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Abstract

Stored process data in the form of high fidelity time trends are a resource for data-driven process analyses such as statistical

monitoring, minimum variance control loop benchmarking, fault detection, data reconciliation and development of inferential

sensors. However, many commercial data historians compress the data before archiving it and a question therefore arises of how

useful the compressed data are for the intended purposes.

This article examines the impact of compression on data-driven methods and presents an automated algorithm by which the

presence of piecewise linear compression may be inferred during the pre-processing phase of a data-driven analysis.

The results show that compression interferes with many types of data-driven analyses and the paper strongly recommends

caution in the use of compressed process data archives.
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1. Introduction

The motivations for data compression include re-

duction of the costs of storage of historical data and

reduction of cost of transmission of process data

through a telecommunications link. For instance, in

pharmaceutical manufacturing the regulatory authori-

ties demand long term storage of manufacturing records

and the cost of storage media would then be a consid-

eration. In off-shore oil production the cost is in the
satellite linkage to an on-shore headquarters. The trend

towards remote monitoring of their installed systems by

technology vendors also requires data transmission

through a telecommunications link.

Data compression, however, has hidden costs if the

data become unsuitable for their intended purposes. The

operation of restoring the original signal from the ar-

chived data is called reconstruction. Once the data have
been compressed they lose information and the recon-

structed trends are deficient in various ways compared
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to the originals. End uses of the reconstructed data may

be very different [1] and include:

• Calculation of daily statistics such as daily means,

daily standard deviations.

• Averaging for data reconciliation and mass balanc-

ing.

• Archiving of data trends for subsequent high fidelity

reconstruction.

• Data smoothing by removal of high frequency noise.
• Feature extraction and recovery of events.

For example, the transmitted data from an off-shore

production platform are used to determine daily totals

of oil flow into the pipeline for taxation purposes while

remote monitoring of a model predictive controller at a

refinery may need high fidelity data for identification of

a dynamic process model.
The contribution of this paper is to give new insights

into the impact of data compression on data-driven

plant performance analysis and to give a recommenda-

tion about how much compression can be tolerated. The

findings that compression causes trouble may seem ob-

vious in retrospect but there appears to have been no

systematic study in the literature to date. An automated

mail to: n.thornhill@ee.ucl.ac.uk


390 N.F. Thornhill et al. / Journal of Process Control 14 (2004) 389–398
means of detecting the severity of compression is also

presented. Application of the algorithm during the data

pre-processing phase of a plant audit means less time

wasted in evaluation of unsuitable data. It also avoids
the loss of credibility of the methods and their practi-

tioners that might arise if wrong conclusions were to be

drawn from bad data.

The next two sections of the paper motivate the study

by means of an example, outline normal practices in

industrial data compression and introduce three indus-

trial data sets. Section 4 presents measures by which the

impact of data compression methods may be evaluated.
Section 5 gives results and discussion. An automated

means for detection of compression is demonstrated in

Section 6 and its application to industrial data consid-

ered. The paper ends with a conclusions section.
2. Motivating example

Compression using piecewise linear trending is in

widespread use in industrial data historians. For in-

stance, AspenTech described an adaptive method based

upon the box-car/backward slope (BCBS) method [2]

while OSI state that their PI data historian uses a type of

swinging door compression algorithm involving a com-

pression deviation blanket with a width equal to twice

the compression deviation specification [3].
Fig. 1 shows a data set from a data historian typical

of those from which engineers and consultants wish to

extract useful information (courtesy of Celanese Canada

Inc.). The straight line segments characteristic of in-
 0 250 500 750

21
20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

Tag
Warning: Resampling interval is too large. Compr

time/sample in

Fig. 1. An industrial data set with compression in some tags. Time trends ar

factor (see Section 6.3).
dustrial data compression can be seen in many of the

time trends. It will be shown in Section 6 that com-

pression factors of up to 94 were in use. The original

uncompressed data were lost forever when they were
compressed and archived and it is now not possible to

determine what features have been lost. Later sections

will show that most of these data trends are too com-

pressed and that data-driven process analysis would, if

attempted, give a misleading indication of the results

that the original data would have given.
3. Methods

3.1. Overview of data compression

There is extensive literature on compression methods

for images, speech and text [4]. Compression techniques

for electrocardiogram (ECG) signals are also at an ad-

vanced stage [5–7]. The motives in ECG are like those
for process data compression in regard to transmission

of the ECG signals by telephone. Some developments in

data compression have arisen from that field, for ex-

ample wavelet compression has moved from ECG to

process applications.

Compression techniques can be divided into two

main functional groups, direct methods and transform

methods. Those in industrial use are the direct methods
(also known as piecewise linear trending methods) be-

cause these can be applied in real-time to spot data. Mah

et al. [8] and Watson et al. [9] have given comparative

reviews of various compression methods. Mah et al. [8]
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Fig. 2. Illustration of swinging door compression. Black circles rep-

resent archived spot values, values with open circles are not archived.

At time step 5 (point ye) the lower door (dotted line) opens up wider

than parallel showing that a new trend started at yd .
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compared piecewise linear trending methods and intro-

duced a new method (PLOT). The work of Watson et al.

[9] studied piecewise linear trending and also wavelet

and Fourier compression. They also introduced to
process applications a method using vector quantization

and discussed its benefits.

A direct method makes the archiving decision in real

time as the data are captured from the process. The

BCBS method [10] and the swinging door method [11]

use heuristic rules to decide whether to archive a spot

value and the rules are tuned to achieve the capture of

exceptions and linear trends. They reconstruct a data
trend as a series of linear segments connecting the ar-

chived spot values of the data.

A transform method performs an integral transform

of the original data set and the compression is per-

formed in the transformed domain. Wavelet compres-

sion falls into this category [12]. Such methods are not

real-time. They require historical data since the trans-

form is computed from an ensemble of data.
Many authors have explored wavelet compression.

Nesic et al. [13] demonstrated its superior performance

in process data from paper making machines. Other

authors have explored various wavelet functions selected

on a case-by-case basis [14–16]. Bakshi and Stepha-

nopoulos [15] and Misra et al. [16] applied time-varying

wavelet packets to achieve on-line feature extraction and

noise removal from non-stationary signals. Misra et al.
[17] described the use of adaptive compression thresh-

olds to control the reconstruction error.

Vedam et al. [18] used a multiscale representation

with coarse and fine resolution linear B-splines which

comprise two piecewise linear segments. The multiscale

formulation gave spline compression localisation fea-

tures similar to wavelet compression.

3.2. Implementation of piecewise linear compression

The aim of this paper is to examine the impact of data

compression on activities such as minimum variance

control loop benchmarking, fault detection, data rec-
onciliation and development of inferential sensors. It

concerns industrial process data and therefore focuses

upon piecewise linear trending. The swinging door

method was selected for detailed study as representative

of industrial practice. Similar results were observed with

the BCBS and PLOT methods.

The swinging door method was implemented as de-

scribed by [11]. Fig. 2 shows the principle. The first
black point ya, which has already been archived, is taken

to be the start of a trend. Upper and lower pivot points

marked · are calculated at ya � D.
As new spot values arrive, lines are drawn from the

pivot points to form a triangular envelope that includes

all the spot values since ya. The sides of the triangle are

the ‘‘doors’’. For instance, in Fig. 2 all points up to yd
can be enveloped in a triangle. However, the next point,

ye cannot be included in a triangle because, as shown by

the dashed line, the upper and lower doors have opened
wider than parallel. This signifies that a new trend

started at yd . Point yd is archived and the procedure

starts again at yd .
The compression factor is not specified directly in

swinging door compression. Instead, the parameter to

be set is the deviation threshold D in engineering units.

Therefore in conducting the compression tests described

in this paper it was necessary to first conduct calibration
trials to find the deviation thresholds corresponding to

CF¼ 10 for each data set.

The trends were reconstructed from the archived spot

values by linear interpolation between archived points at

the original sampling instants. The compression factor

(CF) for swinging door compression is defined as the

ratio between the storage requirement of the original

data set and that of the archived data. If the original
data set had 1000 observations and 1000 time tags a

direct method with CF¼ 10 would yield 100 observa-

tions, 100 time tags and 99 linear segments.
3.3. Process data for compression comparisons

Three contrasting examples were chosen for the

evaluation of the impact of compression, courtesy of

BP. They are uncompressed liquid flow trends from

continuous processes operating at steady state. Each

data set comprised nearly 3 h of 10 s samples repre-

senting deviations of flow in a process stream from the
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mean value. Fig. 3 shows portions of the time trends (the

open circles) while the black bars in Fig. 3 show their

power spectra on linear vertical and horizontal axes [19].

Numerical scales on the y-axis were omitted by request.

Data set 1 shows a persistent oscillation characterized

on average by about 20 samples per cycle. Fig. 3 shows
that the spectrum of this signal has a broad peak at a

frequency of 0.05 times the sampling frequency (i.e. 20

samples per cycle). The challenge for high fidelity com-

pression and reconstruction is to retain the spectral peak

in the frequency domain and the oscillatory features in

the time domain.

Data set 2 has a tendency to stay at a value for a time

and then to move rapidly to a new level. It is from a
control loop which has a limit cycle caused by a sticking

valve. The signal is predictable for long periods and its

spectrum shows very low frequency features because the

period of oscillation is long while a series of harmonics

highlights the non-sinusoidal nature of the waveform.

The low frequency features and harmonics should be

preserved during compression and reconstruction.

Data set 3 has little predictability and has spectral
features at all frequencies. This signal is dominated by

random noise and is from a well tuned loop operating

close to minimum variance.
4. Measures of performance

4.1. Statistical properties

Archived process data may be used for steady-state

assessments such as plant production rates. Other uses
include data reconciliation and mass balancing, for in-

stance for the detection of leaks. Therefore if com-

pressed archived data are to be used for these purposes

the mean value of the reconstructed data should be the

same as the mean of the original. The measure used is the

percentage difference between the mean values (PDM)
scaled by the standard deviation of the original data.

The scaling allows the relative significance of any change

in mean value to be assessed:

PDM ¼ 100
meanðyÞ �meanðŷyÞ

ry

Process variability has an impact on profit [20,21] and

plant audits usually begin with a determination of the

standard deviations or the variances of the time trends.

Therefore it is also necessary to determine the impact of

compression on the observed variance. The measures

used are the ratios between the variance of the recon-

structed data (r2
ŷy ) and the variance of the original data

(r2
y ) (RVC), and between r2

y and the variance of the
reconstruction error r2

e where ei ¼ yi � ŷyi (RVE). The

measures are

RVC ¼ r2
ŷy=r

2
y and ¼ r2

e=r
2
y

The second of these is similar to the NMSD measure
used by Mah et al. [8] and Watson et al. [9] except that

NMSD was expressed as a percentage.

If the two measures sum to 1 then the reconstruction

error is the orthogonal complement of the compressed

signal (i.e. the sequence yi � ŷyi is uncorrelated with the

sequence ŷyi). The significance of this observation is

considered in Section 5.
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4.2. Non-linearity measure

Non-linearity assessment is starting to be used as a

diagnostic tool for troubleshooting of hardware faults
that may be present in the control loops [22,25] and to

make decisions about the type of model needed in in-

ferential sensing [23,24]. Therefore it is necessary to

determine how the use of reconstructed data would in-

fluence non-linearity assessment.

A distinctive characteristic of a non-linear time series

is the presence of phase coupling such that the phase of

one frequency component is determined by the phases of
others. Phase coupling leads to higher order spectral

features which can be detected in the bicoherence of a

signal. The non-linearity test applied here used bico-

herence to assess non-linearity. The squared bicoherence

is

bic2ðf1; f2Þ ¼
jBðf1; f2Þj2

EðjY ðf1ÞY ðf2Þj2ÞEðjY ðf1 þ f2Þj2Þ

where Bðf1; f2Þ is the bispectrum at frequencies ðf1; f2Þ
given by

Bðf1; f2Þ ¼ EðY ðf1ÞY ðf2ÞY �ðf1 þ f2ÞÞ
In the above expressions Y ðf Þ is the Fourier transform

of y at frequency f , Y �ðf Þ is its complex conjugate and E
is the expectation operator. A key feature of the bi-
spectrum is that it has a non-zero value if there is sig-

nificant phase coupling in the signal y between frequency

components at f1 and f2. The bicoherence gives the same

information but is normalised as a value between 0

and 1.

As described in [22], the non-linearity assessment

examines the mean value of the bicoherence over all

frequencies and its maximum value, both quantities
being tested against statistical thresholds that represent

their expected values when no non-linearity is present.

4.3. Harris index measures

The widely used Harris index [26] is a minimum

variance benchmark of control loop performance. Sig-

nificant industrial implementations are being reported
[27–29]. It is known that the use of data compression

influences the Harris index [30] and an issue for practi-

tioners is to know whether compressed archived data

can be used for the purposes of a minimum variance

benchmark calculation.

The Harris indexes for the three data sets were cal-

culated using the method described in Desborough and

Harris [26] with an estimated time delay of five samples.
The index is determined from the residuals between the

measured controller error denoted by y and a b-step
ahead prediction, ~yy.

rðiÞ ¼ yðiÞ � ~yyðiÞ
The model for ~yy used 30 autoregressive terms (i.e.

m ¼ 30) as discussed in [30] and in this case the predic-

tion horizon was b ¼ 5 since the time delay was esti-

mated to be 5 sample intervals.

~yyðiþ bÞ ¼ a0 þ a1yðiÞ þ a2yði� 1Þ þ � � � þ amyði� mþ 1Þ
The minimum variance benchmark is

1� r2
r

mseðy2i Þ

where r2
r is the variance of the residuals r and mseðy2i Þ is

the mean square value of the controller error. An index

of 0 represents minimum variance control while an index
of 1 represents poor control in which y � ~yy and r is

negligible. It means the controller is failing to deal with

predictable components such as steady offsets or a pre-

dictable oscillatory disturbance.

The concern is that reconstructed data are more

predictable and thus have a worse (larger) Harris index

than the original because compression removes noise

and the piecewise linear segments have high local pre-
dictability. Thus there is a danger that unnecessary

maintenance effort may be spent on repair of control

loops wrongly identified as performing poorly.
5. Results and discussion

5.1. Visual observations

The left hand panels in Fig. 3 show close-up portions

of the original data (open circles) and reconstructions

(solid line) with compression factor of 10 for data sets

1–3. Each complete data set had 1024 samples. Features

of note are

• Swinging door compression did not follow all the os-
cillations in data set 1 because with CF¼ 10 the aver-

age duration of each linear segment was longer than

half of the oscillation period.

• High fidelity compression was possible with data set 2

but with data set 3 much of the randomness was lost

from the reconstructed trends.

The right hand panel in Fig. 3 shows reconstruction
in the frequency domain. The power spectra of the

original signal are in black with the spectra of the re-

constructed signals with CF¼ 10 overlaid in white.

When the two are not the same then there is a recon-

struction error.

• The spectral feature in data set 1 at 0.05 samples per

cycle was not fully captured by the reconstructed data
set.

• Data sets 1 and 3 had errors at low frequency and a

non-zero spectral error at f ¼ 0. Therefore the signal
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reconstructed after compression had a different mean

value than the original.

• The low frequency harmonics of data set 2 were re-

produced well but the high frequencies of data set 3
were not captured.

The observations from the spectra reinforce and il-

luminate the observations from the time domain plots.

The frequency domain plots also give insight into why

data set 2 is more compressible than data set 3. Data set

2 has very few spectral features and they are at low

frequency (i.e. of long duration) while data set 3 has
features over the whole frequency range. Data set 2 is

therefore a much simpler signal with fewer different

types of behavior to capture.

5.2. Statistical properties

Fig. 4 shows the behavior of the mean value and

variance measures as a function of compression factor.

Noteworthy observations are

• The mean of the signal reconstructed from the ar-
chive differs from the mean of the original.

• The variance of the reconstructed data is smaller than

the variance of the original signal.

• The variance measures at a given compression factor

do not sum to 1.

It is concluded that data compression gives mislead-

ing information about basic statistical properties of the
data. Compression alters both the mean and variance.

The changes in the means are only a small percentage of
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the standard deviation. It is noted, however, that the

purpose of data reconciliation is often to find small

shifts in the mean value that may be indicative of

problems such as leaks. The shift in mean due to data
compression may therefore be wrongly interpreted as

evidence of a leak. Decisions of the type used in statis-

tical process control [31] may also be wrong if the

warning and alarm limits have been based upon a sta-

tistical distribution determined from compressed ar-

chived data.

The sum of the measures of error variance (RVE) and

compressed signal variance (RVC) was not 1. Thus there
exists a correlation between the part of the signal deleted

during compression and the compressed signal itself.

The implication for data-driven methods such as infer-

ential sensing is that some informative features have

been thrown away or that some unwanted features have

been retained.
5.3. Non-linearity assessment

Table 1 shows results from non-linearity assessment

of the three data sets. It shows that compression induces

non-linearity in the signal because two of the three data
sets (data 1 and data 3) were linear in their uncom-

pressed state (CF¼ 1) but became non-linear after

compression and reconstruction when the compression

factor exceeded 3. Compression is a non-linear opera-

tion and the principle of superposition does not apply,

i.e.

gðx1ðtÞÞ þ gðx2ðtÞÞ 6¼ gðx1ðtÞ þ x2ðtÞÞ

and

gða� x1ðtÞÞ 6¼ a� gðx1ðtÞÞ

where x1ðtÞ and x2ðtÞ are time domain signals, gðxðtÞÞ is a
compressed time trend and a is a scalar factor. In the

case of swinging door compression, if the signal were
twice as large then the compressed signal would not

merely be twice as large at the retained spot values but it

also would have more piecewise linear segments because

more spot values would hit the condition for archiving.

The use of compressed archived data to assess non-

linearity, for instance in an audit of control valves, may

be misleading. Time may be wasted in inspection and

testing of valves that are in fact operating normally.
Table 1

Non-linearity at various compression factors (CF)

CF Data 1 Data 2 Data 3

1 No Yes No

2 No Yes No

3 No Yes No

4 Yes Yes Yes
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5.4. Harris index

Fig. 5 shows the Harris index results, where 0 repre-

sents good performance close to minimum variance and

1 represents poor performance. The index increases with

compression for all the data sets.

It is concluded in the case of data sets 1 and 3 that

compression increases the predictability of the signal

and thus affects the Harris index. Data set 2 was in-
herently predictable (see Section 3.3). The Harris index

for data set 2 therefore indicated poor performance even

in the uncompressed case and did not change as much

on compression as for the other two data sets.
5.5. Summary of performance

The following comments focus the results and dis-

cussion of the previous section onto the industrial re-

quirements.

• Data compression changes the statistical properties
of the data. Fig. 4 suggests that even a small amount

of compression has an effect on the mean and vari-

ance.

• Averaging, data reconciliation and mass balancing

applications should calculate the required quantities

directly from the original data because data archived

with swinging door compression have a different

mean value after reconstruction. This could have se-
rious implications, for instance if the reconstructed

data represented oil flow from an off-shore facility

being monitored for taxation purposes.

• High fidelity reconstruction requires that the statisti-

cal properties of the reconstructed signal are similar

to those of the original. Minimum variance and

non-linearity assessment are two procedures that re-

quire high fidelity data. Swinging door compression
alters these measures significantly.

• Data smoothing, feature extraction and reconstruc-

tion of events require the events and features of

interest to be retained during compression. The

non-orthogonality of piecewise linear trending means

that the condition is not met because the reconstruc-
tion error is correlated with the reconstructed signal.

Thus, for instance, the magnitude of a transient event

may not be reconstructed accurately.

The performance measures for data set 3, which was a

random signal, were influenced by compression even at

small compression factors. For instance, the RVE and

RVC measures changed significantly. No random value

is any more significant than any other, but the com-

pression algorithm makes some points more significant

by choosing to archive them and therefore the recon-

structed signal does not have the same randomness. The
performance measures for data sets 1 and 2, however,

did not change as much for small compression factors

up to about 3. For instance, in Fig. 4 the results for a CF

of 3 were very similar to those for the uncompressed

case when CF was 1, while Table 1 shows that non-

linearity was not induced for a CF of 3 or less. Therefore

a heuristic rule is proposed so that at least some com-

pressed archived data can be exploited:

Data having CF 6 3 may be used with caution for

data-driven process analyses:

It is noted, however, that certain types of process

trends may allow for higher compression factors because

their intended use is to record constant values such as set

points, targets and high and low limits.
6. Automated detection of compression

6.1. Motivation

The previous discussion showed that compression

induces changes to many of the quantities commonly

used in data-driven process analyses. However, engi-

neers are not always in a position to examine data clo-

sely enough to detect compression because plotting and

examining the time trends is time consuming. Rather,

data pre-processing activity usually focuses upon finding
and replacing bad data such as missing values. If ar-

chived data are to be used for an automated analysis it is

first necessary to test for the presence of compression.

If the number of spot values in the compressed ar-

chive and the original sampling rate are known then the

compression factor may be determined by calculation as

the ratio between the expected number of observations

and the number of archived observations. However,
such information is not always available when data sets

are sent off-site to consultants or universities, and it may

be necessary to estimate the compression factor from the

reconstructed data only. An automated method for de-

tection of piecewise linear compression is now presented

and some guidelines given for its application to indus-

trial data.
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6.2. Compression detection procedure

Since the reconstructed data set is piecewise linear, its

second derivative is zero everywhere apart from at the
places where the linear segments join. Therefore the

presence of the characteristic linear segments can be

detected by counting of zero-valued second differences

DðDŷyÞ calculated from

DðDŷyÞi ¼
ðŷyiþ1 � ŷyiÞ=h� ðŷyi � ŷyi�1Þ=h

h
¼ ŷyiþ1 � 2ŷyi þ ŷyi�1

h2

where ŷy is the reconstructed signal and h is the sampling
interval. The index i ranges from 2 to N � 1, where N is

the number of samples. Suppose the original data set

had N values and after compression there are m archived

spot values and m� 1 linear segments. If the recon-

structed data are differenced twice there will be n ¼ N �
m second differences whose values are zero. Therefore

the compression factor can be determined from

CFest ¼
N
m

where m ¼ N � n. For example, with 10 data points
compressed to four archived values and three linear

segments there are 10� 4 ¼ 6 second differences whose

values are zero.

The method can be extended to other piecewise re-

construction methods using polynomials. For instance,

if cubic spline compression were in use [18] the fourth

derivatives would be zero everywhere except at the knot

points where the splines join. In that case the compres-
sion factor would be determined from the number of

fourth differences having zero values.

Fig. 6 shows results for data sets 1, 2 and 3. The

compression factor derived from counting the zero sec-

ond differences was a good estimate of the true com-

pression factor.
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sets 1–3.
6.3. Implementation considerations

Enhancements are needed to the basic algorithm for

industrial implementation for the following reasons:

• The sampling interval of the reconstructed signal may

be larger than the original; e.g. the compression algo-

rithm may have used 10 s samples but the reconstruc-

tion may use 1 min samples.

• The effects of finite precision arithmetic mean that

some computed second differences may not be exactly

zero.

Suggestions for handling these cases are given here

and illustrated with the industrial data of Fig. 1.

Dealing with a larger sampling interval: It is recom-

mended to reconstruct compressed data using the same

sampling interval as the original because reconstruction

with a longer sampling interval leads to an underesti-

mate of the compression factor. For instance, if five 10 s
samples out of 120 were archived then the true com-

pression factor is 24 (m ¼ 5, N ¼ 120). When the data

are reconstructed using 1 min samples the number of

piecewise linear segments does not change but there are

only 20 samples in the reconstructed data so the com-

pression factor appears to be 4. An effect of recon-

struction with a longer sampling interval is that the true

end points of the piecewise linear segments may fall
between samples. Thus xi would be the end of one linear

segment, xiþ1 would be the start of the next with the true

end point somewhere in between. The effect on the

second differences is that there are two non-zero second

differences where the linear segments join instead of the

one that would be expected. The presence of these pairs

of non-zero second differences can be used as a warning

of a sampling interval issue. If such pairs are detected
then the calculation of the compression factor has to

acknowledge that each pair represents just one true ar-

chived point and the expression for the compression

factor is modified to

CFest ¼
N
m=2

Such pairs were detected in the industrial data of Fig.

1 and therefore the modified expression was used in the

calculation. The estimated compression factors are

shown on the right of Fig. 1. For instance, tag 20 has a

compression factor of 41.7. It had 1428 zero second

differences, 72 non-zero second derivatives in 36 pairs
and 36 linear segments.

If the characteristic pairs are noticed then a warning

must be given that the compression factors are under

estimates and to reconstruct at the correct rate. Fig. 1

showed such a warning.

Finite precision arithmetic: A procedure was devel-

oped to deal with the effects of finite precision arithmetic.
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The numerical values of the second differences were

converted to integers. The ceil function in the following

expressions rounds up to the next integer:

P ¼ ceilðlog10 jxjÞ

y ¼ x=10P

z ¼ y � 10R

x is the original entry in the data base having R signifi-

cant figures, P � 1 of which are to the left of the decimal

point (e.g. P ¼ 5 and R ¼ 10 in 1478.144165). y has the

same digits as x but has a zero to the left of the decimal

point (e.g. 0.1478144165) and z is an integer with the
same digits (e.g. 1478144165). The second difference

calculations were applied to the integers z.
Some computed second differences may not be exactly

zero because of arithmetic rounding errors. With the

integer transformation above it would be expected that

the errors would be ±1. It was observed, however, that

errors of up to ±500 were present. That is to say, the

precision of the arithmetic used by the data historian in
the reconstruction was less than 10 significant figures

although the results were reported to 10 significant fig-

ures. The following sequence illustrates the pattern of

second differences observed in z for a portion of a

straight line trend in tag 7 of the industrial data of Fig. 1.

�476; 477; 0; �477; 477; 0; �1; �476; 477;
0; 0; �477; 477; 1; 477; �1; �476; 477; 0

� �

Any second difference in z whose absolute value was

below 500 was counted for calculation of the compres-

sion factor.

If the data historian complies with a published nu-
merical Standard (e.g. IEEE 854-1987) then the thresh-

old for second differences may be determined from the

Standard. Otherwise the threshold must be determined

by observation of the arithmetical precision achieved

and the number of significant figures in use, as was done

here. There is no fundamental significance to the nu-

merical value of ±477 in the example presented above.

The observed rounding errors appear to arise from an
interplay between the original data values, the arith-

metic precision and the details of the data base.

Final recommendation: It has been demonstrated

earlier that data with CF>3 are not suitable for data-

driven analyses. Compression factors of up to 93.8 were

present in the industrial data set of Fig. 1 and only five

tags had compression factors of three or below. It was

concluded that this archived data set would not be
suitable for data-driven analysis. Moreover, the algo-

rithm issued a warning that the compression factors

were underestimated. For improved estimates of com-

pression factor the data set should be reconstructed with

the original sampling interval. The reconstruction was

not attempted because it was already clear that the data

were much too compressed for data-driven analyses.
7. Conclusions

Time and frequency domain plots were presented for

data from continuous processes to show how well the
trends were reconstructed after compression. Piecewise

linear compression using the swinging door algorithm

altered key statistical features of the data set such as the

average value and standard deviation. Other data-driven

analyses were also altered.

A procedure was presented for detection of com-

pression during the pre-processing stage of a data-driven

analysis, together with additional features required for
its application to industrial data. An expression based

upon counting of zero-valued second derivatives gave a

lower bound for the compression factor. It is important

for an accurate assessment of the compression factor to

reconstruct the data at the original sampling interval. If

the reconstruction interval is longer than the original

then characteristic pairs of non-zero second derivatives

are noticed and a warning must then be given to re-
construct at the correct rate.

On the basis of the findings in this paper the authors

strongly recommend caution in the use of compression

in process data archives. It is noted that pressure from

customers, together with the cheaper costs of storage,

are now making an impact and that newer data histo-

rians (e.g. AspenWatch) are starting to use uncom-

pressed data. It is hoped that the work reported in this
paper will provide end-users wishing to eliminate the use

of data compression with some solid, quantified reasons

for doing so.
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