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Abstract 

Localising activity in the human midbrain with conventional functional MRI 

(fMRI) is challenging because the midbrain nuclei are small and located in an 

area that is prone to physiological artefacts. In the first section of this thesis I 

present a replicable and automated method to improve the detection and 

localisation of midbrain fMRI signals. I designed a visual fMRI task that was 

predicted would activate the superior colliculi bilaterally. A novel anatomical 

registration pathway was used to optimise the localisation of the small 

midbrain nuclei in stereotactic space. This pathway was compared to 

conventional registration pathways, and was shown to significantly improve 

midbrain registration. To reduce the physiological artefacts in the functional 

data, I estimated and removed structured noise using a modified version of a 

previously described physiological noise model (PNM). Whereas a 

conventional analysis revealed only unilateral colliculi activity, the PNM 

analysis revealed the predicted bilateral activity.   

 

I then used these methods to investigate the role of the midbrain 

dopaminergic system in reward. Midbrain dopamine neurons play central 

roles in positive reward prediction errors (PEs). Non-human studies now 

indicate that dopamine neurons also code for aversive, punishing events, and 

may code negative PEs. However, our understanding of how such events are 

coded in the human dopaminergic midbrain is limited, and has been hindered 

by the technical challenge of using fMRI in this region. Here I show that during 

a financial reward and punishment task the ventral tegmental area (VTA) 

codes for both positive and negative PEs. The fMRI data from the midbrain 

contained a significant amount of physiological noise, but once I applied the 

PNM responses were also observed in the substantia nigra pars compacta 

(SNc), with negative PE signals extending more laterally. These findings 

indicate that both the human VTA and SNc code for both positive and 

negative PEs.  
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1. Introduction  

All mammals learn to interact with their environment to optimise their chances 

of survival. Early in evolution, brainstem systems developed to encourage 

food-seeking and reproductive behaviour (reward) and avoid harm 

(punishment). It has become apparent from a large body of research that the 

modulatory neurotransmitter dopamine is central to these systems. 

 

Current theories of the role of the dopaminergic midbrain in reward have been 

developed based largely on the findings of non-human experiments. 

Neurophysiological recordings of activity from single neurons have proved to 

be an invaluable tool in demonstrating the role of specific neuronal 

populations in behaviour. However, in order to apply such animal models to 

the human, it is important to investigate if the predictions of these models can 

explain human neuronal activity. In the case of the dopaminergic midbrain this 

has proved challenging. Invasive recordings are not possible for obvious 

ethical reasons.  Functional magnetic resonance imaging (fMRI) is clearly 

feasible as an indirect measure of neural activity and has been successfully 

utilised to test animal models in the human (Logothetis, 2008). However there 

are technical barriers to imaging the human midbrain with fMRI (Düzel et al., 

2009). As a result of this, little is known about the role of the human midbrain 

in reward. 

 

This introduction is organised into three sections. In the first section I will 

outline the current theories of the role of the dopaminergic midbrain in reward 

and punishment. In the second section I will describe the anatomy of the 

midbrain in the human, and how this compares with the non-human anatomy. 

This is important for understanding how non-human models may translate to 

the human, and in understanding the likely localisation of these functions in 

the human brain. In the final section of the introduction I will cover the 

technical challenges to be overcome when imaging the human dopaminergic 

midbrain with fMRI. Midbrain optimised fMRI must attempt to reduce the 

influence of these challenges to successfully and accurately image this region 

of the brain.  
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1.1. The role of the midbrain in reward  

1.1.1. What is reward, and how does it influence our behaviour? 
A stimulus can be defined as rewarding if an animal will work to receive it, and 

for humans rewarding stimuli include food, sex, and money. The experience 

of reward is a complex construct that has multiple components that rely on 

several different brain areas, including the dopaminergic midbrain (Berridge 

and Robinson, 2003; Schultz et al., 1997), the ventral striatum (O'Doherty et 

al., 2004), the orbitofrontal cortex (Plassmann et al., 2010; van Duuren et al., 

2009), and the anterior cingulate cortex (Amiez et al., 2005; Amiez et al., 

2006; Holroyd and Coles, 2008). Reward itself is not an observable 

behaviour, but can be separated into three components that can be 

measured. These are liking, wanting and reinforcement learning (Berridge and 

Kringelbach, 2008). Liking involves an affective response to a stimulus at the 

time of receipt. Wanting is the subjective desire of a stimulus, and may occur 

before receipt of a stimulus. Reinforcement learning is the process by which 

behaviour is optimised to maximise the occurrence of rewarding events and 

the avoidance of punishment (Sutton and Barto, 1987).  

 

There are two main types of reinforcement learning. Pavlovian conditioning is 

defined as learning that occurs about the relationship between two stimuli that 

cannot be controlled by behaviour. The original example is of course the dog 

that learns to associate the ring of a bell with the delivery of food. The extent 

to which the dog salivates can be used as a behavioural a measure of 

learning, and learning in this instance is expressed through activity within the 

autonomic nervous system. Instrumental conditioning, on the other hand, 

involves the selection of willed (voluntary) actions that lead to a desired goal. 

This goal can be the receipt of reward or the avoidance of punishment. The 

association learned here is between the action and the outcome, at least 

initially, as later there may be a stimulus-response association (habit 

formation) when the response to a stimulus occurs without conscious 

processing. Therefore, learning can be measured by observing actions. 
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By observing such behaviour, models of how optimal learning occurs have 

been developed, to understand the mechanisms that ensure behaviour 

maximises rewards and minimises punishments. Temporal difference learning 

(Sutton and Barto, 1987) is a computational model of reinforcement learning 

whereby predictions are made about future events based on the experience of 

past events. Errors in prediction are used to update future predictions, so that 

these predictions will match the actual experience as closely as possible. By 

holding accurate predictions about future events, behaviour can be modified 

to optimise the outcome. 

 

Such theories of reinforcement learning were developed well in advance of 

the discovery of the neural mechanisms that are involved in these processes. 

The main focus of the investigation of the neural substrates of reward has 

been on the neurotransmitter dopamine due to its neuromodulatory role in 

learning and motivation (Berridge and Kringelbach, 2008; Dayan and Balleine, 

2002; Haber and Knutson, 2010; Redgrave et al., 2008; Schultz, 2000). 

Interest in dopamine has also been maintained by its proposed role in 

disease. For example, drugs of abuse cause an increase in dopamine release 

in the striatum (Koob and Volkow, 2009; Lüscher and Ungless, 2006) and 

schizophrenia has been associated with a maladaptive dopamine system 

(Moran et al., 2008; Murray et al., 2008). 

 

The dopaminergic midbrain is the major source of dopamine in the brain 

(Haber and Fudge, 1997; McRitchie et al., 1998; Schultz, 2000; Schultz, 

2002). It consists of the substantia nigra pars compacta (SNc) and the ventral 

tegmental area (VTA). This small population of neurons projects extensively 

to multiple regions in the brain: the striatum (Fallon, 1981; Prensa and Parent, 

2001), limbic and paralimbic regions (Swanson, 1982), and extensive 

neocortial regions, particularly in the frontal lobes (Fallon, 1981). The 

extensive projection targets of these midbrain structures allow dopaminergic 

neurons to modulate the response of multiple regions that control the many 

aspects of behaviour. 
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1.1.2. Non-human experiments investigating the role of dopamine 
in reward  
A neural correlate for the error term of the temporal difference model was 

proposed by Schultz, Dayan and Montague (1997) in the dopaminergic 

midbrain. Single cell recordings in the primate SNc identified neurons that 

showed an increased firing rate in response to an unexpected juice reward (a 

positive prediction error, PE) (Bayer and Glimcher, 2005; Fiorillo et al., 2008; 

Fiorillo et al., 2003; Schultz et al., 1997; Tobler et al., 2005). Once the juice 

reward had been repeatedly paired with a light stimulus, the monkeys learnt 

that the light predicted the future occurrence of the juice reward. 

Subsequently, the neurons showed no change in firing rate to a reward fully 

predicted by the light, and it was the onset of the light that elicited the neural 

response. However, if there was an unexpected omission of the expected 

juice reward (a negative PE), the dopaminergic neurons decreased their firing 

rate below background. It appears, therefore, that these neurons respond to 

the difference between the observed and expected reward value, coding for 

errors in prediction, rather than coding the absolute reward level. 

 

This theory has been extended to characterise factors that are involved in the 

calculation of a PE. Tobler and colleagues (2005) found that the magnitude of 

the expected reward influenced the PE response, and Fiorillo and colleagues 

(2003) demonstrated that the probability of an expected reward occurring also 

influenced the PE response; the more unlikely a reward, the greater the 

increase in firing rate. Tobler and colleagues (2005) also demonstrated that if 

an observed reward is of an absolute positive value, but is less than expected, 

this is reflected by a reduction in firing rate – a less-than-expected reward is 

coded by a negative PE.  

 

Although the initial PE model was founded on responses to rewarding events, 

it has since been extended to model the response to punishing, aversive 

events. There is some confusion in the literature when defining PEs due to the 

different terms that can be used to describe the same phenomenon. In this 

thesis I shall use a positive PE to refer to a response to an event that is better 

than expected, whilst a negative PE will refer to a response to an event that is 
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worse than expected. These terms do not indicate the valence of a stimulus 

(i.e., whether it is rewarding or punishing). Thus the following terms can 

explain all possible types of PE: 

 

1. Positive reward PE: elicited by an event that is more rewarding than 

expected; 

2. Positive punishment PE: elicited by an event that is less punishing than 

expected; 

3. Negative reward PE: elicited by an event that is less rewarding then 

expected; 

4. Negative punishment PE: elicited by an event that is more punishing 

than expected; 

 

The temporal difference theory would predict that neural activity of PE 

neurons would reflect only the positive/negative dichotomy; the response 

should not be modulated by whether or not the stimulus is rewarding or 

punishing. However experiments don’t usually interrogate all four conditions, 

so it is useful to have access to all four terms when describing existing results. 

Although the PE hypothesis offers a good explanation of how an increase in 

firing rate can efficiently code a positive PE, it is not clear if the decrease in 

firing rate in response to a negative PE is providing a neural response that is 

sufficiently sensitive to encode worse than expected events - the basal firing 

rate of midbrain dopamine neurons is only around 4Hz (Schultz et al., 1993). 

Consequently, a decrease in such a slow basal firing rate can only signal a 

limited amount of information, and is a relatively slow signal in comparison to 

the increase in firing rate that signals a positive PE (Daw et al., 2002).  

Psychological theories of motivation suggest that affective states are 

modulated by two opponent systems (Solomon and Corbit, 1974), and thus 

Daw and colleagues (2002) have suggested such an opponent system to 

dopamine codes for worse than expected events. They postulate that 

midbrain serotonin neurons in the dorsal raphe fulfil this role. However, 

electrophysiological evidence has not yet been found to support this 

hypothesis (Bromberg-Martin et al., 2010a; Ranade and Mainen, 2009). 
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An alternative concept that has been investigated is salience. Rather than 

coding for the PE, dopamine neurons are instead coding for an aspect of 

salience. According to Redgrave and colleagues (1999) the short-latency of 

the dopamine signal suggests that it cannot be encoding PE, which requires 

an assessment of expected value, but instead signals any salient stimuli that 

require attention. The PE hypothesis predicts that dopamine neurons will 

differentially respond to better than expected (a positive PE) or worse than 

expected (a negative PE) events. Redgrave and colleagues, on the other 

hand, suggest that neurons will respond similarly to oppositely signed stimuli 

as long as they are equally salient. Thus the decrease in firing rate of 

dopamine neurons is not required to signal negative punishment PEs, as all 

salient stimuli will lead to an increase in firing rate. 

 

It has also been suggested that dopamine neurons are not coding PE, but 

incentive salience (Berridge and Robinson, 1998). According to this theory the 

firing rate of the dopamine neurons is modulated by the internal state of the 

animal. For example, when hungry, a food cue may elicit an increase in firing 

rate. However during a period of satiety, the same cue may no longer elicit a 

dopamine response. Thus the firing rate of dopamine neurons is modulated 

by the current motivational state of the animal. However this model does not 

describe if or how worse than expected events may be coded for in the 

dopaminergic midbrain. 

 

There are two emerging threads of research that are beginning to provide a 

fuller picture of how negative PEs may be encoded by the brain, and may help 

determine whether there is an opponent process, or that neurons are actually 

coding for incentive salience. The first is the investigation of the possibility that 

there are different populations of dopaminergic neurons within the midbrain 

that respond in a different manner to the PE neurons observed by Shultz, 

Dayan, and Montague (1997). The second is the role of regions outside the 

dopaminergic midbrain that project to the VTA or SNc and inhibit the firing 

rate of the midbrain dopaminergic neurons that do reflect a traditional PE 

signal. The majority of experiments investigating negative PEs have used 
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punishing events, or cues predicting punishing events, rather than eliciting a 

negative reward PE.  

1.1.2.1. Subpopulations of midbrain dopamine neurons 

Early investigations into the dopaminergic midbrain did suggest that there was 

a subpopulation of neurons that increased their firing rate in response to 

punishing stimuli (Guarraci and Kapp, 1999; Mantz et al., 1989; Mirenowicz 

and Schultz, 1996). However, the neurons in these papers were identified 

using electrophysiological characteristics alone. Ungless et al. (2004) found 

that, in the anaesthetised rat, dopaminergic neurons were uniformly inhibited 

by punishing stimuli. A population of cells with electrophysiological profiles 

similar to dopamine neurons did increase their firing rate in response to 

punishing events, but labelling for tyrosine hydroxlase (TH), a dopamine 

precursor, revealed that they were non-dopaminergic.  

 

The recent literature has once again opened up the possibility of a 

dopaminergic response to punishing stimulation, using either a strict 

electrophysiological definition to locate dopaminergic neurons, or labelling the 

cells for TH. There is a growing body of evidence that suggests dopamine 

neurons are not uniformly inhibited by punishing stimuli. Brischoux et al. 

(2009) identified and labelled dopaminergic neurons in the ventral VTA of the 

anaesthetised rat that were excited by foot shocks, clearly a punishing event. 

In support of this result, Valenti, Lodge and Grace (2011) exposed 

anaesthetised rats to repeated foot shocks. They found a large proportion of 

neurons in the lateral VTA were excited by this stimulus.  Wang and Tsien 

(2011) recorded from putative dopamine neurons in freely moving mice as 

they were exposed to either a tone that had been paired with a food reward, 

or a punishing event (a free fall or shake). They identified three types of 

putative dopamine neurons defined by their response to the punishing events. 

Type-1 neurons were excited by the reward predicting tone, but were initially 

suppressed by the punishing event, but this suppression was quickly followed 

by a rebound excitation. Type-2 neurons were similar to traditional PE 

neurons; they were excited by the reward predicting tone, and suppressed by 

the punishing event with no rebound excitation. Type-3 neurons were excited 
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by both the reward predicting tone, and the punishing events. The proportions 

of these types from the whole population of putative dopaminergic neurons 

were 59%, 13% and 25%, respectively. Brischoux and colleagues  (2009) also 

identified dopaminergic neurons that, although initially suppressed by 

punishing events, showed a rebound excitation at the time of stimulus offset, 

similar to the Type-1 neurons of Wang and Tsien (2011). 

 

Other experiments have measured the dopaminergic response to cues 

predicting punishing events. Joshua et al. (2008) found that putative 

dopaminergic neurons in the SNc of the primate responded to cues that 

predicted punishing events, although the response of these neurons to 

punishing events was not as great as the response to rewarding events. 

Matsumoto and Hikosaka (2009) found two groups of putative dopaminergic 

neurons within SNc of the primate. Neurons within the dorsolateral SNc were 

excited by cues predicting both rewarding and punishing events, whilst 

neurons in the ventromedial SNc and VTA were inhibited by cues predicting 

punishing events and excited by cues predicting rewarding events. 

Mileykovsky and Morales (2011) trained rats to associate a tone with an 

electric shock and measured the neural response to the tone in VTA. Three 

types of VTA dopamine neurons were found; the first type of neurons was 

inhibited by the shock predicting cue, a second type were inhibited in a 

biphasic manner to the stimulus onset and offset, and a final type were first 

excited by the cue, then inhibited. In the majority of cells the inhibitory phase 

was followed by a transient increase in firing rate. Bromberg-Martin, 

Matsumoto and Hikosaka (2010b) recorded from the dopaminergic midbrain 

neurons of the awake primate. They used cues that predicted punishing 

airpuffs. They found two types of responses to the cues. The first type was 

excited by reward predicting cues, and inhibited by airpuff predicting cues. 

The second type was excited by both reward and punishment predicting cues. 

 

This is an area of research where more work needs to be done to build a 

comprehensive model of the neural response to negative punishment PEs. A 

complex picture is emerging, with multiple sub-populations of dopamine 

neurons that differentially respond to punishing, or punishment predicting 
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stimuli. To establish whether or not negative punishment PEs are coded in the 

same way as negative reward PEs, experiments must be carried out that test 

the response of neurons to both types of worse than expected events. Only 

then will it be known if both types of stimuli can be classed as a single 

concept of negative PE. 

 

What this literature demonstrates is that the dopaminergic midbrain is a 

heterogeneous population, and there are likely to be functional differences 

between sub-populations of cells within the VTA and SNc. The observed 

response to punishing events or punishment PEs includes inhibition, 

excitation, inhibition followed by rebound excitation, and biphasic excitation at 

stimulus onset and offset. The concept of a unitary population of cells that all 

express an increase in firing rate to a positive PE and a decrease in firing rate 

to a negative PE no longer seems a viable theory. 

1.1.2.2. Other brain regions act as opponent systems 

The second branch of research that has investigated the neural response to 

negative PE concerns the inputs of the dopaminergic midbrain, and the 

source of the inhibition that is seen in many PE dopamine neurons. The 

particular input nuclei of interest are the lateral habenula (LHb) and the tail of 

the VTA (tVTA), which is also known as the rostromedial mesopontine 

tegmental nucleus.  

 

The LHb is a small nucleus within the epithalamus. Early evidence suggested 

it had a role in the inhibitory response of the dopaminergic midbrain to 

negative PE as electrical simulation of the LHb led to inhibition of the 

dopaminergic neurons within the VTA and SNc (Christoph et al., 1986). More 

recent evidence has supported this hypothesis. Matsumoto and Hikosaka 

(2007) recorded the activity of LHb and midbrain dopamine neurons in the 

awake primate during a reward task. A cue predicted a juice reward or no 

reward. LHb neurons were excited by the no reward cue, and inhibited by the 

reward cue. The dopaminergic neurons responded in the opposite manner. 

Additionally the excitatory response of the LHb occurred before the 

dopaminergic inhibition.  
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Although the LHb does provide inputs to the dopaminergic midbrain, these 

inputs are relatively sparse (Omelchenko et al., 2009). For the LHb to 

successfully inhibit midbrain dopaminergic neurons, it must do so through an 

intermediary. A recently defined area of the midbrain, the tVTA, receives 

inputs from the LHb and projects to the dopaminergic cells of the midbrain 

(Balcita-Pedicino et al., 2011; Brinschwitz et al., 2010).  Recordings from the 

LHb, dopaminergic midbrain, and tVTA have shown that the tVTA responds in 

a similar manner to the LHb, showing an excitatory response to cues 

predicting no-reward and an inhibitory response to cues predicting reward. 

Thus it seems likely that the excitatory response in the LHb inhibits the 

dopaminergic neurons of the midbrain via the tVTA.  

 

The dopaminergic midbrain is just one part of a complex network that has 

many excitatory and inhibitory components. It is a very active area of research 

with new findings constantly modifying and updating the existing animal 

models. Thus it is appropriate to investigate reward in the human, not just to 

test if the models apply to human behaviour, but also to see if further 

advances can be made in our understanding of the dopamine system. 

Investigating reward networks at a different scale with a different tool should 

provide new results that will enrich our understanding of the dopamine 

system. 

1.1.3. The role of the dopaminergic midbrain in human reward and 
punishment 
FMRI has been used as an indirect measure of neuronal activity to investigate 

the reward systems in the human brain, but several methodological 

challenges have hindered fMRI of the midbrain itself. The midbrain nuclei are 

very small, and thus a high spatial resolution is required to localise activity to 

individual nuclei. As spatial resolution increases, the signal-to-noise ratio 

(SNR) of the data decreases and it becomes more difficult to detect signal 

from the background noise. Also the proximity of the midbrain to large blood 

vessels leaves the area prone to magnetic field inhomogeneities, and cardiac 

and respiratory artefacts can interfere with the measurement of a genuine 
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signal. As a consequence, researchers of the human brain have usually 

investigated the projection targets of the midbrain dopaminergic neurons. It 

has been shown that there is a signal increase in the ventral striatum to a 

positive reward PE, (Abler et al., 2006; McClure et al., 2003; O'Doherty et al., 

2003; Rutledge et al., 2010; Seymour et al., 2007). Increases in the ventral 

striatal signal have also been observed in response to a negative PE, both to 

a negative punishment PE (Seymour et al., 2007; Seymour et al., 2004) and a 

negative reward PE (Pagnoni et al., 2002). However a decrease in response 

to a negative reward PE has also been observed (McClure et al., 2003; 

O'Doherty et al., 2003). 

 

It has been assumed that the blood oxygen dependent level (BOLD) signal, 

the indirect measure of neural activity utilised by fMRI, observed in the 

striatum reflects an increase in the firing rate of the dopaminergic inputs to the 

region. However the ventral striatum receives convergent inputs from multiple 

brain regions so, although it is likely that dopaminergic inputs can change the 

fMRI signal, these are not the only inputs. Therefore, the conclusions that can 

be drawn from studies of the ventral striatum are limited with regard to 

midbrain dopamine function.  

 

D’Ardenne et al. (2008) made the first attempt to overcome the technical 

difficulties in imaging the dopaminergic midbrain, and investigate midbrain 

sources of PE signals in the human using fMRI. Scanning parameters were 

optimised to achieve a relatively high spatial resolution, and cardiac gating 

was used to suppress cardiac artefacts. They aimed to elicit positive reward 

PEs and negative reward PEs with a traditional Pavlovian conditioning 

experiment using juice rewards. They found a region of the VTA that 

correlated with a positive reward PE signal, but did not show a negative 

reward PE signal. They also aimed to elicit PEs with a number higher/lower 

guessing task. Correct guesses were rewarded with financial gains (eliciting a 

positive reward PE), and incorrect guesses were punished with financial 

losses (eliciting a negative punishment PE). An area within the VTA showed 

increased BOLD signal with increasing magnitude of positive reward PE. 
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However, no midbrain nuclei were found to correlate with negative 

punishment PE. 

 

There have been other recent investigations into the human dopaminergic 

midbrain using fMRI, but with standard voxel sizes. Therefore localisation to a 

specific midbrain nucleus cannot be as reliable as it would with smaller 

voxels. Technical issues aside, these papers have reported that the human 

dopaminergic midbrain represents task load in the absence of reward 

(Boehler et al., 2011), that action representations dominate over valence 

representations (Guitart-Masip et al., 2011), and that novelty seeking 

correlates with midbrain dopaminergic activation (Krebs et al., 2011).  

 

Although recording directly from human midbrain neurons can only be 

performed rarely, Zaghloul and colleagues (2009) recorded directly from the 

human SNc during surgery for deep brain stimulation. Participants were 

exposed to unexpected financial losses and gains. They found that there was 

a higher firing rate for unexpected gains than unexpected losses. This 

difference was driven by a higher firing rate for unexpected gains against the 

baseline-firing rate.  

 

Although there is a growing fMRI literature concerning the dopaminergic 

midbrain, there is a scarcity of experiments that use high-resolution midbrain 

optimised fMRI. Due to the lack of experiments investigating negative PEs it is 

not known how well the recent literature concerning negative PEs translates 

to the human. 

 

1.2. Anatomy of the midbrain 

Most research on midbrain function has been carried out on experimental 

animals, so to apply these theories to the human depends on the unproven 

assumption that this brain region is anatomically and functionally similar 

across species. Therefore, the main reason to investigate the human midbrain 

is to investigate comparative functional anatomy across species. 
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There are several ways of describing locations within the brain, but the 

convention used throughout this document is displayed in Figure 1. The 

midbrain, relative to the body, is oriented differently across species. This is 

due to evolutionary changes as primates evolved to walk on two legs with an 

upright spine. Thus it is important to use the same convention across species, 

so that direct comparisons can be made. Throughout this document, the 

caudal midbrain, for example, will refer to the same location across species. 

1.2.1. Comparative anatomy 
Catecholamine containing neurons in the brain stem were first described by 

Dahlstroem and Fuxe (1964) in the rat brain, and separate nuclei were 

identified based on cell location and morphology. Three dopamine-containing 

nuclei were identified in the midbrain. The A8 region, which corresponds to 

the retrorubral field (RRF), lies dorsal to the SN. The A9 region co-localises 

with the SNc, dorsal to the cerebral peduncles. The final region, A10, lies 

medial to the SN and has been termed the VTA. The VTA consists of the 

paranigral nucleus (PN), the parabrachial pigmented nucleus (PBP), the 

rostral linear nucleus (Rli), caudal linear nucleus (CLi), the interfascicular 

nucleus (IFN) and the parainterfascicular nucleus (PIF). 

 

As these regions were defined in the rat brain, it is important to investigate the 

cytoarchitecture and connectivity of these regions across species to highlight 

any anatomical variability that may suggest functional differences of these 

regions across species. As most animal experiments have been carried out 

on rodents and non-human primates, these are the species of most interest.  

 



 26 

 
Figure 1: Anatomical terms of location for the human and rodent. Cartoon 
representation of the (a) rodent brain (b) human brain. The red-yellow shaded 
area represents the midbrain. Red = ventral midbrain, yellow= dorsal 
midbrain. Notice the curvature of the rostral-caudal dimension in the human 
that is straight in the rodent. Not to scale. 

1.2.1.1. Morphology and cell counting 

Although initially defined in the rat, the general morphology of the 

dopaminergic midbrain is similar in non-human primates (Halliday and Törk, 

1986; McRitchie et al., 1996) and humans (McRitchie et al., 1996). However 

there are species differences.  

 

The most striking difference across species is size of the regions. Figure 2 

shows the relative size of the midbrain of the rat, the macaque, and human. 

The volume of the VTA in these species is 1.2mm3, 6.5mm3 and 183mm3, 

respectively. 
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Figure 2:  The relative size of the midbrain of the a) rat b) macaca fuscata c) 
human. PAG = periaqueductal gray, cp = cerebral peduncle, scp = superior 
cerebeller peduncle. Adapted from Kitahama and colleagues (1994). 

 

However, size differences are not very informative when it comes to functional 

interpretations, as cell densities may differ across species. A more informative 

measurement than total volume is cell number. Table 1 shows the cell counts 

from several experiments.  Early studies used computer algorithms to 

automatically count either total cells or dopaminergic cells, whilst Nair-Roberts 

and colleagues (2008) used an unbiased estimation technique and counted 

dopamine, gamma-aminobutyric acid (GABA) and glutamate neurons. 
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 Rat Non-human primate Human 
(Swanson, 1982) Counted: DA (TH+) neurons 

Results: VTA = 17,892 
  

(German et al., 1983) Counted: DA (TH+) neurons  
Results: VTA/SNc = 40,000  

 Counted: DA (NM+) neurons  
Results: VTA/SNc = 450,000  

(Poirier et al., 1983) Counted: all neurons 
Results: SNc = 9,925 

Counted: all neurons  
Results: SNc = 62,624  

 

(Halliday and Törk, 1986) Counted: all neurons 
Results: SNc = 12,000 
              VTA = 27,000 

Counted: all neurons  
Results: SNc = 72,000 
              VTA = 47,000 

Counted: all neurons 
Results: SNc = 436,000 
              VTA = 690,000 

(Hirsch et al., 1988)   Counted: DA (TH+) neurons 
Results: SNc = 213,186 
              VTA = 32,314 

(German and Manaye, 
1993) 

Counted: DA (TH+) neurons 
Results: SNc = 19214 
              VTA= 20,418 

  

(François et al., 1999)  Counted: DA (TH+) neurons 
Results: SNc = 70,490 
              VTA = 12,800 

 

(Nair-Roberts et al., 
2008) 

Counted: DA (TH+) neurons 
Results: SNc = 15,772  
              VTA = 40,174 

  

 
Table 1: The results of midbrain cell counting studies of the rat, non-human primate and human. DA=dopamine, TH=Tyrosine 
hydroxylase, NM=Neuromelanin, VTA= ventral tegmental area, SNc= substantia nigra pars compacta.
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Estimates vary but some trends across studies can be seen. The total number of 

neurons and estimation of dopamine cells increases from rat, to the non-human 

primate to the human. In the rat the number of DA neurons in the VTA is greater than 

in the SNc, although this estimate varies considerably, from a difference of about 

1600 neurons (German and Manaye, 1993) to 35,000 neurons (Nair-Roberts et al., 

2008). 

 

In the non-human primate this ratio is reversed, with the number of dopamine neurons 

in the SNc outnumbering those of the VTA (François et al., 1999). Human cell counting 

studies are limited, but an early study found almost seven times as many dopamine 

neurons in the SNc compared to the VTA. Caution should be taken when interpreting 

the results in non-human primates and humans, as these dramatic differences to the 

non-human animal brain could be to do with the definition of the boundaries of the 

individual nuclei. It has been shown that the medial border of the SNc is not easily 

distinguished from the VTA in the human (Afshar et al., 1978). To further investigate the 

species differences in the anatomy of the VTA and SNc, particularly with respect to the 

increased relative cell number of the SNc in the human, it is important to look at the 

distribution of dopamine neurons within these regions, rather than simply splitting 

neurons into VTA and SNc. Figure 3 shows the distribution of TH+ neurons in the rat, 

non-human primate and human.  

 

This figure shows that in the rat midbrain there is a clear area of the VTA with a high 

density of dopamine neurons that extends out to the SNc. In the non-human primate 

there is also an area of dopamine neurons in the VTA, but the high-density region of the 

SNc is pushed laterally in comparison to the rat. In the human there is a very dense and 

widespread population of dopamine neurons in the SNc. This population extends to the 

PN nucleus of the VTA and forms one continuous population, rather than discrete 

groups. This region may have been included in the SNc in human cell counting studies, 

explaining the relatively small number of VTA dopamine cells in the human. The 

neurons in the human PN are tightly packed (Pearson et al., 1983). Throughout the rest 

of the VTA there is a steady distribution of dopamine neurons, though the density is 

sparse in comparison with the SNc and PN. It should also be noted that the dopamine 

population in the human, unlike the non-human primate and rat, extends to the 

substantia nigra pars reticulata (SNr) (Deutch et al., 1986), and so it is possible that this 
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Figure 3: A semi-schematic drawing of the distribution of dopamine neurons in the a) 
rat b) macaca fuscata c) human.Blue dots represent distribution of tyrosine 
hydroxylase immunoreactive cells. PAG = periaqueductal gray, cp = cerebral 
peduncle, scp = superior cerebeller peduncle. Adapted from Kitahama and 
colleagues (1994). 

region is involved in the coding of reward. Before we can be certain about the cell 

numbers, distribution, and density in the human, an unbiased method like that 

presented by Nair Roberts et al. (2008) needs to be applied to human. The original 

computer based counting methods may have been biased to count certain types of 

cells, and missed any dopamine neurons that did not meet these standard criteria. In 

addition, Nair Roberts and colleagues counted not only the dopamine neurons in the 

midbrain of the rat, but also the GABA and glutamate neurons. The relative number 

of non-dopamine neurons within the VTA and SNc could have major implications on 

the interpretation of an fMRI result in the region.  
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1.2.1.2. Connectivity 

In addition to characterizing the morphology and cell numbers in the dopamine 

midbrain, it is useful to investigate the afferent and efferent connections of the 

dopamine neurons in the VTA and SNc. There are three reasons that this is 

informative. First, differences between VTA and SNc circuits within a species provide 

information about the possible functional roles of these regions. Second, species 

differences in connectivity indicate differences across species. Finally, it may be 

possible to segregate the dopamine midbrain based on connectivity profiles, instead 

of cell morphology alone. This may lead to a more informative segregation that is 

more applicable to the human.  

 

The dopaminergic midbrain connects to, and receives inputs from, many cortical and 

subcortical regions, including the prefrontal cortex, the striatum, the amygdala, and 

the hippocampus. The most intensively studied region is the striatum. The striatum 

can be subdivided into three functional subdivisions, the motor, associative and 

limbic striatum (Parent, 1990), which corresponds to the putamen, the dorsal caudate 

nucleus, and the ventral striatum, respectively (Yelnik, 2002). It is the limbic, or 

ventral, striatum that processes motivational information.  

 

The dopaminergic efferents that project to the ventral striatum are organised in a 

topographical manner. In the rat the main dopamine efferent to the ventral striatum is 

the VTA and medial SNc (Albanese and Minciacchi, 1983; Beckstead et al., 1979; 

Brog et al., 1993). In the non-human primate the cells projecting to the ventral 

striatum also originate from the VTA, but in addition there is a horizontal band of 

dopamine cells in the SNc that project to the ventral striatum (Lynd-Balta and Haber, 

1994). This band follows the full lateral extent of the SNc. There are also afferents to 

the dopaminergic midbrain from the ventral striatum, and these also have a 

topographical organisation. In the rat the shell of the ventral striatum is the main 

striatal input to the dopamine midbrain, and the receiving neurons are mainly in the 

VTA (Berendse et al., 1992; Groenewegen et al., 1993). In the non-human primate, 

afferents to the dopaminergic midbrain from the ventral striatum cover the VTA and 

the full extent of the SNc (Haber et al., 1990; Lynd-Balta and Haber, 1994). Thus 

there are species differences in the ventral striatal connectivity profile of the 
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dopamine midbrain. In rats there seems to be a clear functional subdivision between 

the SNc and VTA, reflected by the different projection targets of these regions. In the 

non-human primate the segregation does not appear to lie just on the medial-lateral 

dimension, as neurons within the dorsal SNc also project to the ventral striatum (Joel 

and Weiner, 2000). This may indicate that the dopamine functional divisions of the rat 

may be different to that of the human. Investigation of the connectivity of the SN in 

the human, using DTI, provides evidence that the human organization of the 

dopamine projections may be similar to the primate (Menke et al., 2010). The 

substantia nigra (SN) was found to connect to the ventral striatum, and this region of 

the SN corresponded to the likely location of the SNc. Whether this represents inputs 

to the SNc or projections is unknown. 

 

Due to the highlighted differences in dopamine midbrain morphology and 

connectivity, it seems appropriate to consider the VTA and SNc in the human as a 

continuous complex. Until the connectivity profile and the composition of the VTA and 

SNc has been extensively studied in the human, the full extent of species differences 

will not be known. At the present time, it is not possible to functionally subdivide the 

human dopamine midbrain, and care should be taken when applying non-human 

research to human brain function.  

1.2.2. Localising the midbrain nuclei in the human with MRI 
In conventional fMRI studies, activity maps are overlaid on a standard brain template. 

Areas of activity can then be labelled using anatomical landmarks, such as the sulci 

and gyri of the cortex. Probabilistic atlases of brain regions can also be referred to, 

such as the Harvard-Oxford cortical structural atlas. No such probabilistic atlas exists 

for the human midbrain, due to the relative scarcity of midbrain neuroimaging studies.  

 

Instead, detailed structural MRI scans need to be collected from each individual, and 

a group template created that reflects the midbrain anatomy of the group being 

studied. The choice of the sequence used to collect this structural data is important. 

T1-weighted scans, those traditionally used as reference anatomical images in fMRI 

studies, have relatively homogenous signal intensity within the midbrain, as all 

tissues within the midbrain have a similar T1 (longitudinal) relaxation constant. 

However, tissues within the midbrain have variable T2 (transverse) relaxation times 
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and density of protons, so it is these properties that must be manipulated to acquire 

informative structural scans on which activity can be overlaid. 

 

The two sets of nuclei that are visible in such images are the red nuclei (RN) and the 

SN. The SN is visible on proton density (PD) and T2-weighted scans. These 

landmarks can then be used to localise activity in structures that are positioned 

relative to these nuclei. Much work has been carried out to investigate the property of 

the SN that leads to its visibility on PD and T2-weighted scans.  

 

Initial attempts to image the midbrain nuclei in the human using MRI focused on the 

increased iron content in the SN and RN. Iron is an essential element required for the 

synthesis of TH. As the human brain matures, iron deposits build up in this region. 

Iron is paramagnetic, so induces magnetic susceptibility in the local region, which 

reduces the T2-relaxation time of the surrounding tissue of the iron containing tissue 

(see section 2.1.2 for an explanation of T2-relaxation). Drayer and colleagues (1986) 

imaged the iron containing regions of the brain using T2-weighted scans. 

Comparison with iron deposits in the post-mortem human brain confirmed that the 

regions of hypointensity were likely caused by increased concentration of iron. The 

benefit of collecting a T2-weighted scan is that it is possible to delineate the SNc 

from the SNr (Oikawa et al., 2002). With high magnetic fields this delineation 

becomes easier to detect (Eapen et al., 2011). However, the SN is not fully 

represented on a T2 scan, with lateral and ventral regions appearing at a uniform 

intensity to the surrounding non-SN tissue, and the dorsal regions including fibres of 

the cerebral peduncles (Oikawa et al., 2002). Also, the delineation of the two 

structures is currently done by sight, and is prone to human error and bias. 

  

An alternative option is to measure the midbrain nuclei with a PD-weighted scan. 

With this image contrast the full extent of the SN is hyperintense, but it is not possible 

to differentiate the SNc from the SNr (Oikawa et al., 2002). However the location of 

the SNc can be inferred, using anatomical knowledge, as the posterior portion of the 

SN. A solution to the problem is to collect a dual-echo scan that has a T2-weighted 

contrast and a PD contrast, and use both to form a fuller picture of the location of the 

SNc. 
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Although there is not a standard brainstem atlas available for use with fMRI studies, 

there are two sources of information that can help to localise the SNc and VTA once 

the structural scans have been collected. Naidich et al. (2009) have localised 

midbrain nuclei, including the SNc and VTA, using MR ‘microscopy’ at 9.4T and post-

mortem brains. However, there are no direct measurements in this atlas, and the 

images are based on single specimen. An earlier atlas (Afshar et al., 1978) created 

an average map of the SN from a group of nineteen brains. Each slice was 1mm 

thick, and the atlas images are drawn to scale using boundaries derived from areas 

where 70% of the specimens had the nucleus. They found a large amount of 

variability across participants in the location of the midbrain nuclei, which 

demonstrates that a standard atlas from a group of people is required to get the best 

estimate of the anatomical location of midbrain nuclei. This atlas is useful in localising 

the SN as a whole, and the anatomical location of the SNc and VTA can be inferred 

relative to the SN using the atlas of Naidich and colleagues (2009). 

 

In conclusion, although there is no standard atlas designed for use in fMRI to localise 

midbrain structures, the combination of the information we have gained from post-

mortem studies and our ability to image properties of the human midbrain, such as 

proton density, allow us to make informed decisions about the location of these 

midbrain structures on a standard brain atlas. 

 

1.3. The challenges of midbrain fMRI 

In this section I will outline the technical challenges that face any attempt to 

accurately and reliably carry out and analyse a midbrain fMRI study. 

1.3.1. High resolution scanning 
The human midbrain nuclei are small in comparison to the cortical and subcortical 

regions that are usually investigated with fMRI. The voxel size of standard fMRI 

experiments tends to be around 3x3x3mm, as this has proved to be a useful 

resolution for localising activity in the human cortex. Changing the voxel size has 

impacts on many factors, including the contribution of noise in the data, the influence 

of partial volume effects, and the amount of task-related signal that can be 
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measured. All these factors impact on the final SNR, which decreases as the voxel 

size gets smaller (Edelstein et al., 1986; Triantafyllou et al., 2011). A decrease in 

SNR means that it the protocol is less sensitive to BOLD changes. 

 

Despite this general decrease in SNR, there are two reasons why it is advantageous 

to use high resolution scanning for midbrain fMRI. First, as the nuclei are small and 

tightly packed, small voxels allow activity to be localised to a specific nucleus. Larger 

voxels would likely overlap across nuclei, and there would be an increase in partial 

volume effects. Voxels that are covering the region of interest may also be measuring 

a BOLD signal generated by adjacent voxels. This is also true of nuclei that border 

tissue-CSF boundaries, or tissue-large blood vessel boundaries. As voxel size 

increases, there is an increased contribution of physiological noise on the data (Yoo 

et al., 1999). Second, the use of small voxels allows the investigation of possible 

functional subdivisions within nuclei. 

1.3.2. Image co-registration and normalisation 
In cognitive neuroimaging the process of ‘co-registration’ typically involves 

transforming functional data to a high-resolution structural image of the participant. 

Normalisation refers to transforming the high-resolution image to a standard space 

template to facilitate between-subject group analysis. These two steps are then 

concatenated and applied to the fMRI data. The high-resolution structural image acts 

as an intermediate between the functional data, which contains low-resolution 

information, and the standard template. 

 

Midbrain fMRI studies have employed this conventional approach, using either a T1-

weighted structural image (Krebs et al., 2010; Sigalovsky and Melcher, 2006; Zhang 

et al., 2006) or a PD structural image (Dunckley et al., 2005). However, there are two 

reasons to suggest that such methodology does not lead to robust midbrain 

registration. First, fMRI optimised for the midbrain typically has a limited field-of-view 

(FOV). This is because high-resolution functional scans are required to localise 

activity accurately to a specific midbrain nucleus, so a long repetition time (TR) would 

be required to collect data from the whole brain. In order to fit an experiment within a 

reasonable scan time and maintain temporal resolution, data are collected from 

slices over the midbrain only. Within this limited FOV there is less structural 
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information than would be available in a whole-brain FOV, so the transformation of 

the functional data onto the high-resolution structural image is not as reliable or as 

accurate as the whole-brain equivalent. Second, registration accuracy in midbrain 

fMRI needs to exceed the accuracy that would normally be expected with whole-

brain fMRI. This is due to the smaller size of the midbrain nuclei, and the close 

proximity of the nuclei to each other. 

 

In recognition of the challenges facing midbrain registration, many fMRI studies have 

circumvented the need for registration completely, and used a region-of-interest 

(ROI) approach. Voxels within individually defined ROIs are averaged and these 

averages are compared at a group level (DuBois and Cohen, 2000; Guimaraes et al., 

1998; Hawley et al., 2005; Schneider and Kastner, 2005; Topolovec et al., 2004; 

Tracey et al., 2002; Wall et al., 2009). However, ROI analyses rely strongly on a 

priori predictions, so may miss unexpected results. Furthermore, the inclusion of non-

active voxels in the ROI average can remove genuine effects, and increase the 

likelihood of accepting false negatives. Alternatively, manual registration has been 

used for midbrain fMRI (Sylvester et al., 2007), but this is a time consuming method 

and may be vulnerable to investigator bias. Automated linear registration of structural 

images into standard space has been optimised for the midbrain (Napadow et al., 

2006; Pattinson et al., 2009b). However, the use of non-linear registration methods 

may circumvent the need for this optimisation, as these methods apply 

transformation to standard space at a local level, rather than applying the same 

transformation to the whole brain, as is the case with linear registration (Klein et al., 

2009). Non-linear registration has previously been used in a brainstem fMRI study 

(Pattinson et al., 2009a). 

1.3.3. Physiological noise 
A major challenge facing midbrain fMRI is that, due to its anatomical location, it is 

prone to physiological artefacts. During the cardiac cycle the midbrain undergoes a 

bulk motion in the direction of the foramen magnum, due to the increased intracranial 

pressure as blood enters the brain (Poncelet et al., 1992). Such bulk motion causes 

spatio-temporal blurring of the BOLD signal across voxels. Also the large blood 

vessels adjacent to the midbrain are subject to cardiac pulsations (Dagli et al., 1999; 

Greitz et al., 1992) causing BOLD signal intensity changes in nearby tissue. 
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Furthermore, intracranial pressure changes and pulsatile movement of blood vessels 

produce oscillatory motion in the cerebrospinal fluid (CSF) surrounding the brain and 

brainstem (Friese et al., 2004; Klose et al., 2000), which gives rise to in-flow signal 

artefact on the echo-planar image (EPI) typically used to record functional 

information (Piché et al., 2009). In addition to cardiac related artefacts, the 

respiratory cycle also causes bulk magnetic susceptibility changes within the brain 

tissue during the respiratory cycle (Raj et al., 2001). There is also a significant 

interaction between these two sources of noise (Brooks et al., 2008; Harvey et al., 

2008).  

 

Due to the increased sources of physiological noise in the midbrain, the SNR ratio 

may be less than that of cortical regions that are not so prone to physiological 

artefacts. Therefore, a method to reduce this noise should be utilised to optimise 

midbrain fMRI. There are two main approaches to do this. The first option is to use 

cardiac gating to acquire the data. Using this method, data is collected only between 

the heartbeats, avoiding the peak cardiac noise. A second option is to collect the 

data continuously then remove the noise during the analysis stage. RETROICOR 

(retrospective image correction) is the most common correction method (Glover et 

al., 2000), as will be discussed in succeeding chapters. 

 

1.4. Aim of this PhD 

The aim of this PhD was to accurately and reliably measure an fMRI signal in the 

human midbrain, to elucidate the role of the human dopaminergic midbrain in reward 

and punishment. To this end, the thesis is organised into the following chapters: 

 

Chapter 3:  Midbrain optimised fMRI: registration. 
Different registration pathways for transforming functional data onto a 

standard template are outlined and tested at the level of the midbrain. 

Chapter 4:  Midbrain optimised fMRI: physiological noise modelling. 
A simple visual experiment that elicits activity in the superior colliculi is 

presented to test the effect of modelling physiological noise. The data 

were analysed using a conventional general linear model, and a model 
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that included physiological noise regressors. The effect of the modelling 

this noise on the observed response is investigated. 

Chapter 5:  Reward and punishment prediction errors in the 
dopaminergic midbrain 
Using the optimised midbrain methods the role of the dopaminergic 

midbrain in positive and negative PEs is investigated. Here the results of a 

learning experiment that elicits PEs are presented. In addition, the 

optimised methods that proved effective in the superior colliculi are tested 

to ascertain if these methods are effective at reducing physiological noise 

in the dopaminergic midbrain. 

 

  



 39 

2. Methods 

2.1. Magnetic resonance imaging 

FMRI allows the safe and non-invasive investigation of the location of neural activity 

and the strength of distributed functional connection between brain regions while 

subjects perform mental tasks. In order to successfully design and interpret the 

results of fMRI studies, it is necessary to have a thorough understanding of how 

magnetic resonance imaging (MRI) works, and what is being measured. This section 

will outline the principles of MRI, and explain how it can be utilised to obtain both 

structural and functional information from the human brain. 

2.1.1. Scanner hardware 
MRI scanning depends on the static magnetic field (the B0 field) that is created by a 

superconducting electromagnet. As current passes through coils of wire, a magnetic 

field is created. The current that flows through the wire controls the strength of the 

magnet. In an MRI scanner these coils are arranged in the body of the scanner, and 

within the coils of the electromagnets lies the scanner bore. The wire loops are 

arranged in a way that creates a relatively homogenous field through the bore of the 

scanner. These wires are housed within a liquid helium bath to reduce the 

temperature to such an extent that the wires have no resistance and current can flow 

with little power required. 

 

In order to measure a signal of a sample within the scanner bore, radiofrequency 

(RF) coils are required. In the case of brain imaging this is a phased-array volume 

coil within which the participants’ head can fit. The volume coil contains two types of 

electromagnets: transmitter coils generate electromagnetic fields to excite the nuclei 

within the volume coil; receiver coils measure electromagnetic fields that are 

generated by the nuclei within the volume coil when they fall from their excited state. 

The energy of these coils is within the RF range of the electromagnetic spectrum, 

hence the name. 

 

To localise a signal as being emitted from a particular location within the volume coil, 

and to allow the generation of an image that contains spatial information, gradient 
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coils are required. There are three gradient coils; each modifies the magnetic filed 

within the bore in one of three directions, so that the magnetic field can be 

manipulated in an 𝑥, 𝑦 and 𝑧 direction. This allows locations within the bore to 

contribute to the measured signal differentially over time. 

 

The final piece of hardware to discuss is the shimming coils. To obtain undistorted 

images from the scanner, the B0 magnetic field must be homogenous. To ensure 

that this is the case shimming coils are required to apply additional electromagnetic 

fields to correct for any inhomogeneities in the magnetic field within the bore of the 

scanner. 

2.1.2. Magnetic resonance 
I have alluded to the mechanism by which a magnetic resonance (MR) signal is 

measured in the above section, in that I mentioned the RF coil emits electromagnetic 

fields that excite nuclei within the coil, and receives electromagnetic fields emitted by 

the nuclei when they relax. It is this process of excitation and relaxation that I will now 

describe.  

 

Due to the abundance of water molecules in the brain, it is the hydrogen nuclei that 

are most commonly imaged with MRI. Hydrogen nuclei contain a single proton. Each 

proton spins around itself, due to thermal energy. Under normal conditions the 

orientations of the spins are random and cancel each other out. The net 

magnetisation of the hydrogen protons would be zero. When a sample of hydrogen 

protons is placed inside a magnetic field, the protons precess around the main axis of 

the B0 magnetic field, analogous to a spinning top. There are two energy states 

within which protons can precess: parallel and anti-parallel to the magnetic field. A 

higher proportion of protons will lie in the parallel state, as this is a marginally more 

stable state. As magnetic field strength increases, the proportion of protons in the 

parallel state will increase, as the energy difference between the parallel and anti-

parallel states increases. The proportion of protons in each state determines the net 

magnetisation of a sample.  

 

The energy state of a proton is not static, and a proton in the parallel state can 

change to the anti-parallel state if it absorbs energy that matches the difference 
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between the two energy states. This energy is emitted by the RF coil in the form of 

electromagnetic fields that oscillate at the resonant frequency required to flip the 

proton from parallel to anti-parallel state. The resonant frequency of a sample is the 

Larmor frequency. This frequency is modulated by the atomic nucleus of interest and 

the field strength of the scanner. There will be a change in the net magnetisation of a 

sample when the proportion of anti-parallel protons increases. Once a proton has 

absorbed energy and moved into the anti-parallel state, equilibrium must be restored 

and the proton falls back to the parallel state, emitting an electromagnetic field that is 

detected by the RF coil. Again, the frequency of this emitted energy will be equal to 

the Larmor frequency. It is the properties of this emitted energy that can tell us about 

the properties of a sample contained within the RF coil. 

 

The emission of energy by the protons as they fall back into the parallel state is 

termed relaxation. There are two types of relaxation that occur and lead to the decay 

of the MR signal that immediately follows an excitation pulse. Longitudinal relaxation 

is the recovery of the net magnetisation as protons move from the anti-parallel to 

parallel state. This relaxation, also called T1 recovery, occurs over a time period of 

seconds. When the MR signal is fully recovered the equilibrium of the two energy 

states has been restored, and the net magnetisation in the longitudinal plane is 

recovered to its initial state. Transverse relaxation is the decay in magnetisation that 

occurs within the transverse plane. Immediately after the RF pulse the transverse MR 

signal is at its strongest, and the excited protons are aligned in phase. These spins 

dephase due to spin-spin interactions and the MR signal lessens. This relaxation, 

also called T2 decay, occurs at a faster timescale than T1 recovery. Both types of 

relaxation have time constants that depend upon the substance that the proton is 

contained within. Different tissue types within the human body have different 

relaxation constants.  

 

T2* decay, the basis of fMRI, is also sensitive to local magnetic field 

inhomogeneities. Deoxyhaemoglobin (dHb) is paramagnetic and increases the spin 

dephasing rate, decreasing the T2* constant. T2* weighted images show decreased 

MR signal in regions of higher dHb concentration. This is referred to as the BOLD 

contrast. 	  
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2.1.3. Spatial localization of a signal 
If the magnetic field was uniform across a sample when the RF coil emitted an 

excitation pulse the entire sample would be excited, and there would be no 

information about the source of the signal. The application of magnetic gradients 

allows the excitation of a single slice of a sample. A magnetic field gradient in the 𝑧 

direction can be applied so that the excitation pulse will excite a single slice. The 

Larmor frequency of a proton depends upon the magnetic field strength, so by 

modulating the strength we can ensure that the pulse excites only a slice of the 

sample. This is not an entirely accurate process, and there is bleeding of excitation 

into adjacent tissue. By collecting slices in an interleaved order, or leaving a gap 

between slices, this problem can be minimised. 

 

Now that an entire slice has been excited, the location of the excited protons within 

the slice must be calculated. To encode two-dimensional spatial information within a 

slice, a second gradient coil (𝑦) is briefly switched on after the excitation pulse from 

the RF coil. The brief application of a gradient in the 𝑦 directions causes the relative 

phase of the protons in the transverse plane to change. In the centre of the gradient 

the magnetic field strength will remain constant and there will be no change in phase. 

To either side of the centre the phase of the protons will be modulated, as the 

temporary application of the gradient causes spins to speed up or slow down. This 

gradient is termed the phase encoding gradient. Information on proton phase is 

encoded by the scanner hardware to localise signal in the 𝑦 direction. During data 

acquisition a gradient coil is switched on in the 𝑥 direction, which modulates the 

frequency of the precession of the protons in the 𝑥 direction. This frequency-

encoding gradient is utilised by the scanner hardware, as the frequency of the 

precessions during acquisition will indicate from which location in the 𝑥 direction the 

signal is being measured. 

2.1.4. Gradient-echo and spin-echo imaging 
The sequence described above is typical of gradient-echo images. These sequences 

allow images to be acquired quickly. However, the disadvantage of this type of 

sequence is that the signal is affected by local magnetic field inhomogeneities and so 

the images are prone to susceptibility artefacts. Spin-echo sequences use a second 
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RF pulse after the initial excitation pulse that flips the protons 180°. This refocuses 

the proton phases in the transverse plane and removes any phase changes due to 

local field inhomogeneities.  

2.1.5.  Sensitivity Encoding 
It is often necessary to collect images as quickly as possible. To speed up acquisition 

parallel imaging can be utilised. Parallel imaging reduces the amount of data 

collected in the phase-encoding direction. The spatial arrangement of the overlapping 

coils in the head coil (a phased array coil) is used to reduce the amount of data 

encoded. For data acquisition in the studies described in this thesis, sensitivity 

encoding (SENSE) was used. The disadvantage of parallel imaging is that the SNR 

of the image is decreased. 

2.1.6. Contrasts/Image types 
By utilising the differential T1 and T2 constants of protons within different tissue 

types, images of the brain can be obtained that give different contrasts. In addition, 

either spin-echo or gradient-echo sequences can be acquired, depending upon the 

properties of tissue that we want to measure. There are two main parameters of a 

sequence that can be manipulated in order to achieve different contrasts. The first, 

TR, is the time between successive excitation pulses. The second, echo time (TE), is 

the time between the pulse from the RF coil and the time the data is acquired.  

2.1.6.1. Proton density-weighted images 

Images using this contrast reduce the effects of differential T1 and T2 constants in 

different tissue types, and instead measure the density of protons in the tissue. Long 

TRs are used to reduce the differential T1 recovery times, and short TEs to minimize 

differential T2 decay times. Instead the signal is based purely on different 

concentrations of hydrogen protons: the higher the concentration of protons, the 

brighter the image. White matter appears darkest on PD images, grey matter is 

medium intensity, and cerebrospinal fluid (CSF) is brightest. The proton density 

images presented in this paper have been acquired using a dual echo turbo spin-

echo (TSE) sequence with a SENSE factor of 1.5. This dual echo allowed the 

collection of a PD weighted image at the first echo. TSE imaging is a fast method 
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which contains several refocusing pulses after each initial excitation pulse, each one 

followed by a data acquisition phase. 

2.1.6.2. T1-weighted images 

T1-weighted images rely on the differential T1 constants within different tissue types. 

A short TE is used to minimise T2 decay differences between tissue types. An 

intermediate TR is used that maximises the different T1 recovery times of different 

tissues. On these images, white matter is brightest as it has the shortest T1 constant, 

grey matter is intermediate, and CSF darkest as it has a relatively long T1 constant. 

A long T1 constant means that fewer protons will have returned to a relaxed state, so 

there will be fewer protons to excite with the next RF excitation pulse, so the MR 

signal will be less. The T1-weighted images in this thesis have been acquired using a 

magnetisation prepared rapid gradient echo (MPRAGE) sequence. In this sequence 

the excitation pulse is preceded by a 180° inversion pulse. This increases the T1 

contrast between tissues of interest.  

2.1.6.3. T2-weighted images 

T2-weighted images use an intermediate TE to measure the differential T2 decay 

times of different tissues. A long TR must be used so that T1 recovery is complete for 

all protons. In T2 images, CSF is brightest as it has long T2 constants, grey matter is 

intermediate, and white matter darkest as it has short T2 constants. A short T2 

constant will mean that a greater proportion of transverse magnetisation will have 

been lost by the acquisition time, so the MR signal will be less. Some T2 images in 

this thesis were acquired using the same dual-echo sequence as was used for the 

PD images. Other T2-weighted images were collected using a TSE sequence with a 

SENSE factor of 2. Spin-echo sequences must be used when measuring a T2 

contrast, to reduce the effects of local field inhomogeneities caused by dHb. 

2.1.6.4. Echo-Planar Imaging 

EPI is a fast imaging technique that is used in fMRI. As whole volume images need 

to be collected over a matter of seconds, traditional techniques designed for 

measuring the structure of the brain cannot be used. Instead a fast method is 

required that will give a low resolution T2*-weighted image in less than three 
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seconds. A single excitation followed by rapid gradient switching allows for data to be 

collected over the whole volume of interest at a relatively low resolution. This method 

is prone to artefacts and distortions, such as signal dropout near air containing 

regions such as the sinuses, and distortion in the phase-encoding direction. 

2.1.7. Signal-to-noise ratio in fMRI 
Functional imaging is usually carried out with a voxel size of around 3x3x3mm. This 

means each voxel contains 27mm3 of tissue. As the structures of interest in this 

thesis are relatively small, high-resolution imaging was used to try to differentiate 

activity of adjacent structures, and accurately localize a functional signal. The 

smallest voxel size used in this thesis was 1.7x1.7x1.7mm, so the volume of a voxel 

was just 4.9mm3. This had important implications for the SNR of the functional 

images. 

 

The ability to detect a signal depends on the relative proportion of noise that 

confounds the measurement. Noise sources include thermal, system, physiological, 

and global head motion. Whilst the influence of such noise sources can be reduced 

with temporal filtering and averaging of a functional signal across many trials, it is 

impossible to remove all the noise. This problem is exacerbated by the use of small 

voxels. With smaller voxels the SNR is decreased, and it is more difficult to detect a 

signal. Methods in this thesis designed to reduce the effect of noise include modelling 

the sources of physiological noise (see Chapter 4) and using a strict head motion 

threshold, above which data were excluded from analysis. Whilst it is desirable to use 

small voxels for midbrain imaging, it comes with a steep cost in terms of the SNR. 

 

2.2. What are we measuring with fMRI? 

To be able to interpret an fMRI experiment, it is important to understand whether a 

change in BOLD signal accurately reflects a change in regional net synaptic function. 

This includes understanding the properties of the hemodynamic response and the 

neural events that lead to a change in BOLD signal. 
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2.2.1. The neural basis of the BOLD signal  
The ultimate outcome of neural activity is the proliferation of action potentials from 

one neuron to another, to transmit encoded information around a local or widely 

distributed neural network. An action potential occurs when the sum of excitatory 

post-synaptic potentials (EPSPs) generated within the dendrites of a neuron reach a 

certain threshold. It is then propagated along the length of the neuron’s axon as an 

electrical impulse. When this impulse reaches the synaptic button, either an 

excitatory or inhibitory neurotransmitter is released into the synapse, depending on 

the property of the pre-synaptic neuron, which diffuses to the post-synaptic 

membrane of the next neuron. This results in an EPSP or an inhibitory post-synaptic 

potential (IPSP) within the post-synaptic membrane. Each neuron has many 

dendrites receiving inputs from many different neurons. If enough EPSPs are 

generated relative to IPSPs, an action potential will be generated in the post-synaptic 

neuron. As the generation of an action potential depends on this balance of 

excitatory and inhibitory synaptic influences, metabolic activity within a neuron’s 

dendritic tree does not necessarily relate in a simple way to the rate of firing of that 

neuron. So, an increase in local energy metabolism, indexed by an increase in local 

blood flow, does not necessarily correlate linearly with in the rate of generation of 

propagated action potentials. 

 

These neurophysiological considerations are a major issue for fMRI, which is an 

indirect measure of neural activity that relies on changes in cerebral blood flow 

(CBF). The increase in CBF reflects the increase in glucose metabolism that occurs 

when there is more neural activity. It is important to know exactly what aspects of 

neural activity correlate with this change in CBF, to understand what the BOLD signal 

means in terms of neural processing. To this end, investigators have compared 

BOLD signals in non-humans to extracellular field potentials (EFPs). EFPs are 

measurements of local neural activity that sum action potentials, EPSPs and IPSPs. 

If the microelectrode tip is close to a source of action potentials (a soma or axon) 

then this signal will dominate the EFP. However if the tip is further away from a single 

source, the EFP will include neural activity from a local region of cells. The high-

frequency range of this EFP will contain information about action potentials of 

multiple units. The lower-frequency range of the EFP is called the local field potential 

(LFP). The LFP contains information about the dendrosomatic processes, and 
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reflects dendritic inputs to the region and the activity of local interneurons 

(Logothetis, 2003). Logothetis et al. (2001) simultaneously measured the BOLD 

response and extracellular field potentials in the monkey visual cortex. LFPs better 

predicted the BOLD response. The high-frequency signal associated with action 

potentials adapted soon after stimulus onset, whereas the LFP response correlated 

with the time course and magnitude of the BOLD response. Thus, the BOLD 

response tends to be dominated by the neural input to a region and the activity this 

generates within local interneurons, rather than the net output to other brain regions.  

2.2.2. Properties of the haemodynamic response 
In order to accurately model the underlying neural activity of the BOLD response, it is 

important to properties of the hemodynamic response. Increases in CBF occur as a 

result of neural activity, but timing, spatial specificity, and scaling of the CBF 

response must be investigated. 

 

The haemodynamic response function (HRF) describes the onset and shape of the 

expected haemodynamic response, and is used to model the expected BOLD signal 

changes that will be elicited by the presentation of a stimulus. This function is based 

on the temporal properties of the CBF response to an increase in neural activity. It is 

delayed by approximately 2s (Kwong et al., 1992), reaches a plateau after 6-12s 

(Logothetis et al., 1999), and returns to baseline by 18s. The temporal resolution of 

fMRI is ultimately constrained by these blood flow properties. The canonical HRF 

used in most fMRI analyses is a generalisation based on cortical studies, and it may 

not accurately describe the CBF response in all brain regions. In the midbrain it has 

been shown that the delay in the HRF is better modelled as a shorter time period 

(Wall et al., 2009). As a result, a shorter HRF has been used for the analyses 

presented in this thesis. 

 

The ultimate spatial resolution available with fMRI is constrained not by scanner 

hardware, but by the spatial resolution afforded by the HRF. The signal originates 

from draining venules (when using a magnet strength of 3 Tesla), which means that 

the signal is obtained from tissue a little remote from the neural tissue of interest. 

Comparing fMRI data to electrophysiological recordings has given a measure of this 

spread. Disbrow and colleagues (2000) constructed cortical maps of the 
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somatosensory area of the anaesthetized macaque using fMRI and microelectrode 

recordings, finding only a 55% concordance between the maps. The fMRI areas of 

activation were larger than the electrophysiological areas, consistent with the 

assumption that fMRI results in a spread of activation larger than the initial neuronal 

activity. No investigation of the spatial resolution of the midbrain BOLD response has 

been carried out, so the assumption I have adopted is that the spatial resolution of 

the BOLD signal in the midbrain is similar to that of the cortex. 

 

The final property of importance is the linearity of the BOLD response. This is of 

particular importance when investigating reward, as it has been shown that a PE 

response, in terms of action potentials, scales linearly with the level of PE. There is 

then a question as to whether the BOLD response relates linearly to the level of 

neural activity? The Linear Transform Model states that the fMRI response should be 

proportional to neuronal activity (Boynton et al., 1996). If the scaling of a system is 

linear then the output of the system is proportional to the input. Boynton and 

colleagues found evidence for linearity of the fMRI response in human primary visual 

cortex. Luminance of the stimuli were linearly related to the amplitude of the BOLD 

signal. A linear response has also been observed in visual association cortex (area 

V5) (Rees et al., 2000). 

 

Whilst linearity has been observed in early sensory areas of the human cortex, the 

linearity if the BOLD response in the midbrain has not been investigated. 

Furthermore, Caplin and Dean (2008) highlight the weakness of assuming a linearity 

of the BOLD response in reward studies that used the temporal difference model to 

precisely predict the expected level of neural activity. Using such a model may lead 

to an increase in false negatives, as the BOLD response may not follow the linear 

scaling properties that are expected if the response is to conform to the temporal 

difference model. To overcome these problems it is possible to model the response 

in a non-linear fashion using a first-order Taylor expansion that assumes there is an 

initial non-linear increase that is elicited by all stimuli, followed by linear changes with 

increasing strength of the response to a stimulus. A second option is to place stimuli 

of similar strength into groups, and then model the difference to investigate both 

linear and non-linear responses. 
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2.3. fMRI data analysis 

2.3.1. Experimental design 
To maximize the likelihood of observing a genuine BOLD signal, the experimental 

design must be optimised before any data are collected. The experiments presented 

in this thesis used event-related designs. Many fMRI studies use blocked-designs, 

whereby several examples of the same stimuli are presented in a row, and 

explanatory variables (EVs) are manipulated on a block-by-block basis. The 

repetition within a block gives the HRF time to reach its peak, and there is a 

cumulative effect of repetition. Event-related designs, on the other hand, present 

single events in a pseudo-random order, and the HRF is modelled separately for 

each event. This allows unexpected events to be presented, and also allows different 

components of a trial to be separated. In order to optimise event-related designs the 

trial order must be carefully manipulated so that each trial follows itself and every 

other trial type equally. Trials far apart in time should also not be compared, due to 

changing noise properties over time such as scanner drift. In addition the inter-trial 

intervals should be jittered, so that there are longer gaps between some trials, so the 

HRF can reach its peak. Using this type of design, the HRF to each trial type can be 

fully modelled. Optseq2 (http://www.nitrc.org/projects/optseq/) was used to optimise 

stimulus order and timings for the experiments in this thesis. In addition the trial 

lengths should not be a multiple of the TR, so that the same slice is not always 

collected at the same point in the trial. Whilst event-related designs are more flexible, 

they are less powerful as, due to the reduced time between single events, the 

baseline to peak range of the BOLD response will be smaller than with a blocked-

design. 

 

2.3.2. Preprocessing 
Prior to statistical testing, the raw data must be manipulated and prepared. The data 

presented in this thesis were preprocessed using the FMRIB software library (FSL) 

tools. This section will describe these preprocessing steps. 
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2.3.2.1. Motion Correction 

Whilst in the scanner a participant will move their head. Whilst making participants 

comfortable can minimize the amount of movement, it cannot be completely 

abolished. Runs of functional data were excluded from analysis throughout this thesis 

if they moved  >2mm in any plane. Head motion is a concern when analysing 

functional data, as we want to be sure that a voxel refers to the same structural 

location over time. Otherwise signal can be spatially blurred and the SNR reduced. In 

addition, spin-history artefacts occur with head motion. The signal depends on the 

spin-history of the tissue, and tissue displacement means that the data acquired over 

the next few volumes will have a modified spin-history affecting the measured signal 

(Muresan et al., 2005). To attempt to reduce the effects of head motion I applied 

McFLIRT (Motion Correction FMRIB’s Linear Registration Tool) (Jenkinson et al., 

2002; Jenkinson and Smith, 2001) to the data. Successive volumes of the image 

were co-registered to a mean image calculated from the entire time-series. A rigid 

body transform was applied using a normalised correlation cost function. A rigid body 

transform is optimal for co-registering images from the same participant in the same 

scan mode (intramodal) as the same brain is being matched across time, so all 

movement can be described with three rotations (pitch, yaw, and roll) and three 

translations (x, y and z). 

2.3.2.2. Temporal filtering 

Over time, the data time-series will be influenced by low frequency noise or scanner-

drift that may interfere with the detection of any signals of interest. By applying a 

high-pass filter to the data these low-frequency noise components can be removed 

from the data. The data in this thesis have been high-pass filtered using a 50s cut off. 

2.3.2.3. Pre-whitening 

Due to the nature of fMRI time-series there will be temporal autocorrelation within a 

voxel over time. This means that the intensity of a voxel will not be independent from 

the intensity of the same voxel at time points before and after. This will not be 

removed by high-pass filtering, as it exists in the same frequency band as a BOLD 

signal of interest. Instead the data must be pre-whitened. To do this an estimate is 

made of the auto-correlation in the data, and a filter created to remove it. Once data 
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that can be predicted from adjacent time-points has been removed, a signal is 

created in which adjacent time points are statistically independent from each other. 

2.3.2.4. Spatial Smoothing 

In order to increase the SNR, fMRI data are usually smoothed in space. Spatial 

smoothing takes advantage of the spatial correlation in the data. This spatial 

correlation is due to the similarity of function in adjacent voxels, and the spatial 

smoothing that exists in the data due to the underlying vasculature. In this thesis, a 

Gaussian blur with a full width half maximum (FWHM) of 2mm or 3mm was applied to 

the raw data. In order to optimize the increase in SNR that can be achieved, 

smoothing must be applied that is of similar extent to the spatial extent of the 

underlying neural activity. The smoothing I used was less than that routinely applied 

to fMRI data because the signal of interest within the midbrain was smaller than that 

of the brain regions usually studied with fMRI.  

2.3.2.5. Brain extraction 

Prior to analysis, the images were stripped of extracerebral tissue using the FSL 

brain extraction tool (BET) (Smith, 2002). This algorithm delineates brain tissue from 

surrounding non-brain tissue. The removal of non-brain tissue from the images 

confines analyses solely to brain tissue. 

2.3.3. Statistical maps 
In order to calculate the effects of each EV on intensity values of voxels across the 

brain, statistical maps must be created. A general linear model (GLM) was used, and 

regressors were entered into this model that represented stimulus onset. At the first 

level analysis, each voxel in each individual was assessed to investigate how well it 

correlated with these experimental regressors. At the higher-level analysis, the maps 

generated for each individual were compared, so the signal across participants were 

averaged and general population-level inferences made. 

2.3.3.1. The general linear model 

Data in this thesis were analysed using the GLM approach. The first stage of the 

creation of the GLM involved defining the stimulus timings for each EV. EVs must be 
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defined to allow the effect of interest to be interrogated. EVs must also be created for 

parameters of no interest such as head motion, instructions screens, and 

physiological noise. Explaining structured noise in the data this way reduces the 

amount of noise left in the data, and makes the statistics stronger. Each EV was 

convolved with an HRF, as this better reflected the actual response that was 

measured. To allow for deviations from the expected HRF temporal derivatives were 

included in the model. The inclusion of a temporal derivative for each of the EVs 

explains variance in the data that may be due to the HRF being slightly slower or 

faster than expected. Thus temporal derivatives explain this source of ‘noise’ and 

improve detection of signal. 

 

Statistical maps were then created that reflected the amount of variance in the data 

that had been explained by each EV. This was done on a voxel-wise basis, and a 

map (a parameter estimate) was created that showed this measure for each voxel. 

Thus, the GLM attempts to ‘fit’ the model to the data in the best way, with the 

minimum variance remaining. The simplified equation for the linear model is: 

 

𝑌 = Χ𝛽 + 𝜀 

 

where 𝑌 is the observed data, 𝜀  is the error, or variance remaining as noise, Χ is the 

EV, and 𝛽 is the beta value, the weight that is applied to the EV (Χ) to explain the 

data. The parameter estimate for each EV consisted of a voxel-wise map of the beta 

values. Once the parameter estimates for each EV had been calculated, parameter 

estimates of EVs of interest were compared, leading to COPE images (contrast of 

parameter estimates). When two EVs were directly compared, a t -statistic was 

calculated for each voxel to assess whether the difference between the two 

parameter estimates was significantly different from zero. When an implicit rest 

baseline is used, the parameter estimates are identical to the COPEs. As the 

denominator in a t-test is a measure of the noise, reducing noise in the data 

increases the t value and hence increases the sensitivity of the analysis. 
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2.3.3.2. Individual Level analysis 

Fixed-effects analyses assume that the EVs have the same effect on every dataset. 

If the same subject has undergone several runs of data acquisition, the results of 

these are combined using a fixed effects analysis. 

2.3.3.3. Group level analysis 

Random-effects analysis allows inferences to generalise from the small population 

studied to encompass the population in general, by accounting for between-subject 

variance. FMRIB’s local analysis of mixed effects (FLAME) (Beckmann et al., 2003; 

Woolrich et al., 2004) was used for the results presented in this thesis for analysing 

data across groups. 

2.3.4.  Post-stats 
Once variance had been assigned to each condition, and statistical maps calculated, 

these statistics were assessed for significance. This stage is termed post-stats. 

2.3.4.1. Multiple comparison problem 

FMRI data must be corrected for multiple comparisons. During voxel-wise statistical 

modelling, a statistical test was carried out on each voxel. At a standard significance 

threshold of p < 0.05, one in twenty of the voxels would appear significant when there 

was no underlying effect to observe (a Type I error). However, if traditional multiple 

comparison corrections are applied, such as the Bonferonni correction, Type II errors 

will occur due to the threshold being too conservative. Thus, alternative thresholding 

methods have been developed for neuroimaging data. Cluster-based thresholding 

methods were used on the data in this thesis (Worsley et al., 1992), whereby for a 

voxel to be classed as significant it had to be surrounded by a thresholded number of 

adjacent voxels, the cluster-level threshold in turn being dependent upon the level set 

for the peak-level threshold.    

2.3.4.2. Pre-Threshold masking 

The voxel-wise statistics in this thesis were masked to include just the area of 

interest. Thus regions that were included in the FOV of the acquisition were excluded 

if there was no a priori hypothesis about activity in those regions. In addition, areas 
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outside of the midbrain were likely to be very noisy due to poor registration (in the 

case of the cortex) and large physiological noise influence (in the case of the lower 

brainstem), so they were removed from the analysis prior to thresholding. To do this 

a mask was drawn in standard space, and only voxels within this mask were included 

in the post-stats.  

2.3.4.3. Non-parametric statistics 

The statistical maps that were tested for significance were within pre-defined 

anatomical masks. As these restricted volumes were relatively small, I could not 

assume that data within this volume followed a normal distribution. As a result, 

traditional parametric tests could not be used. Nichols and Holmes (2002) devised an 

alternative non-parametric test for functional neuroimaging data based on 

permutation test theory. The statistical map was given a peak-level threshold, and 

then the pattern of suprathreshold activity clusters was assessed. The data was 

permuted and thresholded to create a permutation distribution of cluster sizes. The 

clusters that localised with the actual data were compared to the permuted data, to 

see if the size of the clusters exceeded the size that would be expected if there was 

no significant clusters in the data. Using this method, the initial threshold must be 

chosen carefully, as low peak-level thresholds will return large clusters, but smaller 

clusters of biological significance may be overlooked. Conversely, higher thresholds 

will lead to the detection of small clusters with higher t-scores, but may miss larger 

activated clusters with lower t-scores.  

2.3.4.4. Region of interest analysis 

ROI analyses are used in this thesis to further interrogate the changes in BOLD 

signal that are revealed in the voxel-based statistics just discussed. Whilst voxel 

based statistics are used to reveal patterns of activity across all voxels of interest, 

and show local heterogeneity of activity, ROI analyses can be used to investigate 

signal change in a specific region to test a specific hypothesis. First, a region was 

defined using an inclusive mask based on previous analyses. Statistics were then 

averaged within these masks and a signal change extracted from the region as a 

whole. The ROI analyses presented in this thesis were calculated using Featquery. 
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2.3.5. Coregistration and Normalisation 
To allow the testing of group data, individual statistical maps must be transformed 

into a standard space. In standard functional neuroimaging this consists of the 

concatenation of two steps: the functional data is first transformed onto a high-

resolution structural image, then the structural image is transformed onto a standard 

brain. Chapter 3 of this thesis discusses the optimisation of this pathway for the 

midbrain, but here I present the standard methodology. Two tools are available in the 

FSL toolbox for coregistration and normalization. FLIRT (Jenkinson et al., 2002; 

Jenkinson and Smith, 2001) applies linear transforms to images, in up to 12 

dimensions. Using linear methods the same transform is applied globally, such as 

scaling, skew, translation, and rotation. FNIRT (FMRIBs non-linear registration tool) 

can be used to apply non-linear local transformations. This means that each area of 

the brain is separately matched to the destination image. 

2.3.5.1. Functional to structural (Coregistration) 

Functional MRI data is low resolution and low contrast. The final goal of 

coregistration and normalization is to get the functional data into a standard 

coordinate space. The use of an intermediate high-resolution structural image 

(usually T1-weighted) is because these images contain more structural information; 

for example, the sulci and gyri of the cortex are much more clearly visualised on a 

T1- weighted rather than an EP image. This assists the mapping of the low-resolution 

image. As the functional and structural images are from the same individual they 

should, in theory, be easy to map one on to the other. However, there will be 

differences in shape and size, due to distortions, which must be corrected. Further, a 

cost function algorithm must be used that does not rely on absolute intensity 

differences, as the images have different contrasts.  A rigid body transform can be 

used for this step, but there may be more differences that are not accounted for with 

translations and rotations, so skews and scaling can also be applied to the functional 

data until it maps well onto the structural image. 

2.3.5.2. Structural to standard (Normalization) 

The demands of normalisation are different from those of coregistration. There is 

significant variability in brain size, shape and structures between people. Simply 
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applying a linear transform would not account for these individual differences. For 

example, the relative size of lobes may differ, or the angle with which the brainstem 

lies relative to the cortex. To correct such differences, and accurately map all 

structural brains into the same space, non-linear registration (FNIRT) can be used. In 

this process the structural image is first mapped into a standard space with FLIRT. 

Then FNIRT calculates local deformations in the transform to correct local 

differences, and creates a warp file that is applied to the structural data to transform it 

into standard space. The standard space is the MNI-152 template, created by the 

Montreal Neurological Institute, which consists of the average of 152 T1-weighted 

brain images. 

2.3.5.3. Weighting masks 

In order to optimise a linear registration step for a particular region, weighting masks 

can be used. In this situation a mask is drawn around the region of interest. When 

the cost function is then calculated, values in the mask indicate how important a 

region is, so the algorithms can give different regions different relative importance.  
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3. Midbrain optimised fMRI: registration  

3.1. Summary 

Localising activity in the human midbrain with conventional fMRI is challenging. One 

reason for this is that functional data must be transformed into a standard space, and 

methods that have been developed to do this have been optimised for the cortex. 

Here I present a replicable and automated method to improve the localisation of 

midbrain fMRI signals by improving midbrain registration. Two additional structural 

scans were used to improve registration between functional and structural T1-

weighted images: an echo-planar image (EPI) that matched the functional data but 

had whole-brain coverage, and a whole-brain T2-weighted image. This pathway was 

compared to conventional registration pathways, and was shown to significantly 

improve midbrain registration. 
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3.2. Introduction 

Due to the relatively low SNR of fMRI, the results from several participants must be 

grouped, and analysed for statistical significance. In order to achieve this, functional 

data is usually registered onto a standard space template. The registration pathway 

consists of two steps: coregistration and normalisation. The first step, coregistration, 

refers to transforming the low-resolution functional data onto a high-resolution 

structural scan, most often a T1-weighted image. The second step, normalisation, 

refers to transforming the structural image into standard space. Once data are in 

standard space, results can be compared across participants, and across studies. 

This pathway has been utilised by many researchers investigating midbrain function 

(Dunckley et al., 2005; Krebs et al., 2011; Krebs et al., 2010; Sigalovsky and 

Melcher, 2006; Zhang et al., 2006). 

 

However, there are three reasons why it may be desirable to optimise the registration 

pathways for the midbrain, rather than use this default two-step pathway. First, the 

nuclei in the midbrain are small. A small error in registration reduces the chance of 

finding a significant effect as the functional signal becomes blurred in standard 

space. Second, in order to achieve high-resolution functional scans within a 

reasonable TR, data are collected over a limited FOV. Therefore the functional scans 

contain less structural information than would a whole-brain equivalent, thereby 

increasing the chances of inaccurate registration. Finally, the midbrain nuclei are not 

visible on T1-weighted scans. I hypothesised that if structural scans that do show 

contrast within the midbrain are utilised as intermediate steps in the registration 

pathway, then this would be likely to improve the co-localisation of nuclei within the 

midbrain. 

 

Here, I present an unbiased, user independent, and novel registration pathway that 

improves on conventional registration to increase the accuracy with which functional 

data are transformed onto the standard brain template at the level of the midbrain. 

This was achieved with the modification of the coregistration step. Two intermediate 

whole-brain structural scans were used prior to transformation of the data to a T1-

weighted high-resolution structural image. Functional data were first transformed 

onto a whole-brain EPI that matched the functional data, but with full FOV. This 
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overcame the problem created by having only a limited number of slices to drive 

registration. The resulting data was then transformed onto a high-resolution T2-

weighted image. Both the functional images and T2-weighted images contain areas 

of low image intensity that correspond to the RN and SN, due to their high iron 

content (Drayer et al., 1986). The intensity boundaries surrounding these areas in the 

midbrain can then be utilised to drive registration algorithms. If a T1-weighted image 

were used as the initial high-resolution structural image, only the edges of the 

midbrain could be used for registration, as there is uniform signal throughout the 

midbrain structures with such a T1-weighted sequence. Thus, accuracy within the 

midbrain would be compromised. Further, weighting the cost function evaluation 

within the registration algorithm towards accurate sub-cortical registration (at the 

expense of accuracy with respect to registration of cortex) leads to more accurate 

midbrain registration. This evaluation study was designed to demonstrate the 

accuracy of this method at the level of the midbrain, compared with the accuracy of 

conventional registration methods. 

 

3.3. Methods 

3.3.1. Subjects 
Sixteen healthy subjects (seven female) aged between 22 and 60 years, with normal 

or corrected to normal vision, participated in this study. Two subjects were excluded 

due to poor shimming during acquisition of the functional data. Two subjects were 

excluded due to an inability to detect their cardiac signal above background noise 

(which was required for the analysis reported in Chapter 4). Two subjects were 

excluded because I failed to secure revisits for structural scans.  

3.3.2. Data acquisition 
MR scanning was performed on a 3T Philips Intera scanner with an eight-channel 

phased array head coil. Subjects lay supine on the scanner, with padding underneath 

and surrounding the head. Functional MR images were obtained using a T2*-

weighted, EPI sequence with a FOV that covered the long axis of the brainstem (TE, 

44ms; TR,1600ms; flip angle, 90˚; resolution, 1.5 x 1.5 mm; matrix size, 144 x 144; 

slice thickness, 1.5 mm; 16 coronal slices; no slice gap; interleaved slice order; 322 
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dynamic scans; scan duration, 530s). A SENSE factor of two in the left-right direction 

was used to reduce susceptibility related artefacts in the data. Slices were aligned 

parallel to the ventral wall of the fourth ventricle. The slice orientation and placement 

was selected to minimise inhomogeneity in the main magnetic field (Dunckley et al., 

2005). Care was taken to ensure the accurate placement of the functional slices. This 

was achieved with the use of two planning scans; the first scan was used to align the 

slices of the second scan perpendicular to the angle of the participant’s head. This 

allowed the same brain region to be collected from each participant. A mean 

functional image was created from this functional scan, and was used as 

representative functional data in the testing of the registration pathways. 

 

For midbrain registration optimisation, a whole-brain EPI scan was collected, using 

the same shim settings and voxel size as the functional run, but with more slices (147 

slices; TE, 44ms; TR,14.3s; resolution, 1.5 x 1.5mm; slice thickness, 1.5mm; matrix 

size, 144 x 144). A T2-weighted structural scan (TE, 80ms; TR, 2000ms; resolution, 

1.8 x 1.8 mm; slice thickness, 2.19 mm; 80 slices) and an MPRAGE T1-weighted 

structural scan (resolution, 1.15 x 1.15 mm; slice thickness, 1.2 mm; 150 slices) were 

also obtained. 

3.3.3. Analysis 
For the normalisation step, the use of nonlinear algorithms achieves accurate 

registration over the whole-brain (Klein et al., 2009). Nonlinear methods apply warps 

to local brain regions, rather than applying a transform globally. This means 

individual differences in brain region shape, size and alignment can be minimised as 

the brain is fitted to the standard template. The non-linear algorithm used here was 

FNIRT. For the coregistration step linear transforms were applied using FLIRT. 

Linear transforms are used for within subject coregistration, as there should be no 

local differences across brain scans from the same participant. Registration 

pathways were applied to the data using custom scripts that used command line 

functions from the FSL toolbox. 

 

Three alternative registration pathways were tested for each participant (see Figure 

4). For the two-step registration pathway the mean functional image was registered 

to the T1-weighted structural with a linear transform with three degrees of freedom, 
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this was then registered to the MNI standard brain template. A larger number of 

degrees of freedom were not used as this led to large registration errors. For the 

three-step registration pathway the mean functional image was first registered to the 

whole-brain EPI that matched the functional data in terms of contrast and resolution. 

This transform had seven degrees of freedom. This pathway is recommended by 

FSL (http://www.fmrib.ox.ac.uk/fsl/flirt/ztrans.html) as a way to improve the 

registration of data with a limited FOV. The whole-brain EPI was then registered to 

the T1-weighted image (with seven degrees of freedom), and then the T1-weighted 

image was registered to the MNI template. 

 

 
Figure 4: Three alternative registration pathways. Functional data was co-registered 
into MNI standard space using three alternative registration pathways. The presence 
of the green shaded areas in the four-step registration pathway indicates that a 
binary mask was used to weight the transform to the shaded area. 

 

Four-step registration started with the same transform of functional data to the whole-

brain EPI. This step was then optimised for the midbrain: a hand drawn binary mask 

that covered the midbrain and pons of the EPI image was used to weight the 

transform for accuracy within these masked areas. Optimising a registration step in 

this way has previously been reported (Napadow et al., 2006; Pattinson et al., 

2009b). This transform was carried out with seven degrees of freedom. This 
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corrected for any differences between the mean functional image and the whole-

brain EPI image due to head movement between the two scans. The second step 

was transforming the whole-brain EPI onto a T2-weighted structural scan. As with the 

first step of this pathway, the transform was optimised using a weighting mask. This 

binary mask was in the T2-weighted space and covered the thalamus, midbrain and 

pons. It was drawn once in standard space and transformed onto the individual T2-

weighted structural images. EPI images contain distortion in the phase-encode 

direction, so this adjustment to the transform allowed optimisation of the midbrain by 

ignoring areas of the brain subject to distortion. This second step was carried out in 

two stages. The EPI was first transformed to T2 space with seven degrees of 

freedom. This transformed EPI was the transformed again into T2 space, this time 

with the binary weighting mask, and again with seven degrees of freedom. The third 

step was transforming the T2-weighted image onto the T1-weighted structural, a 

transform that needed no optimisation. This transform was carried out with seven 

degrees of freedom. The fourth step was transforming the T1-weighted structural into 

the MNI template. In all three pathways FNIRT was used for this final step, with a 

warp of 10mm. In all cases, the initial steps (up to the T1-weighted structural) were 

concatenated into a single transform before being applied to the functional data to 

avoid image degradation through multiple transforms.  

 

To test the three registration pathways the RN was defined in each participant and 

transformed into standard MNI space using the transforms derived from the three 

registration pathways. This structure was selected as it was fully within the FOV of 

the functional scans, and was clearly identifiable using an automated method free 

from experimenter bias. No other areas of high contrast were suitable as they were 

not completely covered by the FOV (e.g. the SN), or could not be defined using the 

automated method in a way that would ensure exactly the same structures has been 

selected for each participant (e.g., the tissue-CSF boundaries). In addition, activity 

was not predicted within the RN during the fMRI task, so the assessment of the 

registration pathways was independent of the activation results of Chapter 4. The RN 

was defined in the mean functional images using an automated tool that filled an 

area with a 3D mask, until a signal intensity change was detected (MRIcro 1.4, Chris 

Rorden, Georgia Institute of Technology, Atlanta, Georgia, 

http://www.cabiatl.com/mricro/). The standard location of the RN was identified using 
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the same tool on a standard MNI T2-weighted template (see Figure 5a). Thus, the 

location of the participant’s RN in standard space, using three registration pathways, 

could be compared to the ‘gold standard’ of locating the RN on the T2-weighted 

standard template. 

3.4. Results 

For each of the registration pathways a group RN mask was created by adding 

together all ten individual RN masks that had been transformed into standard MNI 

space. Figure 5b shows the group RN mask for each of the registration pathways. 

Upon visual inspection, it is clear that the RN is poorly co-localised when the two-

step registration pathway is used, with a maximal overlap of 4 individual RN masks. 

There is a marked improvement with the three-step registration with a greater 

maximal overlap of 7. However the four-step registration shows the greatest maximal 

overlap of 8, with a more symmetrical and tightly packed distribution of voxels. 

Comparing the location of these group RN masks (Figure 5c) shows that the four-

step registration results in the best co-localisation with the standard RN mask. 

 

The registration pathways were assessed statistically using a repeated measure 

analysis of variance (ANOVA). The number of voxels of the standard RN mask that 

were covered by the individual RN masks was significantly affected by the 

registration pathway used (F(2, 18) = 6.52, p < 0.05). Planned contrasts showed that 

the four-step registration pathway led to more overlap between the group RN mask 

and the standard RN mask than the two-step registration (F(1, 9) = 8.89, p < 0.05) and 

the three-step registration (F(1, 9) = 6.86, p < 0.05). Accuracy of the different 

registration pathways was also made on the basis of the number of voxels from the 

individual masks that fell outside the standard RN mask after normalisation to the  

template. There was a significant main effect of chosen registration pathway (F(2,18) = 

6.33, p < 0.05). Planned contrasts showed the four-step registration pathway led to 

fewer voxels outside the standard RN mask than the two-step registration  

(F(1, 9) = 8.89, p < 0.05) and the three-step registration (F(1, 9) = 6.86, p < 0.05), 

indicating that the four-step registration protocol was more effective. Accordingly it 

was used to for all subsequent fMRI analyses in this thesis.  
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Figure 5: Assessing the accuracy of the registration pathways. All images are 
overlaid on an MNI T1 standard brain. (a) The standard location of the RN, derived 
from an MNI T2 template. The nuclei are shown in white in transverse, coronal and 
sagittal planes. (b) For each participant the RN were defined in functional space and 
then transformed into standard space using the three registration pathways. The 
group RN maps show the summation of all participants' RN in standard space for 
each registration pathway (blue = two-step registration, red = three-step registration, 
green = four-step registration). The legends indicate how many participants' nuclei 
overlap at each voxel. (c) The standard location of the RN is overlaid on the group 
RN maps as defined by the three registration methods. All images are shown in 
radiological convention. 
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3.5. Discussion 

The four-step registration pathway showed a significant improvement over both the 

conventional two-step registration used previously in midbrain studies (Krebs et al., 

2010; Sigalovsky and Melcher, 2006; Zhang et al., 2006), and the three-step 

registration pathway recommended by and typically used within the FSL analysis 

pipeline. The optimised pathway improved the co-localisation of the RN across 

participants on the standard brain template. There was a greater overlap of the RN 

between participants and a significantly greater overlap of the group RN mask with 

the location of the RN on the standard brain template. There were also fewer voxels 

falsely identified as belonging to the RN when the optimised four-step registration 

pathway was used. The reasons for the improvement of this method were twofold. 

First, intermediate scans maintained the contrast of nuclei within the midbrain until 

the data had been transferred onto a high-resolution structural scan. Thus, the 

registration algorithms could utilise both the midbrain edges and the borders of the 

internal midbrain nuclei and maintain registration accuracy throughout this region. 

Second, the use of weighting volumes prioritised midbrain registration and ignored 

areas of the brain that suffered from EPI distortion or were of no interest. Although 

only one nucleus within the midbrain was used in the assessment of the midbrain 

registration accuracy, it is reasonable to assume that increased accuracy would 

persist throughout the entire midbrain, as no special efforts were made during the 

registration optimisation to co-localise the RN over and above any other midbrain 

area. The use of nonlinear algorithms (FNIRT) ensured accurate registration 

throughout the whole-brain for the transformation of high-resolution T1-weighted 

structural images to the standard T1 template, so this step did not require 

optimisation for the midbrain. 

 

Optimising the registration in this way improved the accuracy with which the midbrain 

nuclei of individual participants’ co-localised on the standard brain template. This 

reduced any blurring of a genuine signal that would occur with poor co-localisation, 

and afforded greater confidence when assigning activity to a specific structure.  

 

The optimised registration pathway overcame many of the challenges of midbrain 

registration, and permits group level analyses across participants on a standard 
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template, rather than relying on ROI analyses. The use of this type of group level 

analysis permits voxel-wise comparisons that may reveal regions of activity that are 

not within pre-determined ROIs, and are not predicted by a prior hypothesis. It also 

provides the opportunity to detect patterns of activity within an area that have 

previously been regarded as a single ROI, as functional units of the midbrain may not 

match the anatomical subdivisions used to define ROIs. 

 

The benefits of optimising fMRI for the midbrain, using the methods described here, 

also brings with it practical costs. In terms of data acquisition, the added T2-weighted 

scan requires an additional six minutes of scan time. It would also be difficult to 

achieve optimum registration at both the level of the cortex and the midbrain 

simultaneously. Thus the this method should be used in focused and high-resolution 

midbrain fMRI to identify regions of activity that are induced in certain tasks with 

greater reliability, which can then be combined with whole-brain studies to look for 

network interactions. In the following chapter of this thesis I will utilise this optimised 

four-step registration pathway in the analysis of visual fMRI data. 
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4. Midbrain optimised fMRI: physiological noise 

modelling 

4.1. Summary 

FMRI is relatively insensitive to midbrain changes in BOLD due to the interference of 

physiological noise. To optimise fMRI for the midbrain I designed a visual fMRI task 

that was predicted would activate the superior colliculi bilaterally. To reduce the 

physiological artefacts in the functional data, I estimated and removed structured 

noise using a modified version of a previously described physiological noise model 

(PNM). Whereas a conventional analysis revealed only unilateral superior colliculi 

activity, the PNM analysis revealed the predicted bilateral activity. These methods, 

when used in conjunction with the optimised registration pathway presented in 

Chapter 3, improve the measurement of a biologically plausible fMRI signal. 

Moreover they could be used to investigate the function of other midbrain nuclei. 
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4.2. Introduction 

The midbrain, with the adjacent large basilar artery and its branches, moves in time 

with the cardiac cycle. Movement in response to the respiratory cycle and pulsatile 

flow of the cerebrospinal flow also contributes to midbrain movement. See section 

1.3.3 for a full description of these sources of physiological noise. In order to reduce 

the interference from some of these sources of physiological noise, many midbrain 

fMRI studies use cardiac gating (D'Ardenne et al., 2008; DuBois and Cohen, 2000; 

Guimaraes et al., 1998; Hawley et al., 2005; Napadow et al., 2009; Sigalovsky and 

Melcher, 2006; Zhang et al., 2006). In this approach, imaging data is collected in 

between heartbeats. This assumes that the brain is relatively stable during this time, 

which will be partially true. Cardiac gating necessarily limits the number of slices that 

can be collected per volume. In addition, the TR that results from the variable heart 

rate causes differences in the T1 relaxation (Guimaraes et al., 1998) that requires 

correction. Most importantly, this approach does not correct for respiratory artefacts 

or the noise resulting from an interaction between the cardiac and respiratory cycles, 

or for low frequency fluctuations in heart rate.  

 

Alternative methods have been developed that use physiological measures to model 

and remove structured noise from fMRI data (Glover et al., 2000; Hu et al., 1995; 

Liston et al., 2006). Retrospective Image Correction (RETROICOR; (Glover et al., 

2000) was originally developed for whole-brain fMRI. Physiological noise is removed 

by first assigning a cardiac and respiratory phase to each slice of data based on its 

acquisition time relative to the physiological cycles, then modelling their likely effect 

on imaging data using a basis set including four Fourier terms. For my data, I used a 

modified version of RETRICOR, the PNM, which is implemented via the GLM and 

therefore avoids problems relating to adjusting variance estimates for the loss of 

degrees of freedom when pre-filtering. The PNM was developed for spinal (Brooks et 

al., 2008) and brainstem (Harvey et al., 2008) studies. In the brainstem, a significant 

amount of noise is generated by an interaction between the cardiac and respiratory 

cycles, which can be successfully modelled with the PNM (Harvey et al., 2008; 

Pattinson et al., 2009b). In addition, low frequency fluctuations in the heart rate may 

produce low-frequency noise in fMRI data (Chang et al., 2009), and this is also 

accounted for within the PNM. 
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In this study, I applied the PNM to an fMRI experiment using visual stimulation, and 

compared the resulting activation with those from a conventional analysis without any 

correction for physiological noise. The visual stimulus was a moving black and white 

checkerboard, that has been shown with fMRI and an ROI analysis to activate the 

superior colliculi (DuBois and Cohen, 2000; Schneider and Kastner, 2005) or manual 

registration (Sylvester et al., 2007). Therefore, any failure to detect a task-related 

BOLD signal change in the midbrain with this stimulus could primarily be attributed to 

sub-optimal processing. 

 

4.3. Methods 

4.3.1. Data Acquisition  
The data collection has been described in Chapter 3, as the same dataset was used 

for both analyses. See section 3.3.2 for scan parameters used. The ten participants 

included in the analysis showed minimal movement during the functional scans (less 

than 1 mm), which improved the chances of good SNR within the midbrain. 

 

Physiological data were recorded using the scanner’s in-built system. This included a 

vector-cardiogram trace via electrocardiogram (ECG) pads on the chest, and a 

respiratory trace via a pneumatic belt. In order to synchronise the physiological data 

with the functional scans, the scanner’s physiological recording software was 

modified to simultaneously record a trigger at the beginning of each slice acquisition. 

4.3.2. fMRI Paradigm 
During the functional scan a visual stimulus was repeatedly presented on a screen 

visible to subjects lying supine in the scanner. The stimulus was a smoothly rotating 

semi-circle made of alternating black and white checks that scaled linearly with 

eccentricity. The checks reversed contrast at 8Hz and the semi-circle rotated at 1Hz. 

Each presentation lasted for two seconds, with a variable inter-stimulus interval of 

between 1.4s and 11s. The trials were jittered. Stimuli were presented using the 

Psychophysics Toolbox extension (Brainard, 1997; Pelli, 1997) for MATLAB (2008b, 

The Mathworks Inc., Natick, Massachusetts, USA). The task lasted 530s. 



 70 

4.3.3. Analysis 
Data were analysed using FSL. Pre-processing of the functional data included motion 

correction to the mean volume using McFLIRT, spatial smoothing (FWHM = 2mm), 

and high pass temporal filtering, applied to all brain images. Prior to model estimation 

using FEAT (FSL Expert Analysis Tool) v5.98, cardiac peaks (the R-wave) were 

extracted from the ECG trace, and high frequency scanner noise was removed from 

the respiratory trace. The regressors of the PNM were estimated from physiological 

data using a custom MATLAB routine (Brooks et al., 2008).  

 

Two sets of statistical analyses were carried out on the functional data, one with the 

PNM to remove physiological noise from the data, and one without. The analyses 

were identical, with the exception of the design matrix used in the GLM. 

 

To estimate and remove the influence of physiological noise from the time series 

data in the PNM analysis, we applied a modified version of RETROICOR (Glover et 

al. 2000), which models the cardiac and respiratory cycles using sine, cosine and 

interaction terms (Brooks et al, 2008). For each slice in the volume, a phase was 

assigned independently according to its acquisition relative to the cardiac and 

respiratory cycles. In total, eight cardiac terms, eight respiratory terms, and sixteen 

interactions terms were used to model the structured physiological noise in the data. 

A heart rate regressor was also included (Chang et al., 2009). To remove the 

modelled noise from the data, these variables were included in the GLM. Removing 

structured noise from the data set in this way makes the detection of genuine effects 

more likely, and reduces the likelihood of accepting false positives (Harvey et al., 

2008). 

 

The PNM regressors were created using custom MATLAB scripts. They were based 

on the participants cardiac and respiratory traces acquired at the same time as the 

functional data. Prior to formation of the regressors the respiratory data were 

smoothed to remove scanner artefacts, and the peaks of the cardiac data were 

extracted. A cardiac phase was then assigned to each slice of acquired data, 

indicating during which phase of the cardiac cycle the data were acquired. For the 

respiratory trace a phase was calculated for each slice that also accounted for the 

depth of each breath (Glover et al., 2000). There were eight regressors for the 
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cardiac effects, and eight for the respiratory effects. The eight regressors consisted 

of the sine and cosine values of the fundamental frequency of the traces (θC and θR), 
and the next three harmonics of these sine and cosine terms (the sine and cosine of 

2θC, 3θC, and 4θC for the cardiac terms, and the sine and cosine of 2θC, 3θC, and 4θC 

for the respiratory terms). The 16 interaction terms consisted of 8 additive terms, and 

eight subtractive terms. These were calculated using the following formula: 

  

   sin or cos  (𝐴 ⋅𝜃! ±𝐴 ⋅ 𝜃!), where A = 1,2,3,4. 

 

 

Each regressor was outputted as 4D nifti file. The 4D file had the dimensions: 

 

1  ×  1  ×  (𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑠𝑙𝑖𝑐𝑒𝑠)  ×  (𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑣𝑜𝑙𝑢𝑚𝑒𝑠) 

 

This allowed the PNM to apply the 33 terms on a slice by slice, volume by volume 

basis.  A text file that listed the 33 regressors was created, and this text file was 

entered into the ‘confound file list’ beta option of FSL v5.98. Prior to analysis these 

regressors were filtered using a temporal filter identical to the temporal filter applied 

to the data. 

 

The combination of regressors included in the PNM was not optimised as has 

previously been done for the brainstem (Brooks et al., 2008). However the inclusion 

of extra regressors would not impact significantly on the degrees of freedom used in 

the statistics, as the time-series used in the experiment was long. I therefore decided 

to include more regressors than had been previously used, to more completely model 

the physiological noise. 

 

For both analyses, the first level of statistical analysis of the functional data (at the 

individual subject level) was carried out using a GLM approach. A model of the BOLD 

response to visual stimulation was constructed by convolving the stimulus input 

function with a gamma HRF with time-to-peak of four seconds. A temporal derivative 

of the visual stimulation and a single regressor that described global head motion 

were also included. For the PNM analysis, the 33 physiological regressors were also 

included in the GLM. Group statistics were carried out using FLAME (a mixed effects 
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analysis to account for between subject variance). Variance that was explained by, 

and was unique to the visual regressor, was represented as a statistical map, which 

was subsequently tested using RANDOMISE  to correct for multiple comparisons. All 

statistical images were cluster-corrected to a significance level of p < 0.05, with a 

nominal t-value of 2.3, using standard cluster correction within RANDOMISE. Task 

activation was tested against an implicit ‘rest’ baseline. Prior to thresholding, a hand 

drawn mask was applied to the functional data to include only voxels from the 

superior and inferior colliculi. Voxels within the inferior colliculi were included to 

ensure that the visual response was correctly localised to the superior colliculi. The 

colliculi were defined on the MNI template using an anatomical atlas (Naidich et al., 

2009). Figure 6a shows the location of the superior colliculi on the MNI template. 

 

4.4. Results 

The resulting statistical maps are shown in Figure 6b. Conventional analysis revealed 

a significant response in voxels within the right superior colliculus alone. When the 

PNM was included in the GLM, visual activity was localised to both superior colliculi. 

To check that possible left superior colliculi activity in the conventional analysis was 

not hidden due to conservative cluster thresholding, the analysis was repeated with a 

less conservative threshold (T > 1.83). Even with this low threshold (corresponding to 

uncorrected p < 0.05), no activity was revealed in the left superior colliculus without 

the PNM. 

 

The distribution of the Z-scores of all voxels within the right and left superior 

colliculus in both the conventional and PNM analysis is shown in Figure 7. There is 

an increase in the number of significant voxels in the right superior colliculus when 

the PNM is included in the GLM (from 103 voxels to 148). However the main effect of 

the PNM is the recovery of significant voxels in the left superior colliculus (83 voxels 

with PNM). However, this cluster extends by 28 voxels into the left inferior colliculus, 

suggesting that it is not as well localised as the right superior colliculus activity.  
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Figure 6: Visual fMRI experiment results. (a) The location of the superior colliculi, 
defined using anatomical boundaries on the group T1 standard brain, are shown in 
coronal and sagittal planes. (b) The superior colliculi responded to visual stimulation. 
Statistical maps computed from data without PNM revealed activity in the right 
superior colliculus only. The pattern of activation was modified when including a 
PNM, to include activity in the superior colliculi bilaterally. The statistical maps show 
significant clusters of voxels within a colliculi mask (determined using non-parametric 
permutation testing with a corrected threshold of p b 0.05 and a nominal t-value of 
2.3) The t-values of the voxels within significant clusters are indicated by the legends. 
The top panel (red-yellow) shows unilateral superior colliculus activity revealed using 
a traditional analysis. The lower panel (blue-light blue) shows bilateral superior 
colliculi activity revealed using the PNM analysis. All images are shown in 
radiological convention. 

 

b
  

6.58

2.3

5.16

2.3

a  

X = 6                                     Y = -32 
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Figure 7: The distribution of Z-statistics in the superior colliculi revealed with the 
traditional and the PNM analysis. Histogram showing the Z-score distribution of 
voxels within the right (a) and left (b) superior colliculi for both analyses (white = 
conventional analysis, black = PNM analysis). 

  

a

N
um

be
r o

f v
ox

el
s 

w
ith

in
 th

e 
rig

ht
 

su
pe

rio
r c

ol
lu

ic
ul

i m
as

k

Z-statistic

-1.9 -1.5 -1.1 -0.7 -0.3 0 0.3 0.7 1.1 1.5 1.9 2.3 2.7 3.1 3.5
0

5

10

15

20

25

30

35

40

45
no PNM
PNM

Z-score
b

N
um

be
r o

f v
ox

el
s 

w
ith

in
 th

e 
le

ft
 s

up
er

io
r c

ol
lic

ul
i m

as
k

Z-statistic

0

5

10

15

20

25

30

35

40

45

-1.9 -1.5 -1.1 -0.7 -0.3 0 0.3 0.7 1.1 1.5 1.9 2.3 2.7 3.1 3.5

no PNM
PNM

Z-score



 75 

To check that the PNM did not lead to further false positives outside of the colliculi, 

and to investigate the signal blurring that had occurred in the left inferior colliculus for 

the PNM analysis, we repeated the analysis using a mask that covered the entire 

midbrain. Using this larger mask we found clusters of activity adjacent to the left 

superior colliculus with both the conventional and the PNM analysis. In the case of 

the conventional analysis this cluster was adjacent to the left superior colliculus and 

extended across 56 voxels. For the PNM analysis this cluster extended from the left 

superior colliculus, but also included 46 voxels outside the superior colliculi. Thus, 

when compared to the conventional analysis, the PNM revealed biologically plausible 

and expected areas of activity in the left superior colliculus, and reduced the number 

of voxels outside the superior colliculi marked as active. Activity in the right superior 

colliculus was well localised for both the conventional and PNM analysis, with only 

six and thirteen voxels within the midbrain that were not within the superior colliculus 

boundary respectively. No other clusters were revealed outside of the superior 

colliculi, which is consistent with our hypothesis. 

 

4.5. Discussion 

Modelling and removing noise with the PNM significantly improved the ability to 

measure a BOLD signal from the human midbrain. Including cardiac, respiratory, 

interaction, and heart rate regressors in the GLM removed structured physiological 

noise from the data and led to an increased number of voxels that were 

demonstrated to be significantly active in response to the visual stimulus. Activity in 

the left superior colliculus, which had been masked by physiological noise, was 

revealed by the PNM analysis. The number of false positive voxels was also reduced 

in the PNM analysis, compared to the conventional analysis. This result is consistent 

with electrophysiological recordings from the superior colliculi in awake primates, 

which show that each colliculus holds a representation of the contralateral visual field 

(Goldberg and Wurtz, 1972). The visual stimulus used in this study covered both 

sides of the visual field, and so would have resulted in activity in both the left and 

right superior colliculus. 
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Unlike RETROICOR, the PNM has been specifically optimised for the spinal cord and 

brainstem (Harvey et al., 2008). Due to the noise characteristics in these regions, 

higher harmonics of the physiological cycles explain significant noise in the data, so 

are included in the PNM.  This is the first time the PNM has been tested with such 

high-resolution scans. It is essential to use such small voxels in midbrain fMRI, as it 

allows accurate localisation of activity to specific nuclei, and reduces partial volume 

effects. However, as voxel size decreases, so does the SNR of the fMRI data, 

making it more difficult to detect real signal (Edelstein et al., 1986). This study has 

shown that it is possible to measure a midbrain signal at high resolution, and that 

using the PNM increases the effective temporal SNR (Cohen-Adad et al., 2010; 

Hutton et al., 2011), and permits detection of significant effects in a relatively small 

group size of ten subjects. We demonstrate that the PNM is effective within the 

superior colliculi, and the PNM has previously been shown to be effective within the 

spine (Brooks et al., 2008; Cohen-Adad et al., 2010) and the motor areas of the 

brainstem (Harvey et al., 2008). In addition, it has been shown that physiological 

noise in the brainstem is widespread and spatially non-specific (Harvey et al., 2008). 

Thus, it is likely that the PNM will be effective in other areas of the midbrain, although 

this will require further investigation.  

 

Recently, an alternative method has been developed to remove physiological noise 

from fMRI data using reference voxels that are assumed to contain signal unrelated 

to stimulation to model noise in the time series data (de Zwart et al., 2008). This 

method has been applied to superior colliculi data (Wall et al., 2009), using an area 

of the cerebellum as a reference region. However this method carries the risk of 

removing “functional” signal from the data, or conversely not removing all the 

physiological noise. If the noise properties vary between the reference and task 

regions, noise removal will not be optimal. Whilst it may be safe to assume the 

physiological noise is similar between the dorsal midbrain and the adjacent ventral 

cerebellum, this assumption would be less valid in more ventral portions of the 

midbrain. Thus, a single reference region cannot adequately model noise throughout 

the whole midbrain. The PNM, however, models noise on a voxel by voxel basis, and 

therefore accounts for local variations.  
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The methods presented here use a limited FOV. Whilst it is necessary to do this to 

allow higher resolution scanning at a reasonable temporal resolution, this does limit 

the number of regions that can be investigated. This is further restricted by the 

optimised registration, which focuses on the midbrain, potentially at the expense of 

regions outside this area. This means that subcortical and cortical regions that the 

midbrain is interacting with at a network level cannot be investigated. The PNM has 

previously been tested in the brain and spinal cord (Cohen-Adad et al., 2010) and 

shown to effectively increase the temporal SNR in both regions. Thus it may be 

possible to investigate cortical and midbrain networks using the PNM. However this 

would not be optimised for the midbrain to the same extent as the methods 

presented here, as the larger voxels required for whole-brain coverage would be less 

reliable at assigning activity to a specific midbrain nucleus, due to their small size and 

tightly packed arrangement. 

 

Finally, the sample size used here was small, and although this was sufficient for 

these purposes, a larger sample size may be required for future studies, particularly if 

more complex tasks are administered that might evoke more subtle neuronal 

responses. 

 

The methodology presented here improves on previous techniques used to measure 

BOLD responses in the superior colliculi. Earlier studies did not attempt to optimise 

midbrain registration, and either used an ROI approach to extract signal (DuBois and 

Cohen, 2000; Kennerley and Wallis, 2009; Schneider and Kastner, 2005, 2009; 

Sylvester et al., 2007), or relied on standard registration techniques (Krebs et al., 

2010). Many studies have not attempted to reduce the effect of physiological noise 

(DuBois and Cohen, 2000; Krebs et al., 2010; Schneider and Kastner, 2005, 2009), 

whilst others have only corrected for cardiac effects (Sylvester et al., 2007) or applied 

corrections that are specific to only one area of the midbrain (Wall et al., 2009). 

 

The methods outlined here can be used to further investigate properties of the 

superior colliculi, such as the functional difference between the superficial and deep 

layers and retinotopic organisation (Cynader and Berman, 1972). However the 

purpose of the developments of the methods here is to apply these optimised 

methods to the measurements of reward systems in the human midbrain. Previous 
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attempts to image these dopaminergic nuclei have either used cardiac gating 

(D'Ardenne et al., 2008), RETROICOR (Guitart-Masip et al., 2011), or conventional 

fMRI (Aron et al., 2004; Chase and Clark, 2010; Murray et al., 2008; Waltz et al., 

2009; Wittmann et al., 2005). The PNM must also be tested in the dopaminergic 

midbrain to see if it reduces the impact of physiological noise. It is not known, for 

example, how similar the vasculature and noise properties of the VTA and SNc are to 

the superior colliculi, and it is likely that there are some differences due to their 

differential anatomical location. The next chapter of this thesis will address these 

issues. 
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5. Reward and punishment prediction errors (PEs) in the 

dopaminergic midbrain 

5.1. Summary 

In this chapter, I present the results from my investigation of the role of the 

dopaminergic midbrain system in positive and negative PEs. I used the optimised 

fMRI methods presented in the previous chapters. A financial gain and loss task was 

used to elicit positive and negative PEs, and these were compared to a zero PE 

baseline. The medial dopaminergic midbrain system showed an increase in BOLD to 

both positive PEs and negative PEs. 

 

I also present the results into an investigation of the value of the PNM in the study of 

dopaminergic midbrain system using fMRI. This includes quantifying the noise that is 

explained by the PNM regressors, and a comparison of the GLM analysis with and 

without the PNM. I demonstrate that the PNM does explain noise in the midbrain, 

including regions of the dopaminergic midbrain system, and by including the PNM in 

the analysis I revealed a more extensive cluster of activity than was seen without the 

PNM. 
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5.2. Introduction 

Dopamine neurons in the VTA and SNc are involved in the processing of appetitive, 

rewarding events. In particular they code for when outcomes are better than 

expected: a positive PE signal. This has been demonstrated in the monkey (Fiorillo et 

al., 2003; Schultz et al., 1997; Tobler et al., 2005), rodent (Wang and Tsien, 2011), 

and human (D'Ardenne et al., 2008; Zaghloul et al., 2009). However, as reviewed in 

Chapter 1, non-human evidence suggests they may also code for aversive, punishing 

events (Brischoux et al., 2009; Guarraci and Kapp, 1999; Joshua et al., 2008; Mantz 

et al., 1989; Matsumoto and Hikosaka, 2009; Mileykovskiy and Morales, 2011; 

Valenti et al., 2011; Wang and Tsien, 2011), and thus code for negative PEs (i.e., 

when an outcome is worse than expected).  

 

Relatively little is known about how such theories of midbrain function, based on non-

human research, apply to the human. A positive PE signal has been observed in the 

human using midbrain optimized fMRI (D'Ardenne et al., 2008), but no BOLD 

response was detected for negative PEs. This is inconsistent with the non-human 

literature on punishments, and punishment predicting stimuli. In addition, D’Ardenne 

and colleagues (2008) report no response was observed in the SNc, which is 

inconsistent with non-human recordings of positive PEs (Bayer and Glimcher, 2005; 

Fiorillo et al., 2008; Fiorillo et al., 2003; Schultz et al., 1997). I hypothesised that 

there were two reasons for the absence of a negative PE signal.  

 

The first is that the overall context of the task used by D’Ardenne and colleages 

(2008) may have been rewarding. There is evidence to suggest that the context of 

the PE may influence the response of the neurons (Nakahara et al., 2004). For 

example, if the environment is overall a rewarding one, the individual negative PEs 

may not be processed as expected, as the final outcome will be rewarding. This is 

relevant for fMRI experiments, as each participant expects to win in the end. If the 

participant begins a game with no money, they implicitly know they will not be leaving 

the experiment with an overall loss (otherwise, once the word gets out, the 

experimenter will have trouble recruiting further participants). Thus, such a design 

may bias against the detection of negative PEs. This problem was highlighted by 

Seymour and colleagues (2007) in their discussion of negative PEs in the striatum. 
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The second possible reason for the absence of a negative PE signal in the results of 

D’Ardenne and colleagues (2008) is due to the methodology that was used to 

minimise physiological noise. Cardiac gating was used during acquisition to reduce 

the influence of cardiac related noise in the fMRI data. However no attempt was 

made to remove the respiratory related noise, or the noise that results from the 

interaction of the two noise sources (Brooks et al., 2008; Harvey et al., 2008), or 

indeed the slower changes in heart rate over time that explain noise in the data 

(Chang et al., 2009). 

 

Here I used a Pavlovian conditioning task that has been shown to evoke BOLD 

responses to negative PEs, as well as positive PEs, in the ventral striatum (Seymour 

et al., 2007). The participant was paid £20 for participation in the experiment. This is 

a standard amount to be paid for participation in an fMRI experiment that takes 

approximately two hours. During the task, the participant could win money to add to 

this £20, or lose money that would be taken away. Thus, although the participant 

implicitly knew they would be leaving with a financial gain, the losses were more 

‘ecologically valid’, as they were losing money they had already been given.  

 

In Chapter 4, I demonstrated that the PNM improves the sensitivity of fMRI to a 

midbrain signal by reducing the impact of the physiological noise on the statistics. 

However, just one midbrain region was tested: the superior colliculi. The colliculi are 

on the dorsal wall of the midbrain, adjacent to the fourth ventricle. In contrast, the 

dopaminergic midbrain neurons lie more ventrally. Some regions (such as parts of 

the SNc) are embedded amongst other brain tissue, relatively remote from CSF. 

Other regions, such as the VTA, medial SNc, and very lateral portions of the SNc, 

have components that are close to the CSF of the basal cistern. Thus, it is important 

to establish the value of PNM when studying the dopaminergic midbrain system with 

fMRI, as this region is likely to have different noise properties compared to the 

colliculi. 

 

A strength of the PNM is that it models the noise on a voxel-wise basis. Therefore, if 

there is cardiac and respiratory noise in the dopaminergic nuclei, the PNM will adapt 

to the different noise properties of the region. However, it cannot be assumed that 

the PNM will be as effective for the dopaminergic midbrain system as it proved to be 
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in the proof-of-principle investigation of the signal in the superior colliculi (Chapter 4). 

First, the basic properties of the noise may differ, and may not be as well explained 

by the regressors of the PNM. Second, the magnitude of this noise in comparison to 

the noise present in the colliculi was not known. If the noise were to prove to be 

greater than in dorsal midbrain, recovery of task-related signal might not have proved 

possible. To exacerbate this, the task-related change in the BOLD signal may be of a 

lesser magnitude for reward-related activity in comparison to a primary visual 

response of the colliculi. 

 

The effect of the PNM on the midbrain as a whole has been investigated (Harvey et 

al., 2008), and it was demonstrated that the PNM reduces the variance across the 

region. They produced a map showing the change in variance across a sagittal view 

of the midbrain, but differences within particular sub-regions of the midbrain were not 

explicitly investigated. The noise properties of the dopaminergic midbrain system 

have recently been characterised in a whole-brain study using RETROICOR, without 

the additional regressors included in the PNM (Klein-Flügge et al., 2011). In this 

case, whole-brain maps of the noise in the data were created before and after 

correction. They found that the dopaminergic midbrain system was prone to 

physiological noise, as there was a relatively large change in the variance of the 

data. This was particularly true for regions adjacent to CSF. However, in both the 

above studies, no statistical analysis of the variance reduction was presented. 

Additionally, larger voxel sizes were used than are presented here. With large voxels 

there is a greater influence of partial volume effects. The midbrain is particularly 

prone to partial volume effects in terms of CSF signal being combined with tissue 

signal, and this is exacerbated by the use of larger voxels. Thus there is likely to be 

less influence of physiological noise if smaller voxels are used (Bodurka et al., 2007). 

 

To investigate the use of the PNM within the dopaminergic midbrain system, I 

analysed these data with and without the inclusion of the PNM. In addition, I 

quantified the amount of variance that was explained by the PNM across all 

individuals, and created an image of voxels where significant physiological noise was 

explained by the PNM. This is the first time that midbrain noise properties with high-

resolution fMRI scans has been investigated in this way.  
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Here I show that the dopaminergic midbrain system returned an increase in BOLD 

signal in response to both positive and negative PEs. There was considerable 

overlap between the two patterns of activation. Furthermore, inclusion of the PNM 

revealed a more extensive pattern (extending into lateral SNc) of activity than was 

observed without reduction of the physiological noise. 

5.3. Methods 

5.3.1. Subjects 
Approval for this study was granted by the Imperial College Research Ethics 

Committee. 42 healthy subjects participated in this experiment (22 female; mean 

age, 26.4yrs). Eleven participants were excluded leaving 31 participants (16 female, 

mean age, 26.6yrs). One participant was excluded due to a brain abnormality, three 

due to excess motion (over 2mm), and a further seven that did not learn the task 

contingencies whilst in the scanner (see section 5.4.1, Behavioural results). 

5.3.2. fMRI task 
The task was a passive Pavlovian learning experiment, where participants observed 

cue-outcome contingencies. Visual cues were abstract fractal images 

(www.fractaldomains.com). Each cue was presented for 3s, and was followed by an 

actual financial outcome that was presented for 1.5s. This outcome was either nil 

(represented as an empty circle), a financial gain (represented as a photograph of 

the amount won), or a financial loss (represented as a photograph of the amount lost, 

with a red line running through it). The amount was also written under the image, 

along with a tally of current total winnings.  See Figure 8 for the cues, their 

associated outcomes, and their mean expected values. Cue A reliably led to a nil 

outcome, whereas cues B, C, D, and E led to two equally probable outcomes each. 

Participants were naïve to the cues and their outcomes prior to the fMRI scan, so the 

initial expected value of each cue was nil. After repeated presentations, according to 

the temporal difference model of learning, the cues had an expected value that was 

equal to the mean of the two outcomes. On each trial, the expected value of each  
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Figure 8: Experimental design: the cue-outcome contingencies. Cue A reliably led to 
a nil outcome, cues B to E led to one of two outcomes at equal probability. According 
to the temporal difference model of learning, the mean expected value of each cue B 
to E is the mean of the two possible outcomes, as the two outcomes occur with equal 
probability. 

cue, 𝑣, was updated based on the outcome. This is represented by the following 
formula: 

𝑣 ← 𝑣 + 𝛼𝛿 

where 𝛼 is the learning rate, and 𝛿 the error term. 
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Thus, if two outcomes appear with equal probability, the mean expected value of all 

trials will be the mean of the two values. This is the mechanism by which predictions 

are modified to more accurately represent future outcomes, based on the error terms 

previously experienced. 

 

The error term is calculated as the difference between the actual outcome (𝑟) and the 

expected value of the cue: 

𝛿 = 𝑟 − 𝑣 

 

Thus, according to the temporal difference model, the gain outcomes, and the nil 

outcomes of cue C, elicit positive PEs. The loss outcomes, and the nil outcomes of 

cue B, elicit negative PEs. 

 

Cues were presented in a pseudo-random order with a variable inter-trial interval (0.5 

- 4 s) with jitter relative to the TR. Stimulus order was optimised using the optseq2 

algorithm. Stimuli were presented using the Psychophysics Toolbox extension for 

MATLAB. There were three ten-minute functional runs in the scanner, with each run 

containing a mean of ten trials of each cue-outcome contingency. Participants were 

paid £20 for participating in the study, and any gains or losses they received whilst in 

the scanner were added to or taken away from this initial total. There were four 

functional runs of this task, each lasting 623s. 

5.3.3. Behavioural task 
In order to ensure that participants paid attention during the passive task, they were 

told prior to scanning that they would be tested on what they had learnt, and if they 

performed well they could win a £5 bonus. In addition, this ascertained which 

participants had learnt the contingencies during the task. The test took the form of a 

preference task. Pairs of visual cues were presented on a laptop screen outside of 

the scanner, and participants had to choose which cue they would prefer with a 

button press. Each cue was paired with every other cue, and each pairing was 

presented ten times. If the participants correctly chose the cue with the higher 

expected value over 50% of the time, they received immediate feedback that they 

had earned the financial bonus. Choices they made when cues had equal expected 

value were not included in this scoring.  
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5.3.4. MRI acquisition 
MR scanning was performed on the same scanner as previously described, and 

physiological measures again collected. Functional MR images were obtained using 

a T2*-weighted, EPI sequence with a field-of-view that covered the long axis of the 

brainstem (TE = 44ms, TR = 1900ms, flip angle = 90°; resolution, 1.7 × 1.7mm;  

matrix size, 200 × 200 x 36mm; slice thickness, 1.7mm; 21 coronal slices; no slice 

gap; interleaved slice order; SENSE, 2). There were four functional runs, each 

containing 322 scans, and lasting 623s. A matching whole-brain EPI (141 slices; TE 

= 44ms; TR = 12640s; matrix size, 200 × 200 x 240mm) was also collected. In 

addition to the T1-weighted and T2-weighted structural images that have previously 

been described, a dual-echo structural image was collected along the long axis of the 

brainstem with a T2 and PD contrast to visualise midbrain nuclei (TE of 16ms and 

80ms respectively, TR = 4000ms, resolution, 1.3 x 1.3mm; slice thickness, 1.3mm; 

32 coronal slices; matrix size, 240 x 180 x 42mm).  

5.3.5. Analysis 
Pre-processing was carried out in an identical manner to the procedures described in 

Chapters 3 and 4, with the exception of the spatial smoothing, which had a slightly 

increased FWHM of 3mm. This was because the region of interest was larger than 

the colliculi that I had previously investigated, and the prediction was that the SNR 

would be less for a reward response than a visual sensory response. Midbrain 

optimised registration, as described in Chapter 3, was used. A GLM approach 

identical to Chapter 4 was used for the statistical analysis, but a slightly longer HRF 

of 4.5s was used. The physiological data were processed in an identical manner to 

that previously described, and 33 physiological noise regressors were created for 

each individual. At the first-level of the analysis a GLM was created for each 

individual, for each run of the experiment. A fixed effects analysis was carried out at 

this level. The second-level of the analysis combined the runs of each individual, 

again a fixed-effects analysis as it was within-subject. At the final level the results of 

all individuals from the second-level, were combined. This analysis was mixed-

effects. 
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5.3.5.1. Main effects analysis 

Using the above methods two separate analyses were carried out, one without the 

PNM and one with the PNM. In both analyses, the regressors entered into the model 

included: 

• The first that represented the onset of the cues. 

• The second that represented outcomes that elicited a positive PE (all the 

financial gain outcomes, and the better than expected nil outcome). 

• The third that represented outcomes that elicited a negative PE (all the 

financial loss outcomes, and the worse than expected nil outcome) 

• The fourth that represented outcomes that did not elicit a PE (the expected nil 

outcomes). 

 

In the first analysis the noise regressors consisted of six head motion parameters, 

and in the second analysis the 33 physiological noise regressors were also included. 

 

Prior to thresholding, a hand-drawn mask was applied to the functional data to 

include only voxels within the midbrain. This was defined on a standard brain by 

using anatomical boundaries: 

• The dorsal edge of the midbrain was defined by the borders of the colliculi. 

• The ventral boundary was defined by the border of the cerebral peduncles 

with the basal cistern. 

• The caudal edge was defined by the cessation of the high intensity region 

representing the SN. 

• The rostral edge was defined by a line drawn from the rostral edge of the 

superior colliculi and the cerebral peduncles. 

 

The statistical maps were again thresholded using RANDOMISE, with a nominal t-

value of 2.3 (p < 0.05). 

 

5.3.5.2. The utility of the PNM 

In addition to comparing the resulting statistical maps from the two analyses to test 

the value of the PNM when investigating the dopaminergic midbrain system, further 
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analysis was required. This was because it was not immediately obvious from the 

results if the PNM was improving the statistics (unlike the results from the superior 

colliculi, where the inclusion of the PNM led to an improvement in t-scores of voxels 

within this region). 

 

To further investigate the PNM, I used an F-test to reveal the amount of variance that 

was being explained by the 33 physiological regressors at each voxel. For each 

individual the resulting maps were thresholded (F(33,197)=1.45, p < 0.05, uncorrected) 

and binarised, to create a map for each individual representing significance as a 

binary value. These individual maps were added together to create a group overlap 

image of significant voxels. This overlay image was analysed using the binomial 

probability distribution function to calculate a probability value for each voxel in the 

overlap mask. The binomial probability density function can be used to calculate the 

probability of an observation occurring by chance when there are two possible 

outcomes. In this case it calculated, for each voxel, the probability of the observation 

(the number of participants who show significant activation), taking into account the 

size of the group and the error rate of the F-test. 

  

This probability map was then thresholded at p < 0.05 using a false discovery rate 

(FDR) (Genovese et al., 2002) to correct for multiple comparisons. The analysis was 

repeated with a more conservative threshold (p < 0.001) for the F-test and FDR 

correction, and the same pattern of results was observed. 

 

FDR correction was selected to correct for multiple comparisons, as traditional 

cluster correction is inappropriate for unsmoothed data, and voxel-wise correction 

would have been too conservative. Instead of controlling the Type I error rate (false 

positives) for all voxels in the overlap image, FDR correction controls for the Type I 

error rate for the voxels that are positive, and ignores voxels that accept the null 

hypothesis. Thus FDR correction adapts to the dataset in question, and is less 

conservative than voxel-wise correction. 
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5.3.5.3. PE responses elicited in the absence of financial outcomes 

 

A second model of the experimental variables was analysed. In this model the 

regressors entered into the GLM were identical to the PNM analysis (see section 

Error! Reference source not found.), but the PE regressors were further 

subdivided. Rather than all positive PEs being represented as one variable, they 

were split into positive PEs that were elicited by a financial gain, and positive PEs 

that were elicited by a better than expected nil outcome. Similarly, negative PEs were 

split into PEs elicited by a financial loss, and PEs elicited by a worse than expected 

nil outcome. This analysis allowed the investigation of the nil outcomes to see if PE 

responses could be elicited in the absence of financial outcomes. The following four 

following contrasts were modelled: 

1. Positive PE (elicited by a gain outcome) > zero PE 

2. Positive PE (elicited by a nil outcome) > zero PE 

3. Negative PE (elicited by a loss outcome) > zero PE 

4. Negative PE (elicited by a nil outcome) > zero PE 

 

The first step of this analysis was to analyse the responses to these contrasts on a 

voxelwise basis, using an identical method to that presented for the main effects 

analysis above. The outputs of contrasts three and four were assessed to see if there 

was a midbrain response to PEs in the absence of financial outcomes. The voxelwise 

results of the first two contrasts were binarised to create a binary map of regions that 

showed a significant BOLD response to positive PEs elicited by gain outcomes, and 

positive PEs elicited by loss outcomes. These binary maps were then used for an 

ROI analysis using Featquery. The ROIs were defined using the gain and loss 

contrasts to avoid using the nil PE outcomes in the creation of the ROI, which would 

be a circular analysis.  

 

5.3.5.4. Parametric analysis: the temporal difference model 

 

The final analysis made use of the temporal difference model outlined in section 

5.3.2. This model represents the learning of the participants throughout the task. 
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There was no learning phase prior to the scanner task, so the EV of each cue could 

be modelled as zero at the start of the task. According to the temporal difference 

model, as the participant’s experienced cue-outcome contingencies, their expected 

value of each cue would be updated on a trial-by-trial basis. This varying EV 

associated with each cue would modulate the PE associated with each outcome.   

 

Custom Matlab scripts were utilised to update the EV on a trial-by-trial basis. As the 

order of trials was different for each participant, this was carried out for each 

individual. A learning rate of 0.5 was chosen for each participant, as I had no 

measure of individual learning rate during the task. 

 

To create a GLM using this model, each trial was categorised according to its relative 

level of PE. For each subject the positive PE outcomes were listed by magnitude, this 

list was then subdivided equally into six bins, varying from low PE, to high PE. The 

same was done for the negative PEs. This method of categorisation was chosen over 

and above the categorisation by a fixed level of PE, as the range of PEs experienced 

by each individual varied considerably due the trial order differences. 

 

These 12 regressors were then entered into the GLM, along with cue onset, the PNM 

regressors, and motion regressors. The 12 regressors themselves were not 

parametrically modulated; instead a parametric analysis could be compared by 

looking for a BOLD signal that correlated with increasing level of PE. To do this the 

six level of positive PEs (from low positive PE to high positive PE) were contrasted 

using the following demeaned weightings: 

 

   -5  -3  -1   1 3 5 

 

Any voxels that showed a significant positive response to this contrast would 

increase their BOLD response in a linear manner with the level of positive PE. The 

same contrast was constructed for the negative PEs, from low negative PE (near 

zero), to high negative PE (far from zero). In addition, each level of PE was 

contrasted against the zero PE baseline, and these contrasts were used fro an ROI 

analysis. The regions used for the ROI analysis were binarised masks of the 
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midbrain clusters that were associated with positive PE and negative PE  from the 

main effects analysis (Figure 13).  

5.4. Results 

5.4.1. Behavioural results 
If participants chose cue C (which had an expected value of -50p) more frequently 

than cue B (which had an expected value of +50p), they had not learnt the 

contingencies whilst in the scanner, and so they were excluded from the analysis. 

Seven participants fitted this criterion and were removed, and data from the 

remaining thirty-one participants is presented here.  

 

A preference score was calculated for each cue, based on the number of times it was 

selected in the preference task. Figure 9 shows the mean preference score for the 

included participants. 

 

At the group level, a one-way repeated measures ANOVA revealed a significant 

effect of cue F(4,120)=35.43, p < 0.01.  Planned contrasts revealed participants chose 

Cue B (expected value= +50p) significantly more than Cue A (EV = nil), F(1,30)=75.07, 

p <  0.01, and Cue A significantly more than cue C (expected value = -50p), 

F(1,30)=10.13, p < 0.05. These results show that, for cues A, B, and C, the preference 

score reflects the expected value of these cues. Therefore PEs should be elicited by 

the outcomes of these cues. Planned contrasts are not reported for cues D and E, as 

these cues have bivalent outcomes with a nil expected value, and so there are 

further factors involved in the decision making process for these cues, such as risk 

behaviour. It is not a simple expected value comparison, as the cues have an equal 

expected value as cue A. 
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Figure 9: Results from the preference task. Error bars represent standard error.  
* represents significant differences (p < 0.01) as reported in the text. 

5.4.2. Localising the dopaminergic midbrain 
The location of the midbrain relative to the whole brain can be seen in Figure 10. 

Whilst there are slices where there is considerable overlap between the SN as 

defined on PD (Figure 10c) and T2 images (Figure 10d), the are also considerable 

disparities between the two definitions. At the transverse plane of z = -12mm, there is 

considerable disparity between the region of high intensity on the PD images used to 

define the SN, and the region of low intensity used to define the SN on the T2 image. 

The low intensity region of the T2 image also includes portions of the cerebral 

peduncles. In addition the full extent of the SN is better represented on the PD scan, 

as a region of high intensity on the PD image represents the caudal section (z = -20) 

of the SN, whereas this same region is of uniform intensity on the T2-weighted scan. 

This disparity is in line with previous investigations of the SN on MRI images, and 

from this point forward all images are represented on the group average PD image. 

However to ensure that the definitions I used represented the underlying anatomy as 

accurately as possible, histology slices (Figure 10b) (adapted from Naidich et al., 

2009) were used to inform the definitions. The boundaries of the dopaminergic 

midbrain system shown in Figure 10 were defined using a combination of the 
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anatomical landmarks visible on the histology slices and the regions of high intensity 

on the PD image. The SNc was defined at the dorsal portion of the SN, and the VTA 

as the region bordering the medial edge of the SNc and the red nuclei. However 

anatomical subdivisions within the human SN and VTA are not well understood, as 

discussed in section 1.2.1, so these boundaries are an estimate.  

 

 

 

  
Figure 10: Localising the dopaminergic midbrain system. (a) The location of the 
midbrain slices of interest in two z-planes of the whole-brain group average T1 in 
MNI space. (b) Post mortem histological images of the midbrain used to define 
boundaries of VTA (1), SNc (2) and SNr (3) shown with green and blue lines, 
adapted from Naidich et al (2009). (c) PD group average images of the midbrain in 
MNI space. (d) T2 group average images of the midbrain in MNI space. 
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5.4.3. FMRI results 

5.4.3.1. Main effects 

I investigated the BOLD response in the midbrain during the outcome phase of the 

trials. It is during the presentation of the outcome that the received outcome is 

compared to the predicted outcome, and a response to the PE occurs (Schultz et al., 

1997). The experimental design allowed both the comparison of positive PEs and 

negative PEs against a zero PE baseline. The positive PE outcomes included the 

financial gain outcomes, and the nil outcomes when the alternative was a financial 

loss. Negative PE outcomes included the financial loss outcomes, and the nil 

outcomes when the alternative was a financial gain. Figure 11 shows the results of 

this analysis. The positive PE was associated with activity in the dopaminergic 

midbrain system, specifically, the caudal VTA and caudomedial SNc. Additionally, I 

saw a similar area of activity that was associated with negative PE, which extended 

into the rostromedial SNc on the left. 

 

 

 
Figure 11: PE analysis. The VTA responded to the occurrence of a positive PE (top 
panel) and a negative PE (bottom panel). Both contrasts were against a zero PE 
baseline (nil outcome of cue A). The statistical maps show significant clusters of 
voxels (determined using non-parametric permutation testing with a corrected 
threshold of p < 0.05 and a nominal t-value of 2.3). The t-values of the active voxels 
are indicated by the legends. 
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5.4.3.2. The utility of the PNM 

When the analysis was rerun with the PNM, I quantified the variance that was 

explained by the PNM regressors. 

  

Figure 12 shows the voxels where a significant amount of noise was explained by the 

PNM (p < 0.05). When the analysis was repeated with a more conservative threshold 

(p < 0.001) the pattern of significant voxels was similar.  This result shows that there 

is widespread physiological noise that is being explained by the PNM regressors in 

the midbrain. Voxels near to CSF are particularly prone to noise, and this 

susceptibility occurs in voxels within the dopaminergic midbrain system. This is 

particularly true in the rostral regions. Additionally, the right SN contains more 

significant voxels at z = 12 than the left. 

 

 
 
Figure 12: The location of physiological noise. The overlay image shows how many 
participants showed significant physiological noise at each voxel. This was created 
by conducting an F-test at each voxel (p < 0.05), which assessed how much noise 
was explained by the PNM regressors. Such a test was carried out for each 
individual, and a binary map of each individual’s significant voxels were added 
together to create an overlay image. The binomial probability density function was 
used to derive p values from the overlap image, which was then thresholded using a 
false discovery rate (p < 0.05) to correct for multiple comparisons. Black voxels are 
outside the group statistical image. 
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The PE contrasts were reanalysed with the inclusion of the PNM (Figure 13). The 

pattern of activity in the caudomedial dopaminergic midbrain system that had been 

revealed without the PNM remained. In addition there was a more extensive pattern 

of activity in the rostral midbrain. For the positive PE contrast the revealed activity 

was a cluster of medial voxels in a region that had previously shown no activation. 

For the negative PE activity, the medial region that had previously been apparent 

was more widespread and extended to the lateral SNc on the left. 

 

 

 
 

Figure 13: The positive and negative PEs when PNM is included in the analysis. The 
activity within the caudal VTA remains the same. For the positive PE contrast, activity 
is revealed in the rostromedial dopaminergic midbrain system that was previously 
hidden by physiological noise. In addition, previously hidden activity is revealed in the 
lateral SNc for negative PEs. The statistical maps show significant clusters of voxels 
(determined using non-parametric permutation testing with a corrected threshold of 
p < 0.05 and a nominal t-value of 2.3). The t-values of the active voxels are indicated 
by the legends. 

5.4.3.3. PE responses elicited in the absence of financial outcomes 

The PE responses were divided into those that were elicited by financial outcomes 

and those that were elicited by nil outcomes. This analysis allowed the separation of 

PE responses caused by the receipt of a financial outcome, and those caused by the 

absence of a financial outcome, to ensure the observed responses were caused by 

the PEs, not the financial outcomes themselves. The voxelwise analysis of nil PE 
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outcomes was carried out to investigate if there was a PE response in the absence of 

a financial outcome. The nil outcomes that elicited a positive PE were compared to 

nil outcomes that did not elicit a PE. Similarly nil outcomes that elicited a negative PE 

were compared to nil outcomes that did not elicit a PE. This second contrast 

(negative PE>zero PE) revealed a significant cluster of voxels localised in the caudal 

VTA (see Figure 15). However there was no cluster of activity associated with a 

positive PE in the absence of a financial outcome. 
 

 

 
Figure 14: Negative PE elicited in the absence of a financial loss. Activity associated 
with a negative PE nil outcome is localised to the caudal VTA. The statistical maps 
show significant clusters of voxels (determined using non-parametric permutation 
testing with a corrected threshold of p < 0.05 and a nominal t-value of 2.3). The t-
values of the active voxels are indicated by the legends. 

The above voxelwise analysis may not be as sensitive to BOLD changes as the 

original PE analysis as there were far fewer trials associated with the nil PE 

outcomes compared to the PEs elicited by financial outcomes. To further investigate 

the nil outcomes, signal associated with PEs elicited by nil outcomes was extracted 

from the regions of the midbrain that showed a response to PEs elicited by financial 

outcomes. Figure 15 shows the results of the ROI analysis. There was a significant 

difference between the positive PE response elicited by the gain outcome, and the 

positive PE response elicited by a nil outcome (t(30) = 2.835, p < 0.05). There was no 

significant difference between the negative PE response elicited by a loss outcome, 

and a nil outcome (t(30) = 1.815), however this was approaching significance (p = 

0.74). To establish if this test had enough power to detect any possible difference, 

achieved power was calculated using G*Power (Faul et al., 2007). Power was 0.43, 

showing that this contrast was indeed underpowered. With the effect size of this t-
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test, more participants would be required to establish if there was a difference 

between the two contrasts. 

 

 
 

Figure 15: Investigating the PEs elicited by nil outcomes. Mean COPE values for 
different types of PEs. Presented with standard error bars. ROI analysis was used to 
extract COPE values from within the clusters revealed by the gain positive PE 
contrast for the positive PE contrasts, and the loss negative PE for the negative PE 
contrasts. There was a significant difference between the positive PE response 
elicited by a gain outcome and a nil outcome (t(30)=2.835, p<0.05), and no significant 
difference between the negative PE response elicited by a loss outcome and a nil 
outcome (t(30)=1.815). 

One-sampled t-tests were used to see if the signal from the ROIs associated with the 

nil PEs was different from zero. In this case the zero baseline was the predictable nil 

outcome. The positive PE elicited by the nil outcome was significantly different from 

zero (t(30) = 2.875, p < 0.05). The negative PE elicited by the nil outcome was also 

significantly different from zero (t(30) = 3.897, p < 0.05). 
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5.4.3.4. Parametric analysis: the temporal difference model 

 

Finally, the temporal difference model was used to model the predicted BOLD 

response on a trial-by-trial basis. This analysis allowed the investigation of the 

possibility that the magnitude of the BOLD response scaled with the level of PE. A 

parametric contrast was constructed that included all six levels of positive PE, with a 

predicted linear relationship between them. A similar contrast was constructed for the 

negative PE. Neither contrast revealed activity when analysed on a voxelwise basis. 

 

Constructing such parametric contrasts is limiting, as the only relationship that will 

lead to a significant result is a linear one. In other words the BOLD response would 

have to scale linearly with increasing level of PE. To avoid this assumption I carried 

out an ROI analysis. Each level of positive and negative PE was contrasted with the 

zero PE baseline. For the positive PE analysis, the region that responded to positive 

PE (revealed by the main effects contrast) was used as the ROI, for the negative PE 

analysis, the region that responded to negative PE (revealed by the main effects 

contrast) was used (see Figure 13 for the results used to create the ROIs).  

 

Figure 16 shows the results of this analysis. To test if the level of positive PE 

modulated the magnitude of the BOLD response, a repeated measures ANOVA was 

carried out. The results show that the level of the BOLD response was not 

significantly affected by the level of positive PE, F(5,150) = 0.369, p > 0.05). A repeated 

measures ANOVA was also carried out to investigate if the level of negative PE 

modulated the BOLD response. Again, the results show that the level of the BOLD 

response was not significantly affected by the level of negative PE, F(5,150) = 0.392, p 

> 0.05). 
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Figure 16: Temporal difference analysis of PE. Mean COPE values for different 
levels of PEs. Presented with standard error bars. The top panel shows the BOLD 
response to increasing level of positive PE, each level compared to the zero PE 
baseline. The bottom panel shows the BOLD response to increasing levels of 
negative PE, each level compared to the zero PE baseline.  

5.5. Discussion 

5.5.1. Positive and negative prediction errors 
Here I have shown that, using financial outcomes to elicit PEs, the human 

dopaminergic midbrain system codes for positive PEs, as previously reported in non-

humans (Fiorillo et al., 2003; Tobler et al., 2005) and humans (D'Ardenne et al., 

2008; Zaghloul et al., 2009). In addition the region codes for negative PEs. This is the 

first time a negative PE signal has been observed in the human dopaminergic 
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midbrain system. It is in line with the recent non-human research that has found 

responses to punishing stimuli or cues predicting punishing stimuli (Brischoux et al., 

2009; Joshua et al., 2008; Matsumoto and Hikosaka, 2009; Mileykovskiy and 

Morales, 2011; Wang and Tsien, 2011).  

 

To confirm that the responses I had measured were in fact prediction errors, and 

were not in response to the financial outcome itself, I compared the BOLD signal in 

the active region of the midbrain for PEs evoked by a nil outcome to the signal 

produced by a PE evoked by a financial outcome. I found that the nil outcomes led to 

an increase BOLD signal (from the nil zero PE baseline), and so the BOLD response 

occurred in the absence of any unexpected financial outcome. This provides support 

for the assertion that I have measured PE responses in the dopaminergic midbrain, 

as unexpected nil outcomes modulated the midbrain signal.  

 

However, for positive PEs, there is a significant difference between the two types of 

positive PE responses. The BOLD response to an unexpected financial gain is 

significantly greater than the BOLD response to an unexpected nil outcome that is 

better than expected. In addition, there is a non-significant difference between the 

BOLD response to an unexpected financial loss, and the response to a nil outcome 

that is worse than expected. Although this contrast was non-significant, the contrast 

is underpowered. More participants would be required to establish if this difference 

between the two conditions is a genuine effect.   

 

These differences suggest that I am not observing a response that only reflects the 

level of PE. Electrophysiological findings suggest that the firing rate of dopamine 

neurons are modulated only by the level of PE, and do not reflect the intrinsic value 

of the received reward or punishment. However, this result suggests that there is an 

interaction between the PE response, and the occurrence or absence of financial 

outcomes. There are several possible interpretations of this result. First, it could be 

due to the properties of the BOLD signal being measured. Many regions provide 

inputs to the VTA and SNc, and some of these regions are sensitive to absolute 

values, such as the amygdala (Paton et al., 2006), and orbito-frontal cortex (Knutson 

et al., 2005). Inputs to the dopaminergic midbrain may cause a change in the BOLD 

activity of the dopaminergic midbrain, and modulations of these network level inputs 
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may cause the additional change in BOLD that is observed when an unexpected 

finial outcome is received, over and above the PE response. Second, it is possible 

that the result is a consequence of the use of financial outcomes to create prediction 

errors. Money is a uniquely human stimulus, with no correlate in the animal. As a 

secondary reinforcer it may have different properties to primary rewards, and may be 

processed in a different manner in the midbrain. Despite these unknown factors, it is 

important to remember that the unexpected nil outcomes did elicit responses in the 

midbrain, suggesting that I have measured a PE response in the midbrain. 

 

It is of great interest that the BOLD responses I measured did not scale with the level 

of PE. Previous research into the midbrain (D'Ardenne et al., 2008) has found that 

the BOLD signal in the VTA increases with the level of positive reward PE. There are 

three possible reasons to explain this apparent discrepancy. First, it could be due to 

the power of the experiment. The methods I used, including task design, midbrain 

optimisation, and high-resolution scanning, may not give me the sensitivity required 

to detect a parametric modulation in BOLD signal. Second, it may be that the 

hemodynamic response of the midbrain does not lead to a linear increase in BOLD 

signal with a linear increase in neural activity. Finally, it may be that the BOLD signal 

reflects more than the dopaminergic firing rate changes observed in the non-human. 

As discussed in the introduction, the BOLD signal is more likely to reflect integrative 

inputs (Logothetis, 2003), at least at the level of the cortex. Therefore, dendrosomatic 

processes that result from changes in excitatory and inhibitory inputs may modulate 

the BOLD response at the level of the midbrain. If this is the case, the response 

would not be expected to scale with the level of PE, as we are measuring more than 

dopaminergic firing rate. 

 

As fMRI measures activity on a scale of millimetres, it is not possible to elucidate the 

precise mechanisms at the level of individual neurons, as is possible with single cell 

recordings, that are causing the changes in BOLD in response to reward and 

punishment PEs. However, using the extensive research into the non-human 

dopaminergic midbrain system, it is possible to offer several mechanisms that may 

be causing the changes in the BOLD signal. There is much overlap between the 

clusters of activity for both types of PE. This may mean that the same neurons are 

firing to both types of PE. If this is the case then the neurons are reflecting a saliency 
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signal, unaffected by the valence of the stimuli (Redgrave et al., 2008). Neurons with 

such responses have been localised in the non-human (Bromberg-Martin et al., 

2010b; Matsumoto and Hikosaka, 2009). However, taken as a whole, the literature 

suggests a complex model for the neural response to negative PEs, with some 

neurons increasing their firing rate, others being suppressed, and some showing a 

rebound excitation at the stimulus offset (Brischoux et al., 2009; Joshua et al., 2008; 

Matsumoto and Hikosaka, 2009; Valenti et al., 2011; Wang and Tsien, 2011). 

Therefore it is unlikely that the cluster of activity for the negative PE represents a 

unitary excitatory response, and instead is a result of the activity of different neuronal 

types. Co-localisation in fMRI does not mean that the activity is necessarily the result 

of the same population of neurons, as multiple types of neurons may not be 

anatomically segregated at a scale that is visible with fMRI, or they may not be 

anatomically segregated at all. 

 

This result also raises an interesting question regarding projection targets of the 

dopaminergic neurons. If there are two sub-populations of dopamine neurons that 

respond to reward and punishment PEs, then this may explain the anatomical 

segregation that has been observed in the striatum in response to financial gains and 

losses (Seymour et al., 2007). 

 

5.5.2. Physiological noise 
I investigated the physiological noise properties of the dopaminergic midbrain system 

by identifying voxels that contained a significant amount of variance explained by the 

PNM regressors. This analysis showed that midbrain tissue bordering the CSF is 

most prone to physiological noise, and the dopaminergic midbrain system is 

susceptible due to its proximity to CSF, particularly the rostromedial VTA and SNc 

complex. More lateral portions of the SNc seem unaffected by the inclusion of the 

PNM, presumably due to its relative remoteness from CSF. The most lateral portions 

of the SNc are affected by the inclusion of the PNM, again due to their proximity to 

CSF. Unfortunately no direct comparison can be made with the previous 

investigations of the noise properties of the midbrain (Harvey et al., 2008; Klein-

Flügge et al., 2011) as no statistical analyses were carried out on the observed 

variance reductions.   
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Although PE related activity was observed in the midbrain without the PNM, a more 

extensive clusters of voxels for both positive and negative PEs were revealed when 

the PNM was include in the analysis. Activity that was previously hidden by 

physiological noise was revealed in the medial SNc for positive PE. The medial SNc 

signal that we had observed in response to negative PE extended laterally with the 

inclusion of the PNM. Thus, even though the voxels within the lateral SNc were not 

significantly affected by physiological noise, the inclusion of the PNM does improve 

signal detection within this region. The lateral SNc is a narrow band of cells, relative 

to the medial SNc and VTA complex. This may mean that fMRI is relatively 

insensitive to lateral SNc activations, so is affected by small changes in the level of 

physiological noise. In addition the SNc cluster extends from the medial to lateral 

dopaminergic regions, and includes the rostromedial region that is prone to noise. 

Without the rostromedial cluster the lateral cluster may be too small to reach 

significance. 

 

Furthermore, the task used here elicits motivationally salient responses, and thus the 

physiological noise may correlate with task events, which would result in erroneous 

activations. I have shown that the BOLD activations occur even when physiological 

data are removed, revealing that the observed BOLD signal reflects task-evoked 

neuronal activity rather than task-evoked cardiac or respiratory responses.  

5.5.3. Limitations 
Although this study has provided a novel result that is supported by a large body of 

non-human experiments, it does have limitations. First, the observed activity in the 

SNc is localised to the left, with no activity in the right SNc. There has been no 

suggestion in the animal literature that the function of the SNc is lateralised in this 

way, so it is likely that the finding is a consequence of the method used. Even with 

the efforts to optimise fMRI to measure a signal in the midbrain at high-resolution, the 

power of the experiment is still less than would be expected from a whole-brain study 

with standard voxel size. This is due to the reduced SNR, which is a consequence of 

the reduced voxel size, and the relative increase in physiological noise in the 

midbrain. Even though it is possible to reduce the influence of the physiological 

noise, it is not possible to completely remove its effects. Thus, the laterality of the 
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SNc is probably due to the relatively low power of the experiment. The shape of the 

lateral SNc, which makes it more difficult to obtain an fMRI signal from this region, 

exacerbates this problem of reliable recovery of signal. In addition, there were more 

voxels in the left SNc that had a significant amount of variance explained by the 

PNM, which may mean that this sub-region was more prone to physiological noise. 

  

Another limitation was that the limited FOV used during data acquisition meant that 

network interactions at the level of the whole-brain could not be investigated. For a 

full understanding of the reward network, this is required. A potential solution would 

be to carry out an experiment with a high-resolution technique, such as the one 

presented here, to elucidate the role of the midbrain nuclei in the human, and then 

repeat the experiment at the whole-brain level. It could then be inferred, with the 

optimal level of accuracy, the regions of the midbrain that were involved in the task in 

question, before investigating network level interactions across the whole brain. An 

additional advantage would that PNM could be applied to whole-brain data. However, 

the problem of registration would still remain, as the method presented here achieves 

optimal midbrain co-registration at the cost of the cortical mantle of the cerebral 

hemispheres.  

5.5.4. What does a signal in the midbrain reflect? 
The general consensus within the fMRI community is that the BOLD signal is 

dominated by integrative inputs and local interneurons (as reflected by the LFP), with 

a relatively small contribution from action potentials (Logothetis, 2008; Logothetis et 

al., 2001). This presents a possible problem for the interpretation of the BOLD signal 

in the dopaminergic midbrain, as the animal models of dopamine neurons are based 

on measures of output. Although LFP and action potential output often correlate, this 

is not always the case; there is a report of a change in the BOLD signal occurring 

without a corresponding increase in the firing rate of neurons (Logothetis and 

Wandell, 2004).  

 

In addition, no experiments have been carried out to investigate the neural basis of 

the midbrain BOLD signal. Therefore we can only assume that the BOLD signal 

reflects the same neural properties in the midbrain as it does in the cortex. However, 

due to possible differences in vasculature, and differences in the ratio of afferents to 
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efferents that midbrain neurons receive in comparison to the cortex, this may not 

necessarily be the case. 

 

Based on what is known about the responses of midbrain dopaminergic neurons to 

both and positive and negative PEs from the non-human, there are several 

possibilities as to what the BOLD response could be reflecting. Figure 17 outlines 

mechanisms by which inputs synapsing directly onto dopamine neurons could be 

modulating the activity of dopamine neurons. Dopamine neurons could be receiving 

excitatory input, which causes an increase in dopaminergic output (Figure 17a). In 

this case the increased metabolic demands that cause a change in the BOLD signal 

could originate from the dendro-somatic processes of the dopamine neuron (as 

would be measured by the LFP), or the action potentials themselves. Alternatively, as 

shown in Figure 17b, these inputs could be sub-threshold and no action potentials 

could ensue, but the metabolic demands of the dendro-somatic processes could 

increase the BOLD signal. Alternatively, there could be an increase in the output of 

the dopamine neurons, due to a decrease in inhibitory inputs (Figure 17c). 

 

Alternatively, the BOLD signal could originate through the modulation of GABAergic 

interneurons within the dopaminergic midbrain (Figure 18). In the rat, 35% of VTA 

neurons are GABAergic, and in the SNc this number is 29% (Nair-Roberts et al., 

2008). Although the role of these neurons is not known, it is possible that GABAergic 

interneurons synapse onto dopamine neurons and modulate their activity. These 

GABA neurons could receive increased inhibition that reduces their inhibitory 

influence on the dopamine neurons, causing an increase in dopaminergic output 

(Figure 18a). Finally, these neurons could receive increased excitation, which could 

lead to a decrease in the dopaminergic firing rate (Figure 18c) or no change in the 

firing rate (Figure 18d), but an increase in the BOLD signal.  
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Figure 17: Possible neural mechanisms underlying the BOLD response in the 
dopaminergic midbrain. (a) Increased excitatory input to dopamine neurons, resulting 
in increased firing rate of dopamine neurons, (b) sub-threshold excitatory input to 
dopamine neurons, with no increase in firing rate, (c) decreased inhibitory input to 
dopamine neurons, resulting in increased firing rate of dopamine neurons. DA = 
dopamine (blue), GABA = gamma-aminobutyric acid (red), glutamate = green. 
Dashed line indicates boundaries of the dopaminergic midbrain. 

 

 
 

 
Figure 18: Possible neural mechanisms via GABAergic interneurons underlying the 
BOLD response in the dopaminergic midbrain.(a) increased inhibitory input to GABA 
neurons, leading to decreased inhibition of dopamine neurons, and a resulting 
increase in dopaminergic firing rate, (b) increased excitation of GABAergic neurons, 
leading to increased inhibition of dopamine neurons, and a decrease in dopaminergic 
firing rate, (c) increased excitation of GABAergic neurons, leading to sub-threshold 
inhibition of dopamine neurons, and no change in the dopaminergic firing rate. DA = 
dopamine (blue), GABA = gamma-aminobutyric acid (red), glutamate = green. 
Dashed line indicates boundaries of the dopaminergic midbrain. 
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Recent evidence into the role of these midbrain GABA neurons has suggested that 

they are involved in computing the value of cues, and do not change their firing rate 

in response to PEs (Cohen et al., 2012). Thus the most parsimonious explanation for 

the change on BOLD that occurs in response to positive PEs is that dopamine 

neurons increase their firing rate as a result of increased excitatory, or decreased 

inhibitory, inputs. For negative PEs, the picture is not as clear, due to the 

heterogeneous response to these types of PEs within the dopaminergic midbrain. It 

is possible that there is a network of neurons that fits the model of Figure 18b, that 

would correspond to the dopaminergic neurons that showing GABA interneuron 

induced suppression in response to punishment PEs. However it is also likely that 

there is an increased dopaminergic output, due to the existence of neurons that are 

excited by punishment PEs. 

 

In addition there is a population of glutamatergic neurons in the VTA that make up 2-

3% of the total neuronal population (Nair-Roberts et al., 2008). These neurons form 

local connections with dopaminergic and non-dopaminergic cells (Dobi et al., 2010). 

However, as the population of the glutamatergic neurons is relatively small, it is 

unlikely activity in this population is contributing to the observed BOLD signal. 

 

Taking these possible mechanisms into account, the increase in BOLD signal that 

was observed for the both positive and negative PE could reflect a number of 

different neural mechanisms, alone or in combination. In addition, the same change 

in BOLD signal for these two types of responses could be due to two different 

underlying neural mechanisms. Clearly, work is needed into the neural basis of a 

midbrain BOLD signal before such questions can be answered.  

5.6. Conclusions 

Here I have shown that the BOLD signal of the dopaminergic midbrain system was 

increased in response to both positive and negative PEs. Moreover, there was a 

significant amount of physiological nose in the dopaminergic midbrain, which was 

effectively reduced by the PNM. This the first time that an increase in the BOLD 

signal in the midbrain has been observed in response to a negative PE. 
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6. Discussion 

6.1. Summary of key findings 

The aims of this thesis, as discussed in the introduction, were: 

1. To optimise registration to improve the accuracy of localisation of structures at 

the level of the midbrain; 

2. To attempt to reduce the influence of physiological noise in midbrain fMRI 

data, to improve my ability to measure a signal from the human midbrain; 

3. To use the optimised midbrain fMRI methods to measure the BOLD response 

to positive and negative PEs in the human midbrain, to extend current non-

human models of the dopaminergic midbrain to the human. 

The first aim was achieved in Chapter 3. I presented a replicable and automated 

method to improve the localisation of midbrain fMRI signals by improving midbrain 

registration. Poor registration would greatly reduce the power of a midbrain fMRI 

experiment, as BOLD signals from a single region across participants would be 

blurred in standard space. Poor registration could also lead to inaccurate localisation, 

and the mislabelling of activity. To achieve this improved accuracy, two additional 

structural scans were used to improve registration between functional and structural 

T1-weighted images: an EPI that matched the functional data but had whole-brain 

coverage, and a whole-brain T2-weighted image. This pathway was compared to 

conventional registration pathways, and was shown to significantly improve midbrain 

registration. This method used standard analysis tools, and can easily be used by 

research groups using different protocols and scanners.  

 
 
In Chapter 4 I achieved the second main aim. A proof-of-principle fMRI study was 

carried out to test the optimisation methods. A simple visual task was used for this 

that has previously been shown to activate the superior colliculi bilaterally – both in 

the human using fMRI, and in the non-human using electrophysiology. Such an 

experiment had a strongly supported hypothesis, so absence of a measured BOLD 

signal in this region would indicate that there were methodological problems in 

obtaining a midbrain signal.  



 110 

To reduce the physiological artefacts in the functional data, I estimated and removed 

structured noise using a modified version of the PNM (Brooks et al., 2008; Harvey et 

al., 2008), which itself is a modification of RETROICOR (Glover et al., 2000). I used 

the PNM to convert the individual participants cardiac and respiratory measures, 

which were obtained during the visual fMRI task, into noise regressors. These noise 

regressors were included in the GLM as regressors of no interest, removing noise 

from the data and reducing the residual variance, thereby improving the test 

statistics. The advantage of the method is that noise is removed after acquisition, so 

the PNM analysis could be compared to a conventional GLM analysis. 

 

Whereas a conventional analysis revealed only unilateral superior colliculi activity, 

the PNM analysis revealed the predicted bilateral activity. These methods, when 

used in conjunction with the optimised registration pathway presented in Chapter 3, 

improve the measurement of a biologically plausible fMRI signal.  

 

The optimised methods presented in Chapters 3 and 4 improved the detection of a 

BOLD signal in the superior colliculi. There was no reason to suspect that the 

optimised four-step registration would be more effective at co-registering the superior 

colliculi over and above any other region of the midbrain  so it was likely that it could 

be used in an experiment investigating the dopaminergic midbrain without further 

testing or optimisation. The PNM, however, may not have been equally effective 

throughout all regions of the midbrain. This is because noise properties across the 

midbrain will differ due to proximity to CSF and large blood vessels. Therefore, in 

Chapter 5, when the optimised methods were applied to a PE task, the value of the 

PNM in the dopaminergic midbrain was tested.  

 

In Chapter 5 I presented the results from my investigation of the role of the 

dopaminergic midbrain system in positive and negative PEs. A financial gain and loss 

task was used to elicit positive and negative PEs, and these were compared to a 

zero PE baseline. The medial dopaminergic midbrain system, which included the 

VTA and medial portions of the SNc, showed an increase in BOLD to both positive 

and negative PEs. In addition, more lateral portions of the SNc showed an increase 

in the BOLD response to negative PEs. I also presented the results into an 

investigation of the value of the PNM in the study of dopaminergic midbrain system 
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using fMRI. This included quantifying the noise that is explained by the PNM 

regressors, and a comparison of the GLM analysis with and without the PNM. I 

demonstrated that the PNM does explain noise in the midbrain, including regions of 

the dopaminergic midbrain system, and by including the PNM in the analysis I 

revealed a more extensive cluster of activity than was seen without the PNM. 

 

I then compared PE responses elicited by better or worse than expected financial 

outcomes to PE responses elicited by better or worse than expected nil outcomes. In 

the original analysis financial and nil outcomes had been collapsed together. Such a 

separation of outcomes was necessary to investigate if the BOLD response reflected 

a genuine PE signal, or was a response to the intrinsic value of the financial 

outcomes themselves. If there was a BOLD response to the theoretical PEs elicited 

by better or worse than expected nil outcomes, then I could conclude that the BOLD 

response did reflect PE. 

 

The results to this analysis showed that the BOLD response reflected both the PE 

and the intrinsic value of the financial outcome. Whilst the nil outcomes did show a 

BOLD response that was greater than the expected nil outcome, this response was 

not as great as the response elicited by unexpected finical outcomes.  

 

Finally, a temporal difference model was applied to the data. The level of the PE did 

not modulate BOLD signal in the region of the midbrain that had shown a response to 

PEs. This could be due to a lack of sensitivity to relatively small fluctuations in BOLD, 

or to the nature of the BOLD signal and what it reflects. Whilst the 

electrophysiological investigations into the role of midbrain dopamine measures 

change in firing rates, fMRI measures a wider range of neural processes. Therefore, 

the BOLD signal could reflect multiple brain signals, including those that are not 

sensitive to level of PE, such as the coding of expected value, salience, and sensory 

(visual) processing. When these sources are combined, the mean signal would not 

scale with the level of PE. 

 

Importantly, the result of this PE study is the first demonstration of a BOLD response 

to negative PEs in the human dopaminergic midbrain. The result suggests that the 

non-human experiments that have implicated the dopaminergic midbrain in the 
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processing of punishing, or punishment predicting, stimuli (Brischoux et al., 2009; 

Guarraci and Kapp, 1999; Joshua et al., 2008; Mantz et al., 1989; Matsumoto and 

Hikosaka, 2009; Mileykovskiy and Morales, 2011; Valenti et al., 2011; Wang and 

Tsien, 2011) are applicable to human midbrain function. Importantly, it is possible 

that we have measured two different populations of neurons within the same region. 

The first population may respond to positive PE, and be supressed by negative PE, 

in line with the original findings in the dopaminergic midbrain (Schultz et al., 1997). 

The second may respond to both positive and negative PE, and so be insensitive to 

the valence of the PE. These neurons may be responding to the motivational 

salience of the stimulus (Berridge and Robinson, 1998; Bromberg-Martin et al., 

2010c). Motivational salience, not to be confused with incentive salience, describes 

the properties of a stimulus is terms of how rewarding or punishing it is. A 

motivationally salient stimulus is likely to drive behaviours, whether it is exploration 

and approach to a rewarding stimulus, or fight of flight to a punishing stimulus. Thus 

these neurons would cause an increased level of attention being paid to the stimuli, 

resulting in the appropriate behaviour being carried out. This interpretation is in line 

with those electrophysiological studies that have found neurons that respond to both 

positive and negative PEs (Bromberg-Martin et al., 2010b; Joshua et al., 2008; 

Matsumoto and Hikosaka, 2009; Mirenowicz and Schultz, 1996; Wang and Tsien, 

2011). 

 

However, a major question remains concerning the BOLD signal I measured. As with 

any BOLD signal, it is impossible to know precisely which neural mechanisms 

underlie the observed responses. However this problem is exacerbated in this 

experiment for two reasons. First, the hypothesis tested was a very specific one, 

based on precise neural mechanisms that have been measured in-vivo in non-

humans. Even using this very specific methodology, this field has been prone to 

conflicting results. For example, early studies reported electrophysiological identified 

dopamine neurons that responded to aversive events (e.g. Guarraci and Kapp, 1999; 

Mantz et al., 1989). However some cells that appear dopaminergic using this method 

are in fact non-dopaminergic (Ungless et al., 2004). As the mechanisms of interest 

have been investigated by measuring responses from single neurons, it is 

problematic to investigate these hypotheses using fMRI, a very non-specific 

methodology.  
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Second, there have been no electrophysiological studies into the neural mechanisms 

that underlie the midbrain BOLD response. Whilst there are examples of cortical 

studies whereby the BOLD signal has been compared to the underlying 

electrophysiology (e.g. Logothetis et al., 2001), there have been no such studies of 

the subcortical regions of the brain. Therefore all modelling and interpretations of the 

BOLD signal are based on the assumptions that have been derived from cortical 

electrophysiological studies.  

 

If it is assumed that the neural properties of the BOLD signal are similar to that of the 

cortex, then there are still many mechanisms that we may be measuring. If we take 

two types of midbrain neurons: dopamine and GABA, there are multiple neural 

mechanisms that could cause an increased BOLD signal. In section 5.5.4 I discussed 

in depth these possible mechanisms, and suggested several possible modifications 

in excitatory inputs, inhibitory inputs, and output firing that could all plausibly cause 

an increase in the BOLD signal (see Figure 17 and Figure 18). This simplistic view 

does not make any predictions about other types of neurons, such as glutamate 

neurons within the VTA and SNc, and the multiple types of neurons that project to the 

dopaminergic midbrain.  

 

However, despite these complications, it is reasonable to interpret the observed 

BOLD changes in Chapter 5 as reflecting changes in the dopaminergic system.  

There is much non-human evidence that midbrain dopaminergic neurons signal 

positive PE, and there is an increasing body of evidence that aversive events are 

also signalled by dopaminergic neurons in the midbrain. Therefore, although the 

evidence here is not direct evidence for the involvement of dopamine neurons in 

positive and negative PEs, it is a likely interpretation of the results. 

 

There are tools that may be of use in investigating the neural basis of the BOLD 

signal in the human. Further characterisation of the response may shed more light on 

whether the interpretation I have presented is correct. For example, salt appetite has 

been used in the non-human to investigate changes in the incentive salience of a 

stimulus. A high concentration saline solution that is aversive becomes appetitive in 

the unnatural state of induced salt appetite (Tindell et al., 2009). Berridge (2012) 

predicts that this change will be reflected in the activity of midbrain dopamine 
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neurons. More work on this topic in the non-human is needed, but if this prediction 

turns out to be true, this could be investigated in the human. A homologue of this 

type of experiment is to scan participants in a fed and fasted state, and observe the 

midbrain response to an outcome that elicits a PE under changing internal states. A 

similar task as used in Chapter 5 could be used, with a sweet drink as the outcome, 

instead of monetary outcomes. If the BOLD signal was modulated by the fed or 

fasted state, it would suggest that the observed signal was dopaminergic. 

 

In addition, non-human experiments suggest an anatomical segregation of 

functionally different dopamine neurons. Although I have observed a degree of 

segregation in the SNc for positive and negative PEs, with negative PEs extending 

more laterally, there was no significant difference between the location of the BOLD 

signal for positive and negative PEs. It may be that the resolution used here is not 

high enough to observe potential functional segregation within this region. 

 

As discussed in section 1.2.1.2, the dopaminergic midbrain has a topographical 

organisation in terms of connectivity with the striatum. In the primate the VTA and the 

ventral SNc have dense bidirectional connectivity with the ventral striatum (Haber 

and Knutson, 2010), which is involved in processing of motivational stimuli. Thus, it is 

logical to assume that the two types of responses I have observed in the VTA are 

computed in dopaminergic neurons that project to the ventral (or limbic) striatum, 

hence the observation of both types of PE in the ventral striatum (Seymour et al., 

2007). The observation that the two types of PEs are anatomically separable in the 

ventral striatum suggests that there are two distinct populations of dopamine 

neurons. One is responding to a positive PE, in a manner described by the reward 

PE hypothesis (Schultz et al., 1997), and the other responding to a saliency signal 

that is independent of the outcome valence (Redgrave and Gurney, 2006).  

 

In addition the medial SNc and VTA project to the prefrontal cortex (Fallon, 1981), 

including the orbito-frontal cortex. The orbito-frontal cortex is involved in coding and 

representing the expected value of stimuli (Knutson et al., 2005). Therefore, it is 

logical to expect the orbito-frontal cortex to receive inputs concerning both rewards 

and punishments, to gain a full representation of expected value. The results 

presented here suggest that the VTA and medial SNc could provide this region with 
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information about both rewards and punishments. Similarly the amygdala receives 

projections from the VTA (Leshan et al., 2010) and is involved in representing 

expected value. 

 

The lack of activity in the lateral regions of the SNc could be due to several reasons. 

First, the shape of the SNc is long and thin, in comparison to the relatively compact 

region of the medial dopaminergic that is equally extensive in all directions. This may 

make the detection of a signal from this region more challenging, due to increased 

partial volume effects. Second, the protocol may have been less sensitive to signal 

within the SNc due to the relatively long TE used during data acquisition. Finally, I 

may have observed a genuine effect. The medial dopaminergic midbrain projects to 

regions that are concerned with emotional information, whereas the more lateral 

portions of the SNc project to motor learning areas, such as the dorsal striatum. The 

task used in Chapter 5 did not require motor learning, and depended only on 

Pavlovian conditioning. This may explain why the signal was observed only in the 

medial portions of the midbrain. 

 

The findings presented here, that the dopaminergic midbrain responds to positive 

and negative PEs, have interesting implications for disorders that have been 

associated with a maladaptive dopamine system. Here I will briefly discuss the 

implications for two such disorders: addiction and schizophrenia. 

 

The common mechanism of all drugs of addiction is that they cause an increase in 

the dopamine concentration in the regions to which the midbrain dopamine neurons 

project to (Nestler, 2005). Repeated exposure to such increases lead to the formation 

of maladaptive memory traces associated with the drug and associated stimuli 

(Waelti et al., 2001). Thus exposure to drug related stimuli are processed as salient 

or rewarding, and promote drug consumption (Koob and Volkow, 2010). Additionally, 

long term exposure to drugs of addiction have been shown to cause an underactive 

dopamine system (Volkow et al., 2007), which may lead the individual to seek 

temporary stimulation of this network with drugs of abuse. Thus the finding that the 

human dopaminergic midbrain shows a response to positive PEs fits with this 

hypothesis of addiction, as does the possibility that I measured a saliency response, 

reflected by the region that showed a response to positive and negative PEs.  
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The negative PE response I observed fits with a different aspect of addiction. 

Addictive behaviour can be framed in terms of negative reinforcement (Koob and 

Volkow, 2010). In this model, behaviour that has adverse consequences is preserved 

by a sense of relief that is felt when adverse feelings, such as drug withdrawal, are 

relieved by drug taking behaviour. This negative reinforcement could be modulated 

by the neurons in the dopaminergic midbrain that are coding for punishment PEs. 

 

Schizophrenia, another disorder that has been associated with a maladaptive 

dopamine system, is characterised by two subsets of symptoms: positive symptoms 

include hallucinations and delusions, whilst negative symptoms include avolition, 

anhedonia, and blunted affect. The dopamine hypothesis of schizophrenia was 

based on evidence that positive symptoms have been associated with increased 

levels of D2 receptors in the striatum (e.g. Wong et al., 1986). More recently it has 

been suggested that it is presynaptic dopamine that is affected in schizophrenia. It 

has been shown that presynaptic dopamine synthesis is increased in drug naïve 

patients, in comparison to healthy controls (e.g. McGowan et al., 2004). In addition 

the frontal cortex may actually show a decrease in dopamine function (Grace, 1991). 

With this evidence in mind, Davis and colleagues (Davis et al., 1991) suggested that 

the two sets of symptoms in schizophrenia are both caused by a maladaptive 

dopamine system, but through different mechanisms. The positive symptoms are 

caused by an increase in the activity of the mesolimbic dopamine projections, whilst 

the deficit in dopamine projections in the mesocortical projections is responsible for 

the negative symptoms. The suggestions that there are two distinct dopaminergic 

populations, one that projects to the striatum and in overactive in schizophrenia, and 

the other that projects to the frontal cortex and is underactive, would fit with the 

hypothesis presented here of multiple dopamine populations. In support of a 

maladaptive PE system, it has been shown that patients with schizophrenia do have 

an abnormal reward PE response (Murray et al., 2008). 

 

The positive symptoms of schizophrenia have been explained using the saliency 

hypothesis (see Kapur, 2003 for a review). This hypothesis suggests that stimuli 

incorrectly are interpreted as novel, surprising, or salient by the dopaminergic 

midbrain system. This leads to aberrant associations, and positive symptoms. This 
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hypothesis fits with the results presented here, as one possible interpretation of the 

data is that I have measured a population of neurons that signal a saliency response. 

This population of neurons could become dysfunctional in schizophrenia, and allow 

aberrant associations to form. 

 

6.2. Future directions 

The possible future directions of the work in this thesis separate into two themes: first 

is the application of the methods presented here to further investigate the function of 

the dopaminergic midbrain, and its network level interactions. Second is the 

development of the methods themselves. 

6.2.1. Applications of the midbrain MRI methods 
First, the experiment to investigate PEs in the dopaminergic midbrain could be 

extended. In the introduction I outlined four potential types of PEs: 

 

1. Positive reward PE: elicited by an event that is more rewarding than expected; 

2. Positive punishment PE: elicited by an event that is less punishing than 

expected; 

3. Negative reward PE: elicited by an event that is less rewarding then expected; 

4. Negative punishment PE: elicited by an event that is more punishing than 

expected; 

 

The protocol presented in Chapter 5 investigated positive reward PEs and negative 

punishment PEs. In addition, outcomes that elicited PEs with the absence of financial 

outcomes were presented (nil outcomes). However it is not clear how these nil 

outcomes fit into this terminology, as the outcomes themselves do not have a 

financial valence.  To fully test all types of PEs, a positive punishment PE that it 

elicited by a financial loss that is less punishing than expected, and a negative 

reward PE that is elicited by a financial gain that is less than expected, should be 

included in the experiment. Therefore a future experiment could included these 

conditions and compare activity elicited by all types of PEs. The results outlined here 

would suggest that all four types of PEs would elicit an increase in the BOLD signal 

in the medial dopaminergic midbrain, but there may be differences in the pattern of 
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activity in the more lateral regions. I have shown that PE responses are elicited in the 

absence of any financial outcome, so the valence of the outcome should not alter the 

activity, only whether it is better or worse than expected. 

 

Second, the methods could be used to investigate the midbrain response to primary 

rewards and punishments, such as food, juice, and pain. Money is a uniquely human 

stimulus, and has thus not been used in animal research. Instead animal 

experiments utilise primary rewards, either measuring response to the outcome itself, 

or to a cue that predicts a primary stimulus. It may be that, with the use of such 

stimuli in the human, there may be an observable functional segregation within the 

medial dopaminergic midbrain along the dorsal-ventral dimension (Brischoux et al., 

2009), or a medial-lateral subdivision in the VTA and SNc (Matsumoto and Hikosaka, 

2009). 

 

Finally, the methods presented here can be used to investigate clinical populations. 

Dopamine is strongly implicated in the symptoms of Parkinson’s disease, as there is 

substantial dopaminergic cell death as the disease progresses. Parkinson’s disease 

is characterised by cell loss in the dopaminergic midbrain. Motor symptoms include 

akinesia, rigidity, and tremor. Such symptoms can be relieved by treatment with 

levodopa, a dopamine replacement therapy. However recent research has focused 

on the (non-motor) psychiatric symptoms that seem to be induced by dopamine 

replacement therapy. This includes compulsive use of levodopa (Evans et al., 2010), 

the development of psychotic symptoms (Kuzuhara, 2001), and impulse control 

disorders (Evans et al., 2009). Using the methods presented here to characterise the 

midbrain dopaminergic system in patients presenting with such drug related 

symptoms, compared to patients without such symptoms, may lead us to better 

understand the heterogeneity of symptoms associated with Parkinson’s, and improve 

drug therapies. Other disorders that have been hypothesised to be caused by a 

maladaptive dopaminergic system include drug addiction (Koob and Volkow, 2010; 

Lüscher and Ungless, 2006), schizophrenia (Moran et al., 2008; Murray et al., 2008), 

and gambling (Chase and Clark, 2010; Clark et al., 2009). By investigating the PE 

response in these patients groups, it may help to explain the mechanism that 

underlies the symptoms of the disorders, which may help improve drug therapies. 
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6.2.2. Methodological developments 
Although the methods presented in this thesis improve detection of the BOLD signal 

in the human dopaminergic midbrain, further development may allow even more 

improvement.  

 

In terms of data acquisition, there are several ways in which the protocol could be 

improved. First, higher field strength magnets could be used for data acquisition. 

Seven Tesla magnets are becoming increasingly common, and allow scanning at 

higher resolution than is possible with a three Tesla scanner. Therefore, it may be 

practical to scan at a resolution where functional subdivisions within the VTA are 

revealed. Second, structural imaging of the midbrain could be improved. 

Susceptibility-weighted imaging has been used to image the human midbrain with an 

improved contrast than is available with T2-weighted images (Manova et al., 2009). 

Again, high field strengths will also improve the anatomical detail we can obtain from 

structural scans of the midbrain, and this improve the accuracy with which we can 

localise midbrain nuclei. If a large body of such structural scans are collected, then it 

will be possible to create a standard atlas of the midbrain in MNI space. Such an 

atlas is required to standardise the way in which midbrain fMRI studies are reported, 

and allow comparison of results across studies. 

 

Finally, the methods presented here could be adapted for use in a whole-brain study 

with larger voxel sizes. Many researchers want to investigate network level 

interactions, as the dopaminergic midbrain projects widely to the rest of the brain. 

Until faster imaging techniques are developed that allow high-resolution scanning of 

the whole-brain within a reasonable time frame, whole-brain studies must use a 

relatively low resolution. Although midbrain nuclei cannot be localised as accurately 

with such voxel sizes, due to increased partial volume effects across nuclei and in 

increased influence of physiological noise, some of the methods presented here can 

be applied to the whole-brain studies, improving the accuracy with which we can 

localise activity to a certain extent. For example, the PNM can be used to reduce the 

effects of physiological noise. In addition, the optimised registration could be applied 

to the data. However the analysis would have to be carried out in two steps: the first 

with accurate cortical registration, the second with accurate subcortical registration. 
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The next methodological development would be to create a registration pathway that 

simultaneously achieves good registration at the level of the midbrain, and cortex.  

 

The work presented in this thesis has led to methodological advancements in 

midbrain fMRI, and provided evidence that the human dopaminergic midbrain is 

involved in processing both positive and negative PEs. In addition, it leads onto 

future work that could reveal much about clinical populations, which we are yet to 

fully understand. 
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