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Abstract

More accurate metabolic networks of pathogens and parasites are required to support the

identification of important enzymes or transporters that could be potential targets for new

drugs. The overall aim of this thesis is to contribute towards a new level of quality for

metabolic network reconstruction, through the application of several different approaches.

After building a draft metabolic network using an automated method, a large amount of

manual curation effort is still necessary before an accurate model can be reached. Path-

wayBooster, a standalone software package, which I developed in Python, supports the

first steps of model curation, providing easy access to enzymatic function information and

a visual pathway display to enable the rapid identification of inaccuracies in the model.

A major current problem in model refinement is the identification of genes encoding en-

zymes which are believed to be present but cannot be found using standard methods.

Current searches for enzymes are mainly based on strong sequence similarity to proteins

of known function, although in some cases it may be appropriate to consider more dis-

tant relatives as candidates for filling these pathway holes. With this objective in mind, a

protocol was devised to search a proteome for superfamily relatives of a given enzymatic

function, returning candidate enzymes to perform this function.

Another, related approach tackles the problem of misannotation errors in public gene

databases and their influence on metabolic models through the propagation of erroneous

annotations. I show that the topological properties of metabolic networks contains useful
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information about annotation quality and can therefore play a role in methods for gene

function assignment.

An evolutionary perspective into functional changes within homologous domains opens

up the possibility of integrating information from multiple genomes to support the re-

construction of metabolic models. I have therefore developed a methodology to predict

functional change within a gene superfamily phylogeny.
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Chapter 1

Introduction

1.1 Background

Systems biology is an inter-disciplinary field of study that integrates mathematical and

computing approaches with biological systems information. Systems Biology focuses on

the interaction of the individual components, aiming to understand the system as a whole.

One of these components is the group of biochemical reactions and their interactions re-

sponsible for the metabolic processes that determine the cell’s functions: the metabolic

network. Only understanding both genetic and metabolic organisation, we will be able

to forecast phenotypic traits caused by alterations of the genome or metabolic network.

This may enable us to identify important enzymes or transporters that could be poten-

tial targets for new drugs, and support the optimisation of pathways responsible for the

consumption/production of certain molecules in biotechnological applications.

This knowledge can be acquired through the modelling of metabolic networks, a pro-

cess known as metabolic reconstruction. More precisely, metabolic reconstruction is the

process of building a map of an organism’s metabolic network, using evidence from its

20
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genome sequence.

A possible approach for network reconstruction is based on manual curation. An expert

in a specific organism uses several available resources together with experimental studies

and available literature and then manually inspects all the metabolic network annotations.

This includes steps such as literature search, performing lab experiments, etc, in order to

find evidence that supports or rejects each of the annotations. This process just by itself

is very time consuming. MPMP (Ginsburg (2000)) is an example of a metabolic database

that relies heavily on manual reconstruction from a world expert on malaria parasite bio-

chemistry. It uses several publicly available resources and presents the information to-

gether with genomic annotations from other databases. Presently, MPMP has the most

current and informed pathways for the human malaria parasite Plasmodium falciparum.

The increasing speed with which we are able to sequence an organism’s genome makes

bioinformatics an increasingly important source of information.

Currently, automatic function assignments are still mainly performed using sequence sim-

ilarity methodologies. The use of sequence similarity searches works well as long as an

annotation of a closely related organism is already available, but it will not be sensi-

tive enough to detect all the enzymes in many species, as is the case with Plasmodium.

Enzymes may have functions that are not represented in sequence databases, may be

functional analogs to other unrelated proteins catalysing the same reaction, or may sim-

ply have diverged too far to be recognisable. Briefly, for more distantly related proteins,

where only certain sequence features or structural motifs are conserved, the similarity be-

tween two proteins cannot easily be recognised by pairwise alignment methods, nor even

by the more sensitive profile based methods (Pinney et al. (2007)).

Owing to this difficulty in assigning specific enzymatic functions, initial metabolic recon-

struction usually produces networks with many holes: reactions essential for a complete

biochemical pathway, but for which no enzyme has been annotated in the genome. The
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existence of a hole in a pathway can be due to several reasons. This can be caused by

a fault of the method used. It can be that the gene is not yet or incorrectly annotated.

In parasites, another possible explanation might be that the metabolites produced by the

reaction are obtained from the host.

A previous study of the human metabolic network identified 203 pathway holes, for which

putative genes were found for 25 (Romero et al. (2004)). In the microbial genomes,

between 200 and 300 pathway holes are expected, where the majority of the holes are

believed to be the result of a failure to identify the correct gene (Karp et al. (2010)).

To identify the missing enzymes that catalyse reactions thought to be present, some tech-

niques have been developed. Some use a comparative genomic strategy (Osterman and

Overbeek (2003)) where information from closely related genomes is used. Still within

comparative genomics, there are examples of studies that try to find functionally analo-

gous genes (Morett et al. (2003)). Other approaches use Machine Learning techniques

in order to evaluate the candidate gene using homology, genomic context and pathway-

based evidence (Green and Karp (2004)). As yet, however, such methods have had little

impact on the overall quality of automatically generated metabolic maps.

New and more accurate methods for the metabolic reconstruction of pathogens and para-

sites are needed if we are to make full use of systems biology in identifying enzymes or

transporters that may be viable targets for the development of more effective drugs.

This thesis has the objective to contribute towards a new level of quality for metabolic

network reconstruction, through the application of several different approaches in the

metabolic reconstruction steps.
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1.1.1 Background

Enzymes

The genetic information passed on in cell division is contained in the deoxyribonucleic

acid (DNA). DNA consists of two 2 chains of nucleotides (adenine (A), guanine (G), cy-

tosine (C), and thymine (T)) grouped in the form of a double helix connected by hydrogen

bonds between the complementary bases (A-G and C-T).

Some parts of the sequence, called genes, can be transcribed to a ribonucleic acid (RNA)

sequence and decoded to proteins, polymer chains made of amino acids linked together by

peptide bonds. The rest of the DNA sequence is not yet completely understood (Kapranov

and Laurent (2012)).

Proteins may have several different functions making them one of the bases for all cell

functions. There are specialised proteins, the antibodies, that make part of our immune

system and help defend the organism against external objects such as viruses. Others are

called structural proteins and can be found in the extracellular matrix in our tissues or for

example our hair. The proteins are responsible virtually for all of the cell’s functions.

One class of proteins is called enzymes. Enzymes are proteins with the task to catalyse

chemical reactions. Almost all cellular reactions need an enzyme in order to be catalysed.

Those reactions that do not need an enzyme are called spontaneous. The enzyme works by

decreasing the minimum energy necessary to start the reaction, consequently increasing

the rate of the reaction.

When discussing metabolic networks, enzymes and their function play a crucial role.
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Enzymatic function labeling

Identification of an enzyme to a specific function can sometimes be a very difficult pro-

cess. To help with this task it is crucial to have a structured enzymatic classification

system. Currently the two most used ones are EC Numbers and GO terms.

EC Numbers

The Enzyme Commission number (EC number) is a hierarchical numerical classification

scheme for enzymes, based on the chemical reactions they catalyze. Every enzyme code

consists of the letters EC followed by four numbers separated by periods. Those numbers

represent a progressively finer classification of the enzyme. The first number divides the

enzymatic functions into six groups:

1. Oxidoreductases: in this group are included all the oxidation or reduction reactions:

These reactions are characterised by the transfer of an oxygen or hydrogen atom as

well as electrons within the molecules.

2. Transferases: these reactions are responsible for the transfer of a functional group:

Example of functional groups are methyl, phosphate, etc.

3. Hydrolases: this group contains all the hydrolysis reactions: reactions responsible

for the cleavage of a molecule by adding water.

4. Lyases: These enzymes are responsible for cleaving non-hydrolytic chemical bonds

(such as: Carbon-Carbon (C-C), Carbon-Nitrogen(C-N), Carbon-Oxygen (C-O),

Carbon- Sulphur (C-S) ).

5. Isomerases: These reactions transform one molecule into another molecule which

has exactly the same set of atoms.
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6. Ligases: These enzymes are responsible for the synthesis of chemical bonds by

breaking down ATP.

The numbers to the right in the EC number notation divides the reactions into finer groups

untill the 4th number, which specifies the reaction at the substrate level.

Gene Ontology

GO terms are part of a project with the objective of standardising the gene and gene

product annotations across species and different data sources (Ashburner et al. (2000)).

This project also provides a number of tools to access its contents and decrease the time

necessary to search and make use of the data provided.

The GO terms define gene products within three separate ontologies: cellular component,

biological process and molecular function. Each ontology is a directed acyclic graph

structure and within each, a gene product may be assigned to more than one GO term.

Because of these two properties a gene annotated to a given node is automatically anno-

tated to all its ancestral nodes.

1.1.2 Structural domain classification

The sequence of amino-acids (also known as primary structure) of a protein determines its

3D conformation. Within the 3D conformation are two types of patterns which constitute

the secondary structure. These are the α-helices and the β-sheets. Multiple α-helices and

β-sheets can combine into more complex, compact units called domains. These structures

can be present in different proteins and can be combined with each other in different

groups in the same protein (multi-domain proteins) or alone (single-domain), resulting in

different enzymatic functions. Domains are also seen as evolutionary units. Within multi-

domain proteins, the domains are often structurally and functionally independent of each
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other.

There are three levels of structural domain classification: fold, superfamily and family

(Murzin et al. (1995)). Fold is the highest level. It groups together domains that have

the same secondary structure elements and the same chain topology. Next to the fold is

the superfamily. This level groups together domains that have structure and functional

evidence to share a common ancestor. So, in these groups are believed to be the most

distant homologous genes. The lowest level is called family. This level groups together

domains with clear sequence similarity. Domains from the same family tend to have

similar functions.

1.1.3 Metabolic Network

A Metabolic Network is a group of biochemical reactions. The interaction of the reactions

is responsible for the metabolic processes that determine the cell functions. Normally, the

reactions represent the nodes of this network. For almost all reactions there is an enzyme

responsible for its catalysis.

Within the metabolic network are sets of connected chemical reactions that transform a

starting molecule into another one (product). These sets of reactions are called metabolic

pathways. They normally represent the transformation of a main molecule into another.

Moreover, the pathways are not independent from each other, having common reactions

and molecules.

Because species have different biochemical properties, the same pathway may vary be-

tween species or even not exist in others. Some databases collect all these different bio-

chemical properties and have built pathway templates that illustrate the complexity of the

metabolic networks and the differences between species. Examples of these pathway tem-

plates can be found in KEGG (Kanehisa and Goto (2000); Kanehisa et al. (2006, 2008))
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and in RAST (Aziz et al. (2008)).

1.1.4 Metabolic Reconstruction

Metabolic reconstruction is the process of building a map of an organism’s metabolic

network using evidence from its genome sequence (Thiele and Palsson (2010)). A moti-

vation to improve these models is, for example, that more accurate metabolic networks of

pathogens and parasites will allow the identification of important enzymes or transporters

that can be potential targets for new drugs.

The reconstruction process can be described as a sequence of simple steps. After having

the whole genome sequenced, the first step is the identification of the coding sequences

of possible genes. There are several automatic softwares that can achieve this, such as

ERGO or RAST. The methodology used to annotate gene sequences can go from the

identification of the start and end codons, to the use of sequence similarity or family

profiles.

After having identified the coding sequences of possible genes, the predicted protein se-

quences are compared against sequences from known, possibly closely related, genomes

in order to transfer enzymatic annotations where genes appear to be functionally equiv-

alent. For this step the most common approach relies on sequence comparison methods

such as BLAST.

In this way, putative metabolic networks are built. The next steps are more time con-

suming. They are related not only to the manual curation of the networks and of the

assignments that were made but also to the assignments missed. Here, experts try to rec-

oncile the output information with the known biology, in particular with species-specific

information (Francke et al. (2005)).
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Data sources

There are several databases that gather important biological information and are used to

support not only the curation of metabolic networks but they are also used by software.

The Kyoto Encyclopedia of Genes and Genome (KEGG) database (Kanehisa and Goto

(2000); Kanehisa et al. (2006, 2008)) gives us a large amount of information about bio-

logical systems, ranging from genes and proteins to molecular wiring diagrams of interac-

tions and reaction networks from several species. An example of a more enzyme specific

database is BRENDA (BRaunschweig ENzyme DAtabase) (Scheer et al. (2011)). This

database provides several levels of information regarding enzymes going from nomencla-

ture, relation to reactions and species specificity, etc to connection to other databases and

the available literature for each species/enzymatic function.

A number of databases look into the identification and classification of domains. At

one level are the Structural Classification of Proteins (SCOP) (Murzin et al. (1995))

and CATH (Orengo et al. (1997)). These structural databases group the proteins with

known structures into several levels of domain similarity. In the case of SCOP, struc-

tures are grouped into the fold/superfamily/family levels already mentioned. At another

level are the databases that make use of the previous ones and through Hidden Markov

Models (HMM) build profiles for each of the structural levels. Examples of these kind of

databases are SUPERFAMILY (Gough and Chothia (2002)), Gene3D (Yeats et al. (2008))

and Pfam (Bateman et al. (2004)).

Databases like FireDB (Lopez et al. (2007)) and Catalytic Site Atlas (Porter et al. (2004))

look into the protein’s functionally important residues. Firedb includes residues that per-

form binding activities and residues that have catalytic functions. This database has two

main sources of information. On the one hand, it uses PDB (Berman et al. (2000)) crystal

structures to identify the close atomic contacts and, on the other hand, it makes use of the
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Catalytic Site Atlas to get reliably annotated catalytic residues.

Some databases offer species specific data. MPMP (Ginsburg (2000)) uses KEGG (Kane-

hisa and Goto (2000); Kanehisa et al. (2006, 2008)) pathways as templates and presents

this information together with genomic annotations from other databases like GeneDB

(Hertz-Fowler et al. (2004)) and PlasmoDB (Bahl et al. (2003)). Presently, MPMP has

the most current and informed pathways for Plasmodium falciparum. It is curated by a

world expert on malaria parasite biochemistry.

Available approaches

A possible approach for network reconstruction is based on manual curation. This process

just by itself is time consuming. The increasing speed with which we are able to sequence

an organism’s genome makes bioinformatics an increasingly important source of infor-

mation. As already mentioned, MPMP (Ginsburg (2000)) is an example of a database that

relies a lot on manual reconstruction.

To assist with metabolic reconstruction there are a number of different approaches. Some

of them cover most of the steps required to build a metabolic model such as Pathway

Tools (Karp et al. (2002)), ERGO (Overbeek et al. (2003)) and RAST (Aziz et al. (2008)).

These softwares integrate a set of bioinformatic tools that cover the gene sequence and

function annotation, and visualization tools together with integrated databases that help

the user to curate the model.

The availability of a fully annotated genome is of crucial importance, because most tech-

niques of network reconstruction start with the assignment of functions to the known

and possible enzymes. Some exceptions are metabolic SearcH And Reconstruction Kit

(metaSHARK) (Pinney et al. (2005); Hyland et al. (2006)), ERGO and Rast. These soft-

wares use different approaches to annotated sequences. On one hand, metaSHARK uses
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its SHARKhunt tool, that uses the PRIAM library (Claudel-Renard et al. (2003)) of profile

models as the basis of a search tool for finding the DNA sequence regions with significant

similarity to known enzymes. On the other hand, a very different approach is used by

GLIMMER2 (Delcher et al. (1999)) ( this software is integrated in Rast). Here, the an-

notation is made by the use of interpolated Markov models that are trained using curated

gene structure data.

The function annotation is still currently mostly based on sequence similarities using, for

example, BLAST (Altschul et al. (1990)). A common protocol used in this phase is the

“reciprocal best hit”. Using a sequence comparison software like BLAST, each of the

annotated gene sequences is“blasted” against all the gene sequences of a closely related

organism. The results for each gene are ranked and only the best one is considered. The

same is done in the reverse direction, that is, from the close relative to the organism that

is being annotated. The genes that are reciprocal best hits are believed to be orthologs,

genes that evolved from a common ancestral gene by speciation, and therefore are likely

to have the same function. However, as already stated, the use of sequence similarity is

not accurate enough to detect all the enzymatic annotations.

There are some approaches with a more sensitive search protocol. Some, make use of

libraries of domain profile models, as in the PRIAM software (Claudel-Renard et al.

(2003)). PathoLogic, one of the many components of Pathway Tools, uses a text min-

ing approach to predict computationally the metabolic network of any organism whose

genome has been sequenced and annotated, creating a pathway/genome database (PGDB).

A more recent software tool, EFICAz2 (Enzyme Function Inference by a Combined Ap-

proach) (Arakaki et al. (2009)), approaches the gene function prediction step by combin-

ing the predictions of different methods, including pairwise sequence comparison, sup-

port vector machines, hidden Markov models, etc, having as a principal source the Pfam

database (Bateman et al. (2004)).
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1.1.5 Phylogenetic analyses

Since Darwin presented us with his evolutionary theory and sketched the first phylo-

genetic tree of life, phylogenetic trees have been considered an important way to de-

scribe and study evolutionary events. Phylogenetic trees describe evolutionary relatedness

through time. At first this relatedness only considered phenotypic traits. After the discov-

ery of DNA and the advent of sequencing technologies, these phylogenetic analyses have

progressed to include genotypic information (Felsenstein (2004)).

These analyses are useful to identify and visualise several evolutionary events such as

gene duplications/losses or relationships such as orthology and paralogy. Homologous

genes are genes that were derived from a common ancestor. If these genes diverged by

speciation they are called Orthologous. On the other hand, if they were separated by

a gene duplication, they are called paralogous genes. Analogous genes are genes with

different structure but able to perform the same function.

1.1.6 Machine learning

As already mentioned, we live in an era where the biggest problem is not lack of data,

the main issue now is how to make the most of it. To make use of all the available data

sources and to build tools that can improve the accuracy and efficiency of the metabolic

reconstruction process, the resources provided by Machine Learning should definitely be

applied. Machine Learning is used in the development of methods to understand and help

humans with several kinds of problems, often impossible to understand and to resolve by

human effort alone.

Nowadays, Machine Learning is applied to a wide variety of tasks including natural lan-

guage processing, search engines, medical diagnosis, bioinformatics, weather forecasting,
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parameter estimation, detecting credit card fraud, stock market analysis, speech and hand-

writing recognition, image processing, game playing and robot locomotion (Langley and

Simon (1995)).

Learning paradigms

There are two major learning paradigms, distinguished mainly by the format of the infor-

mation available: supervised learning (Kotsiantis et al. (2007)) and unsupervised learning

(Zhang et al. (2008)). Supervised learning is performed knowing the desired outputs of

a given set of inputs. The aim is to discover the optimal function f(X) that represents

a prediction rule so the machine can produce the correct output given a new input. The

strategy to achieve the optimal f(X) typically involves the idea of error minimisation.

For this, a cost function is used that represents the distance between the function and the

learning data set. Normally, there is a set of training data and another set of testing data.

In the case of unsupervised learning, we do not have any learning set linking the input to

the desired output. Here we try to detect any emergent collective properties from a given

dataset. In a sense, unsupervised learning can be thought of as finding patterns in a given

dataset and beyond what would be considered pure unstructured noise. Clustering is an

example of unsupervised learning.

The choice of method is difficult and sometimes also a matter of taste. Problems like local

maxima and others exist in every algorithm and have been tackled by theoretical work

(Chib and Greenberg (1995); Ponce-Ortega et al. (2009); Brooks and Morgan (1995)).

With the idea that another point of view can open up a whole new world, some effort

must also be taken in finding other methodologies and other perspectives. The type of

data existent in the problem may have an impact upon the method that can be used. Some

methods may not be able to process numerical or categorical data (Alpaydin (2004)).
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The objective of the study may also affect the machine learning method used. There

are two groups of methods. On one hand we have “white box” models that return in-

sights about the behaviour/predictiveness of the features and enable user to understand

the structure of the data and, for example, visualise which properties have a greater pre-

dictive value. On the other hand, there are the “black box” models. In contrast to “white

box” models, these provide little or no insight into how the data are structured and the

importance of each feature within the model.

1.2 Application

All tools are made with a purpose. A bioinformatics tool is not meaningful if it does not

show tangible results in a biological context. With this in mind throughout the thesis,

every time that is possible, all the methods developed will be applied in a biological con-

text. I have chosen two different species whose metabolic networks are studied for two

completely different objectives: Plasmodium falciparum and Geobacillus thermoglucosi-

dasius.

1.2.1 Malaria

Malaria is one of the most widespread diseases in the world. It is caused by protozoan

parasites of the genus Plasmodium, passed to humans through mosquito (genus Anophe-

les mosquitoes) bite. Five species of the Plasmodium genus cause human malaria. Among

these, Plasmodium falciparum inflicts the most mortality. In 2010, there were 216 mil-

lion reported cases, of which 174 million were in Africa. This resulted in 655000 deaths

worldwide, a 26% decrease if compared with 2000. Although an improvement, the rates

were lower than what had been set has target, a reduction of 50%.



CHAPTER 1. INTRODUCTION 34

The most affected are young children below 5 years old living mainly in sub-Saharan

Africa. Estimates suggest that 40% of the world’s population is at risk of malaria (Murray

et al. (2012)). Much effort has been made to overcome this problem, and many antimalar-

ial drugs have been developed (Breman et al. (2007)).

The sequencing of Plasmodium falciparum (Gardner et al. (2002)) was part of a project

started by the Sanger centre, Standford University and the Institute for Genomic Research

(TIGR). This ambitious project began in 1996, at a time when large eukaryote whole

genome sequencing had not yet been tried. The idea of making all the discoveries and

tools freely available gave rise to PlasmoDB, a public web encyclopedia of malaria, pro-

viding free access to analysis tools and data.

Later on other Plasmodium species and clones were sequenced, such as, P.yoelli (funded

by US departement of defense) (Carlton et al. (2002)), P. vivax (TIGR) (Carlton et al.

(2002)), P.berghei (Hall et al. (2005)), P. chabaudi (Hall et al. (2005)), P. knowlesi (funded

by Welcome Trust) (Pain et al. (2008)).

Plasmodium falciparum

Plasmodium falciparum was the first eukaryotic parasite to be sequenced (Plasmodium

falciparum 3D7). It has 14 chromosomes with 30Mb of DNA in total. The genome is

AT-rich ( 80%) which made its sequencing more challenging because it makes it difficult

to clone.

About 60% of the proteins in P. falciparum have little or no similarity to proteins in other

organisms and most are not functionally annotated. The proportion of these hypothetical

proteins is higher in P. falciparum than in other organisms. This might be a consequence

of the evolutionary distance between Plasmodium and other model organisms.
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This parasite has a complex life cycle and a intracellular nature. This makes the quest of

finding solutions for its eradication more difficult. Its sequencing has offered new means

to facilitate and accelerate research towards the development of novel drugs and vaccines.

Moreover, the high mutation rate and difficulties in applying drug policies result in a

rapid loss of effectiveness. There is a specific and urgent need for new antimalarial drugs

as there is now only one drug family (based on artemisinin (Woodrow et al. (2005)))

without widespread drug resistance.

1.2.2 Greenhouse gas emission

The increasing rate of carbon dioxide in the atmosphere has been one of the main causes

for the global warming problem the world is now facing. If the problem is not solved and

the carbon dioxide rate continues to increase it will have terrible consequences such as

catastrophic effects on wildlife, large-scale food and water shortages, sea level rise, etc.

Dependency on fossil fuels is pointed out to be the main cause (Höök and Tang (2012)).

An increasing effort has been devoted towards research for alternative and renewable

sources of energy that have fewer negative environmental consequences than the ones

already in use.

Bioengineering is one area of research aiming to find viable alternatives to fossil fuels and

to reduce carbon dioxide emissions. Here the main focus is to find biological solutions to

solve real-world problems (Endy (2005)).

To solve the above mentioned greenhouse emission problem, Geobacillus thermoglucosi-

dasius is a candidate biological solution due to its capability to convert lignocellulose to

ethanol (Taylor et al. (2009)).
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Geobacillus thermoglucosidasius

Geobacillus thermoglucosidasius is a Gram-positive, rod-shaped bacteria able to survive

in a variety of environmental conditions. It has around 390000 nucleotides with almost

4000 proteins.

Geobacillus thermoglucosidasius used to be classified as Bacillus thermoglucosidasius

until 2001 when together with all the thermophilic Bacillus strains it was classified into a

new genus, Geobacillus.

Moreover, Geobacillus thermoglucosidasius NCIMB 11955 is a thermophilic bacterium

with the potential to convert lignocellulose to ethanol in a highly productive manner.

Thermophilic bacteria are especially useful in biofuel production since they can withstand

the high temperatures that are unavoidable at certain stages of fermentation.

1.3 Thesis Overview

In this thesis I present several tools targeting the improvement of metabolic reconstruc-

tion software and ultimately help to build better models. With the exception of Pathway-

Booster, all other studies can be coupled with other tools, producing more robust and

accurate tools.

Chapter 2 tackles the first handling of a draft metabolic network. The output of an auto-

matic metabolic reconstruction always has a lot of inconsistencies as well as misannota-

tions. This chapter presents PathwayBooster, a software package comprising a unique set

of tools and data sources that enables a more rapid detection and correction of possible er-

rors in the model. Here, I present a detailed description of all of these tools together with

justifications for their inclusion in this type of analysis. Moreover, in this chapter I also
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present a practical example of a case study where the advantages of using PathwayBooster

are clearly seen. The target organism used is Geobacillus thermoglucosidasius.

A gene enzymatic function search tool is presented in Chapter 3. Most software pack-

ages currently available are based on sequence based searches. This has been shown to

be not sensitive enough to detect all enzyme functions, especially in certain conditions

already mentioned. Therefore, this tool was designed with the objective of increasing the

domain search sensitivity from a sequence/family level to a structural/superfamily level

that groups all the most distantly related domains. This tool was proven to be successful

when applied to a known example of evolutionary convergence. This chapter also presents

the results of this tool applied to the holes in a manually curated model of Plasmodium

falciparum.

In Chapter 4, I present a study to tackle the misannotation and error propagation problem,

using a network topological perspective. Using a curated set of well annotated and mis-

annotated enzymes, I have built a model that assesses the accuracy of assigned molecular

functions. This model is based on simple topological properties and is completely inde-

pendent from gene sequence analyses. The model is successfully tested using 5-fold and

inter-superfamily cross validation analyses. Afterwards it was applied to draft metabolic

networks and its results compared with curated metabolic networks of the same organ-

isms. Further sudies were performed showing factors affecting the quality of the current

metabolic reconstructions in model organisms.

Finally, the study presented in Chapter 5 gives an evolutionary perspective on enzymatic

function change. The protocol described in Chapter 3 was applied to a set of model or-

ganisms and several superfamily phylogenetic trees were built. Using different branch

length recalculation approaches I have shown that there is a correlation between enzy-

matic function change and branch length. Two methods were used to reconstruct ancestral

functional states. One was based on a parsimony approach and the other on a maximum
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likelihood approach. Further studies were made to verify if evolutionary correlations were

also present for other factors such as the dN/dS ratio, for which no correlation was found.

The final chapter makes a brief summary of the thesis objective followed by a discussion

for all the main results and findings of the thesis. Afterwards, I propose possible future

steps to the continuation of this research.



Chapter 2

A tool to support the curation of

metabolic pathways

2.1 Introduction

As explained in Chapter 1, the manual curation of any organism is a time-consuming

and laborious task (Thiele and Palsson (2010)). During the many stages of the metabolic

network curation process there are several bioinformatic resources that can reduce the

time required for each stage. Moreover, these resources can also have a positive impact

on the quality of the model that one is trying to build.

The first stage of a genome-scale metabolic reconstruction is the creation of a draft

metabolic model. For this stage, as previously mentioned, some automated resources are

available. Good examples mentioned in the introduction chapter are Pathway Tools (Karp

et al. (2002)), Model SEED (Henry et al. (2010)) and ERGO (Overbeek et al. (2003)).

However, after this first step there is still a large amount of work to do before reaching

an accurate metabolic model. These draft metabolic reconstructions are often found to

39
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contain numerous inaccuracies (Kim et al. (2011b)), namely in the species specific bio-

chemistry that result from the use of non-species specific databases and reactions.

In the next stages of curation, obvious pathway holes (due to the lack of an assigned

enzyme) and false positive reactions (due to enzyme misannotation) need to be found and

corrected. To address both of these issues there is a need to collect and analyse evidence

for each reaction from the literature and from genomic and metabolic databases, across

multiple closely-related species. Without automation this process is tedious and repetitive.

There are already some tools that can tackle this problem, allowing comparative analysis

of metabolic pathways, such as Comparative Pathway Analyzer (Oehm et al. (2008)),

FMM (Chou et al. (2009)) and ComPath (Kwangmin and Sun (2008)).

Comparative Pathway Analyzer (CPA) is a web implemented tool with the objective of

finding the differences in the metabolic networks between two groups of organisms. The

maps and reaction annotation data used are taken from the KEGG database. CPA also

contains a pathway-reaction display that enables the easy detection of differences between

up to six different genome annotations. Furthermore, it provides cluster analyses that can

include any further annotation uploaded by the user.

FMM is a web server with the prime objective of reconstructing metabolic pathways

between two metabolites. It is also mainly based on the KEGG database but it integrates

other biological databases including UniProtKB/Swiss-Prot (Boutet et al. (2007)) and

dbPTM (Lee et al. (2006)). Moreover, FMM presents the reconstructed pathway by means

of a diagram connecting each of the reactions to information such as metabolites and

enzymes involved in the pathway as well as comparative analyses from the species chosen

by the user.

ComPath is a complex piece of software that integrates several data sources and tools for

pathway analyses and gene annotation in multiple genomes. This information is displayed
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by means of an interactive spreadsheet, enabling access to several data sources simulta-

neously. Moreover, it provides tools for structural domain analyses as well as sequence

comparison and enzyme prediction.

An ideal piece of software for curating a metabolic model would provide a pathway visu-

aliser together with annotation confidence information and existing literature references.

None of the packages above contains these features all together.

In this chapter I present PathwayBooster. PathwayBooster is an open-source software tool

to support the comparison and curation of metabolic models. Although other tools exist

for the comparative analysis of metabolic pathways, PathwayBooster presents a unique

combination of features. Amongst other capabilities, PathwayBooster can be used to

compare the functional annotations of genes with ‘bidirectional best BLAST hits’ anal-

yses between the target organism and the relevant related species. It also compiles a list

of literature references obtained from BRENDA (Scheer et al. (2011)) to support or re-

fute the presence of each enzyme within the selected species. An interactive graphical

summary of the evidence found in each organism is produced in the form of a clickable

KEGG pathway diagram.

2.2 Colaboration

This software was developed as part of a collaboration with Beata Lisowska (PhD candi-

date, University of Bath), who used PathwayBooster to support the curation of a genome-

scale metabolic model for Geobacillus thermoglucosidasius. The sequence and the initial

annotation of the G. thermoglucosidasius (NCIMB 11955) genome were acquired from

the ERGO Integrated Genomics platform. Ms Lisowska has compiled the annotations

produced using ERGO (from where the genome was acquired) and RAST with the ob-
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jective of minimising possible errors in the annotation. The RAST annotation server is a

publicly available tool for the annotation of bacterial and archaeal genomes and as such

was used for comparative purposes. The RAST server annotation is based on FIGfams

(Meyer et al. (2009)) (which are protein families that share function and structure) but

it also considers the localisation of genes. The decision process used is based on an as-

sumption that proteins in a given family are orthologous to each other and hence share the

same molecular function. The sequence of interest is analysed based on the similarity to

the other members of a given FIGfam family.

A possible alternative to RAST could have been KAAS (Moriya et al. (2007)). KAAS is

a web server for automatic annotation that uses bidirectional best hits between the query

organism and the KEGG GENE database. The results are divided by KO groups, with a

likelihood score assigned to each one. The KO group with the highest score is assigned to

the sequence. However, RAST not only uses more sensitive homology methods but it also

uses microbe specific pathway templates; the KEGG pathways used by KAAS represent

metabolic network knowledge at a more general level.

With Ms Lisowska’s collaboration, I have designed several tools to help the next step of

manual curation: the identification of falsely annotated or omitted enzymes and reactions

and the creation of an SBML model ready for FBA. I have written and put these tools

together in one package, PathwayBooster. Using PathwayBooster reports, Ms Lisowska

has manually inspected each pathway listed in the KEGG database.

The next step will be to use FBA to make predictions of consumption and production of

certain substrates of interest and afterwards compare these in silico predictions with in

vivo experiments. The in vivo experiments will use techniques such as gene knockouts,

phenotypic analysis and gene cloning and expression.
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2.3 PathwayBooster

PathwayBooster is a command-line tool written in Python. The user supplies input in the

form of GenBank, EMBL or FASTA files for all the organisms that are to be compared.

Output is presented as a browsable set of HTML files, with sections that are described in

more detail below (Figure 2.1). Instructions on how to run PathwayBooster, can be found

in: http://www.theosysbio.bio.ic.ac.uk/resources/pathwaybooster/

One of the key enabling technologies of PathwayBooster is in the use of KEGG API. This

is a web service allows the access to KEGG system in an automated way using the SOAP

protocol. This ensures that PathwayBooster always provides up-to-date KEGG data.

Pathway diagram

Using SOAP to retrieve KEGG pathway templates, PathwayBooster returns an interactive

image where all the reactions are colour coded according to the presence or absence of a

given reaction in each chosen species (Figure 2.1). This is implemented using the SOAP

protocol functionality that allows the colouring of each reaction rectangle background

with just one colour. PathwayBooster makes use of these functions to pass on to each

reaction present in the diagram the information about the species in which the reaction

is present. A script using the pathway template in a png format is able to identify the

reactions and the colour with the information mentioned before and colour code each

reaction as described above.

In the transformed KEGG pathway template, information about each reaction can be ac-

cessed via a popup menu which displays the available options for a given enzyme. In-

formation is divided into three groups: annotations, BLAST results and literature. Each

choice can be accessed by its own hyperlink, redirecting the user into a new window
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Figure 2.1: Cysteine and methionine metabolism pathway. An example pathway diagram pro-
duced by PathwayBooster, showing the cysteine and methionine metabolism. On the top are the
tabs directing to different information sources. The coloured blocks show an automated model
produced by ERGO

TM
(Overbeek et al. (2003)) for the thermophilic bacterium G. thermoglucosi-

dasius NCIMB 11955 (red) in comparison to selected reference organisms: G. thermoglucosi-
dasius C56-YS93 (brown), G. kaustophilus (yellow), G.thermodenitrificans (green), B. subtilis
(blue) and E. coli (purple).
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where the corresponding data can be viewed. All functions can also be accessed through

the tabs in the top of the pathway image. An important advantage of using popup menus

is that the use of the popup menu will restrict the report data in all the different groups to

focus on the enzymatic function specified.

Annotations

The annotation table is divided according to the Enzyme Commission (EC) numbers

present in a pathway of interest. Annotated genes are presented by EC number for all

specified organisms. Each gene is hyperlinked to the KEGG database, where associated

information can be viewed. It also refers to the origin of each annotation. This is relevant

when more than one genome annotation source is under consideration. With the exception

of KEGG, all annotation sources must be supplied by the user. In the KEGG annotation

case, the data is accessed using the SOAP protocol functionalities. For the other enzy-

matic function input formats (GenBank and EMBL), PathwayBooster parses these input

files and stores the gene ID and the enzymatic function. The enzymatic function can be

supplied in either GO or EC number format. In the case of GO annotations, the annota-

tions are mapped to EC numbers using the ec2go flat file present in the Gene Ontology

website (Ashburner et al. (2000)).

Blast results

Two proteins from two different organisms are a best reciprocal hit when each one is

the best BLAST hit of the other when a search is performed against the predicted pro-

teome. This is the simplest method used to find pairs of orthologous proteins (Jordan

et al. (2002)), that is, proteins descending from a common ancestor that have diverged

after a speciation event. These proteins tend to have similar sequences and are likely to
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have similar functions. So, providing this evidence is vital in the curation of a specific

reaction. It can be important either to support a given annotation or to find a candidate for

a missing one. Based on the genome information provided by the user, BLAST (Altschul

et al. (1990)) best reciprocal hits are available for proteins from a query organism when

compared with the other species. Each hit gene is followed by its annotated function, the

respective EC number and the sequence similarity, E-value and BLAST score between

the two genes.

The first three BLAST hits can also be viewed for every target gene annotated in a ref-

erence species for which a gene sequence annotation was provided, providing possible

protein candidates. The report also provides a function annotation and EC number, as

well as the sequence similarity, E-value and BLAST score between each candidate gene

and the target gene.

To calculate the reciprocal best hits, PathwayBooster makes use of the BLAST blastp

function. For a pair of genomes provided in a fasta file format, a script blasts each of the

protein sequence of one genome against all the proteins sequences of the other genome.

For each sequence only the best match is kept. The process is repeated the other way

around and again only the best match is kept. Reciprocal best hits are all the pairs of

sequences that are simultaneously the best match of each other.

Literature

PathwayBooster makes use of the BRENDA download flat file to provide information

about the existing publications available for each organism describing each enzymatic

function. Therefore, for the selected pathway, publications taken from BRENDA that

assert the presence of each EC number in a specified organism are listed. Publications in-

dicating that a given EC number might be absent in an organism are also available. Each
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EC number Brenda publications Missed publications Missed publications %
1.3.1.48 16 9 0.36
1.3.99.18 2 0 0
2.1.1.69 10 1 0.09
2.3.1.103 1 0 0
2.4.1.135 20 16 0.44
2.4.1.187 3 0 0
2.7.11.29 2 0 0
3.1.1.51 3 0 0
3.6.1.24 1 0 0
5.1.3.19 12 6 0.33

Table 2.1: BRENDA literature coverage. This table shows the number of publications pro-
vided by BRENDA , the number and the percentage of publications missed by BRENDA for each
randomly selected EC number.

publication has a hyperlink to the PubMed website, where its abstract can be viewed. Cur-

rently the number of manually annotated references in BRENDA is over 100,000 (Scheer

et al. (2011)). To have an idea of how comprehensive BRENDA is I have randomly cho-

sen 10 EC numbers and checked against PubMed how many references would have been

missed. Overall, BRENDA covers 70% literature of the publications. Table 2.1 shows

the number of publications considered by BRENDA for each EC number and the num-

ber of publications found in PubMed not present in BRENDA. More than half of the EC

numbers are completely covered by BRENDA. However, there are cases where more than

30% of the literature would have been missed. It is important to notice that the compari-

son against PubMed was made on a string matching bases using enzymatic synonyms. It

is likely that some of the literature found are false positives. Therefore, the overall 70%

literature coverage by BRENDA may be underestimated.

Heat map

For a given pathway, the Hamming distance between two organisms is the number of

enzymatic functions present in one but not in both of those organisms. In the Pathway-
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Booster report a heat map is provided to show the Hamming distance between the or-

ganisms selected, according to the presence or absence of each function present in the

pathway. This simple visualisation of the similarity between pathway structures can be

used to support comparative analysis or to summarise the consistency of different an-

notations. This tool is built by making use of the matshow python function from the

Matplotlib library. For each pathway a binary profile of presence and absence of each of

the enzymatic functions present in the pathway is built and passed on to the matshow

function.

2.3.1 Comparison with existing tools

Platforms such as Model SEED can be used to produce draft metabolic models, but are

not designed to support further model curation. PathwayBooster provides a single inte-

grated interface to literature references, BLAST evidence and annotations from alternative

sources or related organisms. Most importantly, PathwayBooster provides a logical visual

representation of its results, significantly reducing the effort needed to identify enzyme

misannotations and pathway holes. The information provided by PathwayBooster can be

particularly useful when working with a platform for genome-scale model curation such

as MEMOSys (Pabinger et al. (2011)) or GEMSiRV (Liao et al. (2012)). Although sev-

eral other tools exist that can support comparative pathway analysis not all were made

specifically for this task. Moreover, PathwayBooster provides a unique combination of

features that make it particularly suitable for use in model curation.

The most similar published software to PathwayBooster is the Comparative Pathway An-

alyzer (CPA) (Oehm et al. (2008)). Both programs use KEGG pathway templates and are

able to display several organisms simultaneously (up to 6 in CPA and up to 7 in Pathway-

Booster). Moreover, both accept other annotation sources besides KEGG’s annotations.



CHAPTER 2. PATHWAYBOOSTER 49

However, unlike CPA, PathwayBooster can accept annotations with GO terms (Ashburner

et al. (2000)). To visualise the differences between the different organisms in each path-

way, CPA uses a hierarchical clustering strategy and PathwayBooster, makes use of a heat

map. Unlike CPA, PathwayBooster is able to provide literature information for each en-

zymatic function and detailed sequence comparison analyses. Therefore, compared with

CPA, PathwayBooster is more focused towards pathway curation.

In contrast to ComPath (Kwangmin and Sun (2008)), PathwayBooster uses data provided

not only by KEGG, but also publication data from BRENDA and annotation files supplied

by the user. In addition to presenting evidence from ‘bidirectional best BLAST hits’,

PathwayBooster allows the comparison and compilation of multiple annotations obtained

from different sources for a given genome. Another advantage of PathwayBooster is its

interactive graphic visual representation. For example, it enables the comparison between

different organisms at the same time, making the identification of erroneous annotations

easier.

Finally, FMM (Chou et al. (2009)) focuses on the possible pathways between two metabo-

lites, whilst PathwayBooster provides a broader view of the complete metabolic network

and can be used to curate a metabolic model from the starting point of a genome annota-

tion.

2.4 Case studies

This section presents some examples where the advantages of using PathwayBooster

are clearly seen. The case study was developed in collaboration with Beata Lisowska,

who used PathwayBooster to support the curation of a genome-scale metabolic model for

Geobacillus thermoglucosidasius.
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Geobacillus thermoglucosidasius

Geobacillus thermoglucosidasius NCIMB 11955 is a thermophilic bacterium with the po-

tential to convert lignocellulose to ethanol in a highly productive manner. Thermophilic

bacteria are especially useful in biofuel production since they can withstand the high tem-

peratures that are unavoidable at certain stages of fermentation. Given these interesting

properties, we would like to understand the metabolism of this organism in more detail.

As an example, PathwayBooster results for cysteine and methionine metabolism (KEGG

id = 00270) are presented. The initial draft metabolic network was built using ERGO

(Overbeek et al. (2003)). Reference organisms were selected to make full use of the com-

parative genomics functionalities provided by PathwayBooster. The organisms selected

were, Escherichia coli, Bacillus subtilis, Geobacillus thermoglucosidasius C56-YS93,

Geobacillus thermodenitricans and Geobacillus kaustophilus.

Filling pathway holes

The Hamming distance heatmap (Figure 2.2) gives us the first evidence of an unexpected

difference between the Geobacillus thermoglucosidasius draft metabolic network and the

the other organisms. Examining the Pathway diagram, it can easily be seen that the re-

actions tagged with the EC numbers 4.2.1.109, 3.1.3.77, 1.13.11.53 and 5.3.1.23 are not

annotated for the query organism, in contrast to most of the reference organisms. A possi-

ble explanation is that the enzymes with these functions were not identified by the ERGO

annotation servers.

Making use of the PathwayBooster publication tables for each function present in the

pathway, an article can be found relating to the enzyme 4.2.1.109 (5-methylthioribulose-

1-phosphate dehydratase) in Bacillus subtilis. The article referenced is easily accessed by
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Figure 2.2: Visual representation of the methionine salvage pathway, where G. thermoglucosi-
dasius NCIMB 11955 (red) is compared to selected reference organisms: G. thermoglucosidasius
C56-YS93 (brown), G. kaustophilus (yellow), G.thermodenitrificans (green), B. subtilis (blue) and
E. coli (purple).

clicking in the hyperlink provided in the table. All genes annotated for all the genomes

considered for each function can be found in the Annotations report (Figure 2.4-A). This

table provides easy access to further information for each gene via the KEGG database.

To find candidates for filling the enzymatic function 4.2.1.109, PathwayBooster BLAST

bidirectional hits report is the indicated resource to use (Figure 2.4-B). Blast searches

against B. subtilis retrieved a candidate gene within the G. thermoglucosidasius NCIMB

11955 genome.

For a less stringent search, PathwayBooster’s three BLAST hits report retrieves the three

best BLAST hits for each gene against the query genome (Figure 2.4-C). Each hit also

reports the sequence similarity information, E-value and overall BLAST score.

The procedure described was also successfully applied to the remainder of the missed
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Figure 2.3: Hamming distance heatmap for cysteine and methionine metabolism, showing the
similarity between the query species (marked ‘Ergo’) and reference organisms.

A

B

C

Figure 2.4: Information tables for EC 4.2.1.109 (5-methylthioribulose-1-phosphate dehydratase).
A - Annotated genes; B - BLAST bidirectional hits; C - Three best BLAST hits
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annotations.

Identifying misannotated enzymes

In contrast to the example shown above, the enzyme function 5’-methylthioadenosine nu-

cleosidase (EC 3.2.2.16) was found in the annotation of the query strain and not found in

the closely related reference organisms. The two most probable explanations are: the gene

assigned to this enzymatic function has been wrongly assigned or G. thermoglucosidasius

has acquired a new function that is not present in close relatives.

By examining the ‘Publications’ reports, this function is not found in any relevant lit-

erature. Taking a closer look to the assigned gene, RTMO02286, in the ‘Annotations’

section, it is possible to see that the gene has been assigned with two potential functions:

5-methylthioadenosine nucleosidase (EC 3.2.2.16) and S-adenosylhomocysteine nucle-

osidase (EC 3.2.2.9). In the EC 3.2.2.9 case, all the reference organisms also had hits to

this enzymatic function. This was also supported by the ‘BLAST hits’ report. Therefore,

it was concluded that EC 3.2.2.16 must be a misannotation and that the most probable

functional annotation for RTMO02286 is the EC 3.2.2.9 enzymatic function.

2.5 Conclusion

In this chapter has been shown that PathwayBooster contains a unique set of tools that

provide relevant and complementary information for the curation of a metabolic net-

work. These information include sequence comparison analyses, literature search, net-

work topology comparisons, enzymatic function annotations as well an intuitive dis-

play that enables the visualisation and comparison of several different organisms in each

metabolic pathway.
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The case studies presented show how these tools complement each other and how Path-

wayBooster can be used to decrease the time necessary for curating a metabolic network.



Chapter 3

Protocol to identify candidate genes for

a missing enzymatic function

3.1 Introduction

As already mentioned in Chapter 1, most software for gene function annotation is still

based on sequence similarity searches. These programs use strategies such as “reciprocal

best hit” to transfer functional annotations. Such strategies work well if there is a closely

related, well annotated organism, otherwise they may not be sufficiently sensitive enough

especially for species-specific functions. The overall idea of the work presented in this

chapter is to elevate one level in the sensitivity of similarity searches. This work aims

to move from BLAST sequence similarity to structural profile similarity, in other words,

it aims to move from a family to a superfamily perspective. A superfamily is defined as

a group of protein domains that have structural and functional evidence for their descent

from a common evolutionary ancestor (Murzin et al. (1995)). This level of protein struc-

tural classification is in between two other levels: below is the family and above is the

55
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fold level. The former groups together those domains that have clear sequence similari-

ties. The latter groups those domains that have the same major secondary structure, with

the same chain topology.

Besides the fact that convergent evolution is not a rare phenomenon (Gherardini et al.

(2007)), there are two important motivations for increasing the sensitivity of sequence

similarity searches from family level to superfamily. The first is that the superfamily con-

tains the most distantly related domains and so is the highest level for useful remote ho-

mology detection (Dayhoff et al. (1976)). Secondly, proteins within the same superfamily

often have the same function, and usually but not always have related functions. This

study will try to go beyond the immediate orthologous group to examine non-orthologous

domains with similar binding sites. If the protein is already able to bind a similar substrate

and/or catalyse a similar reaction, it will increase the chances of this protein acquiring the

target function during evolution.

There are several examples of convergent evolution within a superfamily. An interesting

example of successful hole-filling and of convergent evolution is given by Dittrich and co-

workers (Dittrich et al. (2008)). This work was based on the idea that an evolving enzyme

has more chance to acquire the function of structurally similar enzymes. They manually

followed through a bioinformatic protocol to try to detect a functional analog of a miss-

ing enzyme (dihydroneopterin aldolase, DHNA) in the P. falciparum folate biosynthesis

pathway. Afterwards, the most probable candidate was experimentally validated.

They explored how P. falciparum is able to cope with the absence of DHNA by coupling

bioinformatics and experimental methods. BLAST searches were found to be unsuit-

able for detecting candidates to fill this missing link either in P. falciparum or in any

other apicomplexan species. Programs such as 3D-PSSM (Kelley et al. (2000)) and Gen-

THREADER (Jones et al. (1999)) were used to search for secondary and tertiary struc-

tural similarities. Two significant matches were found: PFF1360w (6-Pyruvoyl tetrahy-
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dropterin synthase, putative (PTPS)) and PFL1155w (GTP cyclohydrolase I (GTPCH-I))

Sequence comparison analyses revealed a divergence in residues at the PFF1360w active

site. A Cys residue, which is completely conserved in all other known PTPSs, is not only

absent in the P. falciparum PTPS, but also from other Plasmodium species and from the

related apicomplexan parasite T. gondii.

Structural differences were found between the malarian enzyme and other eukaryotes

using crystallographic data for the P. falciparum enzyme. The hypothesis that malarial

PTPS enzyme may have different catalytic properties compared with other organisms

was then tested by cloning the P. falciparum PTPS gene into E. coli. This showed that

the malarian PTPS is able to synthesise two different products, 6-hydroxymethylpterin

and pterin, confirming the gene PFF1360w as the missing link. It is important to notice

that the missing link was only found by broadening the candidate search to a superfamily

level.

If we take a closer look at the folate pathway scheme (Fig. 3.3), it can be seen that the

previously assigned reaction for the experimentally validated candidate placed it in a dead

end, indicating that this annotation is unlikely to be correct. In an opposite situation, the

analysis showed that the other enzyme (annotated as GTP cyclohydrolase I (GTPCH-I)),

not only has its reactants produced and its products consumed but also is assigned to four

chokepoint reactions. Introduced in Yeh et al. (2004), a chokepoint is a compound that

is uniquely consumed by a specific reaction and/or is uniquely produced by another one.

However the definition of chokepoint used in this thesis is as being a compound that is

connected to just two different reactions, distinguishing these case from those that are

connect to just one reaction (unpaired compounds) (Figure 3.1). A chokepoint reaction

is a reaction where at least one of its products is a chokepoint. So, this kind of analysis

together with others, can help to decide an order of priority for a group of candidate

proteins.
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reaction where at least one of its products is a chokepoint. Likewise, a chokepoint 
enzyme is an enzyme involved in a chokepoint reaction. Briefly, we are 
discriminating two different cases within the definition given by [26]. The reason for 
this distinction is related to the different kind of information each one can return. 

 
Fig. 2 – An example of an unpaired compound (A), chokepoint (B) and a 
compound that is neither an unpaired or a chokepoint (C). The circles are 
compounds and the rectangles are reactions. According to the definition given in 
[26], the cases A and B are both chokepoints. 

 
In figure 2, we can see an example of both unpaired compounds and chokepoints. 
Considering all reactions reversible, in figure 2A, the compound shown is only 
produced/consumed by one reaction. In figure 2B, the compound is an example of a 
chokepoint. It is only linked to two reactions. Therefore, these two are chokepoint 
reactions. Again, according to the definition presented in [26], the case shown in 
figure 2A would also be considered to be a chokepoint. 
 
Besides the reasons already mentioned for the unpaired compounds, the 
differentiation of these two cases is more relevant when working with unfinished 
metabolic networks. An example of that is given by comparing the results from a non-
curated (KEGG) and curated metabolic network (MPMP) (Table 1). The real 
differences between the two databases lies in the number of reactions and in the 
number of unpaired compounds, whilst the number of chokepoints is very similar. 

 

!
Table 1 – Results regarding de analysis made by on unpaired compounds and 
chokepoints in KEGG and MPMP databases. The first column shows the number 
of reactions in each network. The second column shows the number of reactions 
with at least one unpaired compound. The third column shows the number of 
reactions with at least one chokepoint. In brackets is shown the percentage of 
reactions of each case. 

 
An important aspect being taken into account is the modularity of every tool made as 
part of this project. Working in a rapidly developing area of research, software tools 

Figure 3.1: An example of an unpaired compound (A), chokepoint (B) and a compound that
is neither an unpaired or a chokepoint (C). The circles are compounds and the rectangles are
reactions.

Another case of convergent evolution is presented by Christopher M. Bruns and cowork-

ers (Bruns et al. (1997)). In this case two proteins (Haemophilus influenza hFBP and

the Homo sapiens transferrin) from two different families of the same superfamily have

developed a Fe+3 binding site independently. In fact, their common ancestor is though to

have been an anion-binding protein. A similar case is presented by Kuriyan and cowork-

ers (Kuriyan et al. (1991)). They have discovered that the textitE. coli thoredoxin re-

ductase, although it catalyses similar reactions as the human glutathione reductase, uses

a different mechanism with different active sites. They also show that these two pro-

teins have evolved from a common ancestor. Makaroca and coworkers have studied the

Zn-peptidase superfamily (Makarova and Grishin (1999)). They have shown that two dis-

tantly related families (ZnCAP and ZnCP) have acquired in parallel the ability to catalyse

the same reactions after diverging from a common ancestor. In a more recent study,

Gaskell and coworkers (Gaskell et al. (2009)) have found two almost identical proteins

with the same bifunctional properties (tyrosine and and phenylalanine hydroxylases) in

Toxoplasma gondii. These two functions are performed by two different enzymes in H.
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Figure 3.2: Hole candidate search protocol.

sapiens.

3.2 Methods

The protocol built makes use of three different databases: PDB, SCOP and SUPERFAM-

ILY. The overall scheme is represented in Figure 3.2.

3.2.1 Protocol

Given an EC Number, the protocol starts by searching in the PDB for all known proteins

known to perform that function. This search is made in a flat file from the PDB database

with all proteins in the database mapped to an EC Number.

SCOP groups the proteins with known structure into three different levels of evolutionary
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relationships: Fold, superfamily and family (see Introduction). This information is acces-

sible through a flat file that this protocol uses to identify the superfamily of each of the

identified proteins in the PDB.

The SUPERFAMILY database provides HMM profile models built from the SCOP database

structural assignments. These profiles are used to scan all the annotated genes in each

species. All of this information is accessible in the form of a database. The protocol,

given a species and a superfamily list, queries the SUPERFAMILY database for all genes

assigned to this superfamily.

3.2.2 Known case

Dittrich and coworkers found a protein to fulfil a pathway hole (Dittrich et al. (2008)).

This pathway hole is labelled with the enzymatic function EC4.1.2.25. Therefore, the

protocol started by searching the PDB database for all known proteins with this enzymatic

function assigned and following the steps presented in the previous section (Table 3.1.).

3.2.3 Plasmodium falciparum pathway holes

The input EC numbers used for the protocol were the pathway holes suggested by the

Plasmodium falciparum manually curated metabolic network from the MPMP database

(Ginsburg (2000)).

3.3 Results and Discussion

As a first step to accomplish the proposed objective, this study started to focus on the task

of filling pathway holes. To find a candidate enzyme for a given hole, we need to use
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some nomenclature that enables us to identify the function that is missing and relate it

to possible enzymes. For this reason, to tag the missing links (holes), the nomenclature

used is the EC numbers (Webb et al. (1992)). As described in more detail in the introduc-

tion chapter, the Enzyme Commission number (EC number) is a hierarchical numerical

classification scheme for enzymes, based on the chemical reactions they catalyse. Every

enzyme code consists of the letters EC followed by four numbers separated by periods.

Those numbers represent a progressively finer classification of the enzymatic function.

Unlike for example GO terms, EC number is an enzyme-specific nomenclature.

Inspired by the Dittrich and coworkers example described above, I have constructed a

computational protocol (Fig. 3.2) that, given an EC number assigned to a reaction node

of the metabolic network of a given species, returns not only possible candidates using the

philosophy mentioned above, but also phylogenetic trees of genes from the target species

and evolutionarily closely related ones. This last part is explained in more detailed in the

Chapter 5.

3.3.1 Candidate search protocol

For each required EC number, the protocol searches the PDB for all the proteins known to

perform that function. Using the SCOP database (Murzin et al. (1995)), for each protein

gathered, it returns the superfamily into which the protein is classified. The Structural

Classification of Proteins (SCOP) database uses the nomenclature mentioned above (fam-

ily, superfamily and fold). This database contains all PDB structures released before

January 2005 plus a part of the PDB releases between January 2005 and October 2008,

making it a good tool for the study objective.

The next step is, for each superfamily, to see which genes from the target species have

domains classified to the given superfamily. These genes are the set of candidates to
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fill the hole. For this the protocol makes use of the SUPERFAMILY database (Gough

and Chothia (2002)). This is a database of structural and functional protein annotations

for all completely sequenced organisms using a set of profile hidden Markov models.

Like SCOP, there are other databases that also group protein structures in to different

evolutionary levels. A good example of that is the CATH database (Orengo et al. (1997)).

CATH, compared to SCOP, makes more use of automated procedures in the classification

of protein domains. Although there are some differences between the methodologies, the

classifications are quite similar (Hadley and Jones (1999)).

However, SUPERFAMILY using SCOP provides a natural connection between structural

classification and HMM superfamily profiles. The SUPERFAMILY database integrates

these two components into a single relational database, making it a powerful tool for this

chapter’s objective.

Moreover, it is not possible to query directly SUPERFAMILY database with EC codes.

Besides the curated superfamily assignments, SCOP works as a link between PDB EC

number assignments and SUPERFAMILY HMM’s models.

After having obtained a set of candidates for a pathway hole, any further evidence can be

useful for discriminating between the candidates to see which may have a higher probabil-

ity of being the correct one. Intuitively, any obvious properties in a network, for example

dead ends or disconnected components, could be an indicator of how likely an annotation

already assigned to a candidate gene is to be correct. In Figure 3.1 there are examples

of both unpaired compounds and chokepoints. Considering all reactions as reversible, in

Figure 3.1-A, the compound shown is only produced/consumed by one reaction. In Fig-

ure 3.1-B, the compound is an example of a chokepoint. It is only linked to two reactions.

Therefore, these two reactions connected with this compound are chokepoint reactions.

According to the definition presented in Yeh et al. (2004), the case shown in Figure 3.1-A

would also be considered to be a chokepoint.
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3.3.2 Known case

As a way to test if the gene candidate procedure was working well, it was applied to a

former pathway hole investigated by Dittrich and coworkers (Dittrich et al. (2008)). The

KEGG database has not yet updated this pathway. This pathway hole is labelled with

the EC number 4.1.2.25. The protocol started by identifying all the known proteins in the

PDB database with this function assigned. There were 56 proteins in these conditions. All

these proteins were within the same superfamily identified by the id 55620. Afterwards,

the protocol search for all the genes with domains assigned with this superfamily. The

final results are presented in Table 3.1.

The protocol was able to successfully obtain two candidates that corresponded to the two

top hits obtained by Dittrich and co-workers, including the experimentally validated en-

zyme (PFF1360), annotated as 6-Pyruvoyl tetrahydropterin synthase (PTPS). Analysing

the unpaired and chokepoint compounds (see Table 3.1), it could also be seen that some

compounds of PTPS were not produced/consumed in the current KEGG annotation. So,

this kind of analysis together with others, can help to decide the most likely enzyme within

a group of candidates.

3.3.3 P. falciparum case study

The same analysis was applied to the curated holes given by the MPMP database for the

Plasmodium falciparum metabolic network. The Malaria Parasite Metabolic Pathways

(MPMP) database is a set of the most likely metabolic enzymes in P. falciparum, curated

by a world expert (Ginsburg (2000)). This database identifies a filtered list of reactions

that are strongly believed to be present, making it much more valuable than information

collected from the more general sites.
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The MPMP database currently contains 18 holes across the whole metabolic network

(Ginsburg (2000)). Of these, the method was applied to those that had a complete EC

number assigned. The candidates for each hole for which at least one candidate was found

are shown in Table 3.2. Some of them already have an enzymatic function assigned. This

function might have been assigned from similarity methods or validated experimentally.

Ultimately, It will be important to be able to discriminate between assignments that have

been experimentally verified and those that are assigned based on sequence similarity.

Analysing the results, the method was able to find candidates for 7 out of the 18 holes

submitted. Among these 7 holes, 3 were within the same superfamily, so there were 5

different sets of candidates. For each hole, only one superfamily candidate set was found.

These sets range from single genes to 10 superfamily members, where most already have

annotated functions. The fact that for most of the pathway holes, there were not any

candidates found may be a reflection of two main factors: The first one is that there is no

closely related, well annotated model organism which means that the specific biochemical

properties of P. falciparum may be very different from those previously observed. A

second reason is the interaction between P. falciparum and its host: the parasite may be

able to take some molecules from its host which may lead to the mistaken inference of

missing enzymes.

Most of the candidates have an enzymatic function assigned. However, examining the last

column of the tables, it is possible to verify that only two of them have experimental evi-

dence of their existence and of their enzymatic function. These two proteins, PF14 0381

and PF14 0164 are therefore considered bad candidates for filling a missing link because

they are already known to perform a different enzymatic function. Although there are

examples of promiscuous enzymes capable of catalysing multiple reactions with a single

active site, this type of enzymes is considered to be rare. Most of the other candidate’s

enzymatic function has been inferred by sequence similarity methodologies. As already
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discussed, this type of enzymatic assignment is prone to error, making them less reliable

and at the same time increasing their chances of being the right protein for filling the

missing link.

The seventh and eighth columns show the results of the unpaired and chokepoint analysis

applied to the assigned function of each candidate. Comparing the topological position

of the candidate annotation between KEGG and MPMP models there are not many dif-

ferences. The most relevant one is the MAL7P1.150 gene that has been annotated only

by KEGG with EC2.8.1.7. Nine of the enzymes catalyse reactions with compounds that

are only consumed or produced by the reaction (unpaired compounds). This might be

evidence that these reactions are in a dead end or belong to pathways that are not bio-

logically meaningful to the P. falciparum metabolic network. At the same time, there are

11 enzymes responsible for reactions with chokepoint compounds. These reactions are

essential for the pathway, as without them the pathway would have a hole.

These types of evidence, together with others, will help to rank all the candidates found

for each of the missing links.

3.4 Conclusion

In this chapter I have shown many cases of convergent evolution and the importance of

increasing the sensitivity search from a family level to a superfamily level. I have pre-

sented a protocol that makes use of this idea using well known public sources of different

levels of enzyme information, such as: PDB for protein annotations, SCOP for protein

structure classification and SUPERFAMILY for HMM superfamily profiles. The protocol

presented in this chapter has not only shown to be successful in finding a missing link

using a known test case but has also been able to provide candidates to a set of pathway



CHAPTER 3. HOLE-FILLING CANDIDATE SEARCH 68

holes suggested by a world expert in malaria. I have also shown that information about the

different levels of enzymatic function assignments, together with topological properties

and other types of information will have an important role in the ranking of the candidates

found.
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3.5.4.16

3.5.4.16

3.5.4.16

3.5.4.16

4.2.3.12

1.1.1.153

4.1.2.25

1.1.1.153

3.1.3.1

1.5.1.34

2.7.6.3

GTP

Dihydrobiopterin

Figure 3.3: Part of the Plamodium falciparum Folate Biosynthesis pathway. Highlighted by
a purple ellipse is the missing link referred by the paper Dittrich et al. (2008). All the reactions
that do not have an enzyme assigned to them have a white background. The two main candidates
found by the Dittrich study were originally assigned to the functions EC3.5.4.16 (PFL1155w) and
EC4.2.3.12 (PFF1360w) that also belong to the Folate Biosynthesis pathway (with green and red
background, respectively). The missing link experimentally validated is the gene PFF1360w. As
can be seen, the reaction catalysed by PTPS (red background) is not supported by the rest of the
pathway, being in a dead end.



Chapter 4

Topological analyses predict

misannotations in a metabolic network

4.1 Introduction

Misannotation in sequence databases has been a recognised problem for more than a

decade. Early studies reported the emergence of this issue (Galperin (1998); Brenner et al.

(1999)) and estimated that up to 30% of proteins were misannotated in public databases

Devos and Valencia (2001). More recent studies have confirmed that this problem is still

a reality (Jones et al. (2007)) and some even suggest that it has been getting worse over

time (Schnoes et al. (2009)), identifying over-prediction and error propagation as the main

sources of error. Since experimental verification of gene function is expected to remain

a highly time consuming process, it is unlikely that it will be able to keep pace with the

increasing amount of genome sequence data being deposited in public databases. More

accurate computational methods for functional annotation and assessment of confidence

in gene annotations are therefore increasingly necessary.

70
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In the area of automated functional annotation, several approaches moving beyond ba-

sic sequence similarity are now available (Jones et al. (2007)). Some recent annota-

tion software will classify proteins based on locally conserved sequence patterns that are

normally related with function (Forslund and Sonnhammer (2008)). Other approaches

take into account the evolutionary relationships between proteins by integrating evidence

across phylogenetic trees (Engelhardt et al. (2009)) or use additional information such

as protein-protein interaction data (Ta and Holm (2009)) or genomic correlations (Hsiao

et al. (2010)).

However, functional annotation is still mainly based on sequence similarity. Given this

fact, the accuracy of existing annotations has a crucial impact on that of future annotations

(Jones et al. (2007)). This dependency can lead to error propagation and a consequent

increase in the number of annotation errors (Gilks et al. (2002)). Moreover, as information

on the origin of annotation is often scarce, this error propagation does not have an easy

solution. The problem becomes even clearer when we note that the proportion of manually

annotated proteins is less than 5% and continues to decrease (Frishman (2007)).

Any evidence that is independent of sequence may therefore be useful for discriminating

between true and false functional annotations. The concept of gene function implies in-

teraction with some part of the cell or the environment, and almost all functions of interest

are the result of interactions among several components (Hartwell et al. (1999)). Model-

ing these interactions by means of networks and studying their topological properties is

therefore one way to understand the context of these molecular functions. Intuitively, any

obvious problems in such a network, for example dead ends or disconnected components,

could therefore be an indication of misannotation.

One easily accessible example of a well-defined molecular network derived from a set

of gene annotations is a draft metabolic network, such as those available in the KEGG

database (Kanehisa et al. (2008, 2006); Kanehisa and Goto (2000)). The topological
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properties of these networks have been studied previously in the contexts of network

evolution (Wagner and Fell (2001)) and drug target discovery (Yeh et al. (2004)). For ex-

ample, the metabolic networks of parasitic species are known to be distinguishable from

non-parasitic species on the basis of their topology (Nerima et al. (2010); Borenstein and

Feldman (2009)). In this Chapter, I propose a supervised machine learning methodol-

ogy to assess the accuracy of assigned molecular functions, based on simple topological

properties of an organism’s draft metabolic network. I show that this approach is able

to separate correct annotations from incorrect ones with an accuracy of up to 86%. Be-

ing entirely independent of sequence properties, it can be used to complement existing

approaches and hence contribute to the detection and correction of errors in functional

annotation.

No other studies that have tried to detect misannotations based only on metabolic network

topological properties were found. However, there are studies that consider topological

properties of protein-protein interaction networks. For example, Natasa Przulj’s group

(Milenkoviæ and Pržulj (2008)) demonstrates that local node topological structures and

enzymatic biological function are correlated. They have used a clustering methodology

together with 2 to 5 node graphlet vectors to group topologically similar proteins.

4.2 Methods

4.2.1 Metabolic networks

Bipartite (reaction and compound) graphs were used to represent metabolic networks,

generated using the KEGG LIGAND database (Kanehisa et al. (2008)). To reconstruct

the metabolic network for each species, all gene functions annotated for that species were

collected. The reactions mapped to each function were then retrieved. Finally, the com-



CHAPTER 4. TOPOLOGICAL ANALYSES 73

pounds attached to each reaction were added to produce a bipartite metabolic network

for each species. All reactions were considered as being reversible. For each reaction

were calculated 24 different features from which 22 were network topological features.

Network topological properties comprising eccentricity and betweeness concepts were

calculated using the NetworkX library in Python. The other features used elementary

mathematical functions in Python.

4.2.2 Training data

Schnoes and coworkers previously examined the annotation errors in four large pub-

lic protein databases (KEGG, GenBank NR, UniprotKB/TrEMBL and UniProtKB/Swis-

sProt) (Schnoes et al. (2009)). Schnoes and coworkers work provides gold standard sets

of correct and incorrect EC number assignments within 331 species in KEGG, across six

enzyme superfamilies. In addition to sequence similarity approaches at the superfam-

ily and family levels, the authors used information on functionally important residues to

infer misannotations, making this one of the most reliable data sources suitable for our

purposes. From their correct and incorrect annotation data, only the annotations with

EC number identified were considered. In total there were 834 correct and 477 incorrect

annotations considered. Each annotated function was mapped to a reaction according to

KEGG. Where an EC function was mapped to more than one reaction, one of these was

chosen at random.

4.2.3 Machine Learning

As with any supervised machine learning task, it is necessary to choose a machine learn-

ing method and a set of features from which to learn. Random forests (Breiman (2001))

were found to be a suitable machine learning approach for our aims. The advantages of
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using Random Forests in this work are their ability to process both numerical and categori-

cal data and the interpretability of their output (a so-called ‘white box’ model). In contrast

to other machine learning methods such as neural networks or support vector machines,

random forests can provide insights into the signals that are useful for classification.

The approach used to separate correct from incorrect predictions was Random Forests,

implemented in the randomForest R package (Liaw and Wiener (2002)). The random

forests algorithm implemented is the one described in Breiman (2001). The parameters

used in both the randomForest and predict functions were the default ones. The Ran-

dom Forest classifier is a set of decision trees. Each testing entry is classified using all the

trees present in the model. The probability of an entry being a misannotation is equal to

the proportion of trees that have classified the entry as a misannotation. For building the

ROC curves, the type = ”prob” option in the predict function was used.

4.2.4 Features

In total, 22 different topological features were considered in training the classifier. These

features can be placed into three broad groups: local, semi-local and global features (Ta-

ble 4.1). Two other features were considered: domain (Archaea, Bacteria and Eukaryota)

and whether or not the species is related to disease (Table 4.1-4E). The reason for consid-

ering these two features was to cope with potential topological differences between the

domain and disease related categories. It has been shown that the network topology can

be affected by the selection pressures applied by the environment during the evolutionary

process. These pressures can sometime result in detectable topological properties (Parter

et al. (2007); Borenstein and Feldman (2009); Kreimer et al. (2008)).

Local topological features capture the properties of the immediate neighbourhood of each

reaction. Several of these features are related to the compounds involved in the reaction,



CHAPTER 4. TOPOLOGICAL ANALYSES 75

Group Feature Definition

m Number of compounds connected to more than 2 reactions.
u Number of unpaired compounds.
t Reaction type: 1 - unpaired compounds on both sides of the reaction, 2 - unpaired

compounds on only one side, 3 - no unpaired compounds.
h Number of chokepoint compounds.
c Number of compounds.

A c<10 Number of compounds connected to more than 2 and less than 10 reactions.
c10−50 Number of compounds connected to 10 to 50 reactions

1 c>50 Number of compounds connected to more than 50 reactions.
R Number of other reactions sharing a compound with this reaction.
r̄ Mean number of other reactions connected to each compound.
r1 Number of connections of the least connected compound.
r2 Number of connections of the second least connected compound.

B r3 Number of connections of the third least connected compound.
r4 Number of connections of the fourth least connected compound.
e Eccentricity using unweighted edges,
ê Normalized eccentricity using unweighted edges.
ew Eccentricity using weighted edges

2 C êw Normalized eccentricity using weighted edges
b Betweeness using unweighted edges
bw Betweeness using weighted edges
N Number of reactions in the connected component.

3 D t1,2 Fraction of reactions of type 1 or 2 in the network.
G Domain: 1 - Bacteria, 2 - Eukaryota, 3 - Archaea.

4 E D 1 - species is related to disease, 0 - species is not related to disease.

Table 4.1: Feature analysis. The features were divided into 3 groups as shown in the first column:
1 - local topological features, 2 - semi-local topological features and 3 - global topological features.

each of which can be classified according to their connectivity (degree) as an unpaired,

chokepoint or ‘normal’ metabolite. Based on this classification, several integer attributes

were defined for each reaction (Table 4.1-1A). It was noticed that the connectivity of com-

pounds involved in a reaction tends to vary depending on enzyme class, so four additional

features were defined to capture this variation. These features correspond to the ranked

connectivities of the reaction’s four least-connected compounds (Table 4.1-1B)

The semi-local topological features describe the position of each reaction within the net-

work. These features are based on the graph theoretical concepts of betweenness central-

ity and eccentricity. The betweenness of a node is the fraction of shortest paths (geodesics)
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between all pairs of nodes in the network that include that node, whilst the eccentricity

of a node is the length of the longest geodesic between the node and all other nodes

in the network. In both cases these values were also calculated including weights on

the edges of the networks (Table 4.1-2C). Weighted metabolic networks have previously

proved useful in the automatic identification of biologically meaningful pathways within

a metabolic network (Croes et al. (2006)). This is a simple way to exclude spurious links

via very highly connected compounds such as water or ATP. Here, we place a weight on

each compound equal to its connectivity. To take variations in network size into account, a

variant of eccentricity is also considered which is normalised by dividing by the diameter

of the connected component to which the reaction belongs.

In addition to these reaction-based features, some global topological features of the net-

work may be relevant if the amount of human curation varies between species. We use the

proportion of reactions that have a dead-end compound on one or both sides as a proxy

for the overall reliability of the network (Table 4.1-3D).

4.2.5 Validation of classifier

Fivefold cross validation

The cross validation process used was to start with the original data (D) and divide it

into 5 equal sets. Each of the sets was used as an independent test set (Dtest) . Random

Forests considering all the features was applied to the remaining 4 sets (Dtrain). The

Random Forests predictor built was then tested on Dtest.
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Inter-superfamily cross validation

The training data were grouped by enzyme superfamily. Owing to the paucity of data

in most superfamilies, only the four most populated superfamilies were taken forward to

cross-validation. Each superfamily in turn was removed from the balanced dataset SF

to form the test set SFtest. Random Forests was applied to the remainder (SFtrain). The

model built was then tested on SFtest.

Final classifier

Random Forests were trained on the whole of the original data using all features. The

importance function from the randomForest R package was used to assess each feature’s

individual performance after training the model with the full learning set.

Comparison against curated models

To further validate the classifier, it was applied to 24 KEGG metabolic networks and

the results compared with curated genome-scale metabolic models for these species (Ta-

ble 4.4). The species used were the all genome models listed in Feist et al. (2009) for

which the functions were labeled with EC numbers. For each KEGG model considered

each annotated function was mapped to a reaction according to KEGG. Where a EC func-

tion was mapped to more than one reaction, one of these was chosen at random. The

classifier was applied to this data. Afterwards, the results were compared with the curated

models verifying the presence or absence in the curated models of the functions assigned

in the KEGG models.
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Tree of life analysis

Ciccarelli and coworkers Ciccarelli et al. (2006) reconstructed a highly resolved tree of

life. Their species tree was built from a concatenation of 31 unambiguous orthologs

present in 191 species. This tree and the multiple alignment used to build it were down-

load from iTOL Letunic and Bork (2007, 2011). iTOL also provides other types of data

related to these species, including genome sizes, domains per genome and publication

dates. The multiple alignment was used to calculate the distances between the species

using protdist from PHYLIP Felsenstein (1993), a package of programs for inferring phy-

logenies. The classifier was applied to the metabolic networks present in KEGG for each

species included in the iTOL phylogeny.

4.3 Results/Discussion

To gain intuition of which topological features may have a greater influence in the results,

the performance of each individual feature was evaluated independently. Histograms of

the correct and incorrect annotation data provide a visual summary (Figure 4.3). A quan-

titative evaluation of each features performance was also obtained using the importance

function from the randomForest package Liaw and Wiener (2002). This function eval-

uates the accuracy increase and the entropy decrease for each feature (Figure 4.4). The

column on the left shows the average increase of the accuracy after using each feature.

The column on the right shows the average decrease of the entropy after using each fea-

ture.

All metrics show a similar ranking between the features, with those based on the concepts

of betweenness and eccentricity seen to be the most highly predictive. The weighted

network factor seems to improve the performance of both eccentricity and betweenness
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Local topological features
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Figure 4.1: Feature histograms - Local topological features. Visualisation of the potential value
of each attribute in distinguishing the correct functional assignments from the incorrect ones (red
- incorrect annotations; blue - correct annotations).
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Semi-local topological features
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Figure 4.2: Feature histograms - Semi-local topological features. Visualisation of the potential
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(red - incorrect annotations; blue - correct annotations).
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Global topological features
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Figure 4.3: Feature histograms - Global topological features. Visualisation of the potential
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features, although it is more clearly seen in the case of eccentricity.

The taxonomic domain is the least informative feature. This may imply that the features

already considered, such as the connected component size, may already be capturing any

differences between species from different domains. The same might be happening with

the disease-related feature. For example, parasitic species may be expected to have a

larger number of unpaired compounds and smaller connected components, making this

feature less informative. However, both features still show some predictive power.

In binary classifiers, such as the one presented here, accuracy values close to 50% on a

balanced input data set show that the classifier is close to randomness and does not contain

any information. The closer to 100% the more powerful the classifier is (Sonego et al.

(2008)).The results for this classifier have been consistently around 60% showing that it

returns some valuable information.

This classifier would not be suitable as a sole means to detect misannotations in a curated

database such as Swiss-Prot, given the high rate of false positives that it would return

(Baldi et al. (2000)). However, this classifier would be useful in discriminating between a

set of possible candidates as shown with the Dittrich study example. Another possibility

to consider is to use the classifier in an ensemble of methods. Given that it does not use

sequence similarity searches, as most of the current methods do, it is likely to have a

positive impact in performance.

4.3.1 Cross validation

The performance of the classifier on unseen data was assessed using two types of cross-

validation. In fivefold cross-validation experiments (Table 4.2), the model obtained has an

accuracy of almost 86%. Figure 4.5-A shows the receiver-operator characteristic (ROC)

curves obtained for each of the cross validation folds. The mean area under the ROC curve
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Accuracy Precision Recall AUC
0.86 0.91 0.88 0.92

Table 4.2: 5 fold cross validation results. The predictive model performance was assessed by a
5 fold cross validation. The table shows the accuracy, precision, recall and AUC of this analysis.

Superfamily Accuracy AUC
Enolase 0.60 0.60
Vicinal Oxygen Chelate 0.52 0.59
Haloacid Dehalogenase 0.60 0.67
Amidohydrolase 0.66 0.68

Table 4.3: Superfamily cross validation results. To test performance on unseen enzyme classes,
the classifier was assessed in a leave-one-out cross validation at the superfamily level. The table
shows the accuracy and the AUC of each analysis, where each superfamily in turn was used as the
test data set.

(AUROC) was 0.92%. Another important aspect of performance is how well the predictor

would be expected to perform on enzymes from unseen superfamilies. To this end, a

second cross validation was performed, using as a training set the enzymes for three out

of the four superfamilies with data and testing on the enzymes from the fourth (Table 4.3).

In this experiment, with the exception of the Vicinal Oxygen Chelate superfamily, the

accuracy of the predictor was consistently above 60%. Figure 4.5-B shows the ROC

curves for each superfamily. The area under the curve varied between 0.59 and 0.68.

These results suggest that the functional classes covered in the training data do have an

effect on the rules obtained. For example, enzyme classes may occupy topologically

distinct positions in the network, and/or be subject to particular types of misannotation.

However, these results indicate that the classifier trained on the entire available data set

should still be informative when applied more generally.
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4.3.2 Comparison to a manually curated network

In order to assess the performance of the model, the classifier was applied to 24 KEGG

genome annotations. These results were compared with recent manually curated genome-

scale metabolic models as gold standards (Table 4.4 and Figure 4.5-C). The species used

were the full genome models listed in Feist et al. (2009) for which the functions were

labeled with EC numbers.

The AUC results were almost entirely above 0.5, showing a performance better than ran-

dom. In fact, in almost half of the species tested the classifier produced an AUC of 0.6

or above. There were only two cases where AUC was found to be below 0.5. The worst

result was found with Mycoplasma genitalium, perhaps related to the fact that this is the

smallest prokaryote genome sequenced.

4.3.3 An atypical orthologue case

An interesting example of the successful identification of an unexpected enzyme func-

tion is given by Dittrich and co-workers (Dittrich et al. (2008)). This work was based on

the idea that an evolving enzyme has more chance to acquire the function of structurally

similar enzymes. A bioinformatic protocol was followed to draw up a shortlist of candi-

date functional analogs of a missing enzyme (dihydroneopterin aldolase, DHNA) in the

Plasmodium falciparum folate biosynthesis pathway.

During the process, the authors found two candidates for filling the role of the missing en-

zyme. Both enzymes already had an assigned function in KEGG: PFF1360w is annotated

as a putative 6-Pyruvoyl tetrahydropterin synthase (PTPS, EC4.2.3.12) and PFL1155w as

GTP cyclohydrolase I (GTPCH-I, EC3.5.4.16). Although PFF1360w was subsequently

experimentally validated as performing the missing DHNA function, KEGG has not yet
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KEGG ID Species name AUC citation
ani Aspergillus nidulans 0.56 David et al. (2008)
ath Arabidopsis thaliana 0.57 de Oliveira Dal’Molin et al. (2010)
bsu Bacillus subtilis 0.61 Oh et al. (2007)
buc buchnera aphidicola 0.68 Thomas et al. (2009)
det Dehalococcoides ethenogenes 0.60 Islam et al. (2010)
eco Escherichia coli K-12 0.55 Reed et al. (2003)
hsl Halobacterium salinarum 0.60 Gonzalez et al. (2008)
lpl Lactobacillus plantarum 0.64 Teusink et al. (2006)
mge Mycoplasma genitalium 0.43 Suthers et al. (2009)
nme Neisseria meningitidis 0.58 Baart et al. (2007)
nph Natronomonas pharaonis 0.60 Gonzalez et al. (2010)
pfa Plasmodium falciparum 0.59 Plata et al. (2010)
pgi Porphyromonas gingivalis 0.60 Mazumdar et al. (2009)
pic Pichia stipitis 0.48 Caspeta et al. (2012)
sau Staphylococcus aureus 0.52 Lee et al. (2009)
sce Saccharomyces cerevisiae 0.56 Herrgård et al. (2008)
sce Saccharomyces cerevisiae 0.53 Förster et al. (2003)
sco Streptomyces coelicolor 0.64 Borodina et al. (2005)
sco Streptomyces coelicolor 0.63 Alam et al. (2010)
son Shewanella oneidensis 0.55 Pinchuk et al. (2010)
syn Synechocystis PCC6803 0.57 Nogales et al. (2012)
vvu Vibrio vulnificus 0.52 Kim et al. (2011a)
ypm Yersinia pestis 0.55 Navid and Almaas (2009)
zmo Zymomonas mobilis 0.61 Widiastuti et al. (2011)

Table 4.4: Genome-scale model validation results. The final classifier was applied to KEGG
metabolic models and the results compared with curated genome-scale metabolic models for these
species.

updated this annotation. This enables us to apply the classifier to the KEGG Plasmodium

falciparum metabolic network to study this case.

Taking a closer look at the two annotated reactions in their network context (Figure 3.3), it

can be seen that the PTPS reaction appears to be a dead end, indicating that this annotation

is unlikely to be correct. In contrast, the GTPCH-I enzyme not only has its reactants

produced and its products consumed, but is also assigned to four chokepoint reactions.

Applying our classifier to these two enzymatic functions, it returned a probability of 0.94

for the GTPCH-I reaction, indicating that this function seems to make biological sense
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within its network context. On the other hand, the PTPS reaction scores only a probability

of 0.21 to be a correct annotation. This simple case study shows that the classifier has

successfully captured the same network topological features that provided evidence for

an incorrect annotation in the published manual analysis of this enzyme.

4.3.4 Holes revisited
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Figure 4.6: Classifier probability distribution for KEGG’s enzymatic annotations for Plas-
modium falciparum

The protocol presented in the previous chapter had beed applied to a set of suggested

holes from a manually curated metabolic model of Plasmodium falciparum. To decide

which of the candidates for each hole is most likely to be the best candidate we need to

gather as much additional information as possible.

The classifier presented in this chapter can be one of those sources of information. Possi-

bly the best candidates are the genes that do not have any function assigned. However, if

an enzymatic function assigned to a gene is classified as unlikely to exist, this gene also

becomes a strong candidate. Table 4.5 shows the quality annotation score for each of the
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annotated functions assigned from KEGG for each of the candidates. The genes without

any enzymatic function assigned were not included in this table.

According to KEGG, the gene MAL7P1.150 has the enzymatic function cysteine desul-

furase with EC number EC2.8.1.7, although this gene was not annotated in the MPMP

database. Given that MPMP is a curated database by an expert in malaria, this annota-

tion is likely to be incorrect. The classifier presented in this chapter has given a score

of 0.17 to this gene being in accordance with its KEGG annotation. For the hole with

the enzymatic function EC1.4.4.2, there are candidates with relatively high probabilities

for their annotated functions. The two with highest scores are PFD0285c and PFL2210w

with 0.716 and 0.604, respectively. Therefore, from a topological perspective, these two

genes would be the two worse candidates, because their assigned functions seem to be

biological meaningful. On the other hand, MAL7P1.150, as already mentioned, has a

probability of 0.17. Figure 4.6 shows this value is placed in the extreme left part of the

distribution, which makes its annotation likely to be incorrect, making this gene a good

candidate to perform the missing enzymatic function.

For the holes EC2.2.1.2, EC2.5.1.54 and EC4.2.1.10 a similar situation is present. On one

side there is PF14 0381 with a probability of 0.754 and on the other side is PF10 0210

with a probability of 0.228. Therefore, for the same reason presented above, from a topo-

logical perspective, PF10 0210 would the best candidate from the three genes presented

in the table.

4.3.5 Comparison of predicted annotation quality across multiple species

To investigate how annotation quality varies between species, the classifier was applied

to the KEGG metabolic networks of the species present in the tree of life provided by

iTOL (Letunic and Bork (2007, 2011)). The proportion of enzymatic functions predicted
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Hole Superfamily Seq. id EC Numb UC CP Score
KEGG MPMP KEGG MPMP

1.4.4.2 53383 PFL0255c 2.9.1.2 0 0 0 0 0.208
PFD0285c 4.1.1.18 0 0 1 0 0.716
PFL2210w 2.3.1.37 1 1 1 1 0.604
PFB0200c 2.6.1.1 1 1 2 2 0.282
MAL7P1.150 2.8.1.7 0 - 1 - 0.17
PFF0435w 2.6.1.13 0 1 1 1 0.578
PFL1720w 2.1.2.1 1 1 1 1 0.41

2.2.1.2 51569 PF10 0210 4.1.2.4 0 0 0 0 0.228
2.5.1.54 PF14 0381 4.2.1.24 1 1 1 1 0.754
4.2.1.10 PF14 0425 4.1.2.13 1 1 0 0 0.594
1.1.1.25 53223 PF08 0132 1.4.1.2 1 1 0 0 0.504

PF14 0164 1.4.1.4 1 1 0 0 0.71
PF14 0286 1.4.1.4 1 1 0 0 0.71

Table 4.5: The result for MPMP holes. The final classifier was applied to the pathway holes
suggested by MPMP. The first column represents the hole’s EC number. The second column indi-
cates the superfamily to which the candidates belong. The Seq.id column are the gene IDs of each
candidate. The fourth column shows the enzymatic function with which each candidate was anno-
tated, according to KEGG. The fifth and sixth columns show the number of reactions with unpair
compounds each enzyme catalyses according to KEGG and MPMP, respectively. The seventh and
eighth columns show the number of reactions with chokepoint compounds each enzyme cataly-
ses according to KEGG and MPMP, respectively. In the last column are the classifier probability
results for each of the candidate.

to be correctly annotated in the network of each species (i.e. the predicted precision

of the set of enzymatic functions reported by KEGG for that organism) was taken as a

measure of annotation quality. Figure 4.7 shows the prokaryote phylogenetic tree and

quality scores for each of the species. The E. coli strains and the most closely related

species produce the highest scores, indicating their higher levels of curation. With the

exception of Chlamydiae/Verrucomicrobia and the Cyanobacteria, all phyla show a wide

variety of accuracy scores.

The number of eukaryotic species provided by iTOL is much smaller than the number of

prokaryotes. Figure 4.8 shows the eukaryote phylogenetic tree and the quality scores of

the KEGG metabolic networks for each of the species. The vertebrates and plants pro-

duce higher scores than the other species. A possibly unexpected result is the relatively

low score reported for the yeast Saccharomyces cerevisiae and the fruit fly Drosophila



CHAPTER 4. TOPOLOGICAL ANALYSES 90

Actinobacteria

Spirochaetes

Firmicutes

Bacteroidetes/Chlorobi

Deinococcus-Thermus

Cyanobacteria

Deltaproteobacteria

Epsilonproteobacteria

Acidobacteria

Alphaproteobacteria

Betaproteobacteria

Gammaproteobacteria

Chlamydiae/Verrucomicrobia

0.64

0.56

0.62

0.54
0.67

0.57

0.62

0.47

0.55

0.78

0.46

0.74

0.54

0.55

0.62

0.57

0.48

0.44

0.43

0.77
0.81

0.51

0.56

0.55

0.64

0.65

0.48

0.52

0.73

0.53

0.42

0.58
0.67

0.42

0.54

0.51

0.72

0.47

0.53

0.51

0.42

0.49

0.55

0.50

0.47

0.54

0.53

0.50

0.53

0.39

0.40

0.53

0.43

0.52

0.52

0.43

0.50

0.70

0.54

0.59

0.45

0.53

0.55
0.53

0.69

0.78

0.45

0.52

0.79

0.51

0.48

0.51

0.53

0.51

0.55

0.56

0.47

0.53

0.46
0.46

0.50

0.56

0.53

0.55

0.51

0.53

0.47

0.49

0.57

0.50

0.69

0.48

0.48

0.49

0.49

0.75
0.57

0.64

0.76

0.68

0.52
0.85

0.49

0.64

0.46

0.75

0.85
0.78

0.70

0.53

0.67

0.74

0.81

0.57

0.67

0.55

0.83

0.56

0.73

0.79

0.74

0.62

0.77
0.86

0.81
0.86

0.77

0.74

0.47

0.88

0.75
0.75

0.69

0.84

0.48
0.47

0.79

0.47

0.76

0.75
0.78

0.83

0.49

0.43

Escherichia coli EDL933
Escherichia coli O157 H7
Escherichia coli K12
Shigella flexneri 2a 2457T
Shigella flexneri 2a 301

Salmonella enterica
Salmonella typhi

Salmonella typhimurium

Yersinia pestis Medievalis
Yersinia pestis KIM
Yersinia pestis CO92

Photorhabdus luminescens

Blochmannia floridanus
Wigglesworthia brevipalpis
Buchnera aphidicola Bp
Buchnera aphidicola APS
Buchnera aphidicola Sg

Pasteurella multocida
Haemophilus influenzae

Haemophilus ducreyi

Vibrio vulnificus YJ016
Vibrio vulnificus CMCP6

Vibrio parahaemolyticus
Vibrio cholerae
Photobacterium profundum
Shewanella oneidensis

Pseudomonas putida
Pseudomonas syringae

Pseudomonas aeruginosa

Xylella fastidiosa 700964
Xylella fastidiosa 9a5c
Xanthomonas axonopodis
Xanthomonas campestris

Coxiella burnetii

Neisseria meningitidis A
Neisseria meningitidis B

Chromobacterium violaceum

Bordetella pertussis
Bordetella parapertussis
Bordetella bronchiseptica

Ralstonia solanacearum

Nitrosomonas europaea

Brucella suis
Brucella melitensis
Rhodopseudomonas palustris
Bradyrhizobium japonicum

Caulobacter crescentus

Wolbachia sp. wMel
Rickettsia prowazekii
Rickettsia conorii

Helicobacter pylori J99
Helicobacter pylori 26695

Helicobacter hepaticus
Wolinella succinogenes
Campylobacter jejuni

Desulfovibrio vulgaris
Geobacter sulfurreducens
Bdellovibrio bacteriovorus

Acidobacterium capsulatum
Solibacter usitatus

Fusobacterium nucleatum
Aquifex aeolicus
Thermotoga maritima

Thermus thermophilus
Deinococcus radiodurans

Dehalococcoides ethenogenes

Nostoc sp. PCC 7120
Synechocystis sp. PCC6803

Synechococcus elongatus

Synechococcus sp. WH8102
Prochlorococcus marinus MIT9313

Prochlorococcus marinus SS120
Prochlorococcus marinus CCMP1378

Gloeobacter violaceus

Rhodopirellula baltica
Leptospira interrogans L1130
Leptospira interrogans 56601

Treponema pallidum
Treponema denticola

Borrelia burgdorferi

Tropheryma whipplei TW08/27
Tropheryma whipplei Twist

Bifidobacterium longum

Corynebacterium glutamicum 13032
Corynebacterium glutamicum

Corynebacterium efficiens
Corynebacterium diphtheriae

Mycobacterium bovis
Mycobacterium tuberculosis CDC1551
Mycobacterium tuberculosis H37Rv

Mycobacterium leprae
Mycobacterium paratuberculosis

Streptomyces avermitilis
Streptomyces coelicolor

Fibrobacter succinogenes
Chlorobium tepidum
Porphyromonas gingivalis
Bacteroides thetaiotaomicron

Chlamydophila pneumoniae TW183
Chlamydia pneumoniae J138
Chlamydia pneumoniae CWL029
Chlamydia pneumoniae AR39

Chlamydophila caviae

Chlamydia muridarum
Chlamydia trachomatis

Thermoanaerobacter tengcongensis

Clostridium tetani
Clostridium perfringens

Clostridium acetobutylicum

Mycoplasma mobile
Mycoplasma pulmonis

Mycoplasma pneumoniae
Mycoplasma genitalium

Mycoplasma gallisepticum
Mycoplasma penetrans
Ureaplasma parvum

Mycoplasma mycoides
Phytoplasma Onion yellows

Listeria monocytogenes F2365
Listeria monocytogenes EGD

Listeria innocua

Oceanobacillus iheyensis
Bacillus halodurans

Bacillus cereus ATCC 14579
Bacillus cereus ATCC 10987

Bacillus anthracis
Bacillus subtilis

Staphylococcus aureus MW2
Staphylococcus aureus N315
Staphylococcus aureus Mu50

Staphylococcus epidermidis

Streptococcus agalactiae III
Streptococcus agalactiae V
Streptococcus pyogenes M1
Streptococcus pyogenes MGAS8232
Streptococcus pyogenes MGAS315
Streptococcus pyogenes SSI1

Streptococcus mutans

Streptococcus pneumoniae R6
Streptococcus pneumoniae TIGR4

Lactococcus lactis
Enterococcus faecalis

Lactobacillus johnsonii
Lactobacillus plantarum

Figure 4.7: Predicted quality of draft metabolic networks across a prokaryote phylogeny.
The classifier was applied to all prokaryote species present in the iTOL phylogeny (Letunic and
Bork (2007, 2011)). Coloured clades represent the different phyla present (only phyla with more
than 1 species were coloured). The names of the phyla are shown to the right. Predicted annotation
quality values are represented by grey bars next to the species name.
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Figure 4.8: Predicted quality of draft metabolic networks across a eukaryote phylogeny.
The classifier was applied to all eukaryote species present in iTOL. To the left is the eukaryote
phylogenetic tree. The quality values are represented by bars next to the species names.

melanogaster (both 0.73), especially when compared with those achieved by the verte-

brates. However, this most probably reflects the massive amount of study that human

biochemistry has received relative to any other eukaryote, including these two important

model organisms.

It is reasonable to expect that the quality of a draft metabolic network should be better for

species that are closely related to organisms with well characterised biochemistry. Fig-

ure 4.9 shows that this is indeed the case: there is a clear negative correlation (R2 = 0.393)

between the predicted annotation quality in prokaryotes and the phylogenetic distance to

E. coli and an even stronger negative correlation (R2 = 0.779) between the predicted

annotation quality in eukaryotes and the phylogenetic distance to H. sapiens.

To check for any dependency between annotation quality and genome size, a similar scat-

ter plot was drawn (Figure 4.10). Although a positive correlation appears to be present,

this may be explainable by other factors. In particular, the intracellular obligate species

(highlighted in green in Figure 4.10) and the well curated species (highlighted in or-

ange), constituted by the E. coli strains and very closely related species (Salmonella and

Yersinia), have distinctly low and high quality scores, respectively. Since intracellular

obligate species will tend to have lost many genes that are necessary for free-living or-
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Figure 4.9: Variation of predicted quality of draft metabolic networks. left: Scatter-plot
showing predicted annotation quality (precision of annotated reactions according to the classifier)
for eukaryotes against phylogenetic distance to H. sapiens. right: Scatter-plot showing predicted
annotation quality (precision of annotated reactions according to the classifier) for prokaryotes
against phylogenetic distance to E. coli (Ciccarelli et al. (2006)).The shaded region shows the
95% confidence interval for the regression line.

ganisms Ochman and Moran (2001), their genomes are smaller than average: intracellular

obligates are almost exclusively at the bottom left of the plot. The low quality scores for

this group of species (Figure 4.10) may indicate either an increased difficulty in recon-

structing their metabolic networks by automatic methods or simply the known general

topological differences between their metabolic networks and those of the other prokary-

otes (Ochman and Moran (2001)). These two groups of species tend to enhance the

correlation between predicted annotation quality and genome size. Without these species

the correlation becomes slightly weaker (changing from R2 = 0.51 to R2 = 0.48).

In addition to the intracellular obligates and well-studied bacteria, the box plots in Fig-

ure 4.11 show the predicted annotation quality for two further sets of species: those with

available manually curated genome-scale reconstructions (GENREs, Price et al. (2004))

and those that are facultatively intracellular. We can clearly see the low quality scores in
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Figure 4.10: Variation of predicted quality of draft metabolic networks. left: Scatter-plot
showing predicted annotation quality against genome size in eukaryotes: The species are divided
in Animals, Fungi, Plants, Protists and others. The shaded region shows the 95% confidence
interval for the regression line. right: Scatter-plot showing predicted annotation quality against
genome size: orange - well studied species (E. coli strains and the very closely related species
(Salmonella and Yersinia)); green intracellular obligate species. The shaded region shows the
95% confidence interval for the regression line.

the obligate (though not the facultative) intracellular species (p-value=1.158e-08) and the

high accuracy scores in the well-studied species set (p-value=3.055e-06). However, the

extra curation possibly provided by the existence of a GENRE is not seen to be reflected

in the semi-automated annotations within KEGG.

For prokaryotes, possible dependencies on other species attributes were also considered:

motility, phylum, pathogenicity, oxygen requirement and habitat (Figure 4.11). The qual-

ity scores do not appear to depend on these attributes, with the exception of habitat: the

species living in specialised habitats have lower accuracy scores compared to all other

species (p-value=4.334e-08). As stated above, specialised environments may be respon-

sible for differences in selective pressures that could result in detectable differences in

metabolic network topologies.
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The possible link between annotation quality and genome size was also checked in eu-

karyotes. According to Figure 4.10 a positive correlation could be present. However,

closer inspection shows that there are two well defined groups that contribute to this cor-

relation. Towards the bottom left (small genomes, low annotation quality) are the protists

and the fungal species and at the top right are a group of animals (mostly vertebrates) and

plants. Taken together with the fact that the number of species present is small, there does

not appear to be any strong evidence for a direct link between genome size and annotation

quality.

For both eukaryotes and prokaryotes other possible dependencies were also studied. Ex-

amples of these were the number of publications existent for each species and the year

that the models considered were published. However there were no significant correla-

tions between the quality of the model and these factors (data not shown).

4.4 Conclusion

The study presented in this chapter has demonstrated that simple topological features can

be used to predict incorrect functional annotations within metabolic networks. The Ran-

dom Forest classifier has not only achieved high overall cross validation accuracy but has

also been shown to be informative when applied to enzymes belonging to superfamilies

that were not used in training. This approach is entirely independent of sequence proper-

ties, so could be used to support automated metabolic reconstruction pipelines as well as

helping to identify incorrectly annotated enzymes within public databases.

For both prokaryotes and eukaryotes, it appears that the quality of automated metabolic

reconstruction decreases with phylogenetic distance to the major model organism for bio-

chemistry, E. coli and human, respectively. However, differences in network topology
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between free-living organisms and obligate intracellular species may make the classifier

less accurate when applied to the latter group of species. Given a larger amount of training

data, it should be possible to produce separate classifiers for each of these two groups.



Chapter 5

Phylogenetic analyses predict functional

changes in an enzyme superfamily

5.1 Introduction

Genome evolution is the result of complex events such as gene duplication, loss and spe-

ciation. These events are essential for species to adapt to the environment and the identi-

fication of these events is fundamental in order to understand the emergence and loss of

cellular functions. For example, a gene is constantly suffering mutations and when a gene

gets duplicated, the genome then has two identical genes whose encoded proteins have the

same function. This may result in the accumulation of mutations in one or both sequences

without affecting the fitness of the organism. These mutations can cause changes in the

3D structure of the protein which may result in the acquisition of a new function or the

subfunctionalisation of existing functions (Tokuriki and Tawfik (2009); Nowak (1997)).

Moreover, the identification of conserved residues may be a decisive resource to assign

functions to currently unannotated proteins. This conservation is a result of evolutionary

97
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constraints suggesting that changes on these residues may cause severe changes in the

protein. Residues that directly interact with the ligand or that are related with the protein

structure tend to be more conserved during evolution. Hence, the presence of similar

conserved residues may indicate that two proteins preform similar functions. Therefore, to

make more accurate functional transfer it is important to understand how new enzymatic

functions evolve from existing ones.

There has been already some research regarding the understanding of the evolutionary

mechanisms. Good examples are the SCOP (Murzin et al. (1995)) and CATH (Orengo

et al. (1997)) databases that attempt to organise the several known domains into several

levels using evolutionary relations. These databases are used as the basis for studies of ho-

molog gene searches, as for example shown in Chapter 3. At a more complex level there

is FunTree. FunTree brings together several data sources important for the study of func-

tion evolution. Publicly accessible, it uses the evolutionary levels groups built by CATH,

together with functional information from reliable sources such as UniProtKB (Boutet

et al. (2007)) and enzyme reaction mechanisms from MACiE (Holliday et al. (2005)),

taking also into consideration catalytic residues from the Catalytic Site Atlas (Porter et al.

(2004)). It groups the proteins by superfamily domains and structurally similar groups

and presents them in a phylogenetic perspective. These types of resources allow the study

of divergence and convergence of enzymatic functions, functional diversification within

and across superfamilies, and the relationship between structure and catalytic function.

This chapter provides an evolutionary perspective on gene function annotation. Phyloge-

netic trees will be the basis for our comparative genomic analyses and allow us to analyse

the evolution of homologous domains between closely related species. Moreover, phy-

logenetic trees can help us to understand how and when a group of genes have acquired

a different function from their orthologues and, for example, detect cases of convergent

evolution like the one identified in Dittrich et al. (2008).
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Figure 5.1: Phylogenetic tree analyses objective. The objective of this chapter is to build a
phylogenetic tree for each superfamily where its branch lengths describe the enzymatic function
evolution. Therefore, longer branches would be more correlated with enzymatic function change.
In a normal tree we expect to have several clusters with genes with similar enzymatic functions
(represented with green, pink, blue and red). Some of the genes annotations are based on exper-
imental evidence (light red background) and some of the cluster would include candidate genes
for the species in focus (Cyan background). Although candidate2 gene may be expected to have
the same enzymatic function as the other genes in the green cluster, the long branch that precedes
it (marked with a red cross) might be an indication of a enzymatic functional change making it a
good candidate for the hole we are trying to fill.
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Briefly, I have built a predictor able to find evidence that might lead us to identify the

misannotation of a gene or, possibly, evidence that might help us assign a new function

to a certain domain. So, the aim is to detect possible function changes, by correlating

functional change with tree branch lengths and with evolutionary events such as gene

duplication and selective pressure scores (Figure 5.1).

5.2 Methods

Figure 5.2 provides with an overview of the different steps in the analyses made in this

chapter.

5.2.1 Homolog search

The protocol used to build the phylogenic trees integrates the protocol presented in Chap-

ter 3. Briefly, the input of the protocol from Chapter 3 is an enzymatic function EC

number. Using the PDB database, the protocol searches for all the PDB protein entries

with the EC number input assigned. Afterwards, using the SCOP database, the protocol

retrieves all the different superfamilies IDs to which the proteins gathered from the PDB

database belong. The last step queries the SUPERFAMILY database for all the genes of

the target species that have domains classified to one of the superfamily ids returned from

SCOP (see Chapter 3 for more details).

5.2.2 Phylogenetic trees

To build the phylogenetic trees, the protocol described above was applied to a set of

model organisms covering the tree domains: Eukaryota, Archaea and Bacteria (Table 5.1).



CHAPTER 5. PHYLOGENETIC ANALYSES 101

Homology Search

Domain Alignment
(for each superfamily)

Phylogenetic trees
(neighbour joining)

Parsimony Maximum 
likelihood

(Chapter 3 protocol)

(Muscle)

(Phylip package)

Branch recalculation (PAML)

Alignment 
Strip

All interactive 
residues

Functional change (PARS)

Branch recalculation (PAML)

Alignment Strip

Tree reconciliation

Functional change

(BayesTraits)

(Notung)

Figure 5.2: Overview of the different steps and analyses made in this chapter. The analysis
pipeline starts with the protocol presented in Chapter 3. Afterwards, for each superfamily the do-
mains found are aligned using Muscle and then the phylogenetic trees are built using a neighbour
joining approach. To infer functional change two different approaches were used: parsimony (left)
and maximum likelihood (right). For the parsimony method, two different branch recalculation
methods were considered: alignment strip and all interactive residues. For each one the functional
change inference was done using PARS. For the Maximum likelihood evolutionary traits were also
considered, for which Notung was used to make the tree reconciliation. The branch recalculation
was done using only the Alignment strip approach. Finally, the functional change inference was
done using BayesTraits.



CHAPTER 5. PHYLOGENETIC ANALYSES 102

Each of the superfamily groups obtained using the protocol described above was aligned

using MUSCLE (Edgar (2004)). After aligning, to build the phylogenetic tree I used a

neighbor joining approach (Saitou and Nei (1987)). I first calculated the matrix distance

with protdist and then with bionj built the tree. The matrix distance calculates the pairwise

distance between all the sequences. This matrix is then used by bionj that tries to build

the tree that better explains those distances. To add more confidence to the constructed

tree, the tree is bootstrapped using seqboot. Both protdist and seqboot belong to phylip

(Felsenstein (1993)), a package of programs for inferring phylogenies. To build a tree

that better describes the evolutionary history of a superfamily group, the branches with

low bootstrap score must be collapsed because there is little support that such branches

do really exist. Therefore, the branches that had a bootstrap score of less that 50% were

collapsed (Górniak et al. (2010)).

5.2.3 Branch length recalculation

The branch recalculation was done by applying a maximum likelihood strategy using

codeml from PAML [37] (Figure 5.4). PAML (Yang (1997)) is a package of programs for

phylogenetic analyses using maximum likelihood. Two different approaches were used:

alignment strip (Figure 5.3-A) and all interacting residues (Figure 5.3-B) approaches.

The alignment strip approach is the simplest one. It does not require any additional in-

formation besides the multiple alignment. It simply extracts the columns with less than

30% of gaps. Several cutoffs values were tested. However, little difference was found be-

tween the resulted mutiple alignments above 30%. For this reason I decided to consider

30%.This is done to remove the residue columns that express little or no evolutionary re-

strictions, so that the distance between the sequences expresses as much as possible these

residues that define the protein structure and function. The filtered alignment is then used
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Domain Species
Eukaryota

Trypanosoma brucei gambiense
Aspergillus nidulans
Neurospora crassa
Schizosaccharomyces pombe
Arabidopsis thaliana
Caenorhabditis elegans
Drosophila melanogaster
Anopheles gambiae
Mus musculus
Homo sapiens
Xenopus laevis
Gallus gallus
Saccharomyces cerevisiae
Dictyostelium discoideum

Archaea
Halobacterium salinarum
Sulfolobus tokodaii

Bacteria
Escherichia coli
Neisseria meningitidis
Helicobacter pylori
Bacillus subtilis
Mycoplasma genitalium
Mycobacterium tuberculosis
Chlamydia trachomatis
Treponema pallidum
Aquifex aeolicus

Table 5.1: Model species selected. The protocol was applied to all the species present in this
table covering the Eukaryota, Archaea and Bacteria domains

to feed the PAML software (Figure 5.4). To do the branch length recalculation, a maxi-

mum likelihood strategy was chosen because, unlike neighbour joining, it allows branch

length recalculation without changing a given tree topology. So, the branch recalculation

was done by applying a maximum likelihood strategy using codeml from PAML.

The other method, in more detail, performs further transformations on the initial multiple

alignment before feeding the PAML software. It starts by taking from FireDB the proteins

that were assigned by SCOP to the superfamily in focus. The FireDB database (Lopez
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Figure 5.3: Branch recalculation protocol - column extraction approaches. A- alignment strip
approach; B- all interacting residues approach.

et al. (2007)) gathers information about known functionally important residues. This

includes residues that perform binding activities and residues that have catalytic functions.

This database has two main sources of information. On the one hand it uses PDB crystal

structures to identify the close atomic contacts and, on the other hand, it makes use of the

Catalytic Site Atlas (Porter et al. (2004)) to get reliably annotated catalytic residues.

Using MUSCLE, every protein sequence is aligned to the superfamily multiple align-

ment. Knowing, from the FireDB file, the functionally important residue positions of

the proteins, these positions are mapped onto the multiple alignment, identifying in this

way the columns where each important residue was aligned. To collect all columns that

contain important residues, a binary profile of important residues per substrate in the mul-

tiple alignment is made, identifying the different columns where each substrate has an

interacting residue. this has a 1 if the column corresponds to an important residue and 0,

otherwise. Afterwards, the profile lines are merged to identify all the potential interacting

columns. This information is then used to strip the superfamily alignment where every
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Figure 5.4: Branch recalculation protocol.
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column without any important residue is removed.

5.2.4 Functional change

The gene functional annotations used were taken from the KEGG database. To have the

cleanest trees possible, only the genes with complete EC numbers were considered. To

infer functional change events on tree branches I used two different methods. The first

method applied pars from the phylip phylogenetic programs package (Felsenstein (1993))

to the collapsed trees. Pars applies a parsimony approach to infer the functional change

history of a phylogenetic tree. The parsimony approach considers the tree with the least

number of functional changes as the best evolutionary explanation. Ordinarily, pars does

not handle more than 8 different states. However, in most of our phylogentic trees there

are more than 8 different functions. So, to overcome this limitation we had to change the

part of the code that restricted the number of states.

The parsimony approach only accounts for the optimal trees. However, this can be a

problem if there are several equally optimal trees that differ in their ancestor states. To

take this uncertainty into account, the second method used was BayesTraits (Pagel and

Meade (2007)). BayesTraits can only be applied to binary trees. The methodology used

to build the binary trees is described below.

5.2.5 Tree reconciliation

One possible way to account for evolutionary traits such as duplication and speciation

events when studying gene evolution is through the use of gene tree reconciliation. This

aims to describe the gene tree evolution within a species tree. Using an accurate species

tree and a gene tree, tree reconciliation expresses the evolution of the gene tree using
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gene duplications and losses as explanations for incongruences between the species tree

and the gene tree.

I used Notung (Chen et al. (2000)) to perform tree reconciliation in the superfamily trees.

Notung is a framework that incorporates several phylogenetic tasks such as tree recon-

ciliation, identification of gene duplications events or tree rooting. As gene duplica-

tion and gene loss are rare events, Notung uses the parsimony approach to infer these

evolutionary events. Tree reconciliation requires a species phylogenetic tree and a gene

phylogenetic tree. The phylogenetic tree was taken from the SUPERFAMILY database.

SUPERFAMILY uses a maximum-likelihood phylogenetic estimation with RAxML Sta-

matakis (2006)) to construct the species tree for all completely sequenced genomes. They

consider in all the genomes the presence/absence of molecular characters like domain

architectures, superfamilies and families.

The gene tree used previously had been collapsed for the branches with less than 50%

bootstrap score. To make analyses on evolutionary events it is better to use a binary tree

otherwise for example, we might get the situation where a node has 10 children and 5

duplications. In this cases there would not be possible to define a branch/duplication

event association. This was done using Notung. Afterwards, using Notung the trees

were rerooted so as to describe the evolutionary history of the gene tree that had the

least duplication/loss events. This was done for the reason already mentioned above, that

duplication and loss events are believed to be rare. Finally, the tree’s branch lengths were

recalculated using PAML and tested using the alignment strip approach.

5.2.6 Selective pressures

To search for adaptive evolution events I used the HyPhy package (Pond and Muse (2005)),

a platform that provides likelihood-based tools for sequence evolution analyses. I ran the
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branch-site model (Yang and Nielsen (2002)) to detect instances of episodic diversify-

ing selection, as it might be expected for a functional change event. Between the output

measures returned by HyPhy, I considered two. One of the measures represents the aver-

age dN/dS between all the ancestor states and the other represents an uncorrected p-value

derived from a likelihood ratio test for the hypothesis that dN/dS> 1 for some of the sites.

5.2.7 Machine learning

The approach used to identify function change events was Random Forests, implemented

in the randomForest R package (Liaw and Wiener (2002)). The random forests algo-

rithm implemented is the one described in (Breiman (2001)). The parameters used in

both randomForest and predict functions were the default ones. For building the ROC

curves, the type = “prob′′ option in the predict function was used.

5.3 Results and Discussion

To find evolutionary features that correlate with changes in function, we need to first

build the tree that represents the evolutionary relationships of the given superfamily as

accurately as possible.

We have constructed a computational protocol that, given an EC number returns gene

domain sequences grouped by superfamilies from the target species (See methods). Af-

terwards, the domains for each superfamily are aligned using MUSCLE. The protocol

was applied to 21 EC Numbers, resulting in 14 unique superfamilies. Only the super-

families with at least two different enzymatic functions and 10 domains with a complete

EC number annotation were considered, reducing the number to 9 unique superfamilies

(Table 5.2).
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EC number Superfamily Selected Bayestraits
1.1.1.25 53223 X
1.3.99.2 56645 X X
1.3.99.3 56645 X X
1.4.4.2 53383 X -
1.13.11.27 54593 X X
2.1.1.13 52242 -

56507 -
2.2.1.2 51569 X -
2.5.1.18 52833 X -

54593 X X
2.5.1.54 51569 X -
2.7.1.23 111331 - -
2.7.4.16 - - -
3.1.3.25 56655 X X
3.1.3.27 - - -
3.1.3.57 56655 X X
3.5.1.63 - - -
4.1.2.25 55620 X X
4.2.1.10 51569 X -

52304 - -
4.2.1.75 69618 - -
4.2.3.4 - - -
5.3.3.8 52096 X -
6.1.1.24 - - -

Table 5.2: EC numbers used as input to the protocol. The protocol was applied to all the EC
numbers present in the first column. In the second column are all the superfamilies to which at
least one structure with the respective EC number was found in the PDB. In the Selected column
are indicated the superfamilies with more than one different enzymatic function and more than
10 domains with a complete EC number. The fourth column indicates which superfamilies was
possible to apply the Bayestraits approach to infer functional change events.

5.3.1 Branch recalculation

Tree branch recalculation using more restricted and meaningful information, like the in-

teracting residues, might improve the description of the function history of the sequences

of a given superfamily (Figure 5.4). This may also increase the sensitivity of function

change prediction from the branch lengths. To investigate this hypothesis, two methods

were tested.
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Figure 5.5: Branch length recalculation distributions Visualisation of potential value of each of
the approaches (Alignment strip and All interacting residues) in distinguishing between functional
change and no functional change events (red - no functional change; green - functional change).

We used two different approaches in order to identify the best way to describe the super-

family gene history (Figure 5.3). What differs between these approaches is the specific set

of multiple alignment columns extracted from the overall superfamily alignment. Each

alignment is fed to PAML together with the superfamily phylogenetic tree, previously

built using a neighbour joining approach. As described in the methods sections, alignment

strip is focused on the most conserved columns in the alignment and the all interacting

residues approach uses information about functionally important residues.

5.3.2 Function change - parsimony approach

As described in the methods, to infer the functional change for the parsimony approach

I used pars. For each branch in the tree, pars returns one of three possible states: ‘yes’

if there is a function change; ‘no’ if there is not a function change; ‘maybe’ if is not
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conclusive. I did not consider the branches assigned with a ‘maybe’. This has decreased

the number of branches analysed. Using the Kolmogorov-Smirnov test, the predictive

potential of the Alignment strip (p-value = 0.0004774) and All interacting residues (p-

value = 0.0003775) approaches using a parsimony approach is shown in Figure 5.5.

Overall, no matter what approach we used, the branches that correspond to no functional

change tend to have smaller branch lengths. For a 4 EC digit change the AUC is around

73% for both approaches. As expected, the AUC is greater for the changes in the third

EC number digit, being on both cases around 80%. Therefore, this shows that there is a

strong correlation between branch length and functional change. Regarding the two main

methods for choosing more meaningful residues, the results show little difference between

the two. The fact that the important residues do not strongly increase the performance

compared with the strip approach might be a result of the large functional diversity that a

superfamily can include.

5.3.3 Function change - Bayesian approach

Using now a Bayesian approach, the branch length and functional change was again anal-

ysed. Although the parsimony approach has achieved promising results, as stated before,

it did not return a conclusive result for every branch. Figure 5.6 shows the branch length

distributions resulted from using BayesTraits. Branches with function change tend to be

longer. This difference between the two cases is reinforced by the Kolmogorov-Smirnov

test (p-value = 1.408e−11). This corroborates the results achieved with the parsimony

approach.
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Duplication
0 1

Function 0 100 25
change 1 18 20

Table 5.3: Gene duplication results.
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Accuracy Specificity Sensitivity
0.736196 0.52631 0.8

Table 5.4: Simple predictor results.

5.3.4 Gene duplication and selective pressure

Besides the branch length I also tested the correlation between function change following

duplication events and function change with two selective pressure scores (dN/dS and

p-value). In the case of the duplication events the results show a correlation. Using

Fisher’s exact test we can see that there is a significant difference (p-value = 0.0001671)

between the proportion of function change events in relation to duplication events. The

proportion of function change events after duplication is around 44%, otherwise is 15%.

To study in more detail this correlation we defined a simple predictor as follows: if there

is a duplication event there is a function change; if not, there is not a function change.

Table 5.4 shows the accuracy, specificity and sensitivity of the predictor. The accuracy is

above 73% and it has a low specificity and a high sensitivity. This means that, although

a duplication event does not imply a function change, from these results we can conclude

that gene duplications favour functional change.

For the two selective pressure scores, the results were not as promising as the correlation

presented above for duplication events. The distribution in the two cases did not show any

significant difference between the existence or not of functional changes (dN/dS: p-value=

0.3154 ; p-value: p-value=0.6953).

5.3.5 Predictor testing

To build a predictor to detect function change I have selected two of the several features

tested in this study: branch length and duplication events. By their distributions, these

two features were the only ones that were demonstrated to have predictive qualities. As
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AUC S. d.
0.891 0.046

Table 5.5: 4 fold cross validation results. The predictive model performance was assessed by a
4 fold cross validation. The table shows the AUC and the standard deviation of this analysis.

55620 56645 56655 54593
0.753 0.988 0.925 0.969

Table 5.6: Superfamily cross validation results. To test performance on unseen enzyme classes,
the classifier was assessed in a leave-one-out cross validation at the superfamily level. The table
shows the AUC of each analysis, where each superfamily in turn was used as the test data set.

mentioned in methods, the Machine Learning method used was Random Forests with the

same R package as used in Chapter 4.

To test the predictor I performed several cross-validation tests (Figure 5.8). Figure 5.8-A

shows the 4-fold cross validation between function change and no change. The predic-

tor showed a very high performance (Table 5.5) of almost 0.9 AUC. To study if these

results could be extrapolated to other phylogenetic trees I performed a cross validation

test where the model was trained with all trees leaving just one out in turn that would

be used for testing (Figure 5.8-B). Once again the accuracy results were very high (Ta-

ble 5.6). Changes on the 4th EC number digit correspond to a function change at the

level of the substrate specificity. Therefore, the difference between the sequence of two

proteins whose enzymatic functions only differ in the last EC number digit may be very

subtle and more challenging to detect than differences at a higher EC number level. To

see how well the predictor could detect these differences, the function changes were di-

vided into three different groups. Besides the group with no changes, in one group were

included the changes at the 4th EC number digit level, and in the third group joined all the

other types of enzymatic function changes that will be referred as 3 digit change group.

Using the three groups, the predictor was tested to see if it could distinguish between

the three enzymatic function levels. Figure 5.8-C/D/E and (Table 5.7) show the results
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Figure 5.8: Predictor ROC curves results.

Functional change AUC S. d.
3EC - No change 0.99 0.0649
3EC - 4EC 0.786 0.112
4EC - No change 0.801 0.093

Table 5.7: Predictor results. The predictor test performance distinguishing between different
levels of functional change. The table shows the AUC and the standard deviation of each analysis.

when testing: 3 digit change against no change; 4 digit change against 3 digit change

and 4 digit change against no change. In all the cases the predictor had a significant high

performance. As expected, it was revealed to be more difficult to distinguish between a

change at the substrate level and no change than between a change at a higher EC number

level and no functional change. However, the AUC was still around 80%. The predictor

showed similar results when distinguishing the changes at the substrate level from the

other ones.
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5.4 Conclusion

The results of this study have shown that evolutionary events such as branch length and

gene duplication have a high correlation with function change. Moreover, when joined

in a predictive model high accuracy results were achieved. The classifier has not only

been able to identify function change events but also to successfully distinguish between

different levels of enzymatic functional change.



Chapter 6

Discussion

6.1 Conclusions

Fully automated metabolic reconstructions are still far behind manually curated models in

terms of accuracy and completeness. This thesis has not only contributed to diminishing

the gap between automatic and manual approaches, but has also shown that they can be

complementary.

This thesis has presented novel approaches for the improvement of automated models,

which exploit a variety of different techniques and concepts.

PathwayBooster provides a bridge between automated and manual modelling by making

relevant information more easily accessible to modellers and hence decreasing the time

required for curation. It combines information from well known metabolic and enzymatic

databases such as KEGG and BRENDA. It also provides sequence based information

using reciprocal best hits from BLAST. Moreover, based on KEGG’s pathways, Path-

wayBooster provides a means to visualise information relating to several species at the

same time, which is essential for the detection of inconsistencies and allows differences
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between different species to be spotted. Chapter 2 also presented examples where Path-

wayBooster has been used and highlighted some of its properties.

Compared with the available software, PathwayBooster is the most focused in provid-

ing easily accessible information essential for pathway curation. It is the only available

software that combines intuitive pathway visualisation, literature information, sequence

comparisons information and species pathway similarity information in a rapid, accessi-

ble way.

Recently, BRENDA has created a new database that provides literature information based

on data mining search (FRENDA). In the future, PathwayBooster can also query this

database providing more complete literature information. Currently, PathwayBooster uses

BLAST to provide sequence similarity information on gene annotations and possible can-

didates for each EC number. Other, more sensitive methods may also be considered such

as the protocol to identify candidate genes for a missing enzymatic function presented in

Chapter 3. Another way would be to consider tools such as SHARKhunt that uses the

PRIAM library to scan for sequences that are similar to genes that have a given function.

This way we would likely reach to more candidates. Furthermore, these candidates could

be supported by other sorts of information such as topological properties and functional

evolution information like the ones described in chapter 4 and 5.

Moving beyond the information already available to curators, my objective was to build a

protocol that increased the sensitivity of searches for candidate proteins that could poten-

tially fulfil a missing enzymatic function known as “pathway hole”. The main idea behind

the protocol is that if a protein shares a common domain structure with other proteins that

are known to have a specific enzymatic function, it is more likely to be able to acquire

the same function than a randomly selected protein. Therefore, instead of conducting the

sequence searches at the protein family level, the protocol described in chapter 3 searches

for proteins that have similar 3D structure. This corresponds to searching at the super-
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family level where the most distant homologues are believed to reside. The protocol is

based on several existing tools. It starts with PDB, passing through SCOP and SUPER-

FAMILY. This protocol was successfully tested on an example where a similar strategy

had been applied to find a missing enzyme for a hole in the P. falciparum folate pathway.

It is important to notice that KEGG has not yet corrected this annotation. Afterwards, the

protocol was applied to other putative holes from the same species, and provided a set

of candidates for many of the holes. One reason why it may be difficult to identify an

enzyme to fill a pathway hole is that the protein responsible may be incorrectly annotated

with a different function.

Chapter 4 tackles misannotation in public databases. The use of automated methods to

annotate gene functions is the major contributor to this important problem. Existing meth-

ods are still mainly based on sequence similarity searches. As well as being less accurate

than experimental validation, these can lead to error propagation. Therefore, the main

objective of this chapter was to build a sequence-independent classifier to detect misan-

notations based on metabolic network topological properties. Our results demonstrate that

topological properties can be used to detect misannotations, showing that using this infor-

mation could be part of the solution to the misannotation problem in public databases.

The classifier was carefully tested using not only traditional 5 fold cross validation but

also using inter-superfamilies cross validation. In the latter case, the results suggest that

different enzymatic functions may occupy different topological positions in the metabolic

network. However, they also indicate that the trained model should still be informative

when applied more generally. Furthermore, the Random Forest classifier was applied to

several KEGG genomic metabolic networks and the results were compared with curated

models. The accuracy of the model was around 60%, confirming its effectiveness. After

validating the model, Chapter 4 also demonstrated that there is a clear negative correlation

between the quality of automated metabolic networks and their phylogenetic distance to
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the major model organism for biochemistry (Escherichia coli for prokaryotes and Homo

sapiens for eukaryotes). This last result highlights the misannotation problem in public

databases and the fact that sequence similarity approaches may be less accurate when

transferring enzymatic function from distantly related species.

Chapter 5 provides an evolutionary perspective on gene function annotation. Evolutionary

events such as gene duplication, loss and speciation have been proven to influence gene

function changes (Nowak (1997)). The objective of this chapter was to build a tool to

detect enzymatic function change based on the evolutionary events just mentioned. This

chapter also took into account that within a protein the amino acids suffer different evo-

lutionary pressures. Residues that are essential for function tend to be more conserved

during evolution. Therefore, when building the phylogenetic trees, two different amino

acid selection procedure were used.

In this chapter I have shown that in the superfamily phylogenetic tree, branch length is

correlated with function change. This was supported by two different methods to in-

fer functional change. Moreover, I have shown that duplication events favour function

change. I have also checked if there was any correlation between selective pressure scores

such as dN/dS, for which the results indicate that there is not. Using branch length and

duplication features, I have built a predictor that is able to predict function change. To

access the accuracy, I have used 4 fold cross-validation and inter-superfamily trees cross

validation. The area under the curve was around 0.9 in the 4 fold cross validation and

varied between 0.75 and 0.99 in the latter. The predictor was also shown to be able to dis-

tinguish function change at the substrate level, which corresponds to a change in the 4th

EC number digit. These analyses can be also used ranking candidates for a missing path-

way link. The classifier can be employed on existent enzymatic functional annotations

and access the likelihood of a possible functional change.

With the objective of basing possible candidate genes on the most curated annotations
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possible, the starting point of the chapter 3 protocol was the PDB database. One draw-

back is the restricted number of superfamilies that result from the protocol and therefore

the number of candidate genes for filling a missing link. To increase the number of super-

families we may try to adopt a less stringent search when searching for known enzymes

that perform a certain enzymatic function.

Instead of searching for only enzymes present in PDB, we could make use of databases

such as UniProtKB/Swiss-Prot, that contain manually annotated data. To connect these

sequences to the SUPERFAMILY database, SCOP would no longer be suitable. To over-

come this, we could make use of the SUPERFAMILY HMM’s models.

Another way would be to consider a hierarchical protocol which would start by using

tools such as SHARKhunt to scan for sequences that are similar to genes having a given

function. Afterwards, we could cluster the genes found using Pfam or SUPERFAMILY

HMMs. This approach would be likely to yield more candidates.

The objectives of the phylogenetic method and the topological properties method were

different and therefore their comparison may lead to misleading conclusions. As already

mentioned, the purpose of the phylogenetic method is to identify enzymatic function

change and that of the topological properties method is to predict misannotations. Part

of the explanation of the very good results that the phylogenetic method achieved may

be by the fact that this method relies on gene sequence, which has been the basis for al-

most all automatic function predictions in the past. Although the results obtained using

the topological properties method may not seem as impressive as those obtained with the

phylogenetic method, the topological properties method has presented a novel approach

to detecting misannotations. The biggest difference to current approaches is the fact that

this method is sequence-independent. It is important to note that the training data set was

restricted to only 4 well-represented superfamilies. It is likely that with a training dataset

that contains information from a larger number of superfamilies, the results would greatly
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improve. Nevertheless, the results were significantly positive.

6.2 Future Work

The tools presented here can be used for filling pathway holes where each tool provides

a different aspect of information for hole identification, candidate search and candidate

evaluation. However, these tools can also be used in a wider context. They can be applied

at the general node analysis level in the metabolic network. Using the same methodology,

we can aim to detect and study exaptations and promiscuous proteins and the robustness

of the network, with the ultimate aim of producing improved, evolution-aware software

for automated metabolic network reconstruction.

So, future work would be to combine the built tools with other tools and other sources of

information, gathering as much information as possible for each functional assignment.

At the level of enzyme information, an example would be the confidence of its annota-

tion. This includes the way in which the annotation was performed and wether there is

experimental data to confirm the annotation.

In terms of additional tools, a potentially useful resource is DETECT (Hung et al. (2010)).

DETECT returns probability values for enzyme annotations that take into account the ex-

isting variation within each enzyme family. It uses enzymatic family profiles built using

the proteins and annotations from the Swiss-Prot database. These profiles are used to-

gether with a Bayesian statistical framework to assign a probability value to an annota-

tion.

Afterwards, all these data for each annotation would be used to rank the candidate en-

zymes for a particular enzymatic function. Each model instance including different com-

binations of enzymes sampled from the ranking mentioned before, would be compared
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Figure 6.1: Apicomplexa phylogeny. This phylogeny is a result of genome-scale phylogenetic
analysis in the phylum (Kuo et al. (2008)). Three different phylogenetic methods were used to
infer the phylogenetic tree: maximum likelihood, maximum parsimony and Neighbor-Joining. To
this tree I have added to model organisms: Saccharomyces cerevisiae and Escherichia coli

against experimental knowledge using Flux Balance analyses.

Although we have focused in the metabolic reconstruction of a specific species, such as

Plasmodium falciparum or Geobacillus thermoglucosidasius, if we consider the evolu-

tionary history of all the species in the phylogenetic tree exemplified in the Figure 6.1

when assigning a proposed function to an enzyme, we can see that this assignment will

have repercussions for their ancestral states and consequently also for other present-day

species. So, the best way to rebuild the metabolic network for a species of interest is to

also consider the consistency and robustness of the network in all the other species. The

final step in this process will therefore be to consider all the different evolutionary his-

tories originated by the possible assignments and use a likelihood framework to decide

which of them is most plausible, given the available data.



Appendix A

PathwayBooster

A.1 Introduction

PathwayBooster is an open-source software tool to support the comparison and curation

of metabolic models. It combines gene annotations from GenBank files and other sources

with information retrieved from the metabolic databases BRENDA and KEGG to pro-

duce a set of pathway diagrams and reports summarising the evidence for the presence of

a reaction in a given organism’s metabolic network. By comparing multiple sources of

evidence within a common framework, PathwayBooster assists the curator in the identifi-

cation of likely false positive (misannotated enzyme) and false negative (pathway hole) re-

actions. Reaction evidence may be taken from alternative annotations of the same genome

and/or a set of closely related organisms.

This document provides information on how to install and run PathwayBooster. The soft-

ware has been built and tested with Python 2.6 and newer, on Windows, Mac OS X, and

Linux platforms.
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PathwayBooster may be downloaded from

http://www.theosysbio.bio.ic.ac.uk/resources/pathwaybooster/.

For support and other queries, send e-mail to j.pinney@imperial.ac.uk.

A.2 Setup instructions

A.2.1 Prerequisites

• Python1. Tested with versions 2.6+.

• BLAST2. Tested with version 2.2.24.

• SOAPpy3 and PIL4 python modules. If you encounter problems installing PIL or

when running PathwayBooster, with an error like ‘ImportError: The imagingft

C module is not installed’, you should try installing a PIL version with

precompiled libraries5. Using Enthought python, PIL should already be installed.

• BRENDA flatfile6. Once extracted from the zipfile, move the file brenda download.txt

into the PathwayBooster/files directory.

1e.g. http://enthought.com/repo/free/
2ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/
3http://pypi.python.org/pypi/SOAPpy/
4http://www.pythonware.com/products/pil/
5available from http://www.lfd.uci.edu/˜gohlke/pythonlibs/
6http://www.brenda-enzymes.org/brenda_download/
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A.2.2 Running PathwayBooster

To run PathwayBooster you need a setup file as explained below. Then from the Pathway-

Booster directory, type:

python PathwayBooster.py [setupFilename.xml]

Since BLAST runs may take a while, there is the option of pre-compiling the BLAST

files without running the other analyses. To do so, type:

python PathwayBooster.py -blast [setupFilename.xml]

By default, PathwayBooster saves the results in a directory named PathwayBoosterReports.

To change the output directory, type:

python PathwayBooster.py [setupFilename.xml] -outDir [newOutPutDirectory]

PathwayBooster does not need to run from the PathwayBooster directory. To run from

a different directory, just type:

python path/to/PathwayBooster.py [setupFilename.xml]

and the results will be saved in the current working directory.

A.2.3 Setup File

The setup file is constructed in XML format and is divided into three parts that reflect

groups of information to be provided by the user: <pathwayList>, <genomeList>

and, optionally, <blockList>. An example setup file is shown in Fig. A.1.
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<pathwayList>

In this section, the user specifies the set of KEGG pathways to be processed as a series of

<pathway> elements. There are two ways to specify pathways:

• using KEGG metabolic function groups7, e.g. carbohydrate metabolism has id 1.1.

The declaration <pathway id=1.1> means that all pathways in this group are

processed.

• using the global KEGG id of an individual pathway, e.g. <pathway id = 00010>

corresponds to Glycolysis/Gluconeogenesis.

<genomeList>

This section requires the user to specify genome information for the species of interest

and other reference organisms. For each organism to be included, the user must define

a <genome> element. The attribute name refers to a species identifier, which will be

used by the software for display. For each <genome>, the user may provide multiple

<annotation> sources. These can be of three different kinds, defined by the attribute

type: kegg, genbank or embl. For genbank and embl, the user must provide a

filename for a genome annotation in the respective file format. For the kegg annota-

tions, the user provides the keggId for the given genome. For example, in the case of

Bacillus subtilis, set keggId=bsu. The user can provide more than one annotation of

each type, however all the annotations must have a unique id attribute.

For each <genome> there are multiple options available, specified by the following at-

tributes:
7http://www.kegg.jp/kegg/pathway.html



APPENDIX A. PATHWAYBOOSTER 128

• filename

The user may supply a FASTA-format file containing amino acid sequences for the

predicted proteome.

• query

When set to true, this signifies that this genome is the one of main interest. If

none of the genomes is set with query=true, the first genome with a genome

annotation sequence file provided will be considered as the query genome.

• brenda

The full taxonomic name of the organism, which will be used by PathwayBooster

to search the BRENDA database in order to retrieve publication information.

• color

The color that should be used to identify the genome in the PathwayBooster dis-

play. The accepted format is the RGB color model. This format is constituted

by 3 numbers between 0 and 255 separated by commas. An example would be

color="30,40,200". If the user does not specify a color, PathwayBooster will

attribute one automatically.

• pathway

This controls whether the genome is included in the pathway visualisation. (De-

fault is true). There can be a maximum of 7 genomes displayed. A reaction is

considered as present if it has either an annotated gene (from any of the annotations

provided) or literature evidence (if brenda is provided).

• hamming

This controls whether the genome is included in the Hamming distance matrix.

(Default is true).
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<blockList>

This optional section can be used to specify more complex display preferences, for ex-

ample if the user wants to compare the annotations that were obtained from two different

sources for the same organism, these can be separated into different <block> elements.

All options available for a <genome> are also available for a <block>, with the ex-

ception of filename. When the <blockList> section is present, the <genome>

attributes will be overridden for the pathway map, Hamming distance and literature evi-

dence displays.

Within each <block> element, the user specifies one or more <annotationReference>

elements, with an id matching that of an <annotation> specified previously. By

choosing annotations from multiple organisms, it is possible to compare groups of genomes

against the query organism.
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<xml>

<p a t h w a y L i s t>
<pathway i d =” 00270 ” />

</ p a t h w a y L i s t>

<genomeLis t>
<genome name=” Gt Ergo ” f i l e n a m e =”ERGO/ TMO protein . t x t ”>

<a n n o t a t i o n t y p e =” embl ” i d =” Gt Embl ” f i l e n a m e =”ERGO/ TMO embl . t x t ” />
<a n n o t a t i o n t y p e =” genbank ” i d =”Gt GB” f i l e n a m e =”ERGO/ TMO genbank . t x t ” />

</ genome>
<genome name=” G t h e r m o g l u c o s i d a s i u s ” b re nd a =” G e o b a c i l l u s t h e r m o g l u c o s i d a s i u s ”>

<a n n o t a t i o n t y p e =” kegg ” i d =”Gt KEGG” keggId =” g t h ” />
</ genome>
<genome name=” G k a u s t o p h i l u s ” b re n da =” G e o b a c i l l u s k a u s t o p h i l u s ”>

<a n n o t a t i o n t y p e =” kegg ” i d =”Gk KEGG” keggId =” gka ” />
</ genome>
<genome name=” G t h e r m o d e n i t r i f i c a n s ” b re nd a =” G e o b a c i l l u s t h e r m o d e n i t r i f i c a n s ”>

<a n n o t a t i o n t y p e =” kegg ” i d =”Gtn KEGG” keggId =” g t n ” />
</ genome>
<genome name=”G WCH70” b re n da =” G e o b a c i l l u s sp . WCH70” pathway=” f a l s e ”>

<a n n o t a t i o n t y p e =” kegg ” i d =”Gw KEGG” keggId =”gwc” />
</ genome>
<genome name=”G Y412MC61” b r en da =” G e o b a c i l l u s sp . Y412MC61” pathway=” f a l s e ”>

<a n n o t a t i o n t y p e =” kegg ” i d =”Gy KEGG” keggId =” gyc ” />
</ genome>
<genome name=” B s u b t i l i s ” b r en da =” B a c i l l u s s u b t i l i s ” f i l e n a m e =” b . s u b t i l i s . pep ”>

<a n n o t a t i o n t y p e =” kegg ” i d =”Bs KEGG” keggId =” bsu ” />
</ genome>
<genome name=” E c o l i ” b r en d a =” E s c h e r i c h i a c o l i ” f i l e n a m e =” e . c o l i . pep ”>

<a n n o t a t i o n t y p e =” kegg ” i d =”Ec KEGG” keggId =” eco ” />
</ genome>
</ genomeLis t>

<b l o c k l i s t>
<b l o c k name=” Gt Ergo Embl ” que ry =” t r u e ” c o l o r =” 255 ,0 ,0 ” pathway=” t r u e ” f i l e n a m e =”ERGO/ TMO protein . t x t ”>

<a n n o t a t i o n R e f e r e n c e i d =” Gt Embl ” />
</ b l o c k>
<b l o c k name=” Gt Ergo GB ” c o l o r =” 0 ,255 ,0 ” pathway=” t r u e ”>

<a n n o t a t i o n R e f e r e n c e i d =”Gt GB” />
</ b l o c k>
<b l o c k name=” Gt Kegg ” c o l o r =” 0 ,0 ,255 ” pathway=” t r u e ”>

<a n n o t a t i o n R e f e r e n c e i d =”Gt KEGG” />
</ b l o c k>
<b l o c k name=” Gt Kegg pub ” c o l o r =” 100 ,0 ,100 ” pathway=” t r u e ” b r en da =” G e o b a c i l l u s t h e r m o g l u c o s i d a s i u s ”>
</ b l o c k>
<b l o c k name=”G WCH70 Y412MC61” pathway=” f a l s e ”>

<a n n o t a t i o n R e f e r e n c e i d =”Gk KEGG” />
<a n n o t a t i o n R e f e r e n c e i d =”Gtn KEGG” />

</ b l o c k>
<b l o c k name=” G k a u s t ” pathway=” t r u e ” b re nd a =” G e o b a c i l l u s k a u s t o p h i l u s ”>

<a n n o t a t i o n R e f e r e n c e i d =”Gk KEGG” />
</ b l o c k>
<b l o c k name=” G thermo ” pathway=” t r u e ” b r en d a =” G e o b a c i l l u s t h e r m o d e n i t r i f i c a n s ”>

<a n n o t a t i o n R e f e r e n c e i d =”Gtn KEGG” />
</ b l o c k>
<b l o c k name=” Bs Ec ” pathway=” t r u e ”>

<a n n o t a t i o n R e f e r e n c e i d =”Bs KEGG” />
<a n n o t a t i o n R e f e r e n c e i d =”Ec KEGG” />

</ b l o c k>
<b l o c k name=” B sub ” pathway=” f a l s e ” hamming=” f a l s e ” b r e nd a =” B a c i l l u s s u b t i l i s ” f i l e n a m e =” b . s u b t i l i s . pep ”>

<a n n o t a t i o n R e f e r e n c e i d =”Bs KEGG” />
</ b l o c k>
<b l o c k name=” E co ” pathway=” f a l s e ” hamming=” f a l s e ” b r e nd a =” E s c h e r i c h i a c o l i ” f i l e n a m e =” e . c o l i . pep ”>

<a n n o t a t i o n R e f e r e n c e i d =”Ec KEGG” />
</ b l o c k>
</ b l o c k l i s t>

</ xml>
}

Figure A.1: Setup file example for PathwayBooster.
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