in elytral pattern, and the related genotype property 

confers that pattern might reflect a specific ecological attribute. Therefore, the above features 

support the contention that H. axyridis possess a high degree of phenotypic adaptive plasticity 

for a number of life-history traits. Having that degree of plasticity allows this ladybird to be 

an efficient competitor and promotes its establishment and colonisation of a wide range of 

ecosystems (Kock, 2003).  

 

Entomopathogenic fungi are common natural enemies of insects and other arthropods 

worldwide (Roy et al., 2006). Several field and laboratory studies have reported the 

susceptibility of various ladybirds to Beauveria bassiana ((Bals.-Criv.) Vuill., 1912) 

(Ascomycota: Hypocreales) (Cottrell and Shapiro Ilan, 2003, Roy et al., 2008), but not H. 

axyridis. Cottrell and Shapiro Ilan (2003) demonstrated that H. axyridis was extremely 

resistant to B. bassiana infection, even after using various isolates. Furthermore, laboratory 

and field studies have revealed low levels of successful parasitism of adult H. axyridis by 

Dinocampus coccinellae (Schrank, 1802) (Hymenoptera: Braconidae) (Hoogendoorn and 

Heimpel, 2002, Firlej et al., 2005). In another study conducted by Smith and Krischik (2000), 

it was revealed that H. axyridis showed a great resistance to biorational pesticides, such as 

soap, oil and azadiractin. Although the impact of fungicides and conventional insecticides on 

H. axyridis appears to be minimal (Smith and Krischik, 2000, Michaud, 2001, Musser and 

Shelton, 2003), examples to the contrary do exist - for example, H. axyridis was found 

susceptible to certain herbicides such as glufosinate-ammonium (Ahn et al., 2001). The 

susceptibility of H. axyridis to various herbicides or other pesticides, however, varies 

http://en.wikipedia.org/wiki/Giuseppe_Gabriel_Balsamo-Crivelli
http://en.wikipedia.org/wiki/Jean_Paul_Vuillemin
http://en.wikipedia.org/wiki/Franz_von_Paula_Schrank
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depending on the developmental stage. Adults are often less susceptible than immature 

stages, due to the former's ability to fly (Ahn et al., 2001, Michaud, 2002ab).  

 

In conclusion, all of the above features make H. axyridis a highly competitive insect and 

facilitate its invasion success and establishment in a wide range of ecosystems. Clearly, the 

ability of H. axyridis to invade native ranges worldwide (Roy et al., 2008) is potentially 

related to fitness; if the colonising ability of this ladybird is associated with plasticity, there is 

a need for rigorous research data to clarify better the degree of plasticity in fitness-related 

character traits (Grill et al., 1997, Lanzoni et al., 2004). Moreover, there is growing evidence 

that integrating both genetic and ecological factors is crucial in understanding the biology of 

invasive species, since the two are explicitly linked and together may help to explain the 

invader strategy in successful establishment (Sax et al., 2007, Handley et al., 2011). Gaining 

such information on the invasion processes may help in establishing management and 

prevention policies against future invasion (Handley et al., 2011).  

 

Successful invasion has been referred to as a phenomenon known as 'bridgehead', which 

often results in several secondary invasions stemming from already established invasive 

populations, as was the case with H. axyridis (Estoup and Guillemaud, 2010). For instance, 

Lombaert et al. (2010) clarified that the invasive population in eastern North America has 

acted as a source population for colonists invading Europe, South Africa and South America. 

In such cases, the introduced species may lead to evolutionary shift and several outbreaks, 

regardless of the number of introduction events (Estoup and Guillemaud, 2010). Indeed, the 

invading populations may also be capable of invoking potential evolutionary changes in 

native species (Filchak, et al., 2000). Therefore, incorporating evolutionary and molecular 
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genetics should be of a high priority when revealing the characteristics that determine 

invasion success and preventing subsequent spread (Tsutsui, et al., 2000, Lee, 2002, Estoup 

and Guillemaud, 2010). Lee (2002) stressed the importance of genetic constituents and 

natural selection over having a broad physiological tolerance or plasticity. He emphasised 

that a genomic approach was essential for determining invasion mechanisms, such as analysis 

of gene expression, gene interactions, and genomic rearrangements.  

 

The question must be addressed of whether other ladybirds will become worldwide invasive 

species at some stage. Soares et al. (2008) claimed that it is possible that other aphidophagous 

coccinellids may reveal similar phenotypic responses and be as competitive as H. axyridis if 

they are released extensively and repeatedly. His postulation was based on several 

comparisons collected from various sources. For example, comparative studies showed 

significant differences among pre-adult development times, with H. axyridis havong the 

longest time when compared with: A. bipunctata; the black-spotted lady beetles, H. variegata 

(Lanzoni et al., 2004), the 14-spot ladybird, Propylea quatuordecimpunctata (Linnaeus, 

1758) (Coleoptera: Coccinellidae) (Mignault et al., 2006), and the ashy grey ladybird beetle, 

Olla v-nigrum (Mulsant, 1866) (Coleoptera: Coccinellidae) (Michaud and Olsen, 2004). 

 

In a study by Lanzoni et al. (2004) it was revealed that the intrinsic rate of increase, net 

reproductive rate and mean generation time were higher for H. variegata than for H. axyridis. 

Regarding the high fecundity in H. axyridis mentioned previously, some other studies showed 

that the fecundity of H. axyridis was slightly higher, similar or lower than indigenous species 

(Bazzochi et al., 2004). For instance, contradicting the finding of Mignault et al. (2006), 

Bazzochi et al. (2004) found that the mean fecundity of H. axyridis was 783.8 eggs per 

female, which was slightly higher than A. bipunctata (720.2 eggs/female); the difference was, 

http://en.wikipedia.org/wiki/Carolus_Linnaeus
http://en.wikipedia.org/wiki/Systema_Naturae
http://en.wikipedia.org/wiki/%C3%89tienne_Mulsant
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however, not significant. Another fact was revealed when two native species - C. maculata 

and O. v-nigrum ladybirds - were starved, both attacked H. axyridis eggs. Nevertheless, most 

aphidophagus species are also known to be good competitors in their habitat range, such as C. 

septempunctata (Evans, 2004, Alyokhin and Sewell, 2004).  

 

Finally, it is not only H. axyridis that has been found able to complete its lifecycle on 

supplementary food such as pollen - other native species such as the convergent lady beetle, 

Hippodamia convergens (Guérin-Méneville, 1842) (Coleoptera: Coccinellidae), and the 

unspotted ladybird Cycloneda sanguinea (Linnaeus, 1763) (Coleoptera: Coccinellidae) could 

do the same (Finlayson et al., 2010). Therefore, all the above imply that the biological traits 

of H. axyridis may partly explain its invasiveness, but there are definitely other contributing 

factors. According to Soares (2008), some aphidophagous coccinellids are already invasive or 

have great potential to invade, but their role has not been revealed. Most attention has been 

directed towards studying the bio-ecological attributes of H. axyridis, as it has been released 

in many more locations than any other coccinellids. Furthermore, H. axyridis is extensively 

recognised and has been of great concern to the public, due to its nuisance overwintering 

behaviour inside and on buildings.  

 

1.4  Spread of Harmonia axyridis in the United Kingdom 

 

The multicoloured Asian ladybird H. axyridis is indigenous to Asia and was introduced to 

combat aphids and coccid species in orchards in Europe and North America (Adriaens et al., 

2003, Koch, 2003, Koch et al., 2004). It was established first in North America in 1988, as 

well as in Canada (Chapin and Brou, 1991). In mainland Europe, H. axyridis was first 

marketed as a bio-control agent in 1982 (Brown et al., 2008a). Since the late 1990s, H. 

http://en.wikipedia.org/wiki/F%C3%A9lix_%C3%89douard_Gu%C3%A9rin-M%C3%A9neville
http://en.wikipedia.org/wiki/Carl_Linnaeus
http://en.wikipedia.org/wiki/Centuria_Insectorum
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axyridis has has established and expanded its range rapidly, reproducing populations in the 

wild in at least 13 western European countries (Brown et al., 2008ab, Lombaert et al., 2007, 

Poutsma et al., 2008, Bidinger et al., 2012). Commercial releases as a classical biological 

control agent were made in European countries from 1993 onwards, including in France, 

Belgium, the Netherlands and Italy (Katsoyannos et al., 1997, Iperti and Bertand, 2001), but 

it has never been sold officially in Germany, the United Kingdom and Switzerland (Brown et 

al., 2008b). The spread and distribution of H. axyridis in Europe has been reviewed by Brown 

et al. (2008b). At present, it is abundant in a large area of Europe, including southern France, 

Denmark, the United Kingdom and Czech Republic. The abundance of this ladybird 

increased rapidly from 2004 to 2010 and is predicted to continue in the same manner if it is 

not controlled (Majerus et al., 2006). Harmonia axyridis tends to form very large 

overwintering aggregations, often on or in buildings (Adriaens et al., 2003). An analysis of 

land cover revealed that H. axyridis is more frequently aggregated in urbanised landscapes 

than in semi-natural landscapes (Adriaens et al., 2003). 

 

There is no evidence indicating that H. axyridis was established in the United Kingdom 

before 2004 (Majerus and Roy, 2005). Evidence suggests that H. axyridis arrived into the 

United Kingdom by multiple routes in that year (Majerus et al., 2006). Likewise, Brown et al. 

(2008b) assumed that the expansion of H. axyridis in the United Kingdom originated from 

various means, such as by imported flowers from the Netherlands and in packing cases from 

Canada. Recently, Lombaert et al. (2010) have retraced the routes of all five worldwide H. 

axyridis invasion events. They noted that the invasive population of Eastern and western 

North American possibly originated from the Asian range through two different unrelated 

introductions. In Europe, there is clear evidence of admixture between the eastern North 

American and European strains that were released as biocontrol agents. Lately, Turgeon et al. 
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(2011) reviewed the above assumptions and noted similar findings. In fact, admixture and 

hybridisation and their consequences on the adaptive potential of invasive populations have 

been explicitly investigated by many scientists (Facon, et al., 2011).  

 

'Hybridisation' is described as the process of interbreeding between genetically differentiated 

lineages (Rieseberg et al., 2003, Mallet, 2005). This plays a critical role in a variety of 

evolutionary processes, ranging from local adaptation to speciation (Rieseberg et al., 2003, 

Mallet, 2005). For invasion biology, hybridisation may comprise a potential stimulus in the 

invasiveness evolution (Lavergne and Molofsky, 2007, Ryan et al., 2009). 'Admixture' is a 

hybridisation process that may involve a recombinant formed from two genetically 

differentiated individuals, leading to phenotypes with greater fitness. In fact, admixture may 

result in a heritable phenotypic variation with a long-lasting response to selection that 

eventually facilitates invasiveness (Facon et al., 2005, 2008, Lavergne and Molofsky, 2007, 

Kolbe et al., 2007). The positive influence of the admixture was revealed when Facon et al. 

(2011) tested a hybridised strain taken from both the invasive French population and the 

biological control strain. This experiment showed that the hybrid strain had a shorter 

development time, a larger size and a higher genetic variance for survival under stressed 

conditions. Apparently, the presence of a substantial genetic differentiation within a 

population could partially explain the several cases of invasion and the persistence of this 

beetle worldwide. Despite the above findings, they noted that there is a possibility of out-

breeding depression, due to recombination disrupting co-adapted gene complexes or meiotic 

problems that might be expressed in future generations of admixed H. axyridis individuals. 

This finding was in accordance with Burke and Arnold (2001). 

 



52 
 

On the arrival of H. axyridis to the United Kingdom, there was extensive national and local 

media coverage, alongside public involvement in detecting it through a dedicated website 

(http://www.harlequin-survey.org). The arrival of the harlequin ladybird has had a negative 

impact on up to 1,000 species in the United Kingdom, including non-target Homoptera, and 

members of aphidophagous and coccidophagous species (Majerus et al., 2006).  A study by 

Brown et al. (2011) assessed the changes in native ladybird species assemblages, including A. 

bipunctata, C. septempunctata, and P. quattuordecimpunctata, across arboreal habitats that 

encompassed the invasion phase of H. axyridis in eastern England over three years after the 

establishment of H. axyridis in the country. There was an increase in H. axyridis population 

ranges from 0.1% to 40% of the total ladybirds sampled, accompanied by a decline in the 

number of native aphidophagous ladybirds from a mean of 19.7 in year 1, to 10.2 in year 3. 

This reduction was caused by intensive competition and intra-guild predation dominated by 

H. axyridis.  

 

Exceptions may occur to the contrary, since not all the native species had been affected by 

the establishment of H. axyridis. Roy et al. (2008) noted that the distribution and abundance 

of C. septumpunctata appeared to be stable and unaffected across Europe, due to non-

overlapping habitats. Nonetheless, the ladybird C. septumpunctata itself is a strong 

competitor that is thought to have caused a dramatic decline in native species in the United 

States and Canada (Harmon et al., 2007). In conclusion, the increasing dominance of H. 

axyridis has disrupted native ladybird communities remarkably and reduced the diversity and 

the resilience of the aphidophagous guild (Winter et al., 2009). The impact, as shown above, 

is substantial; therefore, more laboratory studies should be designed that focus on the 

influence of H. axyridis on fitness-related traits of indigenous coccinellids.  

http://www.harlequin-survey.org/
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There are three main elytral colour patterns of adult H. axyridis that have been verified in the 

United Kingdom - the non-melanic form, F. succinea, and the melanic type, which includes 

both F. spectabilis and F. conspicua. The apparent difference in the pattern of elytral 

coloration forms suggesting a genetically distinct population (Dobzhansky, 1933, Brown et 

al., 2008ab). In the United Kingdom, H. axyridis is bivoltine with a spring peak in larval 

records in weeks 22-25 (i.e. late May to late June) and an autumn peak most frequently in 

weeks 42-43 (i.e. mid to late October) (Brown et al., 2011). The existence of two generations 

passing through the lifecycle within a year, and the resultant high number of offspring, helps 

to explain the rapid dispersal of this ladybird in the United Kingdom (Brown et al., 2008ab). 

Adaptation to winter temperatures below freezing and to summer high temperature up to 

30˚C in different areas would definitely lead to the same adaptive response in response to UK 

weather (LaMana and Miller, 1998, Majerus et al., 2006).  

 

The mean activity period calculated from H. axyridis was 30.75 (range 26 to 34) weeks per 

year (based on the difference between the beginning and end of overwintering in buildings). 

A strong correlation was found between the length of this period and the mean annual 

temperature in Britain, which possibly implies a degree of phenotypic adaptation (Brown et 

al., 2011). A recent field study by Berkvens et al. (2010a) tested the variation in cold 

hardiness of overwintering populations of H. axyridis in Belgium for both an indoor and an 

outdoor hibernaculum. The results revealed that individuals of H. axyridis failed to tolerate 

winter outdoor temperatures, ranging from -17.1˚C to -16.3˚C, while the indoor population 

possessed a higher tolerance response, withstanding temperature ranges from -18.5˚C to -

13.2˚C. The strong cold-hardiness may enable the species to become established over a large 

range of the Europe continent. Harmonia axyridis populations have also become a threat to 

the endemic British fauna (Majerus et al., 2006). As mentioned above, H. axyridis is very 
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common in urban habitats and it increasingly uses semi-natural habitats, with its larvae 

recorded foraging over 50 plant families (Brown et al., 2010).  

 

Following the rapid increase in the negative impact of exotics species worldwide (Howarth, 

1991, Mack et al., 2000), ecologists have been working to identify the key factors that could 

explain why some introduced species have turned into invasive while others did not 

(Williamson, 2006). The mechanisms behind successful colonisation and establishment are 

essential to helping to prevent further invasion and improving release programmes for 

biological control agents, since some countries are still adopting exotic species that have no 

apparent influence on non-targeted species or the ecosystem (Mori et al., 2005). 

Environmental factors, as well as the degree of plasticity in life-history traits, are thought to 

be the main factors for successful invasion and establishment (Shea and Chesson, 2002, 

Marco et al., 2002). These factors might, however, only be partly responsible for determining 

the invasion in some cases.  

 

Despite what has been mentioned above, Mack et al. (2011) emphasised the fact that the 

common perception that such exotic species always have a drastic impact on biodiversity is 

invalid in some cases, and is not always supported by enough data. They further argued that 

the claim made by Wilcove and others in 1998 that "invaders are the second greatest threat to 

the survival of threatened or endangered species after habitat destruction" was supported by 

little evidence. Thus, they encouraged researchers to take care when quoting a particular 

finding. A recent work by Gardener et al. (2011) suggested that invaders do not always lead 

to a major extinction in most native species. 
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The effect of the introduced non-native species varies with time and between species (Mack 

et al., 2011), independent of nativity or the species' origin (Mack et al., 2011). A study by Lee 

(2002) suggested that the success of invasion depends mainly on the ability of introduced 

species to respond to natural selection. For example, the lack of success in the establishment 

of H. axyridis in the islands of the Azores could be a result of the effect of species saturation 

and the competitive exclusion of H. axyridis by other previously established species. The 

absence of cold weather (which is essential for the induction of diapause although not 

obligatory diapause) also played a significant role in suppressing the establishment of H.  

axyridis (Lee, 2002). 

 

1.5 Regulations and prevention measures 

 

In an ongoing effort to evaluate the impact of invasion, ecologists have recently started to 

examine the proximate factors that could depress invasion success. A methodology for risk 

assessment has been developed as a basis for the regulation of the import and release of 

exotic natural enemies (Van Lenteren et al., 2003). Out of these attempts, some scientists 

have encouraged the use of indigenous species rather than exotic agents, since any risk would 

be normally reversible (Follett and Duan, 2000). Fortunately, there is a growing recognition 

among the public, policy-makers and the business community urgently to address the 

problem of the invasive alien species (Van Lenteren et al., 2003, Burgiel et al., 2006, Ehlers, 

2011). 
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Despite considerable efforts, however, there is evidence to suggest that the expansion of 

invasive alien species is still progressing, with its direct relationship with global trade making 

control impossible (Burgiel et al., 2006). Due to the absence of protective measures and 

regulations, the increased movement of goods through growing global trade has led to the 

inevitable introductions of various invasive alien species (Ruiz and Carlton, 2003). Generally, 

preventing the introduction of invasive alien species is recognised as the best effective 

method for keeping the risk of invasion low, since eradicating attempts have been shown to 

be less successful and highly expensive (McNeely et al., 2001). It is important to estimate the 

risk and benefits carefully when considering a regulating rule, as any kind of exaggeration of 

the risk may cause trade-off effects (Ehlers, 2011). Graham and Wiener (1995) declared that 

the first step before developing any regulation policy must be to take into account the cost 

and benefits, in order to estimate the magnitude of the potential problem. Public and society 

concerns have been raised towards over-regulation of biological control agents, which may 

keep older riskier methods in place instead, thus resulting in more adverse consequences 

(Graham and Wiener, 1995, Burgiel et al., 2006, Loomans, 2007). Since 1992, more and 

more countries have put legislation in place concerning those biological introductions that 

threaten biological diversity. This has also increased the international interest in risk 

assessment as a legislative tool (Loomans, 2007). 

 

Countries such as Australia, New Zealand, Canada and the United States already have many 

years' experience in terms of regulating the import and release of exotic invertebrate 

biological control agents (IBCAs) and in analysing the associated risks (Sheppard et al., 

2003). They have successfully implemented the classical biological control programmes 

(Coulson et al., 2000, Sheppard et al., 2003), such as the International Plant Protection 

Convention (Sheppard et al., 2003). Despite that, these regulation programmes have not been 
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well coordinated internationally, because they depend upon a complex intersection of 

environmental, trade and transportation agreements. In addition, there have been concerns 

that differing requirements could lead to conflicts, in particular between trade and 

environmental agreements (Burgiel et al., 2006). Although there have been few reported 

negative effects linked to the import and release of IBCAs, 20 countries worldwide have 

already implemented and revised their regulatory framework for the release of biological 

control agents, in others regulation is currently being implemented, and in some countries no 

regulation yet exists (Sheppard et al., 2003, Van Lenteren et al., 2006).  

 

European countries have experienced an increase in the establishment of exotic invertebrate 

and plant pest species (Bigler, 2001). The use of IBCAs in Europe is not covered by a 

directive equivalent to that which regulates biocontrol with microorganisms or the genetic 

modification of crop plants (Bigler, 2001). When the legislation and the administration for 

regulation of IBCAs existed, it fell under the responsibility of the national plant quarantine 

service and focused mainly on preventing introduced IBCAs from becoming agricultural 

pests (Wapshere, 1974, Waage, 1997). Interest in implementing classical biological control 

programmes has been growing throughout Europe, aiming to avoid the use of chemical 

controls, which can be harmful, whether to animal or human health, plant health or 

biodiversity conservation (Waage, 1997, Sheppard et al., 2006). Some European countries 

have already established their own well-organised programme for regulating the introduction 

of exotic IBCAs (Bigler, 2001, Bigler et al., 2005, Loomans, 2007).  

 

About 90 species of IBCAs are widely used and commercialised across Europe at present 

(EPPO, 2002), and many more are under investigation for future release. Europe leads the 

world in this activity and national regulatory societies have an obligation to facilitate 
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international trade in an efficient regulated way (Loomans, 2007). There has been a growing 

intention in recent years to introduce a unified scheme and regulatory procedures across all 

European member countries. Yet, despite these initiatives, large differences still exist in the 

degree of implementation of regulatory procedures of IBCAs across Europe (Waage, 1997, 

Bigler et al., 2005). A survey of 20 European countries, conducted in 2004, revealed that 

despite all countries under investigation having national legislation in place, an active 

regulatory process had only been implemented to some degree in nine countries (Austria, the 

Czech Republic, Denmark, Hungary, Norway, Slovenia, Sweden, Switzerland and the United 

Kingdom). Five countries are still working on the design and implementation of a regulatory 

system (Finland, Germany, Netherlands, Slovenia and Spain) and six countries have no 

regulation implemented yet, and are unlikely to do so in the foreseeable future (Belgium, 

France, Greece, Italy, Poland and Portugal) (Bigler et al., 2005).  

 

The Community Agriculture Policy (FAO) Code of Conduct as the International Standard for 

Phytosanitary Measures (ISPM) No. 3 under the IPPC was published in 1996 (Bigler et al. 

2005). Also known as the "Code of Conduct for the Import and Release of Exotic Biological 

Control Agents", this was the turning point for several activities related to the release of 

biological control agents in Europe (Bigler et al., 2005). The FAO Code of Conduct has 

brought about important changes in the regulation of IBCAs in western and developing 

countries, but these were still largely non-legislative instruments and were not compulsory 

(Kairo et al., 2003). In Europe, ISPM No. 3 has never been fully implemented (Loomans, 

2007).  

 

Shortly after the code’s publication, several international organisations developed guidelines 

on the implementation of regulation for IBCAs and data needed for environmental risk 
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assessment (Bigler et al., 2005, 2006). The European and Mediterranean Plant Protection 

Organisation (EPPO) together with CABI Bioscience organised a workshop in Europe 

(EPPO, 1997). One of the main outcomes of the workshop was the proposal for harmonising 

guidance for importation practice between European countries, detailing the criteria 

recommended for importation for different purposes - such as for research or classical and 

commercial biocontrol (http://www.eppo.org/STANDARDS/standards.htm). Several 

conferences and research stemmed from the publication of the FAO code, including the 

Evaluating Environmental Risks of Biological Control Introductions into Europe (ERBIC) 

research project, executed from 1998 to 2002 and funded by the European Union (Bigler et 

al., 2005, 2006). Another promising activity was initiated in 1999 by the OECD 

(Organisation for Economic Co-operation and Development), aiming to harmonise the 

regulation of IBCAs. As a consequence, the International Biocontrol Manufacturer 

Association (IBMA) proposed to the International Organisation for Biological Control 

(IOBC/WPRS) that it coordinates harmonisation among the European regulatory authorities 

(http://www.iobc-wprs.org). The IOBC/WPRS appointed a commission in 2003 with several 

objectives, including homogenisation and regulation of IBCAs, based on the FAO Code of 

Conduct and the EPPO standards (Bigler et al., 2005).  

 

Recently, Bale (2011) listed precisely the problems surrounding the fragmented pattern of 

regulation between European countries - for example, there is a variation in collected 

scientific information required for release licences, the methods of environmental risk 

assessment for different species of IBCAs needs further formatting, the European Plant 

Protection Organisation Positive List needs a continuous updating and revision, expert advice 

on environmental risk assessment data and more communication are needed between IBCA 

regulators, and the international leadership must be able to provide provision to coordinate 

http://www.eppo.org/STANDARDS/standards.htm
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regulatory and environmental risk assessment related issues with IBCA-based biocontrol in 

Europe.  

In conclusion, at present there is no coordinated system of regulation for IBCAs across 

Europe. Biological control agents are instead regulated according to the nature of the agent, 

the mode of action (microbial or macrobial), and the purpose for which it is used (Loomans, 

2007). It is clear that the legislation for the regulation of IBCAs varied among European 

countries and in some countries the law has not yet been authorised. Uncoordinated 

regulations among European countries may have impacts and cause serious ecological and 

economical crises. Yet, there is no obvious contribution from governments, ministries and 

scientific institutions towards this important issue (Bigler et al., 2005). Since the 

establishment of H. axyridis, many European countries stopped releasing coccinellids based 

on documented non-target risks.  

 

The EU commission declared the need for a proposal in order to organise the importation 

policies of exotic species. Subsequently, the Regulation for Biological Control Agents 

(REBECA), founded in 2006, has taken initiatives to develop several guidelines for 

harmonised methodologies for risk assessment and subsequent implementation of regulation 

procedures. The regulation procedures were applied, however, at national level (Bigler et al., 

2005). This and other examples demonstrate that Europe urgently needs a harmonised 

regulation of biological control agents, which will prevent import and release of unsafe 

organisms, but which will not put an unnecessary burden on biological control (Bigler et al., 

2005). Hunt et al. (2007) conducted a research and comparison between the different systems 

adopted by New Zealand, Australia, Canada and the United States. The component of their 

work determined the best recommendations for incorporation into a workable regulatory 

framework to suit the needs of Europe. There is therefore a need to improve understanding of 
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the processes underlying their success or failure in order to collaborate with these 

organisations, so that the best policy for controlling and preventing future invasion may be 

found.  

1.6  Life-history theory 

 

Life-history theory seeks to understand the factors that produce variation in life histories 

found both among and within species (Roff, 2007). It deals with how natural selection shapes 

an organism’s development, reproduction and death; thus, it is a theory of fitness (Nylin and 

Gotthard, 1998). Two basic considerations form the foundation of life-history theory. First, 

there is some definable measure of fitness that is maximised by natural selection. Second, 

there are trade-offs that determine the possible set of life-history trait interactions (Roff, 

2007). According to Stearns (1976), life-history theory assumes that the environment is 

frequently fluctuating either predictably or stochastically over time and resources often 

become limited. Organisms must therefore adjust their resource acquisition and their 

allocation patterns for various life history traits in order to compensate for unpredicted 

environmental conditions (Boggs, 2009).  

 

The decision and degree of resource allocation are likely to result in different relationships 

between life-history traits and demographic rates, depending on the prey or food availability 

(Plaistow et al., 2006). Resource allocation for holometabolous insects is highly complex in 

comparison with that of hemimetabolous insects. The allocation in the former is a three-stage 

process corresponding to life stage, namely, maternal and larval-derived nutrients, pupal 

stage and adult. The patterns of allocation at each stage are highly dependent on the external 
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nutritional status (Boggs, 2009). Furthermore, the nutritional requirements are variable 

according to the life-history trait and can change according to age or allocation duration 

(Giron and Casas, 2003). For example, the butterfly Speyeria mormonia (Boisduval, 1869) 

(Lepidoptera: Nymphalidae) needs to be fed nitrogen during the larval stage, whereas nectar 

mixed with carbohydrates is necessary during the adult stage (Boggs and Ross, 1993). 

Providing nectar only at the adult stage constrains the potential total fecundity (Boggs and 

Ross, 1993). Thus, multiple types of nutrients must be considered simultaneously in some 

cases and at specific stages of the lifecycle (Jervis et al., 2008). Nutrient allocation and 

partitioning towards multiple traits can therefore generate trade-offs between several traits, 

particularly when food is the limiting factor (Roff, 2002). Likewise, it has been reported that 

the dependent trade-off between life history traits may differ between low and high food 

abundance and the type of trade-off is important in determining the population dynamic 

patterns (Benton et al., 2006, Plaistow et al., 2006). 

  

Classic trade-offs have been widely documented between growth, reproduction and survival, 

which may vary through time and among individuals (Fischer et al., 2006). In addition, some 

trade-offs occur at a smaller trait scale, such as those reported between egg number and size 

(Smith and Fretwell, 1974). Thus, in order to understand the context of pest life-history traits, 

the interaction between fitness-related traits, adaptive evolution and population dynamics 

must be considered (Nylin and Gotthard, 1998, Nylin, 2001). Several studies have focused on 

physiological trade-offs, life-history evolution and genomics, ignoring the cross-connections 

between such areas (Lee et al., 2008). Roff (2007) noted that evolution proceeds due to 

variations in fitness, and that life-history traits directly contribute to enhancing this fitness. 

He further stressed that both evolution and genomics-based approaches are essential when 

explaining several trade-offs. Furthermore, the related resource allocation will always 
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contribute to the future development of life-history theory. Roff (1992) and Stearns (1992) 

summarised the classical life-history theory, which is based on an optimisation model that 

always attempts to maximise several measures of fitness under certain constraints (Stearns, 

1977, Lewontin, 1979). By the 1990s, scientists had achieved a plausible explanation for the 

evolution of life-history traits away from optimality, as reviewed by Stearns (2000). In 

agreement, Lande (1982) stressed that not all organisms or organs are expected to function at 

their optimal level during their lifespan, and therefore any results based on optimality would 

be unreliable. 

 

'Evolutionary theory' predicts that in "populations subjected to rapid extinction, 

recolonisation dynamics and natural selection should favour rapid evolution of traits 

enhancing dispersal and recolonisation ability" (Forsman et al., 2012, Hanski, 2001, Roff and 

Fairbairn, 2001). For example, the rate of dispersal and emigration of metapopulations of 

field voles Microtus agrestis (Linnaeus, 1761) (Rodentidae: Cricetidae) significantly 

increased when subjected to extinction and recolonisation (Roff and Fairbairn, 2001). The 

evolutionary increase in dispersal ability occurring in newly established populations is a 

partial consequence of trade-offs between dispersal and reproductive activities. Such 

evolutionary trade-offs were found to have a significant role in affecting the expansion rate in 

invasive species (Hill et al., 1999, Hughes et al., 2003). Furthermore, Reznick and Ghalambor 

(2001) demonstrated an association between adaptive phenotypic evolution, which may result 

in significant trade-offs, and the process of colonising a novel habitat. Trade-offs have played 

a definite role in the development of life-history theory (Stearns, 1989) and have been the 

subject of controversy (Reznick et al., 1986, Bell, 1986). The most obvious life-history trade-

offs are those related to reproduction and future survival (Williams, 1966ab). Measuring the 

costs of reproduction on other traits was proven to be impractical, because both phenotypic 

http://en.wikipedia.org/wiki/Carolus_Linnaeus
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and genetic correlations must be determined in advance in the natural environmental range to 

enable one to draw a conclusion (Stearns, 1989). The trade-offs between growth and 

reproduction in invasive plant species and how such trade-offs relate to population 

demographics have been studied and reviewed intensively (Lambrinos, 2004, Colautti et al., 

2010ab). Invasive insects, however, have not received the attention commensurate with their 

importance.  

 

Of fundamental importance to invasion and the spread of an organism are the temporal 

patterns of reproduction and survival, which are considered the main make-up of an 

individual's lifecycle (Juliano and Lounibos, 2005). The trade-offs in life-history traits of 

invasive species are expected to participate in accelerating invasiveness. According to Bell 

(1980), in many instances the trade-offs that manifest as costs of reproduction are reduction 

in adult longevity and future reproductive potential. In addition, some trade-offs are likely to 

occur within the reproductive output, such as the negative relationships between fecundity 

and investment per offspring (Bell, 1980, Roff, 2002). For example, large females of the 

recolonised population of the Asian tiger mosquito, Aedes albopictus (Skuse, 1894) (Diptera: 

Culicidae), from North America (i.e., associated with the extreme winter climate) died sooner 

after their last oviposition when compared with the southern population (Leisenham et al., 

2008). Nevertheless, there were also pronounced inter-populational variations in the survival 

and reproductive schedules of the North American population. Reznick (1985) noted that it is 

highly important to consider the trade-offs resulting from reproductive traits, because they are 

essential in predicting the optimal life-history mode in a given environment.   

 

http://www.ncbi.nlm.nih.gov/pubmed/17637849
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583062/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583062/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583062/
http://en.wikipedia.org/wiki/Frederick_A._Askew_Skuse
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Range expansion may greatly affect the evolution of life-history traits, owing to the varying 

selection pressures (Burton et al., 2010). Dispersal and reproduction traits that favour 

expansion are often selected over other traits, such as competitive ability (Burton et al., 

2010). A study was conducted to compare the reproductive potentials of the large invasive 

lady beetle, Coccinella  septempunctata (Linnaeus, 1758) (Coleoptera: Coccinellidae), with 

four smaller native North American species that have been displaced from alfalfa fields in 

Utah (Kajita and Evans, 2010). The results revealed that the rapid predominance of the 

invasive population of C. septempunctata was mainly due to the greater investment in 

reproduction and reproductive rate. This has great implications for understanding both the 

rate of spread of invasive species and the range of native species' displacement in response to 

climate change. Nylin (2001) noted that there are only a few studies that deal with various 

life-history traits and trade-offs associated with colonising a novel or heterogeneous 

environment. Additional studies are therefore required to demonstrate how individuals 

allocate resources in response to fluctuating environmental conditions and the presence of 

natural enemies, in order to understand the drivers of population dynamics in invasive species 

(Nylin, 2001). Similarly, Forbes et al. (2010) claimed that better knowledge of the interaction 

between life-history traits in a specific environment can be used to optimize methodologies 

for prevention and control strategies. 

 

1.6.1 Life-history traits  

 

Nylin (2001) noted that 'life-history traits' can be best defined as those that quantitatively 

describe the transitions between different aspects of a species' lifecycle. These traits typically 

include the different aspects of reproduction, development, maintenance and survival. Thus, 

http://en.wikipedia.org/wiki/Carl_Linnaeus
http://en.wikipedia.org/wiki/10th_edition_of_Systema_Naturae
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they are traits that contribute to the overall fitness of an organism (Tatar et al., 1993, Nylin, 

2001). The most commonly recognised life-history traits are age and size at maturity, 

reproductive investment, reproductive period, ageing (Stearns, 2000) and those traits that 

determine demographic features of a population (Engelen and Santos, 2009). Other long-

recognised life-history traits include adaptational strategies to diapause, parthenogenesis, 

hermaphroditism, protandry, migration and longevity (Cole, 1954, Tatar et al., 1993). All of 

the above-described traits are those that primarily ensure persistence and survival of a 

population under uncertain environmental conditions (Cole, 1954, Stearns, 1976, Nylin, 

2001).  

 

Life-history traits are often highly variable among geographic populations, both intra- and 

inter-specifically (Stearns, 1977, Partridge and Harvey, 1988). Several factors contribute to 

the divergence in life-history traits, such as random genetic drift or resource variability, 

which may evoke an increase in predation risk as well as competition (Mousseau and Roff, 

1987, Spence, 1989). For example, regarding intraspecific variability, a comparison between 

two strains of seed beetle, Callosobruchus maculates (Fabricius, 1775) (Coleoptera: 

Bruchidae), exhibited significant variations in life-history traits, particularly fecundity, 

oviposition period, and egg and body sizes (Messina, 1991). Stearns (2000) suggested that to 

predict the evolution of a particular life-history trait, it is sufficient to consider its impact on 

both mortality rates and fecundity, since these two traits are the predominate ones that 

determine population dynamics and intrinsic growth. 

  

Scientists are particularly interested in life-history traits, because these are the traits on which 

natural selection acts in order to maximise the fitness of an organism (Nylin, 2001). In other 

http://en.wikipedia.org/wiki/Johan_Christian_Fabricius
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words, life-history traits are under strong directional selection and are expected to evolve 

rapidly unless opposed by physiological, genetic and or phylogenetic constraints (Nylin, 

2001). In this regard, it has been recognised that phenotypic plasticity as a life-history trait is 

a very important factor in facilitating colonisation, as colonists must adapt and tolerate the 

new range of environmental conditions, but that other traits are also required for 

establishment (Sakai et al., 2001). Invasion theory has attempted to identify which life-

history traits best explain the successful establishment and colonisation of a novel range 

(Engelen and Santos, 2009), whether reproduction mode, growth rate, sexual maturity, 

phenotypic plasticity, tolerance patterns or others (Baker, 1974). Predicting which traits are 

mainly associated with invasive species is, however, difficult since such traits may be altered 

as the invasion process proceeds (Engelen and Santos, 2009).  

 

The importance of lag phases or slow population growth following introduction is a 

controversial subject. The extent of lag phases is dependent mainly on the aspects of the 

lifecycle of a species (Kowarik, 1995) and may be affected by the pattern of growth of a 

population (Parker, 2004). Thus, it is necessary to understand population characteristics in 

order to predict which species is the probable invader (Engelen and Santos, 2009, Kolar and 

Lodge, 2001). From the numerous models of population dynamics that have emerged, it has 

become clear that equal impacts on different life-history traits do not have equal 

consequences on population dynamics, either within a species or among species, depending 

on the species' lifecycle (Forbes, et al., 2010). The demographic importance of life-history 

traits can be defined as either the absolute 'sensitivity' or relative 'plasticity' change in 

population growth rate (De Kroon et al., 2000). Forbes et al. (2010) demonstrated that life-

history traits that have a high sensitivity to chemical toxicants tend to have a low elasticity, 

meaning that changes in them have relatively less impact on population growth rate, in 
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comparison with other traits. For example, it was found in their proposed model that 

fecundity was more sensitive to chemical stress and less elastic when compared with adult or 

juvenile survival. The above approach may provide guidance in selecting the most sensitive 

traits when estimating impacts on population dynamics. Likewise, Nylin (2001) pointed out 

the importance of having more studies investigating life-history traits, particularly those that 

would eventually describe which types of insects are most likely to become serious pests. 

 

1.6.2 Phenotypic Plasticity 

 

Many scientists have defined 'phenotypic plasticity' and most of these definitions are virtually 

identical (Whitman and Agrawal, 2009). Phenotypic plasticity refers to the capacity of a 

single genotype to consecutively express a range of discrete phenotypes as a function of 

unexpected environmental conditions during ontogeny (Shapiro, 1976, West-Eberhart, 1989, 

Nijhout, 1999, Debat and David, 2001, Fordyce, 2006). The set of phenotypes produced in a 

specific set of environments is referred to as 'the norm of reaction' of the genotype (Stearns 

and Koella, 1986). The direction and degree of responses to environmental factors is 

genetically variable and known to respond to natural selection (Gupta and Lewontin, 1982). 

Plasticity is by itself a trait subjected to natural selection and evolutionary change (Williams, 

1966ab, Stearns, 1983, Sultan, 1987). Thus, it is a mistake to consider phenotypic plasticity a 

non-genetic phenomenon (West-Eberhard, 1989).  

 

The concept of phenotypic plasticity was first applied to morphological traits (Schlichting 

and Pigliucci, 1998). It is important, however, to realise that phenotypic plasticity is not just 

restricted to morphology. Organisms may reveal plasticity in physiological, behavioural and 
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developmental aspects of their life-history traits (Agarwala, 2007). As all phenotypic traits 

result from the joint effects of biochemical and physiological processes, changes in any 

phenotypic trait are virtually always labelled as a consequence of physiological influences 

exclusively (Whitman and Agrawal, 2009). Examples of phenotypic plasticity are many, such 

as, alternative reproductive tactics that have been described in many insect orders, in which 

individuals switch facultatively between different behaviours to acquire mates (Gadgil, 1972, 

Thornhill and Alcock, 1983, Shuster and Wade, 2003), as well as foraging, feeding or 

provisioning behaviour (Moczek, 1998, Moczek, 1999). Some patterns of phenotypic 

plasticity expression are mediated by the joint contributions of genetic and environmental 

factors, such as the regulation of appendage growth and development (Abouheif and Wray, 

2002), or the expression of seasonal morphs in butterflies that encompass different 

behavioural plasticity (Brakefield and Reitsma, 1991). 

 

Using the optimality model is, however, sometimes incorrect when it comes to phenotypic 

plasticity for several reasons (Sultan, 1995). First, not all phenotypic plasticity is adaptive - 

some traits are plastic due to the constraints imposed by the biochemistry, physiology or 

developmental features of an organism. Second, the degree and expression of plasticity show 

variable reversibility, for instance, biochemical and physiological responses can be reversed 

over a short period of time, whereas developmental and morphological responses tend to be 

irreversible, or in some cases take a very long time. Third, the pattern and degree of plasticity 

are trait-specific, depending on a particular set of environmental cues (Pigliucci et al., 2006). 

Parker and Smith (1990) noted that optimisation is not a universal rule; it helps to improve 

understanding of adaptations, rather than producing optimal solutions. Thus, it is important to 

distinguish between the specific and general model - the former is applied to collect 
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quantitative data on a target species, but the latter provides qualitative range and solutions for 

a number of common biological problems (Parker and Smith, 1990).  

 

In the absence of the environment cues, a given phenotype may sometimes disappear from a 

population and be replaced by an alternate phenotype, which becomes the subject of selection 

(West-Eberhard, 1989, West-Eberhard, 2003). Waddington (1953) introduced the word 

'assimilation' to refer to this phenomenon. In such cases, the evolution and developmental 

switch mechanisms are thought to play a central role in mediating the diversification of 

alternative phenotypes (Nijhout, 1999). An explicit example is those developmental switch 

mechanisms in insects that are regulated by hormonal activities, such as switching for 

determining the timing of pupation in butterflies (Nijhout, 1976), or the expression of 

alternative male phenotypes in horned beetles (Moczek and Nijhout, 2002ab). The occurrence 

of a phenotype with altered or decreased responsiveness to environmental conditions (i.e., 

self regulatory mechanism) is also known as 'canalisation' (Waddington, 1956, Etges, 1989) 

or developmental homeostasis (i.e., a flat fitness reaction norm resulted from absolute 

adaptive phenotypic plasticity) (Waddington, 1956, Richards et al., 2006). Canalisation, 

which is commonly used in the evolution of phenotypic plasticity studies, generally results 

from selection in favour of reaction norms that counteract environmental cues (Siegal and 

Bergman, 2002). Alternatively, as viewed by Wilkins (1986), it is the stabilisation of 

developmental pathways by multiple genetic factors within the genome.  

 

Conover and Schultz (1995) noted that plasticity is often under conflicting selective 

pressures, depending on the environmental conditions. If the selection is upwards in bad 

environments, it is known as 'counter-gradient selection'. For example, Levins (1969ab) 
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described the counter-gradient variation in body size of Drosophila melanogaster (Meigen, 

1830) (Diptera: Drosophilidae) with respect to altitude and temperature gradients. Flies from 

a cold high-altitude site were found to be larger in size than those from a warmer low-altitude 

set. The downwards selection in good environments is usually known as 'antagonistic 

selection' (Falconer, 1990). When antagonistic selection occurs in both directions, it is known 

as 'stabilising selection' (Falconer, 1990, Bradford and Roff, 1995), and the reverse of 

antagonistic selection is synergistic or co-gradient selection (Falconer, 1990). This subject is 

explained explicitly in Trussell (2000). 

 

An accurate description of population dynamics requires knowledge of how phenotypic 

plasticity works (Beckerman et al., 2002, Benton et al., 2006), as it plays an important role in 

describing the origin and subsequent diversification of both morphological and behavioural 

traits (West-Eberhard, 1989). Some authors have used inconsistent terms when pointing out 

the different aspects of phenotypic plasticity, such as adaptive and non-adaptive, active and 

passive, reversible and irreversible, etc. (Nylin and Gotthard, 1998). Moczek (2010) argued, 

ultimately, all of the different terms that have been used to describe phenotypic plasticity 

belong to the same fundamental property of an organism, its ability to respond to 

environmental cues by changing the expression of a phenotype. For instance, it was noted 

that 'beneficial plasticity' should include all such changes related to adaptive phenotypes - 

such as, acclimatisation, diapause, life-history shifts, dispersal (Mousseau and Roff, 1987, 

West-Eberhard, 2003, Lyytinen et al., 2004, Schmid-Hempel, 2005), seasonal colour and 

wing polyphenisms in butterflies (Brakefield and Larsen, 1984, Nylin et al., 2005), plasticity 

in reproductive performance (Wessels et al., 2010), reproductive phases in aphids (Le 

Trionnaire, 2008), alternative male morphologies in horned beetles (Moczek and Emlen, 

2000, Moczek and Nagy, 2005), and anti-predator mediated plasticity (Dixon and Agarwala, 

http://en.wikipedia.org/wiki/Johann_Wilhelm_Meigen
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1999). 'Non-adaptive plasticity' includes various susceptibilities to potential abiotic factors, as 

well as manipulation in hosts that have been parasitised (Roy et al., 2006, Kenyon and Hunter 

2007, Poinar and Yanoviak, 2008).  

 

Adaptive plasticity is of interest to evolutionists as it represents the production of diversity 

through adaptive responses whose environmental sensitivity is subjected to natural selection 

(West-Eberhard, 1989). An organism has the ability to compare its intrinsic conditions 

relative to extrinsic cues by altering its bio-physiological regulatory mechanisms (Juliano, 

2004). Adaptive behavioural plasticity evolves more readily than adaptive morphological 

plasticity, because of the availability of more potential factors regulating the expression of an 

immediate response (Carson, 1978). Thus, it is expected that behaviour patterns must be 

established first, followed by morphological improvement, which usually takes a long time 

(Plotkin, 1988ab). In addition, numerous studies have shown that both the nature and the 

magnitude of plastic responses can evolve independently of other phenotypes, leading to 

evolutionary diversification between populations and species. For example, families of 

cabbage-white butterflies, Pieris rapae (Linnaeus, 1758) (Lepidoptera: Pieridae), showed a 

heritable variation for adjusting host-plant preferences (Snell-Rood and Papaj, 2009). 

Fordyce and Muizon (2001) noted that plasticity carries numerous costs and trade-offs and 

some have argued that it is almost impossible to ever estimate the total ratio of costs to 

benefits.  

 

All biological processes exhibit some degree of plasticity response, in that their function is 

influenced by external conditions (Mousseau and Roff, 1987, West-Eberhard, 2003). 

Importantly, such responses involve adjustments on not just one but many levels of biological 

http://en.wikipedia.org/wiki/Carl_Linnaeus
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organisation (Gilbert, 2001, West-Eberhard, 2003). Organisms are not infinitely plastic, but 

are limited in their responses towards a variable environment (Moczek, 2010). Even in the 

most extreme cases, such as polyphenism's expression of alternative phenotypes, it is often 

restricted to two morphs only (West-Eberhard, 2003). Despite the effect of environmental 

input, some cases, such as the physiological or reproductive functions, typically face 

regulatory mechanisms or constraints that may act to limit the degree of their plasticity 

expression (Ricklefs and Wikelski, 2002, Hatle et al., 2004). For example, the fixed 

allocation patterns in insects for reproduction, which suggests their reproductive plasticity, is 

greatly constrained by regulatory mechanisms activated by meeting the minimal nutritional 

threshold (Ricklefs and Wikelski, 2002). This, however, cannot necessarily be the general 

rule (Wessels et al., 2010). Stearns and Koella (1986) suggested that in order to make 

predictions or even to interpret observed patterns and generalise on other organisms, models 

of fitness are needed. In addition, discerning adaptive plasticity from non-adaptive ones is 

sometimes a difficult issue and may need a thorough evaluation of many life-history traits for 

different species (Reznick et al., 1990, Ghalambor, 2007).  

 

Phenotypic plasticity has long been suggested to facilitate biological invasions (Daehler, 

2003, Pysek and Richardson, 2007). Ghalambor et al. (2007) pointed out that persistence and 

colonising in a variable environment, whether temporal or spatial, is likely to be facilitated by 

phenotypic plasticity. It is more appropriate to consider adaptive phenotypic plasticity when 

describing the invader strategies in a novel range, because this pattern of plasticity may lead 

to a predisposition to enhance physiological and reproductive functions and maximise 

individual fitness, unlike phenotypic plasticity (Sultan, 2003). A growing number of studies 

have now shown that adaptive plasticity allows for the acclimation of invasive genotypes to 

varying environments and buffers the existing genetic variation from selection, leading to 



74 
 

phenotypic homeostasis or increasing the degree of tolerance (West-Eberhard, 1989, 

Rejmanek, 2000, Alpert and Simms, 2002, Sultan, 2003, Boggs, 2009). On the introduction 

of target species, both short- and long-term phenotypic plasticity responses can be accounted 

for as important mechanisms that enhance individual chances of survival (Chown and 

Terblanche, 2007, Whitman and Ananthakrishnan, 2009), and have been demonstrated to be 

significant components of field fitness in insects (Kristensen et al., 2008). For example,  

Nyamukondiwa et al. (2010) compared the widely distributed Mediterranean fruit fly, 

Ceratitis capitata (Wiedemann, 1824) (Diptera: Tephritidae), with the narrowly distributed 

congener, Ceratitis rosa (Karsch, 1887) (Diptera: Tephritidae). The comparisons revealed 

that both species differed in the time-course of plastic responses to cold hardening.  

 

It was addressed previously that during invasiveness there is an increase in the levels of 

plasticity in invasive species (Lombaert et al., 2007), since they are expected to predispose 

adaptation to the wide range of environments encountered (West-Eberhard, 2003, Richardson 

and Pysek, 2006, Chown et al., 2007, Slabber et al., 2007). It was reported that after the target 

species have been released, they tend to evolve higher levels of adaptive phenotypic plasticity 

gradually (Richards et al., 2006, Van Kleunen et al., 2008), which can result in remarkable 

quantitative genetic variations between native and invasive species (Facon et al., 2006, Lee et 

al., 2002)  (explained explicitly in the above section on invasion), For instance, a study 

demonstrated that an invasive population of H. axyridis displayed significantly different 

plastic responses to temperature variations and showed a higher survival rate when compared 

with the population used as biological control (Lombaert et al., 2007). In another related 

example, the invasive Aedes albopictus (Skuse, 1894) (Diptera: Culicidae) showed rapid 

adaptive evolution of the photoperiodic response during invasion and range expansion across 

latitude in the United States. The above results emphasise the importance of photoperiodism 

http://en.wikipedia.org/wiki/Christian_Rudolph_Wilhelm_Wiedemann
http://en.wikipedia.org/wiki/Frederick_A._Askew_Skuse


75 
 

as a basic key for frequent adaptation to spatial and temporal environmental variation and 

climatic warming. In addition, it basically elucidates the underlying physiological bases of 

photoperiod in regulating seasonal development that could be incorporated in invasive-related 

studies (Bradshaw and Holzapfel, 2001ab, Bradshaw and Holzapfel, 2006). 

 

Richards et al. (2006) noted that generalising the plasticity term for invasive species remains 

limited. It is therefore premature to draw any firm conclusions based on the above results or 

any other similar emerged findings, since plastic responses may differ according to external 

cues and be trait-specific. On another level, it has been reported that the trait to be measured 

and the environments to be tested must be chosen with caution when attempting to detect the 

variation in the adaptive phenotypic plasticity among invading populations (Richards et al., 

2006). Determining the plasticity of a specific trait can be accomplished by several 

approaches, rather than simply quantifying degree of phenotypic plasticity in invasive species 

(Pigliucci, 2001, Richards et al., 2006, Hulme, 2008). Additional approaches must be taken in 

order to better understand the role of phenotypic plasticity in geographic distribution, 

colonisation success and persistence in the introduced range. These issues must incorporate 

measures of invasive species' performance and behaviour, rather than crude differences in 

individual traits across an environmental gradient (i.e., plasticity is often a comparative rather 

than an absolute measure, unlike many other life-history traits) (Hulme, 2008). Richards et al. 

(2006) stressed that both the evolutionary and ecological aspects of the invader species 

should be integrated, since they have led to highly fruitful conclusions when interpreting the 

plasticity in invasive species. 

 

 

http://www.jstor.org/stable/10.1086/664709
http://www.jstor.org/stable/10.1086/664709
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1.7 Body size 

 

One of the most important life history characters of an organism is body size which is 

considered to be a key determinant of organism’s morphology, physiology, behaviour, and 

eventually fitness (Kingsolver and Huey, 2008). Body size is one of the characters of 

organisms that varies continuously due to natural selection, resource acquisition and rearing 

conditions (Chown and Gaston, 2010). The variation in body size has long been of central 

attention to macroecologists (Brown, 1989, Olson et al., 2009). Many empirical approaches 

have been adopted to understand the distribution of organisms at large spatial and temporal 

scales (Blackburn and Gaston, 2003, Smith et al., 2004, Chown and Gaston, 2010). The 

evolution and the distribution of body size is not the subject of the present study and it is well 

presented in large and growing literatures such as the review by Blackburn and Gaston 

(2003), Kingsolver and Pfennig (2004), Mirth and Riddiford (2007),  Clauset and Erwin 

(2008) and Chown and Gaston (2010). It was noted that without some comprehension and 

consideration of the physiological and biochemical basis that determine body size in insects 

and life-history consequences of size variation, the large-scale patterns of body size variation 

cannot be understood (Mirth and Riddiford, 2007, Chown and Gaston, 2010). Therefore, the 

following sections were assigned to highlight some of the important regulatory mechanisms 

and hypotheses underlying the evolved variations in body size.   

 

Several studies have focused on the regulatory mechanisms determining body size in 

holometabolous insects (Nijhout, 2003, Emlen and Allen, 2004, Nijhout et al., 2006, Mirth 

and Riddiford, 2007) such as Drosophila melanogaster (Meigen, 1830) (Diptera: 

Drosophilidae) (Nijhout, 2003) and the tobacco hornworm, Manduca sexta (Linnaeus, 1763) 

http://en.wikipedia.org/wiki/Johann_Wilhelm_Meigen
http://en.wikipedia.org/wiki/Carl_Linnaeus
http://en.wikipedia.org/wiki/Centuria_Insectorum
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(Lepidoptera: Sphingidae) (Safranek and Riddiford, 1975).  The regulatory mechanisms in 

these two models were of controversy. Although the physiological mechanisms in those 

insects were presumably generalized in their most significant aspects, the extent to which 

they operated at the cellular level has not yet been fully verified for generalization on other 

species (Nijhout, 2003, Parker and Johnston 2006). The most significant developmental stage 

that has a great influence on the final body size in Lepidopterans (i.e., that is applied to 

Coleopterans as well) is the larval mass at which the juvenile hormone (JH) secretion ceases 

(Nijhout and Williams, 1974ab) due to the action of JH esterase secretion (Roe et al., 1993, 

Browder et al., 2001). The weight at this stage is referred to as the critical weight (Nijhout et 

al., 2006). Once the JH falls below a certain threshold, the prothoracic gland (PG) will start 

secreting prothoracicotrophic hormone (PTTH) and ecdysteriods that are already inhabited by 

JH (Nijhout and Williams, 1974b). The hormone PTTH is secreted during a photoperiodic 

gate which is controlled by a photoperiodic clock (Nijhout et al., 2006).  The subsequent 

increases in ecdysteroid levels will ultimately cause the cessation of feeding, and initiation of 

pre-pupal stage (Nijhout and Williams, 1974ab, Browder et al., 2001).The hormonal 

regulation of growth cessation in other holometabolous insects are likely similar to those of 

the lepidopteran (Chown and Gaston, 2010).  This is not however, the case in D. 

melanogaster (Edgar, 2006). Mirth and Riddiford (2007) believe that the sequence of 

endocrine events leading up to critical weight is much better defined in M. sexta than they are 

in D. melanogaster. 

 

The critical weight has been the focus of many studies particularly in M. sexta as reviewed by 

Nijhout (2003). The critical weight defined as the minimal weight in which further feeding 

and growth are not required for a time period to metamorphosis and pupation (Nijhout and 

Williams, 1974a). Others defined the critical weight as the minimal size at which transient 
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starvation no longer delays metamorphosis (Beadle et al., 1938). The time period between 

attaining the critical weight and the secretion of PTTH (i. e., full clearance of JH) is of 

considerable significance in the context of adult size, and is referred to as the interval to the 

cessation of growth (ICG) (Davidowitz et al., 2004) or the terminal growth period (TGP) 

(Shingleton et al., 2007). D’Amico et al. (2001) summarized the three important 

physiological bases that play a major role in regulating body size in M. sexta, which are the 

critical weight, TGP and rate of growth. The quantitative change in these three factors was 

shown to account for over 95% of the evolutionary change in body size (D’Amico et al. 

2001).  

 

Body size regulation is a function of a species-specific critical weight (Nijhout and Williams, 

1974ab, Nijhout, 2003, Mirth and Riddiford, 2007). The question that should be addressed in 

this contetxt is how does an insect assess their critical size achievement and stop growing?  

Studies on the fruit fly D. melanogaster revealed that insulin and Target of Rapamycin 

(TOR) pathways are the main factor regulating nutrition-dependent growth rates (Oldham 

and Hafen, 2003, Mirth and Riddiford, 2007). It was noted that TOR responds to ATP and 

amino acids levels in the haemolymph and is highly sensitive to oxygen levels (Harrison et 

al., 2006). Insulin-signalling pathways play the key mediator between available nutrients and 

the growth of internal organs such as the imaginal disc (Nijhout, 2003). An additional support 

evidence that the growth modulation is mediated by insulin-signalling pathways comes from 

experiments on the lepidopteron, Precis coenia (Hübner, 1822) (Lepidoptera: Nymphalidae) 

(Miner et al., 2000, Nijhout and Grunert, 2002). Basically, there are three mechanisms 

identified to regulate the critical size including insulin/insulin-like growth factor signalling 

(IIS) (Brogiolo et al., 1998, Rulifson et al., 2002, Shingleton et al., 2005), the production of 

PTTH by neurosecretory cells in the brain, and growth of the imaginal disc (Caldwell et al., 

http://en.wikipedia.org/wiki/Jacob_H%C3%BCbner
http://en.wikipedia.org/wiki/Nymphalidae
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2005, McBrayer et al., 2007, Rewitz et al., 2009). There are a number of checkpoints for size 

assessment that determine whether the larva is fully prepared to proceed to the subsequent 

stage, or when to stop growing in order to enter  metamorphosis on  time first, the 

metamorphosis threshold size (Nijhout, 1975, Zhou et al., 2004). In M. sexta, failure to cross 

this threshold results in a supernumerary larval instar (Nijhout, 1975). Second, the minimal 

viable weight is defined as the minimal weight or the amount of body stored nutrients that are 

sufficient for a larva to survive metamorphosis period (Nijhout, 1975). Third, surpassing the 

critical weight that guarantees the entry into metamorphosis can no longer be delayed by 

starvation (Nijhout, 2003, Nijhout and Williams, 1974ab). It was noted in Drosophila 

starvation of larvae after attaining their critical weight accelerated the onset of pupation 

(Beadle et al., 1938, Mirth and Riddiford, 2005). Starved larvae of Manduca at post-critical 

weight on the other hand, had no effect on metamorphosis initiation time (Nijhout and 

Williams, 1974ab).  

 

It was noted that after attaining the critical weight and larvae stopped feeding, the imaginal 

discs continue to grow until the beginning of the pupal stage. Thereafter, the higher levels of 

ecdysteroids titre cause the imaginal discs to stop growing and differentiate into their 

respective adult structures (Champlin and Truman, 1998ab). Thus, the critical weight has an 

important role in controlling the final size of larval instars since it has a linear relation with 

the initial larval weight. In addition, it marks the initiation of important physiological and 

morphological processes (Davidowitz et al., 2003).Thus, the size that a larva attains at the 

time of metamorphosis defines the final adult body size eventually. Nijhout et al. (2006) 

noted that the initial mass of each larval instar is a constant multiple of that of the previous 

instar which is more generally known as Dyar’s constant or rule and the weight gain at the 

last instar has a great influence on the final body size.  Premature metamorphosis in response 
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to starvation conditions has also been reported in some insects. Food depletion has been 

shown to accelerate time to metamorphosis in the dung beetle, Onthophagus taurus 

(Schreber, 1759) (Coleoptera, Scarabaeidae) (Shafiei et al., 2001) and in the tree hole 

mosquito, Aedes triseriatus (Say, 1823) (Diptera: Culicidae) (Carpenter, 1983). The role of 

hormonal activities during starvation is explained in detailed by (Truman and Riddiford, 

1974, Gilbert, 2002). More remains however, to be understood about how critical weight is 

assessed and how adult size is finally determined during starvation in particular (Edgar, 2006, 

Mirth and Riddiford, 2007, Shingleton et al., 2008). 

 

Ecological factors such as seasonal variation result in intraspecific variations in body size 

(Chown and Gaston, 2010). It was reported that nutrition condition, population density as 

well as temperature determine the rate and duration of larval growth (Mirth and Riddiford, 

2007). Increased temperature or larval density, or decreased nutritional quality or quantity 

often results in smaller adult size (Lazebnyi et al., 1996). The resultant smaller body size is 

presumed to have important consequences on the life-history attributes such as longevity, 

reproductive rate and resource use (Partridge and Farquhar, 1983, Dixon and Hemptinne, 

2001, Khazaeli et al., 2005). For example, temperature was found to have a great influence on 

the developmental rate and body size in some species such as Drosophila spp. (Kari and 

Huey, 2000), beetles and butterflies (Ernsting and Isaaks, 1997). Other ecological factors 

such as changes in vegetation structure, transformation of landscapes caused by invasive 

alien species have substantial impacts on assemblage body size distributions (Steenkamp and 

Chown, 1996, Coetzeeet al., 2007). Basically, large species are usually lost from the 

assemblage, probably as a consequence of flight impairment by dense vegetation and a 

change in resource availability (Steenkamp and Chown, 1996, Coetzee et al., 2007). In 

contrast, habitat fragmentation and extinction risk has no direct effect on size-related 

http://en.wikipedia.org/wiki/Johann_Christian_Daniel_von_Schreber
http://en.wikipedia.org/wiki/Thomas_Say
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variation in population abundance and growth rate (Davies et al., 2000). For instance, a study 

showed no relationship between body sizes in ground-dwelling beetles as a consequence of 

fragmentation (Davies et al., 2000). Nijhout et al. (2006) noted it is important to consider 

adult feeding habit, nutritional quantity and quality when studying correlation between body 

size and life- history allometry since they may result in additional weight gain even though 

adult linear dimensions are fixed.  

 

Many life-history theories consider body size to be a continuously changing trait depending 

on several of factors functioning at different life stages and their integration (Roff, 2002, 

Bede et al., 2007). The relationship between body size and life-history characters has been 

long recognized since both share the same regulatory mechanisms including genetic, 

physiological and developmental mechanisms (Stearns, 1992). Literarily, any change in body 

size will have consequences on other life-history traits, and vice-versa in order to bias fitness 

ultimately (Stearns, 1992, Roff, 2002). The benefit of having a large body size has been 

widely studied (Honek, 1993, Parker and Simmons, 1996, Rivero and West, 2002). It plays 

an important function in maximizing reproduction, fecundity and longevity (Gross, 1981, 

Stearns and Koella, 1986, Roff, 1988). In most organisms, fecundity selection in females and 

sexual selection in males are the major evolutionary selective forces for larger body size 

(Honek, 1993, Blanckenhorn, 2000). These benefits may be affected by resource acquisition 

and allocation such as lipid reserve (Leather, 1988, Kemp and Alcock, 2003). Adults may 

suffer size-dependent costs such as costs of fast growth or longer developmental period (Roff, 

1980), decreased reproductive success due to late reproduction (Blanckenhorn, 2000), or it 

could be disadvantage due to the high absolute energy requirements for maintenance 

(Blanckenhorn, 2005). Large sizes may incur energetic costs particularly under limited 

resources (Reim et al., 2006). Life-history costs of large size may be difficult to estimate 
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because they only become detectable under stress (Reim et al., 2006, Teuschl et al., 2007). 

Despite the above disadvantages as a consequence of having a large body size, there are well 

recognized benefits (Reim et al., 2006) for instance, possessing high energy efficiency for 

foraging, mating success, off-spring provision and competition (Reim et al., 2006). The 

benefits of small size selection in poor conditions however, are attributed to reduced costs of 

growth, maintenance energy and reproduction as well as an increase in competition ability 

(Blanckenhorn, 2000, Blanckenhorn, 2005). The cost of having large or small bodies was 

discussed in detail in Blanckenhorn (2000) and (2005). Small individuals may survive and 

reproduce better under food stress because they need less nutrients to sustain themselves 

(Blanckenhorn et al., 1994) such as the milkweed bug, Oncopeltus fasciatus (Dallas, 1852) 

(Hemiptera: Lygaeidae) (Dingle, 1992). Solbreck et al. (1989) found that body size and mass 

are typically strongly correlated in the black and red bug, Lygaeus equestris (Linnaeus, 1758) 

(Hemiptera: Lygaeidae) (Solbreck et al., 1989), but this correlation may not always be the 

general case, and there are situations when it is important to decide which is best used as a 

potential fitness correlate (Nylin and Gotthard, 1998). In contrast, Ohgushi (1996)  pointed 

out that larger insects may also survive better in the absence of food such as during 

hibernation or drought conditions particularly if body size is correlated with nutrient reserves 

(Ohgushi, 1996) such as in African dung beetle, Scarabaeus zambesianus (Peringuey, 1901) 

(Coleoptera: Scarabaeidae) (Chown et al., 1995). A key conclusion is that when dealing with 

insects, accepting that females with large bodies will be able maximize other traits such as 

reproductive output compared to small sized females might not be correct, unless a detailed 

knowledge of other factor affecting this fecundity is known (Leather, 1988). 

 

Knowledge of the distribution of body sizes among taxa might help Nijhout et al. (2006) to 

explain the ways in which resources are partitioned among species and to understand the 

http://en.wikipedia.org/wiki/William_Dallas
http://en.wikipedia.org/wiki/Linnaeus
http://en.wikipedia.org/wiki/Scarabaeidae
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composition of animal assemblages (Pagel et al., 1991, Blackburn and Gaston, 1994). 

Blackburn and Gaston (1994) noted that at large scale body size distribution of a wide range 

of plants, herbivores, and carnivores are right skewed. The size diversity curves for ladybirds 

are not all right skewed and vary significantly in shape both with-in and between 

biogeographic regions (Hall and Raffaelli, 1993, Begon et al., 1996, Dixon and Hemptinne, 

2001). For instance, the form of the body size distributions of predatory ladybird beetles 

differs among countries with that for Japan significantly right skewed and that for Central 

Europe significantly left skewed (Dixon and Hemptinne, 2001).  It was argued whether to 

explain the variation in body size distribution based on physiological or ecological 

constraints.  In the case of predatory ladybirds the shape of their body size distribution curves 

is determined by the nature and the relative abundance of their prey, that is, by ecological 

rather than physiological constraints (Dixon and Hemptinne, 2001).  Witting (1998) 

suggested more attention should be given to looking for the generality in terms of ecological 

constraints. It was noted, in spite of the numerous studies on the factors influencing the final 

adult size in insects, body size frequency distributions have been poorly documented (Loder 

et al., 1997). They further suggested that there are many factors limiting the interpretation of 

body size frequency distributions that have not been yet considered, such as sample size, 

class size and class width.  

 

There are two patterns of spatial variation in body size associated with latitudinal and 

altitudinal inclines (Chown and Gaston, 1999, Blanckenhorn and Demont, 2004, Dillon et al., 

2006). It was reported that the body size increases with both latitude and altitude and this 

phenomenon is often referred to as Bergmann’s rule (Chown and Gaston, 1999, 

Blanckenhorn and Demont, 2004).   The proximate underlying factors associated with this 

phenomenon remain controversial (Chown and Gaston, 2010). In this regard, several 
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hypotheses have been addressed in order to understand this phenomenon such as the 

influence of changes in temperature, variation in oxygen level and the ability of an individual 

to resist, tolerate and grow under various types of stress (Chown and Gaston, 2010). Despite 

the complexity of this debate, latitudinal and altitudinal gradients were reported to have also 

an impact on body size variation with an established genetic basis. It should be noted 

however, that that Bergman’s rule is not always the general case since some species have 

shown a negative correlation between body size and latitude (Mousseau, 1997). Walters and 

Hassall (2006) noted plasticity response in adult size is mainly determined by the relative 

difference between the minimum temperature thresholds for growth and development rates. 

Chown (2001) demonstrated despite the apparent plasticity there is a considerable 

phylogenetic constraint in the evolution of these responses to environmental cues.  

  

Seasonal variation in the temperature, photoperiod and resources variables, in temperate 

regions, have shown pronounced  influences on the evolution of growth rate and patterns, the 

optimal age and size at maturation and body size (Gotthard, 2004, Davidowitz and Nijhout, 

2004). Environmental cues may also constrain the potential increase in growth rate or 

developmental period in a way that does not always result in an increase in body size 

depending on insect species (Esperk et al., 2007). Etilé and Despland (2008) reported that the 

constraints on the relationship between final size and age at maturity vary between species. 

There might be compensation for body size attained by increasing the rate of growth, this 

might be however, result in a reduction in body mass (Strobbe and Stoks, 2004). Therefore, it 

is important to discriminate well between body size and mass when testing life history 

responses under stress and when analysing some of the models’ predictions.  
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Environmental abiotic factors can induce wide morphological, physiological and behavioral 

modifications through natural selection (Dobzhansky et al., 1977, Ricklefs, 1990). Body 

parameters including size, shape and surface area are important characters in regulating body 

temperature which plays a substantial role in determining feeding activity in ladybeetles 

(Willmer, 1982, Hodek and Honek, 1996). The forms of colouration, melaninc or non-

melanic phenotypes, are likely to be important regulator for body temperature and lady beetle 

activity (Brakefield and Willmer, 1985, De Jong et al., 1996). Melanic phenotypes of the 

ladybird A. bipunctata showed lower reflectance than non-melanic phenotypes that would 

result in higher temperature excess, faster warming-up, faster walking speed and less mean 

time to activity (Brakefield and Willmer, 1985, De Jong et al., 1996). Melanic phenotypes of 

H. axyridis occur especially in boreal forests, likely reflecting their adaptive advantage in 

colder climates (Koch et al., 2006). A previous study has evaluated the differences in the 

light-coloured aulica and dark-coloured nigra phenotypes of H. axyridis. It was revealed that 

the optimum temperature for nigra adults was higher than for aulica phenotype at low 

ambient temperature resulting in increased activity, predation, developmental rate, 

reproduction and eventually fitness (Brakefield, 1984, Stewart and Dixon, 1989). In addition, 

larval body size and shape varied between the two phenotypes (Soares et al., 2003). A study 

on  D. melanogaster showed a variation in body size between the laboratory reared adults and 

the wild type collected from the field (David et al., 1997).  A field study on the same species 

showed that various changes in body size within the wild type adults occurred due to food 

availability, temperature and oxygen tension variations  (Frazier et al., 2001). For example, 

they noted that high temperature reduced oxygen delivery to the tissue relative to tissue needs 

and resulted in smaller body sizes.  
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Phenotypic plasticity may enhance colonizing ability. Indeed, phenotypic plasticity in 

development time and adult size is apparent in invasive populations of H. axyridis (Grill et 

al., 1997). Invasive species are often characterised by having large body size (Roy et al., 

2001, Roy et al., 2002, Brown and Sibly, 2006). Although the factors that determine the size 

of organisms need more investigation, their size is ultimately associated with other life 

attributes such as reproduction, longevity and resource use (Harvey and Pagel, 1991, Dixon 

and Hemptinne, 2001). Large body size may also promote success of invasive species (Roy et 

al., 2002). The link between large body size and greater fecundity has been suggested as a 

possible key factor promoting invasion particularly in lady beetles (Stewart et al., 1991ab, 

Dixon, 2000). The invasive success of C. septempunctata (Evans, 2000, Hodek and Michaud, 

2008, Kajita and Evans, 2010) and  H. axyridis (Koch, 2003, Roy et al., 2006) may be linked 

to their large size, which in turn is associated with high potential reproductive rate and 

dispersal ability that promote their rapid spread through new geographic regions. Brown and 

Sibly (2006) noted that the reproductive advantage was expressed in the larger number of 

ovarioles, the greater numbers of eggs produced, and the greater volume of eggs laid per day 

by invasive females compared with the smaller females of native species. As discussed earlier 

the body size in the invasive slug, Arion lusitanicus (Mabille, 1868) (Gastropoda: Pulmonata) 

played a significant role in its dispersal and colonisation of cereal crops (Honek and 

Martinkova, 2011). Genetically based polymorphism may be also important in enabling 

invasive species to exploit multiple habitats and micro-niches (Soares et al., 2005, Michie et 

al., 2010). Different phenotypes may differ also in several characteristics such as voracity, 

longevity, and reproductive capacity (Soares et al., 2001). Polymorphism of the indigenous 

populations of species H. axyridis occurs also in Europe, and may promote its invasion and 

establishment (Majerus et al., 2006, Brown et al., 2008 ab, Adriaens et al., 2008, Evans et al., 

2011). 

http://en.wikipedia.org/wiki/Jules_Fran%C3%A7ois_Mabille
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1.8 Allometry and relative growth 

 

The term 'allometry' was coined in 1936 (Huxley and Tessier, 1936), and is applied to the 

phenomenon of relative growth (Huxley and Tessier, 1936). Allometry literally means 

"different measure" and originally referred to the scaling relationship between the size of a 

body's appendages - such as the head, thorax, abdomen, antennae, wings and legs - and the 

body as a whole during the developmental stages (Bonduriansky and Day, 2003, Shingleton, 

2010). More recently, the term has taken on a broader meaning and is used to refer to the 

allometric relationships that can be described for almost any co-varying biological 

measurements, such as those between the size or function of one trait and the size of another 

trait or the body as a whole (Shingleton et al., 2008) - for example, morphological traits (i.e., 

the relationship between brain size and body size in humans), physiological traits (i.e., the 

relationship between metabolic rate and body size) or ecological traits (i.e., the relationship 

between wing size and flight performance).  

 

The allometric relationship is usually modelled using the allometric equation (y=bxª). A log 

transformation of this equation produces a simple linear equation (log y = a log x + log b) 

where x and y are the two measured traits, respectively (Huxley and Tessier, 1936, Huxley, 

1924), log b is the intercept of the line on the y-axis and a is the slope of the line, also 

referred to as the 'allometric coefficient' (Huxley and Tessier, 1936, Huxley, 1924). If the 

relative size of the two traits remains constant irrespective of absolute size, the allometric 

coefficient will be around 1, a condition usually called 'isometry' (Shingleton et al., 2008). In 

other cases, when the organ is growing at a faster rate compared with the body as a whole, the 

slope may be less than 1 - this is called 'positive allometry' or 'hyper-allometry'. When the 
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organ has a slower growth rate than the body as a whole, it is called a 'negative allometry' or 

'hypo-allometry' (Emlen and Nijhout, 2000).  

Differences in the relative growth of body parts (i.e., allometric growth), rather than the 

absolute growth, can account for much intraspecific variation and diversity among taxa 

(Nijhout and Wheeler, 1996, Shingleton, 2010). To date, there are three different phenomena 

of allometry - ontogenetic, phylogenetic and individual or static allometry (Cock, 1966). 

These three levels are usually tightly interrelated (Rieppel, 1990). Any evolutionary change 

depends on the heritable static variation of morphological traits in various life-history stages, 

as produced by ontogenetic variation (Rieppel, 1990, Stearns, 1992).  

 

When allometry is measured in different individuals at the same developmental stage within a 

population or conspecific individuals, the relationship is called 'static allometry' (Shingleton 

et al., 2007) or referred to as the 'scaling relationship' (Huxley, 1932, D’Arcy Thompson, 

1942, Emlen and Nijhout, 2000). In static allometry, variation in growth may occur due to 

genetic or environmental factors, or the interaction between the two (Via, 1984). In most 

cases, variation in static allometry of traits is a consequence of the nutritional status 

experienced during development, therefore these variations are important components for the 

evolution of phenotypic diversity (Shingleton et al., 2007, 2008).  

  

Nutrient quality or quantity is considered a major regulator of body and organ size in animals 

(Oldham et al., 2000) and so the mechanisms that control the developmental response to 

nutrition probably determine many of the static allometries observed in nature (Shingleton et 

al., 2008). It was hypothesised by Shingleton et al. (2008) that in order to maintain correct 
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allometric scaling, sensitivity to any alteration in nutrition must vary among and within 

organs during development time. It was then suggested by Shingleton et al. (2008) that the 

variable insulin-sensitivity, duration of TGP and attaining the critical weight may all 

eventually influence different aspects of an organ's static allometry in holometabolous 

insects.  

 

The majority of allometric relationships are straight lines; there may be, however, sigmoidal 

or discontinuous allometries (in which case they are referred to as non-linear allometry or 

complex allometry) (Nijhout and Wheeler, 1996), depending on the measured trait, the unit of 

measurement or the species (Emlen and Nijhout, 2000). Complex allometry is associated with 

the polyphenism phenomenon, whereby individuals develop into two or more morphs, 

depending on the environmental cues or their genetic makeup (Eberhard and Gutierrez, 1991, 

Emlen and Nijhout, 2000). Examples of polyphenism include the alternative mating tactics or 

dimorphisms in horn size displayed by many species of beetle (Knell, 2009). Some allometric 

relationships, such as the curvilinear and discontinuous allometries, may be explained in part 

by interactions among imaginal tissues of metamorphosing holometabolous insects (Wheeler, 

1991, Emlen, 1994, Nijhout and Wheeler, 1996), particularly during competition for limited 

resources (Nijhout and Wheeler, 1996, Knell et al., 2004). One further allometric concept is 

'ontogenetic allometry', which is defined as the growth trajectory of an organ relative to body 

size during the growth of a single individual; when the allometry is measured between organs 

across species, the relationship is referred as evolutionary or phylogenetic allometry (Stern 

and Emlen, 1999). 
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Shingleton (2010) pointed out that the study of allometry is very important, since it highlights 

the functional mechanisms that generate scaling relationships, how they impact ecology and 

how they respond to and influence evolution. The distinction between imaginal and larval 

tissues highlights one important fact in understanding allometry - the implication that 

different body parts have a variable growth pattern (Nijhout and Wheeler, 1996). The 

allometric relationship in holometabolous insects occurs due to the fact that the imaginal 

discs for appendages grow at a relatively slow rate during larval developmental stages and 

then undergo a brief period of accelerated growth just before metamorphosis, during the pre-

pupal and pupal periods, precisely at the time when food intake has ceased (Williams, 1980, 

Nijhout and Wheeler, 1996). Different types of imaginal tissues grow at variable times and 

rates (Huxley, 1932, Wilson, 1953, Williams, 1980, Nijhout and Wheeler, 1996). More 

complex allometrics and growth models are described by Nijhout and Wheeler (1996) and 

Stern and Emlen (1999). 

 

There are many examples illustrating the scaling relationships of traits growing 

independently, such as in the male rhinoceros beetle, which has long horns and 

disproportionately small eyes (Kawano, 1995). Comparative morphological studies on 

allometry of genitalia emphasise the importance of two existing hypotheses based on sexual 

selection - the 'good genes hypothesis' and the 'weapon hypothesis' (Eberhard et al., 1998). 

These two hypotheses were tested on 20 species of insects belonging to the Coleoptera, 

Diptera, Hymenoptera, Hemiptera, Dermaptera and Odonata and spiders. The results revealed 

that the allometric slopes of male genitalia tended to be consistently lower than 1 and lower 

than the slopes of non-genital parts. Consequently, an alternative hypothesis was proposed - 

namely the 'one-size-fits-all hypothesis' (Eberhard et al., 1998, Eberhard, 2009). This 

hypothesis proposed that for the male sexual trait, allometric relationships between genitalia 
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and body size usually have slopes lower than 1, compared with the other body parts that have 

no role in reproduction, such as the pronota (Eberhard et al., 1998, Bernstein and Bernstein, 

2002, Tatsuta et al., 2007). Thus, within a species, sexual selection favours males with 

genitalia of standard sizes. Several other studies have supported the theory detailed by 

Eberhard et al. (1998) and similarly detected negative allometry for male genital size, 

(Wheeler et al., 1993, Schmitz et al., 2000, Tatsuta et al., 2001).  

 

Tatsuta et al. (2007) presented a study on the sexually dimorphic stag beetle, Prosopocoilus 

inclinatus (Motschulsky, 1857) (Coleoptera: Lucanidae). It was revealed that all the genital 

parts of the males scaled to body size with a slope of less than 1, except the male intromittent 

organ, which showed smaller variability than the other body parts. This is consistent with the 

prediction by Eberhard et al. (1998) that individuals with intermediate genital size are 

favourably selected by stabilising sexual selection. This appears to play an important role in 

maintaining certain intermediate standardised size of genitalia appropriate for the most 

typical size of the opposite sex in many insects (Eberhard et al., 1998, Bernstein and 

Bernstein, 2002). Some exceptions might, however, exist - for example, the male intromittent 

organ (as mentioned above) and female genitalia exhibited large variability, which may 

account for rapid diversification of genital morphology, even in closely related populations in 

beetle species (Eberhard et al., 1998, Bernstein and Bernstein, 2002). It has been postulated 

that positive allometry sometimes found in a part of genitalia is associated with 

postcopulatory sexual selection (Lupold, et al., 2004, Hosken et al., 2005). These facts lead to 

a contradiction in terms of developmental stability and rapid diversification of genital traits 

intraspecifically. Further comparative studies on phenotypic variation in the allometric 

relationship are needed to contribute to distinguishing this inconclusive evidence. 
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Likewise, Ohno et al. (2003) tested the contrast between genital and somatic traits for males 

of the moth, Ostrinia latipennis (Warren, 1892) (Lepidoptera: Hepialidae). In their study they 

examined allometry of five genital and 11 somatic traits for each of three local populations of 

O. latipennis. Fourteen out of the 15 allometric slopes for genital traits showed significantly 

negative allometry, whereas none of the 33 somatic traits showed the same negative 

allometry obtained from genital traits. These results revealed that the size of male genitalia in 

O. latipennis is more stable than the size of somatic traits when scaled with changes in body 

size. This study supports the hypothesis put forward by Eberhard et al. (1998).  

 

Green et al. (1992) argued that positive allometry may often occur in characteristics used in 

mating choice or those that display competitive ability. They disagreed with the evidence 

presented by Eberhard et al. (1998) that insect and spider genitalia tend to be negatively 

allometric. They based their arguments on the fact that the methodology used by Eberhard et 

al. (1998) - an analysis of linear ordinary least squares (OLS) regression of log (length of 

body part) on log (length of body-size indicator) - was inappropriate and, therefore, revealed 

non-compelling and inconclusive results. Green et al. (1992) reanalysed a similar allometric 

relationship using different regression techniques, such as the two model II regression 

methods - major axis (MA) and reduced major axis (RMA) - which they claimed may be 

more appropriate in different cases and provide valuable alternatives to OLS. Others have 

supported the analytical method used by Green et al., since both MA and RMA are known to 

be standard techniques in allometry studies (Boag, 1984, LaBarbera, 1989, Herrera, 1992, 

Cane, 1993, Simmons and Scheepers, 1996, Silva, 1998), although there is debate regarding 

their relative merits (Ricker, 1984, McArdle, 1988, Jolicoeur, 1990, Sokal and Rohlf, 1995). 

Stern and Emlen (1999) suggested that future studies of the developmental basis of allometry 

must focus on individuals growing in natural populations, rather than under 'standardised' 

http://en.wikipedia.org/wiki/Hepialidae
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laboratory conditions. This could highlight the actual and raw variations in scaling 

relationships resulting from growth under varied conditions.  

 

1.9 Sexual size dimorphism 

 

One manifestation of sexual selection is sexual dimorphism - defined as morphological 

differences between sexually mature males and females of plants and animals (Fairbairn, 

1997, Colgoni and Vamosi, 2006). Such dimorphism is caused by independent, sex-specific 

selection on morphological traits (Price, 1984, Andersson, 1994, Blanckenhorn, 2000). The 

sexual size dimorphism (SSD) phenomenon is a common widespread dimorphism among 

different groups of animals (Shine, 1989, Fairbairn, 1997, Badyaev, 2002, Blanckenhorn, 

2005). 

 

According to reports, male-biased SSD is predominant in birds and mammals (Cabana et al., 

1982, Isaac, 2005), whereas in the majority of insects and other invertebrates, as well as 

many fish and amphibians, the reverse is true (Shine, 1979). In most invertebrates and 

poikilothermic vertebrates, females are the larger sexes (Shine, 1994, Teder and Tammaru, 

2005). Invertebrate males usually tend to be smaller in size than females (Wiklund and 

Karlsson, 1988). Female-biased SSD has been recorded in several groups of invertebrates, 

including aphids (Dixon, 1987, 1998), damselflies (Anholt, 1997), flies (Nunney, 1996), 

ladybird beetles (Dixon, 2000), butterflies (Wiklund and Karlsson, 1988, Nylin et al., 1993), 

midges (Neems et al., 1990), wasps (Coelho, 1997), spiders (Vollrath and Parker, 1992) and 

waterstriders (Preziosi and Fairbrain, 1997). Several studies have referred to protandry as the 

easiest common explanation for female-biased SSD - i.e., males develop faster than females, 
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resulting in the males being smaller. In contrast, Dixon (2000) noted that both males and 

females often take the same developmental period, thus implying that the existence of other 

limiting factors influences the smaller size of males in most of invertebrate species. 

Darwin (1871) pointed out the importance of two types of selective forces that may operate 

during reproduction - inter-sexual selection, resulting from a preferential choice by one sex 

for individuals of the opposite sex, and intra-sexual selection, resulting from competition 

within one sex for individuals of the opposite sex. In general, SSD is caused by variations in 

the sexual differences in selective pressures on adult body size. For example, fecundity 

selection (a positive correlation between fecundity and female body size) (Stillwell and 

Davidowitz, 2010) has been viewed to be the main force leading to female-biased SSD, 

whereas sexual selection is generally stronger on males than females (Andersson, 1994) and 

has often been considered in cases of male-biased size dimorphism (Darwin, 1871, Trivers, 

1972) in insects (Tseng and Rowe, 1999, Teder, 2005).  

 

Rensch's rule has been widely accepted in predicting SSD: the ratio between the size of the 

larger sex and the size of the smaller sex increases with size and is positively correlated with 

mean body size (hype-allometry) in taxa in which males are the larger sex, and negatively 

correlated with mean body size (hypoallometry) in taxa in which females are the larger sex 

(Fairbairn, 1997, Abouheif and Fairbairn, 1997). The generality of Rensch's rule has been 

questioned (Selander, 1966, Reiss, 1986), since it is not applicable on statistical analysis of 

all taxa (Abouheif and Fairbairn, 1997). It has been suggested that allometry consistent with 

Rensch's rule may be more common in taxa in which males are the larger sex (Earhart and 

Johnson, 1970, Head, 1995). This means that male body size varies or diverges more over 
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evolutionary time than female body size, irrespective of which sex is larger (Fairbairn, 1997, 

Abouheif and Fairbairn, 1997). 

 

The direction and magnitude of SSD varies considerably among taxa and among species, due 

to variability in the sources of selection that act to create SSD (Stillwell and Davidowitz, 

2010). The magnitude of SSD changes considerably only among populations within species 

(Blanckenhorn et al., 2006, 2007, Stillwell et al., 2007ab). In this context, several hypotheses 

have been proposed to explain the different selection forces on the sexes in dimorphic 

species, including sexual selection, fecundity selection and ecological niche divergence 

(Fairn et al., 2007).  

 

As explained above, the variation among species in the magnitude of sexual selection that 

favours large size in males is due to female preferences or male-male competition (Stillwell 

and Davidowitz, 2010). Furthermore, increased fecundity in large females' selection (a 

positive correlation between female size and fecundity) is generally thought to be the major 

cause leading to female-biased SSD (Honek, 1993, Andersson, 1994, Blanckenhorn, 2000), 

according to the "Big Mother" hypothesis (Greenwood and Adams, 1987).  

 

Despite the fact that female-biased size dimorphism is the more common pattern of SSD, 

especially in invertebrates (Teder and Tammaru, 2005), there are arthropod species in which 

males are the larger sex (Wiklund and Forsberg, 1991, Juliano, 1992). Large male size could 

also be favoured by fecundity selection via males' contribution to female fecundity. It has 

been reported that large males tend to contribute more biomass to egg production than small 
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males, such as in Stator limbatus (Horn, 1873) (Coleoptera: Bruchidae) (Fox et al., 1994ab). 

Mating with large males would be favoured if those males are capable of providing larger 

spermatophores or ejaculates that may result in larger eggs (in a greater number) being laid 

(Thornhill, 1976, Thornhill and Alcock, 1983, Ridley 1988, Andersson, 1994). Despite the 

above, few studies have revealed a direct benefit from mating with large males (Savalli and 

Fox, 1998). 

 

Blanckenhorn et al. (1995) introduced the "Mate or Eat" hypothesis to clarify the differences 

in body size between sexes. In a similar context, Yasuda et al. (2002) showed that female 

larvae of the ladybird A. bipunctata, for example, had consumed more food and grown at 

higher relative growth rate when compared with the larvae of males, particularly at late stages 

in their development. In addition, it was revealed that after hatching, small-sized males 

accomplished more successful mating when compared with large-sized males when food was 

limited. The greater mating success by smaller males supported the above "Mate or Eat" 

hypothesis, which predicts that when food is limited, smaller males spend less time in feeding 

and have a greater mating frequency when compared with large males. 

 

Other important factors that play important roles in influencing SSD are differentiation in 

reproductive roles, mating rates, reproductive success and parental investment. These factors 

may lead directly to morphological differentiation of the reproductive organs resulting in 

significant SSD (Lloyd and Webb, 1977). Such selection is frequently associated with 

hyperallometric growth of organs or structures, particularly in males, as indicated above 

(Trivers, 1972, Andersen, 1994, Winquist and Lemon, 1994, Fairbairn, 1997). The 

significance of parental investment in controlling the process of sexual selection has been 
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deliberated by Trivers (1972). Likewise, Thornhill (1976) described the various types of 

nutritional parental investment in different insect groups associated with behavioural and 

physiological mechanisms that affect sexual bias. 

Wiens (2001) demonstrated that sexually dimorphic characters may be predetermined by one 

of three mechanisms – the lineage remains sexually dimorphic (i.e., stasis); the lineage 

becomes monomorphic and loses the dimorphic character or ornament; or a gain of the 

dimorphic character by the non-ornamented sex, where the lineage becomes monomorphic 

and both sexes possess the conspicuous ornament. The above was discussed in detail in 

Oliver and Antónia Monteiro (2010).  

 

Darwin (1871) proposed a mechanism for the origin of secondary sexual characters. He 

stressed that in order to understand diversity in such traits, it is important to investigate the 

related potential fitness costs. Such costs play a significant role in the sex-limited expression 

that is the hallmark of sexually selected traits and are essential for explaining diversity in 

sexual traits (Houslay and Bussiére, 2012). The elaborate morphologies of sexually selected 

ornaments are ubiquitous across the animal kingdom (Andersson, 1994).  

 

Many studies have revealed a positive correlation between the size of sexually selected 

ornaments and some aspect of reproductive fitness (Hingle et al., 2001). Therefore, shape can 

provide additional insights into the morphological differences between individuals and the 

potential limits on sexual trait exaggeration (Worthington et al., 2012), e.g.  the stalk-eyed 

fly, Teleopsis dalmanni (Wiedemann, 1830) (Diptera: Diopsidae) exhibited patterns of sexual 

shape dimorphism. A significant difference in head shape was demonstrated between the 

http://eol.org/pages/7575028/overview
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sexes, with males exhibiting smaller eye bulbs, thinner stalks and smaller heads compared 

with females. Several studies have predicted that when females bear ornaments as a result of 

correlated selection, they are expected to be closer to the optimum set by natural selection 

(Haas, 1976, Lande, 1980, Anholt, 1997). 

 

The sexual difference in external morphology ranges from totally undifferentiated to 

conspicuous dimorphism in both size and shape in beetle species (Kawano, 2006). Several 

studies have shown that the magnitude of SSD varied substantially among populations intra-

specifically (Blanckenhorn et al., 2007, Stillwell et al., 2007ab). Although most of these 

variations in size and shape are partly based on genetics, as indicated above, some exist due 

to other important pressures, such as phenotypic plasticity (Fairbairn, 2005, Stillwell et al., 

2010). The influence of phenotypic plasticity on SSD is not yet clear, as both sexes share the 

same genes controlling their growth and developmental processes (Badyaev, 2002). Sexual 

selection was believed to reduce population fitness, owing to its association with direct 

fitness costs. Sexual selection causes diversion of resource allocation away from egg 

production towards costly external morphological traits - i.e., ornaments that do not add to 

population growth (Agrawal, 2001, Siller, 2001).  

 

Body size measurements were quantified in the mammal yellow-pine chipmunk, Tamias 

amoenus (Allen, 1890) (Rodentia: Sciuridae) found in the Kananaskis Valley, which is 

commonly known to have female-biased SSD. It was revealed that females were significantly 

heavier and had a larger overall structural body size and skeletal tissue (Schulte-Hostedde 

and Millar, 2000).  It was also observed that larger females produce larger offspring (in a 

greater number) and provided superior maternal care (more or better quality milk) in 

http://en.wikipedia.org/wiki/Sciuridae
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comparison with smaller mothers (Ralls, 1976, Myers and Master, 1983, Dobson and 

Michener, 1995). Another prediction stated that in such contexts female-biased SSD may also 

be the result of selection for smaller males, as smaller-sized males may be faster and more 

active (Trombulak, 1989). They can spend a longer period searching for mates and less time 

in feeding (Blanckenhorn et al., 1995).  

 

Another example is female bias in the parasitoid wasp, where most females take a longer time 

to develop. Sex-specific differences in the effect of size on reproductive success are attributed 

as the significant factor responsible for SSD in parasitoids. It is commonly known that 

fertilized eggs laid by most parasitoid wasps, such as Microplitis mediator (Haliday, 1834) 

(Hymnoptera: Braconidae), develop into females and unfertilized haploids give rise to males. 

This process gives adult females the ability to potentially control the sex of future offspring 

by using hosts of varying quality (Harvey and Strand, 2003).  

 

Many studies focus on SSD in the adult stage, often ignoring juvenile development (Badyaev 

et al., 2001, Badyaev, 2002). Esperk and Tammaru (2006) stressed that it may not be possible 

to fully know the mechanisms underlying the evolution of SSD without understanding the 

details of developmental stages. This is because of the different growth strategies leading to 

SSD, rather than adult SSD itself (Badyaev, 2002). It was reported that there are three basic 

processes that may lead to SSD -individuals of the larger sex could be larger in size at 

hatching time, have faster instantaneous growth rate or take a longer time to develop, known 

as sexual bimaturation (Mackey, 1978, Ernsting and Isaaks, 2002, Yasuda and Dixon, 2002). 

Some species with female-biased SSD, however, attain their final body size through a longer 

developmental period with no sex-related differences in growth rates, as noticed by many 
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studies, including Mackey (1978), Lederhouse et al. (1982), Nylin et al. (1993), Brakefield 

and Mazzotta (1995), DeBlock and Stoks (2003) and Mikolajewski et al. (2005). Other 

studies revealed that in some sexually dimorphic insects, growth rates but not larval periods 

differ between the sexes (Telang et al., 2001, Yasuda and Dixon, 2002). Exceptions may exist 

in which both options are used simultaneously - i.e., a prolonged larval period and higher 

growth rates occurring together, eventually resulting in the female being the larger sex 

(Bradshaw and Holzapfel, 1996, Ernsting and Isaaks, 2002). Thus, both mechanisms (growth 

rate and larval period length) are available in insects and are not universally used options for 

formation of SSD among insects.  

 

Developmental constraints may play an important role in forming patterns of SSD (Maynard 

et al., 1985, Schluter et al., 1991, Badyaev, 2002). In arthropods, in particular, the evolution 

of SSD may be limited by developmental and related physiological constraints on growth at 

each larval stage. SSD could, however, be accomplished if the larvae of the larger sex pass 

through a greater number of larval instars (Esperk et al., 2007). Several other hypotheses 

have been suggested to explain the differences in selection pressures on the sexes in 

dimorphic species, including ecological niche divergence (Fairn et al., 2007). For instance, 

the variation in optimal morphology for the different niches may lead to SSD (Slatkin, 1984, 

Shine, 1989). In addition, Stillwell et al. (2010) noted that the fluctuation in source conditions 

resulted in a variety of sources of selection favouring small size in both sexes. Likewise, it 

has been reported that the magnitude of sexual selection varied under limited resources in 

which selection favours small sizes in both sexes (Stillwell and Dividowitz, 2010). 

Furthermore, sexual selection may even favour small males, due to an occasional rapid 

developmental period compared with females - e.g. selection for protandry (Singer, 1982, 

Bulmer, 1983), efficient searching for a mate (Fagerstrom and Wiklund, 1982), greater agility 
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during courtship and copulation (Andersson and Norberg, 1981, McLachlan, 1987) or female 

preferences for smaller males (Petrie, 1983, Steele and Partridge, 1988, Andersson, 1994), as 

previously mentioned in T. amoenus. Savalli and Fox (1998) noticed that female preference 

for large males is less frequently considered an explanation for SSD.  

 

Most beetle species are indistinctively dimorphic, where the male and female can be notable 

only by minor microscopic morphological characteristics (Kawano, 2006). In contrast, Fairn 

et al. (2007) noted the opposite when quantifying SSD in the whirligig beetle, Dineutus 

nigrior (Roberts, 1895) (Coleoptera: Gyrinidae). Females possess significantly larger body 

mass shape and size, in terms of both width and length. Fecundity selection was used to 

explain the likely cause of body size dimorphism in this beetle (Andersson, 1994). Males 

were characterized by a larger tarsal size, profemora and protibiae, which may confer an 

advantage in grasping the female (Aiken and Khan, 1992, Bergsten et al., 2001, Schulte-

Hostedde and Alarie, 2006). This suggests the existence of differential selection of different 

aspects of body size, rather than overall body size (Fairn et al., 2007). Although many of 

these intra-specific variations in SSD are based partly on genetics, some of these variations 

may occur as a consequence of sexual differences in phenotypic plasticity in relation to body 

size (Fairbairn, 2005, Stillwell et al., 2010). How such sexual differences in body size 

plasticity are created in response to environmental variability - particularly in insects - is 

mystifying, as males and females have similar genes for the control growth and development 

(Badyaev, 2002, Stillwell et al., 2010). 

 

Many environmental and ecological variables prompt plasticity in body size and other traits 

of ectothermic animals (Stillwell et al., 2007a, Teder et al., 2008, Blanckenhorn, 2009). Diet 
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(both quantity and quality) and temperature are very important factors in inducing plasticity 

in life-history traits and developmental processes (Davidowitz et al., 2004, Stillwell et al., 

2007b). Teder and Tammaru (2005) noticed that intra-specific variation in SSD is likely to 

increase, particularly when the growth rates of males and females vary in their sensitivity to 

environmental conditions. For example, Bonduriansky (2007) noticed that in the Australian 

fly Telostylinus angusticollis (Berg, 1947) (Diptera: Neriidae), males showed more sensitivity 

towards diet quality compared with the opposite sex. On the low-quality diet, the size of 

males and females, however, were nearly identical. When both sexes were kept on a high-

quality diet, the former showed a considerably larger body size compared with the latter.  

 

Temperature, on the other hand, varied in its consistency in influencing the sex-specific 

plasticity of insect body size (Stillwell et al., 2010). For example, Stillwell and Fox (2007) 

found temperature-induced differential variability in SSD between both sexes of the seed-

feeding beetle, Callosobruchus maculatus (Fabricius, 1775) (Coleoptera: Chrysomelidae). It 

was noted that males exhibited more sensitivity towards rearing temperature than females 

(Stillwell and Fox, 2007). In contrast, another study performed on the same species revealed 

that temperature failed to produce sex-specific plasticity in body size (Stillwell et al., 2010). 

Despite a recent increase in interest in investigating differences in body size plasticity 

between the sexes, the mechanisms that lead to sex variation in plasticity remain largely 

unknown. Understanding the ultimate evolutionary, ecological, developmental and 

physiological aspects generating these patterns is highly essential to evaluating the evolution 

of intra-specific variation in SSD in several taxa (Esperk et al., 2007, Stillwell and Fox, 2007, 

Stillwell et al., 2010).  

http://en.wikipedia.org/wiki/Johan_Christian_Fabricius
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A study was performed to test the physiological aspects of development, including body size 

regulators - such as growth rate and critical weight - in generating sex-specific plasticity. 

Larvae of the hawk moth, M. sexta, were reared at different diet qualities and temperatures 

until the adult stage (Stillwell and Davidowitz, 2010). It was revealed that the larval mass at 

late stages did not display sex-specific plasticity in response to either to diet or temperature. 

In contrast, mechanisms that control body size - such as growth rate and critical weight - 

exhibited sex-specific plasticity in response to both diet and temperatures. This suggests that 

the sexes exhibit differential sensitivity to the physiological factors that determine body size 

to environmental variations. Teder and Tammaru (2005) reported that females of other 

species, however, were found to be more sensitive to environmental cues compared with 

males and, after condition restoration, females have a tendency to increase in size more than 

males.  

 

Female-biased sex has been reported in several coleopteran species (Dixon, 2000), 

particularly in seed-feeding beetles, Callosobruchus maculatus (Fabricius, 1775) and Stator 

limbatus (Horn, 1873) (Coleoptera: Chrysomelidae) (Stillwell and Fox, 2005, Teder and 

Tammaru, 2005). Stillwell and Davidowitz (2010) noted that although intra-specific 

variations in SSD are partly genetically controlled, some of these variations may happen due 

to phenotypic plasticity, which occurs in response to ecological and environmental factors 

(Fairbairn, 2005), as mentioned above. Furthermore, Blanckenhorn et al. (2006) noted that 

females tend to be larger at higher latitudes, whereas males were larger at lower latitudes. 

Stillwell et al. (2010) reported that it is extremely difficult to discriminate between the 

phenotypic plasticity that arises in response to ecological and environmental conditions from 

evolutionary responses to climatic or other variables that co-vary with latitude or altitude.  

http://en.wikipedia.org/wiki/Johan_Christian_Fabricius
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Invasive species often exhibit geographical variations in life-history traits, which may allow 

them to successfully establish and colonize different environments. For instance, 

geographical variations in body size and SSD of invasive bullfrogs in southwestern China, 

Rana catesbeiana (Shaw, 1802) (Anura: Ranidae), were tested by sampling two breeding 

populations inhabiting two sites at low and high altitudes (Xuan et al., 2010). It was revealed 

that both populations displayed a remarkable significant SSD, with females being the larger 

sex. There was a significant reduction in the mean body size of both sexes and growth rate 

with increasing altitude, with this reduction found to be more pronounced in females in 

particular. A similar trend was also noticed in the average age of females at high altitude. 

This implies that the introduced bullfrogs exhibit geographical variation in morphology in the 

invaded areas, likely in response to climatic changes (Ashton, 2002, Campbell and 

Echternacht, 2003, Morrison et al., 2004).  

 

Likewise, the Cuban tree frog, Osteopilus septentrionalis (Duméril & Bibron, 1841) (Anura: 

Hylidae), which is native to Cuba, has been introduced and become established in several 

sub-tropical and tropical locations, including Florida (Barbour, 1931, Meshaka, 2001, 

Lindsay and Cooper, 2008). It was found that significant decreases in female bias and SSD 

were exhibited with increasing latitude. This trend was predicted to be driven by a reduction 

in growth rates, increased time to maturity and reduction in longevity, all of which may be 

tied to climatic variation and are indicative of invasion success (McGarrity and Johnson, 

2009).  

 

Studies investigating inter-specific variation in SSD typically assume that the degree of 

sexual difference in body size does not vary within species. Datasets for 158 insect species 

http://en.wikipedia.org/wiki/George_Shaw
http://en.wikipedia.org/wiki/Andr%C3%A9_Marie_Constant_Dum%C3%A9ril
http://en.wikipedia.org/wiki/Gabriel_Bibron
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were studied by Teder and Tammaru (2005). Each dataset contained the weight of adults or 

pupae of both sexes for two or more different subsets reared at different conditions during 

immature development. It was revealed that there was a variation in the SSD exhibited at the 

intra-specific level in insects. The results predicted that environmental conditions may 

effectively influence the degree, but not the direction of SSD within species. It was found that 

within species, female body size appeared to be more sensitive to environmental conditions 

than male size, which contradicted the above prediction reported by Bonduriansky (2007) in 

which the opposite was true. Thus, across different insect orders, sexual differences in size 

tended to increase with increasing body size in species with female-biased SSD (Teder and 

Tammaru, 2005).  

 

Badyaev (2002) stressed that the underlying growth patterns within a species that may lead to 

variation in SSD remains poorly understood. Further studies are required to increase the 

knowledge covering the evolutionary mechanisms behind intra- and inter-species patterns of 

SSD (Shine, 1990, Stamps, 1993, Badyaev, 2002, Oliver and Antónia Monteiro, 2011). 

 

1.10  Reproductive performance 

    1.10.1  Ovariole number 

 

The typical insect ovary has a modular arrangement, with the ovariole as its fundamental 

modular unit (Hodin, 2009). The ovariole number correlates with potential fecundity and 

reproductive output (Stewart et al., 1991a, Hodin and Riddiford, 2000). In general, an 

increased ovariole number appears to correlate with total potential reproductive output, but 

other physiological characteristics of the ovary may affect the rate and timing of egg 
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production, as well as the rate of oocyte maturation (Hodin, 2009). All ovarioles mature eggs 

simultaneously, thus the maximum ovariole number correlates positively with potential 

reproductive output (Cohet and David, 1978, Stewart et al., 1991ab, Hodin, 2009). 

 

Ovariole number is an important trait for understanding life history strategies, both between 

different populations and within a species, since it influences resource acquisition and 

nutritional allocation (Hodin and Riddiford, 2000). In addition, there is substantial difference 

across broad and narrow taxonomic groups of insects in the degree to which the rates of 

oocyte maturation and the rate of egg production are phenotypically plastic (Hodin, 2009). 

Several aspects of the pre-adult environment, such as larval nutrition, have a direct influence 

on ovary size and number, thus determining the reproductive capacity (Flatt and Heyland, 

2011).  

 

Nonetheless, given sufficient adult nutrition, the ovariole number sets the upper limit for 

reproductive capacity (Dixon, 2000). For example, a positive relationship between the 

number of ovaries and fecundity is present within and amongst the Diptera species (Honek, 

1993). In D. melanogaster, the maximum daily rate of egg production was positively 

correlated with the total number of ovarioles (Wayne et al., 2006). As demonstrated by Flatt 

and Heyland (2011) for D. melanogaster, larval feeding affects the ovariole number by 

altering the rate of differentiation of the terminal filament cells, located at the anterior tip of 

the ovariole. This modification usually occurs at the wondering stage when larvae have 

ceased feeding. The latter implies that ovariole number is mainly determined by endocrine 

signals secreted from the fat bodies or the prothoracic gland (Mirth et al., 2005). In addition, 

Orgogozo et al. (2006) suggested that the genetic variation in insulin singling pathways was 

the main factor that underlies the variation in optimal ovariole number between two related 



107 
 

species - Drosophila simulans (Sturtevant, 1919) (Diptera: Drosophilidae) and Drosophila 

sechellia (Diptera: Drosophilidae). The latter species, D. sechellia, possesses a remarkably 

low number of ovarioles compared with the former when reared under similar environmental 

conditions. Orgogozo et al. (2006) pointed out that the locus of insulin receptors located on 

Chromosome 3 showed genetic variations that led to that great variation. In addition, Tu and 

Tatar (2003) hypothesised that mutation in the insulin singling pathway may also lead to such 

variation in ovariole number.  

 

Since there is an abundant genetically fixed variation in ovariole number, it is highly 

sensitive to the larval environment and is species-specific (Hodin, 2009).  Several aspects of 

the pre-adult environment, such as food quality and accessibility, temperature and crowding 

play a large role in influencing the development and maturation of ovarioles 

(Rhamhalinghan, 1986, Grenier et al., 1994, Hodin and Riddiford, 2000, Tu and Tatar, 2003). 

In higher food quality and abundant nutrients assimilated in uncrowded conditions led to an 

increase in the ovariole number (Hodin, 2009) such as in the D. melanogaster (Robertson, 

1957). 

 

As stated above, ovariole number shows both phenotypic plasticity and inter-specific and 

inter-population variations (Hodin and Riddiford, 2000). Despite this, some species seem to 

refute this expectation. For example, ovariole numbers are uniform in females belonging to 

the Lepidoptera species - an adult female has eight ovarioles, suggesting tight genetic 

influences (Swevers and Latrou, 2003). In both the sycamore aphid, Drepanosiphum 

platanoidis (Schrank, 1801) (Hemiptera: Drepanosiphidae), and the bird cherry-oat aphid, 

Rhopalosiphum padi (Linnaeus, 1758) (Hemiptera: Aphididae), ovariole number was found 

to be constant across generations, despite constant changes in ecological conditions (Leather 

http://en.wikipedia.org/wiki/Aphididae
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and Wellings, 1981). Several comparative studies were performed between different species 

to investigate the relationship between the potential number of ovarioles and the reproductive 

output, such as those studies conducted between dipteran Episyrphus balteatus (De Geer, 

1776) (Diptera: Syrphidae), the predaceous aphidophagous A. bipunctata and lacewing 

species including Chrysoperla carnea (Stephens, 1836) (Neuroptera: Chrysopidae), the 

Neotrophical green lacewing, Chrysoperla externa (Hagen, 1861) (Neuroptera: Chrysopidae), 

and the West-Palaearctic lacewing, Chrysoperla mediterranea (Hölzel, 1972) (Chrysopidae: 

Chrysopidae) (Stewart et al., 1991a b, Zheng et al., 1993a b, Carvalho et al., 1996).  

 

Stewart et al. (1991b) demonstrated that the ovariole number and the rate of egg production 

in the hoverfly E. balteatus (Diptera: Syrphidae) are much greater than the similarly sized 

predaceous ladybird, A. bipunctata. Compared with the latter, the daily rate of egg production 

recorded in E. balteatus was between 1 to 2 eggs per ovariole per day. In A. bipunctata, the 

daily egg production, however, was only 0.5 eggs per ovariole per day (Stewart et al., 1991b, 

Branquart and Hemptinne, 2000). It has been suggested that the functional number of 

ovarioles affected reproductive output as well as lifetime fecundity. The record showed that 

the average ovariole number in A. bipunctata was 46 ovarioles, whereas in E. balteatus the 

average recorded was 80 ovarioles (Branquart and Hemptinne, 2000). Generally, ovariole 

number can be a good indicator for the daily egg production and to estimate lifetime 

fecundity in Coccinellidae, Drosopilidae, Tachinidae and Ichnenumonidae, (Price, 1975, 

Stewart et al., 1991ab). 

 

Hodek et al. (2012) demonstrated that the ovarioles in Coccinellidae are of a meriostic 

telotrophic type, characterised by the presence of trophic tissue as well as oogonia and 

oocytes in the distal germarium. A single oocyte is connected to the germarium by a 

http://en.wikipedia.org/wiki/Charles_De_Geer
http://en.wikipedia.org/wiki/James_Francis_Stephens
http://en.wikipedia.org/wiki/Chrysopidae
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cytoplasmic nutritive cord extending to the trophic core. The total number of ovarioles in 

female coccinellids is controlled either genetically (Hodin and Riddiford, 2000) or by the 

experienced nutrient availability during juveniles' development (Honek, 1993), such as in H. 

axyridis and A. bipunctata (Ware and Majerus, 2008). Both factors are likely to control the 

number of ovarioles in the grasshopper Romalea microptera (Houttuyn, 1813) (Orthoptera: 

Romaleidae) (Taylor and Whitman, 2010).  

 

Scaling of body size with many fitness-limiting traits, such as ovariole number, displays a 

wide variation between species (Bellinger et al., 1987, Karlsson and Wickman, 1990, Arnaud 

et al., 2005). Such variation in scaling has also been attributed to the basic genetic control and 

major influences of environmental cues (Venesky and Parris, 2009). Hodek et al. (2012) 

argued that there is a significant positive correlation between ovariole number and female 

body size, particularly in relation to body length. Fitt (1990) also noted that in both Dacus 

tryoni (Froggatt, 1897) and Dacus jarvisi (Tryon, 1927). (Diptera: Tephritidae), there was a 

positive correlation between ovariole number and body size (as measured by wing length). In 

addition, Dixon and Guo (1993) demonstrated a positive relationship between the number of 

ovarioles and body weight in C. septumpunctata. Moreover, the potential fecundity 

(expressed as reproductive biomass), the number of ovarioles and the abdomen volume all 

scale isometrically with female body size in the species E. balteatus (Branquart and 

Hemptinne, 2000).  

 

Honek (1993) investigated intra-specific variations between female body size and potential 

fecundity (determined by the ovariole number), particularly in Coleopterans and found  a 

positive relationship between these two phenotypic traits  with a common slope that closes to 

unity. In addition, a study was conducted to investigate the pattern of reproductive strategies 

http://en.wikipedia.org/wiki/Martinus_Houttuyn
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for eight species of iteroparous beetles (i.e., those in which females produce more than one 

generation during their lifespan) belonging to the genus Tribolium (Coleoptera: 

Tenebrionidae) under similar conditions (Arnaud et al., 2005). Several life-history traits - 

including egg mass, adult mass, developmental time and fecundity - were investigated and 

comparison was made. The results revealed an absence of common reproductive strategies 

among these different species. Larger and smaller Tribolium species adopted different 

reproductive tactics. Small-sized females were less fecund and produced smaller eggs in 

comparison with large-sized females. In addition, univarate analysis showed strong 

disparities between the species for most of the traits investigated and only a few correlations 

appeared to be significant between tested traits (Arnaud et al., 2005). This was not 

unexpected, because the absence of significant intraspecific allometry is often reported in 

iteroparous organisms (Fox and Czesak, 2000). For instance, no such linear relationship was 

found between the number of ovarioles and body length or female body weight in the 

ladybird H. axyridis (Osawa, 2005). In contrast, Hodin (2009) suggested that, with regards to 

the interspecific allometric relationship, a strong association is always revealed. Such 

association as the one found between fecundity and body size is always expressed strongly 

owing to the ecological, phylogenetic influences and due to the phenotypic non-adaptive 

plasticity that generated from differential feeding habit. Similar observations were also noted 

by Stewart et al. (1991ab), Honek (1993),  Gasser et al. (2000) and Tu and Tatar (2003).  

 

It was suggested that within species the number of ovarioles is positively correlated with 

body size, particularly when the actual body size is small, such as in small flies (Bennettova 

and Fraenkel, 1981). Others suggested that the relationship between female body weight or 

size and the ovariole number may vary according to the maturation and developmental stages 

- such as in aphids where the total number of ovarioles is often set early in the nymphal stage 



111 
 

- but the potential fecundity is a consequence of the conditions experienced during 

development (Leather and Wellings, 1981, Llewellyn and Brown, 1985). 

 

The number of ovarioles varies intra-specifically. It was shown that a female of C. 

septumpunctata with a 24mg body weight contained 80 ovarioles, but a female weighing 

31mg contained 139 ovarioles (Rhamhalinghan, 1985, 1986). Having a high number of 

ovarioles does not always reflect a greater fecundity. It has been noted that although females 

of C. septumpunctata possess approximately 139 ovarioles, each ovariole comprises only 

three follicles. In another species, Stethorus pusillus (Herbst, 1797) (Coleoptera: 

Coccinellidae), the total ovariole number recorded was 4, but each ovariole contained 

between four and eight follicles (Hodek et al., 2012) Thus, attributes such as body capacity, 

lifetime fecundity and reproductive biomass are the main factors in determining the 

reproductive performance, rather than the actual number of ovarioles. These attributes display 

a wide range of variation and are strongly correlated with female size. This relationship 

between reproductive investment and female body size is not unanticipated, since larger 

females have proportionally more stored nutrients to allocate for reproduction compared with 

smaller sizes (Reiss, 1985, Sibly and Calow, 1986, Roff, 1992, Dixon and Guo, 1993).  

 

The suitability of different diets for larval development, and the influence of food quality and 

quantity on adult reproduction have been well studied (Majerus, 1994, Evans et al., 1999, 

Dixon, 2000). The number of the ovarioles in several insect species was studied under 

different diet regimes. For example, female adults of the two-spot ladybird, A. bipunctata 

showed a reduction in the number of ovarioles when larvae were reared on a low quantity of 

cowpea aphids, Aphis craccivora (Koch, 1854) (Hemiptera: Aphididae), compared with those 

females that were reared on a low quantity of pea aphids, Acyrthosiphon pisum (Harris, 1776) 

http://en.wikipedia.org/wiki/Moses_Harris
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(Hemiptera: Aphididae) (Ferrer et al., 2008). It was revealed that exposure to suboptimal food 

quantity not only reduced the number of ovarioles, but also altered the oosorption process 

(i.e., resorption of oocyte) and the maturation of ovarioles. Comparable results were obtained 

from a study in which the predaceous ladybird C. septumpunctata was reared on a low 

quantity of aphids (Osawa, 2005). It has also been reported that food shortage during larval 

development may prompt the emergence of small-sized females with a low number of 

ovarioles, which in turn might lead to low fecundity (Scott and Barlow, 1984, Dixon and 

Guo, 1993, Zheng et al., 1993ab). Other studies have tested the effects of mixed versus 

monotypic diets in generalist predators - such as carabid beetles (Jorgensen and Toft, 1997, 

Fawki and Toft, 2005, Toft, 2005) and spiders (Oelbermann and Scheu, 2002, Allard and 

Yeargan, 2005) - on reproductive performance and fecundity.  

 

Environmental factors, such as temperature, have an effect on determining ovariole number 

(Sanburg and Larsen, 1973, Hodin and Riddiford, 2000). For example, exposure to different 

temperatures caused a reduction in ovariole number in Drosophila kikkawai (Burla, 1954) 

(Diptera: Drosophilidae) (Karan et al., 1998). It was suggested that the effects of temperature 

on ovariole number were in essence a non-adaptive biophysical plastic response, with the 

optimum temperature merely representing the metabolic optimum for the molecules involved 

in terminal filament formation (Karan et al., 1999, 2000, Gibert et al., 2004, Wayne et al., 

2005). Nevertheless, the ovariole number might also differ in D. kikkawai among latitudinal 

clines (Karan et al., 1998). Factors such as larval crowding as mentioned formerly in D. 

melanogaster reduced food availability, leading to a reduction in ovariole number in their 

hatchlings (Robertson, 1957). 

 



113 
 

Gilbert (1990) predicted that since specialist species encounter suitable oviposition sites at a 

lower rate on average than generalists, they would as a consequence lay fewer and larger eggs 

than generalists. The generalist Dacus tryoni and the specialist D. jarvisi are the main 

tephritid pests of cultivated fruits in Australia. In contrast to the prediction by Gilbert (1990), 

it was noticed that there was a broad positive relationship between the breadth of the natural 

host range and the ovariole number and recorded potential fecundity in Dacus species (Fitt, 

1990). Comparative measurements for clutch size, egg size and ovariole number and the 

influence of body size on these parameters were made for both species in the laboratory. It 

was revealed that the number of ovaries in the polyphagous species D. tryoni ranged between 

35-40 ovaries (38 ovarioles/ovary), in comparison with the specialist species D. jarvisi, 

which ranged between 8-20 ovaries (27 ovarioles/ovary). The number of ovarioles had 

apparently affected the rate of egg production. The generalist was less fecund and produced 

small clutches with three to four eggs per clutch, compared with D. jarvisi which produced 

large clutches with relatively more eggs (10-15 eggs/clutch). This further supports the fact 

that having a large number of ovaries does not imply greater fecundity.  

 

Hodin (2009) noted that the rate of oogenesis may sometimes be inversely related to the 

number of ovarioles and developing oocytes. These, and other trade-offs, suggest that 

ovariole number may be shaped by natural selection. In addition, the variation in the optimal 

number of ovarioles could be one of the features of variable environmental cues. Therefore, 

natural selection should encourage plasticity for this trait among insect populations inhabiting 

newly fluctuating environments (Hodin, 2009). For example, Leather and Wellings (1981) 

noticed that the slope of the line relating ovariole number and body size decreases seasonally 

(Llewellyn and Brown, 1985). Others suggested that a lack of conformity between field and 

laboratory results must be expected when comparing such relationship, owing to the constant 
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variability in food availability and changing environmental conditions (Dixon and Guo, 1993, 

Honek et al., 2007).  

 

According to Stewart et al. (1991a), the alternate activity of ovarioles in egg production 

might also affect the probable association between body size and potential fecundity. It is not 

only body parameters that could be incorporated in assessing the potential fecundity and 

reproductive output. For example, Gilbert (1984) suggested that the pupal weight of the small 

white butterfly Pieris rapae (Linnaeus, 1758) (Lepidoptera: Pieridae) could be used as a 

measure of potential fecundity, since both have a positive significant correlation. Despite the 

above, Stewart et al. (1991a) noted that the reproductive capacity might be constrained by the 

body design itself for most species, irrespective of their size, particularly in Coccinellidae. 

Therefore, they suggested that large aphidophagous species might have the same relative 

reproductive capacity as small species in terms of reproductive biomass and reproductive 

rate. For instance, doubling the weight of an adult might then result in doubling the 

reproductive performance. In conclusion, the allocation of resources to reproduction in 

aphidophagous coccinellids appears to be independent of size (Stewart et al., 1991b).  

 

In accordance, both predaceous ladybird - Anatis ocellata (Linnaeus, 1758) (Coleoptera: 

Coccinellidae), which is the largest of the ladybird species and found mainly associated with 

coniferous trees, and the relatively small species Adalia 10-punctata (Linnaeus, 1758)  

(Coleoptera: Coccinellidae), which is equally specialised and found mainly associated with 

oak trees - were investigated to compare the relative reproductive performance and the 

number of ovarioles relative to their body size and type of habitat. It was found that A. 

ocellata developed a higher number of ovarioles - 56 in comparison with the 20 ovarioles of 

A. 10-punctata. Fewer eggs were laid by the larger ladybird than by the smaller one, but the 

http://en.wikipedia.org/wiki/Carl_Linnaeus
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allocation to reproduction did not vary significantly. This supported the suggestion of Stewart 

et al. (1991a) that all coccinellids, irrespective of the habitat that each occupies, tend to assign 

the same proportion of nutrients to reproduction, and either lay a few large or many small 

eggs. This further contradicts the general proposition that stated that the maximum clutch size 

laid by a female ladybird is limited by the number of ovarioles within an ovary and capacity 

(Ware et al., 2007, Ware and Majerus, 2008). 

 

This scenario is, however, entirely different with butterflies. A study performed on different 

butterflies contradicted the above findings and showed that large females allocated a greater 

proportion of their body weight to the abdomen at eclosion when compared with small 

females (Karlsson, 1987, Wickman and Karlsson, 1989). Fischer et al. (2003ab) noted that in 

butterflies there was a very weak correlation between female mass and fecundity. In 

accordance with the above, it was shown that larger females of the red flour beetle Tribolium 

castaneum (Herbst, 1797) (Coleoptera: Tenebrionidae) invested more in reproduction 

compared with smaller ones relative to their body size (Arnaud et al., 2005). In addition, 

larger females laid eggs that were approximately 3.5 times larger, but the developmental time 

for eggs did not vary significantly when compared with the eggs laid by smaller females. It is 

likely that there is a minimum egg size that is necessary to maintain egg viability (Arnaud et 

al., 2005). 

 

Schmalhausen (1949) and Matsuda (1987) proposed that most cases of adaptive plasticity 

may underline non-adaptive physiological responses that were eventually shaped by natural 

selection leading to either continuous or discontinuous adaptive plasticity. This proposal 

seemed applicable for many cases of insect reproductive plasticity. Therefore, as a 

conclusion, insect reproductive plasticity is relevant to ecological and evolutionary, 

http://en.wikipedia.org/wiki/Johann_Friedrich_Wilhelm_Herbst
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physiological and ontogenetic foundations. These backgrounds interact with insect ecology to 

mould the evolution of insect reproduction and determine its plasticity (Schmalhausen, 1949, 

Matsuda, 1987, Hodin, 2009). 

 

1.10.2 Egg size  

 

Egg size is a function of adult weight since egg size multiplied by egg number is directly 

proportional to the adult weight (Wickman and Karlsson, 1989). Stewart et al. (1991ab) noted 

that egg size is determined by the ratio of body weight to ovariole number such that large 

species with a greater number of ovarioles per unit body mass may lay small eggs and vice 

versa. A similar association was reported for aphids (Dixon, 1987), Palpada mexicana 

(Macquart, 1847) (Diptera: Syrphidae) (Gilbert, 1990) and speckled wood butterfly, Pararge 

aegeria (Linnaeus, 1758) (Lepidoptera: Nymphalidae) and the wall brown butterfly, 

Lasiommata megera (Linnaeus, 1767) (Lepidoptera: Nymphalidae) (Wickman and Karlsson, 

1990). Therefore, for those species, reproductive activity increases in direct proportion to 

body weight. For example, it in butterflies (Lepidoptera: Papilionoidea, Hesperioidea), 

fecundity is highly correlated to adult body size, and there is evidence for trade-off between 

egg size and number relative to adult size across species (Garcia-Barros, 1998). 

 

Egg size is an important life-history trait because it affects both maternal and offspring fitness 

including initial offspring size (Fleming and Gross, 1990). Egg size remained constant over a 

broad range of body sizes in many insects’ species as noted by (Fitt, 1990) such as in eight 

species of Dacus (Diptera: Tephritidae) (Fitt, 1990) the Australian sheep blowfly, Lucilia 

cuprina (Wiedemann, 1830) (Diptera: Calliphoridae) (Webber, 1955),  D. melanogaster 

(Roff, 1981) and Brachinus lateralis (Boulenger, 1900) (Coleoptera: Carabidae)  (Juliano, 

http://en.wikipedia.org/wiki/Carl_Linnaeus
http://en.wikipedia.org/wiki/10th_edition_of_Systema_Naturae
http://en.wikipedia.org/wiki/Carl_Linnaeus
http://en.wikipedia.org/wiki/12th_edition_of_Systema_Naturae
http://en.wikipedia.org/wiki/Christian_Rudolph_Wilhelm_Wiedemann
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http://en.wikipedia.org/wiki/George_Albert_Boulenger
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1985). In aphidophagous coccinellids, egg size is independent of clutch size within a species 

however, interspecifically clutch size is directly proportional to ovariole number (Stewart et 

al., 1991ab). Life-history theory assumes that limiting resources lead to trade-offs between 

different structures and activities (Berrigan, 1991, Messina and Fox, 2001). Given a fixed 

amount of resources obtainable for reproduction, there must be a trade-off between the 

number and size of offspring leading to a balance between selection for large eggs and high 

number of eggs (Bernardo, 1996, Messina and Fox, 2001). In addition, despite the many 

reports regarding intra-specific trade-off between egg size and number in Arthropods, no 

highly significant correlations were observed in any species (Fischer and Fiedler, 2001ab, 

Fox and Czesak, 2000). Stearns (1992) noted that the trade-off between size and number of 

offspring is largely noticeable in semelparous species (capital breeders) on the other hand in 

iteroparous species (income breeders) it is much harder to identify such relationships 

(Stearns, 1992, Fox and Czesak, 2000). 

 

Stewart et al., (1991a) noted that the trade-off between egg size and number is manifest as 

species differences and habitat characteristics in which the species occupy. For instance, in 

butterflies, body size increases in relation to the mean annual temperature of the species 

geographic range, whereas the size decreases in relation to any elevation in aridity (Garcia-

Barros, 1998). These changes are likely to affect the relationship between fecundity and body 

size. In addition, Stewart et al., (1991a) stressed that the variability in the size of egg does not 

always account for enhanced larval growth conditions favouring small offspring and vice 

versa. In coccinellids there is a lower limit for egg size constrained by the size of the newly 

hatched larva that is able to capture aphid prey easily.  Thus, larval capture efficiency is 

largely a function of size (Dixon, 1959, Wratten, 1973, Mills, 1979). Thus aphidophagus 
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ladybirds have relatively similar sized eggs of approximately 0.115 mg (Stewart et al., 

1991ab).  

 

Despite the plasticity in ovariole number of aphidophagus ladybirds, the number of ovarioles 

imposes more constraints on the body-egg-size relationship (Stewart et al., 1991ab). In 

addition, the suitability of oviposition sites may also influence the rate of egg laying by 

ovipositing females. Females of the monandrous butterfly, P. aegeri usually prefer to lay 

larger eggs on good quality host plants selectively (Gibbs et al., 2005). Gibbs et al. (2005) 

suggested that the population of this species is adapted for a flexible oviposition strategy, 

ruled by external clues such as plant variety and the appearance of males. This strategy 

promotes the trade-off between egg size and number particularly during unfavourable 

conditions.  

 

Likewise, the developmental time of eggs might also be, in essence one of the characteristic 

of reproduction that has been shown to control egg size (Stewart et al., 1991ab). The 

developmental time is known as the function of the ratio of adult size to egg weight (Stewart 

et al., 1991b).  For instance, the development of a large-sized progeny from a large egg would 

take a generally faster time to hatch into a larger-sized adult (Stewart et al., 1991ab). 

Nevertheless, it was revealed that adults develop from larger eggs will possess higher 

survivorship compared with the progeny developing from smaller eggs (Stewart et al., 

1991ab). Therefore, for a particular species and every population, there is an optimal balance 

between three main reproductive traits, the size of eggs, the potential fecundity and the 

developmental time (Fleming and Gross, 1990, Fox, 1994 ab). For instance, Tribolium audax 

(Triplehorn, 1968) (Coleoptera: Tenebrionidae) is a small beetle known to oviposit large 

sized-eggs (Garcia-Barros, 1998). Garcia-Barros (1998) suggested that the total 
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developmental time to adulthood was very short despite the large eggs due to the 

physiological constraints which could reflect a recent adaptation to the environment. It may 

be an advantage of having shorter developmental time in order to reduce pupal cannibalism. 

Another purely correlative explanation for such behaviour is that producing small eggs 

instead of a few large ones is likely to decrease female fitness in this species due to the 

increase in offspring developmental time (Park et al., 1965, 1970). A comparative study on 

another species showed that, large butterflies (Papilionoidea) tend to have larger eggs with 

longer larval developmental period resulting in a large sized-adult. In conclusion, the vast 

difference in body size and habitat type preference among different species and population 

encourage the inter- and intra-specific variations notably in the association between egg size 

and number as well as larval developmental time (Garcia-Barros, 1998). Wilbur (1977) noted 

that for each species egg characteristics may signify an optimal egg size at which sustainable 

larvae can be produced and this is likely determine the degree of reproductive investments 

toward producing many eggs.  

 

The phenotype of an individual is usually influenced by genetic make-up, environmental 

conditions and the phenotype of the parents and their environment (Mousseau and Fox, 

1998). The parental effects for instance are often consequences of variation in propagule size 

or the clutch size (Fox et al., 1997).  A recent study showed that the variable offspring could 

be attributed to maternal age, female body size and survival cost of reproduction (Kindsvater, 

2010, 2011). In some cases, such as in highly fecund insects, size constraints may not have an 

influence on the size of laid clutch (Marshall et al., 2010). Sometimes, old females 

experiencing better habitat conditions are able to produce larger and many offspring 

(Plaistow et al., 2007). The size of an egg may also be constrained by physical restriction 

according to the shape of the ovipositor (Fitt, 1990, Bernardo, 1996). In addition, it was noted 
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great variability in offspring are the consequences of the association between parental effects, 

physiological and ecological factors (Brown and Shine, 2009). Therefore, carefulness should 

be considered when inferring the outcome of offspring-size from different mothers that are 

reared under the same conditions (Marshall et al., 2010). Kindsvater et al. (2011) stressed that 

maternal investment strategies in reproduction and the related survival costs have great part 

in influencing the relationship between offspring size and number.  

  

1.11 Food stress and fitness 

  

Resources are frequently heterogeneous in time and space (Stearns, 1992). Therefore, animals 

often alter their developmental and reproductive performances according to the existing 

conditions, in order to maximise their fitness (Agarwala et al., 2008). Resource competition is 

generally considered to be the key factor shaping the structure of insect communities and 

constraining the growth of populations (McPeek, 1996, Morris et al., 2005). Limited food 

potentially affects inter- and intra-specific competition, cannibalism and intra-guild predation 

in particular circumstances (Wise, 2006). If food scarcity is seasonal and predictable, insects 

deal with it by engaging in diapause-mediated responses, such as dormancy or seasonal 

migration (Tauber and Tauber, 1993, Phoofolo et al., 2008). 

 

Life-history traits such as larval growth and fecundity are often greatly influenced seasonally 

and in sporadic habitats (Agarwala et al., 2001). In addition, it is often assumed that larval 

food stress reduces lifetime fitness, regardless of the conditions subsequently experienced by 

adults. Several hypotheses have been postulated for testing the effect of starvation on lifetime 

fitness. The 'environment-matching hypothesis' states that the plastic developmental response 
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towards poor nutrition often results in a phenotype that is better adapted to future starvation 

than one developed in high food abundance (Monaghan, 2008). In contrast, the 'silver spoon 

hypothesis' states that favourable juvenile growth conditions lead to higher adult fitness and 

animals tend to mature at a larger body size (Rowe and Ludwig, 1991, Honek, 1993). 

Dmitriew and Rowe (2011) noted that contrary to the former hypothesis, food stress during 

the larval period of H. axyridis did not result in adults that were better suited to continuing 

food stress. In addition, the reproductive rate was invariably lower in females of H. axyridis 

reared during larval stages at low food, regardless of whether the adults were well fed or food 

stressed.  Nevertheless, most of the adults lost more body weight during a period of starvation 

in the adult stage compared with the weight they lost when they were starved as larvae. The 

variation in weight was due to the accelerated growth that took place when larvae were food 

stressed. Furthermore, accelerated growth often leads to an increased risk of starvation during 

subsequent periods of food stress (Dmitriew and Rowe, 2011).  

 

Honek (1993) noted that at food deprivation, the fecundity and body size relationship varies 

according to size of females. Several studies have recorded that fecundity decreases when 

food is limited, depending on maternal size, such as in the ladybird beetle, H. axyridis 

(Hodek and Honek, 1996, Grill et al., 1997, Obrycki et al., 1998). The large amount of energy 

expended to maintain a large body size over reproduction may be the main reason (Reznick, 

1985). Another study has revealed that the fecundity of small-sized females of the web 

spider, Dolomedes trion (Walckenaer, 1837) (Araneae: Pisauridae) was unaffected by food 

availability, in comparison with the large-sized females, which failed to attain their potential 

fecundity under similar conditions (Spence et al., 1996). Several studies have mentioned that 

larvae reared on limited food tend to develop into smaller adults, such as the larvae of the 
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aphidophagous predator, Menochilus sexmaculatus (Fabricius, 1781) (Coleoptera: 

Coccinellidae) (Ng, 1991).   

 

Food stress during the larval development of the predatory ladybird C. septempunctata 

resulted in significant variations in the rate of egg production, as well as clutch size (Dixon 

and Guo, 1993). In addition, several studies on aphidophagous beetles have revealed that at 

limited food levels, larvae tended to develop at a slower rate (Kaddou, 1960, Smith, 1965, 

Ng, 1991, Agarwala et al., 2001) and the adult survivorship was reduced. Other life-history 

traits,  such as the pre-reproductive period, reproductive period, and longevity,  were also 

influenced by the limited food, as females spent more energy on basic physiological process 

and body maintenance (Agarwala, et al., 2001, Agarwala, 2007). For example, in 

unpredictable environments, females of waterstrider, Gerris thoracicus (Schummel, 1832) 

(Heteroptera: Gerridae) tended to reduce their reproduction during food stress, so that they 

maintained long reproductive lifespans (Kaitala, 1991). Likewise, female coccinellids often 

decrease their rate of oviposition when aphids are unavailable so that their offspring will not 

be forced to develop under low food availability (Banks, 1955, Evans and Dixon, 1986).  

 

Despite the reduction in fecundity and clutch size, the average egg size tends not to change 

under severe food limitation (Dixon and Guo, 1993). When larvae and adults of C. 

septumpunctata were exposed to food stress, there was a large variation in clutch production 

rate and in clutch size (Dixon and Guo, 1993). The average egg size, however, was not 

significantly affected by the absence or the range of the aphid (Dixon and Guo, 1993). 

Phoofolo et al. (2008) noted that a reduction in the percentage of weight loss in response to 

starvation was likely to depend on the species, the length of food deprivation and the age 
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when larvae are starved. In one such example, larvae in their fourth stadium belonging to 

three ladybird species, Coleomegilla maculate (De Geer, 1775) (Coleoptera: Coccinellidae), 

Hippodamia convergens (Guérin-Méneville, 1842) (Coleoptera: Coccinellidae) and H.  

axyridis, - were starved for variable periods of time. The results revealed that larvae did not 

vary in their starvation resistance (Phoofolo et al., 2008).   

 

Hoffmann and Parsons (1991) noted that the differences in resource quality are considered 

important for determining competitive consequences among species that belong to the same 

trophic guild.  Likewise, Omkar and Srivastava (2003) noted that food quality may affect the 

length of the oviposition period in aphidophagous ladybirds. Evans and Gunther (2005) 

observed that the link between food consumption and reproduction is not always 

straightforward in polyphagous predators, since their reproductive output is mainly linked to 

consumption of a specific prey. For example, the polyphagous predator, H. axyridis laid more 

clutches when they were placed on a diet of pea aphid, Acyrthosiphon pisum (Harris, 1776) 

(Hemiptera: Aphididae) compared with a diet comprising larvae of the alfalfa weevil, Hypera 

postica (Gyllenhal, 1813) (Coleoptera: Curculionoidea) (Evans and Gunther, 2005). 

Likewise, larvae of C. septempunctata reared on the mustard aphid, Lipaphis erysimi 

(Kaltenbach, 1843) (Homoptera: Aphididae) and another set of larvae were kept on an 

artificial diet consisting of yolk, sucrose, honey, casein and protein hydrolyzate (Sarwar and 

Saqip, 2010). It was revealed that the predator larvae completed their development at a 

normal rate from egg to adult in 20.6 days when reared on aphid prey, but in 29 days when 

reared on the artificial diet. Artificial foods can be a good substitute for natural prey at aphid 

prey scarcity, but it may not plausible to expect the same reproductive activity and 

developmental rate (Sarwar and Saqip, 2010).  

http://en.wikipedia.org/wiki/Charles_De_Geer
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In conclusion, phenotypic plasticity in reproductive behaviour is an important life-history 

trait, particularly during varying food conditions (Kaitala, 1991). A long reproductive period 

is scarified when conditions are favourable and maintained with an increase in the number of 

generations. At unpredictable varying environmental conditions, any significant changes in 

fecundity, however, will be conveyed as costs in other life-history traits, such as longevity 

(Kaitala, 1991). In addition, the above sections demonstrate how species are able to cope and 

resist acute food stress and survive new climatic conditions (Phoofolo et al., 2008).  

 

Cannibalism is another adaptive behaviour that occurs in response to any changes in timing 

of oviposition or food availability (Osawa, 1989). It has been widely recognised that in 

populations of arthropods, sibling cannibalism provides stability and persistence when food is 

available (Fox, 1975, Polis, 1981, Osawa, 1992). Under severe food stress, sibling 

cannibalism for both fertile and infertile eggs often occurs, causing intense competition over 

food and resulting in a rapid decrease in larval survival rate (Osawa, 1992).  

 

Reduction in metabolic rate has been known to be an important response of stress resistance 

(Barros et al., 1991). It has been suggested that a reduction in metabolic rate is an important 

physiological mechanism that occurs in order to conserve metabolites, such as carbohydrates 

and fats (Hoffmann and Parsons, 1989). Hoffmann and Parsons (1989) reported that 

increased tolerance to a range of environmental stresses will be associated with a reduction in 

the metabolic rate in many organisms, which might affect resource allocation as well as 

correlations between life-history traits. Food stress during both development and growth 

affect the relative resource allocation and the constituents of adult phenotypes (Gotthard et 

al., 1994). Therefore, the adult phenotypes - including body composition, allocation decision 
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and the resultant allomeric relationships - are manipulated to match the expected 

environmental conditions (Gotthard et al., 1994, Scharf et al., 2009). For instance, semi-

starvation of the butterfly, Speyeria mormonia (Boisduval, 1869) (Lepidoptera: 

Nymphalidae) resulted in many costs associated with body maintenance, such as a significant 

alternation in the allometric relationship between body mass and wing length in females. This 

may result in changes to the flight performance and related costs. In addition, a significant 

decrease in the potential fecundity has been noted, accompanied by a reduction in females' 

body mass and the relative fat content (Boggs and Freeman, 2005).  

 

Sibley and Calow (1989) suggested that the types of stress that may lead to a great diversity 

in phenotypic responses were dependent on the species. For example, D. melanogaster 

showed a reduction in metabolic rate during starvation, but not towards desiccation (Djawdan 

et al., 1998). Another study showed that adults of H. axyridis displayed different phenotypes 

when reared at different temperatures. Lombaert et al. (2007) stressed that caution must be 

taken when selecting environmental parameters that will be implemented for assessing 

phenotypic plasticity variations under stress conditions. 

 

One of the most studied trade-offs associated with food deprivation is that between 

reproduction and longevity, as reported in several species of insects (Dixon and Kundu, 1997, 

Omkar and Mishra, 2005, Agarwala et al., 2008).  When food is scarce, female longevity in 

the waterstrider, Gerris buenoi (Kirkaldy, 1911) (Hemiptera: Gerridae) nearly doubled (Rowe 

and Schudder, 1990).  In contrast, Blanckenhorn et al. (1995) reported that longevity for both 

sexes of the water strider Aquarius remigis (Say, 1832) (Hemiptera: Gerridae) increased with 

moderate food supply. The association between the level of food and longevity is not that 
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simple, particularly when food is supply at moderate and higher levels (Blanckenhorn, 1994). 

Likewise, Omkar and Srivastava (2003) suggested that the trade-off may only become 

apparent when organisms are food stressed, such in the predaceous ladybird, Adalia 

bipunctata.  Recently, Kindsvater et al. (2011) stressed that the costs of reproduction can 

better predict various types of correlations between females longevity and fecundity when 

considering age, size and nutritional conditions.    

 

When food is abundant, fecundity is positively correlated with female body weight in many 

taxa (Beck and Connor, 1992, Honek, 1993, Preziosi and Fairbairn, 1996).  It has been 

revealed that during limited food conditions, the influence on fecundity depends 

predominantly on the size of the females (Spence et al., 1996).  For instance, the fecundity of 

the small web spider, Dolomedes trion (Walckenaer, 1837) (Araneae: Pisauridae) was not 

influenced by the availability of food; in contrast, large-sized females could not accomplish 

their prospective reproductive activities when they were deprived of food (Spence et al., 

1996).  

 

Another important factor that has been found to affect the relationship between female 

reproduction rate and fecundity is the lifetime period of a species - that is, whether it is a 

short- or long-lived individual (Rana et al., 2002, Agarwala et al., 2008). A positive 

correlation was found between fecundity and longevity for H. axyridis females that had a 

shorter lifespan compared with those that lived relatively longer (Rana et al., 2002, Agarwala 

et al., 2008). In addition, during limited food conditions, larvae of the predaceous ladybird H. 

axyridis tend to develop slower relative to the control. Surviving adults of females developed 

into smaller individuals, and their pre-reproductive period was considerably prolonged. In 

http://en.wikipedia.org/wiki/Charles_Athanase_Walckenaer
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addition, the reproductive period and fecundity were reduced, but longevity increased 

significantly. The relationship between longevity and lifetime fecundity of females of H. 

axyridis varies intra-specifically, according to the type of lifespan and is determined by the 

body size (Agarwala et al., 2008). 

 

It is broadly recognized that any increase in reproductive effort tends to reduce the longevity 

of insects, even when food is normally available (Stearns, 1992, Blanckenhorn, 1994, 

Blanckenhorn et al., 1995, Dixon and Kundu, 1997).  This association might not be, however, 

apparent in some species (Ohgushi, 1996), particularly in females that are characterised by a 

sperm-limited fecundity (Omkar and Mishra, 2005). For such cases, multiple mating allows 

those females to express their full reproductive capacity, which rarely influences their 

longevity (Arnqvist et al., 2005). Furthermore, the environmental conditions experienced by 

parents have a significant influence on their offspring in some cases (Taborsky, 2006). The 

potential effect of the maternal adaptive phenotypes can extend through generations and 

modify the selective balance for traits that possess a potential influence on offspring life-

fitness (Rossiter, 1991, Mousseau and Dinglt, 1991).  

 

Furthermore, the ovarian physiological status could have a negative effect on longevity and 

mortality rate (Carey et al. 2002). A physiologically young ovary might demonstrate a 

decrease in mortality rate, compared with an old ovary that performs ordinarily during full 

access to food. Dixon (2000) noted that the reproductive output is often determined according 

to the individual age and senescence, as well as food quantity and quality (Omkar and Pervez, 

2003).  Old females are less efficient at assimilating food into eggs, leading to a decline in 

fitness components, including fecundity and longevity (Partridge, 1987, Dixon and Agarwala, 
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2002). Dixon and Agarwala (2002) explained that the role of fecundity is well-shaped by 

senescence, in that reproductive output is customarily maximised at early stages of adult life 

and then tends to decline with increasing age. Similar observations were also reported by 

Omkar et al. (2006) and Omkar and Prevez (2003). Not all age-related declines in 

reproductive activities are elicited, however, by senescence; injuries and the related incidence 

of damaged organs tend to occur more in older females (Crudgington and Siva-Jothy, 2000).  

 

Generally, reproduction incurs a cost for both sexes (Dixon, 2000). The cost of reproduction 

on females, however, has been more recognised (Carin, 1991, Tatar et al., 1993, Paukku and 

Kotiaho, 2005). Receiving harmful effects from male ejaculate and parental provisional 

activities constitutes the major costs on reproduction capacity (Hunt et al., 2002, Kotiaho and 

Simmons, 2003). A study has showed that in the three species of horn-dimorphic dung 

beetles - Onthophagus taurus (Schreber, 1759), Onthophagus binodis (Thunberg, 1818) and 

Onthophagus australis (Guérin-Méneville, 1830) (Coleoptera: Scarabaeidae) - male mating 

success was affected by the courtship rate. The courtship rate was condition dependent, such 

that males in poor conditions had lower courtship rates compared with those that had been 

manipulated to be in good food conditions (Kotiaho, 2001).  Kotiaho (2001) noted that 

courtship rates and sexual activities generally were capable of significantly reducing the 

longevity of males.  

 

As the trade-off between fecundity and longevity appears to be a rather complex area and 

might be influenced by ecological conditions, future studies to understand life-history 

responses of organisms should embrace evaluations of a varying degree of food limitations 

and mating behaviour, both intra- and inter-specifically (Mohammed and Van Emden, 1989, 

http://en.wikipedia.org/wiki/Johann_Christian_Daniel_von_Schreber
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Helden et al., 1994).  Environment-induced variability in life-history traits plays a key role in 

determining population dynamics, particularly during the invasion of exotic species (Obrycki 

et al., 1998).  The occurrence of small-sized predatory ladybirds in the field is highly 

common (Obrycki et al., 1998). This backs up the prediction that ladybird beetles that are 

able to live and survive in habitats with limited food and harsh environmental conditions 

often live in habitats that are limited by food (Dixon, 2000).  Therefore, if some 

aphidophagous beetles manage to overcome and survive these unpredictable conditions, they 

assert their efficiency as potential competitive predators and their capability to become a 

successful invader (Obrycki et al., 1998). 

 

1.12  Competition and oviposition deterrence pheromones  

  

The 'optimal oviposition theory' predicts that prey quality affects female ladybirds' 

oviposition preferences (Charnov and Stephens, 1988). It has been found that patch quality 

may be assessed by aphid species, aphid density (Dixon, 1997, Kalushkov and Hodek, 2004) 

and the presence of intra- or inter-specific competitors (Burgio et al., 2002). Females of 

several ladybird species often refrain from laying their eggs in prey patches or host-bearing 

broods (eggs and larvae), or sites that have already been marked by con- or hetero-specific 

adults or larval tracks (Oliver et al., 2006, Magro et al., 2007). Such behaviour acts to 

diminish the level of competition among their offspring and other hetero-specific brood. The 

avoidance of contaminated hosts is usually mediated by cues or signals associated with a 

brood, such as marking pheromones (Nufio and Papaj, 2001), e.g.  females of H. axyridis 

avoided oviposition close to the desirable aphid colonies that were already marked with 

oviposition-deterring pheromones (Yasuda et al., 2000).  
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Semio-chemicals are a mixture of hydrophobic alkanes (Omkar, 2004). It has been reported 

that some alkaloids exist also on the elytra, which aids in mate recognition and allocation 

(Hemptinne et al., 2000). Some of these alkaloids are found on the surface of the egg shell as 

a defence, contributing to a reduction in intra-guild predation, as in A. bipunctata and C. 

septempunctata (Agarwala and Yasuda, 2001, Hemptinne et al., 2001). Oviposition-deterring 

pheromones have been identified among various insect taxa, including in Coleoptera, Diptera, 

Hymenoptera, Lepidoptera and Neuroptera (Prokopy, 1981ab, Van Lenteren, 1981, Roitberg 

and Prokopy, 1987, Landolt and Averill, 1999).  Prokopy (1981a) noted that the behavioural 

consequences after recognition of the oviposition-deterring pheromones involve a lessening 

in the time consumed by females on previously exploited resources, accompanied by a 

decrease in oviposition activities. Nufio and Papaj (2001) demonstrated stereotypical 

behaviours of females directly following the oviposition event, such as dragging the 

ovipositor on the host resource while depositing a clear liquid. 

 

Females of aphidophagous, phytophagous and parasitoid insects usually perceive oviposition-

deterring semio-chemicals, through several kinds of sense organs, such as the olfactory 

chemo-receptors (Rûzicka, 2003). Three types of chemo-receptors have been recognised by 

Jourdan et al. (1995) - gustatory, mechanoreceptors and olfactory receptors. The total number 

of these receptors is usually high in polyphagous species compared with oligophagous or 

monophagous and they are fewer in coccidophagus coccinellids (Jourdan et al., 1995). These 

receptors differ in their purpose and structure between sexes. For instance, the antennae of a 

predatory beetle, Trogossita japonica (Reitter, 1875) (Coleoptera: Trogossitidae), exhibited 

sexual dimorphism in structure, types and quantity of receptors, signifying their differential 
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functions in males and females (Usha Rani and Nakamuta, 2001). Parasitic and phytophagous 

insects are known to deposit chemical signals subsequent to egg oviposition that alter the 

behaviour of conspecific individuals, who accordingly avoid laying future eggs into formerly 

exploited host resources (Nufio and Papaj, 2001).  These signals have been named 

oviposition-deterring pheromones, marking pheromones or epideictic pheromones (Prokopy, 

1981ab, Roitberg and Prokopy, 1987, Nufio and Papaj, 2001).  In phytophagous insects, 

chemical or physical changes in hosts - including the release of plant compounds associated 

with oviposition activities or destruction of plant tissue by larvae or adults - will aid in 

assessing the conspecific brood (Fitt, 1984, Landolt, 1993, Heard, 1995).  Similarly, 

oviposition by entomophagous parasitoids may trigger changes in a host’s haemolymph 

composition that may be used to distinguish unparasitized from parasitized hosts (Fisher and 

Ganesalingam, 1970, Vinson and Iwatsch, 1980, Ferkovich et al., 1983). 

 

Most studies have considered physical and chemical interference in larvae and not that of 

adults (Doumbia et al., 1998). For example, Hemptinne et al. (1992) studied the oviposition 

avoidance of coccidophagous ladybirds in the presence of con-specific larvae. Likewise, 

Rûzicka (2003) studied the ability of the aphidophagous coccinellids, Cycloneda limbifer 

(Casey, 1899) (Coleoptera: Coccinellidae) and Ceratomegilla undecimnotata (Schneider, 

1792) (Coleoptera: Coccinellidae) to discriminate between those sites contaminated with 

oviposition-deterring larval track and clean ones. To date, few studies have examined the 

effects of the physical interference of con-specific adults on the reproductive performance of 

the aphidophagous, Propylea dissecta (Mulsant, 1850) (Coleoptera: Coccinellidae) (Mishra 

and Omkar, 2007). More knowledge on the action of pheromone chemistry will be of great 

assistance in constructing hypotheses on cross-recognition and even to distinguish between 

instances in which insects utilize cues associated with brood presence. In addition, it will help 
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in evaluating intra-guild competition and the displacement of native species chiefly during 

invasion (Nufio and Papaj, 2001).  

 

1.13 Thesis objectives 

 

The predaceous ladybeetle Harmonia axyridis was considered as an excellent candidate to be 

studied in this project because of its various unique functional traits. It is extremely important 

to have a good representation of each developmental life-stage of this insect, since it has been 

categorised as “the most invasive ladybird in the world” (Tedders and Schaefer, 1994, 

Kuroda and Miura, 2003). Because ecologists often fail to detect the likely successful 

invaders prior to establishment (Snyder et al., 2004), there is a necessity to apprehend the 

underlying biological, physiological and morphological features in order to give a satisfactory 

interpretation for that success (Keane and Crawley, 2002, Shea and Chesson, 2002). This 

project focused on evaluating the various life-history traits of this predaceous beetle. Its 

fundamental focus was to understand the reproductive tactics and developmental parameters, 

in particular. Several investigations were conducted to estimate the above by addressing the 

following: (1) intra-specific variations in body size between and within genders; (2) the 

significant variations in developmental aspects and growth rate among developing juveniles; 

(3) the reproductive capacity of females measured under a controlled diet and reproductive 

plasticity in response to manipulated diet regimes; (4) pupal colour polymorphism evaluated 

at field conditions and under controlled laboratory conditions; (5) the effect of mating rate 

manipulations on the reproductive performance, egg hatchability and longevity; and (6) 

behavioural strategies of H. axyridis adults in evading the presence of con-specific and 

hetero-specific larval and adult tracks.  
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The objectives of each chapter are as follows. Chapter 2 has been designated to giving a 

broad description and thorough background into various life-history traits of H. axyridis. 

Body size and parts' allometric relationships are described, as well as sexual size dimorphism. 

Chapter 3 sets out to gain a detailed understanding of the reproductive capacity of H. axyridis 

reared on one of its essential diets and maintained at constant laboratory conditions. The 

reproductive potentials have been evaluated by determining life-time fecundity, fertility, egg 

and clutch size parameters, and oviposition period, as well as counting the number of 

ovarioles and testicular filaments. Investigations in Chapter 4 focus on the study of pre-

imaginal development and immature survival under a controlled diet regime as well as 

laboratory conditions. The key aim was to assess the presence of intra-specific inconsistency 

and variability in respect to various developmental and growth qualities, such as the two 

estimates of the critical weight (maximum and minimum), total growth rate, length of larval 

period and total developmental period. Chapter 5 focuses on an inspection of pupal sexual 

dimorphism in H. axyridis, based on external surface pigmentation, under constant controlled 

laboratory parameters. This chapter aims to find a reliable consistent technique for sex 

identification based on pupal pigmentation prior to adult emergence. The objective of 

Chapter 6 is to estimate the influence of manipulating the rate of mating on reproductive 

output and longevity of females of H. axyridis. Females were exposed to different mating 

frequencies in order to measure the influences on life-time fecundity, egg hatchability and 

longevity. In addition, this will give an overview on the way this beetle manages to overcome 

variability of environmental conditions. 
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Chapter 7 evaluates various responses to a short-term period of limited diet at different stages 

of immature development. Short- and long-time costs on lifetime fitness of adults and their 

offspring has been assessed through measuring the constituents of fitness, including 

longevity, body weight, sex ratio, fecundity, fertility and percentage of mortality. Finally, 

Chapter 8 describes the avoidance approaches of H. axyridis adults in the existence of con- 

and hetero-specific adults and larval tracks. The significance of olfactory sense represented 

by antennae was tested by complete amputation for both sexes. The consequent impact of 

their absence on life-history traits such as body weight and longevity was determined. This 

may benefit in evaluating the role of sense organs and receptors in modelling the behaviour 

of females in optimising oviposition sites.   

 

Finally, it is hoped that the present laboratory studies will provide a comprehensive 

background on physiological, morphological and behavioural-related qualities of the 

predaceous beetle H. axyridis that are often associated with its developmental features and 

reproductive performance. The results will help to clarify the reasons attributed to its 

ferocious invasion and persistence and the on-going successful establishment over wide 

areas. 
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Chapter 2 

Sexual Size Dimorphism and Variability in Life History 

Traits of Harmonia axyridis Reared on a Constant Diet 

2.1  Introduction 

 

Sexual size dimorphism (SSD) is well defined as the morphological differentiation of 

sexually mature males and females (Blanckenhorn, 2005). It is a widespread phenomenon 

occurring widely across the animal kingdom (Badyaev, 2002, Blanckenhorn, 2005) and even 

among populations of a single species (Pearson et al., 2002, Krause et al., 2003). The 

direction and degree of SSD is highly variable among populations and within taxa (Stillwell 

and Davidowitz, 2010). It was reported that SSD tends to decrease with body size in species 

where females are the larger size sex and increases with body size where males are the larger 

individuals (Blanckenhorn, 2005). Male body size varies more among populations and 

species, or evolutionarily deviates more rapidly than female body size, irrespective of which 

sex is larger (Abouheif and Fairbairn, 1997).  

 

This phenomenon of SSD was designated as Rensch’s rule by Abouheif and Fairbairn (1997) 

and Fairbairn (1997). Fairbairn and Preziosi (1994) were the first to posit that sexual 

selection for large male size was regarded as the primary force driving this allometric 

conformation in SSD. Subsequently, extra evidence for this proposition was found (Abouheif 

and Fairbairn 1997, Fairbairn, 1997, Székely et al., 2000, 2004, Kraushaar and Blanckenhorn, 

2002). Much of the variation in SSD is partly genetically based and has been viewed as 

resulting from sexual differences in selective pressures on adult body size (Stillwell and Fox, 
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2007, 2009). Fecundity selection has been suggested to be the main force generating female-

biased SSD (Teder and Tammaru, 2005), sexual selection has however, often been elicited in 

cases of male-biased size dimorphism (Isaac, 2005). Abouheif and Fairbairn (1997) stated 

that Rensch's rule predicts that SSD (size of the larger sex/size of the smaller sex) will be 

correlated positively with mean body size (hyperallometry) in taxa in which males are the 

larger sex and negatively correlated with mean body size (hypoallometry) in taxa in which 

females are the larger sex.  

 

Female-biased sexual dimorphism has been recorded in most invertebrates and 

poikilothermic vertebrates. For instance, female-biased sexual dimorphism was reported at 

between 72-95% in insect species (Shine, 1979, Arak, 1988, Teder and Tammaru, 2005), 

such as aphids (Braendle et al., 2006), butterflies (Arikawa et al., 2005), parasitoids (Harvey, 

2003) and ladybird beetles (Dixon, 2000, Yasuda and Dixon, 2002). An exception is the 

Odonata, of which only 27% of species show female-biased SSD and the remaining species, 

particularly the damselflies (Zygoptera), displayed male-biased or no SSD. 

 

Male-biased SSD predominates only among birds (Weatherhead and Teather, 1994) and 

mammals (Lindenfors and Tullberg, 1998, Székely et al., 2000) where males are found to be 

much the larger of the species and may weigh two to eight times as much as females (Cabana 

et al., 1982, Bjorklund, 1990, Székely et al., 2000); for instance, in the order Primates, the 

fin-footed mammal, the pinniped, which belongs to order Carnivora and to the families, 

Odobenidae, Otariidae and Phocidae. Furthermore, in ungulates, the mean ratio of the 

average mass of males to females approached 2.98 (Weckerly, 1998), with some males 

weighing up to eight times as much as the females (Fairbairn, 1997). In addition, in, the 

Hawaiian monk seal, Monachus schauinslandi (Matschie, 1905) (Carnivora: Phocidae) 

http://en.wikipedia.org/wiki/Odobenidae
http://en.wikipedia.org/wiki/Otariidae
http://en.wikipedia.org/wiki/Phocidae
http://en.wikipedia.org/wiki/Paul_Matschie
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(Ralls, 1977, Weckerly, 1998), the majority is male-biased, but the rest is female-biased. 

Despite the predominance of male-biased sexual dimorphism, exceptions exist such as the 

yellow-pine chipmunk, Tamias amoenus (Allen, 1890) (Rodentia: Sciuridae) from 

Kanansakis Valley, in which the females are significantly heavier (10-20%), have a 4% 

longer body and a skull 0.9% longer and 2.2% wider than male chipmunks, and the overall 

size of skeletal tissue or structural parts is larger (Kenagy and Barnes, 1988, Levenson, 1990, 

Schulte-Hostedde and Millar, 2000). In mammals, possessing a larger body size (or the 

opposite) can incur substantial advantages for both sexes. Larger females can deliver a 

greater number or larger-sized offspring and provide more nutritious milk. Large-sized 

mothers are likely to provide better maternal care than smaller mothers (Ralls, 1976). Smaller 

males are capable of spending more time searching for a mate and less time on feeding 

because of lower absolute energy requirements (Blanckenhorn, 2000). Nevertheless, smaller 

males may have great mobility and be more agile (Trombulak, 1989). 

 

In insects, there are three key ways to attain larger body size: laying large offspring, a longer 

developmental period, and having a faster growth rate. These approaches are likely to incur 

costs that entail substantial trade-offs (Roff, 1980, 1992, Nylin and Gotthard, 1998). For 

instance, laying large offspring may lead to an increase in parental investment, as described 

above. The longer developmental period is likely to increase the cumulative mortality rate 

due to predation and the faster growth rate may raise the metabolic demand as well as the 

foraging behaviour, resulting in an increase in the rate of predation (Roff, 1992, Wiklund and 

Karlsson, 1988, Nylin and Gotthard 1998, Gotthard, 2000). While SSD has been extensively 

studied (Dunn et al., 2001, Karubian and Swaddle, 2001, Blanckenhorn, 2005) the proximate 

mechanisms generating it have received considerably less attention predominantly in the 

invertebrates (Badyaev, 2002). For example, sex variability in body size plasticity is still 

http://en.wikipedia.org/wiki/Joel_Asaph_Allen
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under discussion: patterns of heritability are analogous between sexes because both share 

identical genes controlling the growth rate and developmental features (Lande, 1980, Reeve 

and Fairbairn, 2001). The variation between males and females in the ideal phenotype that is 

favoured by selection can be determined by the evolution of differential gene expression in 

the two sexes (Ellegren and Porsch, 2007). Sex-biased genes show unusually rapid sequence 

evolution, are frequently labile in their form of expression, and are non-randomly distributed 

in the genome (Ellegren and Porsch, 2007). Genes that are male-biased in their expression 

have on average more intra- and interspecific divergence in expression than those with 

female-biased expression. This was verified when it was recorded that the divergence among 

amino acid sequences in the male reproductive tract of Drosophila melanogaster (Meigen, 

1830) (Diptera: Drosophilidae) and gene expression evolve more rapidly than in a female 

(Meiklejohn et al., 2003). 

 

Intraspecific body size variations are arbitrated by differences in organism growth and 

development characteristics mediated by endocrine regulators operating at molecular, cellular 

and physiological levels (Badyaev, 2002, Nijhout, 2003). Growth to different sizes and 

display of sex-explicating plasticity in response to these factors is as yet poorly understood, 

mainly for invertebrates such as insects (Stillwell et al., 2010). The macroecological forms of 

body size variation among insects and their probable underlying mechanisms remain poorly 

recognised, unlike groups such as birds and mammals that have been intensively studied 

(Chown and Gaston, 2010). Many variables such as environmental factors (Teder et al., 

2008) and diet quality and quantity (Stillwell and Fox, 2007) have been typically viewed as 

important elements inducing plasticity in body size and related life-history traits (Davidowitz 

et al., 2004). In summary, size difference is not just limited to the significance of the 

http://en.wikipedia.org/wiki/Johann_Wilhelm_Meigen
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interactions concerning the genotype and environmental elements, but also relates to robust 

phylogenetic determinants (Smith et al., 2004). 

 

There is extensive evidence among a number of taxa that both growth rate and development 

time can vary between the sexes and that this variation is usually associated with SSD (Shine, 

1994, Teather and Weatherhead, 1994, Badyaev et al., 2001, 2002). In insects, the 

relationship between development time and SSD has been inferred either from the 

perspective of protandry, earlier male emergence, (Wiklund and Fagerström, 1977, 

Fagerström and Wiklund, 1982), or in the context of developmental constraints that 

presumably determine the correlation between body size and development time (Roff, 1992, 

Wiklund and Karlsson, 1988, Fairbairn, 1990). In both the above cases, SSD is thought to be 

associated with the variation of development time between sexes in which the larger sex 

develops for a proportionately longer time (Fairbairn 1990, Wiklund et al., 1991, Teather and 

Weatherhead, 1994). A study by Blanckenhorn et al. (2007) revealed that SSD is likely to be 

strongest in groups such as Lepidoptera, Hymenoptera, and Araneae, as well as mammals and 

birds in which quicker male development is of selective advantage. In some insects groups, 

however, the development time of males was equal to, or longer than, that of females. It was 

noted that on average, males are smaller than females in most of the taxa studied. This 

implies that faster growth rates of females in the majority of the investigated groups of 

arthropods species are highly important than development time differences in proximately 

mediating SSD (Blanckenhorn et al., 2007). In conclusion, in arthropods, for example in 

insects, the variation in SSD occurring at the adult stage entails that both males and females 

vary considerably in final body size, growth rate, developmental period and survival 

(Fairbairn 1990, Wiklund et al., 1991, Teather and Weatherhead, 1994, Blanckenhorn et al., 

2007).  
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Allometry designates the changes in the relative dimensions of parts of the body that are 

correlated with changes in overall size. Allometric growth is described using the conventional 

formula: y = bx
α
 (Huxley and Teissier, 1936), where x and y are the two measured traits, log b 

is the intercept of the line on the y-axis and a is the slope of the line. 

 

Allometry and its patterns have been defined in detail in the general introduction above. To 

date, four different concepts of allometry have been detailed: ''Interspecific Allometry'' refers 

to similar phenomena among related species; ''Intraspecific Allometry'' refers to variations in 

shape and developmental stage between individuals of the same species; ''Ontogenetic 

Allometry'' reveals any alterations in relative trait size through individual development; and 

''Evolutionary Allometry'' refers to the character covariation among organisms between mean 

trait size and mean body size from several evolutionary lineages sharing a common ancestor 

within a single ontogenetic stage (Gould (1966) references phylogenetic allometry – that is, 

constant differential growth ratios in lineages) (Shea, 1985, Klingenberg and 

Zimmermann,1992ab, Arevalo and Heeb, 2005, Blanckenhorn et al., 2007). The first and 

second categories are commonly characterised as ''Static Allometry" and the third and the 

fourth are known as ''Dynamic'' or ''Truly Temporal'' (Gould, 1966). Allometric growth, 

which is identified as the differences in relative growth rates among body parts, also accounts 

for intraspecific diversity perceived within taxa (Nijhout and Wheeler, 1996, Gayon, 2000). 

In holometabolous insects such as the coleopterans, the appendages of the adult do not grow 

constantly and/or synchronously as the larval body grows, but instead, just before the start of 

metamorphosis process the appendages undergo a period of accelerated growth (Huxley, 

1931). This makes it problematic to infer patterns of relative growth rates and types of 

allometric relationships (Wilson, 1953, Nijhout and Wheeler, 1996). In fact, there are several 

remarkable consequences associated with allometry. First, the allometric relationship is not a 

http://icb.oxfordjournals.org/content/40/5/748.full#ref-12
http://icb.oxfordjournals.org/content/40/5/748.full#ref-5
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direct outcome of the relative growth particularly when correlating body appendages with the 

overall body size. Second, certain sexual and numerous non-sexual traits, such as the 

ornaments and weapons, always exhibit positive allometric relationships (e.g., the horn length 

in the male dung beetle, Onthophagus acuminatus (Harold, 1880) (Coleoptera: Scarabaeidae) 

(Emlen, 1994) and the horn and wing in the giant rhinoceros beetle, Chalcosoma caucasus 

(Fabricius 1801) (Coleoptera: Scarabaeidae) (Kawano, 1995)). This has driven Kodric-Brown 

(2006) to construct a model presenting a universal pattern of positive allometry exhibited in 

such traits and generalised it. Third, some traits grow rapidly only just before metamorphosis 

altering the relative growth and the nutrient allocation (Emlen, 1994, Kawano, 1995). 

 

One method of measuring the patterns of a trait or a character covariation is the allometry 

(Cock, 1966, Gould, 1966), as well as the multivariate generalisations that are proposed by 

Hopkins (1966). In these two approaches only one single factor or principle character is 

considered for allometric variations and the data point will be plotted and concentrated along 

straight line of log-transformed measurements; the variations can be described according to 

the direction of that line as negative or positive correlations (Gayon, 2000). These approaches 

do not give a full description for biological data sets, as they disregard measurement errors 

(Gibson et al., 1984, Bookstein, 1989). The history of the concept of allometry and its related 

problems are well detailed in Gayon (2000).  

 

Limited studies have been carried out on several insect species to examine SSD directly after 

egg hatching, however, none of those have revealed any noteworthy variations in hatching 

size between the sexes (Esperk et al., 2007). In addition, most of the studies on SSD have 

focused on investigating large body sizes due to easier handling. Few studies, however, have 

examined sexual selection in small-sized species (Kasumovic and Andrade, 2009). Thus, this 
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has narrowed our understanding of SSD patterns and its diversity among taxa (Stillwell et al., 

2010).  

 

The general aim of this study was to determine the validity of Rensch's rule by quantitatively 

assessing various allometric measures for SSD in H. axyridis. The allometric trends were 

quantified using regression method and log–log transformation. As mentioned in the general 

introduction, the proposed Rensch's rule, which is more common in taxa in which males are 

the larger sex. Several studies have suggested that allometry consistent with Rensch's rule 

occurs in response to sexual selection in relation to male size, in which 66% of taxa 

demonstrated male-biased SSD and only 48% of taxa demonstrated female-biased SSD 

(Clutton-Brock et al., 1977, Leutenegger, 1978, Webster, 1992, Fairbairn and Preziosi, 1994). 

Sexual selection is expected to occur more often in association with male-biased size ratios 

(Fairbairn and Preziosi, 1994). Allometry inconsistent with Rensch's rule has been 

documented in taxa in which females are the larger sex (Earhart and Johnson, 1970, Vollrath 

and Parker, 1992, Head, 1995).  

  

Understanding the evolution and the maintenance of SSD involves first measuring and 

quantifying size dimorphism to verify that SSD actually exists. Various methods of 

measuring SSD have been used in the past in numerous studies among various taxa (Lovich 

and Gibbons, 1992, Ranta et al., 1994) but the results were imprecise. For instance, 

investigation of SSD and intraspecific variations in body size of mammals has focused only 

on differences in body mass (Sauer and Slade, 1987, 1989, Boonstra et al., 1993, Yoccoz and 

Mesnager, 1998). Interpreting intraspecific variation in body mass can be problematic, 

particularly when size dimorphism is substantially small, because body mass varies for two 

main reasons. First, it may reflect the size of skeletal tissue or structural body size, thus 
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individuals with large body are still heavy (Dobson, 1992). Second, body mass may reflect 

internal body conditions in which heavy individuals may have higher stored metabolic 

tissues, such as fat (Dobson, 1992). Thus, the best descriptive method for evaluating SSD is 

through measuring structural body size including the length or the width of the body and 

wing, the length of the hind and the fore legs, the head and the pronotum and others. For 

instance, using the length of the hind foot in red squirrels, Sciurus vulgaris (Linnaeus, 1758) 

(Rodentia: Sciurus) (Wauters and Dhondt, 1989), and body length in Rodentia: Cricetidae, 

such as, Microtus oregoni (Bachman, 1839), Microtus townsendii (Bachman, 1839), 

Clethrionomys californicus (Merriam , 1890) and chipmunks Tamias amoenus (Allen, 1890) 

(Heske and Ostfeld, 1990, Levenson, 1990).  

 

Biological invasions are having major ecosystem impacts on indigenous species and are 

thought to be the second foremost cause of natural biodiversity loss (Pimentel et al., 2000). 

There is a great need to understand the association between life-history traits of invasive 

species and the criteria of the invasive process (Labrie et al., 2006). This knowledge is 

essential to develop a better understanding of inter-specific competition within native species 

(Lanzoni et al., 2004). Ecologists often lack the capability to identify potential invaders and 

their ways of establishment (Snyder et al., 2004). Therefore, the underlying morphological, 

behavioural and ecological mechanisms explaining invasion success need to be evaluated 

carefully by incorporating many studies and experiments (Shea and Chesson, 2002, 

Kimberling, 2004). 

 

Harmonia axyridis is a strong intra-guild predator displaying competitive interactions with 

native species (Felix and Soares, 2004, Snyder et al., 2004). This ladybird beetle dominates 

the aphidophagous guild in numerous agricultural ecosystems to some extent owing to its 

http://en.wikipedia.org/wiki/John_Bachman
http://en.wikipedia.org/wiki/John_Bachman
http://en.wikipedia.org/wiki/Joel_Asaph_Allen
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great fecundity, polyphagous feeding habit, aggressiveness, fast mobility, efficient predation, 

low susceptibility to infection, elaborate searching tactics and rapid larval development 

(Osawa, 2000, Michaud, 2002a b, Koch, 2003, Cottrell and Shapiro Ilan, 2003, Felix and 

Soares, 2004, Lanzoni et al., 2004). Among the factors that potentially contribute to the 

powerful dominancy of H. axyridis over native species is the possession of a large body size. 

By extension, large invasive species may gain a greater significant reproductive advantage 

over small native species (Tilman, 1999, Kajita and Evans, 2010). Despite the benefits body 

size offers as a superior intraguild species, the adverse impact of this beetle on agricultural 

habitats has been continuing to rise. Harmonia axyridis’ population has been increasing and 

spreading dramatically every year harming non-target species and reducing crop production. 

In addition, the role of this beetle as a household invader especially with its aggressive 

behaviour could be an additional destructive aspect of invasiveness (Koch and Galvan, 2008).  

 

Does the invasive species exhibit specific life-history traits that encourage its successful 

invasion and spread? It was revealed that H. axyridis is a suitable model to test this 

prediction, as its invasion has been far from instantaneous and its population is expected to 

show high adaptive phenotypic plasticity. The objectives of this study were to evaluate some 

of the structural traits of the beetle H. axyridis in particular, body and appendage size at 

hatching. In addition, it aimed to describe sexual dimorphism in overall body size and body 

parts. Allometric analyses were also performed in order to determine which structural traits 

best explain SSD in H. axyridis and to find out which trait is the species-specific and could be 

used for interspecific comparison with other species for a particular study. In this context, the 

study hypothesised that larvae reared under similar diet supply and environmental conditions 

involving temperature, humidity and lighting would still display SSD in overall body and 

body appendages at adult emergence.  
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In order to accomplish the above, the study evaluated the SSD in fresh body weight, and most 

of the structural body parameters - including body length and body width and length of right 

tibia, scutum width, wing length and wing width - as well as longevity. The study employed 

an analytic method to analyse the dimorphism index for each of the above-listed parameters 

to evaluate the relative sex differences between males and females that infer the variation in 

growth and developmental time. The study also re-evaluated the general validity of Rensch’s 

rule on previously analysed species, which so far has been documented only in very few taxa 

(Abouheif and Fairbairn, 1997). Specifically, dragonflies (Odonata) (Johansson et al., 2005) 

and waterstriders (Hemiptera: Gerridae) (Andersen, 1997) were found to follow Rensch’s 

rule. In contrast, tephritid fruit flies (Diptera: Tephritidae) (Sivinski and Dodson, 1992), 

caddisflies (Trichoptera: Hydropsychidae) (Jannot and Kerans 2003) autumn spider, 

Metallina segmentata (Clerck, 1757) (Araneae: Tetragnathidae) (Prenter et al., 1999) and the 

ladybird beetle H. axyridis (Coleoptera: Coccinellidae) (Dixon, 2000) did not follow 

Rensch’s rule.  

  

2.2  Materials and methods  

2.2.1 Harmonia axyridis maintenance 

 

Adult H. axyridis beetles were collected from naturally infested fields in Silwood Park South-

east England, U.K. (National Grid References 41/944691). Sexing of beetles was performed 

based on the labrum and pro-sternum pigmentation (McCornack et al., 2007). Beetles were 

kept as pairs in a 9cm Petri-dish and were supplied daily with 2cm² tissue moistened with a 

10% honey solution. A folded filter paper (42.5mm, Whatman) was also kept in each Petri-

dish to create an oviposition substrate. The culture was maintained according to Kajita and 

Evans (2010) in a controlled temperature room at 20±1 ˚C, 70-75% RH, and a photoperiod of 

http://en.wikipedia.org/wiki/Tetragnathidae
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L16: D8 under fluorescent lamps following the method proposed by Stewarts et al. (1992 a, 

b). The daily food provided was live adult pea aphids, Acyrthosiphon pisum (Harris, 1776) 

(Hemiptera: Aphididae). Subsequently, all the clutches laid by each pair were kept separately 

in 9cm Petri-dishes and maintained in the same laboratory conditions until larvae started to 

emerge. Larvae were considered to have emerged when all legs were completely detached 

from their egg shell.  

 

2.2.2 Aphid culture maintenance  

 

The food provided for the ladybirds was a mixture of the pink (JP1) and the green (LL01) 

strains of pea aphid A. pisum. This particular aphid species is widely regarded as a suitable 

prey for H. axyridis and other species of ladybirds such as A. bipunctata (Dixon and Guo, 

1993, Evans and Gunter, 2005). The aphid culture was maintained on broad bean plants Vicia 

faba (Linnaeus, 1753) (Fabales: Fabaceae) variety Aquadulce Claudia under the same 

conditions following Agarwala et al. (2008) and Kajita and Evans (2010).  

 

2.2.3 Laboratory feeding 

 

The aphids offered to each predator larvae depended on the developmental stage of the 

coccinellid according to the method detailed by Agarwala et al. (2008) and Kajita and Evans 

(2010), with a few modifications. The first instar larva was fed 15 first instar aphids, the 

second instar larva was fed 15 second instar aphids, the third instar larva was fed 16 second 

and third instar aphids of equal portions, the fourth instar larva was fed 16 fourth instar and 

adult aphids of equal portions, the fifth instar larva and pre-pupal stage and adult were fed 16 

adults of roughly equal sizes. The number and weight of aphids provided daily to each stage 

http://en.wikipedia.org/wiki/Aphididae
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was evaluated and kept standardized in order to ensure that approximately the same aphid 

biomass was provided to all individuals equally.  

 

2.2.4 Experimental procedures 

 

100 newly hatched larvae were collected randomly from the above monitored clutches. Each 

larva was reared individually in a 9cm Petri-dish and was supplied with prey as detailed 

previously. Adult beetles were collected randomly from different clutches after ecdysis. They 

were sexed and paired into 30 couples. Each pair was supplied daily with aphids (16/adult), 

2cm² piece of moistened tissue paper with 10% honey solution and a folded filter paper. After 

mating, the clutches were collected and maintained separately in a 9cm Petri-dish. In order to 

prevent cannibalism, monitoring of those clutches was done every 30 min and the freshly 

emerged larvae removed. The thirty couples used in this study were reared until they died. 

Subsequent to their death male and female bodies were dissected directly to record the total 

number of testicular filaments and the ovarioles respectively, with the aid of the 

stereomicroscope (Schott, Leica MS25). 

 

2.2.4.1 Determination of body part parameters 

 

Variations in body parameters within and between genders were investigated. After adult 

death, maximum linear measures including hind width of scutum, body length, body width, 

right hind tibia length, wing length and wing width were recorded for the examined 30 pairs. 

The measurements were calibrated to 0.065 mm with an eyepiece micrometre attached to a 

stereomicroscope (Schott, Leica MS25). Subsequently, the measurements of body size were 

divided into three classes of equivalent intervals,  large, medium and small,  in order to be 
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analysed further following the method detailed by Dixon and Hemptinne (2001), in which 

they had only considered one body measurement (body length of different insect species).  

 

2.2.4.2 Determination of adult fresh body weight 

 

The adult weights used were the mean values of the fresh adult body weight recorded three 

times throughout the experiment (i.e., after emergence, after first mating and at the end of the 

oviposition period). All weights were determined to a precision of ±0.02mg using a balance 

(Precisa, 125A).  

 

2.3  Data analysis 

 

Mean fresh body weight for males and females was considered as the independent variable in 

all data analyses. The body size and parts measurements (including body width, body length, 

scutum width, right tibia length, wing width and wing length), as well as longevity, were 

regarded as dependent variables. The Shapiro-Wilk test was performed on each variable to 

check for normality. Log-transformation and squared-root-transformation were applied to 

normalise data distribution. For the parameters that failed to be normalised, non-parametric 

analyses were applied using a generalised linear model with Poisson errors. Any 

overdispersion was removed using Quasipoisson modelling.  

 

Assessments of SSD depend on what body size parameter is used. Much of life-history theory 

treats size as a varying trait dependent on a range of factors functioning at different stages in 

an individual’s life (Roff, 1981, Bede et al., 2007). This suggests that estimates of body mass 

may fluctuate greatly throughout life in many insects according to the external ecological 
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factors and food status. Overall, body mass will provide a poor assessment of size and SSD 

mainly in the field collected samples. Some morphological size measures are less variable 

throughout adult lifespan and may be unresponsive to any changes either in the nutritional 

conditions or environmental factors, including the body length and scutum or pronotum 

width. Patterns of SSD may differ according to the measured traits of an individual (Väisänen 

and Heliövaara, 1989). As a consequence, multivariate traits analysis is highly recommended 

for interpreting intra-specific SSD recorded in particular between sexes and individuals 

belongs to the same species (Fairn et al., 2007). 

 

The study intended to calculate the SSD index for all the above listed traits following Teder 

and Tammaru (2005). Teder and Tammaru (2005) demonstrated that the SSD index was 

expressed as the ratio of mean fresh body weight of females over mean weight of males. In 

view of that, if the females were the larger sex, this index exceeded unity whereas if males 

were the larger then this index remained below unity (Teder and Tammaru, 2005). Likewise, 

in the present study, SSD index was calculated by dividing the measured female body 

variable traits over that of males and results were interpreted similar to Teder and Tammaru 

(2005).  

 

Fisher's test was applied to check for significance between body classes because the obtained 

SSD values were less than 5. Two tailed t-tests were used to test for variability in trait values 

recorded for male and female groups, as well as for each individual class using the model 

(i.e., t. test (response variable ~ sex as factorial variable)). These variables included all the 

above listed variables as well as the average number of the male testicular filaments and 

female ovarioles. Wilcoxon Rank Sum was used when the errors were not normally 

distributed using the same above model. Multivariate analysis of variance (MANOVA) was 
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used to determine which of the size variables could be used to make a distinction between 

males and females.  

 

A matrix of Pearson’s Correlation tests was implemented to assess any negative or positive 

correlation that might exist between the measured response variables and the correlation 

coefficient was recorded for each test. Nevertheless, all the response variables were subjected 

to allometric analysis to examine how they scaled with body weight. Allometric relationship 

is often defined by a power function (y=a  ) (Huxley, 1931) in which b and a are derived 

from the equation (log y = b log x + log a) (Bales, 1996). To accurately investigate the above, 

linear regression analysis was performed. Therefore, each of the transformed and the other 

normally distributed variables was regressed against log-fresh body weight. Regression 

analysis was applied for both sex groups as well as individuals belonging to every class and 

some variables were regressed and plotted accordingly. As a final point, testing for the 

variability within each sex group and between classes of each sex were further performed by 

using the sex type and class type as independent variables using One-Way ANOVA 

(response variable ~ sex or class (categorical)). A similar interaction was applied for each 

class independently. All statistical analyses were carried out using the statistical programme 

‘R’ version 2.8.1 (Ihaka and Gentleman, 1996). 

 

2.4  Results 

 

In the present study SSD was revealed among several variables. The mean size of most 

measured traits was found to be significantly greater in females compared with males except 

that recorded for the right tibia length. Irrespective to the classes, the mean size of right tibia 

length recorded in males was 2.6 mm (in comparison with 1.65 mm for females) (Table1). 
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The calculated dimorphism indices for all traits in male and female groups are presented in 

Figure 2.1 and Table 2.1 and the sexual index for every class is shown in Table 2.2. Females 

grouped collectively regardless of their classes revealed greater dimorphism indices than the 

male group excluding the index calculated for tibia length. Further comparisons between all 

mean variables for male and female groups revealed that the female group was significantly 

bigger than the male group regarding all traits except the mean right tibia length and the mean 

length of the wings. Statistical comparisons were thus performed between measured traits in 

male and female classes, small, medium and large, respectively. The component of analysis 

showed that all the measured traits were significantly bigger in the large-sized class of 

females compared with the respective class for males. The other traits measured for the 

small- and medium-size classes of females were also significantly bigger, excluding the mean 

wing length, when compared with the respective classes of males. In addition, the index 

estimates for each trait belonging to each class were added up collectively for male and 

females and the average was taken. Comparison between the averages of indices calculated 

for every class irrespective to the sex was performed using Fisher's test and revealed that 

none of the comparisons were significantly different, χ
2
 = 0.096, P=n.s. between the small 

and medium class irrespective of the sex χ
2
 = 0.01, P=n.s. between small and large class 

indices and χ
2
 = 0.01, P=n.s. between medium and large class indices. The purpose of 

conducting the above was to inspect the intraspecific variations within H. axyridis species 

regardless of the interaction of the sex. The interpretation was based on multivariate analysis 

of multicomponent traits; body width, scutum width, body length or mean fresh body weight 

offered a good understanding of how the body size of females is significantly larger than that 

of males. The results showed that females were the bigger sex (Wilks lambda=0.3806, 

F₍₃‚₅₆₎= 30.37, P<0.0001). Similar results were attained when body length was replaced by 

mean fresh body weight (Wilks lambda= 0.427, F₍₃‚₅₆₎= 30.37, P<0.0001).  
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Females varied  significantly between the three classes after comparing mean fresh body 

weight (F=52.8, df= 27, RSE=3.5, P<0.0001) (Fig. 2.2), wing width (F=3.81, df=27, RSE= 

0.39, P<0.05) (Fig. 2.3), wing length (F=15.82, df= 27, RSE= 0.64, P<0.0001), body width 

(F=29, df= 27, RSE= 0.43, P<0.0001) (Fig. 2.4) and total ovariole number (F= 76.4, df= 27, 

residual deviance = 0.09, P<0.0001) (Fig. 2.5). Other traits such as length of right hind tibia, 

scutum width and body length did not display significant variations between the tested 

classes (F= 0.58 df= 29, RSE= 0.13, P=0.56), (F= 0.14, df= 29, RSE= 0.34, P=0.86) and (F= 

1.13, df=29, RSE= 0.81, P=0.28), respectively. 
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Table 2.1. Means (±SE) and ranges for morphological and life history traits of male and female H. axyridis. The results of independent 

Wilcoxon.test and t-test for variation between sexes are also provided. 

 

Female          Male                 

Morphological Trait n Mean ±SE Range   n Mean ±SE Range t-value 

w-

value P df 

Dimorphism 

index 

Fresh body weight 

(mg)  30 32.31 1.37 27.63 

 

30 26.26 0.95 18.24 3.62 

 

<0.0001 51.9 1.23 

Body length (mm) 30 6.58 0.08 1.82 

 

30 6.2 0.06 1.8 

 

672 <0.01 

 

1.06 

Body width (mm) 30 5.67 0.05 1.04 

 

30 4.82 0.07 1.7 

 

857.5 <0.0001 

 

1.17 

Right tibia length 

(mm) 30 1.65 0.02 0.58 

 

30 2.6 0.02 0.45 1.45 

 

0.15 55.6 0.63 

Scutum width (mm) 30 3.06 0.03 0.65 

 

30 2.95 0.028 0.65 

 

599.5 <0.05 

 

1.03 

Wing length (mm) 30 9.43 0.19 3.64 

 

30 9.24 0.14 2.99 

 

527 0.25 

 

1.02 

Wing width (mm) 30 3.2 0.08 1.62 

 

30 2.98 0.05 1.43 

 

593 <0.05 

 

1.07 

Longevity (days) 30 36.73 1.7 30   30 33.36 1.44 28   542 <0.001   1.1 
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Fig.2.1. Index of dimorphism for measured body traits. Trait means ranged from 1.01-

10.32%, larger in females than in males.
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Table 2.2. Means (±SE) and ranges for morphological and life history traits of male and female H. axyridis. The results of independent 

Wilcoxon.test and t-test for variation between sexes within each class are provided. 

Class   Female        Male               

Small Life-history trait n Mean ±SE   n Mean ±SE t-value 

w-

value P df Dimorphism index 

 

Fresh body weight (mg)  10 24.46 1.059 

 

10 19.82 1.006 3.18 

 

<0.01 17.95 1.23 

 

Body length (mm) 10 6.74 0.189 

 

10 6.11 0.12 2.85 

 

<0.05 16.16 1.1 

 

Body width (mm) 10 5.38 0.098 

 

10 4.45 0.06 8.17 

 

<0.001 17 1.2 

 

Right tibia length (mm) 10 1.69 0.043 

 

10 1.62 0.018 0.73 

 

0.473 17.16 1.04 

 

Scutum width (mm) 10 3.08 0.065 

 

10 2.92 0.051 1.84 

 

0.088 13.11 1.05 

 

Wing length (mm) 10 8.99 0.3 

 

10 9.03 0.26 -0.0841 

 

0.934 17.57 0.99 

 

Wing width (mm) 10 3.07 0.17 

 

10 2.71 0.09 1.83 

 

0.083 14.35 1.13 

 

Longevity (days) 10 36.2 2.44 

 

10 34.6 2.86 0.54 

 

0.59 17.35 1.04 

Medium 

             

 

Fresh body weight (mg)  10 31.9 0.55 

 

10 27.94 0.37 5.98 

 

<0.0001 15.75 1.4 

 

Body length (mm) 10 6.43 0.12 

 

10 6.39 0.063 0.3 

 

0.77 13.37 1.006 

 

Body width (mm) 10 5.73 0.032 

 

10 4.8 0.016 

 

100 <0.001 

 

1.19 

 

Right tibia length (mm) 10 1.62 0.038 

 

10 1.57 0.048 0.73 

 

0.47 17.16 1.03 

 

Scutum width (mm) 10 3.04 0.053 

 

10 2.93 0.026 2.06 

 

0.1 13.66 1.03 

 
Wing length (mm) 10 9.45 0.18 

 
10 9.65 0.043 -0.087 

 
0.4 15.73 0.98 

 

Wing width (mm) 10 3.17 0.094 

 

10 2.95 0.051 2.06 

 

0.058 14 1.07 

 

Longevity (days) 10 33.4 3.24 

 

10 35 2.54 -0.54 

 

0.6 17.2 0.95 

Large 

             

 

Fresh body weight (mg)  10 40.57 1.5 

 

10 31.02 0.53 6.54 

 

<0.0001 12.67 1.3 

 
Body length (mm) 10 6.58 0.069 

 
10 6.37 0.074 2.13 

 
<0.05 18 1.03 

 

Body width (mm) 10 5.89 0.029 

 

10 5.23 0.099 

 

99.5 <0.001 

 

1.12 

 

Right tibia length (mm) 10 1.65 0.045 

 

10 1.633 0.029 0.35 

 

0.72 15.48 1.01 

 

Scutum width (mm) 10 3.07 0.065 

 

10 3.013 0.06 0.65 

 

0.52 18 1.01 

 

Wing length (mm) 10 10.66 2.91 

 

10 10.553 1.01 

 

90 <0.01 

 

1.01 

 

Wing width (mm) 10 3.53 0.1 

 

10 2.953 0.043 5.6 

 

<0.0001 13 1.19 

  Longevity (days) 10 40.6 0.092   10 30.5 2.034 3   <0.05 16.08 1.33 
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Fig.2.2. Variability in mean fresh body weight between female size classes. Data were 

transformed for statistical analysis (F=52.8, df= 27, RSE=3.508, P<0.0001).  

 

 

Fig.2.3. Variability in wing width between female size classes. Data were transformed for 

statistical analysis (F=3.814, df= 27, RSE= 0.39, P<0.05).  
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Fig.2.4. Variability in body width between female size classes. Data were transformed for 

statistical analysis (F=29, df= 27, RSE= 0.436, P<0.0001).  

 

Fig.2.5. Variability in total count of ovarioles between female size classes. Data were 

transformed for statistical analysis (F=76.4, df= 27, residual deviance= 0.09, P<0.0001).  
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Five measured traits out of eight showed significant variability between the three classes of 

females, that is, approximately 62% of the overall measured traits. Likewise, among the male 

category, only half of the eight measured traits accounted for 50% overall significant 

variability between the three classes. These traits are body length variable (F= 11.45, df= 27, 

RSE= 0.28 P<0.0001) (Fig. 2.6), testicular follicle number (F=4.12, df=27, residual 

deviance= 0.1, P<0.0001) (Fig. 2.7), wing width (F=4.12, df= 29, residual deviance= 0.59, 

P<0.05) and fresh body weight (F=60.98, df= 27, residual deviance= 5.88, P<0.0001) (Fig. 

2.8). Therefore, females displayed 12% extra variability among different body sizes 

compared with that of the males.  

 

 

Fig.2.6. Variability in body length between male size classes. Data were transformed for 

statistical analysis (F= 11.45, df= 27, RSE= 0.281, P<0.0001). 
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Fig.2.7. Variability in total count of testicular follicles between male size classes. Data were 

transformed for statistical analysis (F=4.12, df=27, residual deviance= 0.097, P<0.0001).

 

Fig.2.8. Variability in the mean fresh body weight between male size classes. Data were 

transformed for statistical analysis (F=60.98, df= 27, residual deviance= 5.88, P<0.0001).  
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In addition, correlation tests were performed between all body parameters of male and female 

categories independently, as well as for the variables categorised for each class 

independently. The purpose of this test was to assess any relationship between body part 

variables that might reveal their interactive association particularly when food and external 

conditions are fluctuating (i.e., their plasticity and occurrence of trade-offs). The results for 

the correlation tests are presented in Table 2.3.  

 

It was noticed that in males, highly significant correlations existed, chiefly between the 

number of testicular filaments (gonads) and body width (R=0.81, P<0.0001, t=8, df= 28) 

(Fig. 2.9). A very weak link was revealed between the former and body length (R=0.7, 

P<0.0001, t=5, df= 28). After applying glm with Poisson error model to assess the 

dependency of gonads on body weight of males, a highly significant linear relationship was 

obtained (F=53, RSE=0.03, P<0.0001) (Fig. 2.10). These results infer that possession of a 

higher number of testicular follicles requires a substantially wider body. In addition, the 

weight of these testicular filaments may have the direct effect of further increasing the fresh 

body weight in males. Consistent findings were obtained for females correlating the total 

ovariole number with body width (R=0.71, P<0.0001, t=5.38, df= 28) (Fig. 2.11) as well as 

with the fresh body weight of these dissected females (RSE=0.042, F=313.8, df= 29, 

P<0.0001) (Fig. 2.12). Body length of the females was negatively correlated with ovariole 

number (R=0.7, P=0.34, t= -95, df= 28). This indicates that having longer body length is not 

indicative of a high ovariole number or greater lifetime fecundity.  

 

Allometric relationships between body size measures and fresh body weight were measured 

following the formula (log-transformed fresh body weight as an independent variable against 

log-transformed body measures as dependent variables). In males, a highly significant linear 
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relationship was found between the fresh body weight and body length, as well as the former 

with body width. The slope estimates revealed a weak inclination for positive allometry 

(slope=0.19, P<0.0001) and (slope=0.3, P<0.0001) (Fig. 2.13) respectively. In contrast, 

females have a tendency to have non-significant negative weak allometry with respect to 

body length (slope=-0.044, P=0.55) and highly significant allometric relationship with body 

width (slope=0.16, P<0.0001) (Fig. 2.14). Neither of the intercept estimates of body width of 

females (0.27) or males (0.51) were likely to overlap. More allometric estimates assessed for 

other body variables in both sexes are presented in Table 2.4. 
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Table 2.3. Correlation estimates between various body part traits in males and females where each class has n=10. A correlation coefficient is 

measured between -1 and 1. A positive coefficient value indicates that if one variable increases, the other increases also whereas, a negative 

coefficient indicates that as one variable increases, the other decreases. 

Class   Female        Male               

Small Life-history trait n Mean ±SE   n Mean ±SE t-value 

w-

value P df Dimorphism index 

 

Fresh body weight (mg)  10 24.46 1.059 

 

10 19.82 1.006 3.18 

 

<0.01 17.95 1.23 

 

Body length (mm) 10 6.74 0.189 

 

10 6.11 0.12 2.85 

 

<0.05 16.16 1.1 

 

Body width (mm) 10 5.38 0.098 

 

10 4.45 0.06 8.17 

 

<0.001 17 1.2 

 

Right tibia length (mm) 10 1.69 0.043 

 

10 1.62 0.018 0.73 

 

0.473 17.16 1.04 

 

Scutum width (mm) 10 3.08 0.065 

 

10 2.92 0.051 1.84 

 

0.088 13.11 1.05 

 

Wing length (mm) 10 8.99 0.3 

 

10 9.03 0.26 -0.0841 

 

0.934 17.57 0.99 

 
Wing width (mm) 10 3.07 0.17 

 
10 2.71 0.09 1.83 

 
0.083 14.35 1.13 

 

Longevity (days) 10 36.2 2.44 

 

10 34.6 2.86 0.54 

 

0.59 17.35 1.04 

Medium 

             

 

Fresh body weight (mg)  10 31.9 0.55 

 

10 27.94 0.37 5.98 

 

<0.0001 15.75 1.4 

 

Body length (mm) 10 6.43 0.12 

 

10 6.39 0.063 0.3 

 

0.77 13.37 1.006 

 
Body width (mm) 10 5.73 0.032 

 
10 4.8 0.016 

 
100 <0.001 

 
1.19 

 

Right tibia length (mm) 10 1.62 0.038 

 

10 1.57 0.048 0.73 

 

0.47 17.16 1.03 

 

Scutum width (mm) 10 3.04 0.053 

 

10 2.93 0.026 2.06 

 

0.1 13.66 1.03 

 

Wing length (mm) 10 9.45 0.18 

 

10 9.65 0.043 -0.087 

 

0.4 15.73 0.98 

 

Wing width (mm) 10 3.17 0.094 

 

10 2.95 0.051 2.06 

 

0.058 14 1.07 

 

Longevity(days) 10 33.4 3.24 

 

10 35 2.54 -0.54 

 

0.6 17.2 0.95 

Large 

             

 

Fresh body weight (mg)  10 40.57 1.5 

 

10 31.02 0.53 6.54 

 

<0.0001 12.67 1.3 

 

Body length (mm) 10 6.58 0.069 

 

10 6.37 0.074 2.13 

 

<0.05 18 1.03 

 

Body width (mm) 10 5.89 0.029 

 

10 5.23 0.099 

 

99.5 <0.001 

 

1.12 

 

Right tibia length (mm) 10 1.65 0.045 

 

10 1.633 0.029 0.35 

 

0.72 15.48 1.01 

 

Scutum width (mm) 10 3.07 0.065 

 

10 3.013 0.06 0.65 

 

0.52 18 1.01 

 

Wing length (mm) 10 10.66 2.91 

 

10 10.553 1.01 

 

90 <0.01 

 

1.01 

 

Wing width (mm) 10 3.53 0.1 

 

10 2.953 0.043 5.6 

 

<0.0001 13 1.19 

  Longevity(days) 10 40.6 0.092   10 30.5 2.034 3   <0.05 16.08 1.33 
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Fig.2.9. Relationship between the measured body width and the total number of testicular 

follicles in males (n=30, correlation coefficient= 0.81, P< 0.0001). 

 

 

Fig.2.10. Relationship between logged mean fresh body weight against logged total testicular 

number in males (n=30, y=3.21x + 45.99, R²=0.95). 
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Fig.2.11. Relationship between the measured body width and the total count of ovariole 

number in females (n=30, correlation coefficient= 0.71, P<0.0001) 

 

 

 

Fig.2.12. Relationship between logged mean fresh body weight against logged total ovariole 

number in females (n=30, y=2.09x + 62.62, R²=0.83). 
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Fig.2.13. Relationship between log-transformed fresh body weight regressed against both 

logged body width and body length for males, n=30. For body width (y=0.3x + 0.26, 

R²=0.72) and for body length (y=0.19x + 0.52, R²=00.52). 

 

 

Fig.2.14. Relationship between log-transformed fresh body weight regressed against both 

logged body width and body length for females, n=30. For body width (y=0.15x + 0.51, 

R²=0.5) and for body length there was a negative allometry represented by negative slope 

(y=-0.043x + 0.88, R²=0.026). 
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Table 2.4. Allometric slope estimates of log-transformed body part measures against log-

transformed mean fresh body weight for both sexes.  

 

Body part measures Male, n=30 Female, n=30 

  Slope Slope 

Body length  0.19 -0.043 

Body width 0.29 0.15 

Wing length 0.22 0.3 

Wing width 0.23 0.26 

Hind tibia length -0.015 0.63 

Scutum width 0.05 0.01 

 

 

2.3  Discussion 

 

The present study investigated SSD in the beetle H. axyridis. The study was started by 

initially measuring and analysing various morphological and structural traits of both sexes 

based on these measurements. The analysis revealed that H. axyridis exhibited sexual size 

dimorphism in most of its body structures, chiefly in fresh body weight and body width, 

which both showed stronger strength of significance. Likewise, female-biased SSD was also 

reported by Ueno (2003) for H. axyridis and in several other invertebrate species (Gotoh, 

1982, Dixon, 2000, Teder and Tammaru, 2005). Females of H. axyridis were significantly 

larger than males with respect to most body size components, except the length of the hind 

tibia and the wing length in the small and medium classes. Approximately 87% of the overall 

measured traits, regardless of the sex (as indicated in Table 1) would be applicable traits for 
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describing body dimorphism, excluding the hind tibia length. Sutum width was found to be 

comparably similar in both sexes, thus it could be implemented specifically in studies dealing 

with inter-specific comparisons. In the current study, the pattern of SSD was found to vary 

and was inconsistent with Rensch’s rule, which states that where the ''females are the larger 

sex, increasing size is coupled with decreasing SSD (hypoallometry), whereas in species 

where males are the larger sex, SSD increases with increasing mean size (hyperallometry)'' 

(Dale, 2007, Herczeg et al., 2010). The present study showed this to be false when it comes to 

H. axyridis, the female was found to be the biggest sex and SSD was likely to increase 

concomitant with female size or with measurements of body structures. The broad view and 

the validity of Rensch’s rule have not been established yet (Abouheif and Fairbairn, 1997, 

Stephens, 2009), but have been widely recognised on the whole in taxa in which males are 

the larger sex (Webster, 1992, Fairbairn and Preziosi, 1994, Johansson, 2005, Fairbairn et al., 

2007). In contrast, allometry that is inconsistent with Rensch’s rule has been stated in a 

quantity of taxa in which females have proven to be the larger sex (Vollrath and Parker, 1992, 

Head, 1995). In a well-matched study, it was found that the role of body size in determining 

fitness is superior in males compared with females (Ueno, 1994), but this is cannot be applied 

for body weight, due to its association with fitness,  any  trait that directly shapes fitness is 

regarded as less heritable (Mousseau and Roff, 1987). Teder and Tammaru (2005) noted that 

the application of Rensch’s rule to interpret intra-specific SSD is still debatable due to the 

disparity among underlying mechanisms associated with its evolution.  

 

Among the three size classes, the dimorphism index for body weight irrespective of sex index 

was slightly greater compared to other body variables. The degree of dimorphism index 

showed great variability across three size classes. Female biased dimorphism is not 

commonly found in beetles, in some insects there are few peculiar male traits that are likely 
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to have evolved through sexual selection and may alter the degree of SSD towards male-

biasness (Thornhill and Alcock, 1984). This could occur when the sexually selected 

morphological traits begin to greatly enlarge as a result of hyperallometric growth, such as 

the increase in head length, several parts of prothoracic leg of Dineutus nigrior (Roberts, 

1895) (Coleoptera: Gyrinidae) (Fairn et al., 2007), the long stalks of compound eyes and the 

antler-like projections from the head of Cyrtodiopsis whitei (Curran, 1936) (Diptera: 

Diopsidae) (Burkhardt, 1988, Panhuis and Wilkinson, 1999). 

 

It has been noted that SSD varies within and among taxa (Reiss, 1986, Arak, 1988, Fairbairn, 

1990). It is not uncommon for SSD to range from female-biased to male-biased within a 

species or a single family or even a specific genus (Fairbairn, 1990, Shine, 1994). The 

variations of SSD provide essential data for judging hypotheses and to examine quantitative 

comparative data. For example, highlighting the effect of selection on reproductive traits in 

particular, those are associated with sexual selection in males and prenatal investments 

(Sivinski and Dodson, 1992, Head, 1995, Forsman and Shine, 1995). In the present study, a 

similar observation was noted when various traits exhibited significant variability between 

each sex group and within H. axyridis regardless of the sex.  

 

There are quite a few challenging matters associated with assessing SSD. Several 

comparative evolutionary analyses of SSD revealed a strong statistical association between 

SSD and body measurements (Fairbairn, 1990). Therefore, the influence of body size 

allometry is often removed statistically before testing starts on the adaptive divergence of 

SSD (Fairbairn, 1990, Oakes, 1992). Some scientists regarded the allometric scaling as being 

a functional constraint on determining SSD (Stearns, 1983, 1984). Thus, it was suggested that 

the significant influence of the allometry on the size be neglected, instead of including it in 
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statistical analyses, or vice versa (Smith et al., 2004). In this trend, despite the numerous 

recommended allometric hypothetical approaches (Leutenegger, 1978, Shine, 1979), none 

have yet been found to deliver a wide-range interpretation for allometry (Cox et al., 2003, 

Blanckenhorn et al., 2007, Dale, 2007). Moreover, choosing the suitable traits for inter- and 

intra-specific comparative studies must be well thought-out. For example, the present study 

revealed that using body length measure for assessing the allometry was not the best 

technique. Body length was found to be an unreliable indicator for allometry estimates since 

it varied significantly between sexes. The trait of body length showed a significant correlation 

with fresh body weight (P<0.0001) of males, but it was non-significantly correlated with the 

latter in females (P=0.39). Obtaining a slightly negative linear direct relationship between 

fresh body weight of females and the respective body length implies quite a few suggestions; 

heavy females may not often possess a long body. Body weight may be influenced by the 

mass of internal organs, the stored fat and the status of their reproductive period. Therefore, 

the longer female is not often more highly fecund than the shorter one and the former might 

be heavy due to fat deposition. In agreement, Leather (1988) noted that body size as well as 

body weight in females are often weakly correlated and can be easily influenced by other 

factors. 

 

The advantages of possessing a large body size in females have been extensively investigated 

and are acknowledged to include customary components of individual fitness such as greater 

life-time fecundity, reproductive and copulation success (Dixon, 2000), access to a mate 

(Osawa and Nishida, 1992), foraging and searching for a suitable habitat (Rivero, 2005), as 

well as faster growth and substantial viability (Blanckenhorn, 2005). Positive correlations 

between body size of females and their offspring number has been  reported in a number of 

insect species (Thornhill and Alcock, 1984, Osawa, 2002) however, defining such a 
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relationship is not often a clear task (Leather, 1988). The analyses obtained by the present 

study also support the positive association between body weight or body width and ovariole 

number in females, which represents the potential fecundity. According to Blanckenhorn et 

al. (2007), large individuals are more advantaged over smaller ones, due to their high energy 

use efficiency. In contrast, being large is not always valuable, due to the excessive increase in 

energy requirement (Blanckenhorn, 2005, Blanckenhorn et al., 2007). Nonetheless, some 

insects with large-sized bodies often suffer from extreme mortality when conditions are 

stressed or adults might be more vulnerable to frost due to their longer developmental period 

(Teuschl et al., 2007). Reim et al. (2006) reported that it is not easy to assess various life-

history traits of large bodies under ordinary conditions and the traits tend to become more 

predictable when an individual is stressed. 

 

The aim of this study was not to investigate the evolution in SSD but to quantify the 

estimates of SSD in H. axyridis and its distinctive role in promoting and escalating 

competitive and invasive capabilities. Invasive species often display variations in life-history 

traits that may permit them to invade diverse environments successfully (Xuan et al., 2010). 

Numerous successful invaders exhibit a high degree of phenotypic flexibility or plasticity in 

life-history traits, permitting them to tolerate fluctuating environments and evolve self-

sustaining populations (Lockwood 1999, Rosecchi et al., 2001, Sakai et al., 2001, Bohn et al., 

2004, Xuan et al., 2010). Body size and SSD have been viewed as essential evolutionary 

measurable factors in many species (Ashton, 2002, Campbell and Echternacht, 2003, 

Morrison et al., 2004). Any changeability between these two traits may deduce the role of 

morphological plasticity as well as environmental and ecological factors such as food status 

(Travis, 1994).  
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Likewise, the degree of intraspecific variations varies significantly within a species. For 

example, the idiobiont ectoparasitoid, Dendrocerus carpenter (Curtis, 1829) (Hymenoptera: 

Megaspilidae) displayed an 1.8-fold difference between minimum and maximum samples 

with minimum and maximum in SSD (Otto and Mackauer, 1998). In contrast, Ueno et al. 

(1999) noted that the H. axyridis reared at different environmental temperatures did not 

exhibit any variation in SSD across samples despite an 1.2-fold difference between samples 

in female sizes. The latter is diametrically opposed to the results obtained by the present 

study, in which significant intraspecific variations in SSD and among the dimorphism index 

in H. axyridis were seen.  The variation between the two studies could be a result of different 

rearing conditions. Teder and Tammaru (2005) suggested that it was implausible to suggest 

that environmental conditions influence the direction of sexual dimorphism in body size. In 

contrast, the effects of environmental conditions on the degree of sexual differences are 

highly common and distinguishable.  

  

According to Brown and Sibly (2006), insects with a large body size and associated high 

absolute fecundity may be favoured by natural selection particularly in environments where 

food is highly abundant. A similar proposition was stated by Dixon (2007). For H. axyridis, 

large-sized bodies in females may confer competitive advantages and favour intraguild 

predation, which may lead to an increase in the potential impacts on native species, leading to 

their displacement and a decrease in their abundance (Cottrell and Yeargan, 1998, Cottrell, 

2004, Yasuda et al., 2004).  Harmonia axyridis is known by its large adult body size and high 

voracity and high reproductive rate (Evans et al., 2011, Dixon, 2007, Adriaens et al., 2008). 

Adult body size features are likely consequences of the composite interaction of genotypes 

with environmental conditions experienced during immature stages (Evans et al., 2011). 

Therefore, the great variability in body size of H. axyridis may reveal the possession of high 
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genetic pool variations for body size (Evans, 2000, Lombaert et al., 2007, Turgeon et al., 

2011). As such, individuals with these diverse genotypes have the capability to succeed in 

growing, developing, and reproducing under extraordinarily diverse conditions. Nevertheless, 

their offspring may attain also a highly diverse adult size depending on the food status and 

habitat nature (Hodek and Honek, 1996). 

 

 Harmonia axyridis is usually considered to be generalist and polyphagous (Brown et al., 

2011) with a high degree of ecological flexibility. It can reproduce successfully under adverse 

conditions (Dixon, 2000, Brown et al., 2011). Such features are consistent with the 

hypothesis that the invader’s success derives from being a generalist with much ‘ecological 

flexibility’ with respect to the conditions under which it succeeds in reproduction (Evans, 

2000). Lombaert et al. (2007) demonstrated that the invasive species of H. axyridis displayed 

a variety of phenotypic plasticity in several traits, such as fecundity, survival rate, egg 

hatchability, sex ratio and developmental period, and exhibited a significantly higher fitness 

towards diverse environments. The features that are usually connected with reproductive 

performance may act as a critical factor contributing to the rapid rise and abundance of this 

successful invader (Lombaert et al., 2007). It was noted that high fecundity associated with 

large body size has been suggested as the main key factor promoting prevalence of invasive 

ladybeetles, such as H. axyridis in its native and invaded habitats (Kock, 2003, Roy et al., 

2006).  Kajita and Evans (2010) showed that the ladybird beetle, Coccinella septempunctata 

(Linnaeus, 1758) (Coleoptera: Coccinellidae) which is also intensive successful invader, had 

a high fecundity linked with its large body size. This fact supports the broad view proposed 

by Evans (2000) and may often be an important factor encouraging the dominancy and the 

competitive capacity of C. septempunctata over native species in resource-rich environments. 

Generally, the invader is distinctive in having a particularly large variation in body size 

http://en.wikipedia.org/wiki/Carl_Linnaeus
http://en.wikipedia.org/wiki/10th_edition_of_Systema_Naturae
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among other native individuals (i.e., in having relatively high proportions of both unusually 

large and small individuals). The present study revealed that males are usually smaller than 

females, despite the occasional occurrence of large males. These males are characterised by 

fast mobility, great foraging behaviour and mate searching. In fact, these behaviours were 

facilitated by the presence of the long hind tibia compared to females. Similar features 

regarding the small-sized males are conformed previously by Dixon (2000) and Reim et al. 

(2006)  

 

In summary, the result of the present study demonstrated the importance of considering 

various body size dimensions when trying to analyse SSD as well as intra-specific allometric 

variations. In insects in particular, the presence of variability should not be disregarded 

during comparative life-history studies, even under controlled conditions. The high variability 

in H. axyridis noticed in adult body parts undeniably reflects the possession of a diverse 

genetic pool. Therefore, the greater measured variability the more generalist is the insects and 

subsequently superior ability to survive under highly diverse conditions. Nevertheless, the 

present study gave an overview on sexual dimorphism in H. axyridis which might have a 

direct relevance for understanding some of the qualities of H. axyridis that account in part for 

its success as a competitor and invader as well as highlighting its ability to establish over a 

wide ecological range. 
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Chapter 3 

Relationships between Body Size and Fecundity of Harmonia 

axyridis Reared on a Fixed Diet: Intra-Species Variability 

 

3.1  Introduction 

 

Egg size is an important component of fitness, because it influences larval survival and 

female fertility (Holloway et al., 1987). Egg size in ladybirds is often independent of clutch 

size and displays little variation within species (as compared with clutch size, which differs 

greatly between different species) (Dixon and Agarwala, 2002). For coccinellid beetles, 

clutch size is directly associated with prey quantity and quality (Agarwala and Bardhanroy, 

1999) and might be affected by oviposition site characteristics (Carter et al., 1984). In 

contrast, the size and the number of eggs are to some extent constrained by the ovariole 

number (Agarwala and Dixon, 1993, Dixon and Guo, 1993) and by other influences imposed 

by female body size, anatomy or morphology (Fox and Czesak, 2000). This could explain 

why aphidophagous ladybird beetles often oviposit their eggs in clusters in the vicinity of 

food or prey (Dixon, 2000, Timms and Leather, 2007). It has been suggested that egg size is 

probably governed by the size at which the first instar larvae are sufficiently big enough to be 

able to capture mobile prey, as well as by the length of their developmental period (Stewart et 

al., 1991ab). In addition, in some species, there is an ecological significance to geographical 

and seasonal differences in egg size,  for example, in the sole flatfish Solea Solea (Linnaeus, 

1758) (Pleuronectifomes: Soleidae) (Rijnsdorp and Vingerhoed, 1994). Mashiko (1992) 

noted that these seasonal variations have genetic control bases that interact with phenotypic 

plasticity. 
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For a given reproductive output, there are several trade-offs associated with egg and clutch 

sizes (Stewart et al., 1991a). For example, an ovipositing female may increase the number of 

eggs or offspring but reduce their size, or vice versa (Parker and Begon, 1986, Holloway et 

al., 1987). In practice, a female that is endowed with a large amount of resources could 

intensify its reproductive performance and lay both large eggs and big clutches (Parker and 

Begon, 1986). Much interest has been concentrated on the reproductive tactics of coccinellids 

(Bell and Bohm, 1975, Stewart et al., 1991b). In this context, it has been noted that the 

proportion of body mass assigned for the reproductive process is typically constant for a wide 

range of species with variable body sizes (Dixon, 2007, Honek et al., 2007). Therefore, 

females with a large body size devote the same proportion of their biomass to reproduction as 

those with a smaller body size (Gordon, 1989). The effective acquisition and allocation of 

nutrition are chiefly governed by the capability to transform most nutrients into mass 

(Karlsson and Wickman, 1990) and by body design (Stewart et al., 1991b). 

 

Several attempts have been made to evaluate the body size-fecundity association (Honek 

1993); however, generalisation of this relationship has been unsuccessful. Leather (1988) 

reported that because of the small reliability of body size under natural conditions, it is not 

easy to predict the association between body size and fecundity. Despite the importance of 

egg size as a significant evolutionary and ecological trait, there are a several limitations in 

understanding the factors governing its features (Fischer et al., 2002). 

 

One of the greatest survival qualities in coccinellids is their reproductive strategy (Hodek, 

1967, Osawa, 2005). Possession of high fecundity and large body size might be one of the 

key factors subsidising the predominance of invasive species like the ladybird H. axyridis 

(Brown and Sibly, 2006). Coccinellid ladybeetles have specialised ovaries and vitellogenic 
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mechanisms that empower them to produce a relatively greater egg mass (Eckelbarger, 1994). 

Stewart et al. (1991b) noted that in coccinellids the actual number of eggs per clutch equals 

half the ovariole number; this implies the staggering of egg production between ovarioles. 

This process reveals stability and consistency in egg oviposition throughout the reproductive 

period. It was noted that the ovarian specialisation in ladybeetles varies among generalist and 

specialist species, mainly under stressed conditions (Ferrer et al., 2008). For example, a study 

revealed that the generalist Adalia bipunctata (Linnaeus, 1758) (Coleoptera: Coccinellidae) 

had faster ovarian dynamics than the specialist Adalia decempunctata (Linnaeus, 1758) 

(Coleoptera: Coccinellidae), in terms of oosorption induction. Thus, the ovarian performance 

of predatory ladybirds is closely linked to their feeding practice. One more important 

reproductive quality in coccinellids is the production of trophic eggs or non-developing eggs 

(Bell and Bohm, 1975, Perry and Roitberg, 2005). Trophic egg production is regarded as 

maternal adaptive behaviour adopted for larval provisioning, providing extra nutrition to the 

freshly hatched larvae (Perry and Roitberg, 2005). 

 

Numerous studies have reported that possession of great fecundity and pronounced 

reproductive output might incur expenses comprising adverse effects, such as a decline in 

longevity accompanied by accelerated senescence (Partridge, 1987, Paukku and Kotiaho, 

2005), elevated predation (Calow, 1979) and an increase in parental care (Hunt et al., 2002). 

Females of H. axyridis are renowned for their high reproductive potentials compared with 

other aphidophagous species (Bazzocchi et al., 2004, Majerus et al., 2006, Pell et al., 2008). 

Harmonia axyridis females are capable of producing between 1,642 and 3,819 eggs/female 

throughout their entire lifespan, at a rate of 25 eggs/day (Koch, 2003, Osawa, 2005). Apart 

from egg production, the ovaries of H. axyridis serve as an energy storage system to give 

preferentiality to reproductive success under poor conditions. This could be accomplished by 
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the development of asymmetrical ovaries (Osawa, 2005, Kajita and Evans, 2009). 

Nevertheless, females of H. axyridis possess adaptive ovipositional strategies, permitting 

them to endure and cope with heterogeneous and fluctuating resources (Osawa, 2005). Such 

ovipositional tactics may include immediate ovarian development in favourable conditions 

and fast oosorption (i.e., follicular cells stop producing yolk protein precursors and 

reabsorption of ooplasm occurs through phagocytic activity) during prey insufficiency 

(Eliopoulos et al., 2003, Osawa, 2005). The latter is a vital mechanism in which the nutrients 

are transferred from oocytes to the somatic tissue, particularly under poor conditions (Papaj, 

2000, Eliopoulos et al., 2003, Kajita and Evans, 2009). 

 

A previous study demonstrated that ladybirds reared on constant diet might not show a 

significant variability in the size of an egg or a clutch (Dixon and Guo, 1993). Coccinellids 

lay their eggs in clutches in which the size is mainly reliant on the number of ovarioles 

(Stewart et al., 1991a). In addition, the proportion of the body that is made up of gonads is 

equal for all coccinellids. Thus, any variation in ovariole number could be corrected by 

dividing adult body weight by total ovariole number (Stewart et al., 1991a). Subsequently, 

the relationship between body weight and reproductive biomass could be dealt with as a 

direct association,  doubling up of body weight would result in a doubling of the reproductive 

biomass. Furthermore, Sibly and Calow (1986) suggested that in iteroparous species that 

reproduce more than once in a lifetime, reproductive growth rate should scale with body 

weight and the allometric coefficient b will be equal to or less than 0.75. In semelparous 

species that reproduce only once in a lifetime, however, the reproductive mass should scale 

with body weight and the allometric coefficient will be equal to or less than one. In a similar 

context, (Holloway et al., 1987) observed that for 16 iteroparous species, the allometric 

file:///C:/Users/jenan/Desktop/AppData/Local/Microsoft/Jenan%20Al-harbi%207th%20of%20December%202011.docx%23_ENREF_432
file:///C:/Users/jenan/Desktop/AppData/Local/Microsoft/Jenan%20Al-harbi%207th%20of%20December%202011.docx%23_ENREF_432
file:///C:/Users/jenan/Desktop/AppData/Local/Microsoft/Jenan%20Al-harbi%207th%20of%20December%202011.docx%23_ENREF_156
file:///C:/Users/jenan/Desktop/AppData/Local/Microsoft/Jenan%20Al-harbi%207th%20of%20December%202011.docx%23_ENREF_432
file:///C:/Users/jenan/Desktop/AppData/Local/Microsoft/Jenan%20Al-harbi%207th%20of%20December%202011.docx%23_ENREF_436
file:///C:/Users/jenan/Desktop/AppData/Local/Microsoft/Jenan%20Al-harbi%207th%20of%20December%202011.docx%23_ENREF_436
file:///C:/Users/jenan/Desktop/AppData/Local/Microsoft/Jenan%20Al-harbi%207th%20of%20December%202011.docx%23_ENREF_156
file:///C:/Users/jenan/Desktop/AppData/Local/Microsoft/Jenan%20Al-harbi%207th%20of%20December%202011.docx%23_ENREF_285
file:///C:/Users/jenan/Desktop/AppData/Local/Microsoft/Jenan%20Al-harbi%207th%20of%20December%202011.docx%23_ENREF_135
file:///C:/Users/jenan/Desktop/AppData/Local/Microsoft/Jenan%20Al-harbi%207th%20of%20December%202011.docx%23_ENREF_554
file:///C:/Users/jenan/Desktop/AppData/Local/Microsoft/Jenan%20Al-harbi%207th%20of%20December%202011.docx%23_ENREF_554
file:///C:/Users/jenan/Desktop/AppData/Local/Microsoft/Jenan%20Al-harbi%207th%20of%20December%202011.docx%23_ENREF_515
file:///C:/Users/jenan/Desktop/AppData/Local/Microsoft/Jenan%20Al-harbi%207th%20of%20December%202011.docx%23_ENREF_253


178 
 

coefficient was approximately 0.45. This value authenticated Sibly and Calow’s prior 

prediction. 

 

In view of the above, this study aimed to examine the reproductive performance of H. 

axyridis females reared on a constant diet of pea aphids. Investigations were performed 

mainly to reveal the intraspecific variability between lifetime fecundity, reproductive period 

and longevity, and to expose the allometric association with body parameters. Additional 

investigations were carried out to assess intraspecific variations among eggs belonging to the 

same and different clutches produced by the same female. Extra assessment was conducted in 

a similar manner, but this time between eggs belonging to different clutches laid by different 

females. Harmonia axyridis is known to be an iteroparous species, laying eggs at several 

times throughout its lifetime. This ladybird was, however, not considered with other 

ladybirds in the study by Holloway et al. (1987). The current study decided to test the above 

proposition on this beetle. The results of this study might shed light on the oviposition 

strategies in H. axyridis that might contribute to explaining the rapid increase in its 

population over native species. Furthermore, estimates of its reproductive output and how 

they scale with body parameters may deliver some theoretical basis on allometry and body 

fitness as parts of life-history studies. 

 

3.2  Materials and Methods 

 

Freshly emerged adults of H. axyridis beetles were selected from the Harmonia culture that 

were originally collected from naturally infested fields in Silwood Park, South-east England, 

United Kingdom (National Grid References 41/944691). The adults were sexed and assigned 

into 30 couples based on the labrum and prosternum pigmentation (McCornack et al., 2007). 
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The pairs were weighed and kept in 9cm Petri-dishes in a controlled temperature room at 

20±1  C, 70-75% RH and a photoperiod of L16:D8 under fluorescent lamps. Each pair was 

supplied with damp tissue paper and a piece of corrugated filter paper (42.5mm, Whatman) to 

create an oviposition substrate. The daily food provided was 16 live adults of the pea aphid, 

Acyrthosiphon pisum (Harris, 1776) (Hemiptera: Aphididae) maintained on broad bean plants 

Vicia faba (Linnaeus, 1753) (Fabales: Fabaceae, variety Aquadulce Claudia) under the same 

conditions as above and following the feeding method of Dixon and Guo (1993). The aphid 

and ladybird cultures were maintained according to Kajita and Evans (2010) and Agarwala et 

al. (2008). Subsequently, all the clutches laid by each pair were kept separately in 9cm Petri-

dishes and maintained in the same laboratory conditions until larvae started to emerge. The 

couples were maintained under the above laboratory conditions until they died. 

 

3.2.1 Determination of lifetime fecundity, daily fecundity and daily fertility 

 

Lifetime fecundity (F) was determined by counting the total number of eggs laid during the 

oviposition period and mean total fecundity was subsequently estimated for the species. This 

was done following Stewart et al. (1991ab). Eggs were counted with the aid of a 

stereomicroscope (Schott, Leica MS25). Because not all of the eggs laid were viable, the 

daily fertility (number of hatched larvae=hatchability) and the proportion of non-viable eggs 

(trophic eggs), cannibalised eggs and eggs with incompletely developed larvae were also 

determined for each female. 

 

 

 

 

http://en.wikipedia.org/wiki/Moses_Harris
http://en.wikipedia.org/wiki/Aphididae
http://en.wikipedia.org/wiki/Fabaceae
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3.2.2 Determination of weight and volume of an egg and a clutch 

 

The weight of a single clutch laid by each female was measured to a precision of ±0.0002mg 

using a balance (Precisa, 125A). The weight of a single egg in each clutch was then 

determined by dividing the weight of the single clutch by the egg clutch size (egg number). 

The mean egg weight and the mean clutch weight were then determined for each female. The 

mean volume of an egg was calculated by measuring the width and the length of three 

randomly selected eggs from a single clutch to a precision of 0.041mm with the aid of an 

ocular micrometre attached to the stereomicroscope (Schott, Leica MS25). The measurements 

were then used to calculate the volume of the egg by applying the prolate spheroid formula 

(volume = 4/3 x pi x A
2
 x B), following Osawa and Ohashi (2008) and Kajita and Evans 

(2010), where A is the half the width and B is half the length (Web of CalcEnstein). 

Subsequently, the mean egg volume was determined for each clutch, and then the volume of 

a single clutch was determined by multiplying the number of eggs in a clutch by the mean 

volume of an egg. This practice was applied to all clutches laid by a single female. 

 

3.2.3 Determination of reproductive traits 

 

The oviposition period,  that is, the period between the first and last day of oviposition,  was 

recorded for each female. Reproductive biomass (R) was determined for each female by 

multiplying the lifetime fecundity (F) by egg weight (E). Reproductive growth (G) was 

defined by Holloway et al. (1987) as the average daily output of reproductive material during 

adult life. Thus, the reproductive growth for each female was calculated by multiplying 

lifetime fecundity (F) first by the mean weight of an egg (E) and then dividing the answer by 

adult longevity (L). Reproductive rate (Rr) was calculated by dividing the lifetime fecundity 
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over the total reproductive period. Upon adult death, male and female bodies were dissected 

in order to count the total number of testicular follicles and ovarioles, respectively. This was 

performed with the aid of the stereomicroscope (Schott, Leica MS25). 

 

3.2.4 Adult body size measures 

 

Body sizes (width and body length) were measured and then calibrated to a precision of 

±0.065mm with an eyepiece micrometre attached to a stereomicroscope (Schott, Leica 

MS25). The mean fresh body weight of a single female was estimated by measuring the wet 

weight three times through the adult’s life,  after emergence, before first oviposition and at 

the end of the reproductive period,  using a balance (Percisa, 125A) with a precision of 

±0.0002mg. Finally, the mean fresh body weights for all couples were separated into three 

classes of equivalent intervals (large, medium and small) for further analysis. 

 

3.3  Data analysis 

 

All data were tested for normality prior to applying the parametric analysis and those that 

failed were transformed. One-way ANOVA and GLM model with Poisson errors (glm (y~x, 

Poisson)) was performed to analyse the variation between females in terms of lifetime 

fecundity and egg and clutch parameters. Over-dispersion was compensated for by refitting 

the model using Quasipoisson. The proportion of hatched larvae, trophic eggs, eggs with 

incompletely developed larvae and cannibalised eggs were arc-sine transformed, then dealt 

with as continuous data. Most of the allometric analysis was performed using either log-linear 

regression or GLM-linear model with Poisson errors for data that were not normal distributed 

data, such as reproductive biomass and reproductive rate. The logarithm of reproductive 
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growth (EF/L) was regressed against log body weight (W) using linear regression. The 

significant difference between the slope obtained from that regression model and the slope 

reported by Sibly and Calow for iteroparous species (0.75) was compared using Chi-square 

test. The relationship between mean clutch weight against mean body fresh weight (W) / total 

ovariole number (Ov) = (W/Ov) was analysed using GLM-model with Poisson. All statistical 

analyses were carried out using the statistical programme ‘R’ version 2.8.1 (Ihaka and 

Gentleman, 1996). 

 

3.4  Results 

3.4.1 Reproductive output 

 

The reproductive parameters of the 30 females of H. axyridis are presented in Table 3.1 and 

estimates of body size measurements for the 30 couples classified into three classes are 

presented in Table 3.2 as well. 
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Table 3.1. Reproductive parameters of 30 females of H. axyridis reared on the constant diet of pea aphid. 

 
Class   Female        Male     

Small Life history traits n Mean ±SE   n Mean ±SE 

 
Fresh body weight (mg)  10 24.46 1.059 

 
10 19.82 1.006 

 
Body length (mm) 10 6.74 0.189 

 
10 6.11 0.12 

 
Body width (mm) 10 5.38 0.098 

 
10 4.45 0.06 

 
Right tibia length (mm) 10 1.69 0.043 

 
10 1.62 0.018 

 
Scutum length (mm) 10 3.08 0.065 

 
10 2.92 0.051 

 
Wing length (mm) 10 8.99 0.3 

 
10 9.03 0.26 

 
Wing width (mm) 10 3.07 0.17 

 
10 2.71 0.09 

 
Longevity (days) 10 36.2 2.44 

 
10 34.6 2.86 

 
Gonad  10 66.4 1.68 

 
10 108.8 3.33 

Medium 
        

 
Fresh body weight (mg)  10 31.9 0.55 

 
10 27.94 0.37 

 
Body length (mm) 10 6.43 0.12 

 
10 6.39 0.063 

 
Body width (mm) 10 5.73 0.032 

 
10 4.8 0.016 

 
Right tibia length (mm) 10 1.62 0.038 

 
10 1.57 0.048 

 
Scutum length (mm) 10 3.04 0.053 

 
10 2.93 0.026 

 
Wing length (mm) 10 9.45 0.18 

 
10 9.65 0.043 

 
Wing width (mm) 10 3.17 0.094 

 
10 2.95 0.051 

 
Longevity (days) 10 33.4 3.24 

 
10 35 2.54 

 
Gonad                                                        

     10 
80.8 1.2 

 
10 136.7 1.21 

Large 
        

 
Fresh body weight (mg)  10 40.57 1.5 

 
10 31.02 0.53 

 
Body length (mm) 10 6.58 0.069 

 
10 6.37 0.074 

 
Body width (mm) 10 5.89 0.029 

 
10 5.23 0.099 

 
Right tibia length (mm) 10 1.65 0.045 

 
10 1.633 0.029 

 
Scutum length (mm) 10 3.07 0.065 

 
10 3.013 0.06 

 
Wing length (mm) 10 10.66 2.91 

 
10 10.553 1.01 

 
Wing width (mm) 10 3.53 0.1 

 
10 2.953 0.043 

 
Longevity (days) 10 40.6 0.092 

 
10 30.5 2.034 

  Gonad  10 91.6 1.14   10 145.4 1.26 
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Table 3.2. Mean estimates of body size parameters including longevity and the total number of gonads in males and females of H. axyridis. 

Female 
No of oviposited 

clutches 
Oviposition period 

(days) 
Lifetime 

fecundity 
Mean proportion of  

trophic egg±SE 
Mean proportion of 
cannibalized egg±SE 

Mean proportion 
of unhatched 

larvae±SE 
Mean proportion of  
hatched larvae±SE Mean clutch size±SE 

1 4 7 73 0.75 ±0.47 2±1.22 2±1.15 13±8.77 18.25±9.6 
2 2 3 31 15.5±11.5 0 0 0 15.5±11.5 
3 5 13 106 1.8±0.58 1.2±0.58 0.6±0.24 18±2.48 21.2±3 
4 4 7 115 1.5±0.28 2.75±1.37 0.75±0.47 23±6.28 28±8 
5 6 16 115 4.16±1.37 1.83±0.6 1.16±0.47 11.6±2.32 19.16±2.03 
6 4 12 109 0.75±0.47 4±0.91 1.5±0.28 20.5±3.47 27.25±4.6 
7 3 6 181 10.66±7.055 3.66±1.85 19.6±16.6 26.33±12.6 60.33±13.04 
8 5 5 140 1±0.44 3.2±0.96 0.6±0.6 23.2±4.72 28±6.22 
9 5 12 139 3.2±1.01 2.2±0.96 0.8±0.48 20.4±3.7 27.8±3 

10 6 9 106 5.5±2.57 0 8.83±5.72 0.5±0.34 17.66±3.48 
11 7 7 155 1.28±0.64 0.85±0.4 1.28±1 18.71±2.5 22.14±1.95 
12 2 3 69 1.5±1.5 2.5±2.5 0.5±0.5 30±12 34.5±15.5 
13 8 13 191 2.12±0.69 2.12±0.87 1±0.68 18±3.53 23.8±4.26 
14 3 5 53 0.66±0.33 0 0.66±0.66 16.33±6.7 17.66±7.33 
15 6 7 159 5.6±1.87 1.33±0.8 2.5±0.67 17.16±2.31 26.5±3.73 
16 4 7 130 3.25±2.28 1.75±1.18 1.25±0.94 26.25±3.1 32.5±5.18 
17 7 12 152 0.71±0.42 2.57±1.06 0.71±0.42 17.57±2.51 21.71±2.02 
18 7 12 146 0.85±0.4 1±0.57 0.85±0.85 18.14±5.35 20.85±6 
19 6 15 203 3±1.84 5.6±1.58 1.5±0.56 23.83±4.51 33.83±7.34 
20 9 15 244 0.57±0.29 1.85±0.82 0.42±0.42 31.87±2.18 34.85±3 
21 5 18 183 0.66±0.23 0.77±0.27 0.66±0.55 18.22±2.62 20.33±2.84 
22 5 8 145 1±0.44 0.6±0.24 1.2±0.73 26.6±4.77 29±5.38 
23 4 4 60 2±1.14 0.8±0.58 0.4±0.4 8.8±2.53 12±3.61 
24 3 7 61 2.33±1.2 1±1 0.66±0.66 16.33±2.02 20.33±4.05 
25 4 6 107 0 1.75±0.85 0.25±0.25 24.5±3.6 26.75±3.7 
26 5 6 114 2.4±1.91 1.8±1.11 0.4±0.4 17.8±5.45 22.8±6.71 
27 2 4 87 0 2.5±2.5 5±5 36±9 43.5±1.5 
28 4 9 115 1.75±0.85 2.5±0.64 1±0.57 22.75±4.3 28.75±4.11 
29 6 11 191 0.83±0.47 1.83±0.94 1±0.68 28.33±5.57 31.83±6.33 
30 4 9 157 2.75±0.75 1.75±1.18 3.25±0.47 31±5.72 39.25±3.68 

n=30 4.83±0.31 9±0.74       127.9±9 
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3.4.1.1  Daily egg clutch size and weight 

 

Neither mean clutch size laid by a single female nor the mean clutch weight varied 

significantly between the three classes (F=0.13, RSE=0.34, df=27, P=0.87) (Fig. 1) and 

(F=2.08, Residual deviance=0.55, df=27, P=0.14), respectively. When considering the total 

number of clutches laid by a single female instead of their mean with their own weights, no 

variability was revealed either (F=1.5, RSE=1.33, df=146, P=0.22) and (F=1, RSE=1.6, 

df=147, P=0.31), respectively.  Allometrical analysis revealed that the mean clutch weight 

had no direct relationship with the mean fresh body weight (F=2.43, Residual deviance=0.32, 

df=28, P=0.12), with body length (F=1.17, Residual deviance=0.08, df=28, P=0.28) or with 

body width (F=1.48, Residual deviance=0.054, df= 28, P=0.23). Similar non-significant 

trends were also observed between the mean clutch size and the total number of ovarioles 

(F=1.21, RSE=0.32, df=28, P=0.27). Thus, ovariole number could not reflect the actual 

clutch size. 

 

Fig.3.1. Variability in mean egg clutch size among body weight classes of females. Data were 

transformed for statistical analysis (F=0.08, P=0.92). 
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Lifetime fecundity of the 30 females is presented in Figure 3.2. Generally, at the onset of the 

reproductive period, the clutches comprised a relatively large number of eggs, and the 

number of eggs started to decline gradually towards the end of this period. A similar trend 

was observed in terms of the number of hatched larvae. Some eggs contained larvae but those 

larvae were not able to hatch. Those eggs were counted with the aid of a stereomicroscope 

(Fig.3.2).  The mean number of clutches was directly related to the mean reproductive period 

(F=57.21, df=28, RSE=0.57, P<0.0001) (Fig. 3.4). The reproductive period was indirectly, 

but not significantly, related to both mean clutch size (F=0.344, RSE=0.5, df=28, P=0.56, 

slope=-0.1) and to the number of clutches (F=2.22, RSE=0.383, df=28, P=1.46, slope=-0.31). 

The above was found to be considerably convincing, since both the egg clutch size and the 

number of clutches was likely to decrease towards the end of oviposition or reproductive 

period, as shown in Figure 3.2. 

 

 

Fig.3.2. Life-time fecundity, and other reproductive output of 30 females during their 

oviposition period (n=30, mean± SE). Each event represents an oviposition. 
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Fig.3.3. Incomplete developed unhatched larva inside an egg. 

 

 

Fig.3.4. Relationship between log number of clutch against log oviposition reproductive 

period (y=0.6x+0.1, R²=0.57). Data were transformed for statistical analysis (F=57.28, 

P<0.0001). 
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3.4.1.2  Egg parameters 

 

Mean estimates of egg and clutch parameters are presented in Table 3.2. The weight of an 

egg laid per each event or oviposition did not differ significantly between different females 

(F=0.53, Residual deviance=0.04 on df=147, P=0.46). The volume of an egg, however, 

exhibited significant variability among females (F=7.14, Residual deviance=5, df=147, 

P<0.0001). Similarly, since a single clutch volume was estimated from an egg volume, it was 

found that the clutch volume varied significantly among females (F= 5.59, RSE= 1.7, df=146, 

P<0.05). There was a significant direct relationship between mean egg volume and female 

mean fresh body weight (F=4.53, RSE=0.083, df=28, P<0.05) (Fig. 3.5) and likewise with 

female body width (F=4.24, Residual deviance= 0.28, df= 28, P<0.05). The mean weight of 

an egg, on the other hand, showed no significant relationship with either the mean female 

fresh body weight (F=0.91, RSE=0.0042, df=28, P=0.34) or with mean female body width 

(F=1.92, RSE=0.0042, df= 28, P=0.17). The mean volume of an egg, however, was 

significantly related to the total number of gonads (ovariole number) (F=4.5, RSE=0.083, 

P<0.05) (Fig. 3.6). There was no significant direct relationship between the mean volume of 

an egg and the mean weight of a clutch from which they hatched (F=0.88, Residual 

deviance=1.58, df=146, P=0.3). This implies the occurrence of a trade-off between the egg 

number and their volume. Nevertheless, the egg clutch size was directly related to the number 

of eggs of which it consisted (F=21.65, Residual deviance=1.24, df = 147, P<0.0001). 
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Table 3.3. Mean egg and clutch parameters estimated from 30 females (mean±SE). 

 

Female 
No of oviposited 

clutches 
Oviposition period 

(days) 
Lifetime 

fecundity 
Mean proportion of  

trophic egg±SE 
Mean proportion of 
cannibalized egg±SE 

Mean proportion of 
unhatched 
larvae±SE 

Mean proportion of  
hatched larvae±SE Mean clutch size±SE 

1 4 7 73 0.75 ±0.47 2±1.22 2±1.15 13±8.77 18.25±9.6 
2 2 3 31 15.5±11.5 0 0 0 15.5±11.5 
3 5 13 106 1.8±0.58 1.2±0.58 0.6±0.24 18±2.48 21.2±3 
4 4 7 115 1.5±0.28 2.75±1.37 0.75±0.47 23±6.28 28±8 
5 6 16 115 4.16±1.37 1.83±0.6 1.16±0.47 11.6±2.32 19.16±2.03 
6 4 12 109 0.75±0.47 4±0.91 1.5±0.28 20.5±3.47 27.25±4.6 
7 3 6 181 10.66±7.055 3.66±1.85 19.6±16.6 26.33±12.6 60.33±13.04 
8 5 5 140 1±0.44 3.2±0.96 0.6±0.6 23.2±4.72 28±6.22 
9 5 12 139 3.2±1.01 2.2±0.96 0.8±0.48 20.4±3.7 27.8±3 

10 6 9 106 5.5±2.57 0 8.83±5.72 0.5±0.34 17.66±3.48 
11 7 7 155 1.28±0.64 0.85±0.4 1.28±1 18.71±2.5 22.14±1.95 
12 2 3 69 1.5±1.5 2.5±2.5 0.5±0.5 30±12 34.5±15.5 
13 8 13 191 2.12±0.69 2.12±0.87 1±0.68 18±3.53 23.8±4.26 
14 3 5 53 0.66±0.33 0 0.66±0.66 16.33±6.7 17.66±7.33 
15 6 7 159 5.6±1.87 1.33±0.8 2.5±0.67 17.16±2.31 26.5±3.73 
16 4 7 130 3.25±2.28 1.75±1.18 1.25±0.94 26.25±3.1 32.5±5.18 
17 7 12 152 0.71±0.42 2.57±1.06 0.71±0.42 17.57±2.51 21.71±2.02 
18 7 12 146 0.85±0.4 1±0.57 0.85±0.85 18.14±5.35 20.85±6 
19 6 15 203 3±1.84 5.6±1.58 1.5±0.56 23.83±4.51 33.83±7.34 
20 9 15 244 0.57±0.29 1.85±0.82 0.42±0.42 31.87±2.18 34.85±3 
21 5 18 183 0.66±0.23 0.77±0.27 0.66±0.55 18.22±2.62 20.33±2.84 
22 5 8 145 1±0.44 0.6±0.24 1.2±0.73 26.6±4.77 29±5.38 
23 4 4 60 2±1.14 0.8±0.58 0.4±0.4 8.8±2.53 12±3.61 
24 3 7 61 2.33±1.2 1±1 0.66±0.66 16.33±2.02 20.33±4.05 
25 4 6 107 0 1.75±0.85 0.25±0.25 24.5±3.6 26.75±3.7 
26 5 6 114 2.4±1.91 1.8±1.11 0.4±0.4 17.8±5.45 22.8±6.71 
27 2 4 87 0 2.5±2.5 5±5 36±9 43.5±1.5 
28 4 9 115 1.75±0.85 2.5±0.64 1±0.57 22.75±4.3 28.75±4.11 
29 6 11 191 0.83±0.47 1.83±0.94 1±0.68 28.33±5.57 31.83±6.33 
30 4 9 157 2.75±0.75 1.75±1.18 3.25±0.47 31±5.72 39.25±3.68 

n=30 4.83±0.31 9±0.74       127.9±9 
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Fig.3.5. Relationship between mean volume of an egg and mean female fresh body weight 

(y=0.006x+1.3, R²=0.13). Data were transformed for statistical analysis (F=4.53, P<0.05). 

 

 

 

Fig.3.6. Relationship between mean volume of an egg against total number of ovarioles 

(y=0.0021x+0.54, R²=0.14). 
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3.4.1.3 Total fecundity 

 

The results revealed the absence of variability between females that belong to the three 

classes, even when reared under constant controlled measures (F=1.07, Residual 

deviance=5.51, P=0.354). There was a significant positive relationship between lifetime 

fecundity and the total number of gonads (t =2.07, Residual deviance=4.78, df=28, P<0.05) 

(Fig.3.7). Thus, females with more ovarioles were inclined to lay more eggs compared with 

those that possessed fewer ovarioles. No direct relationship was exhibited between the 

lifetime fecundity and the mean fresh body weight of females (F=1.8, Residual 

deviance=5.59, df=28, P=0.19). In contrast, the body length of females had a positive direct 

relationship with lifetime fecundity (F= 5.41, Residual deviance=4.98, df=28, P<0.05). As 

the study expected, longevity was found to be negatively related to both lifetime fecundity 

and mean clutch size – (F=0.22, slope=-18, P=0.63) and (F=0.24, slope=-0.17, P=0.62), 

respectively. This implies that investing in reproduction appeared to have a cost on longevity 

of females. 

 

 

Fig. 3.7. Relationship between total number of ovarioles and log lifetime fecundity of females 

(y=0.001x+2, R²=0.01). Data were transformed for statistical analysis (t-value=2.07, P<0.05). 
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3.4.1.3 Egg viability 

 

Since all the larvae were removed directly after their emergence, the number of different 

types of eggs did not influence the total number of hatched larvae. For example, the number 

of trophic eggs produced was unrelated to the number of hatched larvae (z-value=-0.98, 

Residual deviance=0.54, df=26, P=0.32). The incubation period was found to be one of the 

determinants of potential fertility or the success of larval hatching, since both were found to 

be indirectly related to this period (F=21, Residual deviance=0.35, df=27, P<0.0001, slope=-

2.4). This implies that the longer the incubation period, the higher the likelihood of having 

more infertile eggs. The latter was supported by the fact that the incubation period was 

directly related to the proportion of eggs with unhatched larvae, as well as to the proportion 

of trophic eggs – (F=53.5, Residual deviance=0.07, df=27, P<0.0001) (Fig.3.8) and (F=12.4, 

Residual deviance=0.55, df= 26, P<0.001), respectively. 

 

 

Fig.3.8. Relationship between the proportion of hatched larvae and the incubation period 

(y=0.108x +0.5, R²=0.66). Data were transformed for statistical analysis (F=21, P<0.001). 
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There was a direct linear relationship between the number of hatched larvae and the size of 

the clutch from which they had hatched (F=330, RSE=5.82, df=138, P<0.0001). This could 

prove the absence of the cost in terms of the number of both eggs with unhatched larvae and 

trophic eggs relative to large clutch size. The size of a clutch was directly correlated  with 

eggs having unhatched larvae (F=19.96, Residual deviance=19.68, df= 63, P<0.0001) and 

with the number of trophic eggs (F=5, Residual deviance=61, df= 90, P<0.05). Eventually, 

this led to the proposition that the size of a clutch might not represent the potential fecundity, 

as larger clutches may possess a relatively high number of infertile eggs or eggs with 

unhatched larvae that are expected to reduce the fertility of a female. The above was verified 

when the lifetime fecundity was found to be directly related to the proportion of trophic eggs 

and non-hatched larvae – (F=5.002, Residual deviance=61.6, df= 90, P<0.05) and (F=20.67, 

Residual deviance=19.6, df= 62, P<0.0001), respectively. In light of this, it could be assumed 

that high fecundity does not always reflect high fertility. 

 

3.3.1.5 Reproductive biomass and growth rate 

 

Using the formula indicated in the method section, the mean reproductive biomass was 

calculated,  when using the mean weight of an egg it was 0.4±0.004 egg/mg and when using 

the mean weight of one clutch it was 3.3±0.43 egg/mg. Both of the above calculated values 

had a linear relationship with the mean fresh weight of females – (F=4.8, Residual 

deviance=0.4, df= 28, P<0.05) (Fig. 3.9) and (F=4.22, RSE=5.24, df=28, P<0.05), 

respectively. This seemed to support the statement by Stewart et al. (1991a) that doubling 

adult body fresh weight would possibly result in doubling the reproductive biomass or egg 

production. 
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The number of the ovarioles varied significantly between females (F=4, RSE=10.7, df=28, 

P<0.05). Therefore, the variation in ovariole number could be corrected following Stewart et 

al. (1991a) by dividing the mean fresh body weight (W) by the total ovariole number (Ov) = 

(W/Ov). Regression analysis subsequently performed between the mean weight of a single 

egg (E) against (W/Ov) revealed no direct relationship between the two (F=0.91, Residual 

deviance=0.004, df=28, P=0.34). The results were inconsistent with the statements of Stewart 

et al. (1991a). Accordingly, this study suggested modifying their proposition by considering 

the mean clutch weight instead of an egg weight in the formula. As expected, regressing the 

mean weight of a single clutch (CW) against the (W/Ov) revealed a significant direct 

relationship (F=4.74, Residual deviance=0.02, df=28, P<0.05) (Fig. 3.10). 

 

The mean reproductive rate for the 30 females was found to be 15.58±1.06 eggs/day 

(maximum=30.16 eggs/day, minimum=7.18 eggs/day). Log-log regression analysis showed 

that the reproductive rate had a linear relationship with mean fresh body weight (F=4.8, 

Residual deviance=0.34, df=28, P<0.05) (Fig. 3.11). The interaction between the mean fresh 

body weight and the total number of ovarioles also showed a significant positive relationship 

with reproductive rate (F=5.94, Residual deviance= 1.47, df=14, P<0.05). 

 

Fitting the reproductive growth against the adult fresh body weight revealed no significant 

direct relationship (F=2.1, RSE=0.23 df=28, P=0.16). The obtained slope estimate from the 

analysis was 0.83, which was found to be not significantly greater (X²=0.0041, P=1) than the 

0.75 slope recorded for iteroparous species by Sibly and Calow (1986). The concealed 

relationship between the reproductive growth rate and fresh body weight was likely to be due 

to the influences of other reproductive factors or morphological aspects of H. axyridis. 

Regarding males’ contribution in reproductive success, the number of testicular follicles were 
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regressed against the total fecundity and the results revealed a significant direct relationship 

(t=2.07, Residual deviance =4.7, df= 28, P<0.05) (Fig. 3.12). 

 

 

Fig.3.9. Relationship between log mean fresh body weight of females against log 

reproductive biomass (y=0.23x+1.4, R²=0.36). Data were transformed for statistical analysis 

(F=4.22, P<0.05). 

 

 

Fig.3.10. Relationship between mean clutch weight plotted against mean fresh weight divided 

by the total number of ovarioles (y=37x-0.002, R²=0.9). Data were transformed for statistical 

analysis (F=4.74, P<0.05). 
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Fig.3.11. Relationship between mean female fresh body weight and reproductive biomass 

estimates between (y=0.26x+28.14, R²=0.0.043). Data were transformed for statistical 

analysis (F=4.74, P<0.05). 

 

 

Fig.3.12. Relationship between log total testicular follicles and mean fresh body weight 

(y=1.08x+0.21, R²=0.11). Data were transformed for statistical analysis (t=2.07, df= 28, 

P<0.05). 
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3.5  Discussion 

Invasive species are often characterised by having large body size (Roy et al., 2001, 2002, 

Brown and Sibly, 2006).  A larger body size usually promotes greater fecundity, such as in 

the predatory coccinellids (Stewart et al. 1991a, Dixon, 2000). For example, Coccinella 

septempunctata (Linnaeus, 1758) (Coleoptera: Coccinellidae) is possesses a large body size 

and has become extremely successful and well established throughout North America in 

recent years (Maredia et al., 1992, Hesler and Kieckhefer, 2008). It has been reported that 

large body size is always concomitant with high fecundity. Brown and Sibly (2006) proposed 

that the association between large body size and the lifetime fecundity may be preferred by 

natural selection, particularly when conditions are favourable. By extension, this association 

had been recognised as a possible key factor promoting the predominance of invasive species, 

such as the multicoloured beetle H. axyridis (Koch, 2003, Roy et al., 2006) over smaller local 

species, especially in resource-rich environments (Tilman, 1999). 

 

The present study was carried out mainly to investigate the reproductive capacity of the 

coccinellid H. axyridis maintained under a controlled feeding protocol and rearing conditions, 

in order to reveal the connection between the reproductive performances relative to body size 

of females (which has been ultimately proposed by many studies as the key factor for 

successful invasion). 

 

Eventually, it was recognised that this predator exhibits distinct reproductive strategies that 

are determined by a combination of factors, including the body size parameters, number of 

ovarioles and food availability. In addition, the reproductive performances increased and then 

levelled off at a certain number of clutches, due to genetic influences. Hodek and Honek 

(1996) noted that there is a limitation on the reproductive output that is genetically fixed even 

http://en.wikipedia.org/wiki/Carl_Linnaeus
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when food is plentiful and environmental conditions are favourable. In addition, despite the 

regular prey availability in this study, there seemed to be an upper limit to the egg production 

rate, linked to body morphology, in conjunction with the female strategies in assessing their 

external environment. Physical constraints were also recognised by others and the maximum 

egg size was found to be controlled by the nature of the ovipositor (Fitt, 1990). 

 

This study estimated egg volume using the prolate spheroid method. Accordingly, it was 

revealed that the volume and weight of an egg must be dealt with as separable independent 

egg parameters. The volume of a single egg appeared as the most reliable measure used to 

assess the clutch parameters, based on several aspects. One of these aspects was the strong 

positive relationship between egg volume and body weight and body width, as well as the 

number of ovarioles. These distinguishable relationships are exceptional and could be 

incorporated to predict the performance of other species with equivalent qualities to H. 

axyridis. Nevertheless, the study revealed the existence of a significant direct relationship 

between total life fecundity, trophic eggs and fertility. Similar observations were previously 

noted by Omkar et al. (2006). Clearly, the possession of high fecundity did not always 

convey great fertility and a high rate of hatchability. In some cases, high fecundity reflects 

the exquisite provisional strategy manifested in producing deliberately large-sized clutches 

comprising a relatively high number of non-viable eggs in spite of prey availability. This 

phenomenon is an adaptive behaviour known as ''nursery'' behaviour and is performed in 

order to provide extra food for the newly hatched larvae, besides reducing sibling predation 

and egg cannibalism (Omkar and Mishra, 2005). 

 

Variability in egg size interspecifically was recognised to be subject to genetic influences and 

environmental factors, but intraspecific disparity was frequently ascribed to food status, or in 
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some cases to the parental age (Fox, 1993ab). Dixon and Guo (1993) noted that the 

variability in egg size was more likely to be due to starvation and season. This study noted 

the absence of intraspecific variability in terms of lifetime fecundity. Therefore, on the whole, 

all large-, medium- and small-sized females allocated the same amount of resources for 

reproduction. The study suggested that the presence of intraspecific variations were not 

extremely pronounced because the rearing conditions were well controlled. Although some 

studies asserted the presence of positive intraspecific variation in some species of insect, the 

lack of such variations was also confirmed frequently in others (Fitt, 1990, Honek et al., 

2008). The current study at least affirmed the presence of intraspecific variability, particularly 

in the clutch and egg volume. In fact, variability within these two parameters (though to a 

greater extent egg volume) has been reported in several studies on ladybirds including H. 

axyridis (Dixon and Guo, 1993, Honek et al., 2008). Stewart et al. (1991a) confirmed that the 

weight of an egg must be regarded as a species characteristic, since it merely differs between 

small- and large-sized clutches. This is in agreement with the results revealed by the current 

study, as no variability was found among egg weights taken from different clutches. 

Therefore, this study reinforces the theory that egg weight could be regarded as a species-

specific characteristic. 

 

Lifetime fecundity was not corelatd with fresh body weight, as was reported by Leather 

(1988). In his work, it was noted that such a relationship existed, but it may be controlled by 

factors including environmental and physiological constraints. In view of that, the present 

study delivered suggestions that could accentuate this relationship. For instance, it was 

expected that using fresh body weight without considering the changes (particularly during 

growth and reproduction) might be a crucial issue. This is in agreement with Dixon and 

Agarwala (2002), in which there was about 20-40% rise in the body weight of H. axyridis 
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adult after emergence. By the same token, Dixon and Guo (1993) reported that the weight of 

an adult female coccinellid was reliant on the stage of their gonads. This implies that the 

process of egg formation during the reproductive period might lead to a notable increase in 

female body weight. A previous study had demonstrated that the ovaries of freshly emerged 

female of H. axyridis did not contain any eggs (Dixon and Agarwala, 2002). A similar 

observation was noted in this study after dissecting newly emerged females as part of a 

preliminary investigation before the onset of the study. Therefore, it is of great importance to 

incorporate the body weight of a female at different times during living period by calculating 

the average. It appears that the average weight might have a great impact in appraising the 

probable fecundity and body weight relationship. 

 

Another supportive proposal built on statistical analysis was the significance of using the 

total number of clutches and total fecundity (i.e., all eggs in each clutch per female), rather 

than using their means. Taking that proposition into account would result in a better 

explanation of the reproductive performance, particularly when comparing individuals and 

populations reared under uniform conditions. For instance, intraspecific analysis conducted 

between females revealed that the event of oviposition and the number of clutches in each 

event along the reproductive period failed to explain the lack of variability in lifetime 

fecundity between females. All appeared to have relatively similar lifetime fecundity. 

Furthermore, following the oviposition events for each female illustrated why small-sized 

females had lifetime fecundity almost reaching that of medium- or large-sized females. 

Identifying these variations was not straightforward, because most of them were concealed by 

each individual female’s oviposition strategies. Some females had a tendency to lay large 

clutch sizes at slow rates (i.e., intermittent oviposition) and others laid smaller clutches at 

higher rates (i.e., non-intermittent oviposition) during their reproductive period. In both 
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circumstances, none of them implied high fecundity. To better illustrate this, among females 

of the small class, one female laid only three clutches but yielded a lifetime fecundity of 181 

eggs, whereas a large sized-female produced five egg clutches but laid only a total of 183 

eggs during her lifetime. In the former, only 43.64% managed to hatch into larvae and the 

remaining 50.27% were non-viable eggs. The latter female, however, had 90% hatched larvae 

and only 6.5% were considered non-viable eggs. 

 

The great weight possessed by large females may not always be a positive indicator of high 

lifetime fecundity. The stored fat tissues may sometimes act as a constraint confining egg 

development. For example, females of Coccinella trifasciata (Linnaeus, 1758) (Coleoptera: 

Coccinellidae) had a mean body weight of 22.5±5mg and their median number of ovarioles 

was 49. In comparison, females of Calvia 14-guttata (Linnaeus,1758) (Coleoptera: 

Coccinellidae) had a lower mean body weight (16.9±2mg), but similar median ovariole 

number (Stewart et al., 1991b). In the same study Propylea 14-punctata (Linnaeus, 1758) 

(Coleoptera: Coccinellidae) had a median ovariole number of 24 and A. bipunctata 

(Coleoptera: Coccinellidae) had a median ovariole number of 46. The latter produced the 

same mass of eggs per day as the former. Another comparative study revealed that although 

large-sized females of C. septempunctata  laid large clutches compared with the small-sized 

Coccinella trasnversoguttata (Linnaeus, 1758) (Coleoptera: Coccinellidae), both responded 

to prey deprivation in a similar fashion, by stabilising body weight and reducing the 

oviposition rate (Kajita and Evans, 2009). As concluded from previous studies, larger and 

smaller species were likely to embrace significantly diverse reproductive strategies (Arnaud 

et al., 2005). 
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The present study summarised that the degree of intraspecific dissimilarities in reproductive 

qualities when measured under controlled conditions reflected the influences of a number of 

factors, such as the characteristics of an ovary, male fertility and genetic aspects. These 

factors may act synergistically in determining the reproductive effort, regardless of body size 

measurements. Furthermore, variations probably occurred when comparing laboratory results 

with field studies (Phoofolo et al., 2009). In addition, intraspecific variations are widely 

recognised among iteroparous species (Stearns, 1992, Fox and Czesak, 2000, Arnaud et al., 

2005). 

 

In conclusion, despite the widespread data on intraspecific variations, complications 

inevitably arise during investigation and data analysis (Bernardo, 1996, Fischer and Fiedler, 

2001ab). The study revealed that the mean clutch size of H. axyridis was 26.86±1.75 eggs, 

which was very close to the value of 27.4 eggs reported by Stewart et al. (1991b) and 

29.5±12.10 eggs noted by Stathas (2001). The mean lifetime fecundity of H. axyridis 

recorded by the present study was 127.9±9 eggs, which was found to be significantly 

different to the 1,641.6±420.95 eggs previously recorded for this beetle when it was reared on 

Aphis fabae (Scopoli,1763) (Hemiptera: Aphididae) (Stathas, 2001). Abdel-Salam and Abdel-

Bakey (2001) demonstrated that when H. axyridis was reared on A. pisum the average 

number of eggs produced per female was 163.9±144 eggs. In comparison, a study conducted 

by McClure (1987) obtained a result of 718.7 eggs per female, after rearing H. axyridis on the 

same aphid species (A. fabae) but at a different temperature (27⁰C). Schanderl et al. (1988) 

reported that the lifetime fecundity of H. axyridis was 522 eggs per female when reared on 

the eggs of Anagasta kuehniella (Zeller, 1879) (Lepidoptera: Pyralidae). Clearly, the 

dissimilarities observed among the reproductive output of H. axyridis could be attributed to 

the rearing conditions, feeding regime and possibly to genetic origin.  
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It was noted that the triangular association between total fecundity, egg parameters and body 

traits could be shaped by several factors, such as longevity, parental age and prey quality 

(Stearns, 1992, Omkar et al., 2006, Mishra and Omkar, 2006). Several hypotheses have been 

put forward regarding the deterioration of fecundity with age (Dixon and Agarwala, 2002).  

The declines in reproduction and prey searching ability throughout adult life may be a  

consequence of senescence (Mishra and Omkar, 2006). In this study, the effect of senescence 

on female feeding ability was unclear, because most of the tested females were capable of 

catching their prey effectively even at later stages in their lives. The study expected, however, 

that in field studies and under adverse environments, such a relationship would be more 

prominent due to the higher vitality requirement for prey searching. In a similar context, 

Dixon (2000) reported that when oviposition is not of an intermittent type, the trade-off 

between longevity and fecundity would be excessive. He pointed out those females of H. 

axyridis followed distinctive strategies to achieve a sense of balance between early and late 

age fitness for successful survival. This was in agreement with Omkar et al. (2006), who 

reported a linear relationship between longevity and the intermittent type of ovipoistion, 

suggesting that intermittent oviposition often resulted in a delay phase that tended to increase 

the life expectancy of ladybirds. In this study, the oviposition pattern of H. axyridis was 

found to be intermittent, but had an indirect relationship with longevity. The study therefore 

assumed that the fecundity-longevity trade-off might be likely to be significant when dealing 

with variable diet quantity or quality and different temperature ranges. 

 

The present study showed that reproductive biomass and rate were positively allied with the 

body size in H. axyridis. This association delivered a resilient reproductive advantage over 

other predators. This advantage is credited to the large body size and the high number of 

ovarioles. Both resulted in the achievement of a high rate of egg production. It was 
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previously assumed by Dixon and Guo (1993) that species with a large body size should be 

highly fecund and lay larger clutches. This could be achieved either by having a high number 

of ovarioles or through alternate egg production between the left and the right ovaries (Dixon, 

2000). The role of the relationship between both body size and ovariole number in 

determining efficient reproductive output was also reported by Stewart et al. (1991b). 

 

Large body size, however, is not always preferred by natural selection, particularly during 

food scarcity (Obrycki et al., 1998, Brown and Sibly, 2006, Dixon, 2007). Being excessively 

large makes some insects more susceptible to predation by several larger predators, such as 

birds (Holmes et al., 1979). Nevertheless, as noted by this study previously, the number of 

ovarioles occasionally imposed a constraint on the maximum number of produced eggs 

(Stewart et al., 1991a). This was validated when several aphidophagous ladybirds had the 

almost the same rate of egg production despite significant variations in their body size 

(Mishra and Omkar, 2004, Omkar and Mishra, 2005). Furthermore, in the present study it 

was found that the median ovariole number for H. axyridis was 82 ovarioles and the mean 

clutch size produced by one ovariole was approximately 26.86±1.72 eggs. Stewart et al. 

(1991 a) noted that the clutch size produced daily by a female of H. axyridis must be equal to 

half the number of the total ovarioles in that female. In this study, the mean total ovariole 

number was 79.6 ovarioles and half of this number was 39.8 ovarioles. The clutch size 

(26.86±1.72 eggs) was found to be less than half of the ovariole number (39.8 ovarioles), but 

26.86±1.72 eggs was the production of one ovary and the study expected this number to be 

doubled when both sides, left and right ovaries, worked simultaneously. As noted previously 

by Stewart et al. (1991a), in coccinellids and other insects egg production alternates between 

ovarioles in order to allow for continuous production. This explained how the reproductive 
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performance promoted the inevitable colonisation and establishment of H. axyridis 

worldwide. 

 

It could be concluded that the allometric relationship between reproductive attributes and 

body size was found particularly in reproductive rate and biomass, however, it could be 

masked by individual reproductive strategies, as well as rearing conditions. Individual 

strategy in oviposition pattern and maternal provision might be expected to change during 

stressful conditions, such as food deprivation. The variable strategies in the individual 

performance of H. axyridis highlight the association between the phenotypic plasticity and 

ability to colonise new habitats in variable conditions. Two main trade-offs were noticed 

under constant feeding regime, first, the longevity-fecundity relationship, and second, an 

individual egg volume and clutch size that might possibly influence the reproductive output 

and body size relationship. Although the influence of a male’s gonads on female fecundity 

was found to be significant, more investigations are required to highlight further a male’s 

contribution. 

 

The successful invasion of H. axyridis in many countries has been attributed to its 

reproductive tactics, which is regarded as one of the most important aspects of its life-history 

strategies. This reproductive performance is unique and associated with large body size as 

well as high fecundity. Nonetheless, being able to provide extra food for the hatchlings 

without apparent cost was another distinctive capability that would further help in increasing 

the survival rate of the immature stages when invading a new unpredictable range of habitat; 

or when facing intra-guild competition with native species over food scarcity. The alternate 

functions of the ovary could provide an extra advantage over other species, facilitating the 

consistent availability of this species around the time that it may have become a dominator, as 
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well as a threat to other species. In addition to all of these features, further investigations are 

needed to highlight the importance of the male potency role in fertilising that high number of 

eggs within a short period of time and the associated trade-offs. 
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Chapter 4 

Factors Affecting Variation in Developmental Attributes of 

Harmonia axyridis Larvae Reared on Constant Diet 

4.1 Introduction 

 

Body size and developmental time are important determining factors of an organism’s fitness, 

as they arbitrate the basic biological aspects, such as mating success, reproduction and 

competition (Roff, 1992, Stearns, 1992, Brown and Sibly, 2006, Phoofolo et al., 2009). 

Among insects, the regulation of body size and growth period is an important issue in 

developmental biology (Nijhout, 2003). Growth in holometabolous insects mainly ends with 

two stages,  pupation and metamorphosis (Chapman, 1998). Therefore, body size regulation 

requires an understanding of the mechanisms regulating the termination of the growth period 

(Davidowitz et al., 2004). The rate of growth, however, cannot explicitly determine body 

size, because the latter is a product of the interaction between growth rate and growth 

duration (Atkinson, 1994, Gotthard, 2001, Stern, 2001, Davidowitz et al., 2004). 

 

It is often assumed that attained final adult body size features are influenced by performance 

during early stages of development and frequently adjusted by both genetic and 

environmental factors, functioning at both cellular and organismal levels (Nijhout, 2003). 

Even with the longstanding awareness of the ecology and evolution of body size plasticity 

(Stearns, 2000), little is known about the developmental and physiological mechanisms that 

eventually determine body size, or the mechanisms leading to the great diversity of sizes 

(Stern, 2001, Mirth and Riddiford, 2007). Via and Lande (1985) and Higgins and Rankin 



208 
 

(1996) noted that both genetic and environmental factors were found to induce significant 

variations in the age and size at which an individual matures. In addition, growth conditions 

experienced in larval development were revealed to exert fitness costs on body size and its 

parts (Dmitriew et al., 2009). The most frequently noticed costs are the additional growth in 

structural size that precedes the gains in body mass (Dmitriew, 2005, Boggs and Freeman, 

2005). This extra structural growth might result in composite effects on body allometry 

(Frankino et al., 2005), could increase the length of the developmental period (Davidowitz et 

al., 2003), raise pre-reproductive mortality (Metcalfe and Monaghan, 2001) or reduce size at 

maturity. A reduction in body size has been found to be accompanied by a decrease in 

reproductive performances, such as lifetime fecundity and mating success, and a reduction in 

longevity in the order Odonata (encompassing dragonflies and damselflies) (Sokolovska, 

2000). Whether the final accomplished body size is mainly determined by initial larval size, 

nutritional status, environmental factors or has strong genetic determinants, is a question that 

still has no definitive answer and must be investigated further.  

 

Numerous studies have reported that size control in Drosophila melanogaster (Meigen, 1830) 

(Diptera: Drosophilidae) is often governed by regulation of growth rate and control over 

growth termination (Mirth and Riddiford, 2007). In contrast, in the tobacco hornworm, 

Manduca sexta (Linnaeus, 1763) (Lepidoptera: Sphingidae), the physiological bases of body 

size evolution are determined by several factors, including initial size, growth rate of the last 

instar, critical weight estimates and time delay between achieving the critical weight and 

metamorphosis hormonal secretion (D'Amico et al., 2001, Davidowitz et al., 2003). The 

hormonal regulations over the growth characteristics and the critical weight have already 

been explained thoroughly in the general introduction (Chapter 1) and more details have been 

reported elsewhere, in particular by Davidowitz and Nijhout (2004).  

http://en.wikipedia.org/wiki/Dragonfly
http://en.wikipedia.org/wiki/Damselfly
http://en.wikipedia.org/wiki/Johann_Wilhelm_Meigen
http://en.wikipedia.org/wiki/Drosophilidae
http://en.wikipedia.org/wiki/Carl_Linnaeus
http://en.wikipedia.org/wiki/Centuria_Insectorum
http://en.wikipedia.org/wiki/Sphingidae
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One of the important key factors in regulating the growth of larvae is that, in the absence of 

juvenile hormone, there are two pulses of ecdysteroid hormone secretion. The first minor 

pulse prompts the shift from larval to pupal stage, and the second much larger pulse induces 

the moulting of pupa (Nijhout, 1999). D’Amico et al. (2001) investigated the physiological 

basis of body size development in M. sexta and noted that achieving the critical weight or 

size is one of the critical stages at which development becomes committed to metamorphosis 

in this species. This is because the critical weight always leads to alterations in hormonal 

levels that make the respective stage ready for an advance in growth (Berreur et al., 1979, 

Nijhout, 1981, Riddiford, 1993ab). There are many definitions recognised for critical weight. 

For some insects, the critical weight is the critical stage occurring during the course of the 

last larval stage period before metamorphosis; in others the mean critical weight is the weight 

at which 50% or 54% of larvae are able to pupate (Robertson, 1963, Royes and Robertson, 

1964, Bakker, 1969, Davidowitz et al., 2004).  

 

Misconceptions have arisen over the years regarding the exact definition of the critical 

weight. For example, Jones et al. (1981) examined the critical weight in the cabbage looper 

caterpillar Trichoplusia ni (Hübner, 1800-1803) (Lepidoptera: Noctuidae). Their weight 

classes were, however, defined at the time of the moult to the last instar (and not during the 

last instar). Woodring (1983), Ochieng Odero (1990), and De Moed et al. (1999) all defined 

the critical weight as the weight at which 50% of the larvae were able to pupate. Davidowitz 

and Nijhout (2004) noted this is not a measure of critical weight, as originally defined by 

Nijhout and Williams (1974ab), but described the minimal viable weight instead. In 

holometabolous insects such as D. melanogaster and M. sexta, development after attaining 

the critical weight is often determined by a post-critical weight period that extends until the 

commencement of pupation (Beadle et al., 1938, Bakker, 1961, Robertson, 1963, Nijhout and 

http://en.wikipedia.org/wiki/Jacob_H%C3%BCbner
http://en.wikipedia.org/wiki/Noctuidae
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Williams, 1974ab). As yet, there is no model species that could be used to describe the 

hormonal regulation during development. For example, in M. sexta, the critical weight is 

reliant on specific size-related characteristics (Nijhout and Williams, 1974ab, Blakley and 

Goodner, 1978, Nijhout, 1979). In contrast, in D. melanogaster the critical weight occurs 

directly after accomplishing the second moult and the developmental rate is no longer 

affected by the available food level (Beadle et al., 1938, Bakker, 1961, Robertson, 1963). In 

general, the larval developmental period is determined by the time needed to reach the critical 

weight. 

 

Despite longstanding interest in studying the development of insect bodies and how an 

organism interprets the diverse environmental signals that may lead to plasticity of body size 

(Stern, 2001), little is known about the physiological mechanisms that govern larval 

development and their growth rate. Further details about the hormonal regulations of critical 

stage and size have been explained in the general introduction. This study will therefore not 

repeat these theories, but will attempt to apply the previously stated findings. In addition, the 

study will assess and determine the critical weight estimates and developmental features of H. 

axyridis larvae through direct simple methods.  

 

For genetically similar insects, the variation in body size can be attributed to nutrient 

assimilation and allocation, mainly during the fourth instar stage (Nijhout, 2006, Berner and 

Blanckenhorn, 2007). This fact however, needs further assessment, particularly when bearing 

in mind the environmental and genetic interactions with body size characteristics, as well as 

the sex type. It has been noted that the larval developmental period (excluding pupal period) 

and the commencement of pupation are the main determinants of post-embryonic 

development among holometabolous insects (Dixon, 2000, Omkar et al., 2004). Few studies 
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have made an effort to determine the regulation of larval developmental duration or the 

timing of pupation (Nijhout, 1981). According to Riddiford (1996), the main cues that 

holometabolous insects use to regulate the developmental processes were found to be unclear. 

Regulation processes among some holometabolous insects rely on a pre-programmed critical 

size threshold and on their capability of assessing their own sizes (Nijhout, 1981). Many 

insects assess their body weight through their stored fat tissues, which act as a detector for 

nutrient availability and control larval development by initiating insulin regulating signals 

(Nijhout, 1981). Pupal stage initiation is, however, a very crucial process and cannot be 

evaluated easily using the critical size threshold, as there is a limitation to the level of 

successful pupation that is bound to attain the minimum threshold weight (Shafiei et al., 

2001). The latter is entirely different from the critical weight threshold. The critical weight 

threshold is the weight essential to regulate the metamorphosis process, whereas the 

minimum threshold weight is the weight of stored fat that is sufficient to guarantee 

metamorphosis survival of developing larvae (Shafiei et al., 2001). Further explanations were 

summarised in Chapter 1.  

 

Some holometabolous insects, if deprived of nutrients before attaining their critical threshold 

size, tend to extend their larval period in order to allocate additional food resources (Halffter 

and Edmonds, 1983) or would undergo multiple moults into gradually smaller supernumerary 

instars (Blakley, 1981). It has been reported that when some insects encountered low food 

availability, they were able to terminate their larval developmental period ahead of time and 

initiate their pupation period, ultimately leading to a smaller body size (Moczek, 1998). Thus, 

juvenile developmental plasticity has an important role in the determining the success of 

lifecycle phases (Bernardo, 1993). Not all developmental aspects are plastic,  some are 

canalised (i.e., controlled genetically) and their consequences are highly variable (Via and 



212 
 

Lande, 1985). It was noted that canalised development is favoured when environmental 

variations are unpredictable and take place at generation level; in contrast, developmental 

plasticity is favoured over a small spatial scale and when cues are reliable and consistent 

(Stearns and Koella, 1986, Gomulkiewicz and Kirkpatrick, 1992). 

 

Several studies have shown that the size and age at maturity are often governed by three 

developmental factors, changes in size at ecdysis, intermoult interval and number of instars 

(Beck, 1971, Stearns and Koella, 1986, Higgins and Rankin, 1996). Therefore, any genetic or 

plastic variability will definitely result in maturity being reached at an unexpected different 

size or age (Higgins and Rankin, 1996). During reproduction, the size and age are highly 

important. These two life-history traits are correlated with female fitness in many 

invertebrates and ectothermic vertebrates. Any noteworthy alteration concerning them might 

therefore directly affect potential female fecundity and possibly increase pre-reproductive 

mortality (Beck, 1971, Stearns and Koella, 1986, Higgins and Rankin, 1996). For instance, in 

iteroparous annual organisms, an early female maturation would have more opportunities for 

reproduction (Suter, 1990); their juveniles, however, would be frequently at risk of predation 

(Berven and Gill, 1983).  

 

In the past, extensive studies have concentrated primarily on the role of genetic variations, 

ignoring the importance of the presence of developmental plasticity over ecological and 

evolutionary timescales (Dingle et al., 1980, Gomulkiewicz and Kirkpatrick, 1992). Without 

detailed knowledge of how an organism assesses its size and weight with respect to 

environmental, physiological and biochemical factors, plasticity in size and weight cannot be 

utterly understood (Nijhout, 1975, Higgins and Rankin, 1996). Despite the widespread data 

on insect life-history traits, few dealt with plasticity in growth and developmental facets of 
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larvae (Nijhout, 1975, Nijhout and Wheeler, 1996). More investigations are needed in order 

to illustrate the connection between developmental factors and plasticity in insects, 

particularly those that have become highly invasive, like H. axyridis. Without such details, it 

would not be easy to set apart plasticity from genetic variability and their interactive roles in 

modelling the final adult size (Higgins and Rankin, 1996). 

 

In addition, attempts to demonstrate insect growth rates in relation to physiologically based 

allometry are few; this is unfortunate because insects have been used as scientific models in 

several life-history studies (Tammaru et al., 2002, Gotthard et al., 2007). Most growth curve 

models postulated that larvae grow exponentially and the allometric coefficient is equivalent 

to one (D’Amico et al., 2001, Berger et al., 2006). In contrast, several studies have showed 

that the allometric coefficient at all times is less than the unity (Tammaru and Esperk, 2007). 

In addition, there are noticeably few studies on growth curves of larvae, which might partly 

be due to the methodological difficulty in monitoring simultaneously many larval instars 

during the course of an experiment (Esperk and Tammaru, 2004).  

 

Several studies have revealed that environmental factors, such as temperature range, might 

affect the critical weight during development. Thus, recognising how environmental variation 

influences the hormonal cascade could aid in understanding the physiological control of 

phenotypic plasticity over body size and developmental time (Davidowitz et al., 2004). For 

example, increased temperatures during larval development in D. melanogaster led to a 

reduction in the final adult size and the developmental time, accompanied by an increase in 

larval growth rate (Ray, 1960, Partridge et al., 1994ab, De Moed et al., 1998). Despite the 

above, the way in which growth and development act together in response to specific 

temperature is still incomprehensible. Food level is another factor that has been found to a 
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greatly affect the weight-independent mortality, but has no influence on the critical weight 

once it has been attained (De Moed et al., 1999).  

 

In conclusion, the ‘critical weight’ is operationally defined as the minimal weight at which 

further feeding and growth are not requisite for a normal time course to metamorphosis and 

pupation (Nijhout and Williams, 1974ab). It determines the way age and size at maturity 

respond to environmental variation (Bernardo, 1993), and is therefore important in life-

history evolution. In addition, the critical size is an important determinant for enabling the 

evolution of body size; it may in turn act as a constraint on the evolution of plasticity of body 

size itself (Davidowitz, et al., 2003). In addition, genetic variation in mean critical weight has 

ecological and evolutionary implications. 

  

Many biological and environmental factors contribute to increasing the invasiveness of 

several species (Marco et al., 2002). Life-history aspects such as growth rate, fecundity and 

fertility are the key determinants for fitness in predaceous ladybirds (Agarwala et al., 2008), 

probbaly due to their successful invasion and establishment over a wild range of habitats 

(Marco et al., 2002, Lanzoni et al., 2004). Knowledge of various life-history traits is essential 

to develop a better understanding of intra-guild interactions between invasive and native 

species (Lanzoni et al., 2004). It has been noted that the most important factor in invasion is 

the immature juvenile stages (Marco et al., 2002, Labrie et al., 2006). These immature stages 

appear to have high agility with a great capability to attack their prey. They are voracious and 

polyphagous, although the total number of aphids consumed depends on the larval and 

species of aphid, ranging from 90 to 370 aphids (Hukusima and Kamei, 1970). These larvae 

are able to survive on pollen grains, nectar and fungus exclusively (Hukusima and Itoh, 1976, 

Lamana and Miller, 1996) and cannibalised eggs (Osawa, 1993), as well as their siblings 
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(Dixon, 2000) and other insect species (Lucas et al., 1997, Michaud, 2002ab). As they grow 

to the third and fourth stage, they become very strong and aggressive, due to the presence of 

the spine (scoli) on the dorsal side of their bodies (Sasaji, 1971, He et al., 1994, Kock, 2003). 

These structures provide protection against attacks by other larvae (Sasaji, 1971, He et al., 

1994, Kock, 2003). In addition, they are equipped with deterrent larval semiochemicals that 

are secreted to avoid interface competitions (Obata, 1986, Yasuda et al., 2000, Verheggen et 

al., 2007). Remarkably, larvae of coccinellids are able to adjust their developmental period 

and growth rate according to exterior cues, such as nutrients or temperature range (Osawa, 

2000, With et al., 2002). By so doing, they tend to decrease the percentage of mortality when 

conditions are unpredictable (Lanzoni et al., 2004). Although some scientists have referred to 

their foraging activities as random searching (Kawai, 1976, Kock, 2003), others have 

reported that larvae and adults start foraging by extensive searching followed by an intensive 

search once their prey has been located, as is the case for H. axyridis (Ettifouri and Ferran, 

1993). Lambin et al. (1996) noted that larvae of H. axyridis showed both long- and short-

distance visual perception (Lambin et al., 1996). The number of eggs laid by coccinellid 

ladybirds is extremely high, in some species such as H. axyridis it may reach up to 3,819 eggs 

(Hukusima and Kamei, 1970, Koch, 2003). This can give rise to thousands of larvae that 

consume everything in their path in order to complete their development, particularly during 

poor resources. Thus, during invasion, the larval stages are the most intensive and competent, 

due to their extraordinary number and great voraciousness. It has been noted that larvae of H. 

axyridis are considered as the key factor in population dynamics (Osawa, 1993); they remain 

longer at the site and fight aggressively to survive over other species (Osawa, 1992, 1993, 

Joseph et al., 1999, Michaud, 2003a). Therefore, understanding the biological processes and 

developmental stages of the invasive habits of H. axyridis is essential in order to understand 
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the underlying factors that promote invasion success (Shea and Chesson, 2002, Kimberling, 

2004, Snyder et al., 2004).  

 

The multi-coloured Asian ladybeetle, Harmonia axyridis (Coleoptera: Coccinellidae), has 

been released in many areas as a classical biological control agent against aphids (Roy and 

Wajnberg, 2008). This coccinellid appeared to be a very strong intraguild predator compared 

with other coccinellid species, and some studies have assumed that it has been displacing 

competitively native species, such as Coccinella septempunctata (Linnaeus, 1758) 

(Coleoptera: Coccinellidae) (Saito et al., 2005, Roy and Wajnberg, 2008). The adults and 

larvae of H. axyridis are polyphagous (Lucas et al., 1998). Aphids are, however, considered 

to be their preferred and essential prey, because they ensure complete and fast pre-imaginal 

development, low mortality and a larger body size (Dixon, 2000, Sloggett and Majerus, 

2000). Aphids vary widely, both spatially and temporally, in nature (Dixon, 1958,  2000). 

One of the characteristics that allow this ladybird to dominate the aphidophagous guild is 

their rapid juvenile development compared with other indigenous species (Lanzoni et al., 

2004). In order to appraise how the H. axyridis ladybeetle was able to respond 

developmentally to transient or unpredictable prey resources, this study was conducted to 

investigate three important facets during larval development,  namely, developmental period, 

critical weight and growth rate -for larvae reared on a fixed diet under constant controlled 

conditions. Stage assessments and intra-specific allometric analysis were performed to find 

out which of them had the greatest influence in determining the final adult size. This study 

aimed to help to draw attention to which juvenile stage best explains the main cause for the 

invasiveness of H. axyridis. Variability within developmental stages (weight and duration) 

was studied explicitly. It was noted by Stearns (1995) that the less variable the phenotype is, 

the stronger the degree of canalisation. According to Stearns (1995) the study was able to 

http://en.wikipedia.org/wiki/Carl_Linnaeus
http://en.wikipedia.org/wiki/10th_edition_of_Systema_Naturae


217 
 

point out the most canalised qualities during larval development. Several criteria of the 

developmental process were considered in this study, including estimates of critical weight 

(both minimum and maximum), actual critical weight, relative growth rate for each stage, 

total growth rate, total developmental period and total larval period, as well as the sex ratio 

and body size parameters of adults. The study did not consider alternative food, as it aimed to 

focus on a more simplified food regime in order to help to assess the developmental 

responses to the availability of essential food.  

 

4.2  Materials and Methods 

 

Adults of H. axyridis were selected from a ladybird culture originally collected from naturally 

infested fields in Silwood Park, South-east England, United Kingdom (National Grid 

References 41/944691). The adults were sexed into 30 couples based on the labrum and pro-

sternum pigmentation (McCornack et al., 2007). Each couple was placed in a 9cm diameter 

Petri-dish and each individual supplied with 16 live adults of the pea aphid, Acyrthosiphon 

pisum (Harris, 1776) (Hemiptera: Aphididae), maintained on broad bean plants Vicia faba 

(Linnaeus, 1753) (Fabales: Fabaceae, variety A uadulce Claudia). The couples were kept in a 

constant temperature room maintained at 20±1  C, 70-75% RH and a photoperiod of L16: D8. 

Afterward, 10 larvae were collected randomly from different clutches laid by each oviposited 

female. Each larva was reared individually in a 9cm diameter Petri-dish under similar 

conditions as the above and was provided with aphids according to the method in Chapter 2 

until adult eclosion. Larvae that died and others that could not transform into adults were 

excluded from this study. Only five larvae out of the 10 monitored larvae per female were 

assigned for analysis.  

 

http://en.wikipedia.org/wiki/Aphididae
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4.2.1 Determination of developmental weight and duration of successive instars 

 

Larval weight was taken upon egg hatching (initial weight), after first moult, second moult, 

third moult, fourth moult, at the onset of pre-pupal stadium, after pupation and finally after 

adult emergence. The presence of exuviae was noted and examined to determine the larval 

instar. The weights were measured and the mean weight for each instar stage was determined 

independently. Daily weight was taken after the fourth moult up to the onset of the pre-pupal 

stage. These weights were assigned to determine the estimates of the critical weights 

discussed later. The duration of development (Dd) for each instar period was expressed as the 

time from moulting into each respective instar up to the succeeding moult, or in the case of 

last instar, up to the initiation of the pre-pupal stage. The sequential duration for each instar 

was determined for each larva and then the mean duration period for each instar was 

estimated for each sex. 

 

4.2.2 Determination of duration larval development period and the total 

developmental period 

 

The newly emerged adults were sexed and the sex ratio was calculated. Subsequently, the 

total duration of the larval developmental period was expressed as the duration from egg 

hatching up to the initiation of pupation. This duration was determined for each larva, and the 

mean was estimated. Subsequent to adult emergence and sexing, the total larval period was 

determined for each gender independently. The total developmental period, on the other 

hand, was defined as the time after successful egg hatching up to successful adult emergence. 

This period was measured for each larva and from that the mean was estimated. Similar to the 

above, the total developmental period was also determined for each gender separately. 
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4.2.3 Determination of the estimates of critical weight 

 

Estimates of critical weight were determined according to Phoofolo et al. (2009). They 

noticed that, first, the mean minimum viable weight often takes place 1-2 days after the 

fourth moult. The mean minimum critical weight is usually attained 3-5 days and the mean 

maximum critical weight occurs after 5-9 days, after accomplishing the fourth moult. All 

respective weights were estimated from Figure 4.6, following Phoofolo et al. (2009). This 

study suggested an alternative method for calculating the estimates of the critical weight. 

First, the mean minimum critical weight suggested by this study was calculated directly after 

larvae attained the fourth moult and the mean maximum critical weight was calculated 

directly when larvae started to cease feeding. The two estimates of the critical weight, the 

minimum and the maximum, were calculated separately for each gender. In addition, the 

mean actual critical weight could be estimated according to Davidowitz et al. (2004), in 

which 50% of the peak larval weight was noted to be equivalent to the critical weight, as in 

M. sexta.  

 

4.2.4 Determination of total growth rate and the relative growth rates 

 

The total growth rate and relative growth rate for each larval stadium were calculated 

following Leather and Dixon (1984) and Tammaru and Esperk (2007). The total growth rate 

was calculated by deducting adult weight from the initial larval weight then dividing it by the 

total developmental period. The relative growth rate of an instar was calculated by 

subtracting the weight at the end of the instar from the weight at the end of the preceding 

instar, divided by the duration of the respective instar period. Both the total and the relative 

growth rates were also determined for each gender independently.  
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4.2.5 Determination of larval growth rate index 

 

The index of larval growth rate (G) was calculated following Sibly and Calow (1985), with a 

slight amendment through which G = (log W - log E)/D, where (W) was the body weight, (E) 

was an initial larval weight and (D) was the total developmental period. Subsequently, the 

larval growth rate index was determined for each sex independently. 

 

4.3 Data analysis 

 

All the data were tested for normality using the Shapiro test prior to conducting statistical 

analyses. Transformation models were used to normalise data distribution. Data that failed to 

be transformed to normal distribution were subjected to the appropriate non-parametric 

analysis, such as the generalized linear model (GLM) with Poisson errors and Wilcoxon rank 

sum test. Sex dimorphism in body size was explained by three estimates, the variations in 

adult weight, growth rate and duration of developmental period, according to Stillwell et al. 

(2010). To investigate the variability within each instar in terms of weight and duration (as 

response variables), each instar was analysed separately using one-way ANOVA analysis by 

fitting them into the models (response~larva) and (response~sex). Simple linear regression 

was performed to test the existence of any direct relationship between developmental 

parameters after data had been transformed. Chi-square test was used to test the significant 

variation between the relative growth rates of each instar and to compare the estimates of 

critical weight (both the minimum and the maximum). Student t-test was used to compare the 

means of different body measurements, as well as total growth rate, total larval period, total 

developmental period and growth index between the two sexes. All statistical analyses were 

carried out using the statistical programme ‘R’ version 2.8.1 (Ihaka and Gentleman, 1996). 
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4.4   Results 

4.4.1 Variability in post-moult weight of each instar 

 

Larvae of H. axyridis went through five consecutive instars, instead of the four usually found 

in most ladybird and insect species. The mean weight of immature stages of each sex type 

and their body measurements are provided in Table (4.1). There was no significant difference 

between developing larvae with respect to their initial weight (F=0.039, Residual 

deviance=4.17, df=119, P=0.84), weight after third moult (F=2.61, RSE=0.75, df=118, 

P=1.08) and adult weight (F=0.042, RSE=0.33, df=118, P=0.83). The other instars were 

found to be significantly variable in terms of weight, mostly after the first moult (F=4.86 

RSE=20.8, df=118, P<0.05), second moult (F=6.21, RSE=0.51, df=118, P<0.05), fourth 

moult (F=8.47, RSE=5.07, df=118, P<0.001), at the commencement of pre-pupal period 

(F=22.53, RSE=5.54, df=118, P<0.0001) and at initiation of pupation (F=66.42, RSE=5.8, 

df=118, P<0.0001). The mean weight of immature stages tended to increase progressively as 

they grew to the consequent stages until they reached their peak weight (31.57±0.55 mg) 

which was recorded exactly at the pre-pupal stage (Fig.4.1)., There was a 7.12% drop in the 

mean pre-pupal weight as larvae grew towards the pupal stage, followed by another 38.72% 

drop in mean weight after adult ecdysis (Fig. 4.1). In general, the growth pattern of instars 

had five main phases, which were found to be separated by four inflection points. The first 

inflection point occurred at the beginning of the third instar stadium, subsequent to the 

second moult. The second inflection point happened at the fourth moult and at the onset of 

the fifth instar. The third inflection point was at the onset of the pre-pupal stage and the last 

one at the beginning of the pupation. The first phase was characterised by a slow growth rate 

followed by a second phase that showed a gradual increase in weight towards the second 

inflection point as time progressed. During the third phase there was a sudden accelerated 
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rate of growth that reached a peak exactly at the onset of pre-pupal period. The fourth phase 

started with slight decrease in weight that progressed towards the last inflection point 

followed by a fifth phase characterised by a rapid drop in weight as the pupae was 

transferring into complete adult tissue. Comparisons between the stages in relation to the 

mean weights of males and females revealed that females had 10.7% more weight compared 

with males, built up at pupation, and 4.8% more after adult ecdysis (Fig. 4.2).  

 

The mean weight of the second instars was related directly to the mean weight of the fifth 

instars (F=24.33, Residual deviance=13.5, df=118, P<0.0001) (Fig. 4.3). There was an 

indirect significant relationship between the mean weight of adults (regardless of the sex) and 

the mean weight of the third instars (F=6.2, Residual deviance=16, df=118, P<0.05, slope=-

0.024). Likewise, the mean weight of the second instars had a linear negative relationship 

with the mean weight of the fourth instars (F=4.2, Residual deviance=26, df=118, P<0.05, 

slope=-0.023), and with the mean weight of the fifth instars (F=5.52, Residual 

deviance=13.16 df=118, P<0.05, slope=-0.015). The mean weight of adults was found to 

have a positive linear relationships with the mean weight of the third instars (F=6.24, 

Residual deviance=16, df=118, P<0.05), as well as with mean weight of pupae (F=3.04, 

Residual deviance=55.6, df=118, P<0.05, slope=0.0113). In contrast, the mean weight of the 

third instars had an indirect linear relationship with the mean weight of the fourth instars 

(F=4.6, Residual deviance=26.08, df=118, P<0.05, slope=-0.024) and with the mean weight 

of the fifth instars (F=5.5, Residual deviance=13.16, df=118, P<0.05, slope=-0.025). The 

mean weights of the second (Fig. 4.4), third, fourth and fifth instars had a direct linear 

relationship with the mean weight of pupae – (F=19, Residual deviance=14.03, df=118, 

P<0.0001, (F=14.45, Residual deviance=15, df=118, P<0.0001), (F=6.86, Residual 

deviance=25.61, df=118, P<0.05) and (F=13.4 Residual deviance=4.97, df=118, P<0.0001), 
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respectively. The mean weight of pupae that gave rise to females was 29.25±0.82mg and of 

pupae that ecdysed into males was 23.6±0.81mg. After comparing the former with the latter, 

a significant difference was revealed (t=4.85, df=105, P<0.0001). The estimated sex ratio in 

H. axyridis was female-biased in which 66.6% out of the total turned to be females and 

33.3% males.  
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Table 4.1. Mean weight (mg) of 120 larvae during each instar and the attained adult size parameters. 

 

Sex 

Initial weight of 

1st instar 

After 1st 

moult  

After 2nd 

moult 

After 3rd 

moult 

After 4th 

moult 

At pre-

pupation 

After 

pupation  Adult 

Body 

length(mm)  

Body 

width(mm) 

Scutum 

width(mm) 

Right tibia 

length (mm) 

Total 

number of 

Gonads 

Female  

(n=80) 0.18±0.008 1.46±0.2 2.93±0.18 8.8±0.51 16.5±0.63 31.94±0.67 29.25±0.82 12.67±0.46 6.24±0.043 5.24±0.04 3±0.029 1.58±0.01 35.33±0.61 

Male 

(n=40) 0.21±0.103 1.27±0.11 2.88±0.24 8.79±0.69 16.22±0.69 30.85±0.94 23.6±0.81 10.93±0.55 5.86±0.06 4.96±0.06 2.89±0.03 1.53±0.016 47.87±1.25 

  

             
Mean (120±SE) 0.19±0.007 1.400±0.14 2.92±0.14 8.79±0.41 16.42±0.47 31.57±0.55 27.37±0.66 12.09±0.36 6.11±0.03 5.18±0.03 2.95±0.02 1.5670.01 39.51±0.8 
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Fig. 4.1. Mean weight during each instar recorded during developmental period. The mean 

was estimated from 120 developing larvae ±SE. 

 

 

Fig.4.2. Mean weight during each instar recorded during larval developmental period for 

males and females. The mean was estimated from 80 females and 60 males ±SE. 
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Fig. 4.3. Relationship between log (weight of 2
nd

 instar +1) against log weight of 5
th

 

instar, (y=0.85x-0.003, R²= 0.21). Data were transformed for statistical analysis 

(F=24.33, P<0.0001). 

 

 

Fig.4.4. Relationship between the mean weight of the 2
nd

 instar against log weight of pupae 

(y=0.05x+1.35, R²=0.12). Data were transformed for statistical analysis (F=14.03, P<0.0001). 

 

0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

lo
g 

(s
e

co
n

d
 in

st
ar

 w
e

ig
h

t+
1)

 (m
g)

 

Log fifth instar weight (mg) 

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Lo
g 

m
e

an
 p

u
p

al
 w

ei
gh

t 
(m

g)
 

Log mean weight after first moult (mg) 



227 
 

4.4.2 Developmental durations and larval weight 

 

Developmental durations for each instar stage are presented in Table 4.2. Among instars, the 

means duration of the second instar (F=9.8, Residual deviance=3.6, df= 118, P<0.001), third 

instar (F=5.8, RSE=2.7, df= 118, P<0.05), fifth instar (F=17.73, Residual deviance=0.52, 

df=118, P<0.0001) and pre-pupal stage (F=12.75, Residual deviance= 2.02, df=118, 

P<0.0001) differed significantly between males and females. The mean total larval 

developmental period recorded for all larvae, irrespective of sex, was 27.9±0.11 days and the 

mean total developmental period was 36.58±0.16 days. The mean total larval period for the 

120 larvae did not show any variability when sex was disregarded (F=0.24, Residual 

deviance=0.21, df=118, P=0.62). Likewise, the mean total developmental period did not 

show any variability between developing larvae irrespective of sex (F=0.34, Residual 

deviance=2.8, df=118, P=0.55). The mean total developmental period did not differ 

significantly between larvae that gave rise to males or females (F=0.01, Residual 

deviance=0.28, df=118, P=0.91). The mean larval developmental period showed no 

significant variability between larvae that turned out to be males and females (F=0.3, 

Residual deviance=0.22, df=118, P=58). The mean total growth rate of all larvae was found 

to vary significantly between males and females (t=2.3, df= 82.7, P<0.05), in which females 

had 12.66±0.016mg/day, whereas males had 10.92±0.56mg/day. Thus, females had a higher 

growth rate compared with males. Despite the fact both males and females had a relatively 

similar mean total developmental period, females were found to be significantly heavier than 

males (t=2.3, df= 82.69, P<0.05). Likewise, the growth index was 1.10±0.016 in females and 

1.03±0.02 in males, and both were found to be significantly different (t=2.37, df=82.7, 

P<0.05). The mean total growth rate had a direct linear relationship with the mean total 

developmental period, but the relationship was not significant (F=0.1, Residual 
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deviance=0.32, df= 118, P=0.74, slope=0.0003). The mean total growth rate, however, had an 

indirect linear relationship with the mean total larval period (F=5.13, Residual 

deviance=0.21, df=118, P<0.05, slope=-0.062) (Fig. 4.5). 
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Table 4.2. Mean duration of successive instars during developmental period. Developmental parameters are also detailed.  

 

 

 

 

 

Sex 

Incubation 

period (day) 

Duration 

after 1st 

moult (day) 

Duration 

after 2nd 

moult (day) 

Duration 

after 3rd 

moult (day) 

Duration 

after 4th 

moult (day) 

Duration of 

pre-pupal 

stage (day) 

Duration of 

pupal stage 

(day) 

Total 

developmental 

period (day) 

Total growth 

rate (mg/day) 

Total larval 

period (day) 

Growth 

index 

 

Female 

(80±SE) 5.87±0.08 2.86±0.06 5.73±0.079 4.07±0.084 8.85±0.07 4.02±0.07 8.67±0.18 36.58±0.21 12.66±0.46 27.9±0.144 1.1±0.16 

 

Male 

(40±SE) 6±0.12 2.86±0.068 5.73±0.08 4.07±0.08 8.85±0.07 4.07±0.1 8.57±0.22 36.6±0.26 10.92±0.55 28.02±0.18 1.1±0.02 

  

           Mean 

(120±SE) 5.91±0.06 2.85±0.054 5.74±0.06 4.09±0.07 8.86±0.06 4.04±0.06 8.64±0.14 36.58±0.16 12.08±0.36 27.94±0.11 1.07±0.013 
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Fig.4.5. Relationship between mean total growth rate against mean total larval period 

(y=-0.062x+28.69, R²=0.039). Data were transformed for statistical analysis (F=5.13, 

P<0.05). 

 

The mean incubation period of the 120 larvae had a significant indirect relationship with the 

mean duration of the second instar (F=27.63, Residual deviance=1.17, df=118, P<0.0001, 

slope=-0.08). Similar negative significant trends were also revealed between the mean 

duration of the pupal period, the mean duration of the third instar stadium (F=8.5, Residual 

deviance=1.25, df=118, P<0.001, slope=-0.021) and the mean duration of the fifth instar 

(F=17.28, Residual deviance=0.52, df=118, P<0.0001, slope=-0.003). Regarding the 

relationship between the duration of instars and their stage weight, it was revealed that the 

mean duration of the fourth instar stage had an indirect significant relationship with the mean 

weight at the pre-pupal stage (F=13.83, Residual deviance=2.5, df=118, P<0.0001, slope=-

0.09). The mean duration of the fifth instar was indirectly related to the mean initial weight of 

the first instars (F=27.7, Residual deviance=3.23, df=118, P<0.0001, slope=-0.12).  
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The mean relative growth rate recorded during the first instar was 1.33±0.14mg/day, the 

second instar was 2.67±0.14mg/day, the third instar 8.05±0.39mg/day, the fourth instar 

15.41±0.44mg/day and the fifth instar 27.4±0.55mg/day (Fig.4.6). The mean weight gain 

during the first instar stage was significantly less than that of the third
 
instar (χ²=4.8, df=1, 

P<0.05) or the fourth instar (χ²=11.8, df=1, P<0.0001). For the second instar, the mean 

weight gain was also significantly lower than the fourth instar (χ²=9, df=1, P<0.001). Finally, 

the mean weight gain of the latter stage was found to be significantly higher than the third 

instar (χ²=5.4, df=1, P<0.05). Only the mean weight gain of the first, fourth and fifth instar 

periods varied significantly among larvae -(F= 6.09, RSE=16.32, df=118, P<0.05), (F= 8.34, 

RSE=4.74, df=118, P<0.01) and (F= 19.52, RSE=5.63, df=118, P<0.000), respectively. None 

of the instars showed any significant variability in the main weight gain when sex was 

considered – (F= 0.06, RSE=17.16, df=118, P=0.8) for the first instar, (F= 0.0003, 

RSE=17.5, df=118, P=0.98) for the second instar, (F= 0.002, RSE=0.76, df=118, P=0.96) for 

the third instar, (F= 0.093, RSE=4.9, df=118, P=0.78) for the fourth instar and (F=0.73, 

RSE=6.06, df=118, P=0.39) for the fifth instar, respectively.  

 

Only the mean weight of the second instar had a linear indirect relationship with the mean 

total growth rate (F= 7.4, RSE=16.48, df=118, P<0.01, slope=-0.026) (Fig. 4.7). Another 

linear direct relationship was observed between the mean duration of the third instar and the 

mean total larval period (F= 5.7, RSE=28.64, df=118, P<0.05) (Fig. 4.8). Thus the mean 

duration of the third instar was one of the determinants of the length of the mean total larval 

period.  
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Fig.4.6. Mean relative growth rate estimated during respective instar (mean± SE, 

n=120).  

 

 

Fig.4.7. Relationship between log mean weight gain of 2
nd

 instar and logged mean total 

growth rate (y=-0.04x+1.15, R²=0.15). Data were transformed for statistical analysis 

(F= 7.4, P<0.01). 
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Fig.4.8. Relationship between duration of the 3
rd

 instar and the total larval period 

(y=0.72x+23.8, R²=0.175). Data were transformed for statistical analysis (F= 5.7, 

P<0.05). 

 

4.4.3 Critical weight  
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relationship revealed between mean minimum and mean maximum estimates of critical 

weight with the mean total growth rate (F=0.015, df=118, Residual deviance=0.33, P=9) or 

with the mean total developmental period (F=0.14, df=118, Residual deviance=10.9, P=0.7). 

Only the mean minimum estimate of critical weight had a significant direct relationship with 

mean total larval period (F=7.3, df=118, Residual deviance=0.2, P<0.001).  

 

The changes in weight during the fifth instar were recorded at three consecutive intervals 

throughout nine days (at the fourth moult, after two days, after four days, after six days and 

after nine days) (Fig. 4.9). The ninth day is the day of the onset of the pre-pupal stage. From 

Figure 4.9, according to the method proposed by Phoofolo et al. (2009), the mean maximum 

estimate of critical weight can been see to occur exactly six days after the fourth moult and 

was approximately 28.55±0.47mg. The mean minimum estimate of critical weight was 

25.24±0.51mg, recorded on the second day, just after the fourth moult had been 

accomplished. Finally the minimum viable weight (20.24±0.53mg) was found likely to occur 

1-2 days after the fourth moult. (25.08±0.51mg) occurred after four days, the minimum 

estimates of the critical weight occurred after two days (20.25±0.53mg), the maximum 

estimate of the critical weight was 28.55±0.5mg and the peak weight was 31.5766±0.55mg 

and the minimum viable weight was 16.42±0.47mg. Despite that, hormonal analysis 

incorporation would be useful in that case to verify these results. 
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Fig.4.9. Changes in mean weight (mg) during the 5
th
 instar until the onset of pre-pupation 

period (mean±SE, n=120). 

 

 

Fig.4.10. Mean relative growth rate (mg/d) recorded at successive intervals during 5
th

 instar 

period, (mean±SE, n=120). 
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4.5 Discussion 

 

Insect growth from instar to instar is typically exponential, in that most growth occurs in the 

last larval instar (Davidowitz and Nijhout, 2004). Phoofolo et al. (2009) noted that for H. 

axyridis the growth after attaining the fourth moult is in two phases, with one inflection point 

separating the two phases. The initial phase was characterised by a slow initial growth rate 

that progressed into its maximum with time. In the second phase, the growth rate began to 

decline and sometimes approached zero and became flat. This type of growth has been 

widely described in many insects (Teuschl et al., 2007). In this study, the growth period 

found after attaining the fourth moult was increasing rapidly in accelerated trend. In M. sexta, 

90% of mass accumulation occurs in the fifth (and final) instar (Davidowitz et al., 2004). 

Davidowitz et al. (2004) noted that during the final instar of M. sexta, the growth becomes 

approximately linear after the first day. A relatively analogous trend was also noted in this 

study, but after 4 days from attaining the critical weight as seen in Figure 4.10. The pupal 

mass is 54% on average in M. sexta and the moth had 25% of the peak larval mass. As with 

other insects, adults do not grow and therefore peak larval mass largely determines the size of 

the adult moth (Davidowitz et al., 2004). In H. axyridis, larvae did grow after attaining the 

peak mass, therefore the pupal weight calculated in this study (using a method similar to the 

above) was 46.55% on average of the larval peak weight and the adult weight was 26.70% of 

the larval peak weight.  

 

Environmental conditions and genetic factors are both considered to be the main factors 

prompting variability in life-history traits (Sebens, 1987, Stern, 2001, Davidowitz et al., 

2003). Awareness of the fundamental factors inducing disparity in body size and its 

structures is without doubt essential (Stern, 2001). In most species, the ruling of the 
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physiological and biochemical processes during the course of juveniles’ development,  in 

particular, the late instars and their interfaces with the external cues,  play a substantial rule in 

defining the final body size (Osawa, 1992, Ueno, 1994, Berner and Blanckenhorn, 2007). The 

performance of larvae during growth, along with the onset of pupation are obligatory parts of 

growth in holometabolous insects (Nijhout and Williams, 1974 ab). In light of these 

particulars, the study planned to analyse the alterations in larval stage weight and duration 

during the course of developmental period upheld at controlled measures. This raised some 

questions, such as, what involvement did the weight of each stage have on the 

accomplishment of subsequent stages? Which of the larval stages would determine the 

possible success of pupation and the attainment of the requisite adult weight? Which larval 

stage or duration would be able to modify the developmental responses against food scarcity?  

 

To answer two of the above questions (those that revolve around the contribution of each 

stage to the success of the following one), the present study showed that the consistent 

success in the progress of stages development of this ladybird was ruled by a combination of 

two main fundamentals, the duration of an instar and the weight gained during that duration. 

In terms of an instar’s weight, the weight gained during the first, second, third and fourth 

instars had a strong propensity to influence the achieved pupal weight. More notably, it was 

revealed that the greater the weight of the first instar, the shorter the fifth instar period would 

be. Thus, the initial weight of the first instar governed to a great extent the length of the fifth 

instar period. Nonetheless, in terms of instar duration, the pre-pupal period was found to be 

negatively influenced by the period length of the fourth and the fifth instar. Thus, having 

short a fourth or fifth instar period implies that the larvae still would have required additional 

time to allocate and assimilate resources along with hormonal reorganisation for the next 

stage. On account of this, the length of the pre-pupal stage would be prolonged in order to 
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accomplish these tasks, which might result in an extra-long developmental period. The above 

was confirmed statistically, as indirect relationships were revealed between the total 

developmental period and these two final instars. 

 

The above findings imply that the post-larval developmental period that occurs at the 

initiation of the pre-pupal stage appears to be flexible in H. axyridis, rather than being of a 

determinant type. Furthermore, the study showed that the weight during the fourth and fifth 

instars was one of the important determinants of final adult weight. This was also verified 

statistically,  the adult weight was found to be indirectly related to the weight obtained at both 

fourth and fifth instars and directly related to the weight at pupation. Thus, the second 

proposed question could be answered,  the final instar weight is the stage that definitively 

governed the pupal weight. Nevertheless, a direct linear relationship was revealed between 

the duration of the third instar period and the pupal weight. Similar findings were reported by 

Nijhout (2003) and Phoofolo et al. (2009),  namely, that the achieved pupal and final adult 

body characteristics are often influenced by the performance of the last instar.  

 

The contribution of all instars to the progress of larval development has been further verified 

in this study. According to several previous studies, it been had emphasised that the weight of 

larvae during the fourth instar and pre-pupal stage are the most critical weights, disregarding 

the involvement and the input of preceding instars. For instance, Phoofolo et al. (2009) 

reported that in predatory coccinellids, H. axyridis and Hippodamia convergens (Guérin-

Méneville, 1842) (Coleoptera: Coccinellidae), the final instar (i.e., the fourth instar) was the 

only stage found to determine the adult body size. In their study, three different species of 

coccinellids were examined and the results revealed that for H. axyridis, 99% of larvae that 

had succeeded in reaching pupation were predominantly based on the weight of fourth instar. 

http://en.wikipedia.org/wiki/F%C3%A9lix_%C3%89douard_Gu%C3%A9rin-M%C3%A9neville
http://en.wikipedia.org/wiki/F%C3%A9lix_%C3%89douard_Gu%C3%A9rin-M%C3%A9neville
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Likewise, Phoofolo et al. (2009) and Dmitriew et al. (2009) reported the influence of the 

fourth instar on the final pupal and adult weight.  

 

In order to begin offering a proper explanation for each question, it is crucial to mention that 

this study revealed that the ladybeetle H. axyridis had five consecutive instars, and not four 

instars as for other coccinellids and some insect species. This concurs with the finding 

reported by Labrie et al. (2006). A few other coccinellid species had previously been reported 

to have five larval instars, Coleomegilla maculata (De Geer, 1775), Chilocorus bipustulatus 

(Linnaeus, 1758) and Callicaria superba (Mulsant, 1853) (all Coleoptera: Coccinellidae) 

(Warren and Tadic, 1967ab, Majerus, 1994). Generally, when a fifth larval instar was 

accomplished, the feasible postulation was that the juveniles had been experiencing relatively 

low food quality or quantity during development. In this study, the rearing conditions were 

entirely different, food was supplied on regular basis at a similar quantity and the external 

conditions (temperature, humidity and day length) were controlled during the course of the 

experiment. The accuracy of the controlled protocol used in this study was validated, since 

variability among total larval period and developmental period was absent. This extra instar 

was found to be well-equipped through similar physical, behavioural and morphological 

features as in the fourth instar, reflecting the fundamental underlying genetic variability and 

the potential evolution of reproductive performance in this invasive species. Generally, the 

importance of the fifth instar was promoted by several developmental aspects,  for example, 

the mean weight achieved by developing larvae at the fifth instar was found to be 

significantly higher than the weight of other stages (χ²=8.48, df=3, P<0.05). Another issue 

was the length of the fifth instar period, it was found to be the longest in comparison with 

other instars’ durations. Unexpectedly, there was a significant variability in terms of weight 

among developing larvae during this stage, along with a higher relative growth than that of 

http://en.wikipedia.org/wiki/Charles_De_Geer
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other stages. Nevertheless, despite the voracity and the aggressiveness of most of the instars 

observed by this study, the fifth instar was categorised by elaborate morphological features 

complemented with behavioural characteristics, including the presence of the longer spikes, 

elevated intensity of voraciousness and aggressiveness compared with preceding instars. This 

coincides with the observation in which larvae of H. axyridis at their fourth instar had a high 

predatory efficiency accompanied by increased voracity and greater foraging activities, 

associated with a longer searching period compared with other predators (Lucas et al., 1998, 

Dixon, 2000, Labrie et al., 2006). Therefore, it could be expected that the above features 

might be exaggerated, since the fifth instar larvae are heavier in weight and bigger in size 

compared with the fourth instar. Presumably, possessing these extra developmental and 

behavioural phenotypes at the last instar might emphasise its unique role during a period of 

food deprivation or changes in environmental conditions. The study thus answered the last 

question, in relation to which stage may have a distinguished rule during starvation or 

adverse environmental conditions. Besides emphasizing the significance of the fifth instar in 

this study, the contributions of all other instars and their potential influences on each other, 

including the incubation period, were also evaluated and its role was stressed. More research, 

however, is needed to provide the best explanation for accelerating the phenomenon of the 

fifth instar. 

 

It has been reported that the critical weight naturally occurs at about 54% of peak larval mass, 

depending on the species (Davidowitz et al., 2004). The critical weight is not an inert trait of 

a species, since it can be subjected to evolution (D’Amico et al., 2001, Davidowitz et al., 

2003). In the present study the mean minimum critical weight of H. axyridis was 

20.24±0.53mg, which was very similar to the 19.3mg reported by Phoofolo et al. (2009) for 

the same species. The maximum critical weight reported in the study by Phoofolo et al. 
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(2009) was 21.5mg, which was lower than the value found by this study (28.55±0.5mg). 

Unquestionably, the differences could be attributed to the rearing conditions and the prey 

species used in both studies. Phoofolo et al. (2009) used the greenbug, Schizaphis graminum 

(Rondani, 1852) (Hemiptera: Aphididae), which might vary in nutritional value from the pea 

aphid that was used by this study. This was reinforced further by Omkar et al. (2005), who 

noted that the quality of consumed prey has a major influence on development, growth and 

survival of immature larval stages, especially if the predators are either generalist or 

specialist ladybirds. Furthermore, Dixon (2000) and Omkar and Srivastava (2003) reported 

that the developmental period of larvae might vary according to the aphid species. 

 

A great variation was found between the method suggested by this study compared with the 

one proposed by Phoofolo et al. (2009). This study tended to calculate the actual critical 

weight by taking 50% of the peak larval weight, according to Davidowitz et al. (2003). It was 

found that the peak larval weight was approximately 31.57mg, 50% of which would be 

15.75mg. Ultimately, the discrepancy in the values of the critical weight and its estimates 

varied according the method used and could not be entirely trustworthy without incorporating 

hormonal analysis. Stillwell and Davidowitz (2010) suggested a formula for calculating the 

critical weight of M. sexta. This formula is highly reliable and could be easily used to 

calculate the critical weight based on hormonal measurement (critical weight = peak mass-

(individual growth rate x ICG (i.e., interval to the cessation of growth)). Through this 

method, the minimum estimate of the critical weight should be directly after the fourth moult. 

The minimum estimate of the critical weight suggested by this study might not be definitely 

accurate, because this made the minimal viable weight occur before the fourth moult. 

Therefore, the weight after the fourth moult must be the minimal viable weight 

(16.42±0.47mg), which was found to be less than the minimum viable weight 
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(20.24±0.53mg) calculated by Phoofolo et al. (2009). In spite of that, it had been noted 

previously that the minimum estimate of the critical weight sometimes became equal to the 

minimum viable weight or might not exist (Shingleton, 2010). This study came to the definite 

conclusion that the timing of the minimal viable weight must be found 1-2 days after fourth 

moult, as suggested by Phoofolo et al. (2009). Since the study did not measure the weight 

after one day from the fourth moult, the minimal valuable weight could be regarded as 

20.24±0.53mg. 

 

It was noted that during development the minimum estimate of the critical weight usually 

occurred after attaining the minimum viable weight in 3-5 days (Davidowitz et al., 2004). 

Therefore, the minimum estimate of the critical weight was 24.08±0.51mg (from Fig. 9.4). 

The ‘maximum critical weight’, as proposed by this study, was defined as the peak weight at 

which no more feeding by larvae was commenced. This was also noted by Nijhout and 

Williams (1974a), who defined it as the minimal weight at which further feeding and growth 

are not required for a normal time course to metamorphosis and pupation. The propositions 

put forward by this study, together with those of Nijhout and Williams (1974a), imply that 

the maximum critical weight must equal the peak weight (31.57±0.55mg). Others, however, 

have stated that on attaining the critical weight, extra growth is committed by the imaginal 

disc in order to differentiate into adult tissue (Davidowitz and Nijhout, 2004). As noted 

before, the focus of this study is the critical weight and finding out the approximate value that 

could be used to define it in the ladybeetle H. axyridis. In order to indirectly evaluate the 

critical weight it would be best to look at the relative growth rates and the gained weights at 

different intervals after the fourth moult. 

 



243 
 

 It was shown by this study that the mean relative growth rate at the fourth moult was 

7.62±0.06 mg/day and the gained weight was 11.34%. After two days, the relative growth 

rate was 9.86±0.48 mg/day and the percentage weight gain was 18.87% (Fig. 4.10). After 

four days, the mean relative growth rate was 18.34±0.4 mg/day and the percentage weight 

gain was 19.3%. The mean relative growth rate after six days was 16.01±0.33 mg/day and 

percentage weight gain was 12.14%. The mean relative growth rate at the ninth day was 

16.77±0.43mg/day and the percentage weight gain was 9.56%. This implies that the actual 

mean critical weight for H. axyridis occurred approaching the sixth day, because before the 

ninth day, the relative growth was at its maximum rate and the percentage of the weight gain 

had also reached its highest value (19.3%) compared with other days (excluding the weight 

gain after two days).  

 

Davidowitz and Nijhout (2004) noted that the critical weight usually occurs before attaining 

the peak weight, because larvae can grow and achieve greater weight after attaining the 

critical weight before the secretion of the prothoracicotropic hormone (PTTH). Thus, this 

study predicted that the critical weight occurred in that case close to 4-5 days and was 

25.08±0.51mg, based on the great relative growth rate and weight gain and not the actual 

weight. In summary, for H. axyridis, the critical weight  

 

The critical weight during larval development accounted to a large degree for the variation in 

body size (Dmitriew et al., 2009). Davidowitz et al. (2005) noted that the larger critical 

weights resulted in larger peak larval sizes and longer development times. Davidowitz et al. 

(2003) defined ‘critical weight’ as the weight at which 50% of larvae are able to pupate. In 

contrast, Nijhout and Williams (1974ab) objected and noted that this definition describes the 

minimum viable size that signifies the minimal larval weight needed for successful pupation. 
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In agreement, Davidowitz et al. (2003) noted that the minimal larval weight is always less 

than the actual critical weight and, unlike the critical weight, has never been linked with any 

biological procedures. Phoofolo et al. (2009) stressed that the minimum viable weight is the 

weight at which larvae can endure metamorphosis. They also demonstrated that the relative 

growth rate at the minimum viable weight is often smaller than the relative growth rate at the 

critical weight or any other stages. This was also proved by this study, since the relative 

growth rate of the insects when attaining the critical weight was found to be the highest in 

comparison to other measurements (18.34±0.39mg/day), and the relative growth rate during 

the minimal viable weight was the lowest compared to other measurements 

(7.62±0.06mg/day).  

 

The importance of the critical weight has been a dominant subject in developmental biology. 

For example, Brogiolo et al. (2001) noted that the critical weight functions at the level of the 

whole organism, rather than just imposing regulation at cellular or organ level. This study 

proved that the relative growth rate at the minimum viable weight was found to be smaller 

than the relative growth rate calculated for the minimum critical weight and the maximum 

critical weight. This is validated by the proposition by Phoopolo et al. (2009) that the 

minimum viable weight is entirely different from the minimum critical weight, not just in M. 

sexta but also in H. axyridis ladybirds. Calculating the actual critical weight is very 

problematic. Although the study had managed to give a full picture of what might be the 

respective weight values attained over the entire last instar period, calculating the actual 

number needs an appropriate hormonal examination. 

 

The effects of temperature and nutritional quality on growth rate and body size are well 

recognised. Little has been recognised, however, with respect to the physiological 
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mechanisms by which an organism interprets the variability in food and environmental 

conditions into reaction norms of body size or development time (Davidowitz and Nijhout, 

2004). Davidowitz et al. (2003) and Davidowitz et al. (2004), from their work on M. sexta, 

illustrated that the critical weight is highly sensitive to diet quality, but not to temperature. 

Thermal reaction norms of body size and developmental time are the functions of three main 

fundamentals,  the growth rate, the critical weight and the interval to cessation of growth 

(ICG). These three factors often interact with temperature. For instance, when temperature is 

high, the final body size will be smaller, as the higher growth rate results in a lessening of the 

ICG period and reduces the body weight. Similarly, at higher temperatures, the 

developmental period becomes shorter due to the greater growth rate, which in turn leads to a 

drop in the time required to attain the critical weight. 

  

The contribution of other instars was investigated thoroughly and the results showed, for 

example, that the duration of the second instar and the weight achieved at this stage were the 

only parameters found to have a direct relationship with the total growth rate, the pupal 

weight and the adult weight. This was expected, since the role of the second instar had been 

recognised previously by Labrie et al. (2006). In addition, the study revealed that the second 

instar was the stage that took place directly after first moult at which the first inflection point 

fell. In addition, the weight at the second instar was also labelled the minimum viable weight. 

Another important stage was the third instar weight, which had a direct influence on the final 

stages of larval development, such as the fourth instar weight, pre-pupal and pupal weights.  

 

Previous studies have indicated that the more variable the phenotype, the stronger the degree 

of plasticity (Nylin and Gothard, 1998, Ayrinhac et al., 2004). The variability among 

developing larvae in terms of any developmental parameters was proven by this study, 
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reflecting the possession of a definite degree of plasticity in the ladybird H. axyridis. 

Nevertheless, the direct and indirect significant linear relationships revealed by statistical 

analysis between larval weights and durations also implied selective regulatory roles. The 

plasticity revealed in the fourth stadium was investigated intensively by numerous studies. 

For example, Phoofolo et al. (2009) noted that the fourth stadium could be titled the 

assessment developmental stage, because larvae assess their body weight during this period. 

Therefore, when accomplishing the critical weight, all the concomitant biological processes 

would be initiated, leading to successful pupation.  

 

It was shown that under prolonged nutritional stress, larvae of H. axyridis increased the 

length of their fourth stadium and spent a much longer time in reaching their threshold weight 

for successful pupation (Giles et al., 2000, Phoofolo et al., 2009). Under food scarcity, the 

type of larval developmental response depends mainly on the species and whether it has a 

determinant or a flexible developmental period. For instance, when the moth Orgyia antiqua 

(Linnaeus, 1758) (Lepidoptera: Lymantriidae) was starved at early larval stages, there was a 

5-10% rise in the total larval period (Esperk and Tammaru, 2010). If food deprivation occurs 

before attaining the critical weight, many insects tend to extend their last larval stadium 

beyond normal lengths (Nijhout et al., 2006). On the contrary, a reduction in the fourth 

stadium period was observed in larvae of the dung beetle Onthophagus taurus (Schreber, 

1759) (Coleoptera: Scarabaeinae), instead of an extension (Shafiei et al., 2001). Other larvae 

might respond by ceasing their growth without altering their developmental period 

(Bradshaw and Johnson, 1995). This study revealed that H. axyridis showed a great 

variability in total growth rate during larval development, irrespective of the sex type. In 

addition, an indirect relationship was revealed between total growth rate and total larval 

http://en.wikipedia.org/wiki/Carl_Linnaeus
http://en.wikipedia.org/wiki/10th_edition_of_Systema_Naturae
http://en.wikipedia.org/wiki/Scarabaeinae
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period, but such relationship was not significant. The patterns of relationship of life-history 

traits might be modified and revealed better when insects were subjected to stress conditions. 

  

The present study revealed that H. axyridis had a female-biased sex ratio. This was expected, 

since female-biasness had also been recognised in several ladybird species, according to 

Majerus et al. (2000) and Dixon (2000). The pattern of sex ratio has been ascribed to male-

killing bacteria (Hurst and Jiggins, 2000), as well as to prey quality, and both appeared 

significantly to alter the ratio towards more female-biasness (Omkar and Srivastava, 2003, 

Srivastava and Omkar, 2004). For example, prey quality affected the survival rate and the 

growth index significantly in the ladybird Micraspis disolor (Fabricius, 1798 ) (Coleoptera: 

Coccinellidae) (Omkar et al., 2005). A similar remark on the effect of food quality on sex 

ratio was made by Omkar and Srivastava (2003). Other studies have detailed another reason 

for female-biasness in three coccinellids – Scymnus apetzi (Mulsant, 1846), Scymnus 

subvillosus (Goeze, 1777) and Exochomus nigromaculatus (Goeze, 1777) (all Coleoptera: 

Coccinellidae),  feeding on Hyalopterus pruni (Geoffroy, 1762) (Homoptera: Aphididae), 

where it was noted that females tended to survive on all types of aphid species in comparison 

with males, thus the percentage of female survival would go beyond that of males, leading to 

female-biasness (Atlihan and Kadydan, 2002, James, 2004). In addition, the present study 

was able to predict the sex type of a developing larva prior to the adult stage. It was revealed 

that the initial weight of larvae, as well as the pupal weight, had a direct highly significant 

relationship with the sex type. The pupae of a substantial weight tended to give rise to female 

adults, whereas the pupae of a lighter weight gave rise to male adults. Therefore, the pupal 

weight could possibly be used to predict the sex prior to adult emergence. 
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A female-biased body size dimorphism was also revealed by this study. The simplest 

explanation that could be given in this case is the protandry phenomenon, in which males 

usually grow faster than females (Yasuda and Dixon, 2002). Yasuda and Dixon (2002) noted 

that males had a shorter developmental time compared with females and the trade-off that 

would be expected is a smaller body size in males. In contrast, sexual dimorphism in total 

developmental period and total larval period was not revealed by this study. This study 

showed that total growth rate, however, differed significantly between the sexes, females had 

the higher growth rate, but this had no direct relationship with body weight; and females had 

a greater body size in comparison with that of males. The lack of differences in 

developmental time between sexes was documented previously in coleopterans 

(Blanckenhorn et al., 2007). They demonstrated that the developmental time was the same in 

males and females, despite the bigger size of the tested females. This implied that there was 

an additional regulator for the variation in body size, the total growth rate. The total growth 

rate in their study was found to be significantly greater in females compared with males. 

They suggested that the variation in the total growth rate was more important than the 

developmental time in estimating SSD.  

 

Individual fitness is usually concomitant with large body size, greater lifetime fecundity, 

faster growth rate and shorter developmental period (Phoofolo et al., 2009). All of the above 

traits are interrelated and are traded-off against each other and against other life-history traits 

(Nylin and Gotthard, 1998). It had previously been noted that when large females managed to 

attain, as a minimum, one of the above traits, other life-history characteristics would be 

negatively affected (Roff, 1992, Gotthard, 2000, Phoofolo et al., 2009). For instance, having 

a faster developmental rate might incur a greater possibility of high mortality, as well as a 

substantial risk of predation. 
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The current study demonstrated that between the sexes, the final body weight varied in its 

relationship with the total growth rate. Such divergence between males and females in order 

to attain the final body size was mainly ascribed to the variation in total growth rate rather 

than the total developmental period. The females in this study were characterised by having a 

higher growth rate, as well as heavier bodies. This is in agreement with the fact that greater 

relative fitness is frequently associated with individuals that have a faster growth rate, 

because it might lead to a higher survival rate at adulthood (Phoofolo et al., 2009). The 

present study revealed that there was a trade-off between attaining heavier bodies and total 

developmental period revealed by this study. Fairbairn and Preziosi (1994) suggested that the 

variation between sexes could be attributed to several aspects in relation to selection for rapid 

development and early maturation of males,  gonads in males often develop earlier than 

females (Dixon, 2000) and females are required to attain a greater size to be more fecund 

(Fairbairn, 1990). 

 

It was observed in this study that the weight of the pre-pupae was significantly greater than 

the weight of pupae, which was attributed to the physiological and biochemical processes 

taking place during metamorphosis. Isikber and Copland (2001) reported that the reduction in 

pre-pupal weight could be ascribed to the water loss as a metabolic cost during this process. 

For example, in the Japanese beetle Popillia japonica (Newman, 1841) (Coleoptera: 

Scarabaeidae), there was a great loss of weight during ecdysis (Ludwig, 1931). Changes in 

weight were referred mainly to the alternation in body water content (Gray, 1946). The 

marked reduction in body weight subsequent to pupation revealed by this study was probably 

due to the shedding of the heavy exoskeleton and to the biochemical changes needed to build 

up the adult tissues.  
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Although the present investigation did not cover physiological processes during development, 

it is quite plausible that these processes were partly hormonally regulated, analogous to those 

reported in many insects (Davidowitz et al., 2003, Nijhout, 2003). It has been noted that both 

moulting and metamorphosis in insects are controlled by both prothoracicotropic and juvenile 

hormones (Nijhout, 2003). The former principally control the accurate timing of moulting. 

Ecdysteroid hormones are often governed by size, temperature and photoperiod 

(Wigglesworth, 1934, Riddiford et al., 2003). The latter is present during larval development 

regulating larval growth and the progression to the subsequent stages.  

 

In summary, for invasive species, growth, development and survival of immature stages are 

considered as the key factors defining the attainment of an invasion process. Food availability 

and temperature range together play a substantial role in modifying the characteristics of 

larval development weight, duration and growth rate. Although this study did not address the 

underlying genetic factors that regulate the developmental process, investigation of 

variability among development parameters revealed that there were some developmental 

canalised phenotypic traits often maintained among the population, such as the initial larval 

weight, the third adult weight and the minimum as well as maximum critical weights, despite 

the controlling protocol of rearing conditions during the course of investigations. The 

significant variability in some traits stated above of developing larvae specified some 

effective underlying genetic factors. Several instar weights were considered as a crucial 

element for determining success of larval development. For example, the weight at the final 

instar initiated numerous biological and physiological processes leading to successful 

pupation and affecting the subsequent adult size. Likewise, the weight of the initial instar, 

pre-pupae and pupae were found to impressively contribute in determining the sex of an 

adult. Nevertheless, the contribution of other instars should not be discounted or mistreated, 



251 
 

as each instar has its own noteworthy role in accomplishing successful development. The 

unique developmental characteristics, coupled with the distinguished behavioural and 

morphological features, were engaged in enhancing larval growth rate and increasing 

predatory proficiencies of the ladybird H. axyridis. All the above had substantially attributed 

to the unpredictable successful invasion of this ladybird. Thus, H. axyridis seemed to perform 

several trade-offs during its developmental patterns, even under controlled measures that 

could explicate its sustainability when conditions are adverse and against any variable 

environment.  
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Chapter 5 

           

A Novel Method for Identifying the Sex of Pupae of Harmonia 

axyridis 

  

5.1 Introduction 

 

The multicolored Asian ladybird Harmonia axyridis (Coleoptera: Coccinellidae) has become 

a popular study model due to its potential adverse impact on non-target species and intraguild 

composition  (Michaud, 2002ab, Cottrell, 2004, Koch, 2006, Roy and Wajnberg, 2008).  This 

predator is native to eastern Asia, but has recently invaded North America, Europe, and South 

America (Koch, 2003). This lady bird is considered a strong intra-guild predator and potential 

competitor that poses a significant risk to the diversity of native ladybird species and the 

ecosystem (Cottrell, 2004, Snyder et al., 2004, Majerus et al., 2006). Harmonia axyridis is 

becoming a pest of fruit production (Koch et al., 2004), and can occasionally be a nuisance to 

home owners (Huelsman et al., 2002). Therefore, research conducted on H. axyridis could 

benefit from an easier non-disruptive sexing technique for this ladybird. 

 

External morphological characters have been used to determine the sex of H. axyridis in the 

laboratory (Majerus, 1994) as well as during field studies (McCornack et al., 2007). 

Numerous methods have been used to determine the sex of this beetle such as to identify the 

shape of the distal margin of the fifth abdominal sternite (McCornack et al., 2007). This 

method however, was found to some extent challenging, as it often requires adult 

manipulation and the aid of a microscope.  Sex determination based on the pigmentation of 

http://www.insectscience.org/7.10/#b26-2007_07_10
http://www.insectscience.org/7.10/#b5-2007_07_10
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labrum and prosternum was an alternative manageable method proposed by McCornack et al. 

(2007) in which males of H. axyridis are usually characterized by light labrum pigmentation 

compared with females (Galvan et al., 2008). The necessity of a new method to determine the 

sex of coccinellids rather than the customary means has become important requisite 

particularly for ecological and genetic studies (Majerus, 1994).  This study tested the 

probability of using the pupal pigmentation to predict the sex of the adults. 

 

Phenotypic plasticity in pupal colouration was described some time ago (Hazel, 1977, 1987).  

This type of plasticity was known as environmental cued polymorphism (Hazel and West, 

1996) in which two key environmentally factors are involved, the texture and the colouration 

(background) of pupation site (Smith, 1980, Starnecker and Hazel, 1999). Several other 

environmental elements are known to govern polymorphism of pupal colouration such as 

light (Smith, 1980), temperature (Hiraga, 2006), humidity (Majerus, 1998) and diet quantity 

and quality (Grill and Moore, 1998). The time of day at which larvae pupate also influences 

the final pupal colouration (Smith, 1980). Out of all these factors, temperature is one of the 

vital cues affecting development, maturation and survival rate of insects (Kemp and Bosch, 

2005, Sgolastra et al., 2010).  For instance, in the fruit fly, Ceratitis capitata (Wiedemann, 

1824) (Diptera: Tephritidae) the optimum temperature for pupal development ranges between 

20-25ºC with 75-90% RH (Langley et al., 1972). Furthermore, the coloration of the eyes of 

pupa of Bactrocera philippinensis (Drew & Hancock, 1994) (Diptera: Tephritidae) are very 

sensitive to temperature and are used as a reliable indicator for pupal maturation stage 

(Resilva et al., 2007). A latest study revealed  that the duration of the pupal stage of the fruit 

fly, Anastrepha oblique (Macquart, 1835) (Diptera: Tephritidae) reduced with increasing 

temperature reaching 30ºC (Telles-Romero et al., 2011). The effect of temperature on pupal 
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colouration has been studied extensively in quite a lot of insect species (Smith, 1980). For 

example, the rate of recurrence of brown pupae in the lepidopteran,  Byasa alcinous 

(Fruhstorfer, 1901) (Lepidoptera: Papilionidae) was considerably higher at low temperature 

(25ºC) compared with high temperature that often induced yellow pupae (Yamamoto et al., 

2011). Pupae of the painted lady butterfly, Vanessa cardui (Linnaeus, 1758) (Lepidoptera: 

Nymohalidae) exhibited dark pupae when larvae were kept at 16ºC, whereas those that were 

reared at 32ºC developed into white pupae regardless of photoperiod length.  Likewise, it was 

noted that the temperature experienced during the immature juvenile stages of the small 

copper butterfly, Lycaena phlaeas daimio (Seitz, 1909) (Lepidoptera: Lucaenidae) has an 

detrimental effect in facilitate the variation in final pupal coloration regardless of the 

background or the photoperiod length (Usui et al., 2004). In conclusion, pupal colouration 

might respond or react in a different way to any variation in temperature level (Smith, 1978,  

1980).  

 

Several studies revealed  that there is an association between developmental time of 

immature stages, final adult size (Nylin and Gothard, 1998) and the melanization process 

(Majerus, 1998, Bezzerides et al., 2007) in which all might act together to determine an 

individual's fitness. Windig (1999) noted that there is often a trade-off between growth rate 

and obtaining a larger body size which are  interrelated with the costly melanization process. 

The latter usually requires many proteins to be entirely accomplished.  Therefore, the 

melanization in general may have an important influence on the survival of immature stages 

and individuals' fitness. 

Hormonal control is accounted further for the variations in pupal colouration in Papilio 

polytes (Linnaeus, 1758) and Papilio demoleus (Linnaeus, 1758) butterflies belong to the 
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family Papilionidae.  The “green factor” or hormone was observed secreted in the larval head 

throughout the pre-pupal stage leading to green pupal cuticle (Smith, 1978).  In the absence 

of this hormone, brown coloured pupae were formed.  It was noted that there was a greater 

possibility that the pupal colorations depended on the texture of the background.  Green 

pupae often formed amongst green vegetation and brown ones on brown stems (Smith, 1978).  

The influences of endocrine control on the development of brown colored pupae was also 

reported by Smith et al. (1988) and Smith (1978).  

 

Furthermore, the genetic background  of pupal polymorphism was also have conspicuous 

influences on the pupal phenotype plasticity (Hazel, 1977). He reported that pupal 

dimorphism in the American swallowtail or parsnip swallowtail butterfly, Papilio polyxenes 

(Fabricius, 1775) (Lepidoptera: Papilionidae) was sustained in nature by stabilizing 

selections.  Stabilizing selection is a type of natural selection tends to favour genotype 

combinations that produce an intermediate phenotype (i.e., selected against extreme 

variations) (Charnov, 1989, Gould, 2002).  Although the pupal colouration was known to be 

mainly influenced by environmental cues as well as based on the slight input of genetic 

factors, exemptions might exist such as the case of the the pain tiger or African monarch 

butterfly, Danaus chryssippus (Linnaeus, 1758) (Lepidoptera: Nymphalidae) mostly which is 

widespread in Asia and Africa.  The pupal phenotypes in this butterfly were found to be 

entirely genetically controlled (Smith et al., 1988). 

 

Several studies revealed that photoperiod physical characteristics (West, 1972) and wave 

lengths of light to which pupae were exposed played a significant influential role in 

determining the phenotype of the developing pupae (Gardiner, 1974). For example, larvae of 
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the swallowtail butterfly, Byasa alcinous (Klug, 1836) (Lepidoptera: Papilionidae)  reared 

under short-day conditions particularly at 18ºC and 60±5% RH developed into light yellow 

pupae instead of brown (Yamamoto et al., 2011). Warm temperatures and long days were 

often described to increase the production of brown pupae and short photoperiods tended to 

increase the occurrence of green pupae (Sims and Shapiro, 1983). Marshal et al. (2005) 

reported that the pupation site preferences with the matching background or texture interacted 

together in order to determine the final pupal colouration. For instance, it was found that dark 

pupae of Araschnia levana (Linnaeus, 1758) (Lepidoptera: Nymphalidae) that is common 

throughout the lowlands of central and eastern Europe and peacock butterfly, Inachis io 

(Linnaeus, 1758) (Lepidoptera: Nymphalidae)  found in Europe and temperate Asia as far 

east as Japan, are often formed against lighter back ground and vice versa (Windig, 1999). 

Geographic factors such as latitude and altitude might also play an important role in affecting 

the duration of the pupal stage and the patterns of colouration (Van Dyck, 1998, Hashimoto 

et al., 2008). 

 

In this study, during laboratory investigations, it was noticed that there was a substantial 

variation in pupal pigmentation with individuals tending to be either dark brown or lighter 

orange morphs under a constant temperature, 21 ºC (Fig.5.1). The darker pupae developed 

into males while the lighter gave rise to females. A question was raised in such case, why 

pupae that had been reared under constant temperature would show noticeable variations in 

the form of pupal pigmentation? Could the pupal pigmentation be implemented as a new 

method for sex identification in H axyridis? If yes, this could be of a great benefit for 

identifying sex ratio preceding to conducting a study.  The above led to the premise that there 

is a pupal colour dimorphism in H. axyridis between sexes. Accordingly, this study 
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hypothesized a new method for sex identification prior to an adult stage based on pupal 

pigmentations. 

 

Fig.5.1. Pigmentation patterns of the cuticle of male (dark/ brown) and female (light/ orange) 

pupae. 

 

5.2  Methods and materials 

 

For this particular study, 168 larvae were reared individually in a 9 cm Petri-dish and were 

kept in a controlled temperature room at 20±1  C, 70-75% RH, and a photoperiod of L16:D8 

under fluorescent lamps.  Upon pupation the pupae were weighed and sexed according to the 

above hypothesized method by this study, in which females were assigned from lighter or 

orange pupae (group A) and the darker or brown pupae were considered as males (group B). 

The pupae that were found difficult to categorize into A and B, were assigned into third 

group called (group C). Once adult emerged, they were sexed according to the degree of 

pigmentation on the prosternum following McCornack et al. (2007) method.  Subsequently, 

the percentages of sex type that was predicted correctly for the three groups were calculated.   

Image-J software (Abramoff et al., 2004) was used to assess the variations in density of 

pigmentation on the external surface of the pupae assigned for group A and B. In order to 
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validate the hypothesized method and to find out if it could be appropriate for pupae 

developing in the field, 124 pupae were collected arbitrarily from naturally infested fields in 

Silwood Park South-east England, U.K. (National Grid References 41/944691). The collected 

pupae from the field were assigned by the above similar hypothesized protocol but this time 

they were sexed by different people. 

 

5.3  Data analysis  

 

All data were expressed as proportions and they were arc-sine transformed to be normalized. 

Mean comparisons were performed using Student .t. Test and Chi-square test. On data that 

failed to be transformed Wilcoxon Rank Sum Test was applied. All statistical analyses were 

carried out using the statistical programme ‘R’ version 2.8.1 (Ihaka and Gentleman, 1996). 

 

5.4  Results  

 

For laboratory reared pupae that belonged to group A (orange) 84.46 % were sexed correctly 

as females. For group B (brown) 96.92% were sexed correctly as males (Table 5.1). The 

inclusive percentage of correctly sexed pupae was 89.28%. Both values of successfully and 

unsuccessfully attempts of sex determination differed significantly (X²=61.76, P<0.0001). 

The mean weight of pupae reared in the laboratory also displayed weight dimorphism in 

which, dark/brown pupae, that developed into males, were significantly lighter in weight and 

not heavier than the lighter/orange pupae, that gave rise to females, (W=35.5, P<0.0001).  A 

similar trend in weight was revealed between dark/brown pupae that were correctly sexed as 

males and lighter/orange pupae that gave rise to males (W=235, P<0.01). The difference 

between the weight of dark/brown pupae that developed into both males and females was 
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significant (W=37, P<0.05). There was no significant difference concerning the mean weight 

of light/orange and dark/brown pupae that ecdysed exclusively into females (W=89, 

P=0.9669). 

 

Table 5.1. Estimated mean weights of field and laboratory reared pupae and their predicted 

sexes.  

 

 

Pupae collected from the field however, revealed completely different results in which both 

dark/brown and light/orange pupae gave rise to both males and females. In addition, 

dark/brown pupae resulted into more males than females (Table 5.1). The intensity of 

pigmentation on field pupae, in particular the light/orange pupae, was considerably less in 

comparison with the laboratory reared pupae (Fig.5.2). This was regarded as the key factor 

that probably influenced the judgment for sex identification since 42 (33.87%) out of total 

    Laboratory reared pupae   

   Light pupae (A)   Dark pupae (B) 

   Male Female   Male Female 

 Total No of  

Pupae =168 16 87 

 

63 2 

  

Mean pupal 

weight(mg)±SE 35.4±0.012 26.9±0.002 

 

20±0.014 24±0.005 

       

  

  

       

  

  

     Field collected pupae     

  Light pupae   Dark pupae 

Pupae 

failed to 

sex(C) 

  Male Female   Male Female 

 Total No of 

pupae=124 36 29 

 

47 6 6 

 

Mean pupal 

weight(mg) ±SE 

  

37.5±0.0008 48±0.11 

 

33.1±0.0007 33.4±0.0031 39±0.0017 
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124 pupae were sexed inaccurately. Field collected dark/brown pupae developed into 11.32 

% females and 88.6% males whereas; light pupae gave rise to about 44.61% females and 

55.38% males. In overall 64.4% of pupae collected from the field were sexed successfully. 

Despite the 64.4% is not that high but the statistical comparison between the percentage of 

the correctly sexed pupae that were reared in the laboratory with those collected from the 

field revealed no significant difference (X²=0.09, P=0.763). Similar comparison was 

performed between the unsuccessfully sexed pupae from both the field and the laboratory, 

showed non-significant differences (X²=0.18, P=0.667). This infers that the hypothesized 

method for sex determination could be without doubt appropriate to field studies. 

 

 

 
 

                Fig. 5.2. Pigmentation on the pupal cuticle of the field collected pupae. 

 

Image-J software was used to validate the variation in melanin pigmentation between dark 

and light pupae. Thirty light and another 30 dark laboratory reared pupae were assigned to 

this test. The aim of this test was to measure only the area of the dark pigmentation on the 
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external surface or the cuticle of the assigned pupae using image-J software. All the required 

set up procedures were completed according to the provided instructions in the manuals in 

advance. The accuracy of the measurements depends mainly on selecting the appropriate 

threshold level, get rid of the noise and choose properly the area of interest.  The results 

revealed noticeable variations in the intensity of the total black patches or areas over all the 

cuticle of both types of pupae. The measured mean of the total black areas on male pupa 

(dark) was about 37808.87± 925.3 μm² and it was 22328.8 ± 284.1μm² for the female pupae 

(light). The difference between measured means was significant (W=0, P<0.0001). This 

verified and supported the phenotypic variations in pupal coloration between genders.  

 

5.5  Discussion 

 

It was reported previously that the environment experienced during immature development 

had substantial influence on defining the intensity or /and the degree of pupal pigmentation 

(Yamamoto et al., 2011).  The present study revealed that pupae that had been reared in the 

laboratory under a photoperiod of L16:D8 exhibited two distinctive phenotypes, dark brown 

and orange colorations. In addition, in the field pupae that were collected in summer (late 

June) the intensity of coloration was relatively lighter compared with laboratory reared 

pupae.  Sims (2007) suggested that the pupal sensitivity to the length of photoperiod is 

determined on whether the larvae are in diapause phase or are not. He noted that the 

overriding effect of short photoperiods had produced brown diapause pupae irrespective of 

their background whereas, long photoperiods lead to either green or brown pupae depending 

on the features of the pupation site. In comparison with the present study, there were several 

other elements contributed in defining the pupal phenotype plasticity such as the background. 

The influences of the background together with the texture and quality of the substrate where 
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larvae decide to pupate have been recognized widely (Sims and Shapiro, 1983, Hazel and 

West, 1996).  Throughout the present study, transparent Petri-dishes were used to rear the 

larvae that were kept on a white shelf as a background. Regarding the above rearing elements 

it was uncertain whether the intensity of light in these small containers (Petri-dishes) or their 

smooth texture jointly with the white background had act together to determine the resulted 

pupal pigmentation.  

 

It was reported previously that light stimuli were regarded as an influential regulator for the 

patterns of pupal coloration, in particular the yellow and blue spectral wavelengths (Smith, 

1980). It was noted that the yellow and blue wavelengths were important determinants for 

yellow and brown pupal colouration in the butterflies that belong to order Lepitoptera and the 

family Pieridae, for example, the small cabbage white butterfly, Pieris rapae (Linnaeus, 

1758), the green-veined white butterfly, Pieris napi (Linnaeus, 1758) and the white cabbage 

butterfly, Pieris brassicae (Linnaeus, 1758)  In the same study it was debated that yellow 

light wavelength resembled the green foliage that stimulated the production of yellow pupae 

instead of brown coloured pupae. This could be incorporated in conjunction with other 

factors to clarify the finding by the present study the dominance of the light orange coloured 

pupae in the field. It was noticed by this study that field pupae were located in association 

with the stinging nettle plant, Urtica doica (Linnaeus, 1753) (Rosales: Urticaceae) which is a 

dioecious herbaceous perennial plant characterized by dark green colouration and rough 

texture. Several questions must be raised in that sense; did the preference of green 

background selected by these field larvae have a determinant role in giving rise to lighter 

coloured pupae? Did the high summer temperature influence the production of the 

melanisation rate in the field pupae?  These questions must be well regarded in future work.  
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In a similar context, it was reported that throughout winter the dark brown pupa colouration 

was extremely common that might hold a cryptic purpose such as the swallowtail, Papilio 

machaon (Linnaeus, 1758)   (Lepidoptera: Papilionidae) (Wiklund, 1975). Nevertheless, the 

intensity of the pupal colouration  may as well play a significant part in heat absorbance 

particularly during winter weather  (Legrand et al., 2004). Thus, the darker coloured pupae, 

the more is the heat gain and absorbance. Thus, the high field temperature could explain why 

the field pupae in the present study had a lighter colour in comparison with laboratory reared 

pupae. It is apparent that field pupae that were developed during a hot summer tended to 

reduce their cuticle pigmentation in order to lessen the heat absorbance that might have a 

great role in affecting the on-going developmental process. Thus, larvae experiencing high 

temperature during their development often compensate by producing less melanin that was 

regarded as a high costly process (Usui et al., 2004).  Temperature-dependent regulation of 

pupal coloration was reported previously among insects species such as the common copper 

butterfly, Lycaena phlaeas (Linnaeus, 1761) (Lepidoptera: Lycaenidae)  (Usui et al., 2004).  

 

The present study showed that the size of the pupae played an important role in determining 

the intensity of colouration. Laboratory reared pupae were found to be smaller in size 

compared with field collected pupae because on small-sized pupae the colour would appear 

stronger and darker. The difference in pupal size was verified when the mean weight of 

pupae reared in the laboratory and those collected from the field were compared irrespective 

of their sex (W=1130, P<0.0001). Smith (1980) reported that the cessation of the hormonal 

secretion regulating pupal pigmentation might result in lighter coloured pupae. Hormonal 

termination could be as consequence of increasing temperature (Eiji, 1959, Smith, 1978). 

More importantly, under high temperature there is often a trade-off between growth rate and 

the rate of melanin production (Windig, 1999). Since females are characterized by greater 
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growth rate compared with males (Blackenhorn et al., 2007), the trade-off would be more 

pronounced particularly due to the high costly melanin process production. This fact in 

combination with other factors could explain the lighter coloured pupae mostly developed 

into females rather than males. The present study also revealed that both pupal weight and 

size could be regarded an essential key indicators for predicting the sex since heavy pupae 

either dark or light coloured gave rise to females and vice versa.  

 

In conclusion, the hypothesized sexing method based on pupal colouration could help to 

isolate males from females at earlier stages preceding to adult emergence. Nevertheless, the 

efficiency of this method could be intensified by incorporating further investigations to 

elucidate some of the above raised questions. Considering the effect of the background 

colouration and texture as well as the wavelengths on pupal coloration could be of great 

asset. The capability of H. axyridis larvae to select precisely their pupal site according to the 

surrounding environmental conditions as well as the substrate features could be a vital key 

factor in explaining their survival success throughout hash winter and during adverse 

environmental factors. It is well recognized that H. axyridis ladybeetle has been considered as 

an aggressive competitor and a strong predator displacing many native species as well as 

affecting the intraguild stability. The above finding by this study could be added to the 

advantages that accelerate the dominancy and establishment of this species. Although the 

percentage of the successfully sexed pupae gathered from the field was not high, 

incorporating more investigations could aid to add additional benefits to increase the 

accuracy of the hypothesized method. Laboratory investigations however, may employ this 

method with no trouble since the percentage of its success was relatively high.  A study by 

Mclnnis et al. (2004) reported the first genetic sexing system for the melon fly, Bactrocera 

cucurbitae (Coquillett, 1849) (Diptera: Tephritidae) based on pupal colour. Thus, sexing 
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based on the pupal coloration and predicting the ratio of sex is a progressing new topic that 

required more examinations. For example, there is a scope for further work on rearing larvae 

at different temperatures and photoperiods in the laboratory. In addition, there is a great 

necessity to assess the connection between temperature and photoperiods on regulating the 

resulting adult sex ratio.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



266 
 

Chapter 6 

 

Effects of Single versus Multiple Mates on Fecundity and Egg 

Hatchability of the Female Asian Ladybird Harmonia axyridis 

Reared on Constant Diet 

6.1 Introduction 

 

Synthetic sex pheromones,  namely, volatile organic chemicals that are designed to mimic 

natural sex pheromones,  are presently used for controlling and monitoring population 

dynamics, as well as for inhibiting mating, either by trapping males or disrupting mating 

behaviour (Torres-Vila et al., 2002). The latter is now widely used and is becoming a more 

favoured method than the use of conventional insecticides, as it is environmentally friendly 

and has proven to be highly effective (Fadamiro et al., 1999).  

 

Insect fecundity is influenced by numerous factors, including adult body weight (Leather et 

al., 1983, Leather, 1988), mating rate (McCauley and O'Donnell, 1984), habitat (such as the 

choice of host plant) (Leather et al., 1985), environmental factors (Obata, 1988) and the age 

of sexual maturity (Fox, 1993ab). Among insects, mating behaviour patterns and the 

associated reproductive performances maximise the chance of future generation survival 

(Arnqvist et al., 2005), as well as helping to realise the ecological situations promoting this 

process (Per-Olof and Rutwoski, 1999). Therefore, studies on mating patterns and the 
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associated behaviour will help to provide valuable information for deducing several 

biological and evolutionary-related matters (Omkar et al., 2005). 

 

Little is known about mating behaviour in ladybirds, despite their wide use in biological 

control programmes and their potential for disrupting the composition of intraguild systems 

(Dixon, 2000, Omkar and Singh, 2010). It is well known that females of several species are 

polyandrous - that is, they often reproduce with multiple males during their lifetime (Arnqvist 

et al., 2005). Polyandrous mating can be either sequential or simultaneous, depending on the 

species (Arnqvist et al., 2005). Polyandrous mating is a widespread reproductive strategy of 

natural insect populations (Zeh, 1997, Arnqvist and Nilsson, 2000). Several factors increase 

the selection of polyandry over other types of mating - the selection of males to enhance their 

fitness may cause female polyandry, improve genetic compatibility, intensify sperm 

competition and increase offspring survival success (Archer and Elgar, 1999, Stutt and Siva-

Jothy, 2001, Campbell, 2005). Reynolds (1996) hypothesised that polyandrous behaviour 

could be explained based on whether it involves nutritional material, such as receiving a 

nuptial gift that is nutritious, or through male donation or genetic benefits.  

 

The costs and benefits of mating behaviour are well documented (Arnqvist, 1989). The 

benefits of re-mating have been found to exceed the costs, since female fitness may increase 

greatly with a higher mating rate (Arnqvist and Nilsson, 2000). The benefits gained by 

females that mate more than once are poorly understood (Archer and Elgar, 1999), but can be 

categorised into direct and indirect fitness benefits (Ridley, 1988). Direct benefits include, 

principally, a higher female reproductive potential (Zeh, 1997), parental care and nuptial 

feeding (Thornhill, 1976, Walker, 1980). These propositions imply that females may seek out 

multiple copulations, but not necessarily multiple partners (Archer and Elgar, 1999). The 
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indirect effects encompass genetic diversity and compatibility, offspring with greater genetic 

sustainability and effective sperm fertilisation (Zeh, 1997). For example, multiple mating 

significantly enhanced sperm competition in the moth Atteva punctella (Fabricius, 1798) 

(Lepidoptera: Yponomeutidae) (Taylor, 1967, Walker, 1980). Extra benefits result from 

polyandrous females also seeking copulations with different partners, rather than just having 

multiple copulations (Archer and Elgar, 1999). Therefore, female mating choice is one of the 

influential mechanisms known to boost reproductive success and offspring fitness, such as in 

females of Drosophila melanogaster (Meigen, 1830) (Diptera: Drosophilidae) (Partridge, 

1980).  

 

Cryptic female choice is a post-copulatory sexual selection phenomenon (Ben-Ari, 2000), 

and plays a key role in maximising fertilisation. As the female mates with several males, she 

can choose which male's sperm will be used to fertilise her eggs. This may be accomplished 

through the female sensing the size of the spermatophore or nuptial gift deposited in them by 

the multiple males and selectively storing them by choosing the largest size. In so doing, she 

is able to manipulate the paternity role by choosing the best sperm to fertilise her eggs 

according to their phenotypes. This phenomenon has been observed in the female moth 

Utetheisa ornatrix (Linnaeus, 1758) (Lepidoptera: Arctiidae), the field cricket Gryllus 

bimaculatus (De Geer, 1773) (Orthoptera: Gryllidae) and the female hanging fly or 

scorpionfly, Hylobittacus apicalis (Hagen, 1861) (Mecoptera: Bittacidae) (Holland and Rice, 

1997, Ben-Ari, 2000). 

  

Sperm transfer during mating plays an important role in determining mating patterns (Singh 

and Prevez, 2006). There are two basic mechanisms for sperm transference in ladybirds - 

either through direct sperm transfer with no spermatophore involvement, as in the case of 

http://en.wikipedia.org/wiki/Johan_Christian_Fabricius
http://en.wikipedia.org/wiki/Johann_Wilhelm_Meigen
http://en.wikipedia.org/wiki/Drosophilidae
http://en.wikipedia.org/wiki/Carl_Linnaeus
http://en.wikipedia.org/wiki/10th_edition_of_Systema_Naturae
http://en.wikipedia.org/wiki/Arctiidae
http://en.wikipedia.org/wiki/Charles_De_Geer
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Cheilomenes sexmaculatus (Fabricius, 1781) (Coleoptera: Coccinellidae) (Omkar, 2004), or 

indirectly through the presence of a spermatophore, as in many species of Chilocorus 

(Coleoptera: Coccinellidae) and Harmonia axyridis (Pallas, 1773) (Coleoptera: 

Coccinellidae) (Obata and Hidaka, 1987). Several studies note that an interruption during 

copulation can result in more infertile eggs in H. axyridis (Obata and Hidaka, 1987, Osawa, 

1994), whereas, re-mating and uninterrupted copulation were shown to increase potential 

fecundity, as reported in the yellow swallowtail butterfly, Papilio xuthus (Linnaeus, 1767) 

(Lepidoptera: Paplionidae) (Watanabe, 2002). It has been reported that during multiple 

mating, males derive factors that prompt oogenesis (Herman, 1977) and greatly enhance egg 

maturation. These factors are found in a proteinaceous compound that is secreted by the 

accessory gland of male (or in some cases, found in seminal fluid) and either have a transient 

effect or (in some species) cause long-term suppression of receptivity, such as in moths and 

butterflies (Boggs, 1990, Wedell, 2005). In both cases, these factors represent male 

investment in reproduction.  

 

It has been reported that some insect species show considerable variability in female mating 

frequency, ranging from monandrous species that mate only once, to females mating several 

times in their lifetime (Wedell, 2002ab). The degree of polyandry also varies within species, 

with some females only mating once and others mating multiple times.  Monandrous species 

may sometimes, however, engage in extra pair-copulations to compensate for low fertility 

(Wetton and Parkin, 1991) or to confer a genetic advantage to females (Gray, 1997). For 

example, the European corn borer, Ostrinia nubilalis (Hübner, 1796) (Lepidoptera: 

Crambidae), was classified as a monandrous species (Fadamiro and Baker, 1999), but 10% of 

laboratory-reared females mated twice (Showers et al., 1974). It has also been reported that 

http://en.wikipedia.org/wiki/Peter_Simon_Pallas
http://en.wikipedia.org/wiki/Carl_Linnaeus
http://en.wikipedia.org/wiki/Jacob_H%C3%BCbner
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mated females of O. nubilalis were less likely to be mated with again when males had the 

choice (Jiménez-Pérez and Wang, 2004). 

 

Several debates have centred on the importance of male investment, authors have argued over 

whether male ejaculate is considered as a parental investment (Parker and Simmons, 1996) or 

as a mating effort (Perry and Rowe, 2008). Mating effort arguably cannot be regarded as a 

parental investment, due to the low amount of nutrient content needed to fertilise all the eggs 

(Simmons, 1990). As mentioned above, males sometimes provide considerable valuable 

nutrients to females through spermatophores or nuptial gifts (Gwynne, 1988, Simmons, 

1990). Both of these types of nutrients may have pronounced effects on fecundity and 

offspring fitness (Tregenza and Wedell, 1998). It has also been noted that females that have 

received a large spermatophore were able to lay larger-sized eggs (Fischer et al., 2009). 

Nevertheless, the effects of multiple mating on the relationship between fecundity, fitness 

and costs have been debated constantly (Arnqvist et al., 2005, Campbell, 2005). It has been 

suggested that the relationship between the number of matings and the resulting fecundity 

could be positive (Jiménez-Pérez and Wang, 2003, Campbell, 2005); neutral, as in the 

windmill butterfly, Atrophaneura alcinous (Klug, 1836) (Lepidoptera: Papilionidae) 

(Kawagoe et al., 2001), or negative, as in the female leaf beetles, Leptinotarsa decemlineata 

(Say, 1824) (Coleoptera: Chrysomelidae) (Orsetti and Rutowski, 2003).  

 

Several studies, such as the one by Savalli and Fox (1999), have revealed that multiple 

mating will increase the rate of egg production. Others have noted that the influence of 

multiple mating on egg production may be untraceable when other factors, such as maternal 

age, are involved (Fox, 1993ab). For instance, in one study, females of the beetle 

Callosobruchus maculatus (Fabricius, 1775) (Coleoptera: Bruchidae) that had received large 

http://en.wikipedia.org/wiki/Johann_Christoph_Friedrich_Klug
http://en.wikipedia.org/wiki/Thomas_Say
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ejaculates laid large clutch sizes (Savalli and Fox, 1999), but in another study, they 

oviposited small clutches (Eady et al., 2000). The inconsistency between the above findings 

is not unexpected in C. maculatus species for a number of different reasons. First, Eady at al. 

(2000) had worked on dehydrated females. Second, females of this species are known to 

receive large male ejaculates, which may counteract the benefits, resulting in a delay in 

mating and a reduction in sperm competition and may make the ejaculate itself unprofitable 

(Eady et al., 2000).  

 

In the majority of insects, mating may comprise significant direct or indirect costs for females  

(Wing, 1988). Previous work has revealed that when costs become highly significant, females 

are expected to maximise fitness by decreasing their mating rate (Holland and Rice, 1998). 

Furthermore, when it comes to male costs, it has been assumed that males should utilise 

ejaculatory strategies that maximise their reproductive success. The latter could be performed 

by altering sperm number or spermatophore size according to the female's age, body size or 

mating number and type (Dewsbury, 1982, Lewis, 2004). Several possible costs of multiple 

mating have been described, such as an increased threat of predation and damage during 

copulation (Savalli and Fox, 1999). For example, females were found to have been injured 

internally by the spiny genitalia of males (Crudgington and Siva-Jothy, 2000). Others have 

reported that males sometimes transfer parasites and seminal fluid containing chemical toxic 

materials during mating (Daly, 1978).  

 

In addition, exposure to high mating frequency may significantly decrease the longevity of 

females in some species (Partridge et al., 1987, Fowler and Partridge, 1989) and increase 

adult female lifespan in others, such as in bruchid beetles, C. maculatus (Fox, 1993ab). Other 

investigations have showed that neither the rate of mating nor the received spermatophore 
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size had an effect on longevity of females, such as in the ladybird, Adalia bipunctata 

(Linnaeus, 1758) (Coleoptera: Coccinellidae) (Perry and Rowe, 2008). Nevertheless, 

situations arise in which the expected relationship between female fitness and mating rate 

might be more complicated (Arnqvist et al., 2005). It has been suggested that there is an 

intermediary optimal mating rate and that the observed mating rate often exceeds the 

optimum, resulting in a slightly positive effect on longevity (Arnqvist and Nilsson, 2000). In 

fact, repeated mating (as noted by Ridley (1988)) has been shown to enhance the fecundity 

and longevity of species, depending on whether the female was already characterised by great 

fecundity as well as longevity. 

 

An understanding of why females mate with multiple males is fundamental for sexual 

selection studies (Gowaty, 1994). When females of the harlequin beetle riding 

pseudoscorpion, Cordylochernes scorpioides (Linnaeus, 1758) (Pseudoscorpiones: 

Chemetidae), were constrained with one male each, significantly fewer offspring were 

produced that were associated with high mortality rate (Zeh, 1997). Others have argued that 

the reduction in reproduction success may be caused by the insufficient sperm quantity 

received from single males (Ridley, 1988). Nevertheless, polyandrous behaviour often 

provides females with post-copulatory mechanisms that act to reduce the risk from 

genetically incompatible sperms (Zeh and Zeh, 1996). It could be concluded that the costs 

and benefits of multiple mating may greatly influence several aspects of an organism's 

activities and could affect the implementation of an effective procedure for pest control 

management (Sadek, 2001).  

 

Sexual activities in predaceous ladybirds have been studied intensively, due to the accelerated 

invasion process of exotic species and their adverse impact on ecosystems (Singh and Prevez, 

http://en.wikipedia.org/wiki/Carolus_Linnaeus
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2006). Random mating has not been observed in certain ladybird species, such H. axyridis 

and A. bipunctata (Hodek and Ceryngier, 2000). In H. axyridis, male mobility, elytral colour 

and body size were involved in affecting female mate selection (Osawa and Nishida, 1992). 

In A. bipunctata, however, the colour of the elytra and the pronotum of males were found to 

be very important in females' choice of mate (Majerus et al., 1982). Mating in H. axyridis 

varied frequently between melanic and non-melanic forms, with seasonal variation. Females 

were found to mate with melanic males during summer and with non-melanic males during 

spring. Thus, females showed a genetic preference towards the quality of elytron phenotype 

(Wang et al., 2009).  

 

Females of H. axyridis are known to undergo multiple matings during their lifetime (Osawa, 

1994), making it a model system for evolutionary ecological studies (Joseph et al., 1999). 

Mating refusal has also been recorded in females of H. axyridis under starvation conditions 

(Obata, 1988). Prey availability could arguably be a major environmental cue in influencing 

mating receptivity in H. axyridis (Obata, 1988). It has been reported that mating receptivity in 

females of H. axyridis is reduced during starvation and under unfavourable conditions, thus 

the choice in mating is very important for this ladybird beetle. Fox (1993ab) noted this might 

be not the case in other species, such as the starved females of C. maculatus, as when they 

mated with multiple mates they lived longer than singly mated starved females. Thus, the 

species type plays an additional role in affecting the consequences of multiple mating and its 

associated costs.  

 

Evidence of the effect of multiple mating on females' fertility and fecundity is still 

remarkably poor and the need for more well-designed experiments is required (Ridley, 1988). 

It has previously been reported that the lack of this kind of study was as a result of the 



274 
 

inherent difficulties in rearing the beetles in the laboratory with sufficient food supply and 

frequent monitoring (Obata and Hidaka, 1987). Since H. axyridis dominates many guilds and 

is considered a strong polyphagous predator, as well as an aggressive competitor (Roy, 

2008), it is essential to address the significance of mating rate on their survival and fitness. It 

has become the most common worldwide invader, dislocating many native species and 

affecting the stability of many native communities and crop production. Mating in females of 

H. axyridis is of the polyandrous type (Osawa, 1994). Accordingly, a study was commenced 

to evaluate the major costs and benefits of multiple mating on the lifetime fitness of females. 

The experiments were planned to determine the effect of variable exposure periods to a single 

male on egg hatchability, trophic egg production, lifetime fecundity, mortality and female 

longevity. In addition, the reproductive performance of virgin females that had never mated 

was also investigated, in order to understand the capability of this species to survive without 

mating, particularly during invasion.  

 

6.2 Materials and methods 

 

Freshly emerged two-day old adult virgin males and females of H. axyridis were collected 

from an established laboratory culture maintained at a constant temperature of 20±1˚C, 70-

75% RH and a photoperiod of L16:D8. In order to identify the influence of mating number on 

the reproductive output of females, four treatments were prepared, following (to a large 

extent) the method detailed by Siswanto et al. (2009). The first treatment had 12 virgin 

females that were kept separately in 9cm Petri-dishes. A new set of 24 virgin adults of 

opposite sexes were paired, each in a 9cm Petri-dish, and were observed until the end of the 

first mating. Thereafter, they were kept in pairs for five days, following which each female 

was separated from its partner in a new Petri-dish and assigned for five days of treatment. 
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Another set of 12 couples of virgin males and females were each kept in 9cm Petri-dishes 

until the end of the first mating. Females were then separated from their mates in new Petri-

dishes before the second mating. Females from the latter were assigned as one-mated 

treatment. For the control (continuous exposure to mates), 12 virgin pairs were coupled in 

9cm Petri-dishes and monitored until they died. All the adults were used only once during the 

course of the experiment and were not reused in any other sets. During the experiment, each 

of the adults was provided daily with 16 live adults of the pea aphid, Acyrthosiphon pisum 

(Harris, 1776) (Hemiptera: Aphididae), maintained on broad bean plants, Vicia faba 

(Linnaeus, 1753) (Fabales: Fabaceae), variety Aquadulce Claudia. Monitoring of the 

experiment was continued until all the ladybeetles had died.  

  

6.3  Data analysis 

 

All data were tested for normality prior to applying parametric analysis, and the one that 

failed was transformed. One-way analysis of the variance ANOVA or general linear model 

(GLM) with post hoc Tukey's multiple range tests were performed to analyse the variation 

between females, in terms of lifetime fecundity and clutch parameters. The data on 

percentage fertility, trophic eggs, eggs with incomplete developed larvae and cannibalised 

eggs were subjected to arcsine square root transformation analysis and then dealt with as 

continuous data. Most of the allometric analysis was performed using either log-linear 

regression; for data that were not normally distributed, the Glm-linear model with Poisson 

errors data was applied. Reproductive biomass was determined by multiplying egg weight by 

lifetime fecundity, reproductive growth was calculated by dividing reproductive biomass over 

longevity and the reproductive rate was determined by dividing total fecundity over 

http://en.wikipedia.org/wiki/Moses_Harris
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reproductive period. All statistical analyses were carried out using the statistical programme 

‘R’ version 2.8.1 (Ihaka and Gentleman, 1996). 

 

6.4 Results 

6.4.1 Variability in clutch parameters between treatments 

 

Clutch size and weight, egg fertility and others parameters are presented in Table 6.1. Mating 

patterns in all treatments had a significant influence on mean daily clutch size (F=16.84, 

RSE=8.32, P<0.0001). The mean clutch size laid by virgin females was 5.86±1.8 eggs which 

was significantly less than the control (t=-4.9, ESE=-2.12, P<0.0001), the once mated 

treatment (t=1.14, ESE=-22.45, P<0.0001) and the five-days mated treatment (t=-0.78, 

ESE=-15.89, P<0.0001). For both once mated and five-days mated treatments, the mean 

clutch size did not significantly differ from the control, that is, (t=0.81, diff=0.18, P=0.42) 

and (t=-0.2, diff=-0.2, P=0.46) respectively. The proportion of trophic (non-viable) eggs was 

significantly greater in virgin and in five-days mated females, compared with that of the 

control,  namely, (t=7.33, diff=0.56, P<0.0001) and (t=3.14, diff=0.17, P<0.01), respectively. 

Once mated females, on the other hand, did not show a significant difference in the 

proportion of deformed eggs when compared with the control (t=1.68, diff=0.09, P=0.09). 

The proportion of incompletely developed larvae was found to be significantly higher in the 

five-days mated treatment relative to the control (t=2.9, diff=0.76, P<0.01). The proportion of 

hatched larvae obtained from the five-days mated treatment was 0.57, which was 

significantly less than the control (t=-2.37, diff=-8.01, P<0.05). Finally, there was no 

significant difference in clutch weight among the three treatments in comparison with the 

control (F=1.36, diff=0.014, P=0.25).  
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Table 6.1. The reproductive output for the four treatments (mean±SE, n=12).  

 

Treatments Once mated females 

Five-days mated 

females unmated females control 

Mean total fecundity (eggs) 188.83±25.27 107±33.38 3.82±1.46 22.38±3.19 

Mean clutch size (eggs) 25.46±1.6 21.83±1.7 5.86±1.8 23.8±2.02 

Proportion of non-viable eggs  0.17 0.29 1 0.042 

Proportion of egg with non- developed larvae 0.048 0.092 0 0.035 

Proportion of cannibalized eggs  0.044 0.033 0 0.044 

Proportion of hatched larvae 0.73 0.58 0 0.878 

Mean clutch weight (mg) 0.0094±0.0008 0.0074±0.0006 0.0078±0.0064 0.00067±0.0005 

Pre-reproductive period (days) 11.33±0.7 8.33±0.6 13.09±2.8 7.48±0.18 

Reproductive period (days) 29.33±0.82 16.16±1.85 1.08±0.35 15.63±0.7 

Longevity (days) 42.75±1.11 31.27±2.64 31±2.22 32.29±0.5 

Reproductive biomass (egg No x mg) 0.14±0.018 0.21±0.05 0.12±0.013 0.15±0.028 

Reproductive rate (egg No/day) 6.3±0.78 4.7±0.67 3±0.0.58 7.11±1.41 

Reproductive growth (reproductive biomass/ Longevity ) 

(egg x mg/days) 0.003±0.0004 0.006±0.0015 0.0045±0.0005 0.005±0.001 

  n=12 n=12 n=12 n=12 
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6.4.2 Impact of exposure to male on females on fecundity and fertility 

 

Daily clutch size and the related fertility of females, assigned for the four treatments, are 

presented in Figures 6.1 and 6.2 respectively. Overall, fecundity and fertility tended to have 

similar trends, with high values at the beginning of the reproductive period followed by a 

gradual decline towards the end of that period. Singly-mated females started their 

reproductive period by laying the highest largest clutch sizes compared with other treatments. 

This behaviour was continued until the end of their reproductive period. The general trend of 

fertility curve for once mated treatment started at the least value compared with five-days 

multiple mated females and the control treatment; subsequently, it increased suddenly, 

reaching approximately 23.58±7.28 days. The fertility curve of singly mated females stayed 

higher towards the end the reproductive period compared with other treatments. The drop 

seen in the fertility curve of singly mated females was due to the fact that one of the females 

had laid only six eggs in its fourth clutch. The control and five-days mated treatments both 

showed a noticeable reduction in fecundity accompanied by a decrease in fertility at early 

stages of reproductive period compared with singly-mated females. It was obvious that the 

presence of males had a substantial influence on the female lifetime fecundity.  

 

Total lifetime fecundity varied significantly between the four treatments (F=12.188, 

P<0.0001) (Fig. 6.3). Virgin females had the lowest fecundity compared with the control (t=-

4.12, ESE=-7.31, P<0.01), once mated females (diff=-10.59, P<0.0001) and five-days mated 

females (diff=-5.8, P<0.05). Females that mated once were significantly more fecund than the 

control (t=2.06, ESE=-3.27, P<0.05) and the five-days mated females (diff=4.76, P<0.05). 

The fecundity of five-days mated females, however, did not differ significantly from the 

control (t =-0.93, ESE=-1.48, P=0.35).  
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Fig.6.1. Mean clutch size throughout the reproductive period obtained from the four 

treatments plotted against the clutch number.  

 

 

 
 

Fig.6.2. Mean fertility as number of hatched eggs calculated for each clutch obtained from 

the four treatments plotted against the clutch number. 
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Fig.6.3. Variability in the life-time fecundity obtained from the four treatments. Data were 

transformed for statistical analysis (F=12.188, P<0.0001).  

 

 

There was no relationship between lifetime fecundity and the proportion of fertility in all 

treatments (F=2.003, P=0.1). A similar non-linear relationship was obtained between the 

proportion of fertility and clutch size for all treatments (F=2, P=0.11). Only females of the 

control had a significant negative relationship between their proportion of trophic (deformed) 

eggs and lifetime fecundity (t=-4.67, ESE=-3, P<0.0001), as well as between the former and 

the clutch size (t=-4.03, ESE=-2.66, P<0.001). The results revealed a significant relationship 

between the clutch size and the proportion of eggs with incompletely developed larvae for all 

treatments (F=2.75, RSE= 0.733, P=0.05). The interaction between the clutch size with the 

proportion fertility assessed for all treatments resulted in a significant effect (F=25.36, 

P<0.0001). Virgin females, singly-mated females and five-days mated females were less 

fertile compared with the control, (diff=-0.65, P<0.0001), (diff=-0.36, P<0.0001) and (diff=-
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0.2, P<0.001), respectively. Virgin females had a significantly lower fertility, compared with 

females that had mated only once (diff=-0.29, P<0.001) and with five-days mated females 

(diff=-0.38, P<0.0001).  

 

6.4.3 Variability in reproductive period and longevity 

 

The reproductive period varied significantly between the four treatments (F=100.57, 

P<0.0001) (Fig. 6.4). For unmated virgin females, the mean reproductive period duration was 

1.08±0.35 days, which was significantly shorter than the control (diff=-1.78, P<0.0001), 

whereas in once mated females, the mean of that period was 29.33±0.82 days, significantly 

longer than the control (diff=0.72, P<0.0001). The duration of the reproductive period in the 

five-days mated females did not vary from the control (diff=0.09, P=0.88). The interaction 

effect of the independent variables (the reproductive period) and the fertility against the type 

of treatments revealed a significant effect (F=69.08, P<0.0001) in which control had the 

longest reproductive period (compared with virgin females (diff=-0.57, P<0.0001), once 

mated females (diff=-0.44, P<0.0001) and five-days mated females (diff=-0.28, P<0.0001)). 

The interaction of the reproductive period with the proportion of trophic eggs of the four 

treatments was also significant (F=14.8, P<0.01). Virgin females had significantly higher 

values of trophic eggs than that of the control (diff=0.41, P<0.001) or singly mated females 

(diff= 0.28, P<0.05). In addition, in relation to the pre-reproductive period for five-days 

mated females, the fertility was significantly greater compared with the once mated treatment 

(diff=-0.15, P<0.05) and virgin females (diff=-0.28, P<0.0001), when considering the effect 

of the reproductive period. The effect of the reproductive period on the proportion of 

deformed (trophic) eggs laid by virgin females was significantly higher than the control 

(diff=0.41, P<0.001).  
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When considering the effect of the pre-reproductive period instead of the total reproductive 

period, it was revealed that fertility was significantly less for five-days mated females 

compared with the control treatment (diff=-0.2, P<0.01), and similarly the fertility of the 

virgin females was significantly less than the control, since they produced mostly trophic 

eggs (diff=-0.7, P<0.0001). When deformed (trophic) eggs laid by virgin females, five-times 

mated females, control treatment and once mated females were analysed against the effect of 

pre-reproductive period, a significant effect was exhibited (F=9.42, P<0.0001). Virgin 

females laid significantly fewer trophic eggs compared with the control treatment (diff=0.32, 

P<0.0001), with singly-mated females (diff=0.4, P<0.0001) and five-days mated females 

(diff=0.28, P<0.0001) after regarding the effect of the pre-reproductive period.  

 

 

 

 

Fig.6.4. Variability in the duration of reproductive period of females assigned for the 4 

treatments. Data were transformed for statistical analysis (F=100.57, P<0.0001). 
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The presence of males had a significant impact on female longevity. Longevity of females in 

all treatments varied significantly (F=8.91, P<0.0001). Singly mated females lived longer 

compared with the control (diff=10.8, P<0.01) and with those with multiple mates 

(diff=11.41, P<0.001). Longevity was, however, significantly shorter in virgin females in 

comparison with the control (diff=-11.75, P<0.001). The relationship between longevity and 

fecundity was examined and the results indicated as significant interaction (F=6.04, 

P<0.0001). Only females that mated for five days affected the lifetime fecundity-longevity 

relationship which was significantly less than the control (t=2.2, diff=1.37 P<0.05). The 

study investigated if the different forms of laid eggs had a direct influence on longevity. The 

results revealed that only the proportion of eggs containing non-developed larvae laid by the 

control treatment had a linear negative relationship with longevity (t= -2.15, dif=-5.5, 

P<0.05). This means that any increase in the quantity of this type of eggs will reduce female 

longevity. The proportion of deformed (trophic) eggs calculated for all treatments in general 

tended to increase with increasing longevity (F=11.21, dif=0.9, P<0.0001). Finally, 

reproductive rates for all treatments showed no significant variability when they were 

compared statistically (F= 2.08, dif=0.61, P=0.11) and a similar trend was observed when 

comparing the reproductive growth and reproductive biomass of variable treatments - that is, 

(F=1.32, dif=0.024, P=0.27) and (F=1.24, dif=0.1, P=0.3) (Fig. 6.5) respectively. 



284 
 

 

Fig.6.5. Variability in reproductive biomass between different treatments. Data were 

transformed for statistical analysis (F=1.24, P=0.3). 

 

6.5  Discussion 

 

One feature of reproduction that has attracted a lot of attention in insect taxa is the number of 

matings,  that is, polyandry. The degree of polyandry is a vital variable in understanding post-

mating behaviour, pre-fertilisation and mating competition (Eberhard, 1996). As previously 

noted, multiple mating is highly advantageous, since it decreases the risk of mating with an 

infertile partner (Archer and Elgar, 1999) and it might significantly increase egg production 

and fertility (Omkar and Ahmad, 2005).  

 

The evolution of polyandry demonstrates either direct benefits or indirect genetic benefits. 

Direct benefits comprise the fact that females may look for multiple copulations but not 
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necessarily multiple partners, while the indirect benefits suggest that females will search for 

multiple copulations with different partners (Archer and Elgar, 1999). In part, polyandry 

explains the level of sexual conflicts of awareness with male over-mating (Chapman, 2006),  

for example, the form of gene flow and level of diversity (Zeh, 1997). The advantage of 

having genetically diverse offspring is important for the evolution  of sexual reproduction 

(Stearns, 1989) and the advantage of having multiple mates is regarded as a crucial strategy 

to maximise the diversity as well as the fitness of offspring (Walker, 1980). Williams (1975) 

noted that mating with multiple partners slightly affected offspring diversity. 

 

Low fecundity among singly mated females is a common phenomenon that many failed to 

explain (Ridley, 1988). The present study revealed that virgin females that mated only once 

in their lifetime with virgin males were more reproductive and fertile. In addition, singly 

mated females accomplished the greatest fecundity compared with the control treatment and 

the other treatments. In addition, H. axyridis females that mated only once were able to 

oviposit over a longer reproductive period in comparison with those in the control. 

Nonetheless, the proportion of fertility stayed throughout the reproductive period 

significantly higher than the control. On the other hand, singly mated females of the hide 

beetle, Dermestes maculatus (De Geer, 1774) (Coleoptera: Dermestidae), failed to lay a high 

proportion of fertile eggs during their reproductive period (Archer and Elgar, 1999).  

 

Attaining high fecundity and fertility after one mating imply that females of H. axyridis are 

able to store viable sperm without any reduction in the efficiency of fertilisation process 

throughout the reproductive period - approximately 29.33±0.82 days. This indicated that the 

longevity of the sperm was greater after one mating and it was reduced significantly after 

several matings, as demonstrated in relation to the five-days treatment and the control. 
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Analogous results were noted by Arnqvist (1989), in which multiple mating was found to be 

relatively costly to female water striders, Gerris odontogaster (Zetterstedt, 1828) (Hemiptera: 

Gerridae), which needed to mate every tenth day in order to receive sufficient viable sperm 

(Arnqvist, 1989). In the present study, the low fecundity and fertility of five-days mated 

females could be clarified according to Tseng et al. (2007). It was explained that in the 

female beetle C. maculates, re-mating every so often stimulated female oviposition but did 

not increase the egg maturation rate. It was further reasoned that the essential proteins for egg 

maturation might be replenished and needed some time to be transported by the circulatory 

system to their targeted organ or tissue. Electrophoretic studies demonstrated that in the 

groundnut beetle, Caryedon serratus (Olivier, 1790) (Coleoptera: Bruchidae), it took about 

one day for such proteins to move to the genital tracts (Boucher and Huignard, 1987).  

 

In the current study there was a decline in clutch size accompanied by reduction in fertility, 

particularly subsequent to the first and the second-laid clutches towards the end of the 

reproductive period. This trend was noticed in all treatments without exception. Similarly, a 

previous study on C. maculates noticed the same observations (Wilson et al., 1999). In 

addition, it was also reported that females of cowpea weevil, Callosobruchus subinnotus 

(Fabricius, 1775) (Coleoptera: Bruchidae), which had experienced four matings laid fewer 

eggs compared with females that mated twice or three times (Mbata, 1997). It was debated 

that male ejaculates might have both stimulatory and nutritive roles in the above cases, given 

that the extent to which oviposition stimulation was potentially limited by the number of 

oocytes in the ovaries at eclosion and by the maturation rate of occytes (Wilson et al., 1999). 

Likewise, the fecundity of singly mated females of the cat flea, Ctenocephalides  felis 

(Bouché, 1835) (Siphonaptera: Pulicidae) was greater relative to multiple-mated females as 

http://en.wikipedia.org/wiki/Johan_Christian_Fabricius
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the quantity of sperm was very low and was not capable of fertilising all of the matured eggs 

formed after multiple mating (Hsu and Wu, 2000).  

 

The male contribution may vary over time in response to its age or as a function of mating 

history (Savalli and Fox, 1999). Lewis (2004) reported that male paternity success was found 

to deteriorate across multiple matings, owing to the depletion of sperm or the accessory gland 

products, or possibly due to a drop and weakening in the coplulatory courtship behaviour 

(Edvardsson and Arnqvist, 2000). In contrast, Simmons (1996) noted that male mating 

history does not always influence sperm production, since he could not find any similar 

effects on male sperm precedence in his study.  

 

The present results revealed that, although multiple matings were undoubtedly advantageous 

to the females in some ways, there was a reduction in the reproductive output towards the end 

of the reproductive period in all assigned treatments. This indicates that there is a potential 

reproductive output with parental contribution that was limited by many factors, such as the 

constant amount of aphid supply. Although the number of aphids given to the adults 

throughout the study was considered the best for the optimal reproductive activity for this 

ladybird (Agarwala et al., 2008, Kajita et al., 2010), from time to time body maintenance 

requirements may exceed that quantity. As a result, the study predicted some alternation in 

the reproductive performance curve if those couples have unlimited access to their prey.  

  

Furthermore, there was no positive linear relationship revealed between fecundity and the 

number of matings in the present study. Seemingly, multiple mating in H. axyridis might 

interfere simultaneously with egg fertilisation process. This is in accordance with previously 

reported information, in that the products of male accessory glands might reduce the mobility 
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of sperm deposited previously in the female’s spermatheca (Smid et al., 1997). In addition, it 

was noted that mating with the same partner over a long period might also restrict egg 

production (Lewis, 2004). The latter showed that repetitive copulations with similar females 

did not increase male insemination success or the quantity of eggs produced and their 

viability. Others have argued that repeated copulation might affect the storage capacity of the 

sperm in spermatheca, resulting in fewer fertilised eggs (Simmons, 1996).  

 

In this study, there was no evidence showing a reduction in fecundity or variability in five-

days mated females of H. axyridis, when compared with the control. This indicated that 

females of H. axyridis are capable of surviving with only one single mating and 

accomplishing a reasonable potential reproductive output. This agrees with the results 

reported previously on C. maculates by Ofuya (1995). He showed that virgin females mated 

with the same males successively resulting in a trend in the direction of lower fecundity and 

viability, when compared with singly mated females.  

 

In this study, the age of couples and mating history appeared to have a negative influence on 

offspring production, which was observable at the late stages of the reproductive period. 

Fecundity and egg viability often depend on the reproductive history of the males and 

females (Ofuya, 1995). Fox (1993ab) claimed that the influence of maternal age was greater 

in comparison with the effects of multiple mating on egg size and number. Likewise, Moore 

and Singer (1987) declared that maternal age had several contradicting influences on the 

offspring size,  it may have a negative influence on egg size, may positively increase egg size 

(Kasule, 1991) or have no apparent influence (Marshall, 1990). Others have proposed that the 

influence of maternal age on egg size characteristics may be adaptive, particularly as clutch 
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size is known to be constrained by morphological, physiological and ecological elements 

(Begon and Parker, 1986). 

 

It has previously been reported that female longevity might be reduced as a consequence of 

multiple mating (Arnqvist and Nilsson, 2000). The trade-off between the rate of mating and 

longevity appeared explicitly in the present study. Singly mated females lived longer than 

five-day mated females and the control. In contrast, virgin females that had never mated had 

the lowest longevity of all. This implied that there should be a balance between the number of 

matings and the trade-off favouring females' fitness. This was supported further by Arnqvist 

and Nilsson (2000) who argued that "the balance between the fitness cost and benefits of 

polyandry should limit the potential for the evolution of extreme levels of polyandry". In 

extremely polyandrous species, such as the leaf beetle, Chrysochus cobaltinus (LeConte, 

1857) (Coleoptera: Chrysomelidae), there was no influence of multiple matings on longevity 

(Schwartz and Peterson, 2006). Apparently, polyandrous behaviour in H. axyridis seemed 

likewise to have a substantial trade-off on female reproductive success and longevity. This 

was concurrent with what was noted formerly, namely, although females may achieve 

benefits from multiple matings, this behaviour might also impose great costs on female 

fitness, as frequent mating requires investment in both time and energy (Schwartz and 

Peterson, 2006). Finally, the results indicated that there was no sign that increasing the time 

paired would reduce the longevity, since the control was found to have the greater longevity 

compared with five-day mated females. This is logical, since there is no general role for the 

fecundity-longevity-body weight relationship, particularly if females have access to a food 

source (Leather, 1988).  
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It can be concluded that multiple mating is beneficial to some extent.  It could, however, 

result in a reduction in egg production rate and egg viability due to the extra energy required. 

The decrease in reproductive performance was expressed specifically when females were 

constrained by exposure to a single male or by having delayed mating, like the case of virgin 

females. Thus, having a mate choice might improve the component of reproductive output 

and the future offspring fitness, as likewise noted by Partridge (1980). There should be, 

however, an intermediate level of polyandry that offsets the cost and benefits in order to 

maximise female fitness. Nevertheless, the results suggested that one mating might be 

sufficient for lifetime fertility in H. axyridis females, this can be considered as an 

advantageous strategy, promoting their reproductive success compared to other ladybird 

species. Although the study had highlighted some of the costs and benefits of mating rate, 

other related concerns remained elusive and quantifying them is more difficult. They must be 

recorded under conditions similar to which the beetle is adapted. Furthermore, in polyandrous 

species such as H. axyridis, detailed knowledge of sperm transfer, sperm longevity and the 

number and storage process in spermathecae must be determined in order to fully understand 

a female's receptivity pattern and to provide an insight into the dynamics of paternal success 

worldwide. At the very least, the study highlighted some of the factors that promote the 

success of H. axyridis in surviving adverse environments, namely, having a peculiar 

reproductive strategy. The reproductive organ has the capability of reserving the sperm 

gained from a single mating, with one mating able to provide lifetime fertility. This could be 

added to the many abilities demonstrated by this ladybird that make it capable of sustaining 

and surviving longer in different habitats effortlessly.  
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Chapter 7 

The Influence of Conspecific and Heterospecific Tracks on the 

Defensive Behaviour of Harmonia axyridis 

 

7.1 Introduction 

 

Because of the temporary nature of aphid colonies and other kind of prey, ladybirds often 

face competition for inadequate food and risk intraguild predation (Agarwala and Dixon, 

1993). The latter is a widespread interaction taking place at diverse trophic levels within a 

community that plays a vital part in affecting the distribution, abundance and evolution of the 

interacting species (Polis et al., 1989). It further helps in understanding the community 

structure of the potential competitors (Snyder and Ives, 2003). Intraguild predators acquire 

benefits from feeding and displacing other competitors occurring at the same trophic level, 

like the behaviour of invasive species (Polis, et al., 1989, Holt and Polis, 1997). Usually, 

intraguild interaction encompasses both predation and the competition process. Many 

important issues in community ecology revolve around interference competition and 

predation (Snyder and Ives, 2003). Species that compete may also be constrained in predator-

prey interactions, which comprise the mixture of competitions and predations classified as 

intraguild predation (Holt and Polis, 1997). Theoretically, there are two types of predators, 

top and intermediate predators. The intermediate species, which is the prey, should be 

superior at exploitative competition for communal resources. The top species, however, is the 

predator that consumes the intermediate. If this system is in place, then intraguild predation is 

regarded as stable (Walls and Williams, 2001). Intraguild interactions may be classified as 

synergistic and are used to describe a lower rate of prey consumption. These interactions 
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modify normal prey behaviour, making it more susceptible to predator attack. They also 

include the non-additive or antagonistic predation used when fewer of the prey are killed by 

the combined actions of different predators (Tapia et al., 2010). The antagonistic/synergistic 

interfaces on co-occurrence of predators depend principally on the parameter and degree of 

feeding niche diversity (Huxel, 2007).  

 

Intraguild predators are regarded as a major risk for co-existent ladybirds (Cottrel and 

Yeargan, 1998, Schellhorn and Andow, 2005), specifically because their eggs or juveniles are 

highly susceptible to cannibalism (Lucas et al., 1998). Therefore, interacting predators exhibit 

several behaviours, including the avoidance response towards larval tracks triggered by 

oviposition-deterring pheromones or semiochemicals (Meisner et al., 2011b). 

Semiochemicals are those that arbitrate interactions between organisms. They are divided 

into allelochemicals and pheromones, depending on whether the interactions are interspecific 

or intraspecific, respectively (Flint and Doane, 2009).  Allelochemicals are subdivided into 

two groups,  allomones and kairomones. The former is favourable to the receiver but not the 

emitter. The latter are significant to individuals of a species different from the source species 

and are favourable to both emitter and receiver (synomones) (Sonenshine, 2004, Flint and 

Doane, 2009). Pheromones, in contrast, are used intraspecifically and may be further 

classified based on the interaction mediated, such as alarm, aggregation, or sex pheromones 

(Sonenshine, 1985, 2004, Flint and Doane, 2009).  

 

Ladybirds are common intraguild predators and are usually characterised by their bright 

colour and the ability to secrete a distasteful yellow droplet of haemolymph from their joints 

when disturbed. These droplets are bitter and repellent to many insects and birds (Marples, 

1993). Oviposition avoidance in response to these semiochemicals has been described in 
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most aphidophagous coccinellid predators (Hemptinne and Dixon, 2000, Yasuda et al., 

2000). The effect of these semiochemicals is concentration-dependent and often associated 

with larval track of hetero- or conspecifics, or both (Yasuda et al., 2000). The presence of 

hetero- or conspecific faeces may also trigger a similar response (Doumbia et al., 1998). The 

nature and effects of these substances vary both intra- and interspecifically. For example, the 

larval tracks of coccinellids are chloroform soluble only, but the larval tracks of lacewings 

(Neuroptera: Chrysopidae and Hemerobiidae) are soluble in both chloroform and water 

(Doumbia et al., 1998). The semiochemicals present in ladybird larval tracks contain alkanes 

that deter females from laying eggs (Yasuda et al., 2000, Hemptinne et al., 2001). In contrast, 

it has been noted that the presence of semiochemicals did not affect the searching time spent 

by female beetles (Ruzicka, 2001).  

 

Female coccinellids usually refrain from laying eggs in areas where the population density of 

prey is low (Dixon, 1959) or in the existence of conspecific larvae (Hemptinne et al., 1992), 

hetero-specific tracks (Oliver et al., 2006) or conspecific larval tracks (Doumbia et al., 1998). 

The ability to discriminate between simultaneously provided clean paper strips and ones 

contaminated by oviposition-deterring larval tracks has been reported in at least two 

aphidophagous ladybird species, Cycloneda limbifer (Casey, 1899) and Ceratomegilla 

undecimnotata (Schneider, 1792) (Coleoptera: Coccinelliade) (Ruzicka, 2003). The 

avoidance of oviposition in the presence of conspecific larvae is an adaptive behaviour 

towards reducing the risk of egg predation, but may vary according to the larval track species 

(Ruzicka, 2001). The deterrent semiochemicals consist of a mixture of alkanes, similar to 

those found on the elytra of an adult or on the surface of eggs of some species (Hemptinne et 

al., 2000, Pervez and Gupta, 2004) or to the adhesion substances present on the tarsal 

segment (Geiselhardt et al., 2009). Females of C. limbifer and C. undecimnotata have been 

http://en.wikipedia.org/wiki/Neuroptera


294 
 

shown to use tactile chemoreceptors present on their maxillary palpi to detect oviposition 

deterrent tracks of conspecific larvae (Ruzicka, 2003).  

 

Alkanes are organic compounds that are common in nature, such as those covering the 

surface of plants used to stimulate the oviposition of specialist herbivores (Ferguson and 

Mudd, 1997). The chemical nature of these alkanes was first determined in the ladybird 

Adalia bipunctata (Linnaeus, 1758) (Coleoptera: Coccinellidae) (Hemptinne et al., 2001). 

These alkanes are usually composed of saturated hydrocarbon chains that are stable and non-

reactive in nature - they have little biological activity and cannot be oxidised easily 

(Hemptinne et al., 2001, Sloggett and Davis, 2010). In fact, the way in which these chemicals 

intervene with recognition behaviours has not been fully identified (Hemptinne et al., 2001).  

 

Ladybird faecal pellets also contain such semiochemicals (Doumbia et al., 1998). Insect 

faeces contain volatile info-chemicals derived from their diet (Agelopoulos et al., 1995). 

Faeces in insects are usually used as a defence mechanism, as a chemical deterrent compound 

or as a physical barrier in a chemically mediated defense against predators (known as a faecal 

shield), such as in the tortoise beetle Chelymorpha reimoseri (Spaeth, 1928) (Coleoptera: 

Chrysomelidae) (Bottcher et al., 2009). Volatile faeces from herbivorous insects are known to 

prevent predators and conspecifics from oviposition close to their habitat (Hilker and Klein, 

1989). In addition, faeces of carnivorous insects contain protein metabolites that are 

recognised to be effective oviposition deterrents (Grostal and Dicke, 2000). Harmonia 

axyridis (Pallas, 1773) is known to be a strong intraguild predator (Alhmedi et al., 2010) and 

faecal cues of this predator were found to influence their risk assessment regarding predation 

by heterospecifics, as well as by conspecifics (Agarwala et al., 2003). Faecal cues of H. 

http://en.wikipedia.org/wiki/Carolus_Linnaeus
http://en.wikipedia.org/wiki/Peter_Simon_Pallas
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axyridis are capable of lessening the rate of feeding behaviour and oviposition of both 

conspecific and heterospecific ladybirds (Agarwala et al., 2003).  

 

Ladybird predators usually orientate their movement towards their prey using olfactory cues 

that lead them to areas of high prey density (Seagraves, 2009). The sense of balance between 

both olfactory and visual cues influences the oviposition decisions of the ladybird predators. 

Harmonia axyridis uses both olfactory and visual cues to trace its prey. In contrast, other 

coccinellids, such as Coccinella septempunctata (Linnaeus, 1758) (Coleoptera: 

Coccinellidae) and Pharoscymnus numidicus (Pic, 1900) (Coleoptera: Biphyllidae), depend 

on random searching to locate their prey (Banks, 1957, Kehat, 1968, Obata, 1986). For 

example, the foraging behaviour of adult C. septempunctata starts first with extensive 

random searching followed by intensive pattern of searching, assisted to a degree by volatiles 

produced by aphids (Al-Abassi et al., 2000).  

 

Alarm pheromones, such as the aphid alarm pheromone (E)-β-farnesene (EβF) and the plant 

volatile pheromones (-)-β-caryophyllene, also approximate the cues that attract some species 

of coccinellids (Seagraves, 2009). It has been noted that these two semiochemicals - (E)-β-

farnesene (EβF) and (-)-β-caryophyllene, were able to stimulate antennal activity in both 

sexes of H. axyridis (Verheggen et al., 2007). The antennae of H. axyridis possess specific 

neuronal receptors that allow the perception behaviour to be more elaborate than that of other 

ladybirds (Al-Abassi et al., 2000, Hemptinne et al., 2000). Their receptors have a high 

specificity for (-)-β-caryophyllene (Al-Abassi et al., 2000).  

 

Antennae are important sensory organs in insects (Srivastava and Omkar, 2003). They play 

an important role in courtship behaviour and in sex differentiation (Khadka et al., 2011). 

http://en.wikipedia.org/wiki/Carl_Linnaeus
http://en.wikipedia.org/wiki/10th_edition_of_Systema_Naturae
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Little information, however, is available regarding this sensory organ in coccinellids 

(Srivastava and Omkar, 2003). Studies on morphological features of the antennae in C. 

septempunctata revealed great variation between sexes (Faucheux, 1985). Srivastava and 

Omkar (2003) showed, however, that the sensory apparatus of the antennae of C. 

septempunctata did not vary greatly between sexes with respect to their gross morphology, as 

both consist of eleven annuli. They found that most of the variation instead existed in their 

ultra-structure. Similar observations were also reported by Hemptinne and Dixon (2000) for 

the ladybird A. bipunctata.  Even though some species of ladybirds often orientate their 

movement using their olfactory organs (Dixon, 2000, Verheggen et al., 2007, Seagraves, 

2009), they also exploit pheromone production with great versatility. This behaviour depends 

on the species and environmental cues (Hemptinne and Dixon, 2000). An additional feature is 

the sensillae basiconica, located on the shaft of the antennae of coccinellids. This sense 

structure is regarded as the most generalist sensillae, exhibiting a tactile chemoreceptive role 

compared with others (Broeckling and Salom, 2003ab). 

 

A fundamental concern in community ecology is how a species of prey is sustained in 

assemblages with its predators (Hunter and Price, 1992).  The answer to this question has 

wider consequences in terms of understanding what will impact on community composition 

and species richness.  Many introduced species are involved in intraguild predation, in which 

they compete for shared resources with native species.  Previous studies have predominantly 

focused on the effects of larval tracks on oviposition, competitive interference and survival, 

but the faecal deposit response, associated with avoidance behaviour, towards these tracks is 

less well studied. Accordingly, the present study aimed to investigate the presence of biotic 

factors, such as faecal cues, of conspecific and heterospecific larvae and adults, as well as the 

physical presence of conspecific and heterospecific adults on the evading behaviour of adults 
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of H. axyridis. The influence of the presence of tracks of larvae and adults of the two-spot 

ladybird A. bipunctata, as well as adult tracks of C. septempunctata were well considered in 

this study. In addition, the physical presence of con- and heterospecific adults of C. 

septempunctata was also examined. Olfactory organs allow insects to forage optimally by 

more efficiently finding and using favourable food sources.  Even though olfactory organs 

has been studied in honey bees, fruit flies and parasitoids (Vet and Dicke, 1992, Dukas, 

2008ab) as well as insect herbivores and parasitoids, there is less attention on the 

polyphagous predators (Glinwood et al., 2011). The significance of the antennae was 

investigated subsequent to antennal amputation and evaluation of their influences on life-

history traits was performed. The study aimed to validate that, in H. axyridis, prey location is 

not performed by random searching; instead, their sensory cues are definitely involved in 

adjusting searching and foraging behaviour. The results could demonstrate how this predator 

has been capable of successfully avoiding the risk of predation and was able to survive in 

competitive habitats, starting actually to dominate many intraguild assemblages worldwide. 

Hall (2011) noted that invasive species that consume resources more than native competitors 

may be able to spread and establish where invasion by pure competitors would fail, and that 

invasion speed increases with increasing levels of intraguild predation.  Notably, the ladybird 

H. axyridis has been considered the most invasive species; therefore, using the above factors 

to predict the invasion speed of already introduced intraguild predator is quite challenging, 

but indispensable for quantifying the adverse impacts on community structure and assists for 

developing an applicable approaches for controlling and reducing the risk of persistent 

invasion. In addition, knowing the association between behavioural and other aspects of life-

history traits in this ladybird, such as body weight and longevity, are essential, so that they 

may be incorporated in future comparative researches for better understanding of the 

evolution of life-history trait. 

http://www.ncbi.nlm.nih.gov/pubmed/17803459
http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=PubMed&term=%20Glinwood%20R%5Bauth%5D
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7.2  Materials and methods 

 

Adults and final larval instars of H. axyridis and A. bipunctata were collected from the 

laboratory culture maintained under a controlled temperature of 20±1  C, 70-75% RH, and a 

photoperiod of L16:D8 under fluorescent lamps. Both adults and larvae were provided daily 

with 16 live adults of the pea aphid, Acyrthosiphon pisum (Harris, 1776) (Hemiptera: 

Aphididae) that had been maintained on broad bean plants Vicia faba (Linnaeus, 1753) 

(Fabales: Fabaceae, variety Aquadulce Claudia). Adults of the seven-spot ladybird, C. 

septempunctata, were collected from naturally infested fields in Silwood Park, South-east 

England, United Kingdom (National Grid References 41/944691). All adults were sexed and 

weighed prior to the onset of this study and were all maintained under the above conditions.  

 

7.2.1 Experiment procedures 

      7.2.1.1  Part I 

 

Tracks were prepared by placing 4mm Whatman filter paper in the bottom of 9cm Petri-

dishes and keeping 10 individuals of two-day-old adults of H. axyridis and 10 individuals of 

5
th
  instar larvae in them each separately for 24 hours, together with 2cm² moistened tissue 

paper with 10% glucose solution and 16 live adults of pea aphid. Subsequently, larvae were 

removed and 12 adults of H. axyridis (six males and six females) were kept individually with 

the filter papers contaminated with larval tracks. For the control, eight males and another 

eight females were used - each one was placed in a clean Petri-dish. Another 20 adults of H. 

axyridis (10 males and 10 females) were each placed in a Petri-dish enclosing filter paper 

contaminated with adult tracks, after removing the adult. The control was prepared by 

keeping 16 adults of H. axyridis (eight males and eight females) each in an uncontaminated 

http://en.wikipedia.org/wiki/Moses_Harris
http://gni.globalnames.org/?search_term=id:11802073
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clean Petri-dish. All the dishes were provided with 16 adults of pea aphid and moistened 

tissue with glucose solution then left for 24 hours, under similar conditions as stated above.  

 

The effect of the larval and adult tracks collected from the A. bipunctata was performed 

corresponding to the above protocol, the number of H. axyridis adults assigned for this 

experiment was 12 adults of unspecified sex used for inspecting the adult tracks; a similar 

number was used for the larval tracks as well as the control. To detect the influence of the 

adult tracks collected from C. septempuncta on H. axyridis adults, 18 adults (10 males and 

eight females) of the latter species were used for the treatment and another different 22 adults 

(12 males and 10 females) were assigned for the control. As above, the lady beetles of the 

control were kept individually in a clean Petri-dish. Furthermore, the influence of the 

physical presence of the adult of C. septempuncta in a Petri-dish containing an adult of H. 

axyridis was also investigated. This was performed by placing an adult of C. septempuncta 

covered with an inverted smaller 3.5cm Petri-dish in the centre of the 9cm Petri-dish. At the 

exterior of the smaller Petri-dish an adult of H. axyridis was placed after being weighed and 

sexed. The latter was supplied with food as above and left for 24 hours. For that treatment, 

twelve adults with unspecified sex of H. axyridis were used and another 12 adults as the 

control were each kept in a clean Petri-dish. In all treatments, the number of deposits of both 

kinds were counted, with the black being the normal kind of faeces and the yellow droplets 

being secreted only as a distress response. 

 

7.2.1.2 Part II 

 

Forty-eight freshly emerged adults of H. axyridis were sexed and weighed. Twelve males and 

12 females had their antennae amputated fully. After that, each adult was kept individually in 
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a 9cm Petri-dish and provided with daily food as above. The presented adult aphids were 

weighed daily in order to control the biomass distribution. A set of 12 males and another set 

of 12 females were used as controls. The adults of the control had their antennae intact.  

 

 7.3  Data analysis  

 

All data were tested for normality prior to applying parametric analysis. Those that failed 

were transformed. One-way analysis of the variance ANOVA or general linear model (GLM) 

was performed to analyse the variation between type of secretion and treatment or sex. 

Student t. test or Wilcoxon rank sum test were used to compare the means of different types 

of secretion - yellow and black. All statistical analyses were carried out using the statistical 

programme ‘R’ version 2.8.1 (Ihaka and Gentleman, 1996). 

 

 7.4 Results  

 7.4.1 The influence of conspecific larval track 

 

The response of H. axyridis towards different treatments and their controls are presented in 

Table 7.1. There was no significant difference in either yellow droplet secretion (F=2.5, 

P=0.14) or in the number of black faecal deposits (F=0.2, P=0.65) between the treatment and 

respective control when the sex of the ladybirds was disregarded. The number of yellow 

droplets did not differ between males and females (F=0.023, P=0.88) or vary from the 

number of black faeces (F=1.011, P=0.32). There was no response towards the presence of 

the larval tracks when comparing the males of the treatment with the control, either in terms 

of yellow count (F=0.48, P=0.51) or of black faecal count (F=0.26, P=0.62). Similar results 

were acquired when comparing the number of black faeces deposited in the presence of larval 
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tracks by the females of the treatment with the females of the control (F=0.0007, P=1). 

Females in the control treatment produced significantly more yellow droplets than females 

that were exposed to contaminated filter paper with larval tracks (F= 1.656e+32, P<0.0001). 
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Table 7.1. The responses of H. axyridis adults towards the presence of heterospecific and conspecific larval and adult tracks and adult of con-

specifics as well as heterospecifics. 

Treatment   

Sex of Harmonia 

adults Yellow extract No Black faeces No Body weight (mg) 

Conspecific larval track  Treatment Male(n=6) 1.33±0.23 1.5±0.4 35.86±2.6 

    Female(n=6)  1 2±0.4 40.3±4.3 

  Control Male(n=8) 2.2±0.63 1.75±0.31 30.24±1.7 

    Female(n=8)  2 2±0.28 29.57±2 

Conspecific adult tracks Treatment Male(n=10) 2.5±0.17 1.6±0.25 28.5±0.9 

    Female(n=10)  1.12±0.11 1.14±0.11 26.72±1.1 

  Control Male(n=8) 2.2±0.63 1.75±0.31 30.24±1.7 

    Female(n=8)  2 2±0.28 29.57±2 

Conspecific adult Treatment n=6 1.6±0.36 1.5±0.23 26.21±1.3 

  Control n=6 1 1.5±0.28 29.4±11.8 

Heterospecific adult track of A. bipunctata Treatment n=12     1.66 ±0.33         4 ±0.37  26.61 ±1.7 

  Control n=12 1       2.09 ±2    32.11 ±1.9 

Heterospecific larval track of A.bipunctata Treatment n=12      2.66 ± 0.54      1.5 ±0.15    31.28 ±2.7 

 

Control n=12 1     2.09 ±2      32.11 ±1.9 

Heterospecific adult track of C. septempunctata Treatment Male(n=10 1 3.9±1 30.61±1.8 

    Female(n=8) 2±0.25 4.66±1.13 29.28±2.95 

  Control Male(n=12) 3±0.45 2.75±0.46 30.14±2.5 

    Female(n=10) 1.6±0.17 4±0.77 30.7±1.7 

Heterospecific adult of C. septempunctata Treatment n=12 2.1±0.46 3±0.28 28.21±2 

  Control n=12 2.57±0.4 4.54±1.11 28.43±2 
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 7.4.2 The influence of conspecific adult tracks and adults 

 

When the sex of the beetles was excluded, the production of both yellow secretion and black 

faeces did not show significant differences from the control in response to the adult tracks - 

(F=0.52, P=0.47) and (F=2.84, P=0.1) respectively. In contrast, considering the sex as a 

categorical variable had a great influence. For example, the number of yellow droplets 

secreted by control females was significantly greater than that of the treatment females 

(F=17.18, P<0.01). Similar results were gained for the black faecal number, in which control 

females produced a significantly greater number than the treatment females (F=6.65, 

P<0.05). Males did not show a significant difference in terms of black faecal count (F=0.016, 

P=1) or in yellow droplet secretion (F=1.19, P=0.3) when both secretions of the treatments 

were compared with those of the control. The presence of a conspecific adult did not in any 

way affect the production of either yellow droplets (F=0.85, P=0.39) or black faeces (F= 

9.997e-31, P=1) after comparing both treatments with the control. 

 

 7.4.3 The influence of heterospecific larval and adult tracks of A. bipunctata 

 

Adults of H. axyridis showed variable responses towards the larval tracks of A. bipunctata. 

The number of yellow droplets of the treatment varied significantly from the control (F=6.35, 

P<0.05), but the black faecal count of the treatment did not (F=3, P=0.1). Similarly, adults of 

H. axyridis produced a higher number of black faeces compared with the control in response 

to adult tracks (F=17.18, P<0 .0001). In contrast, the count of yellow secretion did not differ 

significantly between the control and the treatment in which the adults were exposed to adult 

tracks (F=2, P=0.18). 
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7.4.4 The influence of hetero-specific tracks and the presence of adults of C. 

septempunctata  

 

The presence of the adults of C. septempunctata had no influence on the behaviour of H. 

axyridis and both yellow secretion and black faeces did not vary in comparison with the 

control - (F=2, P=0.18) and (F=0.14, P=0.7), respectively. Males of H. axyridis, on the other 

hand, responded to the presence of the heterospecific adult tracks by secreting significantly 

more yellow droplets compared with the control (F=14, 04, P<0.001). The number of the 

black faeces, however, was the same as the control (F=0.65, P=0.42). Females did not 

respond at all to the presence of the C. septempunctata adult tracks,  the number of yellow 

droplets and black faeces did not differ from the control (F=0.8, P=0.4) and (F=0.08, P=0.78) 

respectively.  

 

 7.4.5 The influence of the amputated antennae on longevity of adults H. axyridis  

 

The mean longevity of females that had had their antennae amputated was 25.16±3.4 days 

(min. =8 and max. =44), and for males with amputated antennae was 35.91±3.33 days (min. 

=14 and max. =51). For males in the control, the mean longevity was 67±1.44 days (min. =59 

and max. =74) and 70.5±1.6 days (min. =62 and max. =77) for the females of the control. 

Females with amputated antennae had significantly lower longevity compared with normal 

females in the control (W=144, P<0.0001). Similarly, males with amputated antennae had 

lower longevity relative to their control (W=144, P<0.0001). The absence of antennae had a 

strong influence on females compared with males, as females showed a significant lower 

longevity compared with their respective males that had had their antennae amputated (t=-

2.23, P<0.05).  
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7.4.6 The influence of antennae amputation on body weight 

 

Females with no antennae died sooner compared with their control and compared with males 

with amputated antennae. The effect of the absence of both antennae on body weight of 

females and males was measured in 26 successive trials, from the initial weight before 

amputating the antennae until death. The results are presented in Fig. 7.1 and 7.2. Initially, 

mean body weight in females increased slightly after amputating the antenna, followed by a 

gradual decline that led to their death (Fig. 7.1). The mean weight of females belonging to the 

treatment recorded straight after their death did not differ significantly from the control 

(t=1.64, P=0.1173). This could be related to the low number of individuals that had survived 

and were incorporated in calculating that mean. For the control, females did not show any 

evidence of variability in their mean body weight during their lifespan, only at late stages 

when they were about to die. The lack of variability in weight was due to the controlled 

feeding process, in which the aphids were provided daily with 16 adults and their weight 

ranged between 1.1-1.37mg. In contrast, males with amputated antennae exhibited a slight 

increase in body weight, attaining a peak of 27±2mg (Fig. 7.1). The weight at that peak did 

not show a significant difference when compared with the control (t=-1.37, P=0.1836), which 

had a mean of 23.8±1mg. 
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Fig.7.1. Changes in mean body weight calculated over 25 trails for both females having their antennae amputated and intact females (mean±SE, 

n=12 for treatment & n=12 for control). 
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Fig.7.2. Changes in mean body weight calculated over 25 trails for both males having their antennae amputated and intact males (mean±SE, 

n=12 for treatment & n=12 for control).
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7.5 Discussion  

 

This study has shown that adults of H. axyridis exhibited variable responses towards 

conspecific and heterospecific species, in some cases depending on the sex of the adults. The 

presence of conspecific larval tracks had a negative influence on the behavioural response of 

H. axyridis adults, during which they did not discharge the yellow secretion throughout the 

investigated period. If this negative response happens in the field, it would cause the 

conspecific larvae to persist in the area and to be cannibalised by others, due to their inability 

to detect the existence of conspecifics. In contrast, it was reported that the scavenging larvae 

may use either the conspecific adult tracks or larval tracks for avoiding competition and 

predation (Lucas et al., 1998, Meisner et al., 2011a). Females of the control treatment, 

however, reacted first by secreting significantly more yellow droplets in order to mark their 

territory. Females belonging to the treatment had a different response, because the 

contaminated paper with the larval track was placed first, then the adult was hosted in the 

Petri-dish. The cautious defensive response displayed by the control females once they had 

been placed in the Petri-dishes reflected the anticipated field competition. In addition, it was 

proposed that larger ladybirds such as H. axyridis or C. septempunctata often try to evade 

intraspecific competitions, but not interspecific ones, due to the higher likelihood of them 

prevailing over small species (Agarwala, 2003).  

 

Doumbia et al. (1998) and Yasuda et al. (2000) stated that females usually refrain oviposition 

and evade encountering conspecific larvae by responding negatively to their oviposition-

deterring pheromone. This could explain why females in this study secreted a significantly 

higher number of yellow droplets when they were hosted with conspecific adult tracks. 

Nevertheless, those females additionally intensified their response by depositing a significant 
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number of black faeces. These responses were not displayed by adult males, suggesting that 

males of H. axyridis are more competitive and hostile than females, due to their smaller body 

size.  

 

The current study revealed that females of H. axyridis did not avoid filter papers 

contaminated with C. septempunctata adult tracks. The lack of response reveals the degree of 

the aggressiveness and hostility between the two species, with H. axyridis being the more 

aggressive species. Harmonia axyridis is a very voracious and violent predator and has been 

cited as a reason for the displacement of many native competitors (Sato and Dixon, 2004). It 

was noted that although H. axyridis from time to time preys on C. septempunctata, the latter 

does not pose a significant threat to the former (Yasuda et al., 2001). This could explain the 

lack of response towards heterospecific adult tracks. In Japan, H. axyridis and C. 

septempunctata generally coexist and possess an analogous number of juvenile 

developmental stages (Sato and Dixon, 2004). The most logical explanation is that H. 

axyridis has smaller larvae compared with C. spetempunctata when it coexists in the same 

habitat. This could be responsible for the defensive chemicals possessed by H. axyridis 

against predation by other ladybirds, such as C. septempunctata (Sato and Dixon, 2004). A 

previous study has shown that adults of H. axyridis are rarely preyed on and that this could 

only be performed by conspecific larvae (Hough-Goldstein et al., 1996). In addition, 

Agarwala et al. (2003) noticed that the eggs and larvae of H. axyridis are protected by 

deterrent chemicals, preventing their predation by larvae and adults of heterospecific ladybird 

Propylea japonica (Thunberg, 1780) (Coleoptera: Coccinellidae). This backs the existence of 

the defensive chemicals on larvae and eggs of H. axyridis, making them unpalatable to other 

coccinellids (Hough-Goldstein et al., 1996). Furthermore, when both males of H. axyridis and 

C. septempunctata coexist, males of former display less aggressive behaviour compared with 
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the latter (Agarwala et al., 2003, Meisner et al., 2011ab). Nevertheless, since C. 

septempunctata is the only species that is larger than the Harlequin in Britain (Meisner et al., 

2011ab), this might give a reasonable explanation for the unresponsive behaviour by the 

males in this study.  

 

Generally, cannibalism and intraguild predation depend on the relative size and the 

developmental stage of the prey and predators (Hemptinne et al., 2011). Coccinellids are 

common within aphidophagous guilds and small species are more likely to be preyed upon by 

larger species (Lucas et al., 1998). In species of ladybirds that have overlapping habitat 

preferences, small species might be protected chemically from predation, A. bipunctata was 

found to be toxic to larger species such as C. septempunctata and H. axyridis (Meisner et al., 

2011ab). All A. bipunctata, all the developmental stages of juveniles of A. bipunctata, are 

protected chemically (Karlsson and Losman, 1972, Holloway et al., 1993, Lognay et al., 

1996). Regardless, it has been found that A. bipunctata eggs are not well protected 

chemically from predation by H. axyridis (Sato and Dixon, 2004). This was also revealed by 

the present study, in which H. axyridis exhibited a positive response towards both larval and 

adult tracks of A. bipunctata. In addition, in terms of body size, it is implausible that H. 

axyridis would be preyed upon by A. bipunctata - the percentage of survival in the latter was 

extremely low when it had been reared with the ladybeetles C. septempunctata and H. 

axyridis (Brown, 2003).  

 

The results revealed that there was no interface between conspecific adults of H. axyridis of 

either sex. In some ways, the lack of intraspecific competition was not on the whole 

surprising, but did conflict, however, with the earlier results recorded from the conspecific 

larval track test. One possible reason is that H. axyridis is regarded as a territorial and 
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defensive species that could mark its territory by discharging its repellent tracks as soon as it 

lands on a new site. Since, during the course of the test, both adults and their tracks were kept 

physically isolated, there was no question of one intruding on the other's territory. This is not 

expected to be same when evaluating the oviposition behaviour response of H. axyridis 

ladybird when in coexistence with conspecific adults. 

 

It has been noted that females of H. axyridis consumed significantly less prey and 

consequently laid fewer clutches of eggs in response to the presence of faeces of 

conspecifics, compared with the existence of the faecal cues of heterospecific species, such as 

the predator ladybird Propylea japonica (Thunberg, 1780) ( (Coleoptera: Coccinellidae) 

(Agarwala et al., 2003). In contrast, females of aphidophagous coccinellids C. limbifer laid 

significantly larger batches of eggs on paper strips contaminated with conspecific larval 

tracks, when compared with clean papers (Ruzicka, 2003). The opposing influences of 

conspecific larval tracks on the oviposition behaviour must be regarded, but further 

investigation is required, particularly in relation to H. axyridis.  

 

Tactile stimuli receptors present on the antennal shaft, as well as visual stimuli, are important 

prompts in the presence of natural enemies (Kunert and Weisser, 2005). This study showed 

that amputating the antennae appeared to have a greater effect on adult females than on 

males. It is well known that females are in charge for prey quality assessment and scavenging 

for suitable oviposition sites (Dixon, 2000). The predatory arthropods,  particularly the 

ladybird beetles use chemical information in host foraging in the form of volatile cues 

released by plants in response to feeding by their herbivore prey (Heil, 2008, Dicke, 2009) 

therefore,  they learn how to associate odours with the prey occurrence (Dukas, 2008ab, 

Glinwood et al., 2011).  In addition, the volatile odours blends may notify the foraging 

http://www.ncbi.nlm.nih.gov/pubmed/18086230
http://www.ncbi.nlm.nih.gov/pubmed/19021885
http://www.ncbi.nlm.nih.gov/pubmed/17803459
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predators about the identity and quality of the host plant and herbivore, since each varies 

widely (Leitner et al., 2005) even between the same prey on different genotypes of the same 

plant species (Degen et al., 2004). This study showed that the lack of the antennae 

significantly hindered the metabolic activity. This reaction tended to reduce longevity. The 

influence of amputating the antennae was also investigated by Kunert and Weisser (2005), 

but was performed on different species. In the Kunert and Weisser (2005) study, the antennae 

and the maxillary palpi were ablated in females of C. limbifer and C. undecimnotata; as a 

result, those females failed to discriminate between clean and contaminated papers with 

larval tracks and laid significantly larger clutch sizes on both types of papers. Thus, the 

response of not having the sense organ, the antennae, has been found to vary between insect 

species, as shown above. Therefore, having a significant decrease in the longevity after 

amputating the antennae in H. axyridis would be the only resort in order to avoid 

unpredictable circumstances. In addition, it was noted that an odour cue is temporally paired 

with a conditional stimulus such as feeding or contact with the prey or its products (Papaj and 

Prokopy, 1989, Vet and Dicke, 1992).  For a predator that often forages in a range of 

resources varying in quality and quantity temporally and spatially, the olfactory associative 

learning of odour cues may intensify the efficiency with which the most current favourable 

prey is found and exploited (Glinwood et al., 2011). 

 

The effect of the absence of this sensory organ on males was not unanticipated, as it had been 

noted previously that the pattern of field activity of males is completely different from that of 

females (Hemptinne, 1996). In addition, it has been reported that the degree of the antennal 

sensitivity in females of H. axyridis species is greater than that of males. This suggests 

further sexual dimorphism in antennal anatomy (i.e., types of sensory receptors) as well as 

physiology (i.e., interface with external cues and stimuli conduction) (Verheggen et al., 

http://www.ncbi.nlm.nih.gov/pubmed/15998409
http://www.ncbi.nlm.nih.gov/pubmed/15299140
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3114068/#CR34
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3114068/#CR51
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2007). To further validate the present study's findings, Verheggen et al. (2007) found that 

females were highly attracted towards (E)-β-farnesene (EβF), whereas males were more 

attracted to (-)-β-caryophyllene. Thus, being unable to assess the surroundings, despite the 

presence of food and other senses (including visual and tactile stimuli), demonstrates the high 

specificity of antennae in females of H. axyridis. In addition, it was noted that since females 

are the ones that choose favourable oviposition sites for emerged larvae, the hypothesis that 

''odour learning ability'' differs between the sexes such as in C. septempunctata (Glinwood, et 

al., 2011). In contrast, Hodek et al. (2012) recently noted the frequent absence of the aphids 

prey and the need to find an alternative food evidently worked against the evolution of the 

gustatory senses in the aphidophagous and other predaceous ladybirds. This indicates the 

inability to discriminate between toxic and suitable prey. That is why the non-contact sensory 

organs, both visual and olfactory appeared to be the most important organs and have opened 

the research towards which is called ''the learn response in coccinellids'' as indicated above as 

the olfactory associative learning of odour cues (Zhu and Park, 2005, Mondor and Warren, 

2000).  In this study, it was noticed that after antennal removal completely from the base, the 

ladybeetles lost control on movement and started to move from side to side in a horizontal 

plane without turning their heads or bodies in addition to the deviated from forward 

movement. Other of the lady beetles moved around themselves in circular motions, avoided 

forward movement after antennal ablation.  Similarly, the cricket, Cryllus bimaculatus (De 

Geer, 1773) (Orthroptera: Gryllidae) uses sensory clues from the antennae and cerci to sense 

the roll angle around the body long axis relative to an upright posture (Horn and Bischof, 

1983, Horn and foller, 1985).  Thus, when the antennae were ablated at the scape, it elicited 

head counter- roll.  Another example, is the stick insect, Carausius  morosus (Sinety, 1901) 

(Diapheromeridae: Phasmatodea) that showed negative geotaxis an orientation behaviour 

depending partially on the information collected by the antennae (Dean, 1991, Simpson, 

http://en.wikipedia.org/wiki/Charles_De_Geer
http://en.wikipedia.org/wiki/Charles_De_Geer
http://en.wikipedia.org/w/index.php?title=Sinety&action=edit&redlink=1
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2005). The above emphasized the importance of the antennae in self-orientation and forward 

movement (Dean, 1991, Simpson, 2005). 

 

It could be concluded from the above results that the possession of effective physical and 

chemical defence strategies could be added to the functional traits that make H. axyridis such 

a strong intraguild predator. The behavioural response of H. axyridis towards others' tracks 

may play an important role in being a strong competitor dominating intraguild interactions. 

Nevertheless, the importance of the antenna as a sensory organ was shown, through its role in 

influencing several activities, such as self-orientation, and prey allocation, prey selection and 

ability of feeding. The antennae might influence a female’s assessment decision relative to an 

unsecured environment. Notably, the lack of antennae made the ladybeetle lose its ability to 

discriminate between good and bad prey. This led to a significant reduction in feeding ability 

accompanied by a lowering of the metabolic rate. As a final consequence, the body failed to 

maintain itself and to support the on-going physiological processes, resulting in rapid death. 

Therefore, there is a need for a better understanding of the behavioural mechanisms and 

avoidance responses, such as the one presented in this study, in order to highlight better the 

intraguild interaction in the presence of this ladybird. Further studies are required to 

investigate the contaminated tracks of con- and heterospecifics on the oviposition behaviour 

of H. axyridis. The effect of partial and complete antennae amputation, as well as the 

maxillary palpi, on mating and oviposition behaviours will be considered in future studies. It 

could be concluded that H. axyridis ladybirds had a sexual dimorphism in antennae, with 

differential function and morphology. This fact is important in going some way towards 

explaining the on-going success of invasion and establishment of H. axyridis, ascribed to the 

highly sensitive sense organs, elaborate avoidance tactics towards other con- and 

heterospecific species (in order to increase survival rate) and aggressive completive ability 
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for resources. Hall (2011) noted that if the benefits from consuming competitors prevail over 

the loss of shared resources to competitors, invasion continues faster than invasion in the 

absence of competitors.  
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Chapter 8 

Responses of Immature Larval Instars of Harmonia axyridis to 

Short-Term Diet Regimes: A study on Trade-offs 

8.1   Introduction 

 

Phenotypic traits may develop through different ontogenetic trajectories that are influenced 

by an individual’s previous experimental environment (Taborsky, 2006). A wide range of 

responses to fluctuations in growth conditions or environmental conditions have been 

recognised. Growth conditions experienced during early development might thereby have 

pronounced costs on life-history traits, manifested in reduced body size at maturity as well as 

delayed maturation, a decrease in lifetime fecundity and a pattern of aging (Metcalfe and 

Monaghan, 2001, Day and Rowe, 2002, Taborsky, 2006). In some situations, any delay in 

maturation elevates pre-reproductive mortality and reduces individual fitness (Stearns, 1992, 

Blanckenhorn, 2000). In addition, poor environments could lead to the lowering of energy 

reserves, resulting in reduced competitive capability (Ali et al., 2003) and mating efficiency 

(Sokolovska, 2000). A deficiency of nutrients during early development is principally 

important in this context, because this can have unexpected long-term consequences besides 

the more instant and obvious effects on early growth rates (Metcalfe and Monaghan, 2001).  

 

Nutritional conditions during key periods of development are essential in determining the 

subsequent life-history trajectory of an organism (Metcalfe and Monaghan, 2001). Food is 

heterogeneous in space and time and is the chief requirement for growth and reproduction in 

an organism (Agarwala and Bhowmik, 2011). This is true for coccinellids that frequently 
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forage in an unstable aphid population (Honek, 1991). Dixon et al. (1993) reported that the 

potential decline in aphid quality or quantity triggered wing development and reduced the 

size of gonads in some cases. In agreement, Day and Rowe (2002) noted that resource 

restriction during individual development might lead to a number of changes in life-history 

traits, regarded as an adaptive phenotype response. Nonetheless, experiencing sub-optimal  

growth conditions often results in alteration in the relative allocation of resources to all body 

parts, causing dramatic changes in the relationships between structural parts and the overall 

body size (Boggs and Freeman, 2005, Dmitriew and Rowe, 2005, Stoks et al., 2006). For 

instance, when damselflies experienced low food quantity, an extra growth in structural size 

occurred, affecting the degree of allometry with overall body size (Strobbe and Stoks, 2004, 

Dmitriew and Rowe, 2005). Negative environmental influences can also be much more subtle 

and challenging to recognise, mainly if they do not appear until later in life. For example, 

very small variations in the prenatal hormonal environment can have a substantial effect on 

adult reproductive behaviour (Clark and Galef, 1995, Qvarnström and Price, 2001). 

 

It has been reported that when an insect’s population experienced food deprivation, immature 

stages tended to reduce maintenance costs and invest more in dispersal phenotypes 

(Blanckenhorn, 2000, Reim et al., 2006). The investment in dispersal traits might come at a 

cost to resource allocation for reproduction (Braendle et al., 2006). This in particular reflects 

the way in which insects might adapt to an anticipated variable environment (Boggs and 

Freeman, 2005, Stoks et al., 2006). Despite the above, in some cases, the response might be 

entirely different, particularly if the conditions experienced are predictable and likely to be 

encountered by emerged adults (Boggs and Freeman, 2005, Stoks et al., 2006). In a similar 

context, Gotthard and Nylin (1995) claimed that most organisms are able to complete their 

development and become fully matured as growth conditions improve. Metcalfe and 

http://medical-dictionary.thefreedictionary.com/gonad
http://encyclopedia2.thefreedictionary.com/allocation+of+resources
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Monaghan (2001), however, stressed that even if an organism seems to improve from the 

food scarcity when resources subsequently restore, nutritional insufficiencies experienced 

during early development can have intensive, pervasive and long-lasting effects on the adult 

individual, and even on its future offspring. 

 

Trade-offs play a crucial role in the evolution and development of life-history traits (Charnov 

and Krebs, 1974, Bell, 1980). Usually, trade-offs exist when an advantageous change in one 

trait accompanies a new change in other traits (Stearns, 1989). In light of the costs arising 

from food depletion, one might expect that accelerated growth might be selected in terms of a 

period of rapid growth, mainly when succeeding conditions are re-established (Metcalfe and 

Monaghan, 2001). Regardless, accelerated or compensatory growth may result in immediate 

or long-term fitness costs (Ali et al., 2003) that might spread across generations (Huck et al., 

1987). Compensatory growth is considered as an adaptive mechanism, defined as “[a] phase 

of accelerated growth when favourable conditions are restored after a period of growth 

depression” (Ali et al., 2003). This kind of growth could diminish the costs and result  in 

complete or partial compensation, depending on the timing, magnitude and duration of the 

growth restriction period (Mangel and Munch, 2005, Robby et al., 2006). In the case of 

partial or incomplete compensation, it can be difficult to delineate whether the downstream 

fitness cost is an extra cost or a penalty of alterations in body size (Dmitriew and Rowe, 

2007). Metcalfe and Monaghan (2001) reported that immediate costs as a result of 

compensatory growth are not always apparent, but they may include a negative effect on 

future offspring quality and fitness (Block and Robby, 2005, Stoks et al., 2006). The degree 

and intensity of costs are chiefly governed by the pattern of growth. Gotthard (2001) noticed 

that individuals that grow faster may display a greater weight loss after malnourishment 

compared with slower developing individuals (Gotthard, 2001). This occurs because the 
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weight of the former is usually accomplished under greater metabolic rates, resulting in a 

remarkable reduction in energy reserves (Stoks et al., 2006). Furthermore, behavioural, 

physiological and anatomical expenses might also result from rapid growth, but have been 

somewhat ignored (Stoks et al., 2006). For example, Gotthard (2000) suggested that there are 

a variety of behavioural costs, such as the intensification in searching behaviour.  

 

Partridge (1987) commented that the methods used to measure several types of trade-offs 

have been subject to controversy. There are three levels of approaches implemented to 

evaluate the trade-offs,  costs of a genetic basis, the intermediate (physiological) approach 

and phenotypic costs (Williams, 1966a b, Calow, 1979). Knowledge of the three levels is 

highly important in order to understand how each cost works (Stearns, 1989). The impact of 

environmental fluctuation on the genetic and phenotypic trade-offs is well established 

(Gebhardt and Stearns, 1988). Nonetheless, not all the trade-offs have received the courtesy 

relative to their significance, particularly intra-individual trade-offs (Stearns, 1989). 

Measuring the trade-offs of reproduction has proven to be problematic, because both genetic 

and phenotypic associations must be carefully recognised in advance before identification of 

actual costs. Thus, extra consideration must be given to the role of the endocrine system 

associated with both phenotypic and genetic aspects in determining the basis of several costs.  

 

One vital reason for arthropod success is the presence of specialised ovaries with elaborated 

vitellogenic apparatus, which enable them to lay high numbers of eggs (Eckelbarger, 1994). 

Koch (2003) reported that a female of Harmonia axyridis (Pallas, 1773) (Coleoptera: 

Coccinelldae) often produces a clutch of 10-50 eggs every 1-2 days over a period of 1-3 

months. In addition, the development of their ovaries shows its specific strategies that allow 

the ovaries to become capable of coping with food prey fluctuation (Papaj, 2000). Over a 

http://en.wikipedia.org/wiki/Peter_Simon_Pallas
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wide range of insect taxa, food scarcity plays an essential role in inducing both oosorption 

and trophic egg production (Perez Mendoza et al., 2004). The production of trophic eggs is 

considered an important part of a mother’s provisional strategy to ensure nutrient availability 

for developing juveniles (Perry and Roitberg, 2005).  

 

Accelerated or compensatory growth is another potential method used by most ladybirds to 

overcome stressful situations. Accelerated or compensatory growth is a physiological 

mechanism regulating body size in response to food limitation (Davidowitz et al., 2003). 

Compensatory growth is well documented across a wide range of taxa (Metcalfe and 

Monaghan, 2001, Tammaru et al., 2004, Dmitriew and Rowe, 2007). Accelerated growth is 

expected to be selected for when conditions are subsequently restored (Stoks et al., 2006). 

Thereafter, the growth response might either result (as mentioned above) in full or partial 

compensation for body size or stored resources, depending on the severity and length of 

growth constraint (Dmitriew and Rowe, 2007). In some cases, behavioural and physiological 

compensations might complement each other, resulting in complete compensation (House, 

1965). Dmitriew and Rowe (2007) stressed that full or nearly full-size compensation appears 

to be the custom in some insects, such as in the damselfly species (Stoks et al., 2006). Ali et 

al. (2003) noted that many animals are able to compensate after food stress by accelerating 

their growth rates above the normal levels of non-stressed individuals.  

 

Growth rates are often kept below the physiological maximum level, signifying that rapid 

growth can be highly costly (Arendt, 1997, Mangel and Stamps, 2001). Both accelerated 

growth rate and growth experienced during early developmental stages may lead to a 

significant rise in mortality rate (Honek, 1993, Sokolovska, 2000).  
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The cost of compensation may have short- or long-term effects (Arendt and Wilson, 2000, 

Mangel and Stamps, 2001). Short-term costs may hinder structural development (Arendt and 

Wilson, 2000), reduce body size and maintenance (Morgan et al., 2000) and increase 

predation risk, due to elevated foraging activity (Gotthard, 2000). Long-term costs may 

include reduced longevity. For example, the wild brown trout Salmo trutta (Linnaeus, 1758) 

(Salmoniformes: Salmonidae) had high winter mortality subsequent to a compensatory 

growth (Johnsson and Bohlin, 2006). Furthermore, all deprived groups of trout S. trutta 

displayed an increase in body length (Johnsson and Bohlin, 2006). Accelerated growth may 

result in major weight loss (Dmitriew et al., 2009). For example, when the ladybirds 

Coleomegilla maculata (De Geer, 1775) (Coleoptera: Coccinellidae), Hippodamia 

convergens (Guérin-Méneville, 1842) (Coleoptera: Coccinellidae) and H. axyridis were 

deprived of food for varying times during the fourth instar, they revealed variable drops in 

weight and a reduction in adult size (Dmitriew et al., 2009, Phoofolo et al., 2009). Food 

restriction in the Atlantic salmon, Salmo salar (Linnaeus, 1758) (Salmoniformes: 

Salmonidae) resulted in a smaller sized body, lower rate of maturation and decrease in stored 

lipids (Morgan and Metcalfe, 2001). Likewise, when larvae of the butterfly Pararge aegeria 

(Linnaeus, 1758) (Lepidoptera: Nymphalidae) were starved of food, they showed a relatively 

high compensatory growth rate accompanied by excessive weight loss (Gotthard, 1994). The 

reduction in body weight of starved insects might exist due to the alteration in the 

proportional allocation of resources such as lipids to precise components of body parts (Zhao 

and Zera, 2002). It was reported that the stored lipid is often reduced, particularly in 

individuals characterised by improved early-age fecundity or in juveniles with a high rate of 

growth (Zera and Harshman, 2001). The above suggest that the evolution of many life-history 

traits requires interchanging lipid metabolism in order to increase energy reserves. This may, 
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however, have an adverse impact on fitness components, such as reproduction (Zhao and 

Zera, 2002). 

  

Stevens et al. (1999) noted that exposing larval caddis flies to stress altered the scaling 

relationships between various body part traits and overall body size. The degree of costs 

depended on whether the stressed species was of a short- or long-lived type (Stevens et al., 

2000). They further demonstrated that the thorax size in the long-lived species was well-

preserved compared with the short-lived species. Another study showed that food deprivation 

during juvenile stages of H. axyridis resulted in increased mass and size of head and 

pronotum and that when reared on low food quantity, they displayed a phenotype favouring 

dispersal, manifested in increasing the wing area (Dmitriew and Rowe, 2007).  Similarly, the 

wing area was found to be relatively greater in starved adults compared with unstarved ones 

(Dmitriew et al., 2009). Regardless of the above, the compensatory mechanism remains hard 

to explain in some cases, such as in the damselfly Ischnura verticalis (Say, 1839) (Odonata: 

Coenagrionidae). This species showed a complete compensation in structural size, but partial 

compensation in body mass after food deprivation (Dmitriew and Rowe, 2005, 2007). In 

contrast, a later study performed on the same species did not reveal any effects on the wing 

length or body size parameters after a period of food restriction (Dmitriew et al., 2009). 

The connection between the observed changes in the body allometry and fitness is not always 

clear when it arises from food stress. Some traits may be positively affected and others 

negatively influenced (Ali et al., 2003). In conclusion, the degree of compensation exhibited 

may vary among species (Srygley and Oliveira, 2001) and according to the life stage 

(Dmitriew and Rowe, 2011). Therefore, stronger compensatory growth will be expected if the 

final size is entirely associated with fitness and minimal costs (Stevens et al., 2000).  
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In ladybirds, accelerated or compensatory growth is used by most to eliminate any 

differences in weight or size of individuals that would suffer starvation later in life (Dmitriew 

and Rowe, 2007). The connection between the observed costs in life-history traits and related 

fitness is not always obvious, implying difficulties in assessing them (Ali et al., 2003). Little 

work has been done on this issue and further studies are required to identify the various 

patterns of costs related to compensatory growth. Despite the large quantity of data on 

compensatory responses, the basis of this mechanism remains uncertain (DeBlock et al., 

2008), particularly among arthropods (Tammaru et al., 2004). 

 

Harmonia axyridis is an aphidophagous predatory ladybeetle that was introduced to many 

countries as a biological control for aphid pests, and has since become established as an 

invasive species worldwide (Koch, 2003). One of the characteristics that has promoted H. 

axyridis over other species and accelerated its invasion and establishment is its highly 

efficient reproductive performance. This ladybird is highly fecund and usually reveals an 

adapted provisional behaviour, manifested in producing trophic eggs and eggs with partially 

developed larvae as extra food for emerging juveniles (Koch, 2003, Evans and Gunther, 

2005).  Harmonia axyridis undergoes strong selection to cope with rapid changes in prey 

resources and environmental changes during juvenile development and adult growth 

(Agarwala and Bardhanroy, 1999, Helden et al., 1994).  

 

In this ladybird, most life-history traits (e.g., fecundity and longevity) depend predominantly 

on diet quantity and quality (Evans and Gunther, 2005). Habitat suitability for reproduction 

and development are discussed in detail by Osawa (2005). The question remains as to how 

this ladybird has managed efficiently across heterogeneous habitats and become a successful 
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invader to the detriment of many native species. Therefore, the present study was commenced 

to directly and indirectly assess the composite traits associated with fitness after a period of 

early resource restriction in the ladybird H. axyridis. 

 

8.2    Aims  

 

The experiment was designed to test the effect of a brief period of food manipulation on the 

life-history traits of pre- and post-adult periods, as well as across generations. The general 

aim of this study was to evaluate the phenotypic responses manifested in short- and long-

terms trade-offs, since Gotthard (2000) and many others had stressed the great difficulty in 

identifying such trade-offs. In order to achieve the above, the study looked at the effect of 

early food scarcity at successive instars and the subsequent alterations in life-history traits, 

particularly adult fitness. This was performed by analysing the weight and duration of 

successive instars after the stressful period, adult fresh body weight, sex ratio, percentage of 

mortality and the reproductive parameters of the emerged adults, including lifetime fecundity, 

fertility, proportion of trophic eggs, total reproductive period, reproductive biomass and 

longevity. The study also investigated the relationships between three important 

characteristics,  fresh body weight, lifetime fecundity and longevity. In addition, the effects 

on the first generation reared under constant conditions were measured to unravel any long-

term costs associated with their mothers being stressed.  
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8.3  Materials and methods  

 

Adults of H. axyridis were collected from a culture maintained in a controlled temperature 

room at 20±1ºC, 70-75% RH and a photoperiod of L16:D8 under fluorescent lamps. They 

were sexed, paired and allowed to mate separately in 9cm Petri-dishes. Each couple was 

provided daily with 32 pea aphids, Acyrthosiphon pisum (Harris, 1776) (Hemiptera: 

Aphididae). The couples were maintained under the above similar conditions until eggs were 

laid. Upon egg hatching, five sets of larvae were assigned for this experiment. Larvae 

belonging to the first set were starved at their second
 
stadium, the second set of larvae was 

starved at their third
 
stadium, a third set of larvae were starved at their fourth stadium, and the 

fourth set of larvae was starved at their fifth stadium. Larvae belonging to each set were 

placed individually in 9cm Petri-dishes and allocated to one of the four feeding treatments:  

treatment A (provided with only water for two days, normal feeding then resumed), treatment 

B (deprived of water and aphids for two days then fed as normal), treatment C (aphids fed 

only without water throughout their lifetime) and finally the control, in which all larvae were 

provided with 32 aphids and water daily. The aphids offered to each larva were dependent on 

the developmental stage according to Agarwala et al. (2008) and the method mentioned in 

Chapter 2. All larvae were checked and monitored until adult emergence under similar 

controlled conditions, as described above. The weight after each moult and the stage duration 

were recorded for each larva in order to calculate the total developmental period, total larval 

period and total growth rate. Fresh body weight, sex ratio and the percentage of mortality 

were determined for each treatment. Subsequently, adult females were paired with unstarved 

males and each couple was placed individually in a 9cm Petri-dish maintained under similar 

above laboratory conditions. Couples were fed 32 adult aphids daily and supplied with a 2cm² 

piece of moistened tissue paper with a 10% honey solution. A folded filter paper (42.5mm, 

http://en.wikipedia.org/wiki/Aphididae
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Whatman) was also kept in each Petri-dish to create an oviposition substrate. Couples were 

monitored until their death.  Longevity, lifetime fecundity, egg hatchability, number of 

trophic eggs, reproductive period and pre-oviposition periods were determined for each 

female. Freshly hatched larvae from different clutches obtained exclusively from the set that 

were starved at the fifth instar were collected and reared individually under the above 

laboratory conditions and supplied with aphids daily (according to the method detailed by 

Agarwala et al. (2008) stated above) until adult emergence. As above, life-history traits, 

including developmental parameters such as total developmental period, total larval period, 

total growth rate and final adult weight, were determined for the progeny in order to 

commence comparison with their mothers. The few females obtained from the experiments in 

which larvae were starved at their second stadium and those at their third stadium were 

dissected to investigate the status of their ovarioles and compare them with the dissected 

ovarioles obtained from the control.  

 

8.4 Data analysis 

 

All data were subjected to the Shapiro-Wilks test to check for normality. Log- and squared-

root transformations were used to normalise data distribution. Testing for the differences 

between treatments in terms of instar weights and durations was performed using one-way 

ANOVA. Tukey-HSD test was used in association with ANOVA to reveal the variations 

between the tested variables. For the parameters that failed to be normalised using the above 

transformation, non-parametric analyses were applied using a generalised linear model with 

Poisson errors. Any overdispersion was removed using Quasipoisson modelling. Student t-

test for unpaired data was applied to check the variations between mean total developmental 

period, total growth rate and fresh adult weight of females and their progeny. Wilcoxon Rank 
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Sum was used when the errors were not normally distributed. Pearson’s correlation test was 

performed to estimate any correlation between different response variables, such as lifetime 

fecundity, fresh adult weight, longevity and others for each treatment. All statistical analyses 

were carried out using the statistical programme ‘R’ version 2.8.1 (Ihaka and Gentleman, 

1996). 

 

8.5 Results  

8.5.1  Immature developmental stages  

8.5.1.1  Second larval instar 

 

Changes in the weights of developing larvae across stages (instars) and the related 

developmental parameters are presented in Table 8.1. All the treatments had a significant 

influence on larvae weights directly at the termination of the stressful period (F=45.73, 

df=146, RSE=0.283, P<0.0001). The mean weight of larvae analysed immediately at the end 

of treatment courses A, B and C was significantly different compared with the control – 

(difference =0.7, P<0.0001), (difference=0.61, P<0.0001) and (difference=-0.31, P<0.0001), 

respectively. Larval weight after the fourth moult varied significantly between the treatments 

(F=6.4, df=87, RSE=0.515, P<0.0001). The mean weight at the onset of the fifth instar (after 

the fourth moult) of larvae assigned to treatment B was 21.12±0.76mg, which was 

significantly greater (difference=-0.67, P<0.01) than the 15.41±0.45mg obtained from the 

control. The mean weight of pupae varied significantly between treatments (F=32.23, df=74, 

RSE=5.168, P<0.0001).  The mean weight at the commencement of the pupal stage was 

21.74±1mg for treatment A, 21.01±0.77mg for treatment B and 29.13±0.63mg for treatment 

C, all significantly higher than the control:–  the difference was -6.1 (P<0.05), -5.43 (P<0.05) 

and 13.55 (P<0.0001), respectively. Upon adult emergence, the mean weight of adults in 
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treatment A was slightly greater but not significantly so, than the control (difference=-0.32, 

P=0.58); likewise, for those that were obtained from treatment B, the mean weight was a little 

more than the control but not significantly so (difference=-0.4, P=0.25). For treatment C, 

however, the mean weight of adults was significantly greater than the control (F=4.346, 

df=63, RSE=0.526, P<0.01), (difference=0.5, P<0.01). The above results implied that all 

larvae were capable of successively compensating, as the final adult body weight was found 

to be to some extent similar to the mean weight of the control larvae (or was considerably 

more in the case of treatment C).  
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Table 8.1. Changes in larval performance as measured by the weight (mg) and the related developmental parameters for successive instars of H. 

axyridis ladybirds experiencing different treatments (A, B, C and the control). 

   

Treatments 

 

Larval stage 

Developmental 

stage weight(mg) Treatment A (n=52) Treatment B (n=32) 

Treatment C 

(N=32) Control (n=64) 

2
nd

 larva stadium After egg hatching 0.23±0.01 0.44±0.02 0.16±0.01 0.3±0.01 

 

After 1st moult 0.52±0.025 1.28±0.13 0.65±0.04 1.25±0.14 

 

After 2d starvation 0.27±0.01 0.38±0.025 0.91±0.06 1.79±0.16 

 

After 2nd moult 1.6±0.08 4.7±0.3 1.5±0.068 4.85±0.3 

 

After 3rd moult 4.21±0.2 12.76±0.6 5.038±0.21 8.69±0.5 

 

After 4th moult 13.59±0.31 21.12±0.76 15.1±1 15.41±0.45 

 

Pre-pupal weight 22.6±0.71 23.23±0.55 31.33±1 19.7±0.7 

 

Pupal weight 21.74±1 21.01±0.77 29.13±0.63 15.58±0.72 

 

Adult weight 13.3±1.09 13.52±1 15±1.2 8.89±0.47 

3
rd
 larva stadium 

Developmental 

stage weight(mg) Treatment A (n=47) Treatment B (n=51) 

Treatment C 

(N=27) Control (n=32) 

 

After egg hatching NA NA NA NA 

 

After 2nd moult 1.3±0.068 1.15±0.58 0.83±0.036 2.78±0.18 

 

After 2d starvation 1.16±0.07 0.9±0.04 1.16±0.05 4.55±0.26 

 

After 3rd moult 4.68±0.34 3.25±0.11 3.35±0.2 7±0.26 

 

After 4th moult 10.55±0.36 11.6±0.48 10.62±0.38 11.8±0.28 

 

Pre-pupal weight 21.8±1 22.12±0.87 26.03±1.125 19.14±0.61 
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Table 8.1(cont.) 

 Pupal weight 20±0.74 24.67±0.55 24.81±0.66 16.2±0.6 

 

Adult weight 10.87±0.47 14.4±0.65 21.02±0.82 10.33±0.72 

4
th
 larval stadium 

Developmental 

stage weight(mg) Treatment A (n=59) Treatment B (n=36) 

Treatment C 

(N=27) Control (n=32) 

 

After egg hatching 0.13±0.007 0.3±0.036 0.21±0.016 0.16±0.012 

 

After 1st moult 0.87±0.032 1.08±0.068 0.78±0.062 0.84±0.04 

 

After 2nd moult 1.36±0.032 1.65±0.077 1.7±0.17 2.06±0.1 

 

After 3rd moult 5.7±0.26 5.48±0.48 5±0.23 3.8±0.14 

 

After 2d starvation 4.61±0.22 5.37±1.2 8.6±0.3 6.85±0.37 

 

After 4th moult 12.2±0.52 11.73±0.45 12.62±0.61 15±0.46 

 

Pre-pupal weight 26±0.36 27.72±0.41 28±0.57 23.2±0.61 

 

Pupal weight 21.2±0.48 24.27±0.4 25.04±0.84 20.1±0.55 

 

Adult weight 10.4±0.46 13.6±0.66 15.53±0.7 17±0.45 

 

Developmental 

stage weight(mg) Treatment A (n=28) Treatment B (n=30) 

Treatment C 

(N=30) Control (n=27) 

5
th
 larval stadium After egg hatching 0.37±0.025 0.45±0.02 0.17±0.01 0.33±0.03 

 

After 1st moult 0.85±0.06 1±0.05 1.34±0.05 0.66±0.038 

 

After 2nd moult 1.54±0.07 1.48±0.03 1.82±0.07 1.48±0.08 

 

After 3rd moult 5.72±0.28 5.68±0.022 5.34±0.32 5.83±0.26 

 

After 4th moult 11.27±0.22 11.33±0.4 12.26±0.46 16.16±0.56 

 

After 2d starvation 8.07±0.48 10.12±0.27 20.89±0.66 22.81±0.52 

 

Pre-pupal weight 24.31±0.76 23.12±0.6 27.81±0.57 25.61±0.6 
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Table 8.1(cont.) 

 Pupal weight 20.75±0.68 19.42±0.45 24.55±0.55 22.76±0.6 

 

Adult weight 17.33±0.5 16.58±0.62 20.4±0.6 18.68±0.68 

 

Developmental 

stage weight(mg) Treatment A (n=4) Treatment B (n=10) Treatment C (N=9) Control (n=23) 

Off-spring from 4
th

 instar  After egg hatching 0.22±0.024 0.26±0.02 0.122±0.014 0.33±0.03 

 

After 1st moult 1.2 ±0.17 0.58±0.02 0.55±0.1 0.66±0.038 

 

After 2nd moult 2.82±0.23 2±0.24 4.63±0.4 1.5±0.08 

 

After 3rd moult 5.6±0.28 7.45±0.55 15.46±0.54 5.73±0.26 

 

After 4th moult 12.1±0.8 19.37±0.77 10.34±0.68 16.16±0.56 

 

Pre-pupal weight 21.75±1.25 21.9±0.42 18.52±0.67 26.04±0.59 

 

Pupal weight 16.674±0.83 16.5±0.76 15.18±1.13 22.25±0.6 

 

Adult weight 11.77±0.43 11±0.4 11.18±1 18.68±0.45 
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The total developmental period varied significantly between the four treatments 

(F=1.857e+05, df=62, RSE=0.315, P<0.0001). Comparing the mean total developmental 

period of larvae assigned for the three treatments (A, B and C) versus the control revealed 

that treatment C possessed the longest period (39.88±0.7 days) compared with the control 

(difference=0.28, P<0.0001), followed by 34.2±1.35 days for treatment A, which was also 

found to be significantly longer than the control (difference=-0.13, P<0.0001) (Table 8.2). 

Larvae subjected to treatment B, on the other hand, had the shortest period in comparison 

with the control (difference=0.15, P<0.0001), with treatment A (difference=-0.28, P<0.0001) 

and with treatment B (difference=0.43, P<0.0001). In addition, the mean total growth rate 

varied between treatments A, B and C (F=2.67, df=62, RSE=0.146, P=0.05). The mean total 

growth rate was slightly greater in treatments A and B compared with the control 

(difference=-0.06, P=0.77) and (difference=-0.16, P=0.046), respectively. Larvae subjected to 

treatment C grew faster than the control, since they accomplished a mean total growth rate of 

approximately 0.37±0.04mg/day. This was found to be slightly more than the control, which 

undertook 0.29±0.021mg/day, but the difference between them was not significant 

(difference=0.05, P=0.53).  

 

The reproductive parameters of females that managed to survive the later application of the 

treatments are presented in Table 8.3. All of the treatments had a significant influence on the 

lifetime fecundity of females (F=8.8, df=38, RSE=21.8, P<0.001).  The mean lifetime 

fecundity of the control was 64.13±4 eggs, which was significantly greater than that of 

females in treatment B (18.5±2.72 eggs (difference=45.6, P<0.01); females collected from 

treatment C, however, were found to be more fecund than the control but the difference was 

not significant (difference=12.1, P=0.41). Likewise, females obtained from treatment A had a 

lower lifetime fecundity compared with the control but the difference was not significant 
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(difference=28.13, P=0.1).  Treatment did not affect the proportion of trophic egg production 

(F=2, df=36, RSE=0.5, P=0.14). The mean proportion of trophic eggs produced by females 

obtained from treatments A, B and C were found to be comparably less than the control, but 

the differences were not significant  (difference=-0.36, P=0.54), (difference=-0.55, P=1) and 

(difference=0.26, P=0.47), respectively.  

 

The mean longevity of females varied between treatments (F=32.29, df=38, RSE=0.13, 

P=0.001). The mean longevity differed significantly between the treatments, females in 

treatment A lived for approximately 24.75±1.75 days and females in treatment B had a mean 

longevity of 20.54±0.6 days. Both were found to be comparably less than the control (39.68 

±1.22 days), (difference=0.45, P<0.0001) and (difference=0.62, P<0.0001), respectively. 

Females in treatment C had a slightly lower mean longevity, but the difference was not 

significant compared with the control (difference=-0.05, P=0.66). 

 

There was no correlation between lifetime fecundity and longevity in treatment A (correlation 

coefficient=0.42, P=0.57), treatment B (correlation coefficient=-0.47, P=0.52) or treatment C 

(correlation coefficient=0.25, P=0.43). The percentage of mortality for treatment A was 90%, 

for treatment B was 78.12% and for the control was 62.5%; the lowest recorded percentage 

was that for treatment C (50%). The estimated sex ratio as presented in Table 8.2 leaned 

towards female-biasness for treatments A, B and C, compared with the control which 

revealed an equal ratio.  
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Table 8.2. Mean total developmental duration, total growth rate and survivorship for the instars experiencing treatments A, B, C and the control.  

 

   

Treatments 

 

Larval stage 

Developmental 

stage weight(mg) Treatment A (n=52) Treatment B (n=32) 

Treatment C 

(N=32) Control (n=64) 

2
nd

 larva stadium After egg hatching 0.23±0.01 0.44±0.02 0.16±0.01 0.3±0.01 

 

After 1st moult 0.52±0.025 1.28±0.13 0.65±0.04 1.25±0.14 

 

After 2d starvation 0.27±0.01 0.38±0.025 0.91±0.06 1.79±0.16 

 

After 2nd moult 1.6±0.08 4.7±0.3 1.5±0.068 4.85±0.3 

 

After 3rd moult 4.21±0.2 12.76±0.6 5.038±0.21 8.69±0.5 

 

After 4th moult 13.59±0.31 21.12±0.76 15.1±1 15.41±0.45 

 

Pre-pupal weight 22.6±0.71 23.23±0.55 31.33±1 19.7±0.7 

 

Pupal weight 21.74±1 21.01±0.77 29.13±0.63 15.58±0.72 

 

Adult weight 13.3±1.09 13.52±1 15±1.2 8.89±0.47 

3
rd
 larva stadium 

Developmental 

stage weight(mg) Treatment A (n=47) Treatment B (n=51) 

Treatment C 

(N=27) Control (n=32) 

 

After egg hatching NA NA NA NA 

 

After 2nd moult 1.3±0.068 1.15±0.58 0.83±0.036 2.78±0.18 

 

After 2d starvation 1.16±0.07 0.9±0.04 1.16±0.05 4.55±0.26 

 

After 3rd moult 4.68±0.34 3.25±0.11 3.35±0.2 7±0.26 

 

After 4th moult 10.55±0.36 11.6±0.48 10.62±0.38 11.8±0.28 

 

Pre-pupal weight 21.8±1 22.12±0.87 26.03±1.125 19.14±0.61 
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Table 8.2 (cont.) 

 Pupal weight 20±0.74 24.67±0.55 24.81±0.66 16.2±0.6 

 

Adult weight 10.87±0.47 14.4±0.65 21.02±0.82 10.33±0.72 

4
th
 larval stadium 

Developmental 

stage weight(mg) Treatment A (n=59) Treatment B (n=36) 

Treatment C 

(N=27) Control (n=32) 

 

After egg hatching 0.13±0.007 0.3±0.036 0.21±0.016 0.16±0.012 

 

After 1st moult 0.87±0.032 1.08±0.068 0.78±0.062 0.84±0.04 

 

After 2nd moult 1.36±0.032 1.65±0.077 1.7±0.17 2.06±0.1 

 

After 3rd moult 5.7±0.26 5.48±0.48 5±0.23 3.8±0.14 

 

After 2d starvation 4.61±0.22 5.37±1.2 8.6±0.3 6.85±0.37 

 

After 4th moult 12.2±0.52 11.73±0.45 12.62±0.61 15±0.46 

 

Pre-pupal weight 26±0.36 27.72±0.41 28±0.57 23.2±0.61 

 

Pupal weight 21.2±0.48 24.27±0.4 25.04±0.84 20.1±0.55 

 

Adult weight 10.4±0.46 13.6±0.66 15.53±0.7 17±0.45 

 

Developmental 

stage weight(mg) Treatment A (n=28) Treatment B (n=30) 

Treatment C 

(N=30) Control (n=27) 

5
th
 larval stadium After egg hatching 0.37±0.025 0.45±0.02 0.17±0.01 0.33±0.03 

 

After 1st moult 0.85±0.06 1±0.05 1.34±0.05 0.66±0.038 

 

After 2nd moult 1.54±0.07 1.48±0.03 1.82±0.07 1.48±0.08 

 

After 3rd moult 5.72±0.28 5.68±0.022 5.34±0.32 5.83±0.26 

 

After 4th moult 11.27±0.22 11.33±0.4 12.26±0.46 16.16±0.56 

 

After 2d starvation 8.07±0.48 10.12±0.27 20.89±0.66 22.81±0.52 

 

Pre-pupal weight 24.31±0.76 23.12±0.6 27.81±0.57 25.61±0.6 
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Table 8.2(cont.) 

 Pupal weight 20.75±0.68 19.42±0.45 24.55±0.55 22.76±0.6 

 

Adult weight 17.33±0.5 16.58±0.62 20.4±0.6 18.68±0.68 

 

Developmental 

stage weight(mg) Treatment A (n=4) Treatment B (n=10) Treatment C (N=9) Control (n=23) 

Off-spring from 4
th

 instar  After egg hatching 0.22±0.024 0.26±0.02 0.122±0.014 0.33±0.03 

 

After 1st moult 1.2 ±0.17 0.58±0.02 0.55±0.1 0.66±0.038 

 

After 2nd moult 2.82±0.23 2±0.24 4.63±0.4 1.5±0.08 

 

After 3rd moult 5.6±0.28 7.45±0.55 15.46±0.54 5.73±0.26 

 

After 4th moult 12.1±0.8 19.37±0.77 10.34±0.68 16.16±0.56 

 

Pre-pupal weight 21.75±1.25 21.9±0.42 18.52±0.67 26.04±0.59 

 

Pupal weight 16.674±0.83 16.5±0.76 15.18±1.13 22.25±0.6 

 

Adult weight 11.77±0.43 11±0.4 11.18±1 18.68±0.45 
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Table 8.3. Reproductive performances for females obtained from treatments A, B, C and the control (i.e., the number of samples were very small 

depending on the % of survived females). 

   

Treatments 

 

Larval stage 

Developmental 

stage weight(mg) Treatment A (n=52) Treatment B (n=32) 

Treatment C 

(N=32) Control (n=64) 

2
nd

 larva stadium After egg hatching 0.23±0.01 0.44±0.02 0.16±0.01 0.3±0.01 

 

After 1st moult 0.52±0.025 1.28±0.13 0.65±0.04 1.25±0.14 

 

After 2d starvation 0.27±0.01 0.38±0.025 0.91±0.06 1.79±0.16 

 

After 2nd moult 1.6±0.08 4.7±0.3 1.5±0.068 4.85±0.3 

 

After 3rd moult 4.21±0.2 12.76±0.6 5.038±0.21 8.69±0.5 

 

After 4th moult 13.59±0.31 21.12±0.76 15.1±1 15.41±0.45 

 

Pre-pupal weight 22.6±0.71 23.23±0.55 31.33±1 19.7±0.7 

 

Pupal weight 21.74±1 21.01±0.77 29.13±0.63 15.58±0.72 

 

Adult weight 13.3±1.09 13.52±1 15±1.2 8.89±0.47 

3
rd
 larva stadium 

Developmental 

stage weight(mg) Treatment A (n=47) Treatment B (n=51) 

Treatment C 

(N=27) Control (n=32) 

 

After egg hatching NA NA NA NA 

 

After 2nd moult 1.3±0.068 1.15±0.58 0.83±0.036 2.78±0.18 

 

After 2d starvation 1.16±0.07 0.9±0.04 1.16±0.05 4.55±0.26 

 

After 3rd moult 4.68±0.34 3.25±0.11 3.35±0.2 7±0.26 

 

After 4th moult 10.55±0.36 11.6±0.48 10.62±0.38 11.8±0.28 

 

Pre-pupal weight 21.8±1 22.12±0.87 26.03±1.125 19.14±0.61 
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Table 8.3 (cont.) 

 Pupal weight 20±0.74 24.67±0.55 24.81±0.66 16.2±0.6 

 

Adult weight 10.87±0.47 14.4±0.65 21.02±0.82 10.33±0.72 

4
th
 larval stadium 

Developmental 

stage weight(mg) Treatment A (n=59) Treatment B (n=36) 

Treatment C 

(N=27) Control (n=32) 

 

After egg hatching 0.13±0.007 0.3±0.036 0.21±0.016 0.16±0.012 

 

After 1st moult 0.87±0.032 1.08±0.068 0.78±0.062 0.84±0.04 

 

After 2nd moult 1.36±0.032 1.65±0.077 1.7±0.17 2.06±0.1 

 

After 3rd moult 5.7±0.26 5.48±0.48 5±0.23 3.8±0.14 

 

After 2d starvation 4.61±0.22 5.37±1.2 8.6±0.3 6.85±0.37 

 

After 4th moult 12.2±0.52 11.73±0.45 12.62±0.61 15±0.46 

 

Pre-pupal weight 26±0.36 27.72±0.41 28±0.57 23.2±0.61 

 

Pupal weight 21.2±0.48 24.27±0.4 25.04±0.84 20.1±0.55 

 

Adult weight 10.4±0.46 13.6±0.66 15.53±0.7 17±0.45 

 

Developmental 

stage weight(mg) Treatment A (n=28) Treatment B (n=30) 

Treatment C 

(N=30) Control (n=27) 

5
th
 larval stadium After egg hatching 0.37±0.025 0.45±0.02 0.17±0.01 0.33±0.03 

 

After 1st moult 0.85±0.06 1±0.05 1.34±0.05 0.66±0.038 

 

After 2nd moult 1.54±0.07 1.48±0.03 1.82±0.07 1.48±0.08 

 

After 3rd moult 5.72±0.28 5.68±0.022 5.34±0.32 5.83±0.26 

 

After 4th moult 11.27±0.22 11.33±0.4 12.26±0.46 16.16±0.56 

 

After 2d starvation 8.07±0.48 10.12±0.27 20.89±0.66 22.81±0.52 

 

Pre-pupal weight 24.31±0.76 23.12±0.6 27.81±0.57 25.61±0.6 



339 
 

Table 8.3 (cont.) 

 Pupal weight 20.75±0.68 19.42±0.45 24.55±0.55 22.76±0.6 

 

Adult weight 17.33±0.5 16.58±0.62 20.4±0.6 18.68±0.68 

 

Developmental 

stage weight(mg) Treatment A (n=4) Treatment B (n=10) Treatment C (N=9) Control (n=23) 

Off-spring from 4
th

 instar  After egg hatching 0.22±0.024 0.26±0.02 0.122±0.014 0.33±0.03 

 

After 1st moult 1.2 ±0.17 0.58±0.02 0.55±0.1 0.66±0.038 

 

After 2nd moult 2.82±0.23 2±0.24 4.63±0.4 1.5±0.08 

 

After 3rd moult 5.6±0.28 7.45±0.55 15.46±0.54 5.73±0.26 

 

After 4th moult 12.1±0.8 19.37±0.77 10.34±0.68 16.16±0.56 

 

Pre-pupal weight 21.75±1.25 21.9±0.42 18.52±0.67 26.04±0.59 

 

Pupal weight 16.674±0.83 16.5±0.76 15.18±1.13 22.25±0.6 

 

Adult weight 11.77±0.43 11±0.4 11.18±1 18.68±0.45 
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8.5.1.2  Third larval instar 

 

Mean weight during each larval stage and associated developmental parameters are presented 

in Table 8.1. All the treatments (A, B and C) impacted the weight significantly (F=141.5, 

df=120, RSE=0.206, P<0.0001). The mean weight of larvae assigned for treatment A was 

1.16±0.07mg, for treatment B was 0.9±0.04mg, for treatment C was 1.16±0.05mg and for the 

control was 4.55±0.26mg. All of the former three weights were found to be significantly less 

than the control, (difference=-1.03, P <0.0001), (difference=-1.02, P <0.0001) and 

(difference=-1, P <0.0001), respectively. Treatments A, B and C had a significant influence 

on the weight of larvae at the onset of the fourth stadium (after the third moult) (F=24.3, 

df=82, RSE=1.61, P<0.0001). The mean weight of larvae exposed to treatments A, B and C 

was significantly less than the control, (difference=-3.7, P<0.0001), (difference=-2.32, 

P<0.0001) and (difference=-3.6, P<0.0001), respectively. Only after the fourth moult did the 

weight of the larvae start to increase to values that did not significantly differ from the control 

(i.e., treatment A (difference=-0.15, P=0.46), treatment B (difference=-1.2, P=0.99) and 

treatment C (difference=-1.1, P=0.42)). As larvae grew and reached the onset of the pre-pupal 

stage, they started to get heavier than the control (F=4.88, df=63, RSE=5.54, P<0.01), 

particularly those that belonged to treatment C. The pre-pupal weight of treatment C was 

26.03±1.1mg, whereas that of those that belonged to the control was 19.14±0.61mg, which is 

significantly less (difference=6.88, P<0.01). Unexpectedly, pupae of the control group were 

found to be lighter in weight than treatment A (difference=5.203, P<0.0001), treatment B 

(difference=3.81, P<0.05) or treatment C (difference=6, P<0.0001), since all the treatments 

had significant influences on the pupal weight (F=14.8, df=51, RSE=4, P<0.0001). Finally, 

the emerged adults from treatments B and C were found to be heavier compared with the 

control (difference=4, t-value=2.24, P<0.05) (difference=15, t-value=6.45=P< 0.0001). 
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Adults obtained from treatment A were slightly heavier, but not significantly different from 

the control (difference=4.07, t-value, 0.27, P=0.13).  

 

The total developmental period varied significantly between the treatments (F=29.03, df=37, 

RSE=1.73, P<0.0001), as shown in Table 8.2. The mean duration of the total developmental 

period for treatment C did not vary from the control (difference=-0.4, P=0.92), whereas, the 

equivalent period was found to be shorter for treatment A (difference=-6.5, P<0.0001) and 

treatment B (difference=-4, P<0.0001), in comparison with the control. Likewise, the 

treatments had significant influences on the total growth rate of larvae in general (F=13.63, 

df=37, RSE=0.11, P<0.0001). The mean total growth rate of larvae belonging to treatments C 

and B was found to be significantly greater than the control – (difference=0.27, P<0.0001) 

and (difference=0.14, P<0.05), respectively. Larvae of treatment A also obtained a greater 

total growth rate, but did not differ significantly from the control (difference=0.063, P=0.63).  

 

Regarding the longevity, treatments A, B and C affected the longevity significantly 

(F=108.71, df=18, RSE=0.032, P<0.0001). Larvae from treatments A and B lived for a 

significantly shorter time than the control, (difference=-0.33, P<0.0001) and (difference=-

0.42, P<0.0001), respectively. In addition, adults of treatment C also had a slightly shorter 

lifespan, but did not differ significantly when compared with the control (difference=-0.04, 

P=0.3). The percentage mortality was 87% in treatment A, 82.35% in treatment B, 55.55% in 

treatment C and 60% for the control. The sex ratio, as provided in Table 8.1, varied 

completely between all the treatments and tended to be male-biased in treatment B and in the 

control, whereas treatments A and C revealed a female-biased sex ratio. 
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The reproductive parameters for females obtained from all treatments are presented in Table 

8.3. The length of the reproductive period for all the tested females was significantly affected 

by the treatments (F=52.18, df=18, RSE=2.38, P<0.0001). The longest mean reproductive 

period was found to belong to females collected from treatment C (20.57±1.08 days) and the 

shortest period was recorded for treatment A (2±1days). Both were found to differ 

significantly from the control, (difference=8.28, P<0.0001) and (difference=-10.28, P<0.001), 

respectively. The mean length of the reproductive period for treatment B was also found to be 

significantly shorter than the control (difference=-5.7, P<0.01).  

 

The mean lifetime fecundity of females belonging to treatments A and B were significantly 

lower compared with the control, (difference=-0.27, t-value=-8.1, P<0.0001) and 

(difference=-0.5, t-value=-2.188, P<0.05), respectively. For treatment C, the mean lifetime 

fecundity was 148.14±24.23 eggs, which was slightly higher, but not significant compared 

with the control (difference=0.45, t-value=2.04, P=0.055). The treatments revealed 

significant effects on egg hatchability or females' fertility (F=37.01, df=18, RSE=0.06, 

P<0.0001). Females from treatment B produced 30% fertile eggs, significantly less than the 

control (87%) (difference=-0.45, P<0.0001). Females of treatment A were also found to be 

less fertile compared with the control, but that was not significant (difference=-0.31, P=0.73). 

Adults from treatment C laid slightly more fertile eggs than the control, but not significantly 

more (difference=0.04, P=0.6). The treatments had significant influences on the mean 

proportion of trophic eggs (F=3.51, df=18, RSE=0.1, P<0.05). The higher proportions of 

trophic eggs were produced by females in both treatments A and B. 
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8.5.1.3  Fourth larval instar  

 

Changes in larval weight during development after experiencing various treatments are 

presented in Table 8.1. All the treatments had a significant impact on the larval weight, which 

was measured directly at the end of the stressful period (F=20.21, df=139, RSE=19.23, 

P<0.0001). The mean weight of larvae recorded directly after experiencing treatment A was 

significantly less than the control (difference=-0.34, P<0.0001); an analogous observation 

was revealed when comparing treatment B with the control (difference=-0.42, P<0.0001). 

Treatment C on the other hand, did not differ from the control significantly for the respective 

above weight (difference=0.22, P=0.12). The significant reduction in mean weight persisted 

even after accomplishing the fourth moult (fifth instar) in treatment A (difference=-0.22, 

P<0.01) and treatment B (difference=-0.23, P<0.01), in particular compared with the control. 

For treatment C, the mean weight was slightly less than the control, but not significant (t-

value=-0.17, P=0.08).  

 

In the same way, as larvae went into the pre-pupal stage, their weights varied significantly 

between the treatments (F=19.24, df=125, RSE=3, P<0.0001). The mean weight of the pre-

pupal stage was significantly greater in treatments A, B and C compared with the control, 

(difference=2.74, P<0.001), (difference=4.51, P<0.0001) and (difference=5.6, P<0.0001), 

respectively. The treatments largely affected the pupal weight significantly (F=11.48, df=114, 

RSE=3.4, P<0.0001). The weight of pupae obtained from treatment A was considerably 

greater, but not significantly different from the control (difference=0.1, P=0.73). The weight 

of pupae collected from treatments B and C were to some extent less, but once more not 

significant compared with the control – (difference=-0.067, P=0.87) and (difference=-0.01, 

P=1), respectively. The treatments had a significant influence on the adult weight (F=16.72, 
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df=102, RSE=8.2, P<0.0001). The mean weight of emerged adults from treatment C was 

15.53±0.7mg, which was somewhat less but not significantly different from the control 

(difference=-0.1, P=0.66). The mean weight of adults obtained from treatments A and B were 

significantly lighter than the control, (difference=-0.49, P<0.0001) and (difference=-0.24, 

P<0.05), respectively.  

 

The treatments had a significant influence on the total developmental period of larvae 

(F=16.42, df=102, RSE=1.33, P<0.000). The mean total developmental period for treatments 

A, B and C was found to be significantly shorter compared with the control,   (difference=-

0.1, P<0.01), (difference=-0.21, P<0.0001) and (difference=-0.14, P<0.001), respectively, as 

shown in Table 8.2. In the same way, the treatments significantly influenced the total growth 

rate (F=12.32, df=102, RSE=0.153, P<0.0001). The mean total growth rate of the control was 

0.56±0.01mg/day, which was significantly greater than treatment A (0.38±0.025mg/day) (t-

value=-0.17, P<0.001), but not significantly different from treatment B (0.55±0.03mg/day) 

(difference=-0.0001, P=1).  Individuals in Treatment C had a significantly greater total 

growth rate than the (difference=-0.24, P<0.01). Upon comparing the mean total growth rate 

of treatment A with treatment C it was revealed that the latter had a significantly greater 

growth rate (difference=-0.22, P<0.0001). Treatment C, however, did not show a significant 

difference from treatment B with respect to the relative growth rate (difference=-0.04, 

P=0.71). Finally, larvae that were exposed to treatment B had a mean total growth rate that 

was significantly greater than treatment A (difference =-0.17, P<0.001).  

 

Females that had experienced treatments A, B and C had significantly shorter longevity 

compared with the control, (difference=-0.32, P<0.0001), (difference=-0.3, P<0.0001) and 

(difference=-0.09, P<0.0001), respectively,  since all the treatments had significantly affected 
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the longevity (F=19.24, df=125, RSE=2.91, P<0.0001). To check if investing in maintaining 

body size had influenced the longevity, correlation tests were conducted. The results revealed 

an absence of correlation between these two traits in treatment A (correlation coefficient=0.3, 

P=0.43), treatment B (correlation coefficient=0.35, P=0.38) and treatment C (correlation 

coefficient=-0.5, P=0.467). Any correlation between longevity and lifetime fecundity in 

treatments A, B, C and the control was also absent,  (correlation coefficient=-0.27, P=0.46), 

(Correlation coefficient=-0.3 P=0.46), (t=-0.023, P=0.82, Glm modelling) and (t=-0.43, 

P=0.68, Glm modelling), respectively.  

 

The results of the reproductive output of females starved at the onset of their fourth instar are 

presented in Table 8.2. Unexpectedly, the results revealed that the treatments did not have 

any apparent significant effect on the lifetime fecundity of surviving females (F=2.26, df=31, 

RSE=3.23, P=0.1). Although females collected from treatment A had a mean lifetime 

fecundity of 124.25±26.08 eggs, this was found to be slightly higher than the control 

(91.33±9 egg), but not significantly so (difference=1.05, P=1). Females obtained from 

treatments B and C were found to be less fecund than the control, but the differences were not 

significant – (difference=-2.3, P=0.44) and (difference=-2.22, P=0.47), respectively. In 

contrast, the proportion of fertility or egg hatchability varied significantly between the 

treatments (F=24.73, df=10, RSE=0.08, P<0.0001). The proportion of fertile eggs produced 

by females of the control was shown to be significantly greater than that produced by females 

of treatment A (difference=-0.8, P<0.001), treatment B (difference=-0.8, P<0.01) and 

treatment C (difference=-0.83, P<0.05). The significant reduction in percentage of fertility 

was found to be associated with the high proportion of trophic eggs. The proportion of 

trophic eggs varied significantly between treatments (F=224.4, df=31, RSE=0.06, P<0.0001). 

It was found that the mean proportion of trophic eggs was greater than the control in 
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treatments A (difference=0.77, P<0.0001), B (difference=0.85, P<0.0001) and even in C 

(difference=0.84, P<0.0001). Thus, laying a larger clutch was not often an indicator for 

relatively higher fertility. For example, females that had experienced treatment A had a mean 

lifetime fecundity of 124.25±26.08 eggs, accompanied by a high percentage of trophic eggs 

(89%). Females invested more resources into the well-recognised adaptive provisional 

behaviour to secure immature survival. This might, however, constitute a cost on longevity.  

 

All the treatments influenced the pre-oviposition period significantly (F=5.51, df=31, 

RSE=0.34, P<0.01). There was a delay in the pre-oviposition period by females collected 

from different treatments. The comparisons revealed that the delay in egg production was 

significantly greater in treatments A and C compared with the control,  (difference=0.47, 

P<0.05) and (difference=0.62, P<0.01), respectively. Females from treatment B showed a 

slight non-significant delay in the reproductive period compared with the control 

(difference=0.42, P=0.06). In contrast, the length of the reproductive period of all treatments 

did not differ significantly from the control (F=2.85, df=31, RSE=0.37, P=0.053). The length 

of the reproductive period in treatments A, B and C did not vary significantly from the 

control, (difference=0.29, P=0.4), (difference=0.13, P=0.86) and (difference=-0.22, P=0.6), 

respectively. The greatest mortality was found in treatment B (42.37%) and the least in 

treatment A (22.22%) (Table 8.2). The sex ratio was not consistent, it tended to be male-

biased in treatment A and in the control, but for treatments B and C was female-biased.  

 

8.5.1.4  Fifth larval instar 

 

Changes in larval developmental weight in response to all treatments are presented in Table 

8.1. Similar to the above stages, the mean weight of larvae recorded directly after the 
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treatment period varied significantly (F=51, df=101, RSE=3.5, P<0.0001). The weight of 

larvae was less significant in treatment A (difference=-0.46, P <0.0001), in treatment B 

(difference=-0.61, P<0.0001) and in treatment C (difference=-0.27, P<0.0001), compared 

with the control. The weight at the onset of the pre-pupae varied significantly between the 

treatments (F=7.58, df=100, RSD=0.14, P<0.0001). The mean pre-pupal weight in treatment 

C was slightly greater than the control, but did not differ significantly (difference=0.08, 

P=0.23). The weight of pre-pupae was lighter in treatment A and in treatment B, but both 

were found not to be significant compared with the control, (difference=-0.05, P=0.51) and 

(difference=-0.1, P=0.07), respectively. Likewise, the pupal weight varied significantly 

between the treatments (F=12.42, df=87, P<0.0001). The mean weight of pupae obtained 

from treatment A was lower compared with the control, but not significantly so (difference=-

2, P=0.14). For treatment B the weight was, however, significantly less than the control 

(difference=-3.3, P<0.01). Treatment C resulted in slightly heavier pupae, than the control but 

not significantly so (difference=1.8, P=0.22). Finally, adult weights varied between the 

treatments (F=6.72, df=79, P<0.001). The mean weight of adults was found to be higher in 

treatment C, but did not show any difference from the control (difference=1.71, P=0.3). 

Adults collected from treatments A and B were lighter relative to the control, but the 

differences were also found to be not significant, (difference=-1.3, P=0.49) and (difference=-

2.1, P=0.13), respectively. 

  

The mean total developmental period varied between the treatments (F=31.52, df=79, 

RSE=0.074, P<0.0001). The mean total developmental period of larvae of treatment C was 

found to be significantly longer compared with the control (difference=0.19, P<0.0001). The 

duration of that period for treatment A was shorter than the control, but was not significant 

(difference=0.01, P=0.95). Larvae assigned to treatment B took a slightly longer time to 
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develop into adults than the control, but the difference was not significant (difference=0.023, 

P=0.77). In contrast, the mean total growth rates did not vary between the treatments (F=2.16, 

df=79, RSE=0.08, P=0.1). The mean total growth rate was greater in the control compared 

with treatments A (t-value=-0.044, P=0.38) and B (t-value=-0.047, P=0.33). 

 

Mean lifetime fecundity and other reproductive parameters are presented in Table 8.3. 

Lifetime fecundity did not vary between the three treatments in comparison with the control 

(F=2.36, df=15, RSE=0.73, P=0.11). Females collected from the three treatments A, B and C 

had lower lifetime fecundity compared with the control, not significantly so, (difference=-

1.05, P=0.12), (difference=-0.9, P=0.33) and (difference=-0.88, P=0.23), respectively. In 

contrast, the proportion of egg hatchability or fertility varied significantly between the 

treatments (F=5.26, df=8, RSE=0.66, P<0.05). The mean proportion of fertile eggs was 

significantly less in females collected from treatment B, since they laid 0.44±0.07 eggs 

compared with 0.88±0.03 eggs recorded for the control (difference=-6.8, P<0.05). Lifetime 

fecundity of females in treatments A and C did not differ significantly from the control,  

(difference=-0.34, P=0.48) and (difference=-0.28, P=0.31), respectively. In addition, the 

treatments had influenced the production of trophic eggs significantly (F=7.59, df=17, 

RSE=0.28, P<0.01). Females obtained from treatments A, B and C laid a significantly higher 

proportion of trophic eggs compared with the control, (difference=0.72, P<0.01), 

(difference=0.65, P<0.05) and (difference=0.53, P<0.05), respectively. This explains the 

reduction in the proportion of fertility, particularly in treatment B.  

 

There was a significant delay in the onset of the reproductive period in treatments A 

(difference=-0.81, P<0.0001), B (difference=-1, P<0.0001) and C (difference=-1, P<0.0001), 

after comparison with the control (F=66.36, df=17, RSE=0.134, P<0.0001). The mean 
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reproductive period varied significantly between the treatments (F=20.74, df=17, RSE=0.38, 

P<0.0001). The length of the reproductive period was found to be significantly longer in the 

control compared with treatment A (difference=-1.48, P<0.0001), treatment B (difference=-

1.4, P<0.0001) and treatment C (difference=-1.4, P<0.0001). The extension in the pre-

reproductive period affected the length of reproductive period, since they both showed a 

direct significant correlation (Correlation coefficient=0.8, P<0.01). Similarly, the longevity 

varied significantly between treatments (F=22.08, df=23, RSE=0.13, P<0.0001). It was found 

that females gathered from treatments A, B and C lived for a shorter period in comparison 

with the control, (difference=-15.38, P<0.0001), (difference=-15, P< 0.0001) and 

(difference=-9.08, P<0.01), respectively. The percentage of mortality in treatment A was 

85.7%, in treatment B was 86.6%, in treatment C was 83.3% and only 37% in the control 

(Table 8.2). The sex ratio was male-biased in treatments B and C and the control, however, 

treatment A had an equal sex ratio. Apparently, the sex ratio was affected by the high 

percentage of death, as in the above experiments.  

 

8.5.2  Offspring fitness 

 

As stated in the method, females that survived the four treatments that they had experienced 

at their fifth instar (after the fourth moult) were coupled with a normal unstarved freshly 

hatched male until they produced eggs and larvae were hatched. When those larvae reached 

adult stage, several life-history traits were measured and compared with those of their 

mothers only, excluding their normal fathers.  

 

The developmental parameters of offspring obtained from the females that had experienced 

treatments A, B and C at the onset of the fifth instar (after the fourth moult) and the control 
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are presented in Tables 8.1 and 8.2. The results showed no significant differences between 

the mean weights of the adults obtained from the progeny whose mothers came from the 

control (t=-0.7, P=0.5). The mean adult weight was found to be significantly less in offspring 

obtained from females experiencing treatment A (t=25.71, P<0.0001), treatment B (t=9, 

P<0.0001) and treatment C (t=13.5, P<0.0001). Larvae of offspring obtained from females 

experiencing treatment A took approximately 28±0.28 days to develop into adults. This was 

found to be significantly shorter compared with their mothers, which took around 37.65±0.48 

days (V=406, P<0.0001). Similarly, offspring obtained from treatment C also had a 

significantly shorter total developmental period compared with their mothers (V=136, 

P<0.001) and a similar shorter total developmental duration was revealed for offspring 

compared with their mothers from the control (t=-5.82, P<0.0001). The mean total 

developmental period of offspring obtained from treatment B was 40.57±2.3 days, which was 

significantly longer than their mothers (38.09± 0.62 days) (t=19.67, P<0.0001). It is possible 

that the shorter total developmental period exhibited by offspring compared with their 

mothers from treatment A was a result of the high total growth rate compared to their mothers 

(t=29.25, P<0.0001). The longer total developmental period in offspring of treatment B, on 

the other hand, was due to having a significantly lower growth rate compared with their 

mothers (t=7.3, P<0.0001). The total growth rate was found to be significantly lower in 

offspring compared with their mothers where they had experienced treatment C (t=15.86, 

P<0.0001). The total growth rate for offspring was likewise significantly greater than their 

mothers in the control (t=6.46, P<0.0001). 
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8.5.3  Longevity and trade-offs 

 

There was a significant correlation between lifetime fecundity and mean adult weight of 

females that had experienced treatment C (t=4.58, P<0.01, correlation coefficient=0.82) (Fig. 

8.1). Correlation tests performed between longevity and fecundity for females obtained from 

the third instar (after the second moult) experiment revealed that lifetime fecundity for 

females that experienced treatment A was not significantly correlated with longevity (t-

value=0.13, P=1, correlation coefficient=0.66). For treatment C, an indirect influence on 

longevity was revealed with increasing fecundity, however, the association was not 

significant (t-value=-0.4, P=0.65, correlation coefficient=-0.2). Lifetime fecundity of females 

from the control revealed a similar non-significant relationship with longevity (t-value=-0.7, 

P=0.51). The analysis was not performed on treatment B, due to the low percentage of 

survival. For the fifth instar (after the fourth moult), females that had experienced treatment 

A revealed a significant indirect correlation between their weights and lifetime fecundity (t=-

6.87, P<0.01, correlation coefficient=-1) (Fig. 8.2), but this was based on only five surviving 

females. Finally, for treatment C, the longevity of females showed an indirect significant 

correlation with their fresh body weight (t=-6, correlation coefficient=-1, P<0.001) (Fig. 8.3), 

as well as with lifetime fecundity, but the correlation was not significant (t=-10, correlation 

coefficient=-1, P<0.064). 
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Fig. 8.1. Relationship between mean lifetime fecundity of females that experienced treatment 

C after their 1
st
 moult against log mean fresh body weight (t=4.58, P<0.01, correlation 

coefficient, R=0.82, n=12, mean±SE). Data were transformed for statistical analysis.  

 

 

 

 

Fig.8.2. Relationship between mean lifetime fecundity and fresh body weight for females that 

experienced treatment A at their 5
th

 instar (after the 4
th
 moult) (t=-6.87, P<0.01, correlation 

coefficient, R =-1, n=5, mean ±SE).  
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Fig.8.3. Relationship between mean longevity and mean fresh body weight of females 

experiencing treatment C from 5
th
 instar experiment (after 4

th
 moult) (t=-6, P<0.001, 

correlation coefficient, R=-1, n=8, mean ±SE). 

 

8.5.4 Ovary status 

 

The ovaries were examined to investigate the effect of food and water manipulation on their 

general status. The typical morphology of a fully fed freshly emerged female and directly 

after 1-2 days of mating are presented in Figures 8.4 and 8.5, respectively. In general, the 

reproductive organ of a coccinellid female consists of a pair of ovaries, two lateral oviducts 

(which join to form a common oviduct), a copulatory sac, a pair of accessory glands and a 

spermatheca (Ehara, 1952, Majerus, 1994). As shown in Figure 4, for normal unstarved 

females, each ovary consists of elongated tubes of ovarioles that are symmetrical in shape 

and have a relatively similar size and number, as also observed by Obata (1988) and Osawa 

(2005). The shape and colour of ovaries differ according to the food availability experienced 

during immature development and adult stages (Osawa, 2005). A similar observation was 

revealed by this study when dissecting the ovaries of females that had experienced various 
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treatments at their second and third instars. The shape of ovaries obtained from dissecting a 

female subjected to treatment B or A at its second stadium (after the first moult) are presented 

in Figures 8.6 and 8.7, respectively. For both treatments, the ovaries were found to be 

asymmetric in shape, pale in colour and partially developed. For the third instar (after the 

second moult), a female that had experienced treatment A was dissected and it was found that 

the ovaries had retained their ordinary morphology (Fig. 8.8). After 1-2 days mating, the 

ovaries had developed eggs that differed during their development stages inside the ovarioles 

compared with the ordinary shape, like those in the females of the control (Fig. 8.9). This 

implies that the performance of ovaries was unquestionably changed due to the brief 

exposure to stressful food conditions.  

 

 

 

 

Fig.8.4. Ovaries of a fully fed newly emerged virgin female obtained from the control.  
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Fig.8.5. Appearance of the right and left ovaries of a fully fed female after 1-2 days of 

mating. 

 

Fig.8.6. The ovaries of a female that experienced treatment B at the beginning of their 2
nd

 

instar (after the 1
st
 moult). 

 

Fig.8.7. Asymmetrical appearance of the left and the right ovaries of a female that 

experienced treatment A at the beginning of the 2
nd

 instar (after the 1
st
 moult). 
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Fig.8.8. Appearance of the ovaries of a female experienced treatment A at the beginning of 

the 3
rd

 instar. 

 

 

 

Fig.8.9. A comparison between egg development within ovarioles of normal fully fed female 

(on the left side) and inside ovarioles of a female that experienced treatment A at the 

beginning of their 3
rd

 instar (after 2
nd

 moult) (on the right side). 
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8.6 Discussion 

 

Food quantity and quality are some of the most fundamental factors determining individual 

potential fitness and offspring fitness (Agarwala et al., 2008, Agarwala and Bhowmik, 2011). 

Any variation in food availability greatly influences life-history traits, particularly the 

development and reproduction performances (Agarwala et al., 2001). These two life-history 

traits tend to trade off with one another (Agarwala et al., 2008). Life in variable environments 

favours adaptive plasticity in life-history traits (Nylin and Gotthard, 1998).  It is well known 

that timing and size at maturity will vary, depending on various ecological factors, such as 

resource accessibility and predation risk (Abrams and Rowe, 1996, Nylin and Gotthard, 

1998). In light of the above, the study tested the effects of a transitory period of food 

manipulation early in the life of H. axyridis on both development parameters and 

reproductive performance. The overall results revealed that H. axyridis was able to 

compensate almost entirely for the loss in weight by the time of adult emergence. There were 

instantaneous costs, however, that were manifested in reduced survivorship and lifespan for 

most responses in this study. Mangel and Stamps (2001) stated that short-term trade-offs 

range from a rapid growth rate to a high percentage of mortality. In the same way, it was 

noted that deficiency of nutrients in the course of early development might have significant 

instant costs on survivorship, which is attributable to the enhanced growth rate (Gotthard, 

1994, Metcalfe and Monaghan, 2001). In this study it was demonstrated that a brief period of 

food restriction was followed immediately by accelerated growth in most of the larvae, 

except for those subjected to treatments A and B during the fifth instar experiment after the 

fourth moult. In addition, the accelerated growth rate was highly associated with a high 

percentage of mortality, approaching in some cases 90% (e.g., in the second instar 

experiment, particularly after the first moult). Several studies have revealed that with 
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increasing size at adult emergence, there might be an elevation in fecundity; accumulating 

size may, however, cause an instantaneous mortality or elevation in the possibility of 

mortality during the pre-reproduction period, due to a postponement in maturation (Nylin and 

Gotthard, 1998, Metcalfe and Monaghan, 2001).  

 

A study conducted on H. axyridis by Agarwala et al. (2008) revealed that on a limited food 

supply of only three adult aphids per day, larvae took a longer time to develop into adults, 

resulting in a 40% greater mortality compared with those that had been provided with 

plentiful food. Similarly,  larvae that were reared on a low quantity of prey took three times 

longer to attain maturity compared with normally fed ones (Agarwala and Bhowmik, 2011). 

In accordance, the present study showed that in the second instar experiment (after the first 

moult), larvae that had experienced either treatment A or treatment B tended to lengthen their 

total developmental period upon food restoration. These were the only cases in which larvae 

had possessed longer developmental periods compared with their control. Others that 

experienced the three categories of treatments A, B and C at different stadia, however, 

attempted to reduce that period by significantly increasing their growth rates. Total larval 

growth rates appeared to have an indirect influence on their likelihoods of survival. Larvae in 

the second instar (after the first moult) and the third instar (after the second moult) 

experiments were compensating entirely for adult sizes after improving the food conditions, 

compared with those that were subjected to treatments during the fourth instar (after the third 

moult) and fifth instar (after the fourth moult). Those larvae had compensated to some extent 

for body sizes that at last appeared significantly less than the control. Although compensatory 

or accelerated growth may offset some costs of the nutrient restriction period, the accelerated 

growth itself may be costly. For instance, some butterflies and the wood frog tadpoles, Rana 

sylvatica (LeConte, 1825) (Anura: Ranidae) tended to increase their searching rates when 

http://en.wikipedia.org/wiki/John_Eatton_LeConte
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resources were insufficient and ultimately suffered from increased predation (Anholt and 

Werner, 1998, Gotthard, 2000). In addition, intrinsic costs of accelerated growth may 

comprise a reduction in longevity and a depressed immune function (Metcalfe and 

Monaghan, 2001). In another example, in the damselfly Lestes barbarus (Fabricius, 1798) 

(Odonata: Lestidae), when photoperiod was attuned to mimic late season, larvae reacted with 

an increase in foraging effort, as well as an accelerated growth rate at the cost of increased 

predation risk (Johansson et al., 2001). 

 

A recent study revealed that larvae of H. axyridis that experienced low food conditions 

invested fat at a higher rate than protein, which is essential for egg production. They 

continued this behaviour even after achieving the anticipated body size (Dmitriew et al., 

2009). This fact could be used to explain the reduction in lifetime fecundity for most of the 

survived tested females in this study. Likewise, Osawa (2005) noticed that starvation might 

have had a great impact on females of H. axyridis; even after re-feeding them, some of them 

were found to be unable to attain their potential fecundity and others failed entirely to 

oviposit. An alternative study revealed that females that had experienced low prey quantity 

laid about 14 times fewer eggs compared with unstarved ones (Agarwala and Bhowmik, 

2011). A similar observation was further reported by this study, in particular for females that 

experienced treatment A during the fourth instar experiment (after the third moult). Those 

females were found to be significantly less fecund compared with the control. Apparently, the 

compensation for body weight by those females had reduced resource investment and 

allocation for reproduction. This was consistent with the observation by Dmitriew and Rowe 

(2007) on the damselflies. Honek (1993) and Sokolovska et al. (2000) reported that somatic 

tissue growth is limited to the larval stage, and fecundity has a tendency to be an increasing 

function of body size in insects. Consequently, the success of future reproduction is 

http://en.wikipedia.org/wiki/Johan_Christian_Fabricius
http://en.wikipedia.org/wiki/Lestidae
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dependent in a large part on foraging and growth rate taking place prior to emergence 

(Johansson and Rowe, 1999, Johansson et al., 2001) 

 

In this study, it was revealed those larvae that were provided with aphids only in the second
 

instar (after the first moult) and the third instar (after the second moult) experiments had 

developed into larger adults compared with the control. Apparently, there might be larger 

nutritional benefits gained from eating only aphids. Likewise, Evans and Gunther (2005) and 

Nakamuta (1984ab) noticed that because of the continuous contact with the body fluids of 

aphids, this might stimulate a high rate of food consumption and assimilation. Having 

exclusively aphids as a diet appeared, however, to be highly costly, since it delayed 

maturation, particularly in the second instar (after the first moult) and the fourth instar (after 

the third moult) experiments. In addition, access to prey did not show a positive influence on 

either female fecundity or longevity, as those females had assigned more fat for body 

maintenance rather than future reproduction. In agreement, Dmitriew et al. (2009) reported 

that having food only at high quantity might cause stress and could be interpreted through 

diverse responses, based on food quality, external conditions and species. It was noted that H. 

axyridis evolved against extremely variable resources (Koch, 2003). As such, unceasing 

access to large amounts of food might not maximise body fitness (Dmitriew and Rowe, 2007) 

and has been shown to reduce both longevity and fecundity in mice (Johnston et al., 2006). 

 

 An important factor for the success of H. axyridis is the acquisition of a specialised 

reproductive system (Osawa, 2005). This system has the capacity to develop and perform in 

means that permit surviving and coping with discrepancies in food abundance (Eckelbarger, 

1994, Papaj, 2000). Perry and Roitberg (2005) noted that females of H. axyridis retain plastic 

strategies to mitigate offspring starvation risk,  these strategies can be accomplished by re-
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evaluating the ovarian dynamics in certain ways, such as trophic egg production and the 

oosorption process (Perry and Roitberg, 2006). These two phenomena have been recognised 

largely in H. axyridis, in response to a number of reasons, such as nutritional insufficiency 

and variation in prey quality (Perry and Roitberg, 2005, Osawa, 2005). The proportion of 

trophic egg production varied significantly between treatments and depending on the stage at 

which larvae had experienced nutritional stress. Perry and Roitberg (2005) noted that trophic 

egg production varies according to the level of starvation risk, whether it is of the relatively 

great or intermediary type. Studies have verified that the percentage of trophic eggs produced 

under stressful conditions by a female of H. axyridis was 15.2% (as recorded by Kawai, 

1978) or 24.5% (as recorded by Osawa, 1992). Although these values were not comparable 

with the maximum value revealed by this study (89%), this was not unanticipated if the 

background of rearing conditions was considered.  

 

The present results revealed that there were no explicit values regarding different types of egg 

production, in particular for trophic eggs. It was noted in this study that trophic eggs were 

produced in various quantities in response to the same type of treatment, even by the control. 

The study concluded that the production of trophic eggs was performed principally for two 

purposes, first, as a provisional adaptive behaviour and second, for decreasing the risk of 

cannibalism by freshly emerged larvae. Production of trophic eggs in order to decrease 

cannibalism of viable eggs and siblings was also noticed by O’Connor (1978). The different 

roles for trophic eggs are discussed in depth by Perry and Roitberg (2006). 

 

The production of trophic eggs by females of the control in this study strongly suggests that 

both trophic and viable eggs are alike in cost, as proposed by Banks (1956) and Osawa 

(1992). It has been recognised that trophic eggs have a unique shape and colour compared 
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with viable eggs and larvae can easily differentiate between the two types (Kudo et al., 2006). 

In contrast, other studies showed that freshly hatched larvae were not able to distinguish 

between viable and non-viable (trophic) eggs (Banks, 1956, Osawa, 1992). The results of this 

study embraced the latter, since it was noticed during the course of the study both egg types 

were consumed by newly hatched siblings. 

 

Previous studies reported that food availability has a direct effect on the length of the 

developmental period, reproductive period and longevity (El-Hariri, 1966, Schuder et al., 

2004, Agarwala and Bhowmik, 2011). Similarly, this study showed that food manipulations 

resulted in a significant reduction in the length of reproductive period, particularly in the fifth 

instar (after the fourth moult) experiment. The study suggests that, due to food stress, the 

development and performance of the ovaries were extremely affected, regardless of the 

subsequent improved food status. This was verified after dissecting the ovaries of the starved 

females. Osawa (2000, 2005) also noted that in relation to the H. axyridis ladybird, despite 

the fact that the ovarian development is known to be genetically determined, its performance 

is greatly affected by food availability. This study revealed that even in the cases where 

aphids were supplied exclusively and constantly (as in treatment C and the control of the 

third instar (after the second moult) experiment), there was no significant direct effect either 

on fecundity or fertility, in spite of the long oviposition period. In agreement, it was noted 

that although the ovariole dynamics might recommence the process of egg production upon 

re-feeding, the number of viable eggs that might develop tended to be significantly less than 

the fully fed adults (Osawa, 2005). Therefore, the prevalent reproductive rate in this study 

implied that adults that experienced treatments A, B and C, particularly as in the second 

instar (after the first moult) and the third instar (after the second moult) experiments, invested 

heavily to maintain the internal state of their bodies and survival, rather than optimising their 
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reproduction. This conclusion was based on their reproductive outputs, which were found to 

be sub-maximum if that of the control was taken into account as the maximum value. 

Therefore, it could be concluded that after experiencing stress at early instars, the main 

concern was to expend resources on basic physiological maintenance rather than on future 

reproduction. In fact, those instars did not achieve their minimum critical weight, even when 

they were subjected to various treatments compared with the late instars. Reznick (1985) 

noted that during food deprivation, a female must either expend energy on body maintenance 

or reproduction; if there is a reduction in energy expenditure for maintenance, subsequently 

the longevity becomes shorter.  

 

In this study, lifetime fecundity was used as a quota for reproductive output, as there was a 

great limitation on dissecting ovaries, due to the low number of surviving adults, and 

counting the ovarioles prior to mating was impractical. Likewise, Leather (1988) noted that a 

measure of achieved fecundity is more realistic and more practical than potential fecundity, 

since few if any insects live long enough to achieve the latter. Since the study regarded 

lifetime fecundity as a measure of ovary status, it was revealed that most larvae that were re-

fed after food restriction were found to be less fecund compared with the control in general. 

This reflects either a reduction in resource allocation to reproduction or partially developed 

ovarioles, as noticed after dissecting a few of the starved females. In contrast, Osawa (2005) 

demonstrated that the percentage of matured ovarioles per female in fully fed H. axyridis did 

not differ significantly from that of the re-fed sample. The conflict between the present study 

and that of Osawa was mainly due to the starvation protocols. In the latter study, adults were 

starved rather than larvae (as selected for starvation by this study). This confirms that the 

performance of the ovaries could be influenced not just by food conditions, but also by the 

stage at which an organism has been starved. This was further supported by the present study 



364 
 

when the ovaries were revealed to be quite similar in morphology compared with the control. 

The development of the oocyte inside the ovariole, however, varied greatly. 

  

This study anticipated that the fourth instar (after the third moult) and the fifth instar (after 

the fourth moult) would be more resilient to nutritional stress compared with earlier stages. In 

contrast, the present study revealed that the late larval stages were more susceptible to stress 

conditions – in particular they failed to retain the entire weight loss and were incapable of 

recovering as quickly as the early instar stages. For example, larvae that experienced 

treatments A and B at the fourth
 
and the fifth instars tended to maintain their body weight at a 

lower threshold value than the control, resulting in smaller sized adults. Undertaking this 

process did not, however, assist them to invest more in reproduction since their lifetime 

fecundity was found to be lower than the control. Similarly, Kajita and Evans (2009) 

demonstrated that starved adults of the predatory ladybirds Coccinella transversoguttata 

(Fabricius, 1781) (Coleoptera: Coccinellidae) and Coccinella septempunctata (Linnaeus, 

1758) (Coleoptera: Coccinellidae) responded by stabilising at a lower body weight and laying 

fewer eggs. A similar observation was noted by Agrawala and Bhowmik (2011). Although in 

the present experiment adults had not been starved as in Kajita and Evans (2009), but one 

would expect this quality also to occur in adults that were experiencing starvation early in the 

immature stages.  

This study also showed that the minimal viable weight was completely different from the 

minimum estimate of critical weight attained by the larvae in the fourth and fifth instar 

experiments. Davidowitz et al. (2003) noted that there is a minimal weight, known as the 

minimal viable size, defined as the minimal amount of resources needed for larvae to 

successfully pupate. This weight is also known as the lower limit of body size that is never 

http://en.wikipedia.org/wiki/Johan_Christian_Fabricius
http://en.wikipedia.org/wiki/Carl_Linnaeus
http://en.wikipedia.org/wiki/10th_edition_of_Systema_Naturae


365 
 

associated with any of the physiological and morphological processes (Davidowitz et al., 

2003). The second instar and third instar were starved before attaining the critical weight, but 

they had sufficient time to allocate and reserve an adequate amount of nutrients in order to 

the required critical weight. This allowed them to attain relatively the same size as the 

control. Their reproductive output, however, was found to be less compared with the control. 

The fourth instar and the fifth instar, on the other hand, had been starved before reaching the 

critical weight or attaining the maximum estimate of the critical weight (the peak mass). 

Because they were starved before these two assessment points, they had less time for 

recovering and allocating reserves in order maintain their bodies. Therefore, they had two 

options, either they accelerated their development or growth rate and transferred quickly into 

pre-pupae, or they extended the duration of the developmental period which might incur high 

percentage of death or pupae might not be able to transfer into complete adult tissues. 

Because of that, the fourth and fifth instars failed to achieve the aimed weight or size, 

resulting in adverse consequences on life-history traits, such as a reduction survival success. 

Therefore, it could be concluded that the influences of starvation had numerous impacts on 

different larval stages and the larvae at the end of the developmental course possessed a 

different interpretation for their responses towards food stress.  

 

The delay in pre-reproductive period, as well as the shorter reproductive period, explained the 

low lifetime fecundity in most of females obtained from the fourth and fifth instar 

experiments. According to Singh and Pervez (2006), the pre-reproductive period is highly 

important for egg production and any reduction in that period might adversely influence the 

magnitude of fecundity and egg hatchability (fertility). The delay in reproduction recorded in 

females from the fourth and fifth instar experiments was a result of the greater allocation of 

nutrients for reproduction and to regulate the duration of the reproductive period, despite the 
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fact that the fecundity of females obtained from the fourth instar and the fifth instar was less 

in comparison with the control. Another reason for the low fecundity was the short 

developmental time recorded for those instars. Ceryngier (2000) noted that for insects, there 

appears to be a trade-off between developmental time and fecundity. In addition to that, the 

development of the ovaries may be subjected to the conditions experienced during larval or 

adult stages. According to Buning (1994) and Lemos (2005), the development of ovaries 

often starts at late embryogenesis and proceeds throughout the larval and pupal stages. 

Seemingly, the development and the performance of ovaries in this study were affected 

significantly, in particular when larvae were starved at the fourth and fifth instar periods.  

 

The results of this study revealed that stressing the larvae at any stage had a negative impact 

on longevity and the survival of adults. It seems most likely that when larvae were starved at 

the second and third instar, there was additional investment in body maintenance compared 

with the fourth and fifth instars. This was explained by the fact that the former instars had 

plenty of time to compensate for the weight loss. This study supported the facts that are 

common to many insects, if not most,  there are long-term costs manifested in smaller sized 

adults associated with a longer developmental period, whereas short-term trade-offs appear as 

low fertility and a high proportion of trophic eggs (Trivers, 1972, Dmitriew and Rowe, 2007). 

Aside from the above, compensatory responses themselves might have substantial costs, but 

costs that present at the physiological and cellular levels are usually paid on a longer term 

(Metcalfe and Monaghan, 2001).  

 

Reproduction is recognised to decrease longevity in insects (Dixon and Kundu, 1997, Gibbs 

and Van Dyck, 2010). The present results revealed that in the majority of experiments, 

accelerated growth rate or compensatory growth had a great impact on longevity. One of the 
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possible consequences of deprived growth conditions is the reduction of protein turnover 

(Morgan et al., 2000, Dmitriew et al., 2007). The latter is regarded as a measure of the rate of 

protein repair and maintenance associated with ageing and cellular senescence (Dmitriew et 

al., 2007). Any decline in that rate would be interpreted as a decrease in longevity (Bokov et 

al., 2004). Trade-offs were greatly recognised between reproduction and longevity in many 

insect species (Dixon and Kundu, 1997), but the general relationship between resource 

allocation and longevity is, however, to a certain extent unresolved (Kaeberlein, 2006, Flatt 

and Schmidt, 2009). Several studies have shown that the correlation between fecundity and 

longevity might be sometimes unapparent or indirect (Blanckenhorn et al., 2002) or direct 

(Kaitala, 1987). For example, species with short longevity might have a direct connection 

between reproduction and longevity, and vice versa. Since H. axyridis is known to be a long-

lived organism, the above cannot be relevant (Agarwala et al., 2008).  

 

In this study, the trade-offs between longevity and fecundity were revealed, particularly when 

applying treatments A and C. The trade-offs between these two traits were also reported by 

Ohgushi (1996). The results showed that investing in survival that was measured by longevity 

had a significant cost on fecundity, as revealed by females that experienced treatment C at 

their fifth instar. The effect of food on fecundity is well-known in arthropods (Richardson 

and Baker, 1997). At high food availability, fecundity tends to increase with body weight 

(Honek, 1993), but when food is inadequate, the influence on fecundity depends on the 

weight and age of the female (Spence et al., 1996, Agarwala and Bhowmik, 2011). In this 

study, the relationship between fecundity and body weight was investigated and the results 

predicted that the relationship might be direct or positive, as in the second instar experiment 

when food was present (treatment C), or it might be indirect or negative in response to 

exclusively water, as in treatment A.  
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Another important trade-off revealed by this study was between longevity and body weight. 

Adults that experienced treatment C during their fifth larval stadium had a reduction in 

longevity associated with the reduction in body weight compared with the control. In 

agreement, Agrawala et al. (2008) reported that any reduction in body maintenance and 

resource preservation would have a cost on longevity. Skalski et al. (2005), and others such 

as Perry and Roitberg (2006) and Dmitriew et al. (2007), emphasised the significance of the 

degree of stress severity in revealing the trade-offs between longevity and body weight. To 

validate the above, a preliminary investigation performed before the commencement of this 

study revealed that starving the first instar larvae for more than two days led to 100% 

mortality. Therefore, it was decided that this study would aim to control the duration of 

starvation and manipulate only the type of treatments. Thus, the obtained trade-offs at 

different levels would be expressive and trustworthy enough to evaluate as much as those 

phenotypic responses that may come about under field conditions. The results at this point are 

consistent with Dixon and Agarwala (2002), in which the nature of the trade-offs between 

traits or functions could be ascribed as a triangular association linking fecundity, body weight 

and survivorship.  

 

It is well established that environmental conditions are likely to influence the sex ratio and 

parents are under selective pressure to bias their sex ratio according to the prevailing 

environmental conditions (Ross et al., 2011). Most ladybird species show a 1:1 sex ratio, but 

in some species such as the eyed ladybird Anatis ocellata (Linnaeus, 1758) (Coleoptera: 

Coccinellidae), Exochomus quadripustulatus (Linnaeus, 1758) (Coleoptera: Coccinellidae), 

Chilocorus renipustulatus (Scriba, 1791) (Coleoptera; Coccinellidae) and others, the sex ratio 

is female-biased, reflecting the recombination of segments present at the ends of the neo-XY 

sex bivalent (Henderson and Albrecht, 1988). Variations in the sex ratio will be expected if 

http://en.wikipedia.org/wiki/Linnaeus
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this recombination is more lethal in males than females. Furthermore, the interaction between 

Y-linked factors and maternally inherited factors, such as the male-killing bacteria, may alter 

the sex ratio. The maintenance of such an excess of females in several coccinellid species 

reflects a selective advantage for them in natural populations of these species (Henderson and 

Albrecht, 1988, Omkar et al., 2005). In this study, the sex ratio varied significantly between 

treatments and even the control did not always reveal the female-biased ratio, as previously 

reported by Majerus et al. (2000). Some treatments resulted, however, in an extremely male-

biased ratio, in particular when the larvae were starved at late stages at the fourth and the fifth 

instars. This was not unexpected, since a male-biased ratio was reported for H. axyridis in 

some areas (Heimpel and Lundgren, 2000).  

 

Srivastava and Omkar (2004) showed that prey quality and quantity have a significant 

influence in altering the sex ratio. For example, more suitable food tends to alter the sex ratio 

towards female biasness. Another study revealed that environmental stress, such as an 

increase in soil pore water salinity, might affect the lepidopteran herbivore Ascia monuste 

(Linnaeus, 1764) (Lepidoptera: Pieridae), resulting in a sex ratio almost equal to  1:1, 

compared with the control, which demonstrated a female-biased ratio (Moon and Moon, 

2010). It was reported that delayed mating in the meal bug led to a female-biased ratio (Ross 

et al., 2011). Although this study revealed a delay in the reproductive period, the comments 

made by Ross et al. (2011) could not, however, be taken into consideration, as the larvae had 

been starved (rather than the adults as in their study). Instead, the present study showed that 

the delay in reproduction, particularly in females that experienced stress at their fifth instar, 

gave rise to a male-biased ratio – this conclusion could be added to the study findings.  
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It had been noted that a period of depressed growth conditions associated with food stress had 

a pronounced influence on fitness and offspring phenotypes at a later stage (Metcalfe and 

Monaghan, 2001, Ali et al., 2003). Furthermore, even if an individual appears to recover after 

the subsequent nutritional improvement, the stress experienced during early development 

might still have profound effects on the individual itself and on its offspring (Lindström, 

1999, Qvarnström and Price, 2001). Dmitriew et al. (2007) noted that poor growth conditions 

might delay maturity and result in small-sized bodies that may reduce the consequent fitness. 

This was also validated by the present study, because the females that survived from the fifth 

instar experiment were found to be smaller in comparison with the control and their offspring 

were even lighter in weight than their mothers. Small body sizes resulting as a consequence 

of delaying maturation were also reported by Roff (1980), Honek (1993) and Sokolovska et 

al. (2000). Even though all the tested juvenile stages belong to one species in this study, there 

appeared to be a variety of responses in response to similar treatments. In agreement, 

Dmitriew et al. (2007) noted that timing of the resource restriction had a pronounced role in 

defining the responses and the capability of an individual to compensate for that stress.  

 

It is well known that the key factor in the invasion process is the successful development and 

survival of immature stages (Marco et al., 2002). How these juveniles have coped with the 

fluctuating environment was considered as the key promoter for conducting this study. The 

study pointed out some common short- and long-terms trade-offs that resulted from 

subjecting larvae at consecutive stages to diverse feeding regimes. The short- and long-term 

costs were found to be variable, depending on the age of the larvae and the stress severity. 

The study revealed that there is an upper limit for feeding, in which exceeding it would affect 

the larvae. Therefore, unceasing continuous access to diet might adversely influence the rate 

of egg production and may incur a great cost over longevity. This suggests that H. axyridis 
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could be able to survive food deprivation or low quantity of prey without this study critically 

disrupting the normal performance of its biological and physiological processes. This was 

concluded from that fact that some survived females compensated for weight loss and others 

were capable of achieving fecundity that did not differ significantly from the control. Such a 

study on juvenile performance may possibly improve the understanding of how these larvae 

have been coping with habitat versatility, which plays a substantial part in invasion success. 

Because most species evolved in fluctuating conditions, as for H. axyridis, natural selection 

has acted on the resource allocation process, allowing effective responses and greater survival 

towards food scarcity (Sohal and Weindruch, 1996). This study highlighted the role of the 

ovaries in H. axyridis. They produce eggs and act simultaneously to increase the offspring 

survival by intensifying their provisional behaviour through trophic egg production. In 

addition, in some cases it was found that they reserve energy by producing asymmetrical 

ovaries, since developing fully developed ovaries is costly. By doing so, they contribute to 

increasing offspring survival. The study also demonstrated that larvae of H. axyridis were 

able to fully compensate for body size when they were starved at early stages, whereas with 

starvation at later stages, compensation was only partial. In most compensated cases, there 

was a delay in maturation and significant costs manifested in the reduction of survivorship as 

well as longevity and alternation of sex ratio. The types of cost and trade-offs depend 

primarily on whether the ladybirds have been deprived of food during their adult life or 

juvenile stages. Nevertheless, having variable adaptive responses towards unpredictable 

resources might act to enhance the survival and fitness of offspring. Further investigation 

must be considered to study the effect of a range of food qualities on larvae. Since the study 

was unable to dissect many females due to the high mortality rate, more investigations are 

required to examine the morphology and development of ovaries under versatile food quality 

and at variable temperatures. This might additionally focus on evaluating the performance of 
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the ovaries at diverse habitats with unpredictable temperature ranges. Nevertheless, the above 

approaches could serve to unravel the underlying reasons of invasion success, particularly of 

H. axyridis and other invaders, and how their biology and physiology manage to withstand 

the different ranges of temperature. In conclusion, the results of this study support the 

generalisation that high lifetime fecundity associated with large body size (Evans, 2000, 

Hodek and Michaud, 2008) may be one important key factor promoting the dominance of 

introduced species such as H. axyridis over native competitors in resource-rich environments. 

Nevertheless, it revealed how H. axyridis possessed the distinctive ability to choose between 

being alive or being highly fecund, particularly when it was at a critical stage of development 

after food restoration. 
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Chapter 9 

General Discussion 

 

With increasing concern over biological invasions and their impact on ecosystems and 

biodiversity, there has been a drive to understand the relationship between the life-history 

traits of invasive species and invasion success. The study is part of the on-going efforts to 

measure the fitness-related phenotypes of the ladybird H. axyridis that favour population 

establishment and promote its efficacy as a successful invader. This thesis has reviewed the 

available research on this subject and undertaken laboratory studies to evaluate the basic 

biological, morphological and behavioural attributes under controlled and starved conditions. 

In addition, the study evaluated the phenotypic traits and the degrees of adaptive phenotypic 

plasticity in a response to starvation, particularly during the stressful development of larvae. 

The results could help to further understand the eco-physiology of this ladybird and 

contribute to understanding the underlying factors that have promoted its widespread 

invasion. This chapter aims to discuss the general findings and potential outcomes arising 

during the course of the overall project.  

  

Harmonia axyridis was established in the UK at the beginning of the 21st century. Its 

position as an invasive species is now widely acknowledged and it is considered a suitable 

biological model for testing the rule of plasticity in the invasion process. Harmonia axyridis 

is often expected to show a high degree of adaptive plasticity; accordingly, it was chosen to 

be the model species for this study. Harmonia axyridis is extremely polymorphic with a wide 

geographic distribution. Genetic polymorphism appears to be the main strategy that it has 

adopted for facing different habitats at different times. Harmonia axyridis shows many 
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modifications that are often known to be adaptive as a result of increasing tolerance to 

stressful conditions - such as body size, body shape and patterns of elytral colouration 

(Soares et al., 2003). It has been suggested that invasive populations should evolve toward 

greater phenotypic plasticity, as they come across fluctuating environments during the 

invasion process (Lombaert et al., 2007). The ability of a species to tolerate a wide 

temperature range is a critical factor in evaluating its invasion competency (Jalali et al., 

2010). Since the overall evidence regarding this issue remains limited, it is, however, 

premature to draw general conclusions from the past information (Richards et al., 2006). 

Although this study was not performed at variable temperatures, assessing the phenotypic 

plasticities under controlled constant conditions was considered a valuable measure. The 

results from this study could form a reliable reference for future comparative studies, either 

with similar species or with other invaders.  

 

Life-table parameters are essential when studying the general biology of an insect, since they 

help to determine the intrinsic rate of natural increase, regarded as the most appropriate way 

to describe population growth rate. Nevertheless, these tables could be incorporated to 

compare species performance under versatile environmental conditions (Abdel-Salam and 

Abdel-Baky, 2001). According to Labrie et al. (2006), some basic biological attributes of life-

history traits, such as behavioural and developmental characteristics, are considered the key 

factors in determining competitive ability, predation efficiency, population growth rate and 

successful invasion. Therefore, this study was able to evaluate the reproductive rate, as well 

as the developmental time and other behavioural aspects of H. axyridis that were considered 

the basic measures of intrinsic growth rate. In addition, the study highlighted most 

intraspecific variability in life-history traits and in phenotypic plasticity under controlled 

measures. 
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The first section of this study, Chapters 2 to 7, focused on measuring various life-history 

traits and the associated variability under constant controlled conditions. Adults and juveniles 

were reared under controlled diet availability and constant temperature and humidity, with 

the aim of reducing the substantial influences of these variables as much as possible. This 

was designed so that reliable measures of these traits could be obtained and to emphasise the 

other relevant influences that control lifecycle attributes, such as genetic, morphological and 

physiological factors. Although the genetic background was not covered directly by this 

study, its effects were highlighted.  

 

The designated range of temperature and the diet quantity and quality throughout the course 

of the experiment might be less than the optimal temperature requirement; however, this 

range of temperatures was documented earlier as the ideal for attaining an optimal 

reproductive rate, developmental period and for maintaining body weight for the ladybird H. 

axyridis (Lamana and Miller, 1998, Dixon, 2000, Stathas et al., 2001). Former studies had 

shown that the range of temperature that is needed to have all developmental stages 

accomplished at definite time is likely be within 15-30ºC (Logan et al., 1976, Roy et al., 

2002, Mehrnejad and Jalali, 2004). Therefore, the temperature selected by this study was well  

within this range and 5±1ºC above the minimum threshold of the range stated above. A 

previous study that had evaluated the differences in the elytral patterns (in relation to light-

coloured aulica and dark coloured nigra phenotypes of H. axyridis) was based on the 

differences in biological performances at 20°C. In addition, the range of temperature used in 

this study was based on several facts,  for instance, the ability of H. axyridis to breed, survive 

and become accustomed to winter temperatures of below freezing and summer temperatures 

up to 30°C (Lamana and Miller, 1996). Obrycki and Tauber (1981) indicated that for A. 

bipunctata, which co-exists with H. axyridis, the optimum temperature was in the range 23-
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27°C; when the temperature exceeded 26.7°C, the mortality was more than 25%. Another 

study on the importance of temperature revealed that the optimum rearing temperature for the 

spider mite predatory beetle, Stethorus punctillum (Weise, 1891) (Coleoptera: Coccinellidae) 

under laboratory conditions was 25°C (Bakr, 2009). Nonetheless, when the temperature range 

was selected for this study, it was taken into consideration that the estimated variability in 

life-history traits would not be at their optimum, but would at least be approaching their 

maximum standards or close to them. There was a problem in having a set of temperature 

ranges, due to the lack of controlled temperature rooms and manipulating and feeding 

hundreds of larvae at the same time was impractical. In addition, Stillwell et al. (2007ab) 

noted that some environmental parameters may be more appropriate than temperature to 

identify the phenotypic plasticity. For example, food or pre-availability may be better 

environmental parameters through which to test phenotypic plasticity in H. axyridis, since it 

is known to be polyphagous and encounter a taxonomically diverse range of phytophagous 

insects associated with various vegetation communities (Preziosi et al., 1999, Specty et al., 

2003, Berkvens et al., 2008). Although generalist predators prey on diverse prey species, 

foraging behaviour has frequently been associated with quantitative features and has 

disregarded the nutrient quality of prey (Mayntz et al., 2003). Furthermore, food was noted to 

have a direct influence on several life-history traits, such as growth rate, reproductive period, 

lifetime fecundity and survival of immature stages (El-hariri, 1966). Mayntz et al. (2003) 

reported that both prey nutrient quality and abundance had significant but different effects on 

several important life-history traits, including number of instars, instar duration, development 

period and body weight at maturation. They specified that prey quantity was essential for 

growth rates, whereas prey quality had adverse effects on juvenile survivorship and female 

fecundity. Obrycki and Tauber (1981) reported the above in general terms, and added that in 
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the case of ladybird coccinellids, food is usually considered the key factor determining the 

anticipated number of generations.  

 

The quality and quantity of prey used in this project were based mainly on other studies that 

had been performed on the same species (Stewarts et al., 1992ab, Labrie et al., 2006, 

Agarwala et al., 2008, Kajita et al., 2010). It was found in this study that having a few aphids 

left uneaten sometimes reflected the sufficiency of the feeding method. The suitability of the 

aphid species A. pisum for H. axyridis was noted by several studies, such as Dixon (2000) 

and Evans and Gunther (2005).  

 

Using body weight for comparing the successive developmental stages and adults was 

considered as a reliable measure, since all individuals were maintained under constant 

conditions. Furthermore, body mass as a measure of interaction between internal and external 

conditions and how insects maintain their body mass at versatile conditions has been noted in 

a number of studies, such as Dmitriew et al. (2009) and Phoofolo et al. (2008). Therefore, the 

weight for each relevant stage would reflect the situation in the field. The unreliability of 

body mass at unpredictable environmental conditions has been debated by Leather (1988), 

but it can still be used as a standard reference for intra-and inter-specific comparative studies.  

 

Controlling measures were commenced in all the experiments except the experiment for 

Chapter 8. The plasticity of specific life-history traits could be accomplished by attaining the 

minimum requirements at which species have the ability to control environmental conditions 

at some level. When researchers conduct factorial experiments they often include the 

environmental treatments as fixed factors (Sultan, 2000, Pigliucci, 2005, Richards et al., 

2006). In addition, it has been reported that the best way to measure the plasticity is by 
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comparing the average values for a trait across different genotypes grown in each 

environment. Such examination of species-level plasticity can be informative in a 

comparative framework, assuming that these data are interpreted appropriately (Richards et 

al., 2006). This study did not cover the variations in genotypes; however, the intra-specific 

variability among life-history traits measured under controlled conditions had revealed 

relative influences on the genetic background as well as morphological aspects. Nevertheless, 

as stated above, the collected data from Chapters 2 to 7 could be used as reliable reference 

points for comparison with other figures recorded under entirely different environmental 

conditions. The last experiment, Chapter 8, focused on the study of larvae of the ladybird H. 

axyridis that had been exposed to different feeding regimes. For this experiment, the 

measured relative variability in life-history traits was shown to have direct associations with 

contrasting stress degree.  

 

It has been noted that life-history responses, and the trade-off between fecundity and female 

longevity were highly dependent on the degree of food stress (Agarwala et al., 2008). 

Therefore, by having two distinct measurements of life-history traits - one under controlled 

conditions and other under food stress - would provide a thoroughly comprehensive 

description of the adaptive phenotypic plasticity and the associated trade-offs. The 

importance of the study results was discussed in the relevant chapter, but it could be 

suggested further that these findings would help to understand the various tactics and 

strategies used by the ladybird H. axyridis in coping with constantly fluctuating environment 

that have encouraged its overpoweringly invasiveness.  

 

It has been shown that various life-history traits, such as fecundity, are highly important for 

effective invasion and establishment (Sakai et al., 2001, Shea and Chesson, 2002) and 
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knowledge of such traits would help in evaluating their intraguild dominancy (which has 

resulted in the displacement of many native species) (Lanzonie et al., 2004). This project has 

investigated the reproductive performance of H. axyridis under both controlled and stressful 

conditions. One of the important biological attributes that it aimed to quantify was the 

proportion of trophic egg production. This behaviour is considered as a maternal adaptive 

provisional behaviour used to provide extra food for freshly emerged larvae and reduce 

cannibalism. Not all phenotypic behaviours are beneficial, only those that are of a particular 

importance for ecological and evolutionary aspects (Richards et al., 2006), such as trophic 

egg production. The study revealed that these eggs are not as costly as others had noted 

(Osawa, 1992, Perry and Roitberg, 2005). It turned out that these eggs were found within the 

majority of clutches produced, whether normally fed (as in the control) or in treatment C 

(stressed females during their juvenile periods); however, the proportion of this type of eggs 

increased with stress severity (as in treatment A and B). This was explained in detail in 

Chapters 6 and 8. Likewise, the production of trophic eggs often varies according to the level 

of starvation risk experienced by offspring, whether it is relatively high or intermediate (Perry 

and Roitberg 2005). With varying the levels of stress, different functions might be served by 

trophic eggs (Perry and Roitberg, 2006). In this study, this was also found to be true by some 

means. According to Perry and Roitberg (2006), H. axyridis was found to produce trophic 

eggs as a consequence of delayed mating or when manipulating the mating rates (as in 

Chapter 6). This was found to be consistent with Omkar et al. (2005), who stated that egg 

fertility increased with increasing number of matings in ladybirds. Male contribution by 

mating rate played an important role in determining the fertility of a female and the 

proportion of egg production (as also revealed by the results of Chapter 6). Perry and 

Roitberg (2005) noted that females of H. axyridis showed adaptive plasticity in laying tropic 

eggs and manipulated their quantity and timing according to the existence of environmental 
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conditions. The above strategies in this maternal behaviour (trophic eggs production) 

explained the association between phenotypic plasticity and the colonising ability of a new 

habitat. Therefore, it could be concluded that this behaviour provides an important source of 

nutrients to avoid the risk of starvation or adverse conditions or competition when invading a 

new habitat. More studies are needed, such as investigating the degree of this adaptive 

behaviour under variable food availability and different ranges of temperatures, in order to 

offer valuable insight into maternal caring during the invasion process.  

 

From the results of this study it could be argued that H. axyridis is equipped with 

reproductive strategies associated with several interacting factors, such as morphological, 

physiological and genetic background. These factors work simultaneously and respond to the 

surrounding environmental cues by optimising the function of several possible traits, such as 

reproductive output, internal status of the body and survivorship. Nevertheless, this ladybird 

has the ability to synchronise between its body maintenance and reproductive output, 

particularly during stressful conditions. This tactics were stated based on the capability of 

most of the starved instars to compensate fully or partially for body sizes and achieve fertility 

that was not significantly lower than the control, despite the significant trade-offs. Therefore, 

the strategy of females in allocating resources for oviposition and offspring provision even 

under stressed conditions are one of the many advantages possessed by this ladybird that have 

facilitated its invasion and establishment. 

 

The main factors in the invasion process are the growth and development of juveniles into the 

adult stage as well as adult survival (Marco et al., 2002). When juveniles are found in great 

numbers, this could enhance the invasion process and may result in the displacement of 

native species (Marco et al., 2002). Several ecological studies are relevant when considering 
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the growth strategy of immature juveniles and their success in reaching adulthood (Labrie et 

al., 2006, Phoofolo et al., 2009). The research synthesis revealed the relatively few studies 

that had been conducted on juvenile stages, owing to the limited potential of rearing a large 

number of larvae simultaneously; this makes it easier to deal with adults. This project 

managed to cover both adults and juvenile stages. Therefore, another objective of this study 

was to investigate some of the development characteristics of H. axyridis larvae. The 

existence of a high number of these larvae tends to encourage the rate of predation and 

accelerates the dominancy of this species over other native species (Labrie et al., 2006). As 

noted previously, both the growth rate and the developmental period might vary among 

individuals, either due to genetic constituents or variations in environmental conditions 

(Sebens, 1987). For insects that have similar genetic backgrounds, the differences, however, 

might be precisely triggered by diet availability and nutrient allocation by the final instar 

(Berner and Blanckenhorn, 2007). The study supported the declarations by Berner and 

Blanckenhorn (2007),  in particular, when larvae were exposed to food stress (as described in 

Chapter 8), the significant variability in life-history traits during the course of the experiment 

was primarily due to prey manipulations. Looking back to the earlier chapters (Chapters 2 to 

7), the larvae and even the pupae were reared under constant controlled conditions and fed a 

controlled number of aphids. Therefore, in those experiments, the synthesis was utterly 

different. The significant variability obtained in most of the traits was due to several factors, 

such as genetic influences and measurement errors. The latter was not unexpected, as taking 

the weight of over 100 larvae at the same time was impractical. 

 

Another important issue regarding the larval development experiment in Chapter 3 was that 

every larval stadium by itself played a contributing role in determining both the successive 

stage and the final adult size,  for example, the direct linear relationship revealed between 
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second instar weight with the last fifth instar weight (other examples are mentioned in 

Chapter 3). Therefore, the synthesis of this project concluded that for individuals derived 

from the same genetic background and reared under constant conditions, the success of their 

developmental process was multi-factorial. Nevertheless, the results showed that the post-

critical period, as well as the developmental period, is definitely flexible in the developing 

larvae of H. axyridis and could be adjusted according to the stress type and degree.  

  

The study revealed the existence of the fifth
 
larval instar, which was reported for the first time 

by Labrie et al. (2006). In their study, the fifth instars occurred only in 335 of the total 

number of ladybirds of H. axyridis. In addition, they used a constant temperature of 24°C 

(which was warmer than that of this project) and a lower relative humidity (60–75%). The 

food used was a mixed diet of pea aphids, Acyrthosiphon pisum, a liver-based artificial diet 

and eggs of Ephestia kuehniella (Zeller, 1879) (Lepidoptera: Pyralidae). The existence of the 

fifth instar by this study could be explained, as all larvae designated for this project were 

collected from the second generation of a culture maintained under controlled temperature, 

humidity and fixed diet. Keeping those larvae under predicted constant and favourable 

conditions until obtaining the second generation had positive influences on the pattern of 

development that stimulated the extra growth of this stage. Apparently, the rearing conditions 

had critical influences on the presence of this additional stadium. Likewise, Mayntz et al. 

(2003) noted that the low prey quality tended to reduce the number of instars in H. axyridis. 

This also supports the theory that the species selected by this study as a prey was appropriate. 

The occurrence of the fifth larval instar suggests an increase in fitness that was found to be 

consistent with Labrie et al. (2006). It known that this stage is characterised by an increase in 

voracity, aggressiveness and predation efficiency (Lucas et al., 1997, Lee and Kang, 2004). 

Therefore, the presence of an extra instar associated with an increase in aggression might be 

http://en.wikipedia.org/wiki/Philipp_Christoph_Zeller
http://www.researchgate.net/researcher/43872476_David_Mayntz
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another crucial factor that helped to increase the predation rate and displacement of many 

native, even conspecific species, and accelerated the invasion of this ladybird worldwide.  

 

Finally, in terms of sex determination, the study showed that it could be easy and reliable to 

identify the sex of the adult prior to emergence, either from the initial weight of the larval 

instar (as in Chapter 3) or from the weight of pupae (as in Chapter 5). Mayntz et al. (2003) 

noted that the prey availability influenced sex-ratio in H. axyridis; this was likewise found in 

this study, particularly in Chapter 8, when the prey availability was monitored for a brief 

period. There was no consistency in sex ratio among the emerged adults that experienced 

different treatments. Therefore, both prey quality and quantity may be critical elements 

modelling the evolution of life-history traits in generalist predators such H. axyridis. 

 

Pupal colour dimorphism had already long been recognised by a number of studies (Smith, 

1980, Yamamoto et al., 2011). The pattern of pupal colouration, in addition to the weight 

mentioned above, would be useful in identifying the sex of an adult before conducting an 

experiment. Identifying the sex from the colouration of the pupae is considered a novel 

method, introduced exclusively by this study for the first time. Chapter 7 accentuated that the 

antennae of H. axyridis is multifunctional sense organ with high specificity that interact with 

other sense organs to intensify the sense response towards the external cues. Nevertheless, it 

revealed this organ has differential function and specificity that varies between males and 

females, besides foraging activities, prey searching and mate recognition. Self-orientation and 

movement control are additional important functions that optimize foraging and maximize 

their encounters with the most profitable prey (Stephens and Krebs 1986).   

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3114068/#CR44
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The high aggressiveness of males over females was also revealed in Chapter 7. All of the 

above were considered as significant outcomes from the present project that might contribute 

to maximising the efficiency invasion process and the establishment of this predator over a 

wide range, where it started to harm the ecological integrity of an ecosystem. 

  

Another objective of the current study was to appraise the relationship between body 

parameters and lifetime fecundity. It was previously reported that the link between fecundity 

and body parameters was not always straightforward (Leather, 1988). Similar findings were 

also adopted in Chapter 3. The study showed that in terms of H. axyridis fitness, it was 

always associated with having large body size and high fecundity, as also noted by Phoofolio 

et al. (2009). During the course of investigation, there were few small-sized females that were 

found to be highly fecund; however, their fecundity never exceeded the maximum fecundity 

of large-sized females. Unexpectedly, a direct relationship was found between the two above 

variables in two cases,  first, when larvae were starved at early stages, particularly during the 

second instar and the third instar experiments, as described in Chapter 8, and second when 

daily egg clutch size (instead of fecundity) per female was regressed against the mean fresh 

body weight (as in Chapter 3). The study synthesis revealed that there are certain 

considerations that must first be taken into account, the total lifetime fecundity does not 

always give a reliable information on the body size. Second, measuring the weight of body 

only once through its lifespan is incorrect, as body size is not fixed, but changes according to 

several factors, such as the time of reproduction and food deprivation or nutrient quality. This 

was also noted by Dixon and Agarwala (2002) and Honek et al. (2007). It could be concluded 

that the direct association between female body weight and fecundity was obscured by other 

interacting factors, even in the presence of food,  for ovariole number, where the presence of 

fat tissues become an obstacle for ovariole growth (as noticed by this study), male 
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contribution might not be sufficient, and the age of the female and mating experience also 

played a part. Even continuous access to food might overstress the female, appearing to be 

costly rather than advantageous (as revealed from the starvation experiment when using 

treatment C in Chapter 8). It was noted that egg oviposition in the ladybeetle H. axyridis 

showed an L-shaped response to age at maturity. This may have significant costs on 

population dynamics in variable environments. If the females are well-fed, they would grow 

at a greater rate, mature early and lay a large number of eggs (Agarwala and Bhowmik, 

2011). The large number of eggs may give rise to a high number of larvae being expected to 

undergo slow growth and suffer from interspecific competition, particularly when food is 

limited or under an unpredictable environment (Agarwala et al., 2008). Therefore, the 

association between age and fecundity towards food availability is mainly mediated by 

competition and is a potential mechanism for compensating density dependence in a 

fluctuating environment (Gotthard and Nylin, 1995).  

 

Many factors have been addressed by Stearns (1992) and Omkar and Mishra (2005) that 

might have an effect on lifetime fecundity and egg viability, such as parent age, suitability of 

prey and environmental conditions. The deterioration in fecundity with age might be mainly 

due to the reduction in the efficiency of prey capturing, due to senescence. The results 

obtained from Chapter 3 did not show any effect of senescence on fecundity, as well as egg 

hatchability,  most females were able to capture their prey successfully until they died, 

however, the association between fecundity and senescence that shapes survivorship might be 

entirely different from the field. In the experiment described in Chapter 3, all the couples 

were provided daily with sufficient prey and were confined in a small area (the Petri-dish). 

Therefore, the energy expenditure needed for foraging and searching for prey would be very 

low and might not affect their daily activities or even their longevity.  
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In addition, Dixon (2000) noted that the pattern of egg oviposition may shape the relationship 

between longevity and lifetime fecundity. This study revealed that oviposition in H. axyridis 

was intermittent, which might influence interpretation of fecundity and longevity association 

(as shown in Chapter 3). Continuous or daily oviposition might need more energy 

expenditure and additional nutrient allocation; such matters may have a negative impact on 

longevity. The association between longevity and fecundity needs certain factors to elicit it 

and make it more apparent. In this study, such relationship was found more pronounced in 

two particular cases,  first, when females had limited access to mating with males or did not 

have the choice to select their mates (as shown in Chapter 6); and second, the fecundity-

longevity trade-offs appeared strongly when manipulating diet (as in Chapter 8). In addition, 

the project proved that one mating might be enough to provide females with lifetime fertility. 

Females that had mated once were able to lay more fertile eggs compared with other cases. 

This was considered another advantage that could be added to the many revealed by this 

study on this ladybird.  

  

In summary, H. axyridis is a very adaptable species. Being able to adapt itself to food 

variability through the strategy of accelerating growth rate is just one of its remarkable 

features. One of the main reasons for its success must surely be the physiological versatility 

of its specialised reproductive system. It possesses highly flexible ovarian dynamics that 

could perform efficiently during food stress by equilibrating the number of hatched larvae 

and the trophic eggs, as well as serving as an energy preserve system by producing 

asymmetrical ovaries (one would be completely developed and the other would be 

deformed). This is a clever strategy, since developing both might be highly costly when food 

was insufficient. This ladybird is characterised by being explicitly territorial as an adult and 

highly aggressive and hostile during immature stages. The project highlighted different 
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aspects of life-history traits that are likely to quicken its efficiency as a predator, and 

presented a picture on how this ladybird might cope with the environment-induced variations 

in its life-history traits. The results of this project could be used to as an appropriate reference 

to describe the performance of adults and immature stages of H. axyridis in field conditions. 

It became an invasive species, affecting the dynamic and configuration of a number of guilds 

through direct or indirect interactions. Thus, all the above-defined developmental 

characteristics, coupled with behavioural features including aggressiveness and great 

predation efficiency, have facilitated the juvenile development, competitive success and 

foraging ability of this species and contributed to the invasive success of H. axyridis. 

Competitive displacement is the most severe consequence of interspecific competition 

following H. axyridis invasion, in which competition for food may result in competitive 

elimination of many co-existent native species. The aggressive behaviour of H. axyridis 

larvae probably accounts for the replacements recorded particularly in ladybird communities 

(Yasuda et al., 2001, Agarwala et al., 2003). Undoubtedly, the ongoing invasion process and 

establishment of this ladybird have evolved toward greater phenotypic plasticity because they 

encountered differing environments during the invasion process. This was confirmed when 

Lombaert et al. (2007) demonstrated that the invasive population of H. axyridis exhibited 

significantly greater plasticity, as well as general fitness, and displayed a significantly higher 

survival rate compared to non-invasive species of H. axyridis. Thus, the study could be 

incorporated into integrated pest management programmes to control the release of H. 

axyridis. Although several laboratory and field studies have attempted to examine the effects 

of some insecticides (including carbonyl, bifenthrin, zeta-cypermethrin, thiamethoxam and 

imidacloprid) that have exhibited either a toxic and/or repellent effect on H. axyridis, of these 

insecticides, only carbaryl and imidacloprid are presently labelled for use on wine grapes 

within seven days of harvest, the period in which H. axyridis normally reaches high densities 
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(Galvan et al., 2006). Future research should concentrate more on studying the efficacy of 

other insecticides that are not so labelled, but have shown high toxicity to H. axyridis, such as 

lambda-cyhalothrin and chlorpyrifos (Galvan et al., 2005, 2006). Insecticides, however, are 

only used when beetles are present (Galvan et al., 2006). More investigation should be 

focused on the genetic background and evolution of this particular species, an area that was 

not covered by this study, in order to come up with the best methods for stopping new 

invasion and encouraging the eradication of nuisance ladybirds.  
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