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ABSTRACT 
In order to effectively prevent, mitigate and manage urban pluvial flooding, it is necessary to 

accurately model and predict the spatial and temporal distribution of both rainfall and surface 

flooding. A number of different modelling and prediction techniques have been applied to 

three UK case studies. The case studies illustrated potential improvements in the duration of 

model simulations as well as localised rainfall estimation (downscaling). A method of 

describing uncertainty in flow forecasts has been illustrated. The provision of urban pluvial 

flood forecasts, however, remains a challenging issue and it is anticipated that a combination 

of several techniques may be necessary, depending on catchment size and required forecast 

accuracy and lead time. 
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INTRODUCTION 
In recent years, urban pluvial flooding has been occurring with increasing frequency in the 

UK as well as many other countries. After extensive floods in the UK in the summer of 2007, 

the government requested a comprehensive review of the lessons learned from these events.  

According to the review carried out by Pitt (2008): “Perhaps the most significant feature of 

last summer’s events was the high proportion of surface water flooding compared with 

flooding from rivers. ... There are no warnings for this type of flooding, which can occur very 

rapidly, and people, including the response organizations, were not well prepared.” Following 

the recommendations of the Pitt review, the UK Met Office and the Environment Agency set 

up the Flood Forecasting Centre (http://www.ffc-environment-agency.metoffice.gov.uk/), 

which provides ‘river, tidal and coastal flooding warnings as well as warnings of extreme 

rainfall which may lead to surface water flooding’. There are as yet no official surface water 

flood warnings and/or urban pluvial flood warnings supplied. The Flood Risk Management 

Research Consortium Phase 2 (FRMRC2) is a multidisciplinary UK research consortium, 

focusing on recently identified strategic research investigating the prediction and management 

of flood risk with a particular focus on coastal and urban flooding 
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(http://www.floodrisk.org.uk/). As part of the urban flooding work package, a number of case 

studies have been identified in order to illustrate the potential of urban pluvial flood 

predictions using existing as well as newly developed modelling techniques.  

 

Schilling (1991) described a ‘wish-list’ of the ideal type of rainfall data necessary for urban 

hydrology as: “… recording period 20 years (or more), temporal resolution 1 min, spatial 

resolution 1 km
2
, time synchronization errors 1 min (or less), volumetric accuracy < 3%, and 

without gaps in the records”. Twenty years later we are getting closer to this wish-list, but 

there are still questions remaining on how we could make optimum use of this data to forecast 

floods at urban scales. Different approaches can be used for urban rainfall forecasting and 

flood modelling. The application of radar-based rainfall forecasts to model run-off on a sub-

catchment of the urban drainage system of Vienna was discussed by Krämer et al. (2006). A 

few examples of the use of radar nowcasting techniques for real time control of urban 

drainage systems can be found in literature e.g. Yuan et al. (1999) for Bolton or Roualt et al. 

(2007) for Berlin. The results of these studies are mixed, and mainly deal with predictive real 

time control of sewer systems and not necessarily with urban pluvial flooding. Vieux et al. 

(2005) and Faure et al. (2005) are one of the few studies that describe flood warning systems 

specifically developed for urban areas; these studies employed radar data but no rainfall 

forecasting techniques. The aim of this paper is to illustrate the use of a selection of existing 

rainfall forecasting and urban drainage modelling tools for the purpose of urban pluvial flood 

forecasting, to identify shortcomings and describe potential improvements and new tools for 

the prediction of floods in urban areas.  

 

METHODS – RAINFALL PREDICTION AND FLOOD MODELLING 
The UK Met Office (UKMO) operates a network of 15 C-band radars. The data are quality-

controlled by the UKMO, resulting in the NIMROD composite radar rainfall product 

(Harrison et al., 2009). The UKMO developed a new stochastic precipitation forecasting 

system known as STEPS (Short-Term Ensemble Prediction System) which can merge 

precipitation forecasts from a nowcasting system with downscaled NWP (Numerical Weather 

Prediction) forecasts (Bowler et al., 2006). The blending incorporates stochastic components 

to account for the inherent uncertainties in the forecasts. The original version of STEPS uses 

the NWP forecasts from the UKMO Unified Model. However, for the purposes of this study, 

and in order to produce high-resolution NWP forecasts, the NWP Mesoscale Model 5 (MM5) 

developed by PSU/NCAR (Dudhia, 1993, Dudhia et al., 2005, Grell et al., 1994) was used. 

The initial and lateral boundary conditions to the MM5 mesoscale model were provided by 

the global model developed at the European Centre for Medium Range Weather Forecast 

(ECMWF). The first case study explored the use of STEPS as input to the commercial 

hydrodynamic sewer network model (Infoworks CS, v 10.0, by MWHSoft) to predict rainfall 

run off from the urban area as well as flows through the sewer network conduits. The 

hydrodynamic sewer model was obtained from the sewer operators and had been calibrated 

following current industrial standards (WaPUG, 2002).  

 

In the second case study, two types of physically based surface flooding models are employed: 

a 1D-1D model and a 1D-2D one. Improved statistically-based space-time downscaling 

techniques are being developed in order to generate a statistically-feasible street-scale rainfall 

product which can be further fed to the associated flooding models. Based upon the 

characteristics of scale-invariance that have been widely observed in the process of rainfall, 

the 1km 5-min NIMROD radar data is further downscaled into smaller scales (approximately 

100 – 500 m). This downscaling process is expected to introduce higher spatial variability of 

urban-scale rainfields to the corresponding hydraulic modelling. Both types of models 
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(1D-1D and 1D-2D) take into account the dual drainage concept and are set up and run in 

Infoworks CS. In the 1D-2D approach, the surface network is modelled as a 2D mesh of 

triangular elements generated based on the DTM (Digital Terrain Model). The 2D model of 

the surface network is coupled with the 1D model of the sewer network, thus obtaining a 

1D-2D model. Although the 2D models of the surface network are detailed and accurate, 

modelling 2D surface flows is computationally intensive and the simulations take a long time, 

making it unsuitable for real time applications. In the 1D-1D model approach, the Automatic 

Overland Flow Delineation (AOFD) tool (Maksimović et al., 2009) is used to create the 1D 

model of the overland network, which is coupled with the 1D model of the sewer network. 

The AOFD tool uses a high-resolution DTM, obtained from 1 m resolution LiDAR data, for 

creation of a network of ponds (modelled as storage nodes) connected by preferential 

pathways (modelled as conduits with associated geometry derived from the DTM). The 

output of the AOFD tool is a 1D model of the overland network which can be imported into 

Infoworks CS and is coupled with the sewer network model (the connection between these 

two systems takes place at the manholes). The 1D-1D dual drainage models can reproduce the 

behaviour of the system, while keeping computational time reasonably short, enabling the use 

of these models for real-time forecasting of pluvial flooding. Moreover, in order to further 

decrease simulation time, techniques for simplifying the 1D-1D physically based models have 

been implemented (Simões et al, 2010) and hybrid models that combine 1D-1D and 1D-2D 

are currently under development.  

 

In the third case study the application of AI techniques for flood modelling is explored. The 

RAdar Pluvial flooding Identification for Drainage System (RAPIDS) is an Artificial Neural 

Networks (ANNs) technique. RAPIDS1 is a 2-layer, feed-forward MLP (Multi-Layer 

Perceptron), which provides a fast surrogate DDM (Data Driven Model) for a conventional 

hydro-dynamic simulator (such as InfoWorks). It rapidly relates incoming rainstorm data to 

the extent of flooding present at each manhole in the sewer network. A moving time-window 

approach is implemented: rainfall data (intensity, cumulative total, elapsed time) spanning 

recent history (of 10 time steps, i.e. 30-minutes) provides inputs to the ANN. Output target 

signals for training and evaluation of ANN performance are provided by the corresponding 

flood-level hydrographs generated by a hydrodynamic simulator for each manhole (Duncan et 

al., 2011). By time-advancing the target data used for training, the ANN can provide 

prediction of flooding for up to 60-minutes ahead. The framework of the ANN is such that it 

can be trained using the flow information from either hydraulic modelling results, or field 

measurements whenever the observations are available. The flooding assessment of RAPIDS1 

relies on rainfall input, for which currently UKMO NIMROD 1 km composite radar data is 

used. Development on RAPIDS2, a novel ANN approach to rainfall nowcasting that can be 

linked to RAPIDS1, is currently ongoing.  

 

DESCRIPTION OF CASE STUDIES AND RESULTS  

 

First case study: a town in the Pennine hills 

The first case study is a town in the Pennine hills in the North of England. The majority of the 

sewer network is combined and the contributing area is covered by 25 different 1km
2
 radar 

pixels and 4 rain gauges. Three rainfall events were studied in detail (25
th

 June 2007, 1
st
 July 

2008 and 7
th

 July 2008), the events and rainfall forecasts are more extensively described in 

Schellart et al. (2009b) and Rico-Ramirez et al. (2009). For these events, the overall 

performance of the rainfall forecasting system (STEPS) decreased with increasing rainfall 

intensities, and stratiform precipitation was forecasted better than convective precipitation. 
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MM5 proved necessary to enable to anticipate convective rainfall, but was not always 

accurate enough spatially to forecast the location of rainfall occurrence within the catchment. 

Comparing the images in Fig. 1, for example, indicates that for an 8-hour lead time the overall 

rainfall pattern as measured by the radar network over the UK (left) is captured by the MM5 

NWP forecasts. However, the differences between actual and forecasted rainfall can be large 

when comparing a small area of a few square kilometres. Research was therefore carried out 

using different versions of the STEPS model (as a deterministic nowcast, ensemble nowcast 

or blended with ensemble MM5 NWP forecasts). The sewer system was modelled using 432 

‘nodes’, 444 ‘links’, 13 pumps and 134 sub catchments. The total contributing area of is 11 

km
2
, of which 0.71 km

2
 is impermeable and 10.35 km

2
 is pervious, reflecting a relatively large 

amount of park and garden areas within the town (3.15 km
2
) as well as surrounding steep 

moorland (7.2 km
2
). Actual radar and rain gauge data as well as rainfall predictions from the 

different versions of STEPS have been imported to Infoworks CS to generate quantitative 

sewer flow simulations as well as predictions. Fig. 2 shows an example of how ensemble 

forecasts may be utilised to provide cumulative probability density functions of flow peaks 

exceeding a certain threshold (in this case a combined sewer overflow weir). For the third 

hour after the forecast was supplied, Fig. 2 (right) shows that the ensemble STEPS forecast 

indicated 20% probability of spill exceeding 1000 m
3
 and a 60% probability of no spill, 

whereas the model using radar data simulated 298 m
3
 spill, the model using rain gauge data 

646 m
3
 spill and deterministic STEPS 0 m

3
 spill. So there is also a considerable difference 

between radar and rain gauge input, when looking at local rainfall peaks, as is described in 

more detail in Schellart et al. (2009a). 

 

                        
Figure 1. Radar scan 25

th
 Jun. 2007, 08:00 (left), corresponding NWP forecast (right). 

 

 
Figure 2. Simulated CSO spill using ensemble and deterministic forecasts of STEPS blended 

with MM5, created for 13:15, 7
th

 Jul. 2008, actual radar data and actual rain gauge data (left). 

Cumulative probability density of CSO spill based on ensemble forecasts (right). 

urban 

catchment 
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Second case study: The Cranbrook catchment 

The second case study is the Cranbrook catchment, in the London Borough of Redbridge, an 

area with a history of local flooding. The drainage area is approximately 910 hectares; the 

main water course is about 5.75 km long, of which 5.69 km are piped or culverted. A rainfall 

and flow monitoring campaign is being carried out and all gauges have wireless 

communication devices. Physically based 1D-1D and 1D-2D models of this area were set up 

in Infoworks CS and were calibrated with the data obtained from the monitoring system. Two 

rain events were selected to demonstrate the proposed method. The event on 22
nd

-23
rd 

Aug. 

2010 was associated with a warm front and the rainfall falling within the Cranbrook 

catchment was approximately 30 mm in around 18 h, with more than 20 mm falling in a 

period of 5 h. The event on 17
th

-18
th

 Jan. 2011 was associated with an occluded front passing 

over Southeast England, producing heavy rain in the Cranbrook catchment with total 

accumulations of around 30 mm in 24 h. The 1D-1D model yields good results and is much 

faster than the 1D-2D (10 to 50 times – depending on the mesh proprieties and duration of the 

rainfall events) which makes it more suitable for real time flood forecast. Regarding rainfall 

estimates, enhanced statistically-based downscaling techniques were developed based upon 

the cascade theory, which has been proven to have the potential to generate high-resolution 

rainfall products (Wang et al., 2010). The 1 km Nimrod data are used herein as references to 

highlight the differences when downscaled higher-resolution estimates (respectively in 250 

and 500 m) are used as inputs for hydraulic modelling in this case study. Due to space 

limitations, only preliminary results of the August event are presented in this paper (Fig. 3).  
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Figure 3. a) the 1D-1D overland and sewer network for Cranbrook catchment, b – d) 

simulated flow depth profiles for pipes 1455.1, 463.1 and 307.1 using 1 km (dark solid line), 

500 m (grey dashed lines) and 250 m (grey solid lines) rainfall estimates as inputs.  

 

 Pipe 1455.1  

 Pipe 463.1 

 Pipe 307.1 

a) b) 

c) d) 
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In order to analyse the impact of the spatial resolution of the rainfall input, three pipes were 

selected respectively from the upstream, middle and downstream areas of the Cranbrook 

catchment (Figure 3a). For each scale of interest (500 and 250 m), ten rainfall realisations 

were stochastically generated from the Nimrod data via the downscaling process and used as 

inputs to estimate the associated uncertainties in flow simulation. The associated maximal and 

minimal flow depths, which envelop all flow-depth realizations, are plotted in Figure 3b – 3d. 

Some changes in flow-depth profiles can be observed when higher-resolution rainfall 

estimates are used. In the upstream pipe (1455.1), generally higher flow depths are obtained, 

which is different from the middle and downstream pipes (463.1 and 307.1). The uncertainty 

ranges (i.e. the averaged relative differences between maximal and minimal flow depths) are 

investigated and showed that a larger uncertainty range is obtained in pipe 1455.1 (0.188 and 

0.169, respectively, for the 500 and 250 m rainfall resolutions) compared to the other two 

pipes (pipe 463.1: 0.085 and 0.088; pipe 307.1: 0.047 and 0.051). These results show that the 

upstream pipe, which has smaller sub-catchment area, is more sensitive to the use of higher-

resolution precipitation as input. The effect of high-resolution rainfall input is however 

smoothed when the drainage area of the pipe increases. This indicates the importance of using 

higher-resolution rainfall inputs, particularly for smaller areas. 

 

Third case study: the Stockbridge catchment  

In the third case study, the Stockbridge area of Keighley, West Yorkshire, the RAPIDS 

system is used to simulate the underlying drainage system. The catchment area is 9 km
2
. 

Daily rainfall data from 1 tipping-bucket rain gauge are used to calibrate the system ‘ground 

truth’ (Schellart et al. (2009a) discussed sources and levels of error present in this data). Due 

to lack of historical flood level information, a conventional hydraulic simulator, SIPSON 

(Djordjević et al., 2005), was adapted to produce target data for training the ANN. A flood 

severity classification scheme with 4 classes [no flood | slight | moderate | severe] 

corresponding to flood depths from the hydraulic model is then implemented. RAPIDS1 

produced flood severity classification results for 16 rainfall events with typical weighted 

misclassification errors of 2.65% (see Fig. 4) averaged over all 123-manholes, when 

compared with the target classes derived from the hydro-dynamic model. Classification 

Percentage Error metric assigns values 0 to 3 to the 4 classes of flood severity, then uses: 

             Eqn. 1 

Where: CPE(y) is classification percentage error for single output (manhole); 

 t = timestep number; N = total number of timesteps in data set; 

 C(Tt) = Classification function operating on Target data sample at time t; 

 C(Yt) = Classification function operating on MLP output data sample at time t; 

wC(Tt) = Weight associated with instantaneous value of:    

Fig. 5 indicates similar ANN classification performance for 0, 30 and 60 minutes prediction 

advance for a selection of 5 manholes in each of upstream, midstream and downstream 

network zones. However, for the case study network, using prediction advance of >30-

minutes means that the hydrograph peak flood levels are missed, rendering the model 

ineffective. For the Keighley system, a 30 minute advance was optimum. Timing trials for the 

123-manhole UDN in the RAPIDS1 Keighley case study gave a typical SIPSON simulator 

runtime of 195s for a 6-hour trial, with a 3-minute sampling period. The trained ANN took 

less than 0.12s; a factor of 1700-times faster. This opens the possibility of efficient modelling 

of very large networks in real-time on desktop machines. 
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Figure 4. Test Classification Errors vs Storm Return Period and Duration 

 

 
Figure 5. Test Classification Errors vs Prediction Timesteps Ahead and Network Zone 

 

DISCUSSION AND CONCLUSIONS 

The first case study illustrated the difficulty of accurately forecasting precipitation in a 

relatively small area with a lead time of several hours. NWP models can see potential new 

heavy convective rainfall cells developing several hours ahead, but MM5 is currently not 

accurate enough on small spatial scales, i.e. it can ‘miss’ a relatively small urban area by 

several 10s of kilometres. The use of ensemble forecasts is promising as it can give early 

warning in terms of probability of heavy rainfall occurring over a certain area. A remaining 

challenge, however, is how to practically deal with probabilistic forecasts in an urban pluvial 

flood warning system. In the second case study, several physically based hydraulic models 

were tested and the 1D-1D approach (and its simplifications) proved to be more suitable for 

real time flood forecast. In addition, the importance of employing downscaling techniques to 

generate higher-resolution rainfall estimates (or nowcasts in the future) in the urban areas is 

particularly addressed through evaluating the associated uncertainties of hydraulic modelling 

results. However, a further investigation must be carried out to identify the relation of 

sub-catchment areas and the resolution of rainfall estimates used as inputs. Moreover, a 

comparison with real observations of flow depths is also necessary and will be conducted in 

the near future. The third case study illustrated the advantage of using an ANN approach to 

provide limited prediction capability and significantly reduce hydraulic sewer network 

simulation duration, as well as the use of a flood classification scheme. Operationally useful 

urban pluvial flood forecasting remains a challenge, and it is likely that several modelling 

approaches may be necessary to achieve forecasts with the desired accuracy and lead time. 
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