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Recent critiques of minimum variance benchmarking for single-input-single-output control loops have focused on 
the need for assessment of performance during set point changes and also on the need to pay attention to the 
movements in the manipulated variable. This paper examines factors that influence the minimum variance 
performance measure of a SISO control loop. It discusses the reasons why performance during set point changes 
differs from the regulatory performance during operation at a constant set point. The results demonstrate how 
regulatory performance is influenced by the nature of a disturbance, and that correlation of signals within a control 
loop can indicate whether the disturbance is random or deterministic. The paper is illustrated with simulated, 
experimental and industrial examples.  
 
Keywords:  Chemical industry; control loop performance; disturbance; fault diagnosis; minimum variance; plant-
wide disturbance; process control; process operation; set point control; regulation. 
 
 
 
1. INTRODUCTION 

Single-input-single-output control loop performance 
assessment has become an important technology in 
process operations. Many approaches are based upon 
the Harris index [1,2] which compares control loop 
performance against a minimum variance benchmark. 
The state of the art has been reviewed by Qin [3] and 
Harris et.al. [4]. 
Critiques of minimum variance benchmarking have 
recently come forward. Swanda and Seborg [5] and 
Isaksson and Horch [6] have shown it is desirable to 
have a separate assessment of performance during step 
changes. Seppala et. al., [7] discussed the influence of 
set point changes on the Harris index and demonstrated 
the benefits of a decomposition of the controller error 
into the components resulting from set point changes 
and a set-point detrended signal.  

It is known, also, that minimum variance control may 
require excessively vigorous action of the manipulated 
variable and can lead to maintenance problems for 
actuators. There is thus an incentive to relax the 
minimum variance requirement. Kadali and Huang [8] 
and Grimble [9] have described benchmarks for Linear 
Quadratic Gaussian and Generalised Minimum 
Variance control that take into account the manipulated 
variable (i.e. the input into the controlled system) as 
well as the controlled variable in order to strike a 
balance between variability in the controlled variable 
and wear on the actuator. Xia and Howell [10] recently 
showed how an assessment of signal to noise ratio in 
the manipulated variable (mv) can aid fault diagnosis in 
a system of interacting control loops.  
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The contribution of this paper is to provide insights into 
control loop benchmarking of step changes and 
regulatory performance. The first outcome of the work 
is a demonstration that the minimum variance 
performance index determined during regulatory 
operation at a steady set point is not the same as that 
calculated during a set point change. The results show 
why separate benchmarks are needed for set point 
tracking and regulatory operation. 
Regulatory and set point tracking performance differ 
because the presence of a disturbance affects the 
regulatory performance of a control loop. The presence 
of an external disturbance has previously been 
diagnosed by modeling or inspection of the cross-
correlation of the controller error, y, and a suspected 
disturbance variable [11-13]. However, in order to 
apply such methods it is useful to know first that a 
disturbance is present and an automated diagnostic step 
is required for that purpose. Correlation methods 
presented here are able to show when a disturbance is 
present.  
A further contribution of the paper is to show how the 
nature of a disturbance influences the minimum 
variance performance index during regulatory 
operation. Control loops having a random disturbance 
are compared with loops influenced by a deterministic 
periodic disturbance. Correlations between the 
increments in the controller error or manipulated 
variable ( y∆  or mv∆ ), and y or mv are calculated, 
presented and explained. It is demonstrated that these 
correlations give a means for determination of the 
random or deterministic nature of the disturbance. 
Results from simulation and experimentation are 
reinforced by similar findings in an industrial data set. 
The next section of the paper outlines the signal 
processing theory that is needed for analysis of the 
measurements. Section 3 presents a series of pilot-plant 
experiments involving set point changes and regulatory 
operation. A simulation of the pilot plant enabled 
additional trials of regulatory operation to be carried 
out that were infeasible to conduct experimentally. A 
distinctive feature of the simulations is that the 
sequence used to upset the simulated system was a 
periodic deterministic disturbance captured from the 
plant. The simulation results are therefore truly 
representative of real plant responses. Section 4 gives 
the results of analysis of the data from the experimental 
and simulation runs and an insight into their 
interpretation. Section 4 also describes similar findings 
with an industrial data set provided courtesy of 
Eastman Chemical Company. The paper ends with a 
conclusions section.  
 

2. THEORY 

This section introduces the classical approach to 
minimum variance benchmarking of a single-input-
single-output control loop and presents the calculations 
for evaluation of the benchmark. Additionally, the 
correlation coefficient calculations used in disturbance 
diagnosis are introduced and a derivation given for the 
values of the correlation coefficients between controller 
error and its increments that are used in the diagnosis 
procedure.  
The notation used is as follows: pv is the process 
variable or controlled variable, sp is the set point, y is 
the controller error equal to sp pv− , and mv is the 
manipulated variable. If a direct measurement of the mv 
is not available then the controller output, op, is used 
instead.  

2.1 Minimum variance control during regulation 

As discussed in Huang and Shah [14] and Seppala et al, 
[7], the concept of the closed loop impulse underlies 
minimum variance benchmarking. 
Figure 1 (left panel) shows the structure of a control 
loop subject to a disturbance a. The model for 
minimum variance benchmarking in regulatory 
operation uses the closed transfer function from 

( ){ }a n  which is a white noise sampled data sequence 

to ( ){ }y n : 

 ( ) ( )
1 d

Ny n a n
q TQ−

= −
+

 (1) 

In the above, 1q−  is the delay operator, N  is a filter, 

Q  is the controller, and dq T−  is the controlled system 
which has a delay of d  sample intervals. The purpose 
of N  is to model general disturbances; for instance if 
the denominator of N  is a polynomial in 1q−  with 
roots close to the unit circle then the disturbance v 
entering the control loop (see Figure 1) would exhibit 
autocorrelation over a large number of lags. Expression 
(1) can be transformed by polynomial division to: 

 ( ) ( ) ( )1
ay n H q a n−=  (2) 

where ( )1
aH q−  is a polynomial whose coefficients 

are the impulse response coefficients. The coefficients 
( ) ( )0 ...... 1a ah h d −  are controller invariant while 

( ) ( )1 ....a ah d h d +  can be set to zero by a minimum 
variance controller mvQ . The minimum variance 
benchmark for a non-minimum variance controller is 
the ratio between the variance of the controller 
invariant part of the impulse response and the variance 
of the error signal y : 
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The minimum variance controller mvQ  depends upon 
the disturbance filter N as well as on the controlled 
system dq T− . Thus the mvQ  for a control loop with a 
white noise disturbance when 1N =  is not the same as 

for the case of integrated white noise with 
1

1
1

N
q−

=
−

, 

and is different again when the disturbance is periodic. 
In the periodic case N is a band-pass filter with a 
denominator polynomial having complex conjugate 
roots: 

 
( ) ( )1 1 *

1

1 1
N

q q− −
=

− α − α
 (4) 

2.2  Minimum variance control for tracking of step 
changes 

If the set point is a step input then the model for the 
system is as shown in the right hand panel of Figure 1. 
An impulse sequence ( ){ } { 1 0 0 0 ..... }x n =  is 

integrated by 
1

1
1

N
q−

=
−

 to give a step signal at the 

sp. The transfer function is: 

 ( ) ( )
1 d

Ny n x n
q TQ−

=
+

 (5) 

which again can be expressed as a convolution of 
impulse response coefficients and the input sequence: 

 ( ) ( ) ( )1
uy n H q x n−=  (6) 

In general, as highlighted by [7] the controller error y 
may contain contributions both from disturbance and 
from set point changes. However, if there is no 
disturbance, or if the effect of the disturbance is 
negligible compared to the set point change, then the 
impulse response coefficients uh  are the values of the 
controller error observed in the transient that follows a 
set point change. Thus the minimum variance index can 
be directly calculated from: 
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If the loop is under minimum variance control then the 
controller error becomes zero as soon as the dead time 
has elapsed and the ratio would be 1.  

As discussed earlier, the minimum variance controller 

for step inputs where 
1

1
1

N
q−

=
−

 is not the same as 

the minimum variance controller for the random 
disturbance case or for the case when the disturbance is 
deterministic and periodic. Thus for an arbitrary 
controller Q  the calculated minimum variance 
benchmark η  is not, in general, expected to be the 
same for set point step changes, random disturbance 
and periodic deterministic disturbance.  

2.3 Calculation of η  

One method for calculation of η  is to directly estimate 
the impulse response coefficients for use in (3) by a 
signal processing technique such as the FCOR 
algorithm [14]. Desborough and Harris [2] suggested 
the following alternative procedure to calculate η . The 
controller error is decomposed into a d-step ahead 
prediction ŷ  and a residual w by means of fitting of a 
d-step ahead ARMA model to the error sequence: 

( ) ( ) ( ) ( ) ( ) ( )1 ˆy n A q y n d w n y n w n−= − + = +  (8) 

The minimum variance is the variance of w , which is 
compared to the variance of the controller error to give 
the minimum variance benchmark: 

 
2

2
w

y

σ
η =

σ
 (9) 

The controller error of a loop under minimum variance 
control should have no d-step predictable component 
and therefore 1η =  for a minimum variance controller. 
The calculations in this article followed [2] using 
equations (8) and (9). 

2.4  Correlation coefficients 

The correlation coefficient between two sampled data 
sequences ( )1{ }x n  and ( )2{ }x n  is estimated from 

sN  samples as: 

 ( ) ( )( )1 2, 1 2
1

1 sN

x x
s n

r x n x n
N =

′ ′= ∑  (10) 

where ( ) ( )
x

x n x
x n

−′ =
σ

, i.e. the sequences are mean-

centered and normalised to unit standard deviation.  
Correlations between the increments in the controller 
error ( y∆ ) and the controller error y or mv ( ,y yr∆  and 

,y mvr∆ ) are likely to be different depending on the 
nature of the disturbance and thus have the potential to 
give a disturbance signature. Correlations ,mv mvr∆  
between mv and mv movements (i.e. the increments in 
the mv) are also of interest. 
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Random error: Assuming without loss of generality that 
the controller error is zero mean, then 

 ( ) ( )
y

y n
y n′ =

σ
 (11) 

Increments in the controller error are calculated as: 
 ( ) ( ) ( )1y n y n y n∆ = − −  (12) 

If the controller error sequence ( ){ }y n  is random 
uncorrelated noise then: 
 ( ) ( )2Var y Var y∆ = ×  (13) 

because the cross-term involving ( ) ( )1y n y n× −∑  in 
the variance estimate is zero. Thus the standard 
deviation of the y∆  sequence is 2 yσ  and  

 ( ) ( ) ( )1

2 y

y n y n
y n

− −
′∆ =

σ
 (14) 

If the controller error is random white noise the 
correlation coefficient between y∆  and y  is: 

 

( ) ( ) ( )
,
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y y
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y

y n y n y n
r

N∆
=

 − −
 = ×
 σ σ 

σ
= − =

σ

∑
 (15) 

 
Periodic error: Alternatively, if the controller error is 
periodic with period pT  then the controller error 

sequence is sampled from ( )sin 2 pt T× π . If pT T , 

where T  is the sampling interval, then y∆  is sampled 
from  

 ( )2 cos 2 p
p

y T t T
T
π

∆ = × π  (16) 

because 

 ( )2 cos 2 p
p

dy dt t T
T
π

= × π  

Thus if the controller error is periodic the correlation 
coefficient between y∆  and y  is: 

( ) ( )
,

1

sin 2 cos 21
1 2 1 2 2

0

sN
p p

y y
s n p

nT T nT T
r

N T T∆
=

 × π × π
 = ×
 × × π 

≈

∑

  (17) 
The result is close to zero because sine and cosine are 
orthogonal functions and it is exactly equal to zero if 
the sN  terms in the sum capture a whole number of 

complete cycles of the periodic signal. The 1 2  

factors arise because the r.m.s. value (the standard 
deviation) of a unit amplitude sine wave is 1 2 . 

These numerical results will be exploited later in the 
diagnosis of the nature of a disturbance.  
 
Mixed error:  This sub-section will determine the value 
of ,y yr∆  when the controller error is sampled from a 
periodic deterministic component plus a random 
component. The random component is w  having unit 
variance and the deterministic component is sampled 
from a sine wave having period pT  and amplitude α . 

If 2α =  then the variance of the deterministic 
component is unity because the r.m.s value of a sine 
function is 1 2 :  

 ( )( ) ( ) sin 2 py n w n nT T= +α × π  (18) 

The standard deviation of ( )y n  calculated from the 

samples is approximately ( )21+α  and is exactly that 

value if the calculation captures a complete number of 
cycles of the sine wave.  
If pT T  the controller error increments are: 

( )
( ) ( ) ( 1)

2( ) ( 1) cos 2 p
p

y n y n y n

w n w n T nT T
T

∆ = − −
π

= − − +α × π  (19) 

and the standard deviation of this sequence is  

 
2

22 2
p

T
T

 π
+ α ≈  
 

 (20) 

Thus  

( )( )
( )

( )

( )

2

,
1

2

( ) sin 2

1
1

2( ) ( 1) cos 2

2
1

2 1

s

p

N

y y
s n

p
p

w n nT T

r
N

w n w n T nT T
T

∆
=

 + α × π
 × 

+ α 
 =
  π

− − + α × π     
  
 

≈
+ α

∑

  (21) 
Again, the equality is exact if the sampled data 
sequence captures a complete number of cycles of the 
periodic sequence.  

If 2α =  as when the random and periodic 
disturbances have equal variance then , 0.41y yr∆ = . 

Therefore , 0.41y yr∆ =  will be used as a threshold to 
determine whether the controller error is predominantly 
random.  
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Correlation of mv∆  and mv:  The same comments as 
above concerning the values in the random, periodic 
and mixed case apply also to ,mv mvr∆ .  

3. METHODS 

This section presents experimental measurements from 
a pilot scale stirred tank reactor and a series of 
simulations of the same stirred tank. A set of step test 
experiments were carried out on a level control loop 
and a temperature control loop. Data were collected 
during the transient step response and also during 
normal running (regulatory operation) once the 
transients had died away.  
A simulation was created that used heat and mass 
balance together with valve, instrument and heat 
transfer characteristics measured during calibration of 
the plant. Disturbances in the simulation were provided 
as numerical sequences of the real noise collected 
during open loop testing of the plant. The simulations 
explored the relative influence of a random noise 
disturbance and a periodic deterministic disturbance 
when applied together in varying ratios. 

3.1  Step tests 

The process schematic is shown in Figure 2 for a 
continuous stirred tank reactor in the Computer Process 
Control group of the University of Alberta, Department 
of Chemical and Materials Engineering. Computer 
control of the process was achieved using Simulink and 
the Real Time Toolbox of MATLAB (The Mathworks, 
Natick, MA) interfaced with the plant. Actuator 
demands calculated within Simulink were sent to the 
plant as 4-20 mA signals, and 4-20 mA signals from 
the instruments on the plant were sent to Simulink for 
calculation of control actions. A cascade configuration 
onto cold water flow was implemented for level 
control, as shown in Fig 2, and the temperature control 
used proportional plus integral control of the steam 
valve. A benefit of the configuration is its flexible 
access to the plant inputs. For instance, it is possible to 
add a known disturbance to the output of a controller so 
that the valve receives a signal comprising the 
controller demand plus a disturbance. A real process 
disturbance could be applied by bubbling compressed 
air through the vessel.  
Step test sequences numbered 1 to 8 (see Table 1) were 
applied to the plant for assessment of set point step 
changes giving the responses shown in the left hand 
panels of Figure 3. Each step test used different settings 
of the proportional plus integral controller. Data 
sequences from regulatory operation at a steady set 
point were also captured using the same controller 
settings, as shown in the middle panels of Figure 3. The 
noise levels in the temperature loop were much higher 
than in the level loop. The right hand panels show the 
autocovariance functions for the data from regulatory 

operation where it can be seen that the level 
measurement had a long range periodic autocovariance 
while the temperature disturbance was more random 
having only short range correlation. 

3.2 Collection of disturbance sequences  

Figure 4(a) (upper left panel) shows an open loop 
measurement from a steady level signal when 
compressed air bubbles were blown into in the tank 
while Figure 4(b) (lower left panel) is the variation in 
the cold water flow measurement when the valve 
demand signal was held constant. These data were re-
used as disturbance inputs for the simulation 
experiments to be described in section 3.3. The 
disturbance from compressed air bubbles is random, as 
can be seen from its negligible autocovariance function 
(upper right panel). The cold water disturbance is 
deterministic because it is periodic and predictable, 
having a distinctive oscillatory feature at about 40 
samples per cycle. It has long range autocovariance. 

3.3 Disturbance tests 

Two experimental disturbance tests were conducted on 
the level loop in the pilot plant and additional 
disturbance tests were conducted in a series of 
simulated runs. The controller settings were the same in 
each case, and were those from Test 2 shown in Table 
1. Tests 9 and 10 described in Table 2 were applied to 
the plant for 500s. In Test 10 the disturbance shown in 
Figure 4(b) was applied to the cold water valve 
demand. To achieve that, the disturbance was added to 
the controller output and the sum of the two sent to the 
D/A converter to create the analogue signal to drive the 
valve. The flow disturbance sequence was amplified by 
a factor of 10 is so that its effects would dominate the 
natural process disturbance.  
Simulation Tests 11 to 15 were run for 2000s. In those 
cases there was no natural process noise and the flow 
disturbance was applied without amplification. Figure 5 
shows the time trends of y and mv  

3.4 Industrial data 

Measurements from an industrial plant were provided 
courtesy of the Eastman Chemical Company, 
Kingsport, TN. A deterministic, periodic disturbance 
caused by limit cycling of a sticking control valve had 
propagated to many locations in the plant. The upper 
panels in Figure 6 show the time trends of controller 
error and manipulated variable for several flow and 
level measurements from the plant taken before the 
sticking control valve had been diagnosed and the 
lower panels show the same measurements after the 
valve was repaired. The periodic disturbance is absent 
in the lower plots.  

3.5  Data analysis 

Performance indexes:  Controller performance indexes 
η  were calculated. For the step changes in Tests 1 to 8 
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η  was computed using data sets starting 50s before the 
step and continuing for 250s after the step, a total of 
301 samples. The results determined from application 
of (8) and (9) were compared to the results of direct 
calculation using (7). The calculations require the loop 
time delays which for the level and temperature loops 
were 2 s and 8 s respectively. 
The regulatory performances for Tests 1 to 8 were 
determined from 2000 samples from regulatory 
operation using equations (8) and (9). Performance 
indexes were also determined for regulatory operation 
in Tests 9 to 15 and for the industrial data.  
 
Correlation coefficients: Correlation coefficients ,y yr∆ , 

,y mvr∆  and ,mv mvr∆  were determined for all the 
experiments and simulations in order to find out if 
these correlation coefficients varied in a systematic 
manner as the nature of the disturbance changed from 
random to deterministic. Similar calculations were 
done for the industrial data.  

4. RESULTS 

4.1 Plant experiments 

Figure 3 shows set point step tests for various 
controller tuning settings of the level-flow cascade 
control loop and the temperature loop. The η  results 
are in Table 1 together with the directly-calculated 
minimum variance measure. 
Fig 7 (left panel) compares results from direct 
calculation using (7) and the η  calculated from (8) and 
(9) during the step change. The closeness of the results 
to the unit gradient line shows that two methods gave 
almost the same estimate of the minimum variance 
performance index for a set point step change. The 
right hand panel of Figure 7, however, shows that η  
for the steps response was not related to the η  during 
regulatory operation. The next section will explain this 
finding. 
Figure 8 gives a visual comparison of the numerical 
results by means of bar charts. The right hand panels  
show that ,mv mvr∆  during regulatory operation was 
related to the η  for set point tracking. It has a low 
value in loops with a slow and poorly damped set point 
performance (Tests 1-4 and 8) and was large when the 
loop had aggressive set point tracking performance 
(Tests 5 and 7). Therefore the loops closer to minimum 
variance set point tracking control had more random mv 
movements during regulatory operation, while those 
with a slow and poorly damped set point performance 
had smoother and more deterministic mv movements. 
These features can be seen in lower middle panel of 
Figure 3 where the most vigorous mv action is in Test 5 
and 7. 

The value of ,mv mvr∆  was not, however, related to η  
during regulatory operation. Tests 5 and 6 show that 

,mv mvr∆  could be reduced to below 0.41 and thus 
changed from random to deterministic without much 
change to the η  for regulatory operation. There would 
be less wear on the actuator when the mv is smoother 
and ,mv mvr∆  is smaller. The results found here 
reinforce the proposals in [8-10], and elsewhere in this 
Special Issue, where the need for an enhanced 
controller performance measure that pays attention to 
the mv has been identified. 

4.2 Disturbances 

The following analysis explores the behaviour of the 
performance index and other quantities when the 
disturbances shown in Figure 4 were present in varying 
ratios in the level loop. Table 3 shows the performance 
indexes from regulatory operation and correlation 
coefficients for the regulatory operation of the plant 
(Tests 1-10) and simulated runs (Tests 11 to 15). 
Observations are: 
• The performance index η  depended upon the 

nature of the disturbance; 
• There was a high correlation between the dominant 

disturbance and the controller error  y; 
• The correlation coefficients ,y yr∆  and ,y mvr∆  

depended on the nature of the disturbance; 
• The correlation coefficient ,mv mvr∆  was not large 

for any of the experimental or simulation runs for 
the level loop (Tests 1-4, 9-15).  

4.3 Discussion 

The upper left hand panel of Figure 8 shows that the 
tests dominated by deterministic flow disturbance (10, 
14, 15) had a low η  while those dominated by the 
random bubble disturbance (9, 11, 12) had a high η . 
Thus the η  value during regulatory control responds to 
the nature of the disturbance even though the controller 
tuning setting did not change. Test 13 with equal 
weights for the random and deterministic disturbances 
had an intermediate value of η .  

The behaviour of the correlation coefficient ,y yr∆  is 
similar to that of the η  for regulatory operation. Since 

,y yr∆  gives a test of the randomness of controller error, 
the results confirm that high values of η  in regulatory 
operation are achieved when the controller error is 
random.  
As expected ([11-13]), there is strong correlation 
between the dominant disturbance and the process 
variable (Table 3, columns 5 and 6), and therefore with 
y. The correlation was not perfect because of the loop 
dynamics. For instance, first order lag dynamics 
introduce a phase shift and there may be other noise 
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present. The finding nevertheless shows that the nature 
of a disturbance may be inferred from an inspection of 
y.  
The data from the level loop gave systematic trends in 

,y yr∆  and  ,y mvr∆ , as shown in Figure 9 which plots 

,y yr∆  on the horizontal axis and  ,y mvr∆  on the vertical 
axis. Cases with random disturbance appeared at the 
lower right side of the plot, cases with a periodic 
deterministic disturbance were in the left hand top 
corner. The explanation of the relationship is explored 
in the Analysis section below. Also shown in Figure 9 
are the plant runs, Test 9 with bubbles present on the 
right and Test 10 with deterministic flow noise 
disturbance on the left.  
Other plant results for the level loop (Tests 1-4) were 
clustered close to one another and also lay near the 
curve. Therefore those plant runs were diagnosed as 
having some periodic deterministic disturbance but not 
as much as in Test 10. This is a correct finding because 
the level loop was subject to the natural cold water flow 
disturbance in Tests 1 to 4 whereas in Test 10 the 
deterministic flow disturbance was magnified by a 
factor of ten.  

4.4 Analysis 

Correlation of y∆  with y : The controller error y  is 
somewhat correlated with the true disturbance because 
the pv is correlated with the disturbance. Thus y  has a 
random component if the disturbance is random and it 
is to be expected that random fluctuations in the 
controller error y  will show a ,y yr∆  correlation of up 
to 0.707, as demonstrated in equation 15. A correlation 
coefficient of 0.65, close to the maximum expected 
value, was observed in Test 11 which had the largest 
random disturbance. The tests with predominantly 
random disturbance (9, 11, 12) all had values of ,y yr∆  
above the threshold value of 0.41 that was derived in 
section 2.4.  
For a deterministic periodic disturbance there should be 
little correlation between y∆  and y  (equation 17). The 
expectation was confirmed by Tests 10, 14 and 15 with 
deterministic disturbances which had ,y yr∆  values 
below the threshold of 0.41. Test 13 that had equal 
amounts of the two disturbances had an ,y yr∆  value of 
0.39, close to the threshold.  
 
Correlation of y∆  with mv: The reason why y∆  
correlated with mv in the deterministic periodic cases 
(Tests 10, 14 and 15) is because of the structure and 
dynamics of the level control loop. The deterministic 
disturbance was a disturbance to the flow valve and 
therefore affected mv directly. The controlled process 
(the tank) has integrating dynamics which means the pv 
and also the controller error y have time trends that are 
similar to the integral of mv. The time trend of y∆  is 

thus similar to the trend of mv because y∆  is the 
numerical derivative of y. As a result the correlation 
coefficient ,y mvr∆  must be strong in the case of the 
deterministic flow disturbance signal.  
The random disturbance caused by compressed air 
bubbles, by contrast, acted directly on the level 
measurement and the controller error is therefore also 
random. The mv is derived from the random signal 
through the proportional plus integral controller and 
there is no correlation of y∆  with mv in that case.  

The argument that the correlation will be small for a 
random disturbance would not hold true for a 
controlled system having a P-only controller. Therefore 
it is not possible to generalise the use of ,y mvr∆ . For 

instance, the value of ,y yr∆  for regulatory operation in 
Test 5 was found to be 0.56, revealing the random 
nature of the controller error. However, the controller 
in Test 5 has weak I-action and the mv is similar to the 
(random) controller error y, as can be seen in Figure 3. 
As a result ,y mvr∆  is similar to ,y yr∆  and was found to 
be 0.52, not small or close to zero. 
 
Generalisation: The above observations show that 
values above 0.41 in the correlation coefficient ,y yr∆  
means the controller error is random. The opposite 
applies to ,mv mvr∆ . If the value is lower than 0.41 it 
means the mv is moving more smoothly and less 
randomly. For controller performance purposes, the 
following targets are suggested: 
• ,y yr∆  should be above 0.41 to ensure the 

controller error is random; 
• ,mv mvr∆  should be below 0.41 to ensure that mv 

movements are not too aggressive.  
The discussion in the previous sub-section also 
indicates that use of the ,y mvr∆  correlation is not 
generalisable because it depends upon the structure of 
the control loop.  

4.5 Industrial example 

The upper panel of Figure 10 shows bar charts for the 
minimum variance control loop performance index η  
before and after maintenance work in the plant which 
cured a plant-wide disturbance. The controller 
performance index was calculated for regulatory 
operation only since there were no step changes of set 
point in the data set. The lower panels in Figure 10 
show ,y yr∆  and ,mv mvr∆  before and after maintenance. 

The correlation coefficient ,y mvr∆  is not presented 
because, as discussed above, it cannot be generalised.  
The upper panels of Figure 6 show the presence of a 
deterministic disturbance with a period of 330 sampling 
intervals. It is visibly present in the controller errors of 
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loops 16 and 19, and in all the mv trends except for 17. 
The lower panels show that the deterministic 
disturbance disappeared from both the controller error 
and mv time trends after the repair. 
The following observations can be made: 
• The controller performance index η  for regulatory 

operation improved in the loops numbered 16, 18 
and 19 after the repair of the faulty valve. The 
performance of loop 19, though greatly improved, 
was still not good; 

• The ,y yr∆  values for loops 16 and 18 rose above 
the 0.41 threshold after the repair. Therefore after 
the repair those controller errors were 
predominantly random. The controller error for 
loop 19 was not random after the repair showing 
that the loop remains subject to an unknown 
deterministic disturbance. This may be no more 
than the slow meanderings about the set point that 
can be observed in the lower left panel of Figure 6; 

• The performance of loop 17 was high and its ,y yr∆  
value was high both before and after the repair. 
The result shows that loop 17 is well tuned, has a 
random controller error and was not influenced by 
the disturbance; 

• The performance of loop 20 was intermediate but 
its ,y yr∆  value was low both before and after the 
repair. The result shows that the controller error of 
loop 20 was influenced by a second disturbance 
which did not go away after the repair. Figure 6 
(left panels) shows the second disturbance has the 
form of frequent spiky transient effects with a 
decay time constant of about 8-10 samples; 

• The values of ,mv mvr∆  for all loops were below 
the 0.41 threshold both before and after the repair 
suggesting that the mv movements are not overly 
aggressive.  

4. CONCLUSIONS 

The paper has used plant experimentation, simulation 
and an industrial example to demonstrate practical 
issues arising in the interpretation of the minimum 
variance control loop performance index η  described 
by Harris [1] and Desborough and Harris [2]. 
Theory shows that for an arbitrary controller Q  the 
calculated minimum variance benchmark η  is not the 
same for a step change in the set point as for regulatory 
operation. The work reported here gives practical 
demonstrations of those observations and in particular 
shows that the performance during regulatory control 
depends on the nature of the disturbance. The value of 
η  during a step change in set point is not related to η  
during regulatory operation η . In regulatory operation 
η  was low in the case of a deterministic periodic 

disturbance and high if the disturbance was random 
even though the controller tuning did  not change.  
As reported elsewhere [11-13] the controller error y is 
somewhat correlated with the disturbance affecting the 
loop, so the nature of the disturbance may be inferred 
from y. The value of the correlation coefficient ,y yr∆  
between increments in the controller error ( y∆ ) and y 
reveals the nature of the controller error. If ,y yr∆  is 
above 0.41 the controller error is predominantly 
random and high values of η  in regulatory operation 
are achieved.  
The need to reduce movements in the manipulated 
variable, mv, has also been considered. The converse 
comments apply ,mv mvr∆ . If the value is lower than 
0.41 it means the mv is moving more smoothly and less 
randomly. For controller performance purposes, the 
following generic  targets are suggested: 
• ,y yr∆  should be above 0.41 to ensure the 

controller error is random; 
• ,mv mvr∆  should be below 0.41 to ensure that mv 

movements are not too aggressive.  
It was demonstrated that ,mv mvr∆  for regulatory 
operation is related η  during a step change and not to 
η  during regulatory operation. The penalty for 
reducing ,mv mvr∆  is that the set point step change 
response becomes less aggressive and takes longer to 
settle.  
The correlation ,y mvr∆  between y∆  and mv was also 
examined. There were strong systematic trends within a 
given control loop, but the value of ,y mvr∆  was found 
to be dependent upon the structure and tuning of the 
control loop and therefore not generalisable. 
The findings from simulation and pilot scale were 
observed also in an industrial data set. The success of 
the industrial study suggests that the new correlations 

,y yr∆  and ,mv mvr∆  are generic and have a useful 
application in the performance assessment of SISO 
control loops. 

5. REFERENCES 

1. Harris, T.J. Assessment of control loop performance, 
Can. J. Chem. Eng. 1989; 67: 856-861. 

2. Desborough, L., Harris, T.J. Performance assessment 
measures for univariate feedback control, Can. J. Chem. 
Eng. 1992; 70: 1186-1197. 

3. Qin, S.J. Control performance monitoring - a review and 
assessment, Comput. Chem. Engng. 1998; 23: 173-186. 

4. Harris, T.J., Seppala, C.T., Desborough, L. A review of 
performance monitoring and assessment techniques for 
univariate and multivariate control systems, Journal of 
Process Control 1999; 9: 1-17. 



 

9 

5. Swanda, A.P., Seborg, D.E. Controller performance 
assessment based on setpoint response data. Proc. 1999 
American Control Conf. 1999; 3863–3867. 

6. Isaksson, A.J., Horch, A., Dumont, G.A. Event-triggered 
deadtime estimation from closed-loop data, Proc. 2001 
American Control Conf. 2001; 3280-3285. 

7. Seppala, C.T., Harris, T.J., Bacon, D.W., Time series 
methods for dynamic analysis of multiple controlled 
variables, Journal of Process Control, 2002; 12: 257–
276. 

8. Kadali R., Huang B. Controller performance analysis 
with LQG benchmark obtained under closed loop 
conditions, ISA Transactions 2002; 41: 521-537. 

9. Grimble, M.J. Controller performance benchmarking and 
tuning using generalised minimum variance control, 
Automatica 2002; 38: 2111-2119. 

10. Xia, C., Howell, J. Loop status monitoring and fault 
localisation, Journal of Process Control, 2003; in press: 
doi:10.1016/S0959-1524(02)00123-3. 

11. Desborough, L., Harris T.J. Performance assessment 
measures for univariate feedforward-feedback control, 
Canadian Journal of  Chemical Engineering, 1993; 71: 
605-616. 

12. Kozub, D.J., Garcia, C.E. Monitoring and diagnosis of 
automated controllers in the chemical process industries, 
AIChE Annual Meeting 1993; St Louis. 

13. Stanfelj, N., Marlin T.E., MacGregor, J.F. Monitoring 
and diagnosing process control performance: The single 
loop case, Industrial Engineering Chem. Research, 1993; 
32: 301-314. 

14. Huang, B., and Shah, S.L., Performance Assessment of 
Control Loops: Theory and applications, Springer-
Verlag, 1999; ISBN: 1-85233-639-0. 

6. ACKNOWLEDGEMENTS 

The authors are grateful for the support of the Natural 
Science and Engineering Research Council (Canada), 
Matrikon (Edmonton, Alberta) and the Alberta Science 
and Research Authority through the NSERC-Matrikon-
ASRA Industrial Research Chair in Process Control. 
The authors would like to thank John W. Cox and 
Michael A. Paulonis of the Eastman Chemical 
Company, Kingsport, TN for providing the industrial 
data. Thanks also to M.A. Shoukat Choudhury and R. 
Bushan Gopaluni for help with conducting the 
experimental runs for the study.  
 
 
 
 
 
 
 

 
 



 

10 

 
 
 

 Test description controller 
gain K 

integral 
time, iτ  

Direct min. var 
calculation 

ηduring 
step 

η in regulatory 
operation 

1 step tests and 2 40 0.20 0.23 0.20 
2 regulatory operation 2 20 0.19 0.22 0.30 
3 of level loop 2 13 0.18 0.21 0.30 
4  1 10 0.09 0.11 0.18 
5 step tests and 6 60 0.74 0.76 0.98 
6 regulatory operation 3 30 0.47 0.52 0.96 
7 of temperature 3 15 0.61 0.67 0.99 
8 loop 1 5 0.34 0.41 0.91 

 
Table 1. Summary of performance results from experimental step and regulatory operation tests. The controller 

transfer function is 11
i

K
s

 
+  τ 

. 

 
 

 Test description Disturbance 
9 Compressed air bubbled through tank real 

10 Flow disturbance 10×  added to cold water valve demand Fig 4(b) 
11 Bubble noise added as disturbance to level in simulation Fig 4a(a) 

12-14 11 and 15 in various combinations 4(a) and 4(b) 
15 Flow disturbance added to cold water valve demand in simulation Fig 4(b) 

 
Table 2. Description of disturbance runs on the pilot plant and in simulation. These tests used the level loop with the 

same controller settings as for Test 2. 
 
 
 

 description η  
,y yr∆  ,y mvr∆  ,mv mvr∆

 
,pv bubblesr

 
,pv flowr

 
 pilot plant runs       
1 level loop – regulatory operation 0.20 0.25 0.28 0.23 - - 
2 level loop – regulatory operation 0.30 0.23 0.29 0.19 - - 
3 level loop – regulatory operation 0.30 0.25 0.25 0.18 - - 
4 level loop – regulatory operation 0.18 0.31 0.16 0.22 - - 
5 temp loop – regulatory operation 0.98 0.56 0.51 0.52 - - 
6 temp loop – regulatory operation 0.96 0.46 0.27 0.25 - - 
7 temp loop – regulatory operation 0.99 0.57 0.55 0.51 - - 
8 temp loop – regulatory operation 0.91 0.51 0.21 0.16 - - 
9 bubble disturbance 0.85 0.64 0.05 0.22 - - 

10 flow disturbance 0.03 0.11 0.76 0.15 - 0.76 
 simulation runs       

11 bubbles only 0.93 0.65 0.03 0.14 0.96 - 
12 bubble dominated 0.91 0.57 0.05 0.12 0.90 0.03 
13 equal effects 0.62 0.39 0.15 0.10 0.60 0.38 
14 flow disturbance dominated 0.12 0.20 0.38 0.10 0.25 0.59 
15 flow disturbance only 0.002 0.09 0.99 0.10 - 0.70 

 
Table 3. Performance index and correlation coefficients for pilot plant and simulated runs.  
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   before    after  
 description η  

,y yr∆  ,mv mvr∆   η  
,y yr∆  ,mv mvr∆  

16 industrial level loop 0.21 0.25 0.19  0.66 0.51 0.39 
17 industrial flow loop 0.91 0.55 0.10  0.93 0.58 0.10 
18 industrial flow loop 0.63 0.30 0.17  0.96 0.60 0.30 
19 industrial level loop 0.03 0.10 0.07  0.32 0.29 0.05 
20 industrial flow loop 0.75 0.22 0.08  0.70 0.22 0.05 

 
Table 4. Performance index for regulatory operation and correlation coefficients for industrial data before and after 

maintenance of a sticking valve.  
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Figure 1.  Block diagrams for analysis of the effects of disturbance and set point changes 
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Figure 2. Pilot plant schematic 
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Figure 3.  Pilot plant Tests 1 to 8.  Left panels: Responses to 2mA step change in set point. Middle panels:  

controller error y during normal running, magnified compared to left panel;  Right panels: Autocovariance 
functions during normal running. 
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Figure. 4.   Disturbance sequences captured from plant: (a) level disturbance from compressed air bubbles (b) cold 
water flow disturbance. The time trends are scaled to unit standard deviation and the autocovaince 
vertical axis is -1 to +1. 
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Figure 5.  Pilot plant and simulation Tests 9 to 15. Left panel: controller error trends;  Right panel:  mv trends. The 

trends are normalised to unit standard deviation. 
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Figure 6:  Industrial data from flow and level loops during a plant-wide disturbance. Upper panels:  Plant-wide 

disturbance in controller error, y, and mv caused by a sticking valve.  Lower panels:  The same 
measurements on the same vertical axis scales after the valve was repaired. 
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Figure 7.  Performance index results for set point tracking during step testing and during regulatory operation: 
 () cascade level loop, Tests 1 to 4 () temperature loop, Tests 5 to 8. 
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Figure 8.  Graphical comparison of the performance index results during step tests and regulatory operation with the 

correlation coefficients ,y yr∆  and ,mv mvr∆ .  
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Figure 9.  The relationship between correlation coefficients ,y yr∆  and ,y mvr∆  for the level loop: () simulation, 

Tests 11-15; ( ) plant runs, Tests  9 and 10; () plant runs, Tests 1-4. 
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Figure 10.  Graphical comparison of the performance indexes and correlation coefficients for the industrial data:  

Black bars: before repair of a faulty valve;  White bars:  after repair.  
 


