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Abstract 
 

Cough is under the control of sensory afferents which innervate the airways via the 

vagus nerve. Cough is an important protective reflex that clears the airway, but can 

become exacerbated and deleterious when associated with airways diseases, in which 

there is enhanced release of inflammatory mediators and a decrease in lung pH. These 

mediators sensitise airway afferents and could be driving enhanced cough associated 

with inflammation. 

 

Transient Receptor Potential (TRP) ion channels are associated with several disease 

pathologies. TRPV1 has an established role in cough, and is implicated in the aetiology 

of chronic cough; and TRPA1 is a promising new target. Involvement of these ion 

channels in the tussive reflex is awaiting comprehensive investigation. I have therefore 

explored the role of TRPA1 and TRPV1 in tussive responses to the endogenous irritants 

prostaglandin E2 (PGE2), bradykinin (BK) and low pH. To do this I have used selective 

antagonists and genetically modified mice in models of human, guinea pig and mouse 

vagal sensory nerve depolarisation; conscious guinea pig cough; and guinea pig primary 

ganglia cell imaging.  

 

TRPA1 and TRPV1 were shown to mediate PGE2 and BK-induced nerve 

depolarisation, cough, and activation of ganglia cells. In contrast, low pH-induced nerve 

depolarisation and ganglia cell activation was mediated via TRPV1 or Acid Sensing Ion 

Channels (ASICs); whereas, cough was partially attenuated with TRPA1 or TRPV1 

antagonists. 

 

In summary, I have identified that TRPA1 and TRPV1 mediate PGE2 and BK-induced 

cough; and provided evidence that low pH-induced sensory nerve activation is mediated 

via TRPV1 and ASICs, but a role for TRPA1 is still unclear. These are exciting findings 

which add to our understanding of the mechanisms that drive the cough reflex in the 

healthy state; builds a base for investigating cough hypersensitivity in disease; and 

could help to guide the development of novel efficacious anti-tussive therapies. 
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1.1 Cough 

 

Cough is one of the most common complaints for which patients seek medical advice, 

and is reported as a troublesome symptom by a significant proportion of the population 

(Ford et al., 2006; McCormick et al., 1995). Under normal circumstances, cough is an 

important protective mechanism that helps to clear foreign material from the airway and 

aids in immune defence (Fontana et al., 1999; Irwin et al., 1998). In contrast, chronic 

cough of various aetiologies often serves no useful purpose and can lead to a dramatic 

decrease in quality of life (Irwin et al., 1998; Morice et al., 2007). Chronic cough, which 

can be defined as a cough persisting for longer than 8 weeks (Harding, 2006; Irwin et 

al., 1998), is associated with a number of inflammatory airway diseases such as chronic 

obstructive pulmonary disease (COPD), asthma, reflux, postnasal drip, cancer and viral 

infections; it is also a side-effect of some medical treatments such as angiotensin-

converting enzyme inhibitors used in the prevention of cardiovascular disorders; and 

can be idiopathic in nature (Fuller & Choudry, 1987; Irwin et al., 1998; Morice et al., 

2007). During development of chronic cough the cell structure and protective function 

of human bronchial mucosa are altered, providing strong evidence to suggest that 

repetitive physical damage of airway mucosa resulting from persistent cough may 

induce additional injury and inflammation of the airways. This mucosal injury could in 

turn enhance cough sensitivity and initiate a vicious cycle, which completely offsets the 

normal physiological functions of cough (reviewed in Niimi & Chung, 2004). 

 

Although we know a great deal about the physiology of the cough response, we still 

know very little about which particular channels on the sensory nerves are central to the 

tussive reflex. Low pH and capsaicin are well-established tussive agents known to 

activate the Transient Receptor Potential Vanilloid 1 (TRPV1) ion channel. These 

ligands are frequently used in clinical trials to assess potential anti-tussives and 

hypersensitvity associated with disease states, largely because they produce a dose-

dependent response which is highly reproducible and well tolerated (Karlsson & Fuller, 

1999; Morice et al., 2007; Morice et al., 2001; Pounsford et al., 1985). However, these 

models may not be physiologically relevant since we do not currently know which 

stimuli or receptors are driving the cough response, either in healthy or diseased 

patients. Although some data exists to suggest that TRPV1 is involved in responses to 

certain tussive stimuli, no one has yet characterised the involvement of this or other ion 
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channels in the response to many of the other irritant substances which are known to 

produce cough. Furthermore, very little research has been carried out to discover if the 

same channels are driving the enhanced/excessive cough observed in disease. 

 

1.2 Current therapies 

 

Currently available anti-tussive therapies are largely offered over-the-counter (OTC) as 

self-medication programmes, and are among the most widely used OTC drugs. 

However, many OTC remedies are believed only to provide relief of the symptoms of 

cough (e.g. lubrication of a dry throat), or to act via a placebo effect (Karlsson & Fuller, 

1999; Vassilev et al., 2009). Indeed, there are no data to support that OTC products are 

effective in children under 2 years of age, and may in fact cause adverse events in 

children fewer than 11 years of age (American Academy of Pediatrics, 1997; Centre for 

Disease Control, 2007; Gunn et al., 2001; Vassilev et al., 2009). In January 2008, the 

U.S. Food and Drug Administration released an advisory notice recommending that 

OTC cough and cold medicines not be used to treat children under 2 years due to 

potentially life-threatening side-effects (US Food and Drug Administration, 2008). 

 

Anti-tussive therapies can be grouped in to two different types: (i) peripherally acting 

anti-tussives which directly target the afferent neuronal pathways to inhibit cough, and 

(ii) centrally acting treatments, which are generally considered to be the most effective 

anti-tussives currently available, and are thought to have their effect by suppressing a 

putative cough centre within the central nervous system (CNS). The major issue with 

these treatments are the associated side-effects, including drowsiness, constipation, 

nausea, and in the case of opiates physical addiction (Belvisi & Geppetti, 2004; 

Karlsson & Fuller, 1999; Reynolds et al., 2004). Hence, cough presents as a significant 

unmet medical need, and novel pharmacological approaches to treat cough (with fewer 

and/or less severe side effects) are required. It is important to note that coughing is a 

vital defence reflex that clears unwanted and potentially dangerous matter from the 

respiratory system. The ideal anti-tussive therapy would therefore inhibit an enhanced 

problematic cough without affecting the normal protective cough associated with health 

benefits. Interference with the afferent signal is thought to provide the best opportunity 

for pharmacological intervention, as the putative cough centre in the brain has yet to be 

clearly defined, and may be diffuse. Development of these therapies requires more in 
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depth understanding of the underlying mechanisms that exacerbate cough, and 

appropriate pharmacological tools with which to probe the pathways involved. 

 

1.3 Physiology of cough 

 

The physiology of the cough reflex has been well described, and can be explained as 

follows: rapid inspiration followed by an expiratory effort against a closed glottis and 

rapid generation of high intrapulmonary pressure, explosive expiration results from 

sudden opening of the glottis causing a high linear velocity of gas flow which sweeps 

irritant material up towards the pharynx (Widdicombe, 2002). The cough reflex is often 

involuntary, but can be accurately mimicked on a voluntary basis. We do not yet 

understand how the afferent nervous system is stimulated to generate the need to cough, 

or where in the CNS this information is integrated and organised to generate motor 

output (Fong et al., 2004). The cough centre of the CNS is believed to be in close 

proximity to the nucleus tractus solitarius (NTS), where the afferent nerves which 

mediate cough are known to synapse (Figure 1.1); and closely linked to the respiratory 

centre because a profound change in breathing pattern is an integral part of the cough 

reflex (Karlsson & Fuller, 1999). 

 

1.4 Sensory nerves and the cough reflex 

 

Airway afferent nerves express a number of different receptors and ion channels that 

modulate nerve activity when acted upon by pharmacological agents. Cough can be 

initiated by a wide variety of stimuli that trigger specialised peripheral cough receptors 

(Figure 1.1). Opening of ion channels on the airway sensory nerve terminals leads to 

membrane depolarisation, and if this depolarisation is of sufficient magnitude the 

peripheral nervous system will send signals to the CNS in the form of action potentials. 

Action potentials are carried by subsets of airway sensory fibres through the vagus 

nerves to the medulla where they terminate in the NTS. Second order neurons then relay 

the message to a respiratory pattern generator within the CNS, resulting in activation of 

motor neurons and initiation of the cough reflex. In addition, some mediators may 

interact with the nerve terminals or ion channels to inhibit depolarisation, alter the 

response to activating stimuli, or lead to changes in gene expression (Taylor-Clark & 

Undem, 2006). Cell bodies of the vagal sensory fibres originate in the nodose and 
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jugular ganglia, and branch in to the superior laryngeal nerves (SLN) and recurrent 

laryngeal nerves (RLN), which carry the airway fibres to the bronchi and trachea 

(Belvisi, 2003; Canning et al., 2004). A summary of the characteristics of each fibre 

type is presented in Table 1.1. This data should be interpreted with some caution, as all 

of this information has been extrapolated from experiments on guinea pigs; and there is 

yet to be any translational studies investigating airway fibre types in humans. 

 

1.4.1 Rapidly Adapting Receptors (RARs) 

 

RARs are irritant sensory receptors that respond with rapid adaptation to mechanical 

stimulation (e.g. bronchoconstriction, lung inflation, mucus production). They are 

myelinated, Aδ fast-velocity fibres that originate in the nodose ganglia, terminate 

predominantly in the airway epithelium, and are insensitive to direct chemical 

stimulation (though may be indirectly mechanically stimulated e.g. with associated 

mucus secretion or bronchoconstriction; Widdicombe, 2002). The evidence supporting a 

role for RAR fibres in cough comes mainly from work with anaesthetised animals 

(Tatar et al., 1994; Widdicombe, 1998). However, substances such as substance P and 

histamine, that have been shown to stimulate RARs under anaesthesia, are ineffective at 

causing cough (Canning et al., 2004; Chou et al., 2008). Although likely to be involved 

in the cough reflex, these fibres have few targets for pharmacological anti-tussive 

therapy. 

 

1.4.2 Slowly Adapting Receptors (SARs) 

 

Like RARs, SARs conduct action potentials in the ‘A’ range. But the activity of these 

fibres is not altered by stimuli that evoke cough, and they are thus not believed to be 

directly involved in the cough reflex. However, this does not preclude the possibility 

that SARs could facilitate the cough reflex by either permitting or preventing RAR 

activity (Reviewed in Canning & Mori, 2011; Canning et al., 2006; Reynolds et al., 

2004). 
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Figure 1.1. Airway sensory nerves and cough. 

Cell bodies for airway nerve fibres originate in two ganglia, the jugular and nodose, which are 

located under the ear bone within the head. The airway fibres are carried via the vagus nerve, 

where they terminate both in and under the airway epithelium (illustrated in the enlarged 

panel). These fibres consist of the C-fibres, Aδ-nociceptors, polymodal Aδ-fibres (also called 

‘cough receptors’), rapidly adapting receptors (RARs), and slowly adapting receptors (SARs), 

which sense both chemical and mechanical stimuli. Of these fibres, the C-fibres and ‘cough 

receptors’ are thought to mediate cough. Once stimulated, information is carried to the nucleus 

of the solitary tract (NTS), located in the medulla, where the sensory fibres synapse. Second-

order neurons then relay the message to a respiratory pattern generator, which activates 

efferent motor neurons, and leads to cough. The C-fibres also contain neuropeptides, which are 

released upon nerve activation and cause neurogenic inflammation (Adapted from Grace et al., 

2011; Reynolds et al., 2004). 
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1.4.3 C-fibres 

 

C-fibres are non-myelinated, chemosensitive, slow-velocity sensory nerves that 

originate in both the nodose and jugular vagal ganglia, and are found predominantly 

within the airway epithelium (Figure 1.1). The chemosensitivity of C-fibres makes them 

attractive pharmacological targets for anti-tussive treatment, and they have therefore 

been a major focus of research in the cough field. Two types of airway C-fibres have 

been identified, termed ‘bronchial’ and ‘pulmonary’ depending on their distribution 

along the airways. Bronchial C-fibres are present in the airway wall and are stimulated 

by chemicals exposed to the bronchial/systemic circulation; whereas, pulmonary C-

fibres are located in the alveolar wall and activated by chemicals exposed to the 

pulmonary circulation (Coleridge & Coleridge, 1984). Based on their presence at the 

site from which the cough reflex can be triggered, it is thought that bronchial C-fibres 

mediate cough. Conversely, pulmonary C-fibres have been proposed to inhibit cough 

(Widdicombe, 1995; Widdicombe, 2002), likely through general inhibition of the 

respiratory centre in the CNS rather than a specific inhibition of the cough reflex 

(Karlsson & Fuller, 1999). Stimulation of pulmonary C-fibres triggers a chemoreflex 

causing apnoea, rapid shallow breathing, bradycardia and hypotension. During apnoea 

the respiratory rhythm generator is suppressed and inspiratory and expiratory efforts are 

inhibited, during which time it is not possible to trigger cough. In fact, suppression of 

cough appears to be directly proportional to the extent to which respiration is inhibited 

(Tatar et al., 1994). 

 

C-fibres are activated by a wide range of stimuli, including food extracts (capsaicin, 

wasabi, ginger, allicin, mustard oil), environmental irritants (vehicle exhaust, air 

pollution, cigarette smoke, burning vegetation), and endogenous inflammatory 

mediators (prostaglandins, bradykinin) (Bautista et al., 2006; Caterina et al., 1997; 

Kaufman et al., 1980). In the guinea pig, exposure to aerosols of these compounds 

causes cough in conscious animals (Birrell et al., 2009; Canning et al., 2006; Costello et 

al., 1985; Kaufman et al., 1980; Lalloo et al., 1995; Laude et al., 1993), but fail to 

induce cough under anaesthesia (Belvisi & Hele, 2006; Karlsson & Fuller, 1999). It is 

possible that stimulation of C-fibres causes an “urge to cough” sensation, leading to the 

conscious generation of cough, which could explain the lack of effect under anaesthesia. 

Indeed, C-fibre stimulants such as capsaicin and bradykinin are associated with a dry 
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itchy sensation which is often associated with airway inflammation. Alternatively, 

anaesthesia may disrupt a C-fibre specific cough signalling pathway, or differentially 

upregulate inhibitory effects of pulmonary C-fibre activation (Canning, 2002). C-fibres 

also contain neuropeptides (tachykinins), such as substance P (SP), neurokinin A and 

calcitonin gene-related peptide (CGRP); and express Transient Receptor Potential 

(TRP) ion channels. In the guinea pig, stimulation of C-fibre nerve endings, for example 

by the TRPV1 agonist capsaicin, can result in the release of these neuropeptides which 

subsequently cause local neurogenic inflammation and CNS reflexes such as apnoea, 

mucus secretion and smooth muscle contraction (Widdicombe, 1995; Widdicombe, 

2002). This process appears to play an important role in the pathogenesis of airway 

diseases in guinea pig models. Although, data provided from guinea pigs may not be 

clinically valid, as the existence of neurogenic inflammation in humans has not been 

comprehensively investigated (reviewed in Nassini et al., 2010). 

 

1.4.4 Aδ nociceptors 

 

Like RARs, Aδ nociceptors are myelinated fast-conducting neurons. These nerve fibres 

differ from RARs in that their cell bodies originate in the jugular ganglia, they are only 

modestly sensitive to mechanical stimulation, and respond to chemical nociceptive 

stimuli such as capsaicin and bradykinin. The pharmacology of Aδ nociceptors is 

thought to be similar to that of C-fibres, but they are yet to be systematically 

investigated, and their contribution to the cough reflex is unclear. In guinea pigs it has 

been found that Aδ nociceptors become ‘tachykinin positive’ during inflammatory 

disease states, and they may therefore play a role in the hypersensitive state seen in 

airway disease (Carr et al., 2002; Myers et al., 2002). 

 

1.4.5 Cough receptors (polymodal Aδ nociceptors) 

 

The so-called ‘cough receptors’ can be defined as extrapulmonary, myelinated, low 

threshold mechanosensors that originate in the nodose ganglia and are activated by 

punctuate mechanical stimulation, low chloride solutions and citric acid. These nerves 

do not express TRPV1 or SP, and are insensitive to classical C-fibre stimulants such as 

capsaicin and bradykinin. The cough receptor nerve fibres are distinct from RARs in 

that  they conduct action potentials in a much slower range (approximately 5 m/s); and 
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are insensitive to airway stretch, alterations in airway pressure, and smooth muscle 

contraction evoked by histamine, which are stimuli that readily activate RAR fibres 

(Canning et al., 2004; Mazzone, 2004). However, ligands such as capsaicin and 

bradykinin which robustly cause cough in conscious animals do not activate cough 

receptors. It is possible that multiple cough pathways exist which contribute distinctly to 

different types of cough (e.g. defensive cough vs. urge to cough); or that secondary 

airway afferent pathways may evoke or modify cough responses via interactions with 

the primary cough pathway (Mazzone, 2004). 

 

1.5 Transient Receptor Potential (TRP) channels and cough 

 

The original TRP ion channel was isolated from the Drosophila melanogaster species 

of fly, and was named for its unique property of displaying a transient instead of a 

sustained response to bright light (Montell & Rubin, 1989). The TRP channel 

superfamily are a group of cation-selective, putative six-transmembrane-spanning 

proteins with a pore region localised between transmembrane segments 5 and 6 

(Caterina et al., 1997). These receptors can be either directly or indirectly activated by 

intracellular and extracellular messengers, chemical compounds, mechanical stimuli, 

temperature changes and osmotic stress (Clapham, 2003). Thus far, six TRP channels – 

vanilloid 1-4 (TRPV1-4), melastatin 8 (TRPM8) and ankyrin 1 (TRPA1) – have been 

found to be expressed in the peripheral nervous system, and  are activated by distinct 

sets of irritants and a range of temperatures (Figure 1.2) (Caspani & Heppenstall, 2009). 

This list may not be comprehensive, as the area of TRP channel research is fast 

expanding. Furthermore, since their discovery, the TRP channels have been linked to 

various roles in sensory perception, and associated with a wide range of diseases 

(Caterina et al., 1997; Nilius, 2007). As such, a great deal of research has focused on the 

TRPs as pharmacological targets, and it is postulated that their expression profile could 

be altered in disease states. An example of this has been discovered in patients suffering 

from chronic cough, who show an increase in TRPV1 expression in the lungs 

(Groneberg et al., 2004). TRPV1 has a well-established role in cough, and two known 

TRPV1 ligands (capsaicin and citric acid) are routinely used to assess the cough reflex 

in humans and animals. 
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Table 1.1. Characteristics of vagal afferent fibre types thought to be involved in the cough reflex. 

 

 C-fibres Aδ nociceptors RAR fibres 

(‘A δ-like’) 

Cough Receptors 

(‘Polymodal Aδ fibres’) 

Speed 
 

Small diameter, unmyelinated, 
velocity <1 m/s 
 

Small diameter, myelinated, 
velocity ~6 m/s 

Myelinated, velocity 14-23 
m/s 

Myelinated, velocity 4-6 m/s 
 

Stimulus 
sensitivity 

High-threshold 
mechanosensitive (punctuate) 
Chemosensitive (BK, PGE2, 
capsaicin, citric acid, acrolein 
etc.) 
 

High-threshold 
mechanosensitive (punctuate) 
Chemosensitive (capsaicin, 
BK, acid) 
 

Low-threshold 
mechanosensitive 
(punctuate, distension, 
stretch) 
 

Mechanosensitive (punctuate) 
 
 

Origin Jugular (neural crest) 
Nodose (placodal) 
 

Jugular (neural crest) Nodose (placodal) Nodose (placodal) 

Termination Extrapulmonary and 
intrapulmonary 

Extrapulmonary and 
intrapulmonary 

Intrapulmonary Extrapulmonary, few 
intrapulmonary 
 

TRP expression Yes Yes 
 

No No 

Neuropeptide 
expression 

Yes jugular fibres 
No nodose fibres 

No (but can become positive 
during airways inflammation) 
 

No No 

Abbreviations: BK – bradykinin; PGE2 – prostaglandin E2; TRP – transient receptor potential. 
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1.5.1 Transient Receptor Potential Vanilloid 1 (TRPV1) 

 

The mammalian TRPV1 receptor, also called Vanilloid Receptor 1 (VR1) or the 

‘capsaicin receptor’, was cloned and characterised by Caterina and colleagues in 1997. 

In this early study, TRPV1 was implicated in the sensation of noxious heat and pain 

(Caterina et al., 1997). Since then, TRPV1 has been identified as a polymodal channel 

that is activated by irritant chemicals, changes in physiological conditions, and 

endogenous mediators, including low pH (pH ≤ 6) (Jordt et al., 2000), anandamide (Jia 

et al., 2002; Kagaya et al., 2002; Zygmunt et al., 1999), heat (Caterina et al., 1997), 

bradykinin (Carr et al., 2003; Kollarik & Undem, 2004), neurotrophins (Ji et al., 2002), 

prostaglandins (Moriyama et al., 2005), ATP (Tominaga et al., 2001), and leukotrienes 

(Hwang et al., 2000). It is presumed that TRPV1 can form hetero- and homomultimers, 

which could help explain its polymodal sensitivity. However, experimental evidence 

along these lines is lacking (Tominaga & Tominaga, 2005). Interestingly, activation of 

TRPV1 by vanilloid compounds, heat and protons can be dissociated by mutagenesis of 

amino acid residues. This indicates that stimuli act through either distinct or 

incompletely overlapping channel regions, rather than a single agonist sensor domain 

(Kuzhikandathil et al., 2001; Tominaga & Tominaga, 2005). 

 

Though TRPV1 is a non-selective cation channel, it is highly permeable to calcium. 

Calcium influx evoked by TRPV1 activation causes neurogenic inflammation in the 

guinea pig via the release of tachykinins, which act on a number of effector cells in the 

respiratory tract (Joos et al., 2000). However, an equivalent neurogenic response in 

humans has not yet been proven (Nassini et al., 2010). TRPV1 expression was initially 

believed to be largely confined to nociceptive neurons, and was originally cloned from 

rodent dorsal root ganglia (Caterina et al., 1997). Indeed, TRPV1 is highly expressed in 

rodent afferent neurons whose cell bodies reside in dorsal root, trigeminal or vagal 

ganglia (Ahluwalia et al., 2000; Caterina et al., 1997; Ichikawa & Sugimoto, 2003, 

2004). But the TRPV1 receptor is now known to be more widely distributed, and is 

expressed by various neuronal and non-neuronal cells, including the skin (Denda et al., 

2001), urinary tract (Avelino et al., 2002; Ward et al., 2003), bladder (Avelino et al., 

2002; Birder et al., 2001), and gastrointestinal tract (Anavi-Goffer & Coutts, 2003; 

Poonyachoti et al., 2002; Ward et al., 2003). TRPV1 expression is also widespread in 
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the rat CNS, including the hippocampus, olfactory nuclei, amygdala, hypothalamus and 

cerebellum (Mezey et al., 2000). 

 

 

 

 

Figure 1.2. Temperature and chemical sensitivity of Transient Receptor Potential (TRP) 

channels expressed in sensory neurons. 

The ion channels TRPA1, TRPM8 and TRPV1-4 are expressed in the peripheral sensory 

nervous system and mediate responses to noxious stimuli. These ion channels are activated by a 

range of temperatures, from noxious cold to noxious heat, as well as a number of natural 

exogenous irritants. A growing number of endogenous mediators are also being discovered to 

activate these ion channels (not illustrated). 
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A great deal of research has focussed on the role of TRPV1 in pain, where acute 

application of capsaicin induces painful sensations such as burning, itching, piercing, 

pricking and stinging. In animal studies, either the inhibition of TRPV1 with a selective 

antagonist or deletion of the TRPV1 gene (Trpv1-/-) in mice blunts pain responses 

(Caterina et al., 2000; Davis et al., 2000; Walker et al., 2003). Therefore, the 

pharmaceutical industry is extremely interested in developing TRPV1 antagonists as 

new and effective analgesics, and there are many TRPV1 antagonists currently in 

clinical development. Clinical trials have had some limited success in alleviating pain 

with TRPV1 antagonists (Patapoutian et al., 2009). However, as discussed above, the 

expression profile of TRPV1 is diffuse and as such general antagonism of this receptor 

could be associated with unwanted side-effects. Currently, TRPV1 antagonists are 

known to induce hyperthermia in a range of animal models, and a recent clinical trial 

examining inhibition of dental pain with TRPV1 antagonists demonstrated increases in 

core body temperature up to as much as 40°C (Gavva et al., 2008). In response to this, 

there has recently been some progress toward developing TRPV1 inhibitors that do not 

exhibit hyperthermia (Lehto et al., 2008; Patapoutian et al., 2009; reviewed in 

Gunthorpe & Chizh, 2009). Nevertheless, there are other potential side-effects that may 

have yet to be observed. For example, TRPV1-expressing sensory neurons project to 

both cardiovascular and renal tissues (Singh & Deshpande, 2009; Wang & Li, 1999; 

Wang, 2005). Activation of these neurons can induce the release of neuropeptides, such 

as CGRP and SP, which are potent vasodilators and diuretics, and could be associated 

with cardioprotective effects (Wang, 2005). Inhibiting these neurons therefore has the 

potential to produce unwanted cardiovascular side-effects, though as yet there is no 

clinical data to support this (Patapoutian et al., 2009). 

 

An association between hypersensitivity to pain (hyperalgesia) and hypersensitivity in 

the lungs (e.g. to tussive stimuli) has been postulated. Indeed, the classical TRPV1-

selective agonist, capsaicin, causes airway smooth muscle contraction and sensory nerve 

activation in vitro (Belvisi et al., 1992; Patel et al., 2003) and cough in vivo (Lalloo et 

al., 1995; Trevisani et al., 2004) in animal models, which can be blocked with selective 

antagonists (Lalloo et al., 1995; McLeod et al., 2006; Trevisani et al., 2004). Capsaicin 

is also known to induce airway irritation and cough in humans (Doherty et al., 2000; 

Fuller & Choudry, 1987; Laude et al., 1993). Furthermore, there is evidence for an 

increase in TRPV1 expression in the lungs in patients exhibiting chronic cough 
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(Groneberg et al., 2004). As such, TRPV1 has been identified as a potential 

pharamacological target for the development of new anti-tussive therapies. Although 

TRPV1 is activated by capsaicin and low pH, it is not activated by many of the irritants 

known to initiate cough, thus implicating one or more other receptors in the cough 

reflex. 

 

1.5.2 Transient Receptor Potential Ankyrin 1 (TRPA1) 

 

TRPA1 (formerly ANKTM1), named for its multiple ankyrin domains in the N-

terminus, is the only member of the TRPA subfamily to have been discovered thus far 

in mammals. Human TRPA1 was first isolated in 1999 from cultured fibroblasts 

(Jaquemar et al., 1999). It was later discovered that TRPA1 ion channels are expressed 

in a subset of TRPV1-expressing small diameter nociceptive neurons (Bautista et al., 

2005; Story et al., 2003), making this channel a promising target for detection of 

noxious stimuli, and suggesting an involvement in processes such as inflammatory 

hyperalgesia and neurogenic inflammation (Andrè et al., 2008; Bautista et al., 2006; 

McNamara et al., 2007). Like TRPV1, TRPA1 is a polymodal non-selective cation 

channel that is highly permeable to calcium. Since its initial discovery, a great deal of 

research has focused on the role of TRPA1 in nociception. This has come about because 

of the diversity of compounds that have been discovered to activate TRPA1, including 

environmental irritants present in air pollution, tobacco smoke, and burning vegetation 

(e.g. acrolein); compounds present in foods and perfumes (e.g. allicin, mustard oil, 

wasabi and cinnamon); endogenous substances released during inflammation 

(bradykinin, prostaglandins) and oxidation (4-hydroxy-nonenal [4HNE] and 4-

oxononenal [4ONE]); and purportedly noxious cold temperatures (Andersson et al., 

2008; Bandell et al., 2004; Bautista et al., 2006, 2005; Karashima et al., 2009; 

Macpherson et al., 2007; Story et al., 2003; Taylor-Clark et al., 2008a, 2008b). 

However, a role for TRPA1 in cold sensation still remains controversial (Bautista et al., 

2006; Jordt et al., 2004; Nagata et al., 2005; Zurborg et al., 2007; reviewed in Caspani 

& Heppenstall, 2009). 

 

The mechanism(s) behind how many of this diverse set of compounds activate TRPA1 

channels remains elusive. However, Macpherson and colleagues (2007) observed that 

several compounds which activate TRPA1 are electrophiles that react with cysteines, 
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and subsequently demonstrated that these ligands activate TRPA1 by covalently binding 

to cysteine residues within the cytosolic N-terminus. The molecular mechanism linking 

covalent bonding to channel gating has not been fully elucidated, but it has been shown 

that a single amino acid change in rat TRPA1 in the S6 region determines whether the 

channel is activated or inhibited by a compound. TRPA1 is also known to be activated 

by many non-electrophilic phytochemicals and some synthetic compounds, possibly in 

the traditional receptor-ligand binding fashion (Chen et al., 2008; Hinman et al., 2006; 

Macpherson et al., 2007; reviewed in Bang & Hwang, 2009). In addition, it is thought 

that intracellular calcium release can directly activate cation influx through TRPA1 

channels (Zurborg et al., 2007), raising the possibility that TRPA1 could act as an 

amplifier of other signals that increase intracellular calcium. Also, G-protein coupled 

receptors may activate TRPA1 via intracellular secondary messengers (Bandell et al., 

2004; Bautista et al., 2006). 

 

Until very recently, it was thought that TRPA1 expression was restricted to the 

peripheral sensory neurons (Patapoutian et al., 2009). But there is a growing body of 

literature now suggesting that TRPA1 may be more widespread throughout the body, 

including cells such as fibroblasts, epithelial cells of the bladder and prostate gland, and 

on central terminals of sensory nerves in the spinal cord (reviewed in Rech et al., 2010). 

It is interesting to note that these cells play an important role in chronic inflammatory 

diseases, further implicating TRPA1 as a detector of noxious stimuli and tissue damage 

(Rech et al., 2010). As with TRPV1, activation of the TRPA1 ion channel has been 

associated with sensations of pain. A large number of chemical irritants that induce pain 

have been found to activate the TRPA1 receptor, including allicin, acrolein, and 

formalin. This has generated great interest, and a role for TRPA1 in various pain states 

has now been established, including acute, inflammatory and neuropathic pain. Due to 

the scarcity of pharmacological tools, a large part of the evidence has come from 

models using genetically modified mice that have had the TRPA1 gene selectively 

deleted (Trpa1-/-). The recent development of TRPA1-selective antagonists has enabled 

scientists to pharmacologically verify the contribution of TRPA1 to pain sensation. In 

acute pain models, Trpa1-/- mice show fewer nocifensive behaviours than wild type 

controls with intraplantar injection and topical application of the TRPA1 agonist 

mustard oil, but cells from Trpa1-/- mice displayed normal responses to the TRPV1 

agonist capsaicin (Bautista et al., 2006; Kwan et al., 2006). Similarly, pretreatment with 
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a TRPA1-selective inhibitor significantly attenuated acute nocifensive responses in rats 

evoked by injection of mustard oil into the hindpaw (Eid et al., 2008); and reduced 

nocifensive behaviours in mice treated with the TRPA1 agonist cinnamaldehyde, but 

not the TRPV1 agonist capsaicin (Petrus et al., 2007). 

 

A growing number of pro-algesic endogenous compounds which are released in 

association with tissue injury, inflammation and oxidative stress have been identified as 

activators of TRPA1. Reactive electrophilic alkenals such as 4HNE and 4ONE, 

metabolites of arachadonic acid (e.g.15-d-PGJ2, PGA2), hydrogen peroxide (H2O2), and 

lipids (e.g. 4-oxo-2-nonenal and 4-hydroxyhexenal) induce pain-associated behaviours 

when injected in to the hindpaw of wild type mice. In contrast, these pain behaviours 

are blunted when the same compounds are injected into the paw of Trpa1-/- mice 

(Andersson et al., 2008; Materazzi et al., 2008; Trevisani et al., 2007). Moreover, 

activation of isolated trigeminal neurons by the metabolite 15-d-PGJ2 is inhibited by the 

TRPA1 antagonist HC-030031 (Taylor-clark et al., 2008b); and activation of trigeminal 

neurons by bradykinin, an endogenous mediator released during inflammation, is 

attenuated in neurons cultured from Trpa1-/- mice in comparison to wild types (Bautista 

et al., 2006). Following injection of bradykinin in to the hindpaw, Trpa1-/- mice also 

show deficits in withdrawal latency to a heat source compared to wild types (Bautista et 

al., 2006). This data suggests that bradykinin-induced reductions in threshold to noxious 

heat are at least partially mediated via the TRPA1 ion channel. In addition, there is 

evidence that TRPA1 is involved in neuropathic pain, involving sensitisation of 

nociceptors resulting from damage to the peripheral or central nervous system (Eid et 

al., 2008; Obata et al., 2005), implicating a possible role for TRPA1 in chronic disease 

states. 

 

Since the discovery of the TRPA1 channel, it has been postulated to be associated with 

respiratory irritation. A number of studies have demonstrated that stimulation of TRPA1 

activates the vagal bronchopulmonary C-fibres in guinea pig and rodent lungs (Bessac 

et al., 2008; Nassenstein et al., 2008; Taylor-Clark et al., 2008a, 2009), and there is 

evidence that TRPA1 may be involved in hypersensitivity to noxious stimuli in disease 

states (Petrus et al., 2007). The above evidence led to the proposal that TRPA1 may be 

central to cough induced by a number of environmental and endogenous irritants, and 

could play a role in excessive cough seen in disease states. Indeed, since beginning this 
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project, both our lab and others have demonstrated that TRPA1 agonists can induce 

coughing in humans and guinea pigs, and that this effect is blocked by TRPA1-selective 

antagonists (Andrè et al., 2009; Birrell et al., 2009). 

 

1.5.3 Multimerisation 

 

Because TRPA1 and TRPV1 are co-expressed on sensory neurons, there is a possibility 

that they may co-operate or form heteromultimeric channels to activate nociceptors and 

elicit functional responses. Indeed, it has been suggested that TRPA1 channels could be 

activated by an overflow of calcium in the locale of other activated channels, without 

ever being modified by a reactive ligand. Furthermore, TRPA1 channels could act to 

amplify other calcium-mobilising pathways, including activation of TRPV1 (Cavanaugh 

et al., 2008; Zurborg et al., 2007). There is evidence for this type of coupling with 

bradykinin signalling in trigeminal neurons (Bautista et al., 2006). Whether this sort of 

cooperation exists in generating cough has yet to be determined. 

 

1.6 Endogenous mediators involved in cough 

 

Many compounds are released in the body in response to tissue injury and 

inflammation. This could be important, particularly in disease states where there is an 

increase in the release of endogenous inflammatory mediators within the airways. For 

example, PGE2 and bradykinin are thought to be involved in hypersensitisation to 

tussive stimuli leading to chronic cough (Choudry et al., 1989; Fox et al., 1996). It has 

also been observed that patients who suffer from chronic cough exhibit a decrease in 

lung pH in comparison to healthy individuals (Hunt et al., 2000; Kostikas et al., 2002). 

As well as sensitising the cough reflex, PGE2, BK and low pH are also capable of 

inducing cough when inhaled in aerosolised form (Choudry et al., 1989; Costello et al., 

1985; Katsumata et al., 1991; Lalloo et al., 1995; Maher et al., 2009). It is therefore 

possible that enhanced release of these mediators in inflammatory airways disease could 

sensitise patients to environmental irritants that induce cough; or if the endogenous 

concentration reaches high-enough levels to activate airway sensory nerve endings, they 

could in fact cause cough. However, we do not know how these endogenous ligands 

mediate their tussive effects, either in healthy individuals or when associated with 

respiratory disease. 
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1.6.1 Prostaglandin E2 

 

Series 2 prostaglandins (PGE2, PGD2, PGI2, PGF2, and thromboxane [Tx]A2) are 

endogenous products of arachadonic acid metabolism, and are involved in a large 

number of pathophysiological processes, including inflammation. Upon release, 

prostaglandins may interact with a number of G protein-coupled receptors (GPCRs) 

which are loosely divided in to EP, DP, IP, FP and TP subtypes, named for the type of 

prostanoid to which the series 2 prostaglandins preferentially bind – PGE2, PGD2, PGI2, 

PGF2, and TxA2, respectively. In addition, the EP receptor has four known isoforms 

(termed EP1 through EP4). These GPCRs couple to one of a number of G-protein 

complexes that can have a variety of effects. Furthermore, there is a relative amount of 

cross-reactivity between the prostanoid ligands and the family of GPCRs. Thus, the area 

of prostanoid research can be particularly complicated (Bos et al., 2004). 

 

In contrast to its effects in other parts of the body (McCoy et al., 2002; Wilgus et al., 

2002) PGE2 appears to have protective properties in the lungs (Kay et al., 2006; Martin 

et al., 2002; Walters et al., 1982), and has been identified as a potential therapy for 

asthmatics due to its anti-inflammatory and bronchodilator effects (Kawakami et al., 

1973; Melillo et al., 1994; Walters et al., 1982). However, the development of PGE2 as 

a treatment for airways disease has been hindered due to the reflex cough observed 

when it is inhaled (Costello et al., 1985; Gauvreau et al., 1999; Kawakami et al., 1973; 

Melillo et al., 1994; Pavord et al., 1993). In accordance with this, PGE2 has been shown 

to excite airway afferent nerves which initiate the cough reflex (Coleridge et al., 1976; 

Maher et al., 2009). 

 

The GPCR through which PGE2 provokes cough was recently identified as the EP3 

isoform (Maher et al., 2009). Signalling downstream of the initial G-protein activation 

must ultimately lead to gating of ion channels in order to lead to a net change in 

membrane potential, but our understanding of the mechanisms behind PGE2-induced 

cough is limited. There is some evidence for a role of TRPV1 in PGE2-associated 

nociception in the pain field, whereby PGE2-induced paw oedema in mice is inhibited 

with TRPV1-selective antagonists (Claudino et al., 2006). It is possible that the acute 

tussive effects of PGE2 are also at least partially mediated via activation of the TRPV1 

ion channel, which is already well-known to induce coughing. TRPA1 is another 
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promising candidate for mediating acute cough to PGE2 stimulation. As discussed in 

section 1.5.2, TRPA1 has been implicated in the detection of noxious stimuli, and 

mediates the response to numerous irritant gases, dusts, vapours and chemicals linked to 

cough; furthermore, TRPA1 is co-expressed with TRPV1 on sensory neurons that 

innervate the airways (Bandell et al., 2004; Bautista et al., 2006, 2005; Jordt et al., 

2004; Simon & Liedtke, 2008; Story et al., 2003; Taylor-Clark et al., 2008a, 2008b). 

 

PGE2 has also been implicated in the aetiology of chronic cough, as PGE2 production is 

known to be upregulated in inflammatory airways disease (Choudry et al., 1989; Ho et 

al., 2000; Kwong & Lee, 2002; Lee et al., 2002) and could therefore contribute to the 

pathophysiology of cough associated with such diseases. Indeed, it has been shown that 

inhalation of PGE2 can subsequently enhance the cough response to capsaicin 

stimulation in healthy human volunteers (Choudry et al., 1989). This effect is proposed 

to occur via sensitisation of the pulmonary afferent nerves, a theory supported by the 

finding that a low dose of exogenous PGE2 markedly enhanced the excitability of vagal 

pulmonary C-fibres to capsaicin stimulation in anaesthetised rats (Ho et al., 2000). 

Sensitisation of TRPV1 probably occurs due to phosphorylation of the TRPV1 receptor 

downstream of GPCR activation, subsequently enhancing the excitability of the ion 

channel (Kwong & Lee, 2002; Lee et al., 2002). Alternately, PGE2 release associated 

with inflammatory airways disease could directly induce coughing via opening of ion 

channels downstream of the EP3 GPCR, if the endogenous concentration reaches high 

enough levels to induce sensory nerve activation (Maher et al., 2009). 

 

1.6.2 Bradykinin 

 

Bradykinin (BK) is an amino acid peptide which is derived from the precursor 

kininogen during inflammation and tissue injury. BK binds to the B1 and B2 GPCRs, 

through which it mediates a plethora of effects in the airways including 

bronchoconstriction, bronchodilation, mucus secretion, stimulation of sensory nerve 

afferents, and cough. A number of the effects associated with BK are indirect, caused by 

the subsequent release of other endogenous mediators such as prostanoids and nitrous 

oxide (Ellis & Fozard, 2002). 
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BK activates C-fibres (Kaufman et al., 1980; Reynolds et al., 2004), and has been 

shown to induce cough in both conscious animals (Canning, 2007; Canning et al., 2006; 

Kaufman et al., 1980) and humans (Choudry et al., 1989; Herxheimer & Stresemann, 

1961; Katsumata et al., 1991). In cultured trigeminal neurons, application of BK elicits 

a robust calcium influx, which is partially attenuated in cells cultured from Trpa1-/- or 

Trpv1-/- mice (Bautista et al., 2006). Bautista and colleagues propose that a functional 

coupling may exist between TRPA1 and TRPV1 in BK signalling, whereby TRPV1 is 

activated upstream via production of phospholipase C and phosphokinase A. Low-level 

calcium influx through TRPV1, combined with release of intracellular calcium stores 

could then enhance the activation of TRPA1, which has been proposed to be directly 

gated by intracellular calcium release (Jordt et al., 2004; Zurborg et al., 2007). It has 

also been postulated that BK may be acting indirectly via production of other 

endogenous mediators, such as prostaglandins and/or 12-lipoxygenase products of 

arachadonic acid (Newton et al., 2002; Rodgers et al., 2002; Shin et al., 2002; Zhang et 

al., 2008). 

 

The GPCR through which BK elicits its tussive effects is not known. The B1 receptor is 

inducible, and not normally constitutively expressed (Calixto et al., 2000), and as such 

does not usually mediate the effects of BK under normal conditions. In contrast, B2 

receptors have been identified in most tissues (Ellis & Fozard, 2002), and the majority 

of pharmacological effects of kinins can be attributed to B2 activation. Thus it is likely 

that the effects of BK in the airways are mediated via the B2 receptor. However, as the 

B1 receptor is inducible by proinflammatory agents, this isoform may be involved in the 

hypersensitivity to BK observed in disease states e.g. asthma (Ellis & Fozard, 2002).  

As mentioned above, BK is released as an endogenous by-product of inflammation and 

thus high levels of BK are found in patients with inflammatory airways disease. High 

endogenous concentrations of BK are proposed to be associated with the development 

of enhanced cough, as BK sensitises sensory nerve responses to capsaicin stimulation in 

vitro (Fox et al., 1996; Hwang & Oh, 2002). Inhibition of the breakdown of BK in the 

airways has also been linked to cough associated with patients taking angiotensin-

converting-enzyme (ACE) inhibitors as a therapy for heart disease (Fox et al., 1996; 

Katsumata et al., 1991). ACE normally degrades endogenous BK, and thus it is thought 

that ACE inhibitors cause BK to accumulate, which subsequently sensitises airway 

sensory nerves and augments the cough reflex. An enhanced cough response with ACE 
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inhibitor treatment has been demonstrated in a guinea pig model, which was 

successfully inhibited by a B2 receptor antagonist (Fox et al., 1996). Therefore, BK 

could be associated with enhanced cough in disease states either by increasing the 

excitability of afferent sensory neurons to other tussive stimuli; via the production of 

other endogenous mediators that stimulate cough; or if the BK concentration reaches 

high enough levels, coughing could be directly stimulated by opening of ion channels 

downstream of the associated GPCR, thereby activating afferent sensory nerve endings. 

 

1.6.3 Low pH 

 

The balance of pH within the body is maintained within a narrow range in healthy 

individuals. Accordingly, cells possess mechanisms for which to sense deviations from 

normal pH. It is therefore not surprising that acids activate nociceptive neurons within 

the lungs, triggering a powerful reflex cough in both animals and humans. Indeed, citric 

acid is a well-established tussive agent that is frequently used to assess potential anti-

tussives, and the hypersensitvity associated with disease states (Karlsson & Fuller, 

1999; Morice et al., 2007, 2001). Low pH-induced cough is partially mediated via the 

TRPV1 ion channel, but it is not currently known how protons cause ion channel 

opening. Acidic solutions evoke ionic currents when applied to outside-out but not 

inside-out membrane patches excised from HEK293 cells expressing TRPV1, 

suggesting that protons act on TRPV1 in the extracellular domain, in contrast to 

capsaicin which interacts at an intracellular/intramembrane site (Tominaga et al., 1998). 

It has been shown that activation of TRPV1 by vanilloid compounds, heat and protons 

can be dissociated by mutagenesis of amino acid residues, indicating that these stimuli 

act through either distinct or incompletely overlapping channel regions (Kuzhikandathil 

et al., 2001; Tominaga & Tominaga, 2005). This may have implications for 

development of future TRPV1 antagonists, as it suggests that it may be possible to 

block the capsaicin and/or low pH binding sites without affecting temperature 

regulation, as hyperthermia is a confounding factor with the currently available TRPV1 

tools. This is briefly discussed in section 1.8.4. 

 

Though low pH is mediated partially via TRPV1, it is not known what other ion 

channel(s) are involved. Again, TRPA1 is a likely candidate, as it is co-expressed with 

TRPV1 on sensory nerves, and mediates the effects of a multitude of noxious 
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compounds. Moreover, TRPA1 has been implicated in detecting high pH in cellular 

assays, and in vivo models of pain (Dhaka et al., 2009; Fujita et al., 2008). Recently, it 

has also been suggested that TRPA1 may sense acidification of the intracellular 

environment (Garrity, 2011; Wang et al., 2011). This is in contrast to TRPV1, which 

senses extracellular changes in pH (Tominaga et al., 1998). 

 

In addition to C-fibres, low pH activates the cough receptors, and induces coughing 

under anaesthesia (Canning et al., 2004; Chou et al., 2008). Therefore, the mechanisms 

behind the tussive effects of low pH may be more complex than that of the other 

mediators examined in this thesis. In 2002, Kollarik & Undem observed two distinct 

responses to low pH stimulation in vagal afferents projecting to the airways. Of the 

fibres tested, both RAR-like afferents and C-fibres responded to rapid acidification, 

with rapidly adapting properties. In addition, C-fibres showed sustained activation in 

response to slow reduction in pH, whereas the RAR fibres displayed no sensitivity to 

this type of stimulation. The slowly inactivating response in C-fibres was attenuated 

with TRPV1 antagonists, but the rapidly adapting response was not affected in either 

fibre sub-type. This led the authors to propose two separate mechanisms for the acid-

induced response in airway C-fibres: the slowly-adapting response which allows 

continuous monitoring of pH and is mediated by TRPV1; and a transient rapidly-

adapting response displaying characteristics similar to that of the Acid Sensing Ion 

Channels (ASICs), which are also known to be expressed on sensory neurons. In this 

instance, it is also possible that the Aδ fibres could contribute to cough induced by rapid 

acidification, such as aspiration or inhaled irritants. It is not yet known if the transient 

response in C-fibres and Aδ-fibres are mediated via ASICs, or even via the same ion 

channels; or indeed how they contribute to low pH-induced coughing (Kollarik & 

Undem, 2002; Kollarik et al., 2007). The role of ASICs and other receptors in acid-

sensitive sensory pathways await more definitive investigation.  

 

The five isoforms of ASIC ion channels (ASIC1a, ASIC1b, ASIC2a, ASIC2b and 

ASIC3) are members of the degenerin/epithelium sodium channel (DEG/ENaC) family 

of sodium channels that are gated by protons. These ion channels are widely expressed 

in the nervous system, and have been implicated in a range of functions including 

peripheral sensory transduction (Gu & Lee, 2006; Kollarik & Undem, 2002). ASIC 

channels form both homo- and heteromultimeric channels in vivo, the composition of 
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which determines the kinetics of pH threshold and time-course of activation (Hesselager 

et al., 2004). Hence, these channels have the capacity to sense a wide array of pH 

throughout the body, from pH 7 to pH 4; and their response pattern can range from large 

and transient currents in response to rapid acidification, to sustained currents in the 

continuous presence of acid. This would then theoretically correlate to either a rapid 

burst of action potentials, or sustained action potential discharge in sensory nerves 

(Kollarik et al., 2007). 

 

ASIC-like currents have been observed in airway vagal sensory neurons in both rats and 

guinea pigs (Gu & Lee, 2006; Kollarik & Undem, 2002). The transient, rapidly-

inactivating profile of the responses suggests that these currents could be mediated by 

ASIC1 or ASIC3 ion channels. Interestingly, rat DRG neurons express both of these 

ASIC subunits. Specifically, medium-to-large diameter neurons (corresponding to 

myelinated Aδ-fibres) express both ASIC1 and ASIC3 subtypes, whereas small 

diameter neurons (corresponding to C-fibres) express predominantly ASIC1 (Alvarez de 

la Rosa et al., 2002). Unfortunately there are few selective pharmacological tools with 

which to probe these pathways, and this area is further complicated by the propensity of 

ASIC subunits to form heteromultimeric ion channels. However, it could be possible to 

determine a role for specific channels in the vagally-mediated response to low pH by 

using genetically modified mice with selected ASIC genes deleted (e.g. Asic1-/- and 

Asic3-/-). 

 

Patients with airway inflammatory disease exhibit lower airways pH in comparison to 

healthy individuals. Indeed, expired breath condensate in patients suffering from 

asthma, COPD and bronchiectasis can be up to 2 log orders lower than control subjects 

(Hunt et al., 2000; Kostikas et al., 2002). Interestingly, the threshold for TRPV1 channel 

opening is reduced in the presence of low pH levels (Carr, 2004; Caterina et al., 1997). 

As inflammation is associated with a lowering of physiological pH in the lungs, it could 

be postulated that airways acidity might sensitise sensory nerves, and contribute to the 

development of cough hypersensitivity in disease states. Due to methodological 

difficulties, the degree of acidification at the airway nerve terminals has not been 

assessed, and as such we do not know the environmental conditions at the point where 

the associated acid-sensitive ion channels are located. It is possible that pH within the 

lungs could physiologically reach a level at which ion channels are not only sensitised 
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but activated, thus leading to cough with no requirement for an external stimulus. Low 

pH could, therefore, be involved in the development of cough hypersensitivity by either 

sensitising sensory afferents to stimulation by other irritants; or may cause cough if lung 

pH becomes acidic enough to activate the airway sensory afferents. 

 

1.7 Cough in inflammatory airways disease 

 

Inflammation is a complex physiological process. Briefly, tissue injury caused by 

physical or chemical stimuli leads to vasodilatation, an increase in blood flow, vascular 

permeability and subsequent cellular recruitment to the site of injury. The cells that are 

recruited depend on the type and severity of injury, which is a biochemical process 

regulated by inflammatory mediators (Claudino et al., 2006). Thus far, the mechanisms 

driving excessive cough associated with inflammatory diseases have been elusive. Both 

the central and afferent nervous systems are capable of adapting to their environment, 

and external influences such as disease, injury and inflammation are able to induce 

changes in expression of various genes involved in the production of neuropeptides, 

neurotransmitters, and ion channels (Taylor-Clark & Undem, 2006). We do not yet 

understand this neuroplasticity with regard to cough-associated pathologies, but it is 

possible that exposure to tussigenic agents could lead to long or short-term changes in 

the peripheral sensory nerves; or in the central nervous system, for example the NTS 

where airway sensory nerves synapse (Lee & Undem, 2008). 

 

Studies on subgroups of patients have shown that the cough reflex associated with 

respiratory viral infections, gastro-oesophageal reflux, COPD and ‘cough-variant’ 

asthma are hypersensitive to capsaicin challenge when compared to normal controls 

(Doherty et al., 2000; Higenbottam, 2002; Nakajima et al., 2006; O’Connell et al., 1996; 

Pecova et al., 2008; Plevkova et al., 2006). This suggests that there may be a common 

mechanism behind the augmented cough reflex in these diseases. As discussed above, 

the threshold for TRPV1 channel opening is reduced in the presence of low pH levels 

and inflammatory mediators. Since inflammation is associated with a lowering of 

physiological pH in the lungs (Hunt et al., 2000; Kostikas et al., 2002), and enhanced 

release of endogenous inflammatory mediators such as PGE2 and bradykinin (Choudry 

et al., 1989; Ellis & Fozard, 2002; Ho et al., 2000; Lee et al., 2002), it could be 

postulated that this is at least partially involved in the hypersensitivity seen to capsaicin 
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stimulation in inflammatory disease. Furthermore, a correlation between TRPV1 

expression and chronic cough has been established in humans, whereby there is 

increased TRPV1 channel density in the airways of patients suffering from chronic 

cough in comparison with healthy controls (Groneberg et al., 2004). Thus, there is 

growing evidence that the TRPV1 ion channel could be involved in chronic cough of 

various aetiologies. As yet there are no equivalent studies investigating changes in 

expression of other ion channels during disease states associated with excessive cough. 

However, an increase in TRPA1 expression in sensory nerves has been observed in 

models of pain (Diogenes et al., 2007; Obata et al., 2005). 

 

Studies investigating pain states have found that neuronal inflammatory signalling 

pathways converge on both the TRPA1 and TRPV1 ion channels to enhance C-fibre 

excitability via phospholipase C and protein kinase A-dependent mechanisms. It is this 

process which could enable these receptors to be major integrators of diverse 

inflammatory signals. Moreover, inflammatory oxidants, lipid products and protons can 

promote the activity of these ion channels, both through direct interaction and covalent 

modification of the receptor. Activation of the TRPA1 receptor via covalent 

modification is likely to be significant in pathological situations, given that oxidant 

stress induced by either an inflammatory response, or by exogenous irritants such as 

tobacco smoke, can generate reactive electrophilic molecules including acrolein, 4-HNE 

and 4-ONE (Bautista et al., 2006; Taylor-Clark et al., 2008a; Trevisani et al., 2007). 

Production of these compounds could then lead to coughing via activation of TRPA1 

ion channels. This may be of particular importance in highly polluted areas such as 

large cities, or in occupations where workers are chronically exposed to high levels of 

environmental irritants. Moreover, lipid metabolism can lead to the formation of 

endogenous electrophilic compounds e.g. cyclopentone ring-containing A- and J-series 

prostaglandins, which are formed as non-enzymatic dehydration products of PGE2 and 

PGD2, respectively. Prostanoids that contain one or two electrophilic carbons (e.g. 

15PGJ2, D12-PGJ2, 8-iso-PGA2, and PGA2) are therefore able to activate nociceptive 

neurons via direct interaction with TRPA1 (Taylor-Clark et al., 2008b). Prostaglandins 

such as PGE2 and the inducible form of cyclooxygenase (COX-2) are elevated in 

respiratory disease states at the site of inflammation (Montuschi et al., 2003; Nemoto et 

al., 1976; Profita et al., 2003). Taken together, this information would suggest that 

reactive prostanoids and other endogenous TRPA1 ligands, which are produced in 
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greater amounts during inflammation or oxidant stress, could evoke the excessive cough 

seen in conditions such as asthma and COPD (Birrell et al., 2009). 

 

1.8 Novel Therapeutic Targets for Cough 

 

Medications currently available for cough show little efficacy, and are associated with a 

number of side-effects (Karlsson & Fuller, 1999; Reynolds et al., 2004; Schroeder & 

Fahey, 2002). In fact, certain therapeutic strategies for excessive cough associated with 

respiratory disease do not utilise anti-tussives per se, but rather treat the underlying 

condition. However, in many cases this type of therapy does not alleviate the associated 

cough. The ideal anti-tussive therapy would suppress only enhanced cough associated 

with disease, while leaving the protective part of the reflex functional. It is not yet 

known if enhanced cough is due to peripheral or central sensitisation, or a combination 

of both, which makes selective targeting of excessive cough difficult. In general, 

centrally-acting suppressants are associated with neurological side-effects such as 

sedation, nausea and physical dependence, which limits their effective use. In contrast, 

peripherally acting anti-tussives exert their effects by targeting peripheral sensory nerve 

afferents, and could potentially provide a better approach than centrally acting drugs. 

 

1.8.1 Opiates 

 

Currently, the most effective cough therapies are of the opioid class, for example 

codeine, morphine and dihydrocodone. These agonists are thought to act on opioid 

receptors both centrally and peripherally, and are associated with a number of side-

effects. Codeine is associated with fewer side-effects than other opioids, and is 

consequently considered the gold-standard in anti-tussive therapy (McLeod et al., 2010; 

Reynolds et al., 2004). Dextromethorphan was developed as an isomer of the opioid 

levomethorphan, but acts on sigma receptors rather than classical opioid receptors. 

Because dextromethorphan has no analgesic or sedative properties, it is used as a 

constituent in many OTC preparations (Belvisi & Geppetti, 2004). New opioid peptides 

are also being investigated which do not bind to the classical opioid receptors. For 

example, nociceptin/orphanin FQ which binds to the NOP1 receptor has been shown to 

display anti-tussive activity in guinea pigs and cats (Lee et al., 2006; McLeod et al., 

2002). This anti-tussive activity was blocked by a NOP-selective antagonist (McLeod et 
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al., 2002). Thus, selective NOP receptor agonists are now in clinical development, and 

could provide a novel therapeutic approach to the treatment of cough (McLeod et al., 

2010). 

 

1.8.2 GABA receptor agonists 

 

Baclofen is an agonist of the γ-aminobutyric acid (GABA)-B receptor, which has been 

shown to inhibit capsaicin-induced cough in animal models (Bolser et al., 1993) and 

healthy human volunteers (Dicpinigaitis & Dobkin, 1997). Baclofen is thought to be 

centrally active, but there is evidence that a peripherally-restricted analogue also has 

anti-tussive activity (Bolser et al., 1994). Therefore, both centrally and peripherally 

acting GABA agonists might be useful in the treatment of cough. 

 

1.8.3 Cannabinoids 

 

Associated side-effects have hampered the use of non-selective cannabinoid compounds 

in therapeutic treatment (Belvisi et al., 2008; Patel et al., 2003). Cannabinoids mediate 

their effects via two known GPCRs, the CB1 and CB2 receptors. In rodents the CB1 

receptor is predominantly expressed throughout the CNS, but is also present at low 

levels in the periphery (Buckley et al., 2000; Herkenham et al., 1991). In contrast, the 

CB2 receptor is found for the most part in the periphery, primarily in immune-associated 

tissues such as the spleen, tonsils and lymphocytes; whereas expression is limited within 

the CNS (Buckley et al., 2000; Galiègue et al., 1995; Griffin et al., 1997; Munro et al., 

1993). Therefore, there is renewed interest in developing CB2-selective agonists as these 

are likely to be devoid of the CNS mediated side-effects of the older cannabinoid class 

therapeutics. Indeed, a CB2-selective agonist has been shown to inhibit sensory nerve 

depolarisation to a number of tussive stimuli in vitro, and coughing induced by citric 

acid in vivo. Moreover, this effect was blocked by a CB2-selective antagonist, thereby 

confirming the selectivity of the CB2 agonist compound (Belvisi et al., 2008). 
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1.8.4 TRPV1 antagonists 

 

TRPV1 is one of the most promising targets identified for cough therapy in the last 

decade. The efficacy of TRPV1 antagonists have been established in preventing both 

citric acid and capsaicin-induced cough (Lalloo et al., 1995; Trevisani et al., 2004). 

Moreover, chronic coughers of various aetiologies exhibit higher expression of TRPV1 

in the airways when compared to ‘healthy’ counterparts (Groneberg et al., 2004), 

indicating TRPV1 inhibitors as a potential therapy in disease. Though, it is of concern 

that drugs of this class may lead to unexpected side-effects if they become generally 

available to the public, as TRPV1 is widely expressed throughout the body. One issue 

which has already been identified is that currently available TRPV1 antagonists 

consistently cause hyperthermia, leading to the suggestion that TRPV1 is tonically 

active in thermoregulatory pathways (Gavva et al., 2008; Lehto et al., 2008). This side-

effect is a potentially confounding factor in the clinical development of TRPV1 drugs, 

as current research investigating inhibitors that do not affect body temperature have had 

only limited success (Lehto et al., 2008). Despite this, a number of TRPV1 antagonists 

are currently being developed as anti-tussives and analgesics (Gunthorpe & Chizh, 

2009). 

 

1.8.5 Bradykinin receptor antagonists 

 

Bradykinin elicits coughing in man (Choudry et al., 1989; Katsumata et al., 1991). ACE 

inhibitors have also been extensively reported to cause coughing in humans, an effect 

which has been suggested to be caused by accumulation of substances which are 

normally metabolised by ACE, including bradykinin (Carruthers, 1986; Fuller & 

Choudry, 1987; McNally, 1987). In agreement with this hypothesis, a B2 receptor 

antagonist was shown to inhibit ACE inhibitor-induced cough in guinea pigs (Fox et al., 

1996). More recently, it has been discovered that genetic polymorphisms exist for the 

BDKRB2 and PTGER3 genes (encoding the bradykinin B2 and prostanoid EP3 GPCRs, 

respectively), and that these polymorphisms are associated with ACE inhibitor cough 

(Grilo et al., 2011). This is a very interesting finding, as it is known that bradykinin 

causes cough via the B2 GPCR (Fox et al., 1996), and PGE2 causes cough via activation 

of the EP3 GPCR in guinea pigs (Maher et al., 2009). In addition to causing cough, 

bradykinin can also sensitise C-fibres to activation by other tussive mediators (Fox et 
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al., 1996). According to this data, the cough reflex could theoretically be inhibited with 

bradykinin B2 receptor antagonists, and may be effective in disease states where 

bradykinin is abundant in the lungs. 

 

1.8.6 EP3 receptor antagonists 

 

Prostaglandin E2 has beneficial properties in the lungs (Kay et al., 2006; Martin et al., 

2002; Walters et al., 1982), and has been identified as a potential therapy for asthmatics 

due to its anti-inflammatory and bronchodilator effects (Kawakami et al., 1973; Melillo 

et al., 1994; Walters et al., 1982). Unfortunately, PGE2 therapy induces coughing as a 

side-effect. Current theory suggests that the beneficial effects of PGE2 may be able to be 

separated from its detrimental effects by selectively targeting the associated GPCRs 

(Maher et al., 2009). Indeed, it has been established that PGE2 induces cough via the 

EP3 receptor (Maher et al., 2009), whereas recent evidence suggests that the 

bronchodilator effects may be mediated by the EP4 receptor (Buckley et al., 2011). 

Thus, cough associated with PGE2 could be inhibited by EP3 selective antagonists 

without affecting the beneficial properties of PGE2 within the airways. Furthermore, this 

therapy could be useful in disease states associated with an increase PGE2 production in 

the airways where cough is an aggravating symptom; or as a therapy for coughing 

elicited by medications, for example ACE inhibitors (see section 1.8.5). 

 

1.8.7 β2-adrenoceptor agonists 

 

β2-adrenoceptor agonists are currently one of the most effective bronchodilator 

treatments available, and are extensively used to alleviate bronchoconstriction 

associated with respiratory diseases such as COPD and asthma (Barnes, 2010a, 2010b; 

Campbell et al., 2005). The potential of β2-adrenoceptor agonists as a therapy for cough 

has been controversial. A number of clinical trials have revealed β2 agonists to possess 

anti-tussive properties in both healthy volunteers (Lowry et al., 1987) and chronic 

cough pathologies associated with allergic (Ellul-Micallef, 1983) or obstructive 

conditions (Campbell et al., 2005; Chong et al., 2005; Mulrennan et al., 2004; 

Pounsford et al., 1985). But other studies have not shown any anti-tussive effect (Chang 

et al., 1998; Smith et al., 1991). These conflicting results may be due to the data 

collection protocols used in these studies. For example, the use of subjective symptom 
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scoring measures; that few of these studies have been performed under double-blind, 

randomised and placebo-controlled conditions; and that cough is rarely a primary end-

point of the research. 

 

More recently, the β2 agonist terbutaline was shown to be effective at inhibiting tussive 

responses to both capsaicin and citric acid in a pre-clinical guinea pig cough model 

(Freund-Michel et al., 2010). Furthermore, both guinea pig and human airway sensory 

nerve responses to a number of tussive irritants were blocked with two different β2 

agonists in an in vitro isolated vagus nerve preparation. This provides evidence that 

these compounds directly inhibit the tussive reflex rather than having an effect 

secondary to their bronchodilator properties, possibly via opening of the large 

conductance calcium-activated potassium (BKCa) channels which would inhibit sensory 

nerve activation by inducing hyperpolarisation (Freund-Michel et al., 2010). Further 

studies are required to corroborate the above findings, coupled with well-controlled and 

blinded clinical investigation where cough is the primary end-point. If these studies 

prove to be efficacious, then β2 agonists could be introduced as an effective general 

(non-selective) anti-tussive therapy with an already proven acceptable safety profile in 

man. 

 

1.8.8 Methylxanthines 

 

Methylxanthines are another class of bronchodilator that are widely used in obstructive 

airway disease (Barnes, 2010a, 2010b), and have been proposed to inhibit the cough 

reflex. In particular, theophylline has been shown to exhibit anti-tussive properties in 

patients with poorly controlled asthma and ACE-inhibitor related cough (Bose et al., 

1987; Cazzola et al., 1993; Fairfax et al., 1990). Furthermore, theophylline is effective 

in the treatment of pain, which indicates an inhibitory action on sensory nerves, rather 

than anti-tussive effects secondary to bronchodilation (Pechlivanova & Georgiev, 2005; 

Rao et al., 2007). There has also been interest in investigating the anti-tussive effects of 

theobromine, another methylxanthine compound. It was recently shown that 

theobromine attenuates citric acid-induced cough in guinea pigs and capsaicin-induced 

cough in healthy human volunteers (Usmani et al., 2005). Again, this compound was 

demonstrated to inhibit sensory nerve activation in an in vitro model, giving further 

support for direct inhibition of the cough reflex, rather than effects secondary to 
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bronchodilation. Further clinical and pre-clinical trials need to be carried out to 

investigate the efficacy of methylxanthines in inhibiting excessive cough associated 

with disease, and to determine how these compounds are mediating their anti-tussive 

effects, but this class of compound could be considered a promising future anti-tussive 

therapy. 

 

1.9 Models of cough 

 

The main objective of an animal model is to provide a system in which to elucidate 

mechanisms and test potential therapies. Ideally, the model should parallel as closely as 

possible the condition in man. Development of an animal model that is predictive of the 

human cough reflex is difficult due to the fact that there are currently no efficacious 

anti-tussive drugs available for use in the clinic. Therefore there is no point of reference 

for which to compare the animal models to man. Despite this, both in vitro and in vivo 

models of cough have been developed and demonstrated to be useful in studying the 

underlying mechanisms behind the cough reflex, and in assessing the efficacy of 

potential anti-tussive treatments. Pre-clinical studies of the neural pathways involved in 

the cough reflex and its pharmacological regulation have been conducted in guinea pigs, 

rats, mice, rabbits, cats and dogs (Belvisi & Bolser, 2002). However, there are 

reservations about some of the models used. For example, many studies have been 

carried out under anaesthesia which appears to suppress neuronal conduction and 

activity in the CNS, and may be the source of discrepancy between several of the 

observations seen with RAR and C-fibre nerve responses to tussive stimuli (Belvisi & 

Bolser, 2002; Mazzone et al., 2005). Furthermore, there is scepticism regarding the 

ability of small rodents such as mice and rats to perform a cough that resembles the 

reflex seen in man. This is largely due to the reflexogenic origin of cough in rats, which 

appears to originate from the larynx rather than the tracheobronchial tree as it does in 

man; and the fact that mice do not have RARs or intraepithelial nerve endings, and are 

therefore thought not to have a fully functional cough reflex (Belvisi & Bolser, 2002). 

Whereas, the use of large animals such as cats, dogs and pigs involves a cost element, 

not only in the purchase price, but the expenses involved with maintaining the animals 

and the large quantities of drug required for screening purposes. Therefore, one of the 

most useful and convenient animal models which has been widely used in investigating 

the cough reflex is the guinea pig. 
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Results in a number of clinical trials have lead to the perception that animal models are 

not predictive of human cough. Although, it is difficult to know what drugs are effective 

in man, as few clinical trials are run under ideal conditions with cough as the primary 

endpoint, are not sufficiently powered, or do not have the appropriate controls. For 

example, neurokinin (NK) antagonists, either as selective or combined NK1, NK2 or 

NK3 recetpor antagonists, have been shown to be effective in a number of animal 

models, including guinea pigs, dogs, cats and rabbits (Advenier et al., 1993; Bolser et 

al., 1997; Canning, 2009; Girard et al., 1995; Nasra & Belvisi, 2009). However, NK 

antagonists have failed to show anti-tussive activity in human trials. This lack of effect 

could be due to the fact that cough is rarely a primary endpoint of clinical studies, and is 

quantified using subjective measures. There have also been clinical trials looking at NK 

antagonists where cough was the main outcome measure, but the results of these trials 

have not been reported (Canning, 2009; Nasra & Belvisi, 2009).  Furthermore, it is still 

not known which of the NK receptors is involved, or if a combination of these receptors 

contributes to cough; and according to data from animal models CNS penetration might 

be required for NK antagonists to be effective (Bolser et al., 1997). It is not clear 

whether there have been clinical studies performed with centrally acting compounds 

that target all three NK receptors; but there have been clinical trials using either 

receptor-selective or peripherally restricted NK antagonists. For example, an NK1-

selective compound (CP-99,994) from Pfizer was ineffective at inhibiting cough 

induced by hypertonic saline (Fahy et al., 1995). And DNK333, an NK1/NK2 antagonist 

from novartis was carried through for clinical testing after some success in the guinea 

pig (Lewis et al., 2007). However, this was reported to be a peripherally restricted 

compound, and subsequently showed no anti-tussive effects in humans. 

 

Another source of discrepancy between animal models and human cough is the limited 

efficacy of the opioid class of anti-tussives, which are consistently successful at 

inhibiting cough in animals but show variable efficacy in the clinic. This may highlight 

a difference in dosing, as researchers are not limited by toxicity and CNS effects (such 

as sedation) in pre-clinical models, but obviously doses are restricted in clinical trials. 

Therefore, some of the success of compounds in animal research may be due to the 

ability to use high doses of compound, which could subsequently be showing anti-

tussive activity due to sedation of the animals, rather than an actual inhibition of the 
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cough reflex. Below I will discuss in further detail the animal models relevant to my 

PhD thesis. 

 

1.9.1 Guinea pig isolated vagus nerve model 

 

In vitro models assessing isolated guinea pig vagus nerve depolarisation have been 

shown to be predictive of cough in vivo (Maher et al., 2009; Patel et al., 2003). This 

provides us with an effective tool with which to probe the cough pathways in an in vitro 

model, saving animals, time, and cost. Another benefit of the isolated vagus model is 

that we can replicate key studies and directly compare responses using human vagus 

tissue. On the other hand, though the isolated vagus preparation provides a 

comprehensive pharmacological assessment tool, the data collected should be 

interpreted with care as the agents being tested are applied to the axon of the vagus 

nerve instead of the nerve endings. This means that the extracellular depolarisation 

signal recorded represents a summation of the changes in membrane potential of all the 

nerve fibres (including RARs, SARs, Aδ-fibres and C-fibres) via activation of receptors 

expressed in the neuronal membrane of the axon. In addition, receptor expression and 

signal transduction mechanisms in the axon may differ from that at the peripheral 

endings (Patel et al., 2003). Furthermore, the vagus nerve innervates several organs in 

the body (including the heart and viscera), therefore not all fibres carried in the vagus 

nerve terminate in the airways. 

 

1.9.2 Mouse isolated vagus nerve model 

 

The mouse isolated vagus preparation has not been as well characterised as an 

assessment tool as the guinea pig described above. It is difficult to directly correlate in 

vitro vagus nerve results from mice to functional in vivo outcomes, as mice to not have 

a fully functional cough reflex. However, the afferent arm of the cough reflex still 

appears to be intact in mice as we observe depolarisation of the vagus nerve to tussive 

stimuli which are comparable to that of human and guinea pig isolated vagus (Maher et 

al., 2009; in-house data). I have used the mouse vagus nerve as a tool in my 

investigations largely because we have access to genetically modified animals, which 

will allow me to substantiate the results obtained from pharmacological antagonist 

investigations in the guinea pig vagus.  
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1.9.3 Human isolated vagus nerve model 

 

One of the major advantages of the isolated vagus preparation is that we are able to 

obtain human tissue. This has allowed me to verify they key data from animal tissue in 

an in vitro human model. 

 

1.9.4 Conscious guinea pig cough model 

 

The conscious guinea pig model of cough is generally considered to be a valid tool for 

studying the cough reflex, as there are a number of apparent similarities between 

coughing in guinea pig and man (Karlsson & Fuller, 1999). However, there are also 

some species differences between the effects of certain drugs. This could be due to the 

greater importance of peripheral afferent nerves in regulating guinea pig respiration, 

airway tone, and lung function in comparison to humans. Two alternative theories are 

that C-fibre afferents are distributed differently throughout the airways; or that stimuli 

activate different signalling pathways with different sensitivities to pharmacological 

intervention (Karlsson & Fuller, 1999). These discrepancies are likely to be due not 

only to species differences, but also to a lack of appropriate clinical testing (as discussed 

above). Therefore, despite some uncertainties, the guinea pig model has become the 

most frequently used animal model to test development compounds pre-clinically. 

 

1.9.5 Isolated primary neuronal cell model 

 

Cell bodies of vagal neurons can be isolated from the nodose and jugular ganglia, 

allowing subsequent analysis of the effects of both agonists and antagonists on a cellular 

level. TRP channels are non-selective cation channels, which allow calcium influx in to 

airway primary ganglia cells, thereby causing membrane depolarisation, subsequent 

opening of voltage-sensitive sodium channels, and the generation of action potentials. 

The use of fluorescent dyes allows assessment of both calcium influx in to ganglia cells 

and changes in membrane potential, using specialised imaging equipment. Airway-

specific responses can also be determined by the use of retrograde labelling. This 

preparation was recently established in our labs by Dr. Eric Dubuis, using neuronal cells 

isolated from guinea pig ganglia. This system not only allows us to investigate the 

ability of tussive agonists to activate airway-specific primary vagal ganglia cells, but 
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also to differentiate between cells originating from the nodose or jugular ganglia, and to 

determine how antagonists are mediating their inhibitory effects (e.g. by blocking 

calcium entry, activating potassium channels, or inhibiting voltage-gated sodium 

channels). There is also the potential to study other species, such as neuronal cells 

isolated from mouse ganglia, which would allow the use of genetically modified 

animals (though in this species the nodose and jugular ganglia are fused and not able to 

be separated). It is important to note that this preparation still does not allow 

differentiation between the types of nerve fibre being studied (e.g. C-fibre vs Aδ-fibre). 

Moreover, we are unable to determine if there are any phenotypical changes induced in 

the primary ganglia cells during the isolation and culture process. Despite these 

limitations, the use of isolated primary cells can aid in our understanding of the process 

by which both agonists and antagonists mediate their effects on a cellular level, which 

could be useful in the future development of targeted and selective cough treatments. 

 

1.10 Thesis Plan 

 

Acute cough serves to clear the airways of unwanted material, and is an important 

protective reflex. However, chronic cough associated with inflammatory disease no 

longer has a useful purpose, and can be damaging to the airways. As described in the 

introduction above, current anti-tussive treatments show little efficacy, and a more in-

depth understanding of the cough reflex in both healthy and disease states is required to 

develop better medications. Inflammatory airways diseases are associated with the 

enhanced release of PGE2 and BK, and a decrease in lung pH; and these mediators can 

both induce coughing, as well as sensitise the cough reflex to stimulation with other 

tussive irritants. It is therefore possible that enhanced release of these mediators could 

be driving the augmented cough response associated with disease states. The aim of this 

thesis was to test the hypothesis that TRPA1 and TRPV1 ion channels are driving the 

cough response to PGE2, BK and low pH. Identification of the ion channels mediating 

the tussive response to these agents could lead to the development of more effective and 

targeted anti-tussive treatments. To investigate this I have taken an interdisciplinary 

approach. Using both in vitro and in vivo models, the ion channel(s) responsible for the 

tussive effects of these agents were identified by: 
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• Utilising a range of TRPA1 and TRPV1 selective agonists and antagonists to 

characterise their potency, efficacy and selectivity in models of sensory nerve 

activity, cough and primary vagal ganglia cell stimulation. 

 

• Determining the ability of these selective antagonists to pharmacologically 

inhibit in vitro and in vivo stimulation of the cough reflex with PGE2, BK and 

low pH 

 

• Using isolated vagus nerves from genetically modified mice to investigate 

differences in response to the tussive stimuli, to parallel pharmacological 

experiments above. 

 

• Translational research, utilising human vagal nerve tissue which allowed me to 

parallel the above experiments, thereby confirming that the rodent models 

mirrored the response in human tissue. 
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CHAPTER 2 

 

Methodology 
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2.1 Introduction 

 

This chapter outlines the general methodology for the techniques used in this thesis. 

Specific details of individual experimental protocols and statistical analyses employed 

are given in the methods section of each chapter. All experiments were performed in 

accordance with the UK Home Office guidelines for animal welfare based on the 

Animals (Scientific Procedures) Act of 1986. Drugs/reagents and appropriate vehicles 

used in this thesis are listed in appendix 1. 

 

2.2 Breeding and Genotyping of Genetically Modified Mice 

 

2.2.1 Breeding 

 

Homozygous breeding pairs of mice genetically modified to disrupt the TRPA1   

(Trpa1-/-) or TRPV1 (Trpv1-/-) gene were obtained from Jackson Laboratories, USA. 

Heterozygous breeding pairs of mice devoid of one of the ASIC1 (Asic1+/-) alleles were 

obtained from Professor Fugger’s lab (John Radcliffe Hospital, University of Oxford), 

and subsequently bred in-house to obtain a homozygous Asic1-/- colony. Homozygous 

mice devoid of the ASIC3 (Asic3-/-) gene were obtained from Dr. Welsh’s lab 

(University of Iowa). 

 

 Upon arrival at Imperial College breeding pairs were housed in individually ventilated 

cages at the Central Biomedical Services, Sir Alexander Fleming Building, South 

Kensington. Animals were placed on a transgenic diet and provided with food and water 

ad libitum. All knockouts were bred on a C57Bl/6j background, are viable and fertile. 

Genotyping was routinely carried out on each colony to ensure gene disruption was 

maintained through subsequent generations. 

 

2.2.2 Genotyping 

 

Tail tips were taken and genomic DNA extracted using a non-chloroform mouse tail kit 

(Tepnel Life Sciences, Manchester, UK). Briefly, 0.5-1 cm tail tips were placed in 

autoclaved 1.5 ml eppendorf tubes and lysed overnight at 55°C in 175 µl reagent M1 

and 20 µl proteinase K solution (10 mg/ml in nuclease-free water). Upon removal from 
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the incubator 65 µl reagent M2 and 100 µl Nucleon Resin was added, the contents 

mixed and centrifuged at 2000 x g for 10 minutes. The aqueous phase was transferred to 

a fresh 1.5 ml eppendorf, taking care not to disturb the debris layer. One volume of 

100% isopropanol was added and the tubes inverted several times until DNA precipitate 

became visible. Samples were centrifuged at 2000 x g for 5 minutes to pellet the DNA. 

Supernatant was discarded, and the DNA washed with 70% ethanol. Tubes were briefly 

vortexed to dislodge the DNA pellet, the samples re-centrifuged at 2000 x g for 2 

minutes and supernatant discarded. The DNA pellet was air-dried at room temperature 

for 10 minutes, re-suspended in 100 µl nuclease-free water and allowed to sit at room 

temperature for 3 hours to re-hydrate. Samples were stored at -80°C until required for 

analysis. Upon removal from the freezer samples were allowed to defrost on ice. Purity 

and integrity of the DNA was assessed by A260/A280 spectrophotometry using a 

GeneQuant RNA/DNA quantifier (Amersham Pharmacia Biotech, UK). 

 

A neomycin cassette was inserted in to the target gene to produce the desired genotype. 

The neomycin cassette is a length of DNA that replaces the part of the gene that is 

deleted, and allows identificatiion of the cells that have undergone homologous 

recombination to incorporate the target vector. The cassette gives resistance to 

neomycin, allowing survival of mutant cells where neomycin kills the non-mutant cells. 

Primer sequences (Invitrogen, UK) were designed such that the wild type amplicon 

would span the disrupted site of the desired gene. This ensures that the wild type and 

KO can be easily differentiated based on the amplicon size. DNA sections in between 

the primer pairs were exponentially amplified using polymerase chain reaction (PCR). 

The PCR reaction mix contained 1x Green GoTaq Flexi Buffer, 0.2 mM dNTPs, 2 mM 

MgCl2, 1.25 µl enzyme, 10 pmol forward and 10 pmol reverse primers, and a volume of 

sample containing 50 ng DNA (or Nuclease-free water for control). Each sample was 

made up to 25 µl total volume with Nuclease-free water (Promega UK Ltd.). PCR 

reactions were carried out using ABI PRISM 7000 software (Applied Biosystems, 

Warrington, Cheshire, UK). Samples were heated to 95°C for 2 minutes followed by 40 

cycles of denaturing, annealing and extension steps. All samples were denatured at 

95°C for 30 seconds as this is dependent on the enzyme rather than the primer pairs. 

The annealing temperature is specific to the primer pair, depending on factors such as 

melting temperature and GC content. The temperature of the extension step is also 

primer dependent, and the length of time that the reaction is held for depends on the 
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product size i.e. the larger the expected product size, the longer the time needed 

(approximately 1 minute per 1000bp). A final extension step of 10 minutes at the same 

temperature was run to ensure that all products were full length. The reaction was then 

stopped by cooling to 4°C for 5 minutes. Specific details for the annealing and 

extension steps will be given in Chapter 3. 

 

The PCR products and a DNA ladder (Hyperladder IV, Bioline Ltd, London) were run 

on a 2% agarose gel in Tris Borate EDTA (TBE) buffer containing 0.05 µl/ml Safeview 

(NBS Biologicals Ltd, Huntingdon, UK) at 80 V for 1 hour. Finally, the gel was 

visualised under ultra-violet light and photographed. 

 

2.3 Isolated Vagus Nerve Preparation 

 

2.3.1 Nerve dissection 

 

Male Dunkin Hartley guinea pigs (350-500g, Harlan) or Male wild type (C57Bl/6j) or 

genetically modified (Trpa1-/-, Trpv1-/-, Asic1-/- or Asic3-/-) mice (18-20g) were 

sacrificed using 200 mg/kg sodium pentobarbitone. The neck was opened by mid-line 

incision to expose the trachea and thorax, and segments of vagus nerve caudal to the 

nodose ganglion were dissected free. The nerves were immediately placed in modified 

Krebs solution (mM: NaCl 118; KCl 5.9; MgSO4 1.2; CaCl2 2.5; NaH2PO4 1.2; 

NaHCO3 25.5 and glucose 5.6; pH 7.4) and bubbled with 95% O2 / 5% CO2. Each nerve 

was cleared of connective tissue and carefully desheathed prior to experimentation. Care 

was taken throughout to ensure that the nerve trunks remained in oxygenated Krebs 

solution, and that they were not stretched or damaged in any way. 

 

Human lung samples were either obtained through a collaboration with Harefield 

Hospital (tissue from transplant surgery excess to clinical requirements), or purchased 

from the International Institute for the Advancement of Medicine (IIAM, NJ, USA). 

Upon arrival at Imperial College, the lungs were immediately transferred to modified 

Krebs solution and bubbled with 95% O2 / 5% CO2. Cervical vagus and branches of the 

recurrent laryngeal nerves were dissected away from the trachea. The epineural and 

perineural sheath surrounding the vagus nerve in human airways is much tougher 

compared to that of guinea pig nerves, and is consequently harder to remove. As such, 
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special care was taken when attempting to desheath the nerve and it may not have been 

completely removed in all circumstances. The availability of human vagus nerve is 

scarce and therefore limits the number of experiments that can be performed, however, 

where possible key experiments have been carried out. Segments of nerve 

approximately 20-30mm long were prepared for measurement of depolarisation. The 

vagus nerves of seven donors (5 Female, 2 Male; 27-72 years) with no known 

respiratory disease were used in these experiments. 

 

2.3.2 Measurement of depolarisation 

 

The desheathed nerve trunk was mounted in a ‘grease-gap’ recording chamber (Figure 

2.1). The nerve was drawn longitudinally through a narrow channel (2mm in diameter, 

10mm in length) in a Perspex block. Larger chambers were available for human vagus 

nerves. The centre of the channel was filled with Vaseline, injected on to the middle of 

the vagus through a side-arm when the nerve was in place, creating an area of high 

chemical and electrical resistance, thereby isolating the extracellular space between the 

two ends of the nerve, which did not allow the passage of ions or drugs between 

solutions. One end of the nerve emerging into a wider channel was constantly 

superfused with Krebs solution with a flow rate of approximately 2 ml/min. Ag/AgCl 

electrodes (Mere 2 Flexible reference electrodes, World Precision Instruments), filled 

with Krebs solution, made contact at either end of the nerve trunk and recorded 

potential difference via a DAM50 differential amplifier (World Precision Instruments). 

Voltages were amplified x10, filtered at 1000Hz and sampled at 5Hz. 

 

A change in membrane potential in response to stimulation (compound potential) of the 

vagus nerve fibres is detected by means of ionic exchange (mainly sodium and 

potassium) through the cell membrane (Figure 2.2). When one end of the nerve is 

stimulated with an agonist, Na+ ions present in the Krebs solution move in to the nerve 

cell, leaving excess Cl- ions. These Cl- ions interact with the AgCl electrode making 

contact with that end of the nerve, giving an electrical charge to the circuit. In contrast, 

there would be no change in the Cl- interaction with the electrode on the ‘resting’ side of 

the nerve. This causes a difference in potential between the two electrodes, which is 

amplified by the differential Bio-amplifier DAM50 and recorded by the chart recorder 

(Lectromed Multitrace2) as depolarisation of the nerve. During repolarisation, K+ ions 
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move out of the nerve cell, which cause Cl- ions to dissociate from the AgCl electrode, 

leading to a loss of electrical charge from the circuit. As a result, the potential difference 

between the two electrodes becomes more equal, and this is recorded as repolarisation. 

It should be noted that this preparation does not measure firing of action potentials but 

changes of membrane potential (or compound potentials), and therefore cannot 

distinguish between a sub-threshold and supra-threshold depolarisation (Figures 2.2 & 

2.3). 

 

Temperature of the perfusate was maintained at 37oC by a water bath. Two systems 

were run in parallel allowing experiments and measurements to be taken from two 

different pieces of vagus simultaneously. The superfusing medium could be changed 

quickly with little artefact, by means of a multi-way tap. The new solution would reach 

the recording site with a delay of approximately 20 seconds. Vagus nerve depolarisation 

was induced by 2min perfusion of a known concentration of agonist on to the exposed 

end of the nerve, measured in millivolts (mV) and recorded on a pen chart recorder, 

calibrated such that 1mm was equivalent to 0.01mV. Following stimulation the nerve 

was washed with Krebs solution until responses returned to baseline. Each nerve section 

was stimulated no more than six times. Specific compounds used in experiments will be 

described in the results chapters. 

 

 

Figure 2.1. Diagram of the 

isolated vagus system. 

The vagus nerve trunk was 

drawn through a narrow 

channel, and the two ends of 

the nerve electrically 

isolated with petroleum jelly. 

One end of the nerve (right) 

was bathed in Krebs solution 

and the other (left) superfused with either Krebs or the ligand being tested at a set drip rate of 2 

ml/min. Electrodes made contact with either end of the nerve trunk, and measured the difference 

in electrical potential between the two ends. Nerve depolarisations were documented on a pen 

chart recorder. 

 

Chart Recorder

Krebs / Drugs Vaseline

Nerve AgCl Reference
Electrode

AgCl Electrode
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Figure 2.2. Explanation of membrane potential and depolarisation.  

A. In the resting state, membrane potential is approximately -70 mV inside 

the cell compared to outside. This is largely due to the negative charge of 

proteins within the cell, and the large concentration of positively charged 

sodium outside the cell. 

B. Activation of a ligand-gated ion channel, e.g. by binding of a ligand to 

its receptor, causes an influx of positively charged ions in to the cell down 

electrical and concentration gradients. For example, a number of the TRP 

channels are selective for calcium ions, but also allow the passage of other 

cations. This causes depolarisation, making the inside of the cell less-

negative compared to the outside. In this example, the charge within the 

cell reaches -60 mV, which is not enough to cause the voltage-gated sodium 

(NaV) channels to open (i.e. it does not reach ‘threshold’). Action potentials 

are an all-or-none response; therefore, there is membrane depolarisation 

but no generation of action potentials. 

C. If the membrane voltage does reach threshold, then the NaV channels are 

activated, causing a massive influx of positively charged sodium ions in to 

the cell. This then leads to the generation of action potentials which are 

propagated along the nerve towards the CNS. 
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Figure 2.3. Illustration of an action potential.  

Action potentials are an all-or-none response, meaning that 

membrane depolarisation must reach a certain threshold in order 

to activate action potential generation. Action potentials are 

always the same, no matter how strong the stimulus. The strength 

of a stimulus is interpreted by the CNS in terms of how many action 

potentials are generated, and how they are spaced in time. 

A. Resting membrane potential is approximately -70 mV. Opening 

of membrane-bound ion channels causes depolarisation. 

B. If membrane depolarisation reaches threshold, voltage-gated 

sodium channels will open, causing a massive influx of positively 

charged sodium ions, which quickly depolarises the cell membrane 

to approximately +30 mV. This is the ‘action potential’ which is 

propagated along the nerve to the CNS. 

C. At depolarised potentials, voltage-gated sodium channels 

inactivate, thereby stopping any further depolarisation of the cell 

membrane. In addition, voltage-gated potassium channels open, 

causing positively-charged potassium to flow down its 

concentration gradient, thereby repolarising the cell. 

D. An action potential is always followed by an ‘absolute refractory period’, during which time the sodium channels are inactivated, and another action 

potential cannot fire. This is followed by a ‘relative refractory period’ during which time it is difficult to activate another action potential because 

potassium efflux has hyperpolarised the cell membrane. This ensures that propagation of action potentials can only go in one direction, towards the 

CNS. Finally, the cell membrane polarises to its resting potential. 
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2.3.3 Agonist and antagonist experimental protocols 

 

Non-cumulative concentration-response curves were established for a number of known 

tussive stimuli. Equivalent stimulations with vehicle solutions were also tested to ensure they 

did not elicit nerve depolarisation of themselves. Stimuli were applied for 2 minutes, and then 

the tissue washed with Krebs solution until baseline was re-established. The magnitude of 

depolarisation (mV) for each concentration of agonist was recorded. After characterising the 

response to tussive agents on the vagus nerve, a sub-maximal concentration of each agonist 

was chosen to profile the effect of selective antagonists. 

 

A classic pharmacological profile was used to assess the effect of an antagonist on agonist 

responses. Briefly, agonist was applied for 2 minutes and washed with Krebs, this was 

repeated to determine an average normal depolarisation. The nerve was then incubated with a 

concentration of antagonist for 10 minutes, immediately followed by 2 minutes incubation of 

agonist in the presence of antagonist and the degree of inhibition recorded. The agonist and 

antagonist were washed off, and a final 2-minute stimulation with agonist alone was 

performed to ensure nerve viability (Figure 2.4). The ability of the antagonist to inhibit 

agonist responses was calculated by comparing the magnitude of depolarisation induced in 

the presence of the antagonist with that of the initial two agonist-only stimulations, and 

expressed as % inhibition. Antagonist concentration-response curves were initially 

established against receptor-selective agonists to determine concentration-related inhibition. 

In addition, the effect of vehicle incubation was established to ensure that this was not having 

an effect on nerve stimulation. The concentrations of antagonists used in all subsequent 

experiments were that which produced the highest inhibition of its corresponding selective 

agonist without affecting the agonist for the alternate receptor. 
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Figure 2.4. Example of a trace showing the protocol for testing antagonists. 

Two 2-minute stimulations of an agonist were applied to the vagus nerve, ensuring reproducible 

depolarisations, this was followed by a wash-out period to re-establish baseline. An antagonist was 

then incubated for10-minutes, followed immediately by a 2-minute stimulation with agonist in the 

presence of antagonist. Both agonist and antagonist were then washed out to re-establish baseline 

and clear the antagonist. A final 2-minute stimulation of the vagus nerve by the agonist was applied to 

ensure recovery of the initial response and nerve viability. 

 

 

2.4 Conscious Guinea Pig Cough Model 

 

All experiments were performed in accordance with the U.K. Home Office guidelines for 

animal welfare based on the Animals (Scientific Procedures) Act of 1986. Conscious, 

unrestrained guinea pigs (250-350 g, Harlan, UK) were placed in individual Perspex 

chambers (Buxco, USA). The apparatus consisted of two chambers, linked to a single 

nebuliser, allowing exposure of two animals to the same stimulus simultaneously. Guinea 

pigs were initially placed in the chambers and allowed to acclimatise for at least 5 minutes. 

Guinea pigs were then exposed to a nebulised aqueous solution of tussive agent or the 

appropriate vehicle (details for each stimulus are given in the results chapters). Aerosol was 

generated with an Aerogen nebuliser (Buxco, USA), and coughs counted for a total of 10 

minutes. Each chamber was fitted with a microphone which amplified the cough sounds, and 

was connected to an external speaker. Coughs were detected by both pressure change and 

sound, and recorded by a Buxco Cough Analyser (Buxco, USA). A trained observer also 

manually counted the coughs, which were recognised by the characteristic opening of the 

mouth, stance and posture of the animal, the sound produced, and the flow recordings. For 

the antagonist studies, suspensions were dosed i.p. (maximum 10 ml/kg over two injection 

sites) one hour prior to agonist stimulation. Animals were monitored for any adverse events 

during this period. At the end of each experiment, the guinea pigs were euthanised with an 

overdose of sodium pentobarbitone (200 mg/kg).  

Agonist incubation

Antagonist incubation
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2.5 Isolated Primary Vagal Ganglia Cells 

 

2.5.1 Cell dissociation 

 

Male Dunkin-Hartley guinea pigs (300-500g) were sacrificed by i.p. injection of sodium 

pentobarbitone (200 mg/kg). To dissect the vagal ganglia, the top of the skull was cut away 

and the brain removed. The ear bone on one side was then carefully removed to expose the 

jugular and nodose ganglia underneath. The surrounding membrane was cut away, the 

ganglia freed from adhering connective tissue and immediately placed in ice-cold Hank’s 

balanced salt solution (HBSS; mM: 5.33 KCl, 0.441 KH2PO4, 138 NaCl, 0.3 Na2HPO4-7H2O, 

5.6 glucose, 5 HEPES; pH 7.4). This process was repeated for the second set of ganglia. 

Under a microscope in a sterile hood the nodose and jugular ganglia were cleared of any 

remaining connective tissue, and placed in room temperature sterile HBSS. The ganglia cells 

were then isolated using a two step enzymatic digestion technique. To break down the 

extracellular matrix and collagen, ganglia were incubated in activated papain buffer (Sigma; 

Papain 200 active units/ml [U/ml] in HBSS supplemented with 0.4 mg/ml L-cysteine, 0.5 

mM EDTA and 1.5 mM CaCl2) for 30 minutes at 37°C, with gentle agitation every 5 

minutes. After centrifugation for 2 min at 1400 rpm, the papain buffer was disposed of, and 

the ganglia incubated at 37°C for 40 minutes Ca2+-free and Mg2+-free HBSS containing type 

4 collagenase (CLS4, Worthington,  320 U/ml) and Dispase II (Roche; 1.92 U/ml at 37°C), 

with gentle agitation every 5-10 minutes. The cells were again centrifuged at 1400 rpm for 2 

min, and the collagenase solution carefully removed. The cells were dissociated from 

remaining tissues, axons and satellite cells by tituration in 1 ml HBSS at room temperature 

with fire-polished glass Pasteur pipettes of decreasing tip pore size from 1 mm to 0.3 mm. 

Cells were separated from the remaining tissue by centrifugation for 9 min at 22°C (1400 

rpm) in L15 medium containing 20% Percoll (v/v). The Percoll was washed off using 2 ml 

L15 medium, and after centrifugation (2300 rpm for 3 min at 22°C) the cells were 

resuspended in complete F-12 medium containing 10% FBS and 1% penicillin/streptomycin 

(Sigma Aldrich; final solution 2 U/ml penicillin and 10 mg/ml streptomycin). The cells were 

then plated on poly-d-lysine/Laminin (Sigma; 22.5 µg/ml) coated fluorodishes. After the 

suspended primary ganglia cells had been allowed to adhere for 2h in a 37°C, 95% O2 / 5% 

CO2 environment, the cell-attached fluorodishes were gently flooded with 2 ml of complete 

F12 medium. The plates were used for experimentation within 24h. 
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2.5.2 Loading cells with fluorescent dyes 

 

Changes in intracellular calcium were determined by imaging of a dye which fluoresces upon 

binding to calcium. For initial experiments, fluorodishes were loaded with Fluo-4 AM (6 µM; 

Invitrogen) in extracellular solution (ECS; containing in mM: KCl 5.4, NaCl 136, MgCl2 1, 

CaCl2 1.8, NaH2PO4 0.33, D-Glucose 10, HEPES 10; pH adjusted with NaOH to 7.4 at 37°C) 

and incubated for 40 min in the dark at 25°C. The fluorodishes were then washed with ECS 

and the Fluo-4 AM dye was allowed to de-esterify to Fluo-4 for 30 min in the dark at 25°C 

before use. This was later changed for the ratiometric dye Fura-2 AM (3 µM; Invitrogen), 

using the same loading protocol, because Fura-2 is a ratiometric dye it is more suitable for 

longer experiments (such as the antagonist studies). Using a ratio of calcium-bound versus 

calcium-free signals avoids issues associated with photo bleaching of the dye, which causes a 

decrease in the subsequent signal when non-ratiometric dyes are used. AM dyes were used as 

a means of loading the hydrophilic Fluo-4 and Fura-2 dyes into the ganglia cells. AM esters 

make the dyes sufficiently hydrophobic that they are able to passively pass through the cell 

membrane by simply adding them to the extracellular medium. Intracellular esterases then 

cleave the AM group, and trap the dye inside the cell (Paredes et al., 2009). 

 

To record membrane potential changes, primary ganglia cell membranes were bound to the 

potentiometric dye 4-[2-[6-(dioctylamino)-2-naphthalenyl]ethenyl]-1-(3-sulfopropyl)-

pyridinium (Di-8-ANEPPS; Invitrogen). Di-8-ANEPPS is a fast-response probe which 

exhibits a uniform change in fluorescence of approximately 7.5% per 100 mV change in 

membrane voltage (Hardy et al., 2006). Cells were loaded with Di-8-ANEPPS in ECS in the 

dark, during de-esterification of the calcium dye, loading time did not exceed 20 min and the 

cells were used immediately. During loading, temperature was maintained between 10-20°C 

to prevent internalisation of the dye and maximise localisation within the cell membrane. 

 

Fluo-4 is excited by a Xenon light at λ=485 nm and emitted fluorescent light is recorded at 

λ=520 nm. Fura2 is excited at λ=340 nm and λ=380 nm and emitted fluorescence recorded at 

λ=520 nm. Di-8-ANEPPS is excited at λ=470 nm and recorded at λ=700 nm (Figure 2.5). 
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A. Fluo-4 

 

B. Fura-2 

 

C. Di-8-ANNEPS 

 

Figure 2.5. Absorption spectra, emission spectra and filters for each of the fluorescent dyes used 

in imaging experiments. 

Dashed lines represent absorption spectra, and solid lines represent emission spectra. Coloured 

bands represent the filter and bandwidth used to excite and record each fluophore. (b) Green traces 

denote calcium-bound Fura-2 and blue traces denote calcium-free Fura-2. 
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2.5.3 Intracellular calcium and membrane voltage imaging 

 

Intracellular free calcium ([Ca2+] i) measurements and membrane voltage changes were 

performed in dissociated jugular and nodose cells. Each fluorodish was placed in a full 

incubation chamber mounted at 37°C on the stage of a widefield inverted microscope Zeiss 

Axiovert 200 (Carl Zeiss Inc., NY, USA) equipped with an Hamamatsu EM-CCD C9100-02 

camera for ultrafast low light imaging run by Simple PCI software. The cells were constantly 

superfused with 37°C ECS buffer using a house-designed pressurised solution-changing 

perfusion system allowing complete bath (600 µl volume) replacement in 3s (Figure 2.6). 

Prior to experiments, the cells were superfused for 5-10 min with ECS-only. Cells were 

excited and signal recorded using a Xenon gas Arc lamp Cairn ARC Optosource Illuminator, 

a Quad filter set Ex 485-20 Bs 475-495 Em 510-53120x and a LD Plan-Neofluar AIR Korr 

objective. 

 

 

Figure 2.6. Diagram of the pressurised solution-changing perfusion system. 

Pressurised gas is used to force the selected solution in to the imaging plate. Changes in fluorescence 

(from the calcium or voltage dyes) induced by perfusion of the solution is imaged via an 

epifluorescence microscope equipped with an appropriate set of filters changed via a filter wheel. Still 

images are captured by a camera every 1-20 seconds, and displayed on a computer screen. Excess 

solution is drawn out of the imaging plate by a negative pressure vaccum pump, with waste collected 

in a sealed container.  
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Potassium chloride in modified ECS solution (K50; containing in mM: 50 KCl, 91.4 NaCl, 1 

MgCl2, 2.5 CaCl2, 0.33 NaH2PO4, 10 glucose, 10 HEPES; adjusted to pH 7.4) was applied at 

the start and end of each experiment for 10s to assess cell viability and allow for 

normalisation of subsequent agonist signals. Concentrations of agonist were applied for 20-

60s, and antagonists for 60s. After each application of agonist, perfusion was switched back 

to ECS until complete recovery to baseline of the calcium level. The same pharmacological 

antagonist protocol was used as the isolated vagus preparation (described in section 2.3.3), 

with the only variation being that the antagonists were incubated for a shorter period (60s) 

prior to agonist stimulation.  To take into account the multiphasic responses obtained in some 

cells, [Ca2+] i data were measured as total area under curve (A.U.C; total elevation of calcium 

above resting level over time), and expressed as % of the K50 A.U.C response to normalise 

the data between experiments. Only ganglia cells producing a fast response to K50 

stimulation which was washable within 5min, and that had diameter of over 20 µm were 

analysed. In contrast, peak amplitude change in fluorescence of Di-8-ANNEPS was used to 

measure membrane voltage changes, expressed as % of K50 peak amplitude to normalise the 

data. In the results sections for all imaging experiments, n-numbers will be expressed as ‘N’ 

= number of animals and ‘n’ = total number of cells recorded from. 

 

2.5.4 Retrograde labelling of airway primary vagal ganglia cells 

 

Conscious male Dunkin Hartley guinea pigs (250-300g) were dosed i.n. with 1 ml/kg of a 

lipophilic carbocyanine dye DiIC18(3),1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine 

perchlorate (DiI; Invitrogen). DiI has a very low cytotoxicity, and is highly fluorescent and 

photostable when incorporated into membranes. This dye uniformly labels neuronal cells via 

lateral diffusion in plasma membranes at a rate of 6mm a day in vivo due to an active dye 

transport process. DiI exhibits maximum excitation and emission fluorescence wavelengths at 

approximately λ=520-550 nm and λ=570 nm, respectively (Figures 2.7 & 2.8). A stock 

solution of 12.5 mg/ml DiI was made up in 100% ethanol. The solution was kept covered in 

aluminium foil to avoid bleaching of the dye in light. Immediately before use, the stock 

solution was diluted in 1/50 with 0.9% saline to make a final working concentration of 0.25 

mg/ml DiI and 2% ethanol in saline. 
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Fourteen days after i.n. dosing with DiI (1 ml/kg), the guinea pigs were sacrificed by i.p. 

injection of pentobarbitone (200 mg/kg), the primary vagal ganglia cells isolated, and calcium 

imaging experiments carried out as described above. This allowed sufficient time for the DiI 

tracer to travel to the vagal ganglia and stain airway cells (Undem et al., 2004). 

 

 

Figure 2.7. Absorption spectra, emission spectra and filters for DiI. 

Dashed lines represent absorption spectra, and solid lines represent emission spectra. Coloured 

bands represent the filter and bandwidth used to excite and record the fluophore. 

 

 

 

Figure 2.8. Fluorescent staining of airway primary vagal ganglia cells. 

Isolated sensory cells collected 14 days after i.n. dosing of guinea pigs with DiI. Staining is shown in 

the middle panel. Primary ganglia cells are outlined in yellow on bright field images (left) and on 

combined bright field / DiI fluoresence images (right). In this example, 1 out of 3 cells are stained. 
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CHAPTER 3 
 

 

Characterisation of Models and 

Pharmacological Tools 
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3.1 Rationale 

 

Both capsaicin and resiniferatoxin are well-established TRPV1-selective agonists that have 

been shown to induce coughing in humans and animals (Karlsson & Fuller, 1999; Lalloo et 

al., 1995; Morice et al., 2007, 2001; Trevisani et al., 2004). However, the role that other 

receptors play in the cough reflex has yet to be studied in detail. In this chapter I test the 

hypothesis that, due to its co-expression on nociceptive neurons and ability to bind a 

multitude of known noxious stimuli, the TRPA1 ion channel is another potential tussive 

mediator. These studies are important because many environmental and endogenous irritants 

are known to be TRPA1 or TRPV1 activators, and as such these receptors could play a role in 

cough hypersensitivity associated with inflammatory airways disease. In particular, a 

decrease in airways pH and an increase in the release of endogenous inflammatory mediators 

such as PGE2 and BK have been associated with airways disease. All three of these mediators 

induce coughing of themselves, and can also sensitise the cough response to other tussive 

mediators (Choudry et al., 1989; Costello et al., 1985; Katsumata et al., 1991; Lalloo et al., 

1995; Maher et al., 2009). Low pH directly gates the TRPV1 ion channel, and PGE2 is 

thought to activate TRPV1 downstream of its G protein-coupled receptor. Furthermore, BK 

mediates some of its nociceptive effects via activation of the TRPA1 or TRPV1 ion channels 

through the intracellular phospholipase C pathway. Due to their activation by such a wide 

variety of compounds, it is possible that TRPA1 and TRPV1 could be mediating the cough 

induced by these endogenous irritants. 

 

In order to investigate a role for TRPA1 and TRPV1 in mediating the tussive effects of low 

pH, PGE2 and BK, it was initially necessary to characterise the in vitro and in vivo models of 

cough that I would be using. I began with an in vitro isolated vagal tissue preparation, which 

is a well-established model in our lab, and has been shown to be predictive of the cough 

reflex in vivo (Maher et al., 2009; Patel et al., 2003; Usmani et al., 2005). The isolated vagus 

nerve system provides an ideal opportunity to pharmacologically assess TRP receptor 

agonists and antagonists, while avoiding potential pharmacokinetic issues which are inherent 

in in vivo models. This system also allows for comprehensive characterisation with lesser 

quantities of compound compared to in vivo, and reduces both the number of animals and 

cost. Moreover, a number of species can be used. Guinea pigs, unlike rats and mice, possess a 

functional cough reflex and were therefore the species of choice for the in vitro model. 

Mouse vagus nerves can also be used in this system; though mice do not possess a cough 
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reflex per se, the afferent arm of the reflex still appears to be intact and behaves similarly to 

guinea pig and human vagus nerves (Birrell et al., 2009; Maher et al., 2009). This permits the 

use of genetically modified animals which have had the TRPA1 or TRPV1 gene disrupted, 

allowing investigation in to the importance of a particular receptor without pharmacological 

intervention. I also had access to human vagus nerves obtained from donor tissue surplus to 

clinical requirement and donated for scientific research purposes, thereby allowing 

verification of the key results in a human model (for patient details refer to Chapter 2). The 

initial aims of this chapter were, therefore, to assess the ability of TRPA1 and TRPV1 

agonists to depolarise isolated vagus nerves; to determine the ability of TRPA1 and TRPV1 

antagonists to inhibit this response; and to establish the selectivity of these compounds for 

their reported receptors. 

 

Though many pharmacological compounds show promise in vitro, their effects do not always 

translate in vivo due to pharmacokinetic and pharmacodynamic issues. Guinea pigs are the 

only small animal to exhibit a functional cough reflex which resembles human cough. These 

animals provide the opportunity to assess a functional cough reflex at a much lower cost than, 

for example, the cat or dog. TRPV1 agonists are already known to induce coughing in guinea 

pigs, and both capsaicin and citric acid have been established as reliable tussive agonists in 

our lab. Therefore, the second aim of this chapter was to verify the in vitro findings on the 

vagus nerve in a conscious guinea pig cough model. That is, to establish the ability of TRPA1 

agonists to induce cough, and the efficacy of the TRP-selective antagonists to inhibit cough 

in vivo. 
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3.2 Methods 

 

3.2.1 Genotyping of Genetically Modified Mice 

 

Breeding pairs of mice devoid of the Trpa1, Trpv1, Accn2 (ASIC1) or Accn3 (ASIC3) genes 

were backcrossed on to the C57Bl/6j background. Homozygous breeding pairs of Trpa1-/- and 

Trpv1-/- mice were purchased from Jackson Laboratories (USA) and Asic3-/- mice were kindly 

provided by Dr. Welsh (University of Iowa). Heterozygous Asic1+/- mice were provided by 

Professor Fugger (John Radcliffe Hospital, University of Oxford) and subsequently bred to 

obtain a homozygous knockout colony. Breeding colonies were maintained at Imperial 

College, London. 

 

Following DNA extraction and quantification, the DNA sections in between the primer pairs 

were exponentially amplified using PCR (see chapter 2, section 2.2.2 for details). Samples 

were heated to the denaturing temperature for 2 minutes, followed by 40 cycles of denaturing, 

annealing and extension steps (specified in Table 3.1). A final 10 minutes at the same 

temperature as the extension step was run to ensure that all products were full length. The 

reaction was then stopped by cooling to 4°C for 5 minutes. The PCR products and a DNA 

ladder (Hyperladder IV, Bioline Ltd, London) were run on a 2% agarose gel in Tris Borate 

EDTA (TBE) buffer containing 0.05 µl/ml Safeview (NBS Biologicals Ltd, Huntingdon, UK) 

at 80 V for 1 hour. Finally, the gel was visualised under ultra-violet light and photographed. 

Expected base pairs (bp) for the wild type and knockout primers are detailed in Table 3.1. 

Wild type and knockout primers for the TRPA1, TRPV1 and ASIC3 genes were run and 

visualised in the same reaction, whereas, primers for the ASIC1 gene were run in separate 

reactions. 
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Table 3.1. Genotyping PCR conditions and expected primer bands for wild type and 

genetically modified mice. 

 

Mouse Type PCR Conditions Expected Primer Bands 

 Denaturing Annealing Extension Wild Type Knockout 

TRPA1 30 s / 95°C 30 s / 68°C 60 s / 72°C 317 bp 184 bp 

TRPV1 30 s / 95°C 60 s / 64°C 60 s / 72°C 984 bp 600 bp 

ASIC1 30 s / 94°C 30 s / 65°C 60 s / 75°C 267 bp 280 bp 

ASIC3 30 s / 94°C 30 s / 59°C 60 s / 68°C 400 bp 600 bp 

Abbreviations: bp = base pairs; s = seconds 

 

 

3.2.2 Characterisation of the isolated vagus nerve preparation 

 

3.2.2.1 Guinea pig vagus nerve 

 

Non-cumulative concentration-response (CR) curves were established for a number of 

TRPV1- and TRPA1-selective stimuli. In the guinea pig, CRs were established for the 

TRPV1 agonists capsaicin (0.1, 1, 10, 100 µM) and resiniferatoxin (1, 3, 10, 30 nM); and the 

TRPA1 agonists acrolein (0.1, 0.3, 1, 3 mM), cinnamaldehyde (0.1, 0.3, 1, 3 mM), and allyl-

isothiocyanate (0.1, 0.3, 1, 3 mM). An equivalent stimulation with vehicle (0.1% DMSO v/v 

for all agonists) was also tested to ensure this did not elicit nerve depolarisation of itself. 

Stimuli were applied for 2 minutes, and then the tissue washed with Krebs solution until 

recovery of baseline. After characterisation, sub-maximal concentrations of agonist (1 µM 

capsaicin and 300 µM acrolein) were chosen to profile the effect of TRPA1- and TRPV1-

selective antagonists. 

 

A concentration of antagonist was applied to the vagus in combination with the agonist to 

measure degree of inhibition in depolarisation (detailed in chapter 2, section 2.3.3). CRs for 

the TRPV1 antagonists capsazepine (1, 3, 10 µM) and JNJ17203212 (0.1, 1, 10, 100 µM) 

were established against 1 µM capsaicin; and the TRPA1 antagonist HC-030031 (3, 10, 30 

µM) against 300 µM acrolein. In addition, the effect of vehicle (0.1% DMSO v/v for all 

antagonists) was established to ensure that this was not having an effect on nerve stimulation. 

The concentration of antagonist which produced maximal inhibition was then tested against 
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the alternate agonist to demonstrate that there was no off-target effect at the selected 

concentration. Therefore, 10 µM capsazepine and 100 µM JNJ172032121 were tested against 

300 µM acrolein; and 10 µM HC-030031 was tested against 1 µM capsaicin. 

 

3.2.2.2 Mouse vagus nerve 

 

Non-cumulative CR curves in wild type C57Bl/6j mice were established for capsaicin (0.1, 1, 

10, 100 µM), resiniferatoxin (1, 3, 10, 30 nM), acrolein (0.1, 0.3, 1, 3 mM), cinnamaldehyde 

(0.1, 0.3, 1, 3 mM) and allyl-isothiocyanate (0.3, 1, 3, 10 mM), or vehicle (0.1% DMSO v/v) 

as described for the guinea pig above. After characterising the response to tussive agents on 

the vagus nerve, sub-maximal concentrations of agonist (1 µM capsaicin and 300 µM 

acrolein) were chosen for further experiments. The ability of these agonists to activate vagus 

nerves from Trpa1-/- and Trpv1-/- mice was compared to wild type (C57Bl/6j), thereby giving 

an indication of their selectivity at the concentration chosen. 

 

TRPA1- and TRPV1-selective antagonist CRs were then established for the mouse. The 

TRPV1 antagonists capsazepine (1, 3, 10 µM) and JNJ17203212 (1, 10, 100 µM) were tested 

against 1 µM capsaicin; and the TRPA1 antagonist HC-030031 (3, 10, 30 µM) was tested 

against 300 µM acrolein. In addition, the effect of vehicle (0.1% DMSO v/v) was established 

to ensure that this was not having an effect on nerve stimulation. The concentration of each 

antagonist which produced maximal inhibition was then tested against the alternate agonist to 

demonstrate the selectivity of the antagonist at this concentration. Therefore, 10 µM 

capsazepine and 100 µM JNJ172032121 were tested against 300 µM acrolein; and 10 µM 

HC-030031 was tested against 1 µM capsaicin. 

 

3.2.2.3 Human vagus nerve 

 

Due to the scarcity of human vagus tissue, only selected concentrations of agonist and 

antagonist were tested, based on effective concentrations in the guinea pig experiments. 

Therefore, the ability of 1 µM capsaicin and 300 µM acrolein to activate human vagal tissue 

was verified. Following this, the ability of vehicle (0.1% DMSO v/v), JNJ17203212 (100 

µM) or HC-030031 (10 µM) to antagonise capsaicin and acrolein responses was determined. 
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3.2.3 Characterisation of the conscious guinea pig cough model 

 

Conscious, unrestrained guinea pigs (300-400g, Harlan, UK) were individually placed in a 

closed chamber. Animals were exposed to a 5 minute aerosol of capsaicin (15, 30, 60, 90 

µM), acrolein (10, 30, 100, 300 mM), or appropriate vehicle (1% ethanol plus 1% tween 80 

in saline for capsaicin; 0.9% saline for acrolein). Each guinea pig was exposed to only one 

concentration of agonist. The number of coughs was recorded during the 5 minute agonist 

stimulation and for a further 5 minutes post-stimulation (10 minutes in total) as described in 

chapter 2, section 2.4. 

 

Once a suitable concentration of agonist which elicited robust coughing had been determined, 

dose-responses for the selective antagonists HC-030031 (30, 100, 300, 100 mg/kg; TRPA1) 

or JNJ17203212 (30, 100, 300, 1000 mg/kg; TRPV1) or appropriate vehicle (0.5% methyl 

cellulose in sterile saline for HC-030031; 15% solutol in 5% dextrose solution for 

JNJ17203212) were established as described in chapter 2, section 2.4. Antagonists were 

injected i.p. one hour prior to aerosol stimulation with either acrolein (100 mM) or capsaicin 

(60 µM). In addition, at the dose which maximally inhibited its own receptor (300 mg/kg HC-

030031 and 100 mg/kg JNJ17203212) the antagonists were tested against the alternate 

agonist to demonstrate that there was no off-target effect at the selected dose. Agonists were 

aerosolised for 5 minutes, and the number of coughs counted for 10 minutes. 

 

3.2.4 Data Analysis 

 

Antagonism of agonist-induced vagal sensory nerve activation was analysed by paired t-test, 

comparing responses in the same nerve before and after antagonist incubation. Antagonism of 

agonist-induced cough was analysed using the Kruskal-Wallis one-way ANOVA followed by 

Dunn’s multiple comparison post-hoc test comparing all groups to vehicle. Significance was 

set at p < 0.05, and all data were plotted as mean ± s.e.m. of n observations. 
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3.3 Results 

 

3.3.1 Genotyping of genetically modified mice 

 

As discussed in section 3.1, though mice do not possess a functional cough response, the 

isolated vagus nerves from wild type mice display similar depolarising responses to irritant 

stimuli in comparison to both guinea pig and human nerves (Birrell et al., 2009; Maher et al., 

2009). It therefore appears that the afferent arm of the cough reflex is intact in these animals, 

and they are hence a very useful model to study cough as we are able to manipulate their 

genetic template. Pairs of mice genetically modified to remove the gene for the TRPA1, 

TRPV1, ASIC1 or ASIC3 receptor were obtained, and breeding colonies maintained at 

Imperial College. Each colony was genotyped before and sporadically during 

experimentation to confirm knockdown of the appropriate gene. Only male homozygous 

knockout animals were used in the isolated vagus experiments. All of the genetically 

modified mice were bred on a C57BL/6j background, and as such wild type C57BL/6j mice 

were used as the appropriate control. 

 

All animals from the Trpa1-/- and Trpv1-/- breeding colonies were confirmed to be 

homozygous knockouts. Knockdown of the TRPA1 and TRPV1 gene was successfully 

maintained in these colonies. Primers and probes were designed so that a single band at 184 

base pairs (bp) or 600 bp indicates a homozygous TRPA1 or TRPV1 knockout animal, 

respectively. Whereas, a single band at 317 bp or 984 bp indicates the associated wild type 

gene (Figure 3.1). 

 

Mice for the ASIC1 colony were received as heterozygous Asic1+/- animals, which were bred 

together. Subsequent generations were genotyped until a full knockout colony was 

established (Figure 3.2A). Because the number of bp for the wild type and knockout genes is 

very similar, the primers and probes were run in separate reactions. A single band at 280 bp 

indicates a homozygous ASIC1 knockout animal, whereas, a single band at 267 bp indicates a 

wild type animal. DNA from animals showing two bands (one for each reaction) indicates a 

heterozygous animal. Once established, knockdown of the ASIC1 gene was successfully 

maintained in this colony. 
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Mice for the ASIC3 colony were received as homozygous knockouts, and this was confirmed 

via genotyping (Figure 3.2B). A single band at 600 bp indicates a homozygous ASIC3 

knockout animal, whereas, a single band at 400 bp indicates a wild type animal. Knockdown 

of the ASIC3 gene was successfully maintained in this colony. 

 

 

 

 

Figure 3.1. Genotyping of DNA extracted from wild type and genetically modified mice with the 

TRPA1 or TRPV1 gene disrupted. 

These gels show DNA extracted from wild type (C57BL/6j) and genetically modified animals. (a) The 

primers for the wild type TRPA1 gene produce a band at 317 bp and the primers for the disrupted 

gene produce a band at 184 bp. (b) The primers for the wild type TRPV1 gene produce a band at 984 

bp and the primers for the disrupted gene produce a band at 600 bp. Primers and probes for both the 

wild type and disrupted gene were run in the same reaction. Only single bands were observed, 

indicating that the colonies consisted of only wild type or homozygous knockout animals, and no 

heterozygotes. C = water (negative control). 
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Figure 3.2. Genotyping of DNA extracted from wild type and genetically modified mice with the 

ASIC1 or ASIC3 gene disrupted. 

These gels show DNA extracted from wild type (C57BL/6j), and genetically modified animals. (a) The 

primers for the wild type ASIC1 gene produce a band at 267 bp and the primers for the disrupted 

gene produce a band at 280 bp. (b) The primers for the wild type ASIC3 gene produce a band at 400 

bp and the primers for the disrupted gene produce a band at 600 bp. Primers and probes for the 

ASIC1 wild type or disrupted gene were run in separate reactions, whereas primers and probes for 

the ASIC3 wild type or disrupted gene were run in the same reaction. Single bands indicate 

homozygous wild type or knockout animals, whereas double bands indicate heterozygous (Ht) 

animals. C = water (negative control). 

 

 

3.3.2 Characterisation of isolated vagus nerve responses 

 

Our lab has previously established the isolated vagus preparation as a reliable in vitro model 

for cough, having shown that stimulants which activate the vagus nerve also induce coughing 

in both animals and humans (Belvisi et al., 2008; Birrell et al., 2009; Maher et al., 2009). I 

began by determining concentration-responses for known TRPA1- and TRPV1-selective 

agonists and antagonists in guinea pig and mouse isolated vagus nerves. I then went on to 

ascertain the selectivity of these compounds for their reported receptor at the concentrations 

which were chosen for further experimentation. Key experiments were repeated in human 

vagal tissue. 
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3.3.2.1 Sensory nerve activation by TRP-selective agonists 

 

Depolarisation, which is a measure of sensory nerve activity, was recorded while perfusing a 

concentration of agonist over a 2 minute period. Vehicle (0.1% DMSO) had no effect on the 

nerves, whereas all other stimuli caused concentration-dependent increases in magnitude of 

depolarisation in both the guinea pig and mouse vagus nerves (Figures 3.3A & 3.4A). 

Selected concentrations of capsaicin (1 µM) and acrolein (300 µM) also induced 

depolarisation in human isolated vagus nerves (Figure 3.5). During experimentation it was 

observed that multiple stimulations with a TRPA1 ligand could desensitise subsequent nerve 

responses in guinea pig and mouse vagal tissue (Figures 3.3B & 3.4B). This was investigated 

further, as the pharmacological antagonist profile requires multiple reproducible stimulations 

with an agonist. After ascertaining these effects, it was decided to move ahead with a 

concentration of 300 µM acrolein for future vagus studies, because this concentration induced 

an acceptable magnitude of depolarisation in both the guinea pig and mouse nerves without 

causing desensitisation. A 1 µM concentration of capsaicin was also chosen for further 

experiments because this TRPV1 agonist evokes a large and reproducible magnitude of 

depolarisation, in contrast to resiniferatoxin responses which tend to be smaller, and difficult 

to wash out. 

 

Having determined an appropriate concentration of TRPA1 and TRPV1 agonists with which 

to move forward, I then proceeded to establish the selectivity of these agonists for their 

reported receptor. At 300 µM, the TRPA1 agonist acrolein induced normal responses in both 

wild type and Trpv1-/- mouse vagus nerve, but failed to cause depolarisation in Trpa1-/- tissue. 

Conversely, 1 µM of the TRPV1 agonist capsaicin induced normal responses in wild type and 

Trpa1-/- nerves, but failed to cause depolarisation in Trpv1-/- tissue (Figure 3.6). 
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A. 

 

B. 

 

Figure 3.3. Characterising TRPV1 and TRPA1 selective agonists on the guinea pig isolated 

vagus nerve. 

Agonists were applied to guinea pig isolated vagus nerves for 2 minutes in a random order. (a) 

Concentration responses were established for TRPV1 (capsaicin [Caps], resiniferatoxin [RTX]) and 

TRPA1 (acrolein, cinnamaldehyde [Cinn], allyl isothiocyanate [AITC]) agonists, and vehicle (0.1% 

DMSO [Veh]). (b) TRPA1 agonists were found to desensitise the vagus nerve with consecutive 

stimulations. Magnitude of depolarisation (mV) was recorded, and data plotted as mean ± s.e.m. of n 

= 6 observations. 
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A. 

 

B. 

 
Figure 3.4. Characterising TRPV1 and TRPA1 selective agonists on the mouse isolated vagus 

nerve. 

Agonists were applied to wild type mouse (C57BL/6j) isolated vagus nerves for 2 minutes in a random 

order. (a) Concentration responses were established for TRPV1 (capsaicin [Caps], resiniferatoxin 

[RTX]) and TRPA1 (acrolein, cinnamaldehyde [Cinn], allyl isothiocyanate [AITC]) agonists, and 

vehicle (0.1% DMSO [Veh]). (b) TRPA1 agonists were found to desensitise the vagus nerve with 

consecutive stimulations. Magnitude of depolarisation (mV) was recorded, and data plotted as mean 

± s.e.m. of n = 6 observations. 
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Figure 3.5. TRPV1 and TRPA1 selective agonists activate human isolated vagus nerves. 

Agonists were applied to human isolated vagus nerves for 2 minutes. Both TRPV1 (1 µM capsaicin) 

and TRPA1 (300 µM acrolein) selective agonists induced sensory nerve depolarisation. In contrast, 

vehicle (0.1% DMSO) did not activate human vagus nerves. Magnitude of depolarisation (mV) was 

recorded, and data plotted as mean ± s.e.m. of n = 4-8 observations. 

 

 

 

Figure 3.6. Establishing the selectivity of TRPV1 and TRPA1 agonists on the mouse isolated 

vagus nerve. 

Capsaicin (1 µM) or acrolein (300 µM) was applied to wild type (C57BL/6j), Trpa1-/- or Trpv1-/- 

mouse isolated vagus nerves for 2 minutes. The selectivity of these agonists for their reported receptor 

was confirmed by the lack of response in the corresponding knockout mouse, while showing normal 

magnitudes of depolarisation (mV) in wild type and tissue from the alternate knockout mouse. Data 

are plotted as mean ± s.e.m. of n = 6 observations. # indicates a lack of depolarising response to 

agonist stimulation. 
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3.3.2.2 Inhibition of sensory nerve activation by TRP-selective antagonists 

 

After confirming that the TRP-selective ligands induced depolarisation, and that they were 

indeed selective for their reported receptor, I went on to establish concentration responses for 

the associated TRP-selective antagonists. The TRPV1 selective antagonists capsazepine and 

JNJ17203212 both concentration-dependently inhibited the TRPV1-selective agonist 

capsaicin in guinea pig (Figure 3.7) and mouse (Figure 3.8) isolated vagus nerves. At 10 µM 

and 100 µM, respectively, capsazepine and JNJ17203212 blocked capsaicin responses by 

100% in both species (p < 0.05). Moreover, 100 µM JNJ17203212 inhibited capsaicin 

responses by 100% in human tissue (p < 0.05). In contrast, at these concentrations, neither 

capsazepine nor JNJ17203212 had an off-target inhibitory effect on acrolein-induced nerve 

depolarisation. Alternately, the TRPA1 selective antagonist HC-030031 concentration-

dependently inhibited acrolein-induced responses in guinea pig (Figure 3.7) and mouse 

(Figure 3.8) vagus nerves. At 10 µM, HC-030031 inhibited acrolein responses by 90 ± 7% in 

guinea pig, 91 ± 7% in mouse, and 93 ± 10% in human tissue (p < 0.05). HC-030031 showed 

no off-target effect on capsaicin-induced nerve depolarisation at this concentration. 

 

 

 

Figure 3.7. Characterising TRPV1- and TRPA1-selective antagonists on the guinea pig isolated 

vagus nerve. 

Concentration responses were established for TRPV1 (capsazepine, JNJ17203212) and TRPA1 (HC-

030031) selective antagonists or vehicle (Veh, 0.1% DMSO) against TRPV1 (1 µM capsaicin, black 

bars) and TRPA1 (300 µM acrolein, white bars) selective agonists. The concentration which 

maximally inhibited its own receptor was then tested against the alternate agonist to establish 

selectivity at the chosen concentration. Data represent mean ± s.e.m of n = 6 observations. * 

indicates statistical significance (p < 0.05; paired t-test), comparing responses in the same nerve 

before and after antagonist incubation. 
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Figure 3.8. Characterising TRPV1- and TRPA1-selective antagonists on the mouse isolated 

vagus nerve. 

Concentration responses were established for TRPV1 (capsazepine, JNJ17203212) and TRPA1 (HC-

030031) selective antagonists or vehicle (0.1% DMSO [Veh]) against TRPV1 (1 µM capsaicin, black 

bars) and TRPA1 (300 µM acrolein, white bars) selective agonists. The concentration which 

maximally inhibited its own receptor was then tested against the alternate agonist to establish 

selectivity at the chosen concentration. Data represent mean ± s.e.m of n = 6 observations. * 

indicates statistical significance (p < 0.05; paired t-test), comparing responses in the same nerve 

before and after antagonist incubation. 

 

 

A. B. 

 

Figure 3.9. Characterising TRPV1- and TRPA1-selective antagonists on human isolated vagus 

nerve. 

(a) Capsaicin-induced sensory nerve depolarisation was inhibited by the TRPV1-selective antagonist 

JNJ17203212 (JNJ; 100 µM), but was unaffected by either the TRPA1-selective antagonist HC-

030031 (HC; 10 µM) or vehicle (Veh; 0.1% DMSO). (b) Acrolein-induced sensory nerve 

depolarisation was inhibited by HC, but not JNJ or vehicle. Data represent mean ± s.e.m of n = 2-3 

observations. 
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3.3.3 Characterisation of the conscious guinea pig cough model 

 

Capsaicin is a well-established tussive ligand, and is known to induce robust cough in both 

human and animal models via activation of the TRPV1 receptor. At the time of these 

experiments TRPA1 had not yet been established as a tussive mediator; however we have 

subsequently published some of the following results in guinea pigs, and corroborated the 

findings in human volunteers (Birrell et al., 2009). Another group has also observed coughing 

with TRPA1 stimulation in a guinea pig model (Andrè et al., 2009). 

 

In the above experiments, I verified that the agonists acrolein (TRPA1) and capsaicin 

(TRPV1) are selective for their reported receptor in vitro. This section establishes 

concentration-responses for TRPA1- and TRPV1-selective agonists and antagonists in an in 

vivo guinea pig cough model. The selectivity of the antagonists was also determined at the 

concentration which was chosen for further experimentation. 

 

3.3.3.1 TRP-selective agonist-induced cough 

 

Concentration-responses for capsaicin and acrolein-induced cough were established. The 

vehicles elicited no response, whereas both capsaicin and acrolein concentration-dependently 

induced large, single explosive coughs (Figures 3.10 and 3.11). Concentrations of 60 µM 

capsaicin and 100 mM acrolein, which caused substantial coughing, were chosen for use in 

future experiments. 

 

3.3.3.2 Inhibition of cough by TRP-selective antagonists 

 

In the isolated vagus nerve, the TRPV1-selective antagonists capsazepine and JNJ17203212 

were both shown to abolish capsaicin-induced nerve depolarisation. Capsazepine is a well-

established TRPV1 antagonist that has previously been shown to inhibit capsaicin-induced 

cough responses (Lalloo et al., 1995; Trevisani et al., 2004). However, capsazepine has a 

poor pharmacokinetic profile in vivo (Valenzano et al., 2003). The JNJ17203212 compound 

is a new-generation TRPV1 inhibitor which is reported to have a good pharmacokinetic 

profile in vivo, and has also been shown to inhibit capsaicin and citric acid cough 

(Bhattacharya et al., 2007). JNJ17203212 was used in these in vivo studies to inhibit the 

TRPV1 ion channel. Though a number of TRPV1-selective antagonists have now been 



 

discovered, there are currently very few TRPA1

that have been established, the HC

been shown to be effective in 

2007). Moreover, in the in vitro

blocks acrolein-induced nerve responses by approximately 90%.

vitro findings, JNJ17203212 concentration

pig cough. Coughing was completely 

but at this dose acrolein-induced cough was not aff

030031 pre-treatment dose-dependently inhibited acrolein

on capsaicin stimulation (Figure 3.

treatment of 300 mg/kg HC-030031, which reduc

to 0.4 ± 0.3 in comparison to 8.5 ± 1.2 coughs with vehicle pre

 

 

Figure 3.10. Example of a cough trace recorded in response to capsaicin stimulation in guinea 

pigs. 

Inhalation of aerosolised capsaicin or acrolein caused large, single, explosive coughs. The 

occurrence of a cough was distinguished from other respiratory events (e.g. sneezes) by analysis 

software (Buxco, USA) as well as the characteristic posture and sound produced by the guine

during a tussive effort. This image of a cough response to capsaicin was acquired by screen capture 

during real time data replay. 
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currently very few TRPA1-selective antagonists available. Of the ones 

that have been established, the HC-030031 compound has been the most widely used, and has 

n to be effective in in vivo models of pain (Eid et al., 2008; McNamara et al., 
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induced nerve responses by approximately 90%. In agreement with the 

findings, JNJ17203212 concentration-dependently inhibited capsaicin

pig cough. Coughing was completely abolished at a dose of 100 mg/kg and above (p < 0.05), 

induced cough was not affected (Figure 3.12A). Conversely, HC

dependently inhibited acrolein-induced cough, but had no effect 

on capsaicin stimulation (Figure 3.12B). Maximum inhibition was associated with pre

030031, which reduced the number of acrolein

to 0.4 ± 0.3 in comparison to 8.5 ± 1.2 coughs with vehicle pre-treatment (p < 0.05).
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d capsaicin or acrolein caused large, single, explosive coughs. The 

occurrence of a cough was distinguished from other respiratory events (e.g. sneezes) by analysis 

software (Buxco, USA) as well as the characteristic posture and sound produced by the guinea pigs 

during a tussive effort. This image of a cough response to capsaicin was acquired by screen capture 
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A. 

 

B. 

 

Figure 3.11. Characterising TRPV1 and TRPA1 selective agonists in a conscious guinea pig 

cough model. 

Guinea pigs were exposed to aerosolised agonist or vehicle (Veh) for 5 minutes, with the number of 

coughs was counted during this period and for a further 5 minutes (10 minutes total). Concentration-

responses were established for (a) capsaicin and (b) acrolein. Data are plotted in both bar chart and 

scatter-graph format as mean ± s.e.m of n = 10-12 observations. 
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A. 

B. 

 

Figure 3.12. Characterising the effect of selective TRPV1 and TRPA1 antagonists in the 

conscious guinea pig cough model. 

Guinea pigs were exposed to aerosolised TRPV1 (60 µM capsaicin; black bars & filled squares) or 

TRPA1 (100 mM acrolein; white bars & open circles) agonists for 5 minutes, and the number of 

coughs counted for 10 minutes. Concentration-responses were established for (a) TRPV1 

(JNJ17203212) and (b) TRPA1 (HC-030031) selective antagonists against their selective agonist. The 

dose which maximally inhibited its own receptor was then tested against the alternate agonist to 

establish selectivity at the chosen dose. Antagonists were injected i.p. 1 hour prior to stimulation. Veh 

= antagonist vehicle. Data are plotted in both bar chart and scatter graph format as mean ± s.e.m of 

n=8-10 observations. * indicates significance compared to vehicle control (p < 0.05; Kruskal Wallis 

one-way ANOVA with Dunn’s multiple comparison post-hoc test). 
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3.4 Discussion 

 

Discovery of the TRPV1 receptor as a binding site for tussive stimuli has lead to a greater 

understanding of the mechanisms driving cough in both health and disease. Capsaicin and 

citric acid, both classical TRPV1 agonists, have been extensively used to study the cough 

reflex in a wide range of models, from in vitro single-fibre and isolated vagus analysis; to in 

vivo models of cough in animals both conscious and under anaesthesia; to human trials 

investigating cough in healthy individuals and those suffering from various chronic cough 

pathologies (including asthma, COPD, gastro-esophageal reflux, and idiopathic cough). The 

breakthrough discovery of a specific ion channel directly involved in causing cough brought 

with it the possibility of developing novel targeted anti-tussive therapies, which have the 

potential to inhibit coughing without the associated side-effects of current treatments such as 

opioids. The more recent discovery of the TRPA1 ion channel seems even more promising, 

as it is an extremely promiscuous receptor that binds a wide range of both environmental and 

endogenous compounds that are associated with respiratory irritation. If this receptor is found 

to play a significant role in cough, and excessive cough states associated with disease, it 

opens up another area of research that could ultimately lead to the development of more 

efficacious anti-tussive therapies. 

 

This chapter outlines the development of two models for investigating the role of TRPA1 and 

TRPV1 ion channels in sensory nerve activation and cough using receptor-selective 

pharmacological tools. Furthermore, breeding colonies of genetically modified animals with 

the TRPA1, TRPV1, ASIC1 and ASIC3 gene disrupted were established, and knockdown of 

the appropriate receptor was confirmed using genotyping. These mice are a valuable asset to 

this research, as they allow non-pharmacological assessment of the importance of these ion 

channels in mediating sensory nerve activation. I began by using these animals to confirm the 

selectivity of the TRPA1 and TRPV1 agonists for their reported receptor, which conferred 

confidence in moving forward with these tools to investigate the associated receptor-selective 

antagonists. 

 

In this chapter I have described an in vitro model of sensory afferent activation in the isolated 

vagus nerve, which has been previously shown to be predictive of tussive effects in vivo 

(Maher et al., 2009; Patel et al., 2003; Usmani et al., 2005). The vagus nerves supply the 

majority of sensory afferent fibres to the airway, therefore, depolarisation of the isolated 
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vagus nerve from both guinea pig and mouse was characterised using a number of TRPA1- 

and TRPV1-selective pharmacological tools. The guinea pig was chosen because these 

animals are capable of evoking a cough reflex, and I could therefore repeat key experiments 

in response to tussive stimuli in an in vivo model (Maher et al., 2009; Patel et al., 2003). 

Whereas, a mouse model was used as we have access to receptor knockout animals. Although 

mice do not cough per se, they do still appear to possess the afferent arm of the cough reflex, 

and thus provide an invaluable tool for assessment. Furthermore, it has been established that 

the vagus nerves in both of these species respond in a similar manner to that of man (Belvisi 

et al., 2008; Maher et al., 2009). Key experiments were also replicated in human vagus tissue, 

to confirm that the findings in the animal models are relevant to man. 

 

Using the isolated vagus nerve preparation, I investigated the ability of a number of TRPA1- 

and TRPV1-selective agonists to activate the vagus nerves. All TRPA1 and TRPV1 agonists 

induced depolarisation, and acrolein and capsaicin were chosen for further experimentation. I 

was able to confirm that acrolein was indeed a selective TRPA1 agonist, and capsaicin a 

TRPV1 selective agonist by showing a lack of response in Trpa1-/- and Trpv1-/- mouse vagal 

tissue. These compounds were therefore suitable to use in profiling TRP-selective 

antagonists. The TRPA1-selective antagonist HC-030031 was shown to inhibit acrolein 

responses, but not capsaicin; conversely, the TRPV1-selective antagonists capsazepine and 

JNJ17203212 inhibited capsaicin responses, but not acrolein. Thus, the selectivity of the 

chosen antagonists was established, and a concentration chosen for future experiments. Key 

experiments were repeated in human isolated vagus tissue to corroborate the findings in a 

human model. Both acrolein and capsaicin induced depolarisation in human sensory nerves, 

which were blocked by their corresponding but not alternate antagonist. The above results 

illustrate that the effects of these compounds can be translated across species. 

 

In vitro assessment of sensory nerve depolarisation provides a reliable alternative to in vivo 

cough experiments, which are associated with inherent and complex pharmacokinetic issues; 

are expensive; require the use of a large number of animals; and a large quantity of test 

compound. The isolated vagus nerve preparation thus allowed assessment of the potential 

role of the TRPA1 and TRPV1 ion channels with compounds that may not have an ideal 

pharmacokinetic profile in vivo. However, the data from the isolated vagus nerve preparation 

should be interpreted with some caution, as the tussive stimuli and compounds are applied to 

the trunk of the nerve. Therefore, the signal that is recorded extracellularly in these 
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experiments represents a summation of the changes in membrane potential of all of the axons 

within the vagus nerve, including all types of nerve fibre (e.g. RARs, Aδ nociceptors and C-

fibres) and non-airway fibres. Furthermore, the expression and transduction mechanisms of 

the receptors situated on the membrane of the axon may not represent their behaviour at the 

peripheral nerve endings (Patel et al., 2003). An alternative method that is widely used in the 

research community is the single fibre technique, where agents are applied directly to the 

nerve ending in the airway, and action potentials recorded from a single fibre in the nerve 

trunk (Fox et al., 1997, 1996; Kollarik & Undem, 2002). However, this technique is less 

robust, has a lower throughput and requires specialised equipment. Nevertheless, agents that 

activate sensory nerves, using either the isolated vagus preparation or the single fibre 

technique, also induce cough in vivo (Birrell et al., 2009; Fox et al., 1997, 1996; Kollarik & 

Undem, 2002; Lalloo et al., 1995; Maher et al., 2009; Patel et al., 2003; Usmani et al., 2005). 

 

To demonstrate that the in vitro results do in fact translate to in vivo cough responses, both 

agonist and antagonist concentration-responses were repeated in a conscious guinea pig 

model of cough. Measuring tussive responses in conscious, unrestrained animals allows 

analysis (by a trained observer) of the cough to incorporate stance and posture as well as 

sound produced during the cough reflex, and does not place undue stress on the animal by 

using restraints. Furthermore, anaesthesia has been implicated in inhibition of the C-fibre 

response to tussive stimuli, and some anaesthetics are thought to activate the TRPA1 receptor 

(Belvisi & Hele, 2006; Eilers et al., 2010; Gallos & Flood, 2010; Karlsson & Fuller, 1999). 

An automated system was also in place to count the coughs induced by capsaicin and acrolein 

(Buxco, USA), which agreed closely with counts from the trained observer. Tussive 

responses in the in vivo cough model mirrored previous findings in both the isolated vagus 

preparation and neuronal imaging experiments. That is, both capsaicin and acrolein induced 

concentration-related coughing; and these tussive responses were dose-dependently inhibited 

by the corresponding TRPA1 (HC-030031) and TRPV1 (JNJ17203212) antagonists. 

Conversely, coughing induced by a selected concentration of acrolein or capsaicin was not 

affected by the alternate antagonist, demonstrating that the antagonists were not acting off-

target at the doses selected. 

 

In summary, I have shown here that TRPA1- and TRPV1-selective agonists activate human, 

guinea pig and mouse vagal sensory nerves in vitro, and cause cough in vivo. Furthermore, 

these effects can be blocked by selective antagonists at a concentration which does not 
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display off-target actions. Having established these tools, I went on to probe the role of the 

TRPA1 and TRPV1 ion channels in mediating sensory nerve activation and tussive responses 

to the endogenous irritants PGE2, BK and low pH. 
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CHAPTER 4 

 

Endogenous Mediators: Prostaglandin E2 
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4.1 Rationale 

 

PGE2 is derived from the metabolism of arachadonic acid by cyclo-oxygenase (COX) 

enzymes: COX-1 which is costitutively expressed, and COX-2 which is inducible. PGE2 

elicits coughing when inhaled, and pre-treatment with PGE2 sensitises airway afferent nerves 

and the cough reflex to stimulation with other tussive agonists (Choudry et al., 1989; Costello 

et al., 1985; Gauvreau et al., 1999; Ho et al., 2000; Kawakami et al., 1973). The production of 

PGE2 is known to be upregulated in response to airways inflammation, and as such PGE2 

could be implicated in the pathogenesis of chronic cough associated with airways diseases 

such as asthma, COPD and post-viral cough. It has been postulated that this mediator may 

sensitise patients who suffer from chronic cough to environmental tussive irritants; or it could 

be inducing cough itself if concentrations within the airways reach sufficient levels to directly 

activate airway sensory nerves. 

 

There is a particular interest in determining how PGE2 induces cough, as this lipid mediator 

has also been shown to have beneficial anti-inflammatory and bronchodilatory effects in the 

lungs, and has thus been suggested as a novel therapy for asthmatics (Gauvreau et al., 1999; 

Kawakami et al., 1973; Melillo et al., 1994; Pavord et al., 1993). PGE2 preferentially binds to 

the EP receptor (Bos et al., 2004). Because there are four isoforms of the EP receptor, it is 

possible that the GPCR through which PGE2 elicits cough could be different from that 

through which it has beneficial properties. It was recently established that PGE2 induces 

sensory nerve depolarisation in human, guinea pig and mouse vagal tissue, and causes cough 

in guinea pigs via the EP3 receptor (Maher et al., 2009). However, the signalling mechanisms 

through which PGE2 mediates its tussive effects downstream of EP3 receptor activation have 

yet to be determined. 

 

Our understanding of the mechanisms behind PGE2-induced cough is limited. Signalling 

downstream of initial G-protein activation must ultimately lead to gating of an ion channel in 

order to cause a net change in membrane potential and subsequent action potential 

generation. TRPV1 has been associated with the role of PGE2 in oedema (Claudino et al., 

2006). It is possible that cough elicited by PGE2 is also at least partially mediated via 

activation of TRPV1, an ion channel that is already known to mediate the tussive effects of 

citric acid and capsaicin (Lalloo et al., 1995; Trevisani et al., 2004). This hypothesis is 

supported by the fact that prior exposure to PGE2 can enhance cough and neuronal responses 
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to capsaicin stimulation (Choudry et al., 1989; Ho et al., 2000). In addition, TRPA1 is 

another promising candidate for mediating the tussive effects of PGE2, due to its co-

expression with TRPV1 on sensory neurons that innervate the airways. TRPA1 has also been 

implicated in the detection of noxious stimuli, and is known to mediate the response to 

numerous irritant gases, dusts, vapours and chemicals linked to cough (Bandell et al., 2004; 

Bautista et al., 2006, 2005; Jordt et al., 2004; Simon & Liedtke, 2008; Story et al., 2003; 

Taylor-Clark et al., 2008a, 2008b). In Chapter 3 I showed that acrolein, a TRPA1-selective 

agonist, is able to induce coughing in a guinea pig model. This data has been published 

alongside a clinical collaboration with Professor Morice’s group showing that inhalation of 

aerosolised cinnamaldehyde can induce coughing in healthy human volunteers (Birrell et al., 

2009), thus confirming a role for TRPA1 in the tussive reflex. 

 

In Chapter 3, the relevant in vitro and in vivo models were characterised; and the efficacy and 

selectivity of TRPA1- and TRPV1-selective agonists and antagonists was determined. The 

aim of this chapter was to examine the role of TRPA1 and TRPV1 ion channels in PGE2-

induced sensory nerve activation and cough. I began by characterising responses to PGE2 

stimulation using guinea pig, mouse and human isolated vagus nerves. The ability of TRPA1 

and TRPV1-selective antagonists to inhibit these responses was then assessed, using the 

concentrations established in Chapter 3. Finally, these results were verified in an in vivo 

model of PGE2-induced cough using conscious guinea pigs. 
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4.2 Methods 

 

4.2.1 PGE2-induced sensory nerve activation 

 

Non-cumulative CR curves were established for vehicle (0.1% ethanol) or PGE2 on guinea 

pig (3, 10, 30, 100 µM) and wild type mouse (0.1, 1, 10, 100 µM) isolated vagus nerves. 

Stimuli were applied for 2 minutes in a random order, and then the tissue washed with Krebs 

solution until baseline was re-established. The ability of 10 µM PGE2 to activate human, 

Trpa1-/- and Trpv1-/- mouse vagus nerves was also assessed. 

 

After characterising the response to PGE2, a sub-maximal concentration (10 µM) was chosen 

to profile the effect of antagonists. Initially, to address the question of whether application of 

PGE2 induces production of more prostanoids downstream of arachadonic acid via the 

cyclooxygenase pathway, which could alter the PGE2-induced sensory nerve response, the 

effect of a cyclooxygenase inhibitor (10 µM indomethacin) was determined. Indomethacin 

was perfused on to guinea pig or wild type mouse isolated vagus nerves for 10 minutes, and 

the effect of this inhibitor on PGE2 responses was assessed as described in chapter 2, section 

2.3.3. Indomethacin was chosen as this is an established cyclooxygenase inhibitor, which has 

been successfully used in other functional preparations at a concentration of 10 µM to block 

the production of prostanoids (Belvisi et al., 1992; Patel et al., 1995; Takahashi et al., 1994; 

Ward et al., 1995). 

 

In chapter 3, appropriate concentrations were established for the TRPA1- (10 µM HC-

030031) and TRPV1-selective (10 µM capsazepine, 100 µM JNJ17203212) antagonists, 

which maximally inhibited their own receptor but did not exhibit an off-target effect on the 

alternate receptor. These antagonists were assessed for their ability to inhibit PGE2-induced 

activation in guinea pig, mouse (wild type, Trpa1-/- and Trpv1-/-) and human isolated vagus 

nerves. 

 

4.2.2 PGE2-induced guinea pig cough 

 

Conscious, unrestrained male Dunkin Hartley guinea pigs (300-400 g, Harlan, UK) were 

individually placed in a plethysmography chamber. For the initial CR, animals were exposed 

to 10 minutes of aerosolised vehicle (0.1 M phosphate buffer) or 30, 100 or 300 µg/ml PGE2. 
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The number of coughs was recorded during the 10 minute stimulation as previously described 

in section 2.4. 

 

For the antagonist study, guinea pigs were dosed i.p. with a combination of either: (a) vehicle 

(0.5% methyl cellulose in sterile saline) plus vehicle (15% solutol in 5% dextrose solution); 

(b) vehicle (15% solutol in 5% dextrose solution) plus HC-030031 (300 mg/kg); (c) vehicle 

(0.5% methyl cellulose in sterile saline) plus JNJ17203212 (100 mg/kg); or (d) HC-030031 

(300 mg/kg) plus JNJ17203212 (100 mg/kg). Guinea pigs were then exposed to an aerosol of 

300 µg/ml PGE2 for 10 minutes, and the number of coughs counted as previously described. 

 

4.2.3 Data Analysis 

 

Antagonism of PGE2-induced vagal sensory nerve activation was analysed by paired t-test, 

comparing responses in the same nerve before and after antagonist incubation. Comparison of 

the magnitude of PGE2-induced responses in Trpa1-/- and Trpv1-/- tissue was analysed using 

the Kruskal-Wallis one-way ANOVA followed by Dunn’s multiple comparison post-hoc test 

comparing all groups to wild type responses. Antagonism of PGE2-induced cough was also 

analysed using the Kruskal-Wallis one-way ANOVA followed by Dunn’s multiple 

comparison post-hoc test comparing all groups to vehicle. Significance was set at p < 0.05, 

and all data were plotted as mean ± s.e.m. of n observations. 
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4.3 Results 

 

In chapter 3, I confirmed that stimulation of the TRPA1 and TRPV1 ion channels induce both 

sensory nerve activation in vitro, and cough in vivo. I also established appropriate 

concentrations of selective antagonists to use in the models of cough employed in this thesis, 

which maximally inhibited the TRPA1 or TRPV1 receptors without showing off-target 

effects. In the following chapters I proceeded to investigate the role of TRPA1 and TRPV1 

receptors in mediating the tussive effects of endogenous mediators, beginning with PGE2. 

PGE2 is an endogenous inflammatory mediator which is upregulated in airways disease, and 

is associated with both initiation of cough, and sensitisation of the cough reflex to capsaicin 

stimulation (Choudry et al., 1989; Costello et al., 1985; Gauvreau et al., 1999; Ho et al., 

2000; Kawakami et al., 1973). 

  

4.3.1. PGE2-induced sensory nerve activation 

 

PGE2 provoked concentration-related increases in magnitude of depolarisation in both guinea 

pig and mouse isolated vagus nerves. A concentration of 10 µM, which elicits submaximal 

nerve activation in both species, was used in subsequent experiments. Incubation with 10 µM 

PGE2 also successfully stimulated human isolated vagus nerves. In contrast, vehicle (0.1% 

ethanol) had no effect in any of these species (Figure 4.1). 

 

To rule out the possibility that the PGE2 response is being potentiated due to downstream 

production of other prostanoids, the cyclooxygenase inhibitior indomethacin (10 µM) was 

tested against PGE2 stimulation. Indomethacin failed to alter PGE2-induced depolarisiation of 

either the guinea pig or mouse vagus nerves, indicating that the observed response was not 

being augmented by subsequent production of other prostanoids (Figure 4.2). 

 

The magnitude of depolarisation induced by 10 µM PGE2 in Trpa1-/- and Trpv1-/- vagus 

nerves was approximately half that seen in wild type tissue (Figure 4.3), thus indicating a role 

for both of these ion channels in mediating PGE2 sensory nerve activation. This role was 

confirmed using TRPA1- (HC-030031) and TRPV1-selective (capsazepine, JNJ17203212) 

antagonists. Either TRPA1 or TRPV1 antagonism partially inhibited PGE2-induced 

depolarisation in guinea pig, wild type mouse and human isolated vagus. When used in 

combination, both TRPA1 and TRPV1 antagonism virtually abolished nerve responses in 
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these species (Figure 4.4). To confirm that these results were not due to unusual 

pharmacological effects of combining the two antagonists, TRPA1 or TRPV1 antagonists 

were used to inhibit PGE2 activtion in vagal tissue taken from the alternate genetically 

modified mouse i.e. TRPA1 antagonist with Trpv1-/- tissue; and TRPV1 antagonist with 

Trpa1-/- tissue. Results from these studies corroborated the earlier observations, showing 

almost complete loss of PGE2-induced sensory nerve activation (Figure 4.4B). 

 

 

A. Guinea Pig B. Mouse 

 

C. Human 

 

Figure 4.1. Characterisation of the isolated vagus nerve response to PGE2 stimulation. 

Concentration responses were established for PGE2 on (a) guinea pig and (b) wild type mouse 

isolated vagus nerve. (c) human vagus nerve also responded to PGE2 (10 µM) but not vehicle 

stimulation. Veh = vehicle (0.1% ethanol). Data are presented as mean ± s.e.m of n = 6 observations 

for guinea pig and mouse; and n = 2-6 for human experiments. 
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Figure 4.2. Inhibition of cyclooxygenase does not alter PGE2-induced vagus nerve stimulation. 

Isolated vagus nerves were stimulated with 10 µM PGE2 for 2 minutes, followed by 10 minutes 

incubation with the cyclooxygenase inhibitor indomethacin (Indo, 10 µM), and stimulation with PGE2 

in the presence of indomethacin. Indomethacin did not alter PGE2-induced sensory nerve 

depolarisation in either the guinea pig or mouse isolated vagus, determined by paired t-test 

comparing responses in the same nerve before and after antagonist incubation (significance set at p < 

0.05). Data are presented as mean ± s.e.m. of n = 6 observations. 

 

 

 

Figure 4.3. Determining a role for TRPA1 and TRPV1 ion channels in PGE2-induced isolated 

vagus nerve responses. 

PGE2 (10 µM) was applied to wild type (C57Bl/6j), Trpa1-/- or Trpv1-/- mouse isolated vagus nerves 

for 2 minutes. The magnitude of depolarisation (mV) in the Trpa1-/- and Trpv1-/- tissue was 

approximately half that seen in wild type, indicating a role for both of these ion channels in PGE2-

induced nerve activation. * indicates statistical significance compared to wild type control (p < 0.05, 

Kruskal Wallis one-way ANOVA with Dunn’s multiple comparison post-hoc test). Data are presented 

as mean ± s.e.m. of n = 6 observations. 
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A. Guinea Pig C. Human 

 

B. Mouse 

 
Figure 4.4. Pharmacologically determining a role for TRPA1 and TRPV1 ion channels in PGE2-

induced isolated vagus nerve responses. 

Isolated vagus nerves were incubated with a selective TRPA1 antagonist (10 µM HC-030031, HC); a 

selective TRPV1 antagonist (10 µM capsazepine, CAPZ; 100 µM JNJ17203212, JNJ); a combination 

of both TRPA1 and TRPV1 antagonists (HC+JNJ); or vehicle (0.1% DMSO, Veh) for 10 minutes 

prior to PGE2 (10 µM) stimulation. Antagonism of either TRPA1 or TRPV1 partially inhibited PGE2-

induced responses in (a) Guinea pig, (b) Mouse and (c) Human vagus nerves. Whereas, a 

combination of both TRPA1 and TRPV1 antagonists, or tissue taken from Trpa1-/- or Trpv1-/- mice 

incubated with the alternate antagonist, virtually abolished PGE2 stimulation. * indicates statistical 

significance (p < 0.05; paired t-test), comparing responses in the same nerve before and after 

antagonist incubation. Data are presented as mean ± s.e.m. of n = 6 observations for guinea pig and 

mouse; and n = 2-3 for human experiments. 
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4.3.2 PGE2-induced guinea pig cough

 

In contrast to capsaicin and acrolein, which evoke

PGE2 elicited trains of smaller coughs, often with multiple bouts occurring during one 10 

minute exposure (Figure 4.5). 

conscious guinea pig model had been previously established in our lab. Neither vehicle nor 

30 µg/ml PGE2 elicited any coughing; 100

300 µg/ml caused robust coughing in most animals

involved in testing PGE2 at higher concentrations, 300

antagonist study.  

 

The ability of TRPA1- (300 mg/kg HC

JNJ17203212) antagonists to inhibit the PGE

When pre-treated with vehicle only, PGE

with either TRPA1 or TRPV1 antagonists partially inhibited the cough

Interestingly, either antagonist inhibited the number of coughs by over half, i.e. PGE

stimulation elicited 2 ± 2 and 4 ± 2 coughs with TRPA1

(p < 0.05). Furthermore, pre-treatment with both TRPA1 and TRPV1 antag

abolished the cough response to PGE

corroborates the in vitro vagal sensory nerve data presented above, and provides strong 

evidence for activation of both TRPA1 and TRPV1 ion channels by PGE

EP3 receptor. 

 

 

Figure 4.5. Example of a cough trace recorded in response to PGE

Inhalation of aerosolised PGE2 caused bouts of small coughs. These coughs were not always detected 

by the analysis software (Buxco, USA), and thus the trained observer was crucial in counting the 

number of coughs during stimulation. Coughs were distinguished by the characteristic posture and 

sound produced by guinea pigs during a tussive effort. This image of a cough response t

acquired by screen capture during real time data replay.

103 

pig cough 

In contrast to capsaicin and acrolein, which evoke single loud coughs (refer to Figure 3.1

elicited trains of smaller coughs, often with multiple bouts occurring during one 10 

ure 4.5). A concentration-response for PGE2-induced cough in

pig model had been previously established in our lab. Neither vehicle nor 

coughing; 100 µg/ml induced coughing in one animal; whereas 

caused robust coughing in most animals (Figure 4.6). Due to the significant costs 

at higher concentrations, 300 µg/ml was chosen for use in the 

(300 mg/kg HC-030031) and TRPV1-selective (10

JNJ17203212) antagonists to inhibit the PGE2-induced cough response was then assessed. 

treated with vehicle only, PGE2 induced on average 16 ± 4 coughs. Pre

with either TRPA1 or TRPV1 antagonists partially inhibited the cough

Interestingly, either antagonist inhibited the number of coughs by over half, i.e. PGE

elicited 2 ± 2 and 4 ± 2 coughs with TRPA1 or TRPV1 antagonists, respectively 

treatment with both TRPA1 and TRPV1 antag

abolished the cough response to PGE2 stimulation (0 ± 0 coughs; Figure 4.7). This 

vagal sensory nerve data presented above, and provides strong 

evidence for activation of both TRPA1 and TRPV1 ion channels by PGE2

Example of a cough trace recorded in response to PGE2 stimulation in guinea pigs.

caused bouts of small coughs. These coughs were not always detected 

(Buxco, USA), and thus the trained observer was crucial in counting the 

number of coughs during stimulation. Coughs were distinguished by the characteristic posture and 

sound produced by guinea pigs during a tussive effort. This image of a cough response t

acquired by screen capture during real time data replay. 

single loud coughs (refer to Figure 3.10), 

elicited trains of smaller coughs, often with multiple bouts occurring during one 10 

induced cough in the 

pig model had been previously established in our lab. Neither vehicle nor 

µg/ml induced coughing in one animal; whereas 

). Due to the significant costs 

µg/ml was chosen for use in the 

selective (100 mg/kg 

induced cough response was then assessed. 

induced on average 16 ± 4 coughs. Pre-treatment 

with either TRPA1 or TRPV1 antagonists partially inhibited the cough response. 

Interestingly, either antagonist inhibited the number of coughs by over half, i.e. PGE2 

or TRPV1 antagonists, respectively 

treatment with both TRPA1 and TRPV1 antagonists completely 

stimulation (0 ± 0 coughs; Figure 4.7). This 

vagal sensory nerve data presented above, and provides strong 

 downstream of the 

 

stimulation in guinea pigs. 

caused bouts of small coughs. These coughs were not always detected 

(Buxco, USA), and thus the trained observer was crucial in counting the 

number of coughs during stimulation. Coughs were distinguished by the characteristic posture and 

sound produced by guinea pigs during a tussive effort. This image of a cough response to PGE2 was 
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Figure 4.6. Characterising PGE2-induced cough in the conscious guinea pig model. 

A concentration response for PGE2-induced cough was established. PGE2 was aerosolised for 10 

minutes, and the number of coughs counted during this period. Data are plotted in both bar chart and 

scatter-graph format as mean ± s.e.m. of n=8 observations. Veh = vehicle. 

 

 

 
Figure 4.7. Determining a role for TRPA1 and TRPV1 ion channels in PGE2-induced cough. 

Guinea pigs were injected i.p. 1 hour prior to aerosolised PGE2 (300 µg/ml) stimulation with: TRPA1 

vehicle plus TRPV1 vehicle (Veh); TRPA1 antagonist (300 mg/kg HC-030031) plus TRPV1 vehicle 

(HC); TRPV1 antagonist (100 mg/kg JNJ17203212) plus TRPA1 vehicle (JNJ); or TRPA1 antagonist 

plus TRPV1 antagonist (HC+JNJ). Data are plotted in both bar chart and scatter graph format as 

mean ± s.e.m. of n=12 observations. * indicates statistical significance compared to vehicle control (p 

< 0.05; Kruskal Wallis one-way ANOVA with Dunn’s multiple comparison post-hoc test). 
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4.4 Discussion 

 

It has been established that PGE2 causes sensory nerve depolarisation and cough in guinea 

pigs via the EP3 GPCR (Maher et al., 2009). Downstream of GPCR activation, opening of 

one or more ion channels must subsequently occur in order to induce a tussive response. The 

aim of this chapter was to investigate the ion channel(s) responsible for PGE2-induced tussive 

responses using the isolated vagus preparation and an in vivo cough model. 

 

It is possible that stimulation with PGE2 may cause production of other prostanoids 

downstream of the arachadonic acid / cyclooxygenase pathway. This could implicate other 

GPCRs and therefore other pathways in the sensory nerve effects elicited by stimulation with 

PGE2. I investigated this theory in the in vitro isolated vagus preparation by incubating vagus 

nerves with the cyclooxygenase inhibitor indomethacin, using a normal antagonist profile. 

Indomethacin did not alter PGE2-induced sensory nerve responses in either guinea pig or wild 

type mouse tissue. This provides evidence against the theory that downstream production of 

prostanoids act to enhance the PGE2-induced response in sensory nerves. Therefore, I could 

confidently move ahead with investigating the role of TRPA1 and TRPV1 in the PGE2-

induced tussive response. 

 

It is well known that irritants which activate the TRPV1 ion channel cause sensory nerve 

activation and cough. In chapter 3, I confirmed these effects and also established a role for 

TRPA1 irritants in inducing sensory nerve activation and cough. Both the TRPA1 and 

TRPV1 ion channels have been shown to be activated via the phospholipase C pathway 

(Claudino et al., 2006; Wang et al., 2008), and PGE2 is known to activate this pathway 

downstream of the EP3 receptor (Claudino et al., 2006); therefore one or both of these ion 

channels may mediate the tussive effects of PGE2. I proceeded to investigate this hypothesis 

using the concentrations of TRPA1- and TRPV1-selective antagonists established in chapter 

3, and genetically modified Trpa1-/- and Trpv1-/- mice. Pharmacological inhibition of either 

receptor with the selective antagonists reduced PGE2 responses by approximately 50%; and 

when used in combination all-but abolished sensory nerve depolarisation in guinea pig, 

mouse and human vagus nerves. Furthermore, knockdown of either receptor in genetically 

modified mice halved the magnitude of depolarisation induced by PGE2 stimulation in 

comparison to wild type control; and when used in combination with the alternate antagonist, 

again vagus nerve activation was virtually abolished. This provided strong in vitro evidence 
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that PGE2-induced tussive responses are mediated approximately 50/50 by the TRPA1 and 

TRPV1 ion channels downstream of EP3 activation, and that this effect is translated across 

species. 

 

Having implicated a role for both TRPA1 and TRPV1 in PGE2-induced sensory nerve 

activation, I proceeded to confirm these results in the in vivo cough model. Appropriate doses 

of TRPA1 (HC-030031) and TRPV1 (JNJ17203212) inhibitors had been established in 

Chapter 3. Pre-treatment with either TRPA1 or TRPV1 antagonists partially inhibited guinea 

pig cough responses to PGE2 stimulation compared to vehicle control; whereas pre-treatment 

with a combination of both antagonists abolished coughing altogether. Interestingly, cough 

was inhibited 87% by TRPA1 and 77% by TRPV1 antagonists alone, in contrast to the 

approximate 50% inhibition observed in the in vitro models. Furthermore, though treatment 

with both TRPA1 and TRPV1 antagonists completely abolished PGE2-induced cough in vivo, 

there was still a small depolarisation effect observed on the vagus nerve in vitro. I postulate 

that this disparity in outcomes could be due to the different end-points being measured 

between the in vitro and in vivo preparations. That is, in the isolated vagus nerve preparation, 

I was measuring any change in membrane potential, leading to cell membrane depolarisation. 

However, this depolarisation needs to reach a certain threshold in order to generate action 

potential firing, which informs the CNS that there is a need to cough. As such, 50% inhibition 

of the PGE2 response on the axon of the vagus nerve may prevent the stimulus reaching 

threshold in more than half of the nerve fibres, therefore fewer action potentials are 

generated, and the information relayed to the CNS causes substantially fewer coughs. 

 

To summarise, this chapter has established that PGE2-induced sensory nerve activation in the 

guinea pig, mouse and human vagus nerves is equally mediated by opening of the TRPA1 

and TRPV1 ion channels. This was confirmed in an in vivo guinea pig cough model, whereby 

inhibition of either TRPA1 or TRPV1 substantially reduced the tussive effects of PGE2, and a 

combination of both antagonists completely abolished PGE2 associated cough. 
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CHAPTER 5 

 

Endogenous Mediators: Bradykinin 
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5.1. Rationale 

 

The production of BK is upregulated during inflammation, and mediates a wide range of 

effects in the airways (Ellis & Fozard, 2002). Like PGE2, BK causes cough in both humans 

and animals when inhaled in aerosolised form (Choudry et al., 1989; Herxheimer & 

Stresemann, 1961; Katsumata et al., 1991; Kaufman et al., 1980), and sensitises sensory 

nerve responses to capsaicin in vitro (Fox et al., 1996). In addition, inhibition of the 

breakdown of BK with ACE inhibitors has been linked to cough hypersensitivity associated 

with this therapy for cardiovascular disease (Fox et al., 1996). As such, BK could also be 

involved in the pathogenesis of chronic cough associated with airways pathologies. 

 

BK binds to one of two GPCR isoforms, the B1 and B2 receptors. In general, the B2 receptor 

is constitutively expressed, whereas the B1 receptor is inducible (Calixto et al., 2000; Ellis & 

Fozard, 2002; Vianna & Calixto, 1998). It has therefore been assumed that the acute tussive 

effects of BK are due to activation of the B2 receptor. Indeed, the enhanced cough reflex 

observed with ACE inhibitor treatment, which is caused by accumulation of BK due to a 

reduction in breakdown, was shown to be sensitive to pre-treatment with a B2 antagonist (Fox 

et al., 1996).  However, the GPCR associated with the tussive effects of BK has never been 

explicitly investigated. In addition, a number of the effects associated with BK are indirect, 

and include the release of other endogenous mediators such as prostaglandins (Calixto et al., 

2000; Ellis & Fozard, 2002). The first aim of this chapter was to determine the GPCR 

through which BK activates sensory nerves, and establish if BK-induced sensory nerve 

stimulation is due to the subsequent release of tussive prostanoids. 

 

Despite the above suggestion that BK may act indirectly to cause cough, it is also known to 

mediate some nociceptive effects via the activation of TRPA1 and/or TRPV1 ion channels, 

probably through the intracellular phospholipase C signalling pathway (Bautista et al., 2006; 

Wang et al., 2008). It is therefore possible that binding of BK to one of the bradykinin 

receptors induces the release of intracellular secondary messengers which then phosphorylate 

and activate ion channels to cause airway irritation. The second aim of this chapter was to 

determine whether TRPA1 and TRPV1 are involved in guinea pig, mouse and human sensory 

nerve activation induced by BK stimulation. The final aim was to verify the above results in 

an in vivo model of conscious guinea pig cough. 
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5.2 Methods 

 

5.2.1 BK-induced sensory nerve activation 

 

Non-cumulative CR curves were established for vehicle (0.1% dH2O) or BK on guinea pig 

(1, 3, 10, 30 µM) and wild type mouse (0.1, 1, 10, 100 µM) isolated vagus nerve. Stimuli 

were applied for 2 minutes in a random order, and the tissue washed with Krebs solution until 

baseline was re-established. The ability of 3 µM BK to activate human, or 1 µM BK to 

activate Trpa1-/- and Trpv1-/- vagus nerves was also assessed. After characterising the 

response to BK on the vagus nerve, a sub-maximal concentration (3 µM for guinea pig and 

human, or 1 µM for mouse) was chosen to profile the effect of antagonists. 

 

The GPCR through which BK induces coughing has not yet been definitively established. 

Therefore, I initially investigated the ability of B1-selective (1 µM R715) and B2-selective (10 

µM WIN 64338) antagonists to inhibit BK-induced sensory nerve depolarisation in guinea 

pig and mouse isolated vagus nerves. These were based on concentrations 10-fold higher than 

the reported affinity for the mouse B1 (Regoli et al., 1998) or guinea pig B2 receptors 

(Scherrer et al., 1995). A concentration 10-fold higher than the reported affinity is normally 

sufficient to inhibit responses in the isolated vagus nerve, allowing for the fact that we are 

testing the axon of the nerve (not at the nerve endings); and that not all of the myelin sheath 

may have been removed, which could reduce the availability of the drug to the nerve fibres. I 

observed an inhibitory effect of the B1 receptor antagonist on BK-induced vagus activation in 

mouse tissue, which was unexpected as the dogma states that B1 receptors are inducible (not 

constitutively expressed), therefore, in order to confirm these results I went on to test the 

ability of a B1-selective agonist to concentration-dependently induce depolarisation in the 

mouse (0.03, 0.1, 0.3, 1 µM Lys-[Des-Arg9]Bradykinin). 

 

To address the question of whether stimulation with BK induces production of prostanoids 

via the cyclooxygenase pathway (which could alter sensory nerve activation), the effect of a 

cyclooxygenase inhibitor (10 µM indomethacin) was determined. Indomethacin was perfused 

on to guinea pig or wild type mouse isolated vagus nerves for 10 minutes, and the effect of 

this inhibitor on BK responses was assessed as described in chapter 2, section 2.3.3. 

Indomethacin was chosen as this is a well-established cyclooxygenase inhibitor, which has 

been successfully used in other functional preparations at a concentration of 10 µM to block 
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the production of prostanoids (Belvisi et al., 1992; Patel et al., 1995; Takahashi et al., 1994; 

Ward et al., 1995). 

 

In chapter 3, appropriate concentrations were established for TRPA1- (10 µM HC-030031) 

and TRPV1-selective (10 µM capsazepine, 100 µM JNJ17203212) antagonists, which 

maximally inhibited their own receptor but did not exhibit off-target effects. These 

antagonists were assessed for their ability to inhibit BK-induced activation in guinea pig, 

mouse (wild type, Trpa1-/- and Trpv1-/-) and human isolated vagus nerves. 

 

5.2.2 BK-induced guinea pig cough 

 

Conscious, unrestrained male Dunkin Hartley guinea pigs (300-400 g, Harlan, UK) were 

individually placed in a plethysmography chamber. For the initial CR, animals were exposed 

to 10 minutes of aerosolised vehicle (0.9% saline) or 0.3, 1, 3 or 10 mg/ml BK. The number 

of coughs was recorded during the 10 minute stimulation as previously described in section 

2.4. 

 

For the antagonist study, guinea pigs were dosed i.p. with a combination of either: (a) vehicle 

(0.5% methyl cellulose in sterile saline) plus vehicle (15% solutol in 5% dextrose solution); 

(b) vehicle (15% solutol in 5% dextrose solution) plus HC-030031 (300 mg/kg); (c) vehicle 

(0.5% methyl cellulose in sterile saline) plus JNJ17203212 (100 mg/kg); or (d) HC-030031 

(300 mg/kg) plus JNJ17203212 (100 mg/kg). Guinea pigs were then exposed to an aerosol of 

3 mg/ml BK for 10 minutes, and the number of coughs counted as previously described. 

 

5.2.3 Data Analysis 

 

Antagonism of BK-induced sensory nerve activation was analysed by paired t-test, 

comparing responses in the same nerve before and after antagonist incubation. Comparison of 

the magnitude of BK-induced responses in Trpa1-/- and Trpv1-/- tissue was analysed using the 

Kruskal-Wallis one-way ANOVA followed by Dunn’s multiple comparison post-hoc test 

comparing all groups to wild type responses. Antagonism of BK-induced cough was also 

analysed using the Kruskal-Wallis one-way ANOVA followed by Dunn’s multiple 

comparison post-hoc test comparing all groups to vehicle. Significance was set at p < 0.05, 

and all data were plotted as mean ± s.e.m. of n observations. 
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5.3 Results 

 

BK is an endogenous inflammatory mediator that is upregulated in airway disease, and is 

associated with both initiation of cough and sensitisation of the cough reflex to capsaicin 

stimulation (Choudry et al., 1989; Fox et al., 1996; Katsumata et al., 1991; Kaufman et al., 

1980). Indeed, BK has been implicated in cough hypersensitivity observed with patients 

taking ACE inhibitors, which are prescribed to help with cardiovascular disorders (Fox et al., 

1996). In this instance, ACE inhibitors reduce the degradation of endogenous BK, thereby 

causing accumulation, sensitisation and subsequently an enhanced cough response. Though it 

is yet to be definitively established how the tussive effects of BK are being mediated, 

including which GPCR and ion channels are involved. 

 

5.3.1. BK-induced sensory nerve activation 

 

BK provoked concentration-related increases in magnitude of depolarisation of both guinea 

pig and mouse isolated vagus nerves. Submaximal concentrations of 3 µM for guinea pig and 

1 µM for mouse were used for subsequent antagonist experiments. Incubation with 3 µM BK 

also successfully stimulated human isolated vagus nerves. In contrast, vehicle (0.1% dH2O) 

had no effect in any of these species (Figure 5.1). 

 

BK binds to one of two known GPCRs: the B1 receptor, which is thought to be inducible 

rather than constitutively expressed; and the B2 receptor, which is constitutive. It has 

therefore generally been assumed that the B2 receptor mediates the acute tussive effects of 

BK. However, this has never been definitively investigated. I began by determining which 

GPCR BK binds to stimulate vagal sensory nerves. In guinea pig and human isolated vagus 

nerves, a B1-selective antagonist (1 µM R715) had no inhibitory effect on BK stimulation; 

whereas, a B2-selective antagonist (10 µM WIN 64338) abolished BK-induced responses 

(Figure 5.2A & 5.2C). In contrast, BK-induced mouse vagus nerve stimulation was largely 

mediated via the B1 receptor, with a smaller but significant role for B2 (Figure 5.2B). Neither 

the B2 antagonist in guinea pig and human vagus, nor the B1 or B2 antagonists in mouse 

vagus had an inhibitory effect on acrolein or capsaicin-induced responses, indicating that 

these compounds were not acting off-target on the TRPA1 or TRPV1 ion channels. To 

confirm the unexpected results observed in mice, a B1-selective agonist (Lys-(Des-

Arg9)Bradykinin) was tested on wild type mouse isolated vagus nerves. Depolarisation 
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occurred in a concentration-dependent manner, indicating that B1 was indeed causing a 

stimulatory effect in mouse sensory nerves (Figure 5.3). This indicates that there are species 

differences in the way BK effects are mediated in mice compared to guinea pigs and humans.  

 

It has been suggested that BK may induce its tussive effects via downstream production of 

prostanoids through the cyclooxygenase pathway (Ellis & Fozard, 2002). I tested this 

hypothesis by incubating sensory nerves with the general cyclooxygenase inhibitor 

indomethacin (10 µM). Indomethacin did not alter BK-induced sensory nerve activation 

either in mouse or guinea pig tissue (Figure 5.4), providing evidence against a role for 

prostanoid production in BK-induced cough. 

 

 

A. Guinea Pig B. Mouse 

 

C. Human 

 
Figure 5.1. Characterisation of the isolated vagus nerve response to BK stimulation. 

A concentration response was established for BK on (a) guinea pig and (b) wild type mouse isolated 

vagus nerve. (c) Human vagal tissue also responded to BK stimulation (3 µM). Veh = vehicle (0.1% 

dH2O). Data are presented as mean ± s.e.m of n = 6 observations for guinea pig and mouse; and n = 

4-5 for human experiments. 
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A. Guinea Pig 

 

B. Mouse  C. Human 

 

Figure 5.2. Determining the G protein-coupled receptor responsible for BK-induced sensory 

nerve stimulation. 

Isolated vagus nerves were incubated with selective B1 (1 µM R715) or B2 (10 µM WIN 64338) 

inhibitors or vehicle (Veh, 0.1% DMSO) for 10 minutes prior to stimulation with an agonist. (a) 

Guinea pig and (c) human nerve responses stimulated by BK (3 µM) were abolished by B2 

antagonism, but not inhibited by B1 antagonism or vehicle. (b) Mouse nerve responses stimulated by 

BK (1 µM) were partially inhibited by either B1 or B2 antagonists, but not affected by vehicle. Neither 

B1 nor B2 antagonism inhibited capsaicin (1 µM) or acrolein (300 µM) responses in guinea pig or 

mouse tissue. * indicates statistical significance (p < 0.05; paired t-test), comparing responses in the 

same nerve before and after antagonist incubation. Data are presented as mean ± s.e.m. of n = 6 

observations for guinea pig and mouse; and n=1-2 for human experiments. 
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Figure 5.3. A selective B1 agonist activates mouse isolated vagus nerves. 

A concentration-response curve was established for the B1-selective agonist Lys-[Des-

Arg9]Bradykinin (black bars) in isolated mouse vagus nerves to corroborate constitutive expression 

of the B1 receptor in this species. The magnitude of depolarisation is compared to the concentration of 

bradykinin used in antagonist experiments (1 µM; white bar). Veh = vehicle (0.1% DMSO). Data are 

presented as mean ± s.e.m. of n=6 observations. 

 

 

 

Figure 5.4. Inhibition of cyclooxygenase does not alter BK-induced vagus nerve stimulation. 

Isolated vagus nerves were stimulated with BK (3 µM guinea pig; 1 µM mouse) for 2 minutes, 

followed by10 minutes incubation with the cyclooxygenase inhibitor indomethacin (Indo, 10 µM), and 

stimulation with BK in the presence of indomethacin. Indomethacin failed to alter BK-induced 

sensory nerve depolarisation in either the guinea pig or mouse isolated vagus, determined by paired 

t-test comparing responses in the same nerve before and after antagonist incubation (significance set 

at p < 0.05). Data are presented as mean ± s.e.m. of n = 6 observations. 
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Having established that BK mediates sensory nerve depolarisation via the B2 GPCR in guinea 

pigs and humans, and both B1 and B2 GPCRs in mice, I went on to investigate whether 

TRPA1 and TRPV1 were the ion channels stimulated downstream of GPCR activation. The 

magnitude of depolarisation induced by 1 µM BK in Trpa1-/- and Trpv1-/- vagus nerve was 

approximately half that seen in wild type (Figure 5.5), indicating a role for both of these ion 

channels in mediating the BK response in mouse tissue. The importance of TRPA1 and 

TRPV1 ion channels in mice as well as guinea pigs and humans was confirmed using 

TRPA1- (HC-030031) and TRPV1-selective (capsazepine, JNJ17203212) antagonists. Either 

TRPA1 or TRPV1 antagonism partially inhibited BK-induced sensory nerve activation in 

guinea pig, wild type mouse and human isolated vagus nerves. When used in combination, 

both TRPA1 and TRPV1 antagonism virtually abolished nerve responses in all of these 

species (Figure 5.6). To confirm that these results were not due to unusual pharmacological 

effects of combining two antagonists, TRPA1 or TRPV1 antagonists were used to inhibit BK 

activation in vagal tissue taken from the alternate genetically modified mouse i.e. TRPA1 

antagonist with Trpv1-/- tissue; and TRPV1 antagonist with Trpa1-/- tissue. Results from these 

studies corroborated the earlier observations, showing almost complete loss of BK-induced 

sensory nerve responses (Figure 5.6B) 

 

 

Figure 5.5. Determining a role for TRPA1 and TRPV1 ion channels in BK-induced isolated 

vagus nerve responses. 

BK (1 µM) was applied to wild type (C57Bl/6j), Trpa1-/- or Trpv1-/- mouse isolated vagus nerves for 2 

minutes. The magnitude of depolarisation (mV) in Trpa1-/- and Trpv1-/- tissue was approximately half 

that seen in wild type, indicating a role for both of these ion channels in BK-induced nerve activation. 

* indicates statistical significance compared to wild type control (p < 0.05, Kruskal Wallis one-way 

ANOVA with Dunn’s multiple comparison post-hoc test). Data are presented as mean ± s.e.m. of n = 

6 observations. 
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A. Guinea Pig C. Human 

 

B. Mouse 

 
Figure 5.6. Pharmacologically determining a role for TRPA1 and TRPV1 ion channels in BK-

induced isolated vagus nerve responses. 

Isolated vagus nerves were incubated with a selective TRPA1 antagonist (10 µM HC-030031, HC); a 

selective TRPV1 antagonist (10 µM capsazepine, CAPZ; 100 µM JNJ17203212, JNJ); a combination 

of both TRPA1 and TRPV1 antagonists (HC+JNJ); or vehicle (0.1% DMSO, Veh) for 10 minutes 

prior to BK (3 µM guinea pig and human; 1 µM mouse) stimulation. Antagonism of either TRPA1 or 

TRPV1 partially inhibited BK-induced responses in (a) Guinea pig, (b) Mouse and (c) Human vagus 

nerves. Whereas, a combination of both TRPA1 and TRPV1 antagonists, or tissue taken from Trpa1-/- 

or Trpv1-/- mice incubated with the alternate antagonist, virtually abolished BK stimulation. * 

indicates statistical significance (p < 0.05; paired t-test), comparing responses in the same nerve 

before and after antagonist incubation. Data are presented as mean ± s.e.m. of n = 6 observations for 

guinea pig and mouse; and n = 2 for human experiments. 
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5.3.2 BK-induced guinea pig cough 

 

To investigate BK-induced coughing in conscious guinea pigs, I began by establishing a CR 

to determine an appropriate concentration of aerosolised BK with which to test the 

antagonists. Aerosolisation of vehicle produced no coughs, and 30 mg/ml induced few 

coughs. In contrast, 1, 3 and 10 mg/ml BK elicited robust coughing in most or all guinea pigs 

(Figure 5.7). Similar to PGE2, BK elicited trains of smaller coughs, often with multiple bouts 

occurring during one 10 minute exposure (refer to Figure 4.5). 

 

Following the results obtained in the isolated vagus model, the ability of TRPA1- (300 mg/kg 

HC-030031) and TRPV1-selective (100 mg/kg JNJ17203212) antagonists to inhibit the BK-

induced cough response was assessed. When pre-treated with vehicle only, BK induced on 

average 12 ± 4 coughs. Pre-treatment with either TRPA1 or TRPV1 antagonists partially 

inhibited the cough response. As observed with PGE2-induced cough, either TRPA1 or 

TRPV1 antagonists inhibited the number of BK-induced coughs by over half. BK stimulation 

elicited 1 ± 0.2 (p < 0.05 in comparison to vehicle control) and 3 ± 2 coughs with TRPA1 or 

TRPV1 antagonists, respectively. The cough response with TRPV1 antagonist pre-treatment 

did not reach significance in comparison to vehicle control, likely because of variability 

introduced in the data due to one animal in the TRPV1 antagonist group that coughed 22 

times. Pre-treatment with both TRPA1 and TRPV1 antagonists completely abolished the 

cough response to BK stimulation (0 ± 0 coughs; Figure 5.8). This data corroborates the in 

vitro sensory nerve results presented above, and provides strong evidence for activation of 

both TRPA1 and TRPV1 ion channels by BK downstream of the B2 receptor in guinea pigs. 
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Figure 5.7. Characterising BK-induced cough in the conscious guinea pig model. 

A concentration response for BK-induced cough was established. BK was aerosolised for 10 minutes 

and the number of coughs counted during this period. Data are plotted in both bar chart and scatter-

graph format as mean ± s.e.m. of n=4 observations. Veh = vehicle (0.9% saline). 

 

 

Figure 5.8. Determining a role for TRPA1 and TRPV1 ion channels in BK-induced cough. 

Guinea pigs were injected i.p. 1 hour prior to aerosolised BK (3 mg/ml) stimulation with: TRPA1 

vehicle plus TRPV1 vehicle (Veh); TRPA1 antagonist (300 mg/kg HC-030031) plus TRPV1 vehicle 

(HC); TRPV1 antagonist (100 mg/kg JNJ17203212) plus TRPA1 vehicle (JNJ); or TRPA1 antagonist 

plus TRPV1 antagonist (HC+JNJ). Data are plotted in both bar chart and scatter graph format as 

mean ± s.e.m. of n=10-11 observations. * indicates statistical significance compared to vehicle 

control (p < 0.05; Kruskal Wallis one-way ANOVA with Dunn’s multiple comparison post-hoc test). 
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5.4 Discussion 

 

Inhaled BK induces coughing in both humans and animals (Choudry et al., 1989; Herxheimer 

& Stresemann, 1961; Katsumata et al., 1991; Kaufman et al., 1980). Inhibition of the 

breakdown of BK with ACE inhibitors has also been linked to cough hypersensitivity 

associated with this therapy for cardiovascular disease, which was postulated to be via 

activation of the B2 GPCR (Fox et al., 1996). Indeed, activation of the B2 isoform of the 

bradykinin receptor is generally believed to mediate the tussive effects of BK. But there has 

never been a comprehensive investigation in to which GPCR, or downstream ion channels, 

are associated with the tussive effects of BK. The aims of this chapter were, therefore to 

determine both the GPCR and ion channels responsible for mediating the tussive effects of 

BK using the isolated vagus preparation and an in vivo cough model. 

 

BK binds to one of two GPCR isoforms, the B1 and B2 receptors. In general, the B2 receptor 

is constitutively expressed, whereas, the B1 receptor is thought to be inducible. However, it 

has been suggested that there may be some constitutive expression of the B1 isoform in the 

mouse (Vianna & Calixto, 1998). Using the isolated vagus nerve preparation I have 

established that BK-induced responses are indeed mediated entirely by the B2 receptor in 

guinea pig and human tissue. In contrast, both B1 and B2 isoforms play a role in BK 

activation of the mouse sensory nerves, with B1 mediating the majority of the response. To 

confirm these findings, I tested a B1-selective agonist on mouse isolated vagus, and observed 

a concentration-related increase in sensory nerve depolarisation. These results corroborate the 

findings of Vianna & Calixto (1998), where they also proposed constitutive expression of B1 

in the mouse. This indicates a difference in the way that BK mediates its airway irritant 

effects in the mouse in comparison to guinea pigs and humans. Despite this, the subsequent 

signalling pathways downstream of GPCR binding appear to activate the same ion channels 

in these species. In addition to their effects on BK-induced vagus nerve depolarisation, both 

the B1 and B2 antagonists were assessed for their ability to inhibit capsaicin and acrolein 

responses. Neither antagonist was shown to have an effect, indicating that they were not 

having off-target inhibitory outcomes on the TRPA1 or TRPV1 ion channels, and therefore 

confirming the action of BK on its own GPCRs. 

A number of the outcomes associated with BK have been found to be via indirect effects, 

including the release of other endogenous mediators such as prostaglandins downstream of 

arachadonic acid metabolism (Ellis & Fozard, 2002). It is well-known that PGE2 activates 
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airway sensory nerves, causing cough; and it is feasible that other prostanoids are capable of 

tussive effects as well. I therefore investigated the possibility that BK-induced sensory nerve 

activation was an indirect effect due to the downstream release of irritant prostanoid 

compounds. Vagus nerves were incubated with the general cyclooxygenase inhibitor 

indomethacin. Indomethacin did not have any effect on BK-induced nerve depolarisation in 

either the guinea pig or mouse, indicating that BK does not act via this pathway to stimulate 

the vagus nerve. 

 

Despite the above suggestion that BK may act indirectly, it is also known to mediate some 

nociceptive effects via the activation of TRPA1 and/or TRPV1 ion channels, probably 

through the intracellular phospholipase C signalling pathway (Bautista et al., 2006). It is 

therefore possible that binding of BK to one of the bradykinin receptors induces the release of 

intracellular secondary messengers which then phosphorylate ion channels to cause airway 

irritation. This hypothesis was investigated using the concentrations of TRPA1 and TRPV1-

selective antagonists established in Chapter 3, as well as genetically modified Trpa1-/- and 

Trpv1-/- mice. Pharmacological inhibition of either TRPA1 or TRPV1 receptors with selective 

antagonists reduced BK responses by approximately 50%; and when used in combination 

virtually abolished sensory nerve depolarisation in guinea pig, mouse and human vagus 

nerves. Furthermore, knockdown of either the TRPA1 or TRPV1 receptor in genetically 

modified mice halved the magnitude of depolarisation induced by BK stimulation in 

comparison to wild type controls. When used in combination with the alternate antagonist, 

again, vagus nerve activation was all-but abolished in Trpa1-/- and Trpv1-/- tissue. These 

results provided strong in vitro evidence that BK-induced tussive responses are mediated 

approximately 50/50 by the TRPA1 and TRPV1 ion channels, and that this effect is translated 

across species. 

 

Having implicated a role for both TRPA1 and TRPV1 in BK-induced sensory nerve 

activation, I proceeded to confirm these results in the in vivo cough model. Appropriate doses 

of TRPA1 (HC-030031) and TRPV1 (JNJ17203212) inhibitors had been established in 

chapter 3. Pre-treatment with either TRPA1 or TRPV1 antagonists partially inhibited the 

guinea pig cough response to BK stimulation compared to vehicle control, whereas pre-

treatment with a combination of both antagonists abolished cough altogether. As with PGE2, 

BK-induced cough was inhibited by over half with either TRPA1 (95%) or TRPV1 (75%) 

antagonists compared to vehicle control, which is contrary to findings in the in vitro isolated 
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vagus model, whereby either antagonist inhibited BK responses by around 50%. Similarly, 

though treatment with both TRPA1 and TRPV1 antagonists completely abolished BK-

induced cough, there was still a small depolarisation effect observed in the vagus nerve 

preparation. As discussed in section 4.4 in relation to PGE2-induced responses, this could be 

due to the difference in end-points being measured by these two models. That is, the isolated 

vagus nerve preparation measures compound membrane depolarisation of the sensory nerves, 

which does not necessarily lead to action-potential generation and subsequent coughing. This 

is because action potentials are an all-or-none response, and if membrane depolarisation of 

the nerves does not reach threshold, there is no signal sent to the brain. As such, 50% 

inhibition of the BK response on the vagus nerve may prevent the stimulus reaching threshold 

in more than half of the nerve fibres, therefore fewer action potentials are generated, and the 

information relayed to the CNS causes substantially fewer coughs. 

 

In summary, this chapter has established that BK-induced sensory nerve activation in guinea 

pig and human vagus nerves is through the B2 GPCR; whereas, the majority of BK-mediated 

activation in mouse sensory nerves is through B1, with a smaller role for the B2 receptor. 

Despite this, signalling downstream in all three species appears to activate both TRPA1 and 

TRPV1 ion channels, which are equally involved in mediating the irritant effects of BK. 

Furthermore, results generated from the in vivo guinea pig cough model indicat that inhibition 

of either TRPA1 or TRPV1 could substantially reduce the tussive effects of BK over-and-

above the 50% blockade seen on the axon of the vagus nerve in vitro; and that a combination 

of both antagonists completely abolishes BK associated cough. 
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CHAPTER 6 

 

Endogenous Mediators: Low pH 
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6.1. Rationale 

 

The balance of pH within the body is maintained within a narrow range in healthy 

individuals. Accordingly, cells possess mechanisms in which to sense deviations from normal 

pH levels. Low pH is an established and effective tussive agent which is commonly used in 

human and animal cough research, and to assess cough hypersensitivity in disease states 

(Karlsson & Fuller, 1999; Morice et al., 2007, 2001). Indeed, patients with inflammatory 

airways disease have been observed to exhibit lower lung pH than healthy individuals (Hunt 

et al., 2000; Kostikas et al., 2002), and as such low pH could play a role in the pathogenesis 

of chronic cough associated with these diseases. It is known that sensory nerve activation and 

tussive effects of low pH are partially mediated via the TRPV1 ion channel, though we do not 

currently understand how acidic solutions cause channel opening (Kollarik & Undem, 2002; 

Lalloo et al., 1995). We also do not know what other ion channel(s) are involved in mediating 

the low pH response. 

 

TRPA1 has also been implicated in detecting changes in pH. In DRG neurons, and models of 

pain using both wild type and Trpa1-/- mice, TRPA1 has been demonstrated to play a role in 

sensing high pH (alkalinity) (Dhaka et al., 2009; Fujita et al., 2008). Moreover, TRPA1 was 

recently found to be activated by decreases in intracellular pH (Wang et al., 2011). A role for 

TRPA1 in low pH-induced cough has not yet been investigated. The first aim of this chapter 

was, therefore, to confirm a role for TRPV1 in our models, and determine whether TRPA1 

plays a role in low pH-induced sensory nerve activation in vitro, and guinea pig cough in 

vivo. 

 

In addition, the Acid Sensing Ion Channels (ASICs) have been suggested to play a role in low 

pH-induced cough. However, research investigating these channels is problematic due to the 

poor selectivity of the available pharmacological tools. Moreover, this area of research is 

further complicated by the propensity of ASIC channels to form heteromultimeric channels. 

As such, there is yet to be a comprehensive investigative effort in to the role these ion 

channels play in the tussive response. Current evidence suggests that the ASIC1 or ASIC3 

receptors may be involved, based on their expression in rat DRG neurons (Alvarez de la Rosa 

et al., 2002), and the rapidly inactivating profile of the TRPV1-independent acid sensing 

mechanisms in sensory neurons (Kollarik & Undem, 2002). Therefore, ASIC1 and/or ASIC3 

may be involved in the response either as homodimers or heterodimers, in combination with 
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one or more of the other ASIC subtypes. The second aim of this chapter was to determine 

whether ASIC ion channels also play a role in low pH-induced sensory nerve activation using 

a non-selective ASIC channel inhibitor, and tissue from Asic1-/- and Asic3-/- mice. 
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6.2 Methods 

 

6.2.1 Low pH-induced sensory nerve activation 

 

Low pH activates TRPV1 ion channels at room-temperature with a pH ≤ 6 (Jordt et al., 

2000). A solution of pH5 had previously been established to activate guinea pig vagus nerves 

within our lab, and I proceeded to confirm this in mouse (wild type, Trpa1-/- and Trpv1-/-) and 

human tissue. In these experiments I used a Krebs-based solution altered to pH5 (mM: NaCl  

118.5; KCl 1.7; KH2PO4 6.6;  MgSO4 1.2; CaCl2 2.5; NaH2PO4 0.1; and glucose 10), because 

low pH generated with citric acid (which is normally used to assess low pH-induced cough in 

vivo) cannot be made up in a physiologically buffered solution. Low pH or vehicle (0.1% 

dH2O) was applied to the nerve for 2 minutes, then the tissue washed with unaltered Krebs 

solution until baseline was re-established. After determining that low pH depolarised vagal 

sensory nerves, TRPA1- (10 µM HC-030031) and TRPV1-selective (10 µM capsazepine, 

100 µM JNJ17203212) antagonists were assessed for their ability to inhibit low pH-induced 

sensory nerve activation in guinea pig, mouse (wild type, Trpa1-/- and Trpv1-/-) and human 

isolated tissue. 

 

The role of the ASIC ion channels in low pH-induced stimulation was also investigated using 

the isolated vagus nerve preparation. It has been suggested in the literature that the ASIC1 or 

ASIC3 ion channels may play a role in low pH responses (Kollarik & Undem, 2002), and 

thus I tested the ability of low pH to induce nerve depolarisation in Asic1-/- and Asic3-/- mouse 

tissue compared to wild type (C57Bl/6j). Following this, I investigated the ability of a non-

selective ASIC channel inhibitor (100 µM amiloride) to inhibit nerve responses in the guinea 

pig, wild type mouse and Trpv1-/- mouse tissue; and the ability of TRPV1-selective (10 µM 

capsazepine and 100 µM JNJ17203212), TRPA1-selective (10 µM HC-030031) and non-

selective ASIC antagonists (100 µM amiloride) to inhibit responses in Asic1-/- and Asic3-/- 

tissue. Amiloride (10 µM) is a non-selective blocker which inhibits ASIC1-like, ASIC2-like 

and ASIC3-like currents in rat DRG neurons elicited by stimulation with pH4.5 (Dubé et al., 

2005). A concentration 10-fold higher than this (100 µM) was chosen for experiments on the 

isolated vagus nerve, as is common practice in this preparation. Until recently, amiloride and 

amiloride-related compounds were the only known small molecule blockers of ASIC 

channels. A more selective non-amiloride inhibitor of ASIC channels has been developed 

(Dubé et al., 2005), but is expensive to buy due to a multi-step chemical synthesis. 
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6.2.2 Citric acid-induced guinea pig cough 

 

Conscious, unrestrained male Dunkin Hartley guinea pigs (300-400 g, Harlan, UK) were 

individually placed in a plethysmography chamber. For the initial CR, animals were exposed 

to 10 minutes of aerosolised vehicle (0.9% saline) or 0.1, 0.2, 0.3 or 0.4 M citric acid. The 

number of coughs was recorded during the 10 minute stimulation as previously described in 

chapter 2, section 2.4. 

 

Pre-treatment with the vehicle for JNJ17203212 (15% solutol in 5% dextrose solution) was 

previously observed to inhibit citric acid cough responses. Therefore, the vehicle for 

JNJ17203212 in this instance was changed to the same as that for HC-030031 i.e. 0.5% 

methyl cellulose in 0.9% saline. For the antagonist study, guinea pigs were dosed i.p. with a 

combination of either (a) vehicle (0.5% methyl cellulose in 0.9% saline); (b) vehicle plus HC-

030031 (300 mg/kg); (c) vehicle plus JNJ17203212 (100 mg/kg); or (d) HC-030031 (300 

mg/kg) plus JNJ17203212 (100 mg/kg). Guinea pigs were then exposed to an aerosol of 0.3 

M citric acid for 10 minutes, and the number of coughs counted as previously described. 

 

6.2.3 Data Analysis 

 

Antagonism of low pH-induced sensory nerve activation was analysed using paired t-test 

comparing responses in the same nerve before and after antagonist incubation. Comparison of 

the magnitude low pH-induced responses in Trpa1-/-, Trpv1-/-, Asic1-/- or Asic3-/- tissue was 

analysed using the Kruskal-Wallis one-way ANOVA followed by Dunn’s multiple 

comparison post-hoc test comparing all groups to wild type responses. Antagonism of citric 

acid-induced cough was also analysed using the Kruskal-Wallis one-way ANOVA followed 

by Dunn’s multiple comparison post-hoc test comparing all groups to vehicle. Significance 

was set at p < 0.05, and all data were plotted as mean ± s.e.m. of n observations. 



 127 

6.3 Results 

 

Citric acid is a well-known tussive ligand that is commonly used in clinical trials to assess 

cough sensitivity, and has been shown to activate the TRPV1 ion channel in both in vitro and 

in vivo models of cough. Indeed, TRPV1 mediates responses to acidic solutions of pH ≤ 6 

(Jordt et al., 2000). However, antagonism of TRPV1 only partially inhibits the tussive effects 

of citric acid, implicating at least one other ion channel in this response. Patients suffering 

from inflammatory airways disease exhibit a decrease in lung pH, and it has been postulated 

that this could be important in the development of excessive cough seen in disease states. It is 

therefore important to establish what other receptors are mediating the irritant effects of 

acidity in the airways. TRPA1 is a potential target for sensing acidic solutions, and has 

already been discovered to sense alkaline-induced pain (Fujita et al., 2008) and intracellular 

changes in pH (Wang et al., 2011). Alternately, ASIC ion channels have been postulated to 

play a role in sensing acidity in the airways (Kollarik & Undem, 2002). 

 

6.3.1 Low pH-induced sensory nerve activation 

 

Low pH 5 provoked reliable and robust depolarisation of the guinea pig, mouse and human 

isolated vagus nerves (Figure 6.1). This level of acidity was chosen as it is known to activate 

TRPV1 ion channels. In contrast, vehicle (0.1% dH2O) had no effect on nerve stimulation in 

any of these species. The magnitude of depolarisation induced by low pH in Trpv1-/- mouse 

vagus was approximately half that seen in wild type tissue, but was unaffected in Trpa1-/- 

tissue (Figure 6.2). These results were confirmed using TRPA1- (HC-030031) and TRPV1-

selective (capsazepine, JNJ17203212) antagonists. Whereby, TRPV1 antagonism partially 

inhibited low pH-induced sensory nerve activation in guinea pig, wild type mouse and human 

isolated vagus; TRPA1 antagonism had no effect on the magnitude of low pH responses. 

When used in combination, both TRPA1 and TRPV1 antagonism did not inhibit low pH 

responses any more than a TRPV1 antagonist alone (Figure 6.3). This confirms a role for 

TRPV1 in mediating low pH-induced sensory nerve activation, but does not implicate 

TRPA1 ion channels in the response.  
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A. Guinea Pig B. Mouse C. Human 

 
Figure 6.1. Characterisation of the isolated vagus nerve response to low pH stimulation. 

The ability of low pH (Krebs solution altered to pH 5) to stimulate sensory nerve fibres was assessed 

on (a) guinea pig, (b) wild type mouse and (c) human isolated vagus nerve. Veh = vehicle (0.1% 

dH2O). Data are presented as mean ± s.e.m. of n = 6 observations for guinea pig and mouse; and n = 

4-6 for human experiments. 

 

 

 

Figure 6.2. Determining a role for TRPA1 and TRPV1 ion channels in low pH-induced isolated 

vagus nerve responses. 

pH 5 was applied to wild type (C57Bl/6j), Trpa1-/- or Trpv1-/- mouse isolated vagus nerves for 2 

minutes. The magnitude of depolarisation (mV) in the Trpv1-/- tissue was approximately half that seen 

in wild type, indicating a role for this ion channel in low pH-induced sensory nerve activation. In 

contrast, the magnitude of depolarisation in Trpa1-/- tissue was not significantly different to wild type 

control. * indicates statistical significance compared to wild type control (p < 0.05, Kruskal Wallis 

one-way ANOVA with Dunn’s multiple comparison post-hoc test). Data are presented as mean ± 

s.e.m. of n = 6 observations. 
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A. Guinea Pig C. Human 

 

B. Mouse 

 
Figure 6.3. Pharmacologically determining a role for TRPA1 and TRPV1 ion channels in low 

pH-induced isolated vagus nerve responses. 

Isolated vagus nerves were incubated with a selective TRPA1 antagonist (10 µM HC-030031, HC); a 

selective TRPV1 antagonist (10 µM capsazepine, CAPZ; 100 µM JNJ17203212, JNJ); a combination 

of both TRPA1 and TRPV1 antagonists (HC+JNJ); or vehicle (0.1% DMSO, Veh) for 10 minutes 

prior to low pH stimulation (pH 5). Antagonism of TRPV1 but not TRPA1 partially inhibited low pH-

induced responses in (a) Guinea pig, (b) Mouse and (c) Human vagus nerves. A combination of both 

TRPA1 and TRPV1 antagonists did not inhibit low pH responses any more than TRPV1 antagonism 

alone. * indicates statistical significance (p < 0.05; paired t-test), comparing responses in the same 

nerve before and after antagonist incubation. Data are presented as mean ± s.e.m. of n = 6 

observations for guinea pig and mouse; and n = 2 for human experiments. 
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The magnitude of depolarisation induced by capsaicin, acrolein, PGE2 and BK in the Asic1-/- 

and Asic3-/- mice was not altered compared to wild type control, indicating that deletion of 

these genes did not generally affect the ability of the nerves to respond to agonist stimulation 

(Figure 6.4A). In contrast, pH 5 in Asic1-/- mouse vagus was blunted compared to that 

observed in wild type tissue (p < 0.05); and low pH responses in Asic3-/- mouse tissue were 

augmented in comparison to wild type (p < 0.05; Figure 6.4B). Amiloride, a general ASIC 

inhibitor, partially inhibited low pH responses in guinea pig, wild type mouse and human 

vagal tissue (Figure 6.5). In contrast, amiloride did not inhibit capsaicin responses in guine-

pig or mouse vagus, thereby confirming that there was no off-target effect of this inhibitor on 

TRPV1 ion channels at the concentration used. In Asic1-/- tissue, the TRPV1-selective 

antagonists capsazepine and JNJ17203212 inhibited low pH responses by 80 ± 11% and 68 ± 

12%, respectively (p < 0.05). In Asic3-/- tissue, incubation with the TRPV1 antagonists 

inhibited low pH responses by 52 ± 6% and 45 ± 3%, respectively (p < 0.05; Fibure 6.6), 

which is similar to the inhibition observed in wild type mouse tissue (refer to Figure 6.3B). 

Furthermore, the general ASIC blocker amiloride inhibited low pH responses by 91 ± 10% in 

Trpv1-/- tissue; and 47 ± 4% in Asic3-/- tissue (p < 0.05); but did not affect low pH stimulation 

in Asic1-/- tissue (3 ± 7%; p > 0.05) (Figure 6.6). This is consistent with the above findings 

implicating a role for ASIC1 but not ASIC3 ion channels in the low pH response. 
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A. 

 

B. 

 
Figure 6.4. Determining a role for ASIC ion channels in low pH-induced isolated vagus nerve 

responses. 

Agonists were applied to wild type (C57Bl/6j), Asic1-/- or Asic3-/- mouse isolated vagus nerves for 2 

minutes. (a) The magnitude of capsaicin (1 µM), acrolein (300 µM), PGE2 (10 µM) or BK (1 µM) 

responses were not affected by deletion of either the ASIC1 or ASIC3 genes compared to wild type 

controls. (b) Magnitude of depolarisation (mV) induced by low pH (pH 5) stimulation in Asic1-/- tissue 

was blunted compared to responses in wild type tissue, indicating a role for these ion channels in low 

pH-induced nerve activation. In contrast, low pH responses in the Asic3-/- mice were enhanced in 

comparison to wild type. * indicates statistical significance compared to wild type control (p < 0.05, 

Kruskal Wallis one-way ANOVA with Dunn’s multiple comparison post-hoc test). Data are presented 

as mean ± s.e.m. of n = 6-11 observations. 
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A. Guinea Pig B. Wild Type Mouse C. Human 

 

Figure 6.5. Pharmacologically determining a role for ASIC ion channels in low pH-induced 

isolated vagus nerve responses. 

Isolated vagus nerves were incubated with a non-selective ASIC channel inhibitor (100 µM 

Amiloride; Amil) or vehicle (0.1% DMSO, Veh) for 10 minutes prior to low pH (pH 5) stimulation. 

ASIC channel antagonism partially inhibited low pH-induced responses in (a) guinea pig, (b) wild 

type mouse and (c) human vagus nerves. * indicates statistical significance (p < 0.05; paired t-test), 

comparing responses in the same nerve before and after antagonist incubation. Data are presented as 

mean ± s.e.m. of n = 6 observations for guinea pig and mouse; and n = 1-2 for human experiments. 

 

 
Figure 6.6. Pharmacologically determining a role for the ASIC and TRPV1 ion channels in low 

pH-induced isolated vagus nerve responses from genetically modified mice. 

Isolated vagus nerves were incubated with a TRPV1-selective antagonist (10 µM capsazepine, CAPZ; 

100 µM JNJ17203212, JNJ), or a non-selective ASIC channel inhibitor (100 µM Amiloride, Amil) for 

10 minutes prior to low pH (pH 5) stimulation. Incubation with a TRPV1 antagonist on Asic1-/- tissue 

inhibited low pH responses by approximately 68-80%; and on Asic3-/- tissue inhibited low pH 

responses by 45-52%. Incubation with a general ASIC inhibitor on Trpv1-/- vagus nerves inhibited low 

pH responses by approximately 91%. * indicates statistical significance (p < 0.05; paired t-test), 

comparing responses in the same nerve before and after antagonist incubation. Data are presented as 

mean ± s.e.m. of n = 6 observations. 
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6.3.2 Citric acid-induced guinea pig cough 

 

A concentration-response for citric acid-induced cough in the conscious guinea pig model 

had been previously established in our lab. Neither vehicle nor 0.1 M citric acid elicited any 

coughing; whereas 0.2, 0.3 and 0.4 M concentrations elicited robust coughing in most or all 

animals (Figure 6.7). A sub-maximal concentration of 0.3 M was chosen for use in the 

antagonist study. Citric acid elicited single loud coughs similar to capsaicin and acrolein 

stimulation (refer to Figure 3.10). 

 

The ability of TRPA1- (300 mg/kg HC-030031) and TRPV1-selective (100 mg/kg 

JNJ17203212) antagonists to inhibit citric acid-induced cough was then assessed. When pre-

treated with vehicle only, citric acid induced on average 9 ± 2 coughs. Surprisingly, pre-

treatment with either TRPA1 or TRPV1 antagonists partially inhibited the number of coughs; 

citric acid stimulation elicited 2 ± 1 with TRPA1 antagonist pre-treatment, and 2 ± 1 coughs 

with TRPV1 antagonist pre-treatment (p < 0.05). However, i.p. injection with a combination 

of both TRPA1 and TRPV1 antagonists did not inhibit the cough response any more than 

either antagonist alone (1 ± 0.5 coughs; Figure 6.8). This is in contrast to the results observed 

in the in vitro isolated vagus nerve model, where TRPA1 antagonism did not inhibit low pH 

responses. 

 

 

 
Figure 6.7. Characterising citric acid -induced cough in the conscious guinea pig model. 

A concentration response for citric acid-induced cough was established. Citric acid was aerosolised 

for 10 minutes, and the number of coughs counted during this period. Data are plotted in both bar 

chart and scatter-graph format as mean ± s.e.m. of n=10 observations. Veh = vehicle (0.9% saline). 

The pH of each solution is indicated above the corresponding bar on the left-hand bar graph. 
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Figure 6.8. Determining a role for TRPA1 and TRPV1 ion channels in citric acid-induced 

cough. 

One hour prior to 10 minutes stimulation with aerosolised citric acid (0.3 M), guinea pigs were 

injected i.p with: TRPA1 vehicle plus TRPV1 vehicle (Veh); TRPA1 antagonist (300 mg/kg HC-

030031) plus TRPV1 vehicle (HC); TRPV1 antagonist (100 mg/kg JNJ17203212) plus TRPA1 vehicle 

(JNJ); or TRPA1 antagonist plus TRPV1 antagonist (HC+JNJ). Data are plotted in both bar chart 

and scatter graph format as mean ± s.e.m. of n=8-10 observations. * indicates statistical significance 

compared to vehicle control (p < 0.05; Kruskal Wallis one-way ANOVA with Dunn’s multiple 

comparison post-hoc test). 
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6.4 Discussion 

 

Low pH is an established tussive agent which is commonly used to assess the cough reflex, 

both in animal research and in the clinic (Karlsson & Fuller, 1999; Morice et al., 2007, 2001). 

TRPV1 partially mediates the tussive effects of low pH, but it is not currently know what 

other ion channel(s) are involved. I hypothesised that the TRPA1 ion channel could also be 

activated by low pH solutions. TRPA1 is a receptor that is activated by a multitude of diverse 

ligands, and has been demonstrated in this thesis to mediate both PGE2 and BK-induced 

tussive responses alongside the TRPV1 ion channel (see chapters 4 & 5). In addition, a role 

for TRPA1 in detecting intracellular acidity has recently been established (Wang et al., 2011), 

and it has been implicated in detecting alkaline substances (Dhaka et al., 2009; Fujita et al., 

2008).  There is also evidence in the literature that ASIC ion channels, particularly the ASIC1 

and ASIC3 isoforms, may be involved in low pH responses (Kollarik & Undem, 2002). The 

aim of this chapter was to investigate the ion channel(s) responsible for low pH-induced 

cough using the isolated vagus preparation and an in vivo model of cough. 

 

A role for TRPV1 in mediating low pH-induced sensory nerve activation in vitro was 

confirmed by pharmacological inhibition with TRPV1-selective antagonists in guinea pig, 

mouse and human tissue; and assessment of the magnitude of response to low pH in wild type 

vs. genetically modified Trpv1-/- animals. In contrast, antagonism or knockdown of the 

TRPA1 receptor had no effect on low pH-induced vagus nerve responses in any of these 

species. This data provided evidence against a role for TRPA1 in low pH-induced vagal 

sensory afferent stimulation. I therefore went on to investigate whether the ASIC ion 

channels could be mediating low pH responses. Indeed, pharmacological inhibition of the 

ASIC channels with a general ASIC antagonist partially inhibited low pH responses in guinea 

pig and wild type mouse tissue. Because of a lack of selective antagonists which target the 

respective ASIC sub-types, I also used tissue from genetically modifed Asic1-/- and Asic3-/- 

animals to identify which receptor sub-type(s) were mediating the inhibition observed with 

the general ASIC antagonist. Asic1-/- and Asic3-/- mice were obtained due to published data 

suggesting that one of these isoforms was likely to be mediating low pH in the airways. This 

hypothesis is based on the expression profile of ASIC ion channels in rat DRG neurons; and 

their observed activation and deactivation kinetics, which are similar to the TRPV1-

independent low pH response on single fibres projecting to the airways (Kollarik & Undem, 

2002; Kollarik et al., 2007). Using the isolated vagus preparation, I found that low pH 



 136 

responses in vagal tissue from Asic1-/- mice were blunted compared to wild type; whereas 

responses in Asic3-/- mice were augmented. This indicates a role for the ASIC1 ion channels 

in mediating the low pH tussive response. The enhanced response observed in the Asic3-/- 

mice was unexpected, but is consistent with the literature, in which Chen and colleagues 

found a reduced time to onset of pain responses and an increase in pain-related behaviours in 

Asic3-/- mice compared to wild type (Chen et al., 2002). In support of a role for the ASIC1 ion 

channel in low pH-induced sensory nerve activation, TRPV1 antagonists produced 68-80% 

inhibition of the low pH response in Asic1-/- mice, but there was no effect of a general ASIC 

inhibitor, thus indicating that knockdown of ASIC1 gene accounted for all of this effect. In 

contrast, TRPV1 antagonists only inhibited the low pH response by 45-52% in Asic3-/- mice, 

which is comparable to the inhibition observed in wild type mice of 45-54%. Furthermore, 

amiloride produced inhibition of approximately 47% in the Asic3-/- tissue, again comparable 

to the inhibition seen in wild types of around 44%. What I have not investigated in this thesis 

is the role of ASIC2 ion channels in the response to low pH. Our group has recently obtained 

permission to bring in some Asic2-/- mice, which are being kindly provided by Dr Ladzdunski 

(Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France). Also, it is important 

to note that there are two isoforms of the ASIC1 channel (ASIC1a and ASIC1b). The 

knockout mouse colony that I have used in these studies are devoid of functional channels for 

both of the ASIC1 isoforms and thus further studies will be required to determine whether 

ASIC1a or ASIC1b (or both) are mediating the effects I have described above.  

 

In contrast to findings in the isolated vagus preparation, pre-treatment with either TRPA1 or 

TRPV1 antagonists partially inhibited citric acid-induced cough in conscious guinea pigs. 

However, pre-treatment with a combination of both antagonists did not inhibit cough any 

more than either antagonist alone, indicating that there is still a role for the ASIC ion 

channels (likely ASIC1) in mediating citric acid-induced cough. There are a number of 

possible reasons why the in vitro isolated vagus evidence contradicts the in vivo cough 

results. Firstly, in the isolated vagus preparation we are measuring from all vagal afferents, 

including all the different types of sensory fibre (RAR, SAR, Aδ and C-fibre), as well as 

airway- and non-airway-projecting fibres. Therefore, any effect of low pH on the TRPA1 ion 

channel could be masked in this preparation if the effect is small, restricted only to one type 

of fibre type, or restricted only to the airway-projecting afferents. Furthermore, though we 

know we are stimulating the vagus nerve with pH 5, we cannot be sure what level of acidity 

is reached in the lungs when inducing cough with 0.3 M citric acid, which has a solution 
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acidity of pH 1.6. Therefore, TRPA1 may mediate responses to levels of pH more acidic than 

pH 5. These are interesting questions which could be answered by using cellular models, 

whereby we can measure from single cells and distinguish between airway and non-airway 

afferents. Cellular imaging techniques have only recently been established in our laboratory, 

therefore in order to investigate these hypotheses I have initially had to characterise a model 

of vagal ganglia cell imaging, detailed in chapter 7. 

 

In summary, in this chapter I have confirmed a role for the TRPV1 ion channel in mediating 

sensory nerve activation and cough induced by acidic solutions. Furthermore, the ASIC1 ion 

channels appear to partially mediate low pH induced sensory nerve activation in vitro, but 

because of the poor selectivity of ASIC channel inhibitors I have not been able to confirm 

this in the in vivo cough model. A role for the TRPA1 ion channel was also investigated, with 

contradictory evidence indicating an inhibitory effect on citric acid-induced cough in vivo, 

but no effect on low pH-induced sensory nerve activation in vitro. More detailed 

investigation is therefore required to determine whether TRPA1 does indeed play a role in 

mediating low pH tussive responses. 
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CHAPTER 7 

 

Characterising a Model of 

Primary Ganglia Cell Imaging 
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7.1. Rationale 

 

Cellular cation flux and changes in membrane voltage can be assessed on a population of 

cells by microscopy, utilising fluorescent dyes. This method could allow us to dissect out the 

signalling mechanisms of tussive agents on a more basic level, and can be used to look not 

only at the differences between primary vagal ganglia cells originating from the two different 

ganglia (nodose and jugular), but also to distinguish between airway and non-airway 

projecting fibres. This method therefore provides advantages over the isolated vagus 

preparation, from which we record compound membrane depolarisation from all types of 

fibres, originating from both vagal ganglia, and projecting not only to the airways but other 

parts of the body. This in vitro preparation could therefore help to investigate the difference 

in results with regards to the role of TRPA1 in low pH-induced sensory nerve activation and 

cough observed in chapter 6. For example, it is possible that TRPA1 plays a role in the acid-

induced response in airway fibres, but not non-airway fibres; and that this effect is hidden in 

the natural variability when recording from the axon of the vagus nerve, because both airway 

and non-airway fibres are present. However, the results from this preparation must still be 

interpreted with caution, as we are recording from the cell bodies which reside in the vagal 

ganglia, rather than the nerve endings within the airways. Therefore, the results observed with 

this preparation may differ from what is actually occurring at the nerve terminals. 

 

We recently developed a multi-dye epifluorescence fast acquisition microscopy technique in 

our lab. The aims of this chapter were therefore to establish and characterise a model of 

primary vagal ganglia cell imaging; to confirm the results observed in chapters 4 and 5 for 

PGE2 and BK-induced sensory nerve activation and cough; and to attempt to clarify the low 

pH-induced response in vitro. The second aim was to stain airway-specific primary ganglia 

cells using the retrograde tracer DiI, and determine if these cells respond to selected tussive 

stimuli. 
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7.2 Methods 

 

7.2.1 Characterisation of the isolated primary vagal ganglia cell imaging model 

 

For a description of the methods for collection and isolation of the primary vagal ganglia 

cells refer to chapter 2, section 2.5. 

 

7.2.1.1 TRP-selective agonists 

 

Jugular or nodose primary ganglia cells were constantly superfused with 37°C ECS buffer 

using a house-designed pressurised solution-changing perfusion system allowing complete 

bath (600 µl volume) replacement in 3s (see chapter 2, Figure 2.5). Potassium chloride 

solution (50 mM; K50) was applied at the start and end of each experiment for 10s to assess 

cell viability and allow for normalisation of subsequent agonist signals. Only neurons 

producing a fast response to K50, which was washable within 5min, and that had diameter of 

over 20 µm were analysed. Stock solutions of agonists (capsaicin and acrolein) and 

antagonists (HC-030031 and JNJ17203212) were made up in 100% DMSO and diluted 

1/1000 in ECS to make a working solution. 

 

Non-cumulative concentrations of capsaicin (0.1, 0.3, 1, 3, 10 µM), acrolein (0.3, 1, 3, 10, 30, 

100 µM) or vehicle (0.1% DMSO) were applied for 20 s in a random order to jugular or 

nodose cells. After each application of drug, perfusion was switched back to ECS until 

complete recovery of the baseline calcium level. Intracellular free calcium ([Ca2+] i)  imaging 

was recorded using the Fluo-4 fluorescent dye (see chapter 2, section 2.5 for details), with 

pictures taken every 1 s from 30s prior to drug application and for 2min afterward, then every 

5 s for the rest of the recording. To take into account the multiphasic responses obtained in 

some cells, calcium flux (total elevation of calcium above resting level over time) was used to 

measure calcium elevations, which were normalised to calcium flux generated by application 

of K50 solution. Following characterisation of the CRs, submaximal concentrations of 1 µM 

capsaicin and 10 µM acrolein were selected for further experiments. 
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7.2.1.2 TRP-selective antagonists 

 

The ability of TRPA1-selective (HC-030031) and TRPV1-selective (JNJ17203212) 

antagonists to inhibit acrolein and capsaicin-induced changes in [Ca2+] i was investigated in 

jugular cells. CR curves were established for HC-030031 (0.001, 0.01, 0.1, 1 µM) or vehicle 

(0.1% DMSO) against acrolein; and JNJ17203212 (1, 10, 100 µM) or vehicle (0.1% DMSO) 

against capsaicin. [Ca2+] i  responses were recorded using Fura-2, with only one concentration 

of antagonist assessed per plate. Following an initial K50 response, a standard antagonist 

profile was used (described in chapter 2, section 2.5). Once appropriate concentrations of the 

antagonists had been determined, the effect of 0.1 µM HC-030031 on capsaicin and 10 µM 

JNJ17203212 on acrolein stimulated [Ca2+] i was investigated to establish that there was no 

off-target effect at the concentration chosen. 

 

7.2.2 Determining a role for TRP channels in primary vagal ganglia cell activation by 

endogenous mediators 

 

Jugular or nodose cells were constantly superfused with 37°C ECS buffer using an in-house 

designed system as described above. K50 was applied at the start and at the end of each 

experiment for 10s to assess cell viability and allow for normalisation of subsequent agonist 

signals. Only primary ganglia cells producing a fast response to K50, which was washable 

within 5min, and that had diameter of over 20 µm were analysed. Stock solutions of PGE2 

were made up in 100% ethanol; BK in 100% dH2O; and HC-030031 and JNJ17203212 in 

100% DMSO. Compounds were then diluted 1/1000 in ECS to make a working solution. The 

pH of ECS buffer was adjusted using HCl to make working solutions of low pH. 

 

A CR curve for changes in [Ca2+] i was established by applying non-cumulative 

concentrations of PGE2 (0.1, 0.3, 1, 3, 10 µM), BK (0.3, 1, 3, 10, 30 µM), low pH (pH 7, 6.5, 

6, 5.5, 5), or appropriate vehicle (0.1% ethanol, 0.1% dH2O, or ECS at pH 7.4, respectively) 

for 20-60s in a random order to jugular or nodose cells. After each application of drug, 

perfusion was switched back to ECS until complete recovery of the baseline calcium level. 

[Ca2+] i  imaging was recorded using Fluo-4, with pictures taken every 1s from 30s prior to 

drug application and for 2 min afterward, then every 5s for the rest of the recording. To take 

into account the multiphasic responses obtained in some cells, calcium flux (total elevation of 
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calcium above resting level over time) was used to measure calcium elevations, which were 

normalised to calcium flux generated by application of K50 solution. 

 

From the above experiment, sub-maximal concentrations of 1 µM PGE2, 10 µM BK, and pH 

6 were selected for further investigation. Subsequently, the ability of TRPA1-selective (0.1 

µM HC-030031), TRPV1-selective (10 µM JNJ17203212) or ASIC (10 µM amiloride) 

antagonists to inhibit agonist-induced elevation of [Ca2+] i and changes in membrane voltage 

in primary jugular cells was investigated. Antagonists were incubated for 60s prior to agonist 

application. In this set of experiments [Ca2+] i  imaging was recorded using the ratiometric 

Fluo-2 fluorescent dye and membrane voltage using Di-8-ANEPPS (see chapter 2, section 

2.5.2 for details). 

 

7.2.3 Staining of airway primary vagal ganglia cells 

 

Capsaicin (1 µM) and low pH (pH6) were assessed for their ability to activate airway-specific 

vagal ganglia cells. Guinea pigs were dosed i.n. with a fluorescent dye (DiI; see chapter 2, 

section 2.5.4 for details) to selectively stain airway cells. Fourteen days later, the animals 

were sacrificed by i.p. injection of sodium pentobarbitone (200 mg/kg), the vagal ganglia 

were dissected, and primary jugular cells isolated. The resulting cells were loaded with Fura-

2, and changes in [Ca2+] i assessed as described above. Care was taken to avoid exposure of 

the ganglia to light during the isolation process, to avoid photo bleaching of the DiI. 

 

7.2.4 Data Analysis 

 

Calcium and membrane voltage recordings were analysed using Image J software (Image 

Processing and Analysis in Java, National Institute of Health, USA). Magnitude of agonist 

responses in the presence of antagonist were compared to control responses within the same 

cell by paired t-test. Significance was set at p < 0.05, and all data were plotted as mean ± 

s.e.m. of N (number of animals) and n (number of cells) observations. 
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7.3 Results 

 

Calcium imaging is regularly used as a method to investigate cellular activation. This is a 

newly established and previously uncharacterised model in our labs, but has the potential to 

allow more in-depth investigation of how the vagal afferents mediate responses to tussive 

irritants. Though this thesis deals only with the characterisation of this model, we hope in the 

future to be able to probe the intracellular signalling pathways downstream of GPCR 

activation, and to evaluate airway-specific and non-airway cellular responses. This could help 

to further elucidate the mechanisms which drive the cough response, and aid in determining 

how these mechanisms are altered in disease states. 

 

7.3.1 Characterisation of the primary vagal ganglia cell imaging preparation 

 

In the initial experiments establishing concentration-responses for the agonists, only [Ca2+] i 

was measured using the Fluo-4 fluorescent dye. In subsequent antagonist studies this was 

changed for the ratiometric Fura-2 calcium dye. Fura-2 is more appropriate for studies 

conducted over a longer period of time, as photo bleaching of the dye over time does not 

affect the magnitude of agonist responses when expressed as a ratio of fluorescence. 

Furthermore, CRs for the agonists were established in both nodose and jugular primary cells; 

but the effect of antagonists was assessed only in jugular cells. 

 

7.3.1.1 TRP-selective agonists 

 

Concentration-responses for capsaicin and acrolein were established in both nodose and 

jugular cells. Capsaicin induced a large mono-phasic increase in [Ca2+] i in primary jugular 

cells, with an EC50 of 1.4 µM and a maximum response (RM, expressed as % of K50 

response) of 63 ± 17% at 10 µM. In contrast, capsaicin did not reliably trigger a significant 

response in primary nodose cells at any concentration tested (RM 0.7 ± 0.5% at 10 µM) 

(Figure 7.1). 
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A. 

 

B. 

 

Figure 7.1. Concentration-related activation of primary vagal ganglia cells following exposure to 

capsaicin. 

Capsaicin induced concentration-dependent increases in [Ca2+] i in (a) jugular cells, but not (b) 

nodose cells. Histograms on the left show changes in [Ca2+] i with application of concentrations of 

capsaicin, normalised and expressed as % response to K50 control. Data are expressed as mean ± 

s.e.m. of N=4-6, n=9 observations. The trace in the middle panel shows a representative recording of 

the light intensity over time following exposure to 10 µM capsaicin. Time and duration of capsaicin 

application are indicated by a black bar above the trace; a 1 min time scale is indicated by the black 

bar below the trace. The panel on the right displays selected pseudo-coloured fluorescence images 

taken during recording of the middle panel trace. The time of each snapshot is indicated below the 

picture, with zero being the start of capsaicin application. A colour code used to indicate light 

intensity is shown on the right of each set of images, with all light intensities normalised to peak 

amplitude of the [Ca2+] i response to K50. 
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Different types of response were observed for acrolein in the jugular compared to nodose 

ganglia. Primary jugular cells responded in a multi-phasic pattern, showing periods of 

repetitive sharp [Ca2+] i elevations, with an EC50 of 6.2 µM  and 197 ± 31% RM at 100 µM. 

Whereas, acrolein-induced [Ca2+] i elevations in the nodose ganglia were mono-phasic, with 

an EC50 of 10 µM and 247 ± 94% RM at 30 µM (Figure 7.2). 

 

A. 

 

B. 

 
Figure 7.2. Concentration-related activation of primary vagal ganglia cells following exposure to 

acrolein. 

Acrolein induced concentration-dependent increases in [Ca2+] i in (a) jugular and (b) nodose cells. 

Histograms on the left show changes in [Ca2+] i with application of concentrations of acrolein, 

normalised and expressed as % response to K50 control. Data are expressed as mean ± s.e.m. of 

N=4, n=6-7 observations. The trace in the middle panel shows a representative recording of the light 

intensity over time following exposure to 10 µM acrolein. Time and duration of acrolein application 

are indicated by a black bar above the trace; a 1 min time scale is indicated by the black bar below 

the trace. The panel on the right displays selected pseudo-coloured fluorescence images taken during 

recording of the middle panel trace. The time of each snapshot is indicated below the picture, with 

zero being the start of acrolein application. A colour code used to indicate light intensity is shown on 

the right of each set of images, with all light intensities normalised to peak amplitude of the [Ca2+] i 

response to K50. 
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7.3.1.2 TRP-selective antagonists 

 

CRs for the TRPV1-selective antagonist JNJ17203212, and TRPA1-selective antagonist HC-

030031 were established in primary jugular cells for their ability to inhibit agonist induced 

[Ca2+] i (Figure 3.12). JNJ17203212 concentration-dependently inhibited [Ca2+] i caused by the 

TRPV1-selective agonist capsaicin, with a maximal effect of 86 ± 2% at 10 µM. Alternately, 

HC-030031 concentration-dependently inhibited [Ca2+] i induced by the TRPA1-selective 

agonist acrolein, with a maximal effect of 76 ± 8% at 0.1 µM. At the concentration which 

caused maximal inhibition of its own receptor, 10 µM JNJ17203212 did not inhibit acrolein, 

and 0.1 µM HC-030031 did not inhibit capsaicin stimulation of jugular cells. 

 

 

 

Figure 7.3. Characterising the ability of TRPV1- and TRPA1-selective antagonists to inhibit 

[Ca2+]i in guinea pig isolated primary vagal jugular cells. 

Concentration responses were established for TRPV1 (JNJ17203212) and TRPA1 (HC-030031) 

selective antagonists or vehicle (0.1% DMSO, Veh) against TRPV1 (1 µM capsaicin) and TRPA1 (10 

µM acrolein) selective agonists. The concentration which maximally inhibited its own receptor was 

then tested against the alternate agonist to establish selectivity at the chosen concentration. Data 

represent mean ± s.e.m of N=3-4, n = 4-19 observations. * indicates statistical significance (p < 

0.05; paired t-test), comparing responses in the same cell before and after antagonist incubation. 

 

 

Veh 1 10 100 10
0

20

40

60

80

100

*

* *

JNJ17203212 (µM)

%
 In

hi
bi

tio
n

Veh 0.001 0.01 0.1 1 0.1
0

20

40

60

80

100
*

*
Acrolein

Capsaicin

*

HC-030031 (µM)

%
 In

hi
bi

tio
n



 147 

7.3.2 Determining a role for TRP channels in primary vagal ganglia cell activation by 

endogenous mediators 

 

In this set of studies the Fura-2 calcium dye was used in combination with Di-8-ANEPPS to 

assess cell membrane voltage changes, in jugular primary cells only.  

 

7.3.2.1 PGE2 

 

PGE2 increased [Ca2+] i in primary jugular cells with an RM of 37 ± 14% at 10 µM, and an 

EC50 of 0.6 µM; whereas, in primary nodose cells RM was 12 ± 3%  at 10 µM with an EC50 of 

1.3 µM (Figure 7.4). Changes in calcium flux with PGE2 stimulation were variable, generally 

showing multi-phasic responses in both jugular and nodose cells. 

 

Mirroring observations in the isolated vagus nerve, either TRPA1 (0.1 µM HC-030031) or 

TRPV1 (10 µM JNJ17203212) antagonism partially inhibited PGE2-induced increases in 

[Ca2+] i (55 ± 4% and 40 ± 9%, respectively) and membrane voltage changes (47 ± 3% and 38 

± 7%, respectively; p < 0.05) in guinea pig primary cells isolated from the jugular ganglia 

(Figure 7.5). Furthermore, when used in combination, both TRPA1 and TRPV1 antagonism 

inhibited [Ca2+] i elevation by 88 ± 3%; and depolarisation of the cell membrane by 78 ± 10% 

(p < 0.05). In contrast, vehicle incubation had no effect on either [Ca2+] i (-1 ± 11%) or 

membrane voltage changes (8 ± 6%; p > 0.05). 
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A. 

 

B. 

 
Figure 7.4. Concentration-related activation of primary vagal ganglia cells following exposure to 

PGE2. 

PGE2 induced concentration-dependent increases in [Ca2+] i in (a) jugular and (b) nodose primary 

cells. Histograms on the left show changes in [Ca2+] i with application of concentrations of PGE2, 

normalised and expressed as % response to K50 control. Data are expressed as mean ± s.e.m. of 

N=4, n=6 observations. The trace in the middle panel shows a representative recording of the light 

intensity over time following exposure to 10 µM PGE2. Time and duration of PGE2 application are 

indicated by a black bar above the trace; a 1 min time scale is indicated by the black bar below the 

trace. The panel on the right displays selected pseudo-coloured fluorescence images taken during 

recording of the middle panel trace. The time of each snapshot is indicated below the picture, with 

zero being the start of PGE2 application. A colour code used to indicate light intensity is shown on the 

right of each set of images, with all light intensities normalised to peak amplitude of the [Ca2+] i 

response to K50. 
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A. B. 

 

Figure 7.5. Pharmacologically determining a role for TRPA1 and TRPV1 ion channels in PGE2 

activation of isolated primary jugular cells. 

Isolated vagal jugular cells were incubated with a selective TRPA1 antagonist (0.1 µM HC-030031, 

HC); a selective TRPV1 antagonist (10 µM JNJ17203212, JNJ); a combination of both TRPA1 and 

TRPV1 antagonists (HC+JNJ); or vehicle (0.1% DMSO, Veh) for 60 seconds prior to PGE2 (1 µM ) 

stimulation. Antagonism of either TRPA1 or TRPV1 partially inhibited PGE2-induced (a) [Ca2+] i and 

(b) membrane voltage responses in guinea pig primary jugular cells, whereas a combination of both 

TRPA1 and TRPV1 antagonist virtually abolished PGE2 stimulation. Vehicle incubation did not have 

a significant effect on either [Ca2+] i or membrane voltage. * indicates statistical significance (p < 

0.05; paired t-test), comparing responses in the same cell before and after antagonist incubation. 

Data are presented as mean ± s.e.m. of N = 3-4, n = 10-16 observations. 

 

 

7.3.2.2 Bradykinin 

 

BK increased [Ca2+] i in primary jugular cells with an RM of 29 ± 13%  at 10 µM, and an EC50 

of 1.3 µM; whereas, in primary nodose cells RM was only 8 ± 3%  at 10 µM with an EC50 of 

7.4 µM (Figure 7.6). Calcium responses to BK stimulation were bi-phasic, showing an initial 

sharp elevation with short duration, followed by a more prolonged elevation in [Ca2+] i. 

 

Inhibition of either the TRPA1 (0.1 µM HC-030031) or TRPV1 (10 µM JNJ17203212) ion 

channels partially reduced BK-induced increases in [Ca2+] i (45 ± 5% and 46 ± 7%, 

respectively) and membrane voltage changes (39 ± 4% and 42 ± 6, respectively; p < 0.05) in 

guinea pig primary vagal ganglia cells isolated from the jugular ganglia (Figures 7.7). 

Furthermore, when used in combination, both TRPA1 and TRPV1 antagonism inhibited 

Veh HC JNJ HC+JNJ
0

20

40

60

80

100

*
*

*

PGE2 (1 µM)

%
 In

hi
bi

tio
n

Veh HC JNJ HC+JNJ
0

20

40

60

80

100 *

**

PGE2 (1 µM)

%
 In

hi
bi

tio
n



 150 

[Ca2+] i elevation by 80 ± 12%; and depolarisation of the cell membrane by 77 ± 9% (p < 

0.05). In contrast, vehicle incubation had no effect on either BK-induced [Ca2+] i (-4 ± 8%) or 

membrane voltage changes (-2 ± 8%; p > 0.05). This data supports the results observed in the 

isolated vagus preparation. 

 

 

A. 

 

B. 

 
Figure 7.6. Concentration-related activation of primary vagal ganglia cells following exposure to 

BK. 

BK induced concentration-dependent increases in [Ca2+] i in (a) jugular and (b) nodose cells. 

Histograms on the left show changes in [Ca2+] i with application of concentrations of BK, normalised 

and expressed as % response to K50 control. Data are expressed as mean ± s.e.m. of N=3, n=4 

observations. The trace in the middle panel shows a representative recording of the light intensity 

over time following exposure to 30 µM BK. Time and duration of BK application are indicated by a 

black bar above the trace; a 1 min time scale is indicated by the black bar below the trace. The panel 

on the right displays selected pseudo-coloured fluorescence images taken during recording of the 

middle panel trace. The time of each snapshot is indicated below the picture, with zero being the start 

of BK application. A colour code used to indicate light intensity is shown on the right of each set of 

images, with all light intensities normalised to peak amplitude of the [Ca2+] i response to K50. 
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A. B. 

 

Figure 7.7. Pharmacologically determining a role for TRPA1 and TRPV1 ion channels in BK-

stimulated activation of isolated primary jugular cells. 

Isolated vagal jugular cells were incubated with a selective TRPA1 antagonist (0.1 µM HC-030031, 

HC); a selective TRPV1 antagonist (10 µM JNJ17203212, JNJ); a combination of both TRPA1 and 

TRPV1 antagonists (HC+JNJ); or vehicle (0.1% DMSO, Veh) for 60 seconds prior to BK (10 µM) 

stimulation. Antagonism of either TRPA1 or TRPV1 partially inhibited BK-induced (a) [Ca2+] i and (b) 

membrane voltage responses in guinea pig primary jugular cells, whereas a combination of both 

TRPA1 and TRPV1 antagonist virtually abolished BK stimulation. Vehicle incubation did not have a 

significant effect on either [Ca2+] i or membrane voltage. * indicates statistical significance (p < 0.05; 

paired t-test), comparing responses in the same cell before and after antagonist incubation. Data are 

presented as mean ± s.e.m. of N = 3, n = 13-19 observations. 

 

 

7.3.2.3 Low pH 

 

Low pH increased [Ca2+] i in primary jugular cells with an RM of 82 ± 20% at pH 5, and an 

EC50 of pH 6.1; whereas, in primary nodose cells RM was 17 ± 3%  at pH 5, with an EC50 of 

pH 5.7 (Figure 7.8). Calcium responses to low pH were transient and mono-phasic, showing a 

sharp increase in [Ca2+] i, which quickly came back to baseline. An acidity of pH 6, exhibiting 

submaximal but robust responses in jugular cells, was chosen for further experiments. 
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A. 

 

B. 

 

Figure 7.8. Concentration-related activation of primary vagal ganglia cells following exposure to 

low pH. 

Low pH induced concentration-dependent increases in [Ca2+] i in (a) jugular and (b) nodose primary 

cells. Histograms on the left show changes in [Ca2+] i with application of concentrations of low pH, 

normalised and expressed as % response to K50 control. Data are expressed as mean ± s.e.m. of 

N=3-4, n=12-13 observations. The trace in the middle panel shows a representative recording of the 

light intensity over time following exposure to pH 6. Time and duration of low pH application are 

indicated by a black bar above the trace; a 1 min time scale is indicated by the black bar below the 

trace. The panel on the right displays selected pseudo-coloured fluorescence images taken during 

recording of the middle panel trace. The time of each snapshot is indicated below the picture, with 

zero being the start of low pH application. A colour code used to indicate light intensity is shown on 

the right of each set of images, with all light intensities normalised to peak amplitude of the [Ca2+] i 

response to K50. 
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Incubation with vehicle (0.1% DMSO) did not have any effect on [Ca2+] i or membrane 

voltage with subsequent low pH stimulation. In agreement with results observed in the vagus 

nerve, antagonism of the TRV1 channel (10 µM JNJ17203212) inhibited low pH-induced 

increases in [Ca2+] i and changes in membrane voltage by approximately half (52 ± 14% and 

46 ± 16%, respectively; p < 0.05) (Figure 7.9). Furthermore, inhibition of ASIC channels (10 

µM amiloride) blocked low pH [Ca2+] i and membrane voltage responses by 36 ± 15% and 29 

± 10%, respectively; and inhibition of both ASIC and TRPV1 channels blocked low pH 

responses by 94 ± 2% and 74 ± 7%, respectively (p < 0.05). Amiloride (10 µM) was also 

tested against capsaicin and acrolein responses, and was shown to have no effect on low pH-

induced changes in either [Ca2+] i (2 ± 7% and -4 ± 9%, respectively; p > 0,05) or membrane 

voltage (9 ± 5% and 0.2 ± 7%, respectively; p > 0.05), confirming that this inhibitor was not 

having an off-target effect at the concentration chosen for investigation. TRPA1 inhibition 

(0.1 µM HC-030031) also had no overall effect on [Ca2+] i or membrane voltage changes (13 

± 11% and -1 ± 11%, respectively; p > 0.05). 

 

A. B. 

 

Figure 7.9. Pharmacologically determining a role for TRPA1, TRPV1 and ASIC ion channels in 

low pH-stimulated activation of isolated primary jugular cells. 

Isolated vagal jugular cells were incubated with a selective TRPA1 antagonist (0.1 µM HC-030031, 

HC); a selective TRPV1 antagonist (10 µM JNJ17203212, JNJ); a non-selective ASIC antagonist (10 

µM Amiloride, Amil); or vehicle (0.1% DMSO, Veh) for 60 seconds prior to low pH (pH 6) 

stimulation. Antagonism of TRPV1 or ASIC ion channels partially inhibited low pH-induced (a) 

[Ca2+] i and (b) membrane voltage responses in guinea pig primary jugular cells, whereas TRPA1 and 

vehicle had no significant effect. * indicates statistical significance (p < 0.05; paired t-test), 

comparing responses in the same cell before and after antagonist incubation. Data are presented as 

mean ± s.e.m. of N = 3-4, n = 9-15 observations. 
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During analysis of these results, some interesting observations were made. Specifically, 

inhibition of the TRPV1 ion channel appeared to indicate two mutually exclusive sets of 

primary jugular cells that respond to low pH: those sensitive to TRPV1 inhibition, and those 

non-sensitive. These results were mirrored with the general ASIC inhibitor amiloride, again 

indicating two mutually exclusive sets of jugular cells: those sensitive to ASIC inhibition and 

those non-sensitive. This data is presented in Figure 7.10A, whereby incubation with 

JNJ17203212 or amiloride either completely abolished low pH-induced [Ca2+] i, or had no 

effect. Overall, this caused approximately 50% inhibition of the response (see bar graphs in 

Figure 7.9), which is what would have been evident in the compound depolarisation response 

on the isolated vagus nerve. Conversely, the effect of TRPA1 inhibition was much more 

variable, with a spread between approximately 0-60% inhibition of the low pH [Ca2+] i 

response (Figure 7.10A). These results are in contrast to those observed for PGE2 and BK, 

whereby (except for some outliers) inhibition of TRPA1 or TRPV1 caused inhibition of 

[Ca2+] i responses which were clustered around 50% (Figure 7.10B & 7.10C). 

 

7.3.3 Activation of airway-stained primary jugular ganglia cells 

 

Jugular cells stained with the retrograde tracer DiI were successfully isolated. It was 

subsequently confirmed that stimulation with both capsaicin and low pH (Figure 7.11) cause 

a transient increase in [Ca2+] i in DiI-stained cells. 
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A. 

 

B. C. 

 
Figure 7.10. Effects of TRPA1, TRPV1 and ASIC inhibitors on [Ca2+]i increases stimulated by 

endogenous irritants in primary jugular cells. 

Isolated vagal jugular cells were incubated with a selective TRPA1 antagonist (0.1 µM HC-030031, 

HC); a selective TRPV1 antagonist (10 µM JNJ17203212, JNJ); a non-selective ASIC antagonist (10 

µM Amiloride, Amil); a combination of TRPA1 and TRPV1 antagonists (HC+JNJ);a combination of 

ASIC and TRPV1 antagonists (Amil+JNJ); or vehicle (0.1% DMSO, Veh) for 60 seconds prior to (a) 

low pH (pH 6), (b) PGE2 (1 µM ) or (c) BK (10 µM ) agonist stimulation. This expands on earlier 

observations by looking at the spread of the [Ca2+] i data. For clarity, in the absence of inhibition 

(where the agonist response during antagonist incubation was equal to or greater than control), 

responses have been normalised to ‘0% inhibition’. (a) Further examination of the low pH data 

reveals two distinct populations of TRPV1-sensitive and TRPV1-non sensitive, as well as ASIC-

sensitive and ASIC-non sensitive primary cells; exhibited by either complete block or no effect of the 

low pH response with the TRPV1 or ASIC inhibitors. Conversely, inhibition of the TRPA1 ion channel 

produced a wide range of effects, from 0-60% inhibition of the low pH response. This is in contrast to 

(b) PGE2 and (c) BK, where inhibiton of TRPA1 or TRPV1 ion channels consistently inhibited the 

agonist responses by around 50% each. Data are presented as mean ± s.e.m of N = 3-4, n = 9-19 

observations. 

 

Veh HC JNJ Amil Amil+JNJ
0

20

40

60

80

100

Low pH (6)

%
 In

hi
bi

tio
n

Veh HC JNJ HC+JNJ
0

20

40

60

80

100

PGE2 (1 µM)

%
 In

hi
bi

tio
n

Veh HC JNJ HC+JNJ
0

20

40

60

80

100

Bradykinin (10 µM)

%
 In

hi
bi

tio
n



 156 

A. 

 

B. 

 
Figure 7.11. Capsaicin and low pH stimulate airway-labelled primary jugular ganglia cells. 

Stimulation with (a) capsaicin (1 µM) or (b) low pH (pH 6) caused a transient increase in [Ca2+] i in 

jugular cells labelled with the retrograde tracer DiI. The top left panel shows a bright field image of 

the selected cell; the middle panel shows an image capture of the cell fluorescence when excited at 

λ=520-550 nm; and the panel on the top right is a combined image confirming that the fluorescence is 

restricted to the selected cell. The bottom left trace shows a representative recording of Fura-2 light 

intensity ratio over time following exposure to capsaicin. Time and duration of agonist application is 

indicated by a grey bar above the trace; and a 1 min time scale is indicated by the black bar below 

the trace. The panel on the bottom right displays selected pseudo-coloured fluorescence images taken 

during recording of the trace, with time of each snapshot indicated below the picture (zero being the 

start of agonist application). A colour code used to indicate light intensity is displayed on the right of 

the set of images, with all light intensities normalised to peak amplitude of [Ca2+] i response to K50. 
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7.4 Discussion 

 

We have recently established a primary vagal ganglia cell imaging preparation in our labs. 

This model will allow us to investigate the signalling mechanisms involved in the tussive 

response in more depth than what is possible with the isolated vagus preparation. In particular 

we are interested in probing the intracellular signalling pathways that are involved in 

activating TRPA1 and TRPV1 ion channels downstream of GPCR activation following PGE2 

and BK stimulation; and this preparation could help to clarify how low pH is being mediated 

by the TRPV1, ASIC and possibly TRPA1 ion channels. However, before we could start 

these studies, I needed to characterise and validate the model. The focus of this chapter was, 

therefore, to replicate the experiments performed in previous chapters; to corroborate my 

current findings that both TRPA1 and TRPV1 mediate PGE2 and BK-induced responses; and 

to further investigate the involvement of TRPA1, TRPV1 and ASIC ion channels in low pH-

induced primary jugular ganglia cell activation. 

 

The selective agonist acrolein produced concentration-related increases in [Ca2+] i in both 

nodose and jugular primary cells; whereas capsaicin reliably produced concentration-related 

increases in [Ca2+] i in most jugular but few nodose cells. Expression of TRPV1 (Kwong et 

al., 2008), and a response to capsaicin stimulation (Undem et al., 2004) has been previously 

observed in guinea pig C-fibres originating from the nodose ganglia and projecting to the 

airways, but only a small percentage of the whole population of nodose neurons consist of C-

fibres. Because my data is representative of all cells producing a response to K50, the CR of 

the few nodose cells that did respond to capsaicin is lost in the overall data analysis. It was 

decided to move ahead with antagonist studies in primary jugular cells only, as both acrolein 

and capsaicin produced robust responses in these cells. A concentration-response for the 

selective antagonists JNJ17203212 and HC-030031 were then established against their 

respective agonist; and the concentration which exhibited the highest inhibition of its own 

receptor was tested against the alternate agonist to demonstrate that there were no off-target 

effects. 

 

Once I had established appropriate concentrations of antagonist to use, I proceeded to 

characterise the effects of PGE2, BK and low pH on primary vagal cells. All three of these 

compounds caused concentration-related increases in [Ca2+] i in both nodose and jugular cells. 

Furthermore, TRPA1 and TRPV1-selective antagonists partially inhibited PGE2 and BK-
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induced [Ca2+] i and membrane voltage changes in primary jugular cells; and a combination of 

both antagonists showed greater inhibition than either antagonist alone. These results agree 

with those presented in the previous chapters using the isolated vagus preparation and an in 

vivo guinea pig model of cough. This indicates that the results from the imaging preparation 

closely correspond to the effects in previously validated models of cough, and can therefore 

be used to investigate the cough reflex. 

 

Investigating the low pH response using this model produced some interesting results. That 

is, although overall effects of TRPV1 or ASIC channel inhibition showed partial inhibition of 

the [Ca2+] i and membrane voltage response, there appeared to be two mutually exclusive sets 

of cells: those sensitive to TRPV1 or ASIC channel inhibition, and those non-sensitive. This 

is in contrast to PGE2 and BK, in which either TRPA1 or TRPV1 antagonists inhibited 

[Ca2+] i and membrane voltage by approximately half each; and indicates that TRPV1 and 

ASIC ion channels may not be co-expressed on the same nerve fibres. This warrants further 

investigation, and will be discussed in the Future Studies section in chapter 8. Conversely, the 

ability of a TRPA1 antagonist to inhibit low pH responses varied greatly. One explanation for 

this could be if (like TRPV1 and ASIC ion channels) there are TRPA1 antagonist-sensitive 

and non-sensitive cells. In this instance, you would expect some natural variability in the 

amount of inhibition observed in TRPA1 antagonist-sensitive cells, as well as a set of cells in 

which there would be no inhibitory effect at all (the TRPA1 antagonist-non-sensitive cells). 

This may also help to explain the lack of an effect of TRPA1 inhibition seen in the isolated 

vagus nerve preparation, where we are measuring compound depolarisation from all types of 

nerve fibre, which could hide the small effect of TRPA1 inhibition within the natural 

variability in response. The above hypothesis also fits with the in vivo cough data, as we have 

already observed that 50% inhibition of afferent nerve responses with TRPA1 or TRPV1 

antagonists leads to greater than 50% inhibition of PGE2 and BK-induced cough. Therefore, a 

small effect of TRPA1 inhibition at the level of the nerve fibres could lead to a significant 

inhibition of the cough reflex induced by citric acid in vivo. 

 

The final set of experiments looked at the ability of capsaicin or low pH to activate airway-

specific primary jugular cells, which were stained with the retrograde tracer DiI. I was 

successful in identifying stained and non-stained cells, indicating airway-projecting and non 

airway-projecting nerve fibres, respectively. Once a stained cell was identified, the cell was 

subsequently stimulated with either capsaicin or low pH using the normal protocol, and 
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changes in [Ca2+] i were measured. Indeed, both capsaicin and low pH caused calcium influx 

in stained primary cells. It is possible that TRPA1 mediates low pH effects in the airway 

nerve fibres, but not non-airway fibres. Therefore, recording from airway-only cells may help 

to clarify whether TRPA1 plays a role in low pH-induced sensory nerve activation leading to 

cough. These experiments will be discussed in the Future Studies section of chapter 8. 

 

In summary, in this chapter I have characterised a model of primary vagal ganglia cell 

imaging. The results for primary vagal cell activation mirrored those of previous chapters, 

indicating an equal role for the TRPA1 and TRPV1 ion channels in mediating the effects of 

PGE2 and BK; and a role for TRPV1 and ASIC ion channels in mediating the effects of low 

pH. The analysis also presented novel and interesting data, indicating that TRPV1 and ASIC 

ion channels may be expressed on different sets of afferent nerve fibres. Furthermore, the 

spread of the data with the TRPA1 antagonist suggests that this ion channel may also play a 

small role in some afferents. Finally, I established the ability of both capsaicin and low pH to 

activate airway-specific cells, which could further clarify a role for TRPA1 in the low pH 

response with further investigation, as it is possible that this ion channel is involved in 

mediating the response to acidic solutions in airway but not non-airway projecting nerve 

fibres. Therefore, the primary vagal ganglia cell imaging preparation will provide us with the 

opportunity for more in-depth analysis of the mechanisms driving the cough reflex. 
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CHAPTER 8 

 

Discussion and Future Studies 
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8.1. Summary and discussion 

 

Cough is a common symptomatic complaint. Though the majority of people suffer from acute 

cough associated with upper respiratory tract infections, which functions to rid the airways of 

inhaled irritants and mucus; approximately 7% of the population suffer from chronic, non-

productive cough that is associated with inflammatory diseases (e.g. asthma, COPD, cancer), 

but can also be idiopathic (Ford et al., 2006; Irwin et al., 1998; Morice et al., 2007). Of 

increasing concern is that the global incidence of chronic respiratory diseases is on the rise 

(Barnes, 2010a, 2010b; World Health Organisation, 2007, 2011a, 2011b), and as such the 

prevalence of chronic cough is also likely to increase. Furthermore, up to 40% of parents with 

children aged 0-17 months seek medical help associated with coughing, a trend which has 

been recently highlighted as a concerning issue (Hay et al., 2005; Sands et al., 2011). This is 

particularly worrying because of the recent evidence that cough and cold remedies can cause 

adverse events in children under 11 years of age (American Academy of Pediatrics, 1997; 

Centre for Disease Control, 2007; Gunn et al., 2001; Vassilev et al., 2009), which prompted 

the US Food and Drug Administration to recommend against the use of over-the-counter 

therapies to treat children under 2 years of age due to potentially life-threatening side-effects 

(US Food and Drug Administration, 2008). 

 

The majority of existing anti-tussive treatments are easily available as self medication 

programmes, purchased over-the-counter. However, many of these treatments show little 

efficacy and are associated with adverse side effects that can impede daily activity (Karlsson 

& Fuller, 1999; Vassilev et al., 2009). Indeed, the ‘gold-standard’ in cough therapy are 

opioid-based drugs, which cause sedation and nausea. The development of more efficacious 

and targeted compounds that selectively inhibit the cough reflex and display a better safety 

profile are therefore urgently required. Furthermore, the ideal therapy would not inhibit the 

functional cough reflex associated with healthy outcomes such as removing mucus and other 

irritants from the airways; but would target only the enhanced, non-functional cough. 

Currently, the mechanisms driving the cough reflex are poorly understood, and need to be 

ascertained before better, targeted drug therapies can be developed. 

 

A number of the TRP family of ion channels are known to be expressed in the peripheral 

nervous system, and can be activated by a variety of irritants (Caspani & Heppenstall, 2009). 

Furthermore, the TRP channels have been linked to various roles in sensory perception, and 
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are associated with the pathogenesis of a range of diseases (Caterina et al., 1997; Nilius, 

2007). As such, a great deal of research has recently focused on the TRPs as pharmacological 

targets. In particular, the TRPV1 ion channel has a well-established role in mediating cough 

induced by the tussive irritants capsaicin and low pH in both animals and humans; and it has 

been found that patients suffering from chronic cough exhibit an increase in TRPV1 

expression in the lungs (Groneberg et al., 2004). This has established the TRPV1 ion channel 

as a promising target for anti-tussive therapy. Unfortunately, TRPV1 is widely expressed 

throughout the body, and is involved in temperature homeostasis. As such, current TRPV1 

antagonists are associated with development of hyperthermia, which is a confounding factor 

that may hinder the development of these compounds as cough therapies (Gavva et al., 2008; 

Lehto et al., 2008). Furthermore, TRPV1 is not activated by many irritants known to initiate 

cough. This evidence implicates the involvement of one or more other receptors in mediating 

the cough reflex. 

 

TRPA1 binds a diverse number of irritant compounds that are associated with respiratory 

irritation, including those present in the environment, foodstuffs, and mediators released 

endogenously in the body. This highlighted the TRPA1 ion channel as another potential 

mediator of the cough reflex. The initial aim of this thesis was therefore to determine whether 

activation of the TRPA1 ion channel does indeed cause cough. To approach this question, I 

characterised models of sensory nerve activation and cough using both TRPA1 and TRPV1 

selective agonists and antagonists. In vitro assays are often utilised for pharmacological 

proof-of-concept studies as they are high through-put, require fewer animals, and are more 

cost-effective than in vivo models. I was able to establish that TRPA1 and TRPV1 agonists 

stimulate sensory afferent nerves in guinea pig, mouse and human vagal tissue, thereby 

demonstrating that this effect was conserved across species. Furthermore, this activation 

could be blocked by TRPA1- and TRPV1-selective antagonists. However, results obtained in 

vitro do not always translate in vivo, as these models pose more complex pharmacokinetic 

and pharmacodynamic issues. I therefore went on to confirm that TRPA1 and TRPV1 

agonists induce coughing in conscious guinea pigs, and again that this can be blocked with 

selective inhibitors. Indeed, since beginning this research, it has been confirmed that TRPA1 

agonists cause cough in humans (Birrell et al., 2009). This has implications for the 

development of chronic cough in disease, as isocyanates (which have been implicated in the 

late asthmatic response) are now also known to bind to TRPA1 (Bautista et al., 2006; Finotto 

et al., 1991; Vandenplas et al., 1993). A role for this family of compounds in cough is 
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supported by recent data showing that allyl-isothiocyanate causes cough in guinea pigs 

(Andrè et al., 2009). 

 

Inflammatory airways disease is associated with an enhanced release of PGE2 and BK, and 

these two irritants are thought to be involved in the hypersensitisation to tussive stimuli 

leading to chronic cough (Choudry et al., 1989; Fox et al., 1996). Furthermore, both PGE2 

and BK can cause cough in humans and animals when inhaled. These two mediators bind to 

their associated GPCRs on cell membranes, leading to the release of intracellular secondary 

messengers. For PGE2 this has been shown to be the EP3 receptor (Maher et al., 2009); and I 

established in this thesis that for BK in guinea pigs and humans it is the B2 receptor, but that 

both B1 and B2 play a role in the mouse. In order to induce cough, activation of the GPCR 

subsequently needs to cause opening of membrane-bound ion channels in order to lead to a 

net change in cell membrane potential and generation of action potentials (see Figures 2.2 & 

2.3, chapter 2). Having established a role for the TRPA1 and TRPV1 ion channels in the 

cough reflex, I then wanted to investigate whether they were involved in the tussive response 

to endogenous mediators associated with inflammatory disease. Using the in vitro isolated 

vagus nerve preparation, and the in vivo guinea pig cough model that I had characterised 

previously, I was able to establish that TRPA1 and TRPV1 partially mediate the response to 

both PGE2 and BK downstream of GPCR activation. These results indicate that both TRPA1 

and TRPV1 could be important in the pathogenesis of chronic cough associated with airways 

inflammation. 

 

Finally, I wanted to investigate the tussive response to low pH. It has been observed that 

patients who suffer from chronic cough exhibit a decrease in lung pH compared to healthy 

volunteers (Hunt et al., 2000; Kostikas et al., 2002). Similar to PGE2 and BK, low pH is also 

known to both sensitise the cough reflex to stimulation by other agonists, and to induce 

coughing itself when inhaled as an aerosol. TRPV1 has a well-established role in partially 

mediating the tussive effects of low pH (Kollarik & Undem, 2002; Lalloo et al., 1995). 

Though a role for the ASIC ion channels in the cough response to low pH has been suggested 

(Kollarik & Undem, 2002), this has not been explicitly investigated. Furthermore, TRPA1 

has been shown to play a role in sensing alkaline solutions and intracellular acidic pH (Dhaka 

et al., 2009; Fujita et al., 2008; Wang et al., 2011), and thus I hypothesised that this ion 

channel may also play a role in sensing acidity within the lungs. Again using the isolated 

vagus nerve preparation and guinea pig cough model, I clearly demonstrated a role for 
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TRPV1 in partially mediating the cough response to low pH. This confirms previous 

observations. Furthermore, using a general ASIC channel inhibitor, and mice devoid of 

functional ASIC1 and ASIC3 ion channels, I also demonstrated a role for ASIC1 in low pH 

activation of vagal sensory afferents. Because of the poor selectivity of the available ASIC 

inhibitors, I did not use an ASIC inhibitor in the in vivo cough model. Conversely, a role for 

TRPA1 in mediating the tussive effects of low pH was less clear.  In the in vitro vagus nerve 

model there did not appear to be any effect of inhibiting the TRPA1 ion channel on low pH 

responses in any of the species tested (guinea pig, mouse and human). In contrast, the 

TRPA1-selective antagonist HC-030031 did inhibit citric acid-induced coughing in the 

conscious guinea pig cough model, to a similar extent of that seen with the TRPV1 antagonist 

JNJ17203212. Although, when a combination of both TRPA1 and TRPV1 antagonists were 

used there was no further inhibition of the cough response, indicating that ASIC channels 

may still play a role in low pH-induced cough in vivo. Figure 8.1 diagramatically summarises 

the findings of this thesis, showing the proposed pathways for stimulation of cough with 

PGE2, BK and low pH. 

 

A model of primary vagal ganglia cell imaging could provide us with the opportunity to 

investigate how agonists and antagonists mediate the cough reflex in more detail. This 

preparation allows the ability to record from single primary ganglia cells, isolated from the 

nodose or jugular ganglia, which can also be identified as coming from the airways via 

retrograde labelling. This method therefore provides advantages over the isolated vagus 

preparation, from which we are recording the compound response of all types of nerve fibres, 

originating from both vagal ganglia, and terminating in the airway as well as other visceral 

organs. In particular, we hope to use this preparation to determine the intracellular signalling 

pathways downstream of EP3 and B2 GPCR activation which lead to opening of the TRPA1 

and TRPV1 ion channels; and to clarify the effects of TRPA1 inhibition on low pH-induced 

responses in an in vitro model. Because this is a newly established method within our 

laboratory, I have focussed on characterising the imaging preparation as a reliable in vitro 

model of cough. To do this, I began by characterising the effects of TRPA1 and TRPV1 

selective agonists and antagonists in the primary vagal cells. I then verified that the TRPA1 

and TRPV1 ion channels partially mediated the effects of PGE2 and BK. These results 

mirrored those observed in both the isolated vagus nerve preparation, and in vivo guinea pig 

cough model, confirming that imaging of ganglia cells can be used as a model to investigate 

the cough reflex. 
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Having characterised the imaging model, I went on to investigate low pH-induced activation 

of vagal ganglia cells. Overall results mirrored those observed in the isolated vagus nerve. 

That is, low pH responses were partially inhibited by either TRPV1 or ASIC channel 

inhibition, but not TRPA1 inhibition. However with closer analysis, I also observed that there 

appeared to be distinct sets of cells that were either sensitive or non-sensitive to TRPV1 or 

ASIC channel inhibition. Additional experiments are required, but this could indicate that 

TRPV1 and ASIC channels are not co-expressed on primary vagal ganglia cells. Furthermore, 

there was a variable effect of TRPA1 inhibition on low pH responses in jugular cells, from 

approximately 0-60% inhibition of the calcium response. This is much greater than the 

natural variation seen with other experiments in this preparation. Therefore, this could again 

indicate distinct sets of cells that are either sensitive or non-sensitive to TRPA1 inhibition; 

but also that the inhibitory effect of TRPA1 on primary vagal cells is only partial (rather than 

complete inhibition observed with either neurons sensitive to TRPV1 or ASIC antagonists). 

One explanation for these results is that TRPA1 plays a role in sensing low pH in airway-

projecting cells, but not non-airway cells. We are able to investigate this hypothesis using the 

imaging model by retrogradelly staining airway cells using the fluorescent dye DiI. The final 

experiment in my thesis therefore investigated the ability of capsaicin and low pH to 

stimulate DiI-stained cells. I established that both of these agonists do indeed activate airway 

cells, and I can therefore move ahead with further studies investigating how TRPV1, ASICs 

and TRPA1 mediate low pH-induced activation of airway-specific cells. These studies will be 

discussed in section 8.3.2. 

 

8.2 Limitations of the thesis 

 

Some of the limitations of the experimental techniques used in this thesis have been discussed 

previously. Briefly, the isolated vagus nerve preparation provides a relatively high-

throughput in vitro method that has been shown to parallel cough responses seen in the 

conscious guinea pig model in vivo, and also human cough responses in the clinic. Though 

mice do not possess a cough response, and therefore cannot be used for in vivo research, the 

afferent arm of the reflex still appears to be intact, and responses in this species parallel those 

seen in guinea pigs and humans. Moreover, the trunk of the vagus nerve carries all types of 

afferent nerve fibres, as well as parasympathetic nerves, and fibres innervating other organ 

systems such as the heart and gastrointestinal tract. In addition, the effect on the isolated 



 166 

nerve trunk does not necessarily represent what is happening at the nerve terminals within the 

airway. Despite these limitations, one major advantage of the isolated vagus preparation is 

that our group has access to human tissue from donor and recipient transplant patients, which 

are surplus to clinical requirement. Therefore, we are able to replicate our findings using 

human tissue, and demonstrate that our animal models do indeed translate to humans. But, 

due to the scarcity of donor tissue, the n-number of experiments using human vagus nerves in 

this thesis are low (n = 1-8); furthermore we cannot control for the time lapse between 

retrieval of the tissue to arrival at the laboratory, and the tissue will become less viable with 

time. 

 

The primary vagal ganglia cell imaging model provides advantages over the isolated vagus 

preparation as an in vitro model, but there are still a number of limitations with this method. 

Firstly, we cannot be sure what cellular changes take place during the isolation process. For 

example, upregulation or downregulation of receptors and ion channels or other phenotypical 

changes may occur. Moreover, though we can record from single cells, we still cannot 

distinguish between the type of nerve fibre (e.g. Aδ or C-fibre). An advantage of the system 

is the ability to retrogradelly label airway cells using the fluorescent tracer DiI. However, we 

are dosing this dye intranasally, which means that some of the dye may be swallowed and 

could stain cells projecting from the oesophagus. Also, at present we do not have access to 

human vagal ganglia and therefore cannot replicate our findings in a human model. 

 

8.3 Conclusions 

 

Identification of the TRPA1 ion channel as a key tussive mediator represents a key step 

forward in our understanding of the mechanisms which drive the cough reflex. Furthermore, 

the finding that TRPA1 and TRPV1 mediate the effects of the endogenous irritants PGE2, BK 

and possibly low pH is novel and exciting. This data suggests that TRPA1 antagonists, 

possibly in combination with TRPV1 antagonists, should be considered as a promising 

therapeutic target for cough. 
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Figure 8.1. Summary: Activation of the cough reflex by TRPA1, TRPV1 and ASIC ion 

channels. 

TRPA1, TRPV1 or ASIC ion channels can be directly gated by chemical irritants; changes in 

temperature; and changes in pH. Alternately, endogenous mediators such as PGE2 or BK can cause 

TRP channel activation by binding to their GPCR, and initiating subsequent intracellular signalling 

cascades. One proposed intracellular cascade involves activation of PLC, which leads to hydrolysis 

of PIP2, a complex that normally binds to and inhibits TRPA1 and TRPV1; therefore, removal of this 

inhibition could act to sensitise these ion channels. Hydrolysis of PIP2 also leads to the production of 

DAG (which activates PKCs) and IP3. DAG is proposed to directly activate TRPV1, and PKC 

phosphorylates both TRPA1 and TRPV1 ion channels. IP3 binds to its receptor on the endoplasmic 

reticulum, causing release of intracellular calcium stores and further activation of TRPA1 and PKCs. 

Stimulation of these ion channels causes cation influx, which depolarises the cell membrane. If 

depolarisation reaches the activation threshold, voltage gated NaV and CaV ion channels also open in 
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cascade, and action potentials are generated and propogated along the nerve fibre through the vagus 

nerve to where it synapses in the NTS. Information is then passed to the respiratory pattern generator 

in the CNS, causing activation of efferent motor neurons, and ultimately leading to cough. 

Abbreviations: CNS = central nervous system; NTS = nucleus tractus solitarius; AITC = allyl 

isothiocyanate; GPCR = G protein coupled receptor; PIP2 = phosphatidylinositol 4,5-biphosphate; 

IP3 = inositol triphosphate; DAG = diacylglycerol; PLC = phospholipase C; PKC = phosphokinase 

C; P = phosphorylation. 

 

8.4 Future Studies 

 

The aim of this thesis was to identify the ion channels involved in mediating tussive effects of 

PGE2, BK and low pH. Having identified a role for TRPA1 and TRPV1 in the cough 

response to PGE2 and BK, this section identifies further work aimed at elucidating the 

signalling pathways downstream of GPCR coupling that lead to ion channel opening. In 

addition, I will discuss how I plan to proceed in determining a role for TRPA1 in mediating 

low pH responses in the airways. Finally, I will outline the future direction of this research 

investigating the involvement of TRPA1 and TRPV1 receptors in the enhanced cough 

associated with inflammatory disease. 

 

8.4.1 Determining the signalling pathways leading to stimulation of TRPA1 and TRPV1 

downstream of GPCR activation by PGE2 or BK 

 

It has been previously established in our labs that PGE2 causes cough by binding to the EP3 

GPCR (Maher et al., 2009); and I established in this thesis that in guinea pigs and humans, 

BK induces cough via activation of the B2 GPCR. Intracellular secondary messengers are 

subsequently released, which ultimately lead to opening of the TRPA1 and TRPV1 ion 

channels. Inhibitors of the potential secondary messenger mechanisms (e.g. phosphokinase A, 

phosphokinase C or diacylglycerol antagonists) could be utilised in the imaging model in an 

attempt to block PGE2 or BK-induced activation. Subsequently, selective activators of these 

pathways (e.g. 1-oleoyl-2-acetyl-sn-glycerol, a cell membrane-permeable analogue of 

diacylglycerol) in combination with TRPA1 and TRPV1-selective antagonists could be used 

to confirm that the identified pathway does indeed cause activation of these ion channels.  
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8.4.2 Investigating a role for TRPA1 in the low pH-induced sensory afferent response in vitro 

 

8.4.2.1 Determining the effect of other TRPA1-selective antagonists 

 

A potential explanation for the lack of effect of the TRPA1 antagonist on low pH-induced 

responses in the in vitro vagus nerve and isolated primary ganglia models is that acidic 

solutions interfere with the ability of HC-030031 to inhibit the TRPA1 ion channel. 

Therefore, it would be interesting to investigate the ability of other TRPA1-selective 

antagonists (e.g. AP18) to inhibit low pH responses in these models. 

 

8.4.2.2 Airway-specific sensory primary vagal ganglia cells 

 

I have established that low pH solutions cause activation of airway-specific primary vagal 

ganglia cells stained using DiI. As discussed previously, it is possible that TRPA1 is 

mediating an effect on airway nerves, but not non-airway nerves, and that this effect is being 

lost in the natural variability of the in vitro preparations utilised. Therefore, using the 

selective TRPA1 inhibitor HC-030031 I plan to investigate whether TRPA1 plays a role in 

mediating the low pH response in airway stained cells in vitro. In measuring responses only 

from the airway-associated cells this could remove some of the variability observed when 

testing on all (airway and non-airway) cells. Furthermore, I plan to isolate primary vagal cells 

from mouse ganglia, which will allow the use of genetically modified animals to verify the 

antagonist studies. This could also allow me to confirm my findings in the isolated vagus 

model which indicate a role for ASIC1 but not ASIC3 ion channels in low pH-induced 

sensory nerve activation. 

 

8.4.2.3 Investigating a role for TRPA1 in mediating low pH-induced sensory nerve activation 

using more acidic solutions 

 

An alternative hypothesis as to why we are seeing an inhibitory effect of TRPA1 antagonists 

on the low pH cough response in vivo, but not in the in vitro preparations, is that the nerve 

endings within the airway are being exposed to a higher level of acidity with inhalation of 

citric acid than what we are using in vitro (pH 5 for isolated vagus, and pH 6 for isolated 

primary cells). To test this theory I plan to use isolated vagus nerves from wild type and 

genetically modified Trpa1-/-, Trpv1-/-, Asic1-/-, and Asic3-/- animals, and perform 
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concentration responses for pH to establish what range of acidity each of these ion channels 

detects. I will be using the isolated vagus preparation as the axon of the vagus nerve is more 

robust than the isolated primary vagal ganglia cells, for which a pH < 5.5 kills the cells. I 

have run a pilot trial for this on wild type vagus nerves, and established that the tissue is still 

viable even after stimulation with pH 3 (Figure 8.2). If this hypothesis is correct, I should see 

a blunted pH response in Trpa1-/- mouse vagus compared to wild type for pH < 5. 

 

 

Figure 8.2. Concentration-related increases in mouse vagus nerve depolarisation with 

decreasing pH. 

Isolated wild type (C57Bl/6j) mouse vagus was exposed to non-cumulative concentrations of pH for 2 

minutes, followed by wash-out to retain baseline. Decreasing pH levels caused concentration-related 

increases in sensory afferent depolarisation. Data are presented as the peak depolarisation (in 

millivolts) of n = 1 observation. 

 

 

8.4.3 Investigating a role for ASIC ion channels in citric-acid induced cough 

 

In this thesis I investigated the ability of TRPA1 and TRPV1 selective antagonists to inhibit 

citric acid-induced cough in vivo. Having also established a role for the ASIC ion channels in 

the sensory afferent response to low pH in vitro, it would be interesting to follow this up in 

our model of conscious guinea pig cough. The general ASIC inhibitor amiloride was not used 

to inhibit citric acid cough in this thesis because this compound displays poor potency, and 

has inhibitory effects on other receptors of the epithelial sodium channel family (ENaC; Dubé 

et al., 2005). A recently described non-amiloride inhibitor of ASIC ion channels, A-317567, 

shows better potency than amiloride in in vivo models of inflammatory hyperalgesia and 
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post-operative pain, and has no apparent effects on renal ENaCs (Dubé et al., 2005). This 

compound could therefore provide a better pharmacological tool for in vivo research 

investigating the role ASIC family of ion channels in cough. 

 

8.4.4 Investigating a role for TRPA1 and TRPV1 in the enhanced cough response using 

models of respiratory disease 

 

In this thesis, a role for TRPA1 and TRPV1 in mediating the effects of PGE2, BK and low pH 

have been investigated under ‘normal’ conditions. This is necessary in order to understand 

how the acute cough reflex is being controlled, in order to then determine what changes occur 

during disease. It would subsequently be interesting to establish whether these ion channels 

play a role in modification of the cough reflex in disease states. There is enhanced release of 

PGE2 and BK, and a decrease in pH in the airways of patients suffering from inflammatory 

airways diseases (e.g. asthma and COPD), and these irritants have been associated with 

sensitisation of the cough reflex (Choudry et al., 1989; Fox et al., 1996; Karlsson & Fuller, 

1999; Morice et al., 2007). Therefore, it is possible that cough hypersensitivity could be 

controlled with therapies that inhibit the TRPA1 and TRPV1 receptors. Our lab has 

established animal models of asthma (induced by ovalbumin or LPS sensitisation) and 

cigarette smoke exposure. In the cigarette smoke model we have already successfully 

observed enhanced sensory nerve and cough responses to the TRPV1 agonist capsaicin, 

which suggests that this is an ideal model in which to investigate excessive cough. Using 

these models, we could determine the ability of TRPA1 and TRPV1 antagonists to inhibit the 

excessive cough responses using the in vitro and in vivo models characterised in this thesis.  

 

8.4.5 Measuring RNA and protein expression in airway-labelled primary vagal ganglia cells 

 

An increase in TRPV1 expression has been found in the lungs of patients suffering from 

chronic cough (Groneberg et al., 2004), providing another potential mechanism for the 

enhanced cough response to TRPV1 agonists in inflammatory airway disease. Therefore, it 

would be interesting to investigate RNA and protein expression of the TRP channels using 

RT-PCR and western blot techniques. This would allow us to compare the level of expression 

of these receptors in the healthy state with that in our disease models, discussed above. 
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Appendix 
 

Chemicals and reagents 

The table below outlines all the chemical reagents and compounds used in this thesis. The 

vehicle or diluents have been described where appropriate. 

 

Drug / reagent Source Vehicle or diluents (where applicable) 

Acrolein Sigma-Aldrich 0.1% DMSO in Krebs solution (in vitro) 

 

0.9% saline (in vivo) 

Agarose Promega 2% in 1xTBE 

AITC (allyl-isothiocyanate) Sigma-Aldrich 0.1% DMSO in Krebs solution 

Amiloride Sigma-Aldrich 0.1% DMSO in Krebs solution 

Boric Acid Sigma-Aldrich - 

Bradykinin Sigma-Aldrich 0.1% dH2O (in vitro) 

 

0.9% saline (in vivo) 

CaCl2 VWR - 

Capsaicin Sigma-Aldrich 0.1% DMSO in Krebs solution (in vitro) 

 

1% ethanol plus 1% Tween 80 in 0.9% 

saline (in vivo) 

Capsazepine Sigma-Aldrich 0.1% DMSO in Krebs solution 

Cinnamaldehyde Sigma-Aldrich 0.1% DMSO in Krebs solution 

Citric Acid Sigma-Aldrich 0.9% saline 

Collagenase Worthington Ca2+-free, Mg2+-free Hank’s balanced 

salt solution 

Di-8-ANEPPS 

(4-[2-[6-(dioctylamino)-2-

naphthalenyl]ethenyl]-1-(3-

sulfopropyl)-pyridinium) 

Invitrogen 0.4% DMSO in extracellular solution 

  



 173 

Drug / reagent Source Vehicle or diluents (where applicable) 

DiI 

(DiIC18(3), 1,1'-

dioctadecyl-3,3,3',3'-

tetramethylindocarbocyanin

e perchlorate) 

Invitrogen 2% ethanol in 0.9% saline 

Dispase II Roche Ca2+-free, Mg2+-free Hank’s balanced 

salt solution 

EDTA Promega - 

Ethanol VWR - 

F12 Invitrogen - 

FBS (foetal bovine serum) Sigma-Aldrich - 

Fluo-4 AM Invitrogen Extracellular solution 

Glucose VWR - 

HBSS Invitrogen - 

HC-030031 ChemBridge 0.1% DMSO in Krebs solution (in vitro) 

 

0.5% methyl cellulose in 0.9% saline (in 

vivo) 

HEPES Sigma-Aldrich - 

Hyperladder IV Bioline Ltd - 

Indomethacin Sigma-Aldrich 0.1% DMSO in Krebs solution 

Isopropanol Sigma-Aldrich - 

JNJ17203212 GlaxoSmithKlein 0.1% DMSO in Krebs solution (in vitro) 

 

15% solutol in 5% dextrose solution (in 

vivo) 

KCl VWR Extracellular solution 

KH2PO4 VWR - 

L15 Sigma-Aldrich - 

Laminin Sigma-Aldrich dH2O 

Lys-[Des-Arg9]Bradykinin Tocris 0.1% DMSO in Krebs solution 

Methyl cellulose Sigma-Aldrich - 
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Drug / reagent Source Vehicle or diluents (where applicable) 

MgSO4 VWR - 

NaCl VWR - 

NaH2PO4.2H2O VWR - 

NaHCO3 VWR - 

Nuclease-free water  Promega - 

Nucleon resin Tepnel Life 

Sciences 

- 

Papain Sigma-Aldrich Ca2+-free, Mg2+-free Hank’s balanced 

salt solution 

Penicillin/streptomycin Sigma-Aldrich - 

Percoll Sigma-Aldrich - 

Petroleum jelly Vaseline - 

PGE2 Sigma Aldrich 0.1% ethanol in Krebs solution (in vitro) 

 

0.1 M phosphate buffer (in vivo) 

Proteinase K Tepnel Life 

Sciences 

Nuclease-free H2O 

R715 Tocris 0.1% DMSO in Krebs solution 

Reagent M1 Tepnel Life 

Sciences 

- 

Reagent M2 Tepnel Life 

Sciences 

- 

Resiniferatoxin LC Labs 0.1% DMSO in Krebs solution 

0.9% saline (sterile) Fresenius Kabi - 

Safeview NBS Biologicals 

Ltd 

- 

Sodium pentobarbitone Merial Animal 

Health 

- 

Trizma Base Sigma-Aldrich - 

Tween 80 Sigma-Aldrich - 

WIN 64338 Tocris 0.1% DMSO in Krebs solution 
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