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Part I

Predictable Representation

Property - Applications to

Finance

In Chapter 1 we introduce a new methodology for estimating upper bounds

for the value of Bermudan products that does not require resorting to nested

simulation and is applicable when the underlying variables are driven by Lévy

processes. The suggested approach generalizes Belomestny et al. [2009], which is

limited to the Brownian setting, by estimating the optimal Lagrangian martingale

in the dual representation of the price of a Bermudan product taking advantage

of the predictable representation property for Lévy processes introduced by Nu-

alart and Schoutens [2000]. In addition, we present an easily implementable and

computationally efficient variant of the methodology that applies when the value

of the underlying financial variables can be expressed using non path-dependent

functions of Lévy processes (as in the most common linear and exponential Lévy

models) and requires the simulation of variables only at the exercise dates of the

Bermudan product.
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Chapter 1

Upper Bounds in a Lévy Setting

without Nested Simulation

1.1 Introduction

The past decade has seen the introduction and widespread adoption of new meth-

ods for the pricing of financial products with American and Bermudan exercise

using Monte Carlo methods. Until then, Monte Carlo methods were widely seen

as unsuitable to be applied in this context because of the so called Monte Carlo

on Monte Carlo problem: the fact that a straight-forward application of Monte

Carlo to “optimal stopping” problems requires the recursive nesting of simulated

paths at each exercise time for estimating the continuation value of the option,

resulting in an infeasible number of simulations. For this reason, the preferred

approaches for the pricing of American and Bermudan contracts had traditionally

been the use of binomial (Cox et al. [1979]) and trinomial (Boyle [1986]) trees

and finite difference methods (e.g. Brennan and Schwartz [1977]), whose lattice

structure and backward calculations make them natural candidates for dealing

with optimal stopping problems. However, these methods have the drawback of

being computationally very demanding when the dimensionality of the problem

increases (particularly above three dimensions). The first Monte Carlo method

for pricing American and Bermudan options that has seen wide adoption is the

Least-Squares Monte Carlo (LSM), popularized by Longstaff and Schwartz [2001]

2



1. Non-Nested Lévy Upper Bounds

whose main ideas had been previously introduced, in different forms, by Carriere

[1996] and in Tsitsiklis and Van Roy [1999] and Tsitsiklis and Van Roy [2001].

LSM has been proven (see Clément et al. [2002] and Stentoft [2004b]) to converge

to the true option price, however its estimates are, by construction, biased from

below (i.e. they represent a “lower bound” to the option price). In the absence

of an unbiased method, this left open the need for calculating a corresponding

“upper bound” allowing to bracket the true value within a confidence interval.

An answer to this problem was given by the duality methods of Rogers [2002] and

Haugh and Kogan [2004] which used ideas already in Davis and Karatzas [1994].

At present, the most popular primal-dual Monte Carlo approach for the pricing of

Bermudan products is the one proposed by Andersen and Broadie [2004], which

merges LSM and duality approach in an integrated method providing both lower

and upper bounds. Their method can achieve tight bounds but it requires con-

siderably more intensive computations for the calculation of the upper bounds

than it needs for the lower bound. The reason for this is that the algorithm uses

nested simulations for estimating the optimal Lagrangian martingale in the dual

representation of the price. In an attempt to solve this problem, Belomestny

et al. [2009] and Schoenmakers et al. [2012] (among others) have recently pro-

posed methods for the calculation of upper bounds that do not require nested

simulation. In this chapter we extend and generalize the results of Belomestny

et al. [2009], which are limited to the Brownian setting, to Lévy processes by

taking advantage of the Predictable Representation Property for Lévy processes

introduced by Nualart and Schoutens [2000]. In addition, we present an easily

implementable and computationally efficient variant of the methodology that ap-

plies when the value of the underlying financial variables can be expressed using

non path-dependent functions of Lévy processes (as in the most common linear

and exponential Lévy models) and requires the simulation of variables only at the

exercise dates of the Bermudan product. In sections 1.2 and 1.3 we discuss the

problem of pricing instruments with American and Bermudan exercise and review

the approaches available in the literature for pricing these types of products with

Monte Carlo methods while in Section 1.4 we illustrate the main results of Nu-

alart and Schoutens [2000] on the predictable representation of Lévy processes;

in the following two sections we present the main results of this chapter, first in

3



1. Non-Nested Lévy Upper Bounds

a general setting then in the context of non path-dependent models. Finally, in

Section 1.7 we present the results of numerical examples which show the proposed

non-nested estimator achieving tight upper bounds in a computationally efficient

way. Section 1.8 summarizes our conclusions.

1.2 American Options

What distinguishes American from European options is the specific way in which

the holder can exercise the right embedded in the contract. More specifically,

let Xt be the price at time t of the underlying asset of the option, T be the

final exercise date of the contract and Φ, Φ(·, ·) : R+ × R → R, its discounted

payoff function (we assume that all payments are discounted to time 0 using

Nt = exp
(∫ t

0
rudu

)
as numéraire (see Shreve [2004]) where r is the instantaneous

risk-free interest rate). In the case of an European option the amount Φ(T,XT )NT

is paid to the holder at time T . On the other hand, the holder of an American

option has the right to exercise the contract and obtain the amount Φ(t, Xt)Nt at

any time t prior to T . The situation is complicated by the fact that the exercise

time t does not have to be chosen a priori and may be chosen by the holder on

the basis of the information available at time t. The time of exercise is therefore

a random variable itself and its mathematical formulation is given in terms of

stopping times (see Shreve [2004]).

1.2.1 An Optimal Stopping Problem

The fundamental theorems of asset pricing (Shreve [2004]) tell us that arbitrage-

free prices of contingent claims can essentially be obtained from conditional ex-

pectations of their discounted future payoffs under a risk-neutral probability mea-

sure. More formally, let
(
Ω,F, (Ft)t≥0 , P

)
be a filtered probability space and Q a

(risk-neutral) equivalent martingale measure associated with numéraire N. Then,

making the additional assumption of market completeness (i.e. the risk-neutral

probability measure is unique), we can express the time t value of any contingent

future (discounted) payoff ΨT , paid at time T , as Vt = E
Q
t [ΨT ], where E

Q
t [·]

denotes the conditional expectation, under measure Q, with respect to Ft (i.e.

4



1. Non-Nested Lévy Upper Bounds

the information available at time t). In the case of American options, a no-

arbitrage argument (Shreve [2004]) implies that finding the value of the contract

is equivalent to solving an optimal stopping problem, whose solution is given by

the exercise strategy (the optimal stopping time) that maximizes the expected

future payoff to the holder of the option. In mathematical terms:

V0 = sup
τ

[
E
Q
0 [Φ(τ,Xτ )]

]
, (1.2.1)

where X is a Markov process adapted to (Ft)t≥0 and τ is allowed to vary over

the class of stopping times, i.e. τ is a random variable with values in R
+
0 such

that {τ ≤ t} ∈ Ft. The optimization problem on the right hand side of (1.2.1) is

solved by the stopping time

τ ∗0 = inf {t ≥ 0 : Xt ∈ B} , (1.2.2)

for some optimal exercise region B. The stopping time τ ∗0 can be referred to as

a rational exercise policy, in the sense that it maximizes the initial arbitrage-

free value of the resulting claim. Problems of this kind are quite hard to solve,

and analytically they lead to so called “free boundary value problems” instead of

the corresponding parabolic PDEs for the European counterparts. Practically, for

American contracts, very few analytical formulas are at hand1. The value process

Ṽ =
(
Ṽt

)
t≥0

of the American option, where Ṽ0 = V0, is referred to as the Snell

envelope of Φ. In the discrete time case (for the continuous time case see Karatzas

and Shreve [1998]) the Snell envelope Ṽ of the process Φ = (Φ (Tn, Xn))n=0,...,N

is defined as follows:

{
ṼN = Φ(TN , XN)

Ṽn = max
(
Φ (Tn, Xn) ,ETn

[
Ṽn+1

]) . (1.2.3)

1One special case where the price of an American contract is very easy to calculate is when
we consider an American call option on a non dividend paying underlying stock. In this case,
as it is commonly known, simple arbitrage reasoning demonstrates that the option price will
be equivalent to the price of an European call option having the same maturity date and strike
price. For American call options with discrete dividends, the argument above can be extended
to show that it can only be optimal to exercise the option either at the final time T or at one
of the dividend times.

5



1. Non-Nested Lévy Upper Bounds

This formulation underlines the backwards nature of the valuation problem and

shows that the problem of finding the optimal decision rule is equivalent to that

of finding the best estimate of the conditional expectations, under the pricing

measure, of the discounted payoffs from continuation (from not exercising the

option at the present time). It is, in fact, the knowledge of such conditional ex-

pectation that may allow the owner of the contract to make an informed decision

on whether to exercise or keep holding the option.

1.3 Pricing by Simulation

1.3.1 Lower Bounds

A straightforward application of Monte Carlo methods to (1.2.1) is impractical

because one cannot run a Monte Carlo simulation for every possible exercise

strategy. However, once an exercise strategy is chosen, valuation becomes simple:

at each time step along the simulated paths, we can check the exercise strategy

and, if it says “exercise” we return the exercised value at that time step suitably

discounted back to time 0, otherwise we proceed to the next step. The main issue

is to determine which one is the best exercise strategy, noting that as long as the

chosen strategy does not coincide with the optimal τ ∗0 , the Monte Carlo estimate

will only represent a ‘lower bound’ to the option price. The central contribution

of the LSM approach (described below) has been to provide a convenient way to

estimate the optimal exercise strategy τ ∗0 using a single set of Monte Carlo paths.

The Least-squares Monte Carlo approach

The Least-squares Monte Carlo approach (LSM) is a simple yet powerful method

for approximating the value of American options that was introduced by Longstaff

and Schwartz [2001]. Their work developed and simplified an idea previously

analysed by Carriere [1996] and by Tsitsiklis and Van Roy [1999] and Tsitsik-

lis and Van Roy [2001]: estimating the conditional expectation of the payoff

from keeping the option alive at each possible exercise point from a simple least

square regression using the cross-sectional information provided by Monte Carlo

simulation. In the regression process they use a set of basis functions in the

6



1. Non-Nested Lévy Upper Bounds

underlying asset prices. The fitted values are then taken as the expected contin-

uation values. Comparing these estimations with the immediate exercise values,

they identify the optimal exercise decision. The procedure is repeated recursively

going back in time. By estimating the conditional expectation function for each

exercise date, they obtain a complete specification of the optimal exercise strategy

along each path. The advantage of this approach is that it is readily applicable

in path-dependent and multifactor situations where traditional finite difference

techniques cannot be used; furthermore, as it was showed in Stentoft [2004a], the

LSM method, when compared to the traditional binomial tree approach, displays

a much better trade-off between computational time and precision as the number

of stochastic factors is increased.

More formally, let’s assume a finite time horizon, [0, T ], in which we define,

as before, a filtered probability space,
(
Ω,F, (Ft)t≥0 , P

)
, and an equivalent mar-

tingale measure Q. Let Φ(τ ∗t+ , Xτ∗
t+
) denote the discounted option cash-flow, con-

ditional on the option being exercised after t and the option holder following the

optimal stopping strategy at every time after t, i.e. τ ∗t+ = inf {u > t : Xu ∈ B}.
The American option is approximated by its Bermuda counterpart, assuming a fi-

nite number of exercise dates E = {T1, ..., TI}, where 0 < T1 < T2 < ... < TI = T .

For every Ti ∈ E, the time-Ti continuation value FTi , FTi : Ω → R, is, un-

der no-arbitrage conditions, the risk-neutral expectation of the future discounted

cash-flows Φ(τ ∗
T+
i

, Xτ∗
T
+
i

) conditional upon the information available at time Ti:

FTi = E
Q
Ti

[
Φ

(
τ ∗
T+
i

, Xτ∗
T
+
i

)]
. (1.3.1)

Longstaff and Schwartz assume that the unknown functional FTi can be approx-

imated as a linear combination of a finite set of basis functions in the value X of

the asset underlying the option. We can write this as:

FTi ≈ FM
Ti

=
M−1∑

m=0

φm (XTi) am (Ti) , (1.3.2)

where {φm (.)}M−1
m=0 is a finite set of functions from a suitable basis. The regres-

sion based algorithm on the simulated paths estimates the value of the coefficients
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1. Non-Nested Lévy Upper Bounds

{am (.)}M−1
m=0 and provides in turn a very convenient and powerful way for esti-

mating FTi .

The convergence properties of LSM have been studied by Clément et al. [2002],

who proved that, as the number of basis functions goes to infinity, the estimated

conditional expectation (FM
Ti
) tends to the true conditional expectation (FTi) and

showed that the normalized estimation error is asymptotically Gaussian. Stentoft

[2004b] has further analysed the asymptotic properties of LSM and proved the

mean squared convergence of FM
Ti

to FTi (in the two-period case), providing the

rate of convergence.

1.3.2 Upper Bounds - The Duality Approach

As we mentioned above, the sub-optimality of the approximations to τ ∗0 obtained

using methods such as LSM, result in estimates of the option price that are biased

from below. In other words, the Monte Carlo estimator will converge to a lower

bound to the option price rather than the option price itself. In the absence

of fully unbiased estimators, this situation leaves open the need to determine

corresponding ‘upper bounds’ to the option price that may allow bracketing the

unknown true value within an interval. Rogers [2002] and Haugh and Kogan

[2004], using ideas that appeared previously in Davis and Karatzas [1994], intro-

duced a dual representation of the price of American options which, rather than

expressing its value as a maximization problem (as in (1.2.1)), obtains it in the

form of a minimization, therefore providing a way to estimate upper bounds to

the value of the contract. In particular, the option value is given by:

V0 = inf
M∈Π

E
Q
0

[
max
t

(Φ(t, Xt)−Mt)
]

(1.3.3)

where Π is the space of adapted martingales for which sup0≤t≤T |Mt| ∈ L1. The

value of the American option is achieved at M∗ which can be interpreted as the

martingale part of the Doob decomposition of the Snell envelope Vt (see Williams

[1991]). The proof of the equivalence of the solutions of the primal (1.2.1) and

dual (1.3.3) problems can be found in Haugh and Kogan [2004].

8



1. Non-Nested Lévy Upper Bounds

Nested Methods

Andersen and Broadie [2004] have provided a very popular methodology for ob-

taining both lower and upper bounds to the Bermudan option price by integrat-

ing the algorithm of Longstaff and Schwartz [2001] with a ‘nested’ Monte Carlo

method for estimating the upper bound. Their approach has the benefit of being

fairly easy to implement, however it has the disadvantage that the nested Monte

Carlo simulations involved in the estimation of the upper bound require much

longer computation time than it is required for estimating the lower bound (up

to 15 times more in their tests), particularly as the number of exercise opportuni-

ties increases. When applying their pricing algorithm, one has to first determine

an estimation of the optimal exercise strategy using the LSM method; then a

routine is called repeatedly to generate an upper bound, that complements the

lower bound, consistent with the proposed exercise strategy. One significant dif-

ference to the algorithm of Haugh and Kogan [2004] is that they do not build or

require an approximation to the option price process throughout the state space.

Instead, the algorithm uses only the information from the approximation to the

optimal exercise strategy, which has benefits in terms of computation time and

approximation error. On the other hand, as we mentioned above, their procedure

remains computationally intensive because of the path-wise nested Monte Carlo

simulation required to estimate the evolution of the optimal martingale M∗ in

equation (1.3.3) (see Figure 1.1 for a visual illustration of the impact of nesting).

Upper bounds without nested Monte Carlo

Belomestny et al. [2009] introduced a new method, limited to the Brownian Mo-

tion setting, which allows the estimation of the optimal martingale M∗ in (1.3.3)

through a single, non-nested, Monte Carlo experiment. This approach uses the

predictable representation property of Brownian Motion to derive a regression es-

timator for M∗ which can also be used as a control variate for the nested primal-

dual estimator of Andersen and Broadie. In a recent contribution, Schoenmakers

et al. [2012] propose another non-nested approach for the estimation of upper

bounds to the price of Bermundan products which has the peculiarity that no

9



1. Non-Nested Lévy Upper Bounds
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Figure 1.1: Example of nested simulation (10 paths, 5 nested paths)
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1. Non-Nested Lévy Upper Bounds

approximation to the Snell envelope is involved in the calculations and it can

therefore be considered a ‘pure dual’ method. One aspect that Belomestny et al.

[2009] and Schoenmakers et al. [2012] have in common is that their implemen-

tation algorithms involve knowledge of the analytical formula for the discounted

price of the corresponding European options and the application of Malliavin

calculus techniques to obtain ad-hoc sets of basis functions, which makes imple-

mentation more complex and represents a limit to the general applicability of

their approaches.

1.4 Predictable Representation and Orthogonal

Polynomials

The Predictable (or Martingale) Representation property has been known to hold

only for Brownian motion and the Poisson process. However, following the sem-

inal work of Nualart and Schoutens [2000], new literature has recently appeared

providing similar results for more general classes of stochastic processes. In par-

ticular, Nualart and Schoutens [2000] (see also Jamshidian [2005]) establish a

predictable representation property that applies to the class of Lévy processes.

Their results are achieved by introducing the compensated power jump processes,

also known as Teugels martingales, that, as we will explain in greater detail in

paragraph 1.4.2, is intrinsically related to the theory of orthogonal polynomials.

1.4.1 The Predictable Representation Property

As we have already anticipated, Nualart and Schoutens [2000] were able to es-

tablish a martingale representation property also for the more general case of

a filtration generated by a Lévy process L satisfying an exponentially decaying

condition on the Lévy measure. More specifically, they showed that every square

integrable martingale G with respect to the filtration generated by L, admits a

representation as an infinite sum of the form

Gt = G0 +
∞∑

i=1

∫ t

0

φ(i)
s dH

(i)
s (1.4.1)

11



1. Non-Nested Lévy Upper Bounds

where φ(i), i = 1, 2, . . . , are predictable processes , and
{
H(i), i = 1, 2, . . .

}
is a

set of pairwise strongly orthogonal martingales obtained as linear combinations

of Teugels martingales (as defined in section 1.4.2 below).

In a more recent contribution, Jamshidian [2005], applying the concepts and tech-

niques introduced by Nualart and Schoutens, together with a general strong or-

thogonalization procedure presented by Davis and Karatzas [1994], has proposed

a generalization of the predictable representation property to processes where

the (generalized) Lévy measure is allowed to be a stochastic process adapted to

a Brownian filtration. One example of processes included in this class are Cox

processes, also referred to as Poisson processes with stochastic intensity.

1.4.2 Teugels Martingales

Consider a Lévy process L with Lévy triplet given by (a, σ, ν), the Teugels mar-

tingale of order i of L is defined as :

Y
(i)
t := L

(i)
t − E

[
L
(i)
t

]
(1.4.2)

where

L
(i)
t =

∑

0<s≤t

(∆Ls)
i (1.4.3)

and

E

[
L
(i)
t

]
= E

[∑

0<s≤t

(∆Ls)
i

]
= t

∫ ∞

−∞

xiν (dx) . (1.4.4)

Let S1 denote the space of all real polynomials defined on the positive real line

with scalar product 〈., .〉1 defined by

〈pn (x; δ1) , pm (x; δ2)〉1 =

∫ ∞

−∞

pn (x; δ1) pm (x; δ2) x
2ν (dx) (1.4.5)

+σ2pn (0; δ1) pm (0; δ2) (1.4.6)

and let S2 denote the space of all linear transformations of the Teugels martingales

of the Lévy process with scalar product 〈., .〉2 provided by

〈H, J〉2 = E ([H, J ]1) , H, J ∈ S2 , (1.4.7)

12



1. Non-Nested Lévy Upper Bounds

where [H, J ] is the cross-variation of H and J .

Nualart and Schoutens [2000] show that the correspondence xi−1 ↔ Y (i) is an

isometry (note that xi−1 ∈ S1 and Y (i) ∈ S2). Therefore, an orthogonalization

of {1, x, x2, . . .} in S1 gives an orthogonalization of
{
Y (1), Y (2), Y (3), . . .

}
. The

implication of this result is that the orthogonalization of the Teugels martingales

used to provide the predictable representation of Lévy processes is intrinsically

related to classical orthogonal polynomials. As an example, the orthogonalization

of the Teugels martingales of a Gamma process is achieved through the use of

Laguerre polynomials, that of a negative binomial (or Pascal) process involves

Meixner polynomials, while in the case of the Brownian motion we use Hermite

polynomials.

1.5 Upper Bounds in a Lévy Setting Without

Nested Simulation

We develop a non-nested Monte Carlo simulation method to derive upper bounds

for Bermudan options when asset prices are driven by Lévy processes which ex-

tends and generalizes the approach introduced in Belomestny et al. [2009], where

the analysis is limited to the Brownian Motion setting. In particular, this method-

ology takes advantage of the results on the predictable representation property

for Lévy processes of Nualart and Schoutens [2000] to derive an estimator for the

optimal martingale M∗ in (1.3.3).

1.5.1 A martingale estimator for Lévy processes

As an approximation to the continuous monitoring case, we will consider an op-

tion that can be exercised at one date from the set E = {T0, ..., TJ} (Bermudan

option), where we will assume that T0 = 0 and define T := TJ. Throughout the

exposition we will also assume that the pricing measure Q, with its corresponding

discounting numéraire N, is given and defined on the filtered probability space(
Ω,F,

(
FLt

)
t≥0

, Q
)
, where

(
FLt

)
t≥0

is the filtration generated by the square inte-

grable Lévy process L with the following Lévy-Khinchin representation (see Cont

13



1. Non-Nested Lévy Upper Bounds

and Tankov [2004])

E
Q
[
eiuLt

]
= etϕ(u) (1.5.1)

where

ϕ (u) = iau − σ2

2
u2 +

∫ +∞

−∞

(
eiux − 1− iux1(|x|<1)

)
ν (dx) . (1.5.2)

According to the Bermudan contract, when exercising at time Tj ∈ E, the holder

of the option receives a discounted payment of the form

ZTj := Φ
(
Tj , XTj

)
(1.5.3)

where Φ (Tj, ·) is a real valued measurable function and X is a stochastic process

adapted to the filtration
(
FLt

)
t≥0

.

Following Belomestny et al. [2009] we rewrite formula (1.3.3) for the Bermudan

case:

V up (M) := E
Q

[
max
0≤j≤J

(
ZTj −MTj

)]
(1.5.4)

whereMTj , 0 ≤ j ≤ J is any martingale with respect to the filtration
(
FLTj ; 0 ≤ j ≤ J

)

with initial valueM0 = 0. As proved in Rogers [2002], V up (M) is an upper bound

for the price of the Bermudan option with cash-flow ZTj . Moreover, the Bermu-

dan price is attained at the martingale part of the Doob decomposition of the

discounted price process (Snell envelope). The latter process is denoted by V ∗
Tj
.

In practice the exact value of the Snell envelope is not known, however we as-

sume that some approximation VTj of the Snell envelope is given. If V is a good

approximation and it is decomposed in its Doob decomposition

VTj = V0 +MTj + UTj , (1.5.5)

where the martingale M and the predictable process U start at zero, then we

expect V up (M) to be a close upper bound of V ∗
0 .

U and M can be interpreted as follows:

UTj+1
− UTj = E

Q
Tj

[
VT

j+1

]
− VTj (1.5.6)
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1. Non-Nested Lévy Upper Bounds

MTj+1
−MTj = VT

j+1
− E

Q
Tj

[
VT

j+1

]
(1.5.7)

In order to construct an estimator forM we can use the predictable representation

of Nualart and Schoutens [2000] for square integrable martingales adapted to the

filtration generated by Lt. More specifically

MTj =
∞∑

p=1

∫ Tj

0

φ(p)
s dH(p)

s , j = 0, ..., J (1.5.8)

where φ(p), p = 1, 2, . . . , are predictable processes and
{
H(p), p = 1, 2, . . .

}
is a

set of pairwise strongly orthogonal martingales obtained as linear combinations

of Teugels martingales. Our aim is to truncate the infinite sum up to some order

q and then to estimate φ(p).

Our approximate version of the martingale representation (1.5.8) is given by

M̃Tj =

q∑

p=1

∫ Tj

0

φ(p)
s dH(p)

s , j = 0, ..., J (1.5.9)

which leads to the following approximation to the change in value of the option

between time Tj and Tj+1

VTj+1
− VTj ≈

q∑

p=1

∫ Tj+1

Tj

φ(p)
s dH(p)

s + UTj+1
− UTj . (1.5.10)

Since φ(p) can only be estimated on a finite number of points, we consider a finer

partition of E given by P = {t0, . . . , tI}, where t0 = 0 and tI = T . Therefore the

discrete time approximation will be

VTj+1
− VTj ≈

q∑

p=1





∑

tl∈P;Tj≤tl<Tj+1

φ
(p)
tl

(
H

(p)
tl+1

−H
(p)
tl

)


+ UTj+1

− UTj . (1.5.11)

If we then multiply both sides by the increment of the k-th orthogonal mar-
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1. Non-Nested Lévy Upper Bounds

tingale and then take conditional expectation with respect to FLti , we obtain

E
Q
ti

[(
H

(k)
ti+1

−H
(k)
ti

)
Vti+1

]
− E

Q
ti

[
H

(k)
ti+1

−H
(k)
ti

]
Vti ≈

≈
q∑

p=1

φ
(p)
ti E

Q
ti

[(
H

(p)
ti+1

−H
(p)
ti

)(
H

(k)
ti+1

−H
(k)
ti

)]

+ E
Q
ti

[
H

(k)
ti+1

−H
(k)
ti

] (
Uti+1

− Uti
)

(1.5.12)

then from the martingale property and strong orthogonality of the martingales

H(·) the expression simplifies to

φ
(k)
ti ≈ 1

(ti+1 − ti)m
(k)
2

E
Q
ti

[(
H

(k)
ti+1

−H
(k)
ti

)
Vti+1

]
(1.5.13)

where m
(k)
2 := E

Q

[(
H

(k)
1 −H

(k)
0

)2]
= 1

ti+1−ti
E
Q
ti

[(
H

(k)
ti+1

−H
(k)
ti

)2]
is the stan-

dardized second moment of the increments of the orthogonal martingale of order

k.

We therefore define

φ̃
(k)
ti :=

1

(∆i)m
(k)
2

E
Q
ti

[
∆H

(k)
ti Vti+1

]
(1.5.14)

The corresponding approximation of the martingale M is

M̃ti :=

q∑

p=1

i∑

l=1

φ̃
(p)
tl
∆H

(p)
tl

(1.5.15)

Assuming, as in most practical applications, an approximation (τ1, . . . , τJ) of the

optimal stopping policy is available (for example if LSM was used to calculate a

lower bound), expression (1.5.14) can be further simplified by using the approx-

imated value of the Snell envelope implied by (τ1, . . . , τJ), i.e. Vti := Eti [Zτi].

Then we can rewrite (1.5.14) as

φ̃
(k)
ti :=

1

(∆i)m
(k)
2

E
Q
ti

[
∆H

(k)
ti Zτj+1

]
, Tj ≤ ti ≤ Tj+1, (1.5.16)
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1. Non-Nested Lévy Upper Bounds

where we have used the tower property of conditional expectations. Therefore it

is not necessary to compute the conditional expectations in the definition of V .

1.5.2 Upper bounds without nested Monte Carlo

We now describe an algorithm based on the construction of the martingales M̃

that allows us to calculate dual upper bounds without nested Monte Carlo. To

this end we suppose that the approximative Snell envelope VTj is of the form

VTj = u
(
Tj , LTj

)
. (1.5.17)

We emphasize that numerical methods to approximate the Snell envelope typi-

cally yield approximations of this form. It is then straightforward that the con-

ditional expectations in the definition of φ̃(·) are, in fact, regressions on LTj .

Precisely

φ̃
(k)
ti =

1

(∆i)m
(k)
2

E
Q
Lti

[
∆H

(k)
ti u

(
Tj , LTj

)]
, Tj ≤ ti ≤ Tj+1. (1.5.18)

Next we approximate φ̃
(k)
ti by simulation based least squares regression on basis

function as was suggested by Longstaff and Schwartz [2001] for lower bounds.

To this end we simulate Ñ independent samples of the Lévy increments ∆Li,

i = 0, ..., I.

Given a vector of basis functions ̟(k) (ti, ·) =
(
̟

(k)
s (ti, ·) , s = 1, ..., S

)
, Ñ inde-

pendent samples
(
ti, nL̃ti

)
, n = 1, ..., Ñ , where nL̃ti :=

∑i
l=0∆ nLtl , and ∆ nH̃

(k)
ti

the increments of the strongly orthogonal martingales constructed on ∆ nLti , we

define

β̂
(k)
ti := argmin

β∈RS





Ñ∑

n=1

∣∣∣∣∣
∆ nH̃

(k)
ti

(∆i)m
(k)
2

u
(
Tj+1, nL̃Tj+1

)
−̟(k)

(
ti, nL̃ti

)
β

∣∣∣∣∣

2


 ,

(1.5.19)

with Tj ≤ ti ≤ Tj+1. Then, the corresponding approximative regression mapping

for φ̃
(k)
ti is defined by

φ̂
(k)
ti = ̟(k) (ti, Lti) β̂

(k)
ti (1.5.20)
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1. Non-Nested Lévy Upper Bounds

After having obtained the functions φ̂ti by the above regression procedure, we

next construct an approximation of Mti as follows

M̂ti :=

q∑

p=1

i∑

l=1

φ̂
(p)
tl
∆H

(p)
tl

(1.5.21)

where the increments ∆H are assumed to be independent of the Lévy increments

simulated above.

By sampling a new set of N independent trajectories,
(
Tj , nLTj

)
, n = 1, ..., N of

L an unbiased estimator for V up
(
M̂
)
is obtained by setting:

Ŷ up
(
M̂
)
:=

1

N

N∑

n=1

max
0≤j≤J

(
Φ
(
Tj , XTj

(
nLTj

))
− M̂Tj

)
(1.5.22)

1.5.3 Variance reduced primal-dual algorithm

As suggested by Belomestny et al. [2009] for the case of standard Itô processes,

the martingale M̂ obtained from the procedure described above can also be used

to reduce the variance in the primal-dual algorithm of Andersen and Broadie

[2004].

More specifically, the estimator used by Andersen and Broadie for the upper-

bound of a Bermudan option, is given by the following:

Ŷ up
AB :=

1

N

N∑

n=1

max
0≤j≤J

(
Φ
(
Tj , nXTj

)
−

j∑

i=1

(
nVTi −

1

K

K∑

l=1

(
nV

(l)
Ti,Ti−1

)))

=
1

N

N∑

n=1

max
0≤j≤J

(
Φ
(
Tj , nXTj

)
− nM

AB
Tj

)

(1.5.23)

whereN is the number of paths used in the Monte Carlo experiment and 1
K

∑K
l=1

(
nV

(l)
Ti,Ti−1

)

is used as an unbiased estimator for EQTi−1
[VTi ] (K being the number of sub-paths

for the nested simulation and nV
(l)
Ti,Ti−1

being a simulated realization of VTi condi-

tional on the information available at time Ti−1 on the nth path). From (1.5.7)
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1. Non-Nested Lévy Upper Bounds

it follows that

E
Q
Ti−1

[
VT

i

]
≈ VT

i
−
(
M̂Ti − M̂Ti−1

)

therefore

Ŷ up
(
M̂
)
:=

1

N

N∑

n=1

max
0≤j≤J

{
Φ
(
Tj ,nXTj

)

−
j∑

n=1

(
nVTi −

1

K

K∑

l=1

(
nV

(l)
Ti,Ti−1

−
(
nM̂

(l)
Ti

− nM̂
(l)
Ti−1

))) }

(1.5.24)

can be seen as a variance reduced version of the estimator of Andersen and

Broadie, with control variate M̂ .

1.6 Long Step Approach

Here we introduce an easily implementable and computationally efficient variant

of the methodology that applies when the value of the underlying financial vari-

ables can be expressed using non path-dependent functions of Lévy processes, and

requires the simulation of variables only at the exercise dates of the Bermudan

product. The condition of non path-dependence implies that the value at time t

of the underlyings can be expressed as a function of the time-t value of the Lévy

processes driving the model. It should be noted that this property holds for some

of the most popular linear and exponential Lévy models that have been proposed

in the literature to describe the dynamics of asset prices (e.g.: Black and Scholes

[1973], Merton [1976], Madan and Seneta [1990], Carr et al. [2002], Kou [2002],

etc.).

Assuming continuity of the value function (cf. Gerhold [2011]), Weierstrass

Approximation Theorem can be applied. The theorem states that if f(x) is a

continuous function over the closed interval [a, b], then for every ǫ > 0 there

exists a polynomial p(x) such that

sup
x∈[a,b]

|f(x)− p(x)| < ǫ;
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1. Non-Nested Lévy Upper Bounds

in other words, any continuous function on a closed and bounded interval can be

uniformly approximated on that interval by a polynomial function to any degree

of accuracy. In case the continuation value of the Bermudan contract is a non

path-dependent function of a d-dimensional Lévy processes, we can introduce a

more parsimonious (and better suited for practical applications) approximation

for the change in value of the option between exercise dates compared to (1.5.11).

Specifically, let I be an ordered set of d-dimensional indices (i.e. every i in I has

the form i = (i1, i2, . . . , id) with ik ∈ N
0, k = 1, . . . , d ) containing M elements,

then we can write

VTj+1
− VTj ≈ ΨTj

T
(
GTj+1

−GTj

)
+ UTj+1

− UTj . (1.6.1)

where ΨTj :=
(
ψ(1), . . . , ψ(M)

)T
is a M-dimensional vector of weights and G :=(

G(i)
)
i∈I

=
(
G(1), . . . , G(M)

)T
is a vector martingale difference sequence whose

elements G(i), i ∈ I, are defined as:

G
(i)
Tj

:=
∑

1≤k≤j

p(i)(∆LTk)−
∑

1≤k≤j

ETk−1

[
p(i)(∆LTk)

]

=
∑

1≤k≤j

p(i)(∆LTk)−
∑

1≤k≤j

m
(i)
k ,

(1.6.2)

with

p(i)(x) := xi11 x
i2
1 . . . x

id
d .

Remark 1.6.1. Notice that (1.6.1) has the benefit, compared to (1.5.11), of re-

quiring the estimation of only one set of weight parameters
(
ψ(i)
)
i∈I

for each step

between exercise dates and does not involve the summation of increments over a

finer partition. The other significant advantage is that in the Lévy context the

‘compensators’ m
(i)
k are constant (so long as there are regular intervals between

exercise dates) and can therefore be easily computed by simulation.

1.6.1 The Martingale Estimator

We now want to find a way of estimating the value of ΨTj such that the approxi-

mation (1.6.1) holds. To do so we define ΥTj (·) as the second moment, conditional
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1. Non-Nested Lévy Upper Bounds

on the information available at time Tj , of the hedging error between time Tj and

Tj+1, obtained by applying a set of martingale loadings corresponding to the

vector Ψ. More formally

ΥTj (Ψ) := E
Q
Tj

[(
∆VTj+1

−∆UTj+1
−ΨT∆GTj+1

)2]
.

It follows that our estimate Ψ̃Tj is given by

Ψ̃Tj := argmin
Ψ∈RM

ΥTj (Ψ) . (1.6.3)

In order to solve problem (1.6.3) we apply first order conditions; specifically

∂ΥTj

∂Ψ
= 2 E

Q
Tj

[
∆GTj+1

∆VTj+1
−∆GTj+1

∆UTj+1
−∆GTj+1

∆GT

Tj+1
Ψ
]
= 0 ,

from which we can derive the expression for the optimal martingale loadings

conditional on the information available at time Tj, i.e.

Ψ̃Tj = E
Q
Tj

[
∆GTj+1

∆GT

Tj+1

]−1

E
Q
Tj

[
∆GTj+1

∆VTj+1

]
,

where we have used the fact that E
Q
Tj

[
∆GTj+1

∆UTj+1

]
= 0, which follows from

having E
Q
Tj

[
∆GTj+1

]
= 0 (G is a martingale difference sequence) and from the

fact that ∆UTj+1
is measurable with respect to FTj .

Similarly to the procedure described in Section 1.5.2, the estimation of Ψ̃Tj

across the discrete-time filtration
(
FLTj ; 0 ≤ j ≤ J− 1

)
can be performed by sim-

ulation using an LSM-like approach. Specifically, we simulate over the exercise

times (T0, . . . , TJ) Ñ independent paths of the Lévy processes driving the model

L̃(Ñ) :=

{(
nL̃Tj

)
j=0,...,J

, n = 1, . . . , Ñ

}

and we use them to calculate the discretized paths of the compensated power-

increments vector process

G̃(Ñ) :=

{(
nG̃Tj

)
j=0,...,J

, n = 1, . . . , Ñ

}
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and the paths of a vector of basis functions

̟ (Tj , ·) :=
(
̟

(k)
1 (Tj , ·) , . . . , ̟(k)

S (Tj , ·)
)T

.

Then, following the LSM approach, we define

β̂Tj := argmin
β∈RS





Ñ∑

n=1

∣∣∣∣ (G̃GTj+1
)−1 ∆(nG̃Tj+1

) u
(
Tj+1, nL̃Tj+1

)
−̟

(
Tj, nL̃Tj

)T
β

∣∣∣∣
2



 ,

(1.6.4)

where

G̃GTj+1
:=

1

Ñ

Ñ∑

n=1

∆(nG̃Tj+1
) ∆(nG̃Tj+1

)T

and u (·, ·) is as in (1.5.17), which results in the following estimation of the mar-

tingale loadings Ψ̃Tj

Ψ̂Tj := ̟
(
Tj , LTj

)T
β̂Tj . (1.6.5)

Based on this we are now able to obtain our estimate of the martingale M̃ as

M̂Tj :=

j∑

l=1

(Ψ̂Tl−1
)T∆GTl , (1.6.6)

where we assume that G is simulated independently of the simulation used for

estimating Ψ̂.

Remark 1.6.2. Note that at time T0, because the value of the state variables is

the same across all paths, definition (1.6.4) can be simplified as

β̂T0 := argmin
β∈RS





Ñ∑

n=1

∣∣∣ (G̃GT1)
−1 ∆(nG̃T1) u

(
T1, nL̃T1

)
− β

∣∣∣
2



 , (1.6.7)

leading to

β̂T0 =
1

Ñ

Ñ∑

n=1

(G̃GT1)
−1 ∆(nG̃T1) u

(
T1, nL̃T1

)
(1.6.8)

and

Ψ̂T0 := β̂T0 .
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1.6.2 Normalization of Non-orthogonal Martingales

In some cases it may be useful to ortho-normalize the martingale basis G
(i)
t ,

i ∈ I, with respect to the probability distribution of ∆L in order to improve

the stability of the regression procedure (cf. Narula [1979]). Again, given the

properties of stationarity and independence of the increments of Lévy processes,

this can easily be achieved by estimating the covariance matrix of G
(i)
t , i ∈ I,

through an independent simulation. The simplest way to proceed is as follows: let

Σ be the covariance of ∆G(i) (which may be available in closed form or estimated,

out of sample, by Monte Carlo simulation), then we can obtain the increments of

the orthonormalized martingales G
(i)

t , i = 1, . . . , N (with N = n(I)) as

∆G = ∆GL−1

where LTL = Σ is the Cholesky factorization of Σ. An alternative way to per-

form the ortho-normalization of the martingale basis is through the modified

Gram-Schmidt algorithm (based on covariance Σ) which, as shown in Rice [1966],

provides improved numerical stability at the cost of a slightly more complex im-

plementation.

1.7 Numerical Implementation

In this section we provide details of the algorithms that can be used for the

implementation of the methodologies introduced in this chapter and we show

some numerical examples.

1.7.1 Pricing Algorithms

Lower bound

Similarly to Andersen and Broadie [2004], our approach is based on the use of

LSM for the estimation of lower bounds to the option price. The steps involved

in the implementation of the LSM algorithm are described below.

Definition 1.7.1 (Lower bound algorithm - LSM). Steps of the algorithm:
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1. Non-Nested Lévy Upper Bounds

1. Simulate NEst.
LSM paths of the underlying variables under the pricing proba-

bility measure.

2. Calculate the value of basis functions (e.g. polynomials up to degree QBasis
LSM )

along the simulate paths .

3. Estimate the optimal exercise policy τ̃ at each possible exercise point by

least-square regression with respect to the basis functions calculated at

point 2.

4. Apply the estimated policy τ̃ to a new set of NSim.
LSM simulated paths of the

underlying variables.

5. Calculate the lower bound estimate by averaging the discounted payoffs

obtained by applying τ̃ .

Upper bound

In this chapter we introduced two new methodologies for the calculation of upper

bounds to the option price. The general approach, described in section 1.5, for

computing upper bounds in a Lévy setting without nested simulation can be

implemented through the following algorithm.

Definition 1.7.2 (Upper bound algorithm - predictable representation approach).

Steps of the algorithm:

1. Use the modified Gram-Schmidt orthonormalization algorithm (cf. Björck

[1967]) to derive the coefficients for the orthonogonalization of the Teugels

martingales based on the Lévy measure of the driving processes.

2. Simulate NEst.
PR paths of the underlying variables under the pricing measure.

3. Calculate the orthogonalized Teugels martingales basis by applying the or-

thogonalization coefficients to the compensated power-jump processes ob-

tained from the simulated Lévy processes over the fine time grid P.

4. Calculate value of basis functions along the simulated paths (e.g. polynomi-

als up to degree QBasis
PR ) over coarse time grid E = {T0, ..., TJ} (as suggested
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1. Non-Nested Lévy Upper Bounds

in Belomestny et al. [2009], this can be the set of available exercise dates of

the Bermudan product).

5. Estimate the coefficients φ̂
(k)
Tj
, k = 1, ..., QMtgl

PR , of the predictable representa-

tion (up to degree QMtgl
PR ) of the martinglale component of the Doob-Meyer

decomposition of V ∗
Tj

by least-squares regression with respect to the basis

functions calculated at point 4.

6. Calculate discounted payoff Zt of the option and estimated optimal mar-

tingale M̃t at each exercise date on a new set of NSim.
PR simulated paths.

7. Using the dual representation (1.5.4), calculate the approximated upper-

bound for the option value at time 0; specifically, the upper bound is ob-

tained by averaging max0≤j≤J

(
ZTj − M̃Tj

)
over the generated paths.

Finally, the steps of the algorithm for the implementation of the long step ap-

proach of section 1.6 are given below.

Definition 1.7.3 (Upper bound algorithm - long step approach). Steps of the

algorithm:

1. Simulate NEst.
LS paths of the underlying variables.

2. Either analytically or by simulation, estimate the mean value µ̃ of the power

increments of the driving Lévy processes between exercise dates (up to the

chosen degree QMtgl
LS ) .

3. Calculate the martingale basis using the compensated power-increments

of the Lévy processes between exercise dates, where the compensators are

based on the estimates obtained at point 2. Optionally, the power-increment

martingales can be orthogonalized (as described in Section 1.6.2) based on

an estimate of their covariance Ṽ (obtained in a similar fashion as µ̃).

4. Calculate value of basis functions along the simulated paths (e.g. polyno-

mials up to degree QBasis
LS ).

5. At time 0 and at each exercise date (i.e. T0, . . . , TJ−1), estimate coefficients

Ψ̂Tj (up to the chosen degree QMtgl
LS ) of the approximated optimal martingale
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M̃ , based on (1.6.5), by least-square regression with respect to the basis

functions calculated at point 4.

6. Calculate instrument discounted payoff Zt and the estimated optimal mar-

tingale M̃t at each exercise date on a new set of NSim.
LS simulated paths.

7. Using the dual representation (1.5.4), calculate the approximated upper-

bound for the option value at time 0; specifically, the upper bound is ob-

tained by averaging max0≤j≤J

(
ZTj − M̃Tj

)
over the generated paths.

Remark 1.7.4 (Choice of polynomial family). The LSM algorithm is not directly

affected by the choice of polynomial basis used in the least-squares regression

because it relies on the fitted value and not on the degree of correlation among

the independent variables. However, if the choice of basis functions leads to a

nearly singular matrix, then it is possible that some regression algorithms will

give inaccurate numerical results for the estimated conditional expectation func-

tion. However, in general, as shown by Areal et al. [2008], most commonly used

polynomial families (including combination of monomials) provide almost identi-

cal results. Even though the choice of polynomial basis is not relevant in terms of

accuracy, it does have an impact in terms of computation time. Therefore Areal

et al. [2008] recommend, when time is relevant, the use of the combination of

monomials polynomial family which is one of the fastest to compute.

1.7.2 Examples

In our examples we have considered models driven by two types of Lévy processes:

Brownian motion and Variance-Gamma (VG); where the first was chosen to allow

comparisons of the newly introduced methods with benchmark cases from existing

literature and the second (see Madan and Seneta [1990] and Madan and Milne

[1991]) was selected for being a well known example of a Lévy process with no

continuous martingale component (i.e. pure-jump), thereby allowing to highlight

the increased domain of applicability of the proposed approaches compared to

Belomestny et al. [2009].
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Brownian motion For the Brownian setting we assume that the risk-neutral

dynamics of asset prices are defined by the following stochastic differential equa-

tion:

dXd
t = (r − δ)Xd

t dt+ σXd
t dW

d
t , d = 1, . . . , D ; (1.7.1)

where W d
t , d = 1, . . . , D, are independent one-dimensional Wiener processes and

r, δ, σ are constants. Stochastic differential equation (1.7.1) is also known as

geometric Brownian motion (GBM).

Variance Gamma The pure-jump nature of the VG process means that it can

be expressed in terms of its Lévy measure νV G (x). Adopting the usual (θ, σ, υ)

parametrization, the Lévy measure is defined as

νV G (x) :=
1

υ |x| exp
(
θ

σ2
x− 1

σ

√
2

υ
+
θ2

σ2
|x|
)

. (1.7.2)

where υ, σ > 0. Following Madan et al. [1998] we assume asset price dynamics

for X , under constant risk-free interest rates r, as given by

Xd
t = Xd

0 exp
(
(r + ω) t+ LV G,dt

)
, d = 1, . . . , D ,

where

ω =
1

υ
ln

(
1− θυ − σ2

2
υ

)
,

and where LV G,d are independent one-dimensional VG processes with parameters

(θ, σ, υ).

Bermudan Put

Firstly we consider the case of calculating the price at time t = 0 of a Bermudan

option with one underlying X . The contract has maturity at time T = 3, strike

price K = 100, payoff function (K −Xt, 0)
+ (put option) and it gives the holder

the right to exercise at times E = {∆t, 2∆t, ..., T −∆t, T}, where ∆t = 1
3
.

GBM We consider the following parameters for the asset price process: X0 =

90, 100, 110, σ = 0.2, δ = 0, r = 0.05. (See Table 1.1)
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Table 1.1: Bermudan Put (GBM)

X0 LowLSM (SE) UpLS (SE) UpA&B (SE)

90 13.0329 (0.0106) 13.0833 (0.0046) 13.0938 (0.0051)
100 8.5219 (0.0096) 8.5533 (0.0056) 8.5678 (0.0048)
110 5.5421 (0.0084) 5.5868 (0.0068) 5.5809 (0.0041)

VG - 1 We consider the following parameters for the asset price process: X0 =

90, 100, 110, σ = 0.2, θ = −0.3, υ = 0.5 r = 0.05. (See Table 1.2)

Table 1.2: Bermudan Put (Variance Gamma)

X0 LowLSM (SE) UpLS (SE) UpA&B (SE)

90 17.1481 (0.0170) 17.2872 (0.0086) 17.2875 (0.0090)
100 13.4878 (0.0162) 13.5913 (0.0091) 13.5961 (0.0089)
110 10.7483 (0.0153) 10.8263 (0.0089) 10.8244 (0.0085)

VG - 2 We consider the following parameters for the asset price process: X0 =

90, 100, 110, σ = 0.12, θ = −0.14, υ = 0.17 r = 0.01;. (See Table 1.3)

Table 1.3: Bermudan Put (Variance Gamma - 2)

X0 LowLSM (SE) UpLS (SE) UpA&B (SE)

90 12.8896 (0.0109) 12.9233 (0.0036) 12.9558 (0.0051)
100 7.8069 (0.0096) 7.8392 (0.0043) 7.8554 (0.0046)
110 4.5581 (0.0076) 4.5973 (0.0042) 4.5975 (0.0037)

The results above have been calculated by applying the algorithms described in

section 1.7.1 with the following simulation parameters:

NSim.
LSM = 1000000, NEst.

LSM = 1000000, QBasis
LSM = 4 ;

NSim.
LS = 10000, NEst.

LS = 1000000, QBasis
LS = 14, QMtgl

LS = 6 ;

NSim.
A&B = 10000, NSub.

A&B = 500 .

where NSim.
A&B is the number of paths and NSub.

A&B the number of nested simulations

used to calculate the dual estimates based on the algorithm of Andersen and
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Broadie [2004] (A&B). Note that the long-step approach allows to obtain close

upper bounds to the option price with execution times that are 20%− 40% those

of A&B, while using a simple and generic polynomial basis for the estimation of

coefficients of the power-increment martingales. Furthermore, we can see that

the non-nested approach has fairly uniform standard errors across moneyness

levels while A&B tends to perform better in case of out of the money options.

The reason for this is that the accuracy of the estimates from nested simulation

will typically improve when the payoff from most nested paths is zero while the

polynomial approximation of the martingale part of the Doob decomposition

of the discounted price process has no corresponding advantage in case of zero

payoffs.

Bermudan Max Call

We now test the case of a Bermudan Max Call option with two underlying assets,

X(1) and X(2). This is a benchmark case that has been previously analysed in

Glasserman [2004], Andersen and Broadie [2004] and Belomestny et al. [2009].

As in the previous example, the contract has maturity at time T = 3, strike

price K = 100 and the holder has the right to exercise the contract at times

E = {∆t, 2∆t, ..., T −∆t, T}, where ∆t = 1
3
. However, the payoff function is now

given by Φ(X1,t, X2,t) = (max (X1,t, X2,t)−K)+.

GBM We consider the following parameters for the asset price process: X
(1)
0 , X

(2)
0 =

90, 100, 110, σ = 0.2, δ = 0, r = 0.05. Table 1.4 shows benchmark results from

the literature while Table 1.5 shows the results of the long step method.

Table 1.4: Bermudan Max Call (GBM) - Benchmark results

Belomestny et al. [2009] Schoenmakers et al. [2012] A&B price interval
X0 Low (SE) Up (SE) Low (SE) Up (SE)

90 8.0242 (0.0383) 8.0891 (0.0347) 8.0556 (0.0219) 8.15655 (0.0034) [8.053, 8.082]
100 13.859 (0.0480) 13.958 (0.0434) 13.885 (0.0276) 14.0293 (0.0044) [13.892, 13.934]
110 21.330 (0.0556) 21.459 (0.0495) 21.3671 (0.0319) 21.5319 (0.0048) [21.316, 21.359]

29



1. Non-Nested Lévy Upper Bounds

Table 1.5: Bermudan Max Call (GBM)

X0 LowLSM (SE) UpLS (SE) UpA&B (SE)

90 8.0398 (0.0116) 8.1239 (0.0301) 8.1297 (0.0258)
100 13.8703 (0.0146) 13.9861 (0.0322) 13.9916 (0.0317)
110 21.3008 (0.0171) 21.4821 (0.0301) 21.4919 (0.0380)

VG We consider the following parameters for the asset price process: X
(1)
0 , X

(2)
0 =

90, 100, 110, σ = 0.2, θ = −0.3, υ = 0.5 r = 0.05. (See Table 1.6)

Table 1.6: Bermudan Max Call(Variance Gamma)

X0 LowLSM (SE) UpLS (SE) UpA&B (SE)

90 30.9068 (0.0315) 31.2634 (0.0752) 31.302 (0.0773)
100 41.7849 (0.0369) 42.1789 (0.0834) 42.3079 (0.0897)
110 53.1479 (0.0416) 53.7769 (0.0938) 53.8717 (0.1040)

In this numerical example we have run simulations based on the following simu-

lation parameters:

NSim.
LSM = 1000000, NEst.

LSM = 1000000, QBasis
LSM = 4 ;

NSim.
LS = 1000, NEst.

LS = 1000000, QBasis
LS = 9, QMtgl

LS = 5 ;

NSim.
A&B = 1000, NSub.

A&B = 200 ;

Again, using a generic polynomial basis we are able to obtain tight upper bounds

to the option price. This is in contrast to Belomestny et al. [2009] and Schoen-

makers et al. [2012], where the implementation algorithms require the knowledge

of the analytical (approximation) formula for the discounted price of the corre-

sponding European options and the use of Malliavin calculus techniques to gen-

erate an ad-hoc set of basis functions. It should be noted, however, that as the

dimensionality of the problem increases, the number of (generic) polynomial basis

functions required to produce good approximations of the optimal martingale can

quickly grow to a point where the time required to perform the least-square es-

timation of the coefficients of the power-increment martingales (1.6.4) limits the

computational benefits of the approach. For those situations, the choice of basis
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functions becomes crucial to obtain tight upper bounds with a sufficiently small

basis, therefore one may still consider to apply the methods mentioned in Be-

lomestny et al. [2009] and Schoenmakers et al. [2012] for selecting basis functions

specific to the problem at hand.

1.8 Conclusion

In this chapter we presented a novel approach for estimating upper bounds for the

value of Bermudan products that does not require resorting to nested simulation

and is applicable when the underlying variables are driven by Lévy processes.

In particular, by taking advantage of the predictable representation property for

Lévy processes introduced in Nualart and Schoutens [2000], we were able to gen-

eralise Belomestny et al. [2009] to the Lévy setting, thereby extending the appli-

cability of the approach to a range of models that are better suited for capturing

empirical properties of asset returns such as heavy-tailed distributions and jumps.

In addition, we introduced a wide time-step variant of the methodology which

is easily implementable and computationally efficient, requiring the simulation of

variables only at the exercise dates of the Bermudan product, and is applicable

when the value of the underlying financial variables can be expressed using non

path-dependent functions of Lévy processes (as in the most common linear and

exponential Lévy models). Numerical examples show that the methodology, par-

ticularly in its long step variant, can be used to obtain tight upper bounds to

the price of Bermudan products using a generic procedure that does not involve

derivation of ad-hoc sets of basis functions specific to the problem at hand.
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Part II

Estimation of Covariance with

Non-Synchronous Observations

We introduce a new estimator of the covariance of two diffusion processes that

are observed only at discrete times in a non-synchronous manner which does not

require any modification of the data and is thereby free of bias. Compared to

related estimators, such as the one of Hayashi and Yoshida [2005], the proposed

estimator achieves significantly higher efficiency (around 20 % reduction in RMSE

in case of Poisson sampling) by taking into account the level of overlapping be-

tween each observation interval and hence assigning appropriate weights to the

cross-product of the associated increments. We show that the new estimator is

unbiased and consistent and analyse its efficiency compared to alternatives from

the literature.
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Chapter 2

Efficient Covariance Estimation

of Non-Synchronously Observed

Diffusion Processes

2.1 Introduction

The advent of widespread availability of time series of transaction prices (tick-

by-tick data) for large classes of financial assets has generated significant interest

in the past few years in how to best use this new wealth of data to make better

inferences about the various features of data generating processes. Among these,

the estimation of covariance, which is by far the most widely used measure of co-

dependence between financial variables, has received particular attention. The

literature has identified a number of challenges with using tick-by-tick datasets

for covariance estimation, namely the fact that transactions occur randomly (and

are thereby non-synchronous) and the presence of market micro-structure noise

affecting high-frequency returns. The non-synchronicity of the observations, in

particular, introduces difficulties in applying standard approaches to covariance

estimation. Specifically, the traditional ‘Realized Covariance’ (RC) estimator,

which has been analysed in the high-frequency context in Andersen et al. [2003]

and Barndorff-Nielsen and Shephard [2004], requires returns to be available on

the same time grid; therefore, before being able to apply RC, a dataset needs
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first to be synchronised by performing the imputation of values over synchronous

time points. The most common ways of doing this are to either select the most

recent observation on or before each point on the chosen time grid (known as

‘last-tick’ interpolation) or to apply linear interpolation to the available observa-

tions (see Martens [2004] for a review of the most common approaches). How-

ever, as has been shown in Renò [2003], Hayashi and Yoshida [2005] and Zhang

[2011], both linear and last-tick interpolation can introduce significant bias in

the covariance estimates, especially when the size of the intervals on the syn-

chronous time grid is small relative to the frequency of the actual trades. The

non-synchronicity of the data is in fact seen (cf. Zhang [2011]) as a significant

component of the so called “Epps effect” (first reported in Epps [1979]), the em-

pirical phenomenon whereby correlations appear to be decreasing when sampling

frequency increases. To get around this problem Hayashi and Yoshida [2005] (see

also Hayashi and Yoshida [2008] and Hayashi and Kusuoka [2008]) introduced a

new unbiased estimator of realized covariance that does not require observations

to be available on a regular grid. More specifically, suppose we have discrete

non-synchronous observations of two security ‘prices’ - or ‘logarithmic prices’, de-

pending on the context - X
(1)
Π1

:=
(
X

(1)

t
(1)
i

)
i=1,...,N(1)

and X
(2)
Π2

:=
(
X

(2)

t
(2)
j

)
j=1,...,N(2)

,

where Π1 :=
{
t
(1)
1 , . . . , t

(1)

N(1)

}
, Π2 :=

{
t
(2)
1 , . . . , t

(2)

N(2)

}
and t

(1)
1 = t

(2)
1 = 0, whose

values are assumed to be generated by continuous-time Itô semimartingales. The

traditional RC estimator of the realised covariance V := 〈X(1), X(2)〉T (where

T := t
(1)

N(1) ∧ t
(2)

N(2)) , based on last-tick interpolation and sampling frequency

∆ ∈ R
+, can be defined as

RC∆

(
X

(1)
Π1
, X

(2)
Π2

)
:=

N∑

i=1

(
X̂

(1)
i∆ − X̂

(1)
(i−1)∆

)(
X̂

(2)
i∆ − X̂

(2)
(i−1)∆

)
(2.1.1)

where

N := ⌊T/∆⌋ ; 1 X̂
(l)
t := X

(l)

max
{
t
(l)
i | t

(l)
i ∈Πl ; t

(l)
i ≤t

} , l = 1, 2;

1⌊·⌋ is the floor operator, i.e. ⌊x⌋ = max {n ∈ Z|n ≤ x}
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while the Hayashi-Yoshida estimator (HY) is given by

HY
(
X

(1)
Π1
, X

(2)
Π2

)
:=
∑

i,j

(
X

(1)

t
(1)
i

−X
(1)

t
(1)
i−1

)(
X

(2)

t
(2)
j

−X
(2)

t
(2)
j−1

)
1
{(t

(1)
i ,t

(1)
i−1]∩(t

(2)
j ,t

(2)
j−1] 6=∅}

(2.1.2)

Even though the HY estimator (2.1.2) has been proven to be consistent and

asymptotically normally distributed (cf. Hayashi and Yoshida [2005] and Hayashi

and Yoshida [2008]) and is free of the asynchronicity bias affecting RC, it has the

drawback of not being efficient in the way it uses the available observations.

One reason for this is that the sum in (2.1.2) assigns equal weights to the cross-

products of all overlapping increments ofX(1) andX(2), irrespective of the amount

of overlap between them. To get an intuition of the problem, let X(1) and X(2)

be two monthly time series (where each month contains 30 days), X(1) having

observations on the first day and X(2) on last day of the every month. From the

point of view of the HY estimator, cross-products of increments with 29 out 30

days in common are just as informative about the covariance of the processes as

cross-products of increments sharing a single day. More formally, if we assume

X(1) and X(2) are observed on equally spaced grids with a constant offset of h > 0

from each other (i.e. t
(2)
i = t

(1)
i + h , i = 1, . . . , N (2)), we have

lim
h→0+

RCΠ1

(
X

(1)
Π1
, X

(2)
Π1+h

)
= RCΠ1

(
X

(1)
Π1
, X

(2)
Π1

)
6= lim

h→0+
HY

(
X

(1)
Π1
, X

(2)
Π1+h

)

in particular, assuming t
(1)
i − t

(1)
i−1 = ∆, i = 1, . . . , N , we have

Var
[
RCΠ1

(
X

(1)
Π1
, X

(2)
Π1

)]
= ∆2 nσ2

1,2 +∆2 nσ1,1 σ2,2 ;

≤

Var

[
lim
h→0+

HY
(
X

(1)
Π1
, X

(2)
Π1+h

)]
= ∆2 nσ2

1,2 +∆2 (2n− 1) σ1,1 σ2,2 .

(2.1.3)

Proof. See appendix A.1.

which highlights the inefficiency of HY (note that RC is the mean-variance effi-

cient estimator in the case of synchronous observations 1).

1see Greene [2008]
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In this chapter we introduce a new covariance estimator, referred to as the Lin-

early Weighted (LW) estimator, that is an unbiased covariance estimator which

generalizes RC to non-synchronous observations. Compared to the HY estima-

tor, it achieves higher efficiency by taking into account the level of overlapping

between each observation interval and hence assigning appropriate weights to the

cross-product of the associated increments. Specifically, the estimator applies

a higher weight when the intervals closely overlap, therefore resulting in a less

‘noisy’ sample, and lower weight when the overlap is limited. The weights used

can be interpreted as being the result of applying traditional sample covariance

estimation at infinitely high frequency to the paths obtained from the linear in-

terpolation of the observed values (hence the “linearly weighted” denomination).

Unbiasedness and consistency of the LW estimator is proved for the case of

constant convariance and for the case of time-dependent (deterministic) covari-

ance under the assumption of stationary distributed observation times. Simula-

tion results show a reduction of around 20% in RMSE compared to the Hayashi-

Yoshida estimator (HY) in the case of Poisson observation times.

During the work on this chapter, Corsi et al. [2012] and Shephard and Xiu

[2012] have independently introduced a QMLE approach to covariance estima-

tion with missing observations and i.i.d market micro-structure noise (see also

Shumway and Stoffer [1982]) which, by iterating through a Kalman filter and an

Expectation-Maximization algorithm (KEM), obtains a covariance estimate that

is shown to achieve the non-parametric efficiency bound. However, the statistical

efficiency of their approach comes at the cost of a fairly complex implementation

and slow computation, particularly in high dimensions.

The LW estimator is somewhat related to KEM, in the sense that LW can be

seen as the result of a similar QMLE with EM approach, where the conditional

expectations required by the EM algorithm are computed with respect to a subset

of the information available, specifically by looking at each time series in isolation.

This difference leads to an estimator which is very simple to implement and fast to

compute since it is available in closed form, without requiring multiple iterations,

while at the same time preserving most of the efficiency gains of KEM.
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2.2 Problem setup

In this chapter we are interested in the estimation of the cumulative covariance

between two continuous-time diffusion processes, X(1) and X(2), which are being

observed at random times and are therefore not guaranteed to be neither syn-

chronous nor equally spaced. The stochastic processes that we are considering are

one-dimensional Itô processes which can be described by the following stochastic

differential equation

dX
(l)
t = µl,tdt+ σl,tdWl,t , X

(l)
0 = xl , l = 1, 2 ;

with 〈dW 〉t = ρtdt, where ρt is an unknown function valued in (−1, 1), xl > 0

is a constant, µl is a (possibly unknown) predictable locally bounded drift, and

σl > 0 is a deterministic and bounded (possibly unknown) function.

2.3 Non-Synchronous Observations and Down-

ward Biases

The RC estimator (2.1.1) has been used extensively for the estimation of covari-

ance from time series data. However, as we mentioned before, the RC estimator

assumes that all time series under consideration have a complete set of observa-

tions available on the same time-grid Π := {t1, . . . , tN}. Therefore, whenever a

time series X(l) does not have value at a grid point ti, i = 1, . . . , N , the prac-

titioner will need to find a way of filling it with some value X̂(l) before RC

can be applied. This issue is particularly relevant when we deal with datasets

of transaction prices (or quotes) whose observation times are random and the

probability of two observations happening at the same time can be close to zero.

The most common ways of producing synchronous samples from non-synchronous

datasets have the potential of introducing significant bias in the covariance es-

timate, which tends to be more severe as the sampling frequency increases (∆

decreases in (2.1.1) ). Therefore the practitioner is faced with a trade-off between

introducing a higher bias and sub-sampling the dataset, thereby not taking ad-

vantage of a large portion of the information available and obtaining more volatile
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estimates.

2.3.1 Linear interpolation

As reported in Barucci and Reno [2002], applying the RC estimator to linearly

interpolated time series can result in significantly biased estimates. In particular,

increasing the sampling frequency we see the variance of the estimator reducing

at the cost of an increased downward bias in mean. Furthermore, in the case of

linear interpolation this issue applies not only to covariance estimates but also to

those of variance (cf. Dacorogna [2001], Kanatani [2004]).

2.3.2 Last-tick interpolation

Given a stochastic process X for which we have observations available at times

Π := {t1, . . . , tN}, the value of the process at time t from ‘last-tick’ interpolation

is given by

X̂t := Xmax {ti | ti∈Π ; ti≤t} .

Last-tick interpolation is typically preferred to linear interpolation because it

does not introduce obvious extraneous bias when estimating quadratic variations

of univariate processes (see Dacorogna [2001], Hansen and Lunde [2004], Kanatani

[2004] ) processes via (2.1.1) with X(1) = X(2). However, Hayashi and Yoshida

[2005] and, more generally, Zhang [2011] show that previous-tick interpolation of

non-synchronous time series leads to bias in the covariance estimates obtained by

using the RC estimator.

2.4 Tick-by-tick estimators

Hayashi and Yoshida [2005] initiated a new line of research in the covariance

estimation literature by introducing an unbiased estimator which takes advantage

of tick-by-tick observations of non-synchronous samples without requiring any

pre-processing or subsampling of the available data. Their estimator has been

extensively analysed in different settings by the recent literature and modifications

have been introduced to deal with specific issues such as microstructure effects,
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lead-lag relationship and rounded time stamps; notable examples can be found in

Voev and Lunde [2007],Griffin and Oomen [2011] Palandri [2006], Audrino and

Corsi [2008] and Bibinger [2011].

2.4.1 The Hayashi-Yoshida covariance estimator

We now provide a formal definition of the Hayashi-Yoshida covariance estimator

(HY). Let T ∈ (0, 1) be an arbitrary terminal time for observing X(l)’s. In addi-

tion, let Π1 :=
(
t
(1)
i

)
i=1,2,...,N(1)

and Π2 :=
(
t
(2)
i

)
i=1,2,...,N(2)

be increasing sequences

of random observation times such that t
(1)
1 , t

(2)
1 ≥ 0 and t

(1)

N(1) , t
(2)

N(2) ≤ T and let

time-intervals between consecutive observations be defined as I1i :=
(
X

(1)
i−1, X

(1)
i

]
,

with I1 :=
⋃N(1)

i=1 (I1i ), and I2j :=
(
X

(2)
j−1, X

(2)
j

]
, with I2 :=

⋃N(2)

j=1

(
I2j
)
. Let also

| · | : B → R represent the length of an interval. Then the HY estimator

of the realized covariance between X(1) and X(2), over the period |I1 ∩ I2| =(
t
(1)
1 ∨ t(2)1 , t

(1)

N(1) ∧ t(2)N(2)

]
, is given by

Definition 2.4.1 (Hayashi-Yoshida Covariance Estimator).

HY
(
X

(1)
Π1
, X

(2)
Π2

)
:=
∑

i,j

(
X

(1)

t
(1)
i

−X
(1)

t
(1)
i−1

)(
X

(2)

t
(2)
j

−X
(2)

t
(2)
j−1

)
1
{(t

(1)
i ,t

(1)
i−1]∩(t

(2)
j ,t

(2)
j−1] 6=∅}

=
∑

i,j

∆X
(1)
i ∆X

(2)
j 1{I1i ∩I2j 6=∅}

where ∆X
(1)
i := X

(1)

t
(1)
i

− X
(1)

t
(1)
i−1

and ∆X
(2)
j := X

(2)

t
(2)
j

− X
(2)

t
(2)
j−1

. Definition 2.4.1 can

also be used to derive the HY estimator for the average covariance over the same

period. Specifically

Definition 2.4.2 (Hayashi-Yoshida Average Covariance Estimator).

ĤY
(
X

(1)
Π1
, X

(2)
Π2

)
:=

1

|I1 ∩ I2|
∑

i,j

∆X
(1)
i ∆X

(2)
j 1{I1i ∩I2j 6=∅} .

The unbiasedness (in case of zero drift) and consistency of the HY estimator was

proved in Hayashi and Yoshida [2005] under the assumption of independence of

the observation times of X(1) and X(2). As mentioned in the introduction, one
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issue with the estimator is in the relatively inefficient way in which it uses the

available information.

2.4.2 Skip-k sampling HY estimator

Griffin and Oomen [2011] show that, when observations are contaminated by

market microstructure noise, it may not be optimal to apply the HY estimator

by sampling prices at the highest available observation frequency because this

can lead to an accumulation of noise that more than offsets the gains from us-

ing more data and may result in biased estimates. Under the assumption of

Poisson sampling and i.i.d. noise, they then propose a “skip-k sampling” HY

estimator whereby prices for both assets are sampled every kth observation, i.e.

t
(l)
k , t

(l)
2k , . . . , t

(l)
⌊N(l)

j
/k⌋k, l = 1, 2, and identify explicitly the MSE minimizing skip-k

sampling frequency as a function of the the noise level.

2.5 The Linearly Weighted Covariance Estima-

tor: Main Result

We propose a new kind of tick-by-tick covariance estimator which aims at im-

proving the efficiency of the HY estimator, while preserving its simplicity and

computational performance. We assume that the sampling times Π := (Π1,Π2)

satisfy the following conditions:

Condition (A).

1. (I1i ) and (I2j ) are independent of X(1) and X(2).

2. As n (Π1 ∪Π2) → ∞, E
[
maxi |I1i | ∨maxj |I2j |

]
= o(1).1

Condition (B). 2

1. Π1 and Π2 are such that (|I1i |)i=1,2,... and (
∣∣I2j
∣∣)j=1,2,... are strictly stationary

sequences of independent R+-valued random numbers.

1n(·) is the cardinality measure
2Required only for the case of non-constant covariance
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The quantity to be estimated is the (deterministic) covariation of X1 and X2,

i.e.:

θ :=

∫ T

0

ρt σ1,tσ1,tdt

Definition 2.5.1. (Linearly Weighted covariance estimator).

Average covariance:

LW
(
X

(1)
Π1
, X

(2)
Π2

)
:=

1

φ

∑

i,j

∆X
(1)
i ∆X

(2)
j wi,j ; (2.5.1)

Cumulative covariance:

LW
(
X

(1)
Π1
, X

(2)
Π2

)
:=

|I1 ∩ I2|
φ

∑

i,j

∆X
(1)
i ∆X

(2)
j wi,j ; (2.5.2)

where

φ :=
∑

i,j

|I1i ∩ I2j |wij ,

wij :=
|I1i ∩ I2j |
|I1i ||I2j |

.

Remark 2.5.2. The weights used by the proposed estimator can be interpreted as

being the result of applying traditional sample covariance estimation at infinitely

high frequency to the paths (X̂1 and X̂2) obtained from the linear interpolation

of the observed values of X1 and X2, and then applying a bias correction φ̂ (as

defined below). Consider, for example, calculating sample covariance of incre-

ments X̂1 and X̂2 over the interval (0, T ], based on increments of length h. Then
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we have:

lim
h→0

1

φ̂

⌊T/h⌋∑

l=1

∆X̂1,l∆X̂2,l

= lim
h→0

1
∑⌊T/h⌋

l=1
h

|I1
i(l)

|
h

|I2
j(l)

|

∣∣∣I1i(l) ∩ I2j(l)
∣∣∣

⌊T/h⌋∑

l=1

(
h

|I1i(l)|
∆X

(1)
i(l)

)(
h

|I2j(l)|
∆X

(2)
j(l)

)

= lim
h→0

1

∑⌊T/h⌋
l=1 h

∣∣∣I1
i(l)

∩I2
j(l)

∣∣∣
|I1

i(l)
||I2

j(l)
|

⌊T/h⌋∑

l=1

h

(
1

|I1i(l)|
∆X

(1)
i(l)

)(
1

|I2j(l)|
∆X

(2)
j(l)

)

= lim
h→0

1
∑

i,j

(
h
∑⌊T/h⌋

l 1{i(l)=i∧ j(l)=j}

) |I1i ∩I2j |
|I1i ||I

2
j |

∑

i,j


h

⌊T/h⌋∑

l

1{i(l)=i∧ j(l)=j}


 1

|I1i |
∆X

(1)
i

1

|I2j |
∆X

(2)
j

=
1

∑
i,j

∣∣I1i ∩ I2j
∣∣ |I1i ∩I2j |

|I1i ||I
2
j |

∑

i,j

∣∣I1i ∩ I2j
∣∣

|I1i |
∣∣I2j
∣∣ ∆X

(1)
i ∆X

(2)
j

=
1

φ

∑

i,j

∆X
(1)
i ∆X

(2)
j wi,j

=LW
(
X

(1)
Π1
, X

(2)
Π2

)

where i(l) := {i : l · h ∈ (t1,i−1, t1,i]} and j(l) := {j : l · h ∈ (t2,j−1, t2,j]}.

2.6 QML estimation with the EM algorithm

This new estimator can also be analysed in the Quasi-Maximum Likelihood

framework of Xiu [2010] and Shephard and Xiu [2012]. The approach is Quasi-

Likelihood because it generates a likelihood function by mis-specifying the data

generating model, assuming that log-prices are a rotated multivariate Brownian

motion, i.e. ignoring the fact that covariance may be a time varying process.

Following Shephard and Xiu [2012], we write the quasi log-likelihood under the

assumption of a synchronous (though possibly not evenly spaced) dataset of n
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observations, where X :=
(
X(1), . . . , X(d)

)
and Σ is a d× d covariance matrix.

log f (x1:n; Σ) =c−
1

2

n∑

k=2

log |Σ| − 1

2

n∑

k=2

1

∆k

(
Xtk −Xtk−1

)′
Σ−1

(
Xtk −Xtk−1

)

=c− 1

2

n∑

k=2

log |Σ| − 1

2

n∑

k=2

1

∆k
tr
{
Σ−1 (∆Xk∆Xk

′)
}

(2.6.1)

If we now consider non-synchronous datasets, some of the values in (2.6.1) may

be missing. To overcome this we can apply the Expectation - Maximization (EM)

algorithm of Dempster et al. [1977]. EM involves the application of the following

two steps until the convergence of the estimate:

1. (Expectation). Calculate the expectation of the log-likelihood function con-

ditional on the available observations and on covariance matrix Σ̂k (where

Σ̂0 is a guess).

2. (Maximization). Find Σ̂k+1 that maximizes the log-likelihood calculated at

step 1.

Let XObs denote the available (possibly non-synchronous) observations for the

multivariate process X . Applying the standard Expectation step of the EM algo-

rithm to the log-likelihood (2.6.1) we obtain

E
[
log f (x1:n; Σ)|XObs; Σ

]
=c− 1

2

n∑

k=2

log |Σ| − 1

2

n∑

k=2

1

∆k
E
[
(∆Xk)

′Σ−1∆Xk|XObs; Σ
]

=c− 1

2

n∑

k=2

log |Σ| − 1

2

n∑

k=2

1

∆k
tr
{
Σ−1

E
[
∆Xk (∆Xk)

′ |XObs; Σ
]}

=c− 1

2

n∑

k=2

log |Σ| − 1

2

n∑

k=2

1

∆k
tr
{
Σ−1

[
∆X̃k∆X̃k

′

+
(
E
[
∆Xk (∆Xk)

′ |XObs; Σ
]
−∆X̃k∆X̃k

′
)]}

=c− 1

2

n∑

k=2

log |Σ| − 1

2

n∑

k=2

1

∆k
tr
{
Σ−1

(
∆X̃k∆X̃k

′

+E

[
∆Xk (∆Xk)

′ −∆X̃k∆X̃k
′|XObs; Σ

])}
,
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where ∆X̃k = E
[
∆Xk|XObs; Σ

]
, which can be re-written as

log f̃ (x1:n; Σ) := c− 1

2

n∑

k=2

log |Σ| − 1

2

n∑

k=2

1

∆k
tr
{
Σ−1

(
∆X̃k∆X̃k

′

+E

[
∆Xk∆Xk

′ −∆X̃k∆X̃k
′|Π;Σ

])}

= E
[
log f (x1:n; Σ)|XObs; Σ

]
.

(2.6.2)

Then, by applying the Maximization step, we obtain the following update to the

covariance estimate

Σ̂ =
1

n− 1

n∑

k=2

1

∆k

(
∆X̃k∆X̃k

′
+ E

[
∆Xk (∆Xk)

′ −∆X̃k∆X̃k
′|Π;Σ

])

=
1

n− 1

n∑

k=2

1

∆k

{
∆X̃k∆X̃k

′
+MSE

(
∆X̃k|Π;Σ

)}
.

(2.6.3)

Looking at equation (2.6.2) one can see that the function log f̃ (x1:n; Σ) that we

maximize is a modification of the log-likelihood function (2.6.1) where some of

the available values have been taken as expectations, thereby resulting in loss of

information. In particular, (2.6.2) first uses a predictor to compute ∆X̃k∆X̃k
′

based on an estimate of the time series values and then replaces the mismatch

between ∆X̃k∆X̃k
′
and the actual (unknown) value of ∆Xk∆X

′
k with its expec-

tation. Clearly, the better the quality of the predictor, the lower will be the loss

of information when switching from log f to log f̃ . In the case of the EM algo-

rithm, the chosen predictor (i.e. the conditional expectation with respect to the

available observations and the covariance Σ) achieves optimality in mean-squared

sense. Motivated by the need to obtain an efficient yet simple and computation-

ally fast covariance estimator, we adopt a simplified predictor of the missing data,

one that takes advantage only of the univariate information of each time series

and can therefore be calculated independently of the covariance prior. In other

words, this simplified predictor is given by the linear interpolation of each time

series along the time dimension. The advantage of doing this is that we avoid

having to do complex matrix operations at every stage, while, at the same time,

taking advantage of what is typically the most significant information for the pre-

44



2. Efficient Covariance Estimation

diction of a missing value: the value of the stochastic process itself at its closest

observations. As we will see below, this approach has the additional advantage of

being able to obtain the value of the estimate in a single iteration. More formally,

we introduce the following alternative formulation of (2.6.2) based on the ‘linear

interpolation’ predictor:

log f̂ (x1:n; Σ) :=c−
1

2

n∑

k=2

log |Σ| − 1

2

n∑

k=2

1

∆k
tr
{
Σ−1

(
∆X̂k∆X̂k

′

+E

[
∆Xk (∆Xk)

′ −∆X̂k∆X̂k
′
∣∣∣Π;Σ

])} (2.6.4)

where

∆X̂k =
(
E

[
∆X

(1)
k

∣∣∣XObs
1,· ; Σ

]
,E
[
∆X

(2)
k

∣∣∣XObs
2,· ; Σ

]
, ...,E

[
∆Xd,k|XObs

d,· ; Σ
])

=
(
E

[
∆X

(1)
k

∣∣∣Π1

]
,E
[
∆X

(2)
k

∣∣∣Π2

]
, ...,E [∆Xd,k|Πd]

)
.

If follows that the new update equation is given by

Σ̂ =
1

n− 1

n∑

k=2

1

∆k

(
∆X̂k∆X̂k

′
+ E

[
∆Xk (∆Xk)

′ −∆X̂k∆X̂k
′|Π;Σ

])
(2.6.5)

Given the particular nature of the linear interpolation predictor in (2.6.5), each

entry of the matrix Σ̂ is calculated independently therefore we can write the up-

date equation for each pair (l, k), with l = 1, ..., d and k = 1, ..., d , of dimensions

of X . Specifically, the k+1-th iteration of the covariance estimate between X(1)
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and X(2) will be given by

σ̂k+1
1,2 =

1

n− 1

n∑

k=2

1

∆k

(
∆X̂1,k∆X̂2,k + E

[
∆X1,kX2,k −∆X̂1,k∆X̂2,k|Π;Σ

])

=
1

n− 1

n∑

k=2

1

∆k

{
∆XObs,1

i(k)

∆k

|I1i(k)|
∆XObs,2

j(k)

∆k

|I2j(k)|
+ σ̂k1,2

(
∆k − |I1i(k) ∩ I2j(k)|

∆k

|I1i(k)|
∆k

|I2j(k)|

)}

=
1

n− 1

n∑

k=2

{
∆XObs,1

i(k) ∆XObs,2
j(k)

∆k

|I1i(k)||I2j(k)|
+ σ̂k1,2

(
1−

|I1i(k) ∩ I2j(k)|
|I1i(k)||I2j(k)|

∆k

)}

=
1

n− 1

∑

i,j

{
∆XObs,1

i ∆XObs,2
j

|I1i ∩ I2j |
|I1i ||I2j |

− σ̂k1,2
|I1i ∩ I2j |
|I1i ||I2j |

|I1i ∩ I2j |
}
+ σ̂k1,2

=
1

n− 1

∑

i,j

{
∆XObs,1

i ∆XObs,2
j wi,j − σ̂k1,2|I1i ∩ I2j |wij

}
+ σ̂k1,2

=
1

n− 1

{(∑

i,j

∆XObs,1
i ∆XObs,2

j wi,j

)
− σ̂k1,2φ

}
+ σ̂k1,2 ,

where i(·) and j(·) are functions converting the indices of the complete time series

into the indices of the observed values and wi,j and φ are as defined in (2.5.1).

If we now assume convergence of the algorithm we can set σ̂k+1
1,2 = σ̂k1,2 = σ̂1,2.

Therefore we have

1

n− 1

{∑

i,j

∆XObs,1
i ∆XObs,2

j wi,j − σ̂1,2 φ

}
= 0

∑

i,j

∆XObs,1
i ∆XObs,2

j wi,j − σ̂1,2 φ = 0

and thus

σ̂1,2 =
1

φ

∑

i,j

∆XObs,1
i ∆XObs,2

j wi,j = LW
(
X

(1)
Π1
, X

(2)
Π2

)
,

which is the LW covariance estimator defined in (2.5.1).
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2.7 Unbiasedness and Consistency with Non-Constant

Covariance

In this section we prove unbiasedness and consistency of the newly introduced

LW estimator.

Theorem 2.7.1. Suppose conditions A. and B. hold.

1. If sup0≤t≤T |µk,t| ∈ L4, k = 1, 2, then LW
(
X

(1)
Π1
, X

(2)
Π2

)
→ θ in L2 as

n (Π1 ∪Π2) → ∞.

Remark 2.7.2. As is seen in the proof below, if µlt = 0, 0 ≤ t ≤ T , then

LW
(
X

(1)
Π1
, X

(2)
Π2

)
is unbiased.

2.7.1 Unbiasedness of the LW Estimator

First we assume µlt = 0, 0 ≤ t ≤ T for the time being. We will show that

LW
(
X

(1)
Π1
, X

(2)
Π2

)
→ θ in L2 as n (Π1 ∪Π2) → ∞. For simplicity of notation in

the rest of the proof we will refer to LW
(
X

(1)
Π1
, X

(2)
Π2

)
such that n (Π1 ∪Π2) = n

as LWn; also, without loss of generality, we assume T = 1. For each measurable

set I on [0,∞), we define (signed) measures by

c(I) :=

∫

I

ρt σ1,tσ1,tdt ,

ck(I) :=

∫

I

(σk,t)
2 dt , k = 1, 2

Moreover, for each measurable set I on [0,∞), we define

∆Xk(I) :=

∫ T

0

1I(t)σk,tdWk,t , k = 1, 2.

In addition we introduce the shorthand notation ∆X
(1)
i := ∆X1(I

1
i ) and

∆X
(2)
j := ∆X2(I

2
j ).
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In order to prove the unbiasedness of the estimator we need to prove that

E

[
T

φ

∑

i,j

∆X
(1)
i ∆X

(2)
j wi,j

]
=

∫ T

0

ρt σ1,tσ1,tdt = c
(
I1 ∩ I2

)
= θ

We proceed as follows: let w̃ : (Ω,R+) → R
+ be defined as w̃t :=

∑
i,j wij1{t∈I1i ∩I2j}.

Then

E

{
T

φ

∑

i,j

∆X
(1)
i ∆X

(2)
j wi,j

}
= E

{
T

φ

∑

i,j

E

[
∆X

(1)
i ∆X

(2)
j

∣∣∣Π
]
wi,j

}

= E

{
T

φ

∑

i,j

c(I1i ∩ I2j )wi,j
}

= E

{
T∫ T

0
w̃s ds

∑

i,j

(∫

I1i ∩I
2
j

ρt σ1,tσ1,tdt

)
wi,j

}

= T

∫ T

0

(ρt σ1,tσ1,t) E

[
w̃t∫ T

0
w̃sds

]
dt

= T
1

T

∫ T

0

ρt σ1,tσ1,tdt

=

∫ T

0

ρt σ1,tσ1,tdt

Where we have used the independence of the increments and the fact that, fol-

lowing from condition B, w̃t’s are identically distributed for every t.

2.7.2 Consistency of the LW Estimator

We claim that E
[
LW2

n

]
= θ2 + o(1) so that LWn → θ in L2 as n → ∞. To this

end note that

E
[
LW2

n

]
= E

[
1

φ2

∑

i,j,i′,j′

E

{
∆X

(1)
i ∆X

(2)
j ∆X

(1)
i′ ∆X

(2)
j′

∣∣∣Π
}
wijwi′j′

]
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and decompose the inside summation into four components, specifically

∑

i,j,i′,j′

=
∑

i,j,i′,j′:
i′=i,j′=j

+
∑

i,j,i′,j′:
i′=i,j′ 6=j

+
∑

i,j,i′,j′:
i′ 6=i,j′=j

+
∑

i,j,i′,j′:
i′ 6=i,j′ 6=j

=: D1 +D2 +D3 +D4 (2.7.1)

In the following four subsections we will calculate the expectations that appear

in each component.

Case 1 - D1

The D1 component in 2.7.1 is given by

D1 =
1

φ2

∑

i,j

E

{(
∆X

(1)
i

)2 (
∆X

(2)
j

)2∣∣∣∣Π
}
w2
ij .

In order to make the derivation more compact, we introduce the following nota-

tion:

I1i\j := I1i \ I2j ,
∆X

(1)
i∩j := X

(1)

u(I1i ∩I
2
j )
−X

(1)

d(I1i ∩I
2
j )
,

∆X
(1)
i\j :=

(
X

(1)

u(I1i )
−X

(1)

d(I1i )

)
−
(
X

(1)

u(I1i ∩I
2
j )
−X

(1)

d(I1i ∩I
2
j )

)
;

and

I2j\i := I2j \ I1i ,
∆X

(2)
i∩j := X

(2)

u(I1i ∩I
2
j )
−X

(2)

d(I1i ∩I
2
j )
,

∆X
(2)
j\i :=

(
X

(2)

u(I2j )
−X

(2)

d(I2j )

)
−
(
X

(2)

u(I1i ∩I
2
j )
−X

(2)

d(I1i ∩I
2
j )

)
;
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where u(I) := sup{t : t ∈ I} and d(I) := inf{t : t ∈ I}. Then

E

{(
∆X

(1)
i

)2 (
∆X

(2)
j

)2∣∣∣∣Π
}

= E

{(
∆X

(1)
i\j +∆X

(1)
i∩j

)2 (
∆X

(2)
j\i +∆X

(2)
i∩j

)2∣∣∣∣Π
}

= E

{(
∆X

(1)
i\j

)2 (
∆X

(2)
i∩j

)2∣∣∣∣Π
}
+ E

{(
∆X

(1)
i∩j

)2 (
∆X

(2)
i∩j

)2∣∣∣∣Π
}

E

{(
∆X

(1)
i∩j

)2 (
∆X

(2)
j\i

)2∣∣∣∣Π
}
+ E

{(
∆X

(1)
i\j

)2 (
∆X

(2)
j\i

)2∣∣∣∣Π
}

= c1
(
I1i\j
)
c2
(
I1i ∩ I2j

)
+ 2

[
c
(
I1i ∩ I2j

)]2
+ c1

(
I1i ∩ I2j

)
c2
(
I1i ∩ I2j

)

c1
(
I1i ∩ I2j

)
c2
(
I2j\i
)
+ c1

(
I1i\j
)
c2
(
I2j\i
)

= c1
(
I1i
)
c2
(
I2j
)
+ 2c

(
I1i ∩ I2j

)
,

where we have used the independence of the increments and the fact that c1(I1i\j) =

c1(I
1
i )− c1(I

1
i ∩ I2j ) and c2(I2j\i) = c2(I

2
j )− c2(I

1
i ∩ I2j ). Therefore we have

D1 =
1

φ2

∑

i,j

c1
(
I1i
)
c2
(
I2j
)
w2
ij +

2

φ2

∑

i,j

c
(
I1i ∩ I2j

)2
w2
ij .

First term of D1. Noting that σk, k = 1, 2, are bounded, we have

1

φ2

∑

i,j

c1
(
I1i
)
c2
(
I2j
)
w2
ij =

1

φ2

∑

i,j

(∫

I1
i

(σ1,t)
2 dt

)(∫

I2
j

(σ2,t)
2 dt

)
w2
ij

≤ sup
0≤t≤T

(σ1,t)
2 sup
0≤t≤T

(σ2,t)
2 1

φ2

∑

i,j

|I1i ||I2j |w2
ij

We claim that

E

[
1

φ2

∑

i,j

|I1i ||I2j |w2
ij

]
= o (1) .
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To this end we decompose

1

φ2

∑

i,j

|I1i ||I2j |w2
ij =

1

φ2

∑

i,j

|I1i ||I2j |
( |I1i ∩ I2j |

|I1i ||I2j |

)2

=
1

φ2

∑

i,j

wij |I1i ∩ I2j |

=
1

φ2
φ

=
1

φ
.

Therefore, in order for E

[
1
φ2

∑
i,j |I1i ||I2j |w2

ij

]
to converge to zero we must have

E[φ] → ∞ as M → 0.

Let’s assume now |I1i |, |I2j | ≤M , ∀i, j. Notice that

Ah :=
∑

k

|I1h ∩ I2k |2
|I1h||I2k |

≥ {αh|I1h|}
2

|I1h|M
+

(1− αh − βh) |I1h|
|I1h|

+
{βh|I1h|}

2

|I1h|M

=
|I1h|
M

(
α2
h + β2

h

)
+ 1− αh − βh =: fh (αh, βh) ,

where 0 ≤ αh ≤ 1 represents the fraction of |I1h| that overlaps with I2m, where

I2m ∩ I1h−1 6= ∅, and 0 ≤ βh ≤ 1 represents the fraction of |I1h| that overlaps with
I2n, where I

2
n ∩ I1h+1 6= ∅ and I2n 6= I2m, and where αh + βh ≤ 1. The function fh()

is minimised for α̂ = β̂ = 1
2
M
|I1

h
|
, which, given the condition α + β ≤ 1, reduces to

α̂ = β̂ = 1
2
.

Therefore we have

φ =
∑

h

Ah ≥
∑

h

fh (αh, βh)

≥
∑

h

fh

(
α̂, β̂

)
=
∑

h

1

4

|I1h|
M

=
1

4M

∑

h

|I1h| =
1

4

|I1|
M

.
(2.7.2)

From this it follows that, as M → 0, E[φ] → ∞.
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Second Term of D1.

2

φ2

∑

i,j

c
(
I1i ∩ I2j

)2
w2
ij =

1

φ2

∑

i,j

(∫

I1i ∩I
2
j

σ1,tσ2,tρtdt

)2

w2
ij

≤
(

sup
0≤t≤T

σ1,t sup
0≤t≤T

σ2,t sup
0≤t≤T

|ρt|
)2

1

φ2

∑

i,j

|I1i ∩ I2j |2w2
ij

This time we claim that

E

[
1

φ2

∑

i,j

|I1i ∩ I2j |2w2
ij

]
= o(1)

then

1

φ2

∑

i,j

|I1i ∩ I2j |2w2
ij =

∑
i,j

(
|I1i ∩ I2j |wij

)2
(∑

i,j |I1i ∩ I2j |wij
)2

which converges to zero because 0 ≤ |I1i ∩ I2j |wij ≤ 1 and because, as we have

shown above, as M goes to zero, E[φ] goes to infinity.

It follows that E [D1] = o(1).

Case 2 - D2

D2 =
1

φ2

∑

i,j,j′:j 6=j′

E

{(
∆X

(1)
i

)2
∆X

(2)
j ∆X

(2)
j′

∣∣∣∣Π
}
wijwij′

Let

∆X
(1)
i\(j,j′) :=

(
X

(1)

u(I1i )
−X

(1)

d(I1i )

)
−
(
X

(1)

u(I1i ∩[I
2
j∪I

2
j′
])
−X

(1)

d(I1i ∩[I
2
j∪I

2
j′
])

)
.
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Then, using the independence of increments we have

E

{(
∆X

(1)
i

)2
∆X

(2)
j ∆X

(2)
j′

∣∣∣∣Π
}

= E

{(
∆X

(1)
i

)2
∆X

(2)
i∩j ∆X

(2)
i∩j′

∣∣∣∣Π
}

= E

{(
∆X

(1)
i∩j +∆X

(1)
i∩j′ +∆X

(1)
i\(j,j′)

)2
∆X

(2)
i∩j ∆X

(2)
i∩j′

∣∣∣∣Π
}

= 2E
{
∆X

(1)
i∩j ∆X

(2)
i∩j

∣∣∣Π
}
E

{
∆X

(1)
i∩j′ ∆X

(2)
i∩j′

∣∣∣Π
}

= 2 c
(
I1i ∩ I2j

)
c
(
I1i ∩ I2j′

)

Hence,

D2 =
2

φ2

∑

i,j,j′:j 6=j′

c
(
I1i ∩ I2j

)
c
(
I1i ∩ I2j′

)
wijwij′

=
2

φ2

∑

i

{∑

j

c
(
I1i ∩ I2j

)
wij

(∑

j′

c
(
I1i ∩ I2j′

)
wij′ − c

(
I1i ∩ I2j

)
wij

)}

=
2

φ2

∑

i

(∑

j

c
(
I1i ∩ I2j

)
wij

)2

− 2

φ2

∑

i,j

c
(
I1i ∩ I2j

)2
w2
ij

First term of D2.

2

φ2

∑

i

(∑

j

c
(
I1i ∩ I2j

)
wij

)2

=
2

φ2

∑

i

(∑

j

c
(
I1i ∩ I2j

)
wij

)2

≤
(

sup
0≤t≤T

σ1,t sup
0≤t≤T

σ2,t sup
0≤t≤T

|ρt|
)2

2

φ2

∑

i

(∑

j

|I1i ∩ I2j |wij
)2

1

φ2

∑

i

(∑

j

|I1i ∩ I2j |wij
)2

=

(∑

i,j

|I1i ∩ I2j |2
|I1i ||I2j |

)−2∑

i

(∑

j

|I1i ∩ I2j |2
|I1i ||I2j |

)2

=

∑
i (Ai)

2

(
∑

iAi)
2
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From the fact that
∑

j

|I1i ∩I
2
j |

|I1i |
= 1 and 0 ≤ |I1i ∩I

2
j |

|I2j |
≤ 1,∀j, it follows that Ai ≤ 1.

Specifically:

Ai :=
∑

j

|I1i ∩ I2j |2
|I1i ||I2j |

=

(
αi

|I1i ∩ I2d(i)|
|I2d(i)|

+ βi
|I1i ∩ I2u(i)|

|I2u(i)|

)
+ 1− αi − βi ≤ 1,

where d(i) is such that I2d(i)∩I1h−1 6= ∅ and where u(i) is such that I2u(i)∩I1h+1 6= ∅.
Given that 0 ≤ Ai ≤ 1 and that, as we showed before, φ =

∑
iAi → ∞, it follows

that the first term of D2 is o(1).

Second term of D2. The second term of D2 is o(1) as we have already shown

in case 1.

Case 3 - D3

The same argument as in Case 2 applies by symmetry to obtain E [D3] = o (1).

Case 4 - D4

Following Hayashi and Yoshida [2005], we have

D4 =
1

φ2

∑

i,i′,j,j′:i 6=i′,j 6=j′

E

{
∆X

(1)
i ∆X

(2)
j ∆X

(1)
i′ ∆X

(2)
j′

∣∣∣Π
}
wijwi′j′

=
1

φ2

∑

i,i′,j,j′:i 6=i′,j 6=j′

c
(
I1i ∩ I2j

)
c
(
I1i′ ∩ I2j′

)
wijwi′j′

=
1

φ2

∑

ij

c
(
I1i ∩ I2j

)
wij

( ∑

i′,j′:i 6=i′,j 6=j′

c
(
I1i′ ∩ I2j′

)
wi′j′

)
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Notice that for fixed i and j the following holds

∑

i′,j′:i 6=i′,j 6=j′

c
(
I1i′ ∩ I2j′

)
wi′j′ =

∑

i′,j′

c
(
I1i′ ∩ I2j′

)
wi′j′ − c

(
I1i ∩ I2j

)
wij

−
∑

j′:j′ 6=j

c
(
I1i ∩ I2j′

)
wij′ −

∑

i′:i′ 6=i

c
(
I1i′ ∩ I2j

)
wi′j

=
∑

i′,j′

c
(
I1i′ ∩ I2j′

)
wi′j′ + c

(
I1i ∩ I2j

)
wij

−
∑

j′

c
(
I1i ∩ I2j′

)
wij′ −

∑

i′

c
(
I1i′ ∩ I2j

)
wi′j .

Therefore we have

D4 =
1

φ2

∑

i,i′,j,j′:i 6=i′,j 6=j′

c
(
I1i ∩ I2j

)
c
(
I1i′ ∩ I2j′

)
wijwi′j′

=
1

φ2

∑

i,j

c
(
I1i ∩ I2j

)
wij

(∑

i′,j′

c
(
I1i′ ∩ I2j′

)
wi′j′ + c

(
I1i ∩ I2j

)
wij

−
∑

j′

c
(
I1i ∩ I2j′

)
wij′ −

∑

i′

c
(
I1i′ ∩ I2j

)
wi′j

)

=
1

φ2

(∑

i,j

c
(
I1i ∩ I2j

)
wij

)2

+
1

φ2

∑

i′,j′

c
(
I1i′ ∩ I2j′

)2
w2
i′j′

− 1

φ2

∑

i,j,j′

c
(
I1i ∩ I2j

)
c
(
I1i ∩ I2j′

)
wijwij′ −

1

φ2

∑

i,j,i′

c
(
I1i ∩ I2j

)
c
(
I1i′ ∩ I2j

)
wijwi′j .

We have already shown that the second, third and fourth elements of the sum-

mation are o(1). As for the first, we want to show that

lim
M→0

E



(
1

φ

∑

i,j

c
(
I1i ∩ I2j

)
wij − θ

)2

 = 0

For this proof we are going to use some additional notation/definitions:

• f : X → Y is such that ft = ρt σ1,tσ2,t, ∀t ∈ [0, 1], with X = (0, 1] and

Y = R.
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• ΠY := (Yk)k=1,2,... is a partition of Y , where Yk := (yk−1, yk], such that

|Yk| ≤ N , ∀k ∈ N

• ΠX := (Xk)k=1,2,... is a partition of R+ generated by setting Xk := f−1 (Yk),

∀k ∈ Z.

• ΠZ := (Zl)l=1,...,L = Π1 ∪ Π2

• tl := inf
{
t ∈ Z l

}

• ŵl := w̃tl |Zl|

• GΠY :=
∑

kGk, where Gk :=
1
φ

∑
l ŵl yk 1{tl∈Xk}.

For every k = 1, ..., L we have

E [Gk] = E

[
1

φ

∑

l

ŵl yk 1{tl∈Xk}

]

= yk E

[∑
l ŵl 1{tl∈Xk}∑
l ŵl 1{tl∈X}

]

= yk
|Xk|
|X|

= yk |Xk| ,

where we have used the fact that ŵl are identically distributed for all l = 1, ..., L.

Also

Var (Gk) = Var

[
1

φ

∑

l

ŵl yk 1{tl∈Xk} − yk |Xk|
]

= y2k Var

[∑
l ŵl 1{tl∈Xk}∑
l ŵl 1{tl∈X}

− |Xk|
]
→ 0 as M → 0 ,

by the strong law of large numbers. Therefore Gk → yk |Xk| in L2.

Given that GΠY is equivalent to the simple function used in the definition of

the Lebesgue integral, we can show (notice that θ =
∫ 1

0
ρt σ1,tσ1,tdt =

∫ 1

0
ftdt)

that

lim
M→0
N→0

E



(∑

k

Gk − θ

)2

 = 0
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The same can be said for

lim
M→0
N→0

E



(∑

k

Ĝk − θ

)2

 = 0 ,

where Ĝi :=
1
φ

∑
l ŵl yk−1 1{tl∈Xk}. Given that for every k, as M → 0, we have

yk−1 1{t∈Xk} ≤
{∑

l

(
1

|Zl|

∫

Zl

ftdt

)
1{t∈Zl}

}
1{t∈Xk} ≤ yk 1{t∈Xk}

almost everywhere (in case ft is discontinuous in xk (xk−1), the inequality might

not hold for t = xk (t = xk−1)), it follows that

lim
M→0
N→0

E



(∑

k

Hk − θ

)2

 = 0 ,

where Hk :=
1
φ

∑
l ŵl

(
1

|Zl|

∫
Zl
ftdt

)
1{t∈Xk} =

1
φ

∑
l w̃tl

(∫
Zl
ρt σ1,tσ2,tdt

)
1{tl∈Xk}.

Given that
∑

kHk =
1
φ

∑
i,j c
(
I1i ∩ I2j

)
wij (irrespectively of ΠX), we have thus

proven that

lim
M→0

E



(
1

φ

∑

i,j

c
(
I1i ∩ I2j

)
wij − θ

)2

 = 0

Therefore we have

E [D4] = θ2 + o(1) .

Concluding:

E
[
LW2

]
= E [D1 +D2 +D3 +D4] = θ2 + o(1) .

2.7.3 Non-Zero Drift Case

Now we consider the case with non-zero drift such that sup0≤t≤T |µk,t| ∈ L4,

k = 1, 2. Let Nk
· :=

∫ ·

0
µk,t dt, S

k
· :=

∫ ·

0
σk,t dWk,t, k = 1, 2, and
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B0 :=
T

φ

∑

i,j

∆S1,i∆S2,jwi,j , B1 :=
T

φ

∑

i,j

∆N1,i∆S2,jwi,j

B2 :=
T

φ

∑

i,j

∆S1,i∆N2,jwi,j , B3 :=
T

φ

∑

i,j

∆N1,i∆N2,jwi,j

Note that

E [B1] = E

[
T

φ

∑

i

∫

I1i

µ1,tdt

(∑

j

∫

I2j

σ2,t dW2,twi,j

)]

= E

[
T

φ

∑

i

∫

I1i

µ1,tdt

(∑

j

E

{∫

I2j

σ2,t dW2,t

∣∣∣∣∣Π
}
wi,j

)]
= 0 .

Also

E
[
B2

1

]
= E



(
T

φ

∑

i,j

∆N1,i∆S2,jwi,j

)2



= E

[
T 2

φ2

∑

i,j,i′,j′

E {∆N1,i∆S2,j∆N1,i′∆S2,j′|Π}wijwi′j′
]

≤ T 2
E

[
sup

0≤t≤T
|µ1,t|2 ·

1

φ2

∑

j,i,i′

∣∣I1i
∣∣ ∣∣I1i′

∣∣E
{
∆S2

2,j

∣∣Π
}
wijwi′j

]

= T 2
E

[
sup

0≤t≤T
|µ1,t|2 ·

1

φ2

∑

j,i,i′

∣∣I1i
∣∣ ∣∣I1i′

∣∣ c2(I2j )wijwi′j
]

≤ T 2 sup
0≤t≤T

(σ2,t)
2 · E

[
sup

0≤t≤T
|µ1,t|2 ·

1

φ2

∑

j,i,i′

∣∣I1i
∣∣ ∣∣I1i′

∣∣ ∣∣I2j
∣∣wijwi′j

]

≤ sup
0≤t≤T

(σ2,t)
2 · E

[
sup

0≤t≤T
|µ1,t|2 · 16M2

∑

j,i,i′

∣∣I1i ∩ I2j
∣∣
∣∣I1i′ ∩ I2j

∣∣
∣∣I2j
∣∣

]

= sup
0≤t≤T

(σ2,t)
2 · E

[
sup

0≤t≤T
|µ1,t|2 · 16M2

∑

i,j

∣∣I1i ∩ I2j
∣∣
]

= sup
0≤t≤T

(σ2,t)
2 · E

[
sup

0≤t≤T
|µ1,t|2 · 16M2T

]
,
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where in the last inequality we have applied (2.7.2). Given that the supremum

of µ1 is in L4, it follows that E [B2
1 ] = o(1). E [B2

2 ] = o(1) and E [B2
3 ] = o(1) can

be shown similarly.

Because it holds that 1

E
[
(LWn − θ)2

]
≤ 2E

[
(B0 − θ)2

]
+ 6E

[
B2

1 +B2
2 +B2

3

]
,

it follows that, as M → 0, E
[
(LWn − θ)2

]
= 0.

2.8 Simulation Results

Table 2.1 and Figure 2.1 summarize the efficiency improvements of the Linearly

Weighted covariance estimator compared to the one of Hayashi and Yoshida

[2005]. In particular, to produce the results displayed in Table 2.1 we simu-

lated 100,000 sample paths, over the interval [0, 1], of two diffusion processes,

X(1) and X(2), with initial value X
(1)
0 = 0 and X

(2)
0 = 0, drift µ(1) = µ(2) = 0

and volatility parameters σ2
(1) = 1 and σ2

(2) = 1. At the start of each simulation

we drew the correlation parameter ρ1,2 from a uniform distribution U(−1, 1) and

generated the observation times of the two processes by applying a Poisson ran-

dom sampling scheme, whereby the set of observation times is represented by the

jump times of two independent Poisson processes with intensity λ(1) = 55 and

λ(2) = 55 respectively over the same simulation interval [0, 1].

Table 2.1: LW vs. HY

Average Error RMSE Relative Efficiency

H.Y. -0.0018 0.3025 125.40%
L.W. -0.0017 0.2413 100.00%

1The following result has been used: let a, b, c, d ∈ R, then

[(a+ b+ c+ d)− θ]
2
= (a− θ)

2
+ (b+ c+ d)

2
+ 2 (a− θ) (b + c+ d)

≤ 2 (a− θ)
2
+ 2 (b+ c+ d)

2

= 2 (a− θ)
2
+ 2

(
b2 + c2 + d2 + 2bc+ 2bd+ 2cd

)

≤ 2 (a− θ)2 + 6
(
b2 + c2 + d2

)
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Figure 2.1: Empirical densities (by kernel density estimation) of LW, HY using
Poisson observations. Simulation parameters: σ2

(1) = 1, σ2
(2) = 1 and ρ1,2 = 0.5

Figure 2.1 displays the empirical densities by using the same simulation ap-

proach as above, except for the fact that the correlation parameter ρ1,2 has been

kept constant at each simulation with a value of 0.5.

2.9 Conclusion

In this chapter we have introduced a new unbiased covariance estimator for dif-

fusion processes that are observed over a non-synchronous time grid - we call it

the “Linearly Weighted” estimator (LW) - which takes advantage of all available

observations (tick-by-tick) without requiring any pre-processing or subsampling

of the dataset. The LW estimator, shares the simplicity of implementation and

low computational cost of Hayashi and Yoshida [2005] but, on the other hand, it

achieves significantly higher efficiency (around 20 % reduction in RMSE in case

of Poisson sampling) by taking into account the level of overlapping between each

observation, thereby applying a higher weight when the intervals closely overlap,
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resulting in a less ‘noisy’ sample, and lower weight when the overlap is limited.

We also analysed LW in the QMLE context of the numerical estimation ap-

proach (KEM) recently introduced in Corsi et al. [2012] and Shephard and Xiu

[2012], noting that LW can be seen as the result of a similar iterative EM proce-

dure based on a sub-optimal predictor for the missing values on the synchronous

grid represented by the union of all available observation times, and we showed

how this difference leads to an estimator which is much simpler to implement

and fast to compute (since it is available in closed form), while, at the same time,

preserving most of the efficiency gains (cf. Chapter 3) of KEM.

Finally, we proved the unbiasedness and consistency of the LW estimator

under time-dependent (deterministic) covariance and assuming stationary dis-

tributed observation times.
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Chapter 3

Multivariate Realised Covariance

from Nonsyncronous Timeseries

Using the Regularized Linearly

Weighted Estimator

The Linearly Weighted (LW) covariance estimator introduced in Chapter 2 pro-

vides a simple, unbiased and computationally efficient way of estimating the co-

variance between two diffusion processes observed over a non synchronous grid. In

this chapter we show how the LW estimator is particularly suitable to be applied

together with the regularization methodology suggested by Rebonato and Jackel

[2000] to produce positive semi-definite estimates of multivariate realized covari-

ance matrices that do not require ‘synchronization’ processing of the original

data. Simulation studies show that the regularization procedure (when required)

has a positive impact on the quality of the estimate and compare the performance

of the proposed estimator with alternatives from the literature. In addition, we

show how the LW estimator can be enhanced to make it robust to noisy data and

introduce an unbiased version of the estimator to be used whenever the drifts

of the processes are estimated in sample as well as a generalization of the LW

estimator to Ornstein-Uhlenbeck processes.

62



3. Multivariate Estimation

3.1 Introduction

Estimating the multivariate covariance of financial variables based on time series

data is a common requirement for a wide range of financial applications, includ-

ing portfolio selection, risk management and forecasting. In all of these contexts,

practitioners have to deal with the challenge that most real-world datasets don’t

satisfy the assumptions of synchronicity of the observations, even-spacing and

completeness of the most widely applied estimators (such as the ‘Realized Co-

variance’ estimator described in Chapter 2). In the case of risk management

applications, where analysis are often based on daily frequency data, dataset is-

sues may arise because of time series having heterogeneous sampling frequencies

(e.g. while equity and interest rate time series are available at daily frequency,

time series for real estate, inflation or hedge fund cumulated returns are typi-

cally released on a monthly schedule) and/or different publication days (e.g. one

monthly time series has new data points every month’s end while another one

has mid-month schedule), because of missing observations produced by a multi-

tude of national calendars or simply because of corruption of data. Synchronicity

assumptions become even more unrealistic when estimates are obtained using

high frequency data. One common approach in these cases has been to apply

either previous-tick or linear interpolation to the missing data, however, as it

was shown in Hayashi and Yoshida [2005] and, more recently, in Zhang [2011],

these methods based on the synchronization of non synchronous data lead to

biased estimates. Various other approaches have been proposed in the litera-

ture to tackle this asynchronicity problem: incorporate lead and lag cross returns

in the estimator (Scholes and Williams [1977]; Cohen et al. [1983]; Bollerslev

and Zhang [2003]; Bandi and Russell [2005]), avoid any synchronization by di-

rectly using tick-by-tick data (De Jong and Nijman [1997]; Hayashi and Yoshida

[2005]; Palandri [2006]; Sheppard [2006]), adopt the so called refresh time scheme

(Barndorff-Nielsen et al. [2011]; Äıt-Sahalia et al. [2010]; Zhang [2011]), and the

multivariate Fourier method (Renò [2003]; Mancino and Sanfelici [2011]).

In this chapter we consider applications at both high and low frequency, the

difference being that at high frequencies time series can generally be assumed as

having no drift (being of order dt, the drift is mathematically negligible compared
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to the diffusive component which is of order
√
dt) while at lower frequencies it

may be desirable to estimate and then remove the drift from the sample before

applying the estimator, with the consequence of introducing a bias to the esti-

mator which need to be evaluated and corrected. In section 3.4.2 we highlight

a very useful property (verified empirically) of the Linearly Weighted (LW) esti-

mator that we introduced in Chapter 2, whereby the variance of the estimator is

very closely linked to the value of its denominator φ. By taking advantage of this

property, we extend the application of LW to the estimation of covariance matri-

ces. In particular, we show how the LW estimator, which is not guaranteed, on its

own, to produce positive semi-definite estimates, is especially suitable to be used

together with the methodology presented in Rebonato and Jackel [2000] which

allows to perform the regularization of a non positive semi-definite correlation es-

timate by carrying out, given a measure of the ‘distance’ from the original matrix,

an unconstrained optimization expressed in terms of angle vectors describing co-

ordinates on a unit hypersphere. Simulation results show that the regularization

procedure performed using the recommended weights, based on the value of φ,

has (when it is necessary) a positive impact on the RMSE of the estimate. In

order to be able to apply the suggested approach, in section 3.4.1 we introduce

a new correlation estimator based on LW which, in turn, allows us to define a

new 2-step variant of the LW estimator of covariance displaying further efficiency

improvements compared to the one introduced in Chapter 2.

In the rest of the chapter we present several other results related to the new

estimator. Specifically, in section 3.5 we introduce the bias-corrected version

of the LW estimator for the case when the drift of the process is assumed to

be constant and estimated in sample and, in section 3.6, we generalize the LW

estimator to Ornstein-Uhlenbeck processes. Finally, in section 3.7, we consider

the potential impact of microstructure noise on the estimator and we derive,

under the assumption of knowledge of the univariate parameters describing the

variance of noise and that of the processes under investigation, an estimation

method which aims at finding a sub-sampling of the dataset that minimizes the

RMSE of the estimate through the maximization of the denominator φ of the

estimator. In conclusion, simulation results in section 3.8 give examples of the

performance of LW in several contexts showing how the new estimator has the
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benefit of performing closely to the maximum likelihood estimator (which is only

available through computationally intensive - particularly in high dimensions -

numerical procedures) while at the same time being very simple to implement

and fast to compute even for high-dimensional datasets.

3.2 Regularization Through Hypersphere Decom-

position

As summarized in Rapisarda et al. [2007], correlation matrices must satisfy four

basic properties in order to bear statistical and financial significance:

1. all their entries must lie in the interval [−1, 1];

2. diagonal entries must be equal to one;

3. the matrix must be symmetric (correlation between variables a and b is

equal to correlation between b and a);

4. the matrix must be ‘positive semi-definite’. This has to do with the fact

that the variance of a portfolio P , whose correlation matrix is C, is σ2
P =

wTCw ≥ 0, where w is the array of weights of the constituent financial

variables, each multiplied by the standard deviation of the respective vari-

able.

Rebonato and Jackel [2000] introduced a regularization method for a generic n×n
correlation matrix C and user-defined error measure ε based on the standard

angles parameterization. Specifically, let C denote the set of all n×n correlation

matrices satisfying properties 1-4 and let Ĉ ∈ C be such that ε := ‖C − Ĉ‖
is minimized. Applying the well-known result from linear algebra that every

symmetric positive semi-definite matrix M can be decomposed as the product

M = WWT,

they decompose the, yet unknown, regular covariance matrix Ĉ as

Ĉ = BBT. (3.2.1)
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Then, they show that the elements of each row vector of matrix B can be seen as

the Cartesian coordinates of a point lying on a n-dimensional unit hyper-sphere.

Based on this, they propose to parametrize the elements bij of the matrix B in

terms of n× (n− 1) angular coordinates θij . Specifically:

bij =




cos θij

∏j−1
k=1 sin θik, for j < n,

∏n−1
k=1 sin θik, for j = n,

(3.2.2)

for i = 1, ..., n , where we have bi1 = cos θi1. This parametrization facilitates the

identification of Ĉ by allowing the use of unconstrained optimization.

As we will see in the following sections, the LW estimator provides, as a

by-product, a good proxy for the variance of its correlation estimates cij. The

availability of this information will enable us to apply the regularization proce-

dure based on standard angles parametrization (3.2.2) using a ‘weighted sum of

squares’ error measure. Specifically

εW :=
∑

l,k

Wij (cij − ĉij)
2 , (3.2.3)

where cij and ĉij are elements of matrix C and Ĉ and where

Wij ≈
1

Var[cij]
.

In other words, by minimizing εW we can ensure that the elements of C that

have been estimated with highest accuracy will be left virtually untouched by

regularization while the less reliable values (which are most likely to determine a

non-PSD C) are more freely modified.

3.3 Problem setup

In this chapter we consider a d-dimensional diffusion processX =
(
X(1), . . . , X(d)

)′

defined by the following stochastic differential equation

dXt = µtdt+ StdWt , (3.3.1)
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where W is a d-dimensional vector of correlated Brownian motions such that

d〈Wt,Wt〉 = Ct dt, µt is a vector of elements which are predictable locally bounded

drifts and the diffusion coefficient St is a d×d diagonal matrix whose elements are

deterministic and bounded functions. The values of
(
X(1), . . . , X(d)

)′
are observed

in the interval [0, T ] at times that are irregularly spaced and non synchronous.

We use Πl :=
(
t
(l)
j

)
j=1,...,N(l)

to denote the available observation times for asset

l, l = 1, . . . d and we refer to the time intervals between successive observations

as I
(l)
j :=

(
t
(l)
j−1, t

(l)
j

]
, with j = 1, . . . , N (l). Furthermore, we write the union of all

observation times as

Π = (ti)i=1,...,n =

d⋃

l=1

Πl, i = 1, 2, . . . , n. ,

where times have been ordered so that 0 ≤ t1 < · · · < ti < · · · < tn ≤ T .

3.4 LW Estimator

The Linearly Weighted covariance estimator introduced in Chapter 2 can be ex-

tended to the multivariate context by applying the estimator to each pair of

assets. Specifically:

Definition 3.4.1 (LW estimator).

LWl,k ≡ LW
(
X

(l)
Πl
, X

(k)
Πk

)
:=

1

φ(l,k)

∑

i,j

∆X
(l)
i ∆X

(k)
j w

(l,k)
i,j , (3.4.1)

with

φ(l,k) :=
∑

i,j

∣∣∣I(l)i ∩ I(k)j

∣∣∣w(l,k)
i,j ,

w
(l,k)
i,j :=

∣∣∣I(l)i ∩ I(k)j

∣∣∣
∣∣∣I(l)i

∣∣∣
∣∣∣I(k)j

∣∣∣
,

where I
(l)
i :=

(
t
(l)
i−1, t

(l)
i

]
, i = 1, . . . , N(l) , l = 1, . . . , d , and where the measure |·|

is used to denote the length of an interval (i.e. |I(l)i | := t
(l)
i − t

(l)
i−1 ).
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Original data:

Processed data:

Figure 3.1: Processing of the observations

3.4.1 Correlation Estimator

The LW covariance estimator can be used to obtain a consistent estimate of the

correlation between two assets in a straightforward way by ‘standardizing’ LWl,k

as follows.

Definition 3.4.2 (LW correlation estimator). Let l, k = 1, . . . , d , i = 1, . . . , N(l)

and j = 1, . . . , N(k) . Then:

Rl,k :=

1
φ(l,k)

∑
i,j ∆X

(l)
i ∆X

(k)
j w

(l,k)
i,j√

1
φ(l,l)

∑
l

(
∆X

(l)
i

)2
w

(l,l)
i,i

√
1

φ(k,k)

∑
k

(
∆X

(k)
j

)2
w

(k,k)
j,j

=
LWl,k√

LWl,l

√
LWk,k

.

(3.4.2)

However, the correlation estimator can be made more efficient by introducing

changes to the way we calculate the volatility estimates
√

LWl,l and
√

LWk,k.

Let us define the following data pre-processor:

Pre-processor (A). Discard all observations t
(l)
i for which there exists j such

that
(
I
(l)
i ∪ I(l)i+1

)
⊆ I

(k)
j and observations t

(k)
j for which there exists i such that

(
I
(k)
j ∪ I(k)j+1

)
⊆ I

(l)
i (see Figure 3.1).

The modified correlation estimator R̃l,k is obtained by first applying Pre-processor

A to the dataset and then calculating the following estimator.
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Definition 3.4.3 (LW correlation estimator - modified). Let Π̃
(l,k)
l and Π̃

(l,k)
k be

a set of observation times resulting from applying Pre-processor A to Πl and Πk.

Then we define

R̃l,k ≡ R̃l,k

(
X

(l)

Π̃
(l,k)
l

, X
(k)

Π̃
(l,k)
k

)
:=

1
φ(l,k)

∑
i,j ∆X

(l)
i ∆X

(k)
j w

(l,k)
i,j√

1

φ̃(l)

∑
i,j

(
∆X

(l)
i

)2
w̃

(l,k),i
i,j

√
1

φ̃(k)

∑
i,j

(
∆X

(k)
j

)2
w̃

(l,k),j
i,j

=
LWl,k√

L̃Wl,l

√
L̃Wk,k

,

(3.4.3)

where

w̃
(l,k),i
i,j := w

(l,k)
i,j ·

∣∣∣I(l)i ∩ I(k)j

∣∣∣
∣∣∣I(l)i

∣∣∣
,

w̃
(l,k),j
i,j := w

(l,k)
i,j ·

∣∣∣I(l)i ∩ I(k)j

∣∣∣
∣∣∣I(k)j

∣∣∣
,

and

φ̃(l) :=
∑

i,j

∣∣∣I(l)i
∣∣∣ w̃(l,k),i

i,j ,

φ̃(k) :=
∑

i,j

∣∣∣I(k)j

∣∣∣ w̃(l,k),j
i,j .

Note that the removal of observations based on Pre-processor A affects only

the values of the variance estimators L̃Wl,l and L̃Wk,k while leaving LWl,k unaf-

fected. The intuition behind this change in the variance estimators is that we

now use weights that are consistent with the ones used by the LW estimator of

covariance. Furthermore, given that, by construction, φ(l,k) = φ̃(l) = φ̃(k), the

computation of R̃l,k simplifies to

R̃l,k :=

∑
l,k∆X

(l)
i ∆X

(k)
j w

(l,k)
l,k√

∑
l,k

(
∆X

(l)
i

)2
w̃

(l,k),i
l,k

√
∑

l,k

(
∆X

(k)
j

)2
w̃

(l,k),j
l,k

.
(3.4.4)
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Figure 3.2: Empirical densities (by kernel density estimation) of LW, HY and ML
covariance estimators, using Poisson observations and 100,000 samples. Simula-
tion parameters: σ2

(1) = 1, σ2
(2) = 1 and ρ1,2 = 0.5.

Irrespective of which version of the estimator is used, R̃l,k is not guaranteed to

be bounded by 1 in magnitude. In case no regularization procedure is applied to

the estimated correlation matrix C̃, following Hayashi and Yoshida [2005] we can

apply to R̃l,k a projection transformation from R to [−1, 1]. Specifically

R̂l,k = Π[−1,1]

(
R̃l,k

)

where Π[−1,1] (x) is the closest point in [−1, 1] to x. If, on the other hand, the

estimated correlation matrix C̃ is being regularized using a procedure such as the

one described in section 3.2, then this step is not necessary since all elements of

the regularized matrix are, by construction, bounded between −1 and 1.

Concluding this section we note that it is possible to take advantage of the

efficiency improvements brought about by the correlation estimator R̃l,k to further

increase the efficiency of the LW estimator of covariance. Specifically, by using

the following:

70

Chapter2/Chapter2Figs/EmpiricalDensities.eps
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Definition 3.4.4 (LW 2-step estimator).

LW2−step
l,k := R̃l,k

√
LWl,l

√
LWk,k ,

Remark 3.4.5. Note that LWl,l coincides with the Maximum Likelihood estima-

tor of the variance of X(k) under the assumption of constant volatility (QML

estimator in case volatility is not constant).

The empirical densities in Figure 3.2 show that the LW 2-step estimator signif-

icantly outperforms the Hayashi-Yoshida estimator and, in fact, it has a distri-

bution that is very close to the one of the maximum likelihood estimator (which

was calculated numerically).

3.4.2 φ and variance of the estimator

Empirical results show that the variance of the LW estimators of covariance (3.4.1)

and correlation (3.4.4) are very close to proportional to 1
φ(l,k)

, i.e. Var [LWl,k] ∝∼
1

φ(l,k)
and Var

[
R̃l,k

]
∝∼ 1

φ(l,k)
. In particular, we can see in Figure 3.3 and 3.4 and in

Table 3.1 that, as we draw different sets of random observation times, the value of

φ always gives accurate information about the relative variance of the estimates

provided by the LW estimator. This property makes φ(l,k) a natural choice

Table 3.1: Explained variance

R2 of φ(l,k)

Var [LWl,k] 0.993739066

Var
[
R̃l,k

]
0.985423818

as weight in the objective function (3.2.3). In other words, we can apply the

regularization procedure of Rebonato and Jackel [2000] knowing which entries of

the correlation matrix are estimated with more and less accuracy, thereby leaving

the most reliable estimates virtually unchanged while allowing more pronounced

adjustments where values are estimated with larger statistical errors. Specifically,

we can regularize matrix C based on the following weighted sum of squares error

71



3. Multivariate Estimation

0 5 10 15 20 25 30 35 40 45 50
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Observations draws

V
a
ri
a
n
c
e
/
φ

 

 

Var
[

Γ̃i,j

]

φi,j
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metric:

εφ :=
∑

l,k

φ(l,k) (cij − ĉij)
2 . (3.4.5)

3.5 Estimation with Drift

When working outside of the high-frequency context the drift of the data gen-

erating process cannot be assumed to be negligible and it may therefore be ap-

propriate to estimate it so it can be subtracted from the observed increments.

Doing so, however, has the effect of introducing bias to the estimate due to the

reduction in the degrees of freedom of the estimator. In this section we introduce

the bias-corrected version of the LW estimator for the case when the drift of the

process is assumed to be deterministic and estimated in sample. Continuing with

the QMLE approach introduced in Chapter 2 (and also found in Xiu [2010] and

Shephard and Xiu [2012]), we derive the new bias-corrected estimator starting

from a mis-specified version of the model where drift and diffusion coefficients are

assumed to be constant.

Definition 3.5.1 (LW Estimator - Non Zero Mean). Let |I| to denote the length

of interval I. Then the bias-corrected LW estimator to be applied when the drift

of the process is estimated in sample is given by

LWµ̄ :=
1

φ− η

∑

i,j

(
∆X

(1)
i −

∣∣∣I(1)i

∣∣∣ µ̄X
)(

∆X
(2)
j −

∣∣∣I(2)j

∣∣∣ µ̄Y
)
wij ,

where

wij :=

∣∣∣I(1)i ∩ I(2)j

∣∣∣
∣∣∣I(1)i

∣∣∣
∣∣∣I(2)j

∣∣∣
, φ :=

∑

i,j

wij

∣∣∣I(1)i ∩ I(2)j

∣∣∣ ;

and the bias-correction term η is defined as

η :=
1

|I|
(
|I ∩ J | − βS

(
1− βS

)
|J1| − βE

(
1− βE

)
|JM |

)

+
1

|J |
(
|I ∩ J | − αS

(
1− αS

)
|I1| − αE

(
1− αE

)
|IN |

)

−|I ∩ J |2
|I| |J | ,
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with

αS :=
(
tX0 ∨ tY0 − tX0

)
/|I1|, αE :=

(
tXN ∧ tYM − tXN−1

)
/|IN |, ,

βS :=
(
tX0 ∨ tY0 − tY0

)
/|J1|, βE :=

(
tXN ∧ tYM − tYM−1

)
/|JM | ;

while the drift estimators µ̄X and µ̄Y are as follows

µ̄X :=
1

|I|
∑

i

∆X
(1)
i , µ̄Y :=

1

|J |
∑

j

∆X
(2)
j .

Lemma 3.5.2. If µlt = c, c ∈ R, 0 ≤ t ≤ T , then LWµ̄ is unbiased.

Proof. See Appendix B.1.

Remark 3.5.3. Note that when the observations of X(1) and X(2) are synchronous

and equally spaced, then we have that φ is equal to the number of available

increments and the bias correction term η is equal to 1, i.e. we obtain the well

known sample covariance estimator.

3.6 Generalization to Ornstein-Uhlenbeck Pro-

cesses

Ornstein-Uhlenbeck models are continuous-time processes which have broad ap-

plications in finance such as in the modelling of interest rates, foreign exchange

rates and volatility processes (see for example Barndorff-Nielsen and Shephard

[2001]). The multivariate Ornstein-Uhlenbeck process we consider here is defined

by the following stochastic differential equation

dXt = µ dt−K (Xt − a) dt+ SdWt , (3.6.1)

where

S =




s1 0 · · · 0

0 s2 · · · 0
...

...
. . .

...

0 0 · · · sd




= diag (s) , (3.6.2)
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and where the instantaneous correlation C and covariance matrix Σ are such that

Cdt = d〈Wt,Wt〉 , and Σ = S CST .

The solution to (3.6.1) is given by

Xt+τ = Xt e
−K τ +

(
I− e−K τ

) µ
κ
+
(
I− e−K τ

)
a+

∫ t+τ

t

e−K(t+τ−s) S dWs .

Here we consider only multivariate Ornstein-Uhlenbeck processes where auto-

regression/mean-reversion is allowed only component-wise, i.e. each dimension

with respect to itself. More rigorously we have

K =




κ1 0 · · · 0

0 κ2 · · · 0
...

...
. . .

...

0 0 · · · κd




= diag (κ) .

Before attempting to estimate Σ, we transform the process X in order to extract

the drift-less process from the available observations. To this end we define

Yt =
(
Y

(1)
t , Y

(2)
t , . . . , Y

(d)
t

)′
,

where

Y
(l)

t
(l)
i

:=

i∑

j=1

{
X
t
(l)
j

− E

[
X
t
(l)
j

∣∣∣Xt
(l)
j−1

]}

=

i∑

j=1

{
X
t
(l)
j

−X
t
(l)
j−1

e
−κl

(
t
(l)
j −t

(l)
j−1

)

−
(
I− e

−κl

(
t
(l)
j −t

(l)
j−1

))
a

−
(
I− e

−κl

(
t
(l)
j −t

(l)
j−1

))
µl
κl

}

=sl

∫ t
(l)
i

t
(l)
0

e−κl (ul(v)−v) dW (l)
v , i = 1, . . . , N(l) ,
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with

ul(t) := inf
{
t
(l)
j : t

(l)
j ≥ t , j = 0, . . . , N(l)

}
,

and, more generally

Y
(l)
t := sl

∫ t

t
(l)
0

e−κl (ul(v)−v) dW (l)
v , t ≤ t

(l)
N(l) . (3.6.3)

Therefore the stochastic differential equation of Y is given by

dY
(l)
t = e−κl (ul(t)−t)sl dW

(l)
t , l = 1, . . . , N(l) .

Then the increment of Y between two consecutive observation times is given by

∆Yi := Yti − Yti−1
=

∫ ti

ti−1

e−Kdiag(u(v)−v) S dWv ,

where the diag(·) operator transforms a d-dimensional vector into a d×d diagonal
matrix having the elements of the vector on the main diagonal, and where

u (t) :=
(
u(1)(t) , u(2)(t) , . . . , u(d)(t)

)′
.

From the definition of Y it follows that

E [∆Yi∆Y
′
i ] =

∫ ti

ti−1

e−Kdiag(u(ti)−t)Σ
(
e−Kdiag(u(ti)−t)

)′
dt . (3.6.4)

Notice that, given that K is a diagonal matrix, we can re-arrange (3.6.4) as

E [∆Yi∆Y
′
i ] = Σ ◦

∫ ti

ti−1

e−Kdiag(u(ti)−t)11′
(
e−Kdiag(u(ti)−t)

)′
dt , (3.6.5)

where ◦ denotes the Hadamard product, i.e. element-wise matrix multiplication,

and 1 is a d-dimensional vector of ones, from which it follows that

E

[
(∆Yi∆Yi

′)⊘
∫ ti

ti−1

e−Kdiag(u(ti)−t)11′
(
e−Kdiag(u(ti)−t)

)′
dt

]
= Σ ,
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where the notation ‘⊘’ represents element-by-element division. Based on this

we can write the log-likelihood function of X under the assumption of complete

observations at each point of the ordered union of all observation times Π =

(ti)i=1,...,n. That is

log f (X1:n; Σ) :=c−
1

2

n∑

i=2

log

∣∣∣∣
∫ ti

ti−1

e−Kdiag(u(ti)−t)Σ
(
e−Kdiag(u(ti)−t)

)′
dt

∣∣∣∣−

1

2

n∑

i=2

tr

{(∫ ti

ti−1

e−Kdiag(u(ti)−t)Σ
(
e−Kdiag(u(ti)−t)

)′
dt

)−1

∆Yi∆Yi
′

}
.

(3.6.6)

In this context however, differently from the case with no mean-reversion, there is

no easy way to find explicitly the matrix Σ̂ which maximizes the likelihood func-

tion (3.6.6). Therefore we derive our estimator based on the following moment

condition:

Σ = E

[
1

n− 1

n∑

i=2

{(∆Yi∆Yi′)⊘Hi}
]
, (3.6.7)

where Hi =
∫ ti
ti−1

e−Kdiag(u(ti)−t)11′
(
e−Kdiag(u(ti)−t)

)′
dt.

Similarly to what we did in Chapter 2, we replace each missing value of Y
(l)
ti

with its conditional expectation with respect to
(
Y

(l),Obs
tj

)
j=1,...,N(l)

, i.e. the avail-

able observations of the component Y (l) seen in isolation. As in the Brownian mo-

tion case, conditioning with respect to the univariate time series, rather than with

respect to the full set of observations (as prescribed by Expectation-Maximization

algorithms - cf. Dempster et al. [1977] ), has the advantage, as we will see below,

of producing an estimator that has a high level of efficiency and is also simple

and fast to compute given that it does not require complex matrix operations

and that it can be computed in a single iteration.

The process Y is equivalent in distribution to the following time-scaled Brow-

nian motion

Y
(l)
t

d
= slW∫ t

t
(l)
0

e−2κl (ul(v)−v) dv
,

therefore we can easily compute the required expectation by applying Brownian
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bridge. Specifically we have

E

[
Y

(l)
t

∣∣∣ Y Obs
l,dl(t)

, Y Obs
l,ul(t)

]
= Y Obs

l,dl(t)
+
(
Y Obs
l,ul(t)

− Y Obs
l,dl(t)

)
∫ t
dl(t)

e−2κl (ul(v)−v) dv
∫ ul(t)
dl(t)

e−2κl (ul(v)−v) dv
.

Therefore we define

∆Ŷi :=
(
E

[
∆Y

(1)
i

∣∣∣Y Obs
1, : ; Σ

]
,E
[
∆Y

(2)
i

∣∣∣Y Obs
2, : ; Σ

]
, . . . ,E

[
∆Y

(d)
i

∣∣∣Y Obs
d, : ; Σ

])

=



(
Y Obs
1,u1(ti)

− Y Obs
1,d1(ti−1)

) ∫ ti
ti−1

e−2κ1(u1(v)−v)dv
∫ u1(ti)
d1(ti−1)

e−2κ1(u1(v)−v)dv
,

(
Y Obs
2,u2(ti)

− Y Obs
2,d2(ti−1)

) ∫ ti
ti−1

e−2κ2(u2(v)−v)dv
∫ u2(ti)
d2(ti−1)

e−2κ2(u2(v)−v)dv
,

. . . ,
(
Y Obs
d,u2(ti)

− Y Obs
d,dd(ti−1)

) ∫ ti
ti−1

e−2κd(ud(v)−v)dv
∫ ud(ti)
dd(ti−1)

e−2κd(ud(v)−v)dv


 .

We can now re-write the moment condition (3.6.7) using Ŷi as predictor for

the missing values, including the estimate of the prediction error calculated con-

ditionally on the available observations and the, yet unknown, covariance Σ. We

thereby obtain an iterative estimator based on the following update equation from

Σk to Σk+1:

Σ̂k+1 =
1

n− 2

n∑

i=2

[(
∆Ŷi∆Ŷi

′
+ E

[
∆Yi∆Yi

′ −∆Ŷi∆Ŷi
′
∣∣∣Π; Σ̂k

] )
⊘Hi

]
.

(3.6.8)

Given that (3.6.8) computes every element σ̂l,m of Σ̂ (where (σ̂l,m)l,m=1,...,d; =

Σ̂ ) independently of the others, we are able to rewrite (3.6.8) as the update

equation for the pair-wise covariance σ̂l,m. Specifically

σ̂k+1
l,m =

1

n− 2

n∑

i=2

1∫ ti
ti−1

e−κl(ul(v)−v)−κm(um(v)−v)dv

(
∆Ŷ

(l)
i ∆Ŷ

(m)
i

+E

[
∆Y

(l)
i ∆Y

(m)
i −∆Ŷ

(l)
i ∆Ŷ

(m)
i |Π;Σ

])
,

(3.6.9)
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where

Σ̂ =




σ̂1,1 σ̂1,2 · · · σ̂1,d

σ̂2,1 σ̂2,2 · · · σ̂2,d
...

...
. . .

...

σ̂d,1 σ̂d,2 · · · σ̂d,d




.

In order to simplify subsequent calculations, we introduce the following mea-

sure definitions:

|·|a := |(r, s]|a =
s∫

r

at dt, |·|b := |(r, s]|b =
s∫

r

bt dt,

|·|c := |(r, s]|c =
s∫

r

atbt dt, |·|d := |(r, s]|d =
s∫

r

a2t dt, |·|o := |(r, s]|o =
s∫

r

b2t dt;

where

at := e−κl(ul(t)−t)IIl (t) , bt := e−κm(um(t)−t)
IIm (t)

ct := atbt, dt := a2t , ot := b2t .

We also define

∆Y
(l)
i := sl

∫ t
(l)
i

t
(l)
i−1

e−κl(ul(t)−t) dW
(l)
t l = 1, . . . , d ,

which is the observed increment of Y (l) over the interval
(
t
(l)
i−1, t

(l)
i

]
.

Based on the new definitions we can re-write the update equation as

σ̂k+1
l,m =

1

n− 2

n∑

i=2

1

|∆i|c

(
∆Ŷ

(l)
i ∆Ŷ

(m)
i + E

[
∆Y

(l)
i ∆Y

(m)
i −∆Ŷ

(l)
i ∆Ŷ

(m)
i |Π;Σ

])
;
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furthermore

σ̂k+1
l,m =

1

n− 1

n∑

i=2

{(
Y

(l)
ul(ti)

− Y
(l)
dl(ti−1)

)(
Y

(m)
um(ti)

− Y
(m)
dm(ti−1)

)

· |∆i|d
| (dl (ti−1) , ul (ti)] |d

|∆i|o
| (dm (ti−1) , um (ti)] |o

1

|∆i|c
+σ̂kl,m

(
1− |∆i|d

|I li |d
|∆i|o
|Imj |o

)}

=
1

n− 1

∑

i,j

{
∆Y

(l)
i ∆Y

(m)
j

|I li ∩ Imj |
d

|I li |d
|I li ∩ Imj |

o

|Imj |
o

1

|I li ∩ Imj |
c

−σ̂kl,m
|I li ∩ Imj |

d

|I li |d
|I li ∩ Imj |

o

|Imj |
o

}
+ σ̂kl,m

=
1

n− 1

∑

i,j

{
∆Y

(l)
i ∆Y

(m)
j w

(l,m)
ij − σ̂kl,m |I li ∩ Imj |c w(l,m)

ij

}
+ σ̂kl,m

=
1

n− 1

{(∑

i,j

∆Y
(l)
i ∆Y

(m)
j w

(l,m)
ij

)
− σ̂kl,m φ

(l,m)

}
+ σ̂kl,m ,

where

w
(l,m)
ij :=

|I li ∩ Imj |
d

|I li |d
|I li ∩ Imj |

o

|Imj |
o

1

|I li ∩ Imj |
c

,

φ(l,m) :=
∑

i,j

|I li ∩ Imj |c w(l,m)
ij ,

and where

dl(t) := sup
{
t
(l)
j : t

(l)
j ≤ t , j = 0, . . . , N(l)

}
.

If we now assume convergence of the algorithm, we can set σ̂k+1
l,m = σ̂kl,m = σ̂l,m.

From which it follows

1

n− 1

{∑

i,j

∆Y
(l)
i ∆Y

(m)
j w

(l,m)
ij − σ̂l,m φ

(l,m)

}
= 0

∑

i,j

∆Y
(l)
i ∆Y

(m)
j w

(l,m)
ij − σ̂l,m φ

(l,m) = 0 .
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Thus

σ̂l,m =
1

φ(l,m)

∑

i,j

∆Y
(l)
i ∆Y

(m)
j w

(l,m)
ij = LWl,k

(
XObs

1,· , X
Obs
2,·

)
.

We can now write the generalization of the LW estimator for OU processes of

type given by (3.6.1), including the bias correction adjustment η that needs to

be applied in case the drifts of the two processes, µ1 and µ2, are estimated in

sample.

Definition 3.6.1 (LW covariance estimator (general formula)). The LW esti-

mator, LW
(
X(1), X(2)

)
, for the covariance of Ornstein-Uhlenbeck processes X(1)

and X(2) (where mean-reversion is allowed only component-wise) based on non-

synchronous observations
(
X

(1)
i

)
i=1,..,N

and
(
X

(2)
j

)
j=1,..,M

and OU-parameters

a1, a2, κ1, κ2 is given by

LW
(
X(1), X(2)

)
:=





1
φ

∑
i,j ∆Y

(1)
i ∆Y

(2)
j wij , No drift

1
φ−η

∑
i,j

(
∆Y

(1)
i −

∣∣∣I(1)i

∣∣∣
a
µ1

)(
∆Y

(2)
j −

∣∣∣I(2)j

∣∣∣
b
µ2

)
wij , Constant drift

where the increments are calculated as

∆Y
(l)
i := X

(l)

t
(l)
i

− e
−κl

(
t
(l)
i −t

(l)
i−1

)

X
(l)

t
(l)
i−1

− al

(
1− e

−κl

(
t
(l)
i −t

(l)
i−1

))
l = 1, 2 ,

while the weights of the estimator are given by

wij :=

∣∣∣I(1)i ∩ I(2)j

∣∣∣
d∣∣∣I(1)i

∣∣∣
d

∣∣∣I(1)i ∩ I(2)j

∣∣∣
o∣∣∣I(2)j

∣∣∣
o

1∣∣∣I(1)i ∩ I(2)j

∣∣∣
c

, φ :=
∑

i,j

wij

∣∣∣I(1)i ∩ I(2)j

∣∣∣
c
,

η :=
1

ψ

∑

i,j

wij

∣∣∣I(1)i

∣∣∣
a

∣∣∣I(2)j

∣∣∣
γ

c
+
1

ϕ

∑

i,j

wij

∣∣∣I(2)j

∣∣∣
b

∣∣∣I(1)i

∣∣∣
δ

c
−|I ∩ J |γ,δc

ψ ϕ

∑

i,j

wij

∣∣∣I(1)i

∣∣∣
a

∣∣∣I(2)j

∣∣∣
b
,

The formula for the case with drift assumes that the estimates µ̄1 and µ̄2 are

given by the MLE estimator, that is

µ̄1 :=
1

ψ

∑

i

γi∆Y
(1)
i , ψ :=

∑

i

γi

∣∣∣I(1)i

∣∣∣
a ,

γt :=

∣∣I(t)
∣∣
a∣∣I(t)
∣∣
d

, I(t) :=
{
I
(1)
i : t ∈ I

(1)
i

}
;
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µ̄2 =
1

ϕ

∑

j

δj∆Y
(2)
j ϕ =

∑

j

δj

∣∣∣I(2)j

∣∣∣
b ,

δt :=

∣∣J(t)
∣∣
b∣∣J(t)
∣∣
o

, J(t) :=
{
I
(2)
j : t ∈ I

(2)
j

}
;

and where

|·|γc : |(r, s]|
γ
c =

s∫

r

c(γ)s dt, |·|δc : |(r, s]|
δ
c =

s∫

r

c(δ)s dt, |·|γ,δc : |(r, s]|c =
s∫

r

c(γ,δ)s dt,

with

c
(γ)
t := ctγt , c

(δ)
t := ctδt , c

(γ,δ)
t := ctγtδt ,

ul(t) := inf
{
t
(l)
i : t

(l)
i ≥ t , i = 0, . . . , N(l)

}
.

Lemma 3.6.2. If X(1) and X(2) are defined by stochastic differential equation

(3.6.1) and µ ∈ R, then LW
(
X(1), X(2)

)
is unbiased.

Proof. The proof of the unbiasedness of the LW estimator generalized to Ornstein-

Uhlenbeck processes is given in Appendix B.1.

3.7 Estimation with Microstructure Noise

We now consider the impact of microstructure noise on the LW estimator. Let

Y
(l)
i := X

(l)
i + u

(l)
i be an observation of process X(l), l = 1, . . . , d , contaminated

by the microstructure noise u(l), from which it follows that the (noisy) observed

increments will be given by ∆Y
(l)
i := ∆X

(l)
i + u

(l)
i − u

(l)
i−1. In line with the recent

literature (see Xiu [2010], Griffin and Oomen [2011], Shephard and Xiu [2012]),

we work under the following assumption.

Assumption 1 (I.I.D. Gaussian Noise). The noise process u(l) is independently

and identically normally distributed, and independent of the price process and

the noise processes of the other assets, with zero mean and variance ξ2(l).

Calculating LW
(
Y

(l)
Πl
, Y

(k)
Πk

)
based on noise contaminated processes will still

result in an unbiased estimate as long as l 6= k. The reason for this is that

Assumption 1 ensures that E

[
∆X

(l)
i ∆X

(k)
j

]
= E

[
∆Y

(l)
i ∆Y

(k)
j

]
. However, the
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presence of noise introduces bias in the variance estimates LW
(
Y

(l)
Πl
, Y

(l)
Πl

)
and

reduces the relative efficiency of the estimator. In this section we will introduce

generalized versions of the LW estimators of covariance and correlation which

allow for the presence of market microstructure noise of the kind considered in

Assumption 1. To this end we make the following additional assumption.

Assumption 2 (Univariate parameters known). Estimates of the volatility pa-

rameters sl of X
(l) (as in (3.6.2)), and those of the variance of the noise term ξ2(l),

l = 1, . . . , d , are available.

Note that Assumption 2 can be satisfied by applying one of the existing volatility

estimators for univariate time series such as the QML approach of Xiu [2010].

In order to deal with the presence of microstructure noise, we observe that

∆Y
(l)
i = Y

(l)

t
(l)
i

− Y
(l)

t
(l)
i−1

= u
(l)
i +X

(l)

t
(l)
i

−X
(l)

t
(l)
i−1

− u
(l)
i−1 is equivalent in distribution to

X
(l)

t
(l)
i +

ξ2
(l)
sl

−X
(l)

t
(l)
i−1−

ξ2
(l)
sl

; therefore we can approach the issue of microstructure noise

as if the noisy observations Y
(l)
i were, in fact, non-synchronous observations on

process X(l); in other words: we would like to know the increment of X(l) between

t
(l)
i−1 and t

(l)
i , but it is as if the only observations we have are at t

(l)
i−1 −

ξ2
(l)

sl
and

t
(l)
i +

ξ2
(l)

sl
. In light of this, we can adopt the same QMLE approach used is in

Chapter 2, section 2.6, and in section 3.6 of this chapter. In particular, we have

that the increment of ∆X̂
(l)
(t1,t2]

= X̂
(l)
t2 − X̂(l)

t1 , where t
(l)
i−1 ≤ t1 < t2 ≤ t

(l)
i , obtained

from the ‘linear interpolation’ of the available observations Y
(l)

t
(l)
i−1

(
d
=X

(l)

t
(l)
i−1−

ξ2
(l)
sl

)

and Y
(l)

t
(l)
i

(
d
=X

(l)

t
(l)
i +

ξ2
(l)
sl

) is given by

∆X̂
(l)
(t1,t2]

= ∆Y
(l)
i

t2 − t1∣∣∣I(l)i
∣∣∣ + 2

ξ2
(l)

s2
l

.

Based on this, following the same reasoning as in Chapter 2 (section 2.6), we can

obtain the parameters for the LW estimator below:

ŵ
(l,k)
i,j :=

∣∣∣I(l)i ∩ I(k)j

∣∣∣
( ∣∣∣I(l)i

∣∣∣+ 2
ξ2
(l)

s2
l

)( ∣∣∣I(k)j

∣∣∣ + 2
ξ2
(k)

s2
k

) ,
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and

φ̂(l,k) :=
∑

i,j

∣∣∣I(l)i ∩ I(k)j

∣∣∣ ŵ(l,k)
i,j .

In addition, taking advantage of the relationship between parameter φ and the

variance of the estimator described in section 3.4.2, we introduce the following

data pre-processor whose aim is to find a sub-sampling of the dataset that max-

imizes the value of φ̂(l,k) (thereby minimizing the variance of the estimate) based

on the ratios between the variance of the noise ξ2(·) and that of the ‘signal’, s2· , of

the two time series, which will allow us to significantly increase the efficiency of

the estimator.

Pre-processor (B). Let Πl,k :=
(
t
(l,k)
i

)
i=1,...,N(l,k)

be the ordered union of the

observation times in Πl and Πk and let

a (t1, t2) :=
(t2 − t1)

2

(
ul(t2)− dl(t1) + 2

ξ2
(l)

s2
l

)(
uk(t2)− dk(t1) + 2

ξ2
(k)

s2
k

) ,

where u·(·), d·(·) are defined as in section 3.6, and

c
(
t
(l,k)
i , t

(l,k)
j

)
:=




0 a

(
t
(l,k)
i , t

(l,k)
j

)
+ a

(
t
(l,k)
j , t

(l,k)
j+1

)
< a

(
t
(l,k)
i , t

(l,k)
j+1

)

1 a
(
t
(l,k)
i , t

(l,k)
j

)
+ a

(
t
(l,k)
j , t

(l,k)
j+1

)
≥ a

(
t
(l,k)
i , t

(l,k)
j+1

) .

Starting with i = 1,

1. set j equal to i+ 1,

2. calculate c
(
t
(l,k)
i , t

(l,k)
j

)
,

3. if c
(
t
(l,k)
i , t

(l,k)
j

)
= 0, discard observation t

(l,k)
j , increment index j by one

unit and go to step 2,

4. if c
(
t
(l,k)
i , t

(l,k)
j

)
= 1, set i equal to j and go to step 1,

5. Repeat steps above until the end of the sequence.

We can now define the generalized LW estimators for noise contaminated

observations.
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Definition 3.7.1 (LW covariance estimator with microstructure noise). Let Π̂
(l,k)
l

and Π̂
(l,k)
k be a set of observation times resulting from applying Pre-processor A

and B to Πl and Πk, where l 6= k based on estimates sl, sk and ξ
2
(l), ξ

2
(k). Then the

LW covariance estimator is given by

L̂Wl,k ≡ LW

(
X

(l)

Π̂
(l,k)
l

, X
(k)

Π̂
(l,k)
k

)
:=

1

φ̂(l,k)

∑

i,j

∆X
(l)
i ∆X

(k)
j ŵ

(l,k)
i,j , (3.7.1)

where

ŵ
(l,k)
i,j :=

∣∣∣I(l)i ∩ I(k)j

∣∣∣
( ∣∣∣I(l)i

∣∣∣+ 2
ξ2
(l)

s2
l

)( ∣∣∣I(k)j

∣∣∣ + 2
ξ2
(k)

s2
k

) ,

and

φ̂(l,k) :=
∑

i,j

∣∣∣I(l)i ∩ I(k)j

∣∣∣ ŵ(l,k)
i,j .

Notice that when ξ2(l) = ξ2(k) = 0 we fall back to the no-noise case because

Pre-processor A and B have no impact on the value of the estimator (i.e. we

have LW
(
X

(l)
Πl
, X

(k)
Πk

)
= LW

(
X

(l)

Π̂
(l,k)
l

, X
(k)

Π̂
(l,k)
k

)
). We now give the definition of the

correlation estimator for the case of observations affected by microstructure noise.

Definition 3.7.2 (LW correlation estimator with microstructure noise). Let Π̂
(l,k)
l

and Π̂
(l,k)
k be a set of observation times resulting from applying Pre-processor A

and B to Πl and Πk, where l 6= k based on estimates sl, sk and ξ
2
(l), ξ

2
(k). Then the

LW correlation estimator is given by

R̂l,k ≡ R̂l,k

(
X

(l)

Π̂
(l,k)
l

, X
(k)

Π̂
(l,k)
k

)
:=

1

φ̂(l,k)

∑
i,j ∆X

(l)
i ∆X

(k)
j ŵ

(l,k)
i,j√

1

φ̂(l)

∑
i,j

(
∆X

(l)
i

)2
ŵ

(l,k),i
i,j

√
1

φ̂(k)

∑
i,j

(
∆X

(k)
j

)2
ŵ

(l,k),j
i,j

,

(3.7.2)

where

ŵ
(l,k),i
i,j := ŵ

(l,k)
i,j ·

∣∣∣I(l)i ∩ I(k)j

∣∣∣
∣∣∣I(l)i

∣∣∣
,
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ŵ
(l,k),j
i,j := ŵ

(l,k)
i,j ·

∣∣∣I(l)i ∩ I(k)j

∣∣∣
∣∣∣I(k)j

∣∣∣
,

and

φ̂(l) :=
∑

i,j

(∣∣∣I(l)i
∣∣∣+ 2ξ2(l)

)
ŵ

(l,k),i
i,j ,

φ̂(k) :=
∑

i,j

(∣∣∣I(k)j

∣∣∣+ 2ξ2(k)

)
ŵ

(l,k),j
i,j .

Thanks to Definition 3.7.2 now we can, similarly to what we did in section

3.4.1, give the definition of a 2-step LW estimator for the case of noise contami-

nated observations.

Definition 3.7.3 (LW 2-step estimator with microstructure noise).

LW2−step
l,k := R̂l,k sl sk .

3.8 Simulation Results

In this section we show simulation results from applying the LW estimators in-

troduced in this chapter. Table 3.2 compares the performance of the LW and LW

2-step estimators with that of the estimator of Hayashi and Yoshida [2005] (HY)

and of the maximum likelihood (ML) estimator (computed numerically). The re-

sults have been calculated by simulating 100,000 sample paths, over the interval

[0, 1], of two diffusion processes, X(1) and X(2), with initial value X
(1)
0 = 0 and

X
(2)
0 = 0, drift µ(1) = µ(2) = 0 and volatility parameters σ2

(1) = 1 and σ2
(2) = 1. At

the start of each simulation we drew the correlation parameter ρ1,2 from a uniform

distribution U(−1, 1) and generated the observation times of the two processes

by applying a Poisson random sampling scheme, whereby the set of observation

times is represented by the jump times of two independent Poisson processes with

intensity λ(1) = 55 and λ(2) = 55 respectively over the same simulation interval

[0, 1].

The results show that both LW estimators significantly outperform HY and

also that the RMSE of the newly introduced LW 2-step estimator is close to the

one of ML. Intuitively, to understand the reason why LW 2-step outperforms LW,
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Figure 3.5: Empirical densities (by kernel density estimation) of the covariance
and correlation estimates obtained using LW, LW 2-step, HY and ML (numeri-
cally), using Poisson observations and 50,000 iterations. Simulation parameters:
σ2
(1) = 1, σ2

(2) = 1 and ρ1,2 = 0.5.

Table 3.2: Results (Poisson observations)

Average Error RMSE Relative Efficiency

H.Y. -0.0018 0.3025 154.05%
L.W. -0.0017 0.2413 122.85%

L.W. (2-step) -0.0019 0.2139 108.89%
M.L. -0.0017 0.1964 100.00%
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Figure 3.6: Empirical densities (by kernel density estimation) of the covariance
estimates obtained using LW, LW 2-step, HY and ML (numerically), using Pois-
son observations and 100,000 samples. Simulation parameters: σ2

(1) = 1, σ2
(2) = 1

and ρ1,2 ∼ U(−1, 1).

we need to consider that both LW and HY implicitly discard from the dataset ob-

servations according to Pre-processor A, by which we mean that, given a dataset,

whether we apply Pre-processor A or not, the covariance estimates of LW and

HY will not change. LW 2-step avoid this waste of information by using LW

specific methods only for the calculation of the correlation estimate, while esti-

mating volatilities using the univariate LW estimator, which coincides with the

efficient univariate ML estimator. Figure 3.5 displays the empirical densities by

using the same simulation approach as above, except for the fact that the correla-

tion parameter ρ1,2 has been kept constant at each simulation with a value of 0.5,

while Figure 3.6 draws random correlations from U(−1, 1). Both figures show the
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Figure 3.7: Empirical densities of the L1, L2 and L∞ errors of LW and HY in
the estimation of a 10 × 10 covariance matrix (1,000 samples) based on Poisson
sampling.

empirical distribution of both covariance and correlation estimators and confirm

the results of Table 3.2 with the LW estimator significantly outperforming HY

with a level of accuracy that is close to that of the ML estimator. Next, Figure

3.7 compares the distributions of L1, L2 and L∞ errors of HY and LW (simple)

in an example where they were applied to the estimation of a 10× 10 covariance

matrix.

The impact of the regularization procedure of Rebonato and Jackel [2000]

applied in conjunction with LW is illustrated in Figure 3.8. The plots show that

the impact of regularization is very small and is noticeable mainly in the plot of

L∞ error, which highlights the fact that applying the regularization step has the

effect of preventing some of the most extreme outlier estimates.

Finally, table 3.3 compares the behaviour of the estimators as we increase

the level of i.i.d Gaussian microstructure noise in the samples. The results are

based on 10,000 sample paths, over the time interval [0, 1320], using the same

simulation parameters for X(1) and X(2) as in the previous examples. Again the

correlation parameter ρ1,2 is taken from uniform distribution U(−1, 1) and the

observation times are based on Poisson random sampling scheme with parame-

ters λ(1) = 0.0182 and λ(2) = 0.0182. It should be noted that in this example,
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Figure 3.8: Empirical densities of the L1, L2 and L∞ errors of LW and HY in
the estimation of a 10 × 10 covariance matrix (1,000 samples) based on Poisson
sampling.

based on Assumption 2, we have used the knowledge of σ2
(1), σ

2
(2) and ξ in the

estimation. The results show that, as we mentioned before, Pre-processor B has

no impact when noise is absent. Furthermore, we can see that the simple version

of LW is very sensitive to high levels of noise, however, both L̂W and L̂W (2-step)

behave very well in the presence of noise. It is also interesting to notice that the

unmodified LW (2-step) is also fairly robust to noise in the sample.

Table 3.3: Impact of microstructure noise on RMSE

ξ HY LW LW (2-step) L̂W L̂W (2-step)

0.0 0.3077 0.2439 0.1800 0.2439 0.1800
1.0 0.3136 0.2574 0.1917 0.2572 0.1903
2.0 0.3305 0.3041 0.2500 0.2917 0.2240
3.0 0.3604 0.3994 0.3320 0.3403 0.2689
4.0 0.4056 0.5502 0.4028 0.3990 0.3228
5.0 0.4680 0.7562 0.4559 0.4694 0.3817
6.0 0.5487 1.0155 0.4943 0.5445 0.4405
7.0 0.6480 1.3263 0.5220 0.6212 0.4995
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3.9 Conclusion

In this chapter we have extended the domain of application of the Linearly

Weighted (LW) estimator introduced in Chapter 2 in several ways. To begin

with, we have studied how the LW estimator can be applied to the estimation of

covariance matrices, showing that it is possible to take advantage of a very useful

property (verified empirically) of LW, whereby the variance of the estimator is

very closely linked to the value of its denominator φ, to derive a natural set of

weights for the error measure required by the regularization procedure proposed

in Rebonato and Jackel [2000]. Simulation results show that the suggested ap-

proach allows us to produce positive semi-definite covariance estimates with a

RMSE (based on the Frobenius norm) that it is lower than it would be if no

regularization was applied. Then, we have introduced a new correlation estima-

tor based on LW, as well as a 2-step variant of the LW estimator of covariance

which displays further efficiency improvements compared to the one introduced

in Chapter 2. We have also extended the applicability of LW to the low-frequency

context, by deriving the bias-corrected version of the LW estimator for the case

where the drift of the process is assumed to be constant, non negligible, and esti-

mated in sample, and also to the domain of mean-reverting Ornstein-Uhlenbeck

processes, considering the case of the mean-reversion level being estimated out-

of-sample as well as in sample. Finally, we have considered the potential impact

of microstructure noise on the estimator and derived, under the assumption of

knowledge of the univariate parameters describing the variance of noise and that

of the processes under investigation, an estimation method that aims at finding

a sub-sampling of the dataset that minimizes the RMSE of the estimate through

the maximization of the denominator φ of the estimator. Such estimator is shown

to be robust to the presence of noise and to consistently outperform the estimator

of Hayashi and Yoshida [2005]. Concluding, simulation results tell us that the

LW estimator (in its different incarnations) is able to offer a level of performance

that is close to one of the maximum likelihood estimator (which is only available

through computationally intensive - particularly in high dimensions - numerical

procedures) while at the same time being very simple to implement and fast to

compute even for high-dimensional datasets.
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Part III

Asset Pricing with Counterparty

Risk, Collateralization and

Funding Costs

Derivative longevity risk solutions, such as bespoke and indexed longevity

swaps, allow pension schemes and annuity providers to swap out longevity risk,

but introduce counterparty credit risk, which can be mitigated if not fully elim-

inated by collateralization. We examine the impact of bilateral default risk and

collateral rules on the marking to market of longevity swaps, and show how

longevity swap rates must be determined endogenously from the collateral flows

associated with the marking-to-market procedure. For typical interest rate and

mortality parameters, we find that the impact of collateralization is modest in

the presence of symmetric default risk, but more pronounced when default risk

and/or collateral rules are asymmetric. Our results suggest that the overall cost

of collateralization is comparable with, and often much smaller than, that found

in the interest-rate swaps market, which may then provide the appropriate refer-

ence framework for the credit enhancement of both indemnity-based and indexed

longevity risk solutions. The next chapter reproduces Biffis, Blake, Pitotti, and

Sun [2012].
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Chapter 4

The Cost of Counterparty Risk

and Collateralization in

Longevity Swaps1

4.1 Introduction

The market for longevity-linked securities and derivatives has recently experi-

enced a surge in transactions in longevity swaps. These pure longevity hedges

are agreements between two parties to exchange fixed payments against variable

payments linked to the number of survivors in a reference population [see Dowd

et al., 2006]. Table 4.1 presents a list of recent deals that have been publicly

disclosed. So far, transactions have mainly involved pension funds and annuity

providers wanting to hedge their exposure to longevity risk2 but without having to

bear any basis risk. The variable payments in such longevity swaps are designed

to match precisely the mortality experience of each individual hedger: hence the

name bespoke longevity swaps. This is essentially a form of longevity risk insur-

ance, similar to annuity reinsurance in reinsurance markets. Indeed, most of the

longevity swaps executed to date have been bespoke, indemnity-based swaps of

the kind familiar in reinsurance markets. This is true despite the fact that some of

1This chapter reproduces Biffis, Blake, Pitotti, and Sun [2012].
2By longevity risk we mean exposure to the systematic risk of mortality improvements,

which cannot be mitigated by pooling together large numbers of lives.
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the swaps listed in table 4.1 have been arranged by investment banks: the banks

have worked with insurance companies (in some cases insurance company sub-

sidiaries) in order to deliver a solution in a format familiar to the counterparty. A

fundamental difference from other forms of reinsurance, however, is that longevity

swaps are typically collateralized, whereas typical insurance/reinsurance transac-

tions are not.1 The main reason is that longevity swaps are often part of a wider

de-risking strategy involving other collateralized instruments (interest-rate and

inflation swaps, for example), and also the fact that hedgers have been increas-

ingly concerned with counterparty risk2 in the wake of the Global Financial Crisis

of 2008-09. In this article, we provide a framework to quantify the trade-off be-

tween the exposure to counterparty risk in longevity swaps and the cost of credit

enhancement strategies such as collateralization.

As there is no accepted framework yet for marking to market/model longevity

swaps, hedgers and hedge suppliers look to other markets to provide a reference

model for counterparty risk assessment and mitigation. In interest-rate swap mar-

kets, for example, the most common form of credit enhancement is the posting

of collateral. According to the International Swap and Derivatives Association

(ISDA) almost every swap at major financial institutions is ‘bilaterally’ collat-

eralized [ISDA, 2010b], meaning that either party is required to post collateral

depending on whether the market value of the swap is positive or negative.3

The vast majority of transactions is collateralized according to the Credit Sup-

port Annex (CSA) to the Master Swap Agreement introduced by ISDA [1994].

The Global Financial Crisis highlighted the importance of bilateral counterparty

1One rationale for this is that reinsurers aggregate several uncorrelated risks and pool-
ing/diversification benefits compensate for the absence of collateral [e.g., Cummins and Trainar,
2009; Lakdawalla and Zanjani, 2007]. Insurers/reinsurers are still required by their regulators
to post regulatory or solvency capital which plays a similar role to collateral but at aggregate
level.

2Basel II [2006, Annex 4] defines counterparty risk as ‘the risk that the counterparty to a
transaction could default before the final settlement of the transaction’s cash flows’. The recent
Solvency II proposal makes explicit allowance for a counterparty risk module in its ‘standard
formula’ approach; see CEIOPS [2009].

3‘Unlike a firm’s exposure to credit risk through a loan, where the exposure to credit risk
is unilateral and only the lending bank faces the risk of loss, counterparty credit risk creates a
bilateral risk of loss: the market value of the transaction can be positive or negative to either
counterparty to the transaction. The market value is uncertain and can vary over time with
the movement of underlying market factors.’ [Basel II, 2006, Annex 4].
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risk and collateralization for over-the-counter markets, spurring a number of re-

sponses [e.g, Assefa et al., 2010; Brigo and Capponi, 2009; Brigo et al., 2011,

2012; ISDA, 2009]. The Dodd-Frank Wall Street Reform and Consumer Pro-

tection Act (signed into law by President Barack Obama on July 21, 2010) is

likely to have a major impact on the way financial institutions will manage coun-

terparty risk in the coming years.1 The recently established Life and Longevity

Markets Association (LLMA) 2 has counterparty risk at the center of its agenda,

and will certainly draw extensively from the experience garnered in fixed-income

and credit markets.

Collateralization strategies address the concerns aired by pension trustees re-

garding the efficacy of longevity swaps, but introduce another dimension in the

traditional pricing framework used for insurance transactions. The ‘insurance

premium’ embedded in a longevity swap rate reflects not only the aversion (if

any) of the counterparties to the risk being transferred and the cost of regulatory

capital involved in the transaction, but also the expected costs to be incurred

from posting collateral during the life of the swap. To quantify the impact of

collateral on swap rates, we must examine the sensitivity of the counterparties to

the cost of this form of credit risk mitigation. Let us first take the perspective of

a hedge supplier (reinsurer or investment bank) issuing a collateralized longevity

swap to a counterparty (pension fund or annuity provider). Whenever the swap

is sufficiently out-of-the-money to the hedge supplier, the hedge supplier is re-

quired to post collateral, which can be used by the hedger to mitigate losses in

the event of default. Although interest on collateral is typically rebated, there

is both a funding cost and an opportunity cost, as the posting of collateral de-

pletes the resources the hedge supplier can use to meet her capital requirements

at aggregate level as well as to write additional business. On the other hand,

whenever the swap is sufficiently in-the-money to the hedge supplier, the hedge

supplier will receive collateral from the counterparty, thus benefiting from capi-

tal relief in regulatory valuations and freeing up capital that can be used to sell

additional longevity protection. The benefits can be far larger if collateral can be

1See, for example, ‘Berkshire may scale back derivative sales after Dodd-Frank’, Bloomberg,
August 10, 2010.

2See http://www.llma.org.
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re-pledged for other purposes, as in the interest-rate swaps market.1 The same

considerations can be made from the viewpoint of the hedger, but the funding

needs and opportunity costs of the two parties are unlikely to offset each other

exactly. This is particularly relevant for transactions involving parties subject

to different regulatory frameworks. In the UK and several other countries, for

example, longevity risk exposures are more capital intensive for hedge suppliers,

such as insurers, than for pension funds.2

In the absence of collateral, and ignoring longevity risk aversion, swap rates3

depend on best estimate survival probabilities for the hedged population and on

the degree of covariation between the floating leg of the swap and the defaultable

term structure of interest rates facing the hedger and the hedge supplier.4 This

means that a proper analysis of a longevity swap cannot disregard the sponsor’s

covenant when the hedger is a pension plan (see section 4.3 below). In the

presence of collateralization, longevity swap rates are also shaped by the expected

collateral costs, and swap valuation formulae involve a discount rate reflecting the

cost of collateral. As a result, default-free valuation formulae are not appropriate

even in the presence of full collateralization and the corresponding absence of

default losses.5

We quantify collateral costs in two ways: i) in terms of funding costs that are

incurred or mitigated when collateral is posted or received, and ii) as the oppor-

tunity cost of selling additional longevity protection. In both cases, we find that,

for typical interest rate and mortality parameters, the impact of collateralization

on swap rates is modest when default risk and collateral rules are symmetric.

There are two main reasons for this. First, the different nature of the risk on

which the swap is written, a floating rate in the case of interest-rate swaps, a

1According to ISDA [2010b],the vast majority of collateral is rehypothecated for other
purposes in interest-rate swap markets. Currently, collateral can be re-pledged under the New
York Credit Support Annex, but not under the English Credit Support Deed [see ISDA, 2010a].

2This asymmetry is, in part, a by-product of rules allowing, for example, pension liabilities to
be quantified by using outdated mortality tables or discount rates reflecting optimistic expected
returns.

3Defined as the rates in the fixed legs of the swap zeroing its market value at inception.
4Along the same lines, Inkmann and Blake [2010] show how the discount rate for the

valuation of pension liabilities should reflect funding risk.
5See Johannes and Sundaresan [2007] for the case of symmetric default risk and full collat-

eralization in interest-rate swaps.
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smoother survival curve in the case of longevity swaps. Second, the counter-

vailing effects of longevity risk and interest-rate risk dilute the overall impact of

collateralization on swap rates:

i) On the one hand, the receiver of the fixed survival rate (the hedge supplier)

posts collateral when mortality is lower and hence longevity exposures are more

capital intensive. On the other hand, she receives collateral when mortality is

higher and longevity protection is less capital intensive. The overall effect is to

push (fixed) swap rates higher, to compensate the hedge supplier for the positive

dependence between collateral posting and capital costs.

ii) When the hedger or hedge supplier is out-of-the-money, collateral outflows

are larger in low interest rate environments (i.e., when liabilities are discounted

at a lower rate), hence there is a negative relationship between the amount of col-

lateral posted and the counterparties’ funding/opportunity costs. This mitigates

the overall impact of collateralization on longevity swap rates.

When default risk and/or collateral rules are asymmetric, the opposing ef-

fects are of different magnitudes and, as a result, the impact of collateral costs

on longevity swap rates is larger. For example, we find that swap rates decrease

substantially when the hedger has a lower credit standing (i.e., higher funding

costs) and collateral rules are more favorable to the hedge supplier. Although

collateralization introduces an explicit link between the individual risk exposures

and the hedge supplier’s funding risk (hence some of the pooling/diversification

benefits used to substitute for collateralization in the standard insurance model

may be lost), in our examples we find that the opposite effects of longevity and

interest rate risk make the overall impact of collateralization comparable with,

and typically lower than, that observed in fixed-income markets [e.g., Johannes

and Sundaresan, 2007]. An important implication is that the interest-rate swaps

market might provide an appropriate framework for the collateralization of be-

spoke longevity solutions, even though such solutions lack of the transparency and

standardization benefits associated with indexed-based instruments. Investment

banks have sold index-based longevity swaps which have a structure that would

be more familiar to capital markets investors, but they have so far been less pop-

ular than bespoke solutions to date. Nevertheless, for the longevity swaps market

to really take off, it is necessary to expand beyond the limits of the reinsurance

98



4. Longevity Swaps

market and attract such new investors.

On the methodological side, we show how longevity swap rates must be de-

termined endogenously from the dynamic marking to market1 of the swap and

the collateral rules specified by the contract. To see why, note that the market

value of the swap at each valuation date depends on the evolution of the rele-

vant state variables (mortality, interest rates, credit spreads), as well as on the

swap rate locked in at inception. On the other hand, the swap’s market value

will typically affect collateral amounts and, in a setting where collateral is costly,

will embed the market value of the costs associated with future collateral flows.

Hence, the swap rate can only be determined by explicitly taking into account

the marking-to-market process and the dynamics of collateral posting. To avoid

the computational burden of nested Monte Carlo simulations, we use an itera-

tive procedure based on the Least-Squares Monte Carlo (LSMC) approach2 [see

Glassermann, 2004, and references therein]. We provide several numerical ex-

amples showing how different collateralization rules shape longevity swap rates

giving rise to margins in (best estimate) survival probabilities reflecting the cost

of future collateral flows. Although our focus is on longevity risk solutions, the

approach can be applied to other instruments, such as over-the-counter solutions

for inflation and credit risk.

Our work contributes to the existing literature on longevity risk pricing in

at least three ways: i) we introduce default risk in the pricing of longevity risk

solutions, and properly address its bilateral nature; ii) we explicitly allow for

collateralization rules, which are the backbone of any real-world hedging solu-

tion and materially affect the pricing of over-the-counter transactions; iii) we

introduce a ‘structural’ dimension in an otherwise reduced-form pricing frame-

work, by allowing for funding/opportunity costs associated with longevity risk

exposures held by hedgers and hedge suppliers. As there is essentially no pub-

1Here and in what follows, by ‘market value’ and ‘marking to market’ we mean that assets
and liabilities are valued according to a market-consistent accounting/regulatory standard.

2A similar approach is used by Bacinello et al. [2009, 2010] for surrender guarantees in life
policies and by Bauer et al. [2010b] for the computation of capital requirements within the
Solvency II framework. The term American Monte Carlo is often used in financial engineering
to refer to this approach. We stick to the term Least Squares Monte Carlo, as it is more common
in the insurance industry [e.g., Hörig and Leitschkis, 2012].
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licly available information on swap rates, our approach1 has the advantage of

using publicly available information on credit markets and regulatory standards,

without having to rely exclusively on calibration to primary insurance market

prices, approximate hedging methods or assumptions on agents’ risk preferences

[e.g., Bauer et al., 2010a, 2012; Biffis et al., 2010; Chen and Cummins, 2010; Cox

et al., 2010; Dowd et al., 2006; Ludkovski and Young, 2008, among others].

The article is organized as follows. In the next section, we introduce longevity

swaps and formalize their payoffs. Although the setup covers the case of both be-

spoke and index-based swaps, we focus on the former to keep the paper focused.

In section 4.2.1, we examine the marking to market of a longevity swap during its

lifetime to demonstrate the impact of counterparty risk on the hedger’s balance

sheet. Section 4.3 introduces bilateral default risk in longevity swap valuation

formulae. We identify the main channels through which default risk affects the

market value of swaps and show why an iterative procedure is needed to compute

swap rates. Section 4.4 introduces credit enhancement in the form of collater-

alization, and shows how longevity swap rates are affected even in the presence

of full cash collateralization (and hence absence of default losses). We compute

swap rates by using an iterative procedure based on the LSMC approach. In

section 4.5, several stylized examples are provided to understand how different

collateralization rules may affect longevity swap rates. Concluding remarks are

offered in section 4.6. Further details and technical remarks are collected in an

appendix.

4.2 Longevity swaps

We consider a hedger (insurer selling annuities, pension fund), referred to as party

h, and a hedge supplier (reinsurer, investment bank), referred to as counterparty

hs. Agent h has the obligation to pay amounts XT1 , XT2, . . ., possibly dependent

on interest rates and inflation, to each survivor at fixed dates 0 < T1 ≤ T2, . . . of an

initial population of n individuals alive at time zero (annuitants or pensioners).

We are clearly restricting our attention to homogeneous liabilities for ease of

1Similarly, Biffis and Blake [2009, 2010a] endogenize longevity risk premia by introducing
asymmetric information and capital requirements in a risk-neutral setting.
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Date Hedger Size Term (yrs) Type Interm./supplier
Jan 2008 Lucida N.A. 10 indexed JP Morgan

ILS funds
Jul 2008 Canada Life GBP 500m 40 bespoke JP Morgan

ILS funds
Feb 2009 Abbey Life GBP 1.5bn run-off bespoke Deutsche Bank

ILS funds / Partner Re
Mar 2009 Aviva GBP 475m 10 bespoke Royal Bank

of Scotland
Jun 2009 Babcock GBP 750m 50 bespoke Credit Suisse

International Pacific Life Re
Jul 2009 RSA GBP 1.9bn run-off bespoke Goldman Sachs

(Rothesay Life)
Dec 2009 Berkshire Council GBP 750m run-off bespoke Swiss Re
Feb 2010 BMW UK GBP 3bn run-off bespoke Deutsche Bank

Paternoster
Dec 2010 Swiss Re USD 50m 8 indexed ILS funds

(Kortis bond)
Feb 2011 Pall (UK) GBP 70m 10 indexed JP Morgan

Pension Fund
Aug 2011 ITV GBP 1.7bn N.A. bespoke Credit Suisse
Nov 2011 Rolls Royce GBP 3bn N.A. bespoke Deutsche Bank
Dec 2011 British Airways GBP 1.3bn N.A. bespoke Goldman Sachs

bespoke (Rothesay Life)
Jan 2012 Pilkington GBP 1bn N.A. bespoke Legal & General
Apr 2012 Berkshire Council GBP 100m run-off bespoke Swiss Re

Table 4.1: Publicly announced longevity swap transactions 2008-2012.

exposition, more general situations requiring obvious modifications. Party h’s

liability at a generic payment date T > 0 is given by the random variable (n −
NT )XT , where NT counts the number of deaths experienced by the population

during the period [0, T ]. Assuming that the individuals’ death times have common

intensity1 (µt)t≥0, the expected number of survivors at time T can be written as

EP [n−NT ] = npT , with the survival probability pT given by (see the appendix)

pT := EP

[
exp

(
−
∫ T

0

µtdt

)]
. (4.2.1)

Here and in the following, P denotes the real-world probability measure. The

intensity could be modeled by using, for example, any of the stochastic mortality

1 As discussed more in detail in the appendix, for tractability we restrict our attention to
the case of doubly stochastic (or Cox, conditionally Poisson) death times.
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models considered in Cairns et al. [2009]. For our examples, we will rely on the

simple Lee-Carter mortality projection model [Lee and Carter, 1992].

Let us now consider a financial market and introduce the risk-free rate process

(rt)t≥0 (in practice, an overnight rate). We assume that a market-consistent price

of the liabilities can be computed by using a risk-neutral measure P̃, equivalent

to P, such that the death times have the same intensity process (µt)t≥0 [with

different dynamics, in general, under the two measures; see Biffis et al., 2010].

The time-0 market value of the aggregate liability can then be written as

EP̃

[∑

i

exp

(
−
∫ Ti

0

rtdt

)
(n−NTi)XTi

]
= n

∑

i

EP̃

[
exp

(
−
∫ Ti

0

(rt + µt)dt

)
XTi

]
.

For the moment, we take the pricing measure as given: we will give it more

structure later on.

We consider two instruments which h can enter into with hs to hedge its

exposure: a bespoke longevity swap and an index-based longevity swap. In these

swaps, in contrast with interest rate swaps, the fixed leg will be a series of fixed

rates each one pertaining to an individual payment date. The reason is that mor-

tality increases substantially at old ages and a single fixed rate would introduce a

growing mismatch between the cashflows provided by the swap and those needed

by the hedger. However, as with interest rate swaps, we can treat a longevity

swap as a portfolio of forward contracts on the underlying floating (survival)

rate.1 In this section, we ignore default risk and focus on individual payments

at maturity T > 0. Throughout the article, we always assume the perspective of

the hedger.

A bespoke longevity swap allows party h to pay a fixed rate pN ∈ (0, 1)

against the realized survival rate experienced by the population between time

zero and time T . Assuming a notional amount equal to the initial population

1With a slight abuse of terminology, we use the term ‘swap rate’ for individual forward
rates as well as for swap curves (a series of swap rates). We note that swap curves are often
summarized by the improvement factor applied to the survival probabilities of a reference
mortality table/model; see examples in section 4.5.
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size, n, the net payout to the hedger at time T is1

n

(
n−NT

n
− pN

)
,

i.e., the difference between the realized number of survivors and the pre-set num-

ber of survivors npN agreed at inception. Letting S0 denote the market value of

the swap at inception, we can write

S0 = nEP̃

[
exp

(
−
∫ T

0

rtdt

)(
n−NT

n
− pN

)]

= nEP̃

[
exp

(
−
∫ T

0

(rt + µt)dt

)]
− nB(0, T )pN ,

(4.2.2)

with B(0, T ) denoting the time-zero price of a zero-coupon bond with maturity

T . By setting S0 = 0, we obtain the swap rate as

pN = p̃T +B(0, T )−1CovP̃
(
exp

(
−
∫ T

0

rtdt

)
, exp

(
−
∫ T

0

µtdt

))
, (4.2.3)

where the risk-adjusted survival probability p̃T is defined as in (4.2.1) with expec-

tations taken under P̃. Expression (4.2.3) shows that if the intensity of mortality is

uncorrelated with bond market returns (a reasonable first-order approximation),

the longevity swap curve just involves the survival probabilities {p̃Ti} relative to

the different maturities {Ti}. Several studies have recently addressed the issue of

how to quantify risk-adjusted survival probabilities, for example, by calibration

to annuity prices and books of life policies traded in secondary markets, or by

use of approximate hedging methods (see references in Section 4.1). As there

is essentially no publicly available information on swap rates, for our numerical

examples we will suppose a baseline case in which p̃Ti = pTi for each maturity

Ti and focus on how counterparty default risk and collateral requirements might

generate a positive or negative spread on best estimate survival rates. This is

consistent with market practice where counterparties would agree on a real-world

1For ease of exposition, here and in the following sections, we consider contemporaneous
settlement only. Other settlement conventions (e.g. in arrears) have negligible effects, but make
valuation formulae more involved when bilateral and asymmetric default risk is introduced.
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mortality model (and estimation methodology) to mark-to-model the swap at

future dates. Although in what follows, we mainly concentrate on longevity risk,

in practice, the floating payment of a longevity swap might involve an interbank

rate component (e.g., LIBOR) or survival indexation rules different from the ones

considered above. To keep the setup general, we will at times consider instru-

ments making a generic variable payment, P , and write the corresponding swap

rate p as

p = EP̃ [P ] +B(0, T )−1CovP̃
(
exp

(
−
∫ T

0

rtdt

)
, P

)
. (4.2.4)

The setup can easily accommodate index-based longevity swaps, stan-

dardized instruments allowing the hedger to pay a fixed rate pI ∈ (0, 1) against

the realized value of a survival index (It)t≥0 at time T . The latter might reflect

the mortality experience of a reference population closely matching1 that of the

liability portfolio. Examples are represented by the LifeMetrics indices developed

by J.P. Morgan, the Pensions Institute and Towers Watson,2 or the Xpect indices

developed by Deutsche Börse.3 The relative advantages and disadvantages of

index-based versus bespoke swaps are discussed, for example, in Biffis and Blake

[2010b]. Assuming that the index admits the representation It = exp(−
∫ t
0
µIsds),

with (µIt )t≥0 the intensity of mortality of a reference population, the swap rate pI

is given again by expression (4.2.3), but with the process µ replaced by µI , and

with p̃T replaced by the corresponding risk-adjusted survival probability p̃IT .

4.2.1 The marking-to-market (MTM) process

Longevity swaps are not currently exchange traded and there is no commonly

accepted framework for counterparties to mark to market/model their positions.4

The presence of counterparty default risk and collateralization rules, however,

makes the MTM procedure a very important feature of these transactions for

at least two reasons. First, at each payment date, the difference between the

variable and pre-set payment generates a cash inflow or outflow to the hedger,

1The risk of mismatch is called basis risk. See, for example, Coughlan et al. [2011], Stevens
et al. [2010b], and Salhi and Loisel [2010] for some results related to this risk dimension.

2See http://www.lifemetrics.com. The indices were transferred to LLMA in 2011.
3See http://www.xpect-index.com.
4At the time of writing, LLMA was working on this issue.
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depending on the evolution of mortality. In the absence of basis risk (which is

the case for bespoke solutions), these differences show a pure ‘cashflow hedge’

of the longevity exposure in operation. However, as market conditions change

(e.g., mortality patterns, counterparty default risk), the impact of the swap on

the hedger’s balance sheet can evolve dramatically. For example, even if the

swap payments are expected to provide a good hedge against longevity risk, the

hedger’s position will weaken considerably if the expected present value of the

net payments shrinks due to deterioration in the hedge supplier’s credit quality.

Second, for solvency requirements, it is important to value a longevity swap under

extreme market/mortality scenarios (‘stress testing’). This means, for example,

that even if a longevity swap qualifies as a liability on a market-consistent basis,

it might still provide considerable capital relief when valued on a regulatory basis

due to its recognized effectiveness as a hedge.

To illustrate some of these points, let us consider the hypothetical situation of

an insurer h with a liability represented by a group of ten thousand 65-year-old

annuitants drawn from the population of England & Wales in 1980. We assume

that party h entered a 25-year pure longevity swap in 1980 and we follow the

evolution of the contract until maturity. The population is assumed to evolve

according to the death rates reported in the Human Mortality Database (HMD)

for England & Wales.1 We assume that interest-rate risk is hedged away through

interest rate swaps, locking in a rate of 5% throughout the life of the swap. The

role of collateral is examined later on; here, we show how the hedging instrument

operates from the point of view of the hedger. For this bespoke solution, the

market value of each floating-for-fixed payment occurring at a generic date T can

be computed by using the valuation formula

St =nE
P̃

t

[
exp

(
−
∫ T

t

rsds

)(
n−Nt

n
exp

(
−
∫ T

t

µsds

))]
− nB(t, T )pN ,

(4.2.5)

for each time t in [0, T ] at which no default has yet occurred, with B(t, T ) de-

noting the market value of a zero-coupon bond with time to maturity T − t, and

EP̃

t [·] the conditional expectation under a pricing measure P̃, given the informa-

1See http://www.mortality.org.
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tion available at time t. As a simple benchmark case, we assume that market

participants receive information from the HMD and use the Lee-Carter model to

value longevity-linked cashflows. In other words, at each MTM date (including

inception), longevity swap rates are based on Lee-Carter forecasts computed us-

ing the latest HMD information available.1 Figure 4.1 illustrates the evolution of

swap survival rates for an England & Wales cohort tracked from age 65 in 1980

to age 90 in 2005. It is clear that the systematic underestimation of mortality

improvements by the Lee-Carter model in this particular example will mean that

the hedger’s position will become increasingly in-the-money as the swap matures.

This is shown in figure 4.2. In practice, the contract may allow the counterparty

to cancel the swap or re-set the fixed leg for a nonnegative fee, but we ignore these

features in this example. Figure 4.2 also reports the sequence of net cashflows

generated by the swap. As interest rate risk is hedged away − and again ignoring

default risk for the moment − cash inflows/outflows arising in the backtesting

exercise only reflect the difference between the realized survival rates and the

swap rates locked in at inception. On the other hand, the swap’s market value

reflects changes in market swap rates, which by assumption follow the updated

Lee-Carter forecasts plotted in figure 4.1 and differ from the realized survival

rates. As is evident from figure 4.2, the credit exposure of a longevity swap is

close to zero at inception and at maturity, but may be sizable in between, de-

pending on the trade-off between changes in market/mortality conditions and the

residual swap payments (amortization effect). The credit exposure is quantified

by the replacement cost, i.e., the cost that the nondefaulting counterparty would

have to incur at the default time to replace the instrument at market prices then

available. As a simple example which predicts the next section, let us introduce

credit risk (but no default) and assume that in 1988 the credit spread of the

hedge supplier widens across all maturities by 50 and 100 basis points. The im-

pact of these two scenarios on the hedger’s balance sheet is dramatic, as shown

in figures 4.2-4.3, demonstrating how MTM profits and losses can jeopardize a

successful cashflow hedge.

1See Cairns et al. [2011]; Dowd et al. [2010a,b] for a comprehensive analysis of alternative
mortality models; see also Girosi and King [2008] and Pitacco et al. [2009].
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Figure 4.1: Survival curves computed at the beginning of each year t =
1980, . . . , 2004 for England & Wales males aged 65+ t−1980 in year t. Forecasts
are based on the Lee-Carter model using the latest Human Mortality Database
data available at the beginning of each year t.

4.3 Counterparty default risk

The backtesting exercise of the previous section has demonstrated the importance

of the hedge supplier’s credit risk and the marking to market procedure in assess-

ing the value of a longevity swap to the hedger. A correct approach, however,

should allow for the fact that counterparty risk is bilateral. This is the case even

when the hedger is a pension plan. Private sector defined benefit pension plans

in countries such as the UK are founded on trust law and rely on a promise by

(rather than a guarantee from) the sponsoring employer to pay the benefits to

plan members. This promise is known as the ‘sponsor covenant’. The strength

of the sponsor covenant depends on both the financial strength of the employer
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Figure 4.2: Mark-to-market value of the longevity swap in the baseline case
and with counterparty B’s credit spread widening by 50 and 100 basis points
over 1988-2005. In the absence of default, the net payments from the swap are
insensitive to credit spread changes.

and the employer’s commitment to the scheme.1 As a reasonable but imperfect

proxy for the effect of the sponsor covenant, we use the sponsor’s default inten-

sity (party h’s default intensity). For large corporate pension plans, the intensity

can be derived/extrapolated from spreads observed in corporate bond and CDS

markets. For smaller plans, an analysis of the funding level and strategy of the

scheme is required.

Assume that both party h and hs may default at random times τh, τhs, admit-

1In the UK, for example, The Actuarial Profession [2005, par. 3.2] defined the sponsor
covenant as: “the combination of (a) the ability and (b) the willingness of the sponsor to pay
(or the ability of the trustees to require the sponsor to pay) sufficient advance contributions to
ensure that the scheme’s benefits can be paid as they fall due.” See also The Pensions Regulator
[2009].
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Figure 4.3: Change in mark-to-market value of the longevity swap (MTM) relative
to the baseline case and the net payments from the swap, when counterparty B’s
credit spread widens by 50 and 100 basis points over 1988-2005.

ting default intensities1 (λht )t≥0, (λ
hs

t )t≥0. Defining by τ := min(τh, τhs) the de-

fault time of the swap transaction, we further assume that, on the event {τ ≤ T},
the nondefaulting counterparty, say party i, receives a fraction ψj ∈ [0, 1] (i 6= j,

with i, j ∈ {h,hs}) of the market value of the swap before default, Sτ−, if she

is in-the-money, otherwise she has to pay the full pre-default market value Sτ−

to the defaulting counterparty. Following Duffie and Huang [1996], we can then

1For tractability and symmetry with the mortality model of section 2, we work with doubly
stochastic default times (see the appendix). The main drawback is that the occurrence of
default does not affect the conditional default probability of the surviving counterparty, thus
limiting the extent to which close-out risk can be properly modelled.
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write the market value of a swap with notional amount n as

S0 =nE
P̃

[
exp

(
−
∫ T

0

(rt + 1{St<0}(1− ψh)λht + 1{St≥0}(1− ψhs)λhst )dt

)(
P − pd

)]
,

(4.3.1)

where P denotes the variable payment, pd the fixed rate, and the indicator func-

tion 1A takes the value of unity if the event A is true, zero otherwise. To under-

stand the above formula, note that, in our setting, the risk-neutral valuation of a

defaultable claim involves the use of a default-risk-adjusted short rate rt+λ
h

t +λ
hs

t

and dividend payment λht (ψ
h1St−<0+1St−≥0)+λ

hs

t (ψhs1St−≥0+1St−<0) determined

by the recovery rules described above. As a result, the valuation formula (4.3.1)

entails discounting at a spread above the risk-free rate given by

Λt :=λ
h

t + λhst − λht (ψ
h1St<0 + 1St≥0)− λhst (ψhs1St≥0 + 1St<0)

=1{St<0}(1− ψh)λht + 1{St≥0}(1− ψhs)λhst ,

showing a switching-type dependence on the characteristics of the counterparty

that is out-of-the-money at each given time prior to default. The swap rate admits

the representation

pd = EP̃[P ] +
CovP̃

(
exp

(
−
∫ T
0
(rt + Λt)dt

)
, P
)

EP̃

[
exp

(
−
∫ T
0
(rt + Λt)dt

)] , (4.3.2)

and hence depends in a complex way not only on the interaction between the

variable payments and risk factors such as interest rates, default intensities and

recovery rates, but also on the path of the swap’s market value itself. When P

does not include a demographic component, as in the case of interest-rate swaps,

the covariance term is typically negative. To see this, consider the case of the

standard swap valuation formula obtained by assuming that both counterpar-

ties have the same default intensity (λt := λht = λhst ) and there is no recovery

conditional on default (ψh and ψhs are simply zero). If the credit risk of the

counterparties is equal to the average credit quality of the LIBOR panel, the

discount rate in (4.3.2) is simply given by r + λ, where λ is just the LIBOR-
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Treasury (TED) spread. For a swap paying the LIBOR rate, we would then have

a negative covariance term and hence pd ≤ EP̃[P ]. When P only includes a demo-

graphic component (as in expression (4.2.3) for example), which is uncorrelated

with the other variables, we would still have a non-null covariance term, due to

the regime-switching nature of the discount rate in formula (4.3.2), and the fact

that switching is triggered by the value of the swap, which also depends on the

floating rate of interest. More generally, one might expect the covariance term

to be negative, as longevity-linked payments are likely to be positively correlated

with the credit quality of hedge suppliers1 and companies with significant pension

liabilities. The case of floating payments linked to both mortality and interest

rates would then suggest a swap rate satisfying pd ≤ EP̃[P ]. In the next section,

we will show that this is not necessarily the case. To understand why, consider

the case of full recovery as an example (set ψh and ψhs equal to one): expres-

sion (4.3.2) reduces to a default-free risk-neutral valuation formula, irrespective

of both the default intensities of the counterparties and the costs involved by the

credit enhancement tools needed to ensure that full recovery is indeed achieved

upon default. This suggests that it is essential to consider explicitly counterparty

risk mitigation tools in the pricing functional.

Counterparty risk can be mitigated in a number of ways, for example by

introducing termination rights (e.g., credit puts and break clauses) or using credit

derivatives (e.g., credit default swaps and credit spread options). We will focus

on collateralization, a form of direct credit support requiring each party to post

cash or securities when it is out-of-the-money. For simplicity, we consider the case

of cash, which is by far the most common type of collateral [e.g., ISDA, 2010a]

and allows us to disregard close-out risk, the risk that the value of collateral may

change at default. In the interest-rate swaps market, Johannes and Sundaresan

[2007] find evidence of costly collateral by comparing swap market data with swap

values based on portfolios of futures and forward contracts, and by estimating

a dynamic term structure model by using Treasury and swap data. We cannot

carry out a similar exercise for longevity swaps, because there are no publicly

available data on these transactions. On the other hand, we can quantify the

1This is a reasonable assumption for monoline insurers such as pension buyout firms, but
might be less so for well-diversified reinsurers.
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funding/opportunity costs associated with the collateral flows originating from

the MTM procedure, as will be shown in section 4.5.

4.4 Collateralization

Collateral agreements reflect the amount of acceptable credit exposure that each

party agrees to take on. We will consider simple collateral rules capturing the

main features of the problem. Formally, let us introduce the pre-default collateral

process1 (Ct)t≥0, which indicates how much cash, Ct, to post at each time t prior to

default in response to changes in market conditions, including, in particular, the

MTM value of the swap (we provide explicit examples below). Again, we develop

our analysis from the point of view of the hedger, so that Ct > 0 (Ct < 0) means

that party h is holding (posting) collateral. Using the notation a+ := max(a, 0)

and a− := max(−a, 0), we assume the recovery rules to take the following form:

• On the event {τh ≤ min(τhs, T )} (hedger’s default), party hs recovers any

collateral received by the hedger an instant prior to default, C−
τh−, and pays

the full MTM value of the swap to party h if Sτh− ≥ 0. The net flow to

party h is then S+
τh− − C−

τh−.

• On the event {τhs ≤ min(τh, T )} (hedge supplier’s default), party h pays

the full MTM value of the swap to party hs if Sτhs− < 0, and recovers any

collateral received by hs an instant prior to default, C+
τhs−. The net flow to

party h can then be written as −S−
τhs− + C+

τhs−.

• Whenever the nondefaulting counterparty, say h, is out-of-the-money, pay-

ment of the full MTM value of the swap is accomplished by party h recov-

ering the extra amount (S+
τ−−C+

τ−)
+ in the case of overcollateralization, or

by party h paying the extra amount (S−
τ− −C−

τ−)
+ in case of undercollater-

alization. In case of full collateralization, party h simply loses any collateral

posted with hs.

1In other words, the actual collateral process supporting the transaction is (1{τ>t}Ct)t≥0;
hence, we are not concerned with the value taken by Ct after default.
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To obtain neater results, it is convenient to express the collateral before default

of either party as a fraction of the MTM value of the swap,

Ct =
(
chst 1{St−≥0} + cht 1{St−<0}

)
St−, (4.4.1)

where ch, chs are two nonnegative left-continuous processes giving the fraction

of the MTM value of the swap that is posted as collateral by party h or hs,

respectively.1 Finally, we introduce a nonnegative continuous process (δt)t≥0 rep-

resenting the yield on collateral, in the sense that holding/posting collateral of

amount Ct yields/costs instantaneously the net amount δtCt (after rebate). We

can introduce some asymmetry, by setting δt = δht 1{St−<0} + δhst 1{St−≥0}, so that

δht be interpreted as party h’s net cost of posting collateral when she is out-of-the-

money, and δhst as the net yield on the collateral posted by party hs when party

h is in-the-money. In general, one may regard the collateral costs embedded in

swap market values as those of the marginal market participant. However, when

considering individual longevity swap transactions with bespoke CSAs, it may be

convenient to allow the pricing formula to take into account the cost of collateral

of the counterparty: in this case δh and δhs may be regarded as the cost of posting

collateral for party h and hs whenever they are out-of-the-money.

Denoting by pc the swap rate available in case of collateralization, we can write

the MTM value of the swap as in (4.3.1), but with the spread Λ now replaced by

(see the appendix for a proof)

Γt = λht (1−cht )1{St<0}+λ
hs

t (1−chst )1{St≥0}−
(
δht c

h

t 1{St<0} + δhst c
hs

t 1{St≥0}

)
. (4.4.2)

In the above expression, we recognize the typical features of valuation formulae

for credit-risky securities [e.g., Bielecki and Rutkowski, 2002]: the first two terms

account for the fractional recovery of the swap MTM value in case of default

of the counterparty, the third one for the costs incurred when posting collateral

before default. We now examine simple special cases to understand better the

role of collateral in shaping swap rates.

1Note that representation (4.4.1) comes at a cost: we cannot encompass the case when
collateral is posted by a counterparty at inception (a form of overcollateralization), which may
be the case for some transactions.
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4.4.1 Full collateralization

Consider the collateral rule obtained by setting ch and chs equal to one, meaning

that the full MTM value of the swap is received/posted as collateral depending

on whether the marking-to-market process results in a positive/negative value

for St. As we consider cash collateral, default is immaterial. In contrast with

section 4.3, however, the expression for the swap MTM value does not reduce to

the usual default-free, risk-neutral valuation formula in general, unless collateral

costs are zero. In the case of symmetric collateral costs, for example, we obtain:

pc = EP̃[P ] +
CovP̃

(
exp

(∫ T
0
(δt − rt)dt

)
, P
)

EP̃

[
exp

(∫ T
0
(δt − rt)dt

)] . (4.4.3)

If the cost of collateral is positively dependent on P , we expect the swap rate

to be higher than pd in expression (4.3.2) [see Johannes and Sundaresan, 2007],

reflecting the fact that (costly) collateralization results in the payer of the floating

rate being compensated with a higher fixed rate. In the interest-rate swap market

this happens for example if either the short rate or the TED spread are positively

correlated with δ. The intuition is that the floating rate payer will have to both

post collateral and incur higher funding costs when the floating rate increases.

In longevity space, one may expect the cost of collateral to be positively depen-

dent on mortality improvements and negatively dependent on interest rates, as

longevity-linked liabilities are more capital intensive in low mortality and low

interest rate environments (due to lower discounting of future cashflows). The

combined impact of these two effects is ambiguous, and is discussed in the exam-

ples of section 4.5.

4.4.2 Common collateral rules

According to ISDA [2010a], it is typical for collateral agreements to specify col-

lateral triggers based on the market value of the swap or other relevant variables

(credit ratings, credit spreads, etc.) crossing pre-specified threshold levels. In

longevity swaps, the CSA may define collateral rules that depend on the under-

lying mortality experience, involve path dependence (with respect to mortality
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experience/expectations for instance), and monitor different variables at different

frequency. For example, the CSA may allow for daily collateral adjustments for

financial conditions, quarterly adjustments for death experience, and annual ad-

justments for changes in future mortality improvements. The following examples

illustrate some of these aspects:

a) Set chst = 1{St−≥s(t)} and cht = 1{St−≤s(t)} (for continuous functions s, s

defined on [0, T ] and satisfying s ≤ s), meaning that the hedge supplier

(hedger) is required to post full collateral if the swap’s MTM value is above

(below) the appropriate time-dependent threshold. More general collateral

rules can be obtained by setting chst = γhst 1{St−≥s(t)} and cht = γht 1{St−≤s(t)},

for suitable processes γh, γhs depending on prevailing market conditions or

expectations about future mortality.

b) In longevity swaps, however, it is more common to define collateral thresh-

olds in terms of mortality forecasts based on a model agreed at contract

inception, and monitor the deaths in the hedger’s population instead of the

market value of the swap. This is due to both the re-estimation risk affect-

ing any given mortality model and the presence of substantial model risk,

which most likely would prevent the counterparties from agreeing on a com-

mon model at future dates. We can set, for example, chst = 1{Nt−≤α(t)} and

cht = 1{Nt−≥β(t)}, for continuous functions α and β satisfying 0 ≤ α ≤ β ≤ n,

meaning that the hedge supplier (hedger) is required to post full collateral

if realized deaths are below (above) the relevant threshold.

c) For an index-based swap, it may be more convenient to work with the

mortality intensity µI of the reference population (see section 4.2) and set

chst = 1{
∫ t

0 µ
I
sds≤a(t)}

and cht = 1{
∫ t

0 µ
I
sds≥b(t)}

for (say) continuous functions

a, b satisfying 0 ≤ a ≤ b. This means that collateral posting is triggered at

each time t if the realized value of the longevity index, exp(−
∫ t
0
µIsds), falls

outside the open interval (exp(−b(t)), exp(−a(t))).

d) As was emphasized in section 4.2.1, the severity of counterparty risk de-

pends on the credit quality of the counterparties. This is why collater-

alization agreements may set collateral thresholds that explicitly depend
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on credit ratings or CDS spreads. A simple example of this practice can

be obtained as a special case of (a) by setting chst = 1{Nt−≤α(t)}∪{λhst ≥λ},

cht = 1{Nt−≥β(t)}∪{λht≥λ}
, meaning that, at each time t, the hedger (hedge

supplier) receives collateral when either realized deaths fall below the level

α(t) (respectively β(t)) or the hedge supplier’s (respectively hedger’s) de-

fault intensity overshoots a given threshold λ ≥ 0. Note that both ch

and chs can be non zero at the same time (for example on the event

{Nt− ≤ α(t)} ∩ {λht ≥ λ}), but expression (4.4.1) ensures that only the

party out-of-the-money will have to post collateral.

4.4.3 Computing the swap rate

The recursive nature of swap valuation formulae in the case of bilateral and asym-

metric counterparty risk (in a doubly stochastic setting) was already noted by

Duffie and Huang [1996]. By modeling the recovery rates and the difference in

counterparties’ credit spreads in reduced form, however, they could use a simple

iterative procedure to determine the swap rate.1 Here, we explicitly allow for

the impact of collateral and the MTM process in the pricing functional: working

in a high-dimensional Markov setting, we use a Least-Squares Monte Carlo ap-

proach. Exploiting the properties of the doubly stochastic setup, we do not model

death/default times explicitly, but just rely on the mortality/default intensities

[see algorithm 2 in Bacinello et al., 2010, for example]. The procedure involves

the following steps (we focus on the individual forward rates for convenience):

Step 1. For an arbitrary fixed forward rate pci ∈ (0, 1), generate M simulated

paths of the state variable process, X , under P̃ along the time grid T := {0 <
t1, t2, . . . , tn = T}. Denote by Sm,itj the MTM value of the swap and by f i,mtj the

cashflows originating from the swap (collateral flows and swap payments) at time

tj on path m and for given forward rate pci .

Step 2. Compute recursively the value of the swap at time tj (for j = n −
1, . . . , 0 with t0 = 0) as Sm,itj = β∗

j · e(Xm
tj
), where e(x) := (e1(x), . . . , eH(x))

T and

{e1, . . . , eH} is a finite set of functions taken from a suitable basis of L2(Ω), and

1Johannes and Sundaresan [2007] sidestep recursivity issues by considering full collateral-
ization and symmetric default risk and collateral costs.
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β∗
j is given by

β∗
j = arg min

βj∈RH

M∑

m=1

(
Si,mtj+1

+ f i,mtj+1
− βj · e(Xm

tj
)
)2
.

At each time tj , use S
m,i
tj to check whether the collateral thresholds are triggered

and determine the corresponding amount of collateral and associated costs.

Step 3. Iterate1 the above procedure over different values for pci until a candi-

date rate pc∗i is found, such that the initial price, 1
M

∑M
m=1 S

m,i∗
t0 , is close enough

to zero. Set pc = pc∗i .

Of course, the procedure relies on knowledge of the dynamics of the state

variable process under the pricing measure. To this end, in the next section, we

outline a calibration approach based on the joint use of fixed-income data and

funding costs / capital requirements for longevity-linked liabilities.

4.5 Examples

We use a continuous-time model for the risk-free yield curve, the LIBOR and

mortality rates, as well as for the cost of collateral. The credit risk of party hs is

assumed to be equal to the average credit quality of the LIBOR panel, so that the

TED spread would be party hs’s default intensity if there were zero recovery upon

default (see section 4.3). We then set λh = λhs+∆ and consider two cases: party

h is either of the same credit quality as party hs (∆ = 0) or is more credit-risky

(∆ > 0).

We describe the evolution of uncertainty by a six-dimensional state variable

vector X with the Gaussian dynamics reported in appendix C.2. The first four

components are: the short rate, r = X(1), assumed to revert to the long-run

central tendency factor X(2), representing the slope of the risk-free yield curve;

the TED spread X(3), so that the LIBOR rate is given by X(1)+X(3); and the net

yield on collateral in the interest-rate swap market, X(4). The latter factor is used

to draw a comparison with the cost of collateral in the longevity swap market.

1In the numerical examples of section 4.5, we use a combination of bisection, secant, and
inverse quadratic interpolation methods to compute pc∗i [see Forsythe et al., 1976].
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The remaining two components describe the opportunity cost of longevity swap

dealers, X(5), and the log-intensity of mortality of a given population, log µ =

X(6). Under the assumption of independence between (X(1), X(2), X(3), X(4)) and

X(6), we can estimate separately the dynamics of the two groups of factors. For

the first vector, we rely on the estimates of Johannes and Sundaresan [2007], who

use weekly Treasury and swap data from 1990 to 2002 to obtain the parameter

values reported in table 4.2. For the intensity exp(X
(6)
t ), we use a continuous-

time version of the Lee-Carter mortality projection model for a cohort of 65-year

olds; see appendix B for details.

As a first example, we focus on funding costs and simply take δhs = X(3) and

δh = X(3) +∆, meaning that the hedger’s net cost of collateral coincides with its

funding costs net of the short rate (assuming it is rebated), whereas the hedger’s

net yield on the collateral amounts posted by party hs coincides with the TED

spread. Assuming that the pricing formula uses information on the collateral

costs of the counterparty, an alternative interpretation is that each party’s net

collateral costs coincide with their borrowing costs net of the risk-free rate. In the

case of asymmetric default risk, we consider values of 100 and 200 basis points

for ∆.

We compute the longevity swap rates for a 25-year swap written on a pop-

ulation of 10,000 US males aged 65 at the beginning of 2008. In figure 4.4, we

plot the underlying forward rates obtained for different collateralization rules

against the percentiles of survival rate improvements based on Lee-Carter fore-

casts. We see that margins are positive and increasing with payment maturity in

the case of symmetric default risk, for both uncollateralized and fully collateral-

ized transactions. As soon as we introduce asymmetry in default risk (∆ > 0),

however, margins widen in the case of no collateralization, reflecting the fact that

the hedger needs to pay an additional premium on account of its higher credit

risk. In the case of full collateralization, counterparty risk is neutralized, but the

hedger is compensated for her higher funding costs and the positive dependence

between funding costs and collateral amounts discussed before: equilibrium swap

rates are pushed lower and produce a negative margin on best estimate swap

rates.

In figure 4.5, we examine the swap margins induced by one-way collateral-

118



4. Longevity Swaps

κ1 0.969 η1 -0.053 σ1 0.008 UK
κ2 0.832 η3 -0.014 σ2 0.155 δK -0.888
κ3 1.669 η4 0.007 σ3 0.009 σK 1.156
κ4 0.045 η5 0.055 σ4 0.010 US
κ5 0.990 κ5,1 0.147 σ5 0.690 δK -0.761
κ3,1 -0.163 κ5,2 1.340 θ2 0.046 σK 1.078
κ4,1 0.114 κ5,3 2.509 θ3 0.003
κ3,4 0.804 κ5,4 -0.133 θ4 0.007
κ4,2 -0.038 κ5,6 -0.002 θ5 0.115 ρ1,2 -0.036

Table 4.2: Parameter values for the dynamics of X given in Appendix C.2. The
estimates for X(5) are based on the assumption that capital increases are funded
by counterparties at 6% plus the LIBOR rate.

ization in the case of asymmetric default risk. When only the hedge supplier

has to post full collateral, forward rates are higher than best estimate survival

probabilities, meaning that the hedger has to compensate the hedge supplier for

bearing both the cost of risk mitigation and the hedger’s higher default risk. The

opposite is true when it is the hedger who has to post full collateral when out-

of-the money. In this case, swap margins are clearly negative, and decreasing in

payment maturity. These effects are amplified when the asymmetry in counter-

parties’ credit quality is greater, as can be seen from the spreads reported in table

4.3 for some key maturities and collateralization rules.

Plotting the swap rate margins against best estimate mortality improvements

allows one to interpret the swap rates as outputs of a pricing functional based

on adjustments to a reference mortality model (which is common practice in

longevity space). On the other hand, longevity swap spreads are easier to com-

pare with those emerging in other transactions. In table 4.4, we make a com-

parison with the interest-rate swap spreads implied by our parameterization of

the state vector (X(1), X(2), X(3), X(4)). In particular, we report the difference

between interest-rate futures prices (obtained by considering full collateralization

and setting the cost of collateral equal to the risk-free rate) and interest-rate for-

ward rates for collateralized transactions with collateral costs equal to the funding

costs of the counterparties. Spreads are negative, in line with the intuition that

interest rate risk leads to a discount for the payer of the fixed rate, as discussed

in the introduction, and are of a magnitude consistent with the findings of Jo-
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hannes and Sundaresan [2007]. The results show that longevity swap spreads are

comparable with, and often much smaller (in absolute value) than, those found

in the interest-rate swap market. For example, in the case of bilateral full collat-

eralization, longevity forward rates for 15- to 25-year maturities embed a spread

substantially smaller than that of interest-rate forwards of corresponding matu-

rity. In the case of one-way collateralization on the hedger’s side, in interest-rate

forward rates we find a discount (negative spread) that turns into a premium

(positive spread) of comparable size in the corresponding longevity swap, due to

the additional and opposite effect of longevity risk on swap rates. Our findings

are robust to the choice of maturity, collateralization rules, and counterparty

credit quality, and are mainly driven by two effects: i) the different nature of the

risk underlying the swap, a survival curve in the case of longevity swaps, and a

floating rate in the case of interest-rate swaps; ii) the fact that interest rate risk

and longevity risk impact longevity swap margins in opposite directions, thus

diluting the overall effect of collateralization on longevity swap rates.

Maturity ch = 0 ch = 0 ch = 1 ch = 1
λh = λhs +∆ payment chs = 0 chs = 1 chs = 0 chs = 1
δh = δhs +∆ (yrs) (bps) (bps) (bps) (bps)

15 0.03 11.34 -11.76 0.05
∆ = 0 20 1.11 19.93 -17.94 0.86

25 1.50 21.25 -18.35 1.24
15 5.45 16.79 -17.29 -5.84

∆ = 100 bps 20 10.16 28.95 -27.08 -8.23
25 10.96 30.75 -27.76 -9.19
15 11.30 22.29 -22.90 -11.25

∆ = 200 bps 20 19.26 38.06 -36.16 -17.42
25 19.46 40.27 -37.02 -18.38

Table 4.3: Forward rate spreads pcTi − pTi (in basis points) for different collater-
alization rules, maturities and spread ∆ ∈ {0, 0.01, 0.02}. The LSMC procedure
uses 5000 paths over a quarterly grid with polynomial basis functions of order 3,
and is repeated for 100 seeds.

In a second example, we focus on the opportunity cost of selling additional

longevity protection. As we do not have any publicly available transaction data

from the longevity swap market to calibrate X(5), we simulate the capital charges

arising from holding a representative longevity-linked liability in response to

changes in the evolution of the factors (X(1), . . . , X(4)) and X(6). We therefore
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IRS (δhs = X(4)) Longevity (δhs = X(3))
λh = λhs +∆ Maturity ch = 0 ch = 1 ch = 1 ch = 0 ch = 1 ch = 1
δh = δhs +∆ payment chs = 1 chs = 0 chs = 1 chs = 1 chs = 0 chs = 1

(yrs) (bps) (bps) (bps) (bps) (bps) (bps)
15 -7.96 -44.97 -52.86 11.34 -11.76 0.05

∆ = 0 20 -12.68 -42.64 -56.22 19.93 -17.94 0.86
25 -17.94 -40.98 -58.92 21.25 -18.35 1.24
15 -8.00 -67.87 -75.23 16.79 -17.29 -5.84

∆ = 100 bps 20 -12.65 -63.84 -77.42 28.95 -27.08 -8.23
25 -17.65 -60.63 -77.64 30.75 -27.76 -9.19

Table 4.4: Comparison of interest-rate swaps (IRSs) with longevity swaps. The
IRS spreads represent the difference betweeen the futures prices (the opportu-
nity cost of collateral coincides with the risk-free rate for both parties) and the
forward rate for a collateralized transaction (for different collateralization rules,
maturities, and credit risk).

‘synthesize’ the realizations of X(5) by using information on regulatory require-

ments to quantify the capital charges accruing to the counterparties during the

life of the swap. In particular, we use the following bottom-up procedure:

Step 1: We simulate several paths of the factors X(1), . . . , X(4) and X(6) along

a time grid T̂ := {t1, t2, . . . , tk} (with tk = T̂ > t1 > 0) and under the pricing

measure P̃. Again, for our example, we assume the P̃-dynamics of X(6) to be the

same as under the physical measure.

Step 2: The paths simulated in the previous step are used to compute, at

each date t ∈ T̂, the regulatory capital needed by an insurer to hold the liability

n−Nt+T , where T < T̂ is a representative maturity proxying the average duration

of longevity-linked liabilities in the longevity swap market. We use T = 15

and T̂ = 40 (years) for our example. To compute the capital requirements,

we use the Solvency II framework, which is based on the 99.5% value-at-risk

of the net assets over a one-year horizon. For simplicity, we assume holders of

longevity exposures to be invested in cash. The distribution of the one-year-ahead

market-consistent value of the liability usually requires nested simulation, unless a

simplified approach is adopted. In our setting, market-consistent discount factors

can be computed analytically based on the one-year-ahead simulated realizations,

as the pair (X(1), X(2)) is an affine process. We use the LSMC approach (see
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Figure 4.4: Swap margins pcTi/pTi − 1 computed for different maturities {Ti}
and collateral rules, with δh = λh, δhs = δh + ∆, and λh = λhs + ∆, with
∆ = 0 (dashed lines) or ∆ = 0.01 (solid lines): no collateral (squares), full
collateralization (circles). The underlying is a cohort of 10,000 US males aged
65 at the beginning of 2008. Forward rates are plotted against the percentiles of
improvements in survival rates based on Lee-Carter forecasts.

section 4.4.3) to determine the expected number of survivors.1

Step 3: We use the simulated capital charges obtained in the previous step

to compute the gains/costs incurred to reduce/increase capital at each time step

along each simulated path. We assume that capital charges are funded at the

counterparties’ funding cost, plus a spread of 6%2 to reflect the opportunity cost

of diverting to an individual liability funds that could be used to support insurance

1See Stevens et al. [2010a] for other approximation methods in the context of Lee-Carter
forecasts.

2This is a reasonable, conservative value for the return on capital of longevity swaps dealers:
anecdotal evidence suggests that it can be twice as large.
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Figure 4.5: Swap margins pcTi/pTi − 1 computed for different maturities {Ti}
and collateral rules, with δh = λh, δhs = δh + 0.01, and λh = λhs + 0.01: no
collateral (squares), full collateralization (circles), full collateral posted only by
party h (stars) or party hs (diamonds). The underlying is a cohort of 10,000 US
males aged 65 at the beginning of 2008. Forward rates are plotted against the
percentiles of improvements in survival rates based on Lee-Carter forecasts.

business at the aggregate level. The simulated realizations of the opportunity cost

of capital (see figure 4.7 for an example) are used to estimate the dynamics of

X(5) reported in the appendix. The parameter estimates are included in table 4.2.

In the case of symmetric collateralization, we find results comparable with

those obtained by using the counterparties’ funding costs for the process δ. How-

ever, figure 4.6 shows that margins increase (decrease) considerably when one-way

collateralization on the hedge supplier’s (hedger’s) side is considered. This is be-

cause the party required to post collateral explicitly takes into account tail events

in computing collateral costs, whereas in figure 4.5 funding costs where computed
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on the basis of the market value of the longevity swap.

Finally, we study the sensitivity of longevity forward spreads to the volatility

of the net collateral cost X(5). To close off the interest-rate risk channel, we fix

the factors X(1), X(2) equal to their long-run means. Table 4.5 reports the results

obtained for different values of the volatility parameter σ5 in the case of symmetric

default risk and bilateral full collateralization. We see that spreads increase

dramatically for large values of the volatility parameter, but are comparable with

those found in the previous examples for reasonable volatility levels (i.e., below

5%).

σ5 p25 pc spread (bps)
0.0005 0.201425 0.201469 2.15
0.0100 0.201425 0.201822 19.68
0.0150 0.201425 0.202009 28.96
0.0200 0.201425 0.202196 38.26
0.1000 0.201425 0.205237 189.24
0.1500 0.201425 0.207184 285.90

Table 4.5: Sensitivity with respect to parameter σ5: we compute 25-year forward
rates and spreads (in basis points) under full collateralization by setting X(1), X(2)

equal to their long run means. The baseline estimated parameter values for the
dynamics ofX(5) are θ5 = 0.000254, κ5 = 1.005073, σ5 = 0.000542, η5 = 0.000269,
κ53 = 0.003648, κ54 = 0.000018, κ56 = 0.000261.

4.6 Conclusion

In this study, we have provided a framework for understanding and quantifying

the cost of bilateral default risk and collateral strategies on longevity risk so-

lutions. The results address the concerns aired by potential hedgers regarding

how to measure the trade-off between the hedge effectiveness of longevity-linked

instruments and the counterparty risk they involve. We have described a method-

ology for pricing longevity swaps that explicitly takes into account the dynamics

of the marking-to-market process, the collateral flows it generates, and the costs

associated with the posting of collateral. We have shown how collateral strategies

can mitigate if not eliminate counterparty risk, but inevitably introduce an extra
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4. Longevity Swaps

cost that must be borne by the hedge supplier or by the hedger, depending on

how their credit quality and collateral costs compare with each other. Our most

significant and useful finding is that the overall cost of the collateralization strate-

gies in the longevity swap market is comparable with, and often smaller than,

that found in the much more liquid interest-rate swap market. Hence, there is no

reason to suppose that counterparty risk will provide an insurmountable barrier

to the further development of the longevity swap market. Our analysis accord-

ingly provides a robust framework for comparing the costs of credit enhancement

in bespoke longevity swaps with the benefits offered by competing solutions such

as securitization and indexed swaps.
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Figure 4.6: Swap margins pcTi/pTi − 1 computed for different maturities {Ti} and

collateral rules, with λh = λhs and δh = δhs = X(5), where the parameter es-
timates for the dynamics of X(5) are given in table 4.2. Collateral rules: no
collateral (squares), full collateralization (circles), full collateral posted only by
party h (stars) or hs (diamonds). Forward rates are plotted against the per-
centiles of improvements in survival rates based on Lee-Carter forecasts (65-year
old US males in 2008).
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Figure 4.7: A simulated path of the capital charges accruing to the longevity
swap dealer holding a representative longevity-linked liability n−Nt+T under the
Solvency II regulatory framework.
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Appendix A

Chapter 2

A.1 Proof of (2.1.3)

Case of Realized Covariance (RC) estimator:

Var

[
lim
h→0+

RCΠ1

(
X

(1)
Π1
, X

(2)
Π1+h

)]
=Var

[
RCΠ1

(
X

(1)
Π1
, X

(2)
Π1

)]

=Var

[
N∑

i=1

(
X

(1)

t
(1)
i

−X
(1)

t
(1)
i−1

)(
X

(2)

t
(1)
i

−X
(2)

t
(1)
i−1

)]

=
N∑

i=1

Var

[(
X

(1)

t
(1)
i

−X
(1)

t
(1)
i−1

)(
X

(2)

t
(1)
i

−X
(2)

t
(1)
i−1

)]

=

N∑

i=1

(
t
(1)
i − t

(1)
i−1

)2 (
σ2
1,2 + σ1,1 σ2,2

)

=
(
σ2
1,2 + σ1,1 σ2,2

) N∑

i=1

(
t
(1)
i − t

(1)
i−1

)2
;

Assuming that, for i = 1, . . . , N , t
(1)
i − t

(1)
i−1 = ∆, then we can have

Var

[
lim
h→0+

RCΠ1

(
X

(1)
Π1
, X

(2)
Π1+h

)]
= ∆2N

(
σ2
1,2 + σ1,1 σ2,2

)
.
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Case of Hayashi-Yoshida (HY) estimator:

Var

[
lim
h→0+

HY
(
X

(1)
Π1
, X

(2)
Π1+h

)]
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X
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X
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i=1

(
t
(1)
i − t

(1)
i−1

)2
+ σ1,1 σ2,2

N−1∑
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Again, assuming that, for i = 1, . . . , N , t
(1)
i − t

(1)
i−1 = ∆, it becomes

Var

[
lim
h→0+

RCΠ1

(
X

(1)
Π1
, X

(2)
Π1+h

)]
=∆2N

(
σ2
1,2 + σ1,1 σ2,2

)
+∆2 (N − 1) σ1,1 σ2,2

=∆2
[
N σ2
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]
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Appendix B

Chapter 3

B.1 Proof of LW Bias Correction when the Drift

is Estimated in Sample

B.1.1 Deterministic drift process

See section B.1.2.

B.1.2 Generalization to OU-type Processes

The proof in this section can be applied to the case of a deterministic drift process

by setting κl = 0 and al = 0 , l = 1, 2.

Additional Notation Used In the Proofs

∆X
(l)
1,i Observed increment of process X(l) over the interval I

(l)
i , as calculated by

the calibration equation of the model (BM and OU types).

∆Y
(l)
i := X

(l)

t
(l)
i

− e
−κl

(
t
(l)
i −t

(l)
i−1

)

X
(l)

t
(l)
i−1

− al

(
1− e

−κl

(
t
(l)
i −t

(l)
i−1

))

= X
(l)

t
(l)
i

− e
−κl

(
t
(l)
i −t

(l)
i−1

)

X
(l)

t
(l)
i−1

−
∣∣∣I(l)i

∣∣∣
a
κlal

=
∣∣∣I(l)i

∣∣∣
a
µl + σl

∫ t(l)i

t
(l)
i−1

e
−κl

(
t
(l)
i −t

)

dW
(1)
t ,
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Then the distribution of ∆Y
(l)
i is given by

∆Y
(l)
i ∼ N

(∣∣∣I(l)i
∣∣∣
a
µl, σ

2
l

1

2κl

(
1− e2κ(t2−t1)

))

∼ N
(∣∣∣I(l)i

∣∣∣
a
µl,
∣∣∣I(l)i

∣∣∣
d
σ2
l

)
.

Preliminary Results

Mean Estimator (MLE)

Unbiasedness of µl. Let γi := γ
t
(1)
i

and δj := δ
t
(2)
j

. The unbiasedness of the mean

estimator can be checked as follows

E [µ1] = E

[
1

ψ

∑

i

γi∆Y
(1)
i

]

=
1

ψ

∑

i

γi

∣∣∣I(1)i

∣∣∣
a
µ1

= µ1 .

The unbiasedness of µ2 can be checked similarly.

Assuming Zero Mean When we assume increments have mean of zero, the

LW estimator is given by

Γ
(
ξ(1), ξ(2)

)
:=

1

φ

∑

i,j

∆Y
(1)
i ∆Y

(2)
j wij .

Unbiasedness of Γ
(
ξ(1), ξ(2)

)
. In order to check the unbiasedness of the estimator
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we verify that E
[
Γ
(
ξ(1), ξ(2)

)]
= σ1,2:

E
[
Γ
(
∆Y (1),∆Y (2)

)]
= E

[
1

φ

∑

i,j

∆Y
(1)
i ∆Y

(2)
j wij

]

=
1

φ

∑

i,j

E

[
∆Y

(1)
i ∆Y

(2)
j

]
wij

=
1

φ

∑

i,j

∣∣∣I(1)i ∩ I(2)j

∣∣∣
c
σ1,2 wij

= σ1,2
1

φ

∑

i,j

∣∣∣I(1)i ∩ I(2)j

∣∣∣
d∣∣∣I(1)i

∣∣∣
d

∣∣∣I(1)i ∩ I(2)j

∣∣∣
o∣∣∣I(2)j

∣∣∣
o

= σ1,2 .

NOT Assuming Zero Mean When we do not assume that increments have

mean of zero, the LW estimator is given by

Γ
(
ξ(1), ξ(2)

)
:=

1

φ− η

∑

i,j

(
∆Y

(1)
i −

∣∣∣I(1)i

∣∣∣
a
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)(
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∣∣∣I(2)j

∣∣∣
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µ2

)
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Unbiasedness of Γ
(
ξ(1), ξ(2)

)
. In order to check the unbiasedness of the estimator
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we need to verify that E
[
Γ
(
ξ(1), ξ(2)

)]
= σ1,2. Let γi := γ

t
(1)
i

and δj := δ
t
(2)
j

, then

E
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Solution of A
(1)
ij

A
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ij =E
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Applying Itô isometry we have
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Solution of A
(2)
ij and A

(3)
ij .

A
(2)
ij and A

(3)
ij are symmetrical therefore we only solve for A

(2)
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Therefore

A
(2)
ij = µ1µ2 ψ

∣∣∣I(2)j

∣∣∣
b
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∣∣∣
γ

c
.

Solution of A
(4)
ij

A
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Therefore

A
(4)
ij = µ1µ2 ψ ϕ+ σ1,2 |I ∩ J |γ,δc .
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Putting all together

E
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{∑

i,j

wij A
(1)
ij −

∑
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∑
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∑
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∣∣∣I(1)i

∣∣∣
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γ

c

}

−
∑

i,j

wij βj

{
µ1µ2

∣∣∣I(1)i

∣∣∣
a
ϕ+ σ1,2

∣∣∣I(1)i ∩ J
∣∣∣
δ

c

}

+
∑

i,j

wij αi βj

{
µ1µ2 ψ ϕ+ σ1,2 |I ∩ J |γ,δc

}}

=
σ1,2
φ− η

{∑

i,j

wij

{ ∣∣∣I(1)i ∩ I(2)j

∣∣∣
c
− αi

∣∣∣I ∩ I(2)j

∣∣∣
γ

c
− βj

∣∣∣I(1)i ∩ J
∣∣∣
δ

c

+ αi βj |I ∩ J |γ,δc
}}

+
µ1µ2

φ− η

{∑

i,j

wij

(∣∣∣I(1)i

∣∣∣
a

∣∣∣I(2)j

∣∣∣
b

− αi ψ
∣∣∣I(2)j

∣∣∣
b
− βj

∣∣∣I(1)i

∣∣∣
a
ϕ+ αi βj ψ ϕ

)}

=
σ1,2
φ− η

{B}+ µ1µ2

φ− η
{C} .

We will no calculate the value B and C.
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Solution of B

B =
∑

i,j

wij

{∣∣∣I(1)i ∩ I(2)j

∣∣∣
c
− αi

∣∣∣I ∩ I(2)j

∣∣∣
γ

c
− βj

∣∣∣I(1)i ∩ J
∣∣∣
δ

c
+ αi βj |I ∩ J |γ,δc

}

=
∑

i,j

wij




∣∣∣I(1)i ∩ I(2)j

∣∣∣
c
−

∣∣∣I(1)i

∣∣∣
a

ψ

∣∣∣I ∩ I(2)j

∣∣∣
γ

c
−

∣∣∣I(2)j

∣∣∣
b

ϕ

∣∣∣I(1)i ∩ J
∣∣∣
δ

c
+

∣∣∣I(1)i

∣∣∣
a

ψ

∣∣∣I(2)j

∣∣∣
b

ϕ
|I ∩ J |γ,δc





=
∑

i,j

wij

∣∣∣I(1)i ∩ I(2)j

∣∣∣
c
−
∑

i,j

wij

∣∣∣I(1)i

∣∣∣
a

ψ

∣∣∣I ∩ I(2)j

∣∣∣
γ

c
−
∑

i,j

wij

∣∣∣I(2)j

∣∣∣
b

ϕ

∣∣∣I(1)i ∩ J
∣∣∣
δ

c

+
∑

i,j

wij

∣∣∣I(1)i

∣∣∣
a

ψ

∣∣∣I(2)j

∣∣∣
b

ϕ
|I ∩ J |γ,δc

=φ− 1

ψ

∑

i,j

wij

∣∣∣I(1)i

∣∣∣
a

∣∣∣I(2)j

∣∣∣
γ

c
− 1

ϕ

∑

i,j

wij

∣∣∣I(2)j

∣∣∣
b

∣∣∣I(1)i

∣∣∣
δ

c
+

|I ∩ J |γ,δc
ψϕ

∑

i,j

wij

∣∣∣I(1)i

∣∣∣
a

∣∣∣I(2)j

∣∣∣
b

=φ−
{
1

ψ

∑

i,j

wij

∣∣∣I(1)i

∣∣∣
a

∣∣∣I(2)j

∣∣∣
γ

c
+

1

ϕ

∑

i,j

wij

∣∣∣I(2)j

∣∣∣
b

∣∣∣I(1)i

∣∣∣
δ

c
− |I ∩ J |γ,δc

ψϕ

∑

i,j

wij

∣∣∣I(1)i

∣∣∣
a

∣∣∣I(2)j

∣∣∣
b

}
.

Therefore

B = φ− η .

Solution of C

C =
∑

i,j

wij

(∣∣∣I(1)i

∣∣∣
a

∣∣∣I(2)j

∣∣∣
b
− αi

∣∣∣I(2)j

∣∣∣
b
ψ − βj ϕ

∣∣∣I(1)i

∣∣∣
a
+ αi βj ψ ϕ

)

=
∑

i,j

wij

∣∣∣I(1)i

∣∣∣
a

∣∣∣I(2)j

∣∣∣
b
−
∑

i,j

wij

∣∣I(1)∗i
∣∣
a

ψ

∣∣∣I(2)j

∣∣∣
b
ψ −

∑

i,j

wij

∣∣∣I(2)j

∣∣∣
b

ϕ
ϕ
∣∣∣I(1)i

∣∣∣
a

+
∑

i,j

wij

∣∣∣I(1)i

∣∣∣
a

ψ

∣∣∣I(2)j

∣∣∣
b

ϕ
ψ ϕ

=
∑

i,j

wij

∣∣∣I(1)i

∣∣∣
a

∣∣∣I(2)j

∣∣∣
b
−
∑

i,j

wij

∣∣∣I(1)i

∣∣∣
a

∣∣∣I(2)j

∣∣∣
b
−
∑

i,j

wij

∣∣∣I(1)i

∣∣∣
a

∣∣∣I(2)j

∣∣∣
b
+
∑

i,j

wij

∣∣∣I(1)i

∣∣∣
a

∣∣∣I(2)j

∣∣∣
b
.

Therefore

C = 0 .
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Concluding

E
[
Γ
(
X(1), X(2)

)]
=
σ1,2
φ− η

{B}+ µ1µ2

φ− η
{C}

=
σ1,2
φ− η

{φ− η}+ µ1µ2

φ− η
{0}

=σ1,2 .
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Appendix C

Chapter 5

C.1 Details on the setup

We take as given a filtered probability space (Ω,F, (Ft)t∈[0,T ],P), and model the

death times in a population of n individuals (annuitants or pensioners) as stopping

times τ 1, . . . , τn. This means that at each time t the information carried by

Ft allows us to state whether each individual has died or not. The hedger’s

liability is given by the random variable
∑n

i=1 1{τ i>T}, which can be equivalently

written as n −∑n
i=1 1{τ i≤T} = n − NT . We assume that death times coincide

with the first jumps of n conditionally Poisson processes with common random

intensity of mortality (µt)t≥0 under both P and an equivalent martingale measure

P̃ [see Biffis et al., 2010, for details]. The expected number of survivors over

[0, T ] under the two measures can then be expressed as EP
[∑n

i=1 1{τ i>T}
]
= npT

and EP̃
[∑n

i=1 1{τ i>T}
]
= np̃T , with pT and p̃T given by the expectation (4.2.1)

computed under the relevant probability measure.

Consider any stopping time τ i satisfying the above assumptions, an integrable

random variable Y ∈ FT and a bounded process (Xt)t∈[0,T ] such that each Xt is

measurable with respect to Ft−, the information available up to, but not including,

time t. Then a security paying Y at time T in case τ i > T and Xτ i at time τ i in

case τ i ≤ T has time-zero price

EP̃

[∫ T

0

exp

(
−
∫ s

0

(rt + µt)dt

)
Xsµsds+ exp

(
−
∫ T

0

(rt + µt)dt

)
Y

]
.
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Consider now two stopping times τ i, τ j, with intensities µi, µj, jointly satisfying

the above assumptions (i.e., they are the first jump times of the components of a

bivariate conditionally Poisson process). A security paying Y at time T in case

neither stopping time has occurred (i.e., min(τ i, τ j) > T ) and Xt in case the first

occurrence is at time t ∈ (0, T ] (i.e., t = min(τ i, τ j)) has time-zero price given by

the same formula, with µt replaced by µit+µ
j
t . This follows from the fact that the

stopping time min(τ i, τ j) is the first jump time of a conditionally Poisson process

with intensity (µit + µjt )t≥0 [e.g., Bielecki and Rutkowski, 2002]. The expressions

presented in sections 4.2-4.4 all follow from these simple results.

Proof of expression (4.4.2). Let (δht )t≥0 denote the hedger’s net cost of posting

collateral and (δhst )t≥0 the net yield on the collateral amounts posted by party

hs, meaning that holding collateral of amount Ct provides the hedger with an

instantaneous yield equal to δhst C
+
t −δht C−

t . We assume that collateral is bounded

and Ct is measurable with respect to Ft− for all t ∈ [0, T ]. Parties h and hs are

assumed to have death (default) times satisfying the properties reviewed above,

in particular having intensities λh, λhs. Recalling the recovery rules described in

section 4.4, we can then write:

S0 =E
P̃

[
exp

(
−
∫ T

0

(rt + λht + λhst )dt

)(
P − pd

)]

+ EP̃

[∫ T

0

exp

(
−
∫ s

0

(rt + λht + λhst )dt

)(
λhs (S

+
s − C−

s ) + λhss (C+
s − S−

s )
)
ds

]

+ EP̃

[∫ T

0

exp

(
−
∫ s

0

(rt + λht + λhst )dt

)
(δhss C

+
s − δhsC

−
s )ds

]
.

(C.1.1)

Using representation (4.4.1), the amount recovered by the nondefaulting counter-

party at time τ = min(τh, τhs) ≤ T is

1{τ=τh}Sτ−(c
h

τ1{Sτ−<0} + 1{Sτ−≥0}) + 1{τ=τhs}Sτ−(c
hs

τ 1{Sτ−≥0} + 1{Sτ−<0}), (C.1.2)

where we see that ch, chs replace the recovery rates ψh, ψhs introduced in sec-
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tion 4.3. We can then write

S0 =E
P̃

[
exp

(
−
∫ T

0

(rt + λht + λhst )dt

)(
P − pd

)]

+ EP̃

[∫ T

0

exp

(
−
∫ s

0

(rt + λht + λhst )dt

)(
λhs + (λhss + δhss )chss )S+

s − (λhss + (λhs + δhs )c
h

s )S
−
s

)
d

=EP̃

[
exp

(
−
∫ T

0

(rt + Γt)dt

)(
P − pd

)]
,

(C.1.3)

which is nothing other than the usual risk-neutral valuation formula for a security

with terminal payoff ST = P − pd paying continuously a dividend equal to a

fraction

(λhs + (λhss + δhss )chss )1{St−≥0} + (λhss + (λhs + δhs )c
h

s )1{St−<0}

of the security’s market value an instant before each t ∈ [0, T ]. Subtracting the

dividend rate from λh + λhs and rearranging terms we obtain expression (4.4.2)

for Γ.

C.2 Details on the numerical examples

The numerical examples are based on a six-dimensional state variable process

X = (X(1), . . . , X(6))T having P̃-dynamics

dX
(1)
t =

(
k1(X

(2)
t −X

(1)
t )− η1

)
dt+ σ1dW

(1)
t

dX
(2)
t =

(
k2(θ2 −X

(2)
t )− η2

)
dt+ σ2dW

(2)
t

dX
(3)
t =

(
κ3(θ3 −X

(3)
t ) + κ3,1(X

(1)
t − θ2) + κ3,4(X

(4)
t − θ4)− η3

)
dt + σ3dW

(3)
t

dX
(4)
t =

(
κ4(θ4 −X

(4)
t ) + κ4,1(X

(1)
t − θ2) + κ4,2(X

(2)
t − θ2)− η4

)
dt + σ4dW

(4)
t

dX
(5)
t =

(
κ5(θ5 −X

(5)
t ) + κ5,1(X

(1)
t − θ2) + κ5,2(X

(2)
t − θ2) + κ5,3(X

(3)
t − θ3)

+ κ5,4(X
(4)
t − θ4) + κ5,6(X

(6)
t − E0[X

(6)
t ])− η5

)
dt+ σ5dW

(5)
t

dX
(6)
t =

(
Ax(t) +Bx(t)(X

(6)
t − ax(t))

)
dt+ σ6(t, x)dW

(6)
t ,
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where W = (W (1), . . . ,W (6))T is a standard P̃-Brownian motion, the constants ηi

represent market prices of risk, x is the age of a reference cohort of individuals

at time 0, and Ax(·), Bx(·), σ6(·, x) are functions characterizing the dynamics of

X
(6)
t = X

(6)
t,x (see below for explicit definitions). The P-dynamics are obtained

by removing the market prices of risk from the drifts of the relevant factors and

replacing the innovations with the corresponding P-Brownian innovations. We

assume that X(6) has the same dynamics under the physical and the pricing prob-

ability measures, consistent with our baseline case of a swap rate equal to pT for

each T in the absence of collateral. The Brownian innovations are uncorrelated,

with the exception of the pair (W (1),W (2)), whose instantaneous correlation is

denoted by ρ1,2.

For the first four factors, we use data from Johannes and Sundaresan [2007]

who rely on a two-stage maximum likelihood procedure based on weekly data

sampled on Wednesdays, from 1990 to 2002, and set the long-run mean of X(3)

equal to the average of the 3-month TED spread over the sampling period. For

the log-intensity X(6), we use the mortality model described below, and assume

that the Brownian component W (6) is uncorrelated with the other ones. The

intensity of mortality is modeled using a continuous-time version of the Lee-

Carter model [see Biffis et al., 2010]. We first use the annual central death

rates {my,s} for US males from the Human Mortality Database to estimate the

model my,s = exp(α(y) + β(y)Ks) for dates s = 1961, 1962, . . . , 2007 and ages

y = 20, 21, . . . , 89 with Singular Value Decomposition [see Lee and Carter, 1992].

The resulting estimates forK are then fitted with the processKs+1 = δKKs+σKε,

with ε ∼ N(0, 1). For fixed age x = 65, the estimates for {α̂(x+h), β̂(x+h)}h=0,1,...

are interpolated with differentiable functions ax(t), bx(t). The functions Ax, Bx, σ6

are finally obtained by setting Ax(t) = a′x(t) + bx(t)δK , Bx(t) = b′x(t)bx(t)
−1 and

σ6(t, x) = bx(t)σK . As we consider a single cohort aged x at the reference date 0,

here and throughout the paper we simply write X
(6)
t := X

(6)
t,x . The extension to

multiple (say l) cohorts, would require the analysis of the vector of log-intensities

(X
(6)
t,x1 , . . . , X

(6)
t,xl

). Although the drift and volatility parameters would be different

for each X
(6)
t,xi, the Lee-Carter specification assumes that all cohorts are affected

by the same Brownian component W (6). Other models may instead require the

introduction of additional sources of uncertainty.
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To estimate the dynamics of X(5), the component of collateral costs related to

longevity risk, we implement the procedure discussed in section 4.5, setting the

duration T of the representative liability equal to 15. We simulate forward all of

the other state variables, and at each time step we compute the opportunity cost

of capital arising from the capital charges accruing to the hedge supplier based

on the simulated mortality and market conditions. The expectation appearing in

the drift of X(5) ensures that the longevity capital charges react to departures of

realized mortality from the term structure of survival rates estimated at inception.

We assume that funding occurs at the LIBOR rate plus a fixed spread of 6%, a

conservative value for the cost of internal capital. To obtain the net cost of

collateral, we take into account the rebate of the risk-free rate. We estimate the

parameters for the dynamics of X(5) based on the simulated realizations of X(5)

(an example is depicted in figure 4.7). The parameter estimates are obtained

by regressing the simulated dynamics of X(5) on the simulated vector of state

variables (X(1), X(2), X(3), X(4), X(6)). We simulate 10, 000 paths over 40 years

on a semi-annual grid. For each simulation, we set the parameter θ5 equal to the

average of X(5) along the simulated path. The regression estimates obtained for

each simulated path are averaged across all simulations to obtain the final values

reported in table 4.2.
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Y. Äıt-Sahalia, J. Fan, and D. Xiu. High-frequency covariance estimates with

noisy and asynchronous financial data. Journal of the American Statistical

Association, 105(492):1504–1517, 2010. 63

L. Andersen and M. Broadie. Primal-dual simulation algorithm for pricing mul-

tidimensional american options. Management Science, pages 1222–1234, 2004.

3, 9, 18, 23, 28, 29

T.G. Andersen, T. Bollerslev, F.X. Diebold, and P. Labys. Modeling and fore-

casting realized volatility. Econometrica, 71(2):579–625, 2003. 33

N. Areal, A. Rodrigues, and M.R. Armada. On improving the least squares monte

carlo option valuation method. Review of Derivatives Research, 11(1):119–151,

2008. 26
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processes. Stochastic Processes and their Applications, 90(1):109–122, 2000. 1,

3, 11, 13, 15, 31

153



REFERENCES

A. Palandri. Consistent realized covariance for asynchronous observations con-

taminated by market microstructure noise. Unpublished manuscript, 2006. 39,

63

E. Pitacco, M. Denuit, S. Haberman, and A. Olivieri. Modelling Longevity Dy-

namics for Pensions and Annuity Business. Oxford University Press, 2009.

106

F. Rapisarda, D. Brigo, and F. Mercurio. Parameterizing correlations: a geo-

metric interpretation. IMA Journal of Management Mathematics, 18(1):55–73,

2007. 65

R. Rebonato and P. Jackel. The most general methodology for creating a valid

correlation matrix for risk management and option pricing purposes. Journal

of Risk, 2:17–28, 2000. 62, 64, 65, 71, 90, 92
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