
Automatic Generation of Bond Graph Models of Process Plants

Sebastian Beez

Helmut-Schmidt-University

Holstenhofweg 85

22043 Hamburg, Germany

sebastian.beez@hsu-hh.de

Alexander Fay

Helmut-Schmidt-University

Holstenhofweg 85

22043 Hamburg, Germany

alexander.fay@hsu-hh.de

Nina Thornhill

Imperial College London

South Kensington Campus

London SW7 2AZ, UK

n.thornhill@imperial.ac.uk

Abstract

This paper presents an application for the automatic

generation of Bond Graph models.

The basis for this automated creation is a modified

plant model in the XML-format according to the IEC

PAS 62424 (CAEX). The application developed in the

programming language C, extracts and converts the

information which is, then, stored in a model file

meeting the requirements and structure of the

modelling/ simulation-language Dymola. Bond Graphs

are used as the modelling technique since they do not

distinguish between different energy domains and,

therefore, combine several advantages against other

modelling techniques.

The developed application can be used for multiple

purposes such as simulations, visualizations and other

specific tasks that might emerge during the planning

and operation process of plants and other engineering

systems.

1. Introduction

Nowadays system models are used for various kinds

of simulations and research and the profit gained from

such models/ simulations is essential throughout the

different engineering steps of building, testing and

running all kinds of systems. The models therefore

need to act like their real counterparts in terms of

continuous behaviour. Especially if they represent a

chemical process that involves several media these

models should include the physics and laws of

hydrodynamics, reaction chemistry and heat- and

mass-transfer.

 In general, creating models by hand is time-

consuming and, therefore, costs a lot of money. That is

why an automatic creation of such models from

existing plant data is a welcome and desirable

alternative. Object-oriented Computer Aided

Engineering tools offer the potential for such an

automatic creation.

Object-oriented representations of plants and

processes are becoming more available and are a

convenient way to store and exchange information

such as process diagrams between different

engineering domains. One way to do this is the

Computer Aided Engineering Exchange-format,

CAEX. Bond Graphs on the other hand are a modelling

method to describe the power flow within a system.

Bond Graphs allow the representation of hybrid

systems more easily than other modelling techniques

since they do not differentiate between mechanical,

thermal, hydraulic or other energy domain systems.

The work this paper is based on was carried out in

two projects. The main aim in the first project was to

provide an application which is able to automatically

generate Bond Graph models out of CAEX files. After

the first development stage of the application was

finished, the second project’s aim was to broaden the

abilities of the program and overcome limitations such

as elements lacking sensor- and actuator-interfaces and

multiple inflows and outflows. Furthermore, more

options for the user to influence the model had to be

implemented.

After this introduction into the topic, the second

chapter provides all the background knowledge needed

to understand the subsequent chapters. A brief

presentation of the tools and their common properties,

the preparatory work on the necessary data files and

the methods for the conversion are presented to the

reader. A validation chapter gives proof of the abilities

of the application and shows possible ways of using the

automatically generated models. A conclusive part

finalizes this paper by summarizing the achievements

and providing a future outlook.

2. CAEX and Bond Graphs

This section is to introduce the basis of this paper.

The Computer Aided Engineering Exchange-format

(CAEX), Bond Graphs, the modeling software Dymola

and their common properties will be presented in the

following sections.

Nina Thornhill
Typewritten Text
IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 1294-1301 2008

2.1. CAEX

The CAEX format was developed by the Chair of

Process Control Engineering of RTWH Aachen and

ABB Research Centre. CAEX and other languages/

schemas are based on the Extensible Markup Language

(XML), which is a standard way to describe data. XML

was initially developed to share data across the internet

[9]. The CAEX schema functions as a vendor-

independent neutral data exchange format between

plant engineering tools. It was developed to reduce the

amount of costs and time during plant design. CAEX

represents the structural and functional behaviour of a

plant. Thus, CAEX models are meta-models which

describe elements in an abstract way and with an

arbitrary number of attributes. They contain the

information stored in Piping and Instrumentation

Diagrams (P&ID) as well as additional information.

The possibility to extend models is another important

feature. CAEX files are used during plant design thus

they enable different groups to add information and

pass the file on to the next group. CAEX methodology

provides this feature. The models can be extended and

completed anytime without a need to have a new

agreement of the structure.

Similar to XML, CAEX files have a schema, too. It

prescribes the structure of a CAEX file. At the

beginning of a document there is a declaration.

Thereafter the root node begins. Besides a header, a

CAEX root node has four major child notes. The

SystemHierarchy gives an overview of the whole

system and all the elements including all the links

between the elements. However, the SystemHierarchy

provides no further information about the elements.

The RoleClassLibrary lists all possible roles of

elements. It is comparable to the P&ID. Only a symbol

is used to describe a certain task, such as tank, valve,

pump and the like. The third major child node is the

SystemUnitClassLibrary. This library contains special

information about elements. It can present the internal

structure of an element as well as specifications and

operating parameters. This child node allows

integration of different libraries. For example,

companies can use it to supply a portfolio of their

products. The fourth child node is the

InterfaceClassLibrary, which describes different

interfaces and their characteristics.

Figure 1: Structure of a CAEX file (from Drath
et al. (2005))

Figure 1 presented the CAEX schema used during

the projects.

Drath et al. (2005) provides further information on

the structure and the relations between these major

parts of the CAEX file.

2.2. Bond Graphs and Dymola

A Bond Graph is a modelling methodology that was

developed by Professor Henry M. Paynter. The main

idea is to model the power flow through a system

assuming energy conservation. This methodology has

several advantages. It is easier to model hybrid systems

since multi-energy domain models can be created

without a use for own models for every energy domain.

A second advantage is bi-directionality of the elements.

If elements produce any kind of effect that influences

upstream elements there is no need to model a

feedback loop. This effect will propagate backwards

through the upstream elements anyway.

The power flow is modelled using two variables,

effort, e, and flow, f, which yield power if multiplied.

Therefore they are called power-variables. Furthermore

there are momentum, p, and displacement, q, which

yield energy if multiplied. The relations between all

these variables are explained in more detail in Karnopp

et al. (1990) and Cellier (1991).

With the help of these variables a range of elements

was created. The developer was an electrical engineer,

thus, most of the elements that were used for creating

models have synonyms used in this particular area.

Basic components which appear in every system can be

modelled using the same variables and equations.

• Resistors, capacities, inductances

• Transformers and gyrators

• Effort and flow sources

• Parallel and series-junctions

appear in every system, energy domain independent.

Only the units are changing. That is why hybrid

systems are easier to handle with the Bond Graph

methodology. Further information related to Bond

Graphs can be found in Karnopp et al. (1990)and

Cellier (1991).

Dymola was the modelling/simulation software for

the projects. It is based on Modelica which is an

equation-based modelling language. Dymola enables

modelling via Drag&Drop and creates the Modelica

code behind the graphical models itself. There are

plenty of freeware libraries for Dymola for various

kinds of engineering areas, a Bond Graph library

amongst them. The Bond Graphs library includes a

well-equipped set of basic elements and some special

sub-libraries. Besides modelling, simulations can be

run with Dymola. The software includes several

solving algorithms and certain possibilities to influence

the simulation. Furthermore generated models can be

exported and used in other simulation environments

such as MatLab/Simulink.

For further information about Dymola itself or the

use of this software, see Fritzson (2004) or the Dymola

User Manual provided along with the program. The

following figure shows the Dymola window and a

model composed of Bond Graph elements.

Figure 2: Dymola User Interface with Bond
Graph model

3. Generation methodology

3.1. Common properties

There are several similarities between CAEX files

and Bond Graph models in Dymola; especially

according to the structure. These similarities are most

helpful throughout an automatic conversion.

As mentioned in 2.1 CAEX the SystemHierarchy

lists all elements appearing in the system. This is

beneficial since a list of all the elements can be

generated and then worked off. Utilizing this, a

complete list of all the elements can be written into the

model file. The links between these elements, also

given in the SystemHierarchy, make up the second part

of the model file. Hence, they have to be transferred as

well. The SystemUnitClassLibrary contains special

information about each element. This is very

advantageous for specifying each element and

equipping it with its own properties. Since Dymola is

working with different libraries the RoleClassLibrary

in a CAEX file is a convenient place to store the

Dymola-library path of the corresponding element.

The CAEX requirements presented in the following

section presents how these structural similarities can be

used creating the CAEX file from which the model is

built.

3.2. CAEX requirements

The automatic generation of a Bond Graph model

demands information about all the elements. These

demands especially apply to the CAEX file that the

model is derived from. The following section points

out the conditions the CAEX file has to meet in order

for the conversion to function properly.

In more detail, the SystemHierarchy stores every

single element along with its individual references to

RoleClassLibrary and SystemUnitClassLibrary.

Furthermore the physical links to other elements are

listed. Since some elements have signal connections,

these links are stored in this section as well.

Following the reference in the SystemHierarchy, the

RoleClassLibrary provides the matching Bond Graph

element together with the path in the Bond Graph

library. That is due to the focus of this project, which

was not to scan this library for matching elements.

The SystemUnitClassLibrary has to provide the

parameters for the matching Bond Graph elements.

These parameters can either be abstract details like a

capacity according to a pressure if the component is a

basic Bond Graph element or, like in common CAEX

files, geometric details of the elements, such as height

and cross-section area if the model is one of the

components developed during the second project.

These requirements account for another important

aspect. The level of detail in the Dymola model is

determined by the level of detail provided in the CAEX

file. Thus, the more information about an element is

given in the CAEX file, the more detailed is the model

and the simulation result from this component.

3.3. Approach for the automatic generation

The generation methodology utilizes the common

properties in structure and the restriction put on the

content of the CAEX file.

The method of converting a CAEX file into a model

is divided into three parts. The first part comprises

collecting all the information from the CAEX file. The

fact that the SystemHierarchy contains all the elements

of the system makes it a convenient point to start with.

A list of all the elements is created first and then filled

with information about each component starting with

its name. The data about the links each element has to

the others is then taken from the CAEX file and added

to this list. Thereafter the references to its role and to

its specific and detailed information are tracked and

these information are written into the list as well. This

finalizes the first step of gathering all the information

and bundling it in a list. The following figures show a

CAEX file and its structure. They present an example

of two tanks and show how the information about these

tanks is structured.

Figure 3: SystemHierarchy of a CAEX file

The referenced RoleClasses and the

SystemUnitClasses are presented in the Figure 4.

Figure 4: RoleClass- and SystemUnitClass-
Library of a CAEX file

After collecting all the information from the CAEX

file it needs to be adapted to the demands of the

modeling software. This means that the second step in

the developed methodology is reordering the gathered

information according to the structure of a single entry

in the model file and considering the overall structure

of the model file.

Finally, the third part of the generation methodology

is to write the model file. After a header and an

annotation necessary for the simulation in Dymola all

the components of the model are listed. After the

components and the keyword “equation” all the links

need to be written into the file. An end-section finished

the model file that looks like the following figure for

the example of the two tanks.

Figure 5: Model file in Dymola

4. Application of the methodology

The aim of this section is to explain how the

developed application utilizes the approach chosen for

the model generation. The three steps of the

methodology are maintained in general and will be

explained in more detail in the following lines.

The user determines the behaviour of the program.

Hence, the first part entails the user choosing a CAEX

file after having started the application. The second

part takes place without any user interaction. The data

from the chosen file is read and parsed into the

application. Every InternalElement in the

SystemHierarchy is allocated to an object. Not only is

the element name itself stored in this object, but also its

references and details. Finalizing the second part of the

generation methodology, the object is then added to an

elementList.

The Element-object and its attributes, where all the

data for a single component is stored in, is depicted in

the following figure. Thereafter the first step of the

generation methodology is summarized graphically.

Figure 6: Element-object and attributes

1. The User chooses a CAEX file

2. For each element in the file the following steps

are performed:

• Create an “Element”-object

• Save name from SystemHierarchy

• Add a number

• Save path in the Dymola library from the

referenced RoleClass

• Save specifications from the referenced

SystemUnitClass

• Save the connections from the

SystemHierarchy

• Add an x- and an y-position

• Add the “Element”-object to the elementList

Figure 7: Procedure of reading the CAEX file

The position-attributes are necessary for positioning

each component in the Dymola user interface. To

proceed with the generation of the model file further

user input is required. The user needs to provide a

model name and file path to store the model file to. In

addition, the user can manipulate the model by giving

parameters for the simulation. As an example, the user

can set the level of medium inside a tank to a certain

value at the beginning of the simulation. These

adjustments are added to the specification of the

pertaining element.

Step two is the biggest and most important step. It is

subdivided into two steps.

The first sub-step is reordering the attributes of each

element to meat the required structure for a single

component. In the case of Dymola as the modeling

language the single entry for a tank as shown in Figure

3 would then consist of the path in the Dymola library

(as given in the RoleClass), the name (as stated in the

SystemHierarchy) and the details (provided by the

SystemUnitClass). Every element from the first list and

its details is reordered like that and saved in a second

list. With respect to the overall structure of the Dymola

model only the reordered elements are included in this

second list, called entryList.

Before building the model file some of the elements

need further preparation. Since Bond Graphs are the

modelling technique, some elements such as resistors,

R, and capacitors, C, which are basic elements, need to

be attached to junctions in order to work. These

junctions and the bonds to connect elements and

junctions are also added to the entryList. The code for

the connections between the passive elements and the

bonds as well as between the bonds and the junctions is

stored in the third list, called connectList.

The second sub-step is to link all the elements

according to the information gained from the CAEX

file. The information about the links between the

elements is taken from the first list, reordered and

written into the connectList. The following figure

summarizes step two.

1. For each object in the elementList the following

steps are performed:

• The details are reordered and added to the

entryList

• If necessary, bonds and junctions are added

to the entryList

• Connections between the component, bond

and junction are added to the connectList

• Connections between the components are

written into the connectList

Figure 8: Preparing and linking the elements

Finally, the model file itself is created. This starts

with opening a new file and writing the header in. It

consists of the keyword model, the name (provided by

the user via the Graphical User Interface) and some

annotations for Dymola to compile the model. After

the header section, all the elements are listed. After

completing the entryList in the last step, each entry is

written into the model file. Then the keyword equation

followed by the content of the connectList is added to

the model file. Finalizing this step, the keyword end

and the model name are written to the model file.

Thereafter the file is saved, shut and looks like Figure

5: Model file in Dymola. Figure 9 summarizes the final

part of the model generation if Dymola is the

modelling language.

1. Open a model file to write in

2. Write header-section

3. Write all entries into the file

4. Add the keyword “equation”

5. Write all connections into the file

6. Write end-section

Figure 9: Writing the model file

Confirmation dialogs inform the user about the

CAEX file having been read in and the model file

having been created successfully. For detailed

information about the generation methodology see

Beez (2007). The following figure summarizes the

methodology graphically.

Figure 10: Generation methodology

5. Validation example

After an application is developed it needs to be

tested and validated. Within this section the application

has to prove that it can handle bondgraphic elements

and that the developed methodology of creating models

automatically functions. The aim is a model that can be

compiled without errors and simulations can be run

with it. In this section the pumped-storage power

station build in Goldisthal, Germany, stands as the

system the model is build from. Secondly, this section

is to show that using these models can be useful for

various purposes such as prediction, testing and

verifying a controller-setup and many more.

Due to the ability of pumped-storage plants to

produce a considerable amount of power within

minutes and, therefore, giving the opportunity to react

to load changes in the electricity network they are a

welcome option. They are furthermore a cost-efficient

way of storing energy during times of low demand.

That is why models of such system might be welcome

for prediction or to test and verify controllers.

The structure, as described in the CAEX file used

for the generation then, is as follows (according to [7]):

The upper basin (with a storage volume of 12

million m
3
) is connected to the turbine and the lower

basin (with a storage volume of 18.9 million m
3
) via a

pipe. The height difference between upper basin and

turbine is approximately 350 m, the maximum water

height in the upper basin is 21 m, in the lower basin it

is 25m. Between the pipe and the turbine there is a

valve to regulate the flow. The opening- and closing-

time of the valve was assumed to be 30 seconds each.

A pump between the lower basin and the second pipe

leading into the upper basin is used to pump the water

up again. Similar to the valve the pump needs 30

seconds to reach the maximum flow through the pump

and another 30 seconds to shut down. The turbine is

connected to a generator and the generator, itself, is the

connected to the electricity net. A schematic of the

system is given in the figure below.

Figure 11: Schema of the power plant

After running the application on the CAEX file all

the expected components are in the model. Using the

internal error-checking routines in Dymola no errors

occur. The following figure shows the

Dymola/Modelica code that was generated by the

application.

Figure 12: Generated model code

After making use of the possibility to add a start-

value for the height of water in the upper basin during

the conversion and running a simulation in Dymola,

the following figure shows a curve for the power

output of the plant into the net in case the valve is

completely opened.

Figure 13: Simulation result for the generator

As expected, the power output slowly decreases

from 1.08 GW in the beginning to 1.07 GW over a

period of 7.5 hours. This is due to the lower water level

in the upper basin in the end. This is another proof for

the accuracy of the models. The time the upper basin

needs to run dry is approximately the same as stated in

[7].

The fact that no errors occur and the simulation is

running as expected gives proof for the application’s

ability to handle the automatically generated.

Replacing the simple controller used in this simulation

with a controller that represents a real supply and

demand-curve as shown in [8], the model can be used

for various purposes as mentioned above.

6. Conclusion

The resulting program has proven able to create

Bond Graph models out of CAEX files which match

the given restrictions. Checking these models with the

Dymola check-routine has showed that the models

have no errors and that simulations can be run with

them. Another important aspect is that the program

code was written with an eye on future changes and

further developments and, therefore, is maintained

flexible.

As already mentioned possible uses for the

application are various. The models generated could be

used for testing and verifying controller set-ups, they

could be implemented as simple models of systems

used for prediction inside a Model Predictive

Controller (MPC) or for simulations on systems in

general.

On a long-term basis the models could be utilized

for simulations on fault detection. However, this would

require much more precision than and, thus, the

development of precise component-models.

Furthermore heat and multi-media models would have

to be included. Another usage on a long-term basis

might be visualizing the power flow within a system

and, based on that, an optimization of the process itself

or the architecture of a plant or system in general. For

the purpose of visualizing the power flow the use of

Power Bonds as explained in Beez (2008) can be most

helpful.

References

[1] W3C 2007, World Wide Web Consortium, viewed 25

October, 2007, <www.w3.org>.

[2] R. Drath & M. Fedai, “CAEX – a neutral data

exchange format for engineering data”, atp –

Automatisierungstechnische Praxis, Vol. 3, pp. 50–62,

2005.

[3] D. C. Karnopp & D. L. Margolis & R. C. Rosenberg,

System Dynamics: A Unified Approach, 2nd edn, John

Wiley & Sons, 1990.

[4] F. E. Cellier, Continuous System Modeling, Springer-

Verlag, 1991.

[5] P. Fritzson, Principles of Object-Oriented Modeling

and Simulation with Modelica 2.1, John Wiley & Sons,

2004.

[6] S. Beez, Automatic generation of Bond Graph models

out of CAEX: Requirements, possibilities and

limitations, available via: Prof. Alexander Fay

(alexander.fay@hsu-hh.de), Institut fuer

Automatisierungstechnik, Helmut-Schmidt-University,

Hamburg, 2007.

[7] Pumped Storage Power Plant Goldisthal Germany,

Lahmeyer International, viewed 01 March, 2008,

<http://www.lahmeyer.de/e/units/ge/ps_ge1_e_200002

_goldisthal_2004_03.pdf>

[8] Wikipedia – The Free Encyclopedia 2008, Wikipedia

Foundation, Inc., St. Petersburg, Florida, viewed 01

March, 2008, <http://de.wikipedia.org/wiki

/Bild:Pumpspeicherkraftwerk.png>.

[9] S. Beez, Automatic Generation of Bond Graph Models

of Process Plants, available via: Prof. Alexander Fay

(alexander.fay@hsu-hh.de), Institut fuer

Automatisierungstechnik, Helmut-Schmidt-University,

Hamburg, 2008.

