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Abstract

The term ‘animal spirits’ was introduced by Keynes to describe the entrepreneur’s often

irrational optimism and drive to act as opposed to basing decisions on formal analysis.

This PhD thesis provides an analysis, both theoretical and empirical, of this phenomenon

in the financial markets from several points of view. In the first chapter we show that the

pricing kernel in the economy may be represented in a probabilistic form, as a solution

to a stochastic filtering problem. The noise in the associated information process may

contain drift term that is impossible to estimate from current market prices of assets. This

drift can be associated with ‘animal spirits’ driving the market. The second chapter is

explicitly devoted to ‘animal spirits’: it introduces a factor based risk-management model

for an illiquid project. We show that behavioural factors together with the collateralization

mechanism often employed by banks not only increase the risk for the banking system, but

also introduce anomalies during high-volatility crisis periods. In the third chapter we apply

Hidden Markov Models to estimate animal spirits from historic asset prices. We argue that

an arbitrary addition of a stress scenario to the model can greatly improve risk estimation.

The last chapter deals with optimal investment problem in a model with behavioural factors.

This may be linked to the pricing kernel discussion from the first chapter by the marginal

utility maximisation approach to pricing derivatives.
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Chapter 1

Introduction

When the recent credit crunch unfolded, many leading economists were trying to under-

stand its origins. In several countries a major factor contributing to the current economic

crisis was massive borrowing to fund investment projects on the basis of, in retrospect,

grossly optimistic valuations. It seems that ‘behavioural’ factors—Keynes’ ‘animal spir-

its’ or Greenspan’s ‘irrational exuberance’—played an important role in the build-up of the

bubble preceding the crisis. Understanding these factor is crucial for portfolio management,

investment and hedging, and this is the main aim of this PhD thesis.

In this work we assume behavioural factors to be given exogenously, resulting from

the market players being not fully rational, having limited information or computational

capacities, being influenced by ‘animal spirits’ or characterised by ‘irrational exuberance’,

etc. We don’t work with equilibrium models and we don’t try to understand where these

factors are originating from. We assume that behavioural factors impact the parameters

of price processes of relevant assets, in particular the expected returns. We show how

they tie with risk-neutral valuation, hedging, risk management and optimal investment. In

many ways we are trying to explain phenomena similar to financial bubbles, e.g. asset

prices rising quicker than expected in some rational models, and then crashing down. Our

approach is different from the one presented in financial literature on bubbles, however.

Firstly, the financial bubble literature concentrates on comparing the market price of the

asset to the so called fundamental value, whereas we adopt a more dynamic approach where

we look at the rate of change of the prices, including the drift. Moreover, we assume that
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the animal spirits exist in the market measure, and the financial bubbles are defined in the

risk neutral measure.

Behavioural factors may impact the drift and volatility of financial assets. They are real

world phenomena and hence take place in the market probability measure P. Because of

the no-arbitrage pricing principle, by definition in the risk neutral Q measure all assets have

the same drift, equal to the short rate of interest. Therefore, as we show in Chapter 2, it is

not possible to estimate the real-world drift from market prices of derivatives, because it is

impossible to estimate the behavioural effects in the drift of the assets. On the other hand,

in models driven by Brownian motion, the volatility of traded assets is the same in both

the market and pricing measures. Note however, the latter property is model dependent—it

is not the case in discrete-time models or jump models. This fact may be linked with an

observed discrepancy between implied and realized volatilities.

We believe ‘animal spirits’ had a profound effect on the property market, before and

during the crisis. Initially investors were over optimistic and drove the prices to record

levels, only to stumble down when the bubble burst. In Chapter 3 we show that on top of

the behavioural factors, the standard practises in the banking industry of marking all the

assets to market made the crisis even worse.

Behavioural factors may be estimated from historic prices, as opposed to current prices

of financial derivatives. Of course, in the noise-dominated financial data, it is not possible

to precisely estimated all the parameter values. It is, however, possible to pretty closely

determine the market regimes. In Chapter 4 we show that the most likely regimes estimated

from historic property prices and consumer confidence index coincide with the intuition.

We also introduce a straight-forward procedure for risk calculation and addition of stress

scenarios in these models.

Finally, ‘animal spirits’ are critical for market investors and portfolio managers. In

Chapter 5 we propose a regime-switching jump-diffusion model for asset prices and solve

the optimal portfolio selection problem for investors maximising the risk-sensitive crite-

rion.

This work builds up and is closely related to a wide array of existing literature, which

we summarise in the next section. We start by showing the origin of the terms ‘animal

spirits’ and ‘irrational exuberance’, then we discuss confidence indices, financial bubbles,
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the theory of financial derivative valuation and structural models of credit risk. In the last

section of this chapter we outline the contents of the thesis.

1.1 Background

The Sections 1.1.1, 1.1.2, parts of 1.1.4 and 1.1.5 of this chapter are reprinted from the

paper Andruszkiewicz et al. (2013), with kind permission from Springer Science+Business

Media B.V.

1.1.1 Animal spirits.

John Maynard Keynes is not always recognised as a founding father of behavioural finance

but, as in so many areas, the great man got there first. Indeed, in his Nobel Prize lecture,

George Akelof (2003) states that ‘Keynes’ General Theory was the greatest contribution to

behavioural economics before the present era’. The key to Keynes’ thinking can be found

in the General Theory (Keynes, 2007, page 161):

[A] large proportion of our positive activities depend on spontaneous optimism

rather than on a mathematical expectation, whether moral or hedonistic or eco-

nomic. Most, probably, of our decisions to do something positive, the full

consequences of which will be drawn out over many days to come, can only be

taken as a result of animal spirits∗—of a spontaneous urge to action rather than

inaction, and not as the outcome of a weighted average of quantitative benefits

multiplied by quantitative probabilities.

A similar concept—irrational exuberance—was introduced by the then-Federal Reserve

Board Chairman, Alan Greenspan (1996) in his speech at the Annual Dinner and Francis

Boyer Lecture of The American Enterprise Institute for Public Policy Research, Washing-

ton, D.C:

∗The phrase is an allusion to the classical term spiritus animalis conveying the idea of animation, not
atavism!
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Clearly, sustained low inflation implies less uncertainty about the future, and

lower risk premiums imply higher prices of stocks and other earning assets.

We can see that in the inverse relationship exhibited by price/earnings ratios

and the rate of inflation in the past. But how do we know when irrational

exuberance has unduly escalated asset values, which then become subject to

unexpected and prolonged contractions as they have in Japan over the past

decade?

This term was later picked-up by other economists and journalists, including Shiller (2000),

who used it as the title of his book.

While nobody, surely, could disagree with the basic point, there is a mixed message

here in that Keynes appears to be warning us off probabilistic and statistical analysis, and

indeed he was quite sceptical about it, as reported by Akerlof and Shiller (2009, page 16).

This point of view was in fact prevalent at the time. Frank Knight, whose seminal work

substantiated the distinction between risk and uncertainty, noted in Knight (1921):

It is a world of change in which we live, and a world of uncertainty. We live

only by knowing something about the future; while the problems of life, or of

conduct at least, arise from the fact that we know so little. This is as true of

business as of other spheres of activity. The essence of the situation is action

according to opinion, of greater or less foundation and value, neither entire

ignorance nor complete and perfect information, but partial knowledge. If we

are to understand the workings of the economic system we must examine the

meaning and significance of uncertainty; and to this end some inquiry into the

nature and function of knowledge itself is necessary.

Knight categorizes ‘probabilities’ into

1. A priori probability, a probability that can be computed exactly and objectively be-

cause the exact nature and structure of the underlying experiment is known;

2. Statistical probability, an empirical probability;

3. Estimates
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Concerning estimates, Knight writes:

It is this third type of probability or uncertainty which has been neglected in

economic theory, and which we propose to put in its rightful place. As we have

repeatedly pointed out, an uncertainty which can by any method be reduced to

an objective, quantitatively determinate probability, can be reduced to com-

plete certainty by grouping cases. [. . .] The present and more important task is

to follow out the consequences of that higher form of uncertainty not suscepti-

ble to measurement and hence to elimination. It is this true uncertainty which

by preventing the theoretically perfect outworking of the tendencies of compe-

tition gives the characteristic form of ‘enterprise’ to economic organization as

a whole and accounts for the peculiar income of the entrepreneur.

This message is markedly different from the ideas promoted by standard financial eco-

nomics starting in the 1950s: uncertainty appears as irrelevant because it can be diversified

away or hedged against. The implication is that rational decision makers should rely on

a priori probabilities when known or on statistical probabilities to form their opinions.

Decision makers who are not rational, such as noise traders, will be arbitraged out of the

economy.

The flourishing field of behavioural finance has demonstrated convincingly that the

view held by standard finance theory is not tenable stricto sensu. Noise traders are alive

and well and arbitrage is fraught with difficulties (see for example Shleifer (2000) for a

discussion). Although most of the ideas and tests performed by behavioural finance theorist

focus on pure decision theory and on psychology, behavioural finance does not exclude

quantitative models and methods. In fact the scope for quantitative methods is much greater

now than it was in the 1920s and 1930s, or even in the 1950s and 1960s thanks to the

creation of confidence indices designed to gauge ‘animal spirits,’ the development of a

theory of financial economics and advances in computational technology.

1.1.2 Confidence indices

Confidence indices are the closest readily available data that tries to capture factors related

to animal spirits. Data on confidence indices is now widely available, see for example
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Markit (2011). There are two varieties, the consumer confidence index and the purchasing

managers’ index (PMI). Both are based on surveys, and represent respectively the propen-

sity of consumers to go out and spend, and the propensity of businesses to invest. In

the United States, consumer confidence is measured by the Conference Board and by the

University of Michigan. The main difference between the two surveys is in the time hori-

zon: while the Conference Board polls households on their expectations over the next six

months, the University of Michigan looks at expectations over the coming year. On the

other hand, purchasing manager expectations are assessed regionally: the Chicago PMI is

widely regarded as the most representative of nationwide sentiment.

There are a number of empirical studies—see Akerlof and Shiller (2009), footnote 9,

page 179— aimed at testing whether confidence actually ‘causes’ economic growth (inter-

preted in the sense of ‘Granger causality’ Granger (1969)). These include Matsusaka and

Sbordone (1995) who produce quite convincing evidence that this link exists†.

Following in the footsteps of Matsusaka and Sbordone, Howrey (2001) investigates the

predictive power of the University of Michigan consumer confidence index over the period

1961 to 1999. He finds that the consumer confidence index is a statistically significant

predictor of the future rate of growth of real GDP and of recessions. He also finds that con-

sumer confidence provides a good point estimate of future consumer spending, albeit with

a large standard error. In the case of Japan, Utaka (2003) finds that consumer confidence

has a short term impact on GDP growth, but no short term effect.

If confidence is a good predictor of macroeconomic trends and cycles, could it also

have an impact on asset prices? In an event study, Rigobon and Sack (2008) test the impact

of unexpected changes in 13 macroeconomic data series including the Chicago PMI and

consumer confidence on eurodollar futures contracts, treasury yields and the S&P 500.

They find that surprises in the Chicago PMI and in consumer confidence have a statistically

significant impact on the rate of six-month and 12-months eurodollar futures contracts and

on the yields of 2-year and 10-year Treasuries, but not on the S&P 500.

Still, sentiment by and large plays a significant role in the behaviour of stock markets,

as evidenced for example by Baker and Wurgler (2006). It is therefore natural to investigate

†Akerlof and Shiller (2009) somehow understate the reach of Matsusaka and Sbordone’s argument.
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specifically the relation between consumer confidence and stock market returns. Jansen and

Nahuis (2003) study the relationship between stock market developments and consumer

confidence in eleven European countries over the period 1986-2001. Although consumer

confidence is positively correlated with stock market returns in nine countries, they did not

find statistical evidence that consumer confidence Granger-causes stock market returns. To

the contrary, stock market returns appears to Granger-cause consumer confidence over a

short horizon of two weeks to one month. This result is intriguing, especially when we

consider studies on leading economic indicators. Hertzberg and Beckman (1989) find that

consumer confidence has a lead time of 14 months with respect to economic peaks while

the S&P has a shorter lead time of 8.5 months. The gap is narrower for economic troughs:

4.5 months for consumer confidence versus 4 months for the S&P 500.

Fisher and Statman (2000, 2003) find that statistically significant increases in the bullish-

ness of individual investors follow increases in consumer confidence. Over the period 1989

to 2002, large improvements in consumer confidence appear to have be followed by high

returns on the S&P 500 index, NASDAQ index and among small caps. Lemmon and Port-

niaguina (2006) find that consumer confidence is useful in forecasting the returns on small

stocks. Their view is that consumer confidence reflects not only current and expected fun-

damentals but also excessive sentiment such as overoptimism and pessimism. As a result

of excessive optimism (pessimism), investors will overvalue (undervalue) small stocks rel-

ative to large stocks.

The relation between investor or entrepreneur sentiment and asset market is both im-

portant and complex, and more research is needed to understand their connection. This is

particularly true for real estate, for which the literature linking confidence and real estate

prices is scarcer.

1.1.3 Financial bubbles

Financial bubbles are a common subject of research in economics, possibly because they

are often commented on in popular press. Some economists argue that bubbles are a key

ingredient of economic cycles, and hence impact the performance of whole economy. Usu-

ally bubbles are defined as the difference between the market price of an asset and the
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fundamental value, which in turn is defined as discounted expectation of all the cashflows

(dividends) associated with with the asset.

Economic perspective

Most of the models on bubbles published in economic journals are in discrete time setting

for easier tractability. In the economic literature authors always take expectations in the

real probability measure, because the agents optimize consumption and investment rather

than construct replicating portfolios. There are two types of expectations used in economic

models: adaptive (where the agents’ expectations are based on current and historic levels)

and rational (“self-fulfilling”, agents’ expectations are aligned with true distribution of fu-

ture events). One can show that bubbles can’t exist with adaptive expectations, hence they

can be associated with rational expectations, see Camerer (1989) for details.

Rational bubbles must grow on average at a rate consistent with other securities: the

short rate if traders are risk-neutral or a higher rate if they are risk-averse. Blanchard and

Watson (1982) show that if the bubble has a positive probability of bursting then in periods

before it bursts it needs to grow faster than other securities, to offer a sort of risk premium

for the investor. They show that the bubbles may exist even though rational traders know

that the probability they will burst tends to one as the time goes to infinity.

Tirole (1982, 1985) shows that neither restrictions on short selling nor heterogeneous

information among traders affect the possibility of bubbles. However, certain market limits

are enough to rule out bubbles. If an asset has a finite time horizon in discrete setting then

by backward induction no rational bubbles can exist. With known wealth constraints the

rational bubble needs to stop growing at some point, so the same argument applies. There

can be no bubbles if there are only finite many traders with rational trading strategies—at

some date each trader will retire to spend all his gains on consumption. Other traders will be

left with a negative sum game, so no-one will buy the asset at a bubble price. This argument

doesn’t hold if there is an infinite number of traders (e.g. overlapping generations).

Harrison and Kreps (1978) point out that traders usually take into account the resell

value of an asset rather than the dividend flow when making decisions. They also note that

the intrinsic value is not well defined if traders have heterogeneous opinions based on the
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same information. In this case the possibility of resale of the asset drives the price higher

hence causing a bubble.

Risk-neutral approach

Jarrow et al. (2007, 2010) provided the most comprehensive analysis of bubbles in the fi-

nancial setting. Unlike economic equilibrium setting described above, financial models

don’t impose as much structure on the economy. In particular, financial models don’t as-

sume that investors are trading optimally or that the market clears.

The authors define the fundamental value as the risk neutral expectation of future div-

idends (they assume zero short rate for simplicity of exposition), treating the fundamental

price almost as a derivative contract based on the dividend stream:

S∗t = EQ
[∫ ∞

t

Dsds
∣∣∣∣Ft] (1.1)

The bubble is defined as usual as β = S−S∗. In this setting the bubble can either be a true

martingale (uniformly integrable or not) or a strict local martingale. The most interesting is

the strict local martingale case, because it corresponds to the situation when the underlying

asset has a finite bounded time horizon. If this type of bubble exists, it is not possible to

create an arbitrage portfolio and benefit from it because we require that all trading strategies

are bounded from below (admissibility condition).

Jarrow et al. (2007) show that in complete markets it is impossible for bubbles to start

existence. Either they exist at the start of the model or there are no bubbles. Moreover, they

notice that under the most commonly used no-arbitrage condition, No Free Lunch with

Vanishing Risk (NFLVR), bubbles can cause the put-call parity to fail. And because put-

call parity almost always holds in reality, they decided to introduce a stronger no-arbitrage

condition: Merton’s no dominance. However, under this condition bubbles can’t exist at

all.

The situation is different in incomplete markets. Jarrow et al. (2010) show that bubbles

can be created if the market “decides” to change the chosen risk-neutral probability measure

(at some random time). They provide a suitable extension to standard NFLVR theory so
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that it accommodates a change of risk neutral measure. Also, because there is no guarantee

that replicating strategies exist, the no dominance condition doesn’t rule out bubbles in

incomplete markets.

In this work we will not deal with the concept of the financial bubble directly. We try

to explain the same phenomena using behavioural approach by introducing animal spirits.

We attribute the rises and falls of asset prices observed in the market to the optimism of

investors and mismanagement of risk by the banks. We show that such a price process

behaviour can be observed in the market measure P, without ever generating a bubble in

Jarrow et al. (2007) sense.

1.1.4 Valuation of financial derivatives

Financial derivative is a financial instrument whose value depends on other, more basic,

underlying variables. Usually the underlying variables are traded securities such as stocks

and bonds. However, contracts with underlying which is impossible to trade, such as the

temperature, are becoming more and more popular.

The theory of derivative valuation hinges upon the principle of no arbitrage and repli-

cation. It formalizes the natural assumption that in a liquid market it should not be possible

to make a profit with zero net investment and without bearing any risk. This idea was

first introduced in the famous works of Black and Scholes (1973) and Merton (1973). They

showed that the no arbitrage assumption is enough to uniquely determine the price of Euro-

pean options in the geometric Brownian motion setting and that it is possible to construct a

dynamic self-financing portfolio that has the same value as the European option at maturity.

Harrison and Kreps (1979); Harrison and Pliska (1981); Kreps (1981) linked the no

arbitrage pricing approach with stochastic calculus and martingale theory. Their main con-

tribution was the fundamental theorem of asset pricing: there is no arbitrage in the economy

if and only if there exists a probability measure Q, equivalent to the market measure P, such

that all asset prices discounted using the bank account are local martingales. The financial

market is complete if and only if the probability measure Q is unique. This new probabil-

ity measure is usually called the risk-neutral measure or equivalent martingale measure.

Once the Q measure is established contingent claim valuation boils down to calculation of
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a conditional expectation with respect to this measure:

Ht = BtEQ
[
HT

BT

∣∣∣∣Ft] (1.2)

where Bt is the value of the bank account and HT is the contingent claim maturing at

time T . Delbaen and Schachermayer (1994, 1998) further formalized this result for more

general semi-martingale models.

Equation (1.2) shows that C(K) is the expected value of the option payoff expressed in

units of the ‘savings account’ Bt. It turns out that using the savings account as numéraire is

an arbitrary choice. The modern view, stated explicitly in Geman et al. (1995) and clearly

expounded by Hunt and Kennedy (2004) for example, is to think in terms of numéraire

pairs (N,Q), where Nt is a tradable asset with strictly positive price, conventionally nor-

malized to N0 = 1, and Q is a measure such that for any traded asset S the price ratio

St/Nt is a martingale. A key point is that if one fixes the measure Q and searches for an

asset price process NQ such that (NQ,Q) is a numéraire pair, then there is a unique solu-

tion, namely that NQ is the growth-optimal portfolio‡ when the asset prices are governed

by the probability law Q. The growth-optimal portfolio maximizes, over investment strate-

gies h, the expected log-utility EQ[log V h
T ] at some fixed time T , where V h

T is the value of

the investment portfolio at time T using strategy h, starting conventionally at V h
0 = 1. If

(NQ,Q) is a numéraire pair then using the inequality log x ≤ x − 1 and the numéraire

property of NQ we have

EQ log V h
T − EQ logNQ

T = EQ[log(V h
T /N

Q
T )] ≤ EQ[V h

T /N
Q
T ]− 1 = 0.

Thus NQ
T maximises logarithmic utility under Q.

J.B. Long (1990) first realized the significance of this fact, namely that there is nothing

stopping us choosing Q = P, the real-world ‘statistical’ measure governing asset prices,

and then NP is the optimal investment portfolio for an investor with logarithmic utility,

which is easily computed in many cases. This approach has the decisive advantage that all

‡See MacLean et al. (2011) for a comprehensive account of investment based on the growth-optimal or
‘Kelly’ criterion
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modelling is carried out under the statistical measure. It is the basis for Platen’s ‘bench-

mark approach’ to financial valuation, see Platen and Heath (2006). Karatzas and Kar-

daras (2007) discuss the relation between the existence of the numeraire portfolio and no-

arbitrage conditions in the market. In our case we want to include econometric factors such

as confidence indices, GDP growth etc. in our modelling framework. If we use the bench-

mark approach then econometric models for these quantities, estimated using historical

data, can be plugged right into our model without worrying about the distinction between

real-world and risk-neutral measures since these two things are now one and the same.

An alternative for valuation in the P measure is the pricing kernel (also known as state

price deflator, stochastic discount factor among other names) approach. The pricing kernel,

denoted here by {πt}t≥0, is a positive supermartingale with the property that if ST is the

price at time T of an asset that pays no dividend, then the price at time t of the asset is

given by the following conditional expectation under the market measure:

St =
1

πt
Et[πTST ]. (1.3)

In particular, if ST = 1, then (1.3) gives the pricing formula for the discount bond: PtT =

Et[πT ]/πt. Because both the pricing kernel as well as the value of the numeraire portfolio

are strictly positive we have the obvious relationship:

πt =
1

Nt

(1.4)

As opposed to the log-optimal portfolio, the pricing kernel is not unique in incomplete

markets. Long’s numeraire portfolio in diffusion environment corresponds to the Minimal

Martingale Measure introduced by Föllmer and Schweizer (1991), see Černý (1999). This

in turn corresponds to a certain choice of pricing kernel, and hence of the risk-neutral

measure.

1.1.5 Structural models of credit risk

In Chapter 3 we shall be considering investment funded by collateralized loans, where

the investor may default if he is unable to post sufficient additional margin in case of a
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fall in the value of the collateral. In our model, the time at which this happens will be

a stopping time of some filtration. This is true of all models in the modern theory of

credit risk, although in this theory, as is seen in textbooks such as Lando (2004), there

are two distinct classes of model, ‘reduced form’ and ‘structural form’. The latter, which

contains our model, is ultimately derived from early work by Robert Merton (1974) in

which the default risk on corporate debt is represented as a put option on the value of the

firm. Modelling firm value accurately is not an easy thing to do (it is not the same thing

as market capitalization), and later modellers such as Hull and White (2001) or Longstaff

and Schwartz (1995) have concentrated on stylized models in which default occurs at the

first hitting time of a possibly time-varying boundary by some stochastic process, where

parameters specifying the process and/or the boundary are calibrated from market credit

default swap quotes. Our model is in the same vein mathematically, but because we model

explicitly the collateral value and the evolution of the margin account we return to a Merton-

like picture where the credit model has economic as well as mathematical content.

1.2 Organisation

In this thesis we explore different aspects of dealing with behavioural factors in mathemati-

cal finance. In Chapter 2 we look at ‘animal spirits’ from information-theoretic perspective:

we show that the pricing kernel (state price density) has the form of the solution to an aux-

iliary filtering problem, and animal spirits can be interpreted as the drift part of the noise

structure in the information process. We conclude the chapter by showing that the drift

caused by anomalies in market price of risk is not visible in market prices of derivatives.

In Chapter 3 we propose a risk model that illustrates how property investors’ optimism, to-

gether with margin-call procedure employed by the money-lending banks, could possibly

trigger the crisis and cause high losses to the banks. Chapter 4 is devoted to analysis of

historic data. Using the example of house prices in the USA we discuss ways of estimating

animal spirits and employ a hidden Markov model. It is used for forecasting and calcu-

lating the value at risk. We introduce an efficient method of improving the risk estimates

by introducing an auxiliary stress scenario. Finally the last chapter, 5, solves the problem

of optimal investment in a market driven by behavioural factors modelled as finite state
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Markov chains. A novel feature introduced in this chapter is the joint model for jumps in

the asset and the factor processes.

Please note that the individual chapters form independent research projects, with differ-

ent approach and technical toolset. Hence they may be read independently and in any order,

and different notation is used in every chapter—most appropriate in the given setting.
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Chapter 2

Noise, risk premium and bubble

The market risk premium is one of the main factors that drive the return of any given

portfolio of assets. As we explain in detail later in the chapter, in our opinion it is closely

linked to ‘animal spirits’ in the market. It is a key quantity for hedge funds, pension funds,

and numerous other investors. The risk premium can make investments grow smoothly or

jump up and down widely, often in an unpredictable manner. In spite of the important role

it plays in asset allocation, however, the risk premium is in the traditional sense notoriously

difficult to estimate from observed price processes of various risky assets (see, e.g., Rogers

2001). Is it possible then to estimate the risk premium from current prices of financial

derivatives?

In a Brownian-driven market, if {St} denotes the price process of a risky asset andH(s)

is the payout function of a European contingent claim expiring at T , then the current price

of this derivative is given by the expectation of the cash flow H(ST ), suitably discounted,

in the risk-neutral measure. Because asset price processes in the risk-neutral measure are

independent of the market risk premium, one might be tempted to conclude therefore that

derivative prices are likewise entirely independent of the risk premium. Indeed, in the case

of the Black-Scholes-Merton model where all relevant parameters remain constant in time,

the risk premium drops out of derivative pricing formulae. Notwithstanding this example,

it is worth bearing in mind that the choice of the pricing measure does depend on the choice

of the risk premium. Thus, derivative prices in general will depend implicitly on the risk

premium, often in a nonlinear way. It follows that calibration of the market risk premium
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from option prices is feasible within a given modelling framework (Brody et al. 2012).

The main purpose of this chapter is to address the question to what extent it is pos-

sible, at least in principle, to determine the risk premium, if the totality of arbitrage-free

market prices for various derivatives were available. We shall find that the market risk pre-

mium consists of two components in an additive manner (for models based on Brownian

filtrations): The first of the two, which we might call a ‘systematic’ component, depends

explicitly on the term structure of the market, while the second, which we might call an

‘idiosyncratic’ component, is independent of the term structure of the market, and thus can

be identified as pure noise. We show that the systematic component can in principle be

determined from current market data, whereas the idiosyncratic noise component is strictly

‘hidden’ and thus cannot be inferred from derivative prices. Therefore, the risk premium

can be backed out from market data only up to an indeterminable additive noise.

Although the noise component cannot be inferred directly, it nevertheless has an im-

pact on the dynamics of asset prices under the physical measure, even though it does not

carry information concerning the ‘true’ state of affairs. Hence a spontaneous creation of

superfluous noise can move the price of an asset in an essentially arbitrary direction. In par-

ticular, because the risk premium, and hence its noise component, is a vectorial quantity,

the direction of the noise vector can at times lie close to the directions of volatility vectors

of the share prices of a particular industrial sector, leading to the creation of a ‘bubble’ for

that sector by pushing up these share prices. When a more reliable information concern-

ing the state of that sector is unveiled, the direction of the risk premium vector is likely to

change so as to generate a negative component in the excess rate of return. This can be

exacerbated by an increase in the magnitude of asset volatilities due to information revela-

tion, thus leading to a ‘burst’. Such a scenario need not be confined to a particular financial

sector; the apparent existence of the so-called ‘equity premium puzzle’ over a specified

period can likewise be attributed to the prevailing noise that points in the general direction

of the equity market volatility, but not in the direction of the bond market volatility.

The formulation that we shall develop in what follows thus entails the an element of

phenomenology for characterising the mechanism of anomalous price dynamics in an in-

tuitive manner; as such, it is not meant to ‘explain’ the cause of the creation of anomalous

price movements; nor does it address the predictability of these events. Indeed, the pres-
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ence of the noise might well be interpreted as what Keynes described ‘animal spirits’ or

what Greenspan referred to as an ‘irrational exuberance’, see Section 1.1.1 for background.

In any event, since our characterisation of the phenomena commonly known as bubbles is

radically different from those adopted in the literature, we are able to circumvent the anal-

ysis based on subtle distinctions between strict local martingales and true martingales. We

also provide a heuristic argument why the hidden noise might have the tendency of creating

equity premium.

2.1 Pricing kernel

For definiteness, we shall be adopting the pricing kernel approach (see, e.g., Cochrane

2005, Björk 2009). We model the financial market on a probability space (Ω,F ,P) with

filtration {Ft}t≥0. Here P denotes the ‘physical’ probability measure, and {Ft} is assumed

to be generated by a multi-dimensional Brownian motion. Expectation under P is denoted

E[−], and for the conditional expectation with respect to Ft we write Et[−]. Two other

probability measures enter the ensuring discussion; these are the risk-neutral measure Q
and an auxiliary measure Q̃ to be described below. Expectations in these measures will be

written EQ[−] and EQ̃[−], respectively.

We assume that the market is free of arbitrage opportunities, and that there is an es-

tablished pricing kernel; whereas market completeness is not assumed. These assumptions

imply the existence of a unique preferred risk-neutral measure Q. The pricing kernel, de-

noted here by {πt}t≥0, is a positive supermartingale with the property that if ST is the price

at time T of an asset that pays no dividend, then the price at time t of the asset is given by

St =
1

πt
Et[πTST ]. (2.1)

In particular, if ST = 1, then (2.1) gives the pricing formula for the discount bond: PtT =

Et[πT ]/πt (cf. Constantinides 1992).

We begin by discussing properties of the pricing kernel that are relevant to our analysis

here. In addition to being a positive right-continuous supermartingale, the pricing kernel

fulfils the condition that E[πt] → 0 as t → ∞. A positive supermartingale possessing this
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property is known as a supermartingale potential (Doob 1984). In fact, any strictly positive

class-D potential (cf. Meyer 1966, Protter 2005), i.e. a potential that can be expressed in

the form Et[A∞] − At in terms of an integrable increasing process {At}, such that {At}
can be expressed in the form

At =

∫ t

0

asds (2.2)

for some adapted positive process {at}, determines a pricing kernel {πt}. It suffices to

choose the process {at} to model the pricing kernel. This leads to the potential approach

of Rogers (1997) to model term structure dynamics. A substitution shows that

πt =

∫ ∞
t

Et[au]du. (2.3)

The representation (2.3) takes the form of that of Flesaker and Hughston (Flesaker & Hugh-

ston 1996, 1997; Rutkowski 1997; Jin & Glasserman 2001), if we make the following iden-

tification. First, writing ρ0(T ) = −∂TP0T , where P0T is the initial discount function, we

see that the processes {Mt(u)}t≥0,u≥t defined by

Mt(u) =
Et[au]
ρ0(u)

(2.4)

is a one-parameter family of positive martingales, i.e. for each fixed u ≥ t, {Mt(u)}
is a martingale. This follows on account of the martingale property of the conditional

expectation Et[au], and the fact that {at} is positive. In terms of these positive martingales,

the pricing kernel can be expressed in the Flesaker-Hughston form:

πt =

∫ ∞
t

ρ0(u)Mt(u)du. (2.5)

From the martingale representation theorem we deduce that the dynamical equations satis-

fied by the positive martingale family {Mt(u)} take the form:

dMt(u) = Mt(u)vt(u)dξt, (2.6)
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where {vt(u)} is a family of adapted processes and {ξt} is a standard Brownian motion

under the P measure. (Here and in what follows, for simplicity of notation we shall write

vt(u)dξt, λtdξt, and so on, to denote vector inner products.) We observe therefore that

modelling of the pricing kernel is equivalent to modelling of the one-parameter family of

volatility processes {vt(u)}. Note that we require {Mt(u)} be a strict martingale. For this

purpose it suffices that {vt(u)} satisfies, for each u, the Novikov condition. In fact, through-

out the paper we shall make a stronger assumption that the volatility processes {vt(u)} are

bounded. The advantage of this assumption is that it simplifies calculations without losing

the generality of economic considerations, thus avoids ‘pathological’ situations.

On account of (2.5) and (2.6) we deduce, by an application of Ito’s lemma, that the

dynamical equation satisfied by the pricing kernel takes the form

dπt
πt

= −rtdt− λtdξt, (2.7)

where

rt =
ρ0(t)Mt(t)∫∞

t
ρ0(u)Mt(u)du

(2.8)

is the short rate, and

λt = −
∫∞
t
ρ0(u)vt(u)Mt(u)du∫∞
t
ρ0(u)Mt(u)du

(2.9)

is the market risk premium. The fact that the drift of {πt} can be identified with the short

rate can be seen by applying the martingale condition (2.1) on the money market account

{Bt} satisfying dBt = rtBtdt. That is, the drift of {πtBt} vanishes if and only if the drift

of {πt} is {−rt}. Similarly, let us write {µt} for the drift of a risky asset {St} that pays

no dividend, and {−λt} for the volatility of {πt}. Then the martingale condition on {πtSt}
implies that µt = rt + λtσt, which shows that {λt} indeed expresses the excess rate of

return above the risk-free rate in unit of volatility.

An advantage of working with the pricing kernel is that once a model is chosen for

the volatility processes {vt(u)} of the martingale family, we are able not only to price a
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wide range of derivatives via the pricing formula E[πTHT ], where HT is the payout of a

derivative, but also to obtain a model for the interest rate term structure. Furthermore, a

model for {vt(u)}, which can be calibrated by use of market data for derivative prices,

implies a process for the risk premium {λt} according to the prescription (2.9), and this in

turn can be used for asset allocation purposes. This is the sense in which derivative prices

can be used to calibrate the risk premium, within any modelling framework (cf. Brody

et al. 2012). With this in mind, the issues that we would like to address here are: (a)

the ambiguity associated with the determination of the risk premium from market data in

the Brownian setup; and (b) the identification of the origin of this ambiguity. For these

purposes, it is useful to examine the probabilistic characterisation of the pricing kernel,

within the term structure density approach of Brody and Hughston (2001).

2.2 Probabilistic representation of the pricing kernel

To proceed, we shall make the following observation that (i) the positivity of nominal inter-

est, and (ii) the requirement that a bond with infinite maturity must have vanishing value,

imply that ρ0(T ) = −∂TP0T defines a probability density function on the positive half-line

(Brody and Hughston 2001, 2002). More generally, the positivity of the martingale family

{Mt(u)} implies that {ρt(u)} defined by

ρt(u) =
ρ0(u)Mt(u)∫∞

0
ρ0(u)Mt(u)du

(2.10)

is a measure-valued process, i.e. ρt(u) ≥ 0 for all t and all u; and∫ ∞
0

ρt(u)du = 1 (2.11)

for all t ≥ 0. The measure-valued process thus introduced suggests the existence of a

random variable X whose conditional density under some probability measure is given by

(2.10). Furthermore, an application of Ito’s lemma on (2.10) shows that

dρt(u)

ρt(u)
= (vt(u)− v̂t) (dξt − v̂tdt) , (2.12)
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where

v̂t =

∫ ∞
0

vt(u)ρt(u)du (2.13)

can be thought of as the conditional expectation of vt(X). Observe that the dynamical

equation (2.12) takes the form of a Kushner equation, thus indicates the existence of an

auxiliary filtering problem. More precisely, we have:

Proposition 2.2.1 For every admissible model of the pricing kernel, the associated term

structure density process {ρt(u)} is the solution to an auxiliary filtering problem.

That this indeed is the case will be shown as follows. Let (Ω,F , Q̃) be a probability

space, upon which X is a positive random variable with density ρ0(u), and {βt} is an Q̃-

Brownian motion, independent of X . Take a time interval [0, τ ], with τ fixed, and let the

information (observation) process {ξt}0≤t≤τ be given by

ξt =

∫ t

0

vs(X)ds+ βt, (2.14)

where {vt(u)} is bounded. For the moment let us assume, further, that {vt(u)} is determin-

istic, for simplicity of exposition. (A more general case is discussed in the Remark at the

end of this section, and also in Section 2.8.) Now define the process {Λt}0≤t≤τ over [0, τ ]

by the expression

Λt = exp

(∫ t

0

vs(X)dξs − 1
2

∫ t

0

v2
s(X)ds

)
. (2.15)

We use {Λt} to introduce a measure change, which will be defined on the measurable

space (Ω,Gτ ), where Gτ ⊂ F is the sigma-subalgebra generated jointly by {βt}0≤t≤τ and

the value of X . The new measure P on (Ω,Gτ ) is defined by the property that for any set

A ∈ Gτ we have the relation

P(A) = EQ̃ [Λ−1
τ 1{ω ∈ A}

]
. (2.16)

With this setup, we have the following:
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Lemma 2.2.2 (i) On the probability space (Ω,Gτ ,P) the process {ξt} defined by (2.14) is a

Brownian motion; (ii) {ξt} is independent of X; (iii) the P-density of the random variable

X is given by ρ0(u); and (vi) for all t ∈ [0, τ ] the expectation X̂t = EQ̃[X|Ft] of X

conditional on Ft = σ({ξs}0≤s≤t) is given by the generalised Bayes formula:

X̂t =
EP[XΛt|Ft]
EP[Λt|Ft]

. (2.17)

Statement (i) follows as a direct consequence of Girsanov’s theorem. Statements (ii)

and (iii) can be verified by showing that the joint characteristic function of X and {ξt}
factorises under the P measure, and that it takes the desired form. For all real a, b we find,

by use of the measure change P→ Q̃ involving {Λ−1
τ }:

EP [eiaξt+ibX
]

= EQ̃
[
eia(

∫ t
0 vs(X)ds+βt)+ibX e−

∫ t
0 vs(X)dβs− 1

2

∫ t
0 vs(X)2ds

]
= EQ̃

[
e−

∫ t
0 [ia−vs(X)]dβs− 1

2

∫ t
0 [ia−vs(X)]2ds e−

1
2

∫ t
0 a

2ds+ibX
]

= e−
1
2
a2t

∫ ∞
0

eibxρ0(x)dx, (2.18)

where we have made use of the statement (i), and the martingale property satisfied by the

first exponential in the second line. As regards the conditional expectation of X , by change

of measure using Λτ we obtain

X̂t =
EP[XΛτ |Ft]
EP[Λτ |Ft]

, (2.19)

but since X and {ξt} are P-independent we have EP[XΛτ |Ft] = EP[XΛt|Ft] and (2.17)

follows. The expression (2.17) in fact is an example of the Kallianpur-Striebel formula

familiar in the theory of nonlinear filtering (Wonham 1965, Kallianpur & Striebel 1968,

Liptser & Shiryaev 2001). In particular, it follows at once that the conditional density of X
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takes the form

ρt(u) =
ρ0(u) exp

(∫ t
0
vs(u)dξs − 1

2

∫ t
0
v2
s(u)ds

)
∫∞

0
ρ0(u) exp

(∫ t
0
vs(u)dξs − 1

2

∫ t
0
v2
s(u)ds

)
du
, (2.20)

which agrees with (2.10). This establishes Proposition 2.2.1 in the case where {vs(u)} is

deterministic.

Leaving aside the financial interpretation of the measure Q̃ for the moment (which we

shall discuss in Section 2.7 in more detail; for now it suffices to note that Q̃ is {X > t}-
conditionally the risk-neutral measure Q), the important consequence of Proposition 2.2.1

is that for every admissible term structure model characterised by the positive martingale

family {Mt(u)} with deterministic volatility structure {vt(u)}, there exists an ambient fil-

tering problem in an auxiliary probability space that can be identified as an extension of the

risk-neutral measure.

The above-specified filtering problem leads to the following probabilistic interpretation

for the pricing kernel. Writing

Nt =

∫ ∞
0

ρ0(u)Mt(u)du

=

∫ ∞
0

ρ0(u) exp

(∫ t

0

vs(u)dξs − 1
2

∫ t

0

v2
s(u)ds

)
du (2.21)

for the normalisation of the conditional density {ρt(u)}, we see that the pricing kernel is

given by the ‘unnormalised’ conditional probability that X > t:

πt = Nt Q̃t(X > t), (2.22)

where for simplicity we have written Q̃t(−) = Q̃(−|Ft) for the conditional probability.

Further, the price of a discount bond admits a probabilistic representation in the Q̃ measure:

PtT =
Q̃t(X > T )

Q̃t(X > t)
. (2.23)
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This formula shows that the price process of a discount bond is given by the ratio of the

(Q̃,Ft)-conditional probability that the positive random variable X taking values greater

than T and that of X taking values greater than t. By use of the Bayes formula, and the

fact that the set {X > t} contains the set {X > T}, we deduce the following:

Proposition 2.2.3 The prices of discount bonds {PtT} can be expressed in the form

PtT = Q̃t(X > T |X > t), (2.24)

where Q̃t(−) = Q̃(−|Ft) and Ft = σ({ξs}0≤s≤t).

The expression (2.24) is essentially the representation obtained by Brody & Friedman

(2009) for the discount bond using the information-based approach to interest rate mod-

elling. It is worth remarking that the random variable X has the dimension of time. In

Brody & Friedman (2009), X was interpreted as the arrival time of liquidity crisis, in the

narrow sense of a cash demand. Hence, under this interpretation, (2.24) shows that the

bond price at t is the probability that the timing of the occurrence of a cash demand is

beyond T , given that it has not yet occurred at t, and given the noisy information (2.14)

concerning the value of X , in a suitably risk-adjusted measure Q̃.

Remark. In the foregoing analysis we have assumed that the volatility {vt(u)} of the

martingale family is deterministic. Once the desired result on the existence of the ‘hidden’

filtering problem is established in the deterministic context, however, we may turn the

argument around by starting with the filtering equation (2.14) and then generate a model

for the pricing kernel. This, in turn, shows how the volatility structure {vt(u)} can be

made random: Provided that the solution to the nonlinear filtering problem exists and is

expressible in terms of the generalised Bayes formula (2.17), then {vt(u)} can depend on

the history of {ξt} in a general way. In Section 2.8 an explicit example of such a model

will be constructed for illustrative purposes. It is also worth remarking that a more generic

case often studied in the literature of nonlinear filtering concerns the situation in which the

signal X is itself a random process; often taken to be a diffusion process (see, e.g., Liptser

& Shiryaev 2001). We shall comment further on this situation in Section 2.8.
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2.3 Back to the market measure

The normalisation {Nt} can be used to effect a measure change Q̃ → P. To see this, note

first that the process {Wt} defined by

Wt = ξt −
∫ t

0

EQ̃
s [vs(X)]ds (2.25)

is a Q̃-Brownian motion with respect to the filtration {Ft} generated by the information

process (2.14). In fact, this is just the innovations representation for the filtering problem

posed above. Thus, the Brownian property can be verified by checking that {Wt} satisfies

the martingale condition:

EQ̃
t [WT ] = EQ̃

t

[∫ T

0

vs(X)ds+ βT −
∫ T

0

EQ̃
s [vs(X)]ds

]
= EQ̃

t

[∫ t

0

vs(X)ds+ βt −
∫ t

0

EQ̃
s [vs(X)]ds

]
+EQ̃

t

[∫ T

t

vs(X)ds+ (βT − βt)−
∫ T

t

EQ̃
s [vs(X)]ds

]
= Wt, (2.26)

where we have made use of the martingale property EQ̃
t [EQ̃

s [vs(X)]] = EQ̃
t [vs(X)] of the

conditional expectation for s > t, and the tower property of conditional expectation to

deduce that EQ̃
t [βT ] = EQ̃

t [βt]. Along with d[W ]t = dt, Lévy’s characterisation shows that

{Wt} is an Q̃-Brownian motion.

On the other hand, from (2.21) and the martingale representation

Mt(u) = 1 +

∫ t

0

vs(u)Ms(u)dξs (2.27)

for the positive martingale family {Mt(u)} we find

Nt = 1 +

∫ ∞
0

(
ρ0(u)

∫ t

0

vs(u)Ms(u)dξs

)
du

= 1 +

∫ t

0

(∫ ∞
0

ρ0(u)vs(u)Ms(u)du
)

dξs, (2.28)
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where we have made use of the fact that {vt(u)} is bounded and thus stochastic version of

Fubini’s theorem applies to interchange the limits. Upon differentiation, and recalling the

definition (2.13), we obtain

dNt

Nt

= v̂tdξt, (2.29)

from which it follows that

Nt = exp

(∫ t

0

v̂sdξs − 1
2

∫ t

0

v̂2
sds
)

(2.30)

is a positive martingale over any finite time interval, satisfying N0 = 1. Hence {Nt} can

be used as the likelihood process to change the probability measure. Specifically, for any

bounded Ft-measurable random variable Zt we have

EQ̃
s [Zt] =

1

Ns

EP
t [NtZt] and EP

s [Zt] = NsEQ̃
t

[
1

Nt

Zt

]
. (2.31)

In particular, (2.25) and (2.30) shows that {ξt} is a Brownian motion under the P measure,

thus providing an alternative derivation for Proposition 2.2.2. It should be noted that while

on the space (Ω,Gt) it is the process {Λt} that defines the measure change from P to Q̃, on

(Ω,Ft) it is Nt = EQ̃[Λt|Ft] that defines the relevant measure change.

We remark that the conditional probability Q̃t(X > t) appearing in (2.22) can be in-

terpreted as representing the pricing kernel in the Q̃ measure. Specifically, writing Πt for

Q̃t(X > t), we deduce from (2.20) that

Πt =

∫∞
t
ρ0(u) exp

(∫ t
0
vs(u)dξs − 1

2

∫ t
0
v2
s(u)ds

)
du∫∞

0
ρ0(u) exp

(∫ t
0
vs(u)dξs − 1

2

∫ t
0
v2
s(u)ds

)
du
. (2.32)

A short calculation making use of (2.25) shows that the Q̃-pricing kernel (2.32) can be

expressed manifestly in the Flesaker-Hughston representation (2.5):

Πt =

∫ ∞
t

ρ0(x)Gt(x)dx, (2.33)
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where {Gt(x)} is a one-parameter family of positive Q̃-martingales:

Gt(x) = exp

(∫ t

0

ṽs(x)dWt − 1
2

∫ t

0

ṽs(x)2dt
)
, (2.34)

and where ṽt(x) = vt(x)−EQ̃
t [vt(X)]. By Ito’s formula, (2.7), (2.9) and (2.29), dynamical

equation satisfied by the Q̃-pricing kernel therefore reads

dΠt

Πt

= −rtdt− (v̂t + λt)dWt, (2.35)

where v̂t = EQ̃
t [vt(X)] and λt = −EQ̃

t [vt(X)|X > t].

2.4 Indeterminacy of the risk premium

Returning to the P-measure, we recall that once a parametric model for the martingale

volatility {vt(x)} is chosen, then prices of derivatives will in general depend on this model

choice. Hence {vt(x)} can be calibrated from derivative prices. The initial term structure

density ρ0(u), on the other hand, can be calibrated from the initial yield curve. By substi-

tuting these ingredients in (2.9) we thus obtain a market implied risk premium, subject of

course to the model choice. Evidently, any tractable model is unlikely to fit all derivative

prices. One can nevertheless ask whether it is possible to fix {vt(x)} in a hypothetical

situation where one has access to the totality of liquidly-traded derivative prices and an

unlimited computational resource, i.e. whether it is possible in principle to fix {vt(x)}
unambiguously under the assumption that asset drift processes cannot be estimated eas-

ily. Perhaps not surprisingly, as one would have expected from the Black-Scholes-Merton

theory, the answer is negative. A more precise statement is as follows:

Proposition 2.4.1 In the Brownian-motion driven market, any addition to the volatility

of the Flesaker-Hughston martingale family {Mt(u)} that is independent of X and has

no parametric dependence on ‘u’ will not affect current price levels. Furthermore, risk-

premium vector can be estimated from derivative prices only up to an additive process.
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Remark. We emphasised here the fact that the stated result is applicable strictly within

the Brownian setup. This is on account of the recent observation that within the geometric

models for risky assets driven by general Lévy processes, Brownian motion family is the

only one for which the excess rate of return is linear in the risk aversion (Brody et al 2012a).

It seems reasonable to conjecture that an analogous result holds in the general Lévy context;

however, the indeterminacy of the risk aversion factor will not be of an additive nature when

asset prices entail jumps.

The main technical difficulty to extend the model to the Lévy case is the lack of well-

established filtering theory in this setting, in particular the form of the innovations process.

A first step would be to use a Poisson or compound Poisson model. This remains an open

topic for future research.

To verify Proposition 2.4.1, suppose that the volatility of the Flesaker-Hughston mar-

tingale family is decomposed in the form

vt(u) = φt(u)− αt, (2.36)

where the vector process {αt} is independent of X , and has no parametric dependence

on u. The minus sign here is purely a matter of convention. We assume that {φt(u)} is

bounded, and hence so is {αt}. Then writing

Lt = exp

(
−
∫ t

0

αsdξs − 1
2

∫ t

0

α2
sds
)
, (2.37)

we find that the pricing kernel takes the form

πt = Lt

∫ ∞
t

ρ0(u) e
∫ t
0 φs(u)dξs− 1

2

∫ t
0 φ

2
s(u)ds+

∫ t
0 φs(u)αsdsdu. (2.38)

Since {Lt} is a unit-initialised positive martingale on any fixed time interval, we can define

a new probability measure Pα according to the prescription

dPα

dP

∣∣∣∣
Ft

= Lt. (2.39)
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It follows that the price at time t of a contingent claim, with payout HT = h(ST ) at T > t,

is given by

Ht = Et
[
πT
πt
HT

]
= Et

[
LT
Lt

∫∞
T
ρ0(u) e

∫ T
0 φs(u)dξs− 1

2

∫ T
0 φ2s(u)ds+

∫ T
0 φs(u)αsdsdu∫∞

t
ρ0(u) e

∫ t
0 φs(u)dξs− 1

2

∫ t
0 φ

2
s(u)ds+

∫ t
0 φs(u)αsdsdu

HT

]

= Eαt

[∫∞
T
ρ0(u) e

∫ T
0 φs(u)dξs− 1

2

∫ T
0 φ2s(u)ds+

∫ T
0 φs(u)αsdsdu∫∞

t
ρ0(u) e

∫ t
0 φs(u)dξs− 1

2

∫ t
0 φ

2
s(u)ds+

∫ t
0 φs(u)αsdsdu

HT

]
. (2.40)

Evidently, under the new measure Pα, the process {ξαt } defined by

ξαt = ξt +

∫ t

0

αsds (2.41)

is a standard Brownian motion. Substituting (2.41) in (2.40) we deduce that

Ht = Eαt

[∫∞
T
ρ0(u) e

∫ T
0 φs(u)dξαs − 1

2

∫ T
0 φ2s(u)dsdu∫∞

t
ρ0(u) e

∫ t
0 φs(u)dξαs − 1

2

∫ t
0 φ

2
s(u)dsdu

HT

]
. (2.42)

The pricing formula above is identical to the pricing formula under the P measure had {αt}
been identically zero in the first place, on account of the following observation. The price

of the underlying asset at time T can be expressed in the form

ST = S0 exp

(∫ T

0

(
rs + λsσs − 1

2
σ2
s

)
ds+

∫ T

0

σsdξs

)
, (2.43)

where {σt} is the volatility of {St}. Now if the volatility of the martingale family {Mt(u)}
takes the form (2.36), then the risk premium can be expressed as

λt = λαt + αt, (2.44)

where {λαt } is the risk premium in the Pα measure:

λαt = −
∫∞
t
ρ0(u)φt(u)e

∫ t
0 φs(u)dξαs − 1

2

∫ t
0 φ

2
s(u)dsdu∫∞

t
ρ0(u)e

∫ t
0 φs(u)dξαs − 1

2

∫ t
0 φ

2
s(u)dsdu

. (2.45)
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Substituting (2.41) and (2.44) in (2.43), we obtain

ST = S0 exp

(∫ T

0

(
rs + λαs σs − 1

2
σ2
s

)
ds+

∫ T

0

σsdξαs

)
. (2.46)

We thus find that the parametric form of ST , and hence of any contingent claim HT , under

the P-measure with αt = 0, is the same as that under the Pα-measure with αt 6= 0. It

follows that any addition of terms in the martingale volatility {vt(u)} that is independent

of the parameter u does not alter quoted market values of derivatives, even though such a

shift in the martingale volatility will affect distributions of future prices. In particular, it is

not possible to ascertain from current market prices whether Pα or P is the true real-world

probability measure.

This result shows that the risk premium vector {λt} can be determined from market

prices of derivatives only up to an additive vectorial term {αt}; thus establishing the claim.

This freedom, however, is not arbitrary; it can only arise from a constant (i.e. independent

of the parameter u) addition to the volatility of the martingale family in the form of (2.36).

Remark. Note that because it is impossible to estimate α from the prices of traded

securities, it is not even possible to estimate the sign of the idiosyncratic component (i.e.

the ‘mood’ of the market). Hedge fund managers use different sources of information for

this purpose, including historic performance, news, expert opinions, etc. This is however

outside of the scope of this research.

2.5 Information-based interpretation

The ambiguity in the determination of the risk premium can be given an interpretation

from the viewpoint of information-based asset pricing theory of Brody et al. (2007). In the

information-based pricing framework one models the market filtration directly in the form

of an information process concerning market factors relevant to the cash flows of a given

asset. Our objective here, which extends the previous work of Brody and Friedman (2009),

is to analyse the model (2.14) for the information process that determines the pricing kernel.

The interpretation of the information process (2.14) is as follows. Market participants

are concerned with the realised value of the random variable X , which, in a certain re-
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stricted sense can be interpreted as the timing of a serious liquidity crisis. In reality, market

participants observe price processes, or equivalently the underlying Brownian motion fam-

ily {ξt}. As indicated above, under the physical P-measure the random variables X and

ξt are independent. However, market participants ‘perceive’ information with certain risk

adjustments characterised by the density martingale {Nt} of (2.30). In this risk-adjusted

measure, the path {ξt} represents the aggregate of noisy information for the value of X

in the form of (2.14). The ‘signal’ concerning the value of X , in particular, is revealed to

the market through the structure function {vt(u)}, which in turn determines the volatility

structure of the pricing kernel, and hence the risk premium.

Suppose that the structure function {vt(u)} takes the form (2.36), where {αt} is in-

dependent of X . Then because (2.14) represents the information process for the random

variable X , the constant {αt} combines with the ‘noise’ term {βt}. In other words, the

choice of {αt} is entirely equivalent to the choice of noise; the Brownian noise is replaced

by a drifted Brownian noise. This change of noise composition does not affect current asset

prices, and therefore is not directly detectable from market data, even though asset-price

drifts are modified, in general in an unidentifiable manner. Note that the point of view that

the indeterminacy of the asset price drifts is caused by noise has been put forward heuristi-

cally by Black (1986); our observation thus formalises this argument more precisely.

It is worth remarking briefly the observation made in Brody and Friedman (2009) con-

cerning the form of the structure function {vt(u)} in the absence of the noise drift {αt}.
Since small values of X imply imminent liquidity crisis, in an ideal market the signal-

to-noise ratio of the information process (2.14) should be large for small values of X , as

compared to large values of X . In other words, under normal market conditions we ex-

pect the signal magnitude |vt(u)| be decreasing in u for every t. Conversely, if |vt(u)| is

increasing in u, then the excess rate of return above the short rate for discount bonds, i.e.

the inner product of the risk premium and the discount bond volatility, can be shown to be

negative, yielding negative excess rate of return due to the inverted form of the structure

function {vt(u)}.
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2.6 Anomalous price dynamics

The fact that current asset prices are unaffected by changes in the structure of the noise

term does not imply that {αt} can be ignored altogether. Indeed, (2.44) shows that the

existence of such a component does shift the risk premium. Since the drift of an asset with

volatility {σt} is given in the P-measure by rt + λtσt, the noise-induced drift αtσt can

generate various anomalous price dynamics under the physical P-measure.

As an example, let us consider the case of an anomalous price growth, commonly called

a bubble. In the large vector space of asset volatilities, it is inevitable that volatility vectors

form clusters consisting of different sectors or industries. This is because, by definition, a

given sector of companies share similar risk exposures. Now if an anomalous noise compo-

nent {αt} at some point in time emerges to point in the direction of one of these volatility

clusters, then this can cause a sharp rise in the share prices of firms from that sector. Since

the noise vector {αt} carries no real economic information, this can be identified as a bub-

ble, where prices of a set of assets grow sharply, and independently of the ‘true’ state of

affairs, without seriously affecting price processes of other assets. Similarly, at a later time,

the magnitude of {αt} can diminish. In particular, more reliable information concerning

the true state of affairs may be revealed, which in turn leads to an increase in the magnitudes

of volatilities on the one hand, while on the other hand the risk premium vector can point

in a direction such that the inner product λtσt takes a large negative value; thus leading to

a bubble ‘burst’.

In the finance and economics literature, there exists a substantial work on the study

of various aspects of financial bubbles (see, e.g., Camerer 1989 for an early review). It is

important to note that our characterisation of a bubble is motivated by an information-based

perspective and is assumed to be caused by behavioural factors. Commonly used definition

of a bubble, on the other hand, is given by the difference between the current price and the

expected discounted future cash flows in the risk-neutral measure (cf. Tirole 1985, Heston

et al. 2007). Under this definition, discounted asset prices in the risk-neutral measure can

be modelled by use of strict local martingales (Cox and Hobson 2005, Jarrow et al. 2007,

2010), within the arbitrage-free pricing framework.

While this formulation of a bubble leads to the unravelling of many interesting mathe-



Chapter 2. Noise, risk premium and bubble 41

matical subtleties underlying fundamental theorems of asset pricing, from both behavioural

as well as an information-theoretic viewpoint the plausibility of such a definition for a bub-

ble seems questionable. In particular, a mathematical definition of a financial bubble that

involves no reference to the P measure seems restrictive; a bubble, after all, is a phe-

nomenon seen under the P measure. The pricing kernel approach, on the other hand, is

based on a stronger assumption that if {St} represents the price process of a liquidly traded

asset, then {πtSt} must be a true P-martingale. As such, the discounted Q-expectation

of future asset price necessarily agrees with the current value, or else there are arbitrage

opportunities.

The conventional definition of a financial bubble in terms of the inequality

St > π−1
t Et[πTST ] (2.47)

is sometimes justified heuristically by the fact that some traders, when they are under the

impression that there is a bubble and thus traded prices are above the ‘fundamental’ val-

ues, will nevertheless participate in the apparent bubble with the view that they can with-

draw from their positions before the crunch (see, e.g., Camerer 1989 and references cited

therein). This example and other similar ones are often used in support of the argument

that some traders are willing to purchase stocks even when they know that the price level is

above its fundamental value. The shortcomings in such an argument are that (a) the role of

market filtration is not adequately taken into account; and that (b) the fact that such a stock

purchase is equivalent to the purchase of an American option is overlooked (see Harrison

and Kreps 1978 for a discussion related to the second point). A more plausible character-

isation of a bubble participation seems to be as follows. Given the information {Ft} (and

perhaps following the ‘animal spirits’ of the market), a trader infers that the asset prices will

continue to grow for a while. Hence, subject to the filtration, the best estimate of the fu-

ture cash flow for this trader, with a suitable risk-adjustment, is given by supτ π
−1
t Et[πτSτ ],

where τ is a stopping time when the stock is sold. If this expectation agrees with the current

price level, then a transaction occurs. Conversely, it seems implausible that a transaction

takes place if the best estimate by a rational trader of a discounted cash flow is lower than

the current price level.
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The view we put forward here is that phenomena commonly called bubbles in an asset

ought to be identified with an anomaly in the rate of return of that asset, and not with an

anomaly in the price level itself. Here, a precise definition of an ‘anomaly’ in the drift is

essentially what we have described above, namely, the existence of an additive term in the

volatility of the martingale family {Mt(u)} that is constant in the parameter u. Based on

this definition, it is admissible that price processes behave in a manner that does not always

reflect what one might perceive as the true state of affairs, had one possessed better infor-

mation concerning the true worth of the assets. Put the matter differently, decisions con-

cerning transactions that ultimately lead to price dynamics are made in accordance with the

unfolding of information. Since this information is necessarily noisy, the best filters cho-

sen by market participants will inevitably deviate from true values of assets being priced.

If the noise structure changes, then it is only reasonable that the dynamical aspects of these

deviations will likewise change. In particular, the increment at time t of the innovations

representation—that characterises the arrival of ‘real’ information over the small time in-

terval [t, t+ dt]—is given by

dWt = dξt − φ̂tdt+ αtdt, (2.48)

where φ̂t = EQ̃
t [φt(X)], and this illustrates in which way the existence of a nonzero noise

drift {αt} affects the dynamics.

Our characterisation of anomalous price dynamics is not confined to the consideration

of financial bubbles. Again, in the large vector space of asset volatilities, it seems plau-

sible that equity market volatilities and fixed-income volatilities generally lie on distinct

subspaces. If the noise vector {αt} has a tendency to lie in the direction of equity-volatility

subspace, then this naturally leads to an excess growth in the equity market, explaining

the phenomena of the so-called equity premium puzzle, where over time the rate of return

associated with the equity market considerably exceeds that of the bond market (see, e.g.,

Kocherlakota 1996 for a review).
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2.7 Relation to the risk-neutral measure

We have established the relation between the auxiliary probability measure Q̃ and the phys-

ical measure P. The relation between the latter and the risk-neutral measure Q, on the other,

involves the risk premium process {λt}. To recapitulate these two relations, we have

dWt = dξt − v̂tdt and dW ∗
t = dξt + λtdt, (2.49)

where

v̂t =

∫∞
0
ρ0(u)vt(u)Mt(u)du∫∞
0
ρ0(u)Mt(u)du

and λt = −
∫∞
t
ρ0(u)vt(u)Mt(u)du∫∞
t
ρ0(u)Mt(u)du

, (2.50)

and where we let {W ∗
t } denote the Q-Brownian motion. By combining the two relations

in (2.49) we deduce at once that the measure-change density martingale is given by

dQ
dQ̃

∣∣∣∣
Ft

= exp

(
−
∫ t

0

(v̂s + λs)dWs − 1
2

∫ t

0

(v̂s + λs)
2ds
)
, (2.51)

which determines the general relation between Q and Q̃.

As indicated above, a closer inspection on (2.50), however, shows that

v̂t = EQ̃
t [vt(X)] and λt = −EQ̃

t [vt(X)|X > t]. (2.52)

In other words, under the restriction X > t, we have, conditionally, v̂t + λt = 0. These

observations lead to the following conclusion:

Proposition 2.7.1 The auxiliary measure Q̃, whose existence is ensured by the absence

of arbitrage and the existence of the pricing kernel, is conditionally identical to the risk-

neutral measure Q, where the conditioning is on the event X > t.

Putting the matter differently, by restricting to the eventX > t, we can think of the aux-

iliary measure Q̃, upon which the filtering problem is defined, indeed as the risk-adjusted

measure Q.
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2.8 Stochastic volatility

It is important to bear in mind the fact that a deterministic volatility structure {vt(u)} of

the martingale family {Mt(u)} does not imply deterministic volatilities for asset prices.

On the contrary, even for an elementary discount bond, the associated volatility process

arising from a deterministic {vt(u)} is highly stochastic. Hence when we speak about a

‘stochastic volatility’ we have in mind the volatility for the martingale family {Mt(u)},
whereas the stochasticity for asset prices is presumed in the foregoing material. Thus,

from the viewpoint of practical implementation, it probably suffices to restrict attention to

deterministic volatility structures, since deterministic volatilities for {Mt(u)} give rise to

a range of sophisticated stochastic volatility models for asset prices. Indeed, it is shown in

Brody et al. (2012) that even in the very restricted case of a single factor model with the

time-independent volatility vt(u) = e−σu that depends only on one model parameter σ, it

is possible to calibrate caplet prices across different maturities reasonably accurately.

It is nevertheless of interest to enquire in which way stochastic volatility models arise in

the auxiliary information process. There appear to be three distinct ways in which stochas-

ticities arise: (i) when the deterministic volatility structure {vt(u)} is augmented by an

additive stochastic process that has not parametric dependence on u; (ii) when the volatil-

ity structure {vt(u)} depends on the information process {ξt}; and (iii) when the signal X

is elevated to a stochastic process {Xt}.

Let us begin by considering the case (i) in which {vt(x)} admits the decomposition

(2.36) and where {φt(x)} is deterministic and {αt} is a Gaussian process so that the noise

term nt ≡
∫ t

0
αsds + βt is an {Fβt }-measurable Gaussian process. Then an application of

the martingale representation theorem shows that {nt} admits a decomposition of the form

nt =

∫ t

0

bsds+

∫ t

0

γsdβs, (2.53)

where {bs} and {γs} are deterministic. A short calculation then shows that an auxiliary

information process

ξt =

∫ t

0

φs(X)ds+ nt (2.54)
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in the Q̃ measure indeed exists, with the property that the scaled information process∫ t
0
γ−1
s dξs determines the market Brownian motion and that {bt} plays the role similar

to that of a deterministic {αt} in the previous analysis, and hence is not determinable form

current market prices. This example shows how one can model the random rise and fall of

anomalous price dynamics.

Alternatively, in case (ii) the structure function {vt(x)} can depend in a general way

on the history of the information process up to time t. In this case, we obtain a generic

stochastic volatility model for the martingale family. Provided that the structure function is

sufficiently well behaved so that relevant stochastic integrals exist, the auxiliary informa-

tion process can be seen to exist in the Q̃ measure. To illustrate this, consider an elementary

‘toy model’ for which information process takes the form of an Ornstein-Uhlenbeck pro-

cess:

ξt = eσφ(X)t

∫ t

0

e−σφ(X)sdβs, (2.55)

where σ is a parameter, X and {βt} are independent, and φ(u) is an invertible function.

Such an information process corresponds to a stochastic volatility model for which the

volatility process is given by a linear function of the P-Brownian motion: vt(u) = σφ(u)ξt.

The case (iii), the analysis of which is of considerable interests although it goes outside

the scope of the present paper, is to consider a more general situation often considered in

the literature of nonlinear filtering (cf. Liptser & Shiryaev 2001), namely, the unobserved

‘signal’ X is elevated from a fixed random variable to a random process. This case leads

to generic unhedgeable stochastic volatility models.

2.9 Discussion

The main results of this chapter are as follows: We have derived the existence of an aux-

iliary filtering problem underlying arbitrage-free modelling of the pricing kernel; the solu-

tion to which determines the volatility structure of the positive martingale family {Mt(u)}
appearing in the Flesaker-Hughston representation for the pricing kernel. We have demon-

strated that the structure of the ambient information process fully characterises the risk
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premium process {λt}. We have shown, under the Brownian-filtration setup, that {λt} ad-

mits a canonical decomposition into two terms in an additive manner; the systematic term

that can be calibrated from current market data for derivative prices, and the idiosyncratic

term that cannot be estimated, and thus can be identified as pure noise.

It is worth emphasising that these results hold irrespective of our choice of interpre-

tation. Nevertheless, our characterisation of anomalous price dynamics seems sufficiently

compelling, for, such phenomena are ultimately observed under the physical measure P.

One might ask what causes the evolution of the noise drift {αt}. This is an interesting

econometric question that, however, goes beyond the scope of the present investigation. It

suffices to remark that the random variable X that constitutes the signal component of the

ambient information process has units of time, i.e. [X] = [time], and thus is ultimately

linked to the term structure of financial markets. One possible explanation of the excess

equity premium therefore is that fixed-income market intrinsically embodies more infor-

mation concerning the term structure as compared to the equity market, and this imbalance

is manifested in the form of an additional drift in the noise component pointing generally

towards the direction of equity volatility vectors.

The indeterminacy of the risk premium, of course, could have been anticipated from

the elementary geometric Brownian motion model, for, in this model derivative prices are

indeed independent of the risk premium. This follows from the fact that in the geometric

Brownian motion model, the structure function is constant: vt(u) = −λ. Hence in this

model, which gives rise to the well-known Black-Scholes option pricing formula, the un-

derlying asset price dynamics in the physical P measure necessarily grows anomalously

(assuming as usual that λ > 0), without any reference to investor liquidity preferences.

We conclude by quoting a line from Wiener: “That particular branch of sociology which

is known as economics ...” is just a branch of “sciences of communication” (Jerison &

Stroock 1997). Indeed, the point of view that we advocate here, is that price processes in

financial markets should be regarded as emergent phenomena, based on markets acting as

filters to identify fair prices, given the available information and agents driven by ‘animal

spirits’. We hope therefore that the observations made in the present paper will lead to a

new line of research with an emphasis on the interplay involving information and commu-

nication theory, mathematical finance, and behavioural economics.
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Chapter 3

Taming animal spirits

In this chapter and the remainder of the thesis we assume that the ‘animal spirits’ are

given, defined as factor processes driving the parameters of the model for asset prices. In

this chapter we assume that the factors have the form of a diffusion, in the following two

chapters we assume they are Markov chains.

The contents of this chapter is a reprint from the paper Andruszkiewicz et al. (2013),

with kind permission from Springer Science+Business Media B.V.

3.1 Introduction

The goal of this chapter is to initiate a quantitative theory of credit risk relevant to scenarios

that contributed to the credit crunch of 2008. We have in mind specifically the experience of

Ireland and Spain, in which banks funded massive investments in property developments on

the basis of heroically optimistic valuations of the return on these investments. At the World

Economic Forum, Davos (2012), Enda Kenny, Taoiseach of Ireland, noted that ‘Ireland’s

problems stem from a kind of madness that led to the country borrowing $60 billion at

unrealistically high rates’. It is obvious that any explanation must include behavioural

factors.

In this chapter we study a project finance problem involving two parties,

• Bank (B), which borrows from other commercial banks or a central bank, at funding

rate rf and lends to entrepreneurs;
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• Entrepreneur (E) who borrows funds from B at a contract rate rc in order to finance

a project that will deliver a product of value G at time T .

E’s loan will be paid off (with interest) in a bullet repayment at T . The investment

project is the collateral for the loan, but of course its value is uncertain until T . B will insist

that an over-collateralization ratio κ > 1 be maintained at all times t ∈ [0, T ], based on

B’s current assessment of the value G, and will insist on margin payments should this ratio

be breached. This is what makes the loan so risky: E has to use other capital (assumed

to be invested in the financial markets) to make margin payments, and if this capital is

insufficient the loan will be foreclosed and the project sold off at a ‘fire sale’ price—some

fraction of its pre-default assessed value at time t.

Clearly, the key question here is how B assesses the value of the project. E is, as Keynes

says in the quote in Section 1.1.1, an optimist, but B should take a rational view. We assume

B abides by the principles of market-consistent valuation, i.e. uses a model such that no

arbitrage would be introduced if the project were traded at the model price in addition to

existing traded asset in the market. This principle allows (see Section 1.1.2) a wide range

of estimates, and we assume that B’s valuation is affected by ‘confidence’ as represented

by published business or consumer confidence indices.

In our analysis we find ourselves at the intersection of five lines of thought, namely (i)

‘animal spirits’, (ii) confidence indices, (iii) market-consistent valuation, (iv) the numéraire

portfolio, and (v) structural models of credit risk. In Section 1.1 we give some background

information on these topics that informs the models we construct and analyse in subse-

quent sections. Our project finance model is introduced in Section 3.2, and results for a

simply computable example are described in Section 3.3. This section also discusses the

computational requirements for larger-scale problems.

3.2 The Project Finance Model

We now proceed to a formal specification of our model.
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3.2.1 Financial Market

We consider a simple model in which tradable asset prices Si(t), i = 1, . . . ,m satisfy SDEs

of the form

dSi(t) = Si(t)µi(X(t))dt+ Si(t)σi(X(t))dWt, i = 1, . . . ,m, (3.1)

dX(t) = α(X(t))dt+ Λ(X(t))dWt, X(0) = x (3.2)

for t ∈ [0, T ], where Wt is P-Brownian motion in Rn+m and X(t) is an n-dimensional

factor process on a filtered probability space (Ω,Ft,P). We assume that α, Λ are Lipschitz

continuous so that a unique strong solution of (3.2) exists. Si(t) is then given explicitly by

Si(t) = Si(0) exp

(∫ t

0

(µi −
1

2
|σi|2)ds+

∫ t

0

σidWs

)
. (3.3)

The short rate of interest available to E is r(X(t)) for some given function r(·). We will

describe the components of the factor process X(t) below. The integrability conditions on

µi, σi are such that the integrals in (3.3) are well defined and E[Si(t)] <∞ for all i, t. The

main point is that X(t) includes confidence indices.

The factor processX is in general multidimensional and may contain both financial and

non-financial components. The diffusion parameters of the stock price processes µ and σ

are functions of the factors, and they should depend on the financial components, but not

the non-financial components. The non-financial components may drive other parts of the

economy, e.g. property prices.

The log-optimal portfolio for this model is (omitting the X-dependence)

dY (t) = Y (t) (r + h∗ΣΣ′h′∗) dt+ Y (t)h∗Σ dW, (3.4)

where h∗(t) = (µ − 1 r)′(ΣΣ′)−1 is the optimal asset allocation (the allocation to the

money market account being h0
∗ = 1 − h∗1). Here µ [Σ] is the vector [matrix] with rows

µi [σi] and 1 is the vector with all entries equal to 1. We assume that, for some ε > 0,

s′ΣΣ′(x)s ≥ ε|s|2 for all (s, x) ∈ Rm+n, which is equivalent to saying that there are no
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redundant assets. Equation (3.4) can be expressed as

dY (t) = Y (t)(r + β2)dt+ Y (t)β dBt, (3.5)

where Bt is the scalar Brownian motion

Bt =

∫ t

0

h∗Σ(s)

|h∗Σ(s)|
dWs

and β(t) = |h∗(t)Σ(t)|. With initial endowment Y (0) = 1, equation (3.5) has explicit

solution

Y (t) = exp

(∫ t

0

(r +
1

2
β2)ds+

∫ t

0

β dBs

)
. (3.6)

We are going to use the log-optimal portfolio Y (t) given by (3.5) for two different

purposes:

(a) It is assumed that entrepreneur E is a log-optimal (“Kelly”) investor, so that his surplus

wealth (capital not invested in the project) is just x0Y (t) if his initial surplus wealth is x0.

(This will hold up to the time of B’s first margin call; see below.)

(b) Y (t) is the numéraire asset, so the risk-neutral value at t of an FT -measurable payment

H paid at T is

Ht = Y (t)E
[

H

Y (T )

∣∣∣∣Ft] . (3.7)

This is the valuation formula used by B.

A discrete-time formulation. Most of the econometric data we consider, such as confi-

dence indices, is posted monthly. Let us suppose that T is an integer number n of months,

and denote by 0 = t0, t1, . . . , tn−1 the first day of each monthly period. If Xi(·), the ith

component of the factor process X(·), is an econometric variable based on monthly data

then we simply define Xi(t) = Xi(tk) for t ∈ [tk, tk+1). If every component of X(·) is

obtained from discrete data in this way then equation (3.6) has piecewise-constant coeffi-

cients, and the solution Y (tk) can be expressed as

Y (tk) =
k∏
j=1

Uj, Uj = exp

(
(rj +

1

2
β2
j )δj + βj

√
δjZj

)
(3.8)
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where δj = tj − tj−1, rj = r(X(tj−1)), βj = β(X(tj−1)), and the Zj are independent

N(0, 1) random variables.

Let {Gk, k = 0, . . . , n} be the discrete filtration where G0 is the trivial σ-field and

Gk = σ{B(tj)−B(tj−1), j = 1, . . . , k} for k = 1, . . . , n. If H is a Gn-measurable random

variable then we see from (3.7) and (3.8) that the value at time tk is

Htk = E

[(
n∏

j=k+1

U−1
j

)
H

∣∣∣∣∣Gk
]
. (3.9)

3.2.2 Project Finance

The project finance valuation problem was informally described in Section 3.1. The en-

trepreneur E has initial capital x and can, for a payment $A, invest in a venture which,

at time T = n months, will yield a reward G(X(T )) as above. G is a function that will

be specified below, but it is a function of X(T ) only and hence is GT -measurable. He in-

vests $a of his own money and borrows $b = A − a from a bank at a term rate of interest

rc (expressed for convenience in continuously-compounding terms), repayable by a bullet

payment at T . Thus effectively his initial capital is reduced to x0 = x− a while the even-

tual reward is G(X(T ))− ercT b. The capital x0 is invested in the Kelly portfolio described

above.

The value of the project at an intermediate time tk is deemed by the bank B to be the

market-consistent value Gk(X(tk)) given by (3.9) as

Gk = E

[(
n∏

j=k+1

U−1
j

)
G(X(T ))

∣∣∣∣∣Gk
]
. (3.10)

The loan is collateralized by the value of the project, and B stipulates over-collateralization

with factors κ > κ′ > 1, checked at monthly intervals. Thus G0 ≥ κb and in any subse-

quent verification time k we have

Gk(X(t)) ≥ κ′berctk .
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Defining Hk(x) = e−rctkGk(x) this is equivalent to Hk ≥ κ′b. Let

θ1 = min{k : Hk ≤ κ′b}, τ1 = tθ1 ,

b1 =
Hθ1

κ
.

At τ1, E is contractually obliged to provide additional collateral to restore the collateral

level to κ by paying off the amount d1 = ercτ1(b − b1) of the loan. Since the project is

illiquid, he can only do this from his investment portfolio, and hence this experiences a

jump of −d1. In general, we define for j = 2, 3, . . .

θj = min{k : θj−1 < k < n, Hk ≤ κ′bj−1}, τj = tθj ,

bj =
Hθj

κ

giving a jump in V of −dj = −ercτj(bj−1 − bj). The entrepreneur’s market investment

portfolio evolves as follows:

V (t) = V (0) +

∫ t

0

(r + β2)V (s)ds+

∫ t

0

V (s)βdBs −
∑
τj≤t

dj.

Let τ ∗ = min{τj : V (τj) < 0}, with τ ∗ = +∞ if there is no such tj , and let θ∗ = j when

τ ∗ = tj . If τ ∗ < T the entrepreneur is insolvent at τ ∗ and the project must be liquidated at

‘fire sale’ value F (τ ∗) = φ(τ ∗)Gθ∗(X(τ ∗)), where φ is an increasing function of time with

values in [0, 1[. The bank receives F (τ ∗) + V (τ ∗−).

The market-consistent value of the loan to the bank is therefore

MCV = E

[∑
j

dj
Y (τj)

1(τj<τ∗∧T ) +
bn ∧ (V (T ) +G(X(T )))

Y (T )
1(τ∗>T )

+
F (τ ∗) + V (τ ∗−)

Y (τ ∗)
1(τ∗<T )

]
. (3.11)

We thus have a credit risk model. The bank loses value because of early partial repayment

of the loan together with the risk of actual default. Define pk = (1 + rfk/12)−1 where rfk is

the Bank’s (annualized) funding cost for the kth month, and p0,k =
∏k

l=1 pl. Then, recalling
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that the initial loan amount is b, the Bank’s P&L along one sample path, discounted to time

0, is

Ξ(ω) =
∑
j

p0,θjdj1(τj<τ∗∧T ) + p0,n[bn ∧ (V (T ) +G(T ))]1(τ∗>T )

+ p0,θ∗ [F (τ ∗) + V (τ ∗−)]1(τ∗<T ) − b.

The Bank will be interested in the expected profit e = E[Ξ], the value at risk VaR = e−q,

where q is the (say) 5% quantile of the P&L distribution, and the expected shortfall

CVaR = e− E[Ξ|Ξ < q] = e− 1

q
E
[
Ξ1(Ξ<q)

]
.

3.3 A simply computable example

In this section we demonstrate the computations required in a simple example where the

factor process is a scalar Ornstein-Uhlenbeck process. This is a stylized model intended

mainly to illustrate the computational process. We do not attempt to connect the factor

variable to econometric data, an entirely separate matter.

3.3.1 Model specification

Recall that the numéraire asset is Yt satisfying

dYt = (r(Xt) + β2(Xt))Ytdt+ β(Xt)YtdBt, Y0 = 1. (3.12)

In this example we suppose that Xt is scalar, β(x) = b0 + b1x and r(x) = r0 + r1x. Xt is

the mean-reverting Gaussian process

dXt = −αXtdt+ γdWt, X0 = x0, (3.13)

where α, γ > 0 are constant and Wt is a Brownian motion with E[dW dB] = ρ dt. The

project value at completion is defined by G(XT ) = eη+ξXT . This is analogous to conven-

tional modelling of commodity prices as exponentials of mean-reverting processes. Note
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that ξ represents, up to a constant, the volatility of project value.

The Bank’s valuation of the project at t < T is

G(t,Xt) = E
[
Yt
YT

eη+ξXT

∣∣∣∣Ft] . (3.14)

Proposition 3.3.1 Let c0 = γρb0, c1 = α + γρb1, d = r1/c1. Then

G(t, x) = exp(v0(t) + v1(t)x) (3.15)

where

v1(t) = (ξ + d)e−c1(T−t) − d, (3.16)

v0(t) = η −
(
r0 − c0d−

1

2
γ2d2

)
(T − t)− (ξ + d)(c0 + γ2d)

[
1

c1

(1− e−c1(T−t))

]
+

1

2
γ2(ξ + d)2

[
1

2c1

(1− e−2c1(T−t))

]
. (3.17)

PROOF. The result follows from the fact that (3.12),(3.13) is an affine factor model Duffie

et al. (2000). We outline the steps, which can be completed by routine—if tedious—

computations.

(i) The risk-neutral measure Q with money-market account as numéraire is defined by

dQ
dP

= exp

(
−
∫ T

0

β dB − 1

2

∫ T

0

β2dt

)
.

If we express Wt in (3.13) as Wt = ρBt +
√

1− ρ2W 0
t , where B,W 0 are P-independent

Brownian motions, then dB̃ = dB + β dt, W 0
t and dW 1

t = ρ dB̃t +
√

1− ρ2 dW 0 are

Q-independent Brownian motions and Xt satisfies

dXt = −(γρb0 + (α + γρb1)Xt)dt+ γ dW 1
t

= − (c0 + c1Xt) dt+ γ dW 1
t .
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(ii) The project value is expressed under the measure Q as G(t,Xt) where

G(t, x) = EQ
t,x

[
e−

∫ T
t r(s)dseη+ξXT

]
.

(iii) By the Feynman-Kac formula, v(t, x) satisfies the backward equation

∂G

∂t
− (c0 + c1x)

∂G

∂x
+

1

2
γ2∂

2G

∂x2
− (r0 + r1x)G = 0, G(T, x) = eη+ξx. (3.18)

(iv) The PDE (3.18) has solution (3.15) where v1, v0 are given respectively by (3.16), (3.17).

Indeed, one can check that a solution of the form (3.15) satisfies (3.18) if v1 satisfies the

ODE
d

dt
v1(t) = c1v1(t) + r1, v1(T ) = ξ,

whose solution is (3.16). v0 is then given by direct integration of the following expression

involving v1:
d

dt
v0(t) = c0v1(t)− 1

2
γ2 (v1(t))2 + r0, v0(T ) = η,

Working this out gives (3.17). �

With Proposition 3.3.1 in hand, we can estimate the project value MCV of (3.11), and

the VaR and CVaR, by Monte Carlo simulation. Note that simulation is exact, because of

the discrete-time formulation, in that the result ultimately depends only on a finite vector

of N(0, 1) random variables.

3.3.2 Results

We consider a project with initial cost A = $12 (or $12, 000, 000) and an entrepreneur with

initial cash of x0 = $10. We assume that the project price is “fair”, in the sense that it

coincides with the risk-neutral value at time 0. The parameters of the model are presented

in Table 3.1. Note that η can be determined given the initial price of the project and the

other parameters.

The entrepreneur can be considered rather respectable—he has almost enough cash

to finance the entire project without resorting to loans. Given the overcollateralization

requirement imposed by the bank, the entrepreneur may choose to borrow between $2 and
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r0 0.03 α 0.90
r1 0.01 γ 0.80
b0 0.01 ρ 0.70
b1 0.01 rc 0.05
T 5 dt 1/12
κ 1.2 κ′ 1.1
ξ 1 η 1.948

Table 3.1: Parameter Values

$10, and he invests the surplus of between $8 and $0 respectively in the market. Figure

3.1 shows CVaR of the loan from the bank’s perspective, plotted against the notional of the

loan. All the values are presented as the fraction of the initial value of the loan.
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Figure 3.1: CVaR for different initial loan values, expressed as a fraction of the initial value
of the loan.

The immediate thing we notice in Figure 3.1 is that the risk behaves in a completely

different way for different levels of project volatility ξ. Under normal market conditions

(ξ = 1, which gives the project a similar volatility as the stock market) the bank prefers,

from the risk management perspective, lower loans. This is perfectly intuitive, because

the initial value of the collateral is the same for loans with different notionals and equal to

A = $12. The lower-value loans hardly ever default—around 1.1% of them compared to

6.1% for loans with value $10.
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In the case of high volatility (ξ = 1.5, when the market for the project is possibly

in crisis or distress), the situation becomes very different. Despite the lower-value loans

having a lower probability of default—9% for $3 loans comparing to 14.5% for $10 loans,

the higher-value loans have smaller risk. The key to understanding this seeming paradox is

to notice that loans with higher values leave the entrepreneur with more liquid assets. These

assets are used to cover the margin payments, so the bank can recover large proportion of

the loan before default, whereas in the case of minimal loan first margin call immediately

causes insolvency. Moreover, the entrepreneur invests his liquid assets in the market. The

extra leverage causes more volatility and defaults, but also increases his average return, and

hence the amount of money the bank can recover.
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Figure 3.2: Distribution of values for loan with initial value $3 and ξ = 1.5. The average
is 3.26 and CVaR = 0.77.

Figures 3.2 and 3.3 show the distribution of the value of the loan with notional of $3

and $10 respectively. In both cases the graph has two distinct peaks: the one with values

above the notional corresponds to no-default scenarios, whereas the other one contains val-

ues after default. The values are dispersed because of the effect of stochastic discount rates,

random early repayments and—for the relevant cases—different default times. We imme-

diately notice that in the $3 notional case more mass is in the no-default peak comparing

to the $10 case, but the returns if default occurs are proportionately much lower. Figures
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Figure 3.3: Distribution of values for loan with initial value $10 and ξ = 1.5. The average
is 10.74 and CVaR 1.82.

3.4 and 3.5 stress this point even more. They depict the distribution of the outstanding

loan value for the cases that ended up in default (taken just before the default time and

discounted suitably). In these figures we can clearly see that in most cases almost half of

the $10 loan is repaid early, whereas in a considerable percentage of cases the first margin

call made the $3 loan default. Note that these defaults are much more costly for the bank

(in terms of percentage of the initial loan value).

For all considered ξ and loan values the defaults happen mostly just before the maturity

of the project, see for example Figure 3.6.

The entrepreneur always prefers to borrow more, so that he has more leverage and more

potential to earn money. His losses are only limited to his initial capital x0 = $10, and—as

is apparent in Figure 3.7—the potential gains are very high. For the initial loan value of $6,

even in the normal risk circumstances (ξ = 1) the entrepreneur has a positive probability to

earn more than ten times his initial investment. In high risk case this goes up to almost thirty

times his initial investment. Despite the single most probable outcome in both cases is a

loss (a default in high risk case), the entrepreneur has a positive profit expectation of $3.57

in the low risk case and $4.53 in the high risk case. This kind of highly asymmetric payoff

characteristics foster the entrepreneurs drive to invest and provide examples of others who
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Figure 3.4: Distribution of (discounted) outstanding loan just before default for the initial
loan value $3 and ξ = 1.5. This graph contains only cases that ended up in default. Total
default probability is 0.08.

succeeded in a spectacular way—even though most of them failed. Being an “optimist” in

Keynes’ sense is perfectly rational in this model.

When agreeing to the loan amount in normal market circumstances the entrepreneur

will prefer to borrow as much as possible, but the risk-optimizing bank will prefer to lend

much less—because the risk increases with the notional of the loan. Figure 3.8 shows that

this statement is only true in the case of ξ being around unity. Based on this parameter we

can distinguish three market regimes: very low risk regime with ξ < 0.5, normal market

circumstances (0.5 < ξ < 1.2) and high risk market (ξ > 1.5). In the first case the project

is bound to succeeded and the bank only faces interest rate risk. Hence the risk doesn’t

depend on the value of the loan. As discussed, in the normal case the bank prefers to

have more collateral compared to the amount of the loan. In the high risk case, however,

things change dramatically. It becomes less risky for the bank to offer maximum loans to

the entrepreneurs. For the economy it may have severe consequences: on the one hand

these loans have much higher probability of default—which can be further aggravated by

contagion effects, and on the other the bank starts having big items on its balance sheet.

Even one default of these big loans could deplete the bank’s Tier 1 capital and cause its

collapse.
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Figure 3.5: Distribution of (discounted) outstanding loan just before default for the initial
loan value $10 and ξ = 1.5. This graph contains only cases that ended up in default. Total
default probability is 0.13.

Although not explicit in here, the ξ parameter can be assumed to be linked to the agents’

perception of the state of the market, with higher ξ meaning more volatility and uncertainty.

Then a crisis would mean a shift from the lower risk regime to a higher one, with all the

economic implications.

The mechanism of margin payments is effective way to minimize the risk for the bank

only for large loans in the volatile case, but somewhat surprisingly not in other cases. In

all cases introduction of forced early repayments increases the number of defaults between

2.5 and 6 times and in normal market conditions it increases the bank’s risk as well. In

particular, if a bank decides to give a “safe” loan of $3 under normal volatility conditions

then the margin payments are inefficient from the very start. But if a crisis begins and

volatility rises, it gets much worse. Looking at Figure 3.1 the risk will increase more than

threefold and the mechanism of early repayments becomes even greater burden for the bank

and the economy.
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Figure 3.6: Distribution of default times for loan with initial value $6 and ξ = 1.5. Total
default probability is 0.10.

3.3.3 Computations for the general case

The above computation is in two stages: solve the backward equation (3.18) to determine

the project valuation function G of (3.14), then simulate (forwards) to determine the value

of the project and the risk parameters. In our example the first stage is easy because the

backward equation has the closed-form solution (3.15). However, when we have a gen-

eral factor model with, say, 5 or 6 factors, a numerical method will be required, and the

dimensionality stretches standard finite-difference methods up to, or beyond, their normal

limits. The best candidates seem to be stochastic mesh methods, see Glasserman (2003),

and specifically the basis function approach originally devised by Longstaff and Schwartz

(2001) for American options. While computationally intensive these methods have the ad-

vantage that the same set of sample paths used for the forward simulation is also used to

solve the backward equation. They are becoming the methods of choice for large-scale

credit risk calculations, see Cesari et al. (2010).
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Chapter 4

Estimating animal spirits

In this chapter work with historic data. We propose a way to estimate the ‘animal spirits’ in

the real estate market, use the model for forecasting and to compute Value-at-Risk (VaR).

We also introduce a procedure in which we add stress scenarios to the model to make the

risk estimates more conservative.

A natural approach to quantifying animal spirits would be to use confidence indices.

Figure 4.1 depicts log-returns of the Shiller house price index and the University of Michi-
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Figure 4.1: Log-returns of the Shiller property index (seasonally adjusted and normalized),
University of Michigan consumer sentiment index.

gan consumer sentiment index. Even by looking at the graph it is clear that there exists
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a relationship between these two quantities. There is not enough data to find evidence of

causality in the sense of Granger (1969) in either direction though—which might suggest

the existence of another factor, causing both of these data series.

In this chapter we propose to use Hidden Markov Models (HMMs) to estimate this

unobservable factor, which is assumed to be a “state of the world”, impacting both house

prices and consumer confidence. Hidden Markov Models were initially developed in the

field of communications, in particular for speech recognition. Recently, this approach

was successfully adopted in finance, where the interpretation of the hidden state process

is that it is the current market ‘regime’, and this class of models is often referred to as

‘regime-switching’. Some early discussions include Hamilton (1988) and Pagan and Schw-

ert (1990). It was used by Hamilton (1989) to explain US GNP, Rogers and Zhang (2011)

use it to reproduce several well known stylized facts about asset returns. Haidinger and

Warnung (2012) analyse risk measures in the setting of Rogers and Zhang (2011). Kritz-

man et al. (2012) use it for stock prices to come up with a trading strategy, they also include

the Matlab source code used for the estimation. Giampieri et al. (2005) analyse defaults of

companies. This approach is also used in the financial computing and artificial intelligence

fields, see e.g. Rao and Hong (2010) or Hassan and Nath (2005).

HMMs consist of two (possibly multidimensional) processes: observable state (prop-

erty price index and consumer confidence index in our case) and a finite state Markov chain

that is unobservable (hence hidden), but which impacts the distribution of the observable

process. A natural interpretation of the hidden state is that it defines market regimes, or

‘animal spirits’ if we look at it from the behavioural perspective. An attractive feature of

HMMs is that the Viterbi algorithm makes it possible to efficiently calculate the most likely

path of the hidden state process, which gives a really intuitive way to verify the model.

Dempster et al. (2012) use a hidden factor model in the commodity market. As opposed

to HMMs, the hidden factors in their model are continuous processes. The most interesting

feature of the cited paper is that the authors use standard structural Vector Auto-Regressive

analysis of the most likely path of the hidden factors against published economic data.

This in turn might be used for prediction of the hidden factors and hence prediction of the

underlying commodity prices.

In this chapter we use HMMs to estimate ‘animal spirits’ from the price process itself.
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Instead of using the most likely path of the hidden process in a regression model however,

we introduce a multidimensional model with both house price process, which is our main

point of interest, as well as the consumer confidence index as observable time series. We

find that a model with three hidden states captures the data well, with one of the states

corresponding to the worst part of the crisis. The consumer confidence index implied very

similar path of the state process as the Shiller index, however it did not improve forecasting

or VaR calculation.

Finally, we use the distribution forecast implied by the model for VaR calculation. We

introduce a procedure of augmenting the model with an auxiliary state that corresponds to

a crisis. Later in the chapter we show that this procedure provides a much more conser-

vative risk estimate by running back-testing on the period during property crisis and that

without this state the model completely doesn’t capture the negative returns on house prices

observed in the crisis.

Our estimation algorithm is based on Rabiner (1989), Rabiner and Juang (1993) and

improvements from Rahimi (2000). See also Zucchini and MacDonald (2009) for a com-

prehensive treatment of the subject. We extend the standard algorithm to cater for mean-

reverting processes, show how to estimate parameters of correlated multi-dimensional continuous-

time stochastic processes and provide a procedure for forecasting. Elliott et al. (1995) ap-

proach the subject using techniques from stochastic filtering. The use the filters also for

maximum-likelihood parameter estimation in the expectation-maximisation (EM) iterative

framework. Their approach is different from the one used here, but the resulting estimation

procedure is very similar.

Section 4.1 contains basic discussion on hidden Markov models—all technical details

can be found in appendices 4.A.1 and 4.B.1. Section 4.2 shows how to translate discrete-

time HMMs into continuous-time stochastic regime-switching models. 4.3 lists the sources

of data used for the estimation. Sections 4.4 and 4.5 contain estimation and VaR calculation

results. Finally, section 4.6 concludes the chapter.
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4.1 Hidden Markov Models

Let Ot denote the log-returns of the relevant asset price at time t. The time index is dis-

crete and corresponds to the market observation times. In our case we assume that Ot is a

continuous random variable with a density function.

The main idea behind HMMs is that there exists a corresponding time series {qt}, which

is not directly observable (hence hidden), and which denotes the ‘state’ of the system at

every time t. In the class of models we are looking into {qt} is modelled as a finite-state

Markov chain with initial distribution π and transition matrix A. The parameters of the

distribution of Ot depend on the state variable qt, e.g. if we assume that Ot is normally

distributed then the mean and variance of the distribution are functions of qt.

For simplicity of exposition we assume that qt takes values in N, the set of positive

integers and the parameters of the distribution of Ot given qt are in the qt-th row of the

matrix θ. So the whole model λ = (π,A, θ) consists of the initial distribution π of the

state variable, its transition matrix A and the mapping θ of the distribution parameters of

the observable process given the hidden state.

To estimate the parameters of the model we shall adopt the maximum likelihood method,

so we find parameter values λ̂ that maximise the likelihood function of the observed series:

L(λ;O) = P [O|λ] , (4.1)

where in our case the observations are continuous random variables, and hence P [O|λ]

denotes the density function:

P [O|λ] ≡ P [O ∈ (x, x+ dx)|λ] (4.2)

Direct maximisation is in this case very difficult and hence we will implement a version

of Expectation-Maximisation (EM) algorithm, first introduced by Dempster et al. (1977).

The algorithm starts from some user-defined initial guess for the parameter values and then

improves them iteratively. It was proved that it always converges monotonically to a local

maximum. A single iteration consists of two steps:

Expectation First, given the parameter values from previous step λi−1 we calculate the
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quantity:

Q(λ, λi−1) = E
[
logP [O,Q|λ]|O, λi−1

]
=
∑
q

logP [O, q|λ]P
[
O, q|λi−1

] (4.3)

as a function of λ.

Maximisation Next, we find λi = arg maxλQ(λ, λi−1), which will be used in the next

iteration.

We iterate over these steps until we reach convergence to a local optimum. Note that the

quantity that is being maximised (4.3) is different from a logarithm of the likelihood (4.1).

Dempster et al. (1977) proved that the parameter values that maximise (4.3) also maximise

(4.1), hence the algorithm gives the required estimate.

In particular we add certain simplifying assumptions, so that we can employ a slightly

modified version of the Baum-Welch algorithm, which is specifically optimized in the case

when the observations Ot are conditionally Markov. All the technical detail of the Baum-

Welch algorithm can be found in the appendix 4.A. Appendix 4.B contains the discussion

on model choice and our methodology of distribution-forecasting and verifying the model.

4.2 Continuous models

Most models in mathematical-finance are set in continuous time, mainly for easier tractabil-

ity. However, real world data is only available at discrete time points (monthly in case of

the Shiller index) and hence the statistics literature deals with discrete time series. To

bridge these two fields easily and without introducing additional error terms, we only work

with price processes that can be discretized exactly. The state process is assumed to only

change value on the observation dates, so the continuous-time version has right-continuous

piecewise-constant paths.
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4.2.1 Geometric Brownian Motion

The Geometric Brownian Motion (GBM):

dSt = µStdt+ σStdWt (4.4)

is a very popular model for asset returns in finance, mainly due to its tractability. It is widely

accepted that it doesn’t capture the behaviour of the market very well. It can be vastly

improved though if we introduce hidden state and make the drift and volatility dependent

on the state (see e.g. Kritzman et al. (2012)). It is well known that in the discretized

world the log-returns Ot = ln
(

St
St−1

)
have a Gaussian distribution with mean m(qt) =

[µ(qt) − 1
2
σ2(qt)]∆t and variance var(qt) = σ2(qt)∆t (both state-dependent as discussed

above), where ∆t denotes the time between observations. For simplicity we estimate the

parameters of qt in two stages. First we estimate the mean m(qt) and variance var(qt),

using the algorithm described above. Then we can easily retrieve the original parameters:

µ∗i =
m∗(i) + 1

2
var(i)

dt

σ∗i =

√
var(i)

dt
.

(4.5)

4.2.2 Geometric Ornstein-Uhlenbeck

Now we assume that the price process is given by:

St = eXt , (4.6)

where Xt is a state-dependent Ornstein-Uhlenbeck process with dynamics:

dXt = α(β −Xt)dt+ σdWt, (4.7)
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and where the parameters α, β and σ depend on the hidden state qt. According to Glasser-

man (2003, pp. 108-111) the exact discretization of Xt is given by:

Xt = e−α∆tXt−1 + β(1− e−α∆t) + σ

√
1

2α
(1− e−2α∆t)Zt, (4.8)

where Zt is a standard normal variable for every t. In this case it is easier to assume that we

observe the log of the price process rather than log returns as previously, so let Ot = Xt.

At each time t the random variable Ot is normally distributed with mean ROt−1 + B and

variance C2, where:

R = e−α∆t

B = β(1− e−α∆t)

C = σ

√
1

2α
(1− e−2α∆t)

(4.9)

We can use the algorithm for Markov observations detailed in Appendix 4.A.4 for estima-

tion. The original parameters can be recovered as follows:

α =
− logR

∆t

β =
B

1−R

σ =
C√

1
2α

(1−R2)

(4.10)

4.2.3 Mapping parameters in multidimensional case

One of the outputs of the Baum-Welch algorithm is the distribution parameters of the ob-

servable process in every state qt:

Ot ∼ N (m(qt, Ot−1),Σ(qt)). (4.11)
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To recover the parameters of the original SDEs we first observe that each individual com-

ponent of Ot can be written as:

Oi
t = mi(qt, Ot−1) + φi(qt)Z

i
t , (4.12)

where φi(qt) =
√

Σii(qt), and Zi are standard normal random variables, with correlation

matrix:

ρ(qt) = {ρij(qt)}, ρij(qt) =
Σij(qt)

φi(qt)φj(qt)
. (4.13)

We can now recover parameters of each individual single-dimensional SDEs from (4.12).

ρ(qt) is the correlation matrix between the Brownian motions driving these individual

SDEs.

To recover the covariance matrix Σ(q) from φ(q) and ρ(q) we immediately notice that

Σ(q) = diag(φ(q))ρ(q) diag(φ(q)). (4.14)

4.3 Data

For estimation we use the Standard & Poor’s (S&P)/Case-Shiller 10-City Composite Home

Price Index (ticker SPCS10) as the indicator of property prices in the United States. An-

nouncements of index levels are made at 09:00 AM Eastern Time, on the last Tuesday

of each month. Historic index values are available on the S&P website: http://eu.

spindices.com/indices/real-estate/sp-case-shiller-10-city-composite-home-price-index.

Before the estimation we calculate the seasonally adjusted version of the index using X-12-

ARIMA Seasonal Adjustment Program (see http://www.census.gov/srd/www/

x12a/). Specifically we use the implementation provided as part of the open-source Gretl

package (http://gretl.sourceforge.net/).

To capture consumer confidence we use the University of Michigan Consumer Senti-

ment Index. The preliminary index releases are scheduled around the middle of the relevant

month, and the final release is around the end of the month. Exact release dates are avail-

able on the index web page. The historic press releases are available from the index page:

http://thomsonreuters.com/products_services/financial/financial_

http://eu.spindices.com/indices/real-estate/sp-case-shiller-10-city-composite-home-price-index
http://eu.spindices.com/indices/real-estate/sp-case-shiller-10-city-composite-home-price-index
http://www.census.gov/srd/www/x12a/
http://www.census.gov/srd/www/x12a/
http://gretl.sourceforge.net/
http://thomsonreuters.com/products_services/financial/financial_products/a-z/umichigan_surveys_of_consumers/
http://thomsonreuters.com/products_services/financial/financial_products/a-z/umichigan_surveys_of_consumers/
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products/a-z/umichigan_surveys_of_consumers/. The historical values

can also be downloaded in a more convenient format from FRED: http://research.

stlouisfed.org/fred2/series/UMCSENT.

We also tried the Conference Board consumer confidence index, but the estimation

results were inferior to the University of Michigan Consumer Sentiment Index, and hence

are not presented here.

4.4 Estimation results

The Shiller index is characterised by a significantly lower volatility compared to stock

indices, and most of the volatility has strongly seasonal characteristics. This is mostly

due to low liquidity, long transaction times and high transaction costs. The distribution of
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Figure 4.2: A histogram of log-returns of seasonally-adjusted Shiller index and a fitted
normal distribution density.

log-returns of the Shiller index is highly non-Gaussian and multi-modal, as can be seen

in Figure 4.2. The fitted normal distribution does not capture the underlying data well.

Moreover, unlike the stock markets, using a fat-tailed distribution is not going to help in

this case either. However, employing a hidden Markov model proves to be fruitful.

First, we estimate a HMM with an underlying geometric Brownian motion model and

with two hidden states The most likely path of the hidden state process, obtained using

http://thomsonreuters.com/products_services/financial/financial_products/a-z/umichigan_surveys_of_consumers/
http://thomsonreuters.com/products_services/financial/financial_products/a-z/umichigan_surveys_of_consumers/
http://research.stlouisfed.org/fred2/series/UMCSENT
http://research.stlouisfed.org/fred2/series/UMCSENT
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Figure 4.3: Log-returns of the Shiller property index (seasonally adjusted and normalized)
and an estimated most likely path of the hidden state process with two states.

State µ σ Interpretation
0 -0.0304282 0.0210861 Decline/Stagnation
1 0.112926 0.0114603 Growth

Table 4.1: Estimated parameters of the Shiller index (seasonally adjusted) for every value
of the hidden state process. The model used is a geometric Brownian motion with two
regimes.

the Viterbi algorithm described in the appendix 4.A.1, is in Figure 4.3. The estimated

parameters of the process are in Table 4.1 and the transition matrix between states is given

by:

A =

[
0.9854 0.0146

0.0175 0.9825

]
(4.15)

The estimation procedure is able to identify different regimes surprisingly well. Figure

4.4 contains the histograms of log-returns corresponding to the two states. Whereas the

observations corresponding to the growth regime are matching the normal distribution rea-

sonably well, given the limited number of data points, the histogram corresponding to the

weak market conditions is clearly skewed by the extreme losses observed during the crisis.

We decided to include an extra state and as seen in Figure 4.5 the estimation procedure used

it for the observations corresponding to the market crash. Figure 4.6 contains the relevant
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Figure 4.4: Histograms of log-returns of seasonally-adjusted Shiller index corresponding
to most likely states and a fitted normal distribution density.

State µ σ Interpretation
0 -0.176807 0.0139859 Crisis
1 -0.00798775 0.00962791 Stagnation
2 0.110411 0.0116515 Growth

Table 4.2: Estimated parameters of the Shiller index (seasonally adjusted) for every value
of the hidden state process. The model used is a geometric Brownian motion with three
regimes.

histograms. Note that the first state corresponds to very few observations. The estimated

parameters of the regime-switching geometric Brownian motion process are given in Table

4.2. The transition matrix of the hidden factor process is given by:

A =


0.9609 0 0.0391

0.0075 0.9775 0.015

0 0.0202 0.9798

 , (4.16)

and the third state is estimated as the initial state.∗ Log-likelihood for this model is 1318.23,

which is higher than 1212.1 and 1065.47 for a model with two hidden states and a simple

geometric Brownian motion respectively. The Akaike information criterion (AIC) has the

value of −2608.45, as opposed to −2410.2 and −2126.95 respectively. The Bayesian in-

∗It is always the case that the initial distribution degenerates to a single state. Intuitively this is caused by
the fact that the observation data includes only one realisation of the initial state. Hence we can only estimate
the most likely realisation of that state, as opposed to the actual distribution.
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Figure 4.5: Log-returns of the Shiller property index (seasonally adjusted and normalized)
and an estimated most likely path of the hidden state process with three states.

formation criterion (BIC) with value−2556.09 also confirms the model choice, as opposed

to the values of−2384.02 and−2119.47 for the other models respectively. The most likely

path of the hidden process had 26 observations in the first state, 133 in the second state and

151 in the third state.

Number of State Number of
Skewness

Excess Jarque-Berra
states number observations Kurtosis statistic

1 0 310 -0.7569 0.6344 34.79819

2
0 170 -1.354 1.2474 62.96567
1 140 0.4922 0.0833 5.69323

3
0 26 0.5674 -0.6295 1.824378
1 133 -0.5046 -0.3809 6.448114
2 151 0.5101 -0.0129 6.549464

Table 4.3: Statistics for log-returns of the Shiller index in models with varying number of
states.

Table 4.3 summarises the basic statistics for the most likely observations corresponding

to all the cases described above, including the Jarque-Bera test statistic. Even though the

null hypothesis that the values are normally distributed is rejected in every case, the value

of the statistic is much lower in the model with three states. We believe it is unlikely that

standard distributions will fit this data well, because the Shiller index is artificially con-
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Figure 4.6: Histograms of log-returns of seasonally-adjusted Shiller index corresponding
to most likely states and a fitted normal distribution density.

structed and then manipulated further to remove seasonality. Despite these shortcomings,

we get promising results in the next section.

It is well known that exact estimation of parameters of financial assets, the drift in

particular, is virtually impossible, see e.g. Rogers (2001). Hence, and also because of

limited available data, our estimation procedure produces different parameter values for

different estimation windows. However, the estimation of the most likely states is very

stable, irrespective of the choice of historical data set. In particular, the states assigned to

the observations before the crisis remain virtually the same if we include the crisis period

in the estimation or not.

Note that the ‘a posteriori’ changes of states in Figure 4.5 may be linked to specific

events. The slowdown that started in 1989 may be linked with the Financial Institutions

Reform, Recovery and Enforcement Act (FIRREA) and the resulting closing of hundreds of
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insolvent thrifts. Later the market improved after The Taxpayer Relief Act of 1997, which

introduced breaks on capital gains on the sale of a home and encouraged people to buy more

expensive first homes, as well as invest in second homes and investment properties. In 2006

we see the factor process jumping down, marking the beginning of the Credit Crunch. At

that time many sub-prime lenders are declaring bankruptcy. The sharp fall to the crisis

state in 2007 corresponds to the deepening of the crisis. In August that year most of the

global banks find sub-prime mortgage backed securities on their balance sheets, declare

losses and cut down on lending. The short bounce-back of 2010 is reflected in the state

process jumping to the growth state for a few months, which is followed by stagnation in

the market. Finally in 2013 the market starts to recover again.

We also estimated a geometric Ornstein-Uhlenbeck model (known as the Longstaff-

Schwartz model in the commodity pricing literature), but the mean-reversion coefficient in

the growth state was negative—suggesting that the Shiller index doesn’t have any mean-

reversion properties and hence the model is inadequate. The model was also estimated

for joint Shiller property price index and consumer confidence index, using a geometric

Brownian motion model for the former data series, and a geometric Ornstein-Uhlenbeck

model for the latter. Obtained results were very similar to the single-dimensional case,
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Figure 4.7: Log-returns of the Shiller property index (seasonally adjusted and normalized),
University of Michigan consumer sentiment index and an estimated most likely path of the
hidden state process with three states.
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which suggests that the consumer confidence index doesn’t add more information over

what is already contained in property prices. The most likely path is presented in Figure

4.7. The estimated parameters of the regime-switching geometric Brownian motion process

State µ σ α β σcons Interpretation
0 -0.14999 0.0180475 2.29584 4.21205 0.292439 Crisis
1 -0.00374117 0.00843199 0.71729 4.44809 0.164324 Stagnation
2 0.11024 0.0116677 1.00023 4.52742 0.149742 Growth

Table 4.4: Estimated parameters of the seasonally adjusted Shiller index (µ and σ) and
University of Michigan consumer confidence index (α, β and σcons) for every value of the
hidden state process. The model used is a geometric Brownian motion and exponential
Ornstein-Uhlenbeck with three regimes.

corresponding to the Shiller index and the parameters of exponential Ornstein-Uhlenbeck

process for consumer confidence are given in Table 4.4. The transition matrix of the hidden

factor process is given by:

A =


0.9406 0.0318 0.0276

0.0163 0.9671 0.0166

0 0.0201 0.9799

 , (4.17)

The joint model didn’t improve value at risk estimation.

In the financial markets it may be possible to estimate ‘animal spirits’ from the put op-

tion markets (the implied volatility of put options becomes higher in markets in distress,

when the market participants are pessimistic). However, liquid option prices are not avail-

able in the property market analysed in this chapter.

4.5 Risk management and animal spirits

One of the main purposes of this chapter is to propose a model for value at risk for house

prices. Back-testing is done for the period from July 2006 to November 2012, starting

just before the credit crunch. First we employ the forecasting method described in the

appendix 4.B. We estimate the model for every period in the back-testing range, and use

the parameters for one-period ahead forecast. Using the forecast distribution, we calculate
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the 95% VaR level†. For all the relevant periods we calculate the proportion of observations

that were below the corresponding VaR level. For a perfect forecast we would expect this

ratio to be 5%. Unfortunately, just by looking at the data, it is clear that purely statistical

methods are bound to fail, because the series before the crisis is in no way representative

for the crash period. Indeed, more than 22% of all the observations fall in the VaR region,

which shows that our risk was grossly underestimated. The results would be much better

if we knew the true distribution of the data series before the crisis happened. If, instead of

estimating the parameters at every period, we use the parameters estimated for the whole

series (of course in reality they would not be known at that time), we get the proportion of

observations down to a much more reasonable 7.8%.

We can achieve similar results without ‘cheating’—it is enough to introduce stress sce-

narios to the data set. To get conservative risk estimates, one should assume that the house

prices might fall—even though they haven’t in the historic data series. To illustrate that

this simple idea works in our context, we proceed as follows. We estimate parameters of a

hidden Markov model with two hidden states in June 2006. The resulting model is given

State µ σ Interpretation
1 0.0002445 0.0094117 Stagnation
2 0.11767 0.0109299 Growth

Table 4.5: Estimated parameters of the Shiller index (seasonally adjusted) just before the
benchmarking period.

in Table 4.5, with the transition matrix of the hidden Markov chain given by:

A =

[
0.9900 0.0100

0.0154 0.9846

]
, (4.18)

Next we introduce an arbitrary ‘crisis’ state using the following heuristics:

• The mean of the log-returns in the new state is the negative of the double mean of the

existing growth state, with variance the same as the existing decline state

• The crisis starts only when the system is in the decline state, with probability 0.03

†The 95% level was chosen because of the limited number of observations.
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• The crisis ends with probability 0.05, and the system moves directly into the growth

state to capture the ‘bounce-back’ effect

State µ σ Interpretation
1 -0.2351763 0.0094117 New Crisis state
2 0.0002445 0.0094117 Stagnation
3 0.11767 0.0109299 Growth

Table 4.6: Estimated parameters of the Shiller index (seasonally adjusted) with an auxiliary
state added for a house price crash.

The model parameters after applying the simple heuristics described above are given in

Table 4.6, and the transition matrix is given by:

A =


0.95 0 0.05

0.03 0.9600 0.0100

0 0.0154 0.9846

 , (4.19)

For simplicity of calculations, we keep these parameters throughout the benchmarking pe-

riod. This simple inclusion of a ‘crisis’ state allows us to get the proportion of observations

in the VaR region down to 7.8%. The need of an auxiliary state is even more apparent in
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Figure 4.8: Estimation of 5% and 95% quantiles of future distribution of Shiller index
starting from July 2006. The left panel uses 2-state model estimated in June 2006, the right
panel uses the same model with an auxiliary crisis state added.

Figure 4.8, which shows the 5% to 95% range of possible future paths of the Shiller index
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starting from July 2006. The left graph was generated using the two state model estimated

in June 2006, whereas the right graph was generated using the model with a crisis state

added using the procedure described above. The most striking feature is that the original

model doesn’t account for a fall in house prices at all, which caused the risk estimates to be

grossly overoptimistic. This situation exemplifies A. Greenspan’s ‘irrational exuberance’.

Of course, there is no reason to believe that this new model with a crisis state reflects

the true distribution of the house prices, it provides a way to obtain a conservative risk

estimates though. The key idea is to identify the stress scenario that could happen, but is

not reflected in historic data, and assign a positive probability to it. This is a very intuitive

procedure in hidden Markov models, because the stress scenario corresponds in a natural

way to a new state of the hidden factor process. Note also that if the system is in a growth

state, then the probability of a crash is very low—hence the model is not over-conservative

in the periods of high returns.

4.6 Summary

In this chapter we summarised the Baum-Welch algorithm for estimating parameters of

Hidden Markov Models. We extended the standard algorithm to cater for two most popu-

lar models in finance: geometric Brownian motion and Ornstein-Uhlenbeck type, both in

single and multiple dimensions. Moreover, we introduced formulas for density forecasts

and risk calculation. We estimated the model for Shiller Home Price Index and consumer

confidence index, and calculated the most likely paths of the ‘animal-spirits’ hidden state

process. We used the model for VaR calculation.

Finally, using the example of property price crash, we highlighted the importance of

including auxiliary stress scenarios in risk calculations, especially in markets driven by ‘an-

imal spirits’ or ‘irrational exuberance’. Conservative risk managers should always account

for negative sentiment and bubble burst. HMMs prove to be perfect models for inclusion

of stress scenarios. The procedure is intuitive, the extended model captures the downside

risk, and yet is not overly pessimistic during good times.
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4.A Appendix: Estimation

4.A.1 The Baum-Welch algorithm

First let us assume that the observations are conditionally (given the hidden process) inde-

pendent of each other. This case satisfies the assumptions of the Baum-Welch algorithm,

which is a fast-performing special case of the more general EM method. The following dis-

cussion follows Rabiner and Juang (1993). For simplicity we consider a single-dimensional

case, but the discussion carries over to the multidimensional case. We can write the densi-

ties P [O, q|λ] as:

P [O, q|λ] = πq1fq1(O1)
T∏
t=2

aqt−1qtfqt(Ot), (4.20)

where aqt−1qt is the transition probability from the state qt−1 to qt and fqt(Ot) = f(Ot; qt) is

the density of the observable process given that the system is in the state qt. TheQ function

(4.3) simplifies to a much more computation-friendly formula:

Q((π,A, θ), λ) =
N∑
i=1

P [O, q1 = i|λ] log πi

+
N∑
i=1

N∑
j=1

T∑
t=2

P [O, qt−1 = i, qt = j|λ] log aij

+
N∑
i=1

T∑
t=1

P [O, qt = i|λ] log fi(Ot),

(4.21)

where the only dependence on θ is in the fi functions. Because of the separability of Q

with respect to different parameters, it is easy to calculate the maximum analytically using

the constraints:

N∑
j=1

πj = 1

N∑
j=1

aij = 1, for every i

(4.22)
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and the normal density function for f . The maximised values of parameters are given by:

π∗i =
P [O, q1 = i|λ]

P [O|λ]

a∗ij =

∑T
t=2 P [O, qt−1 = i, qt = j|λ]∑T

t=2 P [O, qt−1 = i|λ]

m∗(i) =

∑T
t=1 P [O, qt = i|λ]Ot∑T
t=1 P [O, qt = i|λ]

var∗(i) =

∑T
t=1 P [O, qt = i|λ] (Ot −m∗(i))2∑T

t=1 P [O, qt = i|λ]

(4.23)

To be able to efficiently evaluate the equations above, we use the Forward-Backward pro-

cedure introduced by Baum and Welch. First define the forward variables:

αt(i) = P [O1O2 . . . Ot, qt = i|λ] , (4.24)

which can be efficiently calculated inductively, using the dynamic-programming ideas. Ini-

tial value is given by:

α1(i) = πifi(O1) (4.25)

and the induction step by:

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
fj(Ot+1). (4.26)

Note that, because we might end up in any state at the final time T , we have:

P [O|λ] =
N∑
i=1

αT (i). (4.27)

Analogously we define the backward variables:

βt(i) = P [Ot+1Ot+2 . . . OT | qt = i, λ] , (4.28)
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The final values are arbitrarily defined to be unity:

βT (i) = 1. (4.29)

and backward induction step is given by:

βt(i) =
N∑
j=1

aijfj(Ot+1)βt+1(j). (4.30)

By looking at the probabilistic definitions of α and β and using the Bayes formula we get:

γt(i) = P [O| qt = i, λ]

=
αt(i)βt(i)∑N
j=1 αt(j)βt(j)

.
(4.31)

Analogously we have the formula for the last missing ingredient:

ξt(i, j) = P [qt = i, qt+1 = j|O, λ]

=
αt(i)aijfj(Ot+1)βt+1(j)

P [O|λ]
.

(4.32)

It is convenient to express the estimates (4.23) in terms of γ and ξ:

π∗i = γ1(i)

a∗ij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

m∗(i) =

∑T
t=1 γt(i)Ot∑T
t=1 γt(i)

var∗(i) =

∑T
t=1 γt(i)(Ot −m∗(i))2∑T

t=1 γt(i)

(4.33)

4.A.2 Scaling

Unfortunately the induction described above is not numerically stable, because the terms

αt go to zero exponentially fast as t increases and get out of the scope of double-precision
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numbers used in computer systems. To avoid this we introduce scaled versions of these

coefficients, following Rabiner and Juang (1993) and Rahimi (2000)‡:

ᾱ1(i) = α1(i)

nt =
N∑
j=1

ᾱt(j)

α̂t(i) =
ᾱt(i)

nt

ᾱt+1(j) =

[
N∑
i=1

α̂t(i)aij

]
fj(Ot+1)

(4.34)

It is easy to notice that the scaled values are given by:

α̂t(i) =
αt(i)

Nt

, (4.35)

where

Nt =
t∏

τ=1

nt (4.36)

By using the equation above for α̂t(i) and the definition for induction (4.34) we can write:

α̂t(i) =

∑N
j=1 αt−1(j)ajifi(Ot)/Nt∑N

k=1

∑N
j=1 αt−1(j)ajkfk(Ot)/Nt

=
αt(i)∑N
k=1 αt(k)

, (4.37)

which shows that our induction is indeed producing scaled variables as indicated above.

We use the same normalisation factors to calculate scaled backward variables:

β̂T (i) =
1

nT

β̂t(i) =
1

nt

N∑
j=1

aijβ̂t+1(j)fj(Ot+1)
(4.38)

‡Note that there is a typing mistake in one of the formulas in the latter reference, this was corrected in our
calculations.
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And analogously we get:

β̂t(i) =
βt(i)

Mt

, (4.39)

where

Mt =
T∏
τ=t

nt (4.40)

These can be now directly used to calculate the needed probabilities. First because α̂ are

normalized, the identity holds:

N∑
i=1

α̂T (i) =

∑N
i=1 αT (i)

NT

= 1, (4.41)

thus by (4.27) we get P [O|λ] = NT . As already mentioned, this quantity is outside of the

range of double numbers, but we can efficiently calculate the logarithm (the log-likelihood

function):

logP [O|λ] =
T∑
t=1

log nt (4.42)

To calculate ξt we will substitute αt for α̂tNt and βt for β̂tMt in (4.32):

ξt(i, j) =
αt(i)aijfj(Ot+1)βt+1(j)

P [O|λ]

=
α̂t(i)aijfj(Ot+1)β̂t+1(j)NtMt+1

P [O|λ]

=
α̂t(i)aijfj(Ot+1)β̂t+1(j)NT

P [O|λ]

= α̂t(i)aijfj(Ot+1)β̂t+1(j),

(4.43)

where we used the fact that NtMt+1 = NT and that P [O|λ] = NT . The γ coefficients may

be computed analogously:

γt(i) =
αt(i)βt(i)

P [O|λ]

=
α̂t(i)β̂t(i)NtMt

P [O|λ]

= α̂t(i)β̂t(i)nt,

(4.44)
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because NtMt = ntNT = ntP [O|λ]. We can plug these values to calculate the parameter

estimates according to (4.33), just as in the unscaled case.

4.A.3 The Viterbi Algorithm

Once we have the optimal parameter values, we would like to find the most likely path of

the hidden state process. This can be achieved using the Viterbi algorithm, introduced in

Viterbi (1967). We follow Rabiner and Juang (1993) and present a version that directly

optimizes log-likelihood as opposed to likelihood, which makes it both numerically stable

and more efficient. For performance reasons, the algorithm first pre-computes logarithms

of the relevant parameters:

π̃i = log πi

f̃i(Ot) = log fi(Ot)

ãij = log aij

(4.45)

Next define:

δt(i) = max
q1q2...qt−1

logP [q1q2 . . . qt−1, qt = i, O1O2 . . . Ot|λ] , (4.46)

that is, δt(i) denotes the highest joint log-likelihood along a single path up to time t that

ends in the state i. This quantity may be efficiently computed by the following induction:

δ1(i) = π̃i + f̃i(O1)

δt(j) = max
1≤i≤N

[δt−1(i) + ãij] + f̃j(Ot).
(4.47)

We also need another set of variables ψ to track which previous state was chosen in the

maximisation above, at every time and state j:

ψ1(i) = 0

ψt(j) = arg max
1≤i≤N

[δt−1(i) + ãij].
(4.48)
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Having calculated these numbers, the maximum joint log-likelihood of hidden and observ-

able paths is given by:

P ∗ = max
1≤i≤N

[δt(i)] (4.49)

and the last element of the most likely hidden path is given by:

q∗T = arg max
1≤i≤N

[δt(i)]. (4.50)

To calculate the most likely hidden state at earlier times we use the backtracking method:

q∗t = ψt+1(q∗t+1). (4.51)

4.A.4 Markov observations

We can extend the model by assuming that, given the hidden process value, the observations

depend also on the previous observations, i.e. observations are conditionally Markov. For

simplicity we start the estimation from time t = 2, so that Ot−1 is always well defined. The

equation for total likelihood accounts for the dependence in the density function:

P [O, q|λ] = πq2fq2(O2|O1)
T∏
t=3

aqt−1qtfqt(Ot|Ot−1), (4.52)

hence the simplified equation for the Q function has the form:

Q((π,A, θ), λ) =
N∑
i=1

P [O, q2 = i|λ] log πi

+
N∑
i=1

N∑
j=1

T∑
t=3

P [O, qt−1 = i, qt = j|λ] log aij

+
N∑
i=1

T∑
t=2

P [O, qt = i|λ] log fi(Ot|Ot−1).

(4.53)

Optimisation yields exactly the same formulas for π∗ and a∗ as for the conditionally inde-

pendent case (with the time index starting at 2). If the observable process Ot is assumed

to have a Gaussian distribution with mean R(qt)Ot−1 + B(qt) and variance var, then the
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optimal parameters of the observable process are given by:

R∗(i) =

(∑T
t=2 PtiOt−1Ot

)(∑T
t=2 Pti

)
−
(∑T

t=2 PtiOt

)(∑T
t=2 PtiOt−1

)
(∑T

t=2 PtiO
2
t−1

)(∑T
t=2 Pti

)
−
(∑T

t=2 PtiOt−1

)2

B∗(i) =

(∑T
t=2 PtiOt

)(∑T
t=2 PtiO

2
t−1

)
−
(∑T

t=2 PtiOt−1Ot

)(∑T
t=2 PtiOt−1

)
(∑T

t=2 Pti

)(∑T
t=2 PtiO

2
t−1

)
−
(∑T

t=2 PtiOt−1

)2

var∗(i) =

∑T
t=2 Pti(Ot −R∗(i)Ot−1 −B∗(i))2∑T

t=2 Pti

(4.54)

where we introduced the notation Pti = P [O, qt = i|λ]. The only modification needed to

calculate all the probabilities by induction is to define the backward variables as:

βt(i) = P [Ot+1Ot+2 . . . OT | qt = i, Ot, λ] , (4.55)

The induction is again similar to the basic case, and the variables γ and ξ are calculated in

the same way. We can apply the same scaling approach as previously, and after obtaining

optimal estimates the Viterbi algorithm to calculate the most likely hidden path.

4.B Appendix: Model choice and forecasting

4.B.1 Model choice

A problem that arises naturally when estimating a class of models to data is that of model

selection, i.e. deciding which model fits best. A natural measure of model fit is the like-

lihood value. However, likelihood always increases with the number of parameters of the

model, eventually leading to over-fitting.

Zucchini and MacDonald (2009) propose to use two standard measures of discrepancy

(‘lack of fit’ of the model) to overcome these issues. Akaike information criterion is defined

by:

AIC = −2 logL+ 2p, (4.56)
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where L denotes the likelihood of the model and p is the number of parameters. The

Bayesian information criterion is given by:

BIC = −2 logL+ p log T, (4.57)

where L and p are as defined above, and T is the number of of observations. The best

model minimizes the chosen criterion in the relevant class of models. Note that both of

these criteria favour high log-likelihood and penalize the number of parameters. BIC often

chooses models with smaller number of parameters than AIC, i.e. HMMs with smaller

number of states.

4.B.2 Forecasting

One of the benefits of Hidden Markov Models is that they can be easily used for density

forecasting. Given the history of the process up to time T , the distribution of the observable

at time T + 1 is given by:

P [OT+1 = o|O1 . . . OT ] =
P [O1 . . . OT , OT+1 = o]

P [O1 . . . OT ]

=

∑N
i=1 αT (i)

∑N
j=1 aijfj(o)∑N

i=1 αT (i)
,

(4.58)

where αT (i) is defined as in (4.24). Note that in our case the observable process is contin-

uous, so we need to interpret the equation above as the density function. It is easy to notice

that the forecast distribution is a mixture of the base distributions (Gaussian in our case):

P [OT+1 = o|O1 . . . OT ] =
N∑
j=1

ψT (j)fj(o), (4.59)

with

ψT (j) =

∑N
i=1 αT (i)aij∑N
i=1 αT (i)

(4.60)
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The forecast distribution of the hidden state is:

P [QT+1 = q|O1 . . . OT ] =
P [O1 . . . OT , QT+1 = q]

P [O1 . . . OT ]

=

∑N
i=1 αT (i)aiq∑N
i=1 αT (i)

.

(4.61)

Note that in all the formulas above we can substitute αT with the scaled version α̂T , because

the normalization factors cancel out.

4.B.3 Multivariate model with lags

It is often observed that the variable of interest is correlated with a lagged version of a

different variable. This happens if there is a true inter-temporal relation between these

variables, but also when the lag is introduced by measurement and publication policies.

We can harness this relationship in a way inspired by VAR models.

Assume that Xt is the variable of interest and Yt is another observable variable, such

that a lagged version of Y is correlated with Xt. We can use the measures of fit of the

model introduced in section 4.B.1 to verify that this is indeed the case and determine the

optimal lag. For simplicity of exposition, in this section we assume that the optimal lag is

one period, hence the observable process at time t is composed of both Xt and Yt−1:

Ot = [XtYt−1]′. (4.62)

To forecast XT+1 at time T we can use the available observation YT in a natural way:

P [XT+1 = x|X1 . . . XT , Y0 . . . YT ] =
P [XT+1 = x,X1 . . . XT , Y0 . . . YT ]

P [X1 . . . XT , Y0 . . . YT ]

=

∑N
i=1 αT (i)

∑N
j=1 aijfj(x, YT )∑N

i=1 αT (i)
∑N

j=1 aijf
Y
j (YT )

,

(4.63)

where fYj (YT ) is the marginal distribution of YT . By applying the definition of conditional
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probability fl(x, YT ) = fl(x|YT )fYl (YT ) we can transform the equation above to arrive at:

P [XT+1 = x|X1 . . . XT , Y0 . . . YT ] =
N∑
l=1

ψlT+1(YT )fl(x|YT ), (4.64)

where

ψlT+1(YT ) =

∑N
i=1 αT (i)ailf

Y
l (YT )∑N

i=1 αT (i)
∑N

j=1 aijf
Y
j (YT )

(4.65)

The forecast is thus a mixture of distributions. Note that this approach automatically takes

into account the most likely distribution of the hidden variable and the correlation between

X and Y in all the hidden states to produce the forecast.

In particular, if the mean of all the conditional distributions fl(·|YT ) is known, then

the expected value of XT is just the weighted sum of expected values in all the states.

Moreover, if X and Y are jointly-Gaussian in every state i with parameters:[
X

Y

]
∼ N

([
µXi

µYi

]
,

[
ΣX
i ΣXY

i

ΣY X
i ΣY

i

])
, (4.66)

then Y is normally distributed Y ∼ N (µYi ,Σ
Y
i ), and X , conditionally given Y , is also

normally distributed with

XT+1|YT = y ∼ N
(
µXi + ΣXY

i (ΣY
i )−1(y − µYi ),ΣX

i − ΣXY
i (ΣY

i )−1ΣY X
i

)
. (4.67)

As a result the forecast of X is given by a mixture of Gaussians. In the case where both X

and Y are single-dimensional the formula simplifies to:

XT+1|YT = y ∼ N
(
µXi +

σXi
σYi

ρ(y − µYi ), (1− ρ2)(σXi )2

)
, (4.68)

where σ denotes the variance of the corresponding random variable and ρ denotes the cor-

relation between X and Y .
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4.B.4 Verification of forecast distribution

Of course it is impossible to verify a single forecast distribution after we get the actual

realisation—a single point is not enough to do that. We can, however, verify that the model

produces consistent density forecast if we look at a series of distributions and realisations.

The idea is to apply the forecast cumulative distribution function at every time t to the actual

realisation at that time. The resulting random variable is uniformly distributed, provided

that the model is correct. Moreover, these uniform random variables will be independent

of each other. This approach was first introduced by Diebold et al. (1998), and can be

summarised in the following proposition:

Proposition 4.B.1 Assume that at each point in time T0 ≤ t ≤ T we are given a distribu-

tion forecast for the value of process X:

Ft(x) = P [Xt < x| Gt−1] , (4.69)

where for simplicity we assume that Ft is a continuous and strictly increasing function (as

it is the case for mixture Gaussian distribution) and Gt−1 is the sigma algebra representing

the information available at time t − 1. Let Yt = Ft(Xt) for every t. Then the random

variables Yt are uniformly distributed on (0, 1) and are mutually independent.

Proof First, note that the inverse of the distribution function F−1
t is well defined for every

time t. We can use direct computation to show the conditional distribution of Yt:

F Yt
t (y) = P [Yt < y| Gt−1]

= P [Ft(Xt) < y| Gt−1]

= P
[
Xt < F−1

t (y)
∣∣Gt−1

]
= Ft(F

−1
t (y))

= y,

(4.70)

which indeed is a distribution function of a uniform random variable on (0, 1). To show the
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unconditional distribution, we need the tower property of conditional expectations:

F Yt(y) = E [1 {Yt < y}]

= E [P [Yt < y| Gt−1]]

= E [y]

= y.

(4.71)

Another application of the tower property is needed to show the independence of Yt1 and

Yt2 for t1 < t2:

P [Yt1 < y1, Yt2 < y2] = E [1 {Yt1 < y1}1 {Yt2 < y2}]

= E [1 {Yt1 < y1}E [1 {Yt2 < y2}| Gt2−1]]

= E [1 {Yt1 < y1} y2]

= y2E [1 {Yt1 < y1}]

= y1y2,

(4.72)

which ends the proof.

Note that the filtration {Gt}t≥0 might be generated by the history of the process X alone,

but also might be enlarged e.g. by a lagged version of another process, as proposed in

above. Note also that this result doesn’t depend on the specific structure of hidden Markov

models.

We use the proposition above to calculate the proportion of observations that fall below

the estimated value at risk. Note, that Yt < α implies that Xt < VaR1−α. Because of the

independence of Y , if the model is correct than the proportion of Y that fall below a fixed

level α should be close to α, as the number of observations goes to infinity.
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Chapter 5

Animal control

5.1 Introduction

Recently, especially after the the latest credit crisis, many hedge funds and portfolio man-

agers have been taking interest in improved modelling of asset returns in the market. They

are using the distribution of returns to derive an optimal trading strategy that optimises the

trade-off between high expected returns and volatility.

This is the problem we tackle in this chapter. First we introduce a regime-switching

model for the market. We assume that in every state the price process follows a jump

diffusion. The change of regime might or might not correspond to a jump in the asset value.

This formulation permits fat-tailed distribution of returns in every state. Jump diffusion

models were introduced to finance by Merton (1976). Recently there also appeared a few

papers dealing with regime-switching jump diffusions models, e.g. Elliott et al. (2007)

studies option pricing and Zhao (2010) studies portfolio selection. To our best knowledge

however, this is the first chapter that explicitly models simultaneous jumps in asset prices

and changes of regime.

We believe that the regimes in the market are directly linked with the Keynes’ ‘animal

spirits’, see Section 1.1.1 for background. In the times of boom, the market participants

are optimistic and don’t follow rational calculation of expected returns. They have the urge

to invest, which often over-inflates the prices. Then when the bubble bursts, the opposite

mechanism takes place.
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After defining the market model we optimise the risk-sensitive criterion in the given set-

ting, see Section 5.3 for details. Bielecki and Pliska (2003) showed that this can be viewed

as a continuous-time equivalent of mean-variance analysis introduced by Markowitz, which

is still highly popular in the market. Maximisation of a risk-sensitive criterion in factor

models has been studied by many authors. One of the most general versions can be found

in Davis and Lleo (2013), where the authors include jumps in both the assets as well as fac-

tors. Unlike in the model presented here however, in their paper the assets are not allowed

to jump at the same time as the factors, which we find limiting in reality. Also, the authors

of the cited paper assume that the factor processes have a non-degenerate diffusion part,

and hence their model is not of a regime-switching type.

The closest results to ours are in Frey and Wunderlich (2013), where a standard regime-

switching model is assumed. The jumps in the assets are not taken into account however,

instead the authors assume that the regimes are not observable and include stochastic filter-

ing in their analysis. We assume that the investor knows which state the system is currently

in—in fact we believe this information is part of the investors view of the market—together

with all the other parameter values of the model. The question how to determine these val-

ues is outside of the scope of this article—and indeed this is the very skill that allows the

investors to generate alpha. It remains an open topic for future research.

5.2 Market

We would like to propose a factor-based model for asset prices. The factor process {xt} is a

finite state Markov chain, with states inN = {1, . . . , N} and generator Q in the real-world

probability measure P. It is convenient to identify the process xt with a process Xt ∈ RN

where Xt = ek, the k-th unit coordinate vector, when xt = k. Note that the jumps of Xt

arrive according to the state-dependent Poisson process {Λt} with intensity λ(Xt) at time

t, where from the theory of Markov chains the jump intensity is defined by the generator

matrix: λ(i) = −Qii for every i.

First let F = {f : Rm ×N ×N → R} be the class of density functions of asset jump

sizes that satisfy the following conditions:

(i) f(·, i, j) is a density function for every i, j ∈ N , i 6= j.
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(ii) f(z, i, j) = 0 for every i, j ∈ N , i 6= j and z /∈ Z ⊆ [zmin, zmax]
m, where zmin > −1

and zmax <∞.

(iii)
∑

i,j;i 6=j
∫
Rm |z|f(z; i, j)dz <∞

(iv) For any Zb ∈ ∂Z , limz→Zb f(z; i, j) ≥ ε, for all i, j and some ε > 0

The last condition guarantees that jumps near the boundary of Z can indeed happen with

positive probability, and is needed in the proof of Proposition 5.5.5 below. Define a process

family Mt ∈ Rm to be:

Mt =
∑
Ti<t

Zi −
∫ t

0

∑
j 6=Xs−

∫
Rm

zf(z;Xs−, j)Q(Xs−, j)dzds (5.1)

where the jump times Ti coincide with jumps in process X and random variables Zi are

conditionally independent of {Λ} and each other, and have an m-dimensional distribution

with density f(·;Xt−, Xt) ∈ F, depending on the state before and after the jump. Note that

{M} is a martingale family in the filtration FM,X
t = σ({Ms}0≤s≤t, {Xs}0≤s≤t), generated

by both M and X . Denote the expected value of Z if X jumps from state i to j as:

ξ(i, j) =

∫
Rm

zf(z; i, j)dz (5.2)

and define centred jumps as:

Yt = Zt − ξ(Xt−, Xt). (5.3)

The quantities above are well defined because of the integrability assumptions in the defi-

nition of F. Then Mt may be written as:

Mt =
∑
Ti<t

Yi +
∑
Ti<t

ξ(XTi−, XTi)−
∫ t

0

∑
j 6=Xs−

ξ(Xs−, j)Q(Xs−, j)ds (5.4)

Note that Mt is a Piecewise Deterministic Process (PDP), see Davis (1993) for an in-depth

discussion.
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Assets There are m risky assets in the market, given by:

dSit
Sit−

= µi(t,Xt)dt+ Σi(t,Xt)dWt + dM i
t , (5.5)

where M i
t is the i-th coordinate of Mt. We assume that for some ε > 0, Σ(t, i)Σ(t, i)′ > εI

for every t, i. Moreover, for every i ∈ N u(t, i), interpreted as a function of time, needs

to be integrable on [0, T ] and Σ(t, i) square-integrable. The solution to the SDE above is

given by:

Sit = exp

(∫ t

0

µi(s,Xs)ds− 1
2

∫ t

0

Σi(s,Xs)Σi(s,Xs)
′ds+

∫ t

0

Σi(s,Xs)dWs

)

× exp

−∫ t

0

∑
j 6=Xs−

ξi(Xs−, j)Q(Xs−, j)ds

 ∏
0≤s≤t

(1 + Zi
s).

(5.6)

The stock prices are guaranteed positive, thanks to the assumption that Zi ≥ zmin > −1

in the definition of F. The upper bound, Zi ≤ zmax < ∞, was introduced to allow short-

selling of the stocks without a possibility of bankruptcy. Note that some authors work with

jumps ζ defined by ζ = log(1 + Z) instead, and as a result ζ can take any real value.

E.g. in Merton (1976) jump diffusion model the ζ are Gaussian, and in Kou (2002) they

are doubly-exponential. The risk free asset is assumed to grow at a rate dependent on the

factor process as well∗:
dS0

t

S0
t

= r(t,Xt)dt, S0
0 = 1 (5.7)

Let FSt = σ({Su}0≤u≤t) denote the natural filtration generated by the asset processes and

let FXt = σ({Xu}0≤u≤t) be the filtration generated by the factor process X . As mentioned

in the introduction, in this chapter we work in the filtration generated by both assets and

the factor process:

Ft = σ({Su, Xu}0≤u≤t) (5.8)

Because the jumps in the assets correspond to the jumps in the martingale m, the filtration

generated jointly by M and X is a subset of the full filtration: FM,X
t ⊆ Ft. {M} is also a

∗Note that this is a very simple model for stochastic interest rates.
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martingale in Ft.

Note that in our model the state variable Xt not only tracks the current market regime,

but also drives the jumps in the asset prices. In practice, the latter jumps are expected to

happen much more often than regime changes. In particular consider the case where the

jumps in the assets are independent of the current regime. Let At be the regime at time t,

and let {Bt} be a Markov chain with two states b1, b2 such that Bt− 6= Bt if and only if the

asset price process has a jump at time t. Then the functions µ and Σ depend only on A:

µ(t, (At, Bt)) = µ(t, At)

Σ(t, (At, Bt)) = Σ(t, At).
(5.9)

By assumption, state changes only in the process B cause jumps in assets, so the jump size

distribution in the case of no jump in B is given by the Dirac delta function centred at zero:

f(·, (At−, b), (At, b)) = δ0(·). (5.10)

Also the jump distribution depends only on the regime, hence we have the condition:

f(·, (At−, b1), (At, b2)) = f(·, (At−, b2), (At, b1)). (5.11)

The jump distribution is arbitrary otherwise. Note that this setup is just a special case of

a model with multidimensional factor process discussed above, and hence is handled by

our model out of the box. Figure 5.1 shows an example of the market regime process (A)

and jump driver (B) together with a stock price path. The stock price jumps together with

the jump driver B. Regime change can be accompanied by a jump in the assets (e.g. first

regime change in Figure 5.1) or not (second regime change respectively). This example

shows that the main two effects that the factor process has on the asset dynamics: defining

the parameters of the model in a given regime and generating jumps in the price processes

may easily be decoupled within the framework.
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Figure 5.1: Example of a path of a stock price process together with corresponding market
regime and jump driver paths.

5.3 Criterion

In this chapter we consider the risk-sensitive asset management criterion, given by:

J(x0, T, h; θ) = −1

θ
logE

[
e−θF (T,x0,h)

]
, (5.12)

where x0 is the state at time 0, T is the fixed time horizon, h is the control variable, and

θ is the risk sensitivity parameter, assumed to be in the range θ ∈ (1,+∞). F is a given

cost or reward function. The risk-sensitive criterion was first introduced in the context

of portfolio optimisation by Bielecki and Pliska (1999). Following their paper, we only

consider F (T, x0, h) = log V (T ), where V (T ) is the value of a trading portfolio at time T ,

and h denotes the portfolio strategy.

This criterion has a number of desirable properties, as discussed by Bielecki and Pliska

(2003). On one hand it has strong ties to Markowitz’s mean-variance analysis. A Taylor

expansion of the criterion J around θ = 0 yields:

J(x0, T, h; θ) = E [log V (T )]− θ

2
Var [log V (T )] +O(θ2). (5.13)
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If we define the realised growth rate RT by V (T ) = eRTT , then the equation above be-

comes:
1

T
J(x0, T, h; θ) = E [RT ]− θT

2
Var [RT ] +O(θ2T 2). (5.14)

When maximising the risk-sensitive criterion, we effectively maximise the expected log re-

turn of the portfolio, penalized by the variance. Thus it can be interpreted as a continuous-

time extension of the Markowitz model. Unlike Markowitz, we do take into account higher

order terms, hidden in the O(θ2) term. After expanding it further, we notice that the risk-

sensitive approach penalizes high variance, negative skewness and high kurtosis, while it

favours positive skewness. These are perfectly in line with the portfolio manager’s prefer-

ences in the industry.

On the other hand the problem is equivalent to utility maximisation. Note that the

criterion can be written as:

J(x0, T, h; θ) = −1

θ
logE

[
V (T )−θ

]
(5.15)

so that our optimisation problem is equivalent to Merton-style maximisation of power util-

ity function U(V (T )) = 1
γ
V (T )γ for γ < 0.

Note also that the maximisation problem does not depend on the initial value of the

investment portfolio v0. If we denote V (t) = v0V
1(t), where V 1 is the portfolio price

process with unit initial value, we have:

J(x0, T, h; θ) = −1

θ
logE

[
e−θ log(v0V 1(t))

]
= log v0 −

1

θ
logE

[
e−θ log V 1(t)

]
.

(5.16)

Without loss of generality we assume that v0 = 1 in the remainder of this chapter.

Finally, thanks to a clever change of measure first introduced by Kuroda and Nagai

(2002), the problem can be solved in a fairly general factor based model, with jumps in

both the factors as well as in the underlying stocks, see Davis and Lleo (2013) for a general

result. In this chapter we propose a considerably simpler model, with the factor process be-

ing a finite state Markov chain, and the assets following regime-dependent jump-diffusion

process, see Section 5.2 for details. Unlike the other authors however, we allow for the



5.4 Investment 102

assets and factors to jump simultaneously. We believe that is an important feature, because

in reality often a big jump (drop) is asset prices is associated with a regime change.

An interesting extension of this criterion, in line with recent work in the field of utility

optimisation, would be to allow the risk-aversion parameter θ to depend on the state of

the economy. The intuition is that in difficult times the investors are more risk averse, and

during boom they are willing to have a higher leverage. This is however outside of the

scope of this chapter.

5.4 Investment

At every point in time t the investor chooses a trading strategy ht, where ht is a vector and

its i-th component denotes the proportion of the value of the portfolio invested in i-th asset,

i = 1, . . . ,m. Because the risk-sensitive criterion is defined as −∞ for negative portfolio

values (and hence bankruptcy), we need to add assumptions on h so that the portfolio never

jumps into negative territory:

h ∈ Jh = {h ∈ Rm : h′ψ > −1 ∀ψ ∈ Z} , (5.17)

where Z ⊆ [zmin, zmax]
m is defined in Section 5.2. Note that this set of strategies is non-

empty and bounded, because Z is bounded and greater than −1.

Definition 5.4.1 (Admissible strategy) The trading strategy h : Ω×R→ Rm is in the set

of admissible strategiesH if:

(i) ht ∈ Jh for every time t ∈ [0, T ]

(ii) {h} is a predictable process with respect to the filtration Ft defined in (5.8).

The trading portfolio is assumed to be self-financing, and hence all the change in portfolio

value are caused by the changes in the underlying asset prices:

dVt =

(
Vtht
St

)′
dSt +

Vt(1− h′1)

S0
t

dS0
t , (5.18)
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where VT ht
St

is the vector containing the number of units in each asset and the division is

interpreted componentwise. 1− h′1 is the proportion invested (or borrowed) in the money

market account. After substituting in the previous formula we get:

dVt
Vt−

= r(t,Xt)dt+ h′t(µ− r1)dt+ h′tΣdWt + h′tdMt. (5.19)

As remarked in section 5.3, without loss of generality assume that the portfolio has unit

value at the beginning: V0 = 1. Note that the process h′tΣdWt+h
′
sdMs is a local martingale,

hence the solution of the SDE above is the stochastic exponential of the martingale part with

the drift:

Vt = exp

(∫ t

0

rs + h′(µs − 1)ds− 1
2

∫ t

0

h′sΣΣ′hsds+

∫ t

0

h′sΣdWs +

∫ t

0

h′sdMs

)
×
∏

0≤s≤t

(1 + h′sZs)e
−h′sZs .

(5.20)

See e.g. Protter (2005, pp.84-85) for detailed calculations. The logarithm of the value

process is thus given by:

log Vt =

∫ t

0

rs + h′(µs − rs1)ds− 1
2

∫ t

0

h′sΣΣ′hsds+

∫ t

0

h′sΣdWs +

∫ t

0

h′sdMs

−
∑

0≤s≤t

log(1 + h′sZs)− h′sZs

=

∫ t

0

[rs + h′s(µs − rs1)]ds− 1
2

∫ t

0

h′sΣΣ′hsds+

∫ t

0

h′sΣdWs

−
∑

0≤s≤t

log(1 + h′sZs)−
∫ t

0

∑
j 6=Xs−

h′sξ(Xs−, j, s)Q(Xs−, j)ds.

(5.21)

5.5 Optimal portfolio

The investor maximises the risk-sensitive criterion given by (5.12), using strategies that en-

sure V > 0 at all times. This condition is equivalent to (5.17), because for every realisation

of Z it guarantees:

∀th′tZt > −1 a.s. (5.22)
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Following the idea from Kuroda and Nagai (2002), we can write the term under the expec-

tation in the criterion (5.12) as:

e−θ log VT = exp

(
θ

∫ T

0

g(t,Xt−, ht)dt
)
χhT , (5.23)

where:

χht = exp

(
−θ
∫ t

0

h′sΣdWs −
θ2

2

∫ t

0

h′sΣΣ′hsds
) ∏

0<s≤T

(1 + h′sZs)
−θ

× exp

−∫ T

0

∑
j 6=Xs−

∫
Z

[(1 + h′z)−θ − 1]f(z;Xs−, j)dzQ(Xs−, j)ds

 (5.24)

and

g(t, i, h) = 1
2
(θ + 1)h′(t, i)Σ(t, i)Σ(t, i)′h(t, i)− r(t, i)− h′t(µ− r1)

+
∑
j 6=i

Q(i, j)

[
1

θ

∫
Z

[(1 + h′z)−θ − 1]f(z; i, j)dz + h′ξ(i, j, t)

]
(5.25)

Proposition 5.5.1 For any fixed trading strategy h ∈ H the stochastic process χht is a

martingale with E
[
χht
]

= 1.

Proof Proof can be found in Appendix 5.B.

Using the proposition above and measure change theory summarised in Appendix 5.A, we

use the martingale {χht } to change the probability measure:

dPh

dP

∣∣∣∣
Ft

= χht (5.26)

Under the new measure Ph the risk-sensitive criterion becomes:

J(θ, h) = −1

θ
logE

[
e−θ log VT

]
= −1

θ
logEh

[
eθ

∫ T
0 g(t,Xt,ht)dt

] (5.27)
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and Qh = [Qh(i, j)] becomes a generalized generator of X with elements:

Qh(i, j)(t) = Q(i, j)

[∫
Z

[(1 + h′z)−θ]f(z; i, j)dz
]
,

Qh(i, i)(t) = −
∑
j 6=i

Qh(i, j)(t).
(5.28)

We can write the optimal value function as:

v(t, i) = sup
h∈H
−1

θ
logEht,i

[
eθ

∫ T
t g(t,Xt,ht)dt

]
= −1

θ
log u(t, i)

(5.29)

where

u(t, i) = inf
h∈H

Eht,i
[
eθ

∫ T
t g(t,Xt,ht)dt

]
. (5.30)

Note that, thanks to the measure change and the normalisation of the initial investment, the

value function doesn’t depend on the value of the portfolio at time t, it only depends on

the state of the factor process X . In the remainder of the chapter we solve for the function

u, and the original value function v can be easily obtained using the formula above. Of

course, by applying the measure change backwards, we also have:

u(t, i) = inf
h∈H

Et,i
[
e−θ log(VT /Vt)

]
(5.31)

We write u(t) for the N -vector with components u(t, i).

Proposition 5.5.2 The range of u is a compact set U ⊆ [umin, umax]
N , such that 0 <

umin ≤ umax <∞, where u is defined in (5.30).

Proof Because the value function is defined in terms of minimisation of the expectation

E
[
e−θ log(VT /Vt)

]
we can bound the value from below and above. First note that the function

g defined in (5.25) is bounded from below for any t, i, h, and let gmin = inf{g(t, i, h) : t ∈
[0, T ], i ∈ N , h ∈ Jh}. Then

u(t, i) ≥ eθgmin(T−t) > 0. (5.32)
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The argument showing the upper bound is a bit more subtle. Note that the expectation

E
[
e−θ log(VT /Vt)

]
is large when the portfolio value on average performs badly. However, the

investor always has the option to put all his wealth in the money market account. This pays

a guaranteed return, which is different in every regime, but it is at least rmin = inf{r(i, t) :

i ∈ N , t ∈ [0, T ]}. Thanks to the minimisation operator in the definition of u, the upper

bound is given by:

u(t, i) = inf
h∈H

E
[
e−θ log(VT /Vt)

]
≤ e−θrmin(T−t) (5.33)

Note that gmin ≤ inf{g(t, i, 0) : t ∈ [0, T ], i ∈ N} = −rmin, hence U is not empty. The

solution is defined on the finite time interval [0, T ], which finishes the argument.

5.5.1 General case

We need to solve the HJB equation, which in this case is the ODE in RN :

du
dt

+ inf
h∈H
{A(u, h)} = 0, (5.34)

with

A(u, h) = Qhu+ θ diag(g)u, (5.35)

where Qh(i) is the ith row of Qh, and u without a parameter is interpreted as a vector in

RN . All the functions of X are interpreted as corresponding vectors and θ > 1. The inf

operator is interpreted componentwise, that is the vector hi minimises the ith element of

A(u, h). The boundary condition is given by:

u(T, i) = 1 for every i. (5.36)

Theorem 5.5.3 Suppose the market is defined as in Section 5.2, admissible strategies are

as in Definition 5.4.1 and θ > 1. Then the HJB equation (5.34) with final condition (5.36)

defined above, has a unique solution on [0, T ], which coincides with the value function

defined in (5.30).
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Proof The theorem follows from Propositions 5.5.6 and 5.5.8 below.

Remark 5.5.4 The assumption θ > 1 is required in the proof of Proposition 5.5.5 below,

although we believe that the Proposition itself is valid under the minimal assumption θ > 0.

Following the standard approach, we first find the optimal strategy for every time t and

state i, where we take the value function u as an argument:

h∗(u, t, i) = arg min
h∈H

{A(u, h)(t, i)} , (5.37)

By substituting (5.25) and (5.28) into (5.35) we get an explicit formula for the operator A:

A(u, h)(t, i) = Qh(i)u+ θg(t, h, i)u(i)

=
∑
j 6=i

Q(i, j)

∫
Z

(1 + h′z)−θf(z; i, j)dz[u(j) + (θ − 1)u(i)]

+ 1
2
u(i)θ(θ + 1)h′Σ(t, i)Σ(t, i)′h

− θu(i)h′[µ+
∑
j 6=i

Q(i, j)ξ(i, j, t)− r1]

− θu(i)[r(t, i) +
∑
j 6=i

Q(i, j)],

(5.38)

where h is a function of time t and state i. This operator is linear in u, and can be explicitly

written as matrix multiplication A(h)u, with:

A(h)ij = Q(i, j)

∫
Z

(1 + h′z)−θf(z; i, j)dz for i 6= j

A(h)ii =
∑
j 6=i

Q(i, j)

[
(θ − 1)

∫
Z

(1 + h′z)−θf(z; i, j)dz
]

+ θ

[
1
2
(θ + 1)h′(t, i)Σ(t, i)Σ(t, i)′h(t, i)− h′t(µ+

∑
j 6=i

Q(i, j)ξ(i, j, t)− r1)

]

− θ

[
r(t, i) +

∑
j 6=i

Q(i, j)

]
(5.39)
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Let:

A(u)(t, i) = inf
h∈Jh
{A(u, h)(t, i)} . (5.40)

Proposition 5.5.5 The operator A(h)u, as a function of h, has a unique minimum in Jh
for every u ∈ U . Hence the operator A(u) is well defined.

Proof Under the assumption that θ > 1, for any u ∈ U and for every index i and time

t, A(u, h)(t, i) is a finite sum of convex continuous functions bounded from below, hence

it is also continuous, convex and bounded from below. As h approaches any point on the

boundary of the admissible set h→ h0 ∈ Jh, then by definition there exists some Z0 ∈ ∂Z
such that (1 + h′Z0)→ 0 and the integral

∫
Z(1 + h′z)−θf(z; i, j)dz diverges to infinity:

lim
h→h0

∫
Z

(1 + h′z)−θf(z; i, j)dz =∞. (5.41)

Hence the optimal value h∗(u) is well defined and is in the interior of the admissible set

Jh. This implies that the operator A is well defined for all u.

The HJB equation (5.34) may be written as:

du
dt

+A(u) = 0 (5.42)

with final condition:

u(T ) = 1 (5.43)

Proposition 5.5.6 (Verification theorem) If ũ is a solution to ODE (5.42) with the final

condition (5.43) on some interval [t, T ], then ũ is the value function (5.30) and the corre-

sponding trading strategy h̃ ∈ H is optimal.
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Proof Using Ito’s lemma, we get the following relationship:

d
(
eθ

∫ t
0 g(s,Xs,h̃s)dsũ(t,Xt)

)
= eθ

∫ t
0 g(s,Xs,h̃s)dsũ(t,Xt)θg(t,Xt, h̃t)dt

+ eθ
∫ t
0 g(s,Xs,h̃s)ds

[
∂ũ

∂t
(t,Xt) + ∆ũ(t,Xt)

]
= eθ

∫ t
0 g(s,Xs,h̃s)dsũ(t,Xt)θg(t,Xt, h̃t)dt

+ eθ
∫ t
0 g(s,Xs,h̃s)ds

[
∂ũ

∂t
(t,Xt) +Qh̃ũ(t,Xt)

]
dt

+ eθ
∫ t
0 g(s,Xs,h̃s)ds

[
∆ũ(t,Xt)−Qh̃ũ(t,Xt)dt

]
,

(5.44)

where Qh̃ is the generator of the process {X} in the measure corresponding to the trad-

ing strategy h̃. After integrating over [t, T ], multiplying both sides by e−θ
∫ t
0 g(s,Xs,h̃s) and

rearranging, we get:

ũ(t,Xt) = eθ
∫ T
t g(s,Xs,h̃s)dsũ(T,XT )

−
∫ T

t

eθ
∫ s
t g(u,Xu,h̃u)du

[
∂ũ

∂s
(t,Xs) + Ai(h̃, ũ)

]
ds

−

[ ∑
t≤s≤T

∆f̃(t,Xt)−Qh̃f̃(t,Xt)dt

]
,

(5.45)

where the operator A is defined in (5.35) and f̃(t,Xt) = eθ
∫ s
t g(u,Xu,h̃u)duũ(t,Xt). Note

that the term on the last line in the equation above is a martingale. By taking a conditional

expectation Eh̃t,i[·] on both sides, and using the final condition (5.43), the above equation

simplifies to:

ũ(t, i) = Eh̃t,i
[
eθ

∫ T
t g(s,Xs,h̃s)ds

]
− Eh̃t,i

[∫ T

t

eθ
∫ s
t g(w,Xw,h̃w)dw

(
∂ũ

∂s
(t,Xs) + Ai(h̃, ũ)

)
ds
]
,

(5.46)

where the expectation of the increment of a martingale is zero. From the definition of the

ODE (5.42) the following condition holds:

∂ũ

∂s
(t,Xs) + Ai(h, ũ) ≥ 0, (5.47)
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with equality for the optimal strategy h̃. Hence we have:

ũ(t, i) ≤ Eh̃t,i
[
eθ

∫ T
t g(s,Xs,hs)ds

]
. (5.48)

with equality for the optimal strategy h̃:

ũ(t, i) = Eh̃t,i
[
eθ

∫ T
t g(s,Xs,h̃s)ds

]
, (5.49)

which is equation (5.30) as required.

We also need the following lemma:

Lemma 5.5.7 (Lemma 2 from Davis (1998)) Let the operator A be given by (5.40) and

let both A and A be differentiable in u. Then for any u in the domain:

∂A(u)

∂u

∣∣∣∣
u=u0

=
∂A(h∗, u)

∂u

∣∣∣∣
u=u0

, (5.50)

where h∗(u0) is the optimum at u = u0. Moreover, the result holds even if h∗(·) is not

differentiable.

Proof Because h∗ is optimal for u = u0, we have for all u:

A(u) ≤ A(h∗, u), (5.51)

with equality at u = u0. The lemma follows from the fact that if the derivatives of A(h∗, ·)
and A were different at u0, then the inequality (5.51) would fail in any neighbourhood of

u0. Note that the proof doesn’t require the differentiability of h∗(·).

The main results of the chapter are summarised in the following proposition:

Proposition 5.5.8 The differential equation (5.42) with boundary condition (5.43) has a

unique solution on [0, T ].

Proof The derivative of the operator A(u) may be calculated using Lemma 5.5.7:

∂A(u)

∂u
=
∂A(h∗, u)

∂u
= A(h∗), (5.52)



Chapter 5. Animal control 111

where h∗ is the optimal trading strategy, which depends on the argument u and by Proposi-

tion 5.5.5 it is well defined and unique in the whole domain. To show thatA(u) is Lipschitz

continuous we show that the derivative A(h∗) is uniformly bounded. The lower bound of

A(h) comes from the fact that every element of the matrix A(h), as a function of h, is

continuous and bounded from below. To show the upper bound take any value h0 ∈ Jh and

take the constant function h0(u) = h0. Using the optimality of h∗ we have:

sup
u∈U
A(u) = sup

u∈U

{
inf
h∈Jh
{A(u, h)(t, i)}

}
≤ inf

h∈Jh

{
sup
u∈U
{A(h)u}

}
≤ inf

h∈Jh
{|A(h)|umax1}

≤ |A(h0)|umax1,

(5.53)

where the absolute value in |A(h)| is interpreted componentwise and 1 is an N -vector with

every element being unity. Hence the value of the operator A is uniformly bounded for all

u. Let A− = sup {x : x ≤ 0 ∧ A(h)ij∀h ∈ Jh;∀i, j ∈ N} be the lower bound of all the

elements of A(h) or zero if positive, and let A+ = max {|A(h0)|umax1} be the biggest

element of the vector bounding the operator A(u) from above. From Proposition 5.5.2

and from the obvious relationship A(u) = A(h∗)u, using a straightforward combinatorial

argument, we get that for any i, j ∈ N :

A(h∗)ij ≤
A+

umin
+ (N − 1)A−umax, (5.54)

hence A(h∗) is uniformly bounded from above.

Because A(h∗) is uniformly bounded, the operator A is Lipschitz continuous and the

solution to the ODE (5.42) is well defined in the whole domain.

Unfortunately it is not possible to provide a closed form solution for the problem in the

general case. The value function is given by an ordinary differential equation though,

which may be efficiently solved numerically.

As mentioned in the introduction, in order to back-test the performance of these trading

strategies using historic stock prices, one would need to come up with an algorithm to
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determine the state (animal spirits) at every point in time. It remains an open topic for

future research.

5.5.2 Independent case

Corollary 5.5.9 (To Theorem 5.5.3) In the special case with no jumps in asset prices, i.e.

when f(·; i, j) ≡ 0 for all i, j ∈ N , the HJB equation (5.34) with final condition (5.36)

defined above has a closed-form solution:

u(t, x) = e(Q−θ diag(g∗))(T−t), (5.55)

where

g∗(i) = g(t, i, h∗t (i)) = − 1

2(θ + 1)
(µ− r1)′(ΣΣ′)−1(µ− r1)− r (5.56)

Proof Note that in the special case when there are no jumps in the asset prices, the measure

change described above has no effect on the generator of the factor processX . The function

g becomes:

g(t, x, h) = 1
2
(θ + 1)h′(t, x)Σ(t, x)Σ(t, x)′h(t, x)− r(t, x)− h′t(µ− r1) (5.57)

Because the distribution of X does not depend on the control h, the optimum strategy can

be calculated pointwise:

h∗t (Xt) = arg min
h∈H

g(t,Xt, h). (5.58)

For any h, k ∈ RM we have:

g(h+ k) = 1
2
(θ + 1)(h+ k)′ΣΣ′(h+ k)− (h+ k)′(µ− r1)− r

= 1
2
(θ + 1)h′ΣΣ′h+ (θ + 1)h′ΣΣ′k

+ 1
2
(θ + 1)k′ΣΣ′k − h′(µ− r1)− (µ− r1)′k − r

= g(h) + [(θ + 1)h′ΣΣ′ − (µ− r1)′]k + 1
2
(θ + 1)k′ΣΣ′k

As k′ΣΣ′k = o(|k|), g is differentiable with g′(h)k = (θ + 1)h′ΣΣ′k − (µ − r1)′k, any
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h, k ∈ RM , we have g′(h) = 0 exactly for

h∗ =
1

(θ + 1)
(ΣΣ′)−1(µ− r1) (5.59)

and as g′′(h) = (θ + 1)ΣΣ′ is positive, it is a minimum. The optimal value of function g is

thus given by:

g∗(i) = g(t, i, h∗t (i)) = − 1

2(θ + 1)
(µ− r1)′(ΣΣ′)−1(µ− r1)− r (5.60)

We can take expectation in the original probability measure in the value function:

u(t, i) = Et,i
[
eθ

∫ T
t g(t,Xt,h∗t )dt

]
(5.61)

The corresponding PDE has the form:

∂u

∂t
+Qu− θ diag(g∗)u = 0, (5.62)

where all the functions of X are interpreted as corresponding vectors. The boundary con-

dition is given by:

u(T, x) = 1 for every x. (5.63)

Hence the solution is:

u(t, x) = e(Q−θ diag(g∗))(T−t) (5.64)

The original value function can be recovered using (5.29) and is given by:

v(t, x) = −1

θ
log u(t, x) = −1

θ
(Q− θ diag(g∗))(T − t) (5.65)

5.A Appendix: Measure change

In this appendix we summarise the measure change theory used in the chapter. Section

5.A.1 is a special case of the theory presented in Davis (2011) and deals with finite state

Markov chains. Section 5.A.2 discusses the measure change induced by regime-switching
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compound Poisson process, in particular the impact on the underlying Markov chain. Fi-

nally the last section discusses the risk-adjusted changes of measure.

5.A.1 Measure change for Markov chains

Let Xt be a Markov chain with generator matrix Q, as described in Section 5.2. For any

function ξ : R×N ×N → R define a martingale M ξ as follows:

M ξ
t =

∑
Ti≤t

ξ(XTi−, XTi , Ti)−
∫ t

0

∑
j 6=Xs−

ξ(Xs−, j, s)Q(Xs−, j)ds, (5.66)

Next, define the measure change martingale as the stochastic exponential of M ξ:

dQ
dP

∣∣∣∣
FT

= E(M ξ)

= eM
ξ
T−

1
2

[Mξ,Mξ]cT
∏

0<s≤T

(1 + ∆M ξ
s )e−∆Mξ

s

=
∏

0<s≤T

(1 + ξ(Xs−, Xs, s)) exp

−∫ t

0

∑
j 6=Xs−

ξ(Xs−, j, s)Q(Xs−, j)ds

 ,

(5.67)

where E
[dQ

dP

]
= 1, using arguments analogous to the proof of Proposition 5.5.1. Note that

by the properties of the generator of Markov chains

λ(i) = −Q(i, i) (5.68)

is the intensity of jumps of the process {Λ}. Once the factor process jumps, the probability

of jump from state i to another state j is given by:

Pij =


Q(i,j)
λ(i)

i 6= j

0 otherwise
(5.69)
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Proposition 5.A.1 In the new probability measure defined by (5.67) the generator of X is

given by:

q̃ij =

Q(i, j)(ξ(i, j, t) + 1) i 6= j

−
∑

k 6=i q̃ik otherwise
(5.70)

Let γ and β be such that:

β(i) =
∑
j

Pij[ξ(i, j, t) + 1] (5.71)

and

γij =
ξ(i, j, t) + 1

β(i)
(5.72)

Then, in particular, the jump intensity becomes λ̃ = βλ and the probability of jumps be-

come:

P̃ij = γijPij, (5.73)

Proof Note that (5.71) and (5.72) imply that:

∑
j

γijPij = 1. (5.74)

and

ξ(i, j, t) = γijβ(i)− 1 (5.75)

Hence the result is a special case of the change of measure theory presented in Davis (2011).

In our particular case the equation simplifies to:

dQ
dP

∣∣∣∣
FT

=
∏

0<s≤T

(1 + ∆M ξ
s )e−

∫ T
0

∑
j ξ(j,s,Xs−)P (Xs−,j)λ(Xs−)ds (5.76)
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Following Cont and Tankov (2012) we can express the measure change in the exponential

form:

dQ
dP

∣∣∣∣
FT

= exp

(∑
Ti<T

log(1 + ∆M ξ
Ti

)−
∫ T

0

∑
j

ξ(Xs−, j, s)P (Xs−, j)λ(Xs−)ds

)

= exp

(∑
Ti<T

log(γ(XTi−, XTi)β(XTi−))

)

× exp

(
−
∫ T

0

∑
j

ξ(Xs−, j, s)P (Xs−, j)λ(Xs−)ds

)
(5.77)

The last integral might be simplified:

∑
j

ξ(Xs−, j, s)P (Xs−, j)λ(Xs−) = λ(Xs−)
∑
j

(γijβ(i)− 1)P (Xs−, j)

= λ(Xs−)β(i)
∑
j

γijP (Xs−, j)

− λ(Xs−)
∑
j

P (Xs−, j)

= λ̃(Xs−)− λ(Xs−)

(5.78)

After substitution and application of some simple algebra, we get the final form:

dQ
dP

∣∣∣∣
FT

= exp

(∑
Ti<T

log γ(XTi−, XTi)

)

× exp

(∑
Ti<T

log β(XTi−)−
∫ T

0

λ̃(Xs−)− λ(Xs−)ds

)
.

(5.79)

Note, that the first term is responsible for the change of measure of the distribution of jump

destination, and the second term is just a Poisson process intensity change corresponding

to the jump times.
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5.A.2 Measure change defined for regime-switching compound Poisson

processes

Now let the measure change be defined by:

dQ
dP

∣∣∣∣
FT

= E(MT )

= eMT−
1
2

[M,M ]cT
∏

0<s≤T

(1 + ∆Ms)e
−∆Ms ,

(5.80)

where Mt is defined in (5.1) and E
[dQ

dP

]
= 1, using arguments analogous to the proof

of Proposition 5.5.1 If we denote by FXT = σ({Xt}0≤t≤T ) the filtration generated by the

factor process up to time T , then the measure change relevant for process {X} is given by:

dQ
dP

∣∣∣∣
FXT

= E
[
E(MT )| FXT

]
= exp(−

∫ T

0

∑
j 6=Xs−

ξ(Xs−, j)Q(Xs−, j)ds)E

[ ∏
0<s≤T

(1 + Zs)

∣∣∣∣∣FXT
]

= exp(−
∫ T

0

∑
j 6=Xs−

ξ(Xs−, j)Q(Xs−, j)ds)
∏

0<s≤T

E
[
(1 + Zs)| FXT

]
=
∏

0<s≤T

(1 + ξ(Xs−, j)) exp(−
∫ T

0

∑
j 6=Xs−

ξ(Xs−, j)Q(Xs−, j)ds),

(5.81)

where we used the independence property of Zi-s to interchange the product and expec-

tation in the third line and the definition of ξ in (5.2). Note that this measure change

martingale is of the same form as used in the previous section:

dQ
dP

∣∣∣∣
FXt

= E
[
E(MT )| FXt

]
= E(M ξ

t ), (5.82)

hence results from Proposition 5.A.1 apply.
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5.A.3 Risk-adjusted stochastic exponentials

Given the factor process X and the jump sequence Zi defined in Section 5.2, let Mh,θ
t be a

martingale given by:

Mh,θ
t =

∑
Ti<t

[(1 + h′Zi)
−θ − 1]−

∫ t

0

∑
j 6=Xs−

∫
Z

[(1 + h′Zi)
−θ − 1]φ(z;Xs1)dzds, (5.83)

where

φ(z; i) = λ(i)f̃(z; i) (5.84)

is the compensator of jumps, λ(i) =
∑

j 6=iQ(i, j) is the jump intensity in state i and

f̃(z; i) =

∑
j 6=iQ(i, j)f(z; i, j)

λ(i)
(5.85)

is the (mixture) density of jump size in state i. The stochastic exponential of Mh,θ
t is given

by:

E(Mh,θ
t ) =

∏
0<Ti≤T

(1 + h′Zi)
−θe
−

∫ t
0

∑
j 6=Xs−

∫
Z [(1+h′Zi)−θ−1]φ(z;Xs1)dzds

. (5.86)

To see the impact of a measure change defined by this stochastic exponential on the factor

process X , let:

ξθ(Xs−, j) =

∫
R
(1 + h′z)−θf(z;Xs−, j)dz − 1. (5.87)

Using the results from the previous section, the projection to the filtration generated by the

factor process is given by:

E
[
Eθ(Mt)

∣∣FX
T

]
=

∏
0<Ti≤T

(1 + ξθ(XTi−, XTi))e
−

∫ T
0

∑
j 6=Xs−

ξθ(Xs−,j)Q(Xs−,j)ds
, (5.88)

because of the independence of the jump sizes Z and the identity

E
[
(1 + h′Zi)

−θ∣∣FX
T

]
=

∫
R
(1 + h′z)−θf(z;XTi−, XTi)dz = ξθ(XTi−, XTi) + 1 (5.89)
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for Ti ≤ T . Hence the effect of this measure change on the factor process follows from

Proposition 5.A.1, where the martingale is defined by the function ξθ.

The following proposition summarises the effect of this measure change on the distri-

bution of jumps sizes Z, it is needed in the proof of Proposition 5.5.1.

Proposition 5.A.2 Provided that E(Mh,θ
t ) is a martingale, let:

dP̃
dP

= E(Mh,θ
t ) (5.90)

with E(Mh,θ
t ) defined in (5.83). Then the compensator of jumps Z in the new measure P̃ is

given by:

φ̃(z; i) = (1 + h′z)−θφ(z; i) (5.91)

Proof The change of measure formula for compound Poisson processes (extended with

state-dependence) is given by:

dP̃
dP

∣∣∣∣∣
Ft

=
∏
s≤t

φ̃(Zs;Xs−)

φ(Zs;Xs−)
e(λ(Xs−)−λ̃(Xs−))t, (5.92)

see e.g. Shreve (2004, pp. 498-499). Comparing to (5.86) and using calculations similar to

proof of Proposition 5.A.1, we get that:

φ̃(z;Xs−)

φ(z;Xs−)
= (1 + h′z)−θ, (5.93)

which finishes the proof.

5.B Appendix: Proof of Proposition 5.5.1

This proof in an adaptation of Klebaner and Lipster (2014) to the current setting. First note

that the process χht solves the following stochastic differential equation:

dχht = χht−dMχ
t , (5.94)
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where

Mχ
t = −θ

∫ t

0

h′sΣdWs +
∑

0<s≤T

[(1 + h′sZs)
−θ − 1]

−
∫ t

0

∫
Z

[(1 + h′z)−θ − 1]φ(z;Xs−)dzds

(5.95)

where φ is defined as in (5.84). Let us define a localizing sequence of stopping times as:

τn = inf{t : χt ≥ n} (5.96)

Then for every n, the stopped process χt∧τn is bounded. The main idea behind the proof is

that the uniform integrability of the family {χt∧τn}n→∞ is verified by the Vallée de Poussin

theorem with function x log x for x > 0. By Ito’s lemma:

χ2
t∧τn − 1 = −2θ

∫ t

0

1 {s ≤ τn}χ2
(s∧τn)−h

′
sΣdWs

+ 2
∑

0<s≤T

1 {s ≤ τn}χ2
(s∧τn)−[(1 + h′sZs)

−θ − 1]

− 2

∫ t

0

1 {s ≤ τn}χ2
(s∧τn)−

∫
Z

[(1 + h′z)−θ − 1]φ(z;Xs−)dzds

+
∑

0<s≤T

1 {s ≤ τn}χ2
(s∧τn)−[(1 + h′sZs)

−θ − 1]2

−
∫ t

0

1 {s ≤ τn}χ2
(s∧τn)−

∫
Z

[(1 + h′z)−θ − 1]2φ(z;Xs−)dzds

+ θ

∫ t

0

1 {s ≤ τn}χ2
(s∧τn)−h

′
sΣΣ′hsds

+

∫ t

0

1 {s ≤ τn}χ2
(s∧τn)−

∫
Z

[(1 + h′z)−θ − 1]2φ(z;Xs−)dzds

(5.97)

Note that the first five lines in the formula above form a martingale with expectation zero.

Hence:

E
[
χ2
t∧τn − 1

]
= E

[∫ t

0

1 {s ≤ τn}χ2
(s∧τn)−

(
θh′sΣΣ′hs

+

∫
Z

[(1 + h′z)−θ − 1]2φ(z;Xs−)dz
)

ds
] (5.98)
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Using the assumptions from Section 5.2, the following process is bounded for every state

i ∈ N and time s ≤ τn:

θh′sΣ(i)Σ(i)′hs +

∫
Z

[(1 + h′sz)−θ − 1]2φ(z; i)dz ≤ r, (5.99)

and so χt∧τn is a square integrable martingale with E [χt∧τn ] = 1. We can use it to define a

measure change:
dPn

dP
= χt∧τn (5.100)

From Girsanov Theorem the Brownian motion in the new measure Pn for all t ≤ τn is

given by:

W̃t = Wt + θ

∫ t

0

h′sΣds (5.101)

and from Proposition 5.A.2, the jump compensator becomes:

φ̃(z; i) = (1 + h′z)−θφ(z; i) = φ(z; i) + [(1 + h′z)−θ − 1]φ(z; i) (5.102)

Note that χt∧τn can be decomposed as:

χt∧τn = exp(Mt∧τn − At∧τn), (5.103)

where

Mt∧τn = −θ
∫ t

0

h′sΣdWs +
∑

0<s≤T

[(1 + h′sZs)
−θ − 1]

−
∫ t

0

∫
Z

[(1 + h′z)−θ − 1]φ(z;Xs−)dzds

(5.104)

and

At∧τn =
θ2

2

∫ t

0

h′sΣΣ′hsds

+
∑

0<s≤T

[(1 + h′sZs)
−θ − 1]− log[(1 + h′sZs)

−θ].
(5.105)
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The elementary inequality log(x) ≤ x − 1 for all x > 0 implies that the process At is

non-negative. Therefore log(χt∧τn) ≤Mt∧τn , and we have the bound:

E [χt∧τn logχt∧τn ] ≤ E [χt∧τnMt∧τn ] = En [Mt∧τn ] , (5.106)

where En [·] denotes the expectation in the Pn probability measure. Using (5.101) and

(5.102) we can write Mt∧τn as :

Mt∧τn = −θ
∫ t

0

h′sΣdW̃s + θ

∫ t

0

h′sΣΣ′hsds+
∑

0<s≤T

[(1 + h′sZs)
−θ − 1]

−
∫ t

0

∫
Z

[(1 + h′z)−θ − 1]φ̃(z;Xs−)dzds

+

∫ t

0

∫
Z

[(1 + h′z)−θ − 1]2φ(z; i)dzds,

(5.107)

and so:

En [Mt∧τn ] = En
[∫ t

0

θh′sΣΣ′hs +

∫
Z

[(1 + h′z)−θ − 1]2φ(z; i)dzds
]

≤ r,

(5.108)

by (5.99). This is a uniform bound, hence:

sup
n

E [χt∧τn logχt∧τn ] <∞. (5.109)

As indicated above, the family {χt∧τn}n→∞ is uniformly integrable by the Vallée de Poussin

theorem, which finishes the proof.



123

References

Akelof, G. (2003). Behavioral macroeconomics and macroeconomic behavior. American

Economist, 47:25–47. (2001 Nobel Prize lecture).

Akerlof, G. and Shiller, R. (2009). Animal Spirits. Princeton University Press.

Andruszkiewicz, G., Davis, M. H., and Lleo, S. (2013). Taming animal spirits: risk man-

agement with behavioural factors. Annals of Finance, 9(2):145–166.

Baker, M. and Wurgler, J. (2006). Investor sentiment and the cross-section of stock returns.

Journal of Finance, 61(4):1645–1680.

Bielecki, T. and Pliska, S. (1999). Risk-sensitive dynamic asset management. Applied

Mathematics and Optimization, 39:337–360.

Bielecki, T. and Pliska, S. (2003). Economic properties of the risk sensitive criterion for

portfolio management. The Review of Accounting and Finance, 2:3–17.

Björk, T. (2009). Arbitrage Theory in Continuous Time. Oxford University Press, third

edition.

Black, F. (1986). Noise. Journal of Finance, 41:529–543.

Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. Journal

of Political Economy, 81:637–654.

Blanchard, O. J. and Watson, M. W. (1982). Bubbles, rational expectations, and financial

markets. In Wachtel, P., editor, Crises in Economic and Financial Structure. Lexington,

Mass: Lexington Books.



REFERENCES 124

Brody, D., Hughston, L., and Macrina, A. (2007). Beyond hazard rates: a new frame-

work for credit-risk modelling. In Elliott, R., Fu, M., Jarrow, R., and Yen, J. Y., edi-

tors, Advances in Mathematical Finance, Festschrift volume in honour of Dilip Madan.

Birkhäuser and Springer.

Brody, D. C. and Friedman, R. (2009). Information of interest. Risk, December:101–106.

Brody, D. C. and Hughston, L. P. (2001). Interest rates and information geometry. Pro-

ceedings: Mathematical, Physical and Engineering Sciences, 457(2010):1343–1363.

Brody, D. C. and Hughston, L. P. (2002). Entropy and information in the interest rate term

structure. Quantitative Finance, 2:70–80.

Brody, D. C., Hughston, L. P., and Mackie, E. (2012a). General theory of geometric Lévy
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