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Abstract 
This paper discusses principal component analysis (PCA) of integral transforms (spectra and 

autocovariance functions) of time-domain signals. It is illustrated using acoustic emissions from 

mechanical equipment. It was found that acoustic signals from different stages of operation appeared 

as distinct clusters in the PCA analysis. The clusters moved when machinery faults were present and 

the modelling errors also increased under fault conditions, thus each type of fault had a distinctive 

signature and could be diagnosed. PCA using autocovariance functions that were derived from the 

full power spectrum had better performance than spectral PCA using averaged periodograms, and 

both gave a significant improvement over time domain PCA. 
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1. Introduction 
 

Principal component analysis (PCA) detects co-linearity between signals. It is often the case that 

there are just a few types of underlying behaviour (Wise et.al., 1990; Kresta et.al., 1991) which can 

be captured during normal operation and exploited in the detection of abnormal situations. Phase 

shifts caused by time delays can, however, make it difficult to detect co-linearity thus causing an 

overestimate of the true dimension of the data set. For instance, a phase lag of a quarter cycle 

destroys the correlation between harmonic signals because cos( )tω  and sin( )tω  are orthogonal 
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functions. Spectral PCA addresses this problem. It is insensitive to phase delays because the 

calculation of the power spectrum removes phase information. The same comment applies to the 

autocovariance function. The purpose of this paper is to present methods for PCA using power 

spectra and autocovariance functions and to demonstrate their benefits through an application in on-

line diagnosis of faults in mechanical equipment. It gives advances on previously published work 

because it quantifies the behaviour of clusters in a PCA plot under fault conditions and suggests 

physical explanations for the changes observed. It also highlights a problem with the use of averaged 

power spectra and gives a solution using PCA with autocovariance functions. 

 The methods are illustrated with acoustic emissions from a washing machine in the laundry room 

of a student residence. A washing machine has characteristics similar to a batch processing unit. For 

instance, the spin cycle is a centrifugation operation while the wash cycle resembles a mixing 

operation. The application therefore has relevance to chemical process industries as well as to the 

consumer goods industry. 

 The following section places the project in the context of previous work. Section 3 presents the 

methods for PCA and for the acoustic emission application. It also explores data pre-processing 

issues. Section 4 discusses the results and demonstrates diagnosis of faulty operation of the washing 

machine. A comparison with time-domain dynamic PCA is also presented. The paper ends with a 

conclusions section. 

 

 

2. Background 
 

Spectral Analysis:  Near infrared spectra and infrared spectra are routinely analysed by PCA or used 

in Partial Least Squares (PLS) models for estimation of analyte concentrations in unknown samples 

(for example, Karstang and Henrikson, 1991; Riley et.al., 1997; Yeung et.al., 1999). Seasholtz 

(1999) described how the application of multivariate calibration in analytical methods of NIR and 

NMR spectroscopy at Dow Chemical has made money for the company. In these cases the 

instruments themselves created the spectra, but the same benefits can be achieved through numerical 

calculation of the spectra. 

 Spectral analysis gives several advantages compared to analysis in the time domain. It gives 

improved signal to noise ratio if the spectral content of the wanted signal is narrow-band compared 

to the noise. The power spectrum is insensitive to time delays or phase shifts caused by process 

dynamics. It is also insensitive to missing values or to outliers, because the transforms of such effects 

are spread across all frequencies in the spectrum. 
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Acoustic emissions: Acoustic emissions have been exploited for machinery condition monitoring and 

non-destructive testing (Swindlehurst, 1973; Dornfield, 1992; Holroyd and Randall, 1993; Sharif and 

Grosvenor, 1998; Holroyd and Bradshaw, 2000) and used for the integrity monitoring of process 

equipment such as pressure vessels (Wood and Harris, 2000). 

 Applications of audio and ultrasonic acoustic monitoring in the process industries have been 

reviewed by Wade et.al. (1991) and Boyd and Varley (2001), and identified as a powerful non-

invasive technique for extraction of process information (Belchamber and Collins, 1999). Those 

authors discussed chemical reactions, crack formation, particle impact, and phase transitions as 

sources of acoustic emissions in processes. Hou et. al. (1999) used non-invasive passive acoustic 

monitoring for analysis of the flows of dense slurries of silica particles. Cody et. al., (2000) analysed 

the wall vibrations caused by impacts of small particles in a fluid bed catalytic cracking unit. 

Whitaker et. al. (2000) described a new non-invasive monitoring technique which could detect 

changes in physical properties of powders during granulation and indicate the end-point of the 

process. These examples show that the use of acoustic monitoring is established in the chemical 

process industries both for equipment condition monitoring and for process monitoring. 

 

Multivariate statistical analysis of acoustic emissions: Principal component analysis (PCA) was used 

on specific features of acoustic signals such as intensity and duration by Betteridge et.al., (1981), 

who also mentioned the benefits of an inspection of the cepstrum (derived from a Fourier transform 

of the logarithm of the spectrum) and of autocorrelation analysis. They did not, however, use the 

whole spectrum in the PCA analysis. The classification of the spectra of acoustic signals using 

multivariate statistical analysis was described by Belchamber and Collins (1993). The patent cited 

the use of an approach to PCA known as  SIMCA and gave examples of the classification of the 

acoustic spectra in 24 frequency channels from a pump and an industrial blender. Tabe et.al., (1998) 

presented a process application of spectral PCA while Wu et.al. (1999) used a method known as 

“eigenfaces” in the recognition of sounds from car engines. The method was used to determine 

whether an unknown vehicle sound was among the training data set by examination of the distance 

of its spectrum from the weightings (score) plot of the calibration model. They did not, however, 

examine clustering of spectra in the PCA score plots. 

 Aldrich and Theron (2000) related the power spectral densities of acoustic emissions from a 

laboratory-scale ball-mill to particle size distributions by use of multivariate continuum regression. 

They reported improved modelling of particle size distributions compared to Kalman filtering and 

PCR (principal components regression). Principal component analysis has proved useful in the 
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analysis of the relationship between the crispness of apples, which was modified by storage 

conditions, and recorded chewing sounds (De Belie, et. al., 2000). 

 The conclusion from this review is that an application showing fault diagnosis by means of PCA 

on the spectra and autocovariance functions of acoustic emissions can add to an existing body of 

work in a field in which there is already some interest.  

 

 

3. Methods 
 

3.1. Formulation of spectral and autocovariance PCA 

 

Spectral PCA: Descriptions of PCA may be found in Chatfield and Collins, (1980), Wold et.al., 

(1987); Wise et. al., (1990), Kresta et.al., (1991); and Wise and Gallagher (1996), and others. The 

novel feature in spectral PCA is that the columns of the data matrix, X, are the power spectra ( )P f  

of the signals being analysed.  

1 1 1
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 Smoothed power spectra were calculated using the averaged periodogram method (Welch, 1967). 

An averaged periodogram may use considerably fewer frequency channels than the original number 

of data points and therefore data compression is achieved. For example, the sound samples used in 

this work had 44000 samples while their periodograms had 1024 frequency channels. 

 A full PCA decomposition reconstructs the X matrix as a sum over m orthonormal basis functions 

1t  to mt : 

 

( ) ( ) ( )1 1,1 1, 2 2,1 2, ,1 ,... ... ... ...m m m m m mw w w w w w= + + +X t t t  

 

In spectral PCA the column vectors it  are spectrum-like functions having N frequency channels. 

When post-multiplied by a row vector of coefficients such as ( )1,1 1,... mw w  the result is a matrix 

of the same dimensions as X. It is usual in PCA to normalise the vectors of weightings (e.g. Wold 

et.al., 1987; Wise and Gallagher, 1996). In spectral PCA, however, it is convenient  to normalise the 
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−t vectors in order to achieve an interpretation of the spectra as a reconstruction over an 

orthonormal basis set. This formulation of PCA is also known as classical scaling (Chatfield and 

Collins, 1980). Therefore the −it vectors are formally the m independent normalised eigenvectors of 

the N by N matrix XX' , where ′X  is the transpose of X. They are ordered according to the size of 

the associated eigenvalue. The ratio between the eigenvalue and the sum of all the eigenvalues also 

gives a measure of the total spectral variation captured by that eigenvector.  

 The above expression may be written compactly as ′=X T W  where the columns of T are 1t  to 

mt  and the rows of ′W  are ( )1,1 1,... mw w  to ( ),1 ,...m m mw w . The orthonormality of the columns 

of T means that ′ ′=W T X . Singular value decomposition ′=X UDV  provides a means for 

computation of the requisite vectors with =T U  and ′ ′=W DV . Matrix D  is diagonal and its 

elements are the positive square roots of the m non-zero eigenvalues of XX' . 

 The majority of the variation in X can often be captured by truncating the PCA description. If all 

the variables had similar spectral features then one term would describe most or all of the variability 

in the spectra. In other cases more terms may be needed. The following is a three-term PCA model in 

which the variation of X that is not captured by the three terms appears in an error matrix E: 

 

( ) ( ) ( )1 1,1 1, 2 2,1 2, 3 3,1 3,... ... ...m m mw w w w w w= + + +X t t t E  

 

 The issue of the correct number of terms was discussed by Chatfield and Collins (1980), Valle 

et.al., (1999) and elsewhere. In the work reported here the models needed two or three terms, the 

decision to truncate being made when the eigenvalue associated with the next t-vector represented 

less than 5% of the sum of all the eigenvalues. 

 Each spectrum may be represented as a point in a reduced space. For instance, when three t-

vectors are in use the i’th spectrum maps to a point having the co-ordinates 1,iw , 2,iw  and 3,iw  in a 

three-dimensional space. Similar spectra have similar 1w , 2w  and 3w  co-ordinates. Therefore such 

groups form clusters. When two t-vectors are used, the weightings plot is two dimensional. 

 

Autocovariance PCA:  The autocovariance function of a zero-mean signal y having n samples is 

shown below. The index   is known as the lag and the quantity being summed is the signal times a 

time lagged version of the same signal. The range of lags used was 0=  to 1023= , a total of 1024 

channels. 

 



 6 

1

1( ) [ ] [ ]
n

i
A y i y i

n = +
= −

− ∑


 



 

 

It can be shown that the autocovariance is the inverse Fourier transform (iFFT) of the full two-sided 

power spectrum (i.e. not averaged). The autocovariances in this work were derived from the power 

spectra rather than by direct calculation because that route enabled low frequency interference to be 

removed, as discussed below. The autocovariance functions were truncated to the first 1024 channels 

of the iFFT to give the same size X matrix as for spectral PCA. 

 Principal component analysis using autocovariance functions was formulated in the same way as 

was described for spectral PCA except that the columns of the data matrix were the autocovariance 

functions of the acoustic signals. 

 

Data pre-processing:  It is usual in time-domain PCA to mean centre the data sets and to scale to unit 

variance. In spectral PCA the following data pre-processing may be applied: 

 

• Mean centre the time trend and remove linear trends before calculation of the spectra;  

• Remove known interferences from the spectra; 

• Scale the spectra to the same total power such that: 

1
( )

N

i
i

P f constant
=

=∑  

     where ( )iP f  is the spectral power in the i’th channel; 

or 

• Scale the autocovariance functions so that the covariance at zero lags is unity. 

 

The first of these steps removes steady offsets or linear ramps from the time domain data which 

would otherwise appear in the 0f =  channel of the spectrum. It can be applied when the features of 

interest are the deviations from the mean. The scaling step is equivalent to scaling to constant 

variance in the time domain because the signal variance is proportional to total power. Alternatively 

the spectra may be left unscaled if a meaning can be attributed to the intensity of the signal.  

 Interference such as mains pick-up may be dealt with by setting the values of spectral power to 

zero in the frequency channels where the interference is located. The ease of such an approach is a 

benefit of spectral PCA. In time domain PCA, by contrast, interference must be removed by 

analogue or digital filtering but the design of a narrow band filter is a skilled task. For the 
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autocovariance functions the interference must be removed from both positive and negative 

frequencies in the two-sided power spectrum before the inverse FFT. 

 

Fault detection with spectral PCA: This section describes fault detection using spectral PCA. The 

methods also apply to PCA using the autocovariance functions. When new acoustic sound samples 

become available, the matrix new′W  below gives the weightings of the of the new spectra (or 

autocovariance functions) in the data matrix newX . The expression is the least squares projection of 

newX  onto the t-vectors used in the calibration model, which takes a simple form because of the 

orthonormality of the  t-vectors: 

 

( )( )1
new cal cal cal new cal new

−′ ′ ′ ′= =W T T T X T X  

 

where calT  is a non-square matrix whose columns when three basis functions were in use would be 

1t , 2t  and 3t . Thus the three term model for a matrix newX  containing p spectra in p columns is: 

 

( ) ( ) ( )1 2 31,1 1, 2,1 2, 3,1 3,... ... ...new new new new new new new newp p pw w w w w w= + + +X t t t E  

 

When a two term model is used then the columns of calT  would be 1t  and 2t  and the model for 

newX  would have no 3t  term. Previously unseen spectra may arise if the process develops a fault. It 

may be the case that the new spectra are different linear combinations of the same t-vectors found 

during calibration. Then the spectra representing a fault condition would form a distinct cluster in the 

weightings plot. But the new spectra may also be qualitatively different from the calibration spectra, 

for instance if the fault generated spectral components at other frequencies. In that case the t-vectors 

may have little in common with the new spectra and the modelling error newE  would be large. 

newE  can be expressed as: 

 

ˆnew new new= −E X X  

where ′=new cal newX̂ T W  is the best fit of the new spectra onto the calibration vectors 1t  to 3t  (onto 

1t  and 2t only  in a two-term model). 
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 The columns of newE  are the unmodelled part of the spectra in newX . Therefore in a fault 

detection application the magnitudes of the columns of newE  should be inspected. The following 

vector of squared prediction errors (SPE) in which each term is the sum of squares of the elements of 

a column of newE  (Jackson, and Mudholkar, 1979; Kourti et.al., 1996) 

 

( ) ( ) ( ),1 , 2 ,

2 2 2

1 1 1
...

i i i p

N N N
new new new

i i i
SPE E E E

= = =

 
=   
 
∑ ∑ ∑  

 

 In order to detect a significant SPE, a threshold may be set by examination of the normal 

variability during normal running. Then any spectra that map into the PCA space with a larger error 

would be classified as abnormal. 

 

 

 

3.2 Fault diagnosis of mechanical equipment 

 

Acoustic emission application:  The acoustic emissions used for the demonstration were the sounds 

made by a washing machine. The sounds were captured by a laptop computer using an audio 

microphone and an A/D converter sampling at 22kHz and thus each sound sample of duration 2s 

comprised 44000 samples. The files were stored in wav format and converted to text using LabVIEW 

(National Instruments, Austin, TX). 

 For calibration, five sound samples were taken from each of the fill, wash, drain and spin stages 

during normal operation of the machine, a total of 20 recordings. Further samples were taken for 

model validation and also with the machine running under the following fault conditions: with a 

foreign object (a metal belt buckle) in the laundry, with no laundry in the drum, and with cold water 

only. Sound samples were also taken of the ambient background sounds with the washing machine 

switched off. 

 Calibration t-vectors were derived using a data matrix whose columns were the twenty spectra 

(or autocovariance functions) of the sound samples recorded during normal operation. The 

weightings for spectra (or autocovariance functions) from the validation run and the faulty runs were 

determined by projection onto the calibration t-vectors. Their clusters were inspected for systematic 

shifts from normal operation and the SPE vector was inspected for modelling errors. 
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Retrospective fault diagnosis: The diagnosis of faults required distinct signatures for each fault. As 

discussed above, faults may be characterised by modelling errors (the SPE) or by shifts within the 

PCA weightings plot, or both.  

 The SPE plots were inspected for SPE values larger than a threshold value. To quantify the shifts 

of the clusters in the PCA plots the sound samples from each run of the washing machine were 

arranged as “sound-sets” comprising one sound sample from each of the fill, wash, drain and spin 

stages. For instance, the calibration run generated five sound-sets because five sound samples were 

recorded during filling, five during washing and so on. 

 Hierarchical classification trees were generated to quantify shifts of these {fill wash drain spin} 

sound-sets within the PCA plot by means of a scaled Euclidian measure of the distances between 

them. In autocovariance PCA, where two terms were used in the PCA model, each sound-set was 

described by a vector with eight elements: 

 

( )1 2 1 2 1 2 1 2f f w w d d s sw w w w w w w w  

 

where 
1fw  and 

2fw  are the weightings in the two-dimensional PCA model of the fill sound samples, 

and 
1ww  and 

2ww  the weightings for the wash samples. Likewise 
1dw  and 

2dw  refer to the drain 

samples and 
1sw  and 

2sw  to the spin samples. The numerical ranges of the weightings  are 

influenced by the diagonal elements in the D  matrix. Hence it is necessary to normalise the 

weightings just as the axes are scaled to occupy a square in the visual weightings plots. The scaling 

factor is the square root of the eigenvalue and the scaled Euclidian distance between two sound sets 

of the machine having weightings denoted by symbols w  and v  is thus given by: 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 11 1 2 2 1 1 2 2

2 2 1 1 2 2

22 2 2 2

1 2 1 2 1
2 2 2

2 1 2

d df f f f w w w w

d d s s s s

w vw v w v w v w v

d
w v w v w v

 −− − − − 
+ + + + λ λ λ λ λ =  

− − −
+ + +  λ λ λ 

 

 

where 1λ  and 2λ  are the eigenvalues associated with the first and second principal components. 

Spectral PCA required three principal components and in that case the vectors had twelve elements 

since weightings 
3fw , 

3ww , 
3dw  and 

3sw  scaled by 3λ  were also needed. 
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 The distances between every sound-set and every other sound-set were calculated and arranged in 

a symmetric matrix with zeros on the diagonals. A hierarchical classification tree was generated as 

described by Chatfield and Collins (1980). At the first step the smallest non-zero distance , 1i jd d=  

in the matrix was identified. Its row and column indexes i and j indicated which two sound-sets were 

most similar and these were grouped as a cluster characterised by the distance 1d . A smaller matrix 

was then generated from the original. It did not have rows and columns for the two similar sound-

sets identified at step 1. Instead, it had one row and column that gave the distances of all the other 

sound-sets from the cluster. For the n’th set, the distance would be { }, ,min ,i n j nd d , i.e. the distance 

between the n’th sound-set and whichever member of the cluster was closer. The procedure was then 

repeated until all the sound-sets had been placed in clusters within the classification tree. At any 

stage, the outcome of the next step would be either another sound-set added to a cluster already 

identified or the combining of two sound-sets to start a new cluster. 

 The classification tree is quantitative and able to characterise shifts in the PCA plot because it 

shows the closest distance between a given sound-set and other sound-sets. 

 

On-line fault diagnosis: On-line fault diagnosis can use only the sound samples collected up to the 

present time. For example, at the end of the fill stage an on-line sound-set would contain only the 

recordings from the filling operation. Hence the distance measures for the classification tree would 

be: 

 

• After acoustic monitoring of filling: 

 

( ) ( )1 1 2 2

2 2

1 2

f f f fw v w v
d

− −
= +

λ λ
 

 

• After acoustic monitoring of filling and washing: 

 

( ) ( ) ( ) ( )1 1 2 2 1 1 2 2

2 2 2 2

1 2 1 2

f f f f w w w ww v w v w v w v
d

− − − −
= + + +

λ λ λ λ
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• After acoustic monitoring of filling and washing and draining: 

 

( ) ( ) ( ) ( ) ( ) ( )1 1 2 21 1 2 2 1 1 2 2

2 22 2 2 2

1 2 1 2 1 2

d d d df f f f w w w w w v w vw v w v w v w v
d

− −− − − −
= + + + + +

λ λ λ λ λ λ
 

 

 

The data from the washing machine application were analysed as if on-line. The calibration model 

was the same as before. Then classification trees were created using the three distance measures 

given above and the appropriate SPEs were also examined. For instance, after filling and washing the 

fill and wash SPEs were used in the on-line diagnosis.  

 

 

4. Results and discussion 
 

4.1 Inspections of the data 

 

Acoustic signals:  Figure 1 shows normalised time domain plots of the acoustic emissions during 

normal operation of the washing machine. The actual magnitude of the sounds before normalisation 

was different for each stage because, for instance, filling was quieter than washing. Within each 

panel are shown two short sound samples having the same vertical axis scaling but offset so that they 

can be viewed. Some oscillatory behaviour can be observed but the samples do not overlay cleanly 

because there are many fluctuations and because the oscillations are phase shifted relative to one 

another. The signals from different stages of operation do look different, but one would find it hard 

to make a reliable visual classification of a new signal. 

 

Spectra:  The left hand column in Figure 2 shows normalised spectra plotted on a linear y-axis for 

calibration samples from normal operation. The frequency axis extends up to 1kHz. There were five 

spectra for each of the fill, wash, drain and spin stages of the machine cycle. Figure 2 also shows 

spectra from the empty fault condition in which the machine was run with no load of laundry. The 

presence of peaks in the spectra show that the acoustic emissions contained a number of tones of well 

defined frequency. For instance, distinct peaks appeared at 100, 200, 300, 400 and 600Hz in the drain 

spectra. The spectral peaks at integer multiples of 100Hz are most likely the harmonics of a non-

sinusoidal 100Hz acoustic waveform. Comments below show that the laptop computer itself 
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contributed a pure 100Hz tone with negligible harmonics. The conclusion is that the laptop and the 

machinery independently gave acoustic emissions at 100Hz. This coincidence may be related to the 

fact the British mains frequency is 50Hz and gives a 100Hz signal when rectified by a d.c. power 

supply unit or a motor drive. 

 Figure 2 shows that spectra from one stage of operation resembled one another more than they 

resembled the spectra from another stage, thus some clustering on the PCA plots can be expected. 

The spectra from the empty machine differed from those of the normal operation. Therefore changes 

in the PCA clusters can be expected for the runs with faults. 

 All the spectra in Figures 2 were normalised to the same total power. The reason why the fill 

spectra appear visually to have a smaller magnitude is that the frequency axis extends beyond 1kHz. 

There were frequency channels in the 4-6kHz range where the fill signals had spectral content and 

these contributed to the total power.  

 The bottom left panel in Figure 2 shows the spectra of ambient background sound. The ambient 

noise was a quieter signal than the others but it appears similar in magnitude when normalised to the 

same total power. A feature of the background sound was its content at low frequency and a peak at 

100Hz. It was assumed, therefore, that ambient interference appeared in the frequency channels up to 

100Hz in the spectra of the sounds from the washing machine. The lowest frequency channels up to 

and including the 100Hz peak were therefore removed from all the spectra, as described in the 

Methods section. The origin of the 100Hz ambient sound was the lap top computer itself. The origin 

of the lower frequency sounds is unknown, it could be building services and other inner city sounds 

such as traffic. 

 

Autocovariance functions:  Figure 3 shows examples of the autocovariance functions. The horizontal 

axes show the lag in seconds. The vertical axis has the same scaling ( 1−  to 1+ ) for all the plots and 

the 100Hz interference has been removed. The calculations eliminated phase information so the 

autocovariance functions, like the spectra, overlay one another and form distinct groups. 

 The oscillating patterns in Figure 3 are characteristic of signals with harmonic behaviour. As 

mentioned, the acoustic signals in this application contained several well defined tones. The 

autocovariance shows a peak whenever such a signal is lagged by a whole number of cycles. 

 

4.2 Discussions of PCA results 

 

Comparison of PCA models:  Analysis of twenty calibration sound samples from normal operation is 

summarised in Table 1 which shows the amount of variation in the calibration set captured by the 
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first to fourth principal components. Truncation of the model when the next principal component 

offered less than 5% led to an autocovariance PCA model having two terms and explaining in total 

over 91% of the variation. The spectral PCA model required three terms and explained 95%, while a 

two term spectral PCA model gave 89%. PCA of an X matrix containing the time-domain sound 

samples as its columns showed little ability to model the data since even four terms only explained 

32% of the variation. Time domain PCA is ineffective for dynamic data because phase lags destroy 

correlations between the data trends. By contrast, PCA using the spectra or autocovariance functions 

can detect similarities between the signals because these transforms are invariant to signal phase. 

 PCA using autocovariance functions outperformed spectral PCA in this application is because 

calculation of the spectra as a periodogram involved an averaging step. The autocovariance 

functions, by contrast, used the full two sided spectra and were truncated only after all transform 

steps were completed. Therefore, if a reduced size data matrix is needed then PCA using 

autocovariance functions would be preferred to spectral PCA. In another project using shorter data 

sets no averaging was applied. It was found there that the performance of spectral PCA and PCA 

using autocovariance functions was identical. Thus if no size reduction is needed then either may be 

used. 

 

 PC1 PC2 PC3 PC4 

autocovariance PCA 82% 9.2% (4.5%) (2.1%) 
spectral PCA 83% 5.9% 5.3% (2.6%) 
time domain PCA 10% 9.0% 7.0% 5.9% 

Table 1. Variance in the X matrix captured by the first four principal components 

 

Normal operation: The PCA analyses of the five runs from normal operation are shown as the solid 

black symbols in Figure 4. The meanings of the symbols are: () fill; () wash; () drain; ( ) spin. 

The left hand panels are for spectral PCA, the right hand pair are for PCA using the autocovariance 

functions (there is no significance in the fact the axis ranges are different, this is the result of the 

scaling in use). The clusters using autocovariance PCA were more distinct than those using spectral 

PCA. That is because the third principal component was needed in the spectral case. A three 

dimensional plot for spectral PCA (Figure 5) shows that three components gave better clustering. 

 The white symbols in Figure 4 are the spectra from sound samples from other normal runs of the 

machine which were used for model validation. The additional wash and spin samples were from the 

same machine on a different occasion while the fill and drain samples were from a different machine. 
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These additional spectra were projected onto the t-vectors derived from the 20 calibration spectra. 

Ideally the white clusters would coincide with their black counterparts. 

 The results from PCA using autocovariance showed little movement in the fill, drain or spin 

clusters. By contrast, the wash cluster shifted so the conclusion is that there was some variability in 

the acoustic emissions from the wash stage even during normal operation. The two dimensional 

spectral PCA plot, however, was difficult to interpret because the clusters were not very distinct. The 

three-dimensional plot (figure 5) shows better clustering and demonstrates that three principal 

components were need to model the spectra. 

 Lower panels in Figure 4 show the squared projection error plots. The black symbols represent 

the modelling errors in the calibration model and the white symbols are the SPEs for the validation 

samples. The validation drain samples, which were from a different machine, showed a small 

modelling error, as did the wash samples from the same machine. The fill samples were also from a 

different machine but they had no SPE error, suggesting that the normal filling sound was consistent 

from one machine to another. Nevertheless, the variation in the drain samples suggests that each 

machine may need its own calibration model. 

 

Fault conditions:  Figures 6 to 8 show the black clusters of the calibration spectra from normal 

operation and white projected clusters for the fill, wash, drain and spin stages for the same machine 

under various fault conditions. The SPE plots are also shown. In all cases the clusters were more 

distinct when autocovariance functions were used than for spectral PCA. The clusters on the 

weightings plots showed shifts and the SPE plots also showed that some conditions gave significant 

modelling errors. Visual observations from the weightings plots for autocovariance PCA are as 

follows: 

• Foreign object (Figure 6): The SPE plot shows the spectra were well modelled by the calibration 

t-vectors. The wash, drain and spin clusters moved, however, so the foreign fault should be 

distinguishable from normal operation where only the wash cluster was variable. It is thought that 

the belt buckle (the foreign object) was hitting the metal drum during draining and the early 

stages of spinning. 

• Empty (Figure 7): The wash and spin clusters moved and there was a large SPE error in the drain 

stage. The reason for the large SPE for the drain samples can be seen in Figure 3 which shows 

that the autocovariance functions for the drain sounds in the empty fault had a rapid oscillation 

with a frequency of 600 Hz that was not well modelled because it was not present in the 

calibration samples. The explanation for this observation may be that the water flow was faster 

during draining when there were no clothes present in the drum. 
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• Cold water fill (Figure 8):  The fill cluster (circles) shifted and so did the spin cluster (squares). 

The reason for this is that the cold water supply pressure was higher than that of the hot water 

supply so the filling sound was different when cold water was used. The sound of the spin stage 

may have been different because the equipment was cool or perhaps the clothes were less soft 

and flexible after a cold wash. 

 The signatures of the faults are sufficiently distinct to suggest that PCA using autocovariance 

functions of acoustic emissions can distinguish fault conditions. 

 

Quantitative comparison of spectral and autocovariance PCA: Figure 9 compares hierarchical 

classification trees using the two-term autocovariance PCA model (left hand panel) and the three-

term spectral model (right hand panel) . Each path through the tree ends at an individual sound-set. 

Distances on the vertical axis represent the distances between individual sound-sets or between 

clusters of sound-sets. Classification is better when a cluster branches into individual sound-sets low 

down in the tree because this means the distances between the clusters are large. Therefore 

classification using autocovariance PCA (Figure 9, left panel) was better than for spectral PCA 

because the clusters branched low and were distinct. 

 Classification should also reflect a-priori knowledge about the samples. Classification using the 

autocovariance model was also better by this criterion because it showed the sound-sets from the 

validation and calibration runs clustering as nearest neighbours and well separated from any of the 

faulty clusters. 

 Classification using spectral PCA suggested that the calibration and validation sound-sets were 

further apart than were some of the calibration sets and the sound-sets from faulty runs. As 

mentioned earlier, it is known that if 44000 frequency channels had been used in the spectra the 

results would be the same as those using autocovariance functions. Therefore the classification errors 

in the right hand plot of figure 9 can be attributed to the loss of information caused by use of an 

averaged periodogram. The failure of the classification tree for spectral PCA to match a-priori 

knowledge reinforces the recommendation that PCA should use the autocovariance functions when 

size reduction of a large data matrix is required. 

 

 

4.3 Fault diagnosis 

 

On-line analysis of SPE:  The threshold for SPE was taken in this application to be the maximum 

SPE observed in the validation run. The reason for this choice was that the available recordings were 
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not numerous enough to determine the statistical distribution of the SPE for a hypothesis test. The 

maximum SPE in the autocovariance PCA modelling of the validation samples was 25. Therefore the 

SPE threshold was set at 25 and alarm given if a run had an SPE exceeding 25. The threshold is 

dimensionless because the autocovariance functions were normalised. 

• Fill stage:  Three recordings of the filling sounds out of five from the run with the cold fault gave 

an SPE alarm (Figure 8, lower right panel). Therefore an SPE alarm during filling diagnoses a 

cold fault but the absence of an SPE alarm during filling does not rule out a cold fault. 

• Wash stage:  None of the faulty runs gave SPE alarms during the wash stage. 

• Drain stage:  All five recordings of the draining sounds from the run with the empty fault gave 

SPE alarms because the SPE value was much larger than the threshold (figure 7). Therefore SPE 

alarms during draining are diagnostic of the empty fault. 

• Spin stage:  No runs gave SPE alarms during the spin stage. 

 

On-line analysis of classification trees:  Figure 10 shows a diagnosis run as if on-line. It also shows 

five additional sound-sets marked “new” which will be discussed later. The top right panel shows a 

classification tree using only acoustic monitoring of the fill stage, top left used the sounds from the 

fill and wash stages, lower left used fill and wash and drain, while the lower right used all. These 

classification trees quantify the visual observations made earlier about movement of clusters with the 

PCA plots. 

• Fill stage:  At the fill stage most of the sound-sets were separated by only small amounts. The 

exception were the sets from the run having the cold fault which were clustered together and 

separated by a distance of almost 0.2 from any other run. Therefore the cold fault can be 

identified during filling. This finding quantifies the shift that was noted in the fill stage in Figure 

8 (circle symbols, top left panel).  

• Fill and wash:  During the wash stage all the clusters became distinct. The validation cluster was 

closest to the calibration cluster (they branched at a distance of 0.12, see the top right panel of 

Figure 10). All the sound-sets from the faulty runs were separated from the calibration and 

validation clusters by a distance of 0.16 or more. Therefore after the fill and wash stages the 

presence of a fault can be detected. 

The faults cannot, however, be diagnosed reliably because the separation between the foreign 

fault and the empty fault was less than that between the calibration and validation runs. It is 

therefore not feasible to distinguish empty faults from foreign faults during the wash stage 

because the separation could be explained by natural variation between runs. The reason for 
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variability in the wash stage is because each load of laundry had a different composition and 

made different sounds as it was agitated in the drum. 

• Fill, wash and drain:  The lower left panel in Figure 10 shows the calibration and validation 

clusters separated from each other by 0.13 and separated from all other runs by about 0.2. The 

foreign and empty faults became distinct during the draining stage, separated from each other by 

a distance of 0.17. The cluster of sound-sets from the cold run, which was diagnosed during 

filling, was still distinct. The empty run can also be diagnosed by the SPE value during draining. 

 

It is concluded that all the faults would be detected once the wash stage had been monitored, and 

diagnosed once the drain stage had been monitored. Table 2 gives a summary of the signatures for 

each of the faults. 

 

stages classification tree SPE alarm diagnosis 

fill cold cluster isolated cold fault cold fault 

fill and wash presence of fault detected none none 

fill wash and drain foreign and empty clusters 

isolated 

empty fault foreign and empty faults 

Table 2: On-line fault diagnosis using classification tree and SPE signatures 

 

Diagnosis of an unseen run: Figure 10 shows an on-line diagnosis of a new run with a fault where 

the nature of the fault had not been disclosed to the engineer running the analysis. The five sound-

sets from this run were marked with the white dots labelled as “new”. 

 After monitoring of the fill and wash it was clear that the new run had a fault, but it was not 

possible to tell if it was an empty fault or a foreign fault because its sound-sets were separated by 

almost the same distance from both those clusters. 

 The new run was correctly classified as an empty fault once the drain stage was monitored. The 

lower left panel in Figure 10 shows the new samples were closest to the empty runs. Indeed, one of 

the new sound-sets was closer to the previously-recorded empty sets than it was to the other new 

sound-sets. An inspection of the SPE confirmed the diagnosis. The SPE values during draining were 

significantly above 25 and the fault was therefore diagnosed as an empty fault because the SPE was 

above the alarm threshold. 

 The lower right panel in Figure 10 shows the classification when the spin stage was also 

included. This classification tree was almost the same as that shown in the left hand panel of Figure 9 

but some of the distances at which the clusters separated were smaller. The reason for that is because 



 18 

the new sound samples and the empty samples joined in Figure 10 to form a super-cluster. Distances 

between this super-cluster and other clusters would therefore generally be smaller than in Figure 9 

because the super-cluster was bigger than the empty cluster alone. 

 

 

5. Conclusions 
 

Spectral principal component analysis (PCA) is routinely applied in cases where the primary 

measurement is itself a spectrum, for instance in near infra red spectroscopy. The contribution of this 

paper has been to demonstrate an application of PCA to the spectra of time-domain signals and also 

to autocovariance functions derived from the spectra. Benefits included the removal of unwanted 

phase information in dynamic systems and the ease of removal of interference. 

 The concepts were illustrated using acoustic emissions from a washing machine running 

normally or with faults. PCA showed clear clustering of the autocovariance functions of acoustic 

emissions from the fill, wash, drain and spin stages. Spectral PCA also showed some clustering, but 

needed one additional term in the principal components model. The reason for the inferior 

performance of spectral PCA compared to PCA using autocovariance functions was that averaged 

periodograms with 1024 channels were used for the spectra to reduce the size of the data matrix 

whereas the full two-sided power spectrum with 44000 frequency channels was used in the 

calculation of the first 1024 lags in the autocovariance functions. This finding shows that PCA using 

autocovariance functions better retains the relevant information if the size of the data matrix needs to 

be reduced. It was noted in another application when no size reduction was required that the 

performance of spectral PCA was identical to that of autocovariance PCA. 

 Sound samples from three faulty runs were projected onto a PCA calibration model developed 

from sound samples recorded during a normal run of the washing machine. Squared prediction errors 

(SPE) were calculated. SPE indicates the size of the error when a PCA model with a reduced number 

of principal components attempts to reconstruct the spectra or autocovariance functions. 

 Shifts of the fill, wash, drain and spin clusters on the PCA weightings plot were also observed. 

Clustering was quantified using a scaled Euclidian measure of the distance between sets of sound 

samples from the fill, wash, drain and spin stages. Hierarchical classification trees were presented 

which together with SPE alarms enabled the detection and diagnosis of all faulty runs of the washing 

machine. It is therefore concluded that principal component analysis of spectra and autocovariance 

functions can make a contribution to the acoustic monitoring of machinery condition. 
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 PC1 PC2 PC3 PC4 

autocovariance PCA 82% 9.2% (4.5%) (2.1%) 
spectral PCA 83% 5.9% 5.3% (2.6%) 
time domain PCA 10% 9.0% 7.0% 5.9% 

 

 

 

Table 1. Variation in the X matrix captured by the first four principal components 

 

 

 
 

stages classification tree SPE alarm diagnosis 

fill cold cluster isolated cold fault cold fault 

fill and wash presence of fault detected none none 

fill wash and drain foreign and empty clusters 

isolated 

empty fault foreign and empty faults 

 

 

 

Table 2: On-line fault diagnosis using classification tree and SPE signatures 
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FIGURE CAPTIONS 

 

 

Figure 1. Acoustic signals from normal operation. The trends are scaled to unit standard deviation.  

 

Figure 2.  Acoustic power spectra from normal operation and the empty fault condition. The spectra 

of ambient sounds are also shown. Each panel contains five spectra normalised to unit power plotted 

with linear y-axis scaling.  

 

Figure 3.  Autocovariance functions from normal operation and the empty fault condition. Each panel 

contains five autocovariance plots with a y-axis scale of 1−  to 1+ . 

 

Figure 4. Weightings and SPE for normal operation: () fill; () wash; () drain; () spin. Black 

symbols are the calibration samples, white symbols are validation samples from normal operation.  

 

Figure 5. Three dimensional weightings plot for normal operation. 

 

Figure 6. Weightings and SPE for the foreign object fault. 

 

Figure 7. Weightings and SPE for the empty fault. 

 

Figure 8. Weightings and SPE for the cold fault 

 

Figure 9. Hierarchical classification trees for autocovariance and spectral PCA.  

 

Figure 10. A demonstration of on-line fault diagnosis. 
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Figure 1. Acoustic signals from normal operation. The trends are scaled to unit 

standard deviation. 
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Figure 2.  Acoustic power spectra from normal operation and the empty fault 

condition. The spectra of ambient sounds are also shown. Each panel contains five 

spectra normalised to unit power plotted with linear y-axis scaling. 
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Figure 3.  Autocovariance functions from normal operation and the empty fault 

condition. Each panel contains five autocovariance plots with a y-axis scale 1−  to 1+ . 
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Figure 4. Weightings and SPE for normal operation: () fill; () wash; () drain; () 
spin. Black symbols are the calibration samples, white symbols are validation samples 

from normal operation.  
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Figure 5. Three dimensional weightings plot for normal operation.  
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Figure 6. Weightings and SPE for the foreign object fault.  
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Figure 7. Weightings and SPE for the empty fault. 
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Figure 8. Weightings and SPE for the cold fault.  
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Figure 9. Hierarchical classification trees for autocovariance and spectral PCA. 
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Figure 10. A demonstration of on-line fault diagnosis. 
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