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Abstract

This paper proposes a new closed-loop identification scheme for a single-input single-output (SISO) control loop based upon a
quantizer inserted into the feedback path. The quantizer can be used to generate an equivalent persistently exciting signal to which
the well known two-stage method of closed-loop identification can be applied. The paper examines the performance and behaviour
of the quantizer-based closed-loop identification and gives suggestions for the choice of quantizer interval. Simulation and exper-
imental examples are used to illustrate the proposed new CLID scheme.
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1. Introduction

A process model is useful for tuning of classical PID
controllers and necessary for model-based process con-
trol. The purpose of closed-loop identification (CLID)
is to identify a process model while the process is still
under feedback control [1]. Closed-loop identification
might be necessary because the system is unstable in
open loop or the system contains inherent feedback
mechanisms [2], but in most cases CLID is preferred
for economic reasons since keeping the controller in
the loop during system identification means less disrup-
tion to the normal manufacturing process. The advan-
tage of CLID is that the process will not drift from
the nominal operating point.

The motivation of this paper is to find a novel way to
do CLID by inserting a quantizer in the feedback path.
The quantizer is used to generate a persistently exciting
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signal so that the two-stage method by Van den Hof and
Schrama [3] can be used directly for identification.

A benefit of the proposed CLID scheme is that there
is no requirement for external excitation, an activity that
requires design and generation of a persistently exciting
signal or of harmonic signals at selected frequencies.
Rather, the quantizer interval is adjusted on the basis
of routine measurements of the signals within the closed
loop so that the disturbance caused by quantization
becomes persistently exciting. The proposed method
requires the setting of just one parameter, /, the
quantizer interval. The quantizer can be implemented
in software and when identification is complete the quan-
tizer interval is made negligibly small and the controller
stays in place during the identification. The method
determines the model order and identifies the complete
frequency response.

The paper presents the techniques of CLID with a
quantizer, gives recommendations for the choice of
quantizer interval and shows results from simulation
and experiment that demonstrate the method. It is laid
out as follows. Section 2 reviews the background of
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the work and other relevant approaches. An analysis of
the quantization error is given in Section 3 to provide a
basis for closed-loop identification with a quantizer. Sec-
tion 4 presents the procedures of CLID with a quantizer.
Simulation and experimental results are presented in
Sections 5 and 6 where a comparison is also made with
an alternative published method devised by Welsh and
Goodwin [4]. The paper ends with a conclusion section.

2. Background
2.1. CLID with external excitation

Achieving identification during normal operation
without any external excitation or disruption would be
an ideal target. Theoretical studies by Gustavsson
et al. [5], MacGregor and Fogal [1] and an industrial
case study by Bartee and McFarlane [6] showed, how-
ever, that the identification of process models using rou-
tine operating data (or archived data) has very limited
potential because in CLID some measure has to be
adopted to break the dependency between the process
input signal and the process disturbance [2]. The conclu-
sion from those studies was that external excitation is re-
quired. The external excitation should be persistently
exciting across the frequency range of interest [7], and
must be independent of the process disturbance.

External excitation is a dither signal injected into the
original closed-loop system. It could be introduced from
the set-point, the controller output or the feedback path
as shown in Fig. 1. A single-input single-output (SISO)
closed-loop system adopted from [1] illustrates the con-
cept. In Fig. 1, G,(q) represents the true process, and the
disturbance v(?) = H,(q)a(t) represents the effect of all
unmeasured process disturbances on the measured out-
put (1), q is the forward shift operator. C(gq) is the feed-
back controller. The set-point y,,(f) and the dither signal
d(t) are input signals that may be injected to aid the
identification. In this paper, only y,,(f) =0 is consid-
ered, that is to say d(7) is the only input signal and it

Fig. 1. Closed loop system with external excitation. Excitation may be
inserted in the controller output, the feedback path or added to the set
point. For CLID with a quantizer, it is inserted in the feedback path.

is injected in the feedback path. The identification task
is to use y(7), u(t) and d(¢) to identify the process Gy(q).
CLID approaches have been classified as: Direct Ap-
proach, Indirect Approach and Joint Input-Output Ap-
proach [5,8,9]. In the joint input—output approach as
described in [8] the input u(f) and the output y(¢) are
jointly viewed as the output from a system driven by
the external excitation signal d(z) and noise «(¢) and
the open-loop parameters are estimated from this aug-
mented system. Three branches exist within the joint in-
put—output approach. They are the coprime factor
identification scheme, the two-stage method [3] or the
two-step method [10] and the projection method [8].
Esmaili et al. [11] discussed the asymptotic and finite
data behavior of some closed-loop identification meth-
ods while Gevers et al. [12] derived the asymptotic vari-
ance expressions for models that are identified on the
basis of closed-loop data, showing that direct and indi-
rect methods lead to the same asymptotic variance.

2.2. CLID with harmonic excitation

Fox and Godfrey [13] proposed a nonparametric
closed-loop identification method with multi-harmonic
perturbation excitation. The excitation signal must be
carefully designed to excite the system response at the
frequencies of interest which are often those around
the system critical frequency. A phase-locked loop
framework has also been used as a means for extracting
a frequency response [14,15].

2.3. Use of relay

The classical relay identification method of Astrém
and Hégglund [16] determined gain margin and the
cross-over frequency w.,. Many extensions have been re-
viewed in [17]. Wang et al. [18] introduced an exponen-
tial decay into the standard relay output and the process
output so that with one relay test multiple points of the
frequency response can be obtained by Fourier trans-
form. De Arruda and Barros [19] used a relay-based
procedure for finding the gain, phase and frequency of
points on the frequency response curve. They used a re-
lay in series with an integrator in a special feedback
superstructure around the closed loop system to force
a limit cycle at the frequency where the loop transfer
function has a specified magnitude, r.

2.4. CLID with a quantizer

The publications closest to this paper are those by
Welsh and Goodwin [4] and Goodwin and Welsh [20].
Welsh and Goodwin [4] proposed a novel autotuning
method based on quantization as an extension to relay
tuning. A quantizer at the controller output was used
for identification instead of a relay. The main advantage
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over relay-based identification is that the controller is
kept in the control loop during the identification phase
thus avoiding problems with other methods where the
replacement of the PID controller by the relay disrupts
the operation of the control loop. A second innovation
in [4] was to retain the feedback blocking property of
the quantizer while injecting other desirable (harmonic)
test signals. Goodwin and Welsh [20] extended [4] into
multivariable autotuning.

The main advance proposed in this paper is that there
is no external signal injected into the loop, while in [4]
and [20] harmonic excitation using an external signal is
necessary. Instead, a quantizer is inserted into the feed-
back path in series with the A/D function of the sensor
and the quantization error is used as the excitation.

3. CLID with a quantizer
3.1. Quantizer definition

The quantizer is shown in Fig. 2. This is the quantizer
defined in MATLAB/Simulink (The MathWorks; Natick,
MA). In Fig. 2, each horizontal level is called the quan-
tization level and the gap between two subsequent quan-
tization levels is called quantizer interval. It is a uniform
quantizer because it has the same quantizer interval
throughout the whole measurement range.

3.2. The proposed closed-loop identification scheme

The proposed closed-loop identification scheme is to
insert a quantizer in the feedback path as shown in
Fig. 3. As will be demonstrated below, the quantizer
interval may be adjusted to generate a persistently excit-
ing signal that satisfies the conditions for system
identification.

The quantization error is defined as:

d=y,—y (1)

af

output
o
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Fig. 2. Input—output characteristic of a quantizer.

Yq

Fig. 3. Scheme for closed-loop identification with a quantizer.

where y, is the quantizer output and y is the quantizer
input. The characteristics of the quantization error sig-
nal vary as the quantizer interval, 4, is adjusted.

3.3. Key issues for CLID with a quantizer

The statistical theory of quantization has been exten-
sively studied by Gray [21] and Widrow et al. [22] while
[23] discussed dithered quantizers in which a stochastic
disturbance is added at the quantizer input by the de-
signer. CLID does rely upon y having a stochastic com-
ponent but the quantizer in CLID is not a dithered
quantizer in the sense of [23] because the stochastic com-
ponent v is not separable from y.

Both [21] and [22] point out that the quantizer output
v, always has a deterministic relationship with the input
¥, however the quantization error d can be modelled by
an additive noise that is uniformly distributed, has a
white spectrum and is uncorrelated with the input signal
if the quantizer interval is small enough. If the input to
the quantizer has a Gaussian distribution then [22]
showed the additive noise assumption is very strong if
h<a,.

In a closed loop system subject to a stochastic distur-
bance it is true that ¢, > o, provided there is a sample
delay in the loop, the equality being achieved with a
minimum variance controller. The recommendation
made from successful empirical tests in Section 5.2 will
be to choose % in the range 1.30,,,—2.00,,, where o,
is an estimate of o, derived from closed loop measure-
ments. Since ¢, > o, the recommendation is close to
the Widrow condition but would exceed it in cases when
the controller is close to minimum variance.

For closed-loop identification with a quantizer the
quantizer interval has to be small enough that the quan-
tization error excitation will be white and persistently
exciting and uncorrelated with the process disturbance.
However, the signal-to-noise ratio may not be large
enough to do CLID. If the quantizer interval becomes
larger then the quantization error excitation will be large
enough, but the correlation between the quantization
error excitation and the process disturbance will be lar-
ger. Such correlation will also endanger the CLID and
may lead to a model which is unreliable in some
frequency ranges. Therefore, there is the need for a
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trade-off between the signal-to-noise ratio and the cross-
correlation between the signal and noise in determining
the appropriate range of quantizer intervals.

An example of the relationship between the signal-to-
noise ratio, the correlation and the quantizer interval is
shown in Fig. 4. Fig. 4 was generated from a simulation
scheme in which the noise sequence a was white noise
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Fig. 4. Effect of quantizer interval in simulation. Upper panel: Signal-
to-noise ratio, lower panel: Correlation between disturbance and
quantizer error. The dashed lines are +99% confidence limits beyond
which correlation is significant.

with variance 1.00 and the quantizer interval ranged
from 0.1 to 3.0 units. The simulation used the models
for G, and H, which are described in Section 5.1 with
a unit feedback control law (C =1). It is necessary to
consider the correlation between the quantization error
and the disturbance v because of the conditions stated
in [7]. The signal refers to the quantization error d, the
noise refers to the process disturbance v and the correla-
tion coefficient is:

ra =EWU xd) (2)

where E is the expectation operator and v’ and d' are v
and d after mean centring and scaling to unit standard
deviation. It is noted that v is a coloured noise sequence
because it has been through the filter H,(g) but its distri-
bution is still Gaussian. Fig. 4 shows that the correlation
starts to become significant in this simulation experi-
ment when / exceeds a value of about 2.5 (i.e. 1 > 2.5q,).

3.4. The characteristics of the quantization error

Fig. 5 shows an example of the unquantized signal,
quantized signal and quantization error. The noise se-
quence a was white noise with variance 1.00 and the
quantizer interval was 2.0 units. The top panels show
the input and output of the quantizer and the difference
between these two signals (the quantizer error). The
lower panels show the power spectrum of the quantizer
error on a normalised frequency axis, its autocovariance

quantizer input
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o

quantizer error
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Fig. 5. Simulation with white noise sequence with variance 1.00 and quantizer interval of 2.0 units. Upper panels: (left) unquantized signal, (middle)
quantized signal and (right) quantization error. Lower panels: (left) power spectrum of the quantization error, (middle) autocorrelation of the
quantization error and (right) cross correlation between quantization error and process disturbance.
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Fig. 6. Simulation with white noise sequence with variance 1.00 and quantizer interval of 3.0 units, showing the same sequence of plots as Fig. 5. The
spectral power is the higher than in Fig. 5 but the quantization error and process disturbance have become correlated.

function and also the cross-correlation between the
quantization error and the process disturbance, v from
the filter Hy(g). The three lower panels of the figure
show the quantization error is persistently exciting be-
cause the quantization error has a nearly flat power
spectrum for all frequencies up to one half the sampling
frequency. The lower right panel shows that the correla-
tion between the quantization error and the process dis-
turbance is not significant. Therefore the quantizer
provides an independent persistently exciting signal
which guarantees the closed loop identifiability.

Fig. 6 was generated under the same condition as Fig.
5 except that the quantizer interval is 3.0 units. From the
left bottom and middle bottom panels, the quantization
is still persistently exciting. However, from the right bot-
tom panel, there is now correlation between the quanti-
zation error and the process disturbance v. The benefit
of the larger quantizer interval, however, is that the
spectral power of the quantization error, and hence
the signal-to-noise ratio, is higher.

A close inspection of Fig. 6 shows why a correlation
starts to grow between the quantization error excitation
and the process disturbance as the quantizer interval be-
comes larger. In Fig. 6 there are many instances when
the quantizer output is zero because the magnitude of
the process output is less than one half of the quantizer
interval. The quantizer error is therefore equal to —y
and when the loop is operating at a steady set point it
becomes correlated with the process disturbance v since
y is dominated by v in steady state.

3.5. Use of minimum variance

As was shown in [24,25], y includes an irreducible
minimum variance component which remains consistent
for different controllers. The standard deviation of the
minimum variance component of the process output
(0my) can be used to give an estimate of o, for specifying
a suitable quantizer interval for CLID. Following Harris
[24] and Desborough and Harris [25], the process output
y in Fig. 3 can be expressed as:

(3)

where y is a forward prediction of y and w is the resid-
ual. The minimum variance is the variance of the predic-
tion error sequence, w.

y=y+w

4. Method
4.1. Closed-loop identification with external excitation

A system with the external excitation signal in the
feedback path is considered as shown in Fig. 1. The fol-
lowing can be derived from Fig. 1 when d is in the feed-
back path:

_ —C) . Cl)
=G T Trege @
_ —C(q)G,(q) 1
Y =T egee Y TTrecwan P
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From (4) and (5)
u(t) = —C(q)So(q)d(t) — C(q)Ss(q)Ho(q)a(?) (6)

¥(t) = —C(q)Go(q)So(q)d(t) + So(q)Ho(q)a(?) ()
where S, is the true sensitivity function, equal to 1/(1 +

G,0).

Defining a noise-free input u:

u'(t) = —C(q)So(q)d() (8)
gives:
¥(t) = Go(q)u’ () + So(q)Ho(q)al?) )

The two-stage method [3] was chosen because it was
characterized in [8] as robust and simple to use. It may
be adapted for use with the above expressions using
the following procedure:

e The quantity C(¢)S,(q) is obtained from the excita-
tion d and the process input u. Then, a noise-free pro-
cess input u? is simulated from excitation ¢ and the
C(q)So(g) using (8);

e The estimate of the process G, is calculated from the
noise-free process input u“ and the process output y.

The method changes the closed-loop identification
into two open-loop identifications and gives unbiased
results when excitation d(¢) is persistently exciting and
uncorrelated with the process disturbance v.

The prediction error method was used for identifica-
tion with a Box—Jenkins model [2] and was implemented
using the System Identification Toolbox (Mathworks,
Natick, USA) of MatLaB. Caution should be taken to
guarantee the model validation is passed for each
open-loop identification. Model validation is achieved
by inspection of the residuals between the fitted model
and the measurements used to create the model. To pass
model validation the residual should be white noise with
zero mean and uncorrelated with the input.

4.2. The proposed CLID procedure

A quantizer is inserted in the feedback path to gener-
ate quantization errors equivalent to the dither signal d.
The adapted methods are given by expressions (6), (8)
and (9). The procedures for the proposed CLID scheme
are as follows:

e The process is run as normal with quantizer interval
very small, for example 0.005 mA, equivalent to 12
bit A/D on a 4-20 mA scale.

e The standard deviation of the minimum variance for
the process output (oy,,) is calculated from [25].

e A suitable quantizer interval is chosen (see Section
5.2). The process is run with this quantizer interval.
The quantizer error excitation d=y,—y is used to
do closed-loop identification.

4.3. Model accuracy measure

For assessment of the accuracy of the estimate, the
identification error is measured by the maximum abso-
lute error expressed as a percentage:

-~ 100

(e 0) = 60 1) * iy
where G(jo;) and G(jw;) are the actual and estimated
process frequency response respectively and ®jmax) is
the angular frequency at which the absolute error is larg-
est. The absolute error is the length of a vector joining
the actual and estimated points on a traditional Nyquist
plot, it takes account of phase errors as well as magni-
tude errors.

A second measure is the RMS relative error in the fre-
quency domain, expressed as a percentage.

(10)

G(jo) — Gljooy)|
G(ja)i)

100 x |mean

(11)

Only the Nyquist curve from zero frequency to the
crossover frequency w., where the argument is —180°
were considered since this part is the most important
for system identification and controller design.

4.4. Comparison of the proposed method with [4]

The method of Welsh and Goodwin [4] was imple-
mented for comparison. The frequency response points
were obtained from injected test signals at three frequen-
cies w with the quantizer used to block the feedback
path. Frequencies near the cross-over frequency were
used as recommended by Welsh and Goodwin. The
magnitude and phase angle of the frequency response
of the plant were derived from the harmonic signal
Asin(wt + ¢) that gave the best fit to the output at the
sampling instants = nT, where T is the sampling inter-
val. Following [4] a second-order time delay model was
fitted in the least-squares sense to the measured fre-
quency points using a Nelder-Mead simplex search.

5. Simulation examples
5.1. ARMAX model simulation
In order to demonstrate the methods discussed

above, the second order ARMAX model presented in
[10] was chosen as a simulation example:

V(1) = Go(qu(t — 1) + Ho(q)a(?) (12)
where
Gu(q) 0.3403 4- 0.2417g7"

T 1-0.7859¢ ' +0.3679¢ 2
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. 1-08¢7'+0.12¢2
T 1-0.7859¢ ' +0.3679 >

A proportional feedback control law was implemented
in this simulation. The white noise a(z) was applied with
6,=0.1 or 6,=1 and the number of sampled data
points in the simulation was 10000.

The example presents a challenge for CLID. The
cross-over frequency of G, at T = 1.62 is not far from
the Nyquist frequency where w7 =mx. This feature
means the excitation created by the quantizer has to
contain frequency content all the way up to the Nyquist
frequency. Moreover, the open loop system G, and the
noise model H, both have resonant responses and the
resonant frequencies are similar. CLID with a quantizer
must accurately determine the frequency and magnitude
of the resonance in G, in the presence of the disturbance
from H,.

H,(q)

5.2. Choice of quantizer interval

Simulations were conducted for different propor-
tional-only controllers under a range of quantizer inter-
vals. A white noise sequence with g, =1 was applied
and fixed throughout different tests.

Initially, the quantizer interval was set to a very small
value in order to determine the true variability of the
output y and to get an estimate of the minimum vari-
ance. Then, CLID with a quantizer was attempted for
a range of quantizer intervals summarized in Table 1.
The fourth row shows the range of quantizer intervals
which allowed successful closed-loop identification.

In Table 1, the standard deviation of the process out-
put o, is calculated directly from the measurements
while the value of ¢, was calculated using the algo-
rithm given in [25] using a prediction horizon of 1.
The results highlight the benefit of the choice of oy, as
a reference for choice of quantizer interval because the
estimated o,,, was similar for all three trials, whereas
o, varied greatly with the largest ¢, being almost double
the smallest. If it is based on o, then the quantizer
interval does not change if the controller gain changes.

The range of quantizer intervals leading to successful
CLID shows the procedure was robust in this simulated
example and suggests /4 in the range 1.30,,—2.00,,, is a

Table 1
CLID at various controller gains and quantizer intervals

Case 1 Case 2 Case 3
Controller gain 1.0 0.5 2.0
Omv 1.01 1.01 1.01
oy 1.37 1.18 2.32
Quantizer interval, / 1.00-2.80 1.30-2.40 0.60-2.90
B/ my 0.99-2.76 1.28-2.37 0.59-2.86

good value to choose because it encompasses all the suc-
cessful results in Table 1. Case 2 shows successful CLID
with /2 up to 2.370,,,. The reason for cautiously selecting
2.00,y as the upper limit rather than 2.370,,, is to be
sure the recommendation does not get too far away
from the Widrow criterion s <o, With the h=
1.30y to 2.00,,, recommendation the worst case will
be & =20, which will occur when the loop has a mini-
mum variance controller.

5.3. CLID with a quantizer

In order to explore the proposed method under differ-
ent disturbance and different quantizer intervals, the
three cases in Table 2 were designed and tested in simu-
lation using quantizer intervals / within the
1.30pmy—2.00,,, recommendation established above.
The controller gain was fixed at 1.

Results (Bode frequency response plots and step re-
sponse plots) identified from simulations using CLID
with a quantizer are shown in Figs. 7 and 8. Fig. 7 shows
frequency response plots and Fig. 8 shows the sampled
data step responses. The top panels labeled (a) corre-
spond to Cases 4 and 6 listed in Table 2 which gave iden-
tical results because the A/o,,, ratio was the same. The
middle panels labeled (b) are from Case 5 and the bot-
tom panels (c) show results from the Welsh and Good-
win method and will be discussed in the next
subsection. The identified model accuracy can be seen
qualitatively from the figures and the model accuracy
measures are listed in Table 3. The most prominent fea-
tures of the results are:

e The step response comprising an overshoot and
damped oscillation has been captured correctly. For
instance, the peak and valley of the step response
align correctly in Fig. §&;

e The resonant frequency and magnitude in the fre-
quency response plots has been captured correctly
in Fig. 7. There are errors at low frequency in the fre-
quency response plot for Cases 4 and 6 which can
also be seen in the steady state following the step
response in Fig. 8.

Cases 4 and 5 have the same disturbance, ¢, =0.1.
The only difference is in the quantizer interval applied.

Table 2
CLID with a quantizer simulation conditions

Case 4 Case 5 Case 6
O, 0.10 0.10 1.00
Omy 0.101 0.101 1.01
Quantizer interval, / 0.137 0.2025 1.373
"6y 1.35 2.0 1.35
Quantizer interval, / 7 6 3or4

equivalent to A/D bit
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Fig. 7. Frequency response results for simulation: (a) cases 4 and 6, (b) case 5 and (c) using the method of Welsh and Goodwin [4]. (—) true process,

(---) identified response and (O) injected frequencies.
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Fig. 8. Step response results for simulation: (a) cases 4 and 6, (b) case 5
and (c) using the method of Welsh and Goodwin [4]. (—) true process
and (---) identified response.

The (b) panels of Figs. 7 and 8§ compared with the panels
labeled (a) show improved accuracy of the identified

Table 3
Errors and disruption measures for the identified models

Max RMS

Abs error  wymaxy Relerror /o,
Case 4 7.2% 0.01 6.1% 1.35
Case 5 4.4% 0.17 3.4% 2.0
Case 6 7.2% 0.01 6.1% 1.35
Welsh and Goodwin [4] 2.7% 0.01 2.5% 7.92

model. This is because the signal-to-noise ratio was lar-
ger in Case 5 due to the increased quantizer interval.

Cases 4 and 6 have different values for o, the stan-
dard deviation of the noise sequence. However, in both
cases, the ratio between the quantizer interval and the
standard deviation oy, is the same and they achieved
the same identification model accuracy. This indicates
the proposed scheme is suitable for both small and large
disturbances.

5.4. Comparison of the proposed method with Welsh and
Goodwin

The bottom panels labelled (¢) in Figs. 7 and 8 show
the frequency and step responses determined from the
method of Welsh and Goodwin [4]. The quantizer is
used to block the feedback path while external signals
of various frequencies are injected at the input of the
system G, (g) to achieve open-loop identification. The
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number of sampled data points in the simulation was
10000. The injected sine wave had a peak-to-peak value
of 0.2025 and thus the Welsh and Goodwin test is com-
parable to Case 5 in terms of its signal-to-noise ratio.
The blocking quantizer required an interval larger than
the peak-to-peak value of the injected wave because
of the presence of noise as was noted in [4]. The input
to the quantizer was a sum of the sinusoidal output of
Gy(q) and the Gaussian noise v(7). Out of 10000 sampled
data points in v(f) about 10 are expected to be further
than three standard deviations from the mean. A quan-
tizer with an interval of 0.8 was needed to fully block the
feedback path against such extreme values. The disrup-
tion to the process is thus greater in the Welsh and
Goodwin test because the blocking quantizer interval
is 0.8 (h/opy,y ratio of 7.92) rather than 0.2025 in Case 5.

The continuous-time second order with time delay
model identified from the frequency response points
gave a good fit for the frequency response curve. The
model had a delay of 0.5 s which is one half the sampling
interval of the sampled data system. It also matches well
to the sampled data response although the identified re-
sponse is continuous rather than sampled. Panels (b)
and (c) in Figs. 7 and 8 show that the results achieved
by Case 5 of CLID with a quantizer are comparable
with the fit from Welsh and Goodwin [4]. The benefits
of CLID with a quantizer, however, are that the disrup-
tion to the process using CLID with a quantizer is less
by a factor of about 4 and there is no need for injection
of external signals.

6. Experimental demonstration
6.1. Experimental method

An experimental apparatus (Fig. 9) was used for a
practical validation of the proposed scheme for CLID
with a quantizer. It is a doubled-walled glass tank.
The tank has a height of 50 cm and an inside diameter

o

steam

FT —
N i cold water

@ ~

Fig. 9. Diagram of the experimental apparatus, courtesy of the
University of Alberta.

of 14.5 cm. This system is located in the computer pro-
cess control laboratory at University of Alberta.

6.2. Open loop identification

Open loop identification of the dynamics of the tem-
perature system was carried out in the pilot plant to give
a reference against which the results of CLID with a
quantizer could be compared. A random binary (RBS)
test signal was applied at the steam valve and the output
was measured from the temperature sensor in the outlet
pipe of the tank. The time delay for the temperature
control loop is known to be about 8 s, and the time con-
stant is about 3540 s so a sampling interval of 4 s was
used as a convenient sub-multiple of the delay time giv-
ing an adequate number of samples per time constant.
The RBS frequency band was selected to identify the fre-
quency response in the range 0-n/4 rad -s™' (i.e. up to
the Nyquist frequency of the signal with 4 s samples).
It deviated by —0.6 to 0.6 mA on a 4-20 mA scale
around a steam valve set point of 12.57 mA and was
generated by the System Identification Toolbox in
MaTLAB. The temperature system model identified with
the RBS test was taken as the benchmark because the
RBS test was a direct measurement of the open loop
and used a large amplitude excitation relative to that
of the CLID test.

The open loop identification results are shown in Fig.
10. The noisy trace in the upper panel is a directly-mea-
sured open loop unit amplitude step test while the heavy
dashed line is the step response identified from the RBS
test. The lower panels of Fig. 10 show the gain and
phase of the frequency response identified by the RBS
test (dashed lines). The heavy solid lines in Fig. 10 will
be discussed shortly.

6.3. Closed loop tests

The controlled variable was the temperature of the
water leaving the tank measured by the temperature
transmitter TT.

A well-tuned PI controller with continuous transfer
function C(s) = #£% was used and the manipulated var-
iable was the steam flow. It is noted that the closed loop
time constant is smaller than the open loop time con-
stant and the sampling rate required to maintain good
closed loop control was 1s.

The setpoint for the temperature loop is 10.5 mA
(equivalent to 41.5 °C). The level of the tank was main-
tained at 12 mA on a 4-20 mA scale (in the middle of
the tank) during the experiment. The cold water inflow
and the hot water outflow were always balanced when
steady-state was reached in the level controller.

There is a natural disturbance to the process in the
form of bubbles. Compressed air flows through a
pipe, which was submerged into the bottom of the tank
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Fig. 10. Identification of the temperature loop. (Upper panel) identified and experimental step responses and (lower panels) identified frequency
response function. Results are from open-loop RBS identification (---) and CLID with a quantizer (—).

leading to observable disturbance to both the level and
temperature measurements. The experimental procedure
is as follows:

e The process is run with the bubbles described above
with a very small quantizer interval. The value of
0ny from the minimum variance calculation was
Omy = 0.064.

e A quantizer interval of 4 =0.105mA was chosen,
equal to 4 = 1.640,,,. This is within the recommended
band of 1.30,,y — 2.06,,, from Section 5.2. The quan-
tizer interval in CLID is therefore about 11 times
smaller than the peak-to-peak magnitude of the open
loop RBS test signal. The process was run with this
quantizer interval and the quantizer error excitation
d=y,~y was used for CLID with a quantizer.

6.4. Pre-filtering and sub-sampling

The accuracy of closed-loop identification using
experimental data is dependent on the sampling interval.
Ljung [2] discusses the effect of sampling interval in Sec-
tion 13.7 of his book pointing out that experimental sys-
tem identification finds a set of parameters that
minimizes the mismatch between the frequency response
of the true system and model integrated over the whole
frequency band —n < w T <=, where T is the sampling
interval. The frequency band becomes larger as the sam-
pling interval decreases. Thus, in general, a small sam-

pling interval leads to a model estimate fitted over a
wide frequency range while a larger sampling interval
will be better for estimation of low frequencies.

The approach taken in this work was to apply the
two-stage method [3] for system identification as
follows:

e The 1 s data from the CLID with a quantizer experi-
ment were used to identify the high frequency behav-
iour, i.e. the time delay, the time constant, the corner
frequency, the cross-over frequency and gain margin;

e The 1s data were subsampled by sclecting every
fourth data point and the resulting 4 s data used to
identify the low frequency gain.

6.5. CLID with a quantizer

The results of CLID with a quantizer are the heavy
solid lines shown in Fig. 10. Table 4 compares the
parameters of the models identified by the benchmark
open-loop RBS test and closed-loop identification with
the quantizer. The steady-state gain is the low frequency
value on the gain frequency response plot, 7 is the time
taken to accomplish a fraction 1 —e~! of the step re-
sponse, o is the frequency where the gain has reduced
by 3 dB, ., is the cross-over frequency where the phase
is —180° and the gain margin is the reciprocal of the gain
at the cross-over frequency. Overall the CLID with a
quantizer gives results close to those of the open loop
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Table 4
System parameters from open loop identification and CLID with a
quantizer

Parameter Open loop RBS test

CLID with quantizer
Disturbance +0.6 mA 0.105 mA
Steady state gain 0.550 0.521
Time delay/s 8 7
Time constant, t/s 40 35
wrad-s! 0.027 0.030
cglrad-s™! 0.250 0.247
Gain margin 21.1 15.6

RBS test but with much less disturbance and with no
need to take the loop out of service to perform open
loop tests.

The top panel in Fig. 10 shows that the shape of the
step response from CLID with a quantizer matches well
with the open loop RBS test and to the experimental
open loop step response. The steady state gain identified
using CLID with a quantizer matches the gain identified
by the open loop RBS test to within 5%.

The lower panels show the frequency responses. The
frequency response identified using CLID with a quan-
tizer extends to higher frequency than the RBS test be-
cause the sampling interval was smaller (1s rather
than 45s). The phase response (lower right panel in
Fig. 10) of the frequency response and the cross-over
frequency w., match well. The overall shape of the gain
versus frequency plots (lower left panel) also match well
in the region of the corner frequency at about 0.027—
0.03 rad-s~'. The gain of the response identified using
CLID with a quantizer (the heavy solid line) is overesti-
mated in the frequency range above w = 0.1, however,
and also shows a small increase at very high frequency.
As a result, the estimated gain margin is too small by
about 25%.

The reason for the mismatch in gain margin is likely
to be because there was no anti-aliasing filter in the
closed loop control system. Some higher frequencies
present in the noisy temperature measurement are alias-
ing (folding back) into the identified frequency band and
boosting signal power.

7. Conclusions

In this paper, a new scheme has been described for
closed-loop identification (CLID) with a quantizer in-
serted in the feedback path. The one parameter to be
set is the quantizer interval and a means of choosing
the quantizer interval was proposed in order to generate
a persistently exciting signal suitable for closed-loop
identification. The design requires only that the mini-
mum variance component of the controlled variable be
determined using measurements from routine operation.
The quantizer interval is made negligibly small once

CLID is complete. Simulation examples and experimen-
tal evaluation indicate that the strategy is successful.
The results compared well with those from the method
of Welsh and Goodwin [4] and from open loop identifi-
cation using a random binary signal.

Acknowledgement

Meihong Wang gratefully acknowledges the financial
support of the Centre for Process Systems Engineering,
Imperial College London. The UK authors thank the
CPC group of the Department of Chemical and Materi-
als Engineering at the University of Alberta for use of
pilot plant and facilities.

References

[1] J.F. MacGregor, D.T. Fogal, Closed-loop identification: the role
of the noise model and pre-filters, Journal of Process Control 5
(1995) 163-171.

[2] L. Ljung, System Identification: Theory for the User, Prentice-
Hall, Englewood Cliffs, NJ, 1999.

[3] P.M.J. Van den Hof, R. Schrama, An indirect method for transfer
function estimation from closed loop data, Automatica 29 (1993)
1523-1527.

[4] J.S. Welsh, G.C. Goodwin, A novel mechanism for autotuning
based on quantization, in: Proceedings IFAC 14th World Con-
gress, Beijing China, 1999.

[5S1I. Gustavsson, L. Ljung, T. Soderstrom, Identification of
processes in closed loop—identifiability and accuracy aspects,
Automatica 13 (1977) 59-75.

[6] J.F. Bartee, R.C. McFarlane, Identification of linear systems
operating in closed loop, Symposium on Advances in Process
Control 5, Swansea, 1998, pp. 111-120.

[7]1 K.R. Godfrey, Perturbation Signals for System Identification,
Prentice Hall, Herts, UK, 1993.

[8] U. Forssell, L. Ljung, Closed-loop identification revisited,
Automatica 35 (1999) 215-1241.

[9] S.B. Jorgensen, J.H. Lee, Recent advances and challenges in
process identification, AIChE Symposium Series 326 (98) (2002)
55-72.

[10] B. Huang, S.L. Shah, Closed-loop identification: a two step
approach, Journal of Process Control 7 (1997) 425-438.

[11] A. Esmaili, J.F. MacGregor, P.A. Taylor, Direct and two-step
methods for closed-loop identification: a comparison of asymp-
totic and finite data set performance, Journal of Process Control
10 (2000) 525-537.

[12] M. Gevers, L. Ljung, P. Van den Hof, Asymptotic variance
expressions for closed-loop identification, Automatica 37 (2001)
781-786.

[13] P.D. Fox, K.R. Godfrey, Multiharmonic perturbations for
nonparametric autotuning, IEE Proceedings-Control Theory
and Applications 146 (1999) 1-8.

[14] J. Crowe, M.A. Johnson, Process identifier and its application to
industrial control, IEE Proceedings—Control Theory and Appli-
cations 147 (2000) 196-204.

[15] D.W. Clarke, J.W. Park, Phase-locked loops for plant tuning and
monitoring, IEE Proceedings—Control Theory and Applications
150 (2003) 155-169.

[16] K.J. Astrém, T. Hégglund, Automatic tuning of simple regulators
with specifications on phase and amplitude margins, Automatica
20 (1984) 645-651.



740 M. Wang et al. | Journal of Process Control 15 (2005) 729-740

[17] C.C. Yu, Autotuning of PID Controllers, Springer-Verlag,
London, UK, 1999.

[18] Q.G. Wang, C.C. Hang, Q. Bi, Process frequency response
estimation from relay feedback, Control Engineering Practice 5
(1997) 1293-1302.

[19] GGH.M. De Arruda, P.R. Barros, Relay-based closed loop
transfer function frequency points estimation, Automatica 39
(2003) 309-315.

[20] G.C. Goodwin, J.S. Welsh, Analysis of a novel method of
autotuning a multivariable plant based on quantization, in:
Proceedings of American Control Conference, San Diego, Cali-
fornia, 1999, pp. 347-3351.

[21] R.M. Gray, Quantization noise spectra, IEEE Transactions on
Information Theory 36 (1990) 1220-1244.

[22] B. Widrow, I. Kollar, M.C. Liu, Statistical theory of quantization,
IEEE Transactions on Instrumentation and Measurement 45
(1996) 353-361.

[23] R.M. Gray, T.G. Stockham, Dithered quantizers, IEEE Trans-
actions on Information Theory 39 (1993) 805-812.

[24] T.J. Harris, Assessment of control loop performance, Canadian
Journal of Chemical Engineering 67 (1989) 856-861.

[25] L. Desborough, T.J. Harris, Performance assessment measures
for univariate feedback control, Canadian Journal of Chemical
Engineering 70 (1992) 1186-1197.



	Closed-loop identification with a quantizer
	Introduction
	Background
	CLID with external excitation
	CLID with harmonic excitation
	Use of relay
	CLID with a quantizer

	CLID with a quantizer
	Quantizer definition
	The proposed closed-loop identification scheme
	Key issues for CLID with a quantizer
	The characteristics of the quantization error
	Use of minimum variance

	Method
	Closed-loop identification with external excitation
	The proposed CLID procedure
	Model accuracy measure
	Comparison of the proposed method with [4]

	Simulation examples
	ARMAX model simulation
	Choice of quantizer interval
	CLID with a quantizer
	Comparison of the proposed method with Welsh and Goodwin

	Experimental demonstration
	Experimental method
	Open loop identification
	Closed loop tests
	Pre-filtering and sub-sampling
	CLID with a quantizer

	Conclusions
	Acknowledgement
	References


