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Abstract 

In this thesis, metabolic profiling (MP) platforms were utilised to interrogate the manifestation of 

cardiovascular disease and provide candidate biomarkers. A number of LC-MS and NMR 

methodologies were employed. Data processing was followed by assessment using multivariate 

(MVDA) and univariate (UV) statistics. MP is applied under three cardiovascular disease themes: 

1) plaque rupture, 2) plaque formation, and 3) arterial ectopic calcification. Statistically significant 

features were structurally assigned. Identified metabolites were mapped to their corresponding 

biochemical pathways. 

For MP of ruptured plaque, tissue from symptomatic and asymptomatic patients for stroke was 

used. After detection of statistically significant features and structural assignment, two biochemical 

pathways showed dysregulations: the arachidonic acid pathway, indicating increased levels of 

inflammation, and the β-oxidation pathway with increased levels of three acyl-carnitines. 

Tissue extracts were used to investigate plaque formation. Arterial intima tissue, incorporating 

plaque lesions (carotid and femoral), was compared to intimal thickening tissue. Intima thickening 

demonstrated distinct MP compared to plaques. Plaques from different anatomical locations also 

demonstrated altered MP. After metabolite assignment, pathway mapping revealed dysregulations 

common to both anatomical locations. These were cholesterol, ceramide, purine, pyrimidine and β-

oxidation pathways. These pathways are related to inflammation and apoptosis. A metabolite 

previously unassociated to atherogenesis was detected with strong statistical significance (t-test; 

p≥9.8x10
-12

), namely phosphatidylethanolamine-ceramide. It also demonstrated high correlations to 

cholesterol, a well-established risk-factor of atherosclerosis. 

The third theme of the project explores ectopic cardiovascular calcification. Experiments were 

conducted on blood serum. Patients with coronary artery and aortic valve calcification were 

compared with non-calcified controls. Phosphatidylcholine moieties and sphingomyelins were the 

major discriminating metabolites between cases and controls. These are involved in inflammation 

and apoptosis. The two diseases manifested different profiles with only three commonly 

dysregulated metabolites. 

A number of experiments using additional samples and bottom-up approaches will follow to 

provide validation of results.  
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Chapter 1  Introduction 

1.1  Metabolic Profiling 

Metabolic profiling (MP), also referred to as Metabonomics, is defined as ―the quantitative 

measurement of the dynamic multiparametric metabolic response of living systems to 

pathophysiological stimuli or genetic modification‖
1
. MP aims, by employing analytical chemical 

techniques, towards covering, ideally, the full ‗spectrum‘ of metabolites (metabolome) in a living 

system. Metabolites ―serve as direct signatures of biochemical activity‖
2
 and this activity provides 

current and historical information of the biological processes taking place in a cell or organism. 

Other –omic approaches are interrogating the parts of genetic information flow which can be 

subjected to further processes and modifications, such as genes, transcripts and proteins (genomics, 

transcriptomics and proteomics). However, the metabolome represents the real end-points of 

(patho-)biological reactions (Figure 1. 1) and can report on exogenous factors introduced by diet or 

gut microbiota in addition to the mammalian metabolism
3
. For these reasons metabolites can 

correlate closely to phenotype and deliver disease related information. 

 

Figure 1. 1: The central biological dogma indicating metabolites as the final products of genetic information flow. 

Metabolites excel compared to the information provided by proteins as being closer to the phenotype, since they are not 

subjected to further modifications. They practically represent an updated snapshot of the current status of a biological 

system. Adapted from Patti el al
2
. 

MP can define this ―multiparametric (metabolic) response‖ using multivariate data analysis 

(MVDA) methods. However, for this, metabolite measurements should be able to provide at least 

relative quantification. Therefore, techniques used should be responsive to differential metabolite 

concentrations, and have a good dynamic range in order to capture, as far as it can be possible, the 

dynamic range of living systems. MP, with the help of technological advances, has evolved into a 

powerful tool for discovering novel biomarkers for disease diagnosis
4
 and prognosis

5
. It can also be 
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implemented for pharmaceutical target discovery, and elucidation of disease pathways
6, 7

, paving 

the way for more individualised diagnostics and treatment schedules
5, 8

. 

Metabolome coverage has become extremely broad, due to advances in the analytical platforms 

employed e.g. the introduction of cryoprobes in NMR, high resolution mass spectrometers 

providing superior sensitivity, and Ultra Performance Liquid Chromatography (UPLC)
9
. Further, 

recent statistical developments, allowing data integration of different analytical matrices, have 

provided new insights in gene
10

 and enzyme function
11, 12

 studies and could potentially lead to cost 

reduction in the drug development pipeline 
8
, for example, by improving mechanistic understanding 

of drug toxicity
5, 8

.  

It has been shown that metabolic profiling of tissue, and/or of the biofluids that interact closely with 

the tissue of interest, delivers clinically and biologically significant results
13

. Consequently, 

metabolic profiling techniques are now being applied to homogenised or even intact tissues, cells, 

as well as biofluids
14-17

. Screening of biological samples, cells or tissues can nowadays be 

performed in order to obtain biomarker/metabolic pathway information relating to disease. Various 

spectroscopic techniques are employed
8, 18, 19

, such as Nuclear Magnetic Resonance (NMR) 

spectroscopy
14, 15

, Mass Spectrometry coupled to Liquid Chromatography (LC-MS)
16, 20

, Gas 

Chromatography (GC)-MS
21

, and less frequently Capillary Electrophoresis
22

. It is of supreme 

importance, when applying MP, to employ more than a single method or platform in order to 

maximise the range of the metabolites detected. Findings can then be mapped to reference pathways 

in online available databases
23, 24

 and literature. In cases where traditional biochemistry cannot 

deliver, data processing methods such as correlation networks can be employed to aid biochemical 

interpretation of results. This is generally the issue when it comes to metabolite classes such as 

lipids
25

. 

When approaches implementing homogenised tissue are employed, the significant parameter of 

spatial distribution of the biomolecules through the tissue is disregarded. Therefore, new screening 

techniques for untargeted determination of biomolecules, in a manner that incorporates the spatial 

distribution, have been considered
26, 27

. Applications of imaging techniques that can deliver 

chemical profiles related to organ or tissue topography have recently been demonstrated for MP
28-32

 

(Figure 1. 2). Mass Spectrometry Imaging (MSI) techniques appear to hold what is needed for 

metabolite in situ screening. Magnetic resonance imaging (MRI), able to analyse intact tissue 
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samples along with providing spatial information of the collected spectra, is the alternative in NMR 

spectroscopy. 

 

 

Figure 1. 2: A calcified human valve section after A) H&E staining and B), C) and D) after representation of three 

selected ions acquired after MALDI-MSI of the tissue section. 

Nonetheless, MP is now well-recognised
6, 8, 10, 33

, and in combination with other –omic 

technologies
2, 19, 34

, usually transcriptomics, or metagenomics
34

, can provide good coverage of 

metabolic and signalling pathways. It should be generally followed by appropriate validation, 

according to the function of the biomarker discovered. Biomarkers for diagnosis are generally 

validated to an independent cohort of samples, while novel pathways are validated by bottom-up 

approaches
35, 36

 (Note: A bottom-up approach is defined as the process when prior knowledge of a 

biological system exists, and the analyst explores the behaviour of this known network and tests 

hypotheses
37

. Bottom-up approach is also used to describe cell-based approaches, as opposed to 

top-down approaches used to describe whole organism, multicellular system applications
33

. Top-

down can also be used to describe the process where no prior knowledge of a system is used, and by 

the use of statistics and bioinformatics, modelling of a biological system is obtained). Still, in every 

case the biological basis of molecule serving as biomarkers, should be determined.  
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1.1.1 Lipid Profiling 

Lipid profiling approaches specifically target the lipidome, which can be considered a sub-category 

of the metabolome. The lipid moieties comprising the lipidome are calculated to several hundreds 

of thousands
38-40

.  Enzymes known for their participation in lipid synthesis do not reflect the 

―enormous diversity of the lipidome‖
39, 41

. Factors affecting lipidome variation could be 

environmental, such as the diet, and symbiotic microbiota
39

, which can obviously be to an extend 

independent to the genetic information of an individual. Nonetheless, the lipidome appears to play a 

very important role in biological systems and disease
42, 43

. There are currently two widespread 

approaches for perform lipid profiling: LC-MS, and direct MS infusion (shotgun lipidomics)
44

. 

However, the disadvantage of obtaining lipids as biomarkers lays to the difficulty of 

comprehensively place them in biological pathways. In order to assist mapping of the detected lipid 

moieties, correlation analysis can be used
25

, as well as combining analyses from polar metabolites 

and other levels of integration, such as the proteome and/or genome. At the same time this 

―disadvantage‖ of the lipidome depicts the importance for elucidating its biological potential in 

elucidating human disease.  
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1.2 Cardiovascular Disease 

The term cardiovascular disease (CVD) refers to all diseases affecting the heart or blood vessels 

(arteries, veins, or capillaries). CVD is the leading cause of death in the UK and the USA according 

to the World Health Organisation (WHO) report 
45

. The two most frequent causes of death of CVD 

are mainly related to atherosclerosis and hypertension. The theme of the current thesis is to 

elucidate the metabolic perturbations causing atherosclerosis-related diseases; such as plaque 

formation, rupture and arterial ectopic calcification. 

1.2.1 Atherosclerosis 

Atherosclerosis comprises of the formation of a lipid-rich lesion in the inner wall of the arteries. 

These lesions are generally referred to as (atherosclerotic) plaques. Firstly, this can cause limited 

flow to important organs such as the heart (angina or infarction), brain (transient ischemic attack, 

stroke, or microvascular disease) and kidneys (renal failure). In some cases the plaque can rupture 

and develop a blood clot on its surface. This clot can dislodge itself from the plaque and travel in 

the circulatory system blocking the blood supply to the brain or heart (thromboembolism), causing 

health and life-threatening events (e.g. stroke and heart attack). The important fact about 

atherosclerosis is that despite modern achievements, biologically as well as clinically, it still 

remains the leading cause of mortality and morbidity, in the western world
46

. 

1.2.1.1 Low and High- Density Lipoproteins (LDL and HDL) 

LDL and HDL are the lipoproteins responsible for transferring lipophilic molecules throughout the 

body, using the bloodstream. Most abundant lipophilic molecules in lipoproteins are cholesterol, 

cholesterol esters, triglycerides and phospholipids. Due to their lipophilic nature, these molecules 

cannot be dissolved in the blood. Therefore, proteins with appropriate structure (apolipoproteins) 

function as carriers of these molecules, by incorporating them in their core. LDL is considered to be 

the ―bad‖ lipoprotein for human health. LDL provides the cells with cholesterol by attaching to 

appropriate LDL-receptors. On the other hand, HDL, the smallest and densest of the lipoprotein 

particles, is considered the ―good‖ lipoprotein. For reasons that will be explained in the following 

paragraph, these two lipoproteins are routinely assessed as risk factors for atherosclerosis. As it 

would be expected by their pseudonyms, high circulating LDL and low HDL are considered to be 

highly correlated to the risk of atherosclerosis. 
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1.2.1.2 The process of atherosclerosis 

The whole process of plaque formation begins with the retention of LDL in the endothelial cells of 

the arterial wall
47

 and it occurs prior to monocyte recruitment in the area of plaque formation
48,49

. 

The trapped LDL soon starts to become oxidised. At this point, inflammatory
48

 and adhesion 

molecules such as chemokines
50

 are produced by the endothelial cells and stimulate the recruitment 

of leukocytes, primarily monocyte, into the endothelium. After recruitment to the lesion, monocytes 

are converted into macrophages. There macrophages will engulf the LDL particles forming foam 

cells (named after the foamy appearance of their cytoplasm) and initiating the atheroma.  

Macrophages further contribute to LDL oxidation. The protein part of LDL is also oxidatively 

modified, an event that diminishes the affinity to the LDL-receptors. This eventually leads to 

bypassing of the feedback loop, causing the cell to create more LDL-receptors in order to capture 

and retain more LDL in the cell. This can cause cholesterol overload in the endothelium and 

macrophages, known to be a characteristic of plaques. Other evidence also suggests that oxidised-

LDL can be recognised with higher affinity by appropriate acetyl-LDL receptors from the 

macrophages, leading them to form more foam cell populations
47, 51

.  

The HDL lipoprotein can help reduce the concentration of cholesterol by a mechanism called 

―reverse cholesterol transport‖
46

. With this mechanism, excess cholesterol is transferred to the liver 

where it will be secreted in the gastrointestinal track. HDL may also mitigate plaque formation due 

to anti-oxidative properties of two HDL associated enzymes
47

. The whole procedure described 

herein is schematically represented in Figure 1. 3. 
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Figure 1. 3: A schematic representation of atherogenesis. 1) LDL-receptors are produced by endothelial cells and capture LDL, 2) LDL is oxidised, 3) LDL and ox-LDL induce 

production of chemokines, adhesion and inflammatory molecules, 4) leukocytes and primarily monocytes are recruited, 5) monocytes are transformed to macrophages which engulf 

LDL and ox-LDL becoming 6) foam cells and forming the 7) atheroma (plaque). 8) HDL has anti-oxidative abilities and can reduce the oxidation of LDL. 9) HDL has the ability of 

incorporating plaque cholesterol and transports it to the liver.  
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Atherosclerotic lesions presenting evidence of lipid accumulation are preceded by a stage known as 

intimal thickening. During this stage, production of proteoglycans is observed
52

. Intimal thickening 

is generally found at points of bifurcation, providing evidence indicating that it is a consequence of 

hemodynamic stress. Points of bifurcation are known areas of application of low wall shear stress
53

. 

Shear stress is also known to play a role in monocyte adhesion
53

. However, atherosclerotic lesions 

can also be observed in areas without bifurcations or areas exposed to low hemodynamic stress
48

.  

Inflammatory mediators in the presence of loss of smooth muscle cells support can lead to 

weakening of the fibrous cap of the atheroma
54

. This can lead to the rupture of the atheroma and 

initiation of the coagulation cascade with platelet adhesion. Eventually a thrombus is formed which 

(Figure 1. 4) can migrate and cause thromboembolism to parts of the subsequent arterial tree. 

According to the location of the plaque, this could cause a stroke (usually carotid plaque), or heart 

attack (coronary plaque). Thrombi can also occur from an external erosion of the atheroma
54

 

(Figure 1. 4).  

 

Figure 1. 4: The basic stages of plaque formation, from normal artery (1), to plaque formation (4) and rupture (5). 

Adapted from Libby et al 
54

. 
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The basic stages of plaque formation could be synopsised to: 

1. Normal artery
54

.  

2. Lesion initiation
54

: First evidence of tissue injury and intimal thickening. 

3. Fibro-fatty stage
54

: Monocytes conversion into macrophages which engulf modified-LDL 

becoming foam cells. Intima layer becomes thicker. 

4. Progression to the atheroma stage
54

.  

5. Rupture of fibrous cap
54

. 

6. Thrombus resorption
54

. Evolution towards advance fibrous and calcified plaque. 

7. Thrombus from superficial erosion
54

. 

1.2.2 Cardiovascular Calcification 

Cardiovascular calcification is the process where vessels become ossified. It is believed that the 

calcification process is an active biological process rather than passive deposition with similarities 

to bone formation
55

. It does not occur in normal vessels. On the contrary, there are evidence that 

calcification occurs after vessel wall injury
48, 56

. Calcification is generally considered a progression 

from atherosclerosis and if present, it will classify a lesion as ―advanced‖
48

. However, some 

evidence of independent mechanisms also exist
57

. 

Calcification is an advanced degenerative process. It is generally present, and increases in 

magnitude with age. However, it should not be considered an age-related degenerative process, as it 

can occur at any age and can progress with time
58

. Figure 1. 5 demonstrates an X-ray of the post-

mortem examination of a young adult, where multicentric and advance calcification is obvious in 

the coronary artery
48

.  
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Figure 1. 5: A post-mortem X-ray film of the heart of a young adult with extensive ectopic calcification on coronary 

arteries. Adapted from Frink et al 
48

. 

Within Chapter 5, results from experiments on vascular but also valvural calcification will be 

presented and discussed. The elucidation of the pathophysiology of vascular calcification is 

important due to contradictory reports of prognostic significance of calcification in cardiovascular 

events
57, 59, 60

. On the other hand, aortic valve calcification (Figure 1. 6) is the second most common 

indication for cardiac surgery
61

, and the leading cause for valve replacement in the United States
62

. 

Calcific aortic valve disease is also associated with atherosclerosis
62

 and hemodynamic stress
63

. It is 

also important to state that there is evidence of the reversibility of the disease, e.g. in malignancies
56

 

and after statin treatment
64

, making the quest of an appropriate pharmaceutical target more 

essential. 
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Figure 1. 6: An image of two conjugated aortic heart valves. Valves show evidence of fibrous and calcium formation. 

 

1.3 Metabolic profiling studies on cardiovascular disease 

In this section, a review of the current literature relating to metabolic profiling applications on 

cardiovascular disease is performed. The PubMed search engine 

(http://www.ncbi.nlm.nih.gov/pubmed) was used for identifying relevant papers. The search quote 

used was: (metabolomics OR metabonomics OR "metabolic profiling") AND (atherosclerosis OR 

"cardiovascular disease"). Searching with this quote retrieved 141 results. However, only original 

research articles are reviewed and discussed. Review, editorials, commentaries or perspective 

articles were excluded. 

http://www.ncbi.nlm.nih.gov/pubmed
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Figure 1. 7: Number of published research articles relevant to metabolic profiling applications on cardiovascular 

disease, per calendar year. 

Metabolic profiling studies have been applied for cardiovascular disease and atherosclerosis-related 

research since 2005. Although until 2009 not many original research articles were published, there 

were a large number of reviews and perspective articles. This demonstrated very well the unmet 

need of the scientific community for new technologies able to provide novel candidate biomarkers, 

as well as aid the effort for elucidation of the dysregulated biological pathways. 

Application of metabolic profiling was initiated on pilot/feasibility studies
65

, and using recognised 

animal models
66-72

. Intervention studies conducted using metabolic profiling tools and relating to 

atherosclerosis, are also present in literature
69, 73-77

. Inevitably, - and due to the widespread interest 

for cardiovascular disease and importance for acquisition of relevant risk-factors – multi-centre, 

large population studies were conducted as soon as the technology could sustain the analysis and 

processing of the required sample numbers. The INTERMAP (INTERnational collaborative study 

of MAcronutrients, micronutrients and blood Pressure)
78

, ARIC (Atherosclerosis RIsk in 

Communities)
79, 80

 and LIPGENE
81

 studies are some of the noticeable examples in literature. 

Lastly, only five articles in published literature apply metabolic profiling using tissue as the 

biological matrix
65, 70, 82-84

. Moreover, only one is utilising the technology on human tissue
84

 rather 

than tissue from animal models. This depicts the need for further applications that can provide 
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important biological information that can only be obtained on tissue level rather than biofluids. 

Furthermore, the need for developing appropriate methodologies, in order to cover for the need of 

tissue applications, is evident. 

Overall, the great need for studies applying metabolic profiling on cardiovascular disease is 

obvious. These studies should work on elaborating on a global, systemic level, maximising the 

information obtained. Finally, more studies should be applied on tissue samples, a matrix that can 

provide invaluable information about the pathophysiology of the disease and dysregulation of 

biological pathways. 
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Chapter 2  Analytical Strategies 

2.1 Introduction 

As discussed in the preceding chapter, metabolic profiling uses a pallet of techniques and methods 

in order to maximise metabolome coverage. The most frequently used techniques are NMR 

spectroscopy and LC-MS. In both platforms several methodologies are used to cover a different 

range of compounds. For NMR it could be a range of sequences, such as CPMG and diffusion, and 

resonance of different nucleus such as proton, 
31

P and 
13

C. On the other hand for LC-MS a range in 

chromatographic columns such as reversed-phase and HILIC columns to cover for the different 

lipophilicity of metabolites, or even different sources for the ionisation of the compounds prior to 

detection, such electrospray ionisation (ESI) or atmospheric pressure chemical ionisation (APCI). In 

the following sections the two platforms, NMR and UPLC-MS, are discussed since they are the two 

techniques applied for obtaining results for studies relevant to this thesis. Statistical tools applied to 

deal with these holistic analytical approaches are also discussed. 

2.2 Ultra Performance Liquid Chromatography coupled to 

Mass Spectrometry (UPLC-MS) 

To address the complexity of the metabolome, platforms are needed that can provide enhanced 

resolution in order to detect and (semi-)quantify the wide range of compounds in a biological 

sample (such as urine, blood, tissues). In such cases coupled methodologies can provide the wide 

range of coverage required by holistic analytical approaches. This section describes the platform 

utilising the advantages of liquid chromatography coupled to mass spectrometry, which is becoming 

more ubiquitous as an analytical tool in metabolic profiling studies. 

Ultra Performance Liquid Chromatography – Mass Spectrometry (UPLC-MS) describes the 

coupling of these two very powerful and widely used techniques: liquid chromatography and mass 

spectrometry
85, 86

 (Figure 2. 1). Using liquid chromatography compounds are subjected to 

separation to be further ionised on elution and detected by the mass spectrometer. On one hand, 

liquid chromatography has become an invaluable separation tool in analysis, with numerous 

applications in bio-, as well as food
87, 88

 and drug analysis
89-92

. On the other hand, mass 

spectrometers, as compared to other detectors coupled with liquid chromatography, offer the 

additional specificity that liquid chromatographic separation need, especially when it comes to 
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complex matrices. Currently, mass spectrometry constitutes the heavyweight tool in the ‗arsenal‘ of 

untargeted metabolic profiling technologies, offering additional sensitivity in a wide range of 

analytes. 

 

Figure 2. 1: A diagram of an LC-MS format. The heart of the LC is the pump. The pump is supplying the mobile phase 

to the system at a specific flow. The mobile phase will pass through the column and reach the detector, an MS in this 

case, which is followed by a recorder. Between the pump and the column, there is the sample injector which is where 

the sample is loaded and injected into the flow to be separated. 

2.2.1 Ultra Performance Liquid Chromatography (UPLC) 

2.2.1.1 Liquid Chromatography 

Liquid chromatography is based on the chemical interactions of the analyte to: 1) the solid material 

that a chromatographic column is packed with, called the stationary phase, where the analyte is 

essentially partitioned, and 2) the mobile phase, which is constituted by the solvents that flow 

through the column. A correctly set up chromatographic method should firstly allow for the analyte 

to be retained in the column due to the interactions and physicochemical forces to the stationary 

phase, that are greater than to the mobile phase. This will allow for ‗non-specific‘ molecules and 

salts to flow through the column. By adjustments to the composition of the mobile phase, the 

physicochemical forces of the stationary phase to the analyte will be surpassed by the ones between 

the analyte and mobile phase. Therefore the analyte will elute from the column. When the 

composition of the mobile phase is adjusted through the analysis then this is called a gradient 

elution. However, there is ability for the system, after proper adjustments in solvent composition, to 

retain the analyte and elute without changing the composition of the mobile phase through the run. 

This is called isocratic elution. There are both advantages and disadvantages in both types of 

elution. The gradient elution is generally used when the analytes in a sample have a wide range of 

physicochemical properties. This is the case in metabolic profiling, when untargeted methodologies 

are used. The immediate issue from this is the long re-equilibration of the system to the initial 

conditions, i.e. initial mobile phase compositions. 
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The efficiency of the chromatographic separation of a method/technique is measured by the 

resolution (R) of the system. This would be the measurement of separation of two peaks, 

proportional to their difference in retention time, and inversely proportional to the average width of 

the two peaks (Equation 2. 1)
93

.Figure 2. 2, and Equation 2. 1 describe the concept of 

chromatographic resolution. Another measure of chromatographic efficiency is the number of 

chromatographic plates which is inversely proportional to peak width. 

 

  
     

 
           

 

Equation 2. 1: The equation describing the calculation of chromatographic resolution: t1 and t2 represent the time of 

each peak at the apex, tw1 and tw2 represent the width of each peak. 

 

 

Figure 2. 2: A schematic representation of two chromatographic peaks, along with their characteristics important for 

calculation chromatographic resolution. 

The invention and coining of the term chromatography, in attributed to Mikhail Tsvet (1903). Since 

then, multiple contributions to chromatography are reported and recognised. However, the 
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introduction of the first commercial HPLC (High Performance Liquid Chromatography) is credited 

to Waters in 1969, with the ALC100 HPLC. The HPLC came with advance resolution capabilities. 

This was due to the ability to support a stationary phase consisting of particles typically in a 

diameter of 5μm or larger
93

. This increased the surface of interaction, and provided tighter packing 

of the column. However, tighter packing came with increased backpressure. Thus, HPLC columns 

came with the advanced ability to tolerate such pressures, and at the same time providing constant 

and reproducible flowrate. 

The heart of the liquid chromatography instrumentation is the pumps. They are constructed with 

proviso to resist corrosion from salts and strong organic solvents which usually comprise the mobile 

phase. They are also designed to provide a pulse-free output. Reciprocating pumps are the ones 

generally used. According to the pump format single-, dual-, or triple- head pumps maybe used to 

reduce flow pulsation. Also pulse damping is sometimes used to compensate for the small 

fluctuations in flow and pressure
93

. 

2.2.1.2 Ultra Performance Liquid Chromatography 

HPLC was the separation technique of choice for over 30 years. Ten years ago the new concept of 

Ultra Performance Liquid Chromatography, UPLC, was introduced
94, 95

. It was introduced by Water 

Corporation and now the copyrights for the name UPLC belong to this company. Other companies 

use different names to describe UPLC, such as RRLC, for rapid resolution liquid chromatography 

(Agilent).  Therefore, the scientific community is currently using the term ultra high performance 

liquid chromatography (UHPLC). For the purposes of this thesis the term UPLC is used.  

The advancement that made UPLC a higher efficiency chromatographic technique was the 

reduction of particle size of the stationary phase and tighter packing. The theoretical background is 

that particles of less than 2.5μm in diameter can increase theoretical chromatographic plates and 

keep this high efficiency even at high flowrates. UPLC is using sub-2μm particles in diameter, 

generally 1.7 - 1.8μm. 

However, with smaller particle size and tighter packing, along came the increase in backpressure. 

This was another challenge that was resolved by the UPLC systems. A UPLC system and columns, 

can typically tolerate up to 15,000psi of system pressure. Additional provisions are in place to avoid 

any cause of high pressure. Such protective module is the pulse-free sample injection. 

In general, the UPLC can provide improved separation compared to its predecessor, HPLC. 

Additionally, the minimal dispersion of analytes provides higher sensitivity. Lastly, as discussed, 
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the analyst has the ability to go for faster analyses without significantly compromising 

chromatographic resolution. These are the advantages that make UPLC the separation platform of 

choice in today‘s bio- (or other) analysis applications. 

 

 

Figure 2. 3. Three-Dimensional Maps of (A) HPLC-MS and (B) UPLC-MS, showing retention time, m/z and intensity. 

The superiority of UPLC, especially in terms of sensitivity is obvious. The figure is adapted from Wilson ID et al
96

 and 

is obtained from the analysis of mouse urine.
96

 

2.2.1.3 UPLC Column chemistries 

In order to optimise the analyte-stationary phase chemical interactions, different column chemistries 

are used. This means that the material of the stationary phase will vary according to the 

physicochemical properties of the analyte, such as their structural groups and lipophilicity. An 

optimal interaction would mean that the analyte would elute without major interferences or 

background, in a rather pure form, and with a minimal diffusion within the system, translated to a 

sharp peak when detected.  

Two are the major concepts applied in column chemistries today in UPLC-MS untargeted metabolic 

profiling, reversed-phase and HILIC: 

2.2.1.3.1 Reversed-phase Chromatography 

Reversed-phase (RP) chromatography got its name due to the inverse principles applied compared 

to the classical mode that was initially used for chromatographic applications. This initial form was 

coined normal phase and it used to describe chromatographic systems where the mobile phase is 

less polar than the stationary phase. Typically for normal phase, the stationary phase is silica. 
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Consequently, RP describes the exact opposite. The mobile phase is more polar than the stationary 

phase. This is generally achieved by irreversible binding of aliphatic chains to the silica. The most 

common chains used are C8 (saturated aliphatic chain of 8 carbons) and C18 (saturated aliphatic 

chain of 18 carbons). 

For the current study two RP columns were used. The first was a C18 HSS (High Strength Silica) T3 

column (Figure 2. 4A). The high strength silica material is made in order to provide high 

mechanical stability to the silica. This allows for its application in high pressure methods. In high 

pressures the silica material can be crushed, thus restricting the flow and altering the profile of the 

analysis. This kind of stability is needed in metabolic profiling especially due to the long runs with 

large sample sets, in order to provide the required reproducibility
97

. 

 

Figure 2. 4: The chemical structures of an HSS T3 column and a BEH HILIC. 

The second column used is a C18 CSH (Charge Surface Hybrid) column. This column uses 

chemically stable silica material in an ethylene bridged hybrid (BEH) structure (Figure 2. 5). It 

provides the high chemical stability that silica was missing and in a wide range of pH, as well as 

increased mechanical stability. On top of the BEH silica particles a low-level charge is applied on 

the particle surface. Then the C18 chain is bonded to the silica. Apart from improved 

chromatographic efficiency, the CSH format provides increased loading capacity, tolerance to high 

pH and fast equilibration time
98

.  

B 

A 
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Figure 2. 5: The chemical structure of BEH column indicating the ethylene bridge in the silica structure for added 

stability. In the bottom is the reaction to produce this bridged polymer. Adapted from Waters Corp
99

. 

2.2.1.3.2 Hydrophilic Interaction (Liquid) Chromatography (HILIC) 

Hydrophilic Interaction (Liquid) Chromatography (HILIC) can be considered a variant of normal 

phase chromatography. HILIC uses silica as a stationary phase. For our experiments BEH HILIC 

columns were used. The ethylene bridge links of BEH, as discussed in Section 2.2.1.3.1 , provide 

extra chemical stability to the stationary phase. As expected, HILIC can manage very well with 

polar compounds (a property lacking in RP), and provide the retention needed. However, for the 

format of this approach, in contrast to normal phase, some water is required in the mobile phase. 

HILIC functions by ―partitioning of the analyte between a water-enriched layer of stagnant eluent 

on a hydrophilic stationary phase and a relatively hydrophobic bulk eluent‖
100

. This is demonstrated 

in Figure 2. 6. On top of the advantage of superior retention and separation of polar compounds
101, 

102
, HILIC also provides better ionisation when coupled to MS, than normal phase. This is due to 

the eluents used, which are not totally organic and non-polar
100

. Additionally, preparation on mobile 

phase is less laborious as water does not need to be totally omitted
100

. Lastly, the solvents used, 

water and acetonitrile, are more compatible to methods already applied (e.g. RP methods) which 

minimises the need of extensive priming of the UPLC system. 
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Figure 2. 6: The partitioning of an analyte (cytosine) between the water-enriched layer, formed by the interaction to 

silica, and the mobile phase. Adapted from Neue et al 
103

. 

2.2.2 Mass Spectrometry 

UPLC provides the improved separation needed for bioanalysis applications and especially for 

holistic analytical methods applied in metabolic profiling
96

. However, the short width of the UPLC 

peak profile (usually in the range of 3-10 s) demands detectors with high-speed scanning abilities, 

while at the same time, holistic, untargeted approaches, demand a detector that can provide 

specificity, sensitivity in a wide range of molecules and adequate structural information on the 

separated compounds. 

Mass Spectrometry (MS) is a physical analytical technique. It can function as a detector for UPLC, 

as it can accurately measure analyte mass, and with multiple scans per second. MS can provide 

identification of compounds, according to their mass-to-charge ratio (m/z), and fragmentation 

pattern (MS/MS). This makes MS an attractive tool for applications in the field of metabolic 

profiling, and has actually become the method of choice compared to other platforms
104

, especially 

when coupled to UPLC.  Nowadays, MS instruments come with enhanced sensitivity and 

specificity. Their universal format is summarised in Figure 2. 7, and it includes the source, analyser, 

detector and recorder. The detectors are usually using multichannel plates (MCP), which use the 

principle of secondary emission, to amplify the signal from each ion colliding on their surface. 
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Figure 2. 7: A diagram indicating the basic parts constituting an MS instrument. 

The high resolution abilities of modern MS instruments are a major contributor to the increased 

specificity. MS resolution (R) is a measure of separation between two m/z peaks. In most MS 

instruments this is considered a separation at 50% of two m/z peaks. It is therefore calculated as the 

m/z of the peak (m) divided by the difference between two resolved peaks (Δm) (Equation 2. 2). 

Resolution can be calculated for an isolated m/z peak by using as Δm the full width at half 

maximum (FWHM) of the peak.  
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Equation 2. 2: The equation for calculation of MS resolution: m is the m/z of the ion used for resolution calculation and 

Δm is the m/z difference between two separated ions. 

Mass accuracy is the measure of accuracy of the detected m/z of a specific ion. It is describing the 

error compared to the theoretical m/z, and it is important to be as low as possible for untargeted 

studies as it can make the structural assignment easier and the methodology more specific. It is 

expressed as parts per million (ppm) and calculated as the difference of the experimental m/z from 

the theoretical, divided by the theoretical and multiplied by 10
6
 (Equation 2. 3). The mass accuracy 

of an instrument is closely related to the resolution. Only high resolution instruments can provide a 

high mass accuracy
105

 such as Fourier transform ion cyclotron resonance (FTICR) mass 

spectrometers. 

 

              
                 

        
     

Equation 2. 3: Calculation of mass accuracy of a detected ion. 

 

2.2.2.1 Types of mass spectrometers for determination of m/z 

Several types of mass spectrometers exist, each relying on different principles and instrumental 

setup, in order to determine the m/z of an analyte. Some of the most widely used mass 

spectrometers for targeted and untargeted metabolic profiling (utilized for applications for this 

thesis) are described in the following paragraphs.  

2.2.2.1.1 Time of flight (TOF) mass spectrometers 

The most widely used in metabolic profiling are the time-of-flight (TOF) mass spectrometers. For 

the TOF-MS instrument to calculate the m/z of a charged molecule, an electric pulse (voltage) is 

applied to the molecule while guided in a field-free region. All molecules have the same initial 

energy according to the voltage applied (Ev=zV). The molecules travel in the TOF tube while under 

a vacuum, but have different velocities due to their differences in mass. This is due to the kinetic 

energy which is proportional to mass and velocity (Ek=½mv
2
). Provided the initial energy Ev is 

equal to the kinetic Ek, the time for the molecule to flight in the tube is analogous to the root of m/z. 
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Thus, smaller ions will reach the detector faster than larger ions when introduced in the TOF, 

provided that they have the same charge. The advantage of the TOF-MS is that charged molecules 

reach the detector within nanoseconds, and therefore a full, wide-range, m/z scan can be obtained in 

high-speed. Typically, 5 scans are required per second when MS is coupled with UPLC, and TOF 

analysers can deliver this scan frequency, and in theory even as fast as 30 scans per second.  

Modern TOFs can also provide high resolution, especially since the introduction of reflectrons and 

orthogonal TOFs, and improved mass accuracy, enhanced by the use of lock-mass correction 

(Figure 2. 9). Reflectrons, also referred to as ion mirrors, are a set of parallel opposite charged metal 

rods, where ions can be reflected. This way the TOF separation is increased by elongating the ion 

path without physically making the TOF tube longer. This means that less space is needed for the 

analyser but also less power to pump down. Orthogonal TOFs (oTOF) were introduced to solve the 

issue with TOF-separation affecting ions prior to entering the TOF tube. This separation can cause 

widening of the ion peaks and reduce resolution. The oTOFs can increase resolution by 

orthogonally introducing ions into the TOF tube since they apply a voltage perpendicular to their 

current velocity.  These advantages, and the relative low cost of instrumentation and maintenance, 

are what make TOFs preferred for untargeted metabolic profiling. 

2.2.2.1.2 Quadrupole mass spectrometers 

On the other hand, quadrupoles use a different principle for calculating m/z. Quadrupole analysers 

use oscillating electric fields to isolate charged molecules according to m/z. This is done by usually 

two pairs of parallel cylindrical rods with opposite charge (Figure 2. 8). Trajectories followed by 

the charged molecules will differ according to their m/z and oscillation frequencies. Ions with m/z 

not focused to pass through the quadrupole, will eventually collide with the charged rods and 

neutralise. This apart from the obvious specificity, it can provide higher sensitivity when targeted 

approaches are applied. Additionally, the cost of instrument can be low. However, when a wide m/z 

range is required, a full scan can take up to a second
106

. Quadrupoles can also suffer in mass 

accuracy. These disadvantages restrain the application of quadrupoles for untargeted approaches, 

though they are preferred for targeted. 
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Figure 2. 8: A schematic representation of a quadrupole. The two pairs of parallel cylindrical rods bear opposite 

charge and are under constant electric field oscillation, according to the desired ion. According to the oscillation, ions 

with different m/z will differ in their trajectories. Non-specific ions will eventually collide to the charged rods and 

neutralise. 

2.2.2.1.3 Quadrupole-TOF 

A hybrid of the two MS instrumentations that combines the best features from both is the 

instrument of choice for several laboratories working on metabolic profiling. This instrument is the 

quadrupole-TOF (qTOF) and has the quadrupole followed by a collision cell (where fragmentation 

of molecules occurs), and ending with a TOF for m/z determination and recording (Figure 2. 9). 

This provides the flexibility for TOF analyzer to be used with untargeted applications. The 

quadrupole can be used in order to select a specific m/z to be subjected to fragmentation, and the 

full m/z spectrum can be recorded again after TOF separation. 
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Figure 2. 9: A diagram of a Xevo G2. The sample is sprayed into the source by the sample sprayer. The ions are the 

guided through a z-shape course and by passing through ion optics, a quadrupole and a collision cell are entering the 

TOF tube to be subjected to separation and detection according to their m/z. 
107

 

2.2.2.2 Ionisation Sources – Electrospray ionisation (ESI) 

The ionisation source is the part of an MS instrument that converts molecules to a charged state. It 

also transfers charged molecules into the gas-phase, appropriate for detection by MS analysers. The 

mostly used ionisation technique coupled to UPLC is ESI. ESI, introduced by Fenn et al
108

, is the 

preferred ionisation technique for UPLC-MS metabolic profiling studies, due to the ‗soft‘ ionisation 

it can provide
109

. It can interface very well UPLC and MS, as it can cope with transferring separated 

molecules, coming from the UPLC, into the gas-phase. 

ESI occurs in essentially ambient atmospheric pressure, and after application of strong electric field 

to a liquid. The liquid gets to the source through a capillary. The high voltage is applied between the 

capillary and the counter-electrode, in close proximity. Generally voltages range between 1-3kV 

and vary in polarity according to the charge of the molecules detected. The droplets created at the 

end of the capillary are subjected to high charge accumulation due to the electric field. A gas flow 

usually nitrogen is applied coaxially to the sample flow, with the intension of restraining the 

droplets axially and assisting to the production of fine aerosols. On top of that, the desolvation gas 

is applied (N2), usually at high temperature and flow, which causes solvents to evaporate (Figure 2. 

10). The droplet will experience greater opposite forces on the surface as the solvent evaporates and 

it gets smaller. This will cause a further explosion of the droplets into smaller ones, and will keep 
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occurring until no solvent is left and the analyte is in the gas-phase (Figure 2. 11). This way the 

accumulated charge on the surface of the droplet is passed to the molecules. The exact mechanism 

of transfer of the charge from the droplet to the molecules is not clear, but its principle is that the 

charge of the droplet remains unchanged as solvent evaporates
110

. The ions enter the MS analyser 

guided by the forces from the application of opposite charge voltage. This comes on top of the 

suction forces applied as the analyser constantly functions under a vacuum. Usually, the flow of the 

source and the entrance of the analyser (sample cone) are orthogonally located (Figure 2. 9 and 

Figure 2. 10). This avoids the direct infusion of neutral molecules into the analyser. In Figure 2. 9 it 

can be seen that the ions are guided through another orthogonal route. This works as additional 

improvement in ion-charge specificity, and eventually increases the sensitivity of the instrument by 

reducing the non-specific ions reaching the detector. At the same time it protects the instrument 

from unnecessary accumulation of debris. Perhaps the greater disadvantage of ESI and MS in 

general, is that molecules are competing for the same amount of charge. This causes a phenomenon 

called ion suppression and is the major restriction of sensitivity in MS technologies. 

 

Figure 2. 10: The design of an ESI source. On the left is the probe where the sample is injected. On the right is the lock-

spray, where the lock-mass is injected for constant adjustments to the recorded mass. The rotor is constantly switching 

between blocking either the sample entering the analyser or the lock-mass. 
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Figure 2. 11: A representation of the mechanism of electrospray ionisation in the source of an MS analyser. Adapted 

from  Waters Corp
110

. 

2.2.2.3 Tandem MS 

Tandem MS or MS/MS can provide structural information of a molecule according to the fragments 

produced, or by matching of the fragmentation pattern to a standard compound. As previously 

mentioned one of the most common instruments used for MS/MS acquisition is the QTOF, and it is 

the instrument used in this study as well. In order to obtain an MS/MS spectrum of an ion using a 

QTOF, this ion, called the parent ion, needs to be isolated first. This is done by a quadrupole, but in 

this case the analyser is not followed by a detector. Instead, the ion will pass through a collision cell 

where it will be fragmented by a neutral gas (such as nitrogen or helium) and application of voltage. 

The fragments will then pass into the TOF analyser and detected, providing only ions originated 

only from the precursor ion. An example of how MS/MS can provide structural information and be 

matched to a compound can be found in Figure 2. 12.  
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Figure 2. 12: Example of how tandem mass spectrometry (MS/MS) by using a QTOF mass analyser, can assist in 

structural assignment of a compound. Data from studies described in Chapter 4 are used, illustrating the identification 

of sphingosine from ms/ms data. (A) The MS function of a fraction eluted from a column at a given retention time shows 

multiple ions. (B) A specific m/z (282; black arrow) is chosen for MS/MS, and ion-specific fragments (orange arrows) 

after collision-induced dissociation are detected (Insert: Expansion of 50-300m/z). (C) Ion-specific fragments can be 

matched to online MS databases (in this case Metlin
111

). 
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The introduction of tandem MS acquisition modes such as data depended acquisition (DDA) has 

assisted to a great extent the assignment of statistically significant molecules in metabolic profiling. 

DDA can be set to automatically acquire MS/MS spectra from ions, usually according to an 

intensity threshold. 

Another mode which can be characterised as a variation of tandem MS is the MS
E
. It is different to 

MS
n
 as there is no initial parent ion isolation. All molecules will be fragmented as they pass from 

the collision cell, usually after ramping of the collision energy. It is generally used after UPLC 

separation and data are generally collected along with an MS
1
 acquisition scan

85
. The MS

E
 function 

is specific to Waters instruments. 

These approaches allow the scientist to collect, during the initial untargeted run, enough 

fragmentation information to assign a great number of molecules prior to knowing the outcome of 

the analysis. This saves time and the frustration of matching different retention times to the same 

analyte, as minor shifting may occur. Such fluctuations in retention time, observed between runs, 

are usually small, and are mostly due to small differences in the preparation of mobile phase or 

column degradation. Sometimes they can be quite large differences due to variations in tubing 

length. 

2.2.3 UPLC-MS data processing in metabolic profiling studies 

In untargeted UPLC-MS metabolic profiling methods, a vast amount of information is collected. In 

the case of UPLC-MS this information comes in the form of detected chromatographic peaks, 

attributed to a specific m/z. In order to handle this wealth of information, appropriate automation is 

required to transform the data into a concise and representative format, enabling the application of 

subsequent statistical analysis tools. Generally, the scientist requires a matrix consisting of all the 

samples as columns, and as rows all the detected peaks. The peaks are represented as features 

describing the intensity of a specific retention time and m/z. Generally peaks are characterised by 

the area under the peak, or height, and there are some basic steps to be applied in order to get to that 

point. 

Two are the major algorithms that need to be applied in order to obtain the information needed for 

statistical analysis. The first is peak-picking, which is comprised of an algorithm that identifies 

chromatographic peaks, and results in a number of identified peaks, with their own individual 

characteristics (retention time, m/z, area) per sample. This is followed by grouping, which involves 

the identification of peaks that describe the same feature. An example of the matrix generated by 

such algorithms in UPLC-MS can be seen in Figure 2. 13. 
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Figure 2. 13: A matrix (partial) generated from UPLC-MS data after data processing with peak-picking and grouping 

algorithms. Columns represent features describing m/z and retention time, and rows represent samples. 

There are a number of packages applying algorithms that generate these matrices of processed data. 

Some of them offer more flexibility and have more abilities than others. Two packages that are used 

in this study for data processing are the XCMS package
112

 and MarkerLynx. 

XCMS is an open-source package
112

, written in the R programming language. Apart from the peak-

picking and grouping, it can provide abilities such as retention time correction and filling of missing 

peak data. It also provides the flexibility of choosing from different algorithms for different 

processes. Disadvantages could be considered the low user friendliness, and necessity of 

transformation from the initial format (related to the software of the instrument company) to a 

compatible format to the package (e.g. NetCDF) 

MarkerLynx is a package from Waters Corporation that is built-in their central software MassLynx, 

used primarily to interface the instrument and for data visualisation. It makes processing easier as 

the scientist can move directly towards applying data processing algorithms. The disadvantage is 

the limited flexibility, and reduced abilities which don‘t include processes such as retention time 

correction and missing peak filling. 
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The last part of data processing is normalisation. Normalisation is a per sample adjustment of 

features in order to remove systematic variation occurring from biologically irrelevant factors. Such 

variations may include reduction in instrumental sensitivity through a run, inconsistencies in 

pipetting, and different sample dilutions (e.g. in urine). This way samples become comparable to 

each other, and variation is more likely to be biologically related. There are different approaches on 

how to properly normalise a dataset but which one is more appropriate is debated
113

. For this study, 

total area normalisation is applied for UPLC-MS studies. Total area normalisation accounts very 

well for reduction in analyser sensitivity (due to accumulation of debris and other sources of 

contamination, generally in the instrument source) which is a common issue in long runs
114

. 

2.2.4 UPLC-MS metabolite identification 

Structural assignment of metabolites can be a very tedious task, when untargeted approaches are 

applied. It is sometimes referred to as ―the bottleneck of metabolic profiling‖. The success of 

metabolite identification is, to a great extend, laying on the skills of the analyst and requires a wide 

range on knowledge. For this thesis, descriptions of modules used to identify compounds are 

described in each chapter. In this section, guidelines for: accomplishing structural assignment and 

appropriate reporting for the level of assignment are described. 

Metabolite assignment is essential no matter what the ultimate target of the analysis is; elucidation 

of a biological pathway, or diagnostic biomarker discovery. For revealing pathway dysregulations, 

pathway mapping can aid biological interpretation and placing differential metabolites into context 

with the studied disease. Altered biological processes contributing towards the pathological 

phenotype can be identified and targeted for further clarification of their dysfunctionality. On the 

other hand, although there is an impression that diagnostic biomarkers or profiling may not 

necessitate relating to pathways of disease, it is actually of supreme importance and is a part of 

diagnostic biomarker validation. 

2.2.4.1 Minimum reporting for metabolite assignments 

Concerns arising from the need to appropriately report evidence for structural assignments of 

metabolites, led several groups working on metabolic profiling to reach and publish a consensus on 

minimum reporting. The Metabolomics Standard Initiative has published a paper entitled ―Proposed 

minimum reporting standards for chemical analysis‖
115

 reporting suggested levels of metabolite 

identification: 

 Level 1: Identified compounds (two independent and orthogonal data relative to an authentic 

compound analyzed under identical experimental conditions) 
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 Level 2: Putatively annotated compounds (e.g. without chemical reference standards, based 

upon physicochemical properties and/or spectral similarity with public/commercial spectral 

libraries) 

 Level 3: Putatively characterized compound classes (e.g. based upon characteristic 

physicochemical properties of a chemical class of compounds, or by spectral similarity to 

known compounds of a chemical class) 

 Level 4: Unknown compounds — although unidentified or unclassified these metabolites 

can still be differentiated and quantified based upon spectral data 

There of course intermediate levels that could be achieved or one could even surpass the top levels 

if it is considered necessary. For example, while two independent and orthogonal measurements, 

matched to authentic standards, are considered sufficient for level 1 assignment, this would mean 

that m/z and retention time could be enough to accomplish top level of assignment. However, 

ms/ms spectra could provide more confidence to the assignment combined with m/z and retention 

time measurements. In rare cases it might be considered of importance to derivatise the compound 

and if the expected derivative is produced, provide additional support to the assignment, though this 

could usually be considered excessive. 

2.2.4.2 Workflow for accomplishing structural assignment in untargeted UPLC-MS 

metabolic profiling experiments 

There are several steps towards accomplishing the structural assignment. These steps are to guide 

the analyst towards the corresponding structure and at the same time provide support for the 

assignment: 

1. Accurate mass database search 

2. MS polarity mode of detection consistent with structure 

3. Biological matrix and species 

4. Sample preparation 

5. Retention time 

6. Charge number (z) 

7. Mass deficiency 

8. Elemental composition 

9. MS/MS  and MS
E
 

10. Authentic standards – matching to retention time and MS/MS of sample feature 

11. Considerations for the possibility of structural isomers 
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Although matching to accurate mass, retention time, ms/ms, and authentic standards are the most 

important steps of the workflow, there is still valuable information to be gained from every 

suggested step. 

2.2.4.2.1 Accurate mass database search 

Searching on relevant public databases for a specific accurate mass can provide vital direction 

towards the appropriate structure of an unassigned feature. Databases used should be relevant to the 

samples analysed, meaning that the analyst should use databases dedicated for biological matrices. 

The Human Metabolome Project (HMDB)
116

, Metlin
111

 and LipidMaps
117

 are some of the databases 

available online, relevant to biological matrices and offering searching based on mass accuracy 

measurements (Figure 2. 14). 

 

Figure 2. 14:The options offered by the Metlin database
111

, for searching using an accurate mass measurement. 

Online databases would generally offer options for polarity mode, relevant adducts and a mass 

window in Dalton (Da) and/or ppm (Figure 2. 14). Some of these databases offer calculations for 

dimer ions, which can also be the case for small molecules. They would not, however, provide 

matching of any isotopes, and they are focusing mostly on primary and parent ions. All of these 

manifestations of a molecule in the ionic state (adducts, dimers, isotopes) could make approaching a 

conclusive result more difficult, relaying on the experience of the analyst to rationally narrow down 

probable matching metabolites.  
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In Figure 2. 15, an example of database matching (Metlin database
111

) using accurate mass is 

illustrated for a feature detected with m/z of 140.0684. When covering a greater range of potential 

adducts (in this case adducts of ammonium, sodium, water and the protonated ion form) a total of 

36 metabolites match the searching criteria. However, when the potential adduct forms are 

restricted to only sodium, only 17 hits match the searching criteria. The analyst can acquire this 

information and restrict the search criteria by inspecting the m/z spectrum at the specific retention 

time. As can be seen in Figure 2. 15C another ion at 118.0852, is matching the possibility of the 

protonated ion. This can be further confirmed by chromatography (Figure 2. 15D) where it becomes 

obvious that the two ions at m/z 140.0684 and 118.0852 are coeluting, demonstrating with high 

confidence that these two ions are manifestations of the same molecule. 

 

Figure 2. 15: Reducing possible hits for metabolites matching the criteria for m/z 140.0684
111

. A) Using four possible 

adducts a total of 36 hits are obtained. B) When using only the possibility of sodium adduct hits are reduced to 17. C) 

Information about the adduct form can be obtained by the spectrum and D) chromatography can help verify that the 

two ions originated from the same molecule. 
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2.2.4.2.2 ESI polarity mode of MS detection 

When obtaining the search results from databases, the analyst should first enquire if the possible 

matching metabolites can actually ionise in the detected polarity mode. This piece of information is 

not available by databases, which might be just presenting possible calculations for aiding the user. 

Figure 2. 16 shows all the possible ion adducts as calculated by the Metlin database
111

 for stearic 

acid. Although the protonated ion is also demonstrated, it is known that carboxylic acids do not 

sufficiently ionise on positive mode. Therefore, the analyst should critically review results from 

databases and exclude matching to ions that cannot be practically formed. 

 

Figure 2. 16: An example of a database (Metlin
111

) calculating adducts that might not be necessarily formed for the 

polarity MS mode used for analysis. 

2.2.4.2.3 Biological matrix and species 

It is also essential to make sure that the matched metabolite is compatible with the analysed 

biological matrix and species. When it comes to the biological matrix, knowledge of basic 

biochemistry can be very helpful. For example, the detected m/z of 314.1241 was matched to two 

potential metabolites. One of them and with less mass error is a glucuronide. Keeping in mind that 
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the biological matrix in this case was a urine sample, where numerous non-polar compounds are 

excreted as glucuronides, the analyst could focus more on proving this as a possibility rather than a 

less polar match (norcisapride).  

On the other hand, differences on expressed metabolites between species, could also work on the 

analyst‘s advantage. For example, the metabolome of humans (Homo sapiens), Drosophila 

melanogaster, bacteria species, should be expected to have substantial diversion. The lipid class of 

sphingolipids, for instance, would manifest different lengths of backbone, with the 18 carbon chain 

largely detected in humans, whereas the 14 carbon chain would be detected in Drosophila 

melanogaster. For both species, the 16 carbon chain can be detected as the sphingolipid backbone. 

Lastly, before one excludes any metabolite as abnormal for a species/matrix, should first ask if they 

could be present due to environmental interactions, symbiosis or any sort of intervention. 

2.2.4.2.4 Sample preparation 

Sample preparation can also assist towards narrowing down possible metabolites, matched by 

databases. The most frequently applied extraction methodologies nowadays are liquid-liquid 

extraction and solid phase extraction (SPE). For liquid-liquid extraction, the solvents used can 

provide an idea of the physicochemical properties of the molecules extracted with high yield. On 

the other hand, if SPE is applied, the stationary phase and eluents can provide this information. 

Sample preparation can induce features due to materials and handling. In this case, the analyst can 

easily determine and exclude such ions by running preparation blank samples. This means that the 

same solvents and procedure would be applied without the additions of sample. In this manner, 

impurities from solvents and compounds generated from the procedure, such as plasticisers, can be 

identified. 

2.2.4.2.5 Chromatographic retention time 

The retention time of an ion could provide valuable information and guidance towards structural 

assignment, reflecting metabolite physicochemical properties and structure. This could be a tedious 

task as it requires experience, critical review of the chromatographic system used, especially 

stationary and mobile phase, and experimental characterisation of the method applied. However, 

some simple rules for specific chromatographic systems could further assist the analyst. For 

example, when a reversed phase system is used, one can expect that less polar compounds to be 

retained longer in the column (Figure 2. 17). On the other hand, when a HILIC system is used, 

molecules with higher polarity would generally be less retained in the column (Figure 2. 18); 

thought partition mechanisms with HILIC systems can be more complicated. A practical option 
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would be for the analyst to run mixtures of standards in order to understand the interactions 

occurring in chromatographic systems. 

 

Figure 2. 17: An example of reversed phase UPLC-MS analysis, where compounds with higher lipophilicity are 

retained longer in the column. 

 

 

Figure 2. 18: An example of HILIC UPLC-MS analysis, where compounds with less lipophilicity are retained longer in 

the column. 
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Finally, measurements such as the partition coefficient (logP), which is a measure of lipophilicity of 

a molecule, can provide a rough idea of the extent of the interactions that can occur in a 

chromatographic system. It can be used as a guide especially when comparing between compounds. 

Figure 2. 19 demonstrates how the logP value is consistent with the retention time in a reversed 

phase chromatographic system. 

 

Figure 2. 19: A demonstration of two compounds with different logP, and how this provides estimation for their 

distribution between the two phases formed in the column. 

2.2.4.2.6 Charge number 

Although in metabolomics the scientists generally deal with singly charged molecules, it is 

sometimes possible for a molecule to have a double (or higher) charge. For this to occur, more than 

one sites with structural groups that could ionise, are required. This is generally the case with 

macromolecules (Figure 2. 20A). Nonetheless, this is essential information for identifying the 

structure of a molecule and can be easily obtained by observing the isotopic profile of an ion. 

Keeping in mind that the MS measures the mass-to-charge ratio (m/z) a doubly charged molecule, 

unlike singly charged, will have the 
13

C isotope at an additional m/z of approximately 0.5 rather 

than 1 (Figure 2. 20B). This can provide additional assistance for structural assignment of detected 

ions. 
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Figure 2. 20: A) A polypeptide can form doubly charged ions due to several number of structural groups that can 

ionise. B) An example of a metabolite (cardiolipin), demonstrating that when there is a double charge, the second 

isotopic signal will be located at M+0.5 m/z. 

2.2.4.2.7 Mass deficiency 

Mass deficiency can be described as the difference between a compound‘s exact mass and its 

nominal mass. It is yet another benefit of high resolution/high mass accuracy MS. Mass defect can 

provide tremendous assistance in metabolite structural identification, from aiding assigning the 

corresponding elemental composition to detecting adducts. An example frequently encountered in 

metabolomics is assigning alkyl ether or alkyl ester to phosphatidylcholines (PC). The PC(O-

18:0/18:0) with molecular formula of C44H91NO7P+ (protonated ion), and PC(17:0/18:0) with 

molecular formula C43H87NO8P+ both have a nominal mass of 776. Additionally, they would 

experience similar range in retention times (provided that an untargeted method is used), and 

present similarities in characteristic fragments. However, their exact mass would be significantly 

different (ΔDa=0.0364), and easily detected by modern TOF instruments. The analyst could 



 

73 

 

therefore gain guidance on the structure and specifically the elemental composition of the PC 

detected. 

2.2.4.2.8 Elemental composition and isotopic pattern 

Calculating the elemental composition or even just being able to confirm the existence of a specific 

atom in a molecule could prove significantly useful. The existence of 
13

C will display an additional 

ion after the main, parent ion. Knowing that 
13

C is present at a percentage of 1.1% the number of 

carbons in a molecule can be calculated simple by dividing the proportion of 2
nd

 to 1
st
 parent ion 

isotopes by 1.1. Additionally, characteristic isotopic patterns can be obtained if chloride (Figure 2. 

21), bromide and sulphur are present. This would be the case even if they are present as adducts. 

Recently, software that can suggest an elemental composition for a specific isotopic pattern has 

been made available. However, the user has to be careful and check the quality of the data provided. 

High intensity saturated ion signals, as well as low intensity signals that their isotopic signals cannot 

rise above noise, could lead to a wrong result. Additionally, such software also uses mass accuracy 

for their calculations (generally provided as a ‗score‘), so the user should make sure that mass 

accuracy is satisfactory.   

 

Figure 2. 21: An example for the spectrum of adenosine in negative MS mode, where a chloride adduct is formed 

demonstrating a characteristic isotopic pattern.  
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2.2.4.2.9 Tandem MS 

Metabolite fragments and fragmentation patterns can be characteristic and very informative for the 

structure of a molecule. The information they can provide can be specific and by further use of 

tandem MS databases and/or authentic standards, could lead to structural assignment. The MS/MS 

and MS
E
 are the most frequently used approaches applied, as described in Section 2.2.2.3 . In 

Figure 2. 22 the example for ion 140.0684 from Section 2.2.4.2.1 (identified as sodium adduct) is 

used to illustrate how using fragments from the MS/MS spectrum of the ion, and matching them to 

fragments from an online database (Metlin
111

), led to the structural assignment for betaine. 

However, if such matching is not possible, then it lays on the skills of the analyst to decipher the 

structure of the analyte. Software and algorithms using basic fragmentation rules can assist when 

assembling a molecule from fragments is needed. 

 

Figure 2. 22: Matching the MS/MS spectrum of betaine to the MS/MS spectrum from Metlin database
111

. 

2.2.4.2.10 Matching to authentic standards 

In order to report a metabolite structure with confidence, it is of importance to match the detected 

metabolite to the authentic standard in terms of tandem MS spectrum, and retention time, when 

chromatography is used. Firstly, it is advised to opt for matching retention time, and then for 
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matching to tandem MS spectrum. This is due to occasional difficulties of obtaining MS/MS spectra 

from samples as the concentration of the analyte can be low. In Figure 2. 23 the example for ion 

140.0684 from Section 2.2.4.2.1 (identified as a sodium adduct), demonstrates matching the ion of 

betaine to the corresponding authentic standard by retention time and MS/MS spectrum. This 

approach can provide the confidence needed for an assignment. 

 

Figure 2. 23: Matching betaine to the authentic standard. A) Matching retention time of betaine from standard and 

sample, and B) matching MS/MS spectra. 

2.2.4.2.11 Structural isomers 

An important parameter that needs to be addressed by the analyst is whether existing isomers 

(including stereoisomers) can be identified. This can be very important as they can show numerous 

biological interpretations. There are several occasions where isomers can be coeluting when 

chromatography is applied. Therefore, the analyst should be able to discriminate between different 

structural forms of isomers. This can occasionally be possible from MS/MS experiments. Figure 2. 

24A demonstrates how the two isomers of citrate and isocitrate present differences in their 

fragmentation pattern. However, this is not the case with butyrylcarnitine and isobutyrylcarnitine 

which have practically identical MS/MS spectra (Figure 2. 24B). In this case it should be 

determined if chromatographic separation can be achieved (Figure 2. 24C). If not, the possibilities 

should be investigated and reported.  
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Figure 2. 24: A) Spectra of citric acid and isocitrate
111

 present differences in formed fragments. B) Spectra of authentic 

standards for butyrylcarnitine and isobutyrylcarnitine present the same fragmentation pattern. C) Isomers for 

butyrylcarnitine and isobutyrylcarnitine can be resolved with chromatography. 

2.2.4.2.12 Examples of structural assignments 

2.2.4.2.12.1 Phosphatidylcholines 

Lipophilic compounds such as phosphatidylcholines (PC) can ionise very well with ESI-MS. They 

are therefore frequently detected by untargeted metabolic/lipid profiling analyses. Characteristic 

fragments for PCs can provide structural information for assigning. As an example the ion 784.59 

will be used. This ion is detected with two chromatographic peaks (Figure 2. 25). A database search 

(Metlin
111

) for this m/z provided 65 metabolites that could be matching in terms of mass (Da). 

These included phosphatidylcholines, phosphatidylethanolamines, phosphatidylserines and 

phosphatidic acids. PCs can be easily detected by their characteristic fragment in tandem MS, of the 

loss of phosphocholine head-group (184.07 Da). This narrows results down to 43 PCs. What remain 

to be determined are the fatty acyl chains of the two detected PCs. Although in positive mode this 

can be possible by detecting the positively charged fragments after neutral loss of one of the chains, 

in negative mode the loss of the fatty chain can be sensitively detected. This presumes that both 

polarity modes are conducted with the same method, in order to easily identify by retention time, 

identical metabolites. For this example, the first ion was identified as PC(18:2/18:1) by positive 

mode MS/MS fragments (Figure 2. 26), to be further confirmed by negative mode (Figure 2. 27). 

The second ion was identified as PC(16:0/20:3) in the same way. In positive mode MS/MS spectra 

(Figure 2. 28) the difficulty for obtaining the length of the chains can be observed, due to the 
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reduced ability of the formed ions to ionise. On the contrary, in negative mode fatty acyl chain 

fragments can ionise very well and are well above the noise level (Figure 2. 29). 

 

Figure 2. 25: Extracted ion chromatograms for to isotopes detected with m/z of 784.59 in positive mode and 828.58 in 

negative mode. 

 

Figure 2. 26: The MS/MS spectrum of the first ion on positive mode. This ion can be easily identified as a 

phosphatidylcholine (PC). This information can be obtained from the ion formed by the loss of the phosphocholine head 

group (PC-HG). For identifying the fatty acyl chains the spectrum is noisy, but indicates the molecule is the 

PC(18:2/18:1). 
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Figure 2. 27: The MS/MS spectrum of the first ion on negative mode. This spectrum cannot assist for identifying the 

class of the lipid. However, it can provide clear information about the fatty acyl chains. 

 

Figure 2. 28: The MS/MS spectrum of the second ion on positive mode. This ion can be easily identified as a 

phosphatidylcholine (PC). This information can be obtained from the ion formed by the loss of the phosphocholine head 

group (PC-HG). For identifying the fatty acyl chains the spectrum is noisy, but indicates the molecule is the 

PC(16:0/20:3). 
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Figure 2. 29: The MS/MS spectrum of the second ion on negative mode. This spectrum cannot assist for identifying the 

class of the lipid. However, it can provide clear information about the fatty acyl chains. 

 

2.2.4.2.12.2 Sphingomyelins 

The lipid subclass of sphingomyelins (SM) is another group of metabolites detected with high 

sensitivity in ESI-MS. Like PCs, SMs have the characteristic fragment of phosphocholine head-

group loss, in MS/MS experiment. It is very easy to be discriminated from PCs since they will be 

detected as odd m/z values. This would be expected as they have two nitrogens atoms in the 

structure (nitrogen rule). Further on, sphingomyelins will present a loss of their fatty amide (Figure 

2. 30). Additionally, as it is the case with all sphingolipids, a characteristic fragment derived from 

the backbone of the molecule (Figure 2. 30) will complete the information needed to be able to 

assign a SM. 
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Figure 2. 30: The MS/MS spectrum of a sphingomyelin (SM) on positive mode. Characteristic fragments that can assist 

on structural assignment are the loss of the phosphocholine head group (not shown in figure), the loss of the d18:1 

ceramide backbone (m/z 264) and the loss of the fatty amide (m/z 280). This fragmentation pattern indicates that the 

molecule is the SM(d18:1/16:0). 

 

2.2.4.2.12.3 Structural assignment of lipids 

Several lipids have characteristic fragments that can provide information of their structure, lipid 

group, and chains incorporated. Table 2. 1 demonstrates characteristic fragments of lipid classes 

that can aid structural assignment. Additionally, retention time can assist as demonstrated in Section 

2.2.4.2.5  Lipid classes like triglycerides may not have a characteristic fragment to define their 

class, but their high lipophilicity, translated to an increase in retention time. They also have a 

fragmentation pattern that can provide the needed information for the fatty acyl chains incorporated, 

by providing positively charged ions after loss of one of their chains. By combining these fragments 

the needed information can be provided for assignment.  
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Table 2. 1: Table of tandem MS fragments and neutral losses, characteristic to specific lipid classes and subclasses. 

Lipid Class Characteristic 

Fragments 

(m/z) 

ESI+  

Phosphatidylcholines 

Sphingomyelins 

184 

Cholesterol esters 369 

Phosphatidylethanolamines 141 (neutral loss) 

acyl-carnitines 85 

  

ESI-  

Phosphatidylglycerols 171/153 

Phosphatidylinositols 241 

Phosphatidylserines 87 (neutral loss) 

 

2.2.5 UPLC-MS applications in metabolic profiling 

UPLC-MS was well-received from the metabolic profiling community from its early days
96

. UPLC-

MS provided the superior separation, robustness, reproducibility and sensitivity demanded for the 

metabolic profiling concept to move forward
114

. The fast turnaround time per sample turned UPLC-

MS into a tool appropriate for epidemiological studies greatly needed in the field of metabolic 

phenotype to surpass issues of biological variation, such as differences due to different gender, age, 

or ethnic background
118

. In combination with automation in data processing it is now considered a 

recognised platform for metabolic profiling studies with a wide range of applications 
119-121

 and in a 

wide range of biological matrices
16, 122

. 
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2.3 Nuclear Magnetic Resonance spectroscopy (NMR) 

Nuclear magnetic resonance (NMR) is based on the physical phenomenon occurring with specific 

nuclei when they experience a magnetic field (Bo). This phenomenon occurs only to nuclei that 

have a spin quantum number (I) different to zero. This number is determined by the number of 

protons and neutrons of an atom (Table 2. 2). A nucleus with spin quantum number of I will have 

2I+1 energy levels in a magnetic field. These energy levels are described by the magnetic quantum 

number mI=I, I-1, I-2, ..., -I. 

Table 2. 2: Characteristics of different nuclei and effect on quantum number
123

 

Number of protons Number of neutrons Spin quantum number mode Example 

Even Even No spin 
12

C(0), 
16

O(0) 

Odd Even Half-integer spin 
1
H(½), 

31
P(½), 

23
Na(

3
/2) 

Even Odd Half-integer spin 
13

C(½), 
17

O(
5
/2) 

Odd Odd Integer spin 
2
H(1), 

14
N(1) 

 

The most frequently used atom for NMR, in metabolic profiling, is hydrogen (
1
H). Hydrogen has 

I=1/2, which means that in a magnetic field its nucleus has either of two energy levels with mI of 

1/2 and -1/2. The higher energy state (α) with mI=-1/2 is the one opposed to Bo, while the lower 

state (β) with mI=+1/2 is aligned with Bo (Figure 2. 31). 

 

Figure 2. 31: Scheme of energy states of a nucleus with I=1/2 (such as proton). Two energy states are present when the 

nucleus is inside a magnetic field. The highest energy α (mI=-1/2), and lowest energy β (mI=+1/2). The difference 

between the two energy states is described as ΔE. 
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When a population of protons are within a magnetic field, some of them will occupy the α state and 

some the β state. The population distribution between these two states is given by the Boltzmann 

distribution (Equation 2. 4). 

  

  
   

  
   

Equation 2. 4: Boltzmann distribution of nuclei populations between two energy states in a magnetic field. 

Where ΔE the difference in energy between the two energy levels, k the Boltzmann constant and T 

the temperature in degrees Kelvin.  

ΔE can be described as hν, where h is the Plank‘s constant and ν is the frequency. This means that, 

keeping in mind that an exact energy ‗package‘ is needed for a nucleus to get to a higher state 

(resonate), an exact frequency should be applied. Also, provided that the energy difference is 

related to the applied magnetic field (ΔE=γħBo; γ is a distinctive constant for each nucleus called 

magnetogyric ratio) the resonance frequency will also be proportional to the magnetic field 

(νres=γBo/2π). 

Energy is provided to the nuclei in a magnetic field using a short radiofrequency (RF) pulse. The 

nuclei will resonate and after the pulse stops the system will return to equilibrium. Equilibrium will 

be reached after a specific amount of time, called the relaxation time. During this time the energy of 

the nucleus will oscillate emitting an RF which referred to as the free induction decay (FID). This 

FID is converted into frequency (Hz) by Fourier transformation (Figure 2. 31). Note here that, as Bo 

can affect the resonance frequency, these are always normalised to account for different magnets. 

This is done by dividing the frequency of a nucleus to the frequency the magnet used. The resulting 

number is called chemical shift and is usually given in parts per million, ppm (or δ). 

 

Figure 2. 32: Stages of NMR acquisition procedure. From left to right: orientation of a nucleus in a magnetic field, 

application of RF and transition to a higher energy state, free induction decay to settle back to equilibrium, acquisition 

and Fourier transformation. 
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When a magnetic field Bo is applied to a nucleus, the magnetic field experienced by that nucleus is 

not of the same magnitude in all chemical environments. This is because of the magnetic fields 

created by electrons circulating the nucleus. This local magnetic field (B΄) is opposed to Bo and 

varies according to electrons surrounding the interrogated nucleus. This difference in electron 

environment is what provides the different chemical shifts that allow definition of the chemical 

environment for each nucleus. For example, for benzene, electrons are located, due to p orbitals, 

parallel to the benzene ring. However, protons will be located in the same plane as benzene. 

Therefore, protons will not be ‗shielded‘ by this local magnetic field from electrons and experience 

a higher overall field. This is why benzene protons will resonate in higher frequencies. This 

phenomenon aids the structural assignment of a molecule. 

Another feature of NMR that can provide additional structural information is spin-spin coupling. 

This phenomenon occurs intensively when two nuclei are in close proximity, and function as small 

independent magnetic fields. These two protons will interact with each other in addition to the 

magnetic field and this causes splitting of the signal. In proton NMR, the most frequently observed 

coupling is between proton nuclei that are three bonds away. A proton, HA, will experience a 

magnetic field from a proton, HB. However, the spin from a single proton (I=1/2) can have two 

energy states. Therefore, two signals will be detected for HA (Figure 2. 33). Respectively, if two 

(equivalent) HB protons existed then the possible energy state combinations would be four, with 

two being equal, and three peaks would be detected (Figure 2. 33).  
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Figure 2. 33: Representation of spin-spin coupling effect as detected from a proton (Ha), due a proton (Hb), three 

bonds away. On the left, only one Hb exists and therefore only two spin states. This will lead to a doublet chemical shift. 

On the right, two equivalent protons exist. Thus, in this case, four different spin orientations can occur. This will give a 

triplet structure. As two energy states are equal the middle peak which represents those, is larger. 

When additional structural information is needed 2-dimensional (2-D) NMR sequences are 

employed. 2-D NMR sequences, such as COSY (COrellation SpectroscopY), can provide 

relationships between signals of the same molecule. This makes them really useful for complex 

solutions, such as matrices commonly analysed by metabolic profiling methods. 

Overall, NMR is a useful tool in metabolic profiling approaches. Firstly, signal intensity is 

proportional to analyte concentration. Additionally, instrument stability and robustness, the non-

destructive sample format, the simultaneous structural information obtained, and the absence of 

signal suppression have it the method of choice for several years. However, some disadvantages are 

the low sensitivity in a number of compounds, the large sample quantity generally needed, and 

unavoidable slow scanning times needed due to the slow relaxation of small molecules. Still, NMR 

technology keeps advancing, with cryoprobe and other developments allowing enhanced sensitivity 

and it remains an irreplaceable tool for metabolic profiling methodologies. 
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2.4 Sample preparation for metabolic profiling studies 

Sample preparation is an important step preceding analysis with the described platforms (UPLC-MS 

and NMR). It involves applications performed in order to transform the samples in a state that 

allows achieving the full potential of the applied technique. This can be the case with debris and 

nonprecipitated proteins. In UPLC-MS this can cause blocking of the column, leading to poor 

chromatographic resolution, and increase in backpressure leading to system failure. Additionally, 

not properly prepared samples can cause accumulation of debris in the ESI source, leading to 

increase background of the MS detector. With NMR, debris and cloudy solutions can cause increase 

in background and poor resolutions. Protein precipitation using organic solvents, as well as filtering 

and centrifugation can solve these issues. However, on occasions it is recommended for the analyst 

to optimise sample preparation for the needs of the analysed matrix. 

Metabolite extraction, including solid-phase extraction methods
124

, can offer several of the 

requirements for sample preparation, such as protein precipitation. Additionally, it can be used to 

increase metabolite recovery used as a pre-concentration technique. However, the selectivity 

observed for extraction solvent systems can sometimes be a disadvantage. Liquid-liquid extraction 

is mandatory when metabolite extraction from tissue samples is required. In the following 

paragraph more information on metabolite extraction from tissue samples is presented. 

2.4.1 Tissue metabolite extraction for untargeted metabolic profiling studies 

Metabolite extraction applied on tissue samples can be a key step for a robust untargeted metabolic 

profiling analysis, and especially when total metabolome coverage is needed. The extraction 

conditions applied, including solvent polarity, temperature, pH, as well as tissue lysis procedures
17, 

104, 119, 125-127
. When it comes to options for tissue lysis, it appears that the high-throughputness of 

bead-beating is preferred
17, 126

, but also appears to be the method of choice as compared to other 

tissue lysis methods
104

. When it comes to solvent systems modifications of the Folch method
128

 and 

later the simpler and less exhaustive Bligh-Dyer method
129

 are currently applied. A simpler 

approach attempting to recover a range of metabolites using one solvent system in a single step 

extraction, for analysis in a cross-platform approach, has been described by Geier et al
104

. They 

report that for untargeted metabolic profiling analyses using GC-MS, UPLC-MS and NMR an 80% 

methanol solution is more fit for the purpose of their study. Masson et al
17

 described a two-step, 

consecutive extraction protocol, as being more reproducible than bilayer extraction protocols. The 

authors split the extraction into a polar metabolite extraction using a water/methanol solvent system, 

followed by a dichloromethane/methanol extraction for non-polar metabolites. Nonetheless, it is 
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apparent that the analyst should choose an extraction protocol based on platforms to be applied, and 

if literature findings are not conclusive or fulfilling, should optimise for the specific tissue of 

interest. For the experimental purposes of this thesis modifications of the protocol from Masson et 

al
17

 is applied. 
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2.5 Multivariate Data Analysis (MVDA) 

2.5.1 Statistical Analysis and MVDA 

Statistical analysis is important in order to allow one to make an inference of a measurement, to the 

wider population, after sampling a smaller group. Statistics can be used to define, especially with 

large datasets, the measured variables that make groups different, and (semi)quantify that 

difference. These tasks are difficult when datasets are large, and typically cannot be performed 

manually. Usually powerful computational algorithms are employed to cope with the calculations. 

The outcome is generally a number or figure that can provide a result within a measure of 

confidence to the scientist. 

MVDA is used in cases where a vast number of variables are obtained from an experiment with 

multiple samples, but are particularly relevant where the number of variables exceeds the number of 

samples, as typically encountered in ‗omic‘ datasets. MVDA is employed in order to provide a 

more comprehensive way (usually in terms of plots and model summary statistics) to extract 

information from complex datasets. It allows interacting variables to mutually define a class, 

making the analysis more robust than univariate statistical analyses. 

2.5.2 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is a multivariate data analysis (MVDA) method and functions 

as an orthogonal (linear) transformation of the original variables. PCA can be used as an 

unsupervised pattern recognition method (meaning that no a priori knowledge about the dataset is 

used) employed to present (project) multivariate data reducing the number of dimensions in a 

dataset whilst retaining the important information, since visualisation starts to get difficult for more 

than three dimensions
130, 131

. 

For a dataset matrix (X), with each row representing a sample and each column a variable (Figure 2. 

34), PCA will assign every variable to one dimension in the Euclidean space (meaning the physical 

space/distances, as can be understood by the human mind, but also its generalisation to higher 

dimensions). Therefore, each sample will be represented by one point in as many dimensions as 

there are variables, and placed according to their values (Figure 2. 34 and Figure 2. 35). In PCA the 

first principal component, in this multidimensional system, will be the vector (direction) that 

explains the greatest variation of the data, or in other words provide the minimum of residual values 

(E) from the PComp to the observation (Figure 2. 35). This first PComp passes through the mean 

(Figure 2. 35). Usually for biological data, just one PComp cannot explain the variation of the 
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model sufficiently. Thus, subsequent PComps are employed to represent the remaining variation
130, 

131
 and are calculated orthogonally to the previous PComps and pass through the mean. It is 

important to note that every new PComp should be orthogonal to the previously calculated in order 

to avoid re-including variation already incorporated in the model.  

 

Figure 2. 34: A schematic representation of the basic steps of PCA adapted from Trygg et al 
131

. Three variables (X1, 

X2, X3) for each of the 13 samples are placed on three dimensions. Each dimension represents one variable. By 

applying PComp analysis, the variation extracted is displayed in terms of scores plots and loadings plots. Scores plot 

will provide differences and similarities between the samples after projecting each sample on the vector of the PComp. 

Loadings plots will provide the contribution of each variable to the model for each of the PComps.
131
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Figure 2. 35: A representation of the first PComp as generated in a three dimensional system adapted from Eriksson et 

al
130

. The PComp will capture the maximum variance of the samples, or in other words a minimum of the least 

squares.
130

 

Results from PCA are comprehensively expressed using scores and loadings plots (Figure 2. 34) to 

aid data interpretation. Every PComp will provide its respective scores and loadings. The scores (T) 

are the projections of the observations on the respective PComp (Figure 2. 36). The value of this 

projection of a PComp constitutes the score value (t), and when plotted represents the scores plot 

(Figure 2. 34). From scores plots one can, according to the variation explained by each PComp, 

visualise the extent of similarity or difference between samples and detect outliers or anomalies in 

the sample set. On the other hand, loadings (P) will provide the magnitude, the contribution, of each 

variable (in the case of spectral data the variable represents a signal and hence a metabolite) to the 

PComp. This is generally represented as p. Geometrically, they express the orientation of the 

corresponding PComp in the multi-dimensional system. This is given by the angles from the 

PComp to each variable, keeping in mind that each variable is represented by a dimension (Figure 

2. 37)
130, 131

. 
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Figure 2. 36: Scores for each principal component are calculated from the projection of each point on the 

corresponding principal component. Adapted from Eriksson et al 
130

. 

 

 

Figure 2. 37: Loadings for each principal component are calculated from the cosine of the angle of the corresponding 

principal component, to the axes of each variable. Adapted from Eriksson et al
130

. 
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Algebraically, the matrix X can be modelled and described by the equation: 

        

Where X is the data, T is the scores, P´ represents the loadings (transposed), and E represents the 

residuals matrix. 

PCA displays the greatest variation of the model‘s variables. Thus for unscaled data a variable with 

a greater value range will dominate the variation and consequently the PCA model. In order to 

adjust the importance of each of the variables, one can apply scaling to the data. A scaling method 

that can attribute the same importance to all the variables is unit variance scaling (Figure 2. 38). For 

unit-variance scaling each value is divided by the standard deviation of the respective variable. 

Therefore, no variable can dominate over any other because of a larger range of its values. 

However, with unit variance scaling noise is given the same importance, and this could affect the 

interpretability of the model. 

A scaling method that can minimise the differences in range of values, but at the same time keep the 

order of the initial variance of each variable, is Pareto scaling (Figure 2. 38). Pareto scaling is 

conducted by dividing each value by the square root of the standard deviation. This way, placing 

this in the context of metabolic profiling analysis (e.g. when using UPLC-MS), data with high 

intensities are providing more impact to the model than low intensity and noise. 

Along with scaling procedures, regularly mean-centering is applied. As the name states, mean-

centering is a pre-processing method where the mean of each variable is centred, i.e. becoming the 

origin of axes. This is simply done by calculating the mean of each variable and subtracting it from 

each of the variable‘s values 
130, 132

. This procedure makes comparison between variables easier. 

The described preprocessing methods are shown schematically in Figure 2. 38. 
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Figure 2. 38: A schematic representation of a dataset (A) prior to processing, (B) after mean-centering only, (C) after 

unit-variance scaling and mean-centering, and (D) after Pareto scaling and mean-centering. 

PCA is a robust MVDA method to acquire information from a dataset in an unsupervised manner. 

However, the information given will only represent the greatest variation in the dataset. Although 

sometimes the variation explained by the PCA model can explain the variance induced by, for 

example, a disease, or treatment, this is not always the case. When the main source of variation is 

not related to disease or biological class, for example sources of physiological variation such as 

gender or age may dominate a PCA model, supervised methods are employed to reveal this hidden 

response-related variance, and provide the hidden (latent) variables that could function as 

biomarkers. 

2.5.3 Partial Least Squares (PLS) 

PLS is a supervised MVDA method. PLS acronym is interpreted as Partial Least Squares; however 

it can also be interpreted as Projection to Latent Structures. The PLS is a regression technique used 

in order to model the association between two data matrices, X and Y. It is generally used in 

metabolic profiling to obtain a relationship between the dataset matrix X, and the response matrix 

Y. 
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When Y is a vector (matrix of one dimension), then the first PComp is going to be the direction, in 

the X-space, that, at the same time, describes the maximum variation for X (similarly to PCA), and 

best correlates to the Y-vector. Similarly to PCA, scores are obtained by projecting the position of a 

sample on this component. If the first PComp is inadequate to describe the variation of the Y vector, 

then a second PComp is employed. This, again similarly to PCA, will be the direction in the X-

space that describes the greatest (remaining) variation, passes through the origin, and is orthogonal 

to the first PComp. However, it will again try to correlate the PComp with the remaining variation 

of the Y vector (Figure 2. 39). 

 

Figure 2. 39: A schematic representation of the calculation of the first two PComp of a PLS model. Y is a vector and 

after addition of each PComp the extent of the explained response is shown. Adapted from Eriksson et al 
130

. 

PLS functions in the same way whether Y is a continuous response matrix (for example level of 

ALT corresponding to extent of liver damage), or whether it describes a discrete class (discriminant 

analysis). When Y is a matrix then what is correlated between X and Y are the principal 

components describing the greatest variation. 

2.5.4 Orthogonal-PLS (O-PLS) 

Orthogonal-PLS (O-PLS) is a variant of PLS designed to filter extraneous variation, not relevant to 

the biological class and to enhance interpretation of the variable contributions in defining a class. In 

this case the model is built initially with one PComp as described for PLS. This PComp is called 

predictive and is correlated as much as possible to the Y matrix. However, O-PLS goes a step 

forward and adds an orthogonal PComp to the model. This orthogonal component should be 

uncorrelated to Y as much as possible. Therefore, it is actually describing the unwanted systematic 

variation, not related to the Y matrix, which induce noise in the model. If a single orthogonal 
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component cannot explain all the noise in the dataset, more orthogonal components can be 

employed. 

2.5.5 Model Diagnostics and Validation 

2.5.5.1 R2 and Q2 

The R
2
 represents the variation explained by the model, and is also referred to as the ‗goodness of 

fit‘
130

. As it can be inferred by the terminology it represents the ability of the model to fully 

represent the dataset. This implies that for a high R
2
 value, the residual values are low. On the other 

hand, Q
2
 is the predictive ability of the model, also referred to as the ‗goodness of prediction‘

130
. It 

represents the ability of the model to predict an outcome, using a training set, a new set (test set) 

with data not previously used for building the model. Generally this is done by leaving outside the 

model a small portion of the data, and repeating this procedure for as many cycles needed to have 

each observation back-predicted once. For PCA R
2
 and Q

2
 refer to the X-data, while for PLS or O-

PLS, they refer to the Y-data. 

As expected, most of the time R
2
 will be higher than Q

2
 as model complexity increases, e.g. when 

the number of components increases. R
2
 will inevitably keep increasing, along with complexity, as 

more variation will be explained by the model (Figure 2. 40). However, Q
2
 will reach a peak 

whereby the number of PComps it takes to accurately predict a sample to a given class is optimal, 

and then starts declining. This is due to the fact that when more variation in the form of new 

PComps enter the model, more noisy uncorrelated variables are also added, which can actually lead 

to a reduction of class prediction (Figure 2. 40). This is why more PComps should not be added to a 

model when the Q
2
 value starts declining. Lastly, while high Q

2
 is always required, the R

2
 should 

not exceed Q
2
 by more than 0.2-0.3. A disproportionally high R

2
 would actually mean that the 

model is overfitted. This would be translated to an incorporation of noise variants in the model, 

making it unable to explain/predict test sets from another experiment/dataset and giving false 

confidence in the model. 
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Figure 2. 40: Plot describing the effect of increased complexity (A; x-axis) towards R
2
 and Q

2
.
130

 

2.5.5.2 Permutation testing and CV-ANOVA 

Permutation testing is a way of cross-validation of the model. It is conducted by shuffling the class 

values of the Y-matrix, and essentially deliberately mislabelling the samples. This means that when 

fitting any randomly created dataset, this randomly labelled model should have a lower predictive 

value Q
2
 and lower explained variation R

2
 than the model of the actual dataset. If the values 

obtained from the series of random dataset are plotted against the correlation of the random dataset 

to the real dataset, then a plot as in Figure 2. 41 would be obtained. Intercepts of Q
2
 and R

2
 to Y-

axes need to be as close to point of origin as possible. It is suggested that Q
2
 should intercept the y-

axis lower than 0.05 and R
2
 lower than 0.3-0.4

130
. Nonetheless, permutation testing can be used for 

diagnosis of non-valid models. Additionally, it can assist in decisions concerning the number of 

components to be used. 
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Figure 2. 41: Permutation plot showing the R
2
 and Q

2
 of randomly ‘mislabelled’ samples as a function of their 

correlation to the actual data. Optimally, all R
2
 and Q

2
 values should be lower than the real response, while intercept 

should be lower than 0.4 for R
2
, and 0.05 for Q

2
. 

Cross validation – analysis of variance (CV-ANOVA)
133

 is a significance testing of PLS and O-PLS 

models with one-dimension Y-vectors. To calculate the significance of the model, ANOVA testing 

is performed comparing the residuals obtained after fitting ‗cross-validated‘ models, to the residuals 

of the complete dataset model
133

. Cross-validation is described as the procedure of obtaining the Q
2
, 

where, as previously explained, part of the data are left out of the fitted model, and then back-

predicted to this model. 

2.5.6 S-plot 

The S-plot is used to assist when candidate biomarkers need to be obtained rather than a 

multivariate model. The model covariance is plotted on the x-axis against the model correlation on 

the y-axis. Therefore, order of magnitude and order of reliability can be visualised in a plot. This is 

very helpful in the field of metabolic profiling. Instrumentation can provide concentration detection 

of up to six orders of magnitude which will be fully exploited by a biological sample, where 

concentrations can range up to twelve orders of magnitude. As a result features with lower 

intensities can be missed, although they could act as good disease predictors (Figure 2. 42). On the 

other hand noise features, with very low concentrations should also be avoided as they could 

introduce false positives
134

. The optimal biomarker would be the feature that has both high 

covariance and high correlation, indicating less chance of a noise derived feature and with high 
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confidence. Nonetheless, the S-plot has become a very informative tool in statistical analysis and 

when determination of highly significant features to serve as candidate biomarkers is needed. 

 

Figure 2. 42: An example of how S-plot can assist in OPLS-DA analysis for the determination of candidate biomarkers. 

(A) S-plot where two features are highlighted having a high model correlation. (B) Loadings plot of the same OPLS-DA 

model where one feature can easily be located driving one of the groups while the other is hidden in noisy variables 

(Insert: Scores-plot of OPLS-DA model). 
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Chapter 3  Exploratory metabolic profiling 

methodologies for stratification of high risk 

for rupture carotid plaques 

3.1 Introduction 

Stroke is one of the major causes of death worldwide
45

, and the leading cause of disability in UK 

adults
135

. 15,000 strokes per year in the UK are caused by thromboembolism originating at a carotid 

plaque. This thrombus is caused due to the coagulation reaction of platelets, after the rupture of the 

fibrous cap of the atheromatous plaque
54

. It can become detached and travel along with blood flow, 

eventually causing blockage to smaller luminal calibre vessels (thromboembolism). This will reduce 

the oxygen supply to parts of the brain affected with the possibility of causing disabilities and death. 

Three-quarters of stroke patients will have been previously asymptomatic
136

. It is therefore of great 

importance to stratify the patient risk in order to monitor, predict and prevent the rupture of the 

plaque. In order to accomplish this, the experimental design will be based on the fact that patients 

with stroke symptoms are at high risk of an imminent life-threatening stroke. This risk declines with 

time after the symptoms which are nothing other than what can be characterised as a mini-stroke. 

On the contrary, asymptomatic patients are less likely to suffer plaque rupture and stroke
137

. 

This is a pilot study with the objective to develop and identify methods that can provide the most of 

information from carotid plaque samples. The capability of metabolic profiling to risk stratify 

patients is evaluated, in order to assess whether larger scale studies are worth pursuing. The study 

will be based on the comparison of recently symptomatic patients (high risk group; imminent life 

threatening stroke), and asymptomatic patients as the control group which are less likely to have a 

stroke. 

3.2 Methods 

3.2.1 Patient characteristics 

The carotid plaque samples used in this study were obtained from 10 patients from the Department 

of Vascular Surgery, Imperial College London. From these patients, 5 were asymptomatic 
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(Asympt), and 5 were recently symptomatic (Sympt) of cerebrovascular symptoms occurring in the 

territory of the ipsilateral carotid circulation. At carotid endarterectomy surgery, diseased intimal 

arterial segments were retrieved, snap frozen in liquid nitrogen and stored at -80°C. Patients 

provided informed consent and the study was approved by the ethics committee. Patients clinical 

characteristics can be found in Table 3. 1. 
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Table 3. 1: Patients demographics from symptomatic and asymptomatic groups for stroke. 

 
Age Male BMI DM HTN PAD Renal failure ASA A2RA/ ACEI Statins Smoker/Ex 

            Symptomatic group 

           
 

67 Yes ~ No Yes No No Yes Yes Yes Yes 

 
78 Yes 34.3 No Yes No No Yes Yes Yes No 

 
69 Yes 30.5 No Yes No No Yes Yes Yes Ex 

 
91 Yes 26.6 No No No No No No No No 

 
74 Yes 32.3 Yes Yes Yes No Yes Yes Yes Ex 

Average / % 75.8 100% 

 
20% 80% 20% 0% 80% 80% 80% 20%/40% 

            Asymptomatic group 

           
 

72 Yes ~ No Yes No No Yes Yes Yes No 

 
78 Yes ~ No Yes Yes No Yes No Yes Ex 

 
59 Yes ~ No Yes No No No No Yes Yes 

 
78 No 29.3 No Yes No No Yes Yes Yes No 

 
75 Yes ~ No Yes Yes Yes Yes Yes Yes Ex 

Average / % 72.4 80% 

 
0% 100% 40% 20% 80% 60% 100% 20%/40% 

 

Key: BMI: Body mass index; DM: Diabetes Mellitus; HTN: Hypertension; PAD: Peripheral artery disease; ASA: Acetyl salicylic acid; A2RA/ACEI: 

Angiontensin receptor antagonist/Angiotensin-converting enzyme inhibitors 
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3.2.2 Sample Preparation 

Three segments of arterial tissue were obtained from each patient (Figure 3. 1). The central slice 

was obtained and stored for future MS-imaging analysis. The other two slices, weighing 

120mg±5% each, were placed into separate bead beating tubes (VWR, USA), which were preloaded 

with 1mm zirconium beads (Percellys 24, Germany). This was followed by a modified extraction 

protocol from Masson P et al
17

. 

 

Figure 3. 1. A schematic representation of the arterial tissue segmentation procedure applied for analysis. 

To obtain the aqueous extract, 1.5mL of chilled methanol (MeOH)/water (1:1) solution (methanol: 

HPLC gradient grade, Fisher; water: LC-MS grade, Fluka) were added to each tube after 

randomisation of the samples. Randomisation was conducted using free online software 

(http://www.random.org/sequences/). Samples were frozen on dry ice and loaded onto a bead beater 

(Bertin Technologies, Precellys 24), for 2 + 2 cycles, separated by freezing on dry ice. For each 

cycle, the beater was vibrating for 40 seconds at 6500Hz. Centrifugation (Biofuge Pico, Heraeus) 

was conducted at 13,000 rcf for 10 minutes, followed by aliquoting of supernatant into Eppendorf 

tubes (300μL x4). An aliquot of 70μL of each aqueous sample was combined to generate a pooled 

sample, which was mixed and split into four aliquots of 300μL each. This pooled sample is used for 

pre-run conditioning of the column and to assess instrumental performance. Additionally, the 

pooled sample can provide a good idea of the reconstitution volume prior to analyses, as this is the 

first time such tissue type has been assessed by the current instruments in our department. Samples 

http://www.random.org/sequences/
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were then spun on a vacuum concentrator for 160 minutes (Eppendorf Concentrator Plus, 45°C, V-

AQ mode). Extracts were stored at -40°C until analysis. 

To obtain the organic extract, chilled 1.5mL solution of dichloromethane (DCM)/MeOH solution in 

proportions of 3:1 (DCM: HPLC grade, Sigma-Aldrich) were added to the precipitate of the sample 

from the aqueous extraction. They were then frozen and reloaded onto the bead beater for 2 cycles, 

vibrating at 6500Hz for 40 seconds per cycle. This was followed by centrifugation at 13,000 rcf for 

20 minutes. Extracts were then aliquoted into glass tubes (200μL x4). An aliquot of 50μL of each 

sample was combined to generate a pool sample, which was mixed and split into four aliquots of 

200μL. Samples were allowed to evaporate overnight at room temperature in a fume hood. Extracts 

were stored at -40°C until analysis. 

3.2.3 RP-LC-MS lipid analysis 

Tissue organic phase extracts were reconstituted in 250μL of MeOH (LC-MS grade, Fluka). 

Samples were vortexed for 30s, sonicated for 5min and vortexed again for 30s. This was followed 

by a 5min centrifugation (Eppendorf, Centrifuge 5417R, Germany) at 13,000rpm, 4
º
C. Samples 

were then transferred into LC-MS glass vials (Total Recovery Vials, Waters Corp, USA).  

Samples were re-randomised prior to loading on the autosampler of the UPLC system, and 

preserved at a temperature of 4
º
C. An aliquot of 50μL from each sample was combined to form a 

quality control sample (QC), and a QC-format run was conducted
114

. The purpose of the QC sample 

is to provide confidence of the analytical stability of the run for both UPLC and MS. It is later used 

during univariate and MVDA to assess reproducibility. 

First the column was conditioned by injecting the pooled sample, obtained during the extraction, 

several times, until data showed adequate stability. The QC sample was then injected thrice, 

followed by further injections every 4-5 samples. The run was completed by samples of dilutions of 

the QC sample at 1:2, 1:4 and 1:8, as well as extraction and solvent blank samples. Dilutions are 

used to assess how responsive our methodology is to fold changes. They are also used at a later 

stage in the analysis pipeline, during statistical analysis, to remove features where their intensities 

do not respond to dilutions. Similarly, features that were present in high intensity in blanks were 

removed from all samples. 

Chromatographic separation was conducted using an Acquity UPLC system (Waters Ltd, UK) and a 

HSS T3 C18 column (Waters Corp, USA), with dimensions of 2.1mm x 100mm, and particle size 

of 1.8μm. The protocol followed was described by Shockcor et al in an application note from 
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Waters Corporation
138

. The UPLC column was maintained at 65°C with a flow rate of 0.5ml/min. 

Mobile phase A was constituted of ACN/water (40:60) and 10mM of Ammonium Acetate (AmAc). 

The mobile phase B constituted of Isopropanol/ACN (90:10) and 10mM AmAc. The UPLC 

gradient program of the system is presented on Table 3. 2. An aliquot of 10μL of the reconstituted 

sample was injected with a full loop setting with needle overfill. Samples were preserved at 4°C 

throughout the run. 

Table 3. 2: Gradient program of the chromatography of the lipid profiling UPLC-MS methodology. 

Time (min) %A %B Curve 

0.0 60 40 - 

0.5 60 40 6 

10.50 0 100 6 

12.5 0 100 6 

12.6 60 40 6 

20.0 60 40 6 

 

A Q-TOF Premier mass analyser (Waters MS Technologies Ltd., UK) was employed and coupled 

with the UPLC system using an ESI interface. Data were acquired in both positive and negative 

modes. The Mass Spectrometer was set at the following parameters: Capillary Voltage 

+3kV(positive mode) and -2.2kV(negative mode), source temperature 120
o
C, sampling cone 30V, 

desolvation gas temperature 400
o
C, desolvation gas flow 900L/h, collision energy 5eV, scan speed 

every 0.3s and mass range 50-1000m/z. Leucine Enkephalin (Sigma, HPLC grade) was used for 

lock-mass correction. Lock mass scans were acquired every 30s. For MS
E
 experiments, same 

parameters were used and with collision energy high voltage of 20eV. 

3.2.4 HILIC-MS analysis 

Tissue aqueous phase extracts (in random order) were reconstituted in 200μL of 1:1 solution of 

Acetonitrile (ACN)/water (ROMIL). Samples were vortexed for 30s, sonicated for 5min and 

vortexed again for 30s. This was followed by a 5min centrifugation at 13,000rcf; 4
O
C. Samples 

were then transferred into appropriate LC-MS glass vials (Total Recovery Vials, Waters Corp, 

USA). An aliquot of 50μL from each sample was combined to form a quality control sample (QC). 

Run setting was as described on the preceding paragraph.  

The UPLC setting was assembled using an Acquity UPLC system and a BEH HILIC column, 1.7 

μm, 2.1x100mm (Waters Corp, USA). Mobile phase A constituted of ACN/water 95:5, 10mM of 
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AmAc and 0.1% of formic acid (FA). The UPLC gradient program of the system is presented on 

Table 3. 3. An aliquot of 5μL of the reconstituted sample was injected using a 10μL loop, in a 

partial loop setting, with 4μL flashing. 

Table 3. 3: Gradient program of the chromatography of the HILIC-UPLC-MS methodology. 

Time (min) %A %B Curve 

0.0 99 1 - 

2.0 99 1 - 

14.0 45 55 6 

14.1 1 99 6 

18.0 1 99 - 

18.1 99 1 6 

25.0 99 1 - 

 

An LCT Premier (Waters MS Technologies, Ltd., Manchester, U.K.) mass analyser was employed 

and coupled with the UPLC system using an ESI interface. Data were acquired in both positive and 

negative polarities. The Mass Spectrometer was set at the following parameters: Capillary Voltage 

+3200V(positive mode) and -2400V(negative mode), source temperature 120
o
C, sampling cone 

35V, desolvation gas temperature 350
o
C, desolvation gas flow 800L/h, scan speed every 0.3s and 

mass range 50-1000m/z. Leucine Enkephalin was used for lock mass correction, with scans 

acquired every 30s. 

For MS/MS experiments that were conducted for acyl-carnitines the same UPLC parameters were 

used. For MS analysis the Q-TOF Premier mass analyser was used with parameters set as with the 

previous section. The collision energy was ramping between 20 – 40 eV. 

3.2.5 Data processing and statistical analysis 

Collected data from both analyses and both modes were analysed using the XCMS package version 

1.34.0 
112

 in R programming software version 2.15.2. The data processing workflow consisted of 

peak-picking, grouping, retention time (RT) correction, re-grouping (after RT correction), setting of 

zero values to background intensity, and normalisation to total intensity. Command lines used are 

summarised in Appendix 2. The resulting normalised intensity was multiplied by 10
9
. This 

multiplication was done in order to avoid the loss of significant digits, since the MVDA software 

(described in the next paragraph) does not handle more than 4 decimal places. 
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Data were imported in SIMCA-P+ 12.0.1. The QC sample dilutions were used to filter out of the 

resulting models features that were not responding to these dilutions. Similarly, the extraction 

blanks were used to filter features resulting from the extraction procedure or solvent impurities. 

Principal component analysis (PCA) was used as an unsupervised multivariate data analysis 

(MVDA) method to visualise data and detect variation induced to the model by the studied groups 

(Symptomatic and Asymptomatic). Features driving the variance in the model were identified on 

loadings plots. All features were subjected to a 2-tailed t-test, assuming unequal variance. Fold 

change was calculated using the median of each group. 

Metabolite identification was conducted firstly by matching mass measurements to theoretical value 

from on-line databases. Databases used for this study were LipidMaps
139

, Metlin
111

 and HMDB
116

. 

In order to further elucidate the structure of the statistically significant metabolites the isotopic 

pattern of the features, MS
E 

spectra, in-house developed libraries of standards, and matching 

MS/MS spectra to MS/MS spectra from the Metlin database
111

 were used. 

3.3 Results 

3.3.1 Assessment of analytical reproducibility 

For both analytical methodologies conducted for this study, an assessment of reproducibility was 

carried out using the QC samples. In the PCA scores plots, very close grouping of QCs was 

observed indicating that analytical variability was acceptably low (Figure 3.2). In Figure 3.2 the QC 

samples are represented along with the studied samples. This is a good indication of the 

reproducibility of the method, instrumental stability, and an indication of good quality data. When 

univariate statistics were applied on metabolites, the reproducibility was also assessed by the 

coefficient of variation (CV% < 20;  < 30 for low intensities
119

).  

3.3.2 Characterisation of the metabolic profiling of the symptomatic 

atherosclerotic plaque 

3.3.2.1 Lipid Profiling 

Lipid profiling was conducted using a reversed phase (RP-) UPLC-MS based methodology, of the 

organic extracts of the atherosclerotic tissue. For the two groups studied, PCA scores plots showed 

good discrimination and grouping of the studied samples, and in both ESI polarity modes (Figure 3. 

5). Representative chromatograms of the method used can be viewed in Figure 3. 3 and Figure 3. 4.  



 

107 

 

 

Figure 3.2: Principal component analysis scores plots of atherosclerotic plaque tissue extracts. Lipid profiling of organic metabolite extracts in (A) positive ionization mode and (B) 

negative ionization mode. Hydrophilic interaction liquid chromatography coupled to mass spectrometry (HILIC-MS) profiling of aqueous extracts in (C) positive ionization mode 

and (D) negative ionization mode. The quality control (QC) samples are denoted in green and present a good indication of the reproducibility of the methodology and stability of the 

specific run. Samples obtained from the same plaque tissue are denoted by the same alphanumeric. Sample γ is represented by only one biological replicate. ESI: Electrospray 

Ionization. 
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The positive mode features showed group discrimination of Sympt and Asympt samples in scores 

plots of the 1
st
 and 2

nd
 PComp (Figure 3. 5.A), with separation mainly in the second component. 

These two components together constitute the 50% of the variation (R
2
X), with the 2

nd
 contributing 

23% to the variation. The negative mode data also presented good grouping with best results on the 

2
nd

 and 3
rd

 PComp (Figure 3. 5.B), with cumulative R
2
X of 35%, and the 2

nd
 PComp contributing 

23% of the variance. 
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Figure 3. 3:  A representative chromatogram from the positive mode of the UPLC-MS analysis, of the organic extracts of the tissue samples examined. The trace in red colour 

represents the total ion current, while in green are the base peak intensities (highest peaks within a retention time window). 
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Figure 3. 4: A representative chromatogram from the negative mode of the UPLC-MS analysis, of the organic extracts of the tissue samples examined. The trace in red colour 

represents the total ion current, while in green are the base peak intensities (highest peaks within a retention time window). 
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Figure 3. 5: A and B represent scores and loadings plots from the PCA model of the results obtained from the lipid profiling analysis of the organic extracts (A positive and B 

negative mode). Points represent samples. Samples connected with a line are biological replicates. C) Box-plots of selected metabolites showing high statistical significance. Colour 

code: green: QC; blue: Asymptomatic; red: Symptomatic; dark yellow circles: metabolites assigned; dark red circles: features identified to represent isotopes, adducts, or fragments 

of identified metabolites. 
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Using the loadings plots (Figure 3. 5), features that were driving the separation between Sympt and 

Asympt, were identified (Figure 3. 5 and Table 3. 4. These included a number of 

phosphatidylcholines (PCs), lysophosphatidylcholines (lysoPCs), phosphatidylethanolamine (PEs), 

diglycerides (DGs), triglycerides (TGs), sphingomyelins (SMs), ceramides (Cers), cholesterol-esters 

(CEs), oxidised Cholesterol-esters (oxCEs), and arachidonic acid (AA). Features that could not be 

assigned were marked as UKN with a suffix indicating the analysis and mode. Table 3. 4 presents 

the metabolites identified and unassigned features, along with UPLC-MS analysis feature 

characteristics, and results of univariate statistics. 
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Table 3. 4: List of assigned metabolites found to be driving the PCA, obtained from data of the tissue organic extracts. 

Met Name LoA 
Mol Formula 

[complex adduct] 

RT 

(min) 

m/z 

(found) 

m/z 

(theor) 
ΔDa Δppm p [t-test] 

Fold 

Change 
CV% 

 
 

        
 

Lipid Profiling 

Positive Mode 
 

        
 

Cer(d18:1/16:0) 4 
C34H66NO2+      

[M-H2O+H]+ 
6.85 520.5099 520.5094 -0.0005 -1 0.0784 -1.5 2 

LysoPC(16:0) 4 C24H51NO7P+ 1.77 496.3401 496.3403 0.0002 0 0.0735 1.5 4 

oxCE(16:0(OH)) 4 
C43H76O3Na+  

[M+Na]+ 
9.24 663.5738 663.5692 -0.0046 -7 0.6583 1.0 4 

PC(16:0/18:1) 4 C42H83NO8P+ 6.61 760.5855 760.5856 0.0001 0 0.0002 1.6 2 

PC(16:0/18:2) 4 C42H81NO8P+ 6.20 758.5718 758.5700 -0.0018 -2 0.2391 1.2 3 

PC(16:0/20:4) 4 C44H81NO8P+ 6.16 782.5714 782.5700 -0.0014 -2 0.0000 1.5 3 

SM(d16:1/16:0) 4 C37H76N2O6P+ 5.14 675.5452 675.5441 -0.0011 -2 0.2845 1.1 2 

SM(d18:2/16:0) 4 C39H78N2O6P+ 5.30 701.5619 701.5598 -0.0021 -3 0.5010 -1.2 2 

SM(d18:2/24:1) 4 C47H92N2O6P+ 7.16 811.6715 811.6693 -0.0022 -3 0.7966 -1.1 2 

SM(d35:1) 4 C40H82N2O6P+ 6.14 717.5929 717.5911 -0.0018 -3 0.5623 -1.3 5 

TG(16:0/16:0/18:1) 4 
C53H104NO6+    

[M+NH4]+ 
10.24 850.7866 850.7864 -0.0002 0 0.5008 1.3 3 

TG(16:0/16:0/18:2) 4 
C53H102NO6+    

[M+NH4]+ 
10.07 848.7731 848.7707 -0.0024 -3 0.1056 1.4 2 

TG(16:0/18:2/18:1) * 4 
C55H104NO6+    

[M+NH4]+ 
10.10 875.7933 875.7897 -0.0036 -4 0.6636 1.1 3 

TG(18:2/18:1/18:1) 4 
C57H106NO6+    

[M+NH4]+ 
10.13 900.8044 900.8020 -0.0024 -3 0.0359 1.5 4 

TG(18:2/18:2/18:1) 4 
C57H104NO6+    

[M+NH4]+ 
9.96 898.7900 898.7864 -0.0036 -4 0.1328 1.4 5 

UKN-LPP-1 n/a n/a 4.41 218.1037 n/a n/a n/a 0.0813 -2.4 2 

 

(Continued on next page)  
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(Continued from previous page) 

Met Name LoA 
Mol Formula 

[complex adduct] 

RT 

(min) 

m/z 

(found) 

m/z 

(theor) 
ΔDa Δppm p [t-test] 

Fold 

Change 
CV% 

 
 

        
 

Lipid Profiling 

Negative Mode 
 

        
 

Arachidonic Acid 2 C20H31O2- 2.53 303.2311 303.2324 0.0013 4 0.00479 1.8 5 

Cer(d18:1/16:0) 4 C34H66NO3- 6.85 536.5053 536.5043 -0.0010 -2 0.16158 -1.2 4 

Cer(d18:1/18:0) 4 
C38H74NO5-    

[M+OAc-H]- 
7.39 624.5573 624.5567 -0.0006 -1 0.19005 -1.2 2 

Cer(d18:1/22:0) 4 
C42H82NO5-    

[M+OAc-H]- 
8.33 680.6210 680.6193 -0.0017 -2 0.91956 1.1 1 

Cer(d18:1/24:0) * 4 
C44H86NO5-   

[M+OAc-H]- 
8.73 709.6559 709.6540 -0.0019 -3 0.66147 1.1 11 

Cer(d18:1/24:1) 4 
C44H84NO5-    

[M+OAc-H]- 
8.34 706.6355 706.6350 -0.0005 -1 0.27655 1.2 2 

Cer(d18:2/16:0) 4 C34H64NO3- 6.38 534.4891 534.4886 -0.0005 -1 0.45521 -1.1 1 

DG(36:7) 1 C39H61O5- 5.49 609.4528 609.4519 -0.0009 -1 0.08409 3.3 3 

DG(42:5) 1 
C47H81O7-    

[M+OAc-H]- 
7.67 757.5996 757.5982 -0.0014 -2 0.27600 1.3 41 

DG(44:5) 1 
C49H85O7-    

[M+OAc-H]- 
8.05 785.6302 785.6295 -0.0007 -1 0.01075 4.5 4 

DG(44:7) 1 
C49H81O7-    

[M+OAc-H]- 
7.69 781.6006 781.5982 -0.0024 -3 0.09550 2.8 15 

lysoPC(18:1) 4 
C28H55NO9P-    

[M+OAc-H]- 
1.94 580.3619 580.3614 -0.0005 -1 0.03784 1.8 2 

lysoPC(18:2) 4 
C28H53NO9P-    

[M+OAc-H]- 
1.50 578.3465 578.3458 -0.0007 -1 0.36053 1.5 3 

PE(18:1/18:0) 4 C41H79NO8P- 7.31 744.5552 744.5543 -0.0009 -1 0.00294 1.6 4 

PE(O-16:1/20:4) 4 C41H73NO7P- 6.65 722.5131 722.5125 -0.0006 -1 0.01293 1.5 3 

PE(O-16:1/22:6) 4 C43H73NO7P- 6.54 746.5135 746.5125 -0.0010 -1 0.25238 1.7 10 

SM(d16:1/16:0) 4 
C39H78N2O8P-     

[M+OAc-H]- 
5.15 733.5498 733.5496 -0.0002 0 0.25122 1.1 2 

(Continued on next page)  
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Met Name LoA 
Mol Formula 

[complex adduct] 

RT 

(min) 

m/z 

(found) 

m/z 

(theor) 
ΔDa Δppm p [t-test] 

Fold 

Change 
CV% 

 
 

        
 

Lipid Profiling 

Negative Mode 
 

        
 

SM(d18:2/16:0) 4 
C41H80N2O8P-    

[M+OAc-H]- 
5.31 759.5652 759.5652 0.0000 0 0.30897 -1.3 6 

SM(d18:2/24:1) 4 C49H94N2O8P- 7.18 869.6743 869.6748 0.0005 1 0.69214 -1.1 4 

UKN-LPN-1 n/a n/a 6.55 792.5764 n/a n/a n/a 0.00799 1.5 8 

UKN-LPN-2 n/a n/a 8.46 690.6415 n/a n/a n/a 0.03247 2.2 3 

UKN-LPN-3 n/a n/a 8.30 693.5559 n/a n/a n/a 0.09041 3.5 46 

UKN-LPN-4 n/a n/a 8.00 690.6050 n/a n/a n/a 0.12380 -1.4 3 

*Statistics and assignment on second isotopic m/z 

 

The positions of double bonds and fatty acyl chains cannot be determined in DGs, PCs, PEs, lysoPCs and TGs; fatty acyl chains are presented from 

lowest to highest molecular weight (lower number of carbons to higher, and higher number of double bonds, to lower). 

Two-tailed t-tests were conducted, assuming unequal variance. 

RT: retention time; oxCE: oxidised cholesterol ester, Cer: ceramide, DG: diglyceride; PC: phosphatidylcholine; PE: phosphatidylethanolamine; SM: 

sphingomyelin; TG: triglyceride; UKN: unknown; OAc: acetate; n/a: not applicable 

LoA: level of assignment; 1: m/z matched to online databases; 2: m/z matched to online databases and prior knowledge for RT (in-house database of 

standards); 3: in-source fragmentation; 4: assignment based on MS
E
 mode spectrum. 
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Some metabolites appeared to drive the primary separation of the two groups in the model. From 

these, some showed increased statistical significance when compared between the two groups Box-

plots of the normalised intensities of these metabolites can be found in Figure 3. 5 C. These include 

PC(16:0/20:4), PC(16:0/18:1) and arachidonic acid (AA), which had a probability of p=0.00003, 

p=0.0002, and p=0.005, respectively indicating significant differences between the asymptomatic 

and symptomatic disease groups. 

Irrespective of MVDA, univariate statistics, using the t-test and fold-change, were applied to all the 

features. A number of features showed high statistical significance and therefore were further 

structurally assigned (Table 3. 5). These include an acyl-carnitine (AcC) the palmitoylcarnitine, and 

a TG, TG(58:6), whose normalised intensities were higher in Sympt, with p=0.00001 and 

p=0.00007, respectively, and with a fold-change of 2.5 and 3.1. Figure 3. 6 demonstrates the box-

plots of all the detected statistically significant metabolites of the lipid profiling analysis. 
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Figure 3. 6: Box-plots of significant metabolites obtained from univariate statistics of data from both organic and 

aqueous extracts. Two-tailed t-tests were conducted, assuming unequal variance. PC: phosphatidylcholine; TG: 

triglyceride; UKN: unknown. 
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Table 3. 5: List of assigned significant metabolites obtained from univariate statistics of data from both organic and aqueous extracts.  

Analysis - 

Mode 
Met Name LoA 

Mol Formula 

[complex adduct] 

RT 

(min) 

m/z 

(found) 

m/z 

(theor) 
ΔDa Δppm p [t-test] 

Fold 

Change 
CV% 

  
 

         
HILIC 

Positive 
Hexanoylcarnitine* 3 C13H26NO4+ 7.30 261.187 261.1894 0.0024 9 0.00003 1.9 20 

Lipid Prof 

Positive 
Palmitoylcarnitine 4 C23H46NO4+ 1.63 400.3426 400.3427 1E-04 0 0.00001 2.5 8 

Lipid Prof 

Negative 
PC(16:0/20:4) 4 

C46H83NO10P-  

[M+OAc-H]- 
6.19 840.5783 840.5755 -0.0028 -3 0.00002 1.5 6 

Lipid Prof 

Negative 
PC(O-16:0/16:0)* 4 

C42H85NO9P-    

[M+OAc-H]- 
6.91 779.6022 779.5996 -0.0026 -3 0.00007 1.7 5 

Lipid Prof 

Negative 
PC(O-38:5) 4 

C48H89NO9P-    

[M+OAc-H]- 
6.97 854.6302 854.6275 -0.0027 -3 0.00006 2.3 16 

Lipid Prof 

Positive 
PC(O-44:5) 4 C52H97NO7P+ 8.01 878.7051 878.7003 -0.0048 -5 0.00003 2.2 2 

Lipid Prof 

Positive 
TG(58:6) 2 

C61H110NO6+   

[M+NH4]+ 
10.22 952.8394 952.8333 -0.0061 -6 0.00007 3.1 3 

HILIC 

Positive 
UKN-HLP-4 n/a n/a 8.14 645.3829 n/a n/a n/a 0.00004 3.5 25 

*Statistics and assignment on second isotopic m/z 

 

The positions of double bonds and fatty acyl chains cannot be determined; fatty acyl chains are presented from lowest to highest molecular weight 

(lower number of carbons to higher and higher number of double bonds, to lower). 

Two-tailed t-tests were conducted, assuming unequal variance. 

RT: retention time; PC: phosphatidylcholine; TG: triglyceride; UKN: unknown; OAc: acetate. 

LoA: level of assignment; 1: m/z matched to online databases; 2: m/z matched to online databases and prior knowledge for RT (in-house database of 

standards); 3: in-source fragmentation; 4: assignment based on MS
E
 mode spectrum. 
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3.3.2.2 Aqueous Extracts 

The aqueous extracts of the atherosclerotic tissue were run using a HILIC-MS method. Similarly to 

the lipid profiling methodology, the two diseased groups studied also showed discrimination in the 

PCA scores plots (Figure 3. 5). Representative chromatograms of the method can be viewed in 

Figure 3. 7 and Figure 3. 8. The positive mode spectra demonstrated good group discrimination in 

scores plots of the 1
st
 and 2

nd
 PComps (Figure 3. 5.A). These two components together constituted 

42% of the variation (R
2
X), with the 1

st
 PComp contributing 23% to the variation. The negative 

mode also presented good grouping in 3 PComps, 1
st
, 2

nd
, and 3

rd
 (Figure 3. 5.B). They explain a 

total variation of 50%, with the 1
st
 and 2

nd
 PComps contributing with 23% and 14%, respectively 

indicating that the difference between the symptomatic and asymptomatic lipid profiles were 

responsible for a large part of the variance in the metabolic profiles. 
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Figure 3. 7: A representative chromatogram from the positive mode of the UPLC-MS analysis, of the aqueous extracts of the tissue samples examined. The trace in red colour 

represents the total ion current, while in green are the base peak intensities (highest peaks within a retention time window) 
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Figure 3. 8: A representative chromatogram from the negative mode of the UPLC-MS analysis, of the aqueous extracts of the tissue samples examined. The trace in red colour 

represents the total ion current, while in green are the base peak intensities (highest peaks within a retention time window). 
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Figure 3. 9: A and B represent scores and loadings plots from the PCA of the results obtained from the lipid profiling analysis of the organic extracts (A positive and B negative 

mode). C) and D) Box-plots of selected metabolites showing high statistical significance. Colour code: green: QC; blue: Asymptomatic; red: Symptomatic; dark yellow circles: 

metabolites assigned; dark red circles: features identified to represent isotopes, adducts, or fragments of identified metabolites. 
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Table 3. 6: List of assigned metabolites driving the separation of symptomatic and asymptomatic samples in the PCA loadings plots obtained from data of aqueous extracts.  

Met Name LoA 
Mol Formula 

[complex adduct] 

RT 

(min) 

m/z 

(found) 

m/z 

(theor) 
ΔDa Δppm p [t-test] 

Fold 

Change 
CV% 

 
 

        
 

HILIC Positive  
        

 

(iso)Butyrylcarnitine 3 C11H22NO4+ 8.36 232.1522 232.1549 0.0027 12 0.00059 2.8 3 

Acetylcarnitine 3 C9H18NO4+ 9.23 204.1245 204.1236 -0.0009 -4 0.16980 1.1 4 

Adenosine 3 C10H14N5O4+ 2.11 268.1068 268.1046 -0.0022 -8 0.05133 -1.4 9 

Carnitine 2 C7H16NO3+ 9.75 162.1123 162.1130 0.0007 4 0.64011 1.1 4 

Glycerophosphocholine 3 
C16H41N2O12P2+   

[2M+H]+ 
11.36 515.2134 515.2135 0.0001 0 0.49445 1.0 7 

lysoPC(18:1) 3 C26H53NO7P+ 6.97 522.3514 522.3560 0.0046 9 0.21956 1.4 95 

lysoPC(18:2) 3 C26H51NO7P+ 6.80 520.3374 520.3403 0.0029 6 0.85518 1.0 74 

lysoPC(O-16:0) 3 
C24H52NO6PNa+ 

[M+Na]+ 
8.13 504.3422 504.3430 0.0008 2 0.00663 2.3 4 

lysoPC(O-18:1) 3 C26H55NO6P+ 8.04 508.3755 508.3767 0.0012 2 0.04835 1.8 6 

PC(34:1) 3 C42H83NO8P+ 0.98 760.5934 760.5856 -0.0078 -10 0.83316 1.0 13 

PC(34:2) 3 C42H81NO8P+ 0.98 758.5769 758.5700 -0.0069 -9 0.16903 -1.4 13 

PC(36:4) 3 C44H81NO8P+ 0.97 782.5764 782.5700 -0.0064 -8 0.55840 -1.1 13 

PE(36:7) 3 C41H69NO8P+ 1.54 734.4712 734.4761 0.0049 7 0.17197 1.4 12 

4-(Trimethylammonio)but-2-enoate 2 
C14H26N2O4Na+  

[2M+Na]+ 
7.90 309.1791 309.1790 -0.0001 0 0.34349 3.1 4 

UKN-HLP-1 n/a n/a 10.10 616.1784 n/a n/a n/a 0.13546 2.2 17 

UKN-HLP-2 
*
 n/a n/a 12.58 729.4158 n/a n/a n/a 0.15598 2.4 13 

UKN-HLP-3 n/a n/a 0.74 324.1407 n/a n/a n/a 0.17574 -3.3 9 

(Continued on next page)  
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Met Name LoA 
Mol Formula 

[complex adduct] 

RT 

(min) 

m/z 

(found) 

m/z 

(theor) 
ΔDa Δppm p [t-test] 

Fold 

Change 
CV% 

 
 

        
 

 

 

HILIC Negative 

 
        

 

Adenosine 3 
C10H13N5O4Cl-  

[M+Cl]- 
2.13 302.0673 302.0656 -0.0017 -6 0.17377 -1.3 6 

Glycerophosphocholine 3 
C9H21NO8P- 

[M+FA-H]- 
11.37 302.1007 302.1005 -0.0002 -1 0.26149 -1.1 3 

Glycerophosphoethanolamine 3 C5H13NO6P- 9.55 214.0477 214.0480 0.0003 1 0.86287 1.0 3 

Glycerophosphoglycerol 3 C6H14O8P- 7.99 245.0434 245.0426 -0.0008 -3 0.07132 1.4 11 

Glycerophosphoinositol 3 C9H18O11P- 9.22 333.0596 333.0587 -0.0009 -3 0.67020 -1.1 4 

Inosine 3 
C11H13N4O7-   

[M+FA-H]- 
3.12 313.0789 313.0784 -0.0005 -2 0.03082 1.4 4 

UKN-HLN-1 n/a n/a 8.53 728.2135 n/a n/a n/a 0.00217 -2.3 12 

UKN-HLN-2 n/a n/a 0.75 448.9498 n/a n/a n/a 0.02408 -1.4 4 

UKN-HLN-3 n/a n/a 7.03 271.0026 n/a n/a n/a 0.11986 1.3 10 

Uric Acid 1 C5H3N4O3- 5.19 167.0196 167.0205 0.0009 5 0.11678 -1.1 2 

Uridine 3 
C10H13N2O8-   

[M+FA-H]- 
1.47 289.0681 289.0672 -0.0009 -3 0.04614 1.1 1 

* Assigned as the [2M+Na]+ adduct of 365.2049  

PCs and lysoPCs the positions of double bonds and fatty acyl chains cannot be determined; fatty acyl chains are presented from lowest to highest 

molecular weight (lower number of carbons to higher and higher number of double bonds, to lower). 

Two-tailed t-tests were conducted, assuming unequal variance. 

RT: retention time; PC: phosphatidylcholine; PE: phosphatidylethanolamine; UKN: unknown; FA: formate. 

LoA: level of assignment; 1: m/z matched to online databases; 2: m/z matched to online databases and prior knowledge for RT (in-house 

database of standards); 3: in-source fragmentation; 4: assignment based on MS
E
 mode spectrum.
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Features that were driving this separation can be seen in the loadings plots (Figure 3. 9) and 

included short-chain AcCs, carnitine, lysoPCs, PCs, glycerophosphocholine, 

glycerophosphoethanolamine, glycerophosphoinositol, adenosine, inosine and uridine. Features that 

could not be assigned are marked as UKN (Figure 3. 9 and Table 3. 6). Table 3. 6 presents the 

metabolites identified, and unassigned features, along with UPLC-MS analysis feature 

characteristics, and results of univariate statistics. Metabolites that appeared to drive the separation 

of the two groups are presented with box-plots on Figure 3. 9C and D. These include (iso-

)butyrylcarnitine and lysoPC(O-16:0) with p=0.0006 and p=0.007, respectively. 

Univariate statistics (Table 3. 5) demonstrated two highly significant features. One unidentified 

(UNK-HLP-4) with p=0.00004, and hexanoylcarnitine (detected as the second isotope) with 

p=0.00003, and FC of 1.9. Of note, the first isotope of hexanoylcarnitine was detected with 

p=0.0003 and FC of 1.7. The box-plots of all the detected statistically significant metabolites of the 

aqueous extract HILIC-MS analysis are provided in Figure 3. 6. 

3.4 Discussion 

Patients with symptoms of mini-stroke (symptomatic) have a higher risk of a life threatening stroke 

in the immediate future after the presenting mini-stroke symptoms
137

. Thus, it is of supreme 

importance for risk related markers to be provided to the clinic. In this study, a metabolic profiling 

discrimination of symptomatic and asymptomatic carotid plaque tissue is shown for the first time 

using multivariate statistical analysis. Furthermore, highly significant individual markers of 

symptomatic plaques are also reported. A number of them showed p<0.0001 in the two-tailed t-test 

and greater than 2-fold change in normalised intensity (Table 3. 4, Table 3. 5 and Table 3. 6). From 

literature, previous efforts using a shotgun lipidomics approach to accomplish multivariate 

statistical discrimination between symptomatic and asymptomatic carotid plaque tissue proved 

unsuccessful
140

. 

Metabolic profiles generated from NMR analyses of aqueous and organic extracts of the same 

samples did not show significant separation of Sympt and Asympt. The same for aqueous extracts 

ran with an RP-UPLC-MS method. It could be hypothesised that platforms, which were unable to 

deliver disease related profiles, may be more sensitive, or otherwise appropriate, for metabolites 

that do not show high statistical significance between the groups studied here. Therefore, the two 

methodologies presented herein (RP-UPLC-MS on organic extracts and HILIC UPLC-MS on 

aqueous extracts) will be the methods of choice for further analyses of larger sample sets. Using the 

combined power of both these analysis methods, these two methods can provide detection of a 
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range of compounds with wide physicochemical properties, wherein it was possible to structurally 

assign up to 50 metabolites. These methods were proven to be robust, as evidenced by the tight 

grouping of QC samples in MVDA (Figure 3.2). Additionally, the coefficient of variation calculated 

by the 7 injections of the QC sample through the run, gave further confidence in the analytical 

quality of the model as most of the CV% were typically <10%.  

By applying the lipid profiling methodology to analyse the tissue organic extracts, a number of lipid 

moieties, from 5 different lipid classes, were structurally assigned. These classes are: fatty acids, 

glycerolipids, glycerophospholipids, sphingolipids and sterol lipids. The identified lipids represent a 

wide range of lipid subclasses. These include a number of PCs and lysoPCs, SMs and Cers, CEs, 

TGs and DGs, PEs, AA, and also a long-chain AcC. 

On the other hand, due to the properties of HILIC columns, good interaction with the polar 

structural groups of metabolites could be achieved. Polar metabolites are retained and subjected to 

good chromatographic separation. Good retention would be an issue with conventional RP-UPLC 

methods for these metabolites
92

. Metabolites detected driving the models and/or being statistically 

significant were structurally identified. These included three purines, adenosine, inosine and uric 

acid, as well as uridine, a pyrimidine. Additionally, carnitine and a number of AcCs were detected, 

namely acetylcarnitine, (iso-)butyrylcarnitine (note that there is difficulty in the determination 

between butyryl- and isobutyryl- isomers by MS) and hexanoylcarnitine. Three major 

glycerophosphates were detected, glycerophosphocholine, glycerophosphoethanolamine and 

glycerophosphoinositol. A number of glycerophospholipids was detected, which is not surprising 

provided that the aqueous extraction was conducted using a 50% MeOH solution and therefore 

acted as a solvent for some organic molecules. Lastly, features that could not be assigned are 

reported in MVDA and univariate statistics.  

An important part of the experimental design was to explore if the metabolic fingerprint from 

different locations but within the same plaque was comparable.  However, biological reproducibility 

was very difficult to assess as it is hard to obtain multiple biological replicates of the tissue, and in 

good amounts, in order to perform such a study. It was however possible to obtain two tissue 

specimens from almost all of the carotid plaque samples. In PCA Figure 3. 5 and Figure 3. 9, 

duplicates are shown connected with a line. Some of the duplicates indeed displayed low variation. 

However, the variation of some of the duplicates was high. Nevertheless, despite these differences 

in the composition of samples from the same plaque, only on one occasion did the variation 

observed from a biological replicate affect the disease-related grouping of the samples in PCA. This 
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observation of intra-plaque variability was to some extent expected, as different pathophysiological 

conditions can coexist within the same plaque tissue giving rise to structural heterogeneity. 

Therefore, the potentially high variation within the same tissue sample should be considered in 

further studies. 

The current study functions as an exploratory study on a small sample set (n=10; five patients per 

group). This study was designed with the objective of obtaining pilot data demonstrating feasibility 

and ability to provide disease-related information. The small sample set and the use of biological 

duplicates is the reason the statistical analysis was limited to only unsupervised MVDA as 

supervised methods of MVDA are susceptible to overfitting on small sample sets. Additionally, the 

use of t-test and fold-change comparisons between metabolites should be considered indicative of 

the potential and not definitive. Further analyses of larger sample groups should validate these 

findings. 

As discussed, because of the small sample group size it would be risky to try to biologically 

interpret some of the detected statistically significant metabolites. However, some of differentially 

detected metabolites are members of the same biological pathways. This provides some extra 

confidence to these findings, and should also guide future experimentation employing targeted 

approaches that could validate the presented findings. 

One of the most important differences between samples from symptomatic and asymptomatic 

patients was the finding of higher intensities of AA in Sympt.  Higher intensities of this 20:4 free 

fatty acid and a 20:4 fatty acyl-chain bearing PC, PC(16:0/20:4), were detected in this study and are 

likely to indicate differences in the same metabolic pathway. PC(16:0/20:4) was detected with 

statistical significance in both ESI modes. PC(16:0/20:4) can release AA after being hydrolysed by 

the enzyme Phospholipase A2 (PLA2). At the same time AA is the precursor molecule of a wide 

spectrum of inflammation-related compounds, the eicosanoids. This is in concordance with 

literature findings. It has been reviewed by Libby et al that plaques in high risk of rupture 

experience higher inflammation
52, 54

. This is very intriguing and although the results are not 

conclusive on this matter, it provides a good hypothesis for future experimentation.  

Another interesting trend is the higher intensities of short, medium, and long-chain AcC. The (iso-

)butyrylcarnitine, hexanoylcarnitine and palmitoylcarnitine were all detected in higher normalised 

intensities in Sympt. However, acetylcarnitine and carnitine were unaffected. The fact that carnitine 

remains unaffected provides more evidence pointing towards dysregulation of the pathway of β-

oxidation. The β-oxidation takes place in the mitochondria, and consists of the catabolism of free 
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fatty acids after penetrating the mitochondrial membrane as acyl-carnitines. However, if this 

process is somehow down-regulated in Sympt, it still cannot explain why all AcC are higher while 

acetylcarnitine, the final product of this reaction remain unaffected. It could be possible that other 

catabolic pathways are able to counterbalance for this reduction as they can produce acetyl groups 

in the form of acetyl-CoA, or these are the pathways that are upregulated, and as a result fatty acid 

catabolism remains unused. 

In summary, the findings demonstrated here provide good proof of the ability of these metabolic 

profiling technologies to risk stratify patients with carotid atherosclerotic plaques, in danger of 

rupture and thromboembolism. Such findings could assist towards identifying candidate biomarkers 

that could be detected via in-vivo imaging, or targeted in bodily fluids such as blood. The potential 

of indentifying pathways that can be targeted for therapeutic purposes is also possible and should be 

explored. Taken together, the results from this analysis provide good evidence to further pursue a 

larger sample study of symptomatic and asymptomatic patients. The untargeted methodologies that 

were applied and succeeded on delivering results towards the discrimination of symptomatic 

patients should form the core of this study. Additionally, targeted approaches should be employed 

to investigate systemic evidence of involvement of pathways such as the eicosanoid and β-oxidation 

pathways. 
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Chapter 4  Application of a metabolic 

profiling approach to identify latent 

metabolites and interactions of 

atherogenesis. Distinct profiles detected 

between carotid and femoral plaques. 

4.1 Introduction 

Atherosclerosis is the number one cause of death in the western world
45

. Most adverse health events 

associated with atherosclerosis develop alongside plaque formation. Existing pharmaceutical 

schemes appear to fail in providing a positive outcome in primary prevention, while the scientific 

community still struggles to find appropriate dose or drug regimes
141

. 

Atherosclerosis is a multicentric, multistage and systemic disease. Cell populations such as vascular 

smooth muscle cells and leukocytes are known for their involvement in the manifestation of the 

disease. These cells participate in microenvironmental interactions in the arterial tissue. To 

understand the role of these interactions in disease aetiology and progression, they need to be 

positioned in a holistic framework in order to assist towards the generation of much needed novel 

hypotheses.  

Metabolic profiling can be an effective systems biology approach. By using multivariate data 

analysis to analyse complex spectral metabolite profiles, global information for the disease of 

interest can be obtained through identification of dysregulated metabolites and can lead to 

identification of dysregulated pathways. In this study, the metabolic changes of the progression 

from intimal thickening to plaque formation are explored. Tissue extracts from carotid and femoral 

plaque samples were compared to intimal thickening extracts using two different ultra performance 

liquid chromatography coupled to mass spectrometry (UPLC-MS) methodologies, covering a wide 

range of metabolites, and with substantial diversity in physicochemical properties. Both the global 

metabolic profile of plaque formation, as well as metabolic differences attributed to anatomical 

location, have been characterized. Previously unassociated, as well as recognized, metabolites and 
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biological pathways related to atherogenesis, are demonstrated, both globally and distinctively to 

the two tested locations. Finally, significant statistical interactions between detected biomarkers and 

biological pathways in relation to the disease are assessed. 

Additionally a novel experimental design is followed for this study. The concept of the 

experimental design is to explore the metabolic alterations of the metabasis to the lipid-laden lesion, 

within the arterial wall. The atherosclerotic lesion is the ‗culprit‘ of the adverse health events. For 

this, intimal thickening tissue (INT) (n=17) was used as control. Using INT comes with several 

advantages: 1) INT, rather than normal tissue, is detected at plaque prone sites from the early years 

of a person‘s life, 2) it is the immediate stage prior to progression to the lesion, thus the 

experimental model can provide a more realistic course of the disease, and 3) normal tissue is 

difficult to obtain for obvious ethical reasons. Further, plaque lesions from two different anatomical 

locations in the arterial tree, constituting the major sites of atherogenesis, were used: carotid and 

femoral. Establishing the metabolic phenotype for these sites addresses the necessity of correlating 

patients‘ outcome to pharmaceutical schemes. The efficacy of drugs, such as statins could be 

evaluated, in the context of differences in metabolic phenotype and lipid texture of the lesions, e.g. 

lipophilic properties of drugs. Additionally, metabolic profiling should be assessed based on the 

different hemodynamic properties of these anatomical locations. Lastly, comparisons between these 

anatomical locations are rare in literature and non-existent in the case of metabolic profiling studies. 

 

4.2 Methods 

4.2.1 Patients 

The tissue plaque samples used in this study were obtained from a total of 78 patients from the 

Department of Vascular Surgery, Imperial College London. Segments were retrieved, snap frozen 

in liquid nitrogen and stored at -80°C at surgery. These segments were obtained from 52 patients 

who underwent carotid endarterectomy (CAR), and 26 who underwent femoral endarterectomy 

(FEM). From these samples, tissues without atheroma, but with obvious evidence of thickening of 

the intima vessel layer (INT), were harvested (9 samples from carotid and 7 samples from femoral 

tissue). Intima thickening tissue was found at the shoulder of forming atheromas, and in this study 

serves as control tissue. Patients‘ clinical characteristics can be found in Table 4. 1.  
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Table 4. 1: Patients demographics of carotid, femoral, and intimal thickening groups. 

 
Carotid Femoral Intima thickening 

Number of Samples 52 26 16 

Age, Median (range) 69 (44-87) 74 (60-91) 69 (58-91) 

Gender, Male (%) 40 (77) 17 (65) 13 (81) 

Statin (%) 40 (82) {3} 19 (73) 13 (87) {1} 

Antiplatelet (%) 43 (86) {3} 22 (85) 14 (93) {1} 

HT (%) 32 (68) {5} 13 (50) 7 (47) {1} 

DM (%) 11 (22) {3} 7 (27) 6 (40) {1} 

Ever smoker (%) 25 (52) {4} 18 (69) 11 (73) {1} 

BMI, Median, Range 25.5 (17.4–41.2) {9} 23.0 (21.6–33.3) {13} 25.4 (21.0-47.7) {6} 

Key: HT: Hypertension; DM: Diabetes mellitus; BMI: Body Mass Index; {} number of missing 

patients 

4.2.2 Tissue Extraction 

Parts of plaque tissue, and intima tissue adjacent to plaque, were dissected and harvested for 

metabolite extraction. Effort was made to include as much plaque tissue as possible. Tissue weights 

were in the range of 416-153mg. Tissue samples were loaded into appropriate bead beating tubes 

(Percellys Steel-Kit, Germany) along with steel beads, and subjected to metabolite extraction by 

tissue lyses.  

4.2.2.1 Aqueous extraction 

Pre-chilled methanol/water solution (1:1) (methanol HPLC gradient grade, Fisher; water LC-MS 

grade, Fluka), was added to the tissue samples. The volume of the solution was adjusted according 

to weight of the sample starting at a maximum weight with 1.5mL, and reducing proportionally to 

sample weight. Samples were frozen on dry ice and loaded onto a bead beater (Bertin Technologies) 

vibrating at 6500Hz, 40 seconds, 4 cycles separated by freezing on dry ice. Centrifugation 

(Eppendorf, Centrifuge 5417R, Germany) followed at 13,000 rcf for 20 min; at 4
O
C. Aliquots of 

100μL of supernatant were pipetted into Eppendorf tubes. Samples were spun on a vacuum 

concentrator for 2 hours at 45°C (Eppendorf Concentrator Plus, V-AQ mode). Samples were stored 

at -40°C until analysis. 

4.2.2.2 Organic extraction 

Following decanting of the supernatant from centrifuged aqueous samples, a solution of pre-chilled 

dichloromethane (DCM, CH2Cl2)/methanol (3:1) (methanol HPLC gradient grade, Fisher; DCM 

HPLC grade, Sigma-Aldrich) was added. The volume of the solution was proportional to the sample 
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weight (as described in previous paragraph; aqueous extraction). Samples were frozen on dry ice 

and re-loaded into the bead beater (2 cycles, 6500Hz, 40 seconds). Samples were centrifugation at 

13,000 rcf for 20 minutes, followed by aliquoting of organic phase supernatant into glass vials. 

Samples were allowed to evaporate at room temperature in an extractor hood overnight and stored 

at -40°C for analysis. 

4.2.3 HILIC-UPLC-MS analysis of Aqueous Extracts 

4.2.3.1 UPLC-MS Analysis 

Samples were reconstituted in 200uL of solvent mixture of H2O/acetonitrile (5:95) (LC-MS grade, 

Fisher Scientific, USA), and transferred into Total Recovery vials (Waters, USA), after 

centrifugation for 20min at 13000 rcf, 4°C. 

UPLC separation was conducted using an Acquity UPLC System (Waters Corp, USA). An Acquity 

UPLC BEH HILIC 2.1x100mm, 1.8um, column (Waters Corp, USA) was used. Column 

temperature was set at 35°C. An injection volume of 10uL was used for both positive and negative 

ionization polarity modes. The auto-sampler was set at 4°C. Mobile phase A consisted of 

acetonitrile/water (95:5) and mobile phase B acetonitrile/water (50:50). In both solutions 

ammonium formate (98%, Fluka, USA) was diluted to 10mM and formic acid (MS grade, Fluka, 

USA) to 0.1%. The chromatographic gradient program is summarized in Table 4. 2.  

Table 4. 2: Gradient program of chromatography of HILIC UPLC-MS method of Aqueous Extracts 

Time (min) Flow rate ml/min %A %B Curve 

0.0 0.4 99 1 - 

2.0 0.4 99 1 - 

8.0 0.4 45 55 6 

9.0 0.4 1 99 6 

9.1 0.8 1 99 6 

11.0 0.8 1 99 - 

11.1 0.8 99 1 6 

19.0 0.8 99 1 - 

19.1 0.4 99 1 6 

23.0 0.4 99 1 - 
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Detection of eluting UPLC fractions was achieved using a Premier Q-TOF (Waters MS 

Technologies Ltd., UK). Scans were acquired with scan time of 0.20 s and interscan time of 0.02 s. 

Leucine Enkephalin was used for lock mass correction. Lock mass data were collected with scan 

time of 0.20 s and scan frequency of 30 s. Conditions in positive mode:  m/z range:50-1000, cone 

voltage 30V, capillary voltage 3kV, Source Temperature 120
O
C, Desolvation Temperature 400

O
C, 

Desolvation Gas Flow 800L/h. Conditions in negative mode:  m/z range: 50-1000, cone voltage 

30V, capillary voltage 2.5kV, Source Temperature 120
O
C, Desolvation Temperature 350

O
C, 

Desolvation Gas 800L/h. 

A QC format 
114

 was used for the UPLC-MS analysis. Briefly, a pooled sample (referred to as 

Quality Control Sample, QC) of the reconstituted extracts was prepared. This sample was re-

injected 10 times before initiating the run to condition the column. Then the sample was re-injected 

once at the beginning, every 10 injections of samples, and at the end of the run (total of 13 

injections).  

 

4.2.3.2 Data Processing 

Collected data were subjected to peak-picking and grouping using MarkerLynx XS (Waters Inc, 

v4.1) software, using the following parameters: 

Positive mode: Function: 1, Analysis Type: Peak Detection, Initial Retention Time: 0.50, Final 

Retention Time: 10.00, Low Mass: 50.00, High Mass: 1000.00, XIC Window 0.10 Da, Peak Width 

at 5% Height: 25s, Marker Intensity Threshold: 60counts, Mass Window: 0.10Da, Retention Time 

Window: 0.50 

Negative mode: Function: 1, Analysis Type: Peak Detection, Initial Retention Time: 0.40, Final 

Retention Time: 9.10, Low Mass: 50.00, High Mass: 1000.00, XIC Window 0.10 Da, Peak Width at 

5% Height: 25s, Marker Intensity Threshold: 30counts, Mass Window: 0.10Da, Retention Time 

Window: 0.50 

For Both Modes: Noise Elimination Level: 6.00, Peak-to-peak Baseline Noise: Auto, Replicate % 

Minimum: 0.00, No relative retention time, No Smoothing, No Deisotoping. 

Values were reported as height of intensity peaks. Samples were normalized to total intensity. 

Values were multiplied by 10 000 prior to statistical analyses. The dilution series was used here to 

remove peaks that were not responding to dilution. This was done by applying multivariate statistics 
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on the QC samples and dilutions and removing features (variables) that were not responding to the 

dilutions. Additionally, features attributed to lidocaine and hydroxyl-lidocaine were removed. 

Lidocaine is administered locally prior to carotid endarterectomy. 

4.2.4 Lipid Profiling 

4.2.4.1 UPLC-MS analysis 

Samples were reconstituted in 500uL of solvent mixture of H2O / isopropanol / acetonitrile (1:2:1) 

(Optima, LC-MS grade, Fisher Scientific, USA), and transferred into Total Recovery vials (Waters, 

USA), after centrifugation for 10min at 5g and 4°C. 

UPLC separation was conducted using an Acquity UPLC System (Waters Corp, USA). An Acquity 

UPLC CSH C18 2.1x100mm, 1.7um, column (Waters Corp, USA) was used. Column temperature 

was set at 55
o
C, flow rate of 0.4mL/min. Injection volume of 3uL and 7uL were used for positive 

and negative ionisation modes respectively. The auto-sampler was set at 4°C. Mobile phase A 

consisted of acetonitrile/water (60:40) and mobile phase B Isopropanol/acetonitrile (90:10). In both 

solutions ammonium formate (LC-MS grade, Fluka, USA) was diluted to 10mM and formic acid 

(MS grade, Fluka, USA) to 0.1%. The chromatographic gradient program is summarized in Table 4. 

3.  

Table 4. 3: Gradient program of chromatography of the lipid profiling UPLC-MS methodology. 

 

Time (min) %A %B Curve 

0.0 60 40 - 

2.0 57 43 6 

2.1 50 50 1 

12.0 46 54 6 

12.1 30 70 1 

18.0 1 99 6 

18.1 60 40 6 

20.0 60 40 - 

 

Detection of eluting UPLC fractions was achieved using a Xevo G2 QTof 

(Waters MS Technologies, UK). Both MS and MS
E
 data scans were acquired for 0.200 s every 

0.214 s. MS
E
 data were collected after ramping the collision energy from 30 to 40V.  Leucine 
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Enkephalin was used for lock mass correction. Lock mass data were collected every 0.3 s for 0.2 s. 

Conditions in positive mode:  m/z range:150-1200, cone voltage 30V, capillary voltage 2kV, Source 

Temperature 120
O
C, Desolvation Temperature 550

O
C, Desolvation Gas 900L/h. Conditions in 

negative mode:  m/z range: 50-1200, cone voltage 30V, capillary voltage 1kV, Source Temperature 

120
O
C, Desolvation Temperature 550

O
C, Desolvation Gas 900L/h. 

As with HILIC-UPLC-MS analysis, the QC format was used, as described in the previous 

paragraph. 

4.2.4.2 Data Processing 

After acquisition, data were centroided (m/z spectra peaks are automatically detected and their 

centroid is calculated based on the average m/z value and weighted by the intensity). This was 

followed by peak-picking and grouping using MarkerLynx XS (Waters Inc, v4.1) software, using 

the following parameters: 

Positive mode: Function: 1, Analysis Type: Peak Detection, Initial Retention Time: 0.40, Final 

Retention Time: 17.00, Low Mass: 150.00, High Mass: 1200.00, XIC Window 0.10 Da, Peak 

Width at 5% Height: 20s, Marker Intensity Threshold: 1000counts, Mass Window: 0.10Da, 

Retention Time Window: 0.50 

Negative mode: Function: 1, Analysis Type: Peak Detection, Initial Retention Time: 0.45, Final 

Retention Time: 17.00, Low Mass: 50.00, High Mass: 1200.00, XIC Window 0.10 Da, Peak Width 

at 5% Height: 20s, Marker Intensity Threshold: 400counts, Mass Window: 0.10Da, Retention Time 

Window: 0.50 

For Both Modes: Noise Elimination Level: 6.00, Peak-to-peak Baseline Noise: Auto, Replicate % 

Minimum: 0.00, No relative retention time, No Smoothing, No Deisotoping. 

Values were reported as area of intensity peaks. Saturated peaks were removed, prior to total area 

normalisation. Values were multiplied by 10 000 prior to statistical analyses. 

4.2.5 Statistical analysis  

Multivariate data analysis (MVDA) for UPLC-MS data was conducted using the SIMCA-P+ (v. 

12.0.1.0.; Umetrics) package. Principal Component Analysis (PCA) and Orthogonal Projection to 

Latent Structures – Discriminant Analysis (OPLS-DA) were applied to the processed Pareto-scaled 

data. Model validation was carried out using CV-ANOVA testing 
142

.  
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In order to extract putative biomarkers from UPLC-MS, features (corresponding to metabolites) 

with correlation coefficient (Note: correlation coefficient that refers to correlation of samples to 

disease classes will be refer to as: p(corr)) greater than 0.5 in absolute value were initially chosen. 

This cut-off provides confidence greater than 99% (based on the number of samples). These 

features were further subjected to two-tailed t-test assuming unequal variance with a threshold of p 

< 0.05
143, 144

 and fold-change comparison. Features were reported as significant and structurally 

identified if: 1) both p(corr) and t-test p-value met the thresholds , 2) were reproducible through the 

run, with a coefficient of variation (CV%) of the QCs less than 30%, and 3) pass the 

chromatographic peak shape assessment. A brief flowchart of the conditions a feature has to pass in 

order to be considered statistically significant is summarized in Figure 4. 1. 

 

Figure 4. 1: The workflow of conditions a feature has to fulfil in order to be considered statistically significant and 

forwarded to structural assignment. 

4.2.6 Metabolite Identification of Candidate biomarkers 

For structural elucidation of significant features UPLC-MS
E
 and UPLC-MS/MS data were used. For 

the lipid profiling MS
E
 data were collected through the run as described for the UPLC-MS analysis, 

while for the HILIC-UPLC-MS analysis MS
E
 data were collected on pooled samples (QCs) at the 

end of the run.  
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The same conditions described for each run were the ones used for MS/MS analysis that was 

conducted using data dependent acquisition (DDA) or by targeting specific ions. MS/MS data were 

collected with collision energy ramping from 30 – 50eV for lipid profiling and 20 - 40eV for HILIC 

analysis. Apart from fragmentation patterns, structural elucidation was assisted by matching 

accurate m/z measurements to metabolites from online available databases
111, 116, 139

. In some cases 

isotopic patterns also proved useful as well as an in-house library
92

. 

Where stated (Table 4. 6 - Table 4. 8) authentic standards were used to validate metabolite 

structural assignment. This included retention time matching of the authentic standard to the 

analyte, as well as matching of ms/ms spectra. This is accordingly stated by the level of assignment 

(LoA). 

4.2.6.1 Analytical Standards 

Standards were analytically grade with typical purity of >99%. Acetyl-DL-carnitine hydrochloride, 

adenosine, arachidonic acid sodium salt, benzoic acid, cholesterol sulphate, 2-deoxyuridine, 

guanosine, hypoxanthine, inosine and 1-methylnicotinamide, were purchased from Sigma. Linoleic 

acid, 5-methyluridine, and L-proline were purchased from Aldrich. Oleic acid, palmitic acid sodium 

salt, and stearic acid were purchased from Sigma-Aldrich. Creatine, 6-methylnicotinamide, 

niacinamide, sphingosine, uracil, and uridine were purchased from Fluka. Butyryl-L-carnitine 

chloride, decanoyl-L-carnitine chloride, isobutyryl-L-carnitine chloride, oleoyl-L-carnitine chloride, 

and valerylcarnitine-L-carnitine chloride were purchased from Larodan Fine Chemicals. 

Lauroylcarnitine chloride and propionylcarnitine chloride were purchased from TOCRIS 

bioscience, elaidic acid and N-acetyl-L-methionine from Alfa Aesar,  and linoelaidic acid from 

Cayman Chemical Company. Free cholesterol was purchased from Nu-Chek Prep, Inc. 

 

4.2.7 Pathway Analysis 

4.2.7.1 Correlation network analysis 

Correlation coefficients (Spearman) between pairs of candidate biomarkers were calculated using R 

(2.13.2) programming language (Note: Correlation coefficients that describe the Spearman 

correlation between two metabolites will be referred to as: r). For network visualization, of 

significant metabolites characterizing either of CAR or FEM plaques, CytoScape (v.3.0.0-beta1) 

software was used. The cut-off for correlation was at all circumstances higher that 99% confidence. 
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4.2.7.2 Metabolite Mapping 

Initial metabolite mapping was conducted by importing statistically significant metabolites in 

KEGG database
24

. A number of metabolites were mapped based on literature findings described. 

4.2.7.3 Venn Diagrams 

Venn diagrams were constructed using online available software 

(http://bioinfogp.cnb.csic.es/tools/venny/). 

4.3 Results and Discussion 

4.3.1 Metabolic profiles of plaque formation 

For the first time the metabolic phenotype of plaque formation is assessed, from tissue of human 

patients, by comparison to INT. Metabolic profiles for the plaque tissues were determined using 

multivariate statistics. PCA shows, in an unsupervised fashion, differences in the profiles between 

tissue of INT and plaque lesions from the CAR and FEM locations (Figure 4. 2). It was however 

obvious that the metabolic profile of CAR tissue was more similar to the profile of INT, than FEM, 

forming distinct groups. 
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Figure 4. 2: Scores plots of principal component analysis (PCA) of the tissue extracts. (A) Positive mode PCA of lipid profiling, (B) negative mode PCA of lipid profiling, (C) 

Positive mode PCA of aqueous extracts using HILIC-MS analysis, (D) negative mode PCA of aqueous extracts using HILIC-MS analysis. (Each point represents a sample; Blue 

rhombus: Intima thickening samples, Red dot: Carotid plaque samples, Black square: Femoral plaque samples. 
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Further supervised MVDA modelling was employed for comparison of each of the plaque tissues 

separately. Orthogonal projection to latent structure – discriminant analysis (OPLS-DA) fitted 

models displayed high predictive values indicating distinctive metabolic profiles for each class, and 

diagnostics showed well-fitted and valid models, as assessed by model characteristics (Table 4. 4). 

Cross-validated scores plots of the samples included in the analysis are shown in Figure 4. 3. Using 

the constructed models, and in conjunction with univariate statistical analysis, significant features 

were structurally assigned to metabolites. Features were considered significant if their statistical 

characteristics met two criteria. Firstly, a good correlation, in absolute value, to the disease group 

vector in MVDA (|p(corr)|>0.5), and secondly from univariate statistics a p-value of t-test of < 0.05. 

In this study, structural assignments of > 150 unique metabolite identities were made on features 

that were found statistically significant in differentiating two or more groups (Table 4. 6, Table 4. 7, 

Table 4. 8; end of chapter). A large number of the metabolites have been detected as statistically 

significant in more than one polarity modes, or UPLC-MS analyses (Figure 4. 4 , Figure 4. 5 and 

Figure 4. 6). Metabolites detected include 5 different lipid classes and 17 subclasses
38

. Metabolites 

detected with statistically significance are presented in Table 4. 6, Table 4. 7 and Table 4. 8, at the 

end of this chapter. 
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Table 4. 4: Summary of model characteristics from OPLS-DA multivariate statistical analyses of data obtained from all analysed and polarity modes. 

 

 
Groups CAR vs INT FEM vs INT CAR vs FEM 

Analysis Lipid Profiling HILIC Aqueous Lipid Profiling HILIC Aqueous Lipid Profiling HILIC Aqueous 

Polarity Mode 
Positive Negative Positive Negative Positive Negative Positive Negative Positive Negative Positive Negative 

Comp 

(pred+orthog) 
1 + 1 1 + 2 1 + 0 1 + 1 1 + 1 1 + 1 1 + 1 1 + 0 1 + 1 1 + 1 1 + 1 1 + 0 

R2X 0.280 0.412 0.131 0.215 0.423 0.383 0.209 0.193 0.377 0.441 0.205 0.173 

R2Y 0.609 0.786 0.496 0.721 0.861 0.834 0.895 0.846 0.78 0.668 0.823 0.638 

Q2Y 0.432 0.502 0.356 0.467 0.755 0.746 0.703 0.797 0.658 0.576 0.648 0.575 

CV-ANOVA 1x10-6 4x10-7 1x10-6 2x10-7 3x10-10 6x10-10 5x10-9 2x10-13 7x10-16 2x10-12 3x10-15 2x10-13 
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Figure 4. 3: OPLS-DA cross-validated scores plots of tissue extracts. Columns represent group comparisons, and rows different UPLC-MS analyses and polarity modes. 
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Figure 4. 4: Venn diagram indicating identical metabolites detected statistically significant in the comparisons between 

carotid plaques and intimal thickening samples. Metabolites detected with the same trend in more than one analysis 

and/or polarity mode are shown. 
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Figure 4. 5: Venn diagram indicating identical metabolites detected statistically significant in the comparisons between 

femoral plaques and intimal thickening samples. Metabolites detected with the same trend in more than one analysis 

and/or polarity mode are shown. Tentatively assigned metabolites are indicated with an asterisk. 
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Figure 4. 6: Venn diagram indicating identical metabolites detected statistically significant in the comparisons between 

carotid plaques and femoral plaque samples. Metabolites detected with the same trend in more than one analysis 

and/or polarity mode are shown. Tentatively assigned metabolites are indicated with an asterisk. 

 

Statistically significant metabolites detected in both CAR and FEM after individual comparisons to 

control samples are shown in Figure 4. 7. These metabolites were detected following the same 

trends in both disease locations. Common perturbed metabolites can provide a good overview of the 

dysregulated metabolic procedures of plaque formation and will be the main focus of analysis and 

discussion in the following paragraphs. 
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Figure 4. 7: Venn diagram indicating identical metabolites detected statistically significant in both diseased anatomical 

locations (carotid and femoral) after separate comparisons to intimal thickening controls. Metabolites were detected 

with the same trends. Metabolites in red are the ones detected in higher intensities in disease and in blue are detected in 

lower. Tentatively assigned metabolites are indicated with an asterisk. 

4.3.2 Distinct Metabolic Profiles Detected Between Plaques but Not Between 

Intima Thickening from Different Anatomical Locations 

MVDA detected distinct metabolic profiles between CAR and FEM. OPLS-DA (Figure 4. 3) 

showed high predictive values in all analyses and polarities (Table 4. 4). Some of the most 

comprehensive findings were the several TG moieties, mostly incorporating 16 and 18 carbon 

chains, being significantly higher in FEM plaques. A number of lysoPCs also showed differential 
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levels with high statistical significance, reaching t-test p-values of 3.5E-16, with higher intensity 

levels in CAR (Table 4. 6). Other highly significant metabolites include FFAs, adenosine and PGs.  

In order for these findings to be attributed to differences of disease progression, rather than 

anatomical location, a comparison was conducted to determine whether INT from these locations 

displayed metabolically related differences, prior to plaque manifestation. Efforts to fit multivariate 

statistical models using the two groups (INT groups of CAR and FEM origin) fell short, as models 

were unable to be statistically validated. This gave an initial proof of the two groups bearing no 

differences in the control stage. Additionally, for every univariate comparison between features 

showing statistical significance of the three groups, a t-test between the two anatomical sites of 

intimal thickening was also conducted.  Out of 292 t-tests conducted in all analyses with p-values 

<0.01 only 6 t-tests showed p-values of <0.01 (but always larger than 0.001) when comparing the 

corresponding INT from different anatomical locations. Moreover, for the analysis comparing 

between FEM and CAR groups, where metabolic differences between the two locations could 

directly be detected, only 3 metabolites showed a p-value of <0.01 (but larger than 0.001) (Figure 4. 

8 and Table 4. 5), as compared with the p-values of t-test comparisons of plaques from the two 

anatomical locations. 
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Figure 4. 8:  Assessment of the difference of intimal thickening tissue from the carotid and femoral locations. For every metabolite detected statistically significant, a corresponding 

comparison was conducted between intimal thickening tissues from the two anatomical locations using the t-test. P-values for all comparisons are indicated. 
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Table 4. 5: Assessment of the difference of intimal thickening tissue from the carotid and femoral locations. For every 

metabolite detected statistically significant, a corresponding comparison was conducted between intimal thickening 

tissues from the two anatomical locations using the t-test. Frequencies of p-values for all t-test comparisons are 

indicated. 

T-test p-
value 
frequencies 

INT-CAR vs  
INT-FEM 
(CAR vs FEM 
comparison) 

CAR vs FEM 
comparison 

INT-CAR vs  
INT-FEM  
(CAR vs INT 
comparison) 

CAR vs INT 
comparison 

INT-CAR vs  
INT-FEM  
(FEM vs INT 
comparison) 

FEM vs INT 
comparison 

1E-15 0 1 0 0 0 0 

1E-14 0 2 0 0 0 0 

1E-13 0 0 0 0 0 0 

1E-12 0 1 0 0 0 0 

1E-11 0 2 0 0 0 1 

1E-10 0 6 0 0 0 0 

1E-09 0 6 0 0 0 1 

1E-08 0 12 0 2 0 4 

1E-07 0 12 0 2 0 5 

0.000001 0 13 0 9 0 12 

0.00001 0 20 0 11 0 19 

0.0001 0 16 0 14 0 20 

0.001 0 14 0 15 1 22 

0.01 3 8 0 27 2 15 

0.1 10 1 16 15 8 5 

1 101 0 79 0 93 0 

 

Studies describing differences between CAR and FEM are limited in literature. A study by Bianda 

et al describes differences on plaque remodelling
145

. Additionally, a study by Herisson et al. 

demonstrates differences between CAR and FEM plaques, with FEM described as being more 

prevalent to ectopic calcification
146

. Plaque calcification is considered a progression of 

atherosclerosis
147

 and this may also be the explanation of the distinct and distant metabolic profiles 

of FEM from CAR and INT. Evidence of Ca
2+

 dysregulation was supported by findings of the 

present study. For FEM vs INT the levels of PI(18:0/20:4) were detected being significantly lower 

in plaques with a fold change of 2.5, while in the comparison of CAR vs FEM, PI(18:0/22:6) was 

also lower with 2.9 fold-change. Phosphatidylinositols (PIs) are precursor molecules of inositol-

triphosphate (IP3), known for its role in calcium homeostasis. Increase of IP3 can induce export of 

Ca
2+

 from the endoplasmic reticulum 
43

. Haemodynamic differences are more likely to be 

responsible for this disease variation observed along atheroma manifestation. In the following 

paragraphs discussion on the significantly dysregulated pathways is expanded, and specific 

metabolite differences between groups are discussed further. 
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4.3.3 Presence of cholesterol and oxidised cholesterol esters in atheromas 

Cholesterol and cholesterol derivatives are nowadays considered well-established risk factors of 

atheromatogenesis
148

. In this study free cholesterol (Cho) was detected elevated in both CAR and 

FEM as compared to INT. Moreover several oxidized cholesterol ester (oxCE) moieties were 

detected in higher levels. The oxCEs were detected with higher statistical significance and fold-

change than Cho. Additional involvement of the cholesterol pathway is shown in FEM, where 

cholesterol sulphate was also found to be higher by 2-fold. Although the detection of higher levels 

of Cho and derivatives does not constitute a novel finding, it does provide good validation of the 

experimental design and findings.  

All oxCEs detected in higher levels were esterified only with 18C fatty acyl chains. These chains 

were detected with 1-3 oxygen molecules. Free radicals have been suggested to promote the 

production of oxCE
149, 150

. The oxCEs are also known to contribute to foam cell formation
151

, which 

are the cells forming the lipid-laden lesion. Lipid peroxidation is caused by ROS and affects 

unsaturated fatty acids as well as cholesterol esters (CE) and Cho itself
150

. It can eventually lead to a 

chain reaction and result to cell membrane damage
149

. Lipid oxidation is also recognized to play a 

role in the progression of atherogenesis. Structures of detected oxCEs moieties are in concordance 

with literature
152

. 

4.3.4 Purine and pyrimidine pathway dysregulation 

Purines and pyrimidines have been known for their involvement in atherosclerosis for many 

years
153

. Triphosphates of adenosine (ATP) and uridine (UTP) are released from endothelial cells in 

response to sheer stress
154

. They are controlling vascular tone
154,155

, a process related to hypoxia. A 

number of them, such as adenosine and inosine, are known for their anti-inflammatory effects
156, 157

. 

Purine and pyrimidine inhibition can lead to apoptosis
158

, while on the other hand they are essential 

for cell proliferation
158

. Metabolites of purine and pyrimidine pathways are components or 

precursors of RNA and DNA. Herein, a large number of molecules of these two pathways were 

detected with lower intensities in both disease groups. These include uridine, inosine, hypoxanthine, 

guanosine and methyluridine (Table 4. 6 and Table 4. 7). These results provide yet another form of 

validation to the current study, since they are well-established to be involved in atherosclerosis. 

The elevation of adenosine levels only in FEM becomes rather intriguing as it was not detected with 

statistical significance in CAR. Adenosine, apart from its anti-inflammatory abilities, is acting as a 

highly potent vasodilator and vasoconstrictor
24, 155

. This process is also connected to Ca
2+

 channels, 

and could explain the high correlation (r=-0.57) of adenosine to PI(18:0/20:4), also known for their 
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involvement in Ca
2+

 homeostasis. The differential amount of shear stress and stretch applied to 

these different anatomical locations may provide insights into this detected difference. It can be also 

claimed that the lower and higher levels of inosine and adenosine in FEM, respectively, are to some 

extent independent to their directly connecting enzyme, adenosine deaminase, known to be present 

in vessels. This claim is based on the inverse correlation between these two metabolites (r=-0.56), 

which reflects some sort of association, but the correlation is not as strong as would be expected for 

a direct reaction. Adenosine was detected with high fold change in FEM in both positive and 

negative polarity modes of the HILIC analysis. 

4.3.5 Ceramide pathway suffers complete homeostatic loss 

The ceramide (Cer) pathway is known for its involvement in atherosclerosis 
159

. This can be 

expected due to the role of the Cer pathway in apoptosis
160

, and connections to (pro-) inflammatory 

factors, reactive oxygen species (ROS) and nitric oxide (NO)
159

. In the present study, a global 

reduction of the levels of a number of sphingomyelin (SM) moieties was detected. This observation 

along with the detected elevated levels of Cers may indicate the involvement of the 

Sphingomyelinase (SMase) enzyme. SMase catalyses the production of Cer by hydrolysis of the 

phosphoesteric bond of the phosphocholine head-group of SMs. 

Glycosphingolipids, another sphingolipid subclass were also found to be dysregulated. From 

literature review, studies detecting glycosphingolipid involvement in atherogenesis go 40 years 

back
161

. They have been implicated as signalling molecules in cell proliferation after oxidative 

conditions in vascular cells
162

 and platelet activation and adhesion to the vessel wall
163

. In the 

present study, tetra- and tri- hexosylceramide (HexCer) were detected in reduced levels, both in the 

form of d18:1/16:0. Specifically, tetraHexCer was detected with high p(corr) values  in MVDA in 

both diseases (p(corr)= -0.82 CAR; p(corr)= -0.89 FEM) (Figure 4. 9). Findings indicate a more 

intense involvement of tetraHexCers, and these being highly correlated to triHexCer (r=0.81 CAR; 

r=0.84 FEM). On the other hand, two monoHexCers were detected with higher intensities and only 

in CAR. The dysregulation of monoHexCers with an opposite trend and only in CAR indicates 

involvement of yet another biochemical reaction independent to tri- or tetraHexCer. This is also 

designated by lack of correlation to tetra- and tri-HexCer, while strong correlations were detected to 

Cers.  
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Figure 4. 9: A-D S-plots of the OPLS-DA analyses of  lipid profiling analysis of tissue extracts of (A) positive mode of carotid against intimal thickening, (B)  positive mode of 

femoral against intimal thickening, (C) negative mode of carotid against intimal thickening, and (D) negative mode of femoral against intimal thickening tissue extracts. (E) box-

plots of metabolites indicated on S-plots that demonstrated high statistical significance in both statistical comparisons.  
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Other differential sphingolipids were sphingosine and C16-sphingosine, showing a 3.5- and 7.6- 

fold change, only in CAR, and Phosphatidylethanolamine-Ceramides (PE-Cer) with lower levels in 

both anatomical locations, compared to INT. PE-Cer involvement is considered to be a novel 

finding of this study, crucial to the pathological process, and it will be further discussed in the 

following paragraphs. 

4.3.6 PE-Cer a new candidate biomarker in atherogenesis  

Despite the vast amount of research focused on atherosclerosis PE-Cers have not been investigated 

in the context of plaque formation. Specifically, apart from p-values as low as 9.8x10
-12

 in t-tests 

(Table 4. 6 and Table 4. 7), PE-Cers showed indications of high correlation to the disease (p(corr)≥-

0.94) (Figure 4. 9), using well-validated multivariate models, with high predictive values. They 

were detected in the form of PE-Cer(d18:1/16:0) and PE-Cer(d18:1/24:1). PE-Cer involvement in 

the progression of plaque formation was evident in both anatomical locations (CAR and FEM), and 

is a significant finding as it demonstrates common basis of disease manifestation. PE-Cers are 

found only in trace concentrations in mammalian cells
164

. However, this lipid has been reported to 

be essential to ceramide homeostasis in humans
165

. 

A selective synthase called sphingomyelinase synthase1 – related (SMSr), is the enzyme 

responsible for PE-Cer synthesis by transferring the phosphoethanolamine group from PE to Cer. 

Therefore, the inverse correlation of PE-Cer to Cer is in concordance with the corresponding 

biochemical reaction
24

. However, PEs did not share the same trend as Cer. On the contrary, PEs had 

a high positive correlation to PE-Cers. This correlation should be further investigated in the context 

of the possibility of a positive feedback loop with additional biological effects. For CAR the highest 

correlation occurred with 20:4 FAC bearing PEs, while for FEM with 22:6. PE-Cers also showed 

high correlations with members of the pyridine and pyrimidine pathways, such as inosine, uridine 

and guanosine.  

As expected, correlation networks revealed connections between PE-Cers and metabolites, 

members, of the ceramide pathway. These included high positive correlations to tetraHexCer, 

triHexCer, and SMs and inverse correlations to Cers and monoHexCers. An interesting observation 

is that correlations to tetraHexCer were generally higher than triHexCer, and in the same level as 

Cers. This association should be further explored since Cers and triHexCer would represent 

intermediate products of the reaction from PE-Cer to tetraHexCer, according to reference pathways. 
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4.3.6.1 Structural assignment of PE-Cers 

Despite the fact that PE-Cers are known to exist in the human lipidome, they are not ubiquitously 

found in MS databases
111, 116

. PE-Cers were detected as statistically significant with the negative 

mode of the lipid profiling methodology. A search for the PE-Cer(d18:1/24:1) (m/z on 

neg=769.6202) returned no results while for the PE-Cer(d18:1/16:0) ) (m/z on neg=659.5125) two 

PE-Cers were returned (as [M-H]-) with however different fatty acyl chains (Figure 4. 10) and 

reported as previously detected only in Drosophila melanogaster
166

. However, due to the high mass 

accuracy (Δppm=0) to the detected ion this possibility was further explored. 

A first indication was the low intensity of the metabolite. As mentioned, PE-Cers are detected in 

trace concentrations in humans. Positive mode was used and an ion representing the [M+H]+ was 

detected at the same retention time. The MS
E
 mode was then utilised to confirm characteristic 

fragments of PE-Cers (these ions were not picked from DDA for MS/MS due to their low 

intensities), in combination with in source fragments. These would be a neutral loss of 141 

(phosphoethanolamine loss), and a 264 (backbone of d18:1 ceramide)
166

. These ions were detected 

and matched relatively well to the chromatographic peak profile, considering the low intensity of 

the ions (Figure 4. 11).  

Additional MS/MS experiments were conducted on positive mode, using samples with high 

intensities of this signal and further verified the metabolites to be as such based on their 

fragmentation profile (Figure 4. 12 and Figure 4. 13). Characteristic fragments that led to the 

structural assignment of these PE-Cers were: 1) the neutral loss of phosphoethanolamine (141), 2) 

the backbone fragment of d18:1 (m/z = 264) and 3) the fatty amides corresponding to the specific 

metabolites (m/z = 280 and 390). 
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Figure 4. 10: Results of accurate mass search for 659.5125 m/z, detected on negative mode of the lipid profiling 

analysis, in the lipid maps
139

 database. (Search conducted March 2013) 

 

Figure 4. 11: Extracted ion chromatograms of characteristic fragments of metabolite that was initially tentatively 

assigned as PE-Cer(d18:1/16:0), and further verified as such by MS/MS experiments. Extracted ion chromatograms 

were smoothed using the Savitzky-Golay method.  
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Figure 4. 12: MS/MS spectrum of the PE-Cer(d18:1/16:0) indicating the characteristic fragments used for structural assignment. 
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Figure 4. 13: MS/MS spectrum of the PE-Cer(d18:1/24:1) indicating the characteristic fragments used for structural assignment. 
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4.3.7 PE-Cer levels are inversely correlated to cholesterol 

Probably the most biologically important observation is the high inverse correlation of PE-Cers to 

Cho and subsequently to the detected oxCEs. PE-Cer(d18:1/16:0) for the CAR group achieved 

correlation values of r= -0.84 and for the FEM group r= -0.86, while PE-Cer(d18:1/24:1) r=-0.56 

and -0.81, respectively (Figure 4. 14, Figure 4. 15, Figure 4. 16, Figure 4. 17). Although Cho did 

appear to have high correlation to some of the members of the Cer pathway, they were lower 

compared to PE-Cer indicating more of an effect rather than a cause. This was further verified by 

correlation analysis for metabolites found dysregulated in both groups (n=94) (Figure 4. 18). As can 

be seen by the correlation network (Figure 4. 19), cholesterol was highly correlated only to PE-

Cer(d18:1/16:0). From these findings it is hypothesised that PE-Cers and most likely only PE-

Cer(d18:1/16:0) is the factor of the Cer pathway having the closest interaction to Cho. 

It has previously shown that SMs can form Cho-enriched domains in the cell membrane, while PE-

Cers do not favour formation of such domains
167, 168

. This observation may not provide an adequate 

explanation for the high absolute value of correlation between PE-Cers and Cho, but it may explain 

the inverse nature of the correlation. Additionally, the fact that PE-Cers have been found to be 

responsible for controlling Cer levels
165

 can add confidence to the hypothesis.  

As mentioned, the Cer pathway is known for its involvement in atherosclerosis
159

. Thus, efforts to 

connect the Cer pathway to Cho have previously been conducted
169, 170

 since Cho represents a 

traditional risk-factor for atherosclerosis, and associations of metabolites of the Cer pathway to Cho 

have previously been shown
171

. Connections between the Cer pathway and Cho have been the 

centre of attention in the manifestation of diseases such as Alzheimer
172

 and cancer
173

. Therefore, 

PE-Cers carry the potential of being the missing link, and thereby bringing the quest of integrating 

Cho and Cer pathways, and consequently the elucidation of the pathophysiology of plaque 

formation, a step closer to a resolution. 

 

4.3.8 Dysregulation of metabolic oxidation is detected via truncation of β-

oxidation and unsaturated lipid consumption  

In both CAR and FEM tissue, acyl-carnitines (AcC) with short acyl chains were detected with lower 

intensities, while, on the contrary, AcCs with medium or long chain AcC levels were increased. 

AcC are involved in the translocation of fatty acyl chains through the mitochondrial membrane. 

This finding implicates mitochondrial metabolism and specifically the β-oxidation. From these 
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results, it could be hypothesised that β-oxidation is somewhat truncated reducing the production of 

short-chain AcC, while at the same time medium- and long-chain AcCs are accumulated. 

Additionally, a number of highly unsaturated lipids were detected in lower intensities in the disease 

groups. As discussed in preceding paragraphs unsaturated fatty acyl chains can react under 

oxidative stress with their oxidation occurring in the peroxisome rather than the mitochondria. 

Highly unsaturated lipids were detected with inverse correlations to oxCEs (CAR r>-0.70; FEM r>-

0.78) (Figure 4. 14 and Figure 4. 16). Yanes et al demonstrated that high concentrations of long-

chain AcCs along with low concentrations of unsaturated lipids are present after maturation of 

embryonic stem cells
174

. In this context, processes imitating embryonic differentiation, such as 

ectopic ossification
147

, are well known to take place in advanced atherosclerotic lesions. Findings 

also support this further, since FEM showed more intense dysregulation of β-oxidation. FEM have 

been previously shown to experience more intense calcification than CAR
146

. From literature, β-

oxidation and oxidative conditions, in general, are linked to inflammation
175

. Although oxidative 

stress is known to be involved in the manifestation of atherosclerosis
148

, to our knowledge, β-

oxidation and acyl-carnitines have not been previously associated with atherogenesis.
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Figure 4. 14: A heatmap representation of the correlation matrix obtained from Spearman correlations of metabolites 

detected statistically significant in the comparison of carotid plaques to intimal thickening. Intensity of red colour 

represents positive correlation and intensity of blue represents negative correlation of the biomarker pair. 
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Figure 4. 15: Correlation network of metabolite pairs found to have a Spearman correlation value of more than 0.70 in 

absolute value. These metabolites were found to be statistically significant in the comparison of carotid to intimal 

thickening tissue. 
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Figure 4. 16: A heatmap representation of the correlation matrix obtained from Spearman correlations of metabolites 

detected statistically significant in the comparison of femoral plaques to intimal thickening. Intensity of red colour 

represents positive correlation and intensity of blue represents negative correlation of the biomarker pair. 



 

163 

 

 

Figure 4. 17: Correlation network of metabolite pairs found to have a Spearman correlation value of more than 

0.80 in absolute value. These metabolites were found statistically significant in the comparison of femoral to 

intimal thickening tissue. 
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Figure 4. 18: A heatmap representation of the correlation matrix obtained from Spearman correlations of the common 

metabolites detected statistically significant in separate comparisons of carotid and femoral plaques to intimal 

thickening. Intensity of red colour represents positive correlation and intensity of blue represents negative correlation 

of the biomarker pair. 
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Figure 4. 19: (A) Correlation network of metabolite pairs found to have a Spearman correlation value of more than 

0.65 in absolute value. These metabolites were commonly found as statistically significant in separate comparisons of 

carotid and femoral plaque tissue to intimal thickening. (B) Box plots of highlighted metabolites from the correlation 

network. These metabolites are considered important due to the central role (hubs) to the network or prior knowledge 

of importance in the studied disease, according to literature. 
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In FEM, along with the increase of AcCs, accumulation of free fatty acids (FFA) is also detected 

and indicates low FFA oxidation as well as presence of oxidative conditions. Detected FFAs were 

in the range of 16-18 carbon chains, and can be only moderately associated with detected 

dysregulation of β-oxidation (r~ 0.4 - 0.55 to medium-chain AcCs; r~ -0.50 - -0.55 to short-chain 

AcCs). The accumulation of 16 and 18 carbon chains explains the high abundance of 16 and 18 

carbon chain TGs (r<0.69). Correlations of FFAs in the range of 0.61 – 0.80 with the oxCE bearing 

one oxygen, and in the range of 0.51 – 0.59 to the oxCE bearing two oxygens demonstrates further 

their association to oxidative stress. Another observation is the very high inverse correlation of 

these 16 and 18C TGs to tetra- and tri-HexCer (r > -0.86). TGs also showed high correlations to 

Cers and high negative correlations to SMs and PE-Cers, with, however, lower absolute values. 

Accumulation of FFA has been shown to lead to toxic pathways and apoptosis in pancreatic β-

cells
176

. The reasons of the FFA accumulating only in FEM could be sought to the different 

haemodynamics between FEM and CAR, since muscle contraction has been shown to induce FFA 

uptake
177

. 

4.3.9 Presence of acyl-cholines in CAR 

In the CAR higher intensities of acyl-cholines (choline esters) were observed. This was based on 

accurate m/z measurements and presence of an N, N, N-trimethyl loss on MS/MS analysis, which is 

characteristic of acetylcholine
178

. These esters incorporated fatty acyl chains of 16:0, 18:2, 18:1, 

18:0 and 20:4. High pairwise correlations between these molecules (typically r>0.9) is a good 

indication of a direct connection, which may be a common synthesizing enzyme. They also 

manifested high correlation to lysoPCs and high inverse correlation to some of the PEs and lysoPEs. 

Such a finding is reported for the first time. However, due to the fact that it represents an 

observation in only one of the groups it was further assessed. The major concern for this matter is 

that a local anaesthetic, lidocaine, is locally administered only during carotid endarterectomies. 

However, the detected molecules were not correlated to lidocaine (Figure 4. 14). Still, 

cholinesterases are known for their involvement in metabolising anaesthetics and therefore this 

finding should be further evaluated and validated
179

. 

4.4 Conclusions 

The choice of the two UPLC-MS methods used (Reversed-phase – UPLC for organic extracts and 

HILIC-UPLC for aqueous extracts) provided a wide coverage of metabolites, from lipids and 

extremely lipophilic molecules, such as TGs and CEs, to polar molecules such as carnitine and 
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creatine. A number of metabolites were detected as statistically significant from more than one 

analysis and polarity modes (Figure 4. 4). Good QC grouping in multivariate statistics, translated to 

low coefficient of variation (CV%), indicated a high reproducibility through the run, ensuring good 

quality data. The detection of metabolites known to exist in trace concentrations in human is 

another evidence of the impact new technological achievements have in the area of metabolic 

profiling. 

The experimental design and especially the choice of intimal thickening tissue as the control group 

gives the confidence of detecting significant metabolites from pathological processes involved in 

plaque formation. The only drawback of the study was the usage of lidocaine, during surgery, only 

for carotid endarterectomies. This does not affect findings, as discussed, as the major focusing of 

the study is on metabolites common to both groups. Additionally, the drug, all the features 

structurally related to the drug, and a metabolite of the drug, were removed prior to statistical 

analysis. Moreover, lidocaine intensities were included in correlation analysis, as a further check, 

and showed no significant correlations to any of the statistically significant metabolites (Figure 4. 

14). Keeping in mind that the drug is injected only a few minutes prior to excising the tissue, it is 

unlikely to cause any severe effect to the tissue biology. Specifically, no correlation between the 

bioavailability of the drug and tissue profile in CAR samples was observed in unsupervised (Figure 

4. 20) or supervised MVDA. Lastly, the fact that the INT samples from the two locations did not 

show any differences further indicates that lidocaine administration does not induce major 

biological differences. 
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Figure 4. 20: PCA scores plots of only the carotid samples in all analysis and polarity modes with colouring indicating the bioavailability of the local administered anaesthetic drug 

lidocaine in the plaque tissue. Colour coding: Red: Intensities over the +1SD, Grey: Intensities within the ±1SD, Green: Intensities lower than -1SD, and Blue: Samples with 

undetectable levels of lidocaine. 
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For the current study, an initial validation was performed by demonstrating concordance with 

literature and well-established risk factors. Specifically, Cho and oxCEs which were detected with 

higher intensities in plaques are known to be in elevated concentrations in atheromas
148, 152

. The 

involvement of purine and pyrimidine pathways provide further confidence to our results and 

experimental design, as they are also known to be dysregulated in atherosclerosis. 

Distinct metabolic profiles were detected from plaque tissue harvested from the carotid and femoral 

locations. However, the pathological origins of plaque formation, are more likely to be based on the 

common dysregulated biological pathways of CAR and FEM. Therefore, common and to some 

extent novel, findings are further elucidated. The involvement of PE-Cers and their strong statistical 

connections to plaque formation, Cho and CEs, represent a novel finding and common in both 

anatomical locations. At this point it is difficult to provide a hypothesis from the current 

information. It could be claimed that the reduction of PE-Cers in the cell membrane (CM) gives rise 

to Cho, as the CM can incorporate more Cho and Cho production in the endoplasmic reticulum 

continues. However, the trace amounts of PE-Cers in the human cell may be inconsistent with this 

hypothesis, and show some sort of signalling function to the molecule. PE-Cers are connected to the 

Cer pathway, and they may have a role in apoptosis of the cell, thus depositing Cho within the 

intima layer of the vessel. Nonetheless, this association to cholesterol can provide further insights 

into manifestation of disease but also might be able to explain ineffectiveness of cholesterol-

lowering drugs. 

Tetra- and tri-HexCers, are also universally dysregulated and may provide additional insides to the 

disease. Tri- and tetra-HexCers showed strong statistical power and high association to PE-Cers. 

The dysregulation of the Cer pathway, in general, was also common supporting the ubiquitous 

involvement of apoptosis in atherosclerosis. Additionally, the interruption of β-oxidation as inferred 

by the differential intensities of acyl-carnitines, and along this the recruitment of highly unsaturated 

fatty acids, reveal previously undemonstrated findings. 

Differences between the two plaque tissues should also be taken into account. For FEM, the most 

intense differential findings were the more obvious dysregulation of β-oxidation, involving AcCs, 

FFAs and TGs, and the elevation of adenosine. For CAR it was the elevation of lysoPCs and 

members of the ceramide pathway, such as mono-HexCers, and sphingosines, and the elevation 

acyl-cholines. These are findings that should not be neglected as they may convey significant 

mechanistic and translational information by providing the biological rationale for cases of drug 

resistance/inefficiency. Reasons for these differences could be sought in the differential amount of 
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shear stress and stretch applied in these regions. Another possibility could be the different 

embryonic origins of vascular smooth muscle cells in the two anatomical locations which has been 

shown to phenotypically effect different cardiovascular diseases
180

. 

An important and, at the same time, difficult part of the present study was to provide rational 

interactions between pathways detected being dysregulated. Correlation analysis, pathway mapping 

and literature review provided information that could be used towards deconvolution of the 

complex pathology of this disease. In this top-down systems biology approach a number of 

interactive pathways were detected, with the connection of the Cho and Cer pathways being the 

highlight of the analysis. 

Further experiments will seek to validate results and identify connections between pathways using 

bottom-up approaches and in a larger number of samples. Absolute quantification of metabolites 

involved, with a special interest in d18:1/16:0 sphingolipids, along with transcript expression and 

activity of involved enzymes, will also be part of future work. 

4.4.1 Closing remarks 

Atherosclerosis is a multicentric and multistage disease. Health threatening events can occur as a 

result of plaque formation. These are generally caused by blood flow limitation, stroke and heart 

attack. Current therapeutic agents function towards cholesterol lowering. Cholesterol is known to be 

in the centre of advancement of the disease, but still prescribed drugs appear inadequate to mitigate 

stenosis or plaque rupture. For these reasons, there is an urgent unmet need for the scientific 

community to identify novel biomarkers/pharmaceutical targets to increase the potential of 

therapeutic treatment. This is potentially a rather difficult task, since atherosclerosis has been in the 

centre of scientific attention for many years now. However, in this study, new biochemical 

pathways have been identified as being involved in the progression to plaque formation from 

intimal thickening. This could be credited to the novelty of methodologies, modern instrumentation 

and experimental design. Systems biology approaches, by using multivariate statistics, can provide 

global information for the disease of interest and can identify or infer dysregulated pathways. 

Although the detected candidate biomarkers and inferred interactions from this study need further 

validation, they definitely constitute a step forward for the elucidation of the mechanisms of plaque 

formation in the arterial wall. 
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Table 4. 6: List of structurally assigned statistically significant metabolites obtained from the analysis of tissue extracts, after comparison of the carotid to the intimal 

thickening group.  
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* Standard compound of isobutyrylcarnitine exhibited different RT 

† Standard compound of 6-methylnicotinamide exhibited different RT 

‡ Molecular formula as calculated using the isotopic pattern (tentative) 

 

LoA: Level of Assignment; 1: Tentative assignment; 2: Tandem MS spectrum matched to database or literature; 3: RT matched to standard 

compound; 4: MS/MS spectrum and RT, matched to standard compound. 

RT: Retention time. 

HILIC: Hydrophilic Interaction (Liquid) Chromatography. 

P(corr) refers to the correlation coefficient of metabolites to disease classes. 

Two-tailed t-tests were conducted, assuming unequal variance. 

Coefficient of variation (CV%) is calculated based on thirteen injections of the same pooled quality control (QC) sample, acquired throughout 

the run. 

The position of double bonds and the position of fatty acyl chain cannot be determined in lipid moieties (Cer, HexCer, PC, PE, PG, and SM). 

Fatty acyl chains are presented from lowest to highest molecular weight (lower number of carbons to higher, and higher number of double bonds 

to lower). 
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Cer: ceramide; FA: formate; Hex: hexosyl; na: not applicable; oxCE: oxidised cholesterol ester; PC: phosphatidylcholine; PE: 

phosphatidylethanolamine; PG: phosphatidylglycerol; SM: sphingomyelin; ud: unable to determine; UKN: unknown.  
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Table 4. 7: List of structurally assigned significant metabolites obtained from analysis of tissue extracts, after comparison of the femoral to the intimal thickening group.  
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* Standard compound of elaidic acid (stereoisomer of oleic acid) exhibited different RT 

† Standard compound of linoelaidic acid (stereoisomer of linoleic acid) exhibited different RT 
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‡ Detected as a fragment of parent ion 

§ Standard compound of 6-methylnicotinamide exhibited different RT 

 

LoA: Level of Assignment; 1: Tentative assignment; 2: Tandem MS spectrum matched to database or literature; 3: RT matched to standard 

compound; 4: MS/MS spectrum matched to standard compound. 

RT: Retention time. 

HILIC: Hydrophilic Interaction (Liquid) Chromatography. 

P(corr) refers to the correlation coefficient of metabolites to disease classes. 

Two-tailed t-tests were conducted, assuming unequal variance. 

Coefficient of variation (CV%) is calculated based on thirteen injections of the same pooled quality control (QC) sample, acquired throughout 

the run. 

The position of double bonds and the position of fatty acyl chain cannot be determined in lipid moieties (Cer, DG, HexCer, PC, PE, PG, PI, SM, 

and TG). Fatty acyl chains are presented from lowest to highest molecular weight (lower number of carbons to higher, and higher number of 

double bonds to lower). 

Cer: Ceramide; DG: diglyceride; FA: formate; Hex: Hexosyl; na: not applicable; oxCE: oxidised cholesterol ester; PC: phosphatidylcholine; PE: 

Phosphatidylethanolamine; PG: Phosphatidylglycerol; PI: phosphatidylinositol; SM: sphingomyelin; TG: triglyceride; ud: unable to determine; 

UKN: unknown.  



 

191 

 

Table 4. 8: List of structurally assigned significant metabolites obtained from analysis of tissue extracts, after comparison of the carotid to the femoral plaque group.  
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* Statistics and assignment on second isotope 

† Molecular formula as calculated using the isotopic pattern (tentative) 

‡ Standard compound of elaidic acid (stereoisomer of oleic acid) exhibited different RT 

§ Standard compound of linoelaidic acid (stereoisomer of linoleic acid) exhibited different RT 

¶ Detected as a fragment of parent ion 
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LoA: Level of Assignment; 1: Tentative assignment; 2: Tandem MS spectrum matched to databases or literature; 3: RT matched to standard 

compound; 4: MS/MS spectrum matched to standard compound. 

RT: Retention time. 

HILIC: Hydrophilic Interaction (Liquid) Chromatography. 

P(corr) refers to the correlation coefficient of metabolites to disease classes. 

Two-tailed t-tests were conducted, assuming unequal variance. 

Coefficient of variation (CV%) is calculated based on thirteen injections of the same pooled quality control (QC) sample, acquired throughout 

the run. 

The position of double bonds and the position of fatty acyl chain cannot be determined in lipid moieties (Cer, HexCer, PC, PE, PG, PI, SM, and 

TG). Fatty acyl chains are presented from lowest to highest molecular weight (lower number of carbons to higher, and higher number of double 

bonds to lower). 

Cer: Ceramide; FA: formate; Hex: Hexosyl; na: not applicable; oxCE: oxidised cholesterol ester; PC: phosphatidylcholine; PE: 

phosphatidylethanolamine; PG: phosphatidylglycerol; PI: phosphatidylinositol; SM: sphingomyelin; TG: triglyceride; ud: unable to determine; 

UKN: unknown. 
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Chapter 5  A metabolic profiling approach 

to explore candidate biomarkers and 

pathways of cardiovascular calcification 

5.1 Introduction 

Vascular and valvural calcifications are pathological conditions of ectopic bone formation. Vascular 

calcification can coexist with atherosclerosis. However, there is no clear knowledge of whether it 

can actually be the cause, effect, or a co-progression
57, 60

. Nonetheless, evidence of independent 

mechanisms of these two conditions also exist
57

. Elucidation of the pathology of vascular 

calcification, as well as biomarker discovery studies, become more important due to contradictory 

reports of prognostic significance of calcification in cardiovascular events
57, 59, 60

. Aortic valve 

calcification is the second most common indication for cardiac surgery
61

, and the first for valve 

replacement in the United States
62

. Calcific aortic valve disease is also associated with 

atherosclerosis
62

. The failure of conventional risk factors and drugs, the absence of easy-to-apply 

screening-biomarkers, along with the severity of the disease, declare the critical need for alternative 

technologies.  

Calcification is no longer regarded as a passive calcium deposition, degenerative disease. It is now 

widely considered to be an active biological process of ossification
60, 62, 181, 182

. Bone morphogenetic 

proteins (BMPs), matrix Gla protein (MGP), osteoprotegerin, osteopontin, osteonectin are some of 

the bone-formation related factors known to be involved
57, 60, 181, 182

. For this reason, calcification is 

now believed to recapitulate orthotopic embryogenic osteogenesis
57, 60, 181

. Inflammation also plays 

a crucial role in calcification. Cells such as macrophages and lymphocytes can penetrate epithelial 

tissue (and plaque) and release inflammatory factors such as cytokines
57, 60, 62

. Apoptosis is yet 

another process suggested to be involved in vascular calcification
60, 181, 182

. Dysregulation of levels 

of inorganic pyrophosphate and phosphate, vitamin D, alkaline phosphatase and reactive oxygen 

species (ROS), are also considered to be some, but definitely not all, of the mediators of 

calcification
57, 60, 181, 182

. 
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The aim of this study is to apply cross-platform untargeted techniques to profile the metabolome of 

a cohort of patients with exertional symptoms presenting various degrees of coronary calcification, 

but no flow limiting lesions. These patients were compared to patients with no indications of 

calcified lesions. Additionally, a comparison to a parallel class of patients, with aortic stenosis due 

to valve calcification, was also conducted in order to ascertain whether there is a different metabolic 

signature for the two calcific diseases. Ultimate objectives of this study are 1) to obtain candidate 

biomarkers in order to deliver on early and accurate diagnostics, and risk stratification to guide for 

appropriate intervention, and 2) to generate hypotheses and follow through with an elucidation of 

disease pathways in large population studies (targeted or untargeted) and bottom-up approaches. To 

the best of our knowledge, this is the first metabonomic application on calcific cardiovascular 

disease, in any matrix (blood, tissue or cells).  

5.2 Methods 

5.2.1 Patients 

Serum samples were collected from patients that visited the clinic (Heart Centre and Department of 

Public Health and Clinical Medicine, Umea University, Umea, Sweden) with exertional angina 

pain. No patient had prior myocardial infarction or coronary artery intervention (PCI). No patient 

had valve disease, heart failure or renal dysfunction. A parallel class of aortic stenosis patients were 

recruited before aortic valve replacement surgery. The two groups of patients underwent a 

multislice CT scan of the chest from which coronary Calcium Score (CS) was measured using the 

Agatston score and Hounsfield units. Patients for whom no calcium was detected served as the 

control group. Patients completed a clinical questionnaire investigating their lifestyle, prior clinical 

conditions, and medications. 

A research nurse explained the program to the patients who signed an informed consent to 

participate in the study. The study protocol was approved by the Regional Ethics Committee of 

Umea. Subsequently patients had a needle inserted in one of the veins in the cubital fossa and an 

experienced nurse took a blood samples. The sample left to clot for 30min, centrifuged, and 

separated serum was stored at -40
O
C. Patients demographics are summarized in Table 5. 1. 

. 
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Table 5. 1: Patients demographics for all four patient groups included in present studies. CCAD: Calcific coronary 

artery disease, CAVD: Calcific aortic valve disease. 

Class No Calcification 
Mild Calcification 

(CCAD) 

Severe 

Calcification 

(CCAD) 

CAVD 

Number of patients 26 27 17 9 

Calcium Score Median 

(range) [No. of missing] 
0 (n/a) [0] 50 (4-219) [0] 

801 (254-1840) 

[0] 

694 (248-2454) 

[4] 

Median Age (range) 61 (50-74) 67 (50-80) 67 (48-83) 79 (68-83) 

Male gender (%) 7 (27) 11 (41) 11 (65) 4 (44) 

Median BMI (range) 26.4 (21.5-37) 26.4 (19.2-41.4) 27.8 (23.3-37.3) 27.8 (20.7-31.0) 

Median of blood pressure, 

mm Hg (range) 
    

                   Systolic 138 (110-180) 140 (104-172) 138 (120-178) 139 (116-184) 

                   Diastolic 84 (62-100) 80 (66-96) 82 (62-100) 82 (64-88) 

Hypertension (%) 16 (62) 20 (74) 15 (88) 7 (78) 

Smoker 
    

                yes (%),  1 (4) 3 (11) 2 (12) 0 (0) 

                former (%) 12 (46) 13 (48) 10 (59) 5 (56) 

Diabetes Mellitus (%) 4 (15) 3 (11) 5 (29) 1 (11) 

Hereditary (%) 17 (65) 18 (67) 14 (82) 1 (11) 

Osteoporosis (%) 2 (8) 2 (7) 1 (6) 1 (11) 

Hypercholesterolemia (%) 13 (50) 23 (85) 17 (100) 5 (56) 

Statins (%) 10 (38) 21 (78) 15 (88) 4 (44) 

Aspirin (%) 11 (42) 21 (78) 13 (76) 0 (0) 

Metoprolol (%) 6 (23) 11 (41) 9 (53) 5 (56) 

Nitrates (%) 10 (38) 9 (33) 9 (53) 2 (22) 

Amlodipin (%) 3 (12) 4 (15) 5 (29) 1 (11) 

  



 

205 

 

5.2.2 Lipid Profiling using Ultra-Performance Liquid Chromatography – 

Mass Spectrometry (UPLC-MS) Analysis 

5.2.2.1 Serum Liquid-Liquid Extraction 

An aliquot of 100μL of serum was mixed with 600uL of organic solvent mixture in an Eppendorf 

tube. The organic solvent mixture consisted of 3:1 dichloromethane (Chromasolv, LC-MS grade, 

Fluka, Germany) and methanol (Chromasolv, LC-MS grade, Fluka). After intense vortexing for 

30s, samples were centrifuged for 10min at 12g and 4
O
C . A volume of 500uL of the organic layer 

was then transferred to a glass vial and left to evaporate overnight in a fume hood. Extracts were 

stored at -40
O
C until analysis. 

5.2.2.2 UPLC-MS analysis 

Samples were reconstituted in 400uL of solvent mixture of H2O/ isopropanol/acetonitrile (1:2:1) 

(Optima, LC-MS grade, Fisher Scientific, USA), and transferred into Total Recovery vials (Waters, 

USA), after centrifugation for 10min at 5g and 4
O
C. 

UPLC separation was conducted using an Acquity UPLC System (Waters Corp, USA). An Acquity 

UPLC CSH C18 2.1x100mm, 1.7um, column (Waters Corp, USA) was used. Column temperature 

was set at 55
O
C, flow rate of 0.4mL/min. Injection volume of 3uL and 7uL were used for positive 

and negative ionisation mode respectively. Mobile phase A consisted of acetonitrile/water (60:40) 

and mobile phase B Isopropanol/acetonitrile (90:10). In both solutions ammonium formate (LC-MS 

grade, Fluka, USA) was diluted to 10mM and formic acid (MS grade, Fluka, USA) to 0.1%. The 

chromatographic gradient program is summarized in Table 5. 2. 

Table 5. 2: Gradient program of chromatography of the lipid profiling UPLC-MS methodology. 

Time (min) %A %B Curve 

0.0 60 40  

2.0 57 43 6 

2.1 50 50 1 

12.0 46 54 6 

12.1 30 70 1 

18.0 1 99 6 

18.1 60 40 6 

20.0 60 40 - 
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Detection of eluting UPLC fractions was achieved using a Xevo G2 QTof 

(Waters MS Technologies, UK). Both MS and MS
E
 data scans were acquired for 0.200 s every 

0.214 s. MS
E
 data were collected after ramping the collision energy from 30 to 40V. Leucine 

Enkephalin was used for lock mass correction. Lock mass data were collected every 0.3 s for 0.2 s. 

Conditions in positive mode: m/z range:150-1200, cone voltage 30V, capillary voltage 2kV, Source 

Temperature 120
O
C, Desolvation Temperature 550

O
C, Desolvation Gas 900L/h. Conditions in 

negative mode: m/z range: 50-1200, cone voltage 30V, capillary voltage 1kV, Source Temperature 

120
O
C, Desolvation Temperature 550

O
C, Desolvation Gas 900L/h. 

A QC format 
114

 was used for the UPLC-MS analysis. Briefly, a pooled sample (referred to as 

Quality Control Sample, QC) of the reconstituted extracts was prepared. This sample was re-

injected 10 times before initiating the run to condition the column of 10 injections. Then the sample 

was re-injected once at the beginning, every 10 injections of samples, and at the end of the run (total 

of 9 injections). A tight grouping of the QC samples in MVDA, and a Coefficient of Variation 

percentage (CV%) of less than 30% for candidate biomarkers 
17, 92

 formed the quality control 

criteria. 

5.2.2.3 UPLC-MS Data Processing 

After acquisition, data were centroided (m/z spectra peaks are automatically detected and their 

centroid is calculated based on the average m/z value and weighted by the intensity). A post-

acquisition calibration was conducted on negative mode data, to adjust for mass accuracy. 

Calibration was conducted using m/z of peaks with known m/z. 

This was followed by peak-picking and grouping using MarkerLynx XS (Waters Inc, v4.1) 

software, using the following parameters: 

Positive mode: Function: 1, Analysis Type: Peak Detection, Initial Retention Time: 0.40, Final 

Retention Time: 17.00, Low Mass: 150.00, High Mass: 1200.00, XIC Window 0.10 Da, Peak 

Width at 5% Height: 20s, Marker Intensity Threshold: 1000counts, Mass Window: 0.10Da, 

Retention Time Window: 0.50 

Negative mode: Function: 1, Analysis Type: Peak Detection, Initial Retention Time: 0.45, Final 

Retention Time: 17.00, Low Mass: 50.00, High Mass: 1200.00, XIC Window 0.10 Da, Peak Width 

at 5% Height: 20s, Marker Intensity Threshold: 400counts, Mass Window: 0.10Da, Retention Time 

Window: 0.50 
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For Both Modes: Noise Elimination Level: 6.00, Peak-to-peak Baseline Noise: Auto, Replicate % 

Minimum: 0.00, No relative retention time, No Smoothing, No Deisotoping. 

Values were reported as area of intensity peaks. Saturated peaks were removed, prior to total area 

normalisation. Values were multiplied by 10 000 prior to statistical analyses. 

5.2.2.4 Statistical analysis and validation  

Multivariate data analysis (MVDA) for UPLC-MS data was conducted using the SIMCA-P+ (v. 

12.0.1.0.; Umetrics) package. Principal Component Analysis (PCA) and Orthogonal Projection to 

Latent Structures – Discriminant Analysis (OPLS-DA) were applied to the processed Pareto-scaled 

data. Model validation was carried out using CV-ANOVA testing 
142

 and permutation (n=999) 

testing. Permutation testing is the process of deliberately randomizing the sample labelling such that 

the class descriptor has no meaning and recalculating their predictive values. Randomly classified 

models should demonstrate predictive values that are lower than those derived from the actual 

model using correct classifiers. 

In order to extract putative biomarkers from UPLC-MS, features (corresponding to metabolites) 

with correlation coefficient (Note: correlation coefficients that refer to correlation of samples to 

disease classes will be refer to as: p(corr)) greater than 0.5 in absolute value were initially chosen. 

This cut-off provides confidence greater than 99%. These features were further subjected to two-

tailed t-test assuming unequal variance with a threshold of p<0.05
143, 144

 and fold-change 

comparison. Features were reported as significant and structurally identified if: 1) both p(corr) and 

t-test p-value met the thresholds , 2) were reproducible through the run, with a coefficient of 

variation (CV%) of the QCs less than 30%, and 3) pass the chromatographic peak shape 

assessment. 

For structural elucidation of significant features UPLC-MS
E
 and UPLC-MS/MS data were used. 

MS
E
 data were collected through the run as described for the UPLC-MS analysis. These conditions 

were the ones used for MS/MS data additional analysis that was conducted using data dependent 

acquisition (DDA) or by targeting specific ions. MS/MS data were collected with collision energy 

ramping from 30 - 50V. Apart from fragmentation patterns, structural elucidation was assisted by 

matching accurate m/z measurements to metabolites from online available databases
111, 116, 139

. In 

some cases isotopic patterns also proved useful. 
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5.2.2.5 Structural Identification of signals discriminating controls from case detected in 

UPLC-MS 

For structural elucidation of significant features UPLC-MS
E
 and UPLC-MS/MS data were used. 

MS
E
 data were collected through the run as described for the UPLC-MS analysis. These conditions 

were the ones used for MS/MS data additional analysis that was conducted using data dependent 

acquisition (DDA) or by targeting specific ions. MS/MS data were collected with collision energy 

ramping from 30 - 50V. Apart from fragmentation patterns, structural elucidation was assisted by 

matching accurate m/z measurements to metabolites from online available databases
111, 116, 139

. In 

some cases isotopic patterns also proved useful. 

5.2.3 1H NMR spectral acquisition 

5.2.3.1 Sample preparation 

An aliquot of 350μL of serum was diluted in 350ul of phosphate buffer. Phosphate buffer (pH=7.4) 

was prepared by dissolving 4.56g of NaH2PO4 and 43.46g of Na2HPO4 per litre of D2O. A total of 

600μL of the diluted serum was transferred into a 5mm outer diameter NMR tubes.  

5.2.3.2 Standard one-dimensional spectra acquisition 

1
H NMR spectra of serum samples were acquired on a 600MHz Bruker Avance spectrometer 

(Bruker Biospin, Rheinstetten, Germany) operating at 600.13 MHz and a temperature of 300K, 

using a standard 1D pulse sequence (recycle delay (RD)-90
o
-t1-90

o
-tm-90

o
-acquire free induction 

decay(FID)) with water suppression applied during RD of 2 s and mixing time (tm) of 100 ms. The 

90
o
 pulse was set at 16.75 μs, with a power level of 1.0 dB. Spectra were acquired using 256 scans 

into 64K data points with a spectral width of 20 ppm. The FIDs were multiplied by an exponential 

function corresponding to 0.3 Hz line broadening before applying Fourier transformation. 

5.2.3.3 NMR Data processing 

Spectra were subjected to automatic phasing, calibration to the β-anomeric glucose peak (δ 5.233), 

and background correction, using an in-house developed software. Bin size was set at δ 0.0003364. 

Spectra from δ -0.6 - 10.0 excluding the region containing the residual water signal (δ 4.700 - 

4.895) were subjected to global alignment and median fold change normalisation
183

 using an in-

house algorithm. 

5.2.3.4 Statistical analysis and cross-validation of NMR data  

MVDA for NMR data was conducted using Matlab programming language (R2011a) and in-house 

developed code. PCA and OPLS-DA were applied on the processed data. In all MVDA scaling to 
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unit variance was applied. For model validation permutation testing was applied (n=10000). 

Features with p(corr) greater than 0.5 in absolute value (>99% confidence) were considered 

significant. These features were subjected to further analysis using univariate statistics, which were 

conducted on the corresponding integrated peaks, instead of bin intensity. Univariate statistics 

consisted of two-tailed t-test (assuming unequal variance) with a threshold of p<0.05
143, 144

, and 

fold-change comparison. Features were reported as significant if both p(corr) and t-test p-value met 

the thresholds and forwarded for identification. Identification of statistically significant features was 

based on two-dimensional (2D) NMR correlation experiments of a pooled sample
14

, internal 
184

 and 

online databases
116

. 

5.2.4 Pathway Analysis 

5.2.4.1 Correlation and Network analysis 

Correlation coefficients (Spearman) between pairs of candidate biomarkers were calculated using R 

(2.13.2) programming language (Note: Correlation coefficients that express the Spearman 

correlation between two metabolites will be referred to as: r). For network visualization, of 

significant metabolites characterizing disease, CytoScape v.2.8.3 software was used. A correlation 

of r=0.5 and 0.4 in absolute values was used for calcific coronary artery disease (CCAD) and 

calcific aortic valve disease (CAVD), respectively, when constructing the inference pathways. In 

both cases, the cut-off for correlation was higher that 99% confidence. However, for CCAD the cut-

off was raised as the network was too complex to interpret based on the number of significant 

features detected.  

5.2.4.2 Metabolite Mapping to Key Pathways 

Metabolite mapping to pathways was manually conducted. Pathway information was retrieved from 

KEGG database 
23, 24

, and relevant literature (see Discussion). 

5.3 Results 

5.3.1 Metabolic characterization of calcific coronary artery disease (CCAD) 

The NMR analysis did not provide strong biomarkers through either MVDA or univariate analyses. 

Preliminary MVDA of the UPLC-MS data suggested there were three basic groups within the data. 

Accordingly CCAD samples were divided into three classes of CS of zero (No Calcification, NC), 

1-250 (Mild Calcification, MC), and over 250 (Severe Calcification, SC). A UPLC-MS 
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chromatogram and NMR spectrum of pooled sample can be found at Figure 5. 1 and Figure 5. 2, 

respectively. 
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Figure 5. 1: A representative chromatogram obtained from the positive mode analysis. The chromatogram was generated from a quality control (pooled) sample of organic extracts 

of blood serum. Red colour represents the total ion current, while the green colour represents base peak intensities, showing the most intense peaks in each retention time window. 
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Figure 5. 2: A representative spectrum obtained from the 
1
H NMR analysis of a pooled serum sample. Insert represents an expansion of 2.8 – 4.8 ppm. H2O peak at 4.700 - 4.895 

ppm has been removed from the spectrum and subsequent analysis. 
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For UPLC-MS analysis of the organic extracts of the serum samples, it can be easily observed with 

PCA analysis (unsupervised) scores plots, that better grouping could be accomplished when the two 

extreme classes (NC and SC) were compared (Figure 5. 3B). The intermediate class (MC) was 

scattered throughout both extreme groups (Figure 5. 3A). Additionally, in OPLS-DA analysis 

(supervised) valid and validated models were only observed when comparing samples from the NC 

class to the SC class  (Figure 5. 4 A, B and Figure 5. 5A, B). A model using one predictive 

component was found to be significant. Model characteristics are summarized in Table 2. The 

dataset acquired in negative ionization mode gave models with better predictive value (Q
2
Y). 

Multivariate Statistics found no statistically significant differences between NC and MC classes. 
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Figure 5. 3: Scores plots of principal component analysis (PCA). Data for the analysis were derived from UPLC-MS of organic extracts, of serum samples. (A) Positive mode PCA 

of NC, MC and SC classes, (B) positive mode PCA conducted only on NC and SC classes. (C) Negative Mode PCA of NC, MC and SC classes, (B) negative mode PCA applied only 

with NC and SC classes. (Each point represents a sample; Blue rhombus: No Calcification (NC), Black square: Mild calcification - calcific coronary artery disease (MC), Red dot: 

Severe calcification - calcific coronary artery disease SC). 
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Figure 5. 4: OPLS-DA scores plots; (A-D) derived from UPLS-MS of organic extracts, and (E) from 
1
H NMR analyses 

of serum samples. UPLC-MS positive mode (A), and negative mode (B) of no calcification versus severe calcification 

(calcific coronary artery disease) class. UPLC-MS positive mode (C), and negative mode (D) of no calcification versus 

calcific aortic valve disease class. Cross-validates scores (tcv) plots can be found in Supplementary data Figure S3. 

(Each point represents a sample; Blue rhombus: No Calcification, Red dot: Severe calcification - calcific coronary 

artery disease, Green triangle: Calcific aortic valve disease). 
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Figure 5. 5: Cross-validated OPLS-DA scores plots. (A-D) were derived from UPLS-MS of organic extracts, and (E) 

from 
1
H NMR analyses of serum samples. UPLC-MS positive mode (A), and negative mode (B) of no calcification 

versus severe calcification (calcific coronary artery disease) class. UPLC-MS positive mode (C), and negative mode 

(D) of no calcification versus calcific aortic valve disease class. (Each point represents a sample; Blue rhombus: No 

Calcification, Red dot: Severe calcification - calcific coronary artery disease, Green triangle: Calcific aortic valve 

disease). 
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Table 5. 3: Summary of model characteristics from (unsupervised; OPLS-DA and PLS-DA) multivariate statistical analyses of data obtained from serum samples.  

 

OPLS-DA 

   

 

 

 PLS-DA  

 Group 

comparison NC vs SC NC vs SC 

NC vs 

CAVD 

NC vs 

CAVD 

NC vs 

CAVD 

SC vs 

CAVD 

SC vs 

CAVD 

NC vs SC 

vs CAVD 

NC vs SC 

vs CAVD 

Mode, 

No of Comp 

POS, 

1 Comp 

NEG, 

1 Comp 

POS, 

1 Comp 

NEG, 

1 Comp 

1
H NMR, 

1+2 Comp 

POS, 

1 Comp 

NEG, 

1 Comp 

Pos, 

2 Comp 

Neg, 

2 Comp 

R
2
X(cum) 0.175 0.140 0.106 0.107 0.393 0.183 0.106 0.251 0.190 

R
2
Y(cum) 0.396 0.513 0.540 0.714 0.881 0.509 0.760 0.395 0.565 

Q
2
Y(cum) 0.168 0.303 0.121 0.373 0.455 0.222 0.480 0.116 0.321 

CV-ANOVA 0.025139 0.000736 0.126912 0.000572 n/a 0.055402 0.000546 0.297803 0.000283 

Permutation 

Testing 
0.005005 < 0.001001 0.031031 < 0.001001 0.000500 0.0190190 < 0.001001 0.005005 < 0.001001 

Robustness of the models was characterized using the following model parameters: R
2
X, variation of the X-matrix (data) explained by the model; R

2
Y, 

predicted percentage; and, Q
2
Y cross-validated predicted percentage. 

Cross-validation parameters are also demonstrated. These parameters show the validity of the models and the likelihood of overfitting. 

Pos and Neg refer to positive and negative polarity. Comp is the number of validated principal components. 
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A global reduction of the sphingomyelin (SM) lipids in the diseased class was observed with high 

statistical significance (NC vs SC). This class of lipids did not show statistical significance, from t-

test comparison, of NC against MC. In contrast, a comparison between MC and SC showed that 

SMs were significantly different in these two classes (Table 5. 4 and Figure 5. 6). 

A number of phosphatidylcholine (PC) moieties appeared to be dysregulated. In contrast to the 

observation of SM behaviour, PCs did not follow a global trend. PC(16:0/20:4) was detected in 

higher intensities in the SC diseased class, while PC(18:2/18:0), PC (O-16:1/18:2), PC(15:0/18:2), 

PC(18:2/18:2) and PC(16:0/18:3) showed a reduction in the SC class compared to the NC group 

with t-test statistical significance of p< 0.05. PCs were the only lipid class that showed a statistical 

trend through univariate statistics for NC vs MC classes. Although not highly significant, the fact 

that such a trend is observed only with PCs, and follows the same pattern (Figure 5. 6) for each 

individual PC as with the SC class is noteworthy. The t-test p-values were as follows: 

PC(16:0/20:4): p=0.0238; PC(18:0/20:4): p=0.0902; PC(16:0/18:3): p=0.0566; PC(18:2/18:2): 

p=0.0743. 

More biomarker lipid classes found to be discriminatory between NC and SC included triglycerides 

(TGs), with TG(16:0/18:1/22:5) and TG(18:1/18:1/20:4) being higher. These two lipids coelute and 

have the same m/z value. Therefore, further analysis is needed to assess if one is more significant 

over the other. TG(16:0/18:1/18:1) was also found in higher intensities in but barely met 

significance criteria (Table 5. 4). Lastly, lysoPC(20:4) and serum concentrations of 

phosphatidylinositol(18:2/18:0) (phosphatidylinositol, PI) were also found to be higher and lower, 

respectively, in the disease class. 
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Figure 5. 6 (part 1): Box-plots of all metabolites found to be statistically different in any of the comparisons between all 

classes, in both UPLC-MS and NMR analysis. Metabolites are presented in alphabetical order. The analytical platform 

from where the metabolite was detected is designated (Pos: Positive mode UPLC-MS; Neg: Negative mode UPLC-MS). 

Each box represents one class: Blue: No Calcification (NC), Black: Mild calcification - calcific coronary artery disease 

(MC-CCAD), Red: Severe calcification - calcific coronary artery disease SC-CCAD, Green: Calcific aortic valve 

disease (CAVD), Grey: Quality controls (QC). 
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Figure 5. 6 (part 2): Box-plots of all metabolites found to be statistically different in any of the comparisons between 

classes, in both UPLC-MS and NMR analysis. Metabolites are presented in alphabetical order. The analytical platform 

from where the metabolite was detected is designated (Pos: Positive mode UPLC-MS; Neg: Negative mode UPLC-MS). 

Each box represents one class: Blue: No Calcification (NC), Black: Mild calcification - calcific coronary artery disease 

(MC-CCAD), Red: Severe calcification - calcific coronary artery disease SC-CCAD, Green: Calcific aortic valve 

disease (CAVD), Grey: Quality controls (QC). 
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5.3.2 Metabolic characterization of calcific aortic valve disease (CAVD) 

For the CAVD class, patients with a CS known to be <200, were excluded. OPLS-DA generated 

good models for the NMR and UPLC-MS negative mode data sets (Table 5. 3). Similarly to the 

comparison between SC and NC (CCAD), positive polarity UPLC-MS analysis did not show as 

high predictive value, although models were valid. In UPLC-MS analysis, OPLS-DA of both 

positive and negative mode showed only one component to be significant with no orthogonal 

components indicating that the disease class accounted for the main source of variation in the data. 

OPLS-DA models can be found in Figure 5. 4 C-E and Figure 5. 5 C-E for cross-validated models. 

As with CCAD, PCs showed a mixed trend of dysregulation in the two classes with some PCs in 

higher and others with lower intensities in the disease group(Table 5. 5). Only two SM moieties 

were found to be dysregulated, and with a mixed trend. The intensity of the peak corresponding to 

SM(d18:1/24:1) was higher with a t-test p-value of 0.0299, while SM(d18:1/22:0) was found to be 

lower in the disease class with p-value of 0.0004. Additionally, a metabolite that could not be 

assigned (UKN) and citrate were higher in the disease class. Citrate was detected from NMR 

analysis, where a good model was observed with OPLS-DA from the comparison between NC and 

CAVD. The model possesses good predictive value and was well validated using permutation 

testing (Table 5. 3). Citrate peaks had the highest p(corr) and above the threshold Table 5. 5 and 

Figure 5. 7). Citrate was detected from a characteristic chemical shift of the two groups of CH2- 

hydrogens in the standard one dimensional NMR spectra
184

 and the COSY experiment (Figure 5. 8). 

T-test was applied on all four peaks of the citrate signal after integration (Table 5. 5). 
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Figure 5. 7:Plot derived from OPLS-DA of NMR analysis of serum samples of the comparison of CAVD to the control group. Colouring of NMR peaks indicates correlation to the 

disease p(corr). Apart from citrate, choline is also demonstrating a correlation to class but did not pass the threshold criteria. 
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Figure 5. 8: 2D 
1
H-

1
H COSY NMR spectra demonstrating the correlated peaks of citrate.  
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5.3.3 Comparison of serum metabolite profiles from calcific coronary artery 

disease and calcific aortic valve disease patients. 

In order to establish whether the markers of coronary disease are general or whether CAVD and 

CCAD indeed have different mechanisms, a direct comparison between the two disease classes was 

carried out. Features can become statistically significant when two classes are compared directly. 

MVDA comparing between the two disease classes (SC vs CAVD) revealed different profiles for 

each disease (Figure 5. 9 and Table 5. 3).  

Table 5. 6 summarises metabolites found to be significantly different between the two disease 

groups. An interesting addition to the candidate biomarkers identified from the comparison of a 

single disease group with control is a differential PI moiety PI(18:0/20:4), which was detected in 

lower intensities in CAVD. PC(16:0/20:4), PC(18:0/20:4) and PC(18:0/22:4) were also lower in 

CAVD, as compared to the SC class. On the other hand, six SMs (with p-values ranging between 

0.0001 to 0.04), and PC(15:0/18:2), PC(16:0/16:0) and PC(16:0/18:2) were lower in the SC class. 

The only noticeable similarity between the two diseases was two PCs, PC(18:2/18:0) and 

PC(18:2/18:2), and SM(d18:1/22:0). 
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Figure 5. 9: OPLS-DA scores plots from comparison of calcific coronary artery disease and calcific aortic valve disease. (A and B) Plots derived from UPLS-MS of organic extracts 

in positive and negative mode, respectively. (C and D) The corresponding cross-validated scores plots from positive and negative mode, respectively. (Each point represents a 

sample: Green triangle: Calcific aortic valve disease; Red dot: Severe calcification - calcific coronary artery disease). 
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Additionally, valid models via PLS-DA analysis showed good grouping of the three classes tested 

(NC, SC, CAVD) (Figure 5. 10 A and B) with the UPLC-MS data. Model characteristics can be 

found in Table 5. 3. Again, the negative mode models showed superior predictive value. Loadings 

plots (Figure 5. 10 C and D) can informatively show the metabolites responsible for the separation 

of each of the three classes (Table 5. 7). It was also noticed that metabolites that were not 

statistically significant when comparing either of the disease classes, SC or CAVD, to the NC class, 

appeared driving the models. A good example is the three TGs, and the two PEs, which can be seen 

in positive and negative mode loadings plots respectively (Figure 5. 10 C and D). 
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Figure 5. 10: PLS-DA analysis of UPLS-MS of organic extracts of serum samples. (A) Scores plots and (C) loadings plots from positive mode. (B) Scores plots and (D) loadings 

plots from negative mode analysis. For A and B, each point represents a sample; Blue rhombus: No Calcification, Red dot: Severe calcification - calcific coronary artery disease, 

Green triangle: Calcific aortic valve disease. For C and D, each point represents a feature included in the analysis, whereas a feature is circled in brown colour the identity of the 

metabolite is demonstrated, while green circle represents features that have been identified to be isotopes, adducts, or fragments of metabolites already assigned in the figure, or 

artefacts. 
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5.4 Discussion 

This is the first metabonomic approach to be applied in calcific disease. Most of the detected 

metabolites and lipid classes are presented here for the first time for cardiovascular calcification. 

Metabolite dysregulation was specific to particular FACs. Although specific FACs in the form of 

fatty acids have been implicated before in calcification
185, 186

, this is the first study to provide 

evidence of extensive dysregulation in a range of FACs. Additionally, a number of FAC are 

reported to be involved in the mechanism of disease for the first time. More importantly, the panels 

of metabolites differentiating CCAD and CAVD from control samples were different in each of the 

two diseases studied. Evidence supporting apoptosis, such as SM reduction, was only present in 

CCAD. Lastly, from present findings Ca
2+

 channel and TCA cycle intermediates also appear to be 

dysregulated. 

5.4.1 Metabolic characterization of calcific coronary artery disease (CCAD) 

From all the lipid classes found to be discriminatory, SMs were the most statistically significant. 

SMs are found in the epithelial cell (EC) membrane in high concentrations. The lower level of all 

significant discriminatory SMs in the SC class, along with their apparent high r between each other, 

is consistent with dysregulation of their common enzyme Sphingomyelinase. This potentially 

implicates the ceramide pathway, a pathway well known for involvement in signalling pathways of 

inflammation and apoptosis
43

. It has been suggested that apoptosis is a potential mechanism of 

calcification
181, 182

. However, these consistent lower levels of SMs were observed in the SC class 

only. In fact, a comparison of the levels of SMs between the SC and MC class, proved to be 

statistically different (Table 5. 4). This suggests that their use as biomarkers may only apply to later 

stage disease. This could mean that apoptosis contributes to the mechanism of the calcification 

process at a later stage, or otherwise affects severely calcified lesions. Although the SMs may 

implicate the ceramide pathway in CCAD, ceramides themselves were not detected as candidate 

marker. This is not surprising given the low abundance of ceramides in the blood. Ceramides do not 

have a polar head-group and are therefore not found in the blood in concentrations of the magnitude 

of SMs. Molecular concentration of ceramides, compared to SMs, has been reported to be 30 times 

less
40

. From studies conducted in atherosclerotic tissue (Chapter 4), it was observed that the 

reduction of SMs was accompanied with an elevation in ceramides, validating the assumption that 

Sphingomyelinase is the likely enzyme responsible for this biological finding. 

One of the most interesting perturbed lipid classes in the CCAD is that of PCs. PCs are major 

constituents of the cell membrane, and are involved in metabolism and signalling. Although several 

lipids were statistically different between CCAD and controls, PCs were the only molecules to 



 

229 

 

show some sort of trend towards differentiating the intermediate (MC) class from controls, and 

therefore may have potential relevance as biomarkers at an early diagnosis. Based on the group size 

in the current study (n=70), this observation would require further validation in future population 

studies to establish the utility of this set of PCs as early calcification markers. Nonetheless, this 

observation could provide important information when it comes to dysregulated biological 

mechanisms of disease manifestation. The PCs did not follow a global trend, rather than a trend 

being affected by the characteristics of the FAC. As will be discussed in the following paragraphs, 

PCs essentially function as fatty acid carriers, thus it could be inferred that FAC, and fatty acids, 

play an important role in CCAD.  

Prior to establishing a mechanistic explanation for disease manifestation, the possibility that some 

of the discriminating molecules may reflect confounding factors such as diet or lifestyle rather than 

the direct aetiology of the underlying disease must be considered. Additionally, trends in the plasma 

lipidome have been previously shown to be due to BMI, diabetes or hypertension status
39

. As can be 

seen in the patients‘ characteristics table (Table 5. 1), an effort to match the groups in these aspects 

was also conducted, although perfect matching of the disease and control groups was not possible. 

Initial focus was given to explaining the dysregulation of the PCs. A schematic representation of a 

hypothesis derived from the results can be found in Figure 5. 11. Levels of PC(16:0/20:4) were 

higher in the disease class, in combination with a reduction in 18-carbon fatty acyl chain (FAC) 

PCs. These molecules can release arachidonic acid (AA) through hydrolysis of their ester bonds. 

Arachidonic acid can be released directly, in the case of PC(16:0/20:4)
43

, while for the rest of the 

PCs, AA can be produced after hydrolysis and free fatty acid (FFA) elongation 
23, 24

. A well known 

enzyme that can hydrolyse the sn-2 bond of PCs is Phospholipase A(2) (PLA2)
187

. A group of IVA 

PLA2 enzymes is specific for only AA hydrolysis from ester bonds
187

 which can explain the 

different trend to rest of PCs. Of note, PIs also function as donors of FACs (again through PLA2 

enzyme catalysis), and could also be mechanistically implicated as such
187

. Downstream of AA lays 

the network of eicosanoids, well known for their involvement in inflammation. 
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Figure 5. 11: Pathway analysis networks. Schemes (A) and (B) represent networks constructed using Spearman correlation coefficients (r) of candidate biomarkers of calcific 

coronary artery and calcific aortic valve disease respectively. Circles (nodes) are labelled according to the metabolite they represent. Lines’ (edges) colours represent positive (red) 

or negative (blue) correlation. Thickness of the edge represents increase in absolute value. (C) Pathway assembled using candidate biomarkers and literature information. Black 

arrows represent direction of canonical metabolism; green arrows represent direction of equilibrium shifting due to disease. Blue and red arrows represent reduction or increase of 

metabolite level. Solid arrows represent direct reactions, and dashed indirect. Orange boxes represent detected metabolites. PC: Phosphatidylcholine, SM: Sphingomyelin, TG: 

Triglyceride, PI: Phosphatidylinositol, AA: Arachidonic Acid, LA: Linoleic Acid, LNA: Linolenic Acid, SA: Stearic Acid, PAF: Platelet-Activating Factor and PLA: Phospholipase 

A. Note that position of double bonds cannot be determined. 
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According to this hypothesis PCs and PIs containing 18-carbon chains should be found in lower 

intensities in the disease class as they are transformed into AA through the fatty acid elongation 

pathway. There are actually four 18-carbon containing PCs and PI(18:2/18:0) that were found to be 

present in lower intensities in the SC class. This hypothesis is consistent with the fact that there are 

enzymes specific to the hydrolysis of only linoleic acyl-containing ester bonds (such as the group 

IVD of PLA2)
187

. A trend was also observed with PC(16:0/18:2), which was detected with lower 

intensity in the disease group. This PC presented a p(corr) of -0.63, but did not meet the t-test 

threshold, with p=0.16. 

On the other hand, an otherwise normal pathway of AA release, by hydrolysis of the 20:4 FAC of 

the corresponding PC, will move the equilibrium to compensate with this increase in AA. This will 

cause an increase in the corresponding PC. As mentioned levels of PC(16:0/20:4) were higher. The 

PC(18:0/20:4) also presented the same trend but again did not meet the t-test threshold of 0.05 

(p(corr)=0.68, p-value=0.08). The mechanistic rationale can also be supported by the high negative 

r of PC(16:0/20:4) to other PCs (Figure 5. 11A and Figure 5. 12). Moreover, lysoPC(20:4) and 20:4 

FAC containing TG were also detected in higher intensities in the disease group.  
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Figure 5. 12: A heatmap representation of the correlation matrices obtained from Spearman correlations. (A) The calcific coronary artery disease candidate biomarkers correlation 

matrix, with all three groups included in the analysis, and (B) the calcific aortic valve disease candidate biomarkers correlation matrix. Intensity of red colour represents positive 

correlation and intensity of blue represents negative correlation of the biomarker pair. 
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A product of PC hydrolysis is a lysoPC with the remaining FAC as a FFA. It has been previously 

shown by Chaudhuri et al, that an increase of intracellular Ca
2+

 can be induced by lysoPCs 

(lysoPC(16:0) was used for those experiments)
188

. This mechanism also appears to cause 

upregulated expression of Calpain 
188

. Calpain is involved in apoptotic pathways
139

. Additionally, 

authors show inhibition of EC migration, a mechanism of repair of the vessel wall, with lysoPC 

increase. 

Another important molecule implicated in inflammation is the Platelet Activating Factor (PAF). 

PAF is produced by acetylation of the free position of ether-linked lysoPCs. One of the PCs found 

to be present in lower concentrations in the SC class was PC(18:2/O-16:1). This reduction infers a 

production of lysoPC(O-16:1) which is the direct precursor of PAF or PC(P-16:0/2:0). 

Ideally, in addition to deriving mechanistic information from this study, it would be essential to 

explore the utility of the CCAD discriminating metabolites as biomarkers. Present findings come 

from blood samples, which is a minimal invasive and highly accessible matrix. Additionally, 

individuals at risk of cardiovascular diseases are subjected to routine blood test for related markers. 

Therefore, collection of samples could be tied into existing protocols. Overall statistical models 

from MVDA gave good predictive values (Table 5. 3). The high statistical power of SMs in 

differentiating CCAD from control is obvious, with p-values as low as 0.000001. Some of the PCs 

were also significant in discriminating case from control with p-values starting at 0.001. Although 

the PCs are not such strong candidate biomarkers as the SMs for differentiating CCAD, the 

statistical trend found for PCs, to discriminate between the NC and MC class is important as it 

carries the potential of early diagnosis and currently further samples in order to validate this 

observation are collected. 

5.4.2 Metabolic characterization of calcific aortic valve disease 

A smaller number of statistically significant molecules were detected for CAVD, which made the 

elucidation of disease-specific mechanisms difficult, as information was limited. A mixed trend in 

levels of PCs was observed. PCs with 18:0 and 18:2 FACs were found in lower levels in the serum 

of CAVD patients. Interestingly, two PCs with a 20:3 FAC were also found in lower intensities in 

the CAVD class. The higher levels of the PC(16:0/22:6) may have mechanistic significance and 

maybe able to assist in connecting some of the other disease related findings. The mechanism could 

be similar to the one proposed for CCAD (Figure 5. 11C), i.e. in the disease state, enzymes release 

FACs (in this case 20:3, 18:2 and 18:0), which are elongated causing elevation FAC of healthy 

pathways (in this case 22:6 bearing PC) as a response to maintain equilibrium. This is further 
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supported by the correlation analysis and network (Figure 5. 11C and Figure 5. 12), where 

PC(16:0/22:6) is found to be highly and inversely correlated to the metabolites found to be in lower 

levels in the CAVD class. Additionally, a low r=0.20 was found between PC(16:0/16:0) and 

PC(16:0/22:6). This further excludes the possibility of the 16:0 FAC being involved rather than 

22:6. The class of inflammation-related molecules of docosanoids is derived from the 22:6 fatty 

acid and thus higher levels of lipid moieties with a 22:6 FAC could implicate this group of 

molecules in the pathophysiology of the disease. 

From the preceding paragraph it becomes obvious that in CAVD fatty acid metabolism is, as with 

CCAD, dysregulated. However, different FACs are involved in this case. The significance of the 

different involvement of FACs may lie in the metabolism of unsaturated fatty acids. In the case of 

the metabolism of the n-3 family of unsaturated fatty acids, enzymes that can metabolise chains that 

have up to six double bonds are commonly involved. On the contrary, in the metabolism of the n-6 

family of unsaturated FFAs, only production of FFAs bearing up to five double-bonds is possible
23, 

24
. Unfortunately, this analytical MS format is inadequate in providing information concerning the 

location of the double bonds. 

The elevation of citric acid, a product of the tricarboxylic acid cycle (TCA cycle), is also 

mechanistically intriguing. It is produced after donation of an acetyl group from acetyl-CoA to 

oxaloacetic acid. The TCA cycle is an integral step in the degradation of a number of metabolites 

and processes, such as glycolysis, gluconeogenesis, fatty acid/ phenylpropanoid/ terpenoid/ steroid/ 

BCAA biosynthesis and degradation. From the correlation analysis of the candidate biomarkers, the 

metabolite most highly correlated with citrate was PC(18:2/18:0) (r= -0.426), which may indicate 

that the altered levels of citrate in CAVD may be associated with perturbation in FFA metabolism. 

Reduction of inorganic pyrophosphate (PPi)
60, 181

 and elevation of the Reactive Oxygen Species 

(ROS)
181

 are known to be inducing osteoblastic phenotype, and are affected by dysregulations in the 

TCA cycle.  

Despite the small numbers of patients in the CAVD disease group, the MVDA models were valid, 

as evidenced by model diagnostics (Table 5. 3) and generated a series of potential biomarkers with 

good t-test p-values, which would be good candidates for further validation (Table 5. 5). Again, a 

number of PCs showed statistical significance, with PC(16:0/22:6) correlation to the disease group 

with p(corr)=0.8 and a p=0.009. Although the most significant metabolite was found to be 

SM(d18:1/22:0) (p-value=0.0004), the fact that it is the only SM with a lower levels in the disease 
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class, and the presence of another SM with the opposite trend, is worrying. This could mean that 

apoptotic pathways are not implicated in the calcification process of the aortic valve. 

5.4.3 Comparison of serum metabolite profiles from calcific coronary artery 

disease and calcific aortic valve disease patients. 

A comparison between the two groups is very interesting as it can provide evidence of differences 

between seemingly analogous disease phenotypes and help in answering the question as to whether 

these two conditions are mechanistically distinct. When directly compared, the two different classes 

of patients demonstrated systematic metabolic differences. The two disease groups essentially 

showed a different profile (). Lower serum levels of SM were apparent in CCAD patients but not in 

samples from CAVD patients, and this constitutes a major difference between the two groups. 

Additionally, two PCs and a PI constituted of a 20:4 chain were amongst the lipids detected to be 

higher in the CCAD, but not CAVD, further supporting the involvement of eicosanoids only in 

CCAD. The two PCs, PC(18:2/18:0) and PC(18:2/18:2), were the only similarities between the two 

groups (Figure 5. 13), and as stated the release of 18-carbon FACs is considered by present findings 

to play a key role to the initiation of both diseases, by activation of their Phospholipase A enzyme. 

 

Figure 5. 13: Venn diagram indicating identical metabolites detected statistically significant in separate comparisons 

between CCAD serum samples and CAVD serum samples to controls. Metabolites detected with the same trend in both 

analyses are indicated.  
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PLS-DA analysis of the two disease groups and the control class in the same model demonstrated 

some very interesting results. All assigned metabolites can be found in Table 5. 7. Starting with the 

PC lipid class, which showed mixed trends, the loadings plots of the PLS-DA analysis showed that 

PCs bearing the same acyl chain behave similarly. This becomes evident by their proximity in the 

loadings plots (Figure 5. 10 C and D). Some examples of PCs bearing the same FACs are, the 

PC(18:2/18:0) and PC(18:2/18:2), PC(16:0/20:4) and PC(18:0/20:4), PC(16:0/20:3) and 

PC(18:0/20:3). At the same time, their mixed trends are also demonstrated by their appearance in 

multiple and opposite directions of the plots. 

Similarities in FAC behaviour were observed in other lipid classes, namely PE(16:0/22:6) and 

PE(18:0/22:6), and TG(16:0/18:1/18:1), TG(16:0/18:1/18:2) and TG(16:0/16:1/18:1). These 

observations suggest that FACs are important in characterising calcific disease and that these FACs 

are differentially dysregulated between CCAD and CAVD. 

5.4.4 Evidence of Calcium involvement 

Ca
2+

 signalling is crucial in normal and pathological conditions. For both calcification diseases 

studied here, evidence is consistent with Ca
2+ 

signalling dysfunction. Phosphatidylinositols (PIs) are 

intermediate products towards the production of inositol-triphosphate (IP3), known for its role in 

calcium channels, as increase of IP3 can induce the export of Ca
2+

 from endoplasmic reticulum
43

. In 

this study, PI(18:2/18:0) was detected in lower levels, in the SC class compared to the control (NC) 

class.  

As previously mentioned, lysoPCs can increase the amount of Ca
2+

 in the cell. One part of this 

hypothesis is that increase amounts of Ca
2+

 in the cell might be causing a process known as 

mitochondrial calcium overload, and the effect of this is cell death. Signals of cell death do not 

point to the same pathway of cell death for both CCAD and CAVD disease. CCAD cell death is 

suggested via apoptosis inferred by the lower levels of SM in the diseased class. In the case of 

CAVD evidence of apoptosis are not present, but other means of cell death may be involved, such 

as necrosis. Apoptotic or necrotic cells can release amongst other factors, Ca
2+

 and inorganic 

phosphate. The increase of these factors in the microenvironment of the cells in the area could be 

the signal initialising the osteoblastic phenotype
57, 60, 181

 inducing the ectopic calcification 

phenotype. Matrix vesicles from apoptotic or necrotic cells are known for their ability to function as 

the initial site of calcification
182

.  
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Citrate has the ability to bind and form a complex with Ca
2+

. In this context, the elevation of citrate 

may have an effect on calcium homeostasis. If this is indeed the case, citrate could be produced as a 

response in order to reduce the free active form of Ca
2+

. 

 

5.4.5 Correlation and Network analysis 

Technologies that can produce a tremendous amount of data can assist in the effort of the scientific 

community to escape the reductionist approach to attain a more global, systemic level of 

understanding of physiological and pathological processes. However, such technologies typically 

generate vast amounts of data that require systematic mathematical analysis with subsequent 

linkage to biological networks to facilitate interpretation, and the amount of data can be 

overwhelming. Network analysis can provide information on a system as a whole and represent the 

molecular complexity of disease
189

. In the current study, correlation analysis was applied to 

metabolites that were found to be statistically different between case and control for each of the two 

diseases or between CCAD and CAVD in order to infer connections between metabolites in the 

network, and subsequently to the analysed system. High correlation values (r) between detected 

candidate biomarkers that are known to operate in the same or associated metabolic pathways can 

also provide more confidence to the analysis. 

 Lipid networks can interact significantly due to their common downstream targets and enzymes 
43

. 

Network analysis from this study extracted associations between several biologically connected 

molecules and, despite the overwhelming appearance of such a network, was useful in identifying 

differential pathways implicated in CCAD and CAVD. Firstly, the global trend of the SMs was 

verified with high correlations between them (Figure 5. 11A and Figure 5. 12). Also, known 

biological interactions, from reference pathways, verified results, e.g. the connection between TGs, 

lyso-PCs and PCs. Other interesting findings are the inverse correlation between 20:3 and 22:6 FA 

PCs, and between 20:4 and 18 carbon FAC PCs. This might be suggestive of competing pathways. 

Lastly, although it is know that PIs and PCs can share common enzymes for ester bond hydrolysis, 

the correlation between them in this dataset was quite low. As can be seen from Figure 5. 11A 

PI(18:2/18:0) is quite excluded from the PC sub-network. This may suggest, as previously 

mentioned, involvement in other pathways, such as Ca
2+

 signalling
43

. A closer look can also show 

that the highest r (r=0.58) of PI(18:2/18:0) is with PC(18:2/18:2) and second highest (r=0.40) is 

with PC(18:2/18:0), most likely due to enzyme specificity to the FAC. These are just some 

examples of enhanced capacity for data interpretation by use of correlation networks when it comes 
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to rationalising findings from lipid profiling studies, as reference biochemical pathways can run 

short on providing adequate mapping of these metabolites. 

Correlation analyses have also assisted in validating the structural assignments of metabolites. One 

example is the connection of SM(d17:1/16:0) to PC(15:0/18:2) with high correlation value (r=0.63). 

SMs with 17:1 backbone are found in trace concentrations in humans. However, evidence provided 

by tandem MS supports this finding. The high r to a 15:0-acyl PC could signify the de novo 

synthesis of a 17:1 backbone SM from a 15:0 FAC and serine, to the corresponding ceramide. 

Ceramides are the direct precursors and SM. 

For the CCAD, the calcium score of all patients was available. In correlation analysis CS was 

included in an effort to evaluate the best biomarker to correlate with this information. However, CS 

was not highly correlated with any of the discriminating candidate markers, in an analysis including 

a total of 70 samples. The highest correlation values were found with SMs. Specifically, 

SM(d18:2/22:0) and SM(d18:2/24:0) with correlation values of r=-0.45 and -0.44, respectively. On 

one hand, it could be argued that the CS is an imperfect metric and the purpose of the current 

studies was to identify superior diagnostics for CCAD and CAVD. There is an unmet need to 

discover better diagnostic biomarker, which may contribute to a framework for stratification of 

patients in a concise and clinically meaningful way. 

5.5 Conclusions  

In the current study both similarities and differences in the metabolic profiles of the two calcific 

diseases (coronary artery and aortic valve) are demonstrated leading to the development of a 

hypothesis that the diseases are mechanistically different. To our knowledge, this has not been 

shown before at the level of the metabolic profile. Herein, a cross-platform metabonomic study was 

applied for the first time in cardiovascular calcific diseases. It is obvious that metabolic profiling 

approaches can deliver disease related biomarkers in blood serum from CCAD and CAVD patients, 

and combined with correlation and network analysis, can be useful in generating hypotheses 

relating to mechanisms of pathology. The lipid profiling, UPLC-MS method, provided more 

information in this case than the NMR analysis, which is unsurprising given that most of the disease 

signature manifested in the composition of serum lipids. The UPLC-MS data were highly 

reproducible, with all candidate markers, except one, having a coefficient of variation of < 9%. 

Thus, this will be the method of choice for future untargeted large population studies, which will 

follow to validate findings. 
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CCAD was characterized by lower serum levels of SMs, higher concentrations of TGs and a PC 

profile that was modulated differentially across the severe calcification versus control group. The 

trend in dysregulated PC profile in CCAD was noted in individuals with a mild to moderate disease 

stage and may have utility as an early indicator of disease. The metabolic signature of CAVD was 

dominated by changes in the PC profile and higher serum citrate levels. It appears that, while 

disease pathways are different between CCAD and CAVD, leading to a pathological process in 

which only the end-stage is osteoblastic/osteogenic phenotype and calcification, a number of 

processes co-exist. Dysregulation of specific and previously unreported FAC provides novel 

hypotheses that could shed light to the pathophysiology of vascular and valvural calcification. 

The results from this study beg further investigation into the fatty acid metabolism, the eicosanoid 

pathway, as well as other inflammation-related metabolites, such as docosanoids and inflammation-

related proteins. The specificity of the PLA2 enzyme towards the 20:4 and 22:6 FAC PCs also 

needs to be addressed. Another obvious lead is the suggestion of apoptotic pathways in CCAD 

emerging from findings related to the ceramide and mitochondrial Ca
2+

 overload signalling 

pathways. All of these along with established markers of osteoblastic/osteogenic phenotype will 

form the core of experimental design for future studies. 
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Table 5. 4: List of assigned significant metabolites obtained from analysis of serum samples, after comparison of calcific coronary artery disease class to the control group.  

Met Name 
Mol Formula 

[complex adduct] 

Ret 

Time 

(min) 

m/z 

(found) 

m/z 

(theor) 
Δppm 

p(corr

) 
p(1) 

p 

[t-test, 

NC Vs SC] 

Fold 

Change 

p 

[t-test, 

NC Vs MC] 

p 

[t-test, 

MC Vs SC] 

CV

% 

QCs 

(9) 

UPLC-MS 

Positive Mode 

 

           

Higher in SC 
            

PC(16:0/20:4) *,† C44H81NO8P+ 5.75 782.5704 782.5700 1 
       

 

C44H81NO8P+ 

(C13 Isotope) 
5.75 783.5745 783.5733 2 0.85 0.32 0.005036 1.29 0.023786 0.251396 7 

LysoPC(20:4) * 
C28H50NO7PNa+    

[C28H50NO7P+Na]+ 
1.00 566.3286 566.3223 11 0.70 0.02 0.011478 1.22 0.681547 0.017397 8 

TG(16:0/18:1/22:5)  

TG(18:1/18:1/20:4) 

C59H106NO6+    

[C59H102O6+NH4]+ 
15.36 924.7982 924.8020 -4 0.73 0.06 0.019369 1.29 0.461709 0.039684 8 

TG(16:0/18:1/18:1) 
C55H106NO6+    

[C55H102O6+NH4]+ 
15.68 876.8015 876.8020 -1 0.66 0.17 0.044971 1.40 0.743774 0.058982 5 

Lower in SC 
            

SM(d18:2/24:0) * C47H94N2O6P+ 12.81 813.6858 813.6850 1 -0.74 -0.09 0.000001 1.50 0.894457 0.000001 7 

SM(d18:2/22:0) C45H90N2O6P+ 9.77 785.6542 785.6537 1 -0.74 -0.10 0.000006 1.47 0.449461 0.000020 4 

SM(d18:2/24:1) C47H92N2O6P+ 9.71 811.6691 811.6693 0 -0.72 -0.12 0.000041 1.21 0.797471 0.000031 5 

SM(d18:1/23:0) C46H94N2O6P+ 13.03 801.6847 801.6850 0 -0.63 -0.07 0.000041 1.19 0.718762 0.000044 3 

SM(d18:2/16:0) C39H78N2O6P+ 4.30 701.5604 701.5598 1 -0.68 -0.07 0.000347 1.31 0.631770 0.000308 6 



 

241 

 

PC(18:2/18:0) *,† C44H85NO8P+ 7.87 786.6010 786.6013 0 
       

 

C44H85NO8P+ 

(C13 Isotope) 
7.87 787.6046 787.6047 0 -0.77 -0.31 0.001371 1.30 0.259191 0.005971 8 

PC(O-16:1/18:2) C42H81NO7P+ 6.73 742.5748 742.5751 0 -0.72 -0.08 0.001941 1.46 0.301605 0.032098 2 

SM(d17:1/16:0) C38H78N2O6P+ 4.70 689.5597 689.5598 0 -0.67 -0.05 0.002220 1.22 0.814786 0.010492 3 

PC(18:2/15:0) * C41H79NO8P+ 5.27 744.5545 744.5543 0 -0.78 -0.07 0.002464 1.36 0.612282 0.011036 3 

SM(d18:1/22:0) C45H92N2O6P+ 12.32 787.6696 787.6693 0 -0.65 -0.09 0.012648 1.19 0.502127 0.115613 3 

PC(18:2/18:2) * C44H81NO8P+ 4.96 782.5682 782.5700 -2 -0.75 -0.16 0.025146 1.47 0.357176 0.104597 6 

PC(16:0/18:3) C42H79NO8P+ 5.00 756.5546 756.5543 0 -0.68 -0.13 0.038234 1.55 0.056644 0.613973 3 

UPLC-MS 

Negative Mode             

Higher in SC 
            

PC(16:0/20:4) * 
C45H81NO10P-    

[C44H80NO8P+FA]- 
5.76 826.5625 826.5598 3 0.73 0.26 0.005061 1.18 0.087226 0.090059 4 

LysoPC(20:4) *,‡ C27H47NO7P- 1.00 528.2996 528.3090 -18 0.66 0.03 0.012770 1.41 0.243202 0.059168 5 

lower in SC 
            

SM(d18:2/24:0) * 
C48H94N2O8P-    

[C47H93N2O6P+FA]- 
12.82 857.6757 857.6748 1 -0.74 -0.10 0.000001 1.35 0.583687 0.035079 3 

PC(18:2/15:0) * 
C42H79NO10P-    

[C41H78NO8P+FA]- 
5.25 788.5475 788.5442 4 -0.84 -0.06 0.002136 1.37 0.158770 0.048678 5 

PC(18:2/18:0) * 
C45H85NO10P-    

[C44H84NO8P+FA]- 
7.90 830.5934 830.5911 3 -0.84 -0.30 0.002328 1.17 0.059537 0.070687 3 
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PC(18:2/18:2) * 
C45H81NO10P-    

[C44H80NO8P+FA]- 
4.99 826.5604 826.5598 1 -0.78 -0.13 0.003234 1.41 0.074336 0.126333 5 

PI(18:2/18:0) C45H82O13P- 6.01 861.5509 861.5493 2 -0.66 -0.13 0.013215 1.39 0.378844 0.068470 3 

SM(d18:1/16:0) 
C40H80N2O8P-    

[C39H79N2O6P+FA]- 
5.37 747.5662 747.5662 0 -0.69 -0.20 0.024765 1.10 0.903099 0.018255 5 

 

(*) Found with statistical significance in both polarities.  

(†) Metabolite removed due to detector saturation. Used only for assignment purposes. 

(‡) Metabolite detected as a fragment 

Coefficient of variation (CV%) is calculated based on nine injections of the same pooled sample, acquired through the run. 

P(corr) and p(1) refer to the correlation coefficient and covariance of the metabolites to disease classes, respectively. 

The position of double bonds cannot be determined. Position of fatty acyl chain cannot be determined; fatty acyl chains are presented from lowest to 

highest molecular weight (lower number of carbons to higher, and higher number of double bonds, to lower). 

Two-tailed t-tests were conducted, assuming unequal variance. 

NC: No calcification; MC: Mild calcification – calcific coronary artery disease; SC: Severe calcification – calcific coronary artery disease. 

PC: phosphatidylcholine; TG: triglyceride; SM: sphingomyelin; PI: phosphatidylinositol; FA: formate.  
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Table 5. 5: List of assigned significant metabolites obtained from analysis of serum samples, after comparison of calcific aortic valve disease class to the control group.  

Met Name 

Mol Formula 

[non hydrogen adduct] 

Ret 

Time 

(min) m/z (found) 

m/z 

(theoretical) Δppm p(corr) p(1) 

p 

[t-test, 

NC vs 

CAVD] 

Fold 

Change 

CV% 

QCs (9) 

UPLC-MS  Positive Mode 

         Higher in CAVD 

          PC(16:0/22:6) C46H81NO8P+ 5.34 806.5699 806.5700 0 0.78 0.38 0.0089 1.23 8 

SM(d18:1/24:1) 

C47H93N2O6PNa+   

[C47H93N2O6P+Na]+ 12.16 835.6667 835.6669 0 0.62 0.08 0.0299 1.12 4 

Lower in CAVD 

          PC(18:0/20:3) C46H87NO8P+ 8.47 812.6178 812.6169 1 -0.70 -0.25 0.0079 1.30 6 

UPLC-MS; 

Negative Mode 

          Higher in CAVD 

          UKN  

 

0.66 307.0981 - - 0.79 0.43 0.0336 53.79 1 

Lower in CAVD 

          

SM(d18:1/22:0) 

C46H92N2O8P-    

[C45H91N2O6P+FA]- 12.42 831.6618 831.6591 3 -0.59 -0.10 0.0004 1.16 1 

PC(16:0/20:3) 

C45H83NO10P-    

[C44H82NO8P+FA]- 6.46 828.5782 828.5755 3 -0.52 -0.16 0.0045 1.20 2 

PC(18:2/18:0) 

C45H85NO10P-    

[C44H84NO8P+FA]- 7.90 830.5934 830.5911 3 -0.74 -0.29 0.0073 1.13 3 
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PC(18:2/18:2) 

C45H81NO10P-    

[C44H80NO8P+FA]- 4.99 826.5604 826.5598 1 -0.63 -0.11 0.0141 1.15 5 

1
H NMR 

          Higher in CAVD 

  

δ 
1
H (ppm) 

       

Citrate 

  

2.657 (d) ½ 

CH2,  

2.522 (d) ½ 

CH2 

  

0.6334 

(max) 0.0004 

0.004-

0.03 

1.30-

1.48 n/a 

 

Coefficient of variation (CV%) is calculated based on nine injections of the same pooled sample, acquired through the run.  

P(corr) and p(1) refer to the correlation coefficient and covariance of the metabolites to disease classes, respectively. 

The position of double bonds cannot be determined. Position of fatty acyl chain cannot be determined; fatty acyl chains are presented from lowest to 

highest molecular weight (lower number of carbons to higher, and higher number of double bonds, to lower). 

Two-tailed t-tests were conducted, assuming unequal variance. NC: No calcification; CAVD: Calcific aortic valve disease.  

PC: phosphatidylcholine; SM: sphingomyelin; UKN: unknown; FA: formate. 
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Table 5. 6: List of assigned significant metabolites obtained from analysis of serum samples, after comparison of calcific coronary artery disease to calcific aortic valve disease 

class.  

Met Name 
Mol Formula 

[non hydrogen adduct] 

Ret 

Time 

(min) 

m/z (found) 
m/z 

(theoretical) 
Δppm p(corr) p(1) 

p 

[t-test, 

SC Vs 

CAVD] 

Fold 

Change 

CV% 

QCs 

(9) 

UPLC-MS 

Positive Mode           

Lower in CCAD 
          

SM(d18:2/16:0) * C39H78N2O6P+ 4.30 701.5604 701.5598 1 0.68 0.08 0.0001 1.48 6 

SM(d18:2/24:1) * C47H92N2O6P+ 9.71 811.6691 811.6693 0 0.77 0.13 0.0003 1.34 5 

SM(d17:1/16:0) * C38H78N2O6P+ 4.70 689.5597 689.5598 0 0.67 0.05 0.0147 1.38 3 

PC(15:0/18:2) C41H79NO8P+ 5.27 744.5545 744.5543 0 0.72 0.06 0.0168 1.34 3 

PC(16:0/16:0) C40H81NO8P+ 7.15 734.5705 734.5700 1 0.59 0.08 0.0231 1.20 5 

PC(16:0/18:2) † C42H81NO8P+ 5.99 758.5724 758.5700 3 
     

 

C42H81NO8P+ 

(C13 Isotope) 
5.99 759.5754 759.5733 3 0.79 0.32 0.0258 1.20 8 

SM(d18:2/24:0)  C47H94N2O6P+ 12.81 813.6858 813.6850 1 0.61 0.06 0.0339 1.31 7 

UPLC-MS 

Negative Mode           

Lower in CCAD 
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SM(d18:2/16:0) * 
C40H78N2O8P-    

[C39H77N2O6P+FA]- 
4.32 745.5505 745.5496 1 0.71 0.11 0.0005 1.32 2 

PC(15:0/18:2) 
C42H79NO10P-    

[C41H78NO8P+FA]- 
5.25 788.5475 788.5442 4 0.57 0.04 0.0065 1.33 5 

SM(d18:2/24:1) * 
C48H92N2O8P-    

[C47H91N2O6P+FA]- 
9.73 855.6601 855.6591 1 0.50 0.09 0.0075 1.36 2 

SM(d17:1/16:0) * 
C39H78N2O8P-    

[C38H77N2O6P+FA]- 
4.72 733.5496 733.5496 0 0.72 0.07 0.0094 1.40 3 

SM(d18:1/22:1) 

SM(d16:1/24:1) 

C46H90N2O8P-    

[C45H89N2O6P+FA]- 
9.38 829.6466 829.6435 4 0.58 0.07 0.0395 1.06 19 

Higher in CCAD 
          

PC(16:0/20:4) 
C45H81NO10P-    

[C44H80NO8P+FA]- 
5.76 826.5625 826.5598 3 -0.69 -0.28 0.0051 1.25 4 

PC(18:0/22:4) 
C49H89NO10P-    

[C48H88NO8P+FA]- 
9.21 882.6222 882.6224 0 -0.65 -0.04 0.0133 1.59 7 

PC(18:0/20:4) 
C47H85NO10P-    

[C46H84NO8P+FA]- 
7.58 854.5922 854.5911 1 -0.60 -0.20 0.0141 1.26 2 

PI(18:0/20:4) C47H82O13P- 5.82 885.5476 885.5493 -2 -0.56 -0.21 0.0256 1.30 2 

(*) Found with statistical significance in both polarities. 

(†) Metabolite removed due to detector saturation. Used only for assignment purposes. 

 

Coefficient of variation (CV%) is calculated based on nine injections of the same pooled sample, acquired through the run.  

P(corr) and p(1) refer to the correlation coefficient and covariance of the metabolites to disease classes, respectively.  
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The position of double bonds cannot be determined.  Position of fatty acyl chain cannot be determined; fatty acyl chains are presented from lowest to 

highest molecular weight (lower number of carbons to higher, and higher number of double bonds, to lower).  

Two-tailed t-tests were conducted, assuming unequal variance.  

SC: Severe calcification – calcific coronary artery disease; CAVD: Calcific aortic valve disease.  

PC: phosphatidylcholine; SM: sphingomyelin; FA: formate. 
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Table 5. 7: List of assigned metabolites obtained from PLS-DA of analysed serum samples, after comparison of control, 

calcific coronary artery and calcific aortic valve disease groups.  

Metabolite Name 

Mol Formula [non 

hydrogen adduct] 

Ret 

Time 

(min) 

m/z 

(found) 

m/z 

(theoretical) Δppm 

UPLC-MS 

Positive Mode 

     lysoPC(16:0) C24H51NO7P+ 1.19 496.3459 496.3403 11 

PC(16:0/16:0) * C40H81NO8P+ 7.15 734.5705 734.5700 1 

PC(16:0/18:1) * C42H83NO8P+ 7.38 760.5877 760.5856 3 

PC(16:0/18:2) * C42H81NO8P+ 5.99 758.5724 758.5700 3 

PC(16:0/18:3) C42H79NO8P+ 5.00 756.5546 756.5543 0 

PC(16:0/20:3) * C44H83NO8P+ 6.40 784.5858 784.5856 0 

PC(16:0/20:4) * C44H81NO8P+ 5.75 782.5704 782.5700 1 

PC(16:0/20:5) C44H79NO8P+ 4.83 780.5550 780.5543 1 

PC(16:0/22:5) C46H83NO8P+ 5.82 808.5865 808.5856 1 

PC(16:0/22:6) * C46H81NO8P+ 5.34 806.5699 806.5700 0 

PC(18:0/20:3) * C46H87NO8P+ 8.47 812.6178 812.6169 1 

PC(18:0/20:4) * C46H85NO8P+ 7.55 810.6019 810.6013 1 

PC(18:0/22:6) C48H85NO8P+ 7.01 834.6015 834.6013 0 

PC(18:2/18:0) * C44H85NO8P+ 7.87 786.6010 786.6013 0 

PC(18:2/18:2) C44H81NO8P+ 4.96 782.5682 782.5700 -2 

PC(36:3) (†) C44H83NO8P+ 6.95 784.5856 784.5856 0 

SM(d18:1/16:0) * C39H80N2O6P+ 5.40 703.5761 703.5754 1 

SM(d18:1/24:0) C47H96N2O6P+ 13.32 815.7007 815.7006 0 

SM(d18:1/24:1) C47H94N2O6P+ 12.18 813.6863 813.6850 2 

SM(d18:2/16:0) * C39H78N2O6P+ 4.30 701.5604 701.5598 1 

SM(d18:2/22:0) * C45H90N2O6P+ 9.77 785.6542 785.6537 1 

SM(d18:2/24:0) * C47H94N2O6P+ 12.81 813.6858 813.6850 1 
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SM(d18:2/24:1) * C47H92N2O6P+ 9.71 811.6691 811.6693 0 

TG(16:0/16:1/18:1) 

C53H102NO6   

[C53H98O6+NH4]+ 15.43 848.7715 848.7707 1 

TG(16:0/18:1/18:1) 

C55H106NO6   

[C55H102O6+NH4]+ 15.68 876.8015 876.8020 -1 

TG(16:0/18:2/18:1) 

C55H104NO6   

[C55H100O6+NH4]+ 15.46 874.7870 874.7864 1 

      UPLC-MS 

Negative Mode 

     

PC(16:0/16:0) * 

C41H81NO10P-   

[C40H80NO8P+FA]- 7.16 778.5644 778.5598 6 

PC(16:0/18:1) * 

C43H83NO10P-  

[C42H82NO8P+FA]- 7.41 804.5785 804.5755 4 

PC(16:0/18:2) * 

C43H81NO10P-    

[C42H80NO8P+FA]- 6.00 802.5622 802.5598 3 

PC(16:0/20:3) * 

C45H83NO10P-  

[C44H82NO8P+FA]- 6.46 828.5782 828.5755 3 

PC(16:0/20:4) * 

C45H81NO10P-   

[C44H80NO8P+FA]- 5.76 826.5625 826.5598 3 

PC(16:0/22:6) * 

C47H81NO10P-   

[C46H80NO8P+FA]- 5.36 850.5614 850.5598 2 

PC(18:0/20:3) * 

C47H87NO10P-  

[C46H86NO8P+FA]- 8.50 856.6086 856.6068 2 

PC(18:0/20:4) * 

C47H85NO10P-  

[C46H84NO8P+FA]- 7.58 854.5922 854.5911 1 

PC(18:2/18:0) * 

C45H85NO10P-    

[C44H84NO8P+FA]- 7.90 830.5934 830.5911 3 

PE(16:0/22:6) C43H73NO8P- 5.76 762.5108 762.5074 4 

PE(18:0/22:6) C45H77NO8P- 7.57 790.5418 790.5387 4 

PI(18:0/20:4) C47H82O13P- 5.82 885.5476 885.5493 -2 

SM(d18:1/16:0) * 

C40H80N2O8P-    

[C39H79N2O6P+FA]- 5.37 747.5662 747.5662 0 

SM(d18:2/16:0) * 

C40H78N2O8P-    

[C39H77N2O6P+FA]- 4.32 745.5505 745.5496 1 
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SM(d18:2/22:0) * 

C46H90N2O8P-    

[C45H89N2O6P+FA]- 9.85 829.6462 829.6435 3 

SM(d18:2/24:0) * 

C48H94N2O8P-    

[C47H93N2O6P+FA]- 12.82 857.6757 857.6748 1 

SM(d18:2/24:1) * 

C48H92N2O8P-    

[C47H91N2O6P+FA]- 9.73 855.6601 855.6591 1 

UKN 

 

0.63 309.1149 

  UKN 

 

0.66 307.0981 

  (*) Found in both ionization modes. 

(†)Fatty acyl chains could not be determined. 

PC: phosphatidylcholine; TG: triglyceride; SM: sphingomyelin; PI: phosphatidylinositol; PE: 

phosphoethanolamine; UKN: unknown; FA: formate. 
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Chapter 6  General Discussion 
Cardiovascular disease (CVD) is one of the most studied clinical conditions. Most of the 

pathological events associated with CVD are directly or indirectly related to atherosclerosis
45

. In the 

context of novel technological advancements in instrumentation utilised in bioanalysis, 

atherosclerosis could still have ‗virgin‘ grounds for science to explore. The holistic approach taken 

with metabolic profiling facilitates a systems biology framework, delivering interacting metabolites 

and pathways. Since ‗omic‘ approaches generate vast quantities of data, especially when it comes to 

the field of metabolic profiling, CVD needs further investigation. Although numerous metabolic 

profiling studies have been conducted on biofluids, mostly focusing on diagnostic biomarker 

discovery, applications interrogating the pathophysiology of the disease using tissue samples are 

rare. In this chapter, combined analysis of both biofluids and plaque tissue to achieve a deep 

exploration of selected conditions associated with CVD, is presented. 

Apart from elucidation of the pathology of the disease, experiments in tissue may serve as 

biomarkers if they are appropriate for in vivo imaging. However, there are cases where tissue cannot 

be available to the researcher, either due to the format of the surgical procedure or due to the 

difficulty obtaining appropriate controls. In such cases interacting, or otherwise related biofluids, 

can serve as matrices to explore and assist towards making inferences of the manifestation of 

disease. Biofluids, such as blood or urine, can be obtained by minimally-invasive or non-invasive 

procedures, and would be the optimal biological matrix to provide biomarkers of disease. 

6.1 Overview of results 

In Chapter 3 an exploratory study was conducted in order to evaluate the performance of metabolic 

profiling methodologies on carotid plaque tissue, and the ability to discriminate between recently 

stroke-symptomatic patients (in high risk for a life-threatening stroke) and asymptomatic patients 

(low risk; control group). A range of metabolites were detected by using a combination of NMR 

and UPLC-MS platforms. Further assessment using multivariate data analysis (MVDA) and 

univariate statistics demonstrated that these two methodologies could discriminate the symptomatic 

from asymptomatic groups by using their metabolic profiles, and several compounds were 

characteristic with strong statistical significance for one of the groups. Although the sample number 

was low (n=10) some pathways could be cautiously inferred in the dysregulation associated with 

symptomatic stroke. Intensities of precursor metabolites (arachidonic acid and PC(16:0/20:4)) of the 
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eicosanoid pathway, were detected in higher concentrations in tissue samples from symptomatic 

patients (Figure 6. 1). Three acyl-carnitines (AcC), intermediates of β-oxidation, were detected in 

higher intensities in the stroke symptomatic group. This finding is also very important, depicting 

involvement of mitochondrial dysregulation. Lastly, but with less statistical significance, inosine 

and uridine were detected higher, again directly correlating with the symptomatic group.  

In Chapter 4 the metabolic basis of atherogenesis, and specifically plaque formation were sought. 

This was achieved by comparison of atherosclerotic plaques to intimal thickening tissue. Intima 

thickening tissue can be considered the immediate pre-plaque stage. It is therefore the optimal 

matrix to be used as control, when studying plaque formation and it is more easily acquired than 

normal tissue. Results from this study both validate well-established risk factors and literature 

findings, but also provide novel insights into plaque formation. Higher concentrations of cholesterol 

and oxidised cholesterol esters in plaque tissue, the involvement of purines and pyrimides, and 

implication of the ceramide (Cer) pathway, are know and well-established findings
148, 152-154, 159

.  

Novel findings included: 

1. The suggested truncation of β-oxidation (with decrease in short-chain AcCs, such as 

butyrylcarnitine), along with a reduction of polyunsaturated lipids. Although it is well-known 

that mitochondria manifest metabolic abnormalities in atherosclerosis 
190

, there is only one 

report of acyl-carnitine dysregulation
191

. 

2. The detection of a previously unassociated to atherogenesis lipid, namely 

phosphoethanolamine-ceramide (PE-Cer), with higher levels in plaques, as compared to intimal 

thickening tissue, and with strong statistical significance. PE-Cers, a subgroup of sphingolipids 

and member of the Cer pathway, were detected as two moieties, PE-Cer(d18:1/16:0) and PE-

Cer(d18:1/24:1). They generated t-test p-values as low as 9.8x10
-12

. Most importantly they 

presented a high inverse Spearman correlation (r) to cholesterol, higher in absolute value than 

any other member of the Cer pathway. This infers that PE-Cers may be the link between the Cer 

pathway and cholesterol, that the scientific community has been trying to pinpoint
169, 170

. This 

finding could be of interest not only to explain the manifestation of disease, and provide a novel 

pharmaceutical target, but also to potentially explain ineffectiveness of current cholesterol 

lowering treatment. 

Chapter 5 describes a metabolic profiling study of cardiovascular calcification (CVC). Serum 

samples from patients with calcific coronary artery (CCAD) and calcific aortic valve disease 

(CAVD) were compared to patients with no traces of calcification in the heart. The two diseases 
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manifested distinct profiles with similarities limited to only two 18-carbon phosphatidylcholines 

(PC) and a sphingomyelin (SM) (Figure 6. 1). One highlighted difference was the global 

dysregulation of SMs in CCAD disease not observed in CAVD, and not detected in mildly calcified 

patients with CCAD, either. PCs did not appear to follow the same trend across the two diseases. 

Their trends were more associated to the fatty acyl-chains incorporated in each PC. Hypotheses 

were generated stating the possible biochemical mechanism of metabolic dysregulation of PCs for 

CCAD and CAVD manifestation. Several FACs found to be dysregulated in this study have not 

been previously implicated in CVC and require further validation. 

All novel and significant findings uncovered in these studies should be further validated in 

independent sample groups, via metabolite, or enzyme activity assays. Additionally, bottom-up 

approaches are required to verify key interactions detected between metabolites. 
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Figure 6. 1: Venn diagram demonstrating all the metabolites detected dysregulated in this thesis, for the studied diseases. Metabolites were coloured according to the manifested 

trends as presented in disease (red: metabolites detected with higher intensities in disease, blue: metabolites detected with lower intensities in disease).
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6.2 Pathway mapping of cardiovascular disease 

The major causes of CVD are related to atherosclerosis
45

. This may mislead one to believe that 

metabolic profiles of CVD would be identical or, to an extent, similar. If the totality of metabolites 

found to be discriminatory for the aspects of CVD studied in this thesis is combined, similarities 

between the three studies, i.e. i) symptomatic versus asymptomatic, ii) plaque formation 

(atherosclerosis), iii) CCAD and CAVD; metabolites demonstrating analogous dysregulated pattern 

are limited. This can be observed from the Venn diagram (Figure 6. 1) demonstrating the common 

irregularities between the diseases studied. This comparison should be cautiously interpreted due to 

the different matrices the studies are conducted on (tissue and serum), and the number of samples in 

each study.  

The most obvious similarity, but only between plaque formation and CCAD, is the lower intensities 

of SMs in the disease groups. Low intensities of SMs are connected to Cer reduction and activation 

of the sphingomyelinase enzyme. The Cer pathway is connected to apoptosis
160

. However, how 

different FACs and Cer backbone lengths affect the biological activity of SMs should be addressed 

in future studies. 

Two PCs, namely PC(16:0/20:4) and PC(16:0/22:6), were found to follow the same trend in 

Symptomatic and CCAD, and Atherosclerosis and CAVD groups, respectively. PCs incorporating 

the 20:4 and 22:6 FACs have been associated to the downstream pathways of eicosanoids and 

docosanoids, respectively. These PCs can function as donors of the immediate precursor molecules 

of these pathways, arachidonic acid and docosahexanoic acid. Phospholipase A(2) (PLA2) is the 

enzyme hydrolysing the sn-2 ester bond releasing the free fatty acid. PLA2 has become a recognised 

biomarker in CVD risk assessment, in the form of lipoprotein-associated PLA2
192

. 

Inosine and uridine, two members of the purine and pyrimidine pathways, and (iso-)butyrylcarnitine 

a downstream product of β-oxidation were found to be dysregulated in both the atherosclerosis and 

symptomatic study. However, this dysregulation manifested opposite trends for the two conditions 

and is another indication of the distinct biological procedures occurring even in the direct 

progression and advancement of atherosclerosis, and, therefore, should be perceived as such. 
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6.3 Metabolic profiling techniques and methodologies in 

cardiovascular disease 

During the course of this thesis, constant optimisation was conducted to applied methodologies, 

introduced by experimental development or from literature and/or collaborators. Significant 

improvements were made, especially in chromatographic separation, when comparing the HILIC 

methods and lipid profiling reversed-phase methods. Nonetheless, it became apparent, especially 

with the number of compounds detected in all three results chapters (Chapters 3-5), but 

predominately in chapter 4, that the right choice of UPLC-MS methodologies can maximise the 

amount and range of physicochemical properties of the compounds detected, but also minimise 

analysis time needed to obtain such a wealth of information. The number of compounds detected in 

a UPLC-MS assay can be expected to increase with the technological advancements focusing a lot 

on increasing sensitivity and dynamic range of concentration. 

Current data and statistical analysis tools for untargeted UPLC-MS experiments provide the 

automation needed to process such data. Thus, disease profiles and candidate biomarkers can 

efficiently filtered and forwarded for further validation. 

6.4 Closing remarks 

From the whole of the experimental results presented in this thesis, it becomes apparent that 

metabolic profiling not only can identify disease profiles and interactions, but it can also contribute 

to uncovering novel candidate biomarkers. This has been achieved even in a well studied disease 

such as cardiovascular disease. Finally, metabolic profiling in combination with pathway mapping 

can fulfil its potential as a hypothesis generating discipline. Present findings are more of an end to a 

beginning, rather than a beginning of an end, in the quest for elucidating the pathology of 

cardiovascular disease and discovery of novel biomarkers. 
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Appendix 1: Supplementary methodologies 

 

Chapter 3: Command lines used for data processing of LC-MS data, using the 

XCMS package112. 

 

library(xcms) 

library(snow) 

source("http://bioconductor.org/biocLite.R") 

biocLite("multtest") 

% Data must be in NetCDF format 

 

Lipid profiling positive mode 

dir ="directory where data are " 

setwd(dir) 

% peak width at 5% approx. 3-12s be used 

pw1=3 

pw2=12 

 

ppm=30 

sn=20 

 

pp <- xcmsSet(method="centWave", peakwidth=c(pw1,pw2), lock=TRUE, ppm=ppm, snthresh=sn, 

nSlaves=4) 
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gpp <- group(pp, method="density", bw=15, mzwid=0.07, minfrac=0.5, minsamp=1, sleep=.001) 

 

gpp 

% using missing=13 to account for blanks etc that don‘t have peaks in all samples 

cgpp <- retcor(gpp,  family="s", plottype="m", missing=13) 

 

gcgpp <- group(pp, method="density", bw=15, mzwid=0.07, minfrac=0.5, minsamp=1, sleep=.001) 

 

fgcgpp <- fillPeaks(gcgpp) 

 

report <- 

diffreport(fgcgpp,class1="sympt",class2="asympt",filebase="20130226_results_liprof_pos", 1000, 

metlin = 0.02) 

 

Lipid profiling positive mode 

dir ="directory where data are " 

setwd(dir) 

 

pw1=3 

pw2=12 

 

ppm=30 

sn=20 
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pp <- xcmsSet(method="centWave", peakwidth=c(pw1,pw2), lock=TRUE, ppm=ppm, snthresh=sn, 

nSlaves=4) 

 

gpp <- group(pp, method="density", bw=15, mzwid=0.07, minfrac=0.5, minsamp=1, sleep=.001) 

 

% using missing=13 to account for blanks etc that don‘t have peaks in all samples 

cgpp <- retcor(gpp, method="linear", family="s", plottype="m", missing=13) 

 

gcgpp <- group(pp, method="density", bw=15, mzwid=0.07, minfrac=0.5, minsamp=1, sleep=.001) 

 

fgcgpp <- fillPeaks(gcgpp) 

 

report <- 

diffreport(fgcgpp,class1="sympt",class2="asympt",filebase="20130227_results_liprof_neg", 1000, 

metlin = 0.02) 

peak width at 5% approx. 0.10-0.20min 

 

6-20s 

 

HILIC UPLC-MS of aqueous extracts – Positive mode 

dir ="directory where data are " 

setwd(dir) 

 

% peak width at 5% approx. 0.10-0.20min (6-20ss will be used) 
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pw1=6 

pw2=20 

 

ppm=30 

sn=20 

 

pp <- xcmsSet(method="centWave", peakwidth=c(pw1,pw2), lock=TRUE, ppm=ppm, snthresh=sn, 

nSlaves=4) 

 

gpp <- group(pp, method="density", bw=30, mzwid=0.07, minfrac=0.5, minsamp=1, sleep=.001) 

 

cgpp <- retcor(gpp,  method="linear", family="s", plottype="m") 

 

 

gcgpp <- group(pp, method="density", bw=30, mzwid=0.07, minfrac=0.5, minsamp=1, sleep=.001) 

 

fgcgpp <- fillPeaks(gcgpp) 

 

report <- diffreport(fgcgpp,class1="sympt",class2="asympt",filebase="results", 1000, metlin = 

0.02) 

HILIC UPLC-MS of aqueous extracts – Negative mode 

dir ="directory where data are " 

setwd(dir) 
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pw1=6 

pw2=20 

  

ppm=30 

sn=20 

 

pp <- xcmsSet(method="centWave", peakwidth=c(pw1,pw2), lock=TRUE, ppm=ppm, snthresh=sn, 

nSlaves=4) 

 

gpp <- group(pp, method="density", bw=30, mzwid=0.07, minfrac=0.5, minsamp=1, sleep=.001) 

 

cgpp <- retcor(gpp,  method="linear", family="s", plottype="m") 

 

gcgpp <- group(pp, method="density", bw=30, mzwid=0.07, minfrac=0.5, minsamp=1, sleep=.001) 

 

 

fgcgpp <- fillPeaks(gcgpp) 

 

report <- diffreport(fgcgpp,class1="sympt",class2="asympt",filebase="results", 1000, metlin = 

0.02)
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