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To be fond of learning is to be near to knowledge.
To practice with vigor is to be near to magnanimity.

To possess the feeling of shame is to be near to courage.

«Doctrine of the Mean»
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Abstract

People are the centre of technologies. Understanding, monitoring and
tracking the behaviour of people will benefit in various areas including
driving assistance, surveillance for safety and caring purposes and appli-
cations for machine-people interaction. Particularly, pedestrians attract
more attention for two reasons: they restrict the behaviours of people to
standing and moving upright; and applications for pedestrian detection
and monitoring have positively impact on the quality of life. Pedestrian
detection and identification, aims at recognising pedestrians from still im-
ages and video frames. Together with pedestrian recognition and tracking,

this topic attempts to train computers to recognise a pedestrian.

The problem is challenging. Though frameworks were designed, various
algorithms were proposed in recent years, further efforts are needed to
improve the accuracy and reliability of the performance. In this thesis,
proposing a modifiable framework for pedestrian identification and im-
proving the performances of current pedestrian detection techniques are
particularly focused. Based on appearance based pedestrian identifica-
tion, a modifiable framework is a novel philosophy of developing frame-
works which can be easily improved. For pedestrian identification, a novel
protocol where layers of algorithms are hierarchically applied to solve the
problem. To compare the detected pedestrians, appearance based fea-
tures are selected, the "bag-of-features" framework is employed to com-
pare the histogram descriptions of pedestrians. To improve the perfor-
mances of HOG pedestrian detector, the presence of head-shoulder struc-
ture is selected as the evidence of the presence of pedestrian. A novel
appearance based framework is developed to detect the head-shoulder
structure from the detection results of HOG detector. Furthermore, in
order to separate multiple pedestrians detected in one bounding box, a
novel algorithm is proposed to detect the approximated symmetry axes of

pedestrians.
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Chapter 1

Computer Vision is Incomplete

without Pedestrians

Xwplc exdvee, 1 oxédn etvon adovortn.!

—— Apiototéhng

People as a target object in computer vision has been attracting more and more
attentions. Detecting, tracking and identifying people is benefited in various re-
search fields and applications including driving assistance, patients and disabled
monitoring, crime and migration surveillance, robotics and machine interactions
etcetera [1-3]. To detect and recognise a person is difficult. As a species, people
have intra-class variances, biologically or visually; as an individual, they may appear
in crowds, may be occluded by other people and objects; as a non-rigid object, the
same person may be visually different due to changed viewing angle, poses, clothes
and accessories. People detection focuses on people as a species; people tracking
and identification focuses on people as an individual [4, 5]. Image files applicable
in people detection and identification can be either still images or frames of video
clips. People tracking is always applied to frames of video clips. Techniques used in
these areas are usually overlapped: identifying the same people detected from ev-
ery frame in video clips results in people tracking; motion captured by people track-
ing algorithms would benefit the detection and identification of people [6, 7]. The
majority people or human used in the state of art literature are particularly refer to
pedestrians, which restricts the target objects to upright people who are standing,
walking or running without carrying complex accessories intervening the appear-

ance of human. This simplification not just reduces the complexity of computation,

'Thought is impossible without an image. —— Aristotle
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it specifies its application area. The majority of datasets for the state of art training
and testing were collected from streets, traffic areas where human and auto-mobiles
interact [1, 8-11]. In this thesis, without particular indication, people or human refer

to pedestrians.

Research in this area started decades ago. Studies of learning human motion can
date back to the period before digital video systems and the internet were globally
commercialised. Frameworks were designed to teach computers to see a walking
person [12-15] or to recognise the gestures of a person [16-18]. Early research was re-
stricted by the computation system. Pedestrians were usually simply modelled using
connected cylinders and sticks representing the topology of body parts. The symme-
try of the human body was employed to separate humans from background. During
this period, the study of human detection and motion concerned television imag-
ing devises (CCTV?) mainly. Early attempts inspired later research though results of
most of the early frameworks were not satisfied. With the development of imaging /
videoing system, further research covered wider applications using sensors includ-
ing conventional camera, wide FOV® camera, near-IR?, thermal-IR, RADAR®, laser
scanner, etcetera [19]. Developments in computational techniques boosted sophis-
ticated frameworks, non-linear categorization algorithms and rich descriptions of
pedestrians. Well developed frameworks and algorithms together with the growing
datasets (in both quantity and variations) contributed to the state of art people de-
tection and identification. Accelerated processing speed realised the on-line and
real-time applications. More and more real services appeared in market especially
in driving-aid systems [1, 3, 8-11, 20, 21].

However, even algorithms with commonly recognised high robustness and ac-
curacy tested through various databases may fail in certain pedestrian detection
and identification occurrences. In this thesis, two problems are mainly addressed:
pedestrian re-identification® after a period of total occlusion and the reduction of
false alarms and inaccurate pedestrian detections introduced by the Histogram of

Oriented Gradients (HOG) pedestrian detector which was originally proposed in [22]

2CCTV: Closed-Circuit Television

SFOV: Field of View

*IR: Infrared

SRADAR: Radio Detection and Ranging

bIdentification is an ambiguous word with different meanings in different registries. In computer
science, human identification referred to the process of identifying a human as individual by their
measurable characteristics or traits (biometric is an example of human identification). In this the-
sis the measurable characteristics particularly refer to visually perceptive features used in pedestrian
identification.
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and trained by CV (2.4.3) 7 (version 2.4.3). The contributions of the thesis lie in fol-

lowing aspects:

* Anovel protocol for pedestrian re-identification containing layers of algorithms
is proposed: the appearances of pedestrians are quantified according to the
complexity of their descriptions and the identification process (parameter set-
tings) can be adjusted according to the complexity of the appearance of the
prototype pedestrian. By learning the appearance as well as the complexity
of the prototype pedestrian who has been detected in the video / camera sys-
tem, a bag-of-appearance-feature is constructed for the prototype pedestrian,
which is further adapted to reduce repeated false alarms in pedestrian detec-

tion in video streams. The novelties of the protocol are:

- It spends different processing efforts on identifying pedestrians with dif-

ferent appearances.

— The strategies of pedestrian identification can easily be adapted by adding

new algorithms into the protocol.

¢ To reduce the false alarms introduced by HOG pedestrian detector, the pres-
ence of head-shoulder is selected as the evidences of correct detections. Viola-
Jones frontal face and upper-body detectors are combined with a novel ap-
pearance based head-shoulder detection. The combined strategy reduces the
false alarms without much affecting the detection rate. This strategy can also
be applied to the reduction of false alarms introduced by other pedestrian de-

tectors which select shape as the discriminative feature of pedestrians.

¢ Inaccurate detection results of HOG pedestrian detector are discussed: limita-
tions of HOG pedestrian detector caused by parameter settings of the training
procedure are analysed; cases that more than one pedestrians recognised as
one are particularly focused; a novel framework for separating pedestrians de-

tected in one bounding box is proposed.

The thesis is structured in three parts: as an introductory, this chapter and the
next one overview the pedestrian detection and identification problem and review
the state of art literatures. Followed by three technical chapters, the main body of the
thesis: the first one, (Chapter 3), based on appearance related pedestrian descrip-

tion, a novel protocol is presented to identify the reappeared pedestrian in video

“Open Source Computer Vision Library
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stream after a period of absolute occlusion, which could retain the tracking of the
prototype pedestrian. After that, in (Chapter 4), algorithms are promoted to reduce
the false alarm rate of the pedestrian detection applied to video streams. The appear-
ances of the head-shoulder structures of pedestrians are used as the evidence for the
presence of pedestrians. Viola-Jones body-parts detection algorithms are discussed
and a novel means of appearance based head-shoulder detection technique is in-
troduced. In the third chapter, (Chapter 5), issues related to the HOG-SVM?® detec-
tor trained by CV (2.4.3) are discussed. Particularly, cases that multiple pedestrians
are recognised as one are considered and a novel means of symmetry axes detec-
tion is applied to separate individuals bounded in one box. Finally, future works in
the development of pedestrian detection strategies and the expansion of vision re-
lated applications in other subjects will be summarised. A thought on the outlook of
object recognition in language of computer vision and machine intelligence will be

presented as the end of the thesis (Chapter 6 and 7).

8SVM: Support Vector Machine.



Chapter 2

The State of the Art

‘Opoc¢ eotly, 0 Tvog ol tepag LEAPS €0TL TO LTS TVOC ) TVGY
bpwv epleEouevoy.t

—— BEuxeldng

Literatures related to pedestrian detection and recognition will be reviewed in
two levels: the Strategic Level concerns the philosophy of solving the detection /
identification related problems and the Algorithmic Level provides computational
approaches to model and compare target objects to be detected / identified. Strate-
gies for detecting and identifying pedestrians are further categorised into supervi-
sion based strategies and logic based strategies. The former trains detectors to sep-
arate pedestrians from non-pedestrians and identify the prototype pedestrian from
other pedestrians; the latter defines logics and rules to detect / identify pedestri-
ans. Rules may include the topology of detected body parts / interest points. In Al-
gorithmic Level, emphasis on different purposes of applications, detection or iden-
tification, algorithms are reviewed in two categories: cognitive shape based algo-
rithm (Section 2.2.1) to distinguish pedestrians from background objects and texture
/ colour based algorithm to identify the individuals. OpenCV (version 2.4.3) ? is em-
ployed for the majority of experiments in this thesis, a short introduction of the tool
kit is included in Appendix A.

For disambiguation purposes, terms used in this thesis are declared. The pro-
totype pedestrians have different meanings in pedestrian detection and identifica-
tion: used in pedestrian detection, the prototype pedestrian is related to the model

of pedestrians and in pedestrian identification, the prototype pedestrian mean the

A boundary is that which is an extremity of something. A figure is that which is contained by any
boundary or boundaries. —— Euclid
2In later paragraph, OpenCV version 2.4.3 will be abbreviated as CV(2.4.3)



24 The State of the Art

individual who has been detected in the system. Identification in this thesis is re-
lated to the problem of the recognition of pedestrians as individuals (using their vi-
sual characteristics) and re-identification focuses on the verification of pedestrians
appearing in different segments of videos or in different camera systems. The previ-
ously detected pedestrians are recognised as the prototypes®. Fig. 2.1 illustrates the
relationship of algorithms in the strategic and algorithmic levels in the basic struc-
ture of commonly applied pedestrian detection and identification frameworks: the
process starts from positive & negative (not always required) examples in the Im-
age Level and outputs the decision of detection and identification; the entire pro-
cedure is demonstrated in but not restricted to three levels of algorithms. The level
of strategies concerns the means of detection / identification and the level of algo-
rithms supports the the level strategies; in each level, results from the previous levels
are processed in selected function block(s) which generate inputs for the next level

of processing.
Pedestrian Detection & Identification: Overview
IMAGES
I ﬁ Pedestrians ‘ ‘ Background ‘ ‘ Prototypes ‘ ‘ Other Pedestrians |== —I
: ALGORITHMS: FEATURES :
[} ‘ Shape Related Features ‘ ‘ Pattern Related Features ‘ ‘ Colour Related Features ‘ 1
| |
| STRATEGIES 1
: ‘ Global Classifier Training ‘ ‘ Body-Part Classifier Training ‘ ‘ Logics & Probabilities ‘ :
: ALGORITHMS: CORRESPONDING :
| Compare Descriptors ‘ Topology of Body-Parts ‘ Graphical Models ‘ |
| |
| |
| |

Fig. 2.1 A General Structure of Pedestrian Detection and Identification: In the image level and the

result level, the left hand side represents the Pedestrian Detection and the right hand side repre-
sents the Pedestrian Identification. While in other levels, the blocks of algorithms can be applied
to either problem, though some blocks may be preferred in one algorithm than another. For exam-
ple, in the algorithms level, shape related features are more suitable in Pedestrian Detection than
in Pedestrian Identification.

According to the categories in Fig. 2.1: in frameworks of Pedestrian Detection,
algorithms used in the levels of "Algorithms: Feature", "Strategies", and "Algorithms:
Corresponding" are: "Shape Related Features", "Global Classifier Training" and "Com-
pare Descriptors" respectively; in frameworks of Pedestrian Identification, "Colour

3The computer is required to re-identify the present of the prototype who has been identified by
human in video / camera systems
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Related Features", "Logics & Probabilities" and "Compare Descriptors" are used ac-

cordingly.

2.1 Strategic Level
The strategic level of algorithms answers the questions:
1. How to obtain the template of the prototype pedestrians?

2. How to correspond the regions of interest (ROI) areas of input images with the

template?

The first question concerns the training of pedestrian detector / identifier and the
logics existed in the cognition of pedestrians; the second question aims at analysing
the input images and corresponding the ROIs of input images with the templates
obtained from the the solution to the first question. Strategies used in pedestrian
detection and identification are usually overlapped as both problems can be treated
as a binary classification problem: pedestrian detection classifies objects into pedes-
trians and non-pedestrians, pedestrian identification classifies detected pedestrians
into prototype and other pedestrians. As shown in Fig. 2.2, algorithms in strate-
gic level are reviewed in discriminative and generative two groups. Discriminative
learning (Section 2.1.1) focuses on training the classifier which response differently to
varied input and generative learning (Section 2.1.2) model pedestrians according to
the observations. Discriminative training strategies are employed in HOG and Viola-
Jones pedestrian detection frameworks. In HOG, linear / non-linear SVM training are
normally used to discriminate pedestrians from non-pedestrians. And the training
strategy introduced by Viola-Jones[23] can be treated as a tree based classification
where stages of weak classifiers are cascaded to achieve accurate classification of the

prototype pedestrian and other pedestrians.

2.1.1 Training a Global Detector / Identifier (Discriminative)

A global detector / identifier recognises pedestrian as an entire object. The binary
classification problem for pedestrian detection is to separate pedestrians from back-
ground objects. For pedestrian identification it is to distinguish the prototype pedes-
trian from other pedestrians. Mathematically, the observations x € RY are mapped
to the decision space y € {0,1} or {—1,+1} through a classifier y = H(x,¢), where ¢

represents the set of parameters used in the classifier H(x,¢). During training, the
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Discriminative Learning Generative Learning
BAYESIAN MODEL Ly
KERNEL BASED, TREE BASED OF PEDESTRIANS B - -_'”_-'“*_'T._q__ _

CLASSIFICATION ** . CLASSIFICATION 5 =
%ﬂ.i 2y =
w;:_ Tl o 4 1
L ¢ ’ L L 4 "
| ST v [; ] J i L r |
T T (T T T W TR | L CR N T TR
N 3 ™o 1) [h3 I i (i} ' I % % .3
NON-LINEAR SVM LINEAR T I S I
Tl > CLASSIFICATION MARKOV MODEL .=,

.PM i
OF PEDESTRlANS /\ \
}gua\/ u f ul Pnll'\

=P | ]:i , kk }j“ |P“

Fig. 2.2 Examples of the Discriminative and Generative models used in the detection and classifi-

cation®. Images one the left-hand side demonstrate several means of binary classification of input
observations; in Bayesian model of pedestrians, body-parts in lower levels are dependent on the
body-parts in upper levels and in Markov model of pedestrians, image on the right shows the de-
pendencies of the position of body-parts and image on the right show the node map used in judging
the present of pedestrians.

parameters used in the classifier are optimised to maximise the margin between the
two classes. Commonly used detectors include Boosting Classification (especially
AdaBoost), Support Vector Machine (SVM) and their variations [24, 25]. SVM re-
turns the hyperplane separating the observations and Boosting algorithms return
the combination of weak classifiers [26]. Ada (Adaptive) in AdaBoost indicates that
the weights applied to weak classifiers are adjusted to their influences on classifica-

tion results [27].

Weak binary classifiers are required when AdaBoost is selected to train a classi-
fier [27]. Developed by Viola and Jones, Haar-like local features calculated on inte-
gral images are one of the apparent choices for weak classifiers as they output binary
values in fast calculation [23, 30]. Demonstrated in Section 4.2.1, Appendix A, the
performances of the AdaBoost classifier trained using Haar-like local descriptors in
pedestrian detection may be less stable especially when the sizes of dominant Haar-
like features are relatively small. Training low level features into binary classifiers us-
ing strategies like SVM is another way to obtain weak classifiers. [31] calculated the

4Images referenced from [24]:linear classification, non-linear SVM and kernel based classification,
[28]:tree based classification; [29]:Bayesian Model, [6]:Markov Model (P represents the position, C
represents the appearance; the superscripts indicate the body-parts).
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gradient of an image as the low level features which capture the shape features of the
object within the region of interest (ROI). The combination of gradients (shapelet)
within sliding windows of ROI are trained as the weak classifiers to build the out-
put pedestrian detector. Local HOG descriptors trained using SVM were cascaded
in [32] as weak classifiers. The weak classifier training could be complicated. Mul-
tiple features can be combined in training the local weak classifiers. For instance,
[10] combines Haar-like features, shapelet, HOG and shape context in selections of
weak classifiers. In [8], integrated features from different channels of images were se-
lected in the training of Boosting classifier. Integral features refer the different types
of features, such as histogram, shape signatures, etc.. The pre-processed images for
calculating those features are recognised as channels of images, for instance, shape
signatures are calculated on the edge map channel, histogram is calculated on the
original image channel, etc. The introduction of channels of images add another
dimension of the weak classifiers. As a result, the influences of selected features cal-
culated in one channel will not affect the influences of features calculated in other

channels in the trained classifier.

The output classifier of AdaBoost captures both local and global features, which
depend on the size and position of the involved weak classifiers. In most literatures,
applying AdaBoost training, weak classifiers are calculated in blocks sized from sev-
eral square of pixels to the size of the entire ROI. AdaBoost trained classifier has
a tree-like structure, of which the branches contain information on the position,
size and the way to calculate the local feature related weak classifiers. Boosting
algorithms and Haar-like features will be further reviewed in Chapter 4 where the
Haar-like feature based body-part detectors are used in false alarm reduction of HOG

pedestrian detector.

Support Vector Machine (SVM) is an extended discriminative model of linear
classification, which outputs linear combinations of characteristics of inputs x € R?,

d is the dimension of the input space:

yi:f(xi)zzw-xl‘+b, i:1,2,...,N (2.1)
i

w € R? is the weight applied to x to classifying the inputs (x;, y;), y; = {+1,-1}. b®is

the offset variable which means the distance between w-x; and the desired labels,

51n certain circumstances, b is treated as error or variances. In classification of pedestrian and other
objects, b isless meaningful as the contrast positions of two classes are more focused than the abso-
lute ones.
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yi = {+1,—-1}. During supervision, the nearest distance (the margin) between ele-
ments in each class m is maximised. If there exists a hyperplane between the two
classes of (x;, y;), the data is separable. In the linear SVM introduced by Vapnik in
[26], the hyperplane is located where:

min y;(w-X;+b)=1 (2.2)
w,
In reality, the condition is usually relaxed to a non-separable data case of which
classes of observations (training datasets) would overlap in decision space as de-
scribed in Section 4.1.2. Furthermore, kernels transforming the inputs to other spaces

are applied to obtaining better classification results [24, 25]:
D(x;) = k(x;,Xj) =X; - X; (2.3)

Global descriptors used in SVM training are usually concatenated from local fea-
tures of one or more types. Single feature used in pedestrian detection ranges from
parameters of Haar wavelet transform [33] to HOG descriptors calculated from ROIs
[22]. Literatures demonstrated that more than one type of features trained in SVM
show promising results: [34] combined HOG with LBP (Local Binary Pattern), [35]
combined HOG with CSS (Colour Self-Similarity features)® and in [36] 12 different
low level features including moment, contrast, colour entropy etc. are involved in
calculating the descriptors of pedestrians. Concatenating different features increase
the dimension of descriptors at the same time increase the complexity of training
an SVM classifier. [36] concluded that SVM may fail in training adequate amount of
samples when the descriptors are too long’. Dimension reduction algorithms may

be required when complex descriptors are desired.

The procedure of pedestrian detection is simple after a global pedestrian detector
has been trained. Regions of interest are obtained by sliding a window through input
images. The trained global detectors perform as a filter which should positively re-
sponse to the descriptors of sliding windows where pedestrians present. To achieve
scaling invariant, descriptors are calculated from different scaled input images. The
performances of trained detector depend on both selected features and the choice
of datasets. When more than one type of features are used in describing pedestrians,

less information is provided on the significances of features involved in the training.

6A low level feature based on the local colour / texture similarity. See Section 2.2.1.
"Results in [36] show that SVM fail in training more than 2000 samples when the descriptor is longer
than 17,000 bit. The length of HOG descriptor using default settings of CV(2.4.3) is 1152 bit per ROL
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Once trained the classifier can hardly be modified.

2.1.2 Defining the Logics of Detection / Identification (Generative)

Logics based pedestrian detection and identification normally apply local classifiers
to verify the local structures of perspective pedestrians. The topology of local classi-
fiers are learned using graphical models. Decisions made by local classifiers perform
as the nodes of graphical models. The logics among local classifiers and the detec-
tion / identification results are modelled using joint probability among the nodes.
Two popular strategies employing logic based detection / identification are:

1. Applying several local classifiers to the input image. Output maps of decisions made
by local detectors. Explore the map of decisions to detect the best matched topology

of local classifiers as described in [37];

2. Using sliding windows to obtain ROIs. Within each window apply the local classifiers
and verify the topology of the detected local structures. Then output the final decision

on whether a pedestrian is detected / the prototype pedestrian is reappeared.

Graphical models are applied to modelling the topology of the local classifiers.
Nodes of local classifiers are normally chosen to catch features of body parts (head,
torso and legs for example) [6, 29]. Indirected graphical models like Markov Net-
works are applied to modelling the topology of local classifiers when the nodes of
models have no obvious causal relationship: the appearance of a head may not indi-
cate the appearance of the torso below while the present of both would indicate the
presence of a pedestrian. Examples of Markov indirect map applied to pedestrian
detection include: [38], which chose segments of edge-map as nodes and [6], which
chose appearance based body-parts as nodes. Directed graph would be used to
model the conditional dependence between the nodes within the model. In [29, 39]:
head-torso-leg parts are modelled from general to specific. The general models of
body parts are searched through the images and the suspicious areas are matched
with branched specific models which are dependent on the detection of its general
version. Bayesian rules are applied to nodes in different levels of models of body
parts.

Logics can also be applied to layers of judgements made by different global pedes-
trian classifiers which are the nodes of graphical models. The conditional depen-
dence / independence between the nodes are modelled using Bayesian / Markov
method [40]. Using logics and rules to describe a pedestrian from using predefined

features is not an easy task as it is still not clear how we human recognise objects
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visually. In the current stage of research, rules for recognising a pedestrian are re-
lated to the context of image, the detection of symmetrical structures, the topology
of body parts and the motion of shape when pedestrian detection is applied to video
streams. Here, the context of image refers to either the context between frames or the
context between pedestrian and other objects in one frame. Using the context of im-
age as an application relative fact aims at filtering the low suspicious regions which
are less probable to contain pedestrians. For instance, in the driving aid system, the
shooting angle of images is parallel to the horizon. As a result, the up-left / up-right
corner areas of a scene would be less interested. While these areas would be consid-
ered important for CCTV monitoring applications when the camera is equipped in
the ceiling.

In topics related to pedestrian detection, the discriminative model is popular in
the separation of pedestrians and non-pedestrians due to the nature of binary clas-
sifiers and the generative model is more widely applied to recognising the actions
of pedestrians and the tracking of pedestrians. In object recognition / image un-
derstanding, generative models, such as the "bag of words” [41] and constellation
models [42], are widely employed. Compared to the constellation models, which re-
quire the topology of parts of interest, the "bag of words" is simple in computation
as it only requires the joint probability of parts of interest. When the topology of
parts of interest is simple, the constellation models introduce redundant computa-
tion procedures. For pedestrian identification in this thesis, when parts of interest
are restricted to upper-body, lower-body and background, the framework inspired

by the "bag of words" is proposed in Chapter 3.

2.2 Algorithmic Level

Algorithmic level relates to the calculation procedure of the strategic level: how to
capture features of different types, how to calculate the descriptors of features and
how to compare features when relevant. In pedestrian detection, shape is normally
modelled to distinguish pedestrians from background objects. Appearance related
features introduced by clothes and skin of pedestrians are usually modelled using
colour, texture based descriptions. In this thesis: HOG descriptions are calculated
on 1% derivative gradients images; Viola-Jones features are calculated on integral im-
ages; the histograms of colour images are selected as the appearance based features;
and the correlation distances are employed to compare the histogram based descrip-

tions. Section 2.2.1 reviews the shape / rough shape related feature descriptions and
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Section 2.2.2 discusses the appearance based features.

Algorithms: Examples

SHAPE RELATED FEATURES APPEARANCE RELATED FEATURES CORRESPONDING
Edge Maps: Interest Points: Distances between Vectors in
Edgelets, Linked Granules, ... SIFT, SURF, Harris Corner, ... R" Space
1¥ Derivative Gradients: Intensity Based Regions: .
Clustering
HOG, CoHOG, Shapelet, ... MSER, ...
Haar-Wavelet Transformation Channel Features: Correlation
V] Haar-like Features, ... Moments in HSV/RGB, ...

Fig. 2.3 Relevant algorithms for feature detection, description and correspondence.

2.2.1 Distinguish Pedestrians from Non-Pedestrians (Detection)

In computer vision, the shape of an object is defined as the area occupied by the ob-
jectin images, which is a reflection of the space occupied by that object in reality [43].
Shape is an essential feature in vision related tasks. Evidences show that in human
vision system the shape information of objects is preliminary processed before other
sophisticated cognitive analysis in brain [43, 44]. The shapes of pedestrians are diffi-
cult to model. People are non-rigid objects and may carry / wear accessories. Instead
of calculating a concrete expression, efforts were paid to achieve the robust descrip-
tions for various occurrences of pedestrians. Rough shape is used in later paragraph
referring to the cognitive meaning of the robust shape descriptions. Generally, there
are two ways of shape / rough shape modelling applied in pedestrian detection to
work with the strategies reviewed in previous sections:

1. Investigating descriptions capturing the cognitive shape feature at the same time tol-
erating the local variations of boundaries / edges. This is designed especially for appli-
cations using classifiers trained by discriminative learning strategy. The shape features

captured by HOG descriptions belong to this category;

2. Enumerating variations of the boundaries of pedestrians. This is commonly served in

the generatively trained classifiers.

Edge-map is usually selected as an obvious evidence of shape. Edge-map of an
input scene is a binary image catching the sharp intensity change which would be
cognitively recognised as the boundaries of objects and sketches of patterns / tex-

tures. In most frameworks, edge maps are generated using sobel [44] or canny [45]
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edge detection algorithms. Detected edge-map is a cognitive feature demonstrat-
ing the shape of objects to human but a pile of scattered pixels to computer [44].
Descriptions of edge-map aims in building context within edge pixels. The con-
text between edge pixels of objects can be discovered globally or locally. Applied
in pedestrian detection, local edge-map descriptions are normally used to compute
the descriptors of edge pixels in a small area. Structures like Edgelet in [46] or Linked
Granules (LG) in [47], segments of line / curve, are usually introduced as vocabular-
ies in edge-map description. In [47], representative edge segments of pedestrians are
learnt by combining connect granules which can be seen as short pieces of straight

lines. Preprocessing is usually required to reduce the noise effect.

Histograms of edge orientation are also popular to describe the edge-map. The
descriptor of an local area is usually the concatenated histograms of each edge pixels
/ segments. The descriptors of local edge segments can be either trained into weak
classifiers which will be selected by Boosting algorithms or performing as nodes in
graphical models indicating the topology of pedestrians. Due to the sensitivity of
the edge-map to noise and background objects, descriptors of the entire edge-map
within ROI are seldom applied to the training of a global pedestrian detector. Nor-
mally, the descriptions of rough shapes are calculated to represent pedestrians in-

stead.

Rough shapes do not have to be the exact boundaries of pedestrians at least they
could be cognitively recognised as pedestrians. The rough shapes of pedestrians are
commonly calculated from 1% derivative gradient image of the input images [22, 31].
Other algorithms to calculate the rough shapes include the Haar-wavelet transform
as introduced in [33] and Colour Self-Similarity features (CSS) selected in [35] (by cal-
culating the local similarity, rough areas of body-parts could be perceived after the
transformation). To describe the rough shape, histogram based descriptors captur-
ing the local orientations are popular in pedestrian detection. HOG is a SIFT like de-
scriptor calculated on gradient image. It is further modified to Co-occurrence HOG
(CoHOG) by [48]. CoHOG extends the HOG descriptors of cells of pixels into an-
ther dimension by introducing the combination of HOG descriptions in 8-connected
neighbourhood cells as the basis of descriptors. Training using CoHOG based de-
scriptor is computational expensive due to the increased dimension of descriptors.
A detailed review on HOG descriptor and a brief comparison will be demonstrated

in Section 4.1.2
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In pedestrian detection in video stream, the motion of shape is employed. Two
common ways of extracting moving shapes include: the computation of optical flow
and the stereo images analysis. The optical flow can be obtained either by follow-
ing the motion constraint equation stating that the intensities of transported pixels
between frames will be the same during the moving interval [49] or by calculating
the corresponding segments from both frames. Subtraction between frames is com-
monly employed to capture the optical flow when the background objects are as-
sumed still. Stereo images capturing the scene in different shooting angles are pop-
ular tools to analyse the movement of pedestrians. [50] provided a detailed review
of motion capturing and developed a combined algorithm to consider both edge
map and colour based image segmentation in motion detection. [2] also reviewed
the algorithms to capture the shape features related to pedestrian verification and
tracking in video streams. It should be clarified, when motion detection is used with
body-parts recognition, the motion of a pedestrian is usually considered as the mo-
tion of human for the motions of body-parts (arms and hands for instance) may have
different moving directions. Besides, [47, 51] introduced an active contour technique

to adjust detected edges based on the initial edge detection through video streams.

2.2.2 Recognise Different Individuals (Identification)

Appearance based descriptions play important role in recognising different detected
individuals. Differences caused by clothes, skin and accessories are popular selected
elements to represent the appearances of pedestrians. In the state of art pedestrian
identification, appearance based features, including colour, pattern and textures, are
adopted from object classification and image understanding as reviewed in [20, 21].
Detecting and corresponding the descriptions of Interest Regions and Interest Points
are commonly employed techniques to recognise pedestrian as individuals. Strate-
gies applied to building the correspondences between detected features are reviewed
in Section 2.1.

In pedestrian identification, the prototype pedestrian is one of the detection re-
sults, selected manually. Other detected pedestrians, either in other frames or in
other camera systems, are defined as target pedestrians which will be compared with
the prototype pedestrian. Comparing to the pedestrian identification in general im-
ages containing pedestrians, the choice of using the results of pedestrian detection
as target images simplifies the identification processing in locating the perspective
pedestrian. To build the correspondence between the images of the prototype and

target pedestrians, interest regions are usually selected from the areas of body-parts,
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especially the upper body and lower body which influence the appearance of the
pedestrian [19]. The position and size of interested regions can be detected using
Boosting algorithms or pre-defined assumptions: symmetrical areas, specially lo-
cated regions within the bounding box. The problem to identify the prototype pedes-
trians who are presented in pedestrian detection results will be discussed in Chapter
3. A detailed review on how to locate interest regions and how to correspond regions
between images of target pedestrian the prototype pedestrian will be provided as
well.

When target pedestrians are presented in images with majority areas of back-
grounds, the detection of interest points is usually performed to locate the suspi-
cious pedestrians within the image. Interest Points are detected in local areas which
are salient to the change of scales and image transformations. Used in pedestrian
identification, the saliency requirements are normally less strict than it is in the ap-
plications of image understanding and object classification. The pedestrians are up-
right for most of the time and the scaling effects on pedestrian datasets are less sig-
nificant especially when shooting cameras are calibrated before the identification.
These points can be either pixels located in corner detected using Harris Corner /
Harris Laplacian algorithms or pixels located in areas where the gradients are chang-
ing significantly, for example, the points detected by SIFT® [52] and SURF ¥ [53]
algorithms. SIFT interest points are detected from the pile of difference of Gaus-
sian smoothed images (DoG). SIFT interest points detection is an approximation of
Laplacian corner detection applied in Gaussian smoothed images. The detected in-
terested points that would appear on edge-maps are neglected to avoid the sensitiv-
ity of the identification performances to noise. SURF apply a similar strategy to SIFT,
rather than calculate a pile of Gaussian smoothed images, SURF apply Haar-like box
filter to integrated image!® to approximate the effect of the difference of Gaussian
transform. The relationship between SIFT and SURF procedure is similar to the rela-
tionship between Haar-wavelet transform and the Viola-Jones Haar-like feature de-
tection [30]. Histogram based local area description, SIFT / SURF descriptors are
popular in pedestrian identification to describe the regions of interest and local ar-
eas surrounding the detected interested pixels.

Using the appearance based features to distinguish pedestrians has limitations
especially when the appearances captured in the state of the art algorithms are in-

troduced mainly by clothes. This means, two individuals wearing the same clothes

8SIFT: Scale-Invariant Feature Transform
9SURF: Speeded Up Robust Features
10The same definition to the integrated image used in Viola Jones Haar-like features [30]
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will be recognised as the same while one person wearing different clothes will be

identified as different persons.

2.2.3 Relevant Image Processing

Image normalisation and equalisation are occasionally required to reduce the il-
luminant effect of input images. Gamma correction, histogram normalisation are
commonly employed algorithms for image normalisation. When the default colour
spaces of input images are RGB !!'which are default settings applied in OpenCV and
Matlab, the colour space transformation would be required to perform the appear-
ance based detection / identification in other colour spaces like HSV, HSL 12where
colours along one dimension (Value in HSV and Lightness in HSL) is cognitively simi-
lar to human. This transformation reduces the dimension of colour image intensities

and at the same time retains the perceptive meanings of input images to human.

2.3 The Databases of Pedestrians

Databases of pedestrians were established by various research bodies. Frequently
cited databases include Caltech [3], ETH [9], INRIA [22], MIT [54], Daimler [55] and
TUD [56]. Due to the interest of pedestrians in this thesis, all five listed databases
are pedestrian databases. The sources of images (pedestrians and backgrounds) in
the databases are obtained according to the research purposes and relevant appli-
cations. MIT and INRIA gathered images of pedestrians from photos and images of
backgrounds from a random selection in the background area of source images. Im-
agesin ETH, TUD and Daimler databases are frames from mobile recordings shot on
streets. The training databases may affect the performances of the detectors. Even
for the same application, driving assistant for example, different databases would
be used to train the detectors: Caltech databases are gathered from both USA and
Japan(3, 56] and TUD databases are gathered from both Darmstadt and Brussels [56].
Among the five, Caltech contains the largest number of images. Daimler is the only
database containing gray-scaled images.

In this thesis, for pedestrian identification, dataset is gathered from the results
of HOG pedestrian detector, and website images where pedestrians are wearing pat-
terned clothes. The dataset contains around 500 images in which ~150 of them are
wearing patterned clothes. For pedestrian detection, focusing on the false alarm re-

duction, the testing dataset is a self-established one where high proportional false

12RGB: Red, Green, Blue; HSV: Hue, Saturation, Value; HSL: Hue, Saturation, Lightness
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alarms exist in the detection results of HOG. The dataset contains a random selec-
tions of 1,000 images of the searching results of "Google pedestrian" and ~3,000
frames of two videos shot in a noisy car park containing sources of false alarms. Pop-

ular databases are not employed in this thesis for two reasons:

* Pedestrian Identification in this thesis focuses on how to quantify the com-
plexity of the appearances of pedestrian and identify pedestrians with differ-
ent appearances. The pedestrians in popular datasets are normally wearing

mono-coloured clothes;

¢ The false alarm rates of HOG pedestrian detector applying to the popular databases

are low.

2.4 Conclusions

Asreviewed in previous sections, pedestrian detection and identification can be treated
as classification problems. Shape is the commonly selected feature to distinguish
pedestrian from background objects. Appearance is mainly employed to compare
the detected individuals. Generative classification algorithms, such as SVM and Boost-
ing classification, have the advantage of simple processing procedure in applica-
tions. But the classifiers trained using such strategy can hardly be changed. Further-
more, complex strategics, which are expensive in computation, may only be com-
pulsory for limited difficult circumstances. In this thesis, attention will be focused
on developing frameworks which are editable, capable of quantifying the complexi-

ties of problems and improving the performances of trained classifiers.



Chapter 3

Histograms in Pedestrian

Re-identification

You cannot build an organ which tells you whether it can be done.

—— John von Neumann

People Re-identification solves problems concerning the recognition pedestri-
ans, especially the reappeared pedestrians, in video streams and camera networks.
In video streams, people may be blocked during movement before reappearing in the
scene. In camera networks, different views of people may be shot by different surveil-
lance cameras. To recognise the same person in scenes shot in different time and
space regardless their poses, shooting angles and background objects is the prob-
lem addressed by people re-identification. One important application of people re-
identification is the tracking of people, especially the tracking of multiple people for
surveillance and monitoring. Due to the probable changes of poses and background
of target images with people, the shapes of people are no longer a discriminate fea-
ture. The appearances of people, especially the colours and patterns of clothes, play
an important role in re-identification problems. Techniques used in content based
image retrieval (CBIR), object classification and recognition are usually transferable
in this area. Additionally, people re-identification may also consider the informa-
tion of video clips including the context between frames and the consistency of light
conditions.

In people re-identification, a detection of the prototype pedestrian is required
and further detection results are compared to this prototype to examine whether
they are the same person. This problem can be dealt in either supervised mode

or non-supervised mode. The former requires manually labelled prototype people
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where the latter requires pre-processing steps to separate the prototype people from
background so that strategies used in supervised mode can be applied. Even in the
supervised mode, people re-identification is a difficult problem. For one thing, there
is limited experiences from human cognition and recognition. Until now, how peo-
ple recognise people as individual or species regardless their appearances is not well
understood. For another, at the current stage, only appearances based descriptors
are used in people re-identification, which means people in the same piece of clothes
(refer to the same colour / pattern) would be recognised the same and one person
would hardly be re-detected if his / her clothes has been changed during his / her
absence.

To simplify the problem, as in other chapters, only pedestrians are considered,
which restrict the agility of human actions and poses. Both supervised (Section 3.2.1,
3.2.2) and non-supervised (Section 3.2.3) pedestrian re-identification will be addressed
in this chapter. Non-supervised re-identification benefits the applications when it is
difficult to select a prototype pedestrian, for example, the tracking of multiple pedes-
trians or to update the tracked pedestrian automatically during a relatively long pe-

riod of video streams. The contributions of this chapter lie in three areas:

¢ Anovel pyramid protocol is proposed to describe and recognise the reappeared
pedestrian. The appearances of pedestrians are quantified to levels of com-
plexities according to the richness of required descriptors. The lowest level
of descriptions are colour related histograms, which is the fundamental level
of description. Followed by the descriptions of regular patterns and then the
other sophisticated signatures. The more levels of descriptions are applied in
descriptions, the more complex the appearances of pedestrians. The aim of
the protocol is to spend different computation efforts on the identification of
prototype pedestrians with different appearances. The structure of the pro-
tocol is modifiable as new levels of descriptions can be added to improve the

performance of the existing system;

¢ In the fundamental level of pedestrian description and re-identification, tak-
ing advantages of the "bag-of-features", a novel histogram based strategy is
developed to fast identify the reappeared pedestrians. Histogram based de-
scriptions guarantee the speedy processing procedure which is important es-
pecially for real-time / online applications. The body parts based codebooks
compromise the sensitivity of histogram descriptions to the changes of the size
and position of target pedestrians. As a part of the pyramid protocol, fewer his-

togram features are used to identify pedestrians with relatively simple appear-
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ances than the ones with a complex looking;

* A novel attempt of fast image analysis is investigated as an assistant step in
building the dictionary of PROTOTYPE and determining the levels of complexi-
ties of the appearances. The algorithm is based on the knowledge of pedestrian
detection and pixel clustering. The result of the analysis provides the colour
and position information of interested cognitive areas within the PROTOTYPEs.
This analysis is currently only valid for PROTOTYPEs with simple appearances:
mono coloured clothes, bi-coloured simple patterned clothes (dots, strips, lat-

tices).

3.1 Review of Pedestrian Re-identification

Pedestrian Re-identification requires two sub-tasks:

1. Building correspondences between images containing pedestrians (one per-

forms as the prototype, the other as a target);

2. Generating invariant signature(s) to compare the correspondent parts. Signa-
tures used in object recognition and classification are usually transferable in

pedestrian re-identification.

Commonly selected signatures related to colour information include histogram and
Maximally Stable Extremal Regions (MSER) [57]; to describe a selected region, SIFT[52],
SURFI[53], HOG and Hessian affine operator are popular algorithms; Shape Context[58],
histogram of accumulated responses of edge detectors are used to provide the shape
information of an area.

There are ways of building correspondences between images. Below lists a cou-
ple of approaches:

* Constructing the "bag-of-features (BoF)" of the prototype. The features can be a group
of interest points detected from images, such as SIFT / SURF interest points, Harris
Corners, which are originally utilised in object classification and recognition [41, 59—
61].

¢ Locating the body parts of the pedestrians and corresponding the same body parts
in images. In [62], triangular graph for modelling the shape of objects and pictorial
structures for modelling the deformable shapes were used to model the body parts of
pedestrians. In [63], the symmetry feature of pedestrian was examined to detect the

corresponding areas between images.
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¢ Using global signatures and treating the pedestrian as a whole. Biometric features,
gaits [64, 65], were selected as signatures for instance. [66] introduced the brightness

transfer functions between cameras to adjust colour histograms between images.

* The discriminative Learning approaches were sometimes applied to train the models
that employ combinations of local descriptors to represent the pedestrian. Boosting

algorithms and SVM are popular training algorithms [67, 68].

In Table 3.1, frameworks used in pedestrian re-identification are summarised ac-
cording to their means of building correspondences between images and the signa-

tures selected to describe pedestrians.’

3.2 Code Book Matching

During the tracking of pedestrians, to identify a reappeared pedestrian after a period
of complete occlusion can be modelled as a prototype based recognition problem.
The pedestrian being tracked is the prototype pedestrian (use PROTOTYPE(s) in later
paragraph) and future detections, especially the ones after a period where the PRO-
TOTYPE is blocked and disappeared from the scene, are the target pedestrians (use
TARGET(s) in later paragraph). To retain the tracking activity and update the infor-
mation of the PROTOTYPE, the detected TARGETs are compared with the PROTOTYPE
to examine if they are the reappeared PROTOTYPE. If the judgement is true, the infor-
mation of the PROTOTYPE will be updated. When there is no clear clue showing which
biometric features play crucial roles in human recognition activity, features used in
re-identification relate to the appearances of pedestrians. It means, a TARGET will
be judged as a reappeared PROTOTYPE if the TARGET is wearing the similar patterned
clothes and having similar skin-hair colours, if any exposure, with the PROTOTYPE.
The difficulties of re-identification problems vary according to the complexities of
the appearances of PROTOTYPEs. For example, if the clothes (top / bottom) of a PRO-
TOTYPE are mono-coloured without patterns and are covering the majority of the
body, the re-identification of the PROTOTYPE is simpler than the re-identification of
PROTOTYPES who are wearing patterned multiple coloured clothes (a multi-coloured
top inside an open jackets for instance). The problem is even harder if the exposed

body parts (limbs, hairs, etc.) of PROTOTYPEs are involved in the the re-identification.

'Some are left blank as less information was provided in the literature. This may be because the
literature focus only one aspect of re-identification, or the algorithms presented in the literature were
assumed versatile with various accompanied algorithms in generating signature or building corre-
spondences.
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Literature

Building Correspondence

Signature(s)

[62]2006, Gheissari.

(6912005, Bird.

[70]2007, Wang.

[63]2010, Farenzena.

[71]2007, Gandhi.

(6712008, Gray.

[72]2008, Hamdoun.

[36]2009, Schwartz.

[73]2010, Bak.

[74]2011, Cheng.

[75]2012, Satta.

[76]2013, Zheng.

Body parts modelling by
triangulated graph

10-horizontal stripes

Densely computed local descriptors
spatio relation matrix

Axes of symmetry and asymmetry

defined body parts
require FG/BG separation

SURF Interest points

Body part detector:
HOG and modified face detector

using edge information

Pictorial structure:
Single/Multi Shot(s)

Multiple component matching

Relative distances between images

Hue histogram
Hessian affine operator

accumulated HSV value

Hue histogram

Weighted colour histogram
MSCR

Recurrent structured patches
Panorama appearance map
Ensemble of local descriptors
Hessian affine operator
Texture, Gradient, Colour

to low-dimensional space
using Partial Least Square
Colour histogram

Pyramid Matching: Body

Body parts, 1/4-body parts

Colour histogram

Appearance of body parts

Colour histograms
Texture Features using Gabor Filter

Table 3.1 Frameworks used in Pedestrian Re-identification
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Using an appearance based re-identification framework, if the selected features rep-
resent simple appearances only, the processing speed of the re-identification is rel-
atively fast but the adaptability of the framework is narrowed thereafter. Complex
frameworks employing multiple features and dedicated judgements are normally
computational expensive. And they are overwhelmed for a simple case especially
when fast reaction is crucial for pedestrian tracking and other real-time applications.

In this section, using a pyramid structured protocol to solve the re-identification
problem, the number of levels of judgements are selected according to the complex-

ities of the appearances of pedestrians:

¢ Level 0: mono-coloured clothes without much skin-hair exposure;

e Level 1: bi-coloured clothes or mono-colour clothes with significant areas of

skin-hair exposure;
* Level 2: clothes with regular patterns containing two colours;

* Level 3: clothes with more than one type of regular patterns or containing two

colours or more;

* Level 4 (above): clothes with irregular / random patterns

Fig. 3.1 shows a basic structure to compare the PROTOTYPE with the TARGETS us-
ing levels of descriptions in a dictionary. In this protocol, the colour related signa-
tures (histograms calculated in the HSV colour space in this chapter) are selected as
the fundamental descriptions to exempt the TARGETs wearing different clothes with
the PROTOTYPE, upper-body or lower-body. Enough levels of descriptions should
be calculated on the PROTOTYPEs for varied purposes while not all levels of those
are required during the identification. The selection of descriptions is related to the
consideration of speed, accuracy and the stability of performances in applications.
Experiments demonstrate when the PROTOTYPE is wearing mono-coloured clothes
or simple patterned clothes, only colour related histogram description is enough to
make decisions with detection rate > 90% and false alarm < 10%. Observations also
demonstrate if pattern information could have been considered in re-identification,

the results would be better.
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44 Histograms in Pedestrian Re-identification

The TARGETSs are desired, but not compulsory, to have the same number of lev-
els of descriptions as the PROTOTYPE. The levels of descriptions of PROTOTYPEs and
TARGETSs are compared simultaneously or hierarchically. When descriptions on dif-
ferent levels focus on different dimensions of the appearances of pedestrian, shapes
and patterns for instance, the descriptions on different levels can be simultaneously
compared. The comparisons of descriptions should be done in a hierarchical way
under following circumstances: one level of descriptions is more distinctive than the
other levels of descriptions or one level of descriptions is dependant on the other lev-
els of descriptions. Using a hierarchical ways of comparing the levels of descriptions,
higher levels of descriptions are usually less compulsory than the lower ones.

The content of this section is as follows. Section 3.2.1 succeeds the "bag of fea-
tures" strategy and builds a dictionary to describe the PROTOTYPE using histogram
based descriptions. Section 3.2.2 examines the colour histogram based fundamental
descriptions of the TARGET and the PROTOTYPE. Considering the character of pedes-
trian detection: the pedestrian is usually located in the centre and would occupy
at least a quarter of the bounding box area. Section 3.2.3 generates the dictionary
of PROTOTYPE automatically. The level of pattern judgement (using hough trans-
form based regular pattern descriptions) will be discussed in the future work (Section
6.2.1). For complicated cases, more features could be introduced and more levels of

judgements should be considered.

3.2.1 rrororypE Description: build a dictionary

To describe a PROTOTYPE using a dictionary, words are selected to represent the cog-
nitive meanings of parts of the PROTOTYPE. Such parts of interest include body parts
and background. The definitions of words are summarised from the descriptions of
relevant areas of image. During the correspondences, the sub-image areas of TARGET
are given the same word with its matched areas of the PROTOTYPE. The judgement of
re-identification is made according to the word map of TARGET. For example, when
the upper-body area is labelled above the lower-body area and both of whom are
surrounded by the background area in the word map, the pedestrian will be judged
as a reappeared PROTOTYPE. Practically, the PROTOTYPE and the TARGETs are uni-
formly separated into rectangular patches to efficiently locate the matched pairs of
sub-image areas. Patches with the same cognitive meanings in the PROTOTYPE are
grouped and coded with relevant words in the dictionary. The patches of TARGETs
are coded by the word representing their best matched patches of PROTOTYPE. As a

reference to the calculation of the word maps of TARGETSs, the word map of the PRO-
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TOTYPE can be manually generated or use an automatic way (Section 3.2.3). When
the pyramid judgement structure is applied to identification, the levels of descrip-
tions are calculated on patches of images, the PROTOTYPE and the TARGETS.

The number of words used in the dictionary affect the performance of the re-
identification framework. To describe a detected pedestrian, at least three words
are required: upper-body, lower-body and background. Sometimes, when the pedes-
trian occupy a relatively small area of the bounding box, a large number of patches
may contain equally areas of upper-body / lower-body / background. Such patches
will be categorised into new intersection words, such as upper-body with lower-body,
upper-body with background, lower-body with background etcetera. If the areas of
skin, hair and accessories are considered crucial in re-identification, words of de-
scriptions can be added to the dictionary. The vocabulary of the dictionary should be
large enough to distinguish all interested areas of pedestrians, especially the areas of
upper-body and lower-body. Lack of words may introduce errors in re-identification.
However, experiments have shown that an over complete vocabulary may also result
in less stable performances. Fig. 3.2 demonstrates the manually generated dictio-
naries containing three, four, six and ten words, which are used in the experiments
of re-identification in later sections.

In the prototype based pedestrian re-identification, building the dictionary man-
ually is not usually a problem as the prototype should be selected before the iden-
tification process. Manually built dictionary is accurate according to the human
cognition. However, when large number of PROTOTYPESs are desired and when large
number of patches are separated from the PROTOTYPE, efficient means of PROTOTYPE
analysis are required. Based on the clustering of pixels and the Probability Density
Functions (PDFs) of body parts, Section 3.2.3 attempts to learn PROTOTYPES with sim-

ple appearances using an automatic way.
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Fig. 3.2 The results of the dictionaries of the PROTOTYPE using three, four, six and ten words, built manually. Some

of the time, not all words are related with patches in images. As shown in (d), no patch is categorised as "23 = lower-

body with background". Above are dictionaries of the PROTOTYPE separated into 8 x 16 patches. New dictionaries

are required when different numbers of patches are divided in prototype.
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Separate Target Images into m x n Pieces
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Fig. 3.3 Making Judgement of a Target Image

3.2.2 The Fundamental Level: Check the Histogram

To calculate the similarity of the TARGETS to the PROTOTYPE (Similarityyoar), the word
maps of TARGETS should be calculated first. In the fundamental level, this is done by
comparing the HSV histogram descriptions of every patch in TARGET to the patches
of every word in the dictionary of PROTOTYPE. The correlation distances are em-
ployed to compare histograms. The similarity of a patch in TARGET to a word in the
dictionary (Similarityyorq) is measured using the averaged correlation distances be-
tween the patch of TARGET and patches coded with the word in the dictionary. The
patches of TARGETs are corresponded with the best matched word which has the
largest validated similarity measurement (Similarityyorg= T;) among the vocabulary.
If there is no word in the dictionary could match the patch (Similarity,,o,q< T¢), the
patch is categorised as background.

Considering patches from background may have similar histogram descriptions
with patches from body parts, to verify the reliance of the code map of TARGET, con-
fident measurements of elements in the code maps are calculated. The confident
measurements indicate how probable the patch in position with meanings of word;
would be a part of the PROTOTYPE or background. The confident measurements
of patches in areas of parts of interest are averaged as the similarity between pairs
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of corresponded parts of interest (Similaritypares) in TARGET and PROTOTYPE. The
Similarityparts are weighted and summed as the Similarityog. If the Similarityroga

is over threshold T}, the TARGET will be judged as a reappeared PROTOTYPE.

When M x N patches are separated in TARGETS. A word map of TARGET (C, size(C) =
M x N)isa M x N matrix. The confident measurements map (F, size = M x N) of word

map C (F(x,y) = P(part| word;, position)) is calculated using Bayesian rules:

P(word,; | part, position) P(part | position)
P(word,;)
B P(word; | part,position) P(position | part) P(part)

P(part| word;, position) =

P(word;) P(position)
(3.1)

Where "part" indicates the areas that have the same cognitive meanings like upper-
body, lower-body or background; "word"s are vocabularies to describe the cognitive
parts, for instance a white top, a black cardigan, which are represented by the de-
scriptions of elements in the code map (C(x, y) = word;); "position" relates to the
coordinates of patches in the code map ((x,y),x=1,...,N,y=1,..., M). Equation 3.1
is a general form of the calculation of confident measurements when the vocabular-
ies and the cognitive parts are not one-to-one mapped. It means a body part can be
related to more than one words and one word may represents areas of different body
parts. P(word; | part) shows the dependence of word; to the cognitive parts. Manu-
ally selected vocabulary means the probabilities of words are independent with the

positions of patches, and Equation 3.1 becomes:

P(word; | part) P(position | part) P(part)
P(word,) P(position)

P(part | word;, position) = (3.2)

P(word,;), P(part), P(position) are all constants as "word;", "part" and "position" are
manually defined terms. When vocabulary and cognitive parts are bijectively mapped,
P(word; | part) = 1. The confident measurement of F(x, y) is proportional to the
probability of the patch at (x, y) represented by a cognitive part (word;), which is
related to the PDF of the "part". When vocabularies for describing intersection ar-
eas are introduced, the confident measurements of patches coded with intersection

areas are as follows:

1
P(intersection | word;, position) = E(P(part1 | word;, position)+ P (part, | word,-,position))
3.3)

The similarity measurements of parts of interest (Similarityp,s) are the averaged
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confident measurements F(x, y) multiply the percentage of correctly corresponded
patches in the areas of parts of interest. The areas of parts of interest are the areas
in which the PDFs of patches are over threshold (0.7 in experiment). For example,
to calculate the similarity of upper-body, given the word map (C) and its confident

measurements map (F) of TARGET, the Similaritypars is:

#C(x, _V) represents upper-body
Area(upper-body)

SimilalrityulDlDer = F(x,y), (x,y) € upper-body

where upper-body = {(x, y)|PDFypper-poay(x, y) > 0.7} (3.4)

If parts of interest are not considered equally important in identify if the TARGET is
similar to the PROTOTYPE. The Similaritypars is the weighted in calculating the simi-
larity of TARGET to the PROTOTYPE. In a general case:

Similarity, i, = WupperSimilarity, ppe. + WiowerSimilarityyy e, + WskinSimilaritygeg,

(3.5)
Weights (wpart) applied to the similarity of corresponded parts (Similaritypats) should
be chosen according to the complexity of appearances of the PROTOTYPE. In the
experiment in Section 3.3, for PROTOTYPE wearing mono-coloured top and bottom,
Wypper,» Wiower = 0.5 are selected. For PROTOTYPE wearing patterned top and mono-
coloured bottom, wypper = 0.6, Wiower = 0.4 are selected. Without the comparison
of patterns of parts of interest, different weights applied to the parts of interest with
different appearances have less effect on the identification performance (the identi-
fication rate is increased by ~1% in experiment). When patterns of parts of interest
are considered, the identification rate will be increased by around 5%. The calcu-
lation of PDFs of parts of interest (body parts and background) will be discussed in
Section 3.2.3.4.

3.2.2.1 AFast Comparison of Fundamental Layer

In the re-identification of pedestrians, background is usually less attractive than body
parts, upper-body, lower-body or skin-hair for example. In detection results of HOG,
the area of background is larger than areas of parts of interest. To fast identify the
reappeared PROTOTYPE, patches of TARGETs can be compared with patches of words
related to parts of interest only. If no words related to parts of interest are selected,
the patch will be coded as background. Discarding the word of background remains
the identification rate of this modification may introduce false alarms. As a compen-

sation, if patches located in the areas of parts of interest are coded with words repre-
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senting the parts of interest, these patches are compared with the patches coded by
background in dictionary to verify its cognitive meaning. This improvement reduces
the half of the computation time comparing to the former strategy on average. It is
significant when large number of patches are separated the PROTOTYPE or TARGETS.

Applying the above structure to the comparison of the histogram descriptions of
PROTOTYPE and TARGET wearing mono-coloured clothes, experiments (Section 3.3)
will show that even the dictionary is built with few words and only a small number
of patches separated from the PROTOTYPE and TARGETS, the identification result is
promising: in the dataset containing ~500 images, more than 90% images are cor-
rectly recognised. Increasing the number of patches separated from the PROTOTYPE
and TARGETS, the performances of re-identification can be improved. If the body-
parts of PROTOTYPE appear in combined patterns, for instance a mono-coloured top
with exposed arms, a top with different coloured vest / cardigan, increasing the num-
ber of words used in the dictionary of PROTOTYPE can improve the identification per-
formance: to identify the PROTOTYPE wearing different coloured top and cardigan,
using two words in the dictionary of upper-body can increase the identification rate
by ~2% than using one word in the dictionary. When the PROTOTYPE is wearing pat-
terned clothes (dots, stripes, lattices, etc.), due to the loss of geometry information
in the histogram descriptions, the patterns of two patches having similar histograms
cannot be compared. Therefore, further layers for pattern judgement should be in-
cluded to verify the appearance of TARGETs who have similar histogram descriptions
to the PROTOTYPE.

3.2.3 Analyse the protoryre with Simple Appearance

The previous section introduced the strategy of pedestrian re-identification: how to
describe the PROTOTYPEs using a dictionary of which the vocabulary is explained by
levels of descriptions of sub-image patches (Section 3.2.1); in the fundamental level
of comparison using histogram based descriptor, how to generate the code map of
TARGETSs and its map of confident measurements (Section 3.2.2). In this section, how
to automatically analyse the PROTOTYPE with simple appearance will be discussed.
This analysis is under the assumptions that upright PROTOTYPEs are detected using
HOG. The detected pedestrians are roughly located in the the centre of the bounding
boxes. Using parts of interest (abbr. part(s)), upper-body / lower-body for example,
the analysis provides information on both the colour(s) of the parts and the approxi-
mate positions and areas of these parts. The colour information is described in HSV

space and the positions and areas of parts are determined by the positions of sub-
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image patches assembling the parts of interest.

3.2.3.1 Colour Information Analysis

The analysis of colour information of PROTOTYPE presented in this section is similar
to the strategy of "the colour names description" introduced in [77], both of whom
require pixels clustering in RGB colour space. In this section, the number of clus-
ters is restricted without knowing the exact colour of the body parts. [77] modelled
the pre-defined colour palettes before clustering. Pixels in the input PROTOTYPE are
clustered to k categories using k-means clustering. In the k-means clustering, the
RGB values of pixels are observations, the similarity of clusters are measured in Eu-
clidean distance. To avoid mis-clustering, a relatively larger number of clusters are
chosen comparing to the number of parts of interest. Due to the lighting conditions
and the probable changes in view point, cognitively similar colours may be clustered
into different groups. To detect the main colours of body parts, centres of clusters
are transformed from RGB space to HSV space as the H-S values are more similar
to human cognition. Clusters are combined if their centres are closely projected in
"H-S" coordination plane. The new cluster centre is chosen as the one of the clus-
ters with the largest amount of elements. After that, the intensity of each pixel is
given the value of its cluster center. The combined clusters are sorted by their size of
elements. PROTOTYPE usually occupy more than 50% area of the image. After combi-
nation, the clusters containing more than 50% of the total pixels of image are recog-
nised as the dominant clusters. The colours of dominant clusters are recognised as
the main colours of the PROTOTYPE. To further decide the colour information of each
interested cognitive part, the areas of parts of interest should be located, which is

addressed in following contents.

3.2.3.2 Locate the Range of Interested Cognitive Parts

To locate the parts of interest: upper-body, lower-body, and background, the PDF
matrices of these parts are initially calculated. If the PROTOTYPE is separated into
M x N patches, the PDF matrix (Ppqr) has M x N elements. Ppqr(x,y) describes
the probability of the patch at (x, y) representing the part of interest. In following
paragraph, Pyyper-bodys Plower-bodys Pskin-hair» Pbackground are used to represent the PDF
matrices of "upper-body", "lower-body", "skin-hair", "background" respectively. A
patch at (x, y) is labelled as a part of interest if the value of PDF of the part at this
patch is the maximum one comparing to the values of PDF of other parts at the

patch. For example, if a patch at (x, y) is assigned to the rough upper-body area,
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Fig. 3.4 The result of the clustering of pixels within the rough area of upper-body and lower-body
of a prototype wearing mono-coloured top and bottom.

then the probability of upper-body at that patch has the maximum value among the

probabilities of all interested cognitive parts:

Labely, y = argp Parss(%, ) Labely, , (parts)

where, parts = {upper-body, lower-body, background} (3.6)

If the values of two PDF matrices of cognitive parts are the same, the patch is labelled
as the intersection area between the two. This strategy locates the rough area of parts
of interest. Fig. 3.4 demonstrates the rough upper-body and lower-body areas of a
simple prototype and the results of clustering of pixels of the PROTOTYPE image (5
clusters are selected for both upper-body and lower-body). Detailed calculations of
PDF Matrices of upper-body, lower-body, skin-hair and background are provided in
Section 3.2.3.4

3.2.3.3 Determine the Sub-image Patches of Interested Cognitive Parts

To locate the parts of interest of the PROTOTYPE, the following assumptions are made:
¢ The PROTOTYPE is located in the centre area of the bounding box;

¢ The probability of a patch belonging to a part of interest is measured by the PDF of the
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part;

¢ Clothes with simple appearances means the patterns and colours of clothes can be
recognised the same for most of the time and the changes of appearances happen at

the edge of two pieces of clothes (top inside a cardigan for example);

e The patterns of a large area are more stable than patterns occupying a small area in
re-identification as they may be occluded in folds and drapes of clothes. Unstable pat-

terns may not be visible when the viewing angle of the pedestrian has been changed.

Based on the above assumptions, a learning strategy from central patches to
surrounding ones is proposed: several centre patches are selected as the prototype
patches of which colours and patterns are recognised as elements of the appearance
of the parts of interest (upper-body or lower-body); then patches surrounding the
prototype patches are compared with the prototype patches to decide whether they
are from the same piece of clothes; surrounding patches that have different patterns
with the prototype ones are further compared with its 4-connected neighbourhood
patches to check the pattern consistency; if this new pattern is spread over several
neighbourhood pieces, these patterns are also recognised as elements of the appear-
ance of the part of interest; otherwise, the patch is recognised as either noise or pat-
terns from other parts of interest according to the relative position of the patches
within the bounding box. Practically, the strategy is adjusted with upper-body and
lower-body. The consistency of patterns over patches of clothes are examined in two
levels, colour and boundary:

* Colour consistency: each patch is given k’-bit histogram description, where k' is the
number of clusters after the combination of cognitive similar clusters (Section 3.2.3.1).
The value of each bit of the description is the percentage of pixels in each cluster in
the total number of pixels of the patch. To compare two neighbourhood patches, the

euclidean distances between the descriptions of two patches are calculated;

* Boundary consistency: edge between two patches are examined, a perspective area
around the boundary of two neighbourhood patches are selected. The first and the
second derivative of the perspective area are calculated. This step is crucial when a
patch contains the main colours of a part of interest but have different descriptions
with its neighbourhood patches belonging to the part of interest. This step also deter-
mines the boundary of two pieces of clothes as well as the boundary of two parts of

interest.

Learning the appearance of upper-body: the prototype patches of upper-body are
selected as patches that have PDF values over 0.95. The PDF matrices of parts of in-

terest are modelled using Gaussian distribution (see Section 3.2.3.4). These patches
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usually occupy approximately 15% area of the perspective upper-body area. Colour
information obtained from prototype patches are the percentage of each major colour
clusters. In experiment, in a prototype patch, clusters containing more than 30% of
the total pixels of the patch are recognised as one of the main colour clusters, clus-
ters containing less than 30% but more than 10% of the total pixels of the patch are
recognised as the complimentary colour clusters, other colour clusters are ignored.
Patches surrounding the prototype patches are examined from the inner ones to the
outer ones according to their distance to their nearest prototype patch. Patches are
first compared to the prototype patches, the ones have similar descriptions with the
prototype patches of upper-body are recognised as patches of upper-body. If the de-
scription of a patch is different from the prototype patch, the colour consistency and
boundary consistency of the patch are then examined with its 4-connected neigh-
bourhood patches. Demonstrated in Fig. 3.5, these patches are compared with two
neighbourhood patches inside. To examine these patches, following rules are ap-

plied:

* Vertical appearance consistency: a patch will be exempt if it lose its colour consistency
to its vertical inner side prototype patches of upper-body. The ones above the proto-
type patches are recognised as head or background. The ones under are recognised as

lower-body.

* Horizontal appearance consistency: if a patch loses the colour consistency to its hori-
zontal inner side neighbour patch of upper-body, the patch will be tolerated as upper-
body for there may exist another piece of clothes on the top (cardigan over a top for
example). Examining patches in the outside circle, if another patch on the row loses
its colour consistency to its horizontal inner side neighbour patch, this patch will be

coded as background.

» Patches keep colour consistency with its inner neighbourhood patches which have

been assigned as background will be recognised as background patches as well.

Learning the appearance of lower-body: the prototype patches are recognised as
the ones below upper-body. To locate the prototype patches, boundaries between
upper-body and lower-body are detected by comparing the patches in the perspec-
tive lower-body area with their neighbourhood patches above. Patches below the
last rows of patches of upper-body are recognised as the prototype patches of lower-
body. Patches below and surrounding the prototype patches are compared with the
prototype patches. Patches that have different descriptions with prototype patches

are further compared with its neighbourhood patches. The appearance of lower-
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Fig. 3.5 Illustration of judgement from inner to outer part of a rough interested parts.

body is affected by the movement of legs. To decide whether a patch in the per-
spective lower-body area belongs to lower-body, the patch is compared to its neigh-
bourhood patches inside and above. Similarly, lower-body may have two parts of
appearances (e.g., shorts, skirts with stocks or bare legs). If a patch loses its colour
consistency to its neighbourhood patches which have been judged as lower-body,
it will be tolerated. On the same column of the patch, other patches lose its colour
consistency to its neighbourhood patches will be exempt as background. Fig. 3.5
demonstrates the rules used in learning the appearances of upper-body and lower-
body.

Using the above strategy, the result 3-word dictionaries of the previous simple
and complex PROTOTYPE are demonstrated in Fig. 3.6. Due to the complexity of
appearances introduced by skin-hair and intersection area, dictionaries with 4 words
or more have not been considered at this stage.

1=Upper Body 2 = Lower Body
kg
E2
gy AEEE
B | HEEE
PO e

A Simple Prototype

(a) Simple Prototype (b) Complex Prototype

Fig. 3.6 3-Word Dictionaries built using the automatic way.
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3.2.3.4 The PDFs of Interested Cognitive Parts

The PDF Matrices of parts of interest reflect the observations of pedestrians detected
using HOG or similar algorithm using sliding windows to obtain ROIs. The matrices
are used to calculate the confident measurements of patches in TARGET. When the
TARGET are separated in patches, the probabilities of pixels in one patch are recog-
nised as the same. Then the PDFs of parts of interest are calculated in M x N ma-
trices. M x N is the number of patches separated in TARGET. In experiment, M
is usually the twice of N as the length of the bounding boxes is usually twice the
width of the bounding boxes. 2D Gaussian distribution is chosen to model the PDFs
of upper-body (Pypper-body), lower-body (Piower-body), skin-hair (Pggin-pair) and back-
ground (Ppackgrouna)- The parameters of 2D normal distribution:

X—X —
Pparts(xy J/) = eXp{ - o2 ‘- yazyc} 3.7)
x y

(x¢, ye) and oy, 0, are parameters to be determined in the following steps:

* Selecting the centre (x., y.) of the interested cognitive part. For upper-body, lower-
body and background, only one centre is used while for skin-hair, multi centres are
used as shown in Fig. 3.8. The coordinates of the centres within M x N matrix are the

means of normal distribution in each dimension,;

* Selecting the range of confidence. Patches within the range of confidence have larger
confident values than patches outside. This is determined by the variations (o, and
o) of normal distribution in each dimension. In experiments, assumptions are made
that all patches within the areas of a part of interest should have confident measure-
ments over 0.7. It means, all patches within the areas of interest should be located with
in the 0.80 area of the normal distribution as shown in Fig. 3.7. This assumption also
guarantees the probability of patches of upper-body / lower-body will not attenuated

too fast.

Practically, the centres of upper-body and lower-body are selected according to

Length of upper-body
Length of lower-body’

the ratio = the centre of background is located in the centre of the
detection results; and the centres of skin-hair are located in the centres of the areas
bounded by dashed lines in Fig. 3.8(c).

The ranges of confidence of each interested parts are selected according to obser-
vations. And the variations of relevant PDFs in either dimensions are determined ac-
cordingly. Fig. 3.8 demonstrates the predefined area of confidence of each part and
the relevant 30 confident range the PDE The os are selected to guarantee the confi-

dent measurements of patches within the range of confidence are over 0.7. Calculate
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Fig. 3.7 2D Normal Distribution is used to model the PDFs of parts of interest. The coordinates
of the centres of the parts of interest are selected as the means of the Normal Distributions in each
dimension. The range of the area of interest is bounded within the 0.80 range of the Normal Dis-
tribution in each dimension. As a result, the confident measurements of patches within the area

are over 0.7.

on M x N matrix, the PDFs of upper-body, lower-body, background and skin-hair are:

(x—N/2)?> (y-(1-ratio)- M/2)?
Puppertoay () = 0\~~~ e ) OO
(x—N/2)?> (y-ratio- M/2)?
Plover (1) = X (M3 (ratio-2M/3)? } 5.9)
(x—N/2?  (y—M]J2)?
Phackground(x, ) = 1~ exp{ - @Mi3? (ratio-ZM/S)z} (3.10)
(x=0.5N)%>  (y—0.15M)?
eXpyz’gi?:b-_’zl\s’]‘v}_l { T 07M3)E T (0.7MI3)2 } Head
- 2 —0.5M)?
exXp x=0,.,N/2-1 {— e — } Left Arm
Pskin-nair(X, y) = y=0.25M,...,0.7M 3.11)

(x—0.825N)?  (y—0.5M)? } .
€XP x=0.5N,...,N-1 {— 57— — > Right Arm
y=0.25M,..,0.7M (1.4N73) @M/3)

_ (x=05N)?> _ (y-0.85M)?

exp  x=o0,.,N-1 { 2 2} Legs
J=0TM it M—1 (0.7M/3) (0.7M/3)

where, x=12,...,N-land y=1,2,..., M -1

Above PDFs basically match the observations of these parts in detected pedestrian
using popular pedestrian detectors including HOG. Only the PDFs of upper-body,
lower-body and background are used in experiments in this thesis, the PDF of skin-

hair is provided for generic cases.
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Fig. 3.8 Using 2D Gaussian distribution to model the PDF of upper-body, lower-body, skin-hair
and background. Black dots are the centres of Gaussian distributions and arrows demonstrate the
3o confidence range of the Gaussian distribution. The areas in blue are the ranges of confidence of
interested parts.

3.2.3.5 Appearance based Pedestrian Identification: Summary

As a summary, the following steps show the routine of building and utilising this

framework to identify the reappeared prototype pedestrian:

Preprocessing the (PROTOTYPE):

* Calculate the Probability Density Matrices of parts of interest Ppqr5(X, y): upper-body,
lower-body, background, skin-hair using Equations 3.8, 3.9, 3.10, 3.11;

¢ Build the Dictionary:

1. Choose words and their representing codes: 0 for background, 1 for upper-body

and 2 for lower-body for example;

2. Separate the PROTOTYPE into M x N equal patches and give each patch a code of
word manually or using the algorithm in Section 3.2.3 (As illustrated in Fig. 3.2
and Fig. 3.6);

3. Record the histogram descriptions of every patch in HSV colour space using 15
bins in the hue channel and 10 bins in the saturation channel. (The number of

bins used in descriptors can be changed, see Section 3.3.1 for details.)
Compare TARGETs with the PROTOTYPE:

¢ Calculate the word map of TARGET C(x, y):
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1. Separate the TARGETs into M’ x N’ equal patches and calculate the histogram

description of each patch in HSV colour space;

2. Calculate the correlation distances between the histogram descriptions of
patches in TARGET and patches of words in the dictionary. The similarity of a
patch to a word (Similarityyrq) is measured by the averaged distances between

the patch and patches labelled with the word in dictionary;

3. Select the largest similarity measurement, if the measurement is over the
pre-defined threshold (7, = 0.2 in experiment), the patch is labelled using the
word that achieves this similarity measurement. Otherwise, label the patch as

background.
* Making a judgement:

1. Calculate the map of confident measurements of TARGET (F(x, y)) using the
PDFs of parts of interest: Similarity(x,y) = PDFyar(x, ), a general case is shown

in Equation 3.2;
2. Calculate the similarities of parts of interest (Similarityparts) using Equation 3.4;
3. Calculate the total similarity (Similarityty) by combining the Similarityparts
using Equation 3.5. If Similarityt, is over the pre-defined threshold (T = 0.6

in experiment), the TARGET is judged as the reappeared PROTOTYPE or passed to

the next layers of judgemental algorithms when necessary.

3.3 Experiment

In this section, re-identification experiments are carried on the layer of histogram
descriptions. The following will be demonstrated: parameters used in the funda-
mental histogram layer including the means of comparing two histogram, the num-
ber of words used in constructing the dictionary and the number of patches used in

the PROTOTYPE and TARGETS.

3.3.1 Parameters: The Number of Words and Patches

In our experiment, two prototype pedestrians are chosen as one simple and one
complex model. The simple pedestrian wears mono-coloured clothes, top and bot-
tom (as shown in Fig. 3.2(a),(c)) and the complex model wears a white based black
dotted top partially covered by a white cardigan and a pair of black trousers. The

pedestrian also has a significant amount of hair / skin exposure (as shown in Fig.
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3.2(b),(d)). For both PROTOTYPEs. Versions of dictionaries are built using all four
kinds of vocabularies (3 / 6 / 4 / 10-word, refer to Fig. 3.2). The number of patches
separated in the PROTOTYPE is from 3 x 6 to 16 x 32 pieces. As demonstrated in Fig.
3.9, for the identification of the simple prototype example, 3-word dictionary results
in the best performances, followed by the 4-word one and the 6 / 10-word dictionar-
ies have less stable performances than the other two especially when the number of
patches are limited (< 4) or overwhelmed (>12). This is also observed from the ex-
periment results of using the complex prototype as shown in Fig. 3.10. Increasing
the number of words used in the dictionary only improve the accuracy by 2 - 3% in
either case.

Effectively increasing the number of patches used in separating the PROTOTYPE
and TARGETS results in more stable and accurate performances, while overwhelmed
separation also introduces problems. Observed from Fig. 3.9, the peak performance
reaches at when the number of patches separated in TARGETs are between 7x14to13 x
26 pieces no matter how many patches are used to separating the PROTOTYPE. Too
less or too more may result in unstable performances and high error rates in re-
identification. For the complex prototype example, as demonstrated in Fig. 3.10,
the performance of re-identification is improved with increased number of patches
separated in both PROTOTYPE and TARGETs. After these images are all separated into
more than 7 x 14 patches, on average, 80% of TARGET images can be correctly iden-
tified. Errors are mainly introduced by the TARGETs who are wearing clothes with a
similar hue but different pattern comparing to the PROTOTYPE (see Table 3.2). The
peak performances comes at when the number of patches used in PROTOTYPE and
TARGETS are 14 x 28 or 15 x 30 pieces.

Insufficient pieces separated from the PROTOTYPE or TARGETS means the word
may not be accurately represented and labelled to patches while finely divided patches
may introduce noise pieces situated within drapes / shades of clothes. According
to current stage of experiments, to identify a pedestrian wearing mono-coloured
clothes, a separation of 8 x 16 pieces of patches in the PROTOTYPE and TARGETs and la-
belling them using a 3-word dictionary achieves promising result: in the testing sets
containing 500 images, more than 95% are correctly identified. To identify a PROTO-
TYPE with complex appearances, more pieces of patches should be divided in both
PROTOTYPE and TARGETS to achieve accurate and stable performances. When 9 x 18
patches are separated from both PROTOTYPE and TARGETS, ~85% images can be cor-
rectly judged. More patches separated in PROTOTYPE and TARGETs only improve the
identification rate by ~5%. Over separation, when the images of detected pedestri-

ans are divided into 16 x 32 pieces or more, the performances of re-identification will
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be unstable. This is because the sizes of each separated pieces are too small to be
cognitively described and categorised.? Furthermore, when the images are finely di-
vided, the re-identification require more processing time, the processing time spent
on comparing the PROTOTYPE and TARGETS separated into 16 x 32 patches will be 16
times more than the case when 8 x 16 patches are separated in those images and 256
times more than the case when only 4 x 8 are divided.

To compare the patches in TARGETs and in the dictionary, the correlation dis-
tance performs the best among popular selected histogram comparison methods,
such as y? distance, intersection distance. The Bhattacharyya distance has similar
performance with the correlation distance. The threshold (T, = 0.2) used in labelling
the patches in TARGET is selected small to guarantee the detection rate. Using 15
bins in Hue and 10 bins in Saturation, T, > 0.3 will result in ~40% reduction in the
detection rate and T, < 0.15 will increase the false alarm rate by ~20%. More bins
used in histogram will not affect the identification result, while less bins will reduce
the identification rate of pedestrians (wearing either mono-coloured clothes or pat-
terned clothes). Using 8 bins in Hue and 5 bins in Saturation reduce the identifi-
cation rate by around 15%. Threshold (7}), which is to determine if the TARGET the
same as the PROTOTYPE, is selected 0.6 when 0.7 is chosen as the minimum confident

measurements of parts of interest as described in Section 3.2.3.4.

3.4 Summary

Pedestrian Re-identification applied to surveillance means to retain the identity of
pedestrians being tracked / monitored. The applications of pedestrian re-identification
associate pedestrians in video frames and multi-viewed camera system. Instead of
identifying a unique person, re-identification in this chapter focused on the recog-
nition of different occurrences of one pedestrian. The differences of appearances
of people are referred to the differences of their clothes rather than their sizes and
shapes of figures or other traits which may be important for human to recognise a
person. It means, within a short interval the same person is assumed to appear in
clothes with similar appearances: tops and bottoms.

In this chapter, dictionary representing the prototype is constructed manually or
automatically. The automatic ways rely on the PDFs of body parts. Manually con-
structed dictionary may be more accurate comparing to the automatic one. There is

no restriction to the size of the vocabularies. Experiment results show that the size

2For pedestrians detected by HOG, the size of bounding box is usually around 100 x 200pixel?.
16 x 32 patches means that each patch contains ~30 pixels only.
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of vocabulary may not be a high influenced parameter compare to the number of
patches used to divide the prototype and target images. On average, 3-words (upper-
body, lower-body and background) dictionary in identification achieve best results.
This is because, extra words representing either intersections of parts of interest or
exposed skin / hair occupy limited area within the images. The descriptions of such
words containing few patches are less reliable comparing with the descriptions of
words containing a bigger set of patches.

Local descriptions of patches guarantee the scaling and transportation invari-
ant of the framework. This is important as pedestrians detected in bounding box
may not always tightly bounded in the centre of the bounding box. Applying the
pyramid protocol, reduced calculations will be spent on the identification of pedes-
trians wearing mono-coloured clothes than the identification of the ones wearing
patterned clothes. Using HSV histogram (especially the hue channel) for colour in-
formation, the algorithm achieve short processing time. For the identification of
pedestrian wearing mono-coloured top and bottom, the separation of 4 x 8 patches
in the PROTOTYPE and TARGETSs is recommended. For pedestrian wearing patterned
clothes, 10 x 20 patches should be separated in images to obtain stable identifica-
tion (error rate < 10%). The number of patches used in separating the TARGET can be
different with it is used in building the PROTOTYPE dictionary.

Current experiments do not consider pedestrians with complex appearances be-
yond regular patterns including stripes, dots and lattices. The lack of geometry in-
formation in histogram based description means that the current re-identification
algorithm may fail in separating different patterns with the same combination of
colours. As observed in Table 3.2, pattern judgement is crucial to improve the per-
formances. Lighting condition and the interference of appearances introduced by

accessories of pedestrians will be addressed in future work.
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Simple PROTOTYPE: mono-colour top & bottom

Cells in Target Images: 3 x6to 7 x 14
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(a) Using 3-code Dictionary: 01 2

Fig. 3.9 The effects of using different number of words in Dictionary, different numbers of patches

to separating the PROTOTYPE and TARGETS in a simple prototype re-identification example. 0 1 2

represent background, upper-body and lower-body respectively. 5 x 10 patches have worse per-

formances than others. This also happen with other PROTOTYPE examples. It maybe because the

odd number 5 disturbs the appearances of patches within the PROTOTYPE when pedestrian is an

approximated symmetry object.
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Cells in Target Images: 3 x6to 7 x 14

80.00%

100.00%
% _\/.
90.00% /

70.00% — A / /- . . -

60.00% / xe
50.00% :\‘j ——4x8

—=—5x10
40.00% ——6x12

—e—17x14
30.00%

3x6 4x8 5x10 6x12 7x14 8x16 9x18 10x20 11x22 12x24 13x26 14x28 15x30 16x32

n x m Cells in Prototype Image

Cells in Target Images: 8 x 16 to 12 x 24

100.00%

90.00%

80.00%

70.00%

60.00%

Identification Rate

50.00%

40.00%

30.00%

e

h

—=—8x16

—t+—0x 18

—a—10x20

——11x22

——12x24

3x6 4x8 5x10 6x12 7x14 8x16 9x18 10x20 11x22 12x24 13x26 14x28 15x30 16x32
n x m Cells in Prototype Image

Cells in Target Images: 13 x 26 to 16 x 32

100.00%

90.00%

80.00%

70.00%

60.00%

Identification Rate

50.00%

40.00%

30.00%

w —a—a
—
—=—13x26
——14x28
——15x30
—+—16 x 32

3x6 4x8 5x10 6x12 7x14 8x16 9x18 10x20 11x22 12x24 13x26 14x28 15x30 16x32
n x m Cells in Prototype Image

(b) Using 6-code Dictionary: 012 11 12 22

Fig. 3.9 (Cont.) Simple PROTOTYPE: mono-colour top & bottom, where the codes are represented

by: 0: background,

1: upper-body& background, 2: lower-body& background, 11: upper-body, 12:

upper-body& lower-body, 22: lower-body.
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Cells in Target Images: 3 x6to 7 x 14
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Fig. 3.9 (Cont.) Simple PROTOTYPE: mono-colour top & bottom, where the codes are represented

by: 0: background, 1: upper-body, 2: lower-body, 3: skin-hair.
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Cells in Target Images: 3x6to 7 x 14
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(d) Using 10-code Dictionary: 012311121322 23 33

Fig. 3.9 (Cont.) Simple PROTOTYPE: mono-colour top & bottom, where the codes are represented
by: 0: background, 1: upper-body& background, 2: lower-body& background, 3: skin-hair& back-
ground 11: upper-body, 12: upper-body& lower-body, 13: upper-body& skin-hair, 22: lower-body,
23: lower-body& skin-hair, 33: skin-hair.
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Complex PROTOTYPE: patterned top with cardigan
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Fig. 3.10 Effects of using different number of words in Dictionary, different numbers of patches
to separating the PROTOTYPE and TARGETS in a complex prototype re-identification example. 0 1 2

represent background, upper-body and lower-body respectively.
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Cells in Target Images: 3 x6to 7 x 14
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(b) Using 6-code Dictionary: 01211 12 22

Fig. 3.10 (Cont.) Complex PROTOTYPE: patterned top with cardigan, where the codes are repre-
sented by: 0: background, 1: upper-body& background, 2: lower-body& background, 11: upper-
body, 12: upper-body& lower-body, 22: lower-body. The peak appear at the bottom figure when
4 x 8 patches are separated in PROTOTYPE not usually happen with other prototype. This is due
to the frequency of the repeated pattern. Such peaks may locate in other place when not enough

patches are separated in PROTOTYPE with different pattern repetition rates.
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Cells in Target Images: 3 x6to 7 x 14
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Fig. 3.10 (Cont.) Complex PROTOTYPE: patterned top with cardigan, where the codes are repre-

sented by: 0: background, 1: upper-body, 2: lower-body, 3: skin-hair.
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Cells in Target Images: 3x6to 7 x 14
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Fig. 3.10 (Cont.) Complex PROTOTYPE: patterned top with cardigan, where the codes are repre-
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Chapter 4

False Alarm Rate Reduction in Videos

Jedes hinreichend mdichtige, rekursiv aufzéhlbare formale System
ist entweder widerspriichlich oder unvollstindig."

—— Kurt E Godel

In the last chapter, the re-identification of pedestrians after a period of complete
occlusion is discussed. Strategies are proposed based on HOG pedestrian detection
or similar algorithms where the sliding windows are applied to obtaining ROIs. In
pedestrian re-identification, the prototype and the target pedestrians are results of
pedestrian detections. It means, the performances of pedestrian detections may
affect the performance of pedestrian re-identification. In this chapter, a novel ap-
proach is applied to reduce the false alarms introduced by HOG pedestrian detector.
After that, the framework of pedestrian re-identification introduced in Chapter 3 will
be adopted to reduce the reappeared false alarms in the results of pedestrian detec-
tion applied to video streams. All detectors used in the experiments of this chapter
are trained by CV (v. 2.4.3). Before presenting the algorithms, HOG pedestrian algo-

rithm and its OpenCV trained detector will be reviewed.

4.1 HOG Pedestrian Detector in CV (2.4.3)

HOGQG, is a supervision based framework for pedestrian detection. Generally, it fol-
lows the structure demonstrated in Fig. 4.1: train a detector using labelled descrip-
tors of positive and negative examples (pedestrians and background) and then apply

the detector to ROIs of target images to deciding the presences of pedestrians within

! Any effectively generated theory capable of expressing elementary arithmetic cannot be both con-
sistent and complete. —— Kurt E Godel
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the ROIs. The detected pedestrians are bounded in bounding boxes. In Fig. 4.1
the positive and negative training images are labelled using +1 and —1; ROIs are ob-
tained using sliding windows; by repeating the trained detection procedures on the
down sized input images the scale invariant of the detector is achieved. The trained
HOG detectors are capable to detect pedestrians in real-time application though the
training procedure is time consuming. As reviewed in Chapter 2, the performance of
a supervision based detector is affected by the training process: the strategy and the
dataset. The training strategy, which translates numerical features to binary judge-
ment is essential in designing the frameworks of pedestrian detection. It is believed
by researchers [3] that a larger, more complete training dataset may result a better
detector. However there is no universal definition to quantify the completeness of a
dataset and no observations show the relationship between the performance of the
trained detector and the scale of its training dataset. A trained detector may per-
form differently when it is applied to different testing images. Before presenting the
approach to improve the performances of HOG detector provided by CV (2.4.3), the
false alarms occurred in HOG detection will be analysed in this section.

’700wn Size

Test Images

Training Images

Sliding Windows

v v
Positi Negati
ositive e Regions of Interest (ROI)
Examples Examples
v \ 4
Describing and Labelling
(J—E .V, ) > Detector
= N
YeR".y, e{v|+L-1}
Y
Classifier
(AdaBoost, SVM, ...) Detection Results in
Bounding Boxes
\ v

Fig. 4.1 Structure of Training and Testing a HOG/Haar-like Feature based Detector
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HOG descriptions capture the cognitive shapes of pedestrians. Cognitive shape
tolerates the intra-class variation of the shapes of pedestrians, which may vary due
to the different poses of different pedestrians. It means the shapes of false alarms are
usually similar to the shapes of the correctly detected pedestrians. To improve the
performances of HOG pedestrian detection, features other than cognitive shapes of
pedestrian should be considered, for instances, local features introduced by body
parts. In this chapter, assumptions are made that the appearances of the head-
shoulder parts of pedestrians play more important roles in deciding the presence

of pedestrians than other body-parts.

4.1.1 Why HOG?

Asreviewed in Chapter 2, HOG description is not the only method to capture the fea-
tures of pedestrians and SVM is one of the algorithms for training a detector. For vari-
ous purposes, pedestrian detectors were trained by various research institutes using
a selections of datasets. The popular ones, such as HOG-SVM? and Viola-Jones®,
have been integrated in the libraries of various programming languages (C++ / C,
etc.). But not many discussions were made on how to quantify the detection results.

This is may be because:

¢ The judgement of the detection results is usually done manually. It means, the righ-
teousness of a detection may vary from one research to another, especially when the

detection results contain a part of a pedestrian.

* The detection rate is proportional to the false alarm rate. Though the desired pedes-
trian detector is high in detection rate and low in false alarm rate, normally, the im-
proved detection rate may result in the increased false alarm rate and the reduced

false alarm rate may sacrifice the detection rate.

In recent studies on pedestrian detection, the performances of frameworks are
evaluated using the curves of the detection rates verses the false rates, which include
the DET (Detection Error Trade-off) and ROC (Receiver Operating Characteristic)
curves [22, 78]. These curves are usually plotted during training. Experimentally,
the prepared datasets are randomly divided in two groups: one for training and the
other for testing. To calculate the DET curve, the parameters / thresholds used in

the training procedure are tuned to achieve different performances of the trained

2HOG-SVM: the abbreviation of HOG-SVM pedestrian detector. In this chapter, HOG-SVM refer to
the pedestrian detector trained by CV (2.4.3)
3Viola-Jones refer to the Viola-Jones pedestrian / body-part detectors trained by CV (2.4.3)
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detectors applying to the testing images. Similarly, ROC curve introduced in [22]
measured the decreasing rate of the percentage of detection rates with regard to the
reduction of false alarm rate, which is usually measured by FPPW (False Positives per
Window?) or FPPI (False Positive per Image)®. For example, to measure the perfor-
mances of HOG-SVM pedestrian detector in [22], the DET or ROC curve is calculated
by changing the margins between two classes of observations during SVM training.
When using cascaded decision tree to train the detector, this is done by changing the
number of levels and stages of weak classifiers cascaded in decision trees.

The training datasets affect the performance of pedestrian detection as well. A
dataset may never complete and one well behaved detector may fail in other cir-
cumstances. In [78], a new term, "confidence", was defined to evaluate the consis-
tencies of frameworks when apply to different datasets. [3] compared several large
pedestrian databases and concluded that among these databases, INRIA (followed

by Daimler-DB) outperform others in both image quality and result stability.

(a) HOG-SVM Detector (b) HOG Cascaded Detector (c) Haar-like Cascaded Detector

Fig. 4.2 The detections of three pedestrian detectors provided in CV (2.4.3)

HOG is chosen as the pedestrian detection algorithm in this chapter due to the
following reasons:

1. Its performance is tested stable and promising in a number of literatures;

2. The principle of HOG descriptions is cognitively perceivable. The shape feature de-
tected by HOG have cognitive meanings to human. In other words, the possible false

alarms can be retrieved or predicted;
3. HOG detector has been well trained in CV (2.4.3).

As a comparison, Fig. 4.2 demonstrates an example pedestrian detection results us-

ing three trained detectors provided by CV (2.4.3):

“FPPW is the averaged false alarms out of the number of ROIs on the testing images;
5This is introduced in this [22] only, not seen in other literatures.
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e HOG-SVM: HOG descriptor, training using SVM;

* HOG Cascade: HOG descriptor calculated on local areas are trained using SVM to

weak classifiers. They are cascaded using AdaBoost to decision trees; °

* Haar-Pedestrian: Haar-like features trained using AdaBoost to cascaded decision trees

(known as Viola-Jones method). *

] | False Alarms | Detection Rate | Dataset (Testing | Dataset (Training) |

~1x10~*FPPW ~90%t INRIA[11] INRIA[11]
~7% ~80% Website CV (2.4.3)
HOG-5VM ~74% ~94% Video Clips-1 | CV (2.4.3)
~93% ~90% Video Clips-2 | CV (2.4.3)
~1x10"*rPPW ~90%t INRIA[32] INRIA[32]
. ~7% ~70% Website CV (2.4.3)
HOG Cascading ~75% ~85% Video Clips-1 | CV (2.4.3)
~93% ~80% Video Clips-2 | CV (2.4.3)
~40 FPPI ~90%% MIT-CMU([79] | unknown! [79]
Viola-Jones ~30% ~60% Website CV (2.4.3)
~80% ~70% Video Clips-1 | CV (2.4.3)
~95% ~63% Video Clips-2 | CV (2.4.3)

Table 4.1 The performances of frameworks are measured by the ROC curves [3, 11, 32]. The
images from "Website" are a selection of the results of Google "pedestrians". Frames from video
clips 1 and 2 are shot in a car park area with fences.

1 The false alarm rate refers to the approximate FPPI value when the detection rate is 90% or
the miss rate is 10%.
1 The performance of the frontal face detector trained using the Viola-Jones frameworks.

In the table, the first row of each detector is referenced from its original liter-
ature followed by the performances of the detectors applied to the testing dataset
used in this chapter. The dataset includes randomly selected 1,000 images using the
results of Google "pedestrian" and ~3,000 frames of two video clips shot in a noisy
ground as introduced in Section 2.3. Images from the website contain several difficult
cases including images containing crowds. Video clips are shot using steady camera
placed in a car park with striped fences, where high amount of false alarms intro-

duced by cars and constructions surrounding. In CV (2.4.3) manual, no information

6Cascaded HOG detector in CV (2.4.3) is trained following the instructions introduced [32]. In each
region of interest with size 48 x 96 pixel?, blocks from size 12 x 12 pixel? to size 64 x 128 pixel® are
described using HOG descriptors calculated on integral images. The 36-bit Descriptors of cells are
concatenated and normalized within 2 x 2 pixel?-cell block, 9 bin per cell (as shown in Fig. 4.8). Cas-
caded HOG detector have similar performances with HOG-SVM for using the same feature descriptor
and the same sized regions of interest.

"See Section 4.2.1
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is provided on the training dataset of the trained detectors. Applied to testing im-
ages selected from databases including INRIA, these detectors can basically repeat
the experiment results provided in their original literatures as summarised in Table
4.1. Apply the listed detectors to the dataset of this chapter, the results are quanti-
fied as follows: the detection rate is the number of detected pedestrian using listed
detectors over the number of pedestrians recognised by human; the false alarm rate
is the percentage of detected false alarms of the total number of detections using se-
lected detectors. Applied listed detectors to the testing dataset of this chapter: the
detection rate of HOG-SVM and HOG Cascade are similar. The false alarm rate of
HOG Cascade is higher than HOG-SVM. Haar-Pedestrian performs the worst among
the three. This may be because the sizes of a number of ROIs used in training are

relatively small (14 x 28 pixelz).

4.1.2 HOG Pedestrian Detector and Its Limitations

The descriptors used in HOG succeed the intensity based descriptor of SIFT [52] with
some variations (R-HOG, C-HOG and Single-Centred C-HOG). Using Support Vector
Machine (SVM), HOG descriptions of positive and negative examples are trained to
a detector which transforms HOG descriptions into the decision space (pedestrian,
non-pedestrian in this case). To detect pedestrians in target images, sliding windows
are used to obtain the regions of interests (ROI). In each window of input images,
the trained detector is applied to the HOG descriptions of the window. Windows
with positive responses to the detector are recognised as pedestrians. In multi-scale
pedestrian detection, the sliding windows are applied to down-scaled input images
to achieve the scale invariant of the framework.

Rather than calculating descriptions on the edge maps like Shape Context [58],
cognitive shapes are chosen as features to increase the the intra-class compatibil-
ity and the noise sustainability of pedestrian detector. The attempt was presented
in [33] using Haar-wavelet block transform to capture the cognitive shape feature.
The length of wavelet bases determines the roughness of the captured shape, the
longer the descriptors, the more detailed shapes are captured. The coefficients of
the wavelet transform are used as the input observations of SVM to train the detec-
tor. Based on the similar idea, HOG descriptor in [22] uses the 1% order derivative
image to capture the cognitive shape feature. Histogram oriented descriptors are
locally normalised with the descriptors of neighbourhood cells.

R-HOG and SIFT descriptor have many commons in the calculation procedure.
SIFT description captures the local appearances of interest points (detected using
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SIFT interest point detection) while HOG captures the rough shapes of objects. The
differences between HOG and SIFT descriptor are as follows. A brief comparison of
HOG and similar descriptors are summarised in Table 4.2.

e SIFT descriptor is calculated on Gaussian smoothed images while HOG is calculated

on the 1% derivative images;

* There are three ways of calculating the HOG descriptors of cells as introduced in [22]:
R(Rectangular)-HOG, C(Circular)-HOG and Single centre C-HOG. R-HOG is calculated
using the SIFT way. C-HOG and single centre C-HOG are calculated on the log-polar

coordination mapped 1% derivative image.

e SIFT descriptor is normalised within the region of area to calculate the descriptions
(16 x 16pixel?). The aim of the normalization is to reduce the effects of luminance and
contrast. HOG descriptor is normalised within local neighbourhood cells (block), the
normalization strengthens the common gradient orientations of the descriptions of
cells in the block and weakens the others. After the normalization, the descriptions of

cells participated in constructing the cognitive shapes of pedestrians are emphasized.

* The scale invariant of SIFT is achieved by selecting the scale salient interest points of
input images. In HOG this is achieved by repeatedly applying the detection procedure

to different scaled images.

¢ The rotation invariant is considered in SIFT. The histograms of gradient orientations
are normalised to the major orientation within the 16 x 16pixel® cell. The rotation of
pedestrians is not considered in HOG (at least not in its original article) as pedestri-
ans usually appear upright in images. In some literatures, slight angle variations were
adjusted in camera calibration stage or by applying the trained detector to sliding win-

dows that are slightly tilted of the vertical axis.

Kernel based SVM is applied to train the HOG pedestrian detector. During train-
ing, the sizes of positive and negative training images are fixed. Image pre-processing,
such as gamma correction, is normally required to reduce the influence of illumi-
nation effects. SVM training transforms the descriptions of positive and negative
observations to the decision space where the margins between the two classes of in-
put data can be maximised. Given training vectors x; € R%, i = 1,...,1, labelled by
yi € {1,—1} into two classes, a general form of Support Vector Machine solves the

following optimization problem:
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. 1
Iuglll)rg} EwTw+ ngzlfi 4.1)
subject to yin(p(xl- +b)=1-¢; (4.2)
& =0,i=1,...,1 (4.3)

where ¢(x;) is the kernel transforming the descriptor x; € R? to the decisions
space. w and b are the parameters to be optimised in linear support vector machine.
C = 0 is the parameter corresponding to errors. When two classes of input data are
overlapped in the decision planes, the input data are non-separable. In this case, ¢ is
introduced as a slack variable to relax the classification constraints. The summation

of the slack variables (}_; ¢) is the upper bound of training errors.

wlipxi+b) =+1-¢ fory=+1 (4.4)
wlpxi+b) <-1+¢ fory=-1 (4.5)

In some literatures, HOG is trained using Latent SVM which adds latent factors
to the kernel functions. Different images are trained using different kernels in SVM.
When the latent factor is universal for all training images, the latent SVM becomes
the above linear SVM. The latent SVM attempts to differ the contributions of differ-
ent descriptions in training. Difficult examples which may easily be miss classified

should have more significant effect in training than the simple ones.
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4.1.2.1 False Alarms introduced by HOG

False positives are usually introduced by objects that have similarly shapes to pedes-
trians, objects with approximated rectangular shape for example. In [3], errors and
inaccurate detected results were categorised into groups as shown in Figure 4.3 8.

Categorised in four, they are:

* Rectangular objects. Examples include windows, doors, (part of) logos, telephone

boxes, trash bins, etcetera;

* Obijects in rough rectangular shape having structures like the shoulders of pedestrians.
Such objects may be a wheel of vehicle with its fender, church windows with arch top,

street lamp with shoulder like decorations.

e Overlapped or less-accurately detected pedestrians: pedestrians and part of pedes-
trians may be detected several times in different scaled input images. The detected
bounding boxes may be overlapped; furthermore, the bounding boxes may not be ac-

curately centred at the centroids of the pedestrians.

e More than one pedestrians are detected as one.

Ideal Correct Detection

Partial Detection

Fig. 4.3 Sample Results of HOG-SVM Pedestrian Detector

The "Inaccurate Detection" and "Partial Detection" are usually related to the pa-
rameters used in training the HOG detector as discussed in the following section.
Reducing the the "False Alarms" according to the appearance of head-shoulder part

8Images demonstrated in this Table follow the ideas in [3] but they are not exactly the same.
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will be discussed in Section 4.2 and separating the "Multiple Pedestrians in One Box"
will be discussed in the next chapter (Chapter 5).

4.1.2.2 Parameters used in CV (2.4.3) HOG-SVM Pedestrian Detector

Parameters used in training and obtaining ROIs affect the performances of the trained
HOG-SVM detector: missed detections and inaccurate detection results. In [22], the
effects of tuning the parameters were demonstrated using the DET curve when ap-
plying the HOG detector to INRIA and MIT pedestrian databases. Suggestions were
provided on the selection of the values of these parameters. HOG-SVM detector
provided by CV (2.4.3) basically follow the recommendations in [22]. Key parame-
ters concerned in [22] includes (values in brackets are settings of HOG-SVM detector
trained by CV (2.4.3)):

e Thesizeofacell (8x8 pixelz) and the number of bins (9-bin per cell) used in calculating
the descriptor: The size of a cell should not be too large to capture the rough shape

feature. Finely divided cells may fragment the appearances of local areas.

* The size of a block (2 x 2 cell? which is equivalent to 16 x 16 pixel?): the descriptors of

cells within a block are normalised.

e The sizes (128 x 64 pixelz) and the stride (8 pixel in each direction) of sliding windows
to obtain the regions of interest: the descriptor of a window is concatenated by the
normalised descriptors of all cells in the window (total length of the descriptor will be
9 x 16 x 8 = 1152 bit).

e The parameters and kernels used in SVM training: linear SVM is the default setting for
training a SVM classifier. A selection of kernels are provided in CV (2.4.3), including

Polynomial kernel, Radial basis function (RBF) and Sigmoid kernel.

* The down scaling factor used in multi-scale pedestrian detection: after each round of
complete search, the original images are down-scaled by 1.05 to achieve the scaling

invariant.

The smallest bounding box detected by HOG is 128 x 64 pixel®. It determines the
lower limit of the sizes of detectable pedestrians in images. Usually, the detected
pedestrians occupy around 30% to 60% area of the bounding boxes. This means,
within the smallest bounding box, the pedestrian can hardly be detected if its size
is smaller than 80 x 30 pixel®. As shown in Fig. 4.4, no pedestrians are detected in

images containing pedestrians smaller than the ones shown in Fig. 4.4 (a). Fig. 4.4
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(b),(c),(d) show that the performance of HOG-SVM is better when the input images

are enlarged.
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Fig. 4.4 The Smallest Detectable Pedestrians of HOG Detector: in experiment, the original image
containing pedestrians with height 50 pixels and width around 20 pixels. In this image, no pedes-
trians are detected using HOG detector trained by CV (2.4.3). Proportionally expanded the image
by 5% in each step, (a) is the first image where there are detected pedestrian. The average size of
pedestrians in (a) is ~ 70 x 25 pixel?, in (b) it is ~ 72 x 27 pixel?, in (c) it is ~ 75 x 30 pixel® and in (d)
itis ~ 100 x 40 pixel?

Pedestrians in positive training examples are centred in the bounding box. If
16 x 8 cells are used in HOG description, the width of the background surround-
ing the pedestrian in positive training images is usually around the width of 1 to 2
cells. Including sufficient amount of background in positive training images is cru-
cial to obtain the cognitive shape of the pedestrian when the descriptions of cells are
normalised with its neighbourhoods. Pedestrians who are close to the boundaries
of images would be ignored. This means the HOG detector which only responses
positively to the bounding boxes containing the rough shapes of pedestrians in the
centre. As illustrated in Fig. 4.5, not all pedestrians near the boundary are detected
except when they can be centred in bounding boxes. The effect is even obvious when
pedestrians are placed in the background of streets. An extension around 10pixels to
all boundaries of an input image will solve the problem (under current CV (2.4.3)
HOG detector setting).
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Fig. 4.5 HOG Performance with Pedestrian near Boundary

4.2 Upper-body Detection

In the last section, pedestrian detectors provided in CV (2.4.3) are discussed. Conclu-
sions were made that HOG-SVM detector provided in CV (2.4.3) outperforms other
built-in pedestrian detectors. HOG-SVM detector is competent for the majority of
the pedestrian detection cases but may fail in certain circumstances. Considering
false alarms usually have less typical head-shoulder appearance, algorithms for upper-
body detection will be employed to eliminate false-alarmed background objects. As
an assistant algorithm, the upper-body detector will be applied to detections results
of HOG-SVM pedestrian detector. Furthermore, this algorithm should be fast in cal-
culation. Two algorithms are considered: Viola-Jones frontal face and upper-body

detector and a novel way of head-shoulder verification.

Inspired by Haar-wavelet based pedestrian detection introduced in [33] and fur-
ther developed in [80], Viola-Jones body (part) detection [23] was initially designed
for the frontal face detection. This framework has two main contributions in com-
putation reduction of its predecessor in [33]: Haar-like features are calculated in
integrated images as weak classifiers and a fast cascaded AdaBoost training proce-
dure is employed to combine selected weak classifiers into a strong one. Viola-Jones
have drawbacks: features selected in detectors rely on training dataset; once trained
the detector cannot be modified. In following sections, the algorithms will be re-
viewed; factors affect the performance of the detectors provided in CV (2.4.3) will be

unveiled.

After that, an appearance based algorithm for the verification of the head-shoulder
structure of detection results is proposed to separate false alarms from the results of
pedestrian detection. Section 4.4 will demonstrate that the above two algorithms sig-

nificantly improve the performances of HOG-SVM detector.
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4.2.1 Viola-Jones Algorithm

Haar-like features are the bases of Viola-Jones approach for pedestrian / body-part
detection. Calculated in integrated images, Haar-like features capture the colour
changing within a local block. The size of the block can vary from several squares
of pixels to the size of ROI. The Haar-like features are performed as weak classifiers
which will be selected using boosting algorithms. Weights applied to the weak clas-
sifiers will be adjusted during training. Heavy weight will be applied to important
features cascaded in the final classifier. The performances of Viola-Jones algorithm
are affected by the Haar-like features selected in the output detectors, especially the
ones with heavy weights.
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Fig. 4.6 Haar-like Feature bases (2-rectangle, 3-rectangle(wide line), 3-rectangle(narrow line),

centre surround, 4-rectangle diagonal). To calculate each feature using above bases, the size of
black and white area are normalised. For example, the black area in 2-rectangle, 3-rectangle (wide
line) and 4-rectangle bases have the same size with the rest white area so equal weights are assigned
to black and white area (+1, —1 respectively). While in the 3-rectangle(narrow line) and the centre
surround bases, the weight assigned to the black area is equal to the ratio of the size of white area
to black. Detailed calculation is attached in Appendix. A.

4.2.1.1 Haar-like Features

Features shown in Fig. 4.6 are calculated in rectangular blocks from 1 x 2 pixel? to
the size of ROI. Each feature compare the accumulated value of pixels in black area
to itis in the white area and returns a positive or negative sign to indicate which part
is darker. For training purposes, the sign of each feature is translated to meanings of
object / non-object. A Haar-like feature is a binary classifier f(x;) with low accuracy.
To reduce calculation, integrated images were introduced , where the value of pixel
(x, y) is the summed values of pixels in the area above and to the left of (x, y). Table.
A.1 show the calculation of Haar-like features in integral image. In CV (2.4.3), both
original Haar-like features introduced in [23] and extended ones introduced in [30]

are considered. Working together, these features capture the colour changing near
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boundaries, corners, crossing points and lines.

The number of Haar-like features within ROI is normally huge no matter it is for
pedestrian detection or body-part detection. In a nx m pixel® area, there are (5)(7) -
mn rectangles to be evaluated as weak classifiers. The number is proportional to
(mn)?. There are usually hundreds of thousands features in one ROI even only 2
feature bases are calculated in one rectangle block. Majority Haar-like features will
be eliminated during AdaBoost training. In [23], AdaBoost training was applied to
remaining Haar-like features for several times, stage detectors obtained from each
round are cascaded to improve the performance. The cascading procedure increases
the effect of strong features to the final result as they may reappear in cascading stage
of classifiers. Cascaded decision stump combined by weighted stage classifiers is a
specific form of cascading trees which have more than one branches of combined

stage classifiers as shown in Figure 4.7.
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Fig. 4.7 The Structures of Cascaded Classifiers

4.2.1.2 AdaBoost Cascaded Decision Trees

The philosophy behind boosting algorithm is to achieve a strong classifier by com-
bining several weak ones. Statistically, boosting algorithms optimise the binary clas-
sifier by building an additive logistic regression model. Additive indicates the ways of
combining of weak classifiers in training rounds to obtain the final classifier [27]. The
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performance of boosting is improved in [81], known as Discrete AdaBoost. Various
AdaBoost strategies are supported by CV (2.4.3): Discrete AdaBoost, Real AdaBoost,
LogitBoost and Gentle AdaBoost all of which aims to minimise the training error. Ad-

aBoost follow the procedures below:
AdaBoost Training (N Images)

1. Assign weights w; =1/N,i€1,..., N to training images (X1, y1), X2, }2),...,

(X, YN)- X; € R? is the image description; y; € {+1,—1} is the judgement;
2. Repeatform=1,...,M:

(a) Fit the classifier function f,(x) that minimise E,(exp{—yF(x)}) with
weights w;. y is the response of classifier F(x); E,, represents a weighted

expectation;
(b) Update F,(x) — Fy—1(X) + fin (%)

(c) Update w; and renormalise them for the next round so that Zﬁ.\i Lwi =1

3. Output classifier sign[F(x)] = sign[XY_, f,, )]

The differences between these strategies lie in the measurements of training er-
rors and the means of updating the classifier function. Discrete AdaBoost minimises
the population expectation via Newton-like optimization. Real AdaBoost estimates
the probability of miss classifications and update the final classifier by minimizing
the squared error loss which is an approximate of weighted expectation. Gentle Ad-
aBoost, changes the ways of estimating the weighted class probabilities in Real Ad-
aBoost to achieve more stable performances. AdaBoost algorithms utilise a stage-
wise estimation procedures that coefficients already engaged in the classifier will
not be modified in further training round. Detailed analysis can be found in [27].
Discrete AdaBoost was chosen in [79] to train the cascaded Viola-Jones classifiers.
Gentle AdaBoost is the default Boosting training mode in CV (2.4.3) and is applied to
the training of built-in Viola-Jones detectors. Experiments in [30] showed that Gentle
AdaBoost outperformed other AdaBoost Strategies.

Adaboost excels in real-time applications using linear programming. The per-
formance of the strategy has limited reliance on the tuning of parameters used in
training. Only three factors may affect the AdaBoost trained classifiers: the thresh-
old used to reject the weak classifiers (#), the round of training (7) and the number
stages (M) / branches (M’) used in cascaded decision trees. T is dependent on t as

t is related to the average error rate (p.) of weak classifiers. The final detection rate



4.2 Upper-body Detection 89

of the additive weak classifiers after T round of training can be predicated as 1 — p[.
This means, increasing the round of training (7) will reduce the averaged error rate
(pe). [82] also pointed that too many rounds of training may result in over fit which
lacks observations. [82] concluded that increasing the number of boosting stages
M and M’ may improve the performances of the final classifier. Theoretically, more
cascading levels (M and M’) would improve the detection performances, while no
statistical analysis shown this relationship. In current stage of research, cascaded
decision trees used in pedestrian / body-part detection contain a maximum of two

branches of cascaded stage classifiers.

4.2.1.3 Viola-Jones Body-part Detectors in CV (2.4.3)

In CV (2.4.3), the Haar-like cascaded detector use the tree structure where different
coefficients are applied to positive and negative training images. Cascading decision
trees containing two branches were trained for the frontal-face, upper-body and full
body detector. The number of stages in a branch are usually flexible. If additional
branches / stages cannot improve the performance (converged classifier) of the out-
put detector, training stops. [30] pointed that when 20 x 20 pixel® ROIs are selected,
in the training of frontal face detector using Gentle AdaBoost, an average of 30 weak
classifiers will be cascaded in one stage of the output classifier. The improvement
of performance of the output classifier stagnated until new stages of weak classifiers
are cascaded in. A disadvantage of Viola-Jones training strategy is the features se-
lected in the output classifier is unknown until the end of the training procedure.
The training result is less perceivable to human: in a cascading decision tree with
two branches containing hundreds of weak classifiers in cascaded in 50-60 stages,
it is difficult to unveil which are the most influential local features. Normally, key
weak classifiers have heavier weight than other weak classifiers and are normally
employed in multiple stages of the trained classifier. Fig. 4.9 demonstrates several
frequently appeared weak classifiers that have relatively heavier weights than others
in the final output classifier. The characteristics of Viola-Jones pedestrian / body-

part detectors in CV (2.4.3) are summarised in Appendix A.

Applied in different applications, the sized of ROIs are different. In selected de-
tectors: the sizes of ROIs of Viola-Jones frontal face detector are 20 x 20 pixelz, 22 x
20 pixel® for Haar-like upper-body detector, 19 x 23 pixel® for Haar-like lower-body
detector and 14 x 28 pixel? for Haar-like pedestrian detector. Above parameters are
referenced from the CV (2.4.3) library.
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(a) High Influential Haar-like Features in Face Detection
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(b) High Influential Haar-like Features in Upper Body Detection
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(c) High Influential Haar-like Features in Full Body Detection

Fig. 4.9 High influential Haar-like blocks in trained cascading decision trees: These blocks have
large coefficients in heavy weighted stages. Some of the blocks appear in more than one stages.

4.2.2 Appearance Based Upper-body "Detection"

By verifying the upper-body and frontal face of a pedestrian using Voila-Jones method
can greatly reduce the false alarms introduced by HOG pedestrian detector. But the
frontal face detector fails in the verification of backward facing pedestrians and the
upper-body detector is less stable in performances. The upper-body detector may
response to any shoulder like structures, such as the fender-wheel part of vehicles,
arch or arch structured windows/doors. Furthermore, due to the large amount of
small sized Haar-like features cascaded in the Viola-Jones upper-body detector, the
detector is sensitive to noise and details in the appearances of pedestrians. In this
section, a novel means of false alarm reduction based on the detection of the head-
shoulder structure will be introduced. This algorithm is to verify the presence of the
head-should structure inside the perspective head area of the detected "pedestri-
ans". Experiments will show that the algorithm reduces more false alarms than us-
ing Viola-Jones upper-body and frontal face detectors. After applying this algorithm
to the HOG detection results, the total false alarms can be reduced to less than 5%



92 False Alarm Rate Reduction in Videos

without significantly sacrifice the detection rate. The algorithm is designed based on

the following assumptions:

¢ The detected "pedestrian”, either pedestrians, inaccurate detected pedestri-
ans or false alarms, should have a rough rectangular appearances placed the

centre of the detected bounding box;

* The head-shoulder structure is recognised as the feature to distinguish be-

tween pedestrians and false alarms;
¢ The head-shoulders of the ground truth pedestrians should be clearly visible;

The first assumption is observed from the detection results of a HOG pedestrian
detector as reviewed in Section 4.1. For most of the time, the second assumption
is true: the head-shoulder structure is hardly seen from false alarms and inaccu-
rate detections including artificial manufactured objects or a part of the pedestrian.
The third assumption restricts the application of this algorithm to images without
crowds or noisy background for it is even difficult for human to recognise pedestri-
ans in such images. Still, as an assistant algorithm to the HOG pedestrian detector,
the algorithm should be simple without complex computation. Based on these as-
sumptions and requirements, the algorithm first locates the perspective head area
within the bounding box and then transfer the perspective head area into appear-
ance related descriptions. If the descriptions of a blob with reasonable size (head)
are different from its neighbourhood area, it will be recognised as a head. If the area
below the blob also has different appearances with its upper neighbourhood, then
the shoulder is recognised. Bounding boxes containing such head-shoulder struc-

ture would be recognised as pedestrians.

4.2.2.1 Within the Perspective Head Area

The Perspective Head Area: observed from results of HOG detector, the head would
appear in the top 1/3 part of the bounding box. In experiment, the perspective head
area is selected as shown in Fig. 4.10 (a). This area within the bounding box is in-
dependent with the training datasets as the training images for HOG pedestrian de-
tection all have the height to width ratio of 2. Pedestrians in training images are all
placed in the centre. Sometimes, the pedestrian detected by HOG may not appear
in the centre, this usually happen when multi-scaled detection is applied to images
containing pedestrian who is relatively small with regard to the size of the ROIs. In
this chapter, such detections are considered as inaccurate detections or even false

alarms.
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The Perspective

ﬂ;‘ad Area

(a) The Perspective Head Area (b) Head Detection

Fig. 4.10 Processing to detect the probable head within a bounding box of pedestrians.

Clustering: to describe the sub-areas within the perspective head region, the pix-
els within this area are clustered using algorithms introduced in Section 3.2.3.1:

1. Pixels are clustered in RGB spaces into K clusters;
2. The centres of these clusters are then transformed to HSV space;

3. The clusters with their centres closely mapped in the H-S coordination plane are com-

bined as they are cognitively similar to each other;

4. After the combination of clusters, the intensities of pixels in one cluster are the values

of their cluster centre.

Unlike the clustering algorithm introduced in the last chapter Section 3.2.3.1, the
number of K is not necessarily to be large to discover the colour information of the
part. The larger the K, the slower the clustering speed. The colour clustering aims at
simplifying the appearance of the perspective head area. In experiment, K = 3.
Consistent Matrix: the perspective head area is evenly divided into M x N rect-
angular cells. The description of each cell is calculated as the histogram of pixels
after clustering. To detect an area which has different descriptions with its surround-
ing areas, cells are compared to its 4-connected neighbourhood cells (cells upward,
downward, on the left and on the right). The appearances of two cells are considered
inconsistent (Matrix value = 1) if the correlation distance between the histograms of
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two cells is larger than a pre-defined threshold (7, = 0.6). Otherwise the appearance
of the two cells are consistent (Matrix value = 0). The consistencies of appearances
of cells are recorded in the consistent matrix as shown in Fig. 4.11. If M x N cells are
divided vertically and horizontally within the perspective head area, the size of the
consistent matrix is (2M — 1) x (2N —1). A cell on the y*" row and the x*”* column
(x=1,...,N,y=1,...,M) of the perspective head area will be mapped to the (2x,2y)
element in the consistent matrix. The consistent measurements between the cell
(2x,2y) and its 4-connected neighbourhood cells are calculated if both of them are

within the perspective head area:

* (2x—1,2y) is the consistency between the current cell and the cell on the left

(in matrix: 2x-2,2y));

* (2x+1,2y) is the consistency between the current cell and the cell on the right

(in matrix: 2x+2,2y));

* (2x,2y —1) is the consistency between the current cell and the cell above (in

matrix: (2x,2y —2));

* (2x,2y +1) is the consistency between the current cell and the cell below (in

matrix: 2x-2,2y+2))

Cells located at the boundary of the perspective head area (x=1, x=Nory=1, y =
M) will only be compared with its neighbourhood cells which are inside the perspec-
tive head area. In the consistent matrix, (27,2 j) are meaning less elements showing
the position of the cells divided within the perspective head area, (2i +1,2j + 1) are
meaning less elements to fill gaps in the consistent matrix and the rest of the ele-
ments are the consistency measurements between cells. (2i +1,2j + 1) elements will
be coded when the consistent measurements are calculated between the current cell
to its 8-connected neighbourhood cells (the current four plus the cells on up-left, up-
right, down-left and down-right directions). The consistent matrix is to determine if
there is a probable head within the area. A head-shoulder structure is considered as
existing if a reasonable sized rectangle is detected from the perspective head area.
The size of the Head-Shoulder Structure: the reasonable size is approximated from
observations of detected "pedestrians" using HOG. If the bounding box has height H
and width W, the area of the detected "pedestrians" is normally larger than 1/2W x
2/3H. Then the size of the head area would be around 1/6W x 1/10H. In experi-
ment, the size of the perspective head area is 3/5W x 1/3H. If 5 cells are separated in

both dimensions, the valid rectangles to be recognised as a head-shoulder structure
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Fig. 4.11 The Consistent Matrix of the perspective head area: the meaning less dots hold the posi-
tions of cells as the consistent measurements are calculated in the pairs of 4-connected cells. The
dots will be replaced by 0s for the search of sub-matrices representing Head-Shoulder structures
demonstrated in Fig. 4.12.

should occupy an area of 2 x 1 cells or larger. As shown in Fig. 4.10 (b), the borders
between cells with inconsistent appearances are highlighted. Rectangles can be de-
tected from the highlighted borders. Using the consistent matrix in detection, the
models of the head-shoulder structures are transferred to sub-matrices as shown
in Fig. 4.12. To locate the head-shoulder structure, the sub-matrices are searched

within the appearance consistent matrix.

(a) (b) (c)

Fig. 4.12 Sub-matrices searched with the judgement 9 x 9 consistent matrix when 5 x 5 cells are
separated within the perspective head area.

4.2.2.2 Not a Proper Upper-body Detection

The above algorithm is an assistant process to reduce false alarms introduced by
HOG pedestrian detector. Though a perspective head-shoulder structure is even-
tually detected, this is not a head (blob) detection as the inconsistent appearances
between the blob and its neighbourhood cells can hardly guarantee there the exis-
tence of a blob in general cases. However, when the target images of the algorithm
are the results of HOG pedestrian detection. Such images usually contain a cylinder
shaped object within the box. If pedestrians are presented in the bounding boxes,
the head-shoulder structure has inconsistent histogram representations comparing
to its neighbourhood area. This kind of inconsistencies can hardly be observed from

false alarms like trash bins, cylinder logos, arch windows, car fender-wheels or parts
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of body (legs for example). The algorithm may not be accurate enough for pedestrian

recognition, but it is a fast way to reduce false alarms of HOG pedestrian detector.

4.3 Re-appeared False Alarms in Video Streams

When pedestrian detection is applied to video streams false alarms may reappear
in frames especially when the shooting position of the camera is fixed. Observa-
tions show that ~60% of false alarms will reappear in subsequent frames. In previ-
ous sections, algorithms are introduced to reduce the false alarms by verifying the
head-shoulder structure within the bounding box. To avoid calculations in cluster-
ing, generating the consistent matrix and searching the sub-matrices, the pedestrian
re-identification algorithm described in the last chapter Chapter 3 is adopted with

necessary modifications:

1. Verity the detections in several frames using algorithms introduced in Section 4.2. Sep-

arate the pedestrians from false alarms;

2. Build the Pedestrian-False Alarm dictionary using the verified results: divide both
pedestrians and false alarms into M x N equal patches and calculate the HSV colour

histogram descriptions for each patch;

3. For the HOG detection results of a new frame, separate the detected images into M’ x
N’ patches, each patch is compared to patches in the Pedestrian-False Alarm Dictio-
nary. The corresponding patch is selected as the one which has the largest correlation
distance from the current one. The current patch is recognised as pedestrian / false
alarm if its corresponding patch belongs to the words of pedestrian / false alarm. Oth-
erwise, the patch is recognised as unfamiliar. To avoid calculations, the current detec-
tion is priorly compared to the detections which are geometrically located near them
in the dictionary. The "geometrical near" is measured according to the movement of

shooting camera.

4. If the majority of patches (>80%) within the bounding box are coded with pedestrian /
false alarm, the detection is recognised as pedestrian / false alarm. If patches within a
bounding box are equally coded with pedestrian or false alarm or unfamiliar, this de-
tection is probably a new appeared pedestrian or false alarm. The perspective upper-
body area of this detection will be verified using algorithms presented in previous sec-

tions.

In experiment, 6 x 3 pieces of patches are required in either images of dictionaries

or reappeared false alarms. Comparing to the appearance based false alarm reduc-
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tion introduced in Section 4.2.2, the calculations spent on clustering the perspective
head area and searching the sub-matrices are reduced. For videos shot using still
cameras, the "geometry near" in experiment means the circle area centred at the
centroid of the detected image with the radius twice the length of the diagonal of the
image. For videos shot using moving cameras, the circle area is calculated according

to the movements of the cameras using formula introduced in [83].

4.4 Experiments

In this section, the effect of using upper-body verification strategies to reduce false
alarms of HOG pedestrian detection will be demonstrated. HOG-SVM is selected
as pedestrian detector as it outperforms other detectors provided by CV (2.4.3). All
following syntheses are based on pedestrian detection experiments using default
settings of detectors provided in CV (2.4.3). Two algorithms for the verification of
upper-body are applied to detection results of HOG-SVM detector. Testing images
are frames from two video clips shot using still cameras and a selection of internet
images. As shown in Table 4.3, appearance based upper-body verification perform
better than Viola-Jones frontal face with upper-body detectors. The detection rate is
calculated as the number of detected pedestrians using algorithms over the number
of manually detected pedestrians. The false alarm rate is calculated as the number
of false alarms over the number of total detected occurrences:

. #Detected Pedestrians
Detection Rate = - (4.6)
#Manually Detected Pedestrians
#False Alarms
False Alarm Rate = - 4.7
#Total Detections

In above equations, inaccurate detections where pedestrian may be occluded but
still occupy the majority area of the bounding box are recognised as correct detec-
tion result while detected body parts (legs, arms, upper-body only for example) are
recognised as false alarms.

False alarms are greatly decreased when the algorithms are applied to the testing
datasets. The detection rate is not greatly affected (decreased by ~7% on average).
The appearance based algorithm is affected by the complexity of background and
may not always perform better than Voila-Jones upper-body detector. The appear-
ance based algorithm cannot accurately locate the upper-body as the Voila-Jones
methods. The way that it eliminates the false alarms relies on the changing of ap-
pearances around the head-shoulder structure which is hardly seen from false alarm

objects. It means, the appearance based algorithm may have problems with noisy
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Viola-Jones Detector Appearance based Algorithm

Video Clip 1 Before After Before After
Detection Rate ~94% ~92% ~94% ~92%
False Alarm ~74% ~ 3% ~74% ~ 3%
Video Clip 2 Before After Before After
Detection Rate ~90% ~73% ~90% ~ 82%
False Alarm ~93% ~21% ~93% ~10%
Internet Images  Before After Before After
Detection Rate ~ 80% ~70% ~ 80% ~75%
False Alarm ~ 7% ~7% ~ 7% ~5%

Table 4.3 Reducing the false alarms introduced by HOG-SVM pedestrian detector in two ways.

background and may be interfered by skin colours. Table 4.4 demonstrates examples
of upper-body verification using the two algorithms based on the results of HOG-
SVM detector provided by CV (2.4.3). 5 x 5 is the minimum pieces separated in the
perspective head area to achieve performances shown in Table 4.3. More pieces sep-
arated in the perspective head area slightly improve the performance: if 9 x 9 pieces
are separated in the perspective head area, another 1 - 2% of the total false alarms will
be reduced on average. If 5 x 5 cells are separated in the rough upper-body area, ac-
cording to the calculations in Section 4.2.2.1, the size of the consistent matrix is 9 x 9.
Then the sub-matrices representing the head-shoulder structures are searched in
the consistent matrix, as shown in Fig. 4.12. During the searching, few miss matched
digits in the sub-matrices can be tolerated (2 in this chapter). As shown in Table 4.3,
above settings achieve promising results with testing images selected in this chap-
ter. The accuracy of the Viola-Jones frontal face detector is high while its detection
rate is moderate; the performance of Viola-Jones upper-body detector is moderate.
The novel appearance based head-shoulder verification algorithm outperforms the
Viola-Jones upper-body detector in false alarm reduction but this algorithm is less
accurate than the Viola-Jones frontal frontal face detector. When accuracy is desired
over detection rate, Viola-Jones frontal face detectors should be considered with pri-
ority. But the Viola-Jones frontal face detector is less capable to recognise the back-

ward viewed head.
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Table 4.4 Upper-body verification using Viola-Jones upper-body detector and the appearance
based algorithm. The first row of image show the reactions of two algorithms on the ground truth

pedestrians and the second row show the example results of two algorithms on ground truth false

alarms.
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4.5 Summary

In this chapter, two issues of pedestrian detection are considered: false alarm reduc-
tion in the results of HOG-SVM pedestrian detection and the identification of reap-
peared false alarms when apply pedestrian detection to video streams. HOG and
Viola-Jones approaches for pedestrian detection are reviewed. The performances of
trained pedestrian detectors in CV (2.4.3) are compared.

Cited from the originated literatures, recent review papers and experiments per-
formed in this chapter, HOG-SVM pedestrian detector outperforms other detectors
provided by CV (2.4.3): HOG cascaded detector and Haar-like cascaded detector for
example. For the majority cases, they produce promising results as shown in Table
4.1. When applied to certain images, they may perform less satisfactory and intro-
duce high false alarms rate in detection results. According to observations in this
chapter, large number of false alarms come from fences and vehicle parts. To reduce
the false alarms that have similar shapes with pedestrians, features from body-parts
are considered. In this chapter, head-shoulder structure is believed as an important
evidence in separating false alarms from correct detections. Viola-Jones is a com-
monly used algorithm in body-parts detection. A wide range of body parts Viola-
Jones detectors are provided by CV (2.4.3), including the ones for detecting "frontal
face", "profile face", "upper body" and "lower body" using Haar-like features®. These
Haar-like detectors can be combined with HOG-SVM detector as the sizes of ROIs
used in these detectors match the sizes of ROIs of HOG-SVM detector. However, the
performances of Voila-Jones detectors are difficult to control and may fail with im-
ages containing backward / side viewed pedestrians. Another means of appearance
based upper-body verification is provided. Applying the algorithm to pedestrian de-
tection results of HOG detector, false alarm rate is effectively reduced.

When applying pedestrian detection to video streams, it is complicated to verify
every detected occurrences especially when the same false alarms will reappear in
hundreds of frames in a video. The re-identification algorithms introduced in the
last chapter are adopted to simplify the procedure.

9LPB cascading face detector is also provided in CV (2.4.3). Due to the lack of LPB upper-body
detector, the detector is not considered in our experiments.



Chapter 5

Multiple Pedestrians Detected in One

Box

Reality is merely an illusion, albeit a very persistent one.

— Albert Einstein

In [3], inaccurately detected pedestrians are categorised into inaccurate detec-
tion, partial detection, multi-pedestrians and non-pedestrians. In Section 4.1.2, rel-
evant parameters used in HOG pedestrian detector originating the inaccurate detec-
tions were analysed. The reduction of some kinds of inaccurate detections and false
alarms were discussed. In this chapter, a novel means of separating multiple pedes-
trians detected in one bounding box is proposed. The whole chapter is presented
in two parts: the reason to multiple pedestrians detected in one bounding box will
be briefly reviewed; after that, the novel framework of separating closely standing

pedestrians detected as one will be introduced.

5.1 Multiple Pedestrians Detected in Single Box

When two pedestrians are standing closely to each other, they may be detected in
one bounding box. Before promoting strategies to detect the number of pedestri-
ans in the bounding box and separate multiple individuals, the reasons to this ob-
servations will be discovered. In this chapter, observations of multiple pedestrians

detected as one are categorised in three groups as shown in Fig. 5.1:

1. Apedestrian is partially occluded by the other pedestrian and the occluded one is miss
detected;
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2. Both pedestrians are detected. But their bounding boxes are too close to be clustered

into one;

3. Detected pedestrians were in a crowd.

(g) Result I (i) Result IT (j) Result II (k) ResultIII (1) Result III

Fig. 5.1 Commonly observed multiple pedestrians detected as one, the first row (a) - (f); and
their detection results when no bounding box clustering is performed in the second row (g) - (1).
In Case I, the occluded pedestrian may be neglected by the HOG pedestrian detector; In Case II,
both pedestrians have positive responses to the HOG detector. The red bounding boxes in (i) and
(j) show the average position of bounding boxes which have positive responses. But they are too
close to be clustered as one; In Case III, pedestrians in crowds are difficult to be separated even for
human. HOG may have positive responses to individuals in the crowds.

In typeI cases, the occluded pedestrian may not be detected even when no bound-
ing box clustering is performed. The pedestrian in the centre of the bounding box is
the main detection, the occluded one would appear occluded next to the main de-
tection as a part of background. In type II cases, all appeared pedestrians are de-
tected but their bounding boxes are merged to one in clustering. Pedestrians de-
tected in case II are usually occupying equally amount of areas within the bounding
box. Multiple pedestrians detected in the two types of cases are surrounded by other
background objects. In the third type of cases, the pedestrian detected in the centre
of the bounding box is surrounded by a crowd of other pedestrians, full size or oc-
cluded. In following sections, type II cases of a pair pedestrians detected in one box
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will be mainly addressed using the novel means of rough symmetry axis detection.
To separate the type I and III cases of multiple pedestrians detected in single box, the
appearance based head area detection algorithm introduced in section 4.2.2 should

be considered to obtain other evidences of the presence of pedestrian.

5.1.1 How Close the Pedestrians Who are Detected as One?

Fig. 5.2 A pedestrian may have multiple positive responses to sliding windows in different scales.
Bounding boxes in different colours are sliding windows from different scales of images. The slid-
ing stride is a quarter of the width of the window and the scalding factor is 1.05

Default values of parameters selected in CV (2.4.3) HOG-SVM detector are an op-
timised settings considering both detection rate and false alarm rate as illustrated
in [22]. Without clustering the detected bounding boxes, it is difficult to locate the
detected pedestrians due to over detection. After clustering, bounding boxes with
similar sizes and positions are clustered. The averaged box of the cluster is calcu-
lated as the new bounding box for detected pedestrians. As shown in Fig. 5.2, using
the scaling factor 1.05 and sliding window stride equals to a quarter of the width of
the window, a pedestrian may have positive responses upto three neighbouring slid-
ing windows in more than five scales. When two pedestrians are closely standing in
an image, positive responses of both pedestrians may overlap. After clustering the
bounding boxes, the output bounding box will contain two or more pedestrians.

Due to the stride of sliding windows is a quarter of the width of sliding windows,
assumptions are made that when the distance between centroids of pedestrians is
smaller than a half of the width of sliding windows, the two pedestrians would be de-
tected as one. In observations, the ratio of the distance between centroids of pedes-

trians to the width of the bounding boxes are calculated. The centroid of a pedestrian
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Fig. 5.3 HOG performance in separating closely appeared pedestrians with Different Ratio

is on the rough symmetry axis of the pedestrian as shown in Fig. 5.3. Experiments
shown when the ratio is smaller than 0.5 (ratio < 0.4), pedestrians may always be
detected in one box; when ratio > 0.6, pedestrians may have separate responses to
sliding windows; when ratio ~ 0.5, the results may vary from circumstances to cir-
cumstances. Fig. 5.3 illustrates the performances of HOG in separating two closely

appeared pedestrians (with limited occlusion) in blank background.

5.1.2 The Rough Symmetry Axes Detection

In this section pedestrians bounded in one box will be separated according to their
symmetry axes. Unlike manufactured objects, pedestrians are not mathematically
symmetrical though symmetry axes of pedestrians could be located cognitively. The
term rough symmetry is used to describe this situation where the two symmetrical
counterparts are similar in appearance. The word similar tolerates the differences in-
troduced not only by the affine transformation or light conditions but also by slightly
changed shapes or patterns of the pedestrians. Clothes on pedestrians may have
drapes or asymmetrical patterns, pedestrians may not pose in a symmetrical gesture
etcetera.

Not many literatures considered the symmetry axes detection of objects or pedes-
trians [84, 85]. The state-of-the-art algorithms used to detect symmetry axes in ob-
jects can be categorised in two groups: one detect the symmetry axes by matching

the interest points as introduced in [86] and the other correspond regions of interests
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to locate the symmetry axes [87, 88]. Clustering and Hough transform are commonly
used techniques to detect the correspondent pixels / regions. These sophisticated al-
gorithms are less capable in detecting human like quasi-symmetrical structure. [88]
illustrated that only few symmetry pairs can be detected from a human face, which
result in less reliable symmetry axes. Still, as a support algorithm to identify and sep-
arate multiple pedestrians detected in single bounding box, the processing proce-
dure should be fast. None of the above algorithms are efficient enough for real-time

applications.
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The detection of the rough symmetry axes within the bounding box containing

probable more than one pedestrians follows below steps as demonstrated in Fig. 5.4:

1. Mosaic Image: Transfer the input detections into mosaic image where the in-
tensities of pixels in tiles of mosaic images are the same. In experiment, input
images (detected bounding boxes using HOG-SVM) are separated into n x m
cells (n rows and m columns). To maintain the cognitive appearance of the
mosaic image with its origin, the median HSV value of pixels is calculated as
the intensity of the piece of tile.

2. Symmetrical Measurements of the r'"* row: The approximated symmetry axis
of a pedestrian may not a straight line. To detected such symmetry axes, in a
nx m tile mosaic image, the symmetry axes are detected on every row and then
connected as the symmetry axis of the pedestrian. To determine the symmetry
axes of the r" row, the Symmetrical Measurement Matrix (S-M! Matrix), M,
will be calculated. The matrix is calculated by sliding an axis from the common
border of the first two cells to the common border of the last two cells with
sliding stride equals to one cell. In each sliding position, the right and left areas
within width of w cells (w = 1,...,m) to the sliding axis are compared. The
element on the ¢ row and w column of S-M Matrix M; (c, w) is the 2w wide
symmetrical measurement of sliding axis on the c’”-column and the r-row of
the mosaic image. This measurement is the median of w colour differences d
between pairs of reflected tiles to the sliding axis, M, (¢, w) is (I; is the intensity

of the i tile on the r*" row of the mosaic image):

di=|Ie+i—I—ill i=12,....om (5.1)
S,(c,w)=d (5.2)
c+i=c+i(module m) whenc+i>m (5.3)
c—i=c—i(module m) whenc—-i<0 (5.4)

3. Verify the Symmetrical Measurements: The symmetrical measurements calcu-
lated on a range of width aim at filtering the weak symmetrical structures. As
shown in Fig. 5.5, even when the width w is over the actual range of the sym-
metrical structure, the measurements of strong symmetrical structure are still
over the setting threshold (T = 0.15). Further more, this can be treated as the

reference of the range of the symmetrical structure: the w that reaches the

1S-M: Symmetrical Measurement
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peak can be believed as the width of the symmetrical structure. To decide if
the sliding axis on the ¢;;, column and the r* row of the mosaic image is a
strong symmetrical axis, the median value of every row of S-M Matrix M, (¢, w)
is selected as the symmetrical measurement of the row. This reduce the S-M
Matrix to S-M Curve S;(c), where:

S, (c)=M,(c,w) w=1,2,...,m (5.5)

See section 5.1.2.1 for details.

Normalise the S-M Curve: Symmetrical measurements over threshold at posi-
tion ¢ calculated in last step is the sufficient but not necessary condition to a
rough cognitive symmetry axis. A solid colour block may have valid symmet-
rical measurements everywhere according to the rules above. The symmetry
axes of a rough symmetrical object should meet two conditions:

(@) It should be in the valley position of the symmetrical measurement curve;

(b) Its symmetrical measurement should over threshold.

To detect the validated symmetry axes of rows in mosaic image, the S-M Curve
of r'" row S, should be normalised with the median value (S,) of the curve.
The normalised S-M Curve is projected into negative logarithm coordination

so that peaks over median value are amplified. The normalised S-M Curve is:

- S
S, = —1ogST’ (5.6)

r

Detect the Rough Symmetry Axes of r'" Row: Calculate the first derivative of the
normalised S-M Curves:
g a5

r e S;(c)-S;(c—-1) (5.7)

Detect the peak points where the first derivative value change from positive
to negative. If its symmetrical measurement is over threshold, the position is
recognised as a symmetry axis of the row. This axis of the row at position ¢
should meet following criterion:

@ S)(c—-1)>0;

(b) S\.(c)<0;

(©) Sr(c) > T (T =0.15 in experiment);
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6. Connect Symmetry Axes of Rows: Multiple axes may be detected in each row of
the mosaic images. Map the positions of detected symmetry axes of each row
to n x (m—1) matrix P where n and m are the numbers of rows and columns in
mosaic image respectively. If a symmetry axis on row j is determined between
the common border of i’ and (i + 1) cell, P(j,i) = 1, otherwise P(j,i) = 0.
In matrix P, 4-connected value 1 elements are connected. The more value 1
elements connected, the longer the the axes. The variance of the column in-
dices of connected elements of the perspective axes with length over threshold
(T) are calculated to verify the perpendicularity of the rough symmetry axis as

pedestrians are normally appeared up-right in images:
Var(l) =E[(I-0)?*|<C,iel,i=1,...,m—-1,P(j,i)=1 (5.8)

Consider the type I and type II cases of multi-pedestrians detected as one,
where pedestrians would occupy at least 50% of the bounding box area, axes
longer than 30% the height of the image (T = 0.3n) are transformed to the in-
put image as the rough symmetry axes. In type III cases, when pedestrians in
the bounding boxes are significantly occluded, shorter symmetry axes can be

tolerated. This will not be considered in this thesis.

Using mosaic image in symmetry axes detection greatly improve the processing
speed as pixels in cells are identical. Image intensity clustering also improve the sym-
metrical appearance of a pedestrian, but applying clustering in an image containing

~ 10,000 pixels? or more is computational expensive.

5.1.2.1 The Width w in Calculating the Symmetrical Measurement

The width w is an important parameter used in calculating the symmetrical mea-
surements. Symmetrical measurement of sliding axis at one position is obtained as
the median value of the distances between mirror reflected cells to the axis. Using
median value in detecting the rough symmetry axes, the symmetrical measurement
will be mainly affected by the number of pairs of similar and different mirror re-
flected cells to the axis rather than the similarity values between those pairs of cells.
This is crucial when the actual width of the symmetrical structure is unknown. In-
creasing the width w from 1 to the actual width of the rough symmetrical structure,

the symmetrical measurements will increase as more symmetrical pairs of cells are

2The smallest detected bounding box using HOG pedestrian detector trained by CV (2.4.3) has size
128 x 64 pixels. This means, the results of HOG pedestrian detection usually contain more than 8000
pixels.
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added to the series of symmetrical measurements; further increasing the width w
beyond the actual width of the rough symmetry, the median value may not be sig-
nificantly affected by non-identical pairs of cells with different colours. As shown in
Fig. 5.5, the symmetrical measurements of symmetry axes on each row are all over
threshold (Vw =1,..., 20: M,(c, w) > 0.15 in experiment). By selecting the median
value of the symmetrical measurements to series of w, strong symmetry axes of rows
could be separated from the weak ones. More examples are shown in Table 5.1.

——r=5,c=10

r=7,c=10
=== 1=9,c=10

====r=1Lc=10

N =
- - L T e
I’ﬁ's--' v e e

St e r=15,c=10

Linte el B N N
1234567 8 91011121314151617181920

(a) Input

(b) Symmetrical Measurement over width w

Fig. 5.5 The values of 9", 10'° rows of S-M Matrix (c = 9, 10, the position of strong symmetry axes)
calculated on the 57,7 9" 11%# 13th 15! row of mosaic image. The symmetrical measurements
are calculated over a range of w from 1 cell to 20 cells (the width of the row). The 4 horizontal lines
on the input image indicate the position of the 374, 8!, 13" and 17" row of its mosaic image.

The curve of symmetrical measurements of a symmetry axis to the width w pro-
vides information on the width of the actual symmetry structure. In experiment, 20
cells are separated in the mosaic image, this curve is calculated by using w ranges
from 3 to 20 cells. One cell is used as the unit of increment. Symmetrical measure-
ments of axes when w = 1 or 2 are ignored as the measurements is less convinced
for the symmetry axes of pedestrians when only a small area is considered. When w
over half the width of the row, due to the usage of circular indexing, pairs of mirror re-
flected cells are compared repeatedly. Sometime, the peaks of the symmetrical mea-
surement to w curve may appear twice, once near the actual width of the symmetry
structure and the other echoed at the half width of image away from the first peak. A
detected symmetry axis may have a reflected symmetry axis around half the image
width away as shown in Fig. 5.6 (a). Twin symmetry axes happen usually when two
pedestrians bounded in one box have similar appearance. Normally, the symmet-
rical measurement of the reflected symmetry axis is smaller than the symmetrical
measurement of the main one and the peak position of M, 1, 20(c, w) curve of the
reflected axis is usually beyond the half image width. Fig. 5.6 (a) to (¢) demonstrate a
typical twin symmetry responses to the changes of width w and Fig. 5.6 (d) to (f) are
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the responses of two correctly located symmetry axes to width w. But this cannot
be used as the judgement of twin symmetries. To determine if a detected symme-
try axes indicate a pedestrian and to reallocate the twin symmetry axes introduced
by similar appeared pedestrians, HOG should be reapplied to the area around the

detect symmetry axes.
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Fig. 5.6 The values of rows of S-M Matrix (c, the position of strong symmetry axes) calculated on
the r" rows of mosaic image. The symmetrical measurements are calculated over a range of w
from 1 cell to 20 cells (width of the row). When two pedestrians having similar appearance are
bounded in one box (a) - (c), the main symmetry axis would be detected between the two pedes-
trian and a reflected symmetry axis would be detected half the image width away from the main
symmetry axis. (d) to (f) show an example of two well detected symmetry axes. The horizontal
axes of the charts are the indices of the common border of cells in mosaic image: i is the common
border between the i‘" cell and (i +1)*" cell
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5.2 Experiment

In this experiment, input images are the detected pedestrian(s) of HOG. False alarms
are not considered in this section as symmetry is not a feature to separate pedes-
trian from the artificial manufactured objects which have more symmetry appear-
ance than human. Input images are transferred into mosaic image of 20 x 20 cells.
The colour of a cell is the median HSV intensity value of pixels in the cell. In the

mosaic image, following steps are performed to detect the symmetry axes:

1. In each row of the mosaic image, slide an axis at each common border of neighbour-
hood cells, calculate the 18 symmetrical measurements at each position for width

w = 3 to 20 cells:

(a) For each w, calculate the series of differences between mirror reflected pairs of
cells to the sliding axis. The differences are calculated using Euclidean distance
between the HSV intensities of two mirror reflected cells to the sliding axis. Cir-

cular index is used when cells are out of range;

(b) Normalise the series of differences using the median of the series and transform
the value of series to the negative log coordination plane (the more symmetrical

the structure, the larger the value);

(c) Calculate the first order derivative of the series of normalised distances and record
the peak position of which the symmetrical measurement is over threshold =
0.15;

2. Select the median value from the 18 symmetrical measurements calculated using w
from 3 to 20 cells. If the value is over threshold (= 0.15), the position of the current

sliding axes is recognised as a strong symmetry axes;
3. Connect 4-connected symmetry axes in rows of mosaic image;

4. Re-apply HOG pedestrian detector to the local area of the detected symmetry axes. If
the size of the input image is M x N, choose an area sizing 1.5M x N centred at the
axis to re-apply HOG detector. Average the position of positive responses around the

detected axes as an updated pedestrian.

Twin symmetry axes are rarely seen in a box of pedestrians with different appear-
ances of single correctly detected pedestrian. This is because the width of one pedes-
trian is relatively small and the symmetry responses to width w is less strong for a
reflected symmetry axis. For type II cases of multiple pedestrians bounded in one
box where limited occlusion is seen from the detection and all pedestrians have pos-

itive response to HOG pedestrian detector, above algorithm show promising result:
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Fig. 5.7 Examples of Symmetry Detection in Multi-pedestrian Separation

in testing dataset containing ~ 100 HOG detections of multiple pedestrians, around
90% of cases, multiple symmetry axes are detected. For type I cases where one pedes-
trian is occluded, the performance of the symmetry axes detection may vary due to
the condition of occlusion. For type III cases, severe occluded pedestrians would be
neglected while the symmetry axis of pedestrians with limited occlusion would still
be detected. The background is object or other pedestrians in a HOG detection have
less effect in the performance of this symmetry detection algorithm. Fig. 5.7 demon-
strate more symmetry axes detection on HOG detected pedestrians. The symmetry
appearance will be affected by accessories.

For occluded pedestrians with visible head-shoulder, applying the appearance
based head part verification algorithm introduced in section 4.2.2 to the relevant
head part, positive responses would indicate a presented head. While that algo-
rithm is not a proper head detection algorithm, repeated performances can be re-
trieved. This is a promising attempt when an occluded pedestrian who is neglected
by HOG pedestrian detector. Still, only the positive responses detected at the top
of the symmetry axes area within the perspective pedestrian images should be con-
sidered as this verification algorithm can hardly decide if the object is pedestrian or

background object in general environment.
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Table 5.1 The 274,6t", 107, 141", 18" column of S-M Matrix (w) over range of the position of slid-
ing axes (c). The horizontal axes of the charts are the indices of the common border of cells in
mosaic image: i is the common border between the i th cell and (i + 1)t cell.
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Table 5.1 (Cont.) The 2™4,6!2, 10", 14", 18" column of S-M Matrix (w) over range of the position

of sliding axes (c). The horizontal axes of the charts are the indices of the common border of cells

in mosaic image: i is the common border between the i th cell and (i + 1

)Sh

cell. When pedestrians

are occluded, more than one symmetry axes will be detected, in the "Crowds-2" image, symmetry

axes detected are normally short and their symmetrical measurements are usually low.
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5.3 Summary

In this chapter, more than one pedestrians detected as one are considered and a
novel symmetry axes detection algorithm is proposed to separate the pedestrians
in one bounding box. Human is not perfectly symmetrical but they have quasi-
symmetry appearance. When sliding an axis horizontally and compare the mirror
reflected pixels to the sliding axis in an area, the detection of symmetry axes would
be sensitive to the appearances of pedestrians: patterns on clothes, limb gestures,
clothes drapes may affect the symmetrical measurement and cause the pedestrian

mathematically asymmetry. To reduce the sensitivity of the detected symmetry axes:

* The cell based mosaic images are introduced to replace the pixel based input

images;

* The detection of an integral symmetry axis is replaced by the connected sym-

metry axes detected on each row of the mosaic image.

The substitution of the pixel images for mosaic images greatly reduces the pro-
cessing speed: the complexity of the calculation spent on the verification of symmet-
rical structures is reduced to @ (n) from @ (n?) using the original pixel based image,
where 7 is the number of pixels in the image. This is especially important when the
algorithm is designed as an assistant step to reduce the less-ideal detections of HOG
pedestrian detector. To select the validated symmetry axes, a wide range of width w
(from 3 to 20) are used in calculating the symmetrical measurements of the sliding
axis, only the axes whose symmetrical measurements are less affected by the change
of w are considered as candidate axes. In area of 4-connected neighbourhood of a
detected candidate axis, this current axis is connect to the candidate axes detected
on adjacent rows. After connection, axes have considerable length 3 will be recog-
nised as the symmetry axes of pedestrians. Sometimes, the position of the detected
symmetry axes may deviated from the centres of pedestrians especially when two
closely appeared pedestrians are similar in appearances. In this case, HOG pedes-
trian detector will be reapplied to the surrounding areas of detected symmetry axes
to determine the positions of pedestrians.

In cases of multiple pedestrians detected as one, two pedestrians in one detec-
tion is more commonly seen than other cases where a crowd is detected. A pair of
pedestrians with limited occlusion * detected as one is due to the clustering of slid-

ing windows in HOG detection. In this case, the symmetry axes detection algorithm

3In experiment, 30% of the total height of the image is considered valid;
“Less than 30% of the total area is occluded.
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has promising performances: 90% of ~100 HOG detection results containing mul-
tiple pedestrians can be separated. When pedestrians in the bounding boxes have
negative responses to the HOG pedestrian detector due to occlusion, though two
symmetry axes may be detected in the detection, the one of the occluded pedestrian
will hardly be verified using current technologies. As an attempt, the result of the
head-shoulder verification algorithm can be considered as an evidence of presence.
Further research is required to discover the performances of the algorithm. Similar
situation happen when a group of pedestrians are detected in one box. Though the
symmetry axes detection may not be much affected by the background (objects or
pedestrian), only strong symmetry shape should be recognised. The symmetry axes
detection algorithm is not a proper algorithm for pedestrian detection as symme-
try is not a feature to separate pedestrians from background objects which are more

mathematically symmetrical.






Chapter 6

Conclusions and Future Work

We can only see a short distance ahead, but we can see plenty there
that needs to be done.

—— Alan M. Turing

Several issues in pedestrian detection and recognition have been discussed in
this thesis. Appearance related features based algorithms for pedestrian re-identification
were introduced. A protocol was developed to quantify the complexity of the appear-
ances of pedestrians so that different effort would be spent on identifying different
prototype pedestrians. After that, strategies were proposed to reduce the false alarms
in HOG pedestrian detection and to separate multiple pedestrians detected in one
bounding box using the HOG-SVM pedestrian detector trained by CV(2.4.3). Based
on discussions in last several chapters, conclusions will be summarised, future work
will be presented in this chapter. Moreover, a thought on vision and perception re-

lated tasks in machine learning will be narrated in the next chapter.

6.1 Conclusions

Pedestrian Identification and Detection are two challenging topics in computer vi-
sion. It is difficult to decide which features play a key role in detecting and identify-
ing a pedestrian from images, though human are expert in this area. Seen from the
state of the art literatures, shape related features are usually selected to distinguish
pedestrians from other background objects. Furthermore, appearance based fea-
tures, such as colours, patterns and textures, are popular choices for recognising the
identity of a prototype pedestrian. Taking advantage of improved computation tech-

nology, employing combined features and algorithms is a recent trend in pedestrian
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detection and identification. However, problems emerged with the development of

techniques for pedestrian detection and identification:

* Applications for pedestrian detection and identification, such as surveillance and mon-
itoring, normally demand real-time processing. Rich descriptions and sophisticated
frameworks increase the difficulties in the development of relevant industrial applica-

tions. Furthermore, complex algorithms are not necessary for every circumstances;

¢ Classification algorithms are normally based on statistical modelling and human ex-
periences based logics, both of which have been proved unreliable to imitate the hu-
man vision system. This means, the state of the art frameworks may have limita-
tions with certain identification and detection cases. As presented in Chapter 4, large
amount of false alarms exist in the detection results of the famous HOG SVM pedes-

trian detector applied to the video frames shot in the car park.

Inspired by above problems, a novel protocol is proposed in Chapter 3. The pro-
tocol contains layers of algorithms, the more layers applied, the more capable the
framework to solve the complex identification and detection problems. The hier-
archical layers introduced in the protocol increase the flexibility of the framework.
Whenever required, algorithms can be added into the protocol. This overcomes the
limitations of the popular classification strategies, especially the generic ones in-
cluding SVM and Boosting.

Discussions in pedestrian detection and identification can never avoid pedes-
trian tracking. As discussed in [7], this is similar to the chicken-egg problem. The
continuous detection is an equalised tracking and the tracking of a pedestrian in-
volves the initial detection and the identifications of later appeared individuals. The
pedestrian detection applied to video frames in Chapter 4 can be treated as the track-
ing of pedestrians. Using pedestrian-detection-by-tracking false alarms may reap-
pear in later frames. It is expensive in calculations to apply false alarm reduction
algorithms to every frame. Simple appearance based algorithms for pedestrian iden-
tification are adopted to reduce the reappeared false alarms.

Algorithms are always desired to improve the performances of the existing frame-
works. To improve the performance of HOG SVM pedestrian detector: in Chapter 4,
the presences of head-shoulders of the pedestrians are selected as the evidence of
the presences of pedestrians. The appearance based algorithm and Viola-Jones body
part detectors are applied to verify the head-shoulder structures of pedestrians. In
Chapter 5, the approximated symmetrical feature is selected as the evidences of the
numbers of pedestrians. Both algorithms are fast in calculation. In false alarm re-

duction, only 10% of the total area of the detection results are examined. To separate
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the multiple pedestrians in one box, the usage of mosaic images reduces the calcu-
lations spent on the verification of symmetrical structures in scale of @ (n), where n
is the total number of pixels of detection results. However, nothing is perfect, both

the protocol and the algorithms proposed in this thesis demand future works.

6.2 Inthe Recent Future

6.2.1 Clothes Pattern Analysis

In chapter 3, histogram based descriptions were applied to synthesis the prototype
and target pedestrians. To obtain more reliable results, descriptors for patterned
clothes should be introduced. The complexity of patterns should be quantified by
their colours and regularity when applied to the proposed pedestrian-re-identification
protocol: the computation effort should be proportional to the complexity of the
problem which is normally related the appearance of the pedestrian. Common pat-
terns including dots, stripes and lattices in two or three colours may have lower lev-
elled complicity comparing to variegated floral and irregular patterns. In current
stage of research, stripes, simple lattices and dots pattern with limited occlusion can
be detected and modelled using Hough transform. Less research has been done in

description of other patterns.

6.2.2 Symmetrical Appearance based Pedestrian Detection

In chapter 4 and 5, algorithms were developed to detect the head-shoulder struc-
tures and symmetrical axes in the detection results of HOG-SVM pedestrian detec-
tor (trained by CV(2.4.3)). Despite the fast processing speed of the two algorithms,
both of them introduce a necessary but less sufficient condition of the presence of
a pedestrian. The application of head-shoulder detection is currently restricted to
the detection results of HOG-SVM detectors. Future work will be done to improve
the adaptation of the appearance based head-shoulder detection. Research will in-
vestigate the combination of the two algorithms into a novel protocol of pedestrian
detection: to detect a pedestrian according to its rough symmetrical shape with a

fixed range of geometry ratio and a head-shoulder appearance on the top.

6.2.3 Pattern Recognition in Chemistry and Biology

Pattern description and recognition will not only support the modelling of pedestri-

ans. The recognition of circles and ellipses from a noisy background may have direct
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applications in fibre material production: the desired product may have different
geometry measurements (radius for circles and eccentricities for ellipses). Manually
counting the desired shapes of fibre materials out of total fabricated fibre materials
from microscopic image is the current ways of evaluating the quality of the produc-
tions. For example, carbon fibre and glass fibres are usually mixed to obtain desired
strength and flexibility. The quality of the combined fibre materials depends on the
divergence and uniformity of the two mixtures. Recognising the number of differ-
ent sized fibres (carbon fibres are thinner than the glass fibre) and determining their
distribution through hundreds of sampled microscopic profile images will improve
the efficiency of quality control which is currently processed manually during man-
ufacture. Furthermore, recognition could be spanned to cells and emulsion droplets
where the number of these objects are vastly required in relevant research and man-

ufacture.As shown in Fig. 6.1

(a) Mixture of Fibre Materials (b) Single Kind of Fibre Materials

Fig. 6.1 Two Examples of Pattern Recognition applied in Chemical Engineering: (a) is the cross-
section image of carbon fibres (small white dots) mixed with glass fibres (big gray dots), to model
the distribution of fibres in mixture, fibres of different materials should be recognised and located;
(b) is the cross-section image of a kind fibre materials in production, the eccentricities of ellipses
(the fibre material) in the images are required to analyse the quality of fibre materials. Above are
lab images in excellent condition: boundaries of fibres can be clearly detected without overlaps or

occlusion, fibres of different materials appear in both different colour and dimension.

Images from Polymer and Composite Engineering Group, Department of Chemical Engineering,
Imperial College London



Chapter 7

An Evolving Recognition System: A
Thought

'Ev oido 6Tt 0udév ofda.!

—Ewxpdtng

Recognition is a basic function of human and some animals but it is a difficult
problem for computers. There is even no precise definition for recognition rather
than "to get something recognised". To simplify the problem, research in this area fo-
cus on activities of verification, detection and identification like problems addressed
in this thesis. The human activity would be the desired model for the counterpart re-
search in computer vision. If compare the recognition activities as the inputs and
outputs with regard to the black box of the recognition system, recognition research
aims in constructing the rules to process the input visual signals to the output cog-
nition meanings which should as similar as the responses produced by the human
black box. However, even the research of activities are difficult: the definition of the
activity is based on the observations of human activity while the mathematical mod-
elling is based on the conjecture and reasoning of the activity; the database of the
activity cannot be enumerated; the evaluation of the activity is subjective and insuf-
ficient, the algorithms surviving from certain databases may fail in others.

Rather than developing an organ which could see and percept using machines
and computers, it would be more practical to develop several genes relating to the
function. Furthermore, with the evolution of computer vision, new genes will be
collaborated with the existing ones, ancient genes would be mutated when updated

replacements are developed. The work of the thesis would perform some of these

T know nothing except the fact of my ignorance.—— Socreates
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genes in the evolution of the recognition system. In the future, the recognition sys-

tem may be developed in following routes:

» Take advantage of brains: similar to the invention of neural controlled arms, by
discovering the brain activity in neural signal level may assistant in developing

an interpreter of visual signal to cognition;

e Take advantage of computation: assembling computer vision algorithms for

various vision related activities.

The first route will detect the ports where computer vision can be collaborated
with human vision and the second one will create a parallel vision system which
intimate the human vision system based on the observations of human vision activ-
ities. Human is the expert in recognition and identification which are difficult to be
modelled or imitated by computer. There is not enough information on the proce-
dure how human process and translate visual signals received by eyes to cognitive
meanings in brain. It is foreseen that more and more complicated computer vision
system will be developed. People said that computer vision may never be fully devel-
oped until the truth of human vision and perceptions are discovered like there was
no aeroplanes until the mechanics of flying of birds could be modelled. Thesis like
this may not contribute on human self-understanding in the ways of thinking nor
perception. But it is an attempt in providing means of perception for computers to

learn, though different to human vision, its application will benefit in certain area.
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Appendix A

Viola Jones Detectors Provided by
OpenCV

OpenCV is multi-platform library for computer vision algorithms. In this thesis, its
C++ API! is used in programming. As described, trained pedestrian and body-parts
detectors used in this thesis are provided by OpenCV (version 2.4.3). The trained
HOG pedestrian detector is a series kernel parameters of SVM classifier. According
to the OpenCV reference manual[89], parameters used in HOG training follow the
recommendations in [22], though no information was provided about the training
datasets, the training result can be easily retrieved using functions in HOG class.
The trained Viola Jones based detector is a series of Haar-like features with its
weights. Even following the exact training routines introduced by [30], the selected
rectangular features and their weights may vary especially when the training datasets
are unknown. As presented in previous context, the size and the position of the cho-
sen Haar-like features in the detector may affect the accuracy and the stability of the
performances. To better understand the trained Haar-like feature based detectors.
The files of "Frontal Face Detector", "Upper-body Detector" and "Pedestrian Detec-
tor" were examined. The summary of these detectors are provided below, more de-
tailed information can be retrieved in OpenCV documentation®. As a supplement,
Table A.1 demonstrates the detailed calculations of Haar-like rectangular features on

integral images.

! API: Application Programming Interface.
2URL: docs . opencv.org
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134 Viola Jones Detectors Provided by OpenCV

Haar-like Face Detector file: "haarcascade_frontalface_alt_tree.xml"3

¢ Face detector detect face area from the middle of the forehead to the middle of the

chin;

* Colour changing around eye, nose and mouth area play more important role in face

recognition.
Haar-like Upper-Body Detector file: "haarcascade_mcs_upperbody.xml"

* This upper-body detector detect upper-body from head top to middle of chest;

e There are overlaps of features used in upper-body detection and frontal-face detec-

tion. This may introduce the miss detection of the upper-body in back view;

* A fairly amount (~25%) of small/slim sized Haar-like feature blocks were observed
in upper-body detector. Small means the block is sized under 3 x 3 pixel? and slim
indicate the width of the block is less than 3 pixel. This would introduce instability to

the performance of the detector.
Haar-like Pedestrian Detector file: "haarcascade_fullbody.xml"

* The fullbody detector detect the upright human from head to feet.

* High influential features capture the colour changing around the body, between head

and torso and between upper-body and lower-body;

» Haar-like blocks were used to provide more shape information of human.

3In the OpenCV package, the trained Viola Jones detectors are stored in ".xml" file, where the trees /
stumps of rectangular features are hierarchically coded using following parameters: the Coordinates
of Top-Left Corner within the ROI followed by the width and height of the rectangle feature. The
weights of features are accompanied.
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Haar-like Feature

Calculate in Integral Image

(a) 2-Rectangular (Edge)

R

(B3 —A3—B1+ A1) —2(B2— A2 - B1 + A1)
B3 —2By+B] — A1 +2A2 — A3

(b) 3-Rectangular (Edge)

AL_A, Ay Ag
-1 [

B: B: Bs B4

S

(By—Ag— By + A1) —2(B3 — A3 — By + Ap)
By —2B3+2By —B1 — A4 +2A3-2A2+ A1

(c) 3-Rectangular (Line)

=se

(By—Ag— By + A1) —2(B3 — A3 — By + Ap)
By—2B3+2By —B) — A4 +2A3-2A2+ A1

(d) 4-Rectangular

(C3—A3—-C1+ A1) -2(C2-B2-C1 +By)
—2(B3—A3—-By+ A))
C3—-2Cy+C1—2B3+4By —2B] + A3 —2A2 + A

(e) Centre
A A;
B, B,

Cy Cz

-1
Dy D,

(D2 —D; — A2+ A1) -2(C2 - Cy — B2 + By)
Dy —D1-2C2+2C1+2B2-2B1 - A+ A1

Table A.1 Haar-like Feature and Detailed Calculations in Intensity Images
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