
COMPUTATIONAL METHODS FOR
GEOCHEMICAL MODELLING

Applications to carbon dioxide sequestration

ALLAN MOREIRA MULIN LEAL

A dissertation submitted to the Department of Earth Science and
Engineering, Imperial College London, in partial fulfilment

of the requirements for the degree of
Doctor of Philosophy

Imperial College London
Department of Earth Science and Engineering

Qatar Carbonates and Carbon Storage Research Centre

April 2014



I herewith certify that all material in this dissertation which
is not my own work has been properly acknowledged.

Allan Moreira Mulin Leal



COPYRIGHT DECLARATION

The copyright of this thesis rests with the author and is made available under a Creative Com-
mons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, dis-
tribute or transmit the thesis on the condition that they attribute it, that they do not use it for
commercial purposes and that they do not alter, transform or build upon it. For any reuse or
redistribution, researchers must make clear to others the licence terms of this work.

3



PUBLICATIONS

Peer-Reviewed Publications

Leal, A.M.M., Blunt, M.J., and LaForce, T.C. (2013). A robust and efficient numerical method
for multiphase equilibrium calculations: Application to CO2–brine–rock systems at high tem-
peratures, pressures and salinities. Advances in Water Resources, 62(C):409–430.

Leal, A.M.M., Blunt, M.J., and LaForce, T.C. (2014). Efficient chemical equilibrium calculations
for geochemical speciation and reactive transport modelling. Geochimica et Cosmochimica Acta,
131:301–322.

Leal, A.M.M., Blunt, M.J., LaForce, T.C. (2014). A chemical kinetics algorithm for geochemical
modelling. Applied Geochemistry. Invited for publication.

Conference Proceedings

Leal, A.M.M., Blunt, M.J., LaForce, T.C. (2012). A Numerical Method for Chemical Equilibrium
Calculations in Multiphase Systems. In ECMOR XIII–13th European Conference on the Mathemat-
ics of Oil Recovery. Biarritz: EAGE.

4



ABSTRACT

Geochemical modelling is fundamental for solving many environmental problems, and spe-
cially useful for modelling carbon storage into deep saline aquifers. This is because the injected
greenhouse gas perturbs the reservoir, causing the subsurface fluid to become acidic, and con-
sequently increasing its reactivity with the formation rock. Assessment of the long term fate of
carbon dioxide, therefore, requires accurate calculations of the geochemical processes that oc-
cur underground. For this, it is important to take into account the major water-gas-rock effects
that play important roles during the gas storage and migration. These reactive processes can
in general be formulated in terms of chemical equilibrium or chemical kinetics models.

This work proposes novel numerical methods for the solution of multiphase chemical equilib-
rium and kinetics problems. Instead of adapting or improving traditional algorithms in the
geochemical modelling literature, this work adopts an approach of abstracting the underly-
ing mathematics from the chemical problems, and investigating suitable, modern and efficient
methods for them in the mathematical literature. This is the case, for example, of the adap-
tation of an interior-point minimisation algorithm for the calculation of chemical equilibrium,
in which the Gibbs energy of the system is minimised. The methods were developed for inte-
gration into reactive transport simulators, requiring them to be accurate, robust and efficient.
These features are demonstrated in the manuscript. All the methods developed were applied
to problems relevant to carbon sequestration in saline aquifers. Their accuracy was assessed by
comparing, for example, calculations of pH and CO2 solubility in brines against recent experi-
mental data. Kinetic modelling of carbon dioxide injection into carbonate and sandstone saline
aquifers was performed to demonstrate the importance of accounting for the water-gas-rock ef-
fects when simulating carbon dioxide sequestration. The results demonstrated that carbonate
rocks, for example, increase the potential of the subsurface fluid to dissolve even more mobile
CO2.

5



ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to Professor Martin Blunt for all his guidance and
support throughout my studies at Imperial College. It was an honour to be supervised by such
a brilliant and distinguished researcher, whose character, intelligence, and austerity, whenever
necessary, allowed me to learn more than just science!

Many thanks to Dr. Tara LaForce for her guidance during the first year of my doctorate pro-
gram. Everything I achieved would not have been possible if she did not believe in my poten-
tial when selecting me for a doctoral scholarship.

I would like to extend my appreciation to Professor J. P. Martin Trusler from Imperial College
and Dr. James Gunning from CSIRO, Australia, for agreeing to be my examiners.

I am grateful for the funding from the Qatar Carbonates and Carbon Storage Research Centre
(QCCSRC), provided jointly by Qatar Petroleum, Shell, and Qatar Science & Technology Park.
Many thanks also to Dr. Iain MacDonald and Professor Geoffrey Maitland.

Finally, I would like to thank my wife, Aline Leal, for her unlimited patience, kindness and
love during these difficult years as a PhD student. Her company has made everything much
easier! I would also like to thank my parents, Eli Mulin Leal and Benilda Moreira Leal, who
are always supporting me and wishing me the best.

6



CONTENTS

Abstract 5

Acknowledgements 6

Contents 7

List of Figures 10

List of Tables 14

List of Symbols 16

1 Introduction 19
1.1 Chemical Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2 Chemical Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3 Carbon Capture and Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Chemical Equilibrium: Stoichiometric Approach 30
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3 Numerical Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.1 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.2 Projection Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.3 Stabilisation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.4 Convergence Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Chemical Equilibrium: Non-Stoichiometric Approach 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Gibbs Energy Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.2 Gibbs–Duhem Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Numerical Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.1 First-Order Optimality Conditions . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.2 Perturbed KKT Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.3 Convergence Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7



CONTENTS 8

3.3.4 Convergence Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.5 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.6 Initial Guess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.7 Watchdog Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.8 Phase Stability Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Chemical Kinetics 61
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 Partial Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.2 Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.3 Revisited Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.4 Chemical Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.5 Rates of Mineral Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Numerical Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.1 Jacobian Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Applications: Chemical Equilibrium 75
5.1 Mutual Solubility of CO2 and H2O in Brines . . . . . . . . . . . . . . . . . . . . . 76

5.1.1 Modelling Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.1.2 Salinity Effect on Solubility . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.1.3 Accuracy Assessment of the Calculations . . . . . . . . . . . . . . . . . . . 79

5.2 Phase Behaviour of H2O–CO2–Rock Systems . . . . . . . . . . . . . . . . . . . . . 81
5.3 Comparison with Other Geochemical Solvers . . . . . . . . . . . . . . . . . . . . . 89
5.4 Sequential Chemical Equilibrium Calculations . . . . . . . . . . . . . . . . . . . . 90
5.5 Convergence Rates of the Interior-Point Method . . . . . . . . . . . . . . . . . . . 100
5.6 Sensitivity of the Interior-Point Method . . . . . . . . . . . . . . . . . . . . . . . . 100

6 Applications: Chemical Kinetics 104
6.1 Kinetic Modelling of CO2 Injection into Carbonate Saline Aquifers . . . . . . . . 104

6.1.1 Qatari Brine and Rock Composition . . . . . . . . . . . . . . . . . . . . . . 105
6.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Kinetic Modelling of CO2 Injection into Sandstone Saline Aquifers . . . . . . . . 113
6.3 Kinetic Modelling of Pure Calcite Dissolution . . . . . . . . . . . . . . . . . . . . . 118

7 Conclusions and Future Work 121

Bibliography 123

A Convergence Rates of a Stoichiometric Algorithm 135
A.1 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.2 Numerical Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

B Thermodynamic Models 139
B.1 Activity Coefficients for Aqueous Species . . . . . . . . . . . . . . . . . . . . . . . 139



CONTENTS 9

B.2 Fugacity Coefficients for Gaseous Species . . . . . . . . . . . . . . . . . . . . . . . 144
B.3 Activity Coefficients for Mineral Species . . . . . . . . . . . . . . . . . . . . . . . 147

C Details of the Interior-Point Method Algorithm 150
C.1 Central Neighbourhood: Largest Feasible Trust-Region Radius . . . . . . . . . . . 150
C.2 Central Neighbourhood: Largest Central Trust-Region Radius . . . . . . . . . . . 151



LIST OF FIGURES

1.1 Contribution of the four main trapping mechanisms in carbon dioxide sequestration
in saline aquifers (IPCC, 2005). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Schematic representation of the kinetic dissolution of calcite. . . . . . . . . . . . . . . 61
4.2 Exchange of elemental mass between the equilibrium and kinetic partitions for the

chemical system in Table 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 Comparison of our calculations of CO2 solubility in pure water (lines), using the
activity coefficient model of Drummond (1981) for CO2(aq) and the fugacity coeffi-
cient model of Spycher et al. (2003) for CO2(g) and H2O(g), with the experimental
solubility data compiled in Spycher et al. (2003) (points). The calculations assumed
a H2O–CO2 system composed of an aqueous and gaseous phase. Temperatures
used were (a) 25 °C; (b) 31 °C; (c) 40 °C; and (d) 60 °C. . . . . . . . . . . . . . . . . . . 78

5.2 Comparison of our calculations of H2O solubility in the CO2-rich phase (lines), us-
ing the activity coefficient model of Drummond (1981) for CO2(aq) and the fugacity
coefficient model of Spycher et al. (2003) for CO2(g) and H2O(g), with the experi-
mental solubility data compiled in Spycher et al. (2003) (points). The calculations
assumed a H2O–CO2 system composed of an aqueous and gaseous phase. Temper-
atures used were (a) 25 °C; (b) 31 °C; (c) 40 °C; and (d) 60 °C. . . . . . . . . . . . . . . 78

5.3 Comparison of our calculations of CO2 solubility in NaCl brine (lines), using the
activity coefficient model of Drummond (1981) for CO2(aq) and the fugacity coef-
ficient model of Spycher et al. (2003) for CO2(g) and H2O(g), with the calculated
solubility data of Duan and Sun (2003) (points). The calculations assumed a CO2-
H2O-NaCl system composed of an aqueous and gaseous phase. . . . . . . . . . . . . 80

5.4 Calculated H2O solubility in the CO2-rich phase, using the activity coefficient model
of Drummond (1981) for CO2(aq) and the fugacity coefficient model of Spycher et al.
(2003) for CO2(g) and H2O(g). The calculations assumed a CO2-H2O-NaCl system
composed of an aqueous and gaseous phase. . . . . . . . . . . . . . . . . . . . . . . . 80

5.5 Comparison of our calculations of CO2 solubility in 2.5 molal NaCl brine (lines),
using the activity coefficient model of Duan and Sun (2003) for CO2(aq) and the
fugacity coefficient models of Spycher and Reed (1988), Spycher et al. (2003) and
Duan et al. (2006) for CO2(g) and H2O(g), with the experimental solubility results
of Hou et al. (2013b) (points). The calculations assumed a H2O–CO2–NaCl system
composed of an aqueous and gaseous phase. . . . . . . . . . . . . . . . . . . . . . . . 82

10



List of Figures 11

5.6 Comparison of our calculations of CO2 solubility in 4.0 molal NaCl brine (lines),
using the activity coefficient model of Duan and Sun (2003) for CO2(aq) and the
fugacity coefficient models of Spycher and Reed (1988), Spycher et al. (2003) and
Duan et al. (2006) for CO2(g) and H2O(g), with the experimental solubility results
of Hou et al. (2013b) (points). The calculations assumed a H2O–CO2–NaCl system
composed of an aqueous and gaseous phase. . . . . . . . . . . . . . . . . . . . . . . . 82

5.7 Comparison of our calculations of CO2 solubility in 2.5 molal NaCl brine (lines),
using the activity coefficient models of Duan and Sun (2003) and Drummond (1981)
for CO2(aq) and the fugacity coefficient model of Spycher et al. (2003) for CO2(g)
and H2O(g), with the experimental solubility results of Hou et al. (2013b) (points).
The calculations assumed a H2O–CO2–NaCl system composed of an aqueous and
gaseous phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.8 Comparison of our calculations of CO2 solubility in 4.0 molal NaCl brine (lines),
using the activity coefficient models of Duan and Sun (2003) and Drummond (1981)
for CO2(aq) and the fugacity coefficient model of Spycher et al. (2003) for CO2(g)
and H2O(g), with the experimental solubility results of Hou et al. (2013b) (points).
The calculations assumed a H2O–CO2–NaCl system composed of an aqueous and
gaseous phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.9 Comparison of our calculations of H2O solubility (in terms of yCO2 ) in the CO2-
rich phase (lines), using the activity coefficient model of Duan and Sun (2003) for
CO2(aq) and the fugacity coefficient models of Spycher and Reed (1988), Spycher
et al. (2003) and Duan et al. (2006) for CO2(g) and H2O(g), with the experimental
solubility results of Hou et al. (2013b) (points). The calculations assumed a H2O–
CO2–NaCl system composed of an aqueous and gaseous phase, where the aqueous
phase contains 2.5 molal of NaCl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.10 Comparison of our calculations of H2O solubility (in terms of yCO2 ) in the CO2-
rich phase (lines), using the activity coefficient model of Duan and Sun (2003) for
CO2(aq) and the fugacity coefficient models of Spycher and Reed (1988), Spycher
et al. (2003) and Duan et al. (2006) for CO2(g) and H2O(g), with the experimental
solubility results of Hou et al. (2013b) (points). The calculations assumed a H2O–
CO2–NaCl system composed of an aqueous and gaseous phase, where the aqueous
phase contains 4.0 molal of NaCl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.11 Phase behaviour of the systems H2O–CO2–Halite (a), H2O–CO2–Calcite (b) and
H2O–CO2–Magnesite (c) respectively along the line of feed molar fraction zHalite =

10−2, zCalcite = 10−4 and zMagnesite = 10−4. Concentrations of CO2(aq) are given
on the left vertical axis and concentrations of other aqueous species on the right.
The calculations assumed a H2O–CO2–Mineral system composed of an aqueous,
gaseous and mineral phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.12 The performance of 20 sequential chemical equilibrium calculations given showing
the number of iterations using the monotone trust-region algorithm. . . . . . . . . . 96

5.13 The performance of 20 sequential chemical equilibrium calculations showing the
number of iterations using the non-monotone watchdog trust-region algorithm. . . . 96

5.14 The performance of 20 sequential chemical equilibrium calculations showing the
number of iterations using the monotone trust-region algorithm without scaling. . . 97



List of Figures 12

5.15 The performance of 20 sequential chemical equilibrium calculations showing the
number of iterations using the non-monotone watchdog trust-region algorithm with-
out scaling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.16 The performance of 100 sequential chemical equilibrium calculations showing the
number of iterations using the monotone trust-region algorithm. . . . . . . . . . . . 98

5.17 The performance of 100 sequential chemical equilibrium calculations showing the
number of iterations using the non-monotone watchdog trust-region algorithm. . . . 98

5.18 The performance of 20 sequential chemical equilibrium calculations showing the
number of iterations using the non-monotone watchdog trust-region algorithm as-
suming variable temperatures and pressures. . . . . . . . . . . . . . . . . . . . . . . . 99

5.19 Calculated pH of the aqueous solution and the molalities of the ionic species Ca2+

and Mg2+ as the amount of CO2 increases in the system at T = 60 ◦C and P =

150 bar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.20 Residual of the equilibrium calculation at nCO2 = 0.1 mol with and without the

watchdog strategy. At this condition the gaseous phase is not present at equilib-
rium. The activation of the watchdog strategy is indicated by the solid circle, and
the maximum residual attained during the non-monotone iterations is indicated by
the empty circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.21 Residual of the equilibrium calculation at nCO2 = 0.793 mol with and without the
watchdog strategy. At this condition the gaseous phase is about to appear at equi-
librium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.22 Residual of the equilibrium calculation at nCO2 = 1.0 mol with and without the
watchdog strategy. At this condition the gaseous phase is present at equilibrium. . . 102

5.23 Effect of the perturbation parameter µ̇ on the number of moles of the gaseous species
CO2(g), plotted in log-scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1 The transient state of mineral calcite during one month of reaction with the CO2

saturated subsurface fluid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2 The transient state of mineral dolomite during one month of reaction with the CO2

saturated subsurface fluid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3 The transient state of the pH of the subsurface fluid during one month of reaction. . 111
6.4 The transient state of ionic species Ca2+, Mg2+ and HCO3

− during one month of
reaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.5 The transient increase in the amount of CO2 in the subsurface fluid during one
month of reaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.6 The transient state of supercritical CO2 during one month of reaction. . . . . . . . . . 113
6.7 The kinetic dissolution and precipitation of the major silicate minerals in the sand-

stone rock during one hundred million years. . . . . . . . . . . . . . . . . . . . . . . . 116
6.8 The kinetic dissolution and precipitation of calcite in the sandstone rock during one

hundred million years. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.9 The kinetic trapping of mobile carbon (aqueous and gaseous/supercritical) as pre-

cipitated carbonate minerals during one hundred million years. . . . . . . . . . . . . 117
6.10 The kinetic evolution of the porosity of the sandstone rock and acidity of the sub-

surface fluid in reservoir during one hundred million years. . . . . . . . . . . . . . . 118



List of Figures 13

6.11 Comparison of the calculated concentration of calcium in the aqueous solution (line)
with the experimental data (points) of Peng et al. (2014) during dissolution of calcite
in a CO2 saturated water. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



LIST OF TABLES

3.1 Parameters of the interior-point minimisation algorithm. . . . . . . . . . . . . . . . . 51

4.1 Description of the chemical system H2O–CO2–Halite–Calcite–Magnesite–Dolomite
with their phases and respective chemical species. . . . . . . . . . . . . . . . . . . . . 65

4.2 Description of the equilibrium and kinetic reactions in the chemical system of Ta-
ble 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Partition of the chemical system H2O–CO2–Halite–Calcite–Magnesite–Dolomite in
equilibrium and kinetic species. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Description of the chemical system H2O–CO2–CaCl2 with their phases and respec-
tive species. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Comparison of our calculations of carbon dioxide solubility in pure water with the
experimental solubility data of Hou et al. (2013a). . . . . . . . . . . . . . . . . . . . . 85

5.3 Comparison of our calculations of carbon dioxide solubility in NaCl brine, using
the activity coefficient model of Duan and Sun (2003) for CO2(aq), with the experi-
mental solubility data of Hou et al. (2013b). . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Comparison of our calculations of carbon dioxide solubility in NaCl brine, using the
activity coefficient model of Drummond (1981) for CO2(aq), with the experimental
solubility data of Hou et al. (2013b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5 Comparison of our calculations of carbon dioxide solubility in NaCl+KCl brine, us-
ing the fugacity coefficient model of Duan et al. (2006) for CO2(g), with the experi-
mental solubility data of Tong et al. (2013). . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6 Comparison of our calculations of carbon dioxide solubility in MgCl2 brine, using
the fugacity coefficient model of Duan et al. (2006) for CO2(g), with the experimental
solubility data of Tong et al. (2013). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.7 Comparison of our calculations of carbon dioxide solubility in CaCl2 brine, using
the fugacity coefficient model of Duan et al. (2006) for CO2(g), with the experimental
solubility data of Tong et al. (2013). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.8 Comparison of our calculations of carbon dioxide solubility in NaCl brine with
the calculations using PHREEQC (Parkhurst and Appelo, 2013) and the solubil-
ity model of Duan and Sun (2003) as well as with the experimental solubility data
of Hou et al. (2013b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

14



List of Tables 15

5.9 Comparison of our calculations of pH in CO2 saturated NaCl brine (1 molal) with
the calculations using PHREEQC (Parkhurst and Appelo, 2013) as well as with the
experimental pH measurements of Peng et al. (2013). . . . . . . . . . . . . . . . . . . 92

5.10 Description of the chemical system H2O–CO2–NaCl–CaCO3–MgCO3 with their phases
and respective chemical species. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.11 The number of moles of each component at both initial and final states. . . . . . . . . 93
5.12 Expressions for the molar amounts of the chemical elements from the molar amounts

of the components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.13 Initial and final equilibrium states of the chemical system H2O–CO2–NaCl–CaCO3–

MgCO3 at T = 60 °C and P = 150 bar. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.14 Description of the chemical system H2O–CO2–NaCl with their phases and respec-

tive chemical species. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1 The composition of a rock representative of a Qatari reservoir. . . . . . . . . . . . . . 105
6.2 The subsurface fluid composition of two Qatari reservoirs. . . . . . . . . . . . . . . . 106
6.3 The chemical system for the representation of the subsurface fluid and rock of a

Qatari reservoir. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.5 The specific surface area of the rock minerals. . . . . . . . . . . . . . . . . . . . . . . . 107
6.4 The chemical state of the system at the end of Stage 1, assuming Brine 1 and Rock 1. 108
6.6 The composition of the sandstone rock before and after equilibrium with the sub-

surface fluid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.7 The chemical system representing the Qatari subsurface fluid and the sandstone rock.114
6.8 The list of mineral species composing the sandstone rock and their respective chem-

ical formula. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.9 The kinetic species and reactions for the kinetic modelling in a sandstone saline

aquifer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

B.1 The activity coefficient parameter Aγ of the HKF model in units of kg1/2/mol1/2

calculated at temperatures 0–500 °C and pressures up to 5000 bar. . . . . . . . . . . . 141
B.2 The activity coefficient parameter Bγ of the HKF model in units of kg1/2/(mol1/2 · cm)

calculated at temperatures 0–500 °C and pressures up to 5000 bar. . . . . . . . . . . . 141
B.3 The activity coefficient parameter bNaCl of the HKF model in units of kg/cal calcu-

lated at temperatures 0–500 °C and pressures up to 5000 bar. . . . . . . . . . . . . . . 142
B.4 The activity coefficient parameter bNa+Cl− of the HKF model in units of kg/mol

calculated at temperatures 0–500 °C and pressures up to 5000 bar. . . . . . . . . . . . 142
B.5 Coefficients from Table 1 of Spycher and Reed (1988) for the calculation of fugacity

coefficients of pure gases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
B.6 Cross-coefficients from Table 2 of Spycher and Reed (1988) for the calculation of

fugacity coefficients of mixed gases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
B.7 The parameters for equations (B.24) and (B.25) taken from Spycher et al. 2003. . . . . 147
B.8 The parameters for the fugacity coefficient model of Duan et al. (2006) for CO2(g). . 148



LIST OF SYMBOLS

Greek Symbols
αi the i-th species in the chemical system.
απ

i the i-th species in the π-th phase.
αr the convergence rate of an equilibrium calculation.
α the set of species in the chemical system.
απ the set of species in the π-th phase.
ξ̄ the projection constant in the stoichiometric equilibrium method.
ξi the projection factor of the i-th Newton step in the stoichiometric equilibrium method.
ε the set of elements in the chemical system.
εΛ the phase stability tolerance.
εill the threshold to determine when the Jacobian matrix is ill-conditioned.
εtol the tolerance value used for the convergence checking.
εs the stabilisation threshold in the stoichiometric equilibrium method.
ε j the j-th element in the chemical system.
ϕi the fugacity coefficient of the gaseous species with index i.
γi the activity coefficient of the aqueous species with index i.
Λπ the stability index of the π-th phase.
µ̇ the constant perturbation parameter used when the watchdog strategy is active.
µ̂ the perturbation parameter of the interior-point method.
µi the chemical potential of the i-th chemical species.
µ◦i the standard chemical potential of the i-th species.
µw the threshold used to activate the watchdog strategy.
ν the stoichiometric matrix of the linearly independent reactions in the chemical system.
νji the stoichiometry of the i-th species in the j-th reaction, and also the (i, j)-th entry of

the stoichiometric matrix ν.
Ωπ the generalised saturation index of the π-th phase.
Π the number of phases in the chemical system.
θill the under-relaxation factor when the Jacobian matrix is ill-conditioned.
Roman Symbols
a the vector of activities of the chemical species.
aH+ the activity of the ionic species H+.
ai the activity of the i-th chemical species.
a?i the specified activity of the i-th species.
B the balance matrix of the chemical system.

16



List of Tables 17

b the molar abundance vector of the elements.
bj the molar abundance of the j-th element.
b?j the specified number of moles of the j-th element.
c the equality constraint function in a optimisation problem.
C the number of equilibrium constraints in the Gibbs energy minimisation problem.
D the diagonal scaling matrix of the primal variable x.
e the vector of all ones.
ei the vector whose i-th component is one, and all others zero.
E the number of elements in the chemical system.
e the optimality error function of the interior-point method.
Fµ̂ the residual function of the perturbed KKT conditions.
f the objective function in a optimisation problem.
G the Gibbs free energy function of the chemical system.
h the vector-valued equilibrium constraint function.
Iπ the set of indices of the species in the π-th phase.
Ig the indices of the gaseous species.
i? the local index of the i-th species in its phase.
K the vector of equilibrium constants.
Kj the equilibrium constant of the j-th reaction.
L the Lagrange function of a optimisation problem.
M the number of linearly reactions in a chemical system.
m the number of equality constraints in a optimisation problem.
mi the molality of the aqueous species with index i.
n the molar abundance vector of the chemical species.
N the number of species in the chemical system.
n the number of variables in a optimisation problem.
Nπ the number of species in the π-th phase.
ni the molar amount of the i-th chemical species.
n?

i the specified number of moles of the i-th species.
nt the total molar amount in the chemical system.
nπ

t the total molar amount in the π-th phase.
P the pressure of the chemical system.
P◦ the reference pressure for the activity of gaseous species.
Pi the partial pressure of the i-th gaseous species.
R the universal gas constant.
rk the calculation residual at the k-th iteration.
sc, sl the scaling parameters in the convergence checking.
T the temperature of the chemical system.
W the formula matrix of a chemical system.
wj the j-th row of the formula matrix W.
W the number of watchdog iterations after which the algorithm checks for filter accep-

tance.
wji the number of atoms of the j-th element in the i-th species, and also the (i, j)-th entry of

the formula matrix W.



List of Tables 18

x̄ the scaled primal variables.
x̂ the primal solution in a previous calculation.
X the diagonal matrix defined by X := diag(x).
x the vector of variables in a optimisation problem.
xπ

i the molar fraction of the i-th species in the π-th phase.
xg

i the molar fraction of the i-th species in the gaseous phase.
y, z the Lagrange multipliers of a optimisation problem.
yj, zi the Lagrange multipliers with respect to the j-th constraint and i-th variable.
z the vector of electrical charges of the species.
Mathematical Symbols
∇x the gradient operator with respect to the primal variables x only.
‖x‖∞ the L∞ norm of vector x defined as ‖x‖∞ := maxi|xi|.
‖x‖1 the L1 norm of vector x defined as ‖x‖1 := ∑i|xi|.
‖x‖2 the L2 norm of vector x defined as ‖x‖2 :=

√
∑i|xi|2.

T the transpose operator of a matrix or vector.



CHAPTER 1
INTRODUCTION

Geochemical modelling is of vital importance for the understanding of many environmental
problems. Derived from concepts of chemical equilibrium and chemical kinetics, it allows the
modelling of reactive processes that occur at the Earth’s surface, subsurface or mantle. These
include, for example, the complex interactions between natural waters, formation rocks, and
gases, whose investigation is challenged by the large differences in the speed of the reactions,
surface area effects, water salinity, temperature and pressure conditions, and others.

The current knowledge of geochemical modelling evolved from the first advances in chemical
modelling. Interested in estimating the thrust of rocket fuels from its bulk composition, Huff
et al. (1951) and Zeleznik and Gordon (1960) developed methodologies for equilibrium calcula-
tions for gaseous systems, which could then be used to determine the composition and volume
of the combusted fuels, eliminating the need of time consuming and expensive tests.

Some years later similar approaches were applied to geochemical systems. The literature in-
dicates that Garrels and Thompson (1962) were the pioneers in performing geochemical mod-
elling. Their work consisted of hand computation of the species distribution in a sample of sea
water at 25 °C and 1 bar from a measured bulk composition of the ionic species. This work was
a breakthrough at the time, even though only simple thermodynamic models were considered.

Computational calculations did not take long to appear afterwards. Helgeson (1968) presented
a computational method to calculate the reaction path of heterogeneous geochemical systems
composed of an aqueous solution and minerals. This method consisted of integrating a system
of differential equations parametrised not with a time variable, but with a reaction progress
variable. It served as a basis for the subsequent works of Helgeson (1969) and Helgeson et al.
(1969, 1970), and this research pioneered kinetic modelling of geochemical systems.

Many are the applications of geochemical modelling. It has been used extensively for speci-
ation-solubility calculations using a variety of available packages in the literature (Truesdell
and Jones, 1974; Nordstrom et al., 1979; Wolery, 1992b; Parkhurst and Appelo, 1999). It is
very useful for managing radioactive waste disposal and understanding the contamination of
groundwater, whose simulations are extremely important for informed political decisions and
environmental policy development (Zhu and Anderson, 2002).
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Another application is the modelling of carbon dioxide storage into geological formations as
a measure to mitigate anthropogenic climate change (IPCC, 2005, 2013). For this, geochemical
calculations and porous media flow simulations are essential to predict the fate of the injected
carbon dioxide (Gunter et al., 1993, 1997; Kharaka et al., 2006). By accounting for the under-
ground reactive processes between the greenhouse gas and the subsurface fluid and rock, it is
possible to determine the amount of trapped carbon dioxide due to dissolution in the fluid and
precipitation as secondary carbonate minerals.

Because of the mathematical complexity that emerges from thermodynamic and kinetics mod-
els in geochemical modelling, the use of advanced numerical methods is necessary. This work
proposes, therefore, novel numerical methods for geochemical modelling and their computa-
tional implementation. The methods developed can model complex geochemical systems com-
posed of many non-ideal phases, adopting chemical equilibrium or chemical kinetics models.
These algorithms provide the core functionality for any geochemical calculation.

1.1 Chemical Equilibrium

In a chemical equilibrium state, the forward and reverse rates of the reactions in a system are
equal, and therefore no changes in the concentrations of its species are observed with time. It
is possible to demonstrate, with the use of the first and second laws of thermodynamics, that
a chemical system undergoing an isobaric and isothermal process progresses towards a state
of minimum Gibbs free energy. Other conditions also apply during this process, such as mass
conservation of the chemical elements and charge balance condition of the aqueous solution.

Therefore, an equilibrium problem consists of finding the number of moles of the chemical
species that simultaneously minimises the Gibbs free energy of the system and satisfies a sys-
tem of equilibrium constraints (Smith and Missen, 1982). In addition, a non-negativity con-
straint for the number of moles is required in order to guarantee a physically feasible molar
composition.

The applicability of chemical equilibrium solvers for environmental problems is wide. For in-
stance, speciation modelling of aquatic systems, calculation of solubilities of gases and miner-
als, analysis of the effect of pH on the dissolution of a mineral, investigation of water-gas-rock
effects during carbon storage in geological formations, and radioactive waste disposal mod-
elling are all examples of problems that require equilibrium calculations.

In addition, it is a fundamental tool for chemical kinetics and subsurface reactive transport
modelling. In these applications, some reactions in the system are controlled by thermodynam-
ics instead of kinetics, and consequently equilibrium calculations are necessary (Lichtner, 1985;
Steefel and Cappellen, 1990; Steefel and Lasaga, 1994; Steefel and MacQuarrie, 1996; Steefel
et al., 2005).

Smith and Missen (1982) classify chemical equilibrium algorithms into two types: stoichiometric
and non-stoichiometric. The former solves a system of mass-balance and mass-action equations,
while the latter minimises the Gibbs free energy of the system. Zeleznik and Gordon (1968)
and Van Zeggeren and Storey (1970) show, however, that both approaches are conceptually
equivalent.
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The literature contains many geochemical solvers for equilibrium calculations, most of them
based on a stoichiometric approach. Examples of stoichiometric based solvers include WA-
TEQ (Truesdell and Jones, 1974), MINEQL (Westall et al., 1976), WATEQ4F (Ball et al., 1987),
MINTEQA2 (Allison and Kevin, 1991), EQ3/6 (Wolery, 1992a), MINEQL+ (Schecher and McAvoy,
1998), CHESS (van der Lee and Windt, 2002), PHREEQC (Parkhurst and Appelo, 1999, 2013),
and The Geochemist’s Workbench (Bethke, 2007).

In general, these solvers rely only on equilibrium constants of reactions, which are insufficient
to calculate the Gibbs free energy of the geochemical system. As a result, determining the stable
equilibrium phase assemblage is a difficult and expensive task. Many heuristic techniques
have been developed to resolve this issue for pure mineral phases. For example, Bethke (2007)
presents a technique to add the most supersaturated mineral to the calculation and remove the
most undersaturated. Although popular among many geochemical solvers, this trial-and-error
approach is inadequate and unsuitable for aqueous and gaseous phases. Consequently, many
of these packages require that the aqueous and gaseous phase always exist at equilibrium, by
fixing the amount of liquid water and the fugacity of a gaseous species.

Some issues are also found in the numerical methods of these stoichiometric geochemical
solvers. For example, MINTEQA2 (Allison and Kevin, 1991), EQ3/6 (Wolery, 1992a), CHESS
(van der Lee and Windt, 2002), PHREEQC (Parkhurst and Appelo, 1999, 2013), and The Geo-
chemist’s Workbench (Bethke, 2007) adopt an incomplete Newton scheme developed by Morel
and Morgan (1972) and further improved by Reed (1982) for solving aqueous speciation. The
approach consists of arranging the species in a set of primary species and another of secondary
species. The composition of the primary species is calculated by applying Newton’s method to
the modified mass-balance equations. The composition of the secondary species, on the other
hand, is calculated via a successive substitution approach using the mass-action equations.

This incomplete Newton scheme aims to reduce the dimension of the Jacobian matrix so that
less computational effort is spent in solving linear systems. However, combining Newton’s
method with a successive substitution approach has the potential of preventing the calcula-
tion to converge at quadratic rates near the solution. Moreover, in some chemical equilibrium
calculations, the cost of evaluating expensive equations of state and their derivatives could ex-
ceed the cost of solving linear systems. See Appendix A for a more detailed description of this
stoichiometric formulation and an in-depth discussion on its convergence rate.

Another typical approach in these geochemical solvers is the assumption of specific details
about species, reactions, and phases in the equilibrium calculation. These details can be, for
example, an arbitrary decision to neglect the reactive consumption/production of water (Alli-
son and Kevin, 1991), the assumption that an aqueous phase always exists (Allison and Kevin,
1991; Bethke, 2007; Parkhurst and Appelo, 1999, 2013), or the assumption that a gaseous phase
exists only under the imposition of a specified partial pressure or fugacity of a gaseous species
(Wolery and Daveler, 1992; Wolery, 1992a,b; Bethke, 2007).

The disadvantages that follow from this approach are many. Firstly, handling so many partic-
ular and arbitrary cases can result in code bloat, which reduces efficiency and maintainability
of the software. Secondly, it becomes complicated to add new features to the solver, since the
introduction of new thermodynamic models and phase types might incur several modifica-
tions throughout the code. Finally, restricting specific thermodynamic models for some types
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of species restricts the solver flexibility and applicability, preventing it from performing cus-
tomised computations using the plethora of models existent in the literature.

Geochemical packages based on Gibbs energy minimisation algorithms include ChemSage
(Eriksson and Hack, 1990), THERIAC (de Capitani and Brown, 1987), HCh (Shvarov, 1999,
2008), FactSage (Bale et al., 2002, 2009), and GEM-Selektor (Karpov et al., 1997, 2001, 2002;
Kulik et al., 2004, 2013).

In ChemSage (Eriksson and Hack, 1990), a Gibbs energy minimisation algorithm is imple-
mented in which the non-ideal values of the chemical potentials are used, but their derivatives
correspond to ideal models. Although convergence might not be an issue with such practice
(e.g., quasi-Newton methods converge with artificial derivatives that are considerably differ-
ent from their real values, Nocedal and Wright, 1999; Fletcher, 2000), the approach cannot con-
verge at a quadratic rate near the solution. In Eriksson and Hack (1990) it is pointed out that
a strategy was developed to refine the initial guess to improve the efficiency of the algorithm.
However, this improvement cannot change the convergence rate of the method.

In GEM-Selektor (Karpov et al., 1997, 2001, 2002; Kulik et al., 2004; Wagner et al., 2012; Kulik
et al., 2013), an interior-point algorithm is used to minimise the Gibbs free energy of multiphase
systems. Their method, however, does not use the logarithmic barrier functions of Fiacco and
McCormick (1990) nor the KKT perturbation approach of El-Bakry et al. (1996), which are prac-
tices commonly adopted in several non-linear programming packages and algorithms (Ulbrich
et al., 2004; Silva et al., 2008; Wächter and Biegler, 2005a,b,c; Vanderbei, 1999; Benson et al.,
2000; Vanderbei, 2006; Byrd et al., 1999; Costa and Fernandes, 2008, 2011a,b). GEM-Selektor
assumes that at every iteration the minimisation of the Gibbs energy is a convex problem, and
uses this assumption to compute a descent direction. This direction is then used to find a step
length that sufficiently minimises the Gibbs free energy, a procedure similar to a line-search
strategy. The method not only maintains feasibility on the bounds at every iteration, but also
on the mass-balance constraints.

Harvie et al. (1987) presents an equilibrium algorithm for non-ideal multiphase systems based
on the minimisation of the Gibbs free energy. Their algorithm consists of transforming a con-
strained minimisation problem into an unconstrained one by introducing Lagrange multipliers
and quadratic slack variables to circumvent the bound constraints. Moreover, their approach
has some similarity to active-set minimisation methods, since their calculated directions are
always feasible and some species are sometimes made active (i.e., having zero number of
moles) during the search for the stable phase assemblage. However, their method presents
some strategies for finding the global minimum, an approach not attempted in this work, since
its computational cost would make the proposed method prohibitive for reactive transport
simulations.

In Perez et al. (2012), a method for multiphase geochemical speciation calculation is presented.
The numerical method consists of combining two-phase flash calculations1 with aqueous speci-
ation, where two independent routines that communicate with each other are used to solve the
multiphase equilibrium problem. This differs from the methodology presented in this work,

1An approach for multiphase chemical equilibrium calculations in which only a simple one-to-one relationship
between the components can exist, differently from the general approach based on the law of mass-action presented
later in Chapter 2.
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which solves the full equilibrium problem without making separate flash calculations to ac-
count for a gaseous phase.

In the recent work of Harvey et al. (2013), a Gibbs free energy minimisation method for sys-
tems composed of solid solutions was developed. Their method uses exact Hessian expres-
sions, which potentially produce fast convergence rates near the solution. They compared their
method with the general-purpose optimisation packages IPOPT (Wächter and Biegler, 2005c),
KNITRO (Byrd et al., 1999), and SNOPT (Gill et al., 2002, 2005), identifying the necessity of suit-
able heuristics to improve the efficiency and robustness of chemical equilibrium calculations.
Moreover, they observed that using quasi-Newton approximations for the Hessian matrix, an
approach adopted by the general optimisation solver SNOPT, results in severely inefficient
chemical equilibrium calculations. In their algorithm, all phases and species are initially as-
sumed to exist at equilibrium, allowing a simplification of the KKT equations by eliminating
the complementary equations. However, some phases can be excluded during the calculation
if they are detected as unstable. The authors define an unstable phase as a phase that for a
certain number of past iterations a full Newton step would bring its molar abundance to a
negative value. These phases are then removed because eliminating the complementary con-
ditions from the KKT equations is subjected to all species having non-zero number of moles.
In the end of the calculation, phase stability tests are performed to identify any excluded phase
that should be added to the system, or any phase at equilibrium that should be removed. Our
algorithm, on the other hand, does not exclude or add any phase in the course of the calcula-
tion to attain numerical stability. All phases are assumed in the calculation, and the unstable
phases are identified in the end of the calculation with a rigorous phase stability test.

1.2 Chemical Kinetics

Frequently geochemical investigations of a system assume chemical equilibrium conditions.
Calculating the solubilities of minerals and gases in aqueous solutions at different tempera-
tures, pressures, salinities, and other conditions require only equilibrium calculations (Ander-
son and Crerar, 1993). Sometimes, however, one might be interested in the time scales over
which such processes occur, and equilibrium calculations cannot provide this.

Application of chemical kinetics theory is vital when the transient chemical state of a system is
important. This is useful, for example, to analyse the temperature and pressure effects on the
time required for a mineral to equilibrate with a solution. In addition, it describes the transient
water-gas-rock effects over time of a geochemical process, such as the continuous consumption
or production of gases while minerals are reacting in an aqueous solution.

A more detailed modelling procedure has its consequent complexities, however. Chemical ki-
netics calculations require more input data and models than chemical equilibrium calculations.
For example, calculating the evolution of the system composition demands rate laws of the re-
actions. In addition, due to its time-dependence, chemical kinetics consists of solving a system
of ordinary differential equations, while chemical equilibrium requires only the solution of
algebraic equations.

Another complexity in geochemical kinetics is the broad difference of the speeds of the aque-
ous, gaseous and mineral reactions (Lasaga, 1998). Commonly, aqueous reactions proceed sub-
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stantially faster than mineral reactions, with the former sometimes achieving equilibrium in
microseconds, while the latter requiring several days to many years (Zhang, 2008). Therefore,
this can result in an inefficient numerical integration of the ordinary differential equations,
which would need tiny time steps to ensure accuracy and stability.

To address this problem, the geochemical system is considered to be in partial equilibrium
(Helgeson, 1968; Helgeson et al., 1969, 1970). A system in partial equilibrium means that it
is in equilibrium with respect to some reactions and out of equilibrium with respect to others.
For example, since aqueous and gaseous reactions are often considerably faster than mineral
reactions, it seems plausible to assume they are in equilibrium at all times. As the mineral
reactions proceed kinetically, the aqueous and gaseous reactions are constantly perturbed and
then instantaneously re-equilibrated. Note, however, that the partial equilibrium assumption
is based on the relative speed of the reactions. Therefore, it is possible to assume a mineral
reaction in equilibrium and an aqueous reaction out of equilibrium at any instant.

The partial equilibrium assumption simplifies the problem by replacing stiff differential equa-
tions by algebraic ones. These algebraic equations govern the equilibrium condition of those
reactions assumed to be in equilibrium. As a result, the governing equations become a system
of non-linear differential-algebraic equations, with the constraint that mass of the chemical
elements in the system must be conserved.

The first work on computational reaction path modelling in geochemistry can be tracked to
Helgeson (1968) and Helgeson et al. (1969). They presented a modelling example of the hy-
drolysis of K-feldspar, where the partial equilibrium assumption was adopted by considering
the aqueous reactions in equilibrium. However, their reaction path modelling was not based
on kinetic rate laws of the reactions, but on the use of a progress variable to describe the com-
positional change of the system. Helgeson (1971) later on modelled the feldspar hydrolysis
using a parabolic rate law. The simplistic rate was derived using Fick’s first law of diffusion
on a one-dimensional problem of diffusion along the surface layer of the mineral reacting with
the aqueous solution.

Helgeson and Murphy (1983) combined the rate laws proposed in Aagaard and Helgeson
(1982) with a numerical integration routine to model irreversible reactions among minerals
and aqueous solutions. They again considered the hydrolysis of feldspar, with the possibil-
ity of precipitation of secondary minerals (muscovite, gibbsite, and kaolinite). The secondary
minerals were assumed to precipitate under the partial equilibrium assumption.

Although these preliminary works led by Helgeson 30–40 years ago were the precursors of
many others, they were always intended for a specific system. There was no formalisation of
geochemical kinetics calculations for general multiphase systems with a mixing of equilibrium-
and kinetically-controlled reactions. In addition, no efficient methodology was discussed for
the solution of the resulting system of differential-algebraic equations. Some of these gaps have
been addressed, as discussed next. However, an efficient, general, and flexible algorithm has
yet to be developed for chemical kinetics in geochemical modelling.

The following is a list of computer codes commonly used for geochemical kinetic modelling:
EQ6 (Wolery and Daveler, 1992), PHREEQC (Parkhurst and Appelo, 1999, 2013), MINTEQA2
(Allison and Kevin, 1991), CHESS (van der Lee and Windt, 2002), SOLMINEQ.88 (Kharaka
et al., 1988), and The Geochemist’s Workbench (Bethke, 2007). They calculate the evolution
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of systems as minerals kinetically dissolve or precipitate. In addition The Geochemist’s Work-
bench, as described in Bethke (2007), provides support for modelling redox reactions controlled
by kinetics.

As discussed in Section 1.1, these geochemical packages adopt a stoichiometric approach for
aqueous speciation calculations. Their databases contain only the equilibrium constants of the
reactions, which are required for the solution of the system of mass action equations. The
chemical potentials of the species, on the other hand, are not available, which are necessary to
calculate the Gibbs free energy of the system. Therefore, determining the stable equilibrium
phase assemblage of the system is a difficult task, since, given two or more states, it is not pos-
sible to determine which one has the lowest Gibbs free energy. In addition, these geochemical
codes use an incomplete Newton scheme for aqueous speciation calculations, which results in
slow rates of convergence, as discussed in Appendix A.

Recently, Mironenko and Zolotov (2011) developed a computer code for modelling equilibrium-
kinetics of water-rock interactions. Instead of using a stoichiometric scheme for chemical equi-
librium calculations, they used the algorithm of de Capitani and Brown (1987), which min-
imises the Gibbs free energy of the system using a simplex approach. The chemical equilibrium
algorithm used here, however, is capable of minimising non-convex objective functions using a
trust-region interior-point method. In addition, the adaptive time step control adopted in this
work is based on numerical analysis, while their approach is based on a heuristic that aims to
prevent strong changes in pH between time steps.

1.3 Carbon Capture and Storage

Global warming has become an important societal concern. Anthropogenic emission of green-
house gases to the atmosphere has been detected as the primary cause for current climate
changes (Staudt et al., 2008). Unprecedented energy production from burning fossil fuels such
as oil, coal and natural gas has substantially elevated the concentration of CO2 in the atmo-
sphere over the past few decades (Houghton et al., 2001).

In order to minimize anthropogenic emissions of CO2 to the atmosphere and mitigate climate
changes, the technique known as Carbon Capture and Storage (CCS) was developed. The
approach consists of the capture of CO2 from static sources (e.g., fossil fuel power plants) and
its storage into geological formations (e.g., deep saline aquifers, depleted oil/gas reservoirs).
According to Ormerod (1994), the injection of supercritical CO2 into deep saline aquifers is one
of the most promising storage process due to the highest storage capacity of these formations.

As supercritical CO2 is injected into a deep saline aquifer, four main trapping mechanisms can
occur, which will promote the isolation of carbon dioxide from the atmosphere. These are listed
below:

Structural trapping is the trapping mechanism promoted by an impermeable layer of cap-rock
that prevents the injected supercritical CO2 to escape to the atmosphere. In the absence
of this cap-rock, the supercritical carbon dioxide can potentially leak due to buoyancy
effects, since its density is less than that of the subsurface fluid. This is the major trapping
mechanism in the short term of a carbon storage process, as illustrated in Figure 1.1,
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since at the initial stages of injection most CO2 is mobile (IPCC, 2005). Its importance is
gradually diminished as the mobility of the greenhouse gas decreases with its continue
dissolution into the subsurface fluid, its reaction with the porous rock, and its trapping
by capillary effects.

Residual trapping is the trapping mechanism that consists of the immobilization of supercrit-
ical CO2 by capillary forces. Because of this, it is also known as capillary trapping. As
the plume of supercritical carbon dioxide migrates through the porous media, small bub-
bles of the gas is gradually trapped inside the porous rock. This trapping occurs because
of the snap-off phenomenon that consists of brine flowing through the porous without
displacing those small CO2 bubbles. As a consequence, a considerable amount of car-
bon dioxide remains immobile in the saline aquifer, and, therefore, safely isolated from
the atmosphere. Recent measurements of residual trapping of supercritical CO2 in both
sandstones and carbonate rocks can be found in Pentland et al. (2011) and El-Maghraby
and Blunt (2013).

Solubility trapping consists of the trapping of the injected supercritical carbon dioxide as dis-
solved gas in the subsurface fluid. As the CO2 plume spreads throughout the aquifer,
it continually dissolves in the resident brine. The amount of dissolution depends on
pressure, temperature, brine salinity, and the extent of the contact area between the CO2

plume and brine. Further dissolution of the mobile gas occurs because of the gravity-
driven convective mixing that takes place (Lindeberg and Wessel-Berg, 1997). In this
physical process, the denser brine saturated with carbon dioxide sinks and the unsat-
urated brine rises, further dissolving the available mobile supercritical carbon dioxide.
The numerical investigations of Ennis-King and Paterson (2005) estimated the start time
of the convective mixing process for many permeability settings, which varied from one
year to hundreds of years after carbon dioxide injection.

Mineral trapping consists of immobilising the injected CO2 as precipitates of secondary car-
bonate minerals. Since the dissolution of carbon dioxide in brine forms an acidic solution,
geochemical reactions with the primary minerals in the host porous rock can lead to the
formation of secondary carbonate minerals over time, indirectly sequestering carbon. Be-
cause of the slow reaction rates, however, this trapping mechanism becomes important
only over larger time scales (hundreds to thousands of years depending on the compo-
sition of the rock minerals). This is a secure trapping mechanism, since CO2 will remain
trapped away from the atmosphere for geological times (Gunter et al., 1993).

The simultaneous quantitative estimation of all these trapping mechanisms is a daunting task.
A complete and accurate analysis of the ultimate fate of carbon dioxide after its injection de-
pends on the interplay of several physical and chemical processes. These processes in turn
are strongly coupled and, as a consequence, an individual and independent investigation of a
single trapping mechanism may not reflect the true immobilization of CO2.

A comprehensive study of the long-term storage of CO2 in geological formation by means of
laboratory experimentation is impractical for several reasons. These include, for example, the
difficulties in representing the ambient conditions deep underground and the slow physical
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and chemical processes in the porous media flow, such as geochemical reactions that can take
hundreds to thousands of years to equilibrate. Therefore, the use of reactive flow simulations
for the fate assessment of the injected carbon dioxide is fundamental.

Figure 1.1: Contribution of the four main trapping mech-
anisms in carbon dioxide sequestration in saline aquifers
(IPCC, 2005).
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In order to account for the water-gas-
rock effects that occur during storage of
carbon dioxide in deep saline aquifers,
geochemical reactions must be consid-
ered (Gunter et al., 1993; Gaus et al.,
2008). This is important, for exam-
ple, to determine the overall trapping
of the greenhouse gas by both solubil-
ity and mineral mechanisms. In addi-
tion, accounting for the heterogeneous
reactions between fluid and rock has
also considerable impact on the calcu-
lated amount of dissolved carbon diox-
ide and the pH of the brine (Kharaka
et al., 2006).

1.4 Objectives

The numerical solution of the porous
media flow equations are very well un-
derstood. Advances in numerical meth-
ods for partial differential equations and
adaptive mesh refinement schemes in the past few decades have allowed several physical pro-
cesses such as advection, diffusion and dispersion to be represented fairly accurately. However,
numerical methods for modelling chemical processes in the subsurface flow have yet much to
be improved.

Improvement in these methods are needed for various reasons. As discussed in Sections 1.1
and 1.2, most algorithms for chemical equilibrium and kinetics calculations were developed in
the past for standalone geochemical calculations. Therefore, their immediate applicability into
critical applications such as reactive transport simulators, which requires thousands to millions
of equilibrium and kinetics calculations every time step, might not be optimal.

Take as an example the recently updated geochemical package GEM-Selektor (Kulik et al., 2013;
Wagner et al., 2012), which was not initially developed for integration into reactive transport
simulations. Its new equilibrium algorithm GEMS3K is an improvement over the previous
GEMIPM2K, whose accuracy and stability were not sufficient for reactive transport modelling
(Shao et al., 2009). Therefore, this need of Kulik et al. (2013) of adapting their numerical method
for critical geochemical applications raises the question of whether other approaches in the
geochemical literature require some adaptations as well. Since many geochemical equilibrium
methods were initially developed with the primary intent for speciation-solubility calculations
and plotting phase diagrams, this might indeed be the case.
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Reactive transport simulators very often explicitly combine both transport equations and chem-
ical equations. Consequently, this results in complicated and rigid mathematical and compu-
tational formulations that becomes difficult to add any new feature, such as support for new
phases and reactions. Moreover, the chemical processes in the subsurface flow cannot be cal-
culated by dedicated numerical methods and specific computer routines for equilibrium and
kinetics problems. Examples of simulators that adopt this practice are TOUGHREACT (Xu
et al., 2004, 2006), PFLOTRAN (Lu and Lichtner, 2005), and CrunchFlow (Steefel, 2009). There-
fore, this class of reactive transport simulators can benefit from the development of efficient,
robust and accurate equilibrium and kinetics methods.

This work aims to develop modern numerical methods for geochemical processes that are at
the same time widely applicable and highly efficient for reactive transport simulators. The
mathematical formulation of the methods assumes no specific details about the chemical sys-
tem. Therefore, their applicability is broad, allowing them to be used with any combination of
phases, species, and thermodynamic models.

Chapter 2 presents a numerical method for chemical equilibrium calculations based on the
stoichiometric approach. Unlike the traditional approach of imposing only mass-balance and
charge-balance conditions on the chemical elements of the system, the presented method per-
mits the specification of other types of equilibrium constraints such as fixed activity or fugacity
of a species, fixed partial pressure of a gas, fixed concentration or amount of a species, and
others. This generality in specifying equilibrium constraints is important, for example, if the
solubility of a mineral needs to be calculated over a range of pH values.

Chapter 3 presents a chemical equilibrium method based on a non-stoichiometric approach.
The method consists of directly minimising the Gibbs free energy of the system using a primal-
dual interior-point method. The advantage of this equilibrium algorithm over the previous one
is that determining the unstable phases (e.g., phases that should not be at equilibrium) is more
efficient and robust. In addition, this method uses novel numerical methods for non-convex
optimisation problems in the mathematical literature.

Chapter 4 presents an algorithm for chemical kinetics calculation in multiphase geochemical
systems. The method supports the mixing of both equilibrium- and kinetically-controlled re-
actions. The necessary chemical equilibrium calculations are performed using the Gibbs free
energy minimisation algorithm presented in Chapter 3. Integration of the ordinary differen-
tial equations is performed using the implicit multistep BDF algorithm (Ascher and Petzold,
1998). An adaptive control scheme of the time step is adopted for efficient integration of the
differential equations.

Chapter 5 presents results using the chemical equilibrium methods of Chapters 2 and 3 to cal-
culate multiphase equilibrium calculations for problems related to CO2 sequestration in saline
aquifers. These include the numerical investigation of the solubility of carbon dioxide in a va-
riety of brines, the pH of brines saturated with CO2, the solubility of carbonate minerals in the
presence of carbon dioxide, and the calculation of phase behaviour in systems composed of
aqueous, gaseous and mineral phases.

Chapter 6 presents results using the chemical kinetics method of Chapter 4 to simulate the
kinetic water-gas-rock effects during CO2 injection in saline aquifers. The kinetic modelling
aims to analyse the fate of the injected supercritical CO2 on both carbonate and sandstone saline
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aquifers, determining the extent at which this greenhouse gas is trapped by solubility and
mineral mechanisms. A kinetic modelling of the dissolution of pure calcite in CO2 saturated
water is also performed, and the calculations compared with experimental measurements.

Chapter 7 summarises this work and presents conclusions and recommendations for future
work.



CHAPTER 2
CHEMICAL EQUILIBRIUM:

STOICHIOMETRIC APPROACH

In this chapter a chemical equilibrium algorithm based on a stoichiometric approach is pre-
sented. The methodology is developed for general multiphase systems, where no presumption
on the types of phases, species and reactions is made. The method adopts a modified New-
ton’s method to solve a system of mass-action equations coupled with a system of equilibrium
constraints. A stabilisation procedure is developed to promote convergence of the calculation
when a phase in the chemical system is absent in the equilibrium state.

2.1 Introduction

As introduced in Section 1.1, an equilibrium problem is a constrained minimisation problem,
where the Gibbs free energy of the system is at a minimum at equilibrium. However, ap-
proaches for equilibrium calculations exist that do not formally minimise the Gibbs free en-
ergy of the system. These replace the minimisation problem by a system of non-linear equa-
tions known as mass-action equations. These equations, which are derived from the first-order
optimality conditions of the Gibbs energy minimisation problem (Leal et al., 2013), model the
equilibrium condition of the reactions, that is, their equal forward and reverse reaction rates.

In what follows, assume a chemical system composed of N species, where the i-th species is
denoted by αi and the set of species by α = {α1, . . . , αN}. In addition, consider that there exist E
elements from which these species can be formed, where the j-th element is denoted by ε j and
the set of elements by ε = {ε1, . . . , εE}. Finally, assume that the chemical species are partitioned
among Π phases, where απ

i denotes the i-th species in the π-th phase, απ = {απ
1 , . . . , απ

Nπ
} de-

notes the set of species in the π-th phase, Nπ denotes the number of species in the π-th phase,
and Iπ denotes the set of indices of the species in the π-th phase.

The chemical equilibrium algorithm based on the stoichiometric approach is formulated from
a system of linearly independent reactions, which can be determined from the given set of

30
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species α. The number of these reactions is here denoted by M. In what follows we will see
how these linearly independent reactions are obtained.

Definition 2.1. Let wji denote the number of atoms of the j-th element in the i-th species. The
formula matrix of the system is defined as the matrix W ∈ RE×N whose (j, i)-th entry is wji.

Definition 2.2. Let z ∈ RN denote the vector of electrical charges of all species. Define the
balance matrix B ∈ R(E+1)×N as:

B =

[
W
zT

]
. (2.1)

Definition 2.3. Let νji denote the stoichiometry of the i-th species in the j-th reaction, where
νji is positive for products and negative for reactants. Define the stoichiometric matrix of the
reactions as the matrix ν ∈ RM×N whose (j, i)-th entry is νji.

As a result of the above definition, the reactions taking place in the system can be written in
general form as:

0 

N

∑
i=1

νjiαi (j = 1, . . . , M). (2.2)

A well-defined reaction is both mass and charge balanced. In other words, the number of atoms
of each chemical element and the electrical charge, on both sides of the reaction, must be equal.
Therefore, if νj denotes the j-th row of matrix ν, which contains the stoichiometric coefficients
of the j-th reaction, it follows that:

BνT
j = 0. (2.3)

Hence, any reaction in the system must satisfy:

νT
j ∈ ker(B), (2.4)

where ker(B) = {x ∈ RN : Bx = 0} is the kernel of the balance matrix B.

Condition (2.4) forms the basis for the determination of a set of linearly independent reactions
involving the species α. It tells that the matrix νT is a kernel of the balance matrix B, and so its
largest number of linearly independent columns νT

j , (i.e., the number of reactions M) is given
by M = nullity(B). This can be further simplified to:

M = N − C,

where C = rank(B).

Example 2.1. Determining the reactions in the system H2O–CO2–NaCl

Consider a system composed by the following chemical species:

α = {H2O(l), H+, OH−, Na+, Cl−, NaCl(aq), HCO−3 , CO2−
3 , CO2(aq)}, (2.5)

whose chemical elements are:
ε = {H, O, Na, Cl, C}. (2.6)
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The formula matrix of this system is:

W =



H2O(l) H+ OH− Na+ Cl− NaCl(aq) HCO3
− CO3

2− CO2(aq)

H 2 1 1 0 0 0 1 0 0
O 1 0 1 0 0 0 3 3 2

Na 0 0 0 1 0 1 0 0 0
Cl 0 0 0 0 1 1 0 0 0
C 0 0 0 0 0 0 1 1 1

. (2.7)

It can be shown in this particular case that the balance matrix B = W, since the rows of the
formula matrix W are linearly independent and the vector of charges z is a linear combination
of the rows of W.

Once the balance matrix B is obtained, one can then calculate its kernel, and obtain the follow-
ing stoichiometric matrix by transposing the result:

ν =


−1 1 1 0 0 0 0 0 0

0 0 0 1 1 −1 0 0 0
0 1 0 0 0 0 −1 1 0
−1 1 0 0 0 0 1 0 −1

 , (2.8)

which defines the following system of linearly independent reactions:

H2O(l) 
 H+ + OH−, (2.9)

NaCl(aq) 
 Na+ + Cl−, (2.10)

HCO−3 
 CO−2
3 + H+, (2.11)

CO2(aq) + H2O(l) 
 HCO−3 + H+. (2.12)

2.2 Governing Equations

Assume a multiphase system whose chemical species participate in the following linearly in-
dependent reactions:

0 

N

∑
i=1

νjiαi (j = 1, . . . , M). (2.13)

Since the system is assumed to be in equilibrium, the composition of the chemical species must
satisfy the following mass-action equations (Smith and Missen, 1982):

Kj(T, P) =
N

∏
i=1

ai(T, P, n)νji (j = 1, . . . , M), (2.14)

where Kj : R2 7→ R denotes the equilibrium constant function of the j-th reaction; ai : R2+N 7→
R the activity function of the i-th chemical species; T and P the temperature and pressure of the
system respectively; n ∈ RN the molar abundance vector of the system, whose i-th component
ni denotes the molar amount of the i-th species.

In the literature, the activity of a species is commonly replaced by the product of a concen-
tration quantity and an activity coefficient. For example, the activity of an aqueous species is
replaced by:

ai = miγi, (2.15)
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where mi and γi are its molality and activity coefficient. The activity of a gaseous species, on
the other hand, is replaced by:

ai = ϕix
g
i

P
P◦

, (2.16)

where xg
i and ϕi are its molar fraction and fugacity coefficient, and P◦ is a reference pressure,

usually equal to 1 bar, though this depends on the standard chemical potential data of the
gaseous species.

In our formulation, however, the term ai, representing the activity of a species, is included in all
equations. The idea is to avoid the explicit dependence of the type of the species every time an
equation is written. For example, the mass-action equations (2.14), and also the Gibbs energy
function (3.2) later in Chapter 3, can be succinctly and generically written without the need to
write terms that corresponds to aqueous, gaseous, mineral, and possibly other types of species.
This is a fundamental step for the development of a general chemical equilibrium algorithm
that can be applied to any type of systems. At the computational level, such abstraction is also
possible to be made with programming techniques such as polymorphism.

The equilibrium constants Kj of the reactions are usually interpolated at a given temperature
and pressure from known values. These values can be either obtained experimentally, or eval-
uated using:

ln Kj(T, P) := − 1
RT

N

∑
i=1

νijµ
◦
i (T, P), (2.17)

where µ◦i : R2 7→ R is the standard chemical potential of the i-th species; and R is the universal
gas constant (Smith and Missen, 1982).

The interpolation approach is an efficient and accurate approach. It is justified by the fact that
the evaluation of the equations of state to compute the standard chemical potentials µ◦i can
be prohibitively expensive. However, the same practice cannot be done with the activities ai,
because these functions depend on the composition of the system. Therefore, they must be
directly computed from their equations of state. Moreover, fast convergence of the equilibrium
calculations requires at least their first-order partial molar derivatives.

The number of mass-action equations (2.14) is not enough to resolve the equilibrium state of
the system. Assuming that temperature and pressure are specified, the problem contains a
total of N unknowns, which are the molar amounts ni of the species. Since there are M mass-
action equations, an additional of C = N −M equilibrium constraints are required to resolve
the problem.

Recall, however, that the mass of the elements are conserved during the equilibration process
and the electroneutrality condition must be attained. Therefore, let b ∈ RE denote the molar
abundance vector of the elements, whose j-th component bj is the molar amount of the j-th
element in the system. It follows that:

Wn = b (2.18)

and

zTn = 0 (2.19)

are the missing constraints to resolve the equilibrium problem, known as the mass-balance and
charge-balance equations. Note that there are E + 1 equations in (2.18) and (2.19). Depending
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on the chemical system, some of these equations can be linearly dependent. It can be shown
that after removing the linearly dependent equations, a total of C = rank(B) equilibrium con-
straints is obtained.

The mass-balance and charge-balance equations are the natural constraints to be imposed for
chemical equilibrium calculations. In geochemical modelling, however, very frequently the
modeller is interested in imposing other kinds of constraints. Examples include the pH of the
solution, the total concentration of ionic species, and the electro-neutrality condition of the
mixture (Anderson and Crerar, 1993; Bethke, 2007). Below is a brief list of the constraints that
can be imposed at equilibrium:

• the number of moles of an element;

• the number of moles of a species;

• the charge-balance condition of the aqueous solution;

• the activity of a species; and

• the partial pressure of a gaseous species.

Therefore, the equilibrium constraints in this work is represented by the general equation:

h(n; T, P) = 0, (2.20)

where h : RN+2 7→ RE is the equilibrium constraint function assumed to be continuously dif-
ferentiable. For simplicity, this dependence on temperature and pressure will be omitted.

Observe that this approach for specifying equilibrium constraints is general and flexible. For
example, the mass-balance and charge-balance equations (2.18) and (2.19) can be defined as:

h(n) :=

[
Wn− b

zTn

]
. (2.21)

and its gradient as:
∇h(n) := B. (2.22)

Let us now show how some other equilibrium constraints can be constructed individually.
These individual constraints will be denoted by the function h : RN 7→ R, which can be com-
bined to form the vector-valued function h.

Imposition of the number of moles of an element

There are equilibrium problems in which the number of moles of some elements are unknown.
Instead of specifying these amounts, they are in fact calculated, which constitutes an inverse
problem (Kulik, 2006; Kulik et al., 2013).

As an example, consider the case where one needs to find out the amount of hydrochloric acid
that needs to be mixed with 1 kg of water to produce a solution with pH equal to 4.0. In this
problem, therefore, the number of moles of elements H and Cl are unknown a priori. However,
these amounts can be determined by solving an equilibrium problem where (i) the pH of the
solution is imposed together with (ii) the condition of charge-balance of the aqueous solution
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and (iii) the known amount of element oxygen. Thus, we see that the capability of specify-
ing the number of moles of individual elements is of fundamental importance for chemical
equilibrium modelling.

Imposing the number of moles of the j-th element is governed by the following equilibrium
constraint function:

h(n) := wT
j n− b?j , (2.23)

where b?j denotes the desired number of moles of the j-th element; and wj ∈ RN the vector
formed from the j-th row of the formula matrix W. The gradient of this function is given by:

∇h(n) := wj. (2.24)

Imposition of the number of moles of a species

Frequently, equilibrium problems are formulated from a mixing of a chemical species. For
example, a mixing of 1 kg of water with 100 g of supercritical CO2. Then, from these given
amounts, the number of moles of the chemical elements can be readily determined and a for-
ward equilibrium calculation performed.

There are cases, however, in which one might be interested in the effect that the amount of a
given species has on the equilibrium state of the system. For example, at a given temperature
and pressure, how much supercritical CO2 must be mixed with 1 kg of water in a closed system
to produce 1 g of vapour water? In this inverse problem, we must first identify the elements
whose amounts are unknown in the problem, which are C and O. Thus, the solution of this
problem can be easily obtained by calculating an equilibrium problem whose constraints are
(i) the mass of species H2O(g) is 1 g, (ii) the molar amount of H is twice the number of moles of
water, and (iii) the charge-balance condition of the aqueous solution.

Imposing the number of moles of the i-th species at equilibrium is obtained by defining the
equilibrium constraint function as:

h(n) := ni − n?
i , (2.25)

where n?
i is the given number of moles for the i-th species. From this definition it follows that

the gradient of h is given by:
∇h(n) := ei, (2.26)

with ei ∈ RN denoting the vector whose i-th component is one, and all others zero.

Imposition of the charge-balance condition

As we just saw, the charge-balance condition is a convenient constraint to be imposed when the
amount of a chemical element is unknown. By accounting for the balance of electrical charges
in the system, the following condition must be attained:

zTn = 0, (2.27)

where z ∈ RN is the vector of charges of all species. Therefore, the equilibrium constraint
function that imposes the charge-balance condition is given by:

h(n) := zTn, (2.28)
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whose gradient is:
∇h(n) = z. (2.29)

Imposition of the activity of a species

Imposing the activity of a species can be useful in some cases. For example, the pH of an
aqueous solution can be easily measured, and so the activity of species H+ is known, given by:

aH+ = exp10(−pH). (2.30)

Therefore, this information can be used towards the calculation of the equilibrium state of the
solution.

Imposing the activity of the i-th species requires defining the equilibrium constraint as:

h(n) := ai(n)− a?i , (2.31)

where a?i is the desired activity for the i-th species. It follows that the gradient of the above
function is given by:

∇h(n) = ∇ai(n) (2.32)

where ∇ai(n) is the gradient of the activity function ai. The analytical calculation of these
derivatives results in efficient equilibrium calculations, and they are of utmost importance in
the minimisation of the Gibbs free energy.

For simplicity, note that the dependence on temperature T and pressure P of the activity func-
tion ai and its gradient ∇ai in the previous formulation has been omitted.

Imposition of the partial pressure of a gaseous species

Imposing the partial pressure of a gas is a fairly common practice. In Bethke (2007), the equi-
librium problem of the dissolution of pyrite (FeS2) is considered. In this problem, the fugacity
of the gaseous species O2(g) is kept constant in order to simulate the contact of the solution
with the atmosphere. Sometimes, however, one might opt to impose the partial pressure of a
gas instead of its fugacity, which are equivalent practices when the gases are considered ideal.
Thus, for instance, since oxygen makes up about 20% of the atmosphere, one needs to set the
partial pressure of O2(g) to 0.2 atm, assuming the atmospheric pressure is 1 atm.

The partial pressure of the i-th gaseous species is given by:

Pi = xg
i P. (2.33)

Thus, the equilibrium constraint function can be defined as:

h(n) := Pi − xg
i P, (2.34)

and its gradient as:
∇h(n) := −∇xg

i P, (2.35)

where the j-th component of the vector ∇xg
i , denoted by ∂xg

i /∂nj, should be zero if the j-th
species does not belong to the gaseous phase. Note that xg

i and ∇xg
i can be easily calculated

from n using the indices of the gaseous species Ig.
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2.3 Numerical Method

In this section the stoichiometric method to compute the equilibrium state of the system is
presented, which requires the simultaneous solution of the non-linear mass-action equations
(2.14) and the equilibrium constraint equations (2.20). By applying the natural logarithm to
both sides of equations (2.14), the following equivalent system of equations can be written:

h(n) = 0, (2.36)

ν ln a(n)− ln K = 0. (2.37)

Here, K ∈ RM is the vector of equilibrium constants of the reactions; and a ∈ RN is the vector
of activities of the species.

2.3.1 Newton’s Method

Equations (2.36) and (2.37) are solved with Newton’s method, which is a well-known derivative-
based root-finding algorithm that achieves second-order convergence near the solution (No-
cedal and Wright, 1999). Therefore, a residual function f : RN 7→ RN of the non-linear equa-
tions needs to be defined, which is here assumed as:

f(n) :=

[
h(n)

ν ln a(n)− ln K

]
. (2.38)

One can now define the problem as:

find n such that f(n) = 0,
subject to ni > 0 for i = 1, . . . , N.

(2.39)

The inequality constraint comes from the positivity condition of the molar amounts of the
species. Note that n is also restricted to be component-wise non-zero, since every mass-action
equation in (2.14) presumes the existence of every participating species in its corresponding
equilibrium reaction in (2.13). As shown later, this restriction can be circumvented when a
phase is not present in the equilibrium state.

The Jacobian function J : RN 7→ RN×N , defined as J := ∂f/∂n, follows from equation (2.38) as:

J(n) =

[
∇h(n)
νA(n)

]
, (2.40)

where the matrix of activity derivatives A is defined as:

A :=
∂ ln a

∂n
. (2.41)

As seen in equation (2.41), the calculation of the Jacobian matrix J requires the first-order partial
molar derivatives of the species activities a.

The algorithm consists of iteratively calculating new approximations of n through the linear
matrix equation:

Jk∆nk = −fk, (2.42)
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where the subscript k denotes a quantity evaluated at the k-th iteration. Once ∆nk is deter-
mined, then nk+1 can be calculated as:

nk+1 = nk + ∆nk. (2.43)

Note that the algorithm requires an initial guess n0, which should be near enough to the solu-
tion in order to prevent divergence.

2.3.2 Projection Procedure

In order to ensure that nk+1 in equation (2.43) is component-wise positive, it is projected to its
feasible domain whenever one of its components become negative. This is done by slightly
modifying equation (2.43) as:

nk+1
i = nk

i + ξi∆nk
i (i = 1, . . . , N), (2.44)

where ξi is a projection factor given by:

ξi =


(ξ̄ − 1)nk

i

∆nk+1
i

if nk
i + ∆nk

i ≤ 0

1 otherwise

(i = 1, . . . , N), (2.45)

with ξ̄ ∈ (0, 1) being a projection constant, and ∆nk
i is the Newton step along the i-th compo-

nent at the k-th iteration.

The use of the projection factor in equation (2.45) guarantees that the positivity restriction on
nk+1

i is satisfied. This is done by replacing the i-th Newton step ∆nk+1
i by (ξ̄ − 1)nk

i whenever
the former would lead the new iterate nk+1

i to a negative state. Therefore, it is easy to see that
the resulting equation becomes nk+1

i = ξ̄nk
i , where not only the length of the Newton step has

changed, but also its direction.

Numerical experiments indicate that the choice of ξ̄ has a direct impact on the performance of
the chemical equilibrium calculation. This is specially true when one phase in the system is ab-
sent in the final equilibrium state. Numerically, this is accompanied by the successive decrease
of the total number of moles of the phase. A value of ξ̄ = 0.1 accelerates this disappearance
process; however, if a phase is not supposed to vanish from the calculation, the use of a rela-
tively small projection value can compromise the convergence speed of the method. Therefore,
in order to balance efficiency and correct behaviour of the calculation, a projection constant
ξ̄ in the interval [0.5, 0.7] is used. Morel and Morgan (1972) and Bethke (2007) use a similar
approach, where ξ̄ would correspond to a fixed value of 0.5 in the published algorithms.

2.3.3 Stabilisation Procedure

In Section 2.2, the chemical equilibrium problem for a multiphase system was formulated.
However, depending on the conditions of temperature, pressure and equilibrium constraints,
some phases might not be present at equilibrium. As a consequence, mass-action equations
associated with non-existent phases will enforce unnecessary equilibrium conditions.

The literature contains some efficient approaches for handling phase disappearance in flash
equilibrium calculations. For instance, the negative flash technique developed by Whitson and
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Michelsen (1989) is a well-regarded classic. Nevertheless, it is difficult to adapt that technique
to a stoichiometric methodology, since this approach does not use the Rachford–Rice equation
commonly employed in flash calculations.

Determining the equilibrium phase assemblage of a multiphase system using the stoichiomet-
ric formulation is difficult and inelegant. However, unlike most geochemical solvers, this is-
sue is not solved here with a trial and error approach of addition and removal of phases to
determine the correct phase assemblage. Instead, a stabilisation procedure is applied to aid
convergence of the stoichiometric method when potential phases in the calculation tend to dis-
appearance. The developed heuristic technique consists of a simple modification in the activity
derivative matrix A (see equation 2.41).

The difficulty in handling phase disappearance using the stoichiometric formulation results
from the premise that the solution is an interior point of the feasible domain. In other words,
the molar amounts of the species are positive. In Chapter 3, on the other hand, a non-stoichio-
metric formulation that presumes the possibility of a solution on the boundary of the feasible
domain (i.e., where some phases and their species have zero number of moles) is presented.
This is achieved by the introduction of extra unknowns into the minimisation problem, known
as the dual variables. These appear when the Karush–Kuhn–Tucker (KKT) equations for non-
linear programming problems are written.

The presentation of the stabilisation procedure requires the definition of an unstable phase.

Definition 2.4. Let nπ
t denote the total number of moles in phase π, and nt the total number

of moles in the system. The π-th phase in the system is said to be unstable, at iteration k, if the
following conditions are satisfied:

nπ,k
t < εsnk

t and nπ,k
t < nπ,k−1

t , (2.46)

where εs is a given stabilisation threshold value. In case k = 0, only the first condition is used.
The threshold εs = 10−10 has proved to be satisfactory in the tests presented later.

The stabilisation procedure consists of assuming that:

∂ ln ai
∂nj

=
δij

ni
(i ∈ U , j = 1, . . . , N), (2.47)

where U denotes the set of indices of all chemical species that belongs to an unstable phase at
the current iteration. As a consequence, the stabilised matrix Ā in equation (2.41) is computed
as follows:

Āij =


δij

ni
if i ∈ U

Aij otherwise
, (2.48)

where Aij denotes the (i, j)-th entry in matrix A; and δij is the Kronecker delta.

This approach has the following effects: (i) for a multi-species phase, it eliminates the depen-
dency of the activity derivative of a species with respect to the others; and (ii) for a single-
species phase, it assumes a large activity derivative for the species, that would be zero other-
wise, resulting in a decrease of the effect of the equilibrium condition imposed by the mass-
action equations associated with that species.
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Finally, note that the Jacobian matrix J may become ill-conditioned before a phase is detected to
be unstable. In this work, a matrix M in a linear system Mx = b is assumed to be ill-conditioned
whenever the solution x does not satisfy:

‖Mx− b‖
‖b‖+ 1

< εill, (2.49)

for some small scalar εill, where ‖·‖ denotes the `2-norm. In this case, the Newton step ∆nk

is under-relaxed by a factor θill ∈ (0, 1). Ill-conditioned cases have been successfully circum-
vented using θill = 0.1 and εill = 10−8.

2.3.4 Convergence Criteria

The standard convergence criteria for Newton’s method is adopted. Therefore, the iterative
procedure should stop whenever the iterates satisfy:

‖nk+1 − nk‖
‖nk+1‖+ 1

< εn, (2.50)

and the residual vector fulfils the condition:

‖fk+1‖ < εf, (2.51)

where εn and εf are tolerance values.

However, the above criteria is not fulfilled when unstable phases exist. This happens because
the unstable reactions (i.e., reactions associated with unstable phases) do not achieve equilib-
rium in the sense of satisfying their respective mass-action equations. As such, the residual
contribution from these equations does not necessarily become small enough to pass the con-
vergence test given by condition (2.51). Hence, a modification of the previous convergence
criteria is required whenever unstable phases exist.

Let f̂ denote the residual vector f with entries set to zero whenever they correspond to a mass-
action equation of an unstable reaction. Then, the proposed modified convergence criteria
requires that condition (2.51) be satisfied with f̂ instead, so that unstable reactions are neglected
in the convergence check.



CHAPTER 3
CHEMICAL EQUILIBRIUM:

NON-STOICHIOMETRIC APPROACH

In this chapter a chemical equilibrium algorithm based on a non-stoichiometric approach is
presented. The methodology consists of directly minimising the Gibbs free energy of a multi-
phase system, as opposed to the stoichiometric approach in Chapter 2, which solves a system
of non-linear equations. Its main advantage is that it does not suffer from the difficulties en-
countered in the stoichiometric approach with respect to phase disappearances. This is because
the minimisation approach adopted here requires no heuristic technique to determine the equi-
librium phase assemblage.

3.1 Introduction

The geochemical literature presents several methodologies for minimising the Gibbs energy
of multiphase systems. In this work, however, a novel approach is adopted, in which the
Gibbs energy minimisation problem is transformed into a general non-linear non-convex pro-
gramming problem. The objective of this abstraction is to simplify the problem formulation
and propose its solution with the use of the rich set of optimisation tools developed by the
mathematical community, which are in general rigorously proved to work and tested against
hundreds of different problems.

This methodology has several advantages over the common approach of mixing optimisation
and chemical concepts. Firstly, it is flexible enough to allow any optimisation algorithm to be
tested for efficiency and robustness. Secondly, it eliminates the dependence of specific chemical
details of the problem on its numerical solution, simplifying its analysis and implementation.
Finally, it is easily extensible to allow any type of phases and species to be considered in the
chemical system.

The numerical method for multiphase equilibrium calculations presented here is based on the
trust-region primal-dual interior-point algorithm of Ulbrich et al. (2004) and Silva et al. (2008).
Their algorithm solves non-linear programming problems with non-convex objective functions

41
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containing both equality and inequality constraints. Their method is briefly described here for
completeness. However, focus is given on our modifications, tailored to yield more efficient
and robust chemical equilibrium calculations.

Although the proposed method can be used for standalone geochemistry modelling purposes,
its development targets critical applications requiring sequential equilibrium calculations, such
as reactive transport modelling in porous media flow. In this large-scale application, several
local equilibrium calculations must be performed for each grid block of the mesh, at every time
step. As a result, the chemical equilibrium method must efficiently perform each calculation in
as few iterations as possible, using the minimum computational resources necessary.

Efficiency can be achieved, in part, by proper use of initial guesses. At each time step in a
reactive flow, the molar amounts of the chemical elements are constantly varying at a fixed
point due to the flux of chemical species. If the time step used in the temporal discretisation is
sufficiently small, the variation of the local equilibrium state in a point should, in general, be
small as well. Therefore, a good initial guess for the calculation of a local equilibrium state is
its equilibrium state in a previous time level.

Using suitable initial guesses are, nevertheless, not sufficient to yield efficient calculations.
An algorithm to be integrated into a reactive transport simulator requires at least superlinear
rates of convergence near the solution. This will ensure convergence in only a few iterations
when the initial guess is close to the solution, an important condition when millions to billions
of equilibrium calculations have to be performed before moving to the next time level in the
reactive flow calculations. As shown later, the interior-point algorithm of Ulbrich et al. (2004)
attains, in practice, a linear rate of convergence near the solution, in spite of the use of exact
Hessian expressions. Even though their algorithm is capable of finding a solution starting
from very poor initial guesses, this low rate of convergence poses doubt on its acceptability for
sequential equilibrium calculations.

In order to remedy these slow rates of convergence of Ulbrich et al. (2004) method, a watchdog
strategy (Chamberlain et al., 1982) is adopted, which produces quadratic rates of convergence
near the local optimum. The watchdog strategy consists of skipping all convergence strategies
of Ulbrich et al. (2004) after some progress has been achieved in the calculation. However, if
after some specified number of iterations the watchdog strategy was not able to improve the
minimisation of the Gibbs free energy, than the algorithm of Ulbrich et al. (2004) is reactivated.

This hybrid approach has several benefits. As shown later, the number of iterations necessary
for convergence in our examples decreased considerably. The watchdog strategy resulted in
more efficient and robust calculations near a phase boundary, where phases can appear or
disappear. Moreover, the use of computational resources is substantially decreased during
the watchdog mode, since it skips several procedures that enforce a monotonic decrease in
the optimality and feasibility measures of the calculation. Finally, recall that after the first
calculation in a sequence of equilibrium calculations, a good initial guess is available for any
subsequent computation. Therefore, in order to improve efficiency, the calculation starts with
the use of the watchdog strategy, potentially yielding quadratic rates of convergence from the
beginning.

The proposed method for minimising the Gibbs free energy in multiphase systems can only
find local solutions. Therefore, solutions obtained by this method are not necessarily global
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optima. However, recall that this algorithm is to be used for sequential equilibrium calculations
in critical applications such as reactive transport simulations. Moreover, note that when the
minimisation problem is non-convex, finding a global minimiser is a very expensive and time
consuming calculation (Murty and Kabadi, 1987).

In order to resolve the problem of local versus global equilibrium points, initial guesses suf-
ficiently close to the global minimum should be provided. Therefore, one would require a
global minimum calculation only once, at the first time step, and expect that the subsequent
steps only change the global minimum slightly. The proposed local minimisation algorithm,
however, can be used in conjunction with global optimisation strategies to calculate a global
optimum.

3.2 Governing Equations

Finding the equilibrium point of a multiphase system is a non-linear optimisation problem,
where the Gibbs free energy of the system is minimised. The problem, however, is far from
trivial, since it contains both equality and inequality constraints, defining, therefore, a non-linear
programming problem.

The equality constraints arises from the need to specify, for example, the number of moles of
each chemical element in the system, and the charge balance condition of an aqueous solu-
tion. The inequality constraints, on the other hand, results from the physical condition that the
number of moles of the species are non-negative.

From the principle of minimum Gibbs free energy, the equilibrium state of a chemical system
is calculated by solving the following constrained minimisation problem:

min
n

G(n; T, P) subject to

{
h(n) = 0

n ≥ 0
, (3.1)

where h : RN 7→ RC is the equilibrium constraint function; and C is the number of equilibrium
constraints. The temperature T and pressure P are assumed given parameters.

3.2.1 Gibbs Energy Function

The Gibbs energy function G : R2+N 7→ R is defined by:

G(T, P, n) :=
N

∑
i=1

niµi(T, P, n), (3.2)

where µi : R2+N 7→ R is the chemical potential function of the i-th species, given by:

µi(T, P, n) = µ◦i (T, P) + RT ln ai(T, P, n). (3.3)

Similarly to the equilibrium constants of the reactions, the standard chemical potentials µ◦i of
the species can also be interpolated from temperature versus pressure tables.

The chemical equilibrium method requires the exact gradient and Hessian of the Gibbs energy
function. From equation (3.2), we write the first-order partial molar derivatives of the Gibbs
energy function as:

∂G
∂ni

= µi +
N

∑
k=1

nk
∂µk
∂ni

(i = 1, . . . , N), (3.4)
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and its second-order partial molar derivatives as:

∂2G
∂ni∂nj

=
∂µi
∂nj

+
∂µj

∂ni
+

N

∑
k=1

nk
∂2µk

∂ni∂nj
(i, j = 1, . . . , N). (3.5)

For convenience reasons, the dependence on temperature T, pressure P, and composition n in
the previous equations have been omitted.

As we shall see next, equations (3.4) and (3.5) will be simplified so that the Gibbs–Duhem equa-
tions are satisfied at equilibrium. This simplification has two main algorithmic advantages: (i)
the Gibbs–Duhem equations are implicitly imposed, preventing, therefore, a large number of
extra non-linear equality constraints in the optimisation problem, and (ii) it eliminates the need
for the second-order partial molar derivatives of the chemical potentials in equation (3.5).

3.2.2 Gibbs–Duhem Equation

At equilibrium, any infinitesimal change in the system, under constant temperature and pres-
sure, must satisfy the following differential equation:

N

∑
k=1

nk dµk = 0, (3.6)

which is known as the Gibbs–Duhem equation (Smith and Missen, 1982). This equation is,
therefore, an additional constraint for the chemical equilibrium problem.

Depending on the equations of state used for the chemical potentials, there is no need to ex-
plicitly impose the Gibbs–Duhem constraint (3.6). This is because for these equations of state,
condition (3.6) is satisfied at any composition point n, even in disequilibrium. This happens,
for example, when an ideal model is used for the computation of the activities of the species.

Sometimes, however, the use of some equations of state does not satisfy the Gibbs–Duhem
equation (3.6) at every composition point n. These equations of state are then said to be ther-
modynamically inconsistent. Nevertheless, in this particular situation, we need to make sure
that the minimisation of the Gibbs free energy produces an equilibrium point where the Gibbs–
Duhem constraint (3.6) is satisfied. However, equation (3.6) written in terms of total differen-
tials is not adequate for this.

Based on the previous discussion, the following equivalent system of Gibbs–Duhem equations
is used:

N

∑
k=1

nk
∂µk
∂ni

= 0 (i = 1, . . . , N). (3.7)

Instead of imposing these conditions explicitly as equality constraints in the optimisation prob-
lem (3.1), we can enforce them implicitly in the gradient formula (3.4), which becomes:

∂G
∂ni

= µi. (3.8)

Explicitly imposing the non-linear Gibbs–Duhem equations results in N + C equality con-
straints instead of C. This approach could be inefficient, since there would be an additional
of N Lagrange multipliers in the problem, increasing by N (i.e., the number of species) the
dimension of the linear systems.
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Implicitly ensuring the Gibbs–Duhem equations (3.7), therefore, implies that:

∂2G
∂ni∂nj

=
∂µi
∂nj

(i, j = 1, . . . , N). (3.9)

Note, however, that this expression might not result in a symmetric Hessian matrix. This is
because the choice of equations of state for the chemical potentials might not guarantee:

∂µi
∂nj

=
∂µj

∂ni
(3.10)

at any composition point n. Nevertheless, this symmetry violation of the Hessian matrix causes
no issues for the interior-point minimisation algorithm presented next. Following a similar
analysis of Vanderbei and Shanno (1999), it can be shown that a sufficient condition for the
Hessian matrix of the Gibbs energy function is that it is positive semi-definite.

3.3 Numerical Method

In this section a primal-dual interior-point algorithm is described for the chemical equilib-
rium calculation of multiphase systems. The description of the algorithm does not involve any
specifics of the Gibbs energy minimisation problem. The idea is to separate pure mathematical
concepts from those originating in the equilibrium problem.

Let us represent the Gibbs energy minimisation problem (3.1) as a general non-linear program-
ming problem in the standard form:

min
x

f (x) subject to

{
c(x) = 0

x ≥ 0
, (3.11)

where the objective function f : Rn 7→ R and the equality constraint function c : Rn 7→ Rm are
assumed to be twice continuously differentiable. Moreover, let us assume that m ≤ n, where n
denotes the number of variables and m the number of constraints. Finally, x ∈ Rn denotes the
vector of variables in the optimisation problem (3.11), which corresponds to the molar amounts
of the chemical species in the context of the Gibbs free energy minimisation.

The solution of the non-linear programming problem (3.11) is summarised in Algorithm 3.1.
Its detailed description can be found in the next sections.

3.3.1 First-Order Optimality Conditions

Let us write the necessary first-order optimality conditions for the non-linear programming
problem (3.11). These are also known as the Karush–Kuhn–Tucker or KKT conditions (see
Nocedal and Wright 1999), and depends on the following definition of the Lagrange function:

L(x, y, z) := f (x) + c(x)Ty− xTz, (3.12)
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Algorithm 3.1 Interior-Point Filter Trust-Region Algorithm

Require: w0, ∆◦0
1: wk ← w0

2: ∆◦k ← ∆◦0
3: for k = 0 to kmax do
4: compute st

k and sn
k using equations (3.39)–(3.42) at wk . compute the tangential and

normal steps.
5: compute Mk using equation (3.55) . compute the neighbourhood parameter Mk.
6: compute ∆n

k,j using equation (3.59) with st
k and sn

k , and ∆◦k . compute the largest
neighbourhood trust-region radius.

7: if αt(∆k) < εαt then . check if the safe tangential step needs to be calculated.
8: recompute st

k using equations (3.39) and (3.41) with σ = σsafe.

9: recompute ∆n
k using equation (3.59) . this is necessary because st

k has been updated.

10: if θ(wk) > ∆k min{γ1, γ2∆β
k } then . check if the restoration algorithm needs to be initiated.

11: start the restoration algorithm to produce wk+1 (see Algorithm 3.3).
12: else
13: start the trust-region search algorithm to produce wk+1 (see Algorithm 3.2).

14: if e(wk+1) ≤ εtol then . check for convergence, using equation (3.66) to compute e(wk+1).
15: stop . an optimum point has been found.

where y ∈ Rm and z ∈ Rn are Lagrange multipliers. The KKT conditions, and their corre-
sponding names, are then written as:

∇xL(x, y, z) = 0, optimality (3.13)

c(x) = 0, primal-feasibility (3.14)

Xz = 0, complementarity (3.15)

x, z ≥ 0, dual-feasibility (3.16)

where X := diag(x) and∇xL denotes the gradient of the Lagrange function with respect to the
primal variables x, given by:

∇xL(x, y, z) = ∇ f (x) +∇c(x)Ty− z. (3.17)

Equations (3.13)–(3.16) are the requirements that a local solution must satisfy. Note that besides
the primal variables x, the Lagrange multipliers y and z are also unknowns in the problem.
Thus, there is a total of 2n + m unknowns, which corresponds to two times the number of
chemical species plus the number of equilibrium constraints, 2N + C. As discussed in Kulik
et al. (2013), it is imperative that the size of the linear systems to be solved are moderate in
order to efficiently solve equilibrium problems. Fortunately, the Lagrange multipliers z can be
explicitly written in terms of x and y, which decreases the size of the linear systems by n, as
shown later.
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3.3.2 Perturbed KKT Conditions

Similarly to El-Bakry et al. (1996), the primal-dual interior-point algorithm of Ulbrich et al.
(2004) solves the problem (3.11) by suitably perturbing the KKT complementary condition (3.15).
The approach results in the following perturbed system of non-linear equations:

Fµ̂(x, y, z) = 0, (3.18)

where Fµ̂ is defined by:

Fµ̂(x, y, z) :=

∇xL(x, y, z)
c(x)

Xz− µ̂e

 , (3.19)

with µ̂ > 0 denoting a small perturbation parameter; and e ∈ Rn the vector of all ones.

Equation (3.18) is solved using Newton’s method. However, several strategies are adopted to
aid convergence from arbitrary or poor initial guesses, since Newton’s method is not guaran-
teed to converge far from a local solution (Nocedal and Wright, 1999). Other strategies are also
adopted to guarantee that the solution is a local minimum, and not a maximum for example.
These will be presented later.

At every iteration, the perturbation parameter µ̂ is appropriately decreased, so that the solution
of the original problem is obtained when µ̂→ 0. Therefore, applying Newton’s method to
equation (3.18) results in:

J(w)∆w = −Fµ̂(w), (3.20)

where w := (x, y, z), and J(w) is the Jacobian of Fµ̂(w), given by:

J(w) :=

∇
2
xxL(w) ∇c(x)T −I
∇c(x) 0 0

Z 0 X

 , (3.21)

with I denoting the n× n identity matrix; Z := diag(z); and ∇2
xxL(w) the Hessian of the La-

grange function:

∇2
xxL(x, y, z) = ∇2 f (x) +

M

∑
j=1
∇2cj(x)Tyj. (3.22)

Note that the Jacobian matrix J(w) does not depend on the perturbation parameter µ̂.

3.3.3 Convergence Strategies

This section presents the convergence strategies implemented in the algorithm to aid conver-
gence from poor initial guesses. A more mathematical in-depth description of these strategies
can be found in Ulbrich et al. (2004) and Silva et al. (2008).

Filter

The filter technique developed by Fletcher and Leyffer (2002) is adopted in the algorithm. The
idea has its origins in multi-criteria optimisation problems, whose adaptation for non-linear
programming problems is possible by considering the minimisation of the optimality and fea-
sibility measures as two competing targets. These measures are related to the norm of the opti-
mality and feasibility conditions (3.13) and (3.14) respectively, and are defined next.
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The filter works as follows. At every iteration, a decision is made about storing or not the cur-
rent optimality and feasibility measures. These records are then used in subsequent iterations
to decide the rejection of poor iterates. A poor iterate is defined as an iterate whose corre-
sponding optimality and feasibility measures are not sufficiently smaller than those stored in
the filter. Therefore, the filter guarantees that at every iteration the current iterate is closer to a
local optimum solution.

In order to describe the filter technique, let us introduce the following measures:

θh(w) := ‖c(x)‖, (3.23)

θc(w) := ‖Xz− µe‖, (3.24)

θl(w) := ‖∇xL(w)‖. (3.25)

Next, define, respectively, the feasibility and optimality measures that comprise the entries of
the filter:

θ(w) := θc(w) + θh(w) (3.26)

ψ(w) := f (x) + cψµ, (3.27)

where cψ > 0 is a constant calculated during the initialisation of the algorithm and defined as:

cψ :=
3n2

1− σmin

[
max

{
1,

1− σmin

γ

}]2
, (3.28)

where γ is given later by equation (3.53).

Note that in the original work of Ulbrich et al. (2004), the optimality measure ψ(w) was defined
by:

ψ(w) := µ + ‖∇xL(w)‖2. (3.29)

However, Silva et al. (2008) slightly modified the algorithm to allow the use of measure (3.27)
instead, which is based on the objective function, rather than the gradient of the Lagrange func-
tion. Silva et al. (2008) also presents the following alternative measure based on the Lagrange
function:

ψ(w) := L(w) + (cψ + n)µ. (3.30)

It can be shown that for small values of µ and near the solution, the latter definition tends to
(3.27). Therefore, in this work the definition (3.27) is adopted for ψ(w).

Let us now describe the filter concept. In this algorithm the filter F is defined as a finite set of
pairs:

F := {(θ(wi), ψ(wi))}, (3.31)

where i denotes the iteration number at which the measures θ(wi) and ψ(wi) were evaluated.

The filter F is required not to contain any dominated entry. In other words, for any entry
(θ(wj), ψ(wj)) ∈ F , there is no other entry (θ(wi), ψ(wi)) ∈ F that satisfies:

θ(wj) ≤ θ(wi) and ψ(wj) ≤ ψ(wi). (3.32)

If condition (3.32) is true, then entry (θ(wi), ψ(wi)) is said to be dominated by (θ(wj), ψ(wj)).
This requirement is enforced every time a new entry is added to the filter by removing any
existing entry dominated by the new one.
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At every iteration, the filter scheme discards any trial iterate w′ that is not acceptable by F .
The point w′ is said to be acceptable by the filter F if for every entry (θ̂, ψ̂) ∈ F the following
hold:

θ(w′) < (1− αθ)θ̂ or ψ(w′) < ψ̂− αψ θ̂, (3.33)

where αθ , αψ ∈ (0, 1) are suitable small constants used to prevent acceptance of points located
considerably close to the boundary of the filter (see Table 3.1). In this way, w′ has to provide a
sufficient decrease in the measures θ and ψ to be acceptable.

Trust-Region Approach

Newton’s method frequently behaves erratically far from the solution. Thus, convergence
strategies exist in which the length of the step taken towards a new iterate is somehow con-
trolled. Differently from a line-search strategy, in which the size of Newton’s step is controlled
and its direction preserved, a trust-region strategy controls both its size and direction. This is
done with the introduction of a decomposition of Newton’s step into a tangential and normal
components, whose lengths are restricted so that they fit inside a variable trust-region.

The benefit of this decomposition is the possibility to control how much the iterations should
favour the decrease of either the feasibility measure θ or the optimality measure ψ (see equa-
tions 3.26 and 3.27). By controlling the size of the tangential step, iterates that satisfy more
the feasibility condition (3.14) are obtained. For example, the smaller the feasibility measure,
the smaller the mass-balance residuals in the minimisation of Gibbs free energy. On the other
hand, by controlling the size of the normal step, iterates that conform more to the optimal con-
dition (3.13) are obtained. In addition, the lengths of these components can be appropriately
adjusted to enforce positive number of moles at every iteration.

Similarly to Ulbrich et al. (2004), the tangential and normal steps st and sn are defined by the
following equations:

J(w)st = −

 ∇xL(w)

0
(1− σ)µe

 (3.34)

and

J(w)sn = −

 0
c(x)

Xz− µe

 , (3.35)

where the perturbed parameter µ̂ of equation (3.19) has been defined as µ̂ = σµ, with σ ∈ (0, 1)
being a centering parameter and µ being a measure of complementarity given by:

µ :=
xTz

n
. (3.36)

From Silva et al. (2008), the centering parameter σ is calculated using:

σ =

σmax if µ < µσ

σmin otherwise
, (3.37)
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where σmin, σmax and µσ are positive constants. Their values adopted in this work are given in
Table 3.1. Note that, by construction, the tangential and normal steps satisfies ∆w = st + sn.

It can be shown that the primal-dual step ∆w is a descent direction for xTz/n, implying a dy-
namic reduction of µ as the calculations proceed (Ulbrich et al., 2004). This choice is commonly
adopted in linear programming algorithms, though it was also used by El-Bakry et al. (1996)
in his non-linear programming method.

Nocedal et al. (2009) presents an adaptive strategy for the update of the σ parameter based
on the minimisation of an one-dimensional quality function. In the optimisation code LOQO
(Vanderbei and Shanno, 1999; Vanderbei, 1999), a heuristic equation for the dynamic update
of the centering parameter σ is also presented. Both approaches were tested, but in general
they required several more iterations to converge than the formula (3.37) of Silva et al. (2008),
though with different parameter values tested with chemical equilibrium problems.

In practice, the linear systems (3.34) and (3.35) need to be simplified for efficiency reasons. Let
J̄(w) denote the following reduced Jacobian matrix:

J̄(w) :=

[
∇2

xxL(w) + X−1Z ∇c(x)T

∇c(x) 0

]
. (3.38)

Let st = (st
x, st

y, st
z)

T and sn = (sn
x , sn

y , sn
z )

T . It can be shown that solving (3.34) and (3.35) is
equivalent to solving:

J̄(w)

[
st

x

st
y

]
= −

[
∇xL(w) + (1− σ)µX−1e

0

]
(3.39)

and

J̄(w)

[
sn

x

sn
y

]
= −

[
z− µX−1e

c(x)

]
, (3.40)

and then, using the previous results to calculate:

st
z = −X−1[Zst

x + (1− σ)µe] (3.41)

and

sn
z = −X−1[Zsn

x + Xz− µe]. (3.42)

This simplification results in the solution of linear systems with dimension n + m, instead of
2n + m. Observe that the coefficient matrix J̄(w) is the same for both linear systems. This
allows the calculation of a decomposition of J̄(w) once, and then its repeated use for efficient
solution of the linear systems (3.39) and (3.40).

The algorithm of Ulbrich et al. (2004) introduces a trust-region radius ∆ in order to control the
length of the tangential and normal steps st and sn. At every iteration, the damped tangential
and normal steps αt(∆)st and αn(∆)sn satisfy:

‖αn(∆)sn‖ ≤ ∆ and ‖αt(∆)st‖ ≤ ∆, (3.43)

where the damping factors αn(∆) and αt(∆) are given by:

αn(∆) := min
{

1,
∆
‖sn‖

}
(3.44)
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Table 3.1: Parameters of the interior-point minimisation algorithm.

Parameter Value Parameter Value

Filter Safe Tangential Step
αθ 10−3 εαt

1 0.8
αψ 10−3 εαt

2 10−3

Central Neighbourhood σsafe
min 0.1

M◦ 103 σsafe
max 0.5

α◦M 103 Restoration
αM 10 ξ1 10−5

εM 10−3 ξ2 0.5
γ◦ 10−3 γ1 0.5
Trust-Region γ2 1
∆◦0 105 β 0.75
∆min 10−12 σrest 1
κ 0.1 Watchdog
η1 10−4 µ̇ 10−15

η2 0.8 µw 10−2

Initial Guess W 10
xmin

0 10−14 ψmax 10−1

zmin
0 10−10 τ 0.995

Sigma
µσ 10−6

σmin 0.1
σmax 0.5

and

αt(∆) := min
{

αn(∆),
∆
‖st‖

}
. (3.45)

The above definition imposes αt(∆) ≤ αn(∆), which is used to enforce the iterates to stay in
the central neighbourhood N (γ, Mk) defined in (3.52).

Note that Ulbrich et al. (2004) and Silva et al. (2008) presume a well-scaled problem with the
definition of a circular trust-region given by equation (3.43). Thus it is advised to apply proper
scaling of the variables when using their algorithm.

With the introduction of the trust-region radius ∆, and the damping factors αn(∆) and αt(∆), a
trial iterate at the k-th iteration wk(∆) is defined as:

wk(∆) := wk + αt(∆)st
k + αn(∆)sn

k . (3.46)

Ulbrich et al. (2004) and Silva et al. (2008) then defines the following trust-region model func-
tion to approximate the optimality measure ψ(w) at the trial iterate:

mk(wk(∆)) := ψ(wk) +∇ψ(wk)
T(wk(∆)−wk). (3.47)

This model function is used as a reference to impose a sufficient decrease in the optimality mea-
sure ψ(w). For this, the actual and predicted decrease of the optimality measure are defined
by:

∆ψk,actual := ψ(wk)− ψ(wk(∆)) (3.48)
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Algorithm 3.2 Trust-Region Search Algorithm

Require: wk, ∆n
k , st

k and sn
k

1: wk ← w0

2: ∆k ← ∆n
k

3: loop
4: if wk(∆k) is acceptable by F then . check if trial iterate wk(∆k) is acceptable by the filter.

5: ρ(∆k)←
ψ(wk)− ψ(wk(∆k))

mk(wk)−mk(wk(∆k))
. compute the ratio of actual to predicted decrease of ψ.

6: if mk(wk)−mk(wk(∆k)) ≤ κθ(wk)
2 then

7: F ← F ∪ (θ(wk), ψ(wk)) . extend the filter and remove from it any dominated entry.
8: ∆◦k+1 ← 2∆k . expand the trust-region.
9: return wk(∆k) . accept the trial iterate wk(∆k) as wk+1.

10: if ρ(∆k) > η1 then . check if a sufficient decrease in ψ has been achieved.

11: ∆◦k+1 ←
{

2∆k if ρ(∆k) > η2

∆k otherwise
. expand the trust-region if possible.

12: return wk(∆k) . accept the trial iterate wk(∆k) as wk+1.

13: ∆k ← ∆k/2 . contract the trust-region.
14: if ∆k ≤ ∆min then
15: error “could not find a trust-region radius that sufficiently decrease ψ and produces an

iterate acceptable by F .”

and

∆ψk,pred := mk(wk)−mk(wk(∆)). (3.49)

Let ρ(∆) := ∆ψk,actual/∆ψk,pred. At every iteration, we enforce:

ρ(∆) ≥ η, (3.50)

for a predefined η ∈ (0, 1), so that the current trust-region with radius ∆ defines a region where
the model m is a good approximation to the optimality measure ψ(w). Accordingly to the value
of ρ(∆), the algorithm either contracts or expands the trust-region.

The previous test is skipped, however, if the following condition holds:

∆ψk,pred < κθ(wk)
2, (3.51)

where κ ∈ (0, 1) is a given constant (see Table 3.1). In this case, the trial iterate wk(∆) is ac-
cepted and we set wk+1 = wk(∆). Moreover, the filter F is extended with (θ(wk), ψ(wk)).
Recall that any existing entry in F that is dominated by the new entry must be excluded.

Algorithm 3.2 presents a search algorithm for finding a suitable trust-region radius ∆ that sat-
isfies the previous conditions.

Central Neighbourhood

The primal-dual interior-point algorithm of Ulbrich et al. (2004) uses a technique to prevent
the iterates xk(∆) and zk(∆) from approaching their bounds too rapidly. The idea consists of
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controlling the trust-region radius ∆ at every iteration so that wk(∆) ∈ N (γ, Mk), where:

N (γ, Mk) := {w : x, z > 0, Xz ≥ γµe, θ(w) ≤ Mkµ}, (3.52)

with µ = xTz/n. The neighbourhood constant γ is calculated during the initialisation stage of
the algorithm, given by:

γ := min
{

γ◦,
1

2µ0
min

i
{x0

i z0
i }
}

, (3.53)

where γ◦ is a positive constant; x0
i and z0

i are the i-th components of the initial guesses x0 and
z0; and µ0 = xT

0 z0/n is the initial perturbation parameter. The neighbourhood parameter M0

is given by:
M0 = max(M◦, α◦Mθ(w0)/µ0), (3.54)

and for k > 0 we have:

Mk+1 =

max(M◦, αMθ(wk)/µk) if θ(wk) > µkεM Mk

Mk otherwise
, (3.55)

where M◦, αM, α◦M, and εM are positive constants. See Table 3.1 for their values.

Section C.1 describes the procedure to calculate the largest feasible trust-region radius ∆f
k that

satisfies the first central neighbourhood condition:

xk(∆), zk(∆) > 0. (3.56)

Section C.2 shows the approach for calculating the largest central trust-region radius ∆c
k that sat-

isfies the second central neighbourhood condition:

Xk(∆)zk(∆) ≥ γµk(∆)e. (3.57)

Note, however, that calculating the largest neighbourhood trust-region radius ∆n
k that satisfies the

third central neighbourhood condition:

θ(wk(∆)) ≤ Mkµk(∆), (3.58)

cannot be done explicitly. Its value is approximated by:

∆n
k =

1
2i min{∆f

k, ∆c
k, ∆◦k}, (3.59)

where i ∈ N is the smallest number that results in ∆n
k satisfying (3.58). The parameter ∆◦k is

the finite upper-bound value that the trust-region radius can assume at the k-th iteration. By
construction, it can be stated that ∆n

k satisfies all the three central neighbourhood conditions in
equation (3.52).

Restoration Phase

Whenever the algorithm fails to find an iterate that does not satisfy the filter and trust-region
conditions, some action other than halt its execution must be performed. When this happens,
the algorithm enters in a restoration phase, in which it focuses on the decrease of an alternative
feasibility measure. During the iterations in the restoration phase, some progress towards
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improved optimality measures is also obtained, though the main result after the end of the
restoration phase is in general the decrease of the feasibility measure (e.g., the mass-balance
residuals). Once an iterate in the restoration phase satisfies the filter conditions, the normal
trust-region algorithm takes back control of the calculation.

From Ulbrich et al. (2004), the restoration phase algorithm is initiated whenever:

θ(wk) > ∆k min{γ1, γ2∆β
k }, (3.60)

where γ1, γ2 and β are predefined positive constants (see Table 3.1). The filter is extended be-
fore the start of the restoration algorithm with the pair (θ(wk), ψ(wk)). This prevents possible
subsequent iterates w′ with corresponding θ(w′) very close to θ(wk), which could potentially
initiate the restoration phase again.

The idea of the restoration phase algorithm is to find an iterate wk+1 that (i) is acceptable by
the filter F , and (ii) satisfies the condition:

θ(wk+1) ≤ ∆k min{γ1, γ2∆β
k }. (3.61)

After wk+1 has been found, the calculation returns to the main algorithm. However, the infea-
sibility of the restored iterate wk+1 is considerably smaller.

Let us define the restoration measure θ2(w) as:

θ2(w) :=
1
2
(θh(w)2 + θc(w)2). (3.62)

It can be shown that the tangential and normal steps st and sn produced by equations (3.34)
and (3.35) satisfy:

∇θ2(w)Tst = 0 and ∇θ2(w)Tsn = −2θ2(w). (3.63)

From these results, it can be stated that the normal step sn is a descent direction for θ2(w), since
∇θ2(w)Tsn < 0.

The restoration algorithm, therefore, consists of computing the normal and tangential steps as
before. However, its purpose is to minimise the restoration measure θ2(w), rather than the
optimality measure ψ(w). This has implications on the search for suitable trust-region radius
at every iteration of the restoration algorithm. For instance, the accepted trust-region radius ∆
must yield a sufficient decrease on the measure θ2(w).

Algorithm 3.3 presents the restoration algorithm based on the previous discussion. If success-
ful, it produces an iterate wk+1 that is acceptable by the filter F and satisfies condition (3.61).

Safe Tangential Step

Silva et al. (2008) introduced a safe tangential step procedure in their interior-point algorithm.
The approach recomputes st using equations (3.39) and (3.41) with σ = σsafe whenever:

αt(∆k) < εαt
1 , (3.64)

for εαt
1 ∈ (0, 1). The calculation of σsafe is given by:

σsafe =

σsafe
max if α(∆) < εαt

2

σsafe
min otherwise

, (3.65)
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Algorithm 3.3 Restoration Algorithm

Require: wk

1: F ← F ∪ (θ(wk), ψ(wk)) . extend the filter and remove from it any dominated entry.
2: j← 0 . the iteration counter in the restoration loop.
3: wk,j ← wk . the iterate at the j-th iteration.
4: ∆◦k,j ← ∆◦k . the upper-bound on the trust-region radius at the j-th iteration.

5: while wk,j is not acceptable to F and θ(wk,j) > ∆k min{γ1, γ2∆β
k } do

6: compute st
k,j and sn

k,j using equations (3.39)–(3.42) at wk,j using σ = σrest

7: compute ∆n
k,j using equation (3.59) with st

k,j and sn
k,j, and ∆◦k,j

8: ∆k,j ← ∆n
k,j . set the trial trust-region radius at the j-th iteration.

9: repeat

10: ρ(∆k,j)←
θ2(wk,j)− θ2(wk,j(∆k,j))

2θ2(wk,j)
. compute the ratio of actual to predicted decrease of

θ2.

11: ∆k,j ←
{

∆k,j/2 if ρ(∆k,j) < ξ1

∆k,j otherwise
. contract the trust-region if another inner iteration is

necessary.
12: until ρ(∆k,j) ≥ ξ1 . check if a sufficient decrease in θ2 has been achieved.

13: ∆◦k,j+1 ←
{

2∆◦k,j if ρ(∆k,j) > ξ2

∆◦k,j otherwise
. allow the trust-region to expand.

14: wk,j+1 ← wk,j(∆k,j) . accept the current trial iterate that sufficiently reduces θ2.
15: j← j + 1 . increment the iteration counter.

16: return wk,j+1 . return the iterate wk,j+1 that is acceptable by F and pass condition (3.61).

where σsafe
min , σsafe

max ∈ [0, 1] and εαt
2 ∈ (0, 1). See Table 3.1.

The safe tangential step procedure sometimes accelerates convergence of the calculation. How-
ever, it has been observed that chemical equilibrium calculations in general require fewer iter-
ations if this strategy is disabled.

3.3.4 Convergence Conditions

The algorithm requires a convergence checking scheme in order to detect an optimum iterate.
Interior-point methods have the additional requirement that the perturbation parameter µ̂ con-
verges to zero, though in practice we expect µ̂ to become sufficiently small. This is necessary so
that the solution of the perturbed problem yields an accurate approximation of the optimum
point.

The work of Ulbrich et al. (2004) defines the following optimality error function:

e(xk, yk, zk) = max

{
‖c(xk)‖∞,

xT
k zk

sc
,
‖∇xL(xk, yk, zk)‖∞

sl

}
, (3.66)

where subscript k denotes the number of the iteration, and the scaling parameters sc and sl are
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given by:

sc = max
{

1, 0.01
‖zk‖1

n

}
(3.67)

and

sl = max
{

1, 0.01
‖yk‖1 + ‖zk‖1

m + n

}
. (3.68)

The previous error function is a slight modification of the one defined in Wächter and Biegler
(2005c).

Convergence is assumed whenever:
e(wk) ≤ εtol, (3.69)

for some small enough εtol > 0 such as εtol = 10−8.

3.3.5 Scaling

As discussed in Nocedal and Wright (1999), it is crucial that proper scaling of the variables is
done to improve the performance of minimisation algorithms. Indeed, as we shall see later, the
primal-dual interior-point algorithm works more efficiently for sequential optimisation calcu-
lations if proper scaling of the variables is performed.

Let us denote D as the diagonal scaling matrix of the primal variable x. Then, we define the
scaled primal variable x̄ as:

x̄ = D−1x, (3.70)

and the scaled objective function f̄ (x̄) as:

f̄ (x̄) = f (x). (3.71)

The scaling of x has implications on the gradient and Hessian of the scaled objective function
f̄ (x̄). Let ∇̄ and ∇̄2 denote the gradient and Hessian operators with respect to x̄. Then, it
follows that:

∇̄ f̄ (x̄) = D∇ f (x) (3.72)

and

∇̄2 f̄ (x̄) = D∇2 f (x)D. (3.73)

When performing sequential equilibrium calculations, the previous solution serves as an ex-
cellent option for scaling the primal variables for the next calculation. Therefore, denoting by
x̂ the primal solution in the previous calculation, we set:

D = diag(x̂). (3.74)

Note, however, that for a standalone calculation, or at the beginning of a sequence of optimi-
sation calculations, a good scaling is not available. This follows from the fact that only a poor
initial guess can be provided at that time. Therefore, the first optimisation calculation is always
performed without scaling.

The performance boost of the calculation with scaling, as we shall see later, is in part explained
by the shift of the scaled variables to the interior of the feasible domain. This is a beneficial
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condition for interior-point algorithms, which can behave erratically near the boundaries of
the feasible domain. Moreover, this solves the issue of some variables having different orders
of magnitude, which is very common in chemical equilibrium problems.

3.3.6 Initial Guess

In order to speed up a sequence of optimisation calculations, one can think of using the pre-
vious primal and dual solutions (x̂, ŷ, ẑ) as the initial guess for the next calculation. However,
care must be taken, since such approach results in a tiny initial perturbation to the KKT equa-
tion (3.18), with µ0 := µ(x̂, ẑ) being sufficiently close to zero. This is because the complemen-
tary condition (3.15) was enforced in the previous calculation.

It was observed that the interior-point algorithm of Ulbrich et al. (2004) in general fails when
the previous primal and dual solutions are used as initial guess for the next calculation. How-
ever, one can remedy this by appropriately modifying x̂ and ẑ so that the resultant initial per-
turbation parameter µ is not so small.

In order to modify as little as possible the vectors x̂ and ẑ, the following strategy for the initial
guess is adopted:

x0 = max(x̂, xmin
0 ) (3.75)

y0 = ŷ (3.76)

z0 = max(ẑ, zmin
0 ), (3.77)

where the previous operations are component-wise, and the scalar parameters xmin
0 and zmin

0

are lower-bounds for the entries in x0 and z0 respectively (see Table 3.1 for default values).

More restriction should be enforced on z0 than x0 by choosing zmin
0 larger than xmin

0 . The idea
is to use zmin

0 to control the initial perturbation parameter µ, while xmin
0 is mainly used to

prevent an initial iterate with very small entries. For example, when one phase is not present
at equilibrium, the species in that phase will have very tiny number of moles at the end of the
calculation.

The previous approach, however, poses a complication. For every minimisation calculation,
there is an optimal value for zmin

0 that would result in convergence with a minimum number
of iterations. Since these values are not known a priori, a trade-off between efficiency and
robustness must be made when choosing a single value for zmin

0 . This value should be small
enough to guarantee convergence for all calculations in a reasonable number of iterations.

This complication is avoided with the use of the watchdog strategy described in the next sec-
tion. As shown there, if the initial perturbation parameter µ is already small enough, then the
calculation starts under the watchdog mode. Since in this mode no convergence strategies are
performed, the calculation is more insensitive to a small perturbation parameter. Therefore,
the previous modification should only be performed if the watchdog strategy is not active.

3.3.7 Watchdog Strategy

The minimisation algorithm of Ulbrich et al. (2004) and Silva et al. (2008) adopts a monotone
strategy. In this strategy, every accepted iterate provides a sufficient decrease in either the
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optimality or feasibility measures. Its main advantage is to aid convergence from arbitrary
initial guesses, since an uncontrolled scheme of the step lengths could result in huge increases
of these measures.

Nevertheless, a well-known disadvantage of monotone strategies is that they potentially re-
ject iterates that would make good progress towards the solution (Nocedal and Wright, 1999).
This is known as the Maratos effect, when the algorithm continuously discards good iterates
because they either increase the optimality or feasibility measures. As a result, convergence to
a solution becomes very slow.

The Maratos effect can be circumvented with the use of the watchdog technique of Cham-
berlain et al. (1982). Our adapted approach consists of applying plain Newton’s method to the
relaxed KKT equations (3.18) with a constant perturbation parameter µ̇, rather than the variable
µ̂. In addition, normal and tangential components for the trust-region approach are not com-
puted, nor is the new iterate supposed to be acceptable by the filter. Therefore, this technique
is considered a non-monotone strategy.

After a sufficient progress has been made in the calculation, our algorithm switches to the
watchdog mode. This speeds up convergence towards the optimum solution. The calculation
is said to have progressed sufficiently if µ̂ < µw, where µw is the watchdog threshold, whose
default value is µw = 10−2. Note, however, that the algorithm leaves a monotone strategy to a
non-monotone one, opening up the possibility of divergence. Hence, it is important to monitor
the calculation to detect when no progress is being made towards the solution.

The monitoring approach consists of checking after W iterations if the current iterate is accept-
able by the filter. If so, then the filter is extended with the current feasibility and optimality
measures and a new round of W iterations under the watchdog strategy is allowed. Other-
wise, the algorithm reverts to the monotone trust-region strategy, starting from the last watch-
dog iterate acceptable by the filter. In addition, we monitor the optimality measure ψk at every
watchdog iteration. The idea is to prevent an uncontrolled increase of that measure. For this
we introduce the parameter ψmax as an upper-bound for ψk, so that whenever ψk ≥ ψmax, the
algorithm reverts to the monotone trust-region strategy as before. Table 3.1 presents default
values for the previous parameters.

In equation (3.20) Newton’s method was applied to the relaxed KKT equations (3.18). An
efficient solution of that linear system, assuming a constant perturbation parameter µ̇, can be
performed by solving:

J̄(w)

[
∆x
∆y

]
= −

[
∇xL(w) + z− µ̇X−1e

h(x)

]
(3.78)

and then, using the previous results to calculate:

∆z = −X−1[Z∆x + Xz− µ̇e], (3.79)

where the reduced Jacobian matrix J̄ is given by equation (3.38). See Table 3.1 for the default
value of µ̇.

Recall that the iterates xk and zk must always stay strictly feasible, which requires xk, zk > 0.
Therefore, care must be taken to guarantee that the full step along directions ∆x and ∆z does
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not result in feasibility violations. Let us define the following fraction-to-the-boundary steps:

αx
k := min

i
{Λx

i | Λx
i ∈ (0, 1]}, (3.80)

αz
k := min

i
{Λz

i | Λz
i ∈ (0, 1]}, (3.81)

for i = 1, . . . , n, where Λx
i and Λz

i are given by:

Λx
i = Λ

(
− τxi

∆xi

)
and Λz

i = Λ
(
− τzi

∆zi

)
(3.82)

with operator Λ : R 7→ R defined by:

Λ(x) :=

x if 0 < x < 1

1 otherwise
. (3.83)

The parameter τ = 0.995 is used to move the new iterates slightly away from the bounds.

Once the step lengths αx
k and αz

k have been computed, the following equations are applied to
advance the iterates xk, yk and zk:

xk+1 = xk + αx
k ∆x, (3.84)

yk+1 = yk + ∆y. (3.85)

zk+1 = zk + αz
k∆z. (3.86)

Chapter 5 presents convergence plots of the trust-region interior-point method of Ulbrich et al.
(2004) and Silva et al. (2008) with and without the watchdog strategy. The results indicate that
the watchdog strategy boost the performance of the calculations with quadratic convergence
rates.

3.3.8 Phase Stability Test

Once an equilibrium calculation has been performed, it is important to determine the stability
of the phases in the chemical system. The presented interior-point minimisation algorithm
alone produces a rough estimate of which phases are unstable, since these phases have a small
number of moles with respect to the total in the system. However, this simplistic phase stability
test is not very accurate and helpful, since the small number of moles of the unstable phases
are very sensitive to the perturbation parameter µ̂ of the interior-point method. In addition, it
does not indicate how far from equilibrium the unstable phases are.

Therefore, a phase stability test similar to the one presented by Kulik et al. (2013) is adopted,
which has been successfully applied in the geochemical package GEM-Selektor. In this test,
stability indices for all phases are readily calculated from the Lagrange multipliers of the min-
imisation calculation. The advantage of this approach over the analysis of the relative number
of moles of the phases is that these indices are less sensitive to algorithmic parameters, pro-
viding a more accurate indication of which phases are unstable. In addition, it also provides a
quantitative measure of how far they are from equilibrium.

In Kulik et al. (2013), the stability index Λπ of the π-th phase is defined as:

Λπ := log10 Ωπ , (3.87)
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where Ωπ is the generalised saturation index of the same phase. Differently from Kulik et al.
(2013), however, Ωπ is defined as:

Ωπ := ∑
i∈Iπ

xπ
i? exp

(
− zi

RT

)
, (3.88)

where Iπ is the set of indices of the species in the π-th phase; i? is the local index of the i-th
species in its phase; xπ

i? is the molar fraction of the i-th species; and zi is the i-th component
of the vector of Lagrange multipliers z. Note that the minimisation algorithm of Kulik et al.
(2013) does not introduce the additional Lagrange multipliers z, and so the calculation of Ωπ

uses a different, but equivalent, equation.

After the calculation of the phase stability indices, the unstable phases can be identified. For
every stability index Λπ such that |Λπ | ≥ εΛ, the π-th phase is classified as unstable, where εΛ

is the phase stability tolerance, whose default value is εΛ = 0.01. Then, their molar composition
is zeroed and the mass-balance of the stable phases is corrected. This procedure ensures that
the equilibrium solution does not violate the Gibbs phase rule.

To perform this mass-balance correction procedure, new equilibrium calculations are required.
However, at this time, only the stable phases need to be considered. Observe that this correc-
tion approach is in general very efficient, because (i) a good initial guess is already known, and
(ii) the size of the chemical system has been reduced. Therefore, using a quadratic convergent
equilibrium method should require one or two iterations in general.

The equilibrium method based on the law of mass-action presented in Chapter 2 is used to per-
form these mass-balance corrections. This is because the linear systems solved in that method
have dimension N, instead of N + C in the interior-point algorithm. In addition, it does not in-
volve any Lagrange multipliers, and so the state of the multipliers y and z of the interior-point
method is not artificially altered, which could compromise subsequent equilibrium calcula-
tions that require these as initial guesses.



CHAPTER 4
CHEMICAL KINETICS

This chapter presents the governing equations that model the compositional evolution of a
chemical system subject to reactions controlled by kinetics and equilibrium, and proposes a
novel methodology for solving them. The formulation assumes a closed-system for simplicity.
Addition of source and sink contributions to the equations should be straightforward. More-
over, the kinetic processes are assumed to occur in a well-mixed batch reactor, where transport
phenomena such as diffusion, convection and dispersion are neglected. However, the algo-
rithm is designed to be coupled to a transport simulator in future work.

4.1 Introduction

Chemical equilibrium calculations only provide the final thermodynamic state of a system un-
dergoing an isobaric and isothermal process. Thus, it does not offer an insight of how the
system evolves with time until its equilibrium state is established. The transient changes in
the state of a chemical system can be obtained, nevertheless, by adopting a chemical kinetics
model for the reactive processes.

Figure 4.1: Schematic representation of the kinetic
dissolution of calcite.

Figure 4.1 illustrates the time evolution of a
chemical system composed of an aqueous so-
lution and mineral calcite. The transient state
of the system not only provides how aque-
ous solutes respond to the dissolution of a
solid phase, but also the time scale at which
the equilibrium state is achieved. Such in-
formation is important, for example, to esti-
mate the time required for the injected car-
bon dioxide in a saline aquifer to equilibrate
with both subsurface fluid and rock-forming
minerals.

Consider the following chemical reactions
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taking place during calcite dissolution:

Aqueous Reactions

(r1) H2O(l) 
 H+ + OH−, (4.1)

(r2) CO2(aq) + H2O(l) 
 HCO−3 + H+, (4.2)

Mineral Reactions

(r3) CaCO3(s) + H+ 
 HCO−3 + Ca+2, (4.3)

where r1, r2 and r3 denote the reaction rates1 of the reactions, in units of mol/s. Several more
reactions and aqueous species may be necessary to model this problem more accurately. How-
ever, assume only these reactions and species for now, which will make it simpler to present
the governing equations of the reactive process.

Assume that the reaction rates are positive when the reactions proceed from left to right. By
accounting for the production and consumption of the species on both sides of the reactions,
the following differential equations can be derived:

dnH2O(l)

dt
= −r1(n)− r2(n), (4.4)

dnH+

dt
= r1(n) + r2(n)− r3(n), (4.5)

dnOH−

dt
= r1(n), (4.6)

dnHCO−3
dt

= r2(n) + r3(n), (4.7)

dnCO2(aq)

dt
= −r2(n), (4.8)

dnCa2+

dt
= r3(n), (4.9)

dnCaCO3(s)

dt
= −r3(n), (4.10)

where the reaction rates depend on the molar abundance of the species n. Note, for example,
how the consumption of H2O(l) in both reactions (1) and (2) reflects on the right-hand side
of its governing equation. Therefore, integrating these ordinary differential equations from an
initial state n0 suffices to determine the transient state of the multiphase chemical system.

In the following sections the above approach will be generalised for any multiphase system. In
addition to this, it will be shown how the differential equations can be simplified to take into
account the fact that most aqueous reactions are considerably faster than mineral reactions.

4.2 Governing Equations

Consider the following linearly independent reactions taking place in a chemical system:

0 

N

∑
i=1

νjiαi (j = 1, . . . , M), (4.11)

1For an elementary reaction 0 
 ∑i νiαi occurring in a closed system, its reaction rate is defined as r = 1
νi

dni
dt for

any i such that νi 6= 0 (Zhang, 2008).
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where αi is the i-th chemical species; νji is the stoichiometric coefficient of the i-th species in
the j-th reaction; N is the number of chemical species; and M is the number of reactions. The
stoichiometric coefficients in any reaction are assumed to be positive for products and negative
for reactants.

From the theory of chemical kinetics, it follows that the compositional evolution of a system is
governed by the following ordinary differential equations:

dni
dt

= fi(T, P, n) (i = 1, . . . , N), (4.12)

where t is the time variable; ni is the number of moles of the i-th species; n ∈ RN is the mo-
lar composition vector of the system; T and P are the given temperature and pressure of the
system; and fi : R2+N 7→ R is defined by:

fi(T, P, n) :=
M

∑
j=1

νjirj(T, P, n), (4.13)

which accounts for the production and consumption of the i-th species in every reaction (4.11).
The kinetic rate function of the j-th reaction is denoted by rj : R2+N 7→ R. The convention
adopted is that rj is positive when the reaction proceeds towards the products, and negative
towards the reactants.

The system of differential equations (4.12) can be written in matrix notation as:

dn
dt

= f(n), (4.14)

with f : RN 7→ RN defined by:
f(n) := νTr(n) (4.15)

where ν ∈ RM×N denotes the stoichiometric matrix of reactions (4.11); and r : RN 7→ RM the
rate function of these reactions.

Note that for convenience reasons the dependence of temperature and pressure have been
omitted from equations (4.14) and (4.15).

4.2.1 Partial Equilibrium

The reactions in geochemical systems proceed with different speeds. Their time scales can
differ from each other by several orders of magnitude, ranging from microseconds to millennia
(Lasaga, 1998). Langmuir (1996) presents a list containing some common geochemical reactions
and their respective half-times2. For example, the homogeneous acid-base reaction involving
only solutes:

H2CO3(aq) 
 H+ + HCO−3 (4.16)

has a half-time of about 10−6 seconds. The homogeneous3 solute-water hydration reaction:

CO2(aq) + H2O(l) 
 H2CO3(aq) (4.17)

2The necessary time to consume half of the initial amount of a reactant.
3In a homogeneous reaction, the reactants and products are contained in the same phase, while in a heterogeneous

reaction they are contained in different phases.
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has a half-time of 0.1 seconds. Compare these time scales with the half-time of the heteroge-
neous mineral dissolution reaction:

CaCO3(s) + H+ 
 Ca2+ + HCO−3 , (4.18)

which can be at the order of weeks at low temperatures.

In general, heterogeneous reactions are slower than homogeneous reactions. This is because
their reaction rates are controlled by the surface area of the involved phases, and also by lo-
cal transport phenomena such as diffusion. In case of mineral precipitation, the rate is mainly
dependent on the mechanisms of crystal nucleation and growth. This is in contrast with ho-
mogeneous reactions, where all participating species are constantly colliding with each other
in the same phase.

These broad differences in the speed of the reactions pose several numerical complications.
The ordinary differential equations (4.14) are severely stiff, requiring appropriate methods for
its integration. However, a carefully selected numerical method might still need tiny time steps
in order to capture the kinetics of the fastest reaction in the system. It is not optimal to use time
steps in the order of microseconds when there are some reactions in the system requiring years
to achieve some progress, and where the application of interest has time scales of millennia,
such as for carbon storage. Therefore, a simplification is necessary to allow larger time steps
for efficient integration and still provide accurate calculations.

It is plausible to assume partial equilibrium in some geochemical processes (Helgeson, 1968;
Helgeson et al., 1969, 1970). Consider the dissolution of calcite in an aqueous solution given
by reaction (4.18). Recall that the speed of the reactions involving only aqueous solutes are, in
general, considerably faster than the speed of this reaction. Thus, it is reasonable to consider
that the aqueous solutes are in equilibrium at all times during the process, while calcite is
kinetically reacting, and thus out of equilibrium with them. This assumption has also been
adopted by Lichtner (1985), Steefel and Cappellen (1990) and Steefel and Lasaga (1994).

The partial equilibrium assumption eliminates the dependence of the calculations on the time
scales of the fast reactions. Because only the slow reactions are assumed to be controlled by
kinetics, while the fast reactions are controlled by equilibrium, the rate laws of the latter are no
longer necessary. Their equilibrium conditions are governed by algebraic constraints instead
of differential ones.

In addition, the partial equilibrium assumption simplifies the modelling. Assuming all reac-
tions in geochemical processes to be controlled by kinetics can be a daunting task. For example,
the rate law of every reaction would be necessary, which in general requires several tempera-
ture and pressure dependent parameters. Moreover, every heterogeneous reaction, including
the gaseous-aqueous reactions, would require some reactive surface area model, increasing the
complexity of the modelling.

Nevertheless, care must be taken not to assume partial equilibrium inappropriately. Analysing
the rates of all reactions occurring in the process is fundamental for identifying the fast and
slow reactions and guaranteeing some degree of accuracy. Sometimes, however, accuracy can
be compromised by modelling a reaction with equilibrium control.
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4.2.2 Partitioning

The reactions are classified in two groups: fast reactions and slow reactions. Following the
discussion of partial equilibrium in the previous section, the slow reactions will be assumed to
be controlled by kinetics, and the fast reactions to be controlled by equilibrium.

Define a kinetic reaction as a reaction controlled by kinetics, and an equilibrium reaction as a
reaction controlled by equilibrium. In addition, define the following terms:

equilibrium species is a species involved in an equilibrium reaction,

kinetic species is a species involved in a kinetic reaction, but not in any equilibrium reaction,

inert species is a species not involved in any reaction,

which will be useful in the formulation of the governing equations of chemical kinetics coupled
with chemical equilibrium.

Let αe, αk, and αi denote the set of equilibrium, kinetic and inert species respectively. Moreover,
let Ne, Nk, and Ni denote the respective number of equilibrium, kinetic, and inert species. From
the previous definitions, it follows that:

αe ∪ αk ∪ αi = α (4.19)

and

αe ∩ αk ∩ αi = ∅, (4.20)

where α denotes the set of all species in the system. The set of equilibrium species αe can be
constructed by the union of the species participating in the equilibrium reactions. The set of
kinetic species αk, on the other hand, can be constructed using:

αk = α− (αe ∪ αi), (4.21)

which can be derived from conditions (4.19) and (4.20).

Table 4.1: Description of the chemical system H2O–
CO2–Halite–Calcite–Magnesite–Dolomite with their
phases and respective chemical species.

Aqueous Phase Gaseous Phase
H2O(l) CO2(g)

H+ H2O(g)
OH− Mineral Phase #1

HCO−3 NaCl(s) (Halite)

CO2−
3 Mineral Phase #2

Na+ CaCO3(s) (Calcite)

Cl− Mineral Phase #3
Ca2+ MgCO3(s) (Magnesite)

Mg2+ Mineral Phase #4
H2CO3(aq) (CaMg)(CO3)2(s) (Dolomite)

CO2(aq)
CaCO3(aq)
MgCO3(aq)
CaCl2(aq)

In order to elucidate the partitioning of the
species in equilibrium, kinetic and inert
species, consider the example chemical sys-
tem in Table 4.1. The reactions occurring in
this system is listed in Table 4.2. Note that
for the modelling of the chemical kinet-
ics of this system, the reactions involving
aqueous and gaseous species are assumed
to be controlled by equilibrium. Also, due
to the fast rates of dissolution and pre-
cipitation of mineral halite, its reaction is
also assumed to be controlled by equilib-
rium. The reactions involving calcite, mag-
nesite and dolomite were assumed to be
controlled by kinetics, because their rates
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Table 4.2: Description of the equilibrium and kinetic reactions in the chemical system of Table 4.1.

Equilibrium Reactions Kinetic Reactions

H2O(l) 
 H+ + OH− CaCO3(s) + H+ 
 HCO−3 + Ca+2

CO2(aq) + H2O(l) 
 HCO−3 + H+ MgCO3(s) + H+ 
 HCO−3 + Mg+2

H2CO3(aq) 
 HCO−3 + H+ (CaMg)(CO3)2(s) + 2H+ 
 2HCO−3 + Ca+2 + Mg+2

CO−2
3 + H+ 
 HCO−3

CaCO3(aq) + H+ 
 HCO−3 + Ca+2

MgCO3(aq) + H+ 
 HCO−3 + Mg+2

CaCl2(aq) 
 Ca+2 + 2Cl−

CO2(g) 
 CO2(aq)

H2O(g) 
 H2O(l)

NaCl(s) 
 Na+ + Cl−

are not as fast as the others. Based on our
previous definitions, the equilibrium and
kinetic species can be found in Table 4.3.
Note that no inert species were assumed.

4.2.3 Revisited Equations

The formulation in Section 4.2 assumed that all reactions were controlled by kinetics. In this
section, however, reactions (4.11) will be separated into equilibrium and kinetic reactions as
follows:

0 

N

∑
i=1

νe
jiαi (j = 1, . . . , Me) (4.22)

and

0 

N

∑
i=1

νk
jiαi (j = 1, . . . , Mk), (4.23)

where νe
ji and νk

ji are the stoichiometry of the i-th species in the j-th equilibrium and kinetic
reactions respectively; and Me and Mk are the number of equilibrium and kinetic reactions in
the system.

As before, let νe ∈ RMe×N and νk ∈ RMk×N denote the stoichiometric matrices of the equilib-
rium and kinetic reactions respectively. From the partitioning discussion in Section 4.2.2, it
follows that equilibrium reactions only contain equilibrium species, while kinetic reactions can
include both equilibrium and kinetic species. Therefore, we let νke ∈ RMk×Ne and νkk ∈ RMk×Nk

denote the stoichiometric matrices constructed from the columns of νk corresponding to equi-
librium and kinetic species respectively.

Let us now formulate the mathematical equations for a general chemical kinetics problem cou-
pled with equilibrium conditions. From equation (4.14), we can write the following governing
equations for the evolution of the molar abundance of the kinetic species:

dnk
dt

= fk(n). (4.24)
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with fk : RN 7→ RNk defined by:
fk(n) := νT

kkrk(n), (4.25)

where rk : RN 7→ RMk denotes the rate function of kinetic reactions (4.23).

Although we can write a similar equation for the equilibrium species:

dne

dt
= fe(n), (4.26)

we cannot, as before, write an analytical expression for function fe : RN 7→ RNe . Because of
the equilibrium conditions imposed by the equilibrium reactions, their rates of production and
consumption are, in fact, unknowns in the problem.

In order to understand this, consider the dissolution of calcite as an example. At a given time t,
suppose CaCO3(s) is dissolving at a rate of θ mol/s. If all reactions were controlled by kinetics,
then it could be said that θ mol/s is the rate of production of Ca2+. However, because Ca2+ is
an equilibrium species, as soon as it is produced by a kinetic reaction, it instantaneously reacts
with other equilibrium species, and so θ mol/s does not represent its actual rate of production.

Table 4.3: Partition of the chemical system H2O–
CO2–Halite–Calcite–Magnesite–Dolomite in equi-
librium and kinetic species.

Equilibrium Species Kinetic Species
H2O(l) CaCO3(s)

H+ MgCO3(s)
OH− (CaMg)(CO3)2(s)

HCO−3
CO2−

3
Na+

Cl−

Ca2+

Mg2+

H2CO3(aq)
CO2(aq)

CaCO3(aq)
MgCO3(aq)
CaCl2(aq)

CO2(g)
H2O(g)
NaCl(s)

Therefore, an alternative approach must be
used to evolve the molar abundance of
the species without requiring the produc-
tion/consumption rates of the equilibrium
species fe. For this we will rely on the prin-
ciple of mass conservation, which allows us
to state that the mass that leaves or enters the
kinetic partition must, respectively, enter or
leave the equilibrium partition.

Figure 4.2 illustrates the chemical system of
Table 4.1, with its equilibrium and kinetic
species. The figure shows the exchange of
element atoms among the equilibrium and
kinetic partitions. The fact that these atoms
are preserved in the system will allow us to
calculate the evolution of the molar abun-
dance of the elements in the equilibrium par-
tition. As a result, the composition of the
equilibrium species ne can be calculated at
any time by solving an equilibrium problem
using these elemental molar abundances.

Let b ∈ RE denote the molar abundance vec-
tor of the chemical elements in the system, and W ∈ RE×N the formula matrix of all species in
the chemical system. The formula matrix W is defined such that its (j, i)-th entry given by wji

denotes the number of atoms of the j-th element in the i-th species. Therefore, it follows that
the molar abundance of the elements can be calculated using:

b = Wn. (4.27)
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Equilibrium Species

Kinetic Species

magnesite

calcitehalite

dolomite

Figure 4.2: Exchange of elemental mass between the equilibrium and kinetic partitions for the chemical
system in Table 4.3.

Similarly, we can write the following equations for the equilibrium and kinetic partitions:

be = Wene and bk = Wknk, (4.28)

where be, bk ∈ RE are the molar abundance vectors of the chemical elements in the equilibrium
and kinetic partitions; and We ∈ RE×Ne and Wk ∈ RE×Nk are the formula matrices of the
equilibrium and kinetic species.

From the principle of mass conservation, it follows that:

db
dt

=
dbe

dt
+

dbk
dt

= 0. (4.29)

By multiplying equation (4.24) by Wk we obtain:

dbk
dt

= Wkfk(n), (4.30)

which can be used to write the evolution of the molar abundance of the elements in the equi-
librium partition:

dbe

dt
= ge(n), (4.31)

where ge : RN 7→ RE is defined by:

ge(n) := −Wkfk(n). (4.32)

Therefore, combining equations (4.24) and (4.31) we have the following system of ordinary
differential equations:

du
dt

= w(u), (4.33)

where u : RD 7→ RD denotes the unknown function to be integrated; and w : RD 7→ RD the
right-hand side function of the ordinary differential equation, both defined by:

u :=

[
nk

be

]
(4.34)
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and

w(u) := Ark(n), (4.35)

with the coefficient matrix A ∈ RD×Nk given by:

A :=

[
νT

kk
−WkνT

kk

]
, (4.36)

where D := Nk + E.

Therefore, equations (4.34) and (4.35) govern the evolution of the molar abundance of both
kinetic species nk and chemical elements in the equilibrium species be. Observe, however, that
the rate function rk in equation (4.35) depends on the system composition n, which cannot be
explicitly obtained from u. In what follows we will see how this problem can be solved.

4.2.4 Chemical Equilibrium

To integrate equations (4.34) and (4.35), it is necessary to construct a function ϕ: RD 7→ RN

such that:
n = ϕ(u). (4.37)

Unfortunately an explicit expression for function ϕ is not available due to the intricate de-
pendence of n on u. In fact, all the complexity of this dependence lies in the calculation of
the molar abundance of the equilibrium species ne from the elemental molar abundance be.
This is because the molar abundance of the kinetic species nk can be explicitly obtained from
u = (u1, u2)

T = (nk, be)T using:
nk = u1. (4.38)

Section 4.2.1 introduced the concept of partial equilibrium, and Section 4.2.2 formalised the
concept of partitioning the species in a set of equilibrium and kinetic species. As a result, the
equilibrium species constitute a sub-system in which chemical equilibrium is always attained.

Therefore, from the principle of minimum Gibbs free energy, the chemical equilibrium state of
the equilibrium species can be calculated by solving the following constrained minimisation
problem:

min
ne

Ge(ne; T, P, nk) subject to

{
Wene = be

ne ≥ 0
, (4.39)

where Ge : RNe 7→ R denotes the Gibbs free energy function of the equilibrium partition, de-
fined by:

Ge(ne; T, P, nk) := nT
e µe(ne; T, P, nk). (4.40)

The chemical potential function of the equilibrium species µe : RNe 7→ RNe is defined by:

µe(ne; T, P, nk) := µ◦e (T, P) + RT ln ae(ne; T, P, nk), (4.41)

where µ◦e : R2 7→ RNe is the standard chemical potential function of the equilibrium species;
ae : RNe 7→ RNe is the activity function of the equilibrium species; and R is the universal gas
constant.
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Remark. The solution of the minimisation problem (4.39), and the evaluation of all functions in
equations (4.40) and (4.41) assume T, P and nk as constant parameters.

Hence, the function ϕ is defined as the solution of equation (4.38) and the Gibbs energy mini-
mum problem (4.39). This equilibrium problem is solved using the Gibbs energy minimisation
algorithm presented in Chapter 3. This method was specifically designed for applications that
require sequential equilibrium calculations, such as chemical kinetics and reactive transport
modelling.

Performance results of this equilibrium method, as shown later, indicate quadratic rates of con-
vergence near the solution. Therefore, by using the compositional state in a previous time step
as the initial guess for the equilibrium calculation in a subsequent step, only a few iterations
should be necessary to solve the problem.

4.2.5 Rates of Mineral Reactions

To model the kinetic dissolution and precipitation of minerals, kinetic rate laws for the mineral
reactions are necessary. By adapting the mineral rate laws presented in Lasaga (1981); Aagaard
and Helgeson (1982); Lasaga (1998); Steefel and Cappellen (1990); Steefel and Lasaga (1994);
Perkins et al. (1997); Palandri and Kharaka (2004), the following general rate law for crystal
growth and mineral dissolution has been adopted in this work:

rm(T, P, n) := Am(n)∑
i
Mm,i(T, P, n) (4.42)

where rm : R2+N 7→ R is the rate function of mineral m (in units of moles per unit time); Am

is the surface area function of the mineral; andMm,i is the i-th kinetic mechanism function of
the mineral (in units of moles per unit surface area and unit time). This functional form of rm

allows us to model several kinetic mineral mechanisms such as acid, neutral, base, carbonate,
and so forth (Palandri and Kharaka, 2004).

Estimating the evolution of the mineral surface area in geological formations is very difficult.
The process is so intricate that it is still not completely understood even in batch reactors (Zhu,
2009). However, in the interest of understanding the overall kinetic water-rock-gas interactions,
a few simplified models have been assumed in the literature.

In Aagaard and Helgeson (1982) the concept of effective surface area was discussed, which is
the area of the reactant mineral exposed to the aqueous solution. The effective surface area is,
evidently, not necessarily equal to the total surface area of the mineral. Therefore we see that it
adds even more complexity to the modelling of mineral surface area, since accounting for the
variation of the total surface area is already a challenging task.

Helgeson and Murphy (1983) and Helgeson et al. (1984) adopted a constant total surface for
the reactant mineral. It seems to be a more common practice nowadays, however, to adopt
models that allow for the variation of the total surface area of the mineral. Two models were
implemented for the evolution of mineral surface areas. The simplest one consists of assuming
a constant specific surface area σm for the mineral, which allows us to compute the surface area
by:

Am := nmσm, (4.43)
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where nm is the number of moles of mineral m. The other model is based on the one used by
PHREEQC (Parkhurst and Appelo, 2013):

Am := A◦m
(

nm

n◦m

)η

, (4.44)

where A◦m is the initial surface area of the mineral; n◦m is the initial number of moles of the
mineral; and η = 2/3 for uniformly dissolving cubes and spheres.

In order to model the kinetic dissolution of minerals, it may be necessary to resort to several
sources to collect data. In general, each source will present a slightly different equation for the
calculation of the mineral rates. As a result, modelling these kinetic processes can be hindered
by the necessity to handle a multitude of rate equations.

In Palandri and Kharaka (2004), however, a general and semi-empirical rate equation is pre-
sented for the calculation of mineral rates, which is based on the one adopted by GAMSPATH
(Perkins et al., 1997). To achieve this uniformity, they analysed mineral dissolution data from
several sources, and used them to regress the parameters of the general equation. Therefore,
to take advantage of their large mineral kinetic database, the i-th mechanism functionMm,i is
defined by:

Mm,i := sgn(1−Ω)κm,i|1−Ωpi |qiCm,i (4.45)

where Ω is the saturation index of the mineral; κm,i is the rate constant of the mineral reaction
(in units of moles per unit surface area and unit time); pi and qi are empirical exponents used to
fit the rate law; and Cm,i is a function to model catalysts and inhibitors of the mineral reaction.
The saturation index Ω of the mineral is defined by:

Ω :=
Qm

Km
, (4.46)

where, if the mineral reaction is written as:

0 

N

∑
i=1

νiαi, (4.47)

then Km is its equilibrium constant; and Qm is its reaction quotient, defined by:

Qm :=
N

∏
i=1

aνi
i . (4.48)

The reaction rate constant κm,i in equation (4.45) depends on temperature. This dependence
can be modelled via the Arrhenius equation (Lasaga, 1998) as:

κm,i := κ◦m,i exp
[
−Em,i

R

(
1
T
− 1

298.15

)]
, (4.49)

where κ◦m,i is the reaction rate constant at 298.15 K; Em,i is the activation energy; R is the univer-
sal gas constant; and T is temperature in K.

Finally, the catalyst/inhibitor function Cm,i is defined as:

Cm,i := ∏
j

a
ξ j
j ∏

g
P

ηg
g , (4.50)
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where aj is the activity of the j-th species; Pg is the partial pressure of the g-th gaseous species;
and ξ j and ηg are the exponents of the catalysts, when positive, and inhibitors, when negative.
Thus, acid mechanisms can be modelled by setting a non-zero value for ξH+ , while a carbonate
mechanism would require ηCO2(g) to be non-zero. A neutral mechanism, on the other hand,
can be modelled by setting both ξ j and ηg to zero for all species.

The parameters κ◦m,i, Em,i, ξ j, and ηg for several minerals can be found in Palandri and Kharaka
(2004).

4.3 Numerical Method

Several numerical methods exist in the literature for the integration of equation (4.33). Ascher
and Petzold (1998), Hairer et al. (2008) and Hairer and Wanner (2010) present methods for stiff
and non-stiff system of ordinary differential equations. From our discussions in the previous
sections, however, a suitable method for stiff equations should be adopted because of the large
differences that can exist in the speeds of the kinetic reactions. Therefore, an implicit multistep
backward differentiation formula (BDF) algorithm is adopted, which is highly efficient and
robust for stiff ODEs.

This work uses the package CVODE (Cohen and Hindmarsh, 1996; Hindmarsh et al., 2005) for
integration of the chemical kinetics equations (4.33). This solver is based on the well-known
algorithm VODE (Brown et al., 1989), with improved interface and added capability for dense
and banded matrices, using direct or iterative methods for linear systems. The algorithm uses
a Adams–Moulton method for non-stiff ODEs, and a BDF method for stiff ones.

An adaptive control scheme of the time step is adopted in the integration. This ensures small
steps in steeper regions and large steps in smoother regions. As a result, both accuracy and
efficiency are achieved throughout the calculation. This adaptive control is essential in geo-
chemistry, since in general minerals react very fast initially (a steep region), and then proceed
very slowly (a smooth region) until equilibrium. If a constant time step is adopted, then it must
be small enough to guarantee that the integration is accurate and stable at the beginning of the
process. However, the required initial time step (e.g., 10−4 s) is usually orders of magnitude
smaller than what should be used near equilibrium (e.g., 102 days).

The solver CVODE calculates the solution at a new time step using an implicit scheme, requiring
a system of non-linear algebraic equations to be solved. Two approaches are offered for solving
these non-linear equations: Newton iteration and functional iteration. The former uses Newton’s
method to solve the equations, while the latter uses a successive-substitution method. As a
result, the functional iteration approach is advised to be used only for non-stiff ODEs (Hind-
marsh et al., 2005).

The Newton iteration approach is adopted in this work. Although it is more suitable for stiff
ODEs, resulting in more efficient calculations that use larger time steps, this approach increases
the level of complexity of the numerical integration. This is because using Newton’s method
requires the Jacobian function J : RD 7→ RD×D defined by:

J(u) :=
∂w(u)

∂u
. (4.51)
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In addition, analytical derivatives of the rate laws and species activities are required in the
calculation of the Jacobian matrix. Although the computation of these derivatives requires
some computational effort, it allows the use of larger time steps and increases the stability of
the integration (Ascher and Petzold, 1998; Hairer and Wanner, 2010).

4.3.1 Jacobian Function

Let us now present a methodology for the calculation of the Jacobian function J(u). Combining
equations (4.35) and (4.51), and applying the chain rule in the derivative term, results in:

J = A
∂rk
∂n

∂n
∂u

. (4.52)

The partial molar derivatives of the reaction rates ∂rk/∂n can be obtained by differentiating the
rate functions either analytically or numerically. This work adopts an analytical approach.

The calculation of the partial derivatives ∂n/∂u is slightly more complicated. From the defini-
tion of u in equation (4.34), it follows that:

∂n
∂u

=

[
∂n
∂nk

∂n
∂be

]
(4.53)

=

[
∂n
∂nk

∂n
∂ne

∂ne

∂be

]
,

where ∂n/∂ne and ∂n/∂nk are constant matrices obtained by extracting the columns of the
identity matrix I ∈ RN×N corresponding to the equilibrium and kinetic species respectively.
The matrix ∂ne/∂be, on the other hand, needs more effort to be calculated, since it depends on
the equations governing the equilibrium state of the equilibrium species.

To calculate ∂ne/∂be, we write the Lagrange function L of the minimisation problem (4.39):

L(ne, ye, ze) := nT
e µe(ne) + (Wene − be)

Tye − nT
e ze, (4.54)

where ye ∈ RE and ze ∈ RNe are Lagrange multipliers. In addition, we write the gradient of
the Lagrange function with respect to the molar abundance of the equilibrium species ne:

∇nL(ne, ye, ze) = µe(ne) + WT
e ye − ze. (4.55)

Assume that (ne, ye, ze) is the solution of the minimisation problem (4.39). From optimisation
theory (Nocedal and Wright, 1999), it follows that the following first-order optimality condi-
tions are satisfied at (ne, ye, ze):

µe(ne) + WT
e ye − ze = 0, (4.56)

Wene − be = 0, (4.57)

Neze = 0, (4.58)

ne, ze ≥ 0, (4.59)

where Ne := diag(ne). Applying the derivative operator ∂/∂be in equations (4.56)–(4.58) yields:

∇µe(ne)
∂ne

∂be
+ WT

e
∂ye

∂be
− ∂ze

∂be
= 0, (4.60)

We
∂ne

∂be
− Ie = 0, (4.61)

Ze
∂ne

∂be
+ Ne

∂ze

∂be
= 0, (4.62)
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which can be simplified to:

(∇µe + N−1
e Ze)

∂ne

∂be
+ WT

e
∂ye

∂be
= 0, (4.63)

We
∂ne

∂be
= Ie, (4.64)

where Ie ∈ RE×E is an identity matrix and Ze := diag(ze).

In order to simplify equations (4.63) and (4.64) even further, let Ke denote a matrix whose
columns form a basis of the kernel of We, such that:

WeKe = 0. (4.65)

Thus, multiplying equation (4.63) by KT
e yields:

Ae
∂ne

∂be
= Be, (4.66)

where matrices Ae and Be are defined as:

Ae :=

[
KT

e (∇µe + N−1
e Ze)

We

]
(4.67)

and

Be :=

[
0
Ie

]
. (4.68)

Therefore, ∂ne/∂be can be calculated by solving the general system of linear equations (4.66),
whose coefficient matrix Ae can be computed once the equilibrium state of the system has been
found (i.e., once ne, ye, and ze has been calculated). Note that the kernel matrix Ke should be
computed only once in the beginning of the integration for efficiency reasons.



CHAPTER 5
APPLICATIONS: CHEMICAL

EQUILIBRIUM

This chapter uses the chemical equilibrium algorithms presented in Chapters 2 and 3 to model
problems relevant to carbon dioxide sequestration in saline aquifers. In addition, the efficiency
of the Gibbs energy minimisation method will be demonstrated, potentially allowing its inte-
gration into critical applications such as reactive transport modelling.

The activity and fugacity coefficient models below have been implemented and are used to
perform the calculations. These thermodynamic models are presented in Appendix B.

• For ionic species and solvent water the following models are available:

◦ the HKF extended Debye-Hückel activity coefficient model (Helgeson and Kirkham,
1974a,b, 1976; Helgeson et al., 1981); and

◦ the HMW Pitzer activity coefficient model (Harvie et al., 1984).

• The Setschenow activity coefficient model for neutral aqueous species other than CO2(aq).

• The activity coefficient models of Drummond (1981), Duan and Sun (2003), and Harvie
et al. (1984) for CO2(aq).

• The fugacity coefficient models of Spycher and Reed (1988), Spycher et al. (2003), Duan
et al. (2006) and Peng and Robinson (1976) for CO2(g) and H2O(g).

• The ideal activity coefficient model for mineral species.

Note that, with exception of the fugacity coefficient model of Spycher and Reed (1988), the
models of Spycher et al. (2003) and Duan et al. (2006) assume the gaseous phase as an ideal
mixture. The implication of this is that the fugacity coefficient of each gas does not depend on
phase composition, but only on temperature and pressure.

In our calculations the ideal fugacity coefficient model for H2O(g) is used whenever the model
of Duan et al. (2006) is employed for CO2(g). This follows from the lack of a non-iterative and
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efficient equation for the fugacity coefficient of H2O(g) in the work of Duan et al. (2006). An
alternative would be the use of the non-linear equations of state of Duan et al. (1992), but these
are prohibitively expensive to use in a reactive reservoir simulator. Note, however, that this
assumption has little impact on the accuracy of our predictions of the solubility of CO2.

The chemical potential of the species were obtained using the equations of state of Helgeson
and Kirkham (1974a); Helgeson et al. (1978); Tanger and Helgeson (1988); Shock and Helgeson
(1988) and Shock et al. (1992). The parameters of these equations were taken from the database
file of the software package SUPCRT, (Johnson et al., 1992). Moreover, the density of water and
its temperature and pressure derivatives, required for the calculation of the chemical potential
of aqueous species, were calculated using the equation of state of Wagner and Pruss (2002).

The chemical potential of the species can be used to compute equilibrium constants of reac-
tions whenever necessary. This computation can be skipped by using equilibrium constants
available in databases such as those from geochemical packages EQ3/6 (Wolery, 1992a) or
PHREEQC (Parkhurst and Appelo, 1999, 2013). However, these databases have constants
that are in general only temperature dependent, evaluated at a fixed pressure or at pressures
corresponding to the vapour pressure of water. Therefore, at higher pressures, these data are
no longer capable of yielding accurate equilibrium results.

5.1 Mutual Solubility of CO2 and H2O in Brines

The capability to model the solubility of CO2 in brines accurately is of utmost importance
for understanding CO2 storage in saline aquifers. This is because most of the injected CO2

will eventually dissolve in the aqueous phase. Moreover, this dissolution will also acidify the
aqueous phase, promoting geochemical reactions between fluid and rock. Therefore, correct
predictions of these phenomena will depend on the accuracy of the calculated solubility of
carbon dioxide in brines.

There are other aspects that should be considered when modelling the solubility of carbon
dioxide in brines. One of them concerns the solubility of H2O in the CO2-rich phase. This is
because near the injection well a considerable amount of water is evaporated into the injected
supercritical CO2. Since this evaporation is directly related to the precipitation of salts, which
decreases the local porosity and permeability of the rock, it can be argued that a certain degree
of accuracy in the solubility calculation of vapour water in the CO2-rich phase is required.

Other important aspects include the salt composition of the brine and its salinity. Frequently,
brines contain significant concentrations of salts other than NaCl, such as CaCl2, MgCl2, KCl
and so forth. As a consequence, a comprehensive accounting of these salts should not be ne-
glected as this could lead to inaccurate results for the calculated CO2 solubility.

The calculations presented later in this section will cover these cases.

5.1.1 Modelling Problem

The calculation of carbon dioxide solubility in brines can be obtained by using a chemical
equilibrium method. For this, a multiphase system consisting of an aqueous and a gaseous
phase must be defined. For example, calculating the solubility of CO2 in CaCl2 brines can be
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achieved by defining the chemical system as shown in Table 5.1. For more complex brines,
involving a variety of salts, the system would need to be modified accordingly.

Table 5.1: Description of the chemical system H2O–
CO2–CaCl2 with their phases and respective species.

Aqueous Phase Gaseous Phase
H2O(l) CO2(g)

H+ H2O(g)
OH−

HCO−3
Ca2+

Na+

CO2−
3

CaHCO+
3

CaCl+

CaOH+

CO2(aq)
CaCO3(aq)
CaCl2(aq)

Fortunately, this is an easy computational
task if a database containing a list of aque-
ous, gaseous, and mineral species are avail-
able. Determining the relevant species is just
a matter of identifying those that contain the
same chemical elements: the elements H, O,
C, Ca, Cl for the H2O–CO2–CaCl2 system.
Sometimes, however, the modeller knows
beforehand that some classes of species in a
database are irrelevant to the problem, and
need to be discarded. Hydrocarbon species,
for instance, are not necessary for this solu-
bility modelling problem.

The solubility calculations were performed
by assuming a mixture containing 1 kg of
H2O, 10 moles of CO2, and a variable amount
of salt to determine the salting-out effect on
the solubility of carbon dioxide. The arbi-
trary amount of CO2 is explained by the fact that we want enough gas to saturate the aqueous
solution and form a gaseous phase at all considered temperatures, pressures and salinities.
This is necessary since our goal is to calculate the saturated solubility of that gas in brine.

Once the amounts of H2O, CO2 and the salt (e.g., NaCl, KCl, CaCl2, MgCl2) are specified, one
can easily calculate the number of moles of the elements H, O, C, Ca, and Cl. This can then be
used as input for a chemical equilibrium calculation. From the obtained solution, the solubility
of CO2 is given by the molality of element C in the aqueous phase, which accounts for all
aqueous species containing carbon.

5.1.2 Salinity Effect on Solubility

Figures 5.1–5.2 show the solubility of CO2 in pure water and the solubility of H2O in the CO2-
rich phase respectively, in terms of the molar fractions xCO2 and yH2O.

xCO2 =
nHCO−3

+ nCO2(aq)

na
t

(5.1)

and

yH2O =
nH2O(g)

ng
t

, (5.2)

where na
t and ng

t are the total number of moles in the aqueous and gaseous phase respectively.
The experimental solubility data compiled in Spycher et al. (2003) were used to assess the
accuracy of the calculations. The fugacity coefficient model of Spycher et al. (2003) was used
for the gaseous species CO2(g) and H2O(g). Note that the CO2-rich phase exists in the liquid,
gaseous or supercritical state depending on the temperature and pressure of the system.
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Figure 5.1: Comparison of our calculations of CO2 solubility in pure water (lines), using the activity
coefficient model of Drummond (1981) for CO2(aq) and the fugacity coefficient model of Spycher et al.
(2003) for CO2(g) and H2O(g), with the experimental solubility data compiled in Spycher et al. (2003)
(points). The calculations assumed a H2O–CO2 system composed of an aqueous and gaseous phase.
Temperatures used were (a) 25 °C; (b) 31 °C; (c) 40 °C; and (d) 60 °C.
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Figure 5.2: Comparison of our calculations of H2O solubility in the CO2-rich phase (lines), using the
activity coefficient model of Drummond (1981) for CO2(aq) and the fugacity coefficient model of Spycher
et al. (2003) for CO2(g) and H2O(g), with the experimental solubility data compiled in Spycher et al.
(2003) (points). The calculations assumed a H2O–CO2 system composed of an aqueous and gaseous
phase. Temperatures used were (a) 25 °C; (b) 31 °C; (c) 40 °C; and (d) 60 °C.
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Figure 5.3 shows the solubility of CO2 in NaCl brines of 0, 1, 2 and 4 molal, at temperatures 30,
60, 90 °C and pressures 1–500 bar. Figure 5.4 shows the corresponding H2O solubility in the
CO2-rich phase, where no comparisons with experimental data were made because of the lack
of these at the assumed temperatures. These equilibrium calculations used the activity coef-
ficient model of Drummond (1981) for CO2(aq) and the fugacity coefficient model of Spycher
et al. (2003) for CO2(g) and H2O(g). The calculations in Figure 5.3 were compared against the
calculated solubility from the Duan and Sun (2003) model.

These results show that the solubility of carbon dioxide decreases with an increase in salinity:
the so called salting-out effect. Therefore, one could argue that very saline aquifers could be
unfavourable for carbon dioxide storage, since they have a lower potential to trap gases as
dissolved carbonate species. However, these solubility results can be misleading, since they do
not take into account the water-gas-rock effects in the reservoir, which we consider later.

Sometimes complex water-gas-rock effects increase the potential of the subsurface fluid to dis-
solve more carbon dioxide. As shown later in Chapter 6, this is what happens in a carbonate
aquifer, where it is observed that the dissolution of the carbonate minerals promotes further
dissolution of mobile supercritical CO2. Thus, we see that the storage assessment of carbon
storage in saline aquifers should take into account the relevant subsurface chemical processes.

5.1.3 Accuracy Assessment of the Calculations

Tables 5.2–5.7 present the solubility results for carbon dioxide in brines of different salt com-
position and salinity, at temperature and pressure conditions representative of saline aquifers.
The experimental solubility data used to assess the accuracy of the calculations were taken
from the measurements of Hou et al. (2013a,b) and Tong et al. (2013).

Table 5.2 presents the results of the solubility calculations in pure water. The equilibrium cal-
culations were performed using different fugacity coefficient models for the gaseous mixture
H2O–CO2. The results indicate that the fugacity coefficient model of Duan et al. (2006) yields
the most accurate results, where an average deviation of 6.3% from the experimental data can
be observed.

Tables 5.3–5.4 show the calculated solubility of CO2 in NaCl brines at high salinities using,
respectively, the activity coefficient models of Duan and Sun (2003) and Drummond (1981) for
the aqueous species CO2(aq). Between these two activity coefficient models, it can be seen
that the latter is slightly more accurate for NaCl brines. As to the fugacity coefficient models
for CO2(g), we observe again that the model of Duan et al. (2006) yields the most accurate
results, where the deviations are in general less than 7%. This good agreement of the results
demonstrate that this model is sufficiently accurate for engineering applications.

In order to have a qualitative perception of the accuracy of the fugacity coefficient models of
Spycher and Reed (1988), Spycher et al. (2003) and Duan et al. (2006), the reader is referred
to Figures 5.5–5.6. The qualitative comparison of the activity coefficient models of Duan and
Sun (2003) and Drummond (1981) can be made in Figures 5.7–5.8. Observing these figures
one realises that the fugacity coefficient of Duan et al. (2006) for CO2(g) results in more accu-
rate solubility calculations. Moreover, the activity coefficient model of Drummond (1981) for
CO2(aq) performs better than the one of Duan and Sun (2003) for most of the studied range of
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Figure 5.3: Comparison of our calculations of CO2 solubility in NaCl brine (lines), using the activity
coefficient model of Drummond (1981) for CO2(aq) and the fugacity coefficient model of Spycher et al.
(2003) for CO2(g) and H2O(g), with the calculated solubility data of Duan and Sun (2003) (points). The
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temperatures, pressures and salinities.

Tables 5.5–5.7 indicate that the activity coefficient model of Drummond (1981) for CO2(aq) is
not suitable for brines with salt compositions other than pure NaCl. The solubility calculations
in NaCl+KCl brines, with KCl salt in low proportion, show that the Duan and Sun (2003) model
is slightly superior. In addition, for the solubility calculations in MgCl2 and CaCl2 brines, it
becomes evident that the Duan and Sun (2003) model is considerably superior than the Drum-
mond (1981) model for non-NaCl brines.

In Spycher and Pruess (2005), the solubility of H2O in the CO2-rich phase was calculated for
CO2-brine system. However, at that time no experimental data were available for assessing the
accuracy of their calculations. In Figures 5.9–5.10 we show a comparison of our calculations
of H2O solubility in the CO2-rich phase with the experimental solubility data of Hou et al.
(2013b). Note that this comparison is done in terms of the molar fraction of CO2(g). These
were performed assuming an aqueous phase containing 2.5 and 4.0 molal of NaCl. Different
fugacity coefficient models were used for the gaseous species CO2(g) and H2O(g). From these
figures, it can be observed that the fugacity coefficient model of Duan et al. (2006) achieves bet-
ter accuracy than the other models, except at higher temperatures, where the model of Spycher
et al. (2003) presents a closer agreement with the experimental data. However, we remark that
this model was developed for lower temperatures 12–100 °C, as stated in Spycher et al. (2003).

5.2 Phase Behaviour of H2O–CO2–Rock Systems

Figure 5.11 shows the ability of the chemical equilibrium method to determine the stable phase
assemblage of H2O–CO2–mineral systems, where the minerals assumed were halite, calcite,
and magnesite respectively. The calculations were made by assuming a fixed feed molar frac-
tion zMin of each mineral component. The feed molar fraction zCO2 of component CO2 was
varied from 0 to 1− zmin and the feed molar fraction zH2O of component H2O was computed
by:

zH2O = 1− zCO2 − zMin. (5.3)

From the molar fractions of the components, the molar abundance of each element was deter-
mined, which served as input to the equilibrium calculation.

It can be seen in Figure 5.11 that some discontinuities in the concentration of the aqueous
species. These discontinuities characterise a change in the phase assemblage of the system.
When zCO2 assumes small values, only the aqueous phase exists in the system, which is repre-
sented by the steep concentration line of CO2(aq) on the left side of the graphs. Then, a gaseous
phase is formed for intermediate values of zCO2 , while the mineral is still completely dissolved
in the aqueous phase. As zCO2 further increases, a solid phase appears in the system, repre-
sented by the planar region on the right side of the graphs. Finally, for values of zCO2 near to
its limit, we have the aqueous phase being fully evaporated to the gaseous phase, resulting in
zero concentrations for the aqueous species.
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Figure 5.5: Comparison of our calculations of CO2 solubility in 2.5 molal NaCl brine (lines), using the
activity coefficient model of Duan and Sun (2003) for CO2(aq) and the fugacity coefficient models of
Spycher and Reed (1988), Spycher et al. (2003) and Duan et al. (2006) for CO2(g) and H2O(g), with the
experimental solubility results of Hou et al. (2013b) (points). The calculations assumed a H2O–CO2–NaCl
system composed of an aqueous and gaseous phase.
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Figure 5.6: Comparison of our calculations of CO2 solubility in 4.0 molal NaCl brine (lines), using the
activity coefficient model of Duan and Sun (2003) for CO2(aq) and the fugacity coefficient models of
Spycher and Reed (1988), Spycher et al. (2003) and Duan et al. (2006) for CO2(g) and H2O(g), with the
experimental solubility results of Hou et al. (2013b) (points). The calculations assumed a H2O–CO2–NaCl
system composed of an aqueous and gaseous phase.
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Figure 5.7: Comparison of our calculations of CO2 solubility in 2.5 molal NaCl brine (lines), using the
activity coefficient models of Duan and Sun (2003) and Drummond (1981) for CO2(aq) and the fugacity
coefficient model of Spycher et al. (2003) for CO2(g) and H2O(g), with the experimental solubility re-
sults of Hou et al. (2013b) (points). The calculations assumed a H2O–CO2–NaCl system composed of an
aqueous and gaseous phase.
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Figure 5.8: Comparison of our calculations of CO2 solubility in 4.0 molal NaCl brine (lines), using the
activity coefficient models of Duan and Sun (2003) and Drummond (1981) for CO2(aq) and the fugacity
coefficient model of Spycher et al. (2003) for CO2(g) and H2O(g), with the experimental solubility re-
sults of Hou et al. (2013b) (points). The calculations assumed a H2O–CO2–NaCl system composed of an
aqueous and gaseous phase.
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Figure 5.9: Comparison of our calculations of H2O solubility (in terms of yCO2 ) in the CO2-rich phase
(lines), using the activity coefficient model of Duan and Sun (2003) for CO2(aq) and the fugacity coefficient
models of Spycher and Reed (1988), Spycher et al. (2003) and Duan et al. (2006) for CO2(g) and H2O(g),
with the experimental solubility results of Hou et al. (2013b) (points). The calculations assumed a H2O–
CO2–NaCl system composed of an aqueous and gaseous phase, where the aqueous phase contains 2.5
molal of NaCl.
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Figure 5.10: Comparison of our calculations of H2O solubility (in terms of yCO2 ) in the CO2-rich phase
(lines), using the activity coefficient model of Duan and Sun (2003) for CO2(aq) and the fugacity coefficient
models of Spycher and Reed (1988), Spycher et al. (2003) and Duan et al. (2006) for CO2(g) and H2O(g),
with the experimental solubility results of Hou et al. (2013b) (points). The calculations assumed a H2O–
CO2–NaCl system composed of an aqueous and gaseous phase, where the aqueous phase contains 4.0
molal of NaCl.
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Table 5.2: Comparison of our calculations of carbon dioxide solubility in pure water with the experimen-
tal solubility data of Hou et al. (2013a).

T P xexp xSR xSP xDSC ErrorSR ErrorSP ErrorDSC
(K) (bar) (%) (%) (%) (%) (%) (%) (%)

349.19 252.2 2.148 2.0160 2.0244 2.0436 6.143 5.755 4.860
349.13 183.1 2.017 1.9125 1.8684 1.8783 5.183 7.368 6.878
374.41 72.1 1.105 1.0059 1.0296 1.0349 8.973 6.824 6.344
374.18 144.4 1.711 1.5580 1.5868 1.6012 8.940 7.260 6.418
374.91 188.6 1.924 1.7508 1.7782 1.7927 9.001 7.580 6.826
374.15 223.4 2.048 1.8449 1.8862 1.9126 9.919 7.900 6.613
374.99 272.6 2.189 1.9067 2.0123 2.0529 12.895 8.073 6.220

Average 8.722 7.251 6.308

Note: In this and subsequent tables, xexp denotes experimental molar fraction of aqueous CO2. xSR, xSP and xDSC
denote the calculated molar fraction of aqueous CO2 using respectively the fugacity coefficient models of Spycher
and Reed (1988), Spycher et al. (2003) and Duan et al. (2006) for the gaseous mixture H2O–CO2. ErrorSR, ErrorSP and
ErrorDSC denote respectively the percentage deviation of xSR, xSP and xDSC from xexp.
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Figure 5.11: Phase behaviour of the systems H2O–CO2–Halite (a), H2O–CO2–Calcite (b) and H2O–CO2–
Magnesite (c) respectively along the line of feed molar fraction zHalite = 10−2, zCalcite = 10−4 and
zMagnesite = 10−4. Concentrations of CO2(aq) are given on the left vertical axis and concentrations of
other aqueous species on the right. The calculations assumed a H2O–CO2–Mineral system composed of
an aqueous, gaseous and mineral phase.
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Table 5.3: Comparison of our calculations of carbon dioxide solubility in NaCl brine, using the activity
coefficient model of Duan and Sun (2003) for CO2(aq), with the experimental solubility data of Hou et al.
(2013b).

T P mNaCl xexp xSR xSP xDSC ErrorSR ErrorSP ErrorDSC
(K) (bar) (molal) (%) (%) (%) (%) (%) (%) (%)

323.15

27.82

2.5

0.492 0.5046 0.5164 0.5141 2.567 4.951 4.488
57.39 0.875 0.8666 0.8928 0.8848 0.965 2.034 1.117
87.3 1.146 1.1115 1.1232 1.1160 3.008 1.986 2.618

117.73 1.238 1.2761 1.2136 1.2090 3.077 1.970 2.345
150.2 1.293 1.3866 1.2654 1.2530 7.242 2.136 3.093
182.11 1.335 1.4460 1.3064 1.2920 8.312 2.145 3.220

Average 4.195 2.537 2.813

373.15

26.13

2.5

0.254 0.2827 0.2862 0.2874 11.304 12.676 13.135
57.42 0.532 0.5491 0.5610 0.5631 3.213 5.451 5.845
87.89 0.739 0.7458 0.7641 0.7675 0.914 3.391 3.861
118.67 0.899 0.8969 0.9167 0.9224 0.228 1.969 2.606
149.21 1.032 1.0100 1.0268 1.0344 2.129 0.503 0.234
180.13 1.139 1.0957 1.1099 1.1148 3.800 2.559 2.121

Average 3.598 4.425 4.634

423.15

26.43

2.5

0.193 0.2360 0.2379 0.2401 22.272 23.259 24.430
57.66 0.440 0.4560 0.4638 0.4744 3.626 5.404 7.810
86.00 0.640 0.6364 0.6504 0.6672 0.569 1.622 4.249
116.04 0.824 0.7939 0.8152 0.8397 3.653 1.068 1.901
148.81 1.014 0.9331 0.9634 0.9972 7.980 4.994 1.652
177.94 1.137 1.0321 1.0722 1.1149 9.230 5.700 1.944

Average 7.888 7.008 6.998

323.15

29.83

4.0

0.403 0.4196 0.4298 0.4277 4.112 6.652 6.133
59.54 0.689 0.6945 0.7153 0.7087 0.798 3.820 2.854
89.53 0.871 0.8807 0.8873 0.8823 1.111 1.866 1.292
120.17 0.956 1.0073 0.9537 0.9489 5.365 0.237 0.743
149.59 0.997 1.0866 0.9919 0.9817 8.988 0.513 1.533
179.54 1.025 1.1347 1.0246 1.0128 10.700 0.037 1.193

Average 5.179 2.188 2.291

373.15

29.51

4.0

0.251 0.2562 0.2597 0.2606 2.076 3.471 3.836
60.68 0.446 0.4618 0.4721 0.4737 3.553 5.860 6.204
89.16 0.620 0.6058 0.6206 0.6231 2.288 0.103 0.503
120.03 0.752 0.7263 0.7420 0.7461 3.420 1.331 0.780
149.24 0.857 0.8135 0.8267 0.8321 5.079 3.535 2.910
181.62 0.934 0.8869 0.8977 0.9009 5.048 3.889 3.544

Average 3.577 3.031 2.963

423.15

30.93

4.0

0.195 0.2219 0.2239 0.2262 13.786 14.830 16.020
58.16 0.375 0.3732 0.3795 0.3875 0.482 1.190 3.346
88.57 0.556 0.5261 0.5377 0.5508 5.376 3.299 0.928
119.22 0.709 0.6524 0.6697 0.6890 7.990 5.536 2.827
149.79 0.844 0.7554 0.7793 0.8053 10.503 7.664 4.586
180.79 0.972 0.8397 0.8720 0.9051 13.611 10.293 6.879

Average 8.625 7.135 5.764

Note: mNaCl denotes the salinity of the NaCl brine in molality scale.
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Table 5.4: Comparison of our calculations of carbon dioxide solubility in NaCl brine, using the activity
coefficient model of Drummond (1981) for CO2(aq), with the experimental solubility data of Hou et al.
(2013b).

T P mNaCl xexp xSR xSP xDSC ErrorSR ErrorSP ErrorDSC
(K) (bar) (molal) (%) (%) (%) (%) (%) (%) (%)

323.15

27.82

2.5

0.492 0.4938 0.5053 0.5030 0.362 2.695 2.242
57.39 0.875 0.8580 0.8840 0.8761 1.941 1.029 0.120
87.30 1.146 1.1059 1.1176 1.1104 3.496 2.479 3.108
117.73 1.238 1.2723 1.2100 1.2054 2.770 2.261 2.635
150.20 1.293 1.3832 1.2623 1.2499 6.976 2.378 3.332
182.11 1.335 1.4416 1.3024 1.2881 7.983 2.441 3.514

Average 3.921 2.214 2.492

373.15

26.13

2.5

0.254 0.2777 0.2811 0.2822 9.318 10.665 11.115
57.42 0.532 0.5492 0.5611 0.5632 3.232 5.470 5.864
87.89 0.739 0.7524 0.7709 0.7744 1.819 4.318 4.792
118.67 0.899 0.9099 0.9300 0.9358 1.214 3.443 4.089
149.21 1.032 1.0283 1.0454 1.0531 0.358 1.297 2.048
180.13 1.139 1.1183 1.1328 1.1378 1.815 0.548 0.102

Average 2.959 4.290 4.668

423.15

26.43

2.5

0.193 0.2296 0.2314 0.2336 18.956 19.916 21.055
57.66 0.440 0.4541 0.4619 0.4724 3.198 4.968 7.364
86.00 0.640 0.6414 0.6555 0.6724 0.213 2.422 5.069
116.04 0.824 0.8074 0.8290 0.8539 2.019 0.610 3.629
148.81 1.014 0.9560 0.9870 1.0218 5.717 2.658 0.765
177.94 1.137 1.0632 1.1045 1.1485 6.495 2.860 1.007

Average 6.100 5.572 6.482

323.15

29.83

4.0

0.403 0.4010 0.4108 0.4088 0.505 1.924 1.427
59.54 0.689 0.6743 0.6946 0.6881 2.128 0.807 0.131
89.53 0.871 0.8598 0.8663 0.8614 1.282 0.544 1.104
120.17 0.956 0.9846 0.9323 0.9275 2.995 2.482 2.976
149.59 0.997 1.0609 0.9684 0.9585 6.413 2.864 3.861
179.54 1.025 1.1050 0.9978 0.9862 7.801 2.657 3.783

Average 3.521 1.880 2.214

373.15

29.51

4.0

0.251 0.2521 0.2556 0.2565 0.449 1.822 2.181
60.68 0.446 0.4653 0.4757 0.4773 4.338 6.661 7.008
89.16 0.620 0.6166 0.6317 0.6342 0.553 1.880 2.287
120.03 0.752 0.7435 0.7596 0.7638 1.128 1.011 1.574
149.24 0.857 0.8352 0.8488 0.8543 2.545 0.961 0.318
181.62 0.934 0.9117 0.9229 0.9262 2.384 1.193 0.838

Average 1.900 2.254 2.368

423.15

30.93

4.0

0.195 0.2201 0.2221 0.2244 12.870 13.906 15.087
58.16 0.375 0.3803 0.3867 0.3949 1.411 3.116 5.313
88.57 0.556 0.5450 0.5570 0.5706 1.973 0.178 2.634
119.22 0.709 0.6830 0.7012 0.7213 3.669 1.101 1.734
149.79 0.844 0.7966 0.8219 0.8492 5.615 2.623 0.622
180.79 0.972 0.8903 0.9245 0.9596 8.407 4.890 1.273

Average 5.658 4.302 4.444

Note: mNaCl denotes the salinity of the NaCl brine in molality scale.
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Table 5.5: Comparison of our calculations of carbon dioxide solubility in NaCl+KCl brine, using the
fugacity coefficient model of Duan et al. (2006) for CO2(g), with the experimental solubility data of Tong
et al. (2013).

T P xexp xDS xDr ErrorDS ErrorDr
(K) (bar) (%) (%) (%) (%) (%)

309.14 11.9 0.384 0.4212 0.4129 9.700 7.532
308.90 37.4 1.180 1.1193 1.1070 5.148 6.187
324.11 10.7 0.322 0.2789 0.2724 13.384 15.419
324.10 43.5 1.062 0.9387 0.9275 11.615 12.663
343.83 17.7 0.295 0.3373 0.3293 14.334 11.624
343.92 36.1 0.642 0.6314 0.6205 1.656 3.349
343.88 136.9 1.580 1.4427 1.4324 8.688 9.342
345.04 102.5 1.381 1.2803 1.2687 7.290 8.135
374.92 29.9 0.409 0.4063 0.3950 0.668 3.421
374.92 69.6 0.872 0.8259 0.8103 5.290 7.078
374.89 147.8 1.415 1.3196 1.3046 6.744 7.802
424.67 40.0 0.407 0.4382 0.4197 7.658 3.113
424.62 86.8 0.869 0.8625 0.8356 0.752 3.849
424.64 171.6 1.460 1.4174 1.3890 2.920 4.863

Average 6.846 7.455

Note: The salinity of the NaCl+KCl brine is mNaCl = 0.910 molal and mKCl = 0.143 molal. xDS and xDr denote the
calculated aqueous molar fraction of CO2 using respectively the activity coefficient models of Duan and Sun (2003)
and Drummond (1981) for CO2(aq). ErrorDS and ErrorDr denote respectively the percentage deviation of xDS and xDr
from xexp.

Table 5.6: Comparison of our calculations of carbon dioxide solubility in MgCl2 brine, using the fugacity
coefficient model of Duan et al. (2006) for CO2(g), with the experimental solubility data of Tong et al.
(2013).

T P mMgCl2 xexp xDS xDr ErrorDS ErrorDr
(K) (bar) (molal) (%) (%) (%) (%) (%)

309.58 12.5 1.0 0.382 0.3629 0.2850 5.007 25.387
309.83 42.4 1.0 1.085 0.9930 0.7949 8.482 26.740
324.41 16.5 1.0 0.366 0.3470 0.2805 5.193 23.351
324.37 56.8 1.0 1.041 0.9365 0.7719 10.036 25.850
343.90 20.4 1.0 0.344 0.3234 0.2668 6.002 22.430
344.20 76.2 1.0 0.996 0.9118 0.7696 8.456 22.727
344.93 305.8 1.0 1.532 1.4529 1.2439 5.162 18.806
374.24 26.4 1.0 0.294 0.3076 0.2578 4.612 12.308
374.22 102.5 1.0 1.005 0.9023 0.7776 10.219 22.630
374.91 349.3 1.0 1.609 1.4844 1.3090 7.744 18.644
424.03 39.5 1.0 0.345 0.3632 0.3122 5.265 9.495
423.95 126.3 1.0 0.980 0.9498 0.8448 3.083 13.800
424.63 197.4 1.0 1.310 1.2619 1.1400 3.673 12.977
424.63 283.7 1.0 1.609 1.5032 1.3778 6.578 14.367
344.68 130.9 5.0 0.370 0.3372 0.3512 8.871 5.092
344.98 312.0 5.0 0.471 0.4477 0.4406 4.941 6.457
374.72 75.5 5.0 0.257 0.2259 0.2556 12.112 0.558
374.68 156.0 5.0 0.384 0.3425 0.3962 10.804 3.174
375.02 205.8 5.0 0.414 0.3851 0.4441 6.972 7.276
424.39 47.0 5.0 0.131 0.1327 0.1607 1.301 22.678
424.33 103.4 5.0 0.231 0.2465 0.3191 6.721 38.138
424.49 161.8 5.0 0.355 0.3330 0.4421 6.194 24.539

Average 6.701 17.156

Note: mMgCl2 denotes the salinity of the MgCl2 brine in molality scale.
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Table 5.7: Comparison of our calculations of carbon dioxide solubility in CaCl2 brine, using the fugacity
coefficient model of Duan et al. (2006) for CO2(g), with the experimental solubility data of Tong et al.
(2013).

T P mCaCl2 xexp xDS xDr ErrorDS ErrorDr
(K) (bar) (molal) (%) (%) (%) (%) (%)

309.67 15.3 1.0 0.448 0.4343 0.3490 3.058 22.091
309.28 40.1 1.0 1.036 0.9639 0.7854 6.962 24.191
344.67 25.8 1.0 0.402 0.3940 0.3319 1.983 17.449
344.35 73.0 1.0 0.976 0.8864 0.7596 9.185 22.177
344.95 310.2 1.0 1.510 1.4567 1.2668 3.527 16.104
374.70 31.3 1.0 0.377 0.3580 0.3068 5.034 18.619
374.70 100.2 1.0 0.934 0.8887 0.7798 4.853 16.510
374.88 373.8 1.0 1.613 1.5136 1.3603 6.163 15.669
424.13 43.9 1.0 0.392 0.3968 0.3441 1.213 12.225
424.10 127.7 1.0 1.001 0.9573 0.8567 4.362 14.417
424.43 268.2 1.0 1.581 1.4639 1.3462 7.409 14.854
424.40 82.9 3.0 0.380 0.3508 0.2967 7.687 21.931
424.39 271.1 3.0 0.807 0.7236 0.6605 10.332 18.149
424.38 379.9 3.0 0.903 0.8315 0.7737 7.919 14.318
344.72 61.2 5.0 0.272 0.2257 0.2308 17.023 15.131
344.70 145.4 5.0 0.357 0.3480 0.3621 2.519 1.428
344.96 345.2 5.0 0.511 0.4615 0.4467 9.692 12.583
374.72 76.1 5.0 0.266 0.2251 0.2550 15.373 4.118
374.72 169.1 5.0 0.402 0.3508 0.4061 12.741 1.008
374.72 342.5 5.0 0.484 0.4724 0.5242 2.403 8.313
424.43 46.4 5.0 0.141 0.1311 0.1586 7.019 12.505
424.42 105.3 5.0 0.239 0.2493 0.3233 4.323 35.271

Average 6.854 15.412

Note: mCaCl2 denotes the salinity of the CaCl2 brine in molality scale.

5.3 Comparison with Other Geochemical Solvers

This section compares the accuracy of the calculations in this work with other geochemical
solvers. The comparison is performed for two quantities: the solubility of carbon dioxide in
NaCl brines, and the pH in CO2 saturated NaCl brines. The objective is to verify how well these
solvers reproduce the recent solubility experiments of Hou et al. (2013b) and pH measurements
of Peng et al. (2013) at high temperatures, pressures and salinities. Thus, this analysis should
determine under which conditions the assessed solvers provide reliable estimates.

The geochemical package PHREEQC (Parkhurst and Appelo, 2013) was used for both solubil-
ity and pH comparisons. The well-known solubility model of Duan and Sun (2003) was used
only for the solubility comparison. In a recent update of PHREEQC, several new modelling
features were implemented, where Pitzer aqueous models are used for high-salinity brines and
the Peng-Robinson equation of state is used for calculating the fugacity coefficients of gases at
high pressures, allowing for a more accurate gas solubility calculation. The thermodynamic
model developed by Duan and Sun (2003), based on the specific interaction model of Pitzer
with a parametrisation of a large amount of experimental data in the literature, allows the cal-
culation of CO2 solubility in NaCl brines for temperatures 273–533 K, pressures 0–2000 bar and
salinities 0–4.3 molal.

Table 5.8 presents a comparison of the calculated solubility results with the experimental data
of Hou et al. (2013b). The results produced by this work used the activity coefficient model of
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Drummond (1981) for CO2(aq) and the fugacity coefficient model of Spycher et al. (2003) for
CO2(g) and H2O(g).

It can be observed from Table 5.8 that PHREEQC (Parkhurst and Appelo, 2013) fails to esti-
mate the solubility of CO2 at higher salinities accurately. For 4.0 molal NaCl brines, solubility
results obtained using PHREEQC have percentage deviations of 18% in average, taking all
calculations at that salinity. At extreme conditions of temperature, pressure and salinity, a per-
centage deviation error of 26% was achieved with the same solver.

The solubility model of Duan and Sun (2003) performed better, even at high temperatures, pres-
sures and salinities. However, the use of a proper selection of activity and fugacity coefficient
models in this work yielded the most accurate solubility results for most of the temperature,
pressure and salinity conditions, as seen in Table 5.8.

Table 5.9 presents a comparison of the calculated pH in CO2 saturated NaCl brines using our
solver with PHREEQC (Parkhurst and Appelo, 2013). The calculations are compared against
the experimental measurements of Peng et al. (2013). So far, all calculations in this work have
adopted the HKF (Helgeson et al., 1981) activity coefficient model for solvent water and ionic
species. Although it produces accurate carbon dioxide solubility results even at high saline
NaCl brines, this model turns out not to be sufficiently accurate for pH calculations. Therefore,
the Pitzer’s based HMW activity coefficient model (Harvie et al., 1984) was used for the pH
calculations, which is the same model adopted for the calculations using PHREEQC.

The only difference on the calculations in Table 5.9 is the adopted thermodynamic database.
Here the SUPCRT (Johnson et al., 1992) database is used, while PHREEQC uses its own
database. Thus, we see that the use of the SUPCRT database results in more accurate pH
calculations than when the PHREEQC database is used. The only exception is at low temper-
atures and high pressures, where the use of the SUPCRT database can result in errors in the
order of 9%.

5.4 Sequential Chemical Equilibrium Calculations

Efficient sequential equilibrium calculations are important for many critical applications, such
as reactive transport modelling. This section shows the performance results of the Gibbs energy
minimisation algorithm presented in Chapter 3. It also demonstrates the importance of the
watchdog strategy and scaling of the variables on the efficiency of the equilibrium calculations.

Consider the multiphase system in Table 5.10. This system is of interest for modelling wa-
ter-gas-rock interactions in CO2 storage in deep saline aquifers, where the reservoir is mainly
composed of carbonate minerals. The formation rock is modelled by the mineral phases calcite,
magnesite and dolomite. To model a possible precipitation of sodium chloride when the aque-
ous phase becomes salt saturated, the mineral phase halite is also included in the formulation.

To assess the efficiency of the equilibrium calculations in a carbon injection simulation, a chem-
ical state initially containing only an aqueous phase and mineral phases is considered. Then,
CO2 is gradually added to the system until a specified amount is reached, which should be
high enough to saturate the aqueous phase and produce a gaseous phase. This example is also
useful to assess the robustness of the algorithm when handling phase assemblage transitions.
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Table 5.8: Comparison of our calculations of carbon dioxide solubility in NaCl brine with the calculations
using PHREEQC (Parkhurst and Appelo, 2013) and the solubility model of Duan and Sun (2003) as well
as with the experimental solubility data of Hou et al. (2013b).

T P mNaCl mexp mPHC mDuan mthis ErrorPHC ErrorDuan Errorthis
(K) (bar) (molal) (molal) (molal) (molal) (molal) (%) (%) (%)

323.15

27.82

2.5

0.2744 0.2716 0.3016 0.2819 1.038 9.893 2.709
57.39 0.4900 0.4738 0.5233 0.4951 3.303 6.800 1.038
87.3 0.6435 0.5986 0.6645 0.6274 6.977 3.264 2.507

117.73 0.6958 0.6581 0.7229 0.6799 5.419 3.894 2.289
150.2 0.7271 0.6948 0.7518 0.7096 4.445 3.394 2.409

182.11 0.7511 0.7237 0.7788 0.7325 3.643 3.694 2.473

Average 4.137 5.156 2.237

373.15

26.13

2.5

0.1413 0.1424 0.1682 0.1565 0.743 18.996 10.695
57.42 0.2969 0.2860 0.3324 0.3132 3.665 11.964 5.501
87.89 0.4133 0.3952 0.4558 0.4312 4.370 10.294 4.352

118.67 0.5035 0.4814 0.5504 0.5210 4.398 9.305 3.476
149.21 0.5788 0.5475 0.6198 0.5864 5.410 7.081 1.311
180.13 0.6395 0.6005 0.6696 0.6360 6.101 4.703 0.555

Average 4.115 10.391 4.315

423.15

26.43

2.5

0.1073 0.1012 0.1241 0.1288 5.718 15.617 19.962
57.66 0.2453 0.2267 0.2749 0.2576 7.588 12.060 4.991
86.00 0.3575 0.3227 0.3904 0.3663 9.744 9.191 2.438

116.04 0.4612 0.4135 0.4947 0.4640 10.340 7.267 0.615
148.81 0.5686 0.4991 0.5909 0.5534 12.226 3.919 2.685
177.94 0.6384 0.5652 0.6635 0.6199 11.464 3.934 2.892

Average 9.513 8.665 5.597

323.15

29.83

4.0

0.2246 0.2023 0.2506 0.2289 9.930 11.575 1.932
59.54 0.3851 0.3413 0.4183 0.3882 11.374 8.620 0.812
89.53 0.4877 0.4266 0.5240 0.4850 12.532 7.438 0.549

120.17 0.5358 0.4674 0.5658 0.5224 12.762 5.603 2.505
149.59 0.5590 0.4908 0.5872 0.5428 12.198 5.047 2.892
179.54 0.5748 0.5101 0.6084 0.5594 11.264 5.836 2.684

Average 11.677 7.353 1.896

373.15

29.51

4.0

0.1397 0.1121 0.1523 0.1422 19.743 9.038 1.827
60.68 0.2487 0.2101 0.2792 0.2653 15.512 12.275 6.693
89.16 0.3463 0.2803 0.3692 0.3528 19.058 6.614 1.891

120.03 0.4206 0.3407 0.4442 0.4249 18.993 5.615 1.019
149.24 0.4798 0.3853 0.4973 0.4752 19.698 3.644 0.969
181.62 0.5233 0.4243 0.5397 0.5170 18.923 3.128 1.204

Average 18.655 6.719 2.267

423.15

30.93

4.0

0.1085 0.0860 0.1199 0.1236 21.587 10.556 13.937
58.16 0.2089 0.1606 0.2232 0.2155 23.135 6.826 3.128
88.57 0.3104 0.2313 0.3210 0.3109 25.471 3.432 0.179

119.22 0.3964 0.2955 0.4044 0.3920 25.447 2.028 1.109
149.79 0.4725 0.3510 0.4753 0.4600 25.710 0.598 2.645
180.79 0.5448 0.4035 0.5367 0.5179 26.583 1.493 4.936

Average 24.656 4.155 4.322

Note: mNaCl denotes the salinity of the NaCl brine in molality scale. mPHC and mDuan denote the calculated molality
of CO2 using PHREEQC (Parkhurst and Appelo, 2013) and the solubility model of Duan and Sun (2003) respectively.
mthis denotes the calculated molality of CO2 using our solver with the activity coefficient model of Drummond (1981)
for CO2(aq) and the fugacity coefficient model of Spycher et al. (2003) for CO2(g) and H2O(g). ErrorPHC, ErrorDuan and
Errorthis denote respectively the percentage deviation of mPHC, mDuan and mthis from mexp.
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Table 5.9: Comparison of our calculations of pH in CO2 saturated NaCl brine (1 molal) with the calcula-
tions using PHREEQC (Parkhurst and Appelo, 2013) as well as with the experimental pH measurements
of Peng et al. (2013).

T P pHexp pHPHC pHthis ErrorPHC Errorthis
(K) (MPa) (%) (%)

308.2 0.37 3.58 3.567 3.574 0.36 0.17
308.3 0.60 3.52 3.459 3.472 1.73 1.36
308.0 0.99 3.35 3.353 3.367 0.09 0.51
308.3 2.44 3.06 3.160 3.190 3.27 4.26
308.2 6.15 2.81 2.960 3.039 5.34 8.15
308.3 9.27 2.76 2.870 3.003 3.99 8.81
308.3 15.38 2.72 2.770 2.975 1.84 9.39

Average 2.37 4.67

323.0 0.37 3.73 3.630 3.631 2.68 2.65
323.0 0.61 3.60 3.524 3.525 2.11 2.08
323.2 0.99 3.46 3.420 3.425 1.16 1.02
323.3 2.43 3.21 3.224 3.246 0.44 1.11
323.3 6.23 3.01 3.023 3.083 0.43 2.44
323.3 9.26 2.97 2.940 3.034 1.01 2.15
323.0 15.36 2.92 2.830 2.994 3.08 2.54

Average 1.56 2.00

343.2 0.37 3.83 3.730 3.719 2.61 2.90
343.0 0.61 3.68 3.620 3.612 1.63 1.85
343.0 1.00 3.55 3.512 3.508 1.07 1.19
343.0 2.43 3.32 3.317 3.328 0.09 0.23
343.1 6.23 3.15 3.115 3.157 1.11 0.23
343.1 9.26 3.10 3.030 3.099 2.26 0.05
343.0 15.39 3.04 2.930 3.042 3.62 0.06

Average 1.77 0.93

363.0 0.60 3.77 3.721 3.705 1.3 1.73
363.0 1.00 3.64 3.613 3.597 0.74 1.19
363.0 2.44 3.39 3.420 3.413 0.88 0.69
363.0 6.24 3.22 3.212 3.237 0.25 0.52
363.0 9.28 3.17 3.130 3.172 1.26 0.07
363.0 15.30 3.12 3.020 3.104 3.21 0.50

Average 1.27 0.78

373.0 0.60 3.80 3.780 3.748 0.53 1.36
373.0 1.00 3.66 3.667 3.640 0.19 0.55
372.9 2.44 3.42 3.470 3.455 1.46 1.03
373.0 6.25 3.26 3.263 3.276 0.09 0.50
373.2 9.28 3.20 3.180 3.210 0.63 0.33
373.2 15.30 3.13 3.070 3.138 1.92 0.25

Average 0.80 0.67

Note: pHPHC denotes the calculated pH using PHREEQC (Parkhurst and Appelo, 2013). pHthis denotes the calculated
pH using this work’s solver with the Pitzer activity coefficient model for solvent water, ionic species and the neutral
species CO2(aq), and the fugacity coefficient model of Spycher et al. (2003) for CO2(g) and H2O(g). ErrorPHC and
Errorthis denote respectively the percentage deviation of pHPHC and pHthis from pHexp.
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Table 5.10: Description of the chemical system H2O–
CO2–NaCl–CaCO3–MgCO3 with their phases and
respective chemical species.

Aqueous Phase Gaseous Phase
H2O(l) H2O(g)

H+ CO2(g)
OH− Mineral Phase #1

HCO−3 NaCl(s) (Halite)
CO2−

3 Mineral Phase #2
Na+ CaCO3(s) (Calcite)
Cl− Mineral Phase #3

Ca2+ MgCO3(s) (Magnesite)
Mg2+ Mineral Phase #4

MgCl+ CaMg(CO3)2(s) (Dolomite)
CaCl+

CO2(aq)
CaCO3(aq)
MgCO3(aq)
CaCl2(aq)

Table 5.11: The number of moles of each component
at both initial and final states.

Components Initial state [mol] Final state [mol]

H2O 55.508 55.508
CO2 0 2
NaCl 2 2

CaCO3 5 5
MgCO3 1 1

Table 5.12: Expressions for the molar amounts of the
chemical elements from the molar amounts of the
components.

Element Expression

H 2nH2O

O nH2O + 2nCO2 + 3nCaCO3 + 3nMgCO3

C nCO2 + nCaCO3 + nMgCO3

Na nNaCl

Cl nNaCl

Ca nCaCO3

Mg nMgCO3

The modelling of the previous problem is
now described. Let H2O, CO2, NaCl, CaCO3

and MgCO3 denote auxiliary components of
the chemical system in Table 5.10. Consider
their molar abundance at the initial and fi-
nal states as given in Table 5.11. Next, let
nc denote the vector of molar abundance of
the components. Define the following linear
path:

nc(t) := ni
c + t(nf

c − ni
c), (5.4)

where ni
c and nf

c are the given initial and
final molar abundance of the components;
and t ∈ [0, 1] is a scalar parameter. The in-
puts of our sequential equilibrium calcula-
tions are determined, therefore, by gradually
increasing the parameter t in order to model
the addition or removal of components from
the system. Note, however, that the molar
abundance of the components nc are auxil-
iary inputs for the chemical equilibrium cal-
culations. The natural inputs are the num-
ber of moles of the chemical elements, which
can be determined from the expressions in
Table 5.12.

Using the molar abundance of the compo-
nents in Table 5.11, the initial and final equi-
librium states of the system were calculated
as shown in Table 5.13. It can be seen that
the amount of dissolved carbon increased
from the initial to the final state, while the
aqueous solution became more acidic, with
initial and final pH as 9.2 and 4.8 respec-
tively. In addition, note that the zeroed num-
ber of moles of some species indicates that
the phases containing them are not present at
equilibrium. For example, from all assumed
mineral phases, only calcite and dolomite ex-
ist at given conditions of temperature, pres-
sure and molar amounts of the components.

The calculations assumed T = 60 ◦C and P = 150 bar, and a tolerance error of 10−8. In addition,
the activity coefficient model of Duan and Sun (2003) was used for the aqueous species CO2(aq)
because of the presence of ions Ca2+ and Mg2+ in the aqueous solution. The fugacity coefficient
model of Duan et al. (2006) was adopted for the gaseous species CO2(g).
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Table 5.13: Initial and final equilibrium states of the chemical system H2O–CO2–NaCl–CaCO3–MgCO3
at T = 60 °C and P = 150 bar.

Species Initial state [mol] Final state [mol]

Aqueous Phase
H2O(l) 55.507721 55.462962

H+ 7.051770 · 10−10 1.716270 · 10−5

OH− 2.791921 · 10−4 1.122305 · 10−8

HCO3
− 2.789948 · 10−4 0.087354

CO2(aq) 9.827989 · 10−8 0.741635
Na+ 1.765120 1.767785
Cl− 1.765011 1.759351

NaCl(aq) 0.234880 0.232215
Ca2+ 4.382456 · 10−4 0.034912
Mg2+ 1.783294 · 10−5 0.001406
CO3

2− 2.714616 · 10−4 3.501025 · 10−6

CaCl+ 7.716976 · 10−5 0.006016
MgCl+ 3.341396 · 10−6 2.571146 · 10−4

CaCO3(aq) 7.012652 · 10−6 6.919652 · 10−6

MgCO3(aq) 1.049437 · 10−7 1.035521 · 10−7

CaCl2(aq) 1.396495 · 10−5 0.001081
Gaseous Phase

H2O(g) 0.000000 0.001352
CO2(g) 0.000000 1.214680

Mineral Phase #1
Halite 0.000000 0.000000

Mineral Phase #2
Calcite 3.999485 3.959648

Mineral Phase #3
Magnesite 0.000000 0.000000

Mineral Phase #4
Dolomite 0.999979 0.998337

Figures 5.12 and 5.13 show the efficiency of the Gibbs energy minimisation algorithm with-
out and with the watchdog strategy. They show the required number of iterations to achieve
convergence for each of the 20 sequential equilibrium calculations. Observe that the watch-
dog strategy is capable of boosting the convergence speed significantly. For example, the first
calculation required 3.5 times fewer iterations when adopting this strategy.

Note that the first calculation requires more iterations than the others. This is because only
poor initial guesses for the molar abundance of the species and the Lagrange multipliers are
available. The second calculation still requires a few more iterations than the others, which is
justified by the fact that the initial state is relatively distant from the second, since the former
did not contain any CO2. Nevertheless, observe that the calculations achieve convergence in
1–3 iterations after the second calculation.

At about nCO2 = 0.8 mol, the gaseous phase emerges in the system and the number of iter-
ations increases slightly during the handling of this phase assemblage transition, as seen in
Figure 5.12. As shown in Figure 5.13, however, the number of iterations in this region is just
slightly affected when the watchdog strategy is used. This is an important efficiency demon-
stration of the method, since in multiphase reactive transport simulations the front of the flow
is constantly experiencing appearance and disappearance of phases.
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Figures 5.12 and 5.13 adopted the scaling procedure presented in Section 3.3.5. Figures 5.14
and 5.15, on the other hand, show the same calculations without such scaling. Figure 5.14
indicates that the trust-region minimisation algorithm alone is highly sensitive to scaling, as
discussed in Nocedal and Wright (1999), and its efficiency is severely compromised without it.
The watchdog strategy, however, is just slightly affected by the lack of scaling, with its main
inefficiency occurring near a phase boundary as shown in Figure 5.15. Therefore, we see that
scaling of the variables is important for efficient equilibrium calculations, either using or not
the watchdog strategy, since any small gain in efficiency can cause expressive performance
results in reactive transport simulations.

Figures 5.16 and 5.17 show the efficiency of the method when performing 100 sequential calcu-
lations instead of 20. Since these calculations used shorter subintervals, it can be said that the
difference between two of its consecutive solutions is smaller than the one when 20 sequential
calculations are performed. This is reflected by the decrease in the number of iterations in the
region [0.2, 0.8] when compared to the same region in Figures 5.12 and 5.13. Finally, increasing
the number of subintervals to 1000 yields an average number of iterations of 1.2 with the use
of the watchdog strategy.

Figure 5.18 demonstrate that the sequence of equilibrium calculations are still efficiently cal-
culated assuming simultaneous variations in temperature and pressure. The initial and final
temperatures and pressures used were 60–160 °C and 100–300 bar, resulting in a variation of
5 °C and 10 bar for every equilibrium calculation. Note that the number of iterations after the
gaseous phase is formed has increased by one. This is because this phase is more sensitive to
changes in temperature and pressure, and an extra iteration is necessary to correct the molar
abundance of the gaseous species.

These results demonstrate that the use of the watchdog technique is vital if this algorithm is to
be used for multiphase reactive transport modelling. By adopting this non-monotone strategy,
the calculations will potentially converge in only few iterations, even in regions near the front
flow. Moreover, the scaling technique used in the calculations is capable of further decreasing
the number of iterations necessary to solve the chemical equilibrium problems. As to the ac-
curacy of the calculations, the mass-balance residuals are either zero or in the range 10−25 to
10−19 for some elements. Thus, the accuracy of the method satisfies the relative threshold of
10−13 discussed in Kulik et al. (2013), which is necessary for avoiding accumulation of errors
in a reactive transport simulation over time.

In Figures 5.12–5.18, the additional effort in correcting the mass-balance of the stable phases
once an equilibrium calculation has finished was not represented. In these sequential calcu-
lations, only a single correction iteration was performed when unstable phases were encoun-
tered.

Finally, Figure 5.19 shows the pH of the aqueous solution and the molalities of the species
Ca2+ and Mg2+ as carbon dioxide is injected into the system. Observe that the aqueous phase
becomes acidic with the injection of CO2, and promotes further dissolution of the carbonate
minerals, as suggested by the increase in the concentrations of the ions Ca2+ and Mg2+. Also
note that once the gaseous phase emerges in the system, the solubility of CO2 in the aqueous
phase remains constant, and so does the pH and the concentrations of the ionic species.
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Figure 5.12: The performance of 20 sequential chemical equilibrium calculations given showing the num-
ber of iterations using the monotone trust-region algorithm.
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Figure 5.13: The performance of 20 sequential chemical equilibrium calculations showing the number of
iterations using the non-monotone watchdog trust-region algorithm.
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Figure 5.14: The performance of 20 sequential chemical equilibrium calculations showing the number of
iterations using the monotone trust-region algorithm without scaling.
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Figure 5.15: The performance of 20 sequential chemical equilibrium calculations showing the number of
iterations using the non-monotone watchdog trust-region algorithm without scaling.
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Figure 5.16: The performance of 100 sequential chemical equilibrium calculations showing the number
of iterations using the monotone trust-region algorithm.
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Figure 5.17: The performance of 100 sequential chemical equilibrium calculations showing the number
of iterations using the non-monotone watchdog trust-region algorithm.
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Figure 5.18: The performance of 20 sequential chemical equilibrium calculations showing the number of
iterations using the non-monotone watchdog trust-region algorithm assuming variable temperatures and
pressures.
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Figure 5.19: Calculated pH of the aqueous solution and the molalities of the ionic species Ca2+ and Mg2+

as the amount of CO2 increases in the system at T = 60 ◦C and P = 150 bar.
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5.5 Convergence Rates of the Interior-Point Method

It was argued in Chapter 3 that superlinear rates of convergence are essential if this algorithm
is to be incorporated in critical applications such as chemical kinetics and reactive transport
modelling. Because initial guesses in these applications are usually close to the solution, with
its proximity being mainly dependent on the used time step, it is of utmost importance that
an equilibrium algorithm converges at fast rates locally. In this section we present results that
permit us to analyse the convergence rates of the trust-region interior-point algorithm with and
without the watchdog strategy.

Figures 5.20–5.22 present the convergence plot of equilibrium calculations assuming the mul-
tiphase system of Table 5.10. The residual of a calculation is defined as the Euclidean norm
of the relaxed KKT function Fµ̂(w) given in equation (3.19). All calculations were performed
using poor initial guesses, so that the initial residual would be large. The watchdog thresh-
old µw = 10−6 was used instead of µw = 10−1 to create two distinct regions in the graphs
that show when the watchdog strategy is activated. The solid circles indicate the activation of
the watchdog strategy, and the empty circles indicate the maximum residual attained during
the non-monotone iterations. Note that all calculations succeeded under the watchdog mode,
without returning to the monotone trust-region strategy.

These calculations were performed with different equilibrium conditions. In Figure 5.20, for
example, the amount of CO2 in the system is not enough to produce a gaseous phase. In Figure
5.21, a gaseous phase is about to emerge, and so the calculation was performed near a phase
boundary. In Figure 5.22, the specified amount of CO2 was suficient to saturate the aqueous
phase and to form a gaseous phase.

These results show that the use of the watchdog strategy boosts the convergence rate near the
solution. This applies even in critical regions, such as those where a phase boundary exists. By
using the non-monotone watchdog strategy, our calculations could achieve quadratic rates of
convergence. These rates are superior to the linear ones obtained with the original monotone
trust-region interior-point method of Ulbrich et al. (2004) and Silva et al. (2008), which can be
explained by the poorly scaled minimisation problem and the lack of scaling invariance of this
trust-region algorithm.

The convergence rates αr of the calculations were computed using the formula:

αr := log(rk+1/rk)/ log(rk/rk−1), (5.5)

obtained by assuming that at the k-th iteration the following applies:

rk+1 = Crαr
k , (5.6)

where rk denotes the residual at the k-th iteration, and C is a positive constant. The values of
the convergence rates displayed in Figures 5.20–5.22 are average of the last three iterations.

5.6 Sensitivity of the Interior-Point Method

The description of the interior-point method in Chapter 3 did not contain any discussion con-
cerning how sensitive its solutions are with respect to the final perturbation parameter µ̂. Recall
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Figure 5.20: Residual of the equilibrium calculation at nCO2 = 0.1 mol with and without the watchdog
strategy. At this condition the gaseous phase is not present at equilibrium. The activation of the watchdog
strategy is indicated by the solid circle, and the maximum residual attained during the non-monotone
iterations is indicated by the empty circle.
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Figure 5.21: Residual of the equilibrium calculation at nCO2 = 0.793 mol with and without the watchdog
strategy. At this condition the gaseous phase is about to appear at equilibrium.



CHAPTER 5. APPLICATIONS: CHEMICAL EQUILIBRIUM 102

10−10

10−08

10−06

10−04

10−02

10+00

0 5 10 15 20 25 30 35 40 46

R
es

id
ua

l

Iteration

Trust-Region Strategy Watchdog Strategy

Trust-Region Algorithm
Watchdog-Trust-Region Algorithm

Rate: 2.01

Rate: 1.01

Figure 5.22: Residual of the equilibrium calculation at nCO2 = 1.0 mol with and without the watchdog
strategy. At this condition the gaseous phase is present at equilibrium.

that this parameter is used to relax the strict complementary conditions (3.15) of the KKT equa-
tions. Therefore, this relaxation is expected to perturb the solution as well, which we shall see
in this section at which extent this happens. For this test the watchdog strategy is used with a
small constant perturbation parameter µ̇ until convergence.

Table 5.14: Description of the chemical system H2O–
CO2–NaCl with their phases and respective chemi-
cal species.

Aqueous Phase Gaseous Phase
H2O(l) CO2(g)

H+ H2O(g)
OH−

Na+

Cl−

HCO−3
CO2(aq)

Consider the multiphase system of Ta-
ble 5.14. Similarly as before, the molar
amounts of components H2O and NaCl will
be fixed and CO2 will be gradually added
to the system. Eventually a gaseous phase
will form, but before this happens we want
to investigate the effect of parameter µ̇ on
the number of moles of the unstable gaseous
species. We should expect that these are tiny
values in comparison with the number of
moles in other phases.

Figure 5.23 shows the effect of different val-
ues of µ̇ on the number of moles of the
gaseous species CO2(g). The figure shows that the smaller the perturbation parameter µ̇ is,
the more accurate is the numerical representation of the inexistent gaseous species. For exam-
ple, using µ̇ = 10−15 results in the inexistent CO2(g) having number of moles in the order of
10−13. Compare this with the case µ̇ = 10−9, where the number of moles of CO2(g) in its inex-
istent region is about to 10−7. Moreover, observe that the smaller the perturbation parameter
µ̇ is, the sharper is the phase assemblage transition curve.
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Figure 5.23: Effect of the perturbation parameter µ̇ on the number of moles of the gaseous species CO2(g),
plotted in log-scale.



CHAPTER 6
APPLICATIONS: CHEMICAL

KINETICS

In this chapter our chemical kinetics algorithm is applied to problems pertinent to carbon diox-
ide injection into saline aquifers.

The injection of carbon dioxide into saline aquifers perturbs the reservoir and initiates several
physical and chemical phenomena due to the interactions of the injected gas with the resident
fluid and the reservoir rock. The complexity of its computational modelling can be high when
both transport processes (e.g., advection, diffusion, dispersion) and chemical processes (e.g.,
mineral dissolution/precipitation, gas dissolution/exsolution, etc.) are considered (see Pruess
et al., 2003; Kumar et al., 2004; Ennis-King and Paterson, 2005, 2007; Xu et al., 2003, 2006; Obi
and Blunt, 2006; Audigane et al., 2007).

Nevertheless, in order to apply the methodology presented in Chapter 4, all transport processes
in this study are neglected. As mentioned before, it is assumed that the kinetic process occurs
in a well-mixed batch reactor, although the method is designed for eventual incorporation in a
reactive transport simulator.

6.1 Kinetic Modelling of CO2 Injection into Carbonate Saline Aquifers

Consider a subsurface fluid in equilibrium with a carbonate rock. Assume that supercritical
carbon dioxide is injected into this system with an amount large enough to saturate the fluid
and produce a supercritical CO2-rich phase. In order to model and analyse the water-gas-rock
interactions produced by the gas injection, both chemical kinetics and chemical equilibrium
methods presented earlier are used. The entire modelling can be divided into three stages:

Stage 1 calculation of the equilibrium state of the system comprised of the subsurface fluid
and the rock-forming minerals;

Stage 2 calculation of the equilibrium state of the system comprised of the injected supercriti-
cal carbon dioxide and the resultant aqueous solution of the previous stage;
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Stage 3 calculation of the transient state of the entire system comprised of the rock-forming
minerals, the subsurface fluid, and the emerged CO2-rich phase.

The first stage ensures that before carbon dioxide is injected, both fluid and rock are in thermo-
dynamic equilibrium. In other words, it models the state of long residency time of the fluid in
contact with the reservoir rock, as it would happen in a saline aquifer.

The second stage assumes that the injected carbon dioxide achieves equilibrium with the fluid
considerably faster than the rock-forming minerals. This is a reasonable assumption since the
speed of mineral dissolution is in general slower than the one for gas dissolution. Hence, we
neglect any amount of mineral that is dissolved between the carbon dioxide injection and its
equilibrium with the brine.

At the third stage, the rock-forming minerals are in disequilibrium with the rest of the system.
By using the chemical kinetics methodology presented earlier, we can calculate the transient
state of the entire system until it achieves equilibrium.

An important assumption in the previous modelling is that pressure is kept constant at all
stages. In other words, we assume an expandable system that can accommodate the injected
gas and permit an isobaric process. Support for a constant volume system is a planned work,
which will allow the modelling of the pressure rise with gas injection.

6.1.1 Qatari Brine and Rock Composition

A brine composition representative of a Qatari subsurface fluid is considered. Table 6.2 presents
the analysis of the subsurface fluid of two Qatari reservoirs. There are three samples for each
reservoir, from which we can observe large differences in composition, even within the same
reservoir. This lack of homogeneity motivated the choice of samples 2 and 3 of Reservoir B as
the composition of the brines used in this study, which are denoted by Brine 1 and 2 respec-
tively. Note that Brine 1 is the lower limit case in terms of concentrations of cations and anions,
while Brine 2 is the upper limit case (about five times more concentrated than Brine 1). The
presence of the components iron and barium is neglected in the calculations.

Table 6.1: The composition of a rock representative
of a Qatari reservoir.

Mineral Rock 1 Rock 2

Calcite 93.3% 97.2%
Dolomite 5.2% 0.0%
Quartz 1.5% 2.8%

Note: Composition in units of volume percent.

The mineral composition of the rock chosen
in this work is also representative of a Qatari
reservoir rock. Table 6.1 shows the volume
percent of the minerals of two samples. The
volume composition was obtained by X-ray
diffraction analysis.

Given the composition of the subsurface
fluid and rock, it is now necessary to define
the multiphase chemical system to be used
in the computational modelling. Using the
database of Johnson et al. (1992), SUPCRT, all possible aqueous species that could be present
in the subsurface fluid are determined. These are listed in Table 6.3, which also shows the
assumed gaseous and mineral species. The pure mineral phases composed of magnesite and
halite are considered to capture eventual secondary mineral precipitation.
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Table 6.2: The subsurface fluid composition of two Qatari reservoirs.

Reservoir A Reservoir B

Composition Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3
Brine 1 Brine 2

Cations
Na+ 8320 9930 14177 14204 7180 33838
Ca2+ 1483 1200 3240 5109 1500 10586
Mg2+ 316 425 624 1128 345 1851
K+ 1574 365 484 800 300 460
Sr2+ 40 63 98 159 48 299
Fe2+, Fe3+ < 1 — 0.4 2 — 3
Ba2+ — < 0.05 — — 0.23 —

Anions
Cl− 16632 17880 28795 33969 13660 76113
HCO3

− 315 475 277 258 390 170
SO4

2− 1340 1230 1194 1147 1520 1015
CO3

2− 0 0 0 0 32 0
OH− 0 0 0 0 0 0

Note: Composition in units of mg/l, where l is volume of solvent in litres. The two samples labelled Brine 1 and Brine
2 are used for quantitative analysis.

Table 6.3: The chemical system for the representation of the subsurface fluid and rock of a Qatari reservoir.

Aqueous Phase
Ca(HCO3)

+ CO(aq) HCO3
− KSO4

− O2(aq) S5O6
2−

Ca(HSiO3)
+ CO2(aq) HO2

− Mg(HCO3)
+ OH− SiO2(aq)

Ca2+ CO3
2− HS− Mg(HSiO3)

+ S2
2− SO2(aq)

CaCl+ H+ HS2O3
− Mg2+ S2O3

2− SO3
2−

CaCl2(aq) H2(aq) HS2O4
− MgCl+ S2O4

2− SO4
2−

CaCO3(aq) H2O(l) HSiO3
− MgCO3(aq) S2O5

2− Sr(HCO3)
+

CaOH+ H2O2(aq) HSO3
− MgOH+ S2O6

2− Sr2+

CaSO4(aq) H2S(aq) HSO4
− MgSO4(aq) S2O8

2− SrCl+

Cl− H2S2O3(aq) HSO5
− Na+ S3

2− SrCO3(aq)
ClO− H2S2O4(aq) K+ NaCl(aq) S3O6

2− SrOH+

ClO4
− HClO2(aq) KOH(aq) NaSO4

− S5
2−

ClO3
− HClO(aq) KHSO4(aq) NaOH(aq) S4O6

2−

ClO2
− HCl(aq) KCl(aq) NaHSiO3(aq) S4

2−

Gaseous Phase
H2O(g) CO2(g)

Mineral Phases
Calcite Dolomite Quartz Magnesite Halite
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The chemical system in Table 6.3 contains several aqueous species. Table 6.4 shows the result
of the equilibrium calculation at Stage 1, which corresponds to the equilibrium state of the
subsurface fluid (Brine 1) and carbonate rock (Rock 1) at 60 ◦C and 150 bar. Note that several
aqueous species are present only at very low concentrations. As a result, one can argue that
many of these species could be potentially removed without compromising the accuracy of the
calculation. This would also dramatically improve efficiency of the calculations, which is spe-
cially important for reactive flow simulations due to the large number of chemical equilibrium
and kinetics calculations.

However, this must be done very carefully. For example, a species that is present at low con-
centrations initially can later increase considerably during the kinetics process. In this case,
the calculation of the evolution of the simplified system could be inaccurate or even become
unstable. Therefore, the full chemical system described in Table 6.3 was used in this work.

After determining the preliminary equilibrium states in Stage 1 and 2, it is then time to calculate
the desired transient state of the multiphase system in Stage 3. As pointed out before, at the end
of Stage 2, the rock-forming minerals are in disequilibrium with the CO2 saturated subsurface
fluid, which leads to a kinetic process of mineral dissolution/precipitation. In what follows, we
will show the kinetic changes that occur in the chemical system until it achieves equilibrium.

The calculations assumed a subsurface fluid with a solvent mass of 1 kg and composition given
in Table 6.2; a subsurface rock sample of 500 cm3 with porosity 0.30, and composition given in
Table 6.1; and 440 g of supercritical CO2. The mineral rate parameters compiled by Palandri
and Kharaka (2004) were used in the calculations. The data they present was compiled from
several sources, and it has been used extensively in the literature for modelling carbon dioxide
storage in saline aquifers, and the quantification of its trapping by mineral mechanisms. In
addition, it is also adopted by the TOUGHREACT simulator (see Gunter et al., 2004; Xu et al.,
2006, 2007; André et al., 2007; Gaus et al., 2008).

Table 6.5: The specific surface area of the rock min-
erals.

Mineral SSA [m2/g]

Calcite 1.5
Dolomite 1.0
Quartz 0.5
Magnesite 0.8

Table 6.5 shows the specific surface areas of
the minerals controlled by kinetics at Stage 3
of the modelling problem. The choice of
the specific surface area of calcite was mo-
tivated from the discussion in Schultz et al.
(2013) and the value used in Garcia et al.
(2011) for modelling calcite dissolution dur-
ing geological CO2 sequestration. The spe-
cific surface area of quartz was chosen based
on the range of values determined by Leamn-
son et al. (1969) with the Brunauer-Emmet-Teller (BET) gas adsorption method. For the other
carbonate minerals, the choice of specific surface area was an intermediate value between the
ones chosen for calcite and quartz.

6.1.2 Results

Figure 6.1 shows the transient state of mineral calcite in Rocks 1 and 2 reacting with Brines 1
and 2 for one month. Observe that Rock 1 achieves equilibrium with the subsurface fluid and
the CO2-rich phase in a few minutes, while Rock 2 requires just a few seconds. It takes longer
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Table 6.4: The chemical state of the system at the end of Stage 1, assuming Brine 1 and Rock 1.

Species Amount [mol] Activity Activity Coefficient Concentration*

Aqueous Phase
H2O(l) 5.5510 · 10+1 9.8751 · 10−1 9.8751 · 10−1 9.8656 · 10−1

Cl− 3.7261 · 10−1 2.5195 · 10−1 6.7618 · 10−1 3.7260 · 10−1

Na+ 2.9887 · 10−1 2.0064 · 10−1 6.7135 · 10−1 2.9886 · 10−1

Ca2+ 2.2505 · 10−2 4.2696 · 10−3 1.8972 · 10−1 2.2505 · 10−2

Mg2+ 2.1171 · 10−2 4.0145 · 10−3 1.8962 · 10−1 2.1171 · 10−2

NaCl(aq) 9.9797 · 10−3 1.0923 · 10−2 1.0946 · 10+0 9.9795 · 10−3

SO4
2− 9.2728 · 10−3 1.8152 · 10−3 1.9576 · 10−1 9.2726 · 10−3

K+ 7.5342 · 10−3 5.0553 · 10−3 6.7099 · 10−1 7.5340 · 10−3

NaSO4
− 3.4605 · 10−3 2.3352 · 10−3 6.7485 · 10−1 3.4604 · 10−3

HCO3
− 2.8933 · 10−3 1.9512 · 10−3 6.7441 · 10−1 2.8932 · 10−3

MgSO4(aq) 1.5802 · 10−3 1.7295 · 10−3 1.0946 · 10+0 1.5801 · 10−3

MgCl+ 1.3062 · 10−3 9.0492 · 10−4 6.9282 · 10−1 1.3062 · 10−3

CaSO4(aq) 1.2585 · 10−3 1.3774 · 10−3 1.0946 · 10+0 1.2584 · 10−3

CaCl+ 1.2583 · 10−3 8.4957 · 10−4 6.7521 · 10−1 1.2582 · 10−3

CO2(aq) 9.9510 · 10−4 1.0843 · 10−3 1.0897 · 10+0 9.9508 · 10−4

Sr2+ 5.0368 · 10−4 9.5775 · 10−5 1.9016 · 10−1 5.0367 · 10−4

SiO2(aq) 3.1843 · 10−4 3.4853 · 10−4 1.0946 · 10+0 3.1842 · 10−4

Ca(HCO3)
+ 1.7564 · 10−4 1.1786 · 10−4 6.7107 · 10−1 1.7563 · 10−4

Mg(HCO3)
+ 1.6373 · 10−4 1.1128 · 10−4 6.7966 · 10−1 1.6372 · 10−4

KSO4
− 1.3125 · 10−4 8.9220 · 10−5 6.7977 · 10−1 1.3125 · 10−4

HS− 6.7359 · 10−5 4.5523 · 10−5 6.7585 · 10−1 6.7357 · 10−5

H2S(aq) 5.7890 · 10−5 6.3362 · 10−5 1.0946 · 10+0 5.7888 · 10−5

CaCl2(aq) 5.3989 · 10−5 5.9093 · 10−5 1.0946 · 10+0 5.3988 · 10−5

SrCl+ 3.1453 · 10−5 2.1146 · 10−5 6.7232 · 10−1 3.1452 · 10−5

Sr(HCO3)
+ 1.3031 · 10−5 8.8600 · 10−6 6.7993 · 10−1 1.3031 · 10−5

CaCO3(aq) 9.0122 · 10−6 9.8641 · 10−6 1.0946 · 10+0 9.0120 · 10−6

Ca(CO3)(aq) 8.9358 · 10−6 9.7805 · 10−6 1.0946 · 10+0 8.9356 · 10−6

KCl(aq) 7.9128 · 10−6 8.6607 · 10−6 1.0946 · 10+0 7.9126 · 10−6

NaHSiO3(aq) 3.5817 · 10−6 3.9202 · 10−6 1.0946 · 10+0 3.5816 · 10−6

MgCO3(aq) 2.8104 · 10−6 3.0761 · 10−6 1.0946 · 10+0 2.8103 · 10−6

Mg(CO3)(aq) 2.7854 · 10−6 3.0487 · 10−6 1.0946 · 10+0 2.7853 · 10−6

CO3
2− 2.5987 · 10−6 5.0597 · 10−7 1.9471 · 10−1 2.5986 · 10−6

HSiO3
− 1.0065 · 10−6 6.8335 · 10−7 6.7896 · 10−1 1.0065 · 10−6

MgOH+ 5.2361 · 10−7 3.6276 · 10−7 6.9282 · 10−1 5.2359 · 10−7

H+ 4.9279 · 10−7 3.3418 · 10−7 6.7816 · 10−1 4.9277 · 10−7

OH− 4.4893 · 10−7 3.0813 · 10−7 6.8638 · 10−1 4.4892 · 10−7

HSO4
− 2.2339 · 10−7 1.5076 · 10−7 6.7489 · 10−1 2.2338 · 10−7

SrCO3(aq) 7.7890 · 10−8 8.5252 · 10−8 1.0946 · 10+0 7.7888 · 10−8

Sr(CO3)(aq) 7.7212 · 10−8 8.4511 · 10−8 1.0946 · 10+0 7.7211 · 10−8

Mg(HSiO3)
+ 7.6408 · 10−8 5.3287 · 10−8 6.9743 · 10−1 7.6406 · 10−8

CaOH+ 6.9268 · 10−8 4.6688 · 10−8 6.7404 · 10−1 6.9266 · 10−8

Ca(HSiO3)
+ 5.6223 · 10−8 3.8173 · 10−8 6.7897 · 10−1 5.6222 · 10−8

NaOH(aq) 3.5695 · 10−8 3.9069 · 10−8 1.0946 · 10+0 3.5694 · 10−8

HCl(aq) 1.3607 · 10−8 1.4893 · 10−8 1.0946 · 10+0 1.3606 · 10−8

S2O3
2− 5.3945 · 10−9 1.0681 · 10−9 1.9801 · 10−1 5.3944 · 10−9

KOH(aq) 6.9884 · 10−10 7.6490 · 10−10 1.0946 · 10+0 6.9883 · 10−10

SrOH+ 6.3884 · 10−10 4.2888 · 10−10 6.7135 · 10−1 6.3882 · 10−10

H2(aq) 5.2701 · 10−10 5.7682 · 10−10 1.0946 · 10+0 5.2700 · 10−10

S2
2− 3.2717 · 10−11 6.4255 · 10−12 1.9640 · 10−1 3.2716 · 10−11

HSO3
− 2.8853 · 10−12 1.9577 · 10−12 6.7850 · 10−1 2.8853 · 10−12

S3
2− 1.4243 · 10−12 2.8191 · 10−13 1.9793 · 10−1 1.4243 · 10−12

SO3
2− 1.2781 · 10−12 2.4924 · 10−13 1.9502 · 10−1 1.2781 · 10−12
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Table 6.4: Continued from previous page

Species Amount [mol] Activity Activity Coefficient Concentration*

KHSO4(aq) 6.2171 · 10−13 6.8047 · 10−13 1.0946 · 10+0 6.2169 · 10−13

HS2O3
− 4.3823 · 10−14 2.9653 · 10−14 6.7665 · 10−1 4.3822 · 10−14

S4
2− 3.9098 · 10−14 7.8247 · 10−15 2.0013 · 10−1 3.9098 · 10−14

CO(aq) 1.0235 · 10−14 1.1203 · 10−14 1.0946 · 10+0 1.0235 · 10−14

S5
2− 6.7962 · 10−16 1.3800 · 10−16 2.0307 · 10−1 6.7960 · 10−16

SO2(aq) 9.6133 · 10−17 1.0522 · 10−16 1.0946 · 10+0 9.6131 · 10−17

H2S2O3(aq) 6.5028 · 10−20 7.1174 · 10−20 1.0946 · 10+0 6.5026 · 10−20

S4O6
2− 4.0292 · 10−24 8.8564 · 10−25 2.1981 · 10−1 4.0291 · 10−24

S2O4
2− 1.9482 · 10−27 3.8854 · 10−28 1.9944 · 10−1 1.9481 · 10−27

S2O5
2− 2.5317 · 10−28 5.0690 · 10−29 2.0022 · 10−1 2.5317 · 10−28

S2O6
2− 1.8348 · 10−31 3.7024 · 10−32 2.0179 · 10−1 1.8348 · 10−31

HS2O4
− 7.8631 · 10−32 5.3567 · 10−32 6.8126 · 10−1 7.8629 · 10−32

S3O6
2− 3.5191 · 10−35 7.1389 · 10−36 2.0287 · 10−1 3.5190 · 10−35

H2S2O4(aq) 7.5244 · 10−38 8.2356 · 10−38 1.0946 · 10+0 7.5242 · 10−38

S5O6
2− 5.7121 · 10−40 1.1754 · 10−40 2.0578 · 10−1 5.7120 · 10−40

HClO(aq) 3.3927 · 10−46 3.7134 · 10−46 1.0946 · 10+0 3.3926 · 10−46

ClO− 8.5263 · 10−47 5.7696 · 10−47 6.7670 · 10−1 8.5261 · 10−47

H2O2(aq) 2.2185 · 10−47 2.4282 · 10−47 1.0946 · 10+0 2.2184 · 10−47

HO2
− 8.4585 · 10−52 5.7410 · 10−52 6.7875 · 10−1 8.4583 · 10−52

HSO5
− 2.9975 · 10−56 2.1271 · 10−56 7.0965 · 10−1 2.9974 · 10−56

O2(aq) 2.4063 · 10−64 2.6338 · 10−64 1.0946 · 10+0 2.4063 · 10−64

S2O8
2− 3.3290 · 10−69 7.2295 · 10−70 2.1717 · 10−1 3.3289 · 10−69

ClO2
− 9.2042 · 10−86 6.2089 · 10−86 6.7459 · 10−1 9.2040 · 10−86

HClO2(aq) 3.4061 · 10−90 3.7280 · 10−90 1.0946 · 10+0 3.4060 · 10−90

ClO3
− 2.5781 · 10−112 1.7630 · 10−112 6.8384 · 10−1 2.5780 · 10−112

ClO4
− 6.3981 · 10−143 4.3996 · 10−143 6.8766 · 10−1 6.3979 · 10−143

Gaseous Phase
H2O(g) 0.0000 · 10+0 0.0000 · 10+0 1.0000 · 10+0 0.0000 · 10+0

CO2(g) 0.0000 · 10+0 0.0000 · 10+0 1.0000 · 10+0 0.0000 · 10+0

Mineral Phases
Calcite 8.8636 · 10+0 1.0000 · 10+0 1.0000 · 10+0 1.0000 · 10+0

Dolomite 2.7262 · 10−1 1.0000 · 10+0 1.0000 · 10+0 1.0000 · 10+0

Quartz 2.3108 · 10−1 1.0000 · 10+0 1.0000 · 10+0 1.0000 · 10+0

Halite 0.0000 · 10+0 0.0000 · 10+0 1.0000 · 10+0 0.0000 · 10+0

Magnesite 0.0000 · 10+0 0.0000 · 10+0 1.0000 · 10+0 0.0000 · 10+0

Note: Concentration in units of molality for aqueous solutes, and molar fractions for all other species.
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Figure 6.1: The transient state of mineral calcite during one month of reaction with the CO2 saturated
subsurface fluid.

for Rock 1 to achieve equilibrium because it has a period of calcite precipitation that starts after
a few seconds, which does not happen with Rock 2. Recall that Rock 1 has dolomite in its com-
position, which releases ions Ca2+ during dissolution that can react with the free bicarbonate
ions HCO3

− in the subsurface fluid to precipitate calcite. This explains why precipitation of
calcite is not seen with the dolomite-free Rock 2. Note that the precipitation of calcite in Rock 1
is almost enough to compensate for the initial dissolution.

Figure 6.2 shows the transient dissolution of dolomite in Rock 1 with Brines 1 and 2. A salting-
out effect can be seen in the dissolution of dolomite, where Brine 2 dissolves less because it is
more saline than Brine 1. When assuming the dolomite-free Rock 2 in the system, there was no
dolomite precipitation for both brines. Thus, the subsurface fluid samples are undersaturated
with ions Ca2+ and Mg2+.

Figure 6.3 presents the transient state of the pH of the subsurface fluids for the two rocks and
brines. Observe that the dissolution of the carbonate minerals is followed by an increase in
the pH of the aqueous solution. At both initial and final times, the solution is more acidic
for Brine 2. However, for a short time during the dissolution of the minerals, it can be seen
that the two curves overlap or almost intercept each other. This shows the complex non-linear
behaviour of the system with respect to salinity.

In Figure 6.4 we see the concentration evolution of the ionic species Ca2+, Mg2+ and HCO3
−,

where the chemical system was composed of Rock 1 and Brine 1. Between 1 second and 1
minute there is a slowdown in the increase of HCO3

−, while at the same time the concentra-
tion of Ca2+ is decreasing, suggesting that HCO3

− and Ca2+ are reacting to produce calcite
(see Figure 6.1). Note that the concentration of HCO3

− still increases during this period, which
means that its production from the dissolution of supercritical CO2 is higher than its consump-
tion by the precipitation of calcite. The concentration of the ionic species Mg2+ increases at the
same proportion as dolomite is dissolved into the aqueous solution.
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Figure 6.2: The transient state of mineral dolomite during one month of reaction with the CO2 saturated
subsurface fluid.
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Figure 6.3: The transient state of the pH of the subsurface fluid during one month of reaction.
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Figure 6.4: The transient state of ionic species Ca2+, Mg2+ and HCO3
− during one month of reaction.
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Figure 6.5: The transient increase in the amount of CO2 in the subsurface fluid during one month of
reaction.

Figure 6.5 presents the transient increase in the amount of CO2 in the subsurface fluid. There
are two carbon sources in the system from which this increase can occur: the carbonate miner-
als and the CO2-rich phase. Since Figure 6.6 shows a simultaneous dissolution of supercritical
CO2, it follows that the dissolution of carbonate minerals increases the potential of brine to
solubilise more carbon dioxide. This is an important water-gas-rock effect with considerable
impact for safe carbon storage in saline aquifers, since in all cases the amount of supercritical
CO2 has decreased after one month of reactions.



CHAPTER 6. APPLICATIONS: CHEMICAL KINETICS 113

−1.4
−1.2
−1.0
−0.8
−0.6
−0.4
−0.2

0.0

M
as

s
V

ar
ia

ti
on

[g
ra

m
]

−1.4
−1.2
−1.0
−0.8
−0.6
−0.4
−0.2

0.0

1 millisecond 1 second 1 minute 1 hour 1 day 1 month

M
as

s
V

ar
ia

ti
on

[g
ra

m
]

Rock 1/Brine 1
Rock 1/Brine 2

Rock 2/Brine 1
Rock 2/Brine 2

Figure 6.6: The transient state of supercritical CO2 during one month of reaction.

6.2 Kinetic Modelling of CO2 Injection into Sandstone Saline Aquifers

Consider now the kinetic modelling of the injection of supercritical CO2 into a saline aquifer
mainly composed of silicate minerals. The subsurface fluid is assumed to be the Qatari Brine 2
of the previous section, whose composition is shown in Table 6.2. The composition of sand-
stone rock was chosen based on a slightly modified composition of the Utsira formation in the
Sleipner reservoir, North Sea, (Lagneau et al., 2005). The modification consisted of replacing
a few original minerals by similar ones that could be found in the SUPCRT database (Johnson
et al., 1992).

Table 6.6: The composition of the sandstone rock before
and after equilibrium with the subsurface fluid.

Mineral Volume (%) Mineral Volume (%)
(before equilibrium with brine) (after equilibrium with brine)

Quartz 77.0 Quartz 79.30
K-Feldspar 7.0 Muscovite 7.18

Calcite 6.0 Calcite 6.05
Muscovite 5.0 K-Feldspar 4.72

Albite 3.0 Hematite 2.01
Hematite 2.0 Phlogopite 0.75

Porosity: 10.0% Porosity: 19.2%

Note: The volume of the rock sample is 300 cm3.

In addition, a small fraction of iron ox-
ide (Fe2O3) was assumed in the rock.
The idea was to investigate the precip-
itation of iron carbonates (FeCO3) af-
ter the injection of CO2. However, no
formation of such carbonate minerals
was observed. Nevertheless, the re-
sults shown next indicate that a fraction
of the injected carbon dioxide is slowly
transformed into calcium carbonates
(CaCO3) and then securely trapped for
geological times.

The minerals composing the sandstone
rock and their volume percent are listed
in Table 6.6. To account for the long res-
idency times of the subsurface fluid in the reservoir, the equilibrium state of the fluid and rock
was calculated, resulting in a slightly different rock composition given on the right columns
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Table 6.7: The chemical system representing the Qatari subsurface fluid and the sandstone rock.

Aqueous Phase
Al3+ ClO3

− H2(aq) HS2O4
− MgOH+ S3

2−

AlO+ ClO4
− H2O(l) HSiO3

− MgSO4(aq) S3O6
2−

AlO2
− CO2(aq) H2S(aq) HSO3

− Na+ S4
2−

AlOH2+ CO3
2− H2S2O3(aq) HSO4

− NaCl(aq) S4O6
2−

Ca(HCO3)
+ Fe2+ H2S2O4(aq) HSO5

− NaHSiO3(aq) S5
2−

Ca(HSiO3)
+ Fe3+ HAlO2(aq) K+ NaOH(aq) S5O6

2−

Ca2+ FeCl+ HCl(aq) KCl(aq) NaSO4
− SiO2(aq)

CaCl+ FeCl2+ HClO(aq) KHSO4(aq) O2(aq) SO2(aq)
CaCl2(aq) FeCl2(aq) HClO2(aq) KOH(aq) OH− SO3

2−

CaCO3(aq) FeO(aq) HCO3
− KSO4

− S2
2− SO4

2−

CaOH+ FeO+ HFeO2(aq) Mg(HCO3)
+ S2O3

2− Sr(HCO3)
+

CaSO4(aq) FeO2
− HFeO2

− Mg(HSiO3)
+ S2O4

2− Sr2+

Cl− FeOH+ HO2
− Mg2+ S2O5

2− SrCl+

ClO− FeOH2+ HS− MgCl+ S2O6
2− SrCO3(aq)

ClO2
− H+ HS2O3

− MgCO3(aq) S2O8
2− SrOH+

Gaseous Phase
H2O(g) CO2(g) O2(g)

Mineral Phases
Albite Calcite Forsterite Kaolinite Periclase Siderite
Andradite Chrysotile Grossular Lime Phlogopite Strontianite
Anhydrite Cordierite Halite Magnesite Prehnite Tremolite
Annite Diopside Hematite Magnetite Pyrite Wollastonite
Anorthite Dolomite Iron Oxide Muscovite Pyrophyllite Zoisite
Brucite Fayalite K-Feldspar Paragonite Quartz
Anthophyllite Epidote Jadeite Nepheline Pyrrhotite

of the same table. This final rock composition was then used for the kinetic modelling of the
injection of supercritical carbon dioxide into the system. Note that the sandstone rock is mainly
composed of quartz and other silicate minerals, which are very unreactive. Therefore, simula-
tion times in the order of millions of years were used to investigate the kinetics of the water-
gas-rock effects following the CO2 injection.

Similarly as before, the computational modelling requires the specification of the chemical sys-
tem. This is given in Table 6.7, where the species composing the aqueous, gaseous and mineral
phases of interest are presented. The chemical formulas of the minerals listed in this table are
given in Table 6.8. Note that this system is substantially more complex than the previous one
(see Table 6.3), used for the same injection modelling problem in a carbonate aquifer. For exam-
ple, there are now 40 pure mineral phases, while the simulation with the carbonate rock only
required 5 minerals.

Table 6.9 shows the kinetic species and the reactions assumed to be controlled by kinetics in the
calculations. Note that even though the reaction rates of carbonate minerals are substantially
faster than silicate minerals, they were also assumed to be controlled by kinetics. However, the
carbonate minerals could have been assumed to be controlled by equilibrium without sacrific-
ing much the accuracy of the calculations. We observed that this would only anticipate some
eventual precipitation of carbonate minerals by just a few years, which is an insignificant time
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Table 6.8: The list of mineral species composing the sandstone rock and their respective chemical formula.

Mineral Chemical Formula Mineral Chemical Formula

Albite Na(AlSi3)O8 Fayalite Fe2SiO4
Annite KFe3(AlSi3)O10(OH)2 Epidote Ca2FeAl2Si3O12(OH)

Anorthite Ca(Al2Si2)O8 Andradite Ca3Fe2Si3O12
Calcite CaCO3 Anhydrite CaSO4

Dolomite CaMg(CO3)2 Anthophyllite Mg7Si8O22(OH)2
Iron Oxide FeO Brucite Mg(OH)2

Halite NaCl Chrysotile Mg3Si2O5(OH)4
Hematite Fe2O3 Cordierite Mg2Al3(AlSi5)O18

K-Feldspar K(AlSi3)O8 Diopside CaMg(SiO3)2
Kaolinite Al2Si2O5(OH)4 Forsterite Mg2SiO4

Lime CaO Grossular Ca3Al2Si3O12
Magnesite MgCO3 Jadeite NaAl(SiO3)2
Muscovite KAl2(AlSi3)O10(OH)2 Nepheline Na(AlSi)O4

Periclase MgO Paragonite NaAl2(AlSi3)O10(OH)2
Quartz SiO2 Phlogopite KMg3(AlSi3)O10(OH)2

Siderite FeCO3 Prehnite Ca2Al2Si3O10(OH)2
Strontianite SrCO3 Pyrophyllite Al2Si4O10(OH)2

Magnetite Fe3O4 Tremolite (Ca2Mg5)Si8O22(OH)2
Pyrite FeS2 Wollastonite CaSiO3

Pyrrhotite FeS Zoisite Ca2Al3Si3O12(OH)

Table 6.9: The kinetic species and reactions for the kinetic modelling in a sandstone saline aquifer.

Kinetic Species Reactions

Calcite Calcite + H+ 
 HCO−3 + Ca2+

Magnesite Magnesite + H+ 
 HCO−3 + Mg2+

Siderite Siderite + H+ 
 HCO−3 + Fe2+

Strontianite Strontianite + H+ 
 HCO−3 + Sr2+

Dolomite Dolomite + 2H+ 
 2HCO−3 + Ca2+ + Mg2+

Quartz Quartz 
 SiO2(aq)

Kaolinite Kaolinite + 6H+ 
 2Al3+ + 5H2O(l) + 2SiO2(aq)

Albite Albite + 4H+ 
 Al3+ + Na+ + 2H2O(l) + 3SiO2(aq)

K-Feldspar K-Feldspar + 4H+ 
 Al3+ + K+ + 2H2O(l) + 3SiO2(aq)

Anorthite Anorthite + 8H+ 
 2Al3+ + Ca2+ + 4H2O(l) + 2SiO2(aq)

Muscovite Muscovite + 10H+ 
 3Al3+ + K+ + 6H2O(l) + 3SiO2(aq)

Annite Annite + 10H+ 
 Al3+ + K+ + 3Fe2+ + 6H2O(l) + 3SiO2(aq)

Hematite Hematite + 6H+ 
 2Fe3+ + 3H2O(l)

scale when compared to millions of years.

Equation (4.42) was used for the calculation of the mineral rates of dissolution and precipita-
tion. The rate parameters of each mineral in Table 6.9 were taken from Palandri and Kharaka
(2004). The rate parameters for the carbonate minerals siderite and strontianite were assumed
the same as those for calcite. The specific surface area of the kinetic minerals were assumed to
be 5000 m2/m3 for the whole calculation.

Figure 6.7 shows the kinetic dissolution and precipitation of the silicate minerals over a period
of one hundred million years. The initial time corresponds to the moment the injected super-
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Figure 6.7: The kinetic dissolution and precipitation of the major silicate minerals in the sandstone rock
during one hundred million years.

critical CO2 has equilibrated with the subsurface fluid, which was assumed to be considerably
faster than any interaction between brine and the kinetic minerals. A constant temperature
and pressure of 60 ◦C and 150 bar was assumed throughout the calculation. Note that it takes
about a few thousand years for the start of some significant changes in the silicate composition
of the sandstone rock. It can be observed that quartz and muscovite precipitates afterwards,
competing for the silica produced from the complete dissolution of K-feldspar. Any absent
silicate mineral in Figure 6.7 remained completely dissolved during the simulation.

Figure 6.8 shows the dissolution and precipitation behaviour of calcite over millions of years.
Any other carbonate mineral remained fully dissolved in the brine for the duration of the sim-
ulation. Overall, this figure shows that a significant amount of precipitation of calcite follows
after the injection of supercritical carbon dioxide, possibly sequestering the injected green-
house gas. This happens in two stages: one right after the injection of CO2, which is consistent
with the high reactivity of calcite, and another after a few thousands years, when the silicate
minerals start to slowly dissolve and precipitate.

The previous result alone is not conclusive to determine the extent at which the injected car-
bon dioxide can be trapped as precipitated carbonate minerals. To determine how much of
the injected carbon dioxide is trapped as precipitated carbonate minerals, the amount of car-
bon in the aqueous, gaseous and mineral phases over one hundred million years is shown in
Figure 6.9. This figure shows that a small amount of mobile carbon dioxide is produced after
one day of reaction until about 2300 years. Afterwards, supercritical CO2 is continuously con-
sumed until about 70000 years, where nearly 0.83 g of the greenhouse gas had been converted
into carbonate minerals. The same figure also shows that 1.66 g of dissolved carbon dioxide in
the brine is transformed into precipitated carbonate minerals.

The kinetic modelling assumed an injection of 440 g of supercritical carbon dioxide into the
system, from which about 36.0 g was instantaneously dissolved into the brine before any inter-
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Figure 6.10: The kinetic evolution of the porosity of the sandstone rock and acidity of the subsurface fluid
in reservoir during one hundred million years.

action between fluid and rock was allowed to take place. Thus we see that in the long term, the
amount of trapped carbon dioxide (by solubility and mineral mechanisms) in a saline aquifer
is increased by nearly 7% due to the precipitation of carbonate minerals. This represents a sig-
nificant increase in the safe storage capability of sandstone aquifers. It should be remarked,
however, that this increase only takes place in the order of tens of thousands of years.

Figure 6.10 shows how the porosity of the sandstone rock and the pH of the subsurface fluid
vary over millions of years after CO2 injection. Comparing the porosity curve with the cal-
cite curve of Figure 6.8, it can be observed that porosity decreases due to the precipitation of
calcite during the first few hours. The porosity increases, after thousands of years, when K-
feldspar starts to dissolve away, as shown in Figure 6.7, even though calcite is simultaneously
precipitating. This happens because a larger amount of K-feldspar is dissolved in the process.
The effect of pH on the porosity of this sandstone rock is not as expressive as it is in carbon-
ate rocks, where there can be significant dissolution and formation of wormholes (Gaus et al.,
2008). Here, for example, a decrease in pH (or increase in acidity) is not accompanied by an
increase in porosity, as it can be seen after one day of reaction in Figure 6.10.

6.3 Kinetic Modelling of Pure Calcite Dissolution

This section presents a kinetic modelling of the calcite dissolution problem in CO2 saturated
water.

Peng et al. (2014) recently determined the dissolution rates of calcite in CO2 saturated waters
far from equilibrium. The following major parallel reactions were taken into account in their
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study:

CaCO3(s) + H+ k1−→ Ca2+ + HCO−3 , (6.1)

CaCO3(s) + H2CO?
3

k2−→ Ca2+ + 2HCO−3 , (6.2)

where H2CO3
∗ represents a sum of dissolved molecular species CO2(aq) and H2CO3(aq), and

k1 and k2 are the rate constants of the reactions. These rate constants are used to compute the
rates of their respective reactions as:

r1 = k1aH+ (6.3)

and

r2 = k2aCO2(aq), (6.4)

where aH+ and aCO2(aq) are the activities of the species H+ and CO2(aq) respectively.

It is not very clear how the artificial species H2CO3
∗ can be represented computationally. Be-

cause of this, reaction (6.2) has been replaced in this work by:

CaCO3(s) + H2O(l) + CO2(aq)
k2−→ Ca2+ + 2HCO−3 . (6.5)

The reaction rates given by equations (6.3) and (6.4) were determined far from equilibrium.
Near equilibrium, these rates should continuously decrease to zero in order to reproduce the
eventual equilibrium state of the mixture of calcite and CO2 saturated water. To account for
this behaviour, the following rate equations were adopted instead:

r1 = k1aH+

(
1− Q1

K1

)
(6.6)

and

r2 = k2aCO2(aq)

(
1− Q2

K2

)
, (6.7)

where K1 and K2 are the equilibrium constants of reactions (6.1) and (6.5); and Q1 and Q2 are
the reaction quotients of the same reactions, given by:

Q1 =
aCa2+ aHCO−3
aCaCO3(s)aH+

(6.8)

and

Q2 =
aCa2+ a2

HCO−3
aCaCO3(s)aH2O(l)aCO2(aq)

. (6.9)

These introduced factors have negligible effect when calcite is far from saturation, that is, when
0 < Qi/Ki � 1. At equilibrium, calcite is saturated and Qi/Ki = 1 for both reactions.

Figure 6.11 presents the calculated concentration of calcium in the CO2 saturated water while
calcite continuously dissolves. These calculations were compared with the experimental mea-
surements of Peng et al. (2014) at T = 353 K and P = 13.8 MPa. It can be seen that a good
accuracy is achieved for the period of time between 5 minutes and 1 hour for which experi-
mental measurements were available.

The calculations indicate that 30 hours would be necessary for the system to establish equilib-
rium. However, this equilibration time is possibly inaccurate due to several uncertainties in
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Figure 6.11: Comparison of the calculated concentration of calcium in the aqueous solution (line) with
the experimental data (points) of Peng et al. (2014) during dissolution of calcite in a CO2 saturated water.

the computational modelling. For example, the specific surface area of the mineral remained
constant at 208 mm2 for the entire simulation. In addition, the introduced saturation factors in
the reaction rates (6.6) and (6.7) are not necessarily correct, and some adjustments such as:

r1 = k1aH+

[
1−

(
Q1

K1

)ξ1
]η1

(6.10)

and

r2 = k2aCO2(aq)

[
1−

(
Q2

K2

)ξ2
]η2

, (6.11)

might be necessary to improve the accuracy of the rates, where the exponents ξi, ηi would be
determined experimentally.

An alternative to the use of equations (6.10) and (6.11) to model the rates near equilibrium, and
also when the mineral is precipitating, would be a combined use of the forward and reverse
rates of the mineral reaction. The difficulty lies, however, on determining accurate models
for precipitation rates, since it depends on several factors such as surface area, nucleation and
crystal growth mechanisms.



CHAPTER 7
CONCLUSIONS AND FUTURE WORK

Computational methods are essential for geochemical modelling. Analysing even the simplest
geochemical reactions that occur in nature can be a daunting task without the use of com-
putational algorithms. Most of the environmental problems occurring at the Earth’s surface,
subsurface and mantle can be tackled by direct or indirect chemical equilibrium and kinetics
calculations. This work has proposed novel numerical methods for these computations.

It suffices to assume chemical equilibrium in many environmental problems. These calcula-
tions can be formulated by either a stoichiometric or non-stoichiometric approach. The former
solves a system of non-linear mass-action and mass-balance equations, while the later solves
a constrained optimisation problem, where the Gibbs free energy of the system is minimised.
This work has proposed equilibrium algorithms based on both approaches, as described in
Chapters 2 and 3. The Gibbs energy minimisation approach is based on a primal-dual interior-
point method that has been demonstrated to be very efficient and robust. Its analysed perfor-
mance suggested its potential integration into reactive transport simulators.

Geochemical reactions proceed with different speeds: some with time scales in the order of
years, and others in the order of microseconds. Thus, chemical kinetic modelling of geochem-
ical processes very often assumes partial equilibrium in the system, where some fast reactions
are selected to be governed by thermodynamic equilibrium. Chapter 4 proposed an innova-
tive numerical method for chemical kinetic modelling of geochemical systems. It adopts an
implicit scheme of integration of the algebraic-differential equations in order to achieve ro-
bustness and efficiency. The method uses the Gibbs energy minimisation method to account
for the geochemical reactions governed by thermodynamic equilibrium.

Geochemical modelling can take advantage of the rich set of thermodynamic models available
in the literature. By using a variety of such models for aqueous, gaseous and mineral species,
this work demonstrated in Chapter 5 the capability to solve multiphase equilibrium problems
relevant to carbon dioxide sequestration in saline aquifers accurately. Most of these calcula-
tions have been assessed against recent experimental measurements of carbon dioxide solubil-
ity in NaCl and non-NaCl brines. Comparison of pH calculations with experimental data was
also done, as well as benchmarking some calculations against other geochemical solvers.

121
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Complicated water-gas-rock effects take place during injection of carbon dioxide into saline
aquifers. Understanding these interactions and their long term effects is fundamental for safety
assessment of carbon capture and storage. As shown in Chapter 6, taking into account the
interactions among the subsurface fluid, supercritical carbon dioxide and the rock-forming
minerals indicated that carbonate rocks increase the potential of brines to dissolve even more
mobile supercritical CO2 and sandstone rocks have the potential to store substantial amounts
of CO2 as precipitated carbonate minerals in the long term.

As a future work, it remains to integrate these algorithms into a reactive transport simulator.
This will allow a more comprehensive understanding of the fate of injected carbon dioxide into
saline aquifers, where both transport and chemical processes are taken into account.

Development of such simulator is already in progress. For this, the FEniCS Project (Logg
and Wells, 2010; Logg et al., 2011) has been adopted, which consists of a collection of tools
for solving partial differential equations using finite element methods in one-, two- or three-
dimensional unstructured meshes. This choice has proved to be very efficient in developing
complicated codes for flow simulations, since most of the difficulties in handling meshes, as-
sembling vectors and matrices from the elements, performing mesh adaptivity and parallelism,
and so forth has been abstracted away from the user.

In addition, further investigation of other optimisation methods are needed for chemical equi-
librium calculations. The use of interior-point methods, as seen before, has resulted in solutions
where phases that should be inexistent at equilibrium are in fact present at low amounts. These
low amounts are in the same order of magnitude of the perturbation parameter used for the
interior-point minimisation algorithm. Thus, in the end of the calculation, it is always nec-
essary to apply a refinement calculation to correct the distribution of mass among the stable
phases (see Section 3.3.8).

Another class of methods, called active-set methods (Nocedal and Wright, 1999; Fletcher, 2000),
should be tested for chemical equilibrium calculations. In these methods, there is no need to
use a perturbation parameter as in the interior-point method, and the species that should be
inexistent will have an exact zero amount. As a result, this approach would no longer require
a phase stability test as shown in Section 3.3.8, since this comes as a direct result. It is expected,
therefore, that some performance gain can be obtained with active-set methods.

These chemical equilibrium and kinetics methods have been implemented in REAKTORO, a
scientific library, written in the C++ programming language, for computational geochemical
modelling. The code is freely available at www.bitbucket.org/reaktoro and released under
the open-source GPL license.

http://bitbucket.org/reaktoro
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APPENDIX A
CONVERGENCE RATES OF A

STOICHIOMETRIC ALGORITHM

A common stoichiometric formulation for equilibrium calculations is described here, followed
by comments on its convergence rate. Different from a non-stoichiometric formulation, which
is based in the minimisation of the Gibbs free energy, the stoichiometric formulation is based
on the solution of a system of mass-action and mass-balance equations (Smith and Missen,
1982).

A.1 Mathematical Formulation

In what follows, the chemical system has been partitioned into primary and secondary species.
The i-th primary species is denoted by αi, and the j-th secondary species by αj. As it is com-
monly done in the geochemistry literature, the subscripts i and j are enough to tell if a species
is primary or secondary (Bethke, 2007). In addition, the number of primary and secondary
species are denoted respectively by Ni and Nj. For simplicity reasons, only an aqueous phase
is assumed in the system.

In the stoichiometric approach, the primary and secondary species are related to each other
according to the following linearly independent system of equilibrium reactions:

αj 

Ni

∑
i=1

νjiαi (j = 1, . . . , Nj), (A.1)

where νji is the stoichiometric coefficient of the i-th primary species in the j-th secondary
species. For example, for the system H2O–CO2, we can write the following linearly indepen-
dent reactions:

OH− 
 H2O−H+,

CO2(aq) 
 HCO3
− + H+ −H2O,

where the sets of primary and secondary species are {H2O, H+, HCO3
−} and {OH−, CO2(aq)}.
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Computing the equilibrium state of the system requires solving the following mass-balance
equations:

mi +

Nj

∑
j=1

νjimj = Mi (i = 1, . . . , Ni), (A.2)

and the following mass-action equations:

mj =
1

Kjγj

Ni

∏
i=1

(miγi)
νji (j = 1, . . . , Nj), (A.3)

where mi and mj are the molalities of the i-th primary species and j-th secondary species; Mi is
the given total molality of the i-th primary species; γi and γj are the activity coefficients of the
i-th primary species and j-th secondary species; and Kj is the equilibrium constant of the j-th
reaction.

Remark. Using molalities as unknowns has the inconvenience of the need to handle different
equations for solvent water and solutes, since the molality of water does not make sense. This
discussion, however, is kept simple by listing only those mass-balance and mass-action equa-
tions that involves only solutes. The presentation, however, is not compromised by this lack of
completeness.

A.2 Numerical Method

The common practice of solving equations (A.2) and (A.3) is to eliminate the dependency of
the mass-balance equations (A.2) on the molalities of the secondary species mj. This results in
the following system of equations:

mi +

Nj

∑
j=1

νji

Kjγj

Ni

∏
i=1

(miγi)
νji = Mi (i = 1, . . . , Ni). (A.4)

Let k denote the iteration counter of the calculation. Assume that the molalities of the primary
and secondary species mk

i and mk
j are known at iteration k. Therefore, the new molalities of the

primary species mk+1
i can be calculated by applying Newton’s method to the following system

of equations:

mk+1
i +

Nj

∑
j=1

νji

Kjγ
k
j

Ni

∏
i=1

(mk+1
i γk

i )
νji = Mi (i = 1, . . . , Ni). (A.5)

Then, using the new values mk+1
i , we can update the molalities of the secondary species as:

mk+1
j =

1
Kjγ

k
j

Ni

∏
i=1

(mk+1
i γk

i )
νji (j = 1, . . . , Nj). (A.6)

where it can be observed the resemblance of this update of mk+1
j with a successive substitution

method.

Note that the dependence of the activity coefficients γi and γj on the molalities mi and mj is
commonly ignored, and their values are hold constant until the end of the iteration. According
to Bethke (2007), this is called the soft formulation. The hard formulation, on the other hand, takes
into account a partial dependence of the activity coefficients γi and γj on the molalities of the
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primary species mi only. Their update is done once both mk+1
i and mk+1

j have been obtained,
after which the previous two-stage calculations using equations (A.5) and (A.6) are repeated
until convergence.

If a full dependence of the activity coefficients on the species molalities were taken into account,
then equation (A.5) would become:

mk+1
i +

Nj

∑
j=1

νji

Kjγ
k+1
j

Ni

∏
i=1

(mk+1
i γk+1

i )νji = Mi (i = 1, . . . , Ni), (A.7)

where γk+1
i and γk+1

j are unknowns that depend on mk+1
i and mk+1

j . As a result, it is no longer

possible to calculate mk+1
i and mk+1

j in two stages as before. This formulation based on the law
of mass-action approach that adopts a complete Newton scheme has been further studied in
Leal et al. (2013).

A.3 Discussion

The motivation of only applying Newton’s method to equation (A.5) is to avoid large linear
systems. This incomplete Newton’s scheme results in Jacobian matrices that are only Ni × Ni,
and since the number of primary species Ni is in general considerably smaller than that of
secondary species Nj, the size of the linear systems is substantially decreased.

This incomplete scheme is only possible if the non-linear dependence of the activity coefficients
on the molalities of the species is completely or partially ignored. Equations (A.5) and (A.6)
were obtained by completely ignoring this dependence, using a soft formulation, and so the
following derivative terms are not included in the Jacobian matrix:

∂γi
∂mi

,
∂γi
∂mj

,
∂γj

∂mi
,

∂γj

∂mj
, (A.8)

which are extremely valuable information. Its absence can negatively impact the convergence
rate of the calculation, specially in strong non-ideal systems or near phase boundaries, where
these values are very sensitive. If, on the other hand, a hard formulation were used to obtain
equation (A.5), then only the derivative terms:

∂γi
∂mi

,
∂γj

∂mi
, (A.9)

would have been taken into account. Since in general Ni � Nj, the above terms represent just
a small portion of all that should be considered.

Thus, we see that the resulting Jacobian matrix, in both the soft and hard formulations, always
lacks important first-order partial derivative information. Since quadratic convergence rates in
Newton’s method is subject to exact Jacobian expressions, the presented stoichiometric method
should expect slower convergence rates. In fact, it can be said that the incomplete Newton’s
method is fundamentally more similar to the family of quasi-Newton methods, which con-
verges Q-superlinearly, than standard Newton methods, which converges Q-quadratically (see
Kelley, 1995; Nocedal and Wright, 1999).

Depending on the kind of chemical system, and its physical and chemical conditions, a soft or
hard stoichiometric method might still converge in few iterations. Perhaps even less than an
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approach that attains quadratic convergence rates, since these optimal rates only happen near
the solution. Therefore, it is near the solution that the algorithms should differ in performance,
since one that converges with quadratic rates should do so in very few iterations. From this
we see that for equilibrium problems in the context of chemical kinetics or reactive transport
modelling, where the calculations always start with hot initial guesses, a well implemented
quadratic convergent method can deliver optimal performance.



APPENDIX B
THERMODYNAMIC MODELS

In this section we present some thermodynamic models for the calculation of the activity and
fugacity coefficient models for aqueous, gaseous and mineral species. We show how these
coefficients can be used to compute the activities of the species, which is a thermodynamic
quantity required to calculate the chemical equilibrium state of a multiphase system.

B.1 Activity Coefficients for Aqueous Species

In this section we present some thermodynamic models for activity coefficients for aqueous
species. The activity coefficient γi of an aqueous species is assumed in this work to be on a
molality scale, so that its activity ai can be calculated as:

ai = γimi, (B.1)

where mi is the molality of the i-th species given by:

mi = 55.508
ni
nw

, (B.2)

with nw denoting the number of moles of species H2O(l).

In what follows, we let I and Ī denote, respectively, the effective and stoichiometric ionic
strength of an aqueous solution. These are given by:

I =
1
2

Nj

∑
j=1

mjZ2
j (B.3)

and

Ī =
1
2

Nk

∑
j=1

m∗j Z2
j , (B.4)

where Nj and Nk denote the number of ions and aqueous complexes respectively; Zj the elec-
trical charge of the j-th ion; and m∗i the stoichiometric molality of the j-th ion, which is given
by:

m∗j =
Nk

∑
k=1

νkjmk, (B.5)
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with νkj denoting the stoichiometry of the j-th ion in the k-th aqueous complex; and mk the
molality of the k-th aqueous complex. The stoichiometric molality of an ion is the molality this
ion would have if all aqueous complexes were completely dissolved in the aqueous solution.

HKF Model for Ionic Species

The activity coefficients of the ionic species are calculated using (see Helgeson et al. 1981, equa-
tion 298):

log γj = −
AγZ2

j

√
Ī

Λ
+ log xw + [ωabs

j bNaCl + bNa+Cl− − 0.19(|Zj| − 1)] Ī, (B.6)

where xw denotes the molar fraction of water; and Λ is the Debye-Hückel function defined by:

Λ = 1 + åBγ

√
Ī, (B.7)

with å denoting the ion-size parameter given by equations (124) and (125) of Helgeson et al.
(1981):

å =
∑Nk

k ∑
Nj
j νkjre,j

∑Nk
k ∑

Nj
j νkj

.

Both the absolute Born coefficient ωabs
j and the effective electrostatic radius re,j of the j-th ion

are given in Table 3 of Helgeson et al. (1981).

The parameters Aγ, Bγ, bNaCl and bNa+Cl− have been calculated using equations and param-
eters from Helgeson and Kirkham (1974a,b, 1976); Helgeson et al. (1981) and Helgeson et al.
(1981). Tables B.1–B.4 present the results of this calculation over a wide range of temperatures
and pressures. These tables are used in our code to interpolate those parameters at a given
temperature and pressure.

The extended Debye-Hückel equation (B.6) is valid at temperatures and pressures up to 600 °C
and 5000 bar. The use of the stoichiometric ionic strength Ī instead of the effective ionic strength
I has been determined to yield more accurate activity coefficients at NaCl brine salinities up to
~6 molal.

HKF Model for Water

Helgeson et al. (1981) derived an equation for the activity of water aw, which we present in the
following form:

ln aw =
2.303

55.508

Nj

∑
j=1

m∗j ψj, (B.8)

where

ψj =
AγZ2

j

√
Ī

3
σ +

xw

1− xw
log xw −

1
2
[ωjbNaCl + bNa+Cl− − 0.19(|Zj| − 1)] Ī (B.9)

and
σ =

3

(åBγ

√
Ī)3

(
Λ− 1

Λ
− 2 ln Λ

)
. (B.10)
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Table B.1: The activity coefficient parameter Aγ of the HKF model in units of kg1/2/mol1/2 calculated at
temperatures 0–500 °C and pressures up to 5000 bar.

T (°C) P (bar)

Psat 250 500 750 1000 1500 2000 3000 4000 5000

0 0.4939 0.4871 0.4810 0.4755 0.4705 0.4617 0.4544 0.4427 0.4337 0.4266
25 0.5114 0.5047 0.4985 0.4928 0.4875 0.4782 0.4701 0.4568 0.4462 0.4375
50 0.5354 0.5281 0.5213 0.5151 0.5094 0.4991 0.4901 0.4750 0.4628 0.4526
75 0.5649 0.5565 0.5488 0.5418 0.5353 0.5236 0.5134 0.4963 0.4824 0.4707

100 0.5996 0.5897 0.5807 0.5725 0.5649 0.5515 0.5398 0.5202 0.5043 0.4910
125 0.6396 0.6276 0.6168 0.6070 0.5981 0.5823 0.5688 0.5463 0.5282 0.5131
150 0.6855 0.6707 0.6573 0.6455 0.6348 0.6161 0.6003 0.5743 0.5536 0.5365
175 0.7383 0.7195 0.7028 0.6881 0.6751 0.6528 0.6341 0.6040 0.5803 0.5609
200 0.7995 0.7753 0.7538 0.7355 0.7194 0.6925 0.6703 0.6352 0.6081 0.5861
225 0.8718 0.8401 0.8117 0.7882 0.7682 0.7353 0.7088 0.6678 0.6367 0.6118
250 0.9596 0.9169 0.8783 0.8476 0.8221 0.7815 0.7498 0.7018 0.6662 0.6381
275 1.0704 1.0111 0.9563 0.9152 0.8823 0.8317 0.7934 0.7372 0.6964 0.6646
300 1.2183 1.1325 1.0500 0.9934 0.9502 0.8865 0.8400 0.7739 0.7272 0.6915
325 1.4357 1.3019 1.1668 1.0856 1.0277 0.9467 0.8900 0.8122 0.7588 0.7186
350 1.8233 1.5767 1.3188 1.1970 1.1175 1.0132 0.9438 0.8521 0.7910 0.7460
375 2.2948 1.5300 1.3350 1.2230 1.0871 1.0019 0.8937 0.8241 0.7737
400 1.8509 1.5114 1.3490 1.1700 1.0648 0.9373 0.8581 0.8019
425 2.3997 1.7439 1.5014 1.2632 1.1333 0.9831 0.8930 0.8305
450 3.3844 2.0579 1.6877 1.3685 1.2078 1.0311 0.9291 0.8597
475 4.7805 2.4810 1.9161 1.4874 1.2889 1.0815 0.9662 0.8895
500 6.0949 3.0235 2.1930 1.6213 1.3770 1.1344 1.0047 0.9202

Table B.2: The activity coefficient parameter Bγ of the HKF model in units of kg1/2/(mol1/2 · cm) calcu-
lated at temperatures 0–500 °C and pressures up to 5000 bar.

T (°C) P (bar)

Psat 250 500 750 1000 1500 2000 3000 4000 5000

0 0.4939 0.4871 0.4810 0.4755 0.4705 0.4617 0.4544 0.4427 0.4337 0.4266
25 0.5114 0.5047 0.4985 0.4928 0.4875 0.4782 0.4701 0.4568 0.4462 0.4375
50 0.5354 0.5281 0.5213 0.5151 0.5094 0.4991 0.4901 0.4750 0.4628 0.4526
75 0.5649 0.5565 0.5488 0.5418 0.5353 0.5236 0.5134 0.4963 0.4824 0.4707

100 0.5996 0.5897 0.5807 0.5725 0.5649 0.5515 0.5398 0.5202 0.5043 0.4910
125 0.6396 0.6276 0.6168 0.6070 0.5981 0.5823 0.5688 0.5463 0.5282 0.5131
150 0.6855 0.6707 0.6573 0.6455 0.6348 0.6161 0.6003 0.5743 0.5536 0.5365
175 0.7383 0.7195 0.7028 0.6881 0.6751 0.6528 0.6341 0.6040 0.5803 0.5609
200 0.7995 0.7753 0.7538 0.7355 0.7194 0.6925 0.6703 0.6352 0.6081 0.5861
225 0.8718 0.8401 0.8117 0.7882 0.7682 0.7353 0.7088 0.6678 0.6367 0.6118
250 0.9596 0.9169 0.8783 0.8476 0.8221 0.7815 0.7498 0.7018 0.6662 0.6381
275 1.0704 1.0111 0.9563 0.9152 0.8823 0.8317 0.7934 0.7372 0.6964 0.6646
300 1.2183 1.1325 1.0500 0.9934 0.9502 0.8865 0.8400 0.7739 0.7272 0.6915
325 1.4357 1.3019 1.1668 1.0856 1.0277 0.9467 0.8900 0.8122 0.7588 0.7186
350 1.8233 1.5767 1.3188 1.1970 1.1175 1.0132 0.9438 0.8521 0.7910 0.7460
375 2.2948 1.5300 1.3350 1.2230 1.0871 1.0019 0.8937 0.8241 0.7737
400 1.8509 1.5114 1.3490 1.1700 1.0648 0.9373 0.8581 0.8019
425 2.3997 1.7439 1.5014 1.2632 1.1333 0.9831 0.8930 0.8305
450 3.3844 2.0579 1.6877 1.3685 1.2078 1.0311 0.9291 0.8597
475 4.7805 2.4810 1.9161 1.4874 1.2889 1.0815 0.9662 0.8895
500 6.0949 3.0235 2.1930 1.6213 1.3770 1.1344 1.0047 0.9202

Note: The values of Bγ were multiplied by 10−8.
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Table B.3: The activity coefficient parameter bNaCl of the HKF model in units of kg/cal calculated at
temperatures 0–500 °C and pressures up to 5000 bar.

T (°C) P (bar)

Psat 250 500 750 1000 1500 2000 3000 4000 5000

0 21.962 22.211 22.437 22.643 22.831 23.162 23.444 23.901 24.258 24.548
25 18.081 18.321 18.542 18.746 18.934 19.273 19.569 20.063 20.461 20.792
50 14.530 14.783 15.016 15.232 15.432 15.794 16.112 16.648 17.088 17.458
75 11.235 11.516 11.775 12.012 12.233 12.630 12.979 13.570 14.055 14.465

100 8.125 8.449 8.745 9.015 9.264 9.710 10.100 10.757 11.295 11.749
125 5.138 5.521 5.868 6.183 6.470 6.980 7.421 8.158 8.757 9.260
150 2.214 2.678 3.095 3.467 3.804 4.395 4.900 5.733 6.402 6.960
175 -0.710 -0.137 0.376 0.826 1.227 1.919 2.503 3.449 4.200 4.821
200 -3.703 -2.981 -2.336 -1.783 -1.298 -0.477 0.201 1.283 2.127 2.817
225 -6.858 -5.930 -5.096 -4.402 -3.807 -2.824 -2.028 -0.787 0.164 0.932
250 -10.304 -9.082 -7.969 -7.080 -6.339 -5.147 -4.209 -2.779 -1.707 -0.852
275 -14.247 -12.590 -11.042 -9.873 -8.934 -7.476 -6.362 -4.709 -3.498 -2.547
300 -19.060 -16.716 -14.437 -12.856 -11.643 -9.837 -8.506 -6.592 -5.223 -4.166
325 -25.556 -21.993 -18.343 -16.122 -14.524 -12.262 -10.663 -8.439 -6.893 -5.718
350 -36.227 -29.865 -23.076 -19.806 -17.650 -14.783 -12.853 -10.265 -8.519 -7.214
375 -48.639 -29.220 -24.100 -21.113 -17.436 -15.095 -12.080 -10.108 -8.663
400 -38.002 -29.287 -25.032 -20.261 -17.410 -13.895 -11.671 -10.072
425 -52.214 -35.791 -29.554 -23.299 -19.818 -15.719 -13.214 -11.449
450 -76.652 -44.209 -34.857 -26.594 -22.338 -17.561 -14.746 -12.801
475 -110.794 -55.166 -41.133 -30.187 -24.986 -19.429 -16.271 -14.134
500 -143.763 -68.878 -48.527 -34.113 -27.778 -21.329 -17.796 -15.455

Note: The values of bNaCl were multiplied by 107.

Table B.4: The activity coefficient parameter bNa+Cl− of the HKF model in units of kg/mol calculated at
temperatures 0–500 °C and pressures up to 5000 bar.

T (°C) P (bar)

Psat 250 500 750 1000 1500 2000 3000 4000 5000

0 -15.448 -14.872 -14.390 -14.002 -13.708 -13.401 -13.471 -14.739 -17.512 -21.789
25 -9.752 -9.563 -9.404 -9.276 -9.178 -9.073 -9.090 -9.487 -10.370 -11.739
50 -5.630 -5.603 -5.579 -5.560 -5.544 -5.524 -5.518 -5.552 -5.647 -5.801
75 -2.411 -2.466 -2.510 -2.546 -2.571 -2.594 -2.577 -2.430 -2.128 -1.672

100 0.244 0.145 0.063 -0.002 -0.051 -0.097 -0.075 0.172 0.691 1.482
125 2.529 2.405 2.301 2.218 2.156 2.097 2.122 2.426 3.069 4.052
150 4.559 4.421 4.305 4.212 4.142 4.074 4.101 4.438 5.153 6.246
175 6.406 6.263 6.139 6.040 5.966 5.894 5.921 6.276 7.032 8.187
200 8.119 7.976 7.848 7.746 7.670 7.595 7.623 7.987 8.763 9.950
225 9.729 9.591 9.462 9.359 9.282 9.205 9.233 9.600 10.384 11.583
250 11.259 11.130 11.001 10.897 10.820 10.743 10.771 11.138 11.921 13.119
275 12.723 12.608 12.479 12.377 12.300 12.224 12.251 12.614 13.391 14.581
300 14.133 14.036 13.909 13.807 13.731 13.656 13.682 14.041 14.808 15.984
325 15.496 15.421 15.296 15.196 15.121 15.047 15.073 15.426 16.182 17.339
350 16.818 16.771 16.648 16.550 16.476 16.403 16.428 16.775 17.517 18.654
375 18.090 17.969 17.872 17.800 17.728 17.753 18.093 18.821 19.935
400 19.380 19.262 19.167 19.096 19.026 19.050 19.383 20.096 21.188
425 20.645 20.529 20.437 20.367 20.298 20.322 20.648 21.346 22.415
450 21.887 21.774 21.683 21.615 21.547 21.570 21.890 22.572 23.618
475 23.108 22.997 22.908 22.841 22.775 22.798 23.110 23.777 24.801
500 24.308 24.199 24.113 24.048 23.983 24.005 24.310 24.963 25.964

Note: The values of bNa+Cl− were multiplied by 102.
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The above activity model is also valid at temperatures, pressures and brine salinities up to 600
°C, 5000 bar and 6 molal. The parameters Aγ, Bγ, bNaCl and bNa+Cl− are interpolated from
Tables B.1–B.4.

Setschenow Model for Neutral Species

The activity coefficients for neutral species are calculated using the Setschenow model equa-
tion:

log γi = bi I + log xw, (B.11)

where bi is the Setschenow coefficient of the i-th species. The value bi = 0.1 is adopted in this
work for those neutral species whose Setschenow coefficient is not known.

Drummond (1981) Model for CO2(aq)

Drummond (1981) derived the following equation for the activity coefficient of CO2(aq):

ln γCO2 =
(

a1 + a2T +
a3

T

)
I − (a4 + a5T)

I
I + 1

, (B.12)

where a1 = −1.0312, a2 = 1.2806 · 10−3, a3 = 255.9, a4 = 0.4445 and a5 = −1.606 · 10−3; and
T is temperature in units of Kelvin. This equation is valid within the temperature and salinity
ranges 20–400 °C and 0–6.5 molal respectively.

Duan and Sun (2003) Model for CO2(aq)

Duan and Sun (2003) presents the following activity coefficient model for CO2(aq):

ln γCO2 = 2λ(mNa+ + mK+ + 2mCa2+ + 2mMg2+) (B.13)

+ ζ(mNa+ + mK+ + mCa2+ + mMg2+)mCl−

− 0.07mSO2−
4

where

λ = −0.411370585 + 6.07632013 · 10−4T (B.14)

+ 97.5347708/T − 0.0237622469P/T

+ 0.0170656236P/(630− T)

+ 1.41335834 · 10−5T ln P

and

ζ = 3.36389723 · 10−4 − 1.98298980 · 10−5T (B.15)

+ 2.12220830 · 10−3P/T

− 5.24873303 · 10−3P/(630− T),

with temperature T and pressure P given in units of Kelvin and bar respectively.

These equations are valid within the temperature, pressure and salinity ranges of 0–260 °C,
0–2000 bar, and 0–4.3 molal. Nevertheless, its use at higher salinities (e.g. up to ~6 molal NaCl
and up to ~4 molal CaCl2) yields satisfactory results and this has been done before in Spycher
and Pruess (2005).
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Rumpf et al. (1994) Model for CO2(aq)

Based on a Pitzer formulation with correlation of solubility data, Rumpf et al. (1994) derived
the following activity coefficient model for CO2(aq) (see Spycher and Pruess 2005):

ln γCO2 = 2B(mNa+ + mK+ + 2mCa2+ + 2mMg2+)

+ 3Γ(mNa+ + mK+ + mCa2+ + mMg2+)mCl− (B.16)

where Γ = −0.0028 and

B = 0.254− 76.82
T
− 10656

T2 +
6312 · 103

T3 , (B.17)

with temperature T given in units of Kelvin.

These equations are valid within the temperature range of 40–160 °C, at brine salinities up to
~6 molal NaCl and at pressures up to 100 bar. Therefore, this model is unsuitable for CO2 sol-
ubility modelling at high pressures, though it is accurate enough within its valid temperature
and pressure ranges.

B.2 Fugacity Coefficients for Gaseous Species

In this section we present some thermodynamic models for fugacity coefficients for gaseous
species. The fugacity coefficient ϕi of a gaseous species is used to calculate its activity ai as:

ai = ϕiyi
P
P◦

, (B.18)

where yi is the molar fraction of the i-th gaseous species in the gaseous phase; and P◦ = 1 bar
is the standard pressure assumed in this work.

Spycher and Reed (1988) Model for H2O(g)-CO2(g)-CH4(g)

Spycher and Reed (1988) derived fugacity coefficient equations for pure and mixed gases based
on a virial expansion formulation. In this work we opted to use the equations of Spycher and
Reed (1988) where the gaseous phase is assumed as a non-ideal mixture of gases because of its
reliability and accuracy at pressures higher than the saturation pressure of water.

In what follows, we denote 1-H2O(g), 2-CO2(g) and 3-CH4(g). The fugacity coefficients of the
end-members of the gaseous mixture H2O–CO2-CH4, therefore, are given by:

ln ϕi =

[
2

3

∑
k=1

ŷkB′ik − B′mix

]
P

+

[
3
2

3

∑
k=1

3

∑
l=1

ŷk ŷlC′ikl − C′mix

]
P2, (B.19)

where ŷk denotes the molar fraction of the k-th gas in the mixture H2O–CO2-CH4. This is
in contrast with yk, which represents the molar fraction of the k-th gas in the gaseous phase,
which may contain other additional gases (e.g., O2(g), H2(g)). The second and third cross-virial
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Table B.5: Coefficients from Table 1 of Spycher and Reed (1988) for the calculation of fugacity coefficients
of pure gases.

Gas T Pmax a b c d e f
(°C) (bar) (×105) (×102) (×105) (×108)

H2 25–600 3000 -12.5908 0.259789 -7.24730 0.471947 -2.69962 2.15622
H2O 0–1000 1000 -3238.36 4.69231 -175.120 272.189 -463.667 202.904

0–340 Psat -6191.41 14.8528 -914.267 -6633.26 18277.0 -13274.0
CO2 400–1000 1000 -361.447 0.553372 -0.549789 16.3871 3.86767 -9.26594

50-350 500 -1430.87 3.59800 -227.376 347.644 -1042.47 846.271
CH4 16–350 500 -537.779 1.54946 -92.7827 120.861 -370.814 333.804

coefficients B′ij and C′ijk are calculated using:

B′ij =
aij

T2 +
bij

T
+ cij, (B.20)

C′ijk =
dijk

T2 +
eijk

T
+ fijk, (B.21)

where

B′mix =
3

∑
i=1

3

∑
k=1

ŷi ŷkB′ik, (B.22)

C′mix =
3

∑
i=1

3

∑
k=1

3

∑
l=1

ŷi ŷk ŷlC′ikl . (B.23)

The parameters aij, bij, cij, dijk, eijk and fijk are presented in Tables B.5 and B.6. Note that
temperature T and pressure P are given in units of Kelvin and bar respectively.

Spycher et al. (2003) Model for H2O(g)-CO2(g)

From a modified Redlich-Kwong equation of state, Spycher et al. (2003) derived the following
fugacity coefficient equations for the for the gaseous species H2O(g) and CO2(g):

ln φH2O = ln
(

v
v− bm

)
+

(
bH2O

v− bm

)
+

ambH2O

RT1.5bm

[
ln
(

v + bH2O

v

)
− bm

v + bm

]
− 2aCO2−H2O

RT0.5bm
ln
(

v + bm

v

)
− ln

(
Pv
RT

)
, (B.24)

and

ln φCO2 = ln
(

v
v− bm

)
+

(
bCO2

v− bm

)
+

ambCO2

RT1.5bm

[
ln
(

v + bCO2

v

)
− bm

v + bm

]
− 2aCO2

RT0.5bm
ln
(

v + bm

v

)
− ln

(
Pv
RT

)
(B.25)

where v is the molar volume of the mixture, in units of cm3/mol, given by the solution of the
cubic equation:

v3 − v2
(

RT
P

)
− v

(
RTbm

P
− am

PT0.5 + b2
m

)
− ambm

PT0.5 = 0 (B.26)



APPENDIX B. THERMODYNAMIC MODELS 146

Ta
bl

e
B

.6
:C

ro
ss

-c
oe

ffi
ci

en
ts

fr
om

Ta
bl

e
2

of
Sp

yc
he

r
an

d
R

ee
d

(1
98

8)
fo

r
th

e
ca

lc
ul

at
io

n
of

fu
ga

ci
ty

co
ef

fic
ie

nt
s

of
m

ix
ed

ga
se

s.

M
ix

tu
re

T
P m

ax
a i

j
b i

j
c i

j
d i

ij
e i

ij
f ii

j
d i

jj
e i

jj
f ij

j
i

j
(°

C
)

(b
ar

)
(×

10
2 )

(×
10

2 )
(×

10
5 )

(×
10

2 )
(×

10
5 )

H
2O

–C
O

2
45

0–
10

00
10

00
-1

28
6.

47
2.

95
02

8
-0

.1
65

41
2

2.
54

90
8

-0
.4

94
21

2
0.

23
90

23
0.

0
0.

0
0.

0
50

–3
50

50
0

-1
95

4.
70

7.
74

80
5

-1
.0

29
01

0
10

4.
45

3
-3

8.
42

83
0

36
.5

85
80

-8
.2

84
26

1.
19

09
7

0.
80

88
86

H
2O

–C
H

4
25

–1
00

94
-1

10
3.

20
4.

52
87

1
-0

.5
07

78
4

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

C
O

2–
C

H
4

40
–2

40
50

0
-8

00
.5

92
2.

28
99

0
-0

.1
53

91
7

2.
99

16
0

-1
.0

48
93

1.
02

62
7

1.
58

38
4

-0
.4

92
07

7
0.

43
01

04

N
ot

e:
Fo

r
H

2O
–C

O
2

m
ix

tu
re

s,
th

e
co

ef
fic

ie
nt

s
of

th
is

ta
bl

e
fo

r
th

e
te

m
pe

ra
tu

re
ra

ng
e

50
–3

50
°C

m
us

tb
e

us
ed

on
ly

w
it

h
th

e
co

ef
fic

ie
nt

s
fo

r
th

e
ra

ng
e

0–
34

0
°C

in
Ta

bl
e

B.
5.



APPENDIX B. THERMODYNAMIC MODELS 147

Table B.7: The parameters for equations (B.24) and (B.25) taken from Spycher et al. 2003.

Parameter Value Unit

bH2O 18.18 cm3/mol
bCO2 27.8 cm3/mol

aCO2−H2O 7.89 · 107 bar · cm6 ·K0.5/mol2

aCO2 7.54 · 107 − 4.13 · 104T bar · cm6 ·K0.5/mol2

with temperature T and pressure P given in units of Kelvin and bar respectively. The pa-
rameters from the previous equations are shown in Table B.7. These equations are valid at
temperatures 12–100 °C and pressures up to 600 bar.

Note that Spycher et al. (2003) assumed that ŷCO2 = 1 and ŷH2O = 0 to derive equations (B.24)
and (B.25). This simplification results in am = aCO2 and bm = bCO2 .

Duan et al. (2006) Model for CO2(g)

Duan et al. (2006) presents an improved fugacity coefficient equation for CO2(g), which can
be calculated efficiently and directly as opposed to the costly and iterative scheme required in
Duan and Sun (2003). The fugacity coefficient equation is given by:

ϕCO2 = c1 + [c2 + c3T + c4/T + c5/(T − 150)]P

+ (c6 + c7T + c8/T)P2 + (c9 + c10T + c11/T) ln P

+ (c12 + c13T)/P + c14/T + c15T2, (B.27)

where temperature T and pressure P are given in units of Kelvin and bar respectively; and the
parameters c1 through c15 are given in Table B.8. This equation is valid at temperatures 0–260
°C and pressures up to 2000 bar.

In Table B.8, the auxiliary pressure P∗, in units of bar, is calculated using:

P∗ =


Psat

CO2
T < 305 K

75 + 1.25(T − 305) 305 K < T < 405 K

200 T > 405 K

, (B.28)

where Psat
CO2

is the saturation pressure of CO2, which can be computed using the equation of
state developed by Poling et al. (2001):

ln

(
Psat

CO2

Pcr
CO2

)
=

a1x + a2x1.5 + a3x3 + a4x6

1− x
, (B.29)

with a1 = −6.95626, a2 = 1.19695, a3 = −3.12614, a4 = 2.99448 and x = 1− T/Tcr
CO2

, where
Tcr

CO2
= 304.2 K and Pcr

CO2
= 73.83 bar are the critical temperature and pressure of CO2 respec-

tively.

B.3 Activity Coefficients for Mineral Species

In this work the ideal model for the activity coefficients of mineral species is assumed. There-
fore, the activity ai of the i-th mineral in a mineral solution is given by:

ai = xi, (B.30)
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from which it follows that ai = 1 for pure minerals.



APPENDIX C
DETAILS OF THE INTERIOR-POINT

METHOD ALGORITHM

C.1 Central Neighbourhood: Largest Feasible Trust-Region Radius

This presents the approach for the calculation of the largest feasible trust-region radius ∆f
k that

satisfies the bound constraints:

xk(∆) ≥ 0 and zk(∆) ≥ 0. (C.1)

Let α be the largest feasible step that yields:

p + α∆p ≥ 0, (C.2)

for vectors p and ∆p. Then α is obtained by:

α = min
i

αi, where αi =


− pi

∆pi
if ∆pi < 0

∞ otherwise
. (C.3)

Use equation (C.3) to determine αt
x, αn

x , αt,n
x defined by the following bound conditions:

x + αt
xst

x ≥ 0, x + αn
xsn

x ≥ 0, x + αt,n
x ∆x ≥ 0. (C.4)

Similarly as before, determine αt
z, αn

z , αt,n
z defined by:

z + αt
zst

z ≥ 0, z + αn
z sn

z ≥ 0, z + αt,n
z ∆z ≥ 0. (C.5)

Let us now define the following auxiliary quantities:

αt
min = min(αt

x, αt
z, αt,n

x , αt,n
z ), (C.6)

and

αn
min = min(αn

x , αn
z , αt,n

x , αt,n
z ), (C.7)

150
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which are used to compute the largest feasible trust-region radius ∆f
k by:

∆f
k = τk

αt
min‖st‖ if αt

min ≤ αn
min

αn
min‖sn‖ otherwise

, (C.8)

where τµ ∈ (0, 1) is used to enforce xk(∆), zk(∆) > 0, defined as:

τk = 1−min{10−2, 10+2µ2
k}. (C.9)

For efficiency reasons, all the previous calculations should be skipped when:

xk + ∆xk ≥ 0 and zk + ∆zk ≥ 0. (C.10)

For this trivial case, we set ∆f
k = ∞.

C.2 Central Neighbourhood: Largest Central Trust-Region Radius

This section presents the approach for the calculation of the largest central trust-region radius ∆c
k

that satisfies the central neighbourhood condition:

Xk(∆)zk(∆) ≥ γµk(∆)e. (C.11)

From equations (3.44) and (3.45), it follows that the following cases are possible:

Case I: αn = 1 and αt =
∆
‖st‖

Compute:
∆c

I = min{t ∈ R+ : fi(t) = 0, i = 1, . . . , n}, (C.12)

where fi(t) is the quadratic function defined by:

fi(t) := αit2 + βit + λi, (C.13)

with coefficients αi, βi and λi given by:

αi = bidin− γbTd (C.14)

βi = (aidi + bici)n− γ(aTd + bTc) (C.15)

λi = aicin− γaTc (C.16)

and auxiliary vectors a, b, c, d defined as:

a = x + sn
x , b =

st
x
‖st‖ , (C.17)

c = z + sn
z , d =

st
z
‖st‖ . (C.18)

Case II: αn =
∆
‖sn‖ and αt =

∆
max(‖sn‖, ‖st‖)

Compute:
∆c

II = min{t ∈ R+ : fi(t) = 0, i = 1, . . . , n}, (C.19)
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where fi(t) is the quadratic function defined by (C.13). However, the auxiliary vectors
a, b, c, d are now defined as:

a = x, b =
sn

x
‖sn‖ +

st
x

max(‖sn‖, ‖st‖) , (C.20)

c = z, d =
sn

z
‖sn‖ +

st
z

max(‖sn‖, ‖st‖) . (C.21)

After computing both ∆c
I and ∆c

II, we set ∆c
k = min(∆c

I , ∆c
II).

Note that for efficiency reasons, one can first check if:

Xk(∞)zk(∞) ≥ γµ(∞)e. (C.22)

In this trivial case, it follows that ∆c
k = ∞.
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