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ABSTRACT 

 

Fed-batch cultures are used in producing monoclonal antibodies industrially. Existing 

protocols are developed empirically. Model-based tools aiming to improve productivity are 

useful with model reliability and computational demand being important. Herein, a systematic 

framework for developing predictive models is presented comprising of model development, 

global sensitivity analysis, optimal experimental design for parameter estimation, and 

predictive capability checking. Its efficacy and validity are demonstrated using a fed-batch 

structured/unstructured model of antibody-secreting hybridoma cultures. Global sensitivity 

analysis is first used to identify sensitive model parameters (initial values estimated from 

batch cultures). Information-rich data from an optimally designed fed-batch experiment are 

then used to estimate these parameters, resulting in good agreement between simulation and 

experimental results. Finally, the model’s predictive capability is confirmed by comparison 

with an independent set of fed-batch cultures. This approach systematises the process of 

developing predictive cell culture models at a minimum experimental cost, enabling model-

based control and optimisation. 
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1. INTRODUCTION 

 

Increasing demand for monoclonal antibodies (MAbs), where time to market becomes 

critical, could benefit from the use of model-based techniques with the aim of optimising and 

controlling cell viability and productivity. The development of reliable mathematical models 

of animal cell cultures is, of course, critical for such applications. In general, these models can 

be classified as either structured or unstructured (Bibila and Robinson, 1995). Unstructured 

models do not take into account the inner structure of the cell, while structured models 

incorporate biological knowledge by lumping the biomaterial into distinct compartments 

(Sidoli et al., 2004). Even though structured models constitute a more detailed and 

biologically consistent representation of cellular activities, they examine single cells and fail 

to describe the collective behaviour of the entire population. Attempts to overcome this 

limitation, including the combination of such single-cell models with population balance 

equations (Sidoli et al., 2006) or simulation of a large number of single-cell models with 

different initial conditions (Domach and Shuler, 1984), pose significant computational and 

validation challenges that render them unsuitable for further application. 

 

Unstructured models, on the other hand, have been proposed as an appropriate basis for 

applying control, optimization and process development techniques to the production process 

of proteins (Dowd et al., 1999; Dhir et al., 2000)). Their main advantages are that they 

involve extracellular culture variables that are typically monitored during a culture, as well as 

that their simulation and subsequent in silico applications are computationally tractable. One 

of the major problems associated with unstructured models though is their limited 

applicability to the process conditions and data range they are derived from. However, it has 

been put forward that the growth of a cell line follows the same kinetics, irrespective of the 

cultivation mode (Pörtner and Schäfer, 1996). It is, therefore, possible that an unstructured 

model developed from batch culture data can also describe fed-batch cultures, which are 

known to increase levels of protein production and are preferred industrially, as long as it is 

properly validated. 

 

For structurally correct models, validation pertains to successful parameter estimation. In the 

case of cell culture models, estimation is usually carried out for all model parameters and 

using already existing (most often, batch) data. Nevertheless, not all parameters may be 

identifiable or estimable, hence the need for an identifiability analysis, or, in the case of 

dynamic, nonlinear models, a sensitivity analysis. The latter studies how a variation in the 

model output can be apportioned to the variation of the different parameters. It is therefore 

used to assess which reduced set of parameters needs to be estimated from experimental data 
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in order to increase model precision. However, unique estimation of the parameter set is only 

possible if the available data are sufficiently rich (Versyck et al., 1997). The use of optimal 

experimental design for estimation of the values of ‘sensitive’ parameters can result in 

significant improvements in parameter confidences (Versyck et al., 1997; Nathanson and 

Saidel, 1985; Munack and Posten, 1989). Optimal experimental design targets the 

determination of input profiles that generate informative experimental data, which then enable 

accurate parameter estimation (Munack, 1989; Munack and Posten, 1989). Optimal 

experimental design can therefore aid the development of a predictive model applicable to a 

wider range of culture conditions through the design of highly dynamic fed-batch 

experiments. Hence, it is proposed to employ these model-based tools in order to systematise 

the methodology for developing predictive mathematical models of protein-producing animal 

cell cultures. The framework put forward and validated herein consists of four steps, namely 

model development, global sensitivity analysis, optimal experimental design for parameter 

estimation, and predictive capability checking, as outlined in Figure 1. 

 

In a previous study (Kontoravdi et al., 2005), a hybrid model of antibody-producing 

mammalian cell cultures was presented and compared to experimental data for the hybridoma 

14-4-4S cell line (Tatiraju et al., 1999). The model is based on the assumption that cell growth 

depends on the availability of two key nutrients, glucose and glutamine, and the accumulation 

of two toxic metabolites, lactate and ammonia. Cell death depends on the accumulation of 

ammonia due to glutamine metabolism and spontaneous degradation in the medium. The 

synthesis of IgG1 antibody product is described starting from the gene copy number and 

synthesis of heavy- and light-chain mRNA molecules. These are then translated into heavy 

and light antibody chains, which sequentially combine to form the antibody molecule (two 

heavy and two light chains) in the endoplasmic reticulum. This molecule then travels to the 

Golgi apparatus and is finally secreted into the extracellular medium. The model equations 

are listed in appendix A and consist of 28 differential and algebraic equations containing 30 

parameters. In summary, the model describes cell growth and antibody synthesis and 

production in the context of laboratory-scale cell cultures. The Sobol´ method of global 

sensitivity analysis was used to identify the model parameters to which the model output 

(MAb concentration) was most sensitive, prompting the need for their accurate estimation 

from experimental data. 

 

In this work, optimal experimental design tools are applied to the aforementioned model in 

order to successfully estimate the values of the ‘sensitive’ parameters and extend the range of 

the model’s validity to fed-batch conditions. First, a supplementary one-at-a-time screening of 

parameter properties with respect to all measured variables was carried out to identify the 
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targets of the parameter estimation and experimental design, thus complementing the previous 

global sensitivity analysis. Batch culture experiments of IgG1-secreting hybridoma cells were 

then performed to provide initial estimates for those parameters, since parameter values 

relating to cell growth and product synthesis and secretion are cell line-specific. Following 

that, D-optimal dynamic experiments were designed to improve parameter accuracy and the 

validity of the resulting model under fed-batch conditions was confirmed by comparison to an 

independent set of fed-batch culture data. To our knowledge, this is one of the first attempts 

to formalise the model development process for cell culture systems, coupling 

experimentation and model-based tools at each step.  
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2. MATERIALS AND METHODS 

 
Hybridoma cell line HFN7.1 producing IgG1 against fibronectin from human plasma (CRL-

1606 from ATCC) was cultured in high-glucose (4.5g/L) DMEM (Gibco) supplemented with 

2.5% bovine calf serum (ATCC). Additional glucose and glutamine required for the fed-batch 

cultures were obtained from Sigma-Aldrich. Both batch and fed-batch cultures were 

conducted in 1L Erlenmeyer flasks with a working volume of 200ml and inoculation cell 

density of 210
8
cells/L. Temperature and CO2 air concentration were automatically 

controlled at 37
o
C and 5%, respectively. Cell density was measured using a hemacytometer, 

where cell viability was determined by the method of Trypan Blue dye exclusion. For 

determination of nutrient, metabolite and antibody concentration in the culture supernatant, 

1.5 mL samples were withdrawn from the culture, the cells centrifuged at 10
4
g for 5 minutes 

in an Eppendorf microfuge, and the supernatants stored at -20 
o
C. Extracellular glucose, 

glutamine, lactate and ammonia concentrations were measured with the YSI Bioprofiler 200 

(Nova Biomedical, U.K.).  

 

Antibody concentration in the supernatant was estimated by indirect sandwich enzyme-linked 

immunosorbent assay (ELISA).  Specifically, non-cell culture treated 96-well plates (Sigma, 

UK) were coated with 100 L of 1 g/ml anti-human fibronectin antibody from rabbit 

(Sigma) in coating buffer (0.05 M sodium bicarbonate, pH 9.6) after an overnight incubation 

at 4 
o
C.  The plates were blocked for non-specific binding with 250 L/well of blocking 

buffer (250 ml coating buffer with 1.25 g cassein hammerstein; Sigma) for 1 hr at room 

temperature. The plates were washed with washing buffer (phosphate buffered saline with 

0.05% Tween). Subsequently, 100 L of the sample or the control (1mg/ml human 

fibronectin diluted in PBS at a ratio of 1:5,000; Chemicon, UK) were added per well and 

incubated for 1 hr on an orbital plate shaker at room temperature. The plates were washed as 

before followed by addition of 100 L/well of mouse anti-human fibronectin antibody from 

mouse (Sigma) diluted in PBS at a ratio of 1:5,000 and incubated for 2 hrs at room 

temperature on an orbital plate shaker. The plates were washed as before and 100 L of 6.4 

mg/ml anti-mouse Fc antibody from goat (Sigma) diluted in PBS at a ratio of 1:10,000 and 

incubated for 1 hr at room temperature on an orbital plate shaker. Subsequently, the plates 

were washed followed by visualisation of the reaction using the 3,3',5,5'-tetramethylbenzene 

kit (TMB; Sigma-Aldrich T3405) as per the manufacturer’s instructions. The absorbance was 

read at 450 nm on a microplate reader (BioTek Instruments, Inc., USA). 

 

Batch cultures were carried out in triplicate flasks using the aforementioned DMEM medium, 

which corresponds to initial concentrations of 29.1mM for glucose and 4.9mM for glutamine, 
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and 2.5% bovine calf serum. Fed-batch cultures were carried out in duplicate flasks using two 

different sets of initial concentrations. In the first fed-batch culture experiment used for model 

validation, the initial concentration of glucose was 25.1mM and of glutamine 5.01mM. In the 

second, independent experiment, the initial concentration of glucose was 18.4mM and of 

glutamine 3.74mM. The same concentrated medium was supplied to both sets of fed-batch 

cultures in pulses and the concentrations of glucose and glutamine in the feed were set at 

500mM and 100mM, respectively. The maximum total volume of feed was fixed at 8.75ml, 

which represents less than 5% of the total culture volume (200ml), so as to avoid dilution 

effects. 
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3. MODEL DEVELOPMENT PLATFORM 

 
3.1 Model analysis 

The Sobol’ method of global sensitivity analysis was employed to quantitatively assess the 

effect of variation in model parameter values on model output, in this case MAb 

concentration. This is a variance-based Monte-Carlo method that examines the entire range of 

parameter values based on the ANOVA (Analysis of Variances) decomposition of a given 

function into summands of increasing dimensionality (Sobol’, 2001). A further brief one-at-

at-a-time screening of model parameters was carried out for evaluating to which parameters 

the remaining experimentally-measured outputs are sensitive. Hence, the effect of all 

parameters on viable and total cell concentrations was investigated based on model 

simulation.  

 

The global sensitivity analysis identified 8 parameters to which MAb concentration was most 

sensitive (Kontoravdi et al., 2005). A further one-at-a-time screening was performed to 

determine the parameters by which the measured variables were most influenced, since a full 

map of sensitivity indices with respect to all measurements was not available. Those were 

found to be the yield of cells on glucose (Yx,glc), the yield of cells on glutamine (Yx,gln), the 

yield of lactate on glucose (Ylac,glc), the yield of ammonia on glutamine (Yamm,gln), the rate of 

dead cell lysis (Klysis), the maximum specific cell growth rate (μmax), and the gene copy 

number of MAb heavy chains (NH). These parameters were targeted for the parameter 

estimation process, whereas certain parameters identified through the global sensitivity 

analysis study were set at their nominal values as they involved intracellular measurement or 

cell cycle analysis that were not carried out in this study. 

 

Batch culture experiments were initially carried out, through which the validity of the model 

structure to the HFN7.1 hybridoma cell line was confirmed (simulations were carried out 

using gPROMS (PSE, 2002a)). As shown in Figure 2, the model captures the trend of viable 

cell concentration during the initial lag phase and correctly predicts the height and time of the 

peak in the number of viable cells. Model results predict higher concentrations during the 

exponential growth phase, but the overall experimental trend is observed. Similarly, during 

the decline of the viable cell concentration the model correctly captures the shape of the 

concentration profile and, in most cases, provides an accurate prediction of the viable cell 

number. Moreover, MAb concentration is accurately predicted throughout the duration of the 

culture (Figure 2). Similar agreement was achieved for glutamine and ammonia (Figure 3), 

and glucose and lactate (Figure 4).  
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3.2 Optimal experimental design and parameter estimation 

The accurate estimation of the aforementioned 7 parameters under fed-batch conditions was 

the aim of the optimal experimental design, which was conducted using the initial estimates 

as determined from the batch culture data (Table 1). D-optimal experimental design was 

used to maximise the information content of experimental data, specifically for the 

estimation of the seven parameters identified in the sensitivity analysis and one-at-a-

time screening. This is done by minimising the volume of the confidence ellipsoid, 

i.e., minimising the determinant of the variance-covariance matrix, V, of the 

parameters to be estimated.  

 

The optimisation problem seeks to determine the initial conditions, experiment 

duration, variation of controls and timing of samples such that the maximum amount 

of information is generated with the given measurements. These measurements were 

nutrient and metabolite concentrations, the viable and total cell concentrations and the 

extracellular MAb concentration. The design was conducted in the gPROMS (PSE, 

2002b) modelling environment, which has a dedicated function, namely ‘experiment 

design for parameter precision’, and uses a SRQPD sequential quadratic programming 

code. The amount of feed, feeding interval, and experiment duration were treated as 

degrees of freedom within certain operational limits. The initial glucose concentration 

was limited between 5.5 and 25mM. The feed was allowed to vary between 0 and 

12.5ml per hour. Concentrated medium was supplied to the culture vessel in pulses and the 

maximum total volume of feed was fixed at 8.75ml, which represented less than 5% of the 

total culture volume (200ml), so as to avoid dilution effects. The amount of feed supplied at 

each feeding interval was optimised by the design, as was the timing of these intervals. The 

earliest measurement time was set at 12 hours and the minimum time between 

measurements at 6 hours. The duration of the experiment was allowed to vary 

between 4 and 8 days. The optimal duration was determined at 168 hours (7 days), during 

which a pulse feed was introduced once a day, at an interval of 24 hours.  

 

The sequence of designing an experiment, performing it, and using the generated data for 

model validation is done iteratively, until model predictions and experimental data are in 

satisfactory agreement. The results of the designed experiments were used to estimate 

the values of model parameters using the ‘parameter estimation’ entity in gPROMS 

based on the same SRQPD sequential quadratic programming code. Parameter 
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estimation was based on the maximum likelihood formulation, which attempts to 

determine values for the uncertain physical and variance model parameters that 

maximise the probability that the model will predict the measurement values obtained 

from the experiments.  The statistical variance model of constant variance was used in 

this case. In this case, the validation process was successful after one fed-batch experiment 

as the 95% confidence intervals were deemed satisfactory at ±10% of the final parameter 

values. 

 

The complete set of parameter values for fed-batch cultures can be seen in Table 1, where 

they are compared to the corresponding values for batch culture operation. The major 

differences are in the parameters describing nutrient utilisation, as expected. Increased uptake 

of both nutrients in fed-batch culture also results in prolonged cell growth and higher viable 

(and hence, total) cell concentration, and is reflected in the higher values in cell yield on 

glucose and glutamine (2.6x10
8
 and 8x10

8
, respectively) compared to values for batch culture 

(1.1x10
8
 and 5.6x10

8
, respectively). The yield of lactate on glucose is at its maximum value 

of 2 in the case of fed-batch culture, while it is 1.4 in batch culture. This is due to the 

increased availability and utilisation of glucose, which leads to higher conversion into lactate, 

and agrees with previous experimental observations (Glacken et al., 1986; Miller et al., 1988). 

Finally, there is some difference in the values of the heavy and light chain gene copy number. 

As the values for batch cultures represent initial estimates, these are estimated using the data 

for fed-batch operation. The estimated value of 100 genes per cell for both the heavy and the 

light chain is therefore considered to be the most accurate estimate since these figures should 

be independent of culture operation mode. 

 

The results of the parameter estimation and the uncertainty in parameter values expressed in 

confidence intervals are shown in Table 2. The confidence intervals of the estimated 

parameters are satisfactory, with the 95% confidence intervals falling within ±10% of the 

final value for all parameters except Yamm,gln (±17%). The resulting model is in good 

agreement with the results of this first experiment (Figures 5 to 7). More specifically, 

predictions and experimental data for viable and total cell concentrations can be seen in 

Figure 5. Simulation results for viable cell concentration closely match the data during the 

first 60 hours. Thereafter, model predictions follow the trend of the experimental data 

correctly predicting the plateau in viable cell concentration. Over the last 40 hours the model 

over-predicts the concentration of viable cells in the culture. This is probably because the 

viable cell concentration in vitro is too low for the cells to recover viability, but the model 

predicts that will occur as more concentrated feed is supplied to the culture. The data for total 
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cell concentration are more accurately matched by the simulation results (Figure 5). Again, 

there is good agreement over the first 100 hours, with few discrepancies thereafter. The 

overall trend of the concentration is correctly captured by the model. 

 

Figure 6 shows good agreement between model simulation results and experimental data for 

glutamine and ammonia. Glutamine concentration is correctly predicted throughout the 

duration of the culture. Discrepancies only occur once glutamine has reached zero 

concentration (after 80 hours), when additional glutamine fed to the culture is metabolised 

more quickly than predicted. Ammonia concentration is also closely tracked by model results. 

It is correctly predicted during the initial lag phase, over-predicted over the following 70 

hours, and closely matched during the remainder of the culture. Finally, model simulation 

results for extracellular MAb concentration are in good agreement with experimental data as 

shown in Figure 7. The model closely tracks the data throughout the duration of the culture, 

correctly predicting the MAb concentration during the lag and exponential growth phases, as 

well as the final concentration in the medium. Overall, the model captures the profiles of all 

measure variables successfully. 

 

3.3 Predictive capability demonstration 

In order to demonstrate the model's predictive capability, its simulation results were compared 

with an independent set of data from a fed-batch experiment. The initial glucose and 

glutamine concentrations were lower than in the designed experiment and the same amount of 

concentrated feed was introduced in two instead of one dose per day (once every 12 hours). 

The sampling schedule was the same as in the designed experiment, with viable and total cell, 

nutrient, metabolite, and extracellular MAb concentrations determined at each point. 

Glutamine and ammonia concentrations are accurately predicted by the model as shown in 

Figure 8. Simulation results closely track the experimental data for glutamine, with some 

discrepancies between 60 and 90 hours, when the predictions are marginally lower than the 

experimental values. Ammonia concentration data are also matched by model results. There 

are some small discrepancies between 20 and 70 hours, when the predicted concentration is 

higher than observed, and during the final few hours of the culture, when the concentration is 

marginally under-predicted. 

 

In terms of the cell concentrations, the trends of both viable and total cell profiles are 

predicted satisfactorily. The model closely tracks the data for viable cell concentration during 

the first 70 hours of the culture, correctly predicting the lag and exponential growth phases 

(Figure 9). The in silico peak in concentration is lower than the in vitro, but subsequent 

predictions match the data. As in the case of the designed fed-batch experiment, there are 
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discrepancies in the final few hours of the culture, when the model predicts that the cells can 

recover their viability since more nutrients are supplied, but that is not observed 

experimentally. The total cell concentration is correctly predicted throughout the culture. 

There is good agreement between simulation results and experimental data during the lag and 

exponential growth phases. The peak in concentration is then predicted to be higher than that 

observed, after which the decline in cell number is closely tracked by the model. Finally, the 

final extracellular concentration of monoclonal antibodies is correctly estimated by the model 

(Figure 10). This concentration rises more sharply than calculated by the model during the 

exponential growth phase, however, the final concentration achieved is successfully 

calculated. 

 

Overall, based on the level of biological information that is described by the existing model 

structure, the agreement between simulation results and experimental data from the 

independent fed-batch experiment is satisfactory. Previous applications of optimal 

experimental design in this field were restricted to simpler systems of microorganisms 

(Bernaerts et al., 2000) and were often incomplete, as parameter estimation was performed 

using simulated results (Versyck et al., 1997). To our knowledge, this is one of the first 

attempts to close the loop between model-based tools and designed experimentation in 

biological systems and to formalise the steps of the model development process for animal 

cell cultures, avoiding trial-and-error practices and, thus, unnecessary experimentation. The 

resulting model, which was developed at a minimum experimental cost, can be used for in 

silico experimentation, as well as model-based control and optimisation studies. 
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CONCLUDING REMARKS 

A systematic framework for model analysis and experimental design was presented, which 

was used to improve the reliability of a simple, hybrid model of animal cell cultures and to 

extend its range of applicability from batch to fed-batch culture conditions. Overall, the 

framework presented and validated here proposes a well-defined step-by-step methodology 

for building predictive models of cell culture processes at a minimum experimental cost, 

while avoiding trial-and-error practices. This systematic combination of modelling and 

experimentation through process systems engineering tools can, in the future, guide process 

development in the biopharmaceutical industry with an aim to reduce the time required for a 

product to reach the market. 
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NOTATION 

K  heavy- and light-chain mRNA decay rate  (h
-1

) 

KA  assembly rate constant (cell/molecule/h) 

Kd,amm  ammonia constant for cell death (mM) 

Kd,gln  constant for glutamine degradation (h
-1

) 

KER  rate constant for ER-to-Golgi transport (h
-1

) 

KG  rate constants for Golgi-to-medium antibody transport (h
-1

) 

Kglc  Monod constant for glucose (mM) 

Kgln  Monod constant for glutamine (mM) 

KIamm  Monod constant for ammonia (mM) 

KIlac  Monod constant for lactate (mM) 

mglc  maintenance coefficient of glucose (mmol/cell/h) 

NH, NL  heavy- and light-chain gene copy number (gene/cell) 

RH, RL  rates of heavy- and light-chain consumption in assembly (chain/cell/h) 

SH, SL  heavy- and light-chain gene specific transcription rates (mRNA/gene/h) 

TH, TL  heavy- and light-chain specific translation rates (chain/mRNA/h) 

Yamm,gln yield of ammonia from glutamine (mmol/mmol) 

Ylac,glc  yield of lactate from glucose (mmol/mmol) 

Yx,glc  yield of cells on glucose (cell/mmol) 

Yx,gln  yield of cells on glutamine (cell/mmol) 

Greek letters 

1, 2 constants of glutamine maintenance coefficient (mM L/cell/h and mM, 

respectively) 

1  constant for antibody production (h) 

2  constant for antibody production (dimensionless) 

1  ER glycosylation efficiency factor (dimensionless) 

2  Golgi apparatus glycosylation efficiency factor (dimensionless) 

dmax  maximum specific death rate (h
-1

) 

max  maximum specific growth rate (h
-1

) 
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TABLES 

 

Table 1. Parameter values for batch and fed-batch culture operations. 

Parameter Batch operation value Fed-batch operation value 

K (h
-1

) 10
-1

 10
-1

 

KA (cell/molecule-L) 10
-6

 10
-6

 

Kd,amm (mM) 1.76 1.76 

Kd,gln (h
-1

) 9.610
-3

 9.610
-3

 

KER (h
-1

) 6.910
-1

 6.910
-1

 

KG (h
-1

) 1.410
-1

 1.410
-1

 

Kglc (mM) 7.510
-1

 7.510
-1

 

Kgln (mM) 7.510
-2

 7.510
-2

 

KIamm (mM) 28.48 28.48 

KIlac (mM) 171.76 171.76 

Klysis  (h
-1

) 5.510
-2

 3.010
-2

 

mglc (mmol/cell-h) 4.910
-14

 4.910
-14

 

n (-) 2 2 

NH (gene/cell) 1.410
2
 1.010

2
 

NL (gene/cell) 1.210
2
 1.010

2
 

SH (mRNA/gene-h) 310
3
 310

3
 

SL (mRNA/gene-h) 4.510
3
 4.510

3
 

TH (chain/mRNA-h) 17 17 

TL (chain/mRNA-h) 11.5 11.5 

Yamm,gln (mmol/mmol) 4.310
-1

 4.510
-1

 

Ylac,glc (mmol/mmol) 1.4 2.0 

Yx,glc  (cell/mmol) 1.110
8
 2.610

8
 

Yx,gln (cell/mmol) 5.610
8
 810

8
 

α1 (mM L/cell-h)  3.410
-13

 3.410
-13

 

α2 (mM) 4 4 

γ1 (-)  10
-1

 10
-1

 

γ2  (h)  2 2 

ε1  (-) 9.910
-1

 9.9510
-1

 

ε2 (-) 1 1 

μmax (h
-1

)  5.810
-2

 5.810
-2

 

μd,max (h
-1

) 610
-2

 610
-2
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 Table 2. Parameter estimation results for fed-batch culture. 

 Confidence Intervals 

Parameter Final value 90% 95% 99% 

Yx,glc 2.610
8
 2.22410

7
 2.65410

7
 3.49410

7
 

Yx,gln 810
8
 2.13410

7
 2.54610

7
 3.35210

7
 

Ylac,glc 2.0 1.76810
-1

 2.10910
-1

 2.77710
-1

 

Yamm,gln 4.510
-1

 6.56410
-2

 7.83210
-2

 1.03110
-1

 

Klysis 3.10
-2

 2.52010
-3

 3.00710
-3

 3.95910
-3

 

μmax 5.410
-2

 8.30610
-4

 9.90910
-4

 1.30510
-3

 

NH 101 5.067 6.045 7.959 
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FIGURE LEGENDS 
 

Figure 1. Framework for systematic development of predictive mathematical models for 

animal cell cultures. 

 

Figure 2. Comparison of model results for extracellular MAb concentration (– –) and viable 

cell concentration (―) with experimental data from batch cultures (○ and ●, respectively). 

 

Figure 3. Comparison of model results for glutamine (―) and ammonia concentrations (– –) 

with experimental data from batch cultures (● and ○, respectively). 

 

Figure 4. Comparison of model results for glucose (―) and lactate concentrations (– –) with 

experimental data from batch cultures (● and ○, respectively). 

 

Figure 5. Comparison of model results for viable (―) and total (– –) cell concentrations with 

experimental data from designed fed-batch cultures (● and ○, respectively). 

 

Figure 6. Comparison of model results for glutamine (―) and ammonia (– –) concentrations 

with experimental data from designed fed-batch cultures (● and ○, respectively). 

 

Figure 7. Comparison of model results for extracellular MAb concentration (―) with 

experimental data from designed fed-batch cultures (●). 

 

Figure 8. Comparison of model results for glutamine (―) and ammonia (– –) concentrations 

with experimental data from independent fed-batch cultures (● and ○, respectively). 

 

Figure 9. Comparison of model results for viable (―) and total (– –) cell concentrations with 

experimental data from independent fed-batch cultures (● and ○, respectively). 

 

Figure 10. Comparison of model results for extracellular MAb concentration (―) with 

experimental data from independent fed-batch cultures (●). 
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FIGURES 

 

Figure 1 

 

Step 1 

Model development* 

1. Model structure 

defined based on 

 experimental system 

available for 

validation 

 selected model 

application 

2. Physiological ranges 

for parameter values 

established based on 

literature data 

 
*(Kontoravdi et al., 2005) 

Step 2 

Model analysis 

1. Sensitivity analysis*  

 for qualitative 

assessment of 

‘sensitive’ 

parameters 

 for identification of 

most informative 

sampling times 

Batch experiments for 

providing initial 

parameter estimates
† 

 

*(Kontoravdi et al., 2005) 
†This work 

 

Step 3 

Model validation
† 

1. Optimal design of dynamic 

experiments based on 

 targeting the estimation of 

‘sensitive’ parameters 

 degrees of freedom (feed 

volume and time of addition) 

2. Experimentation 

3. Parameter estimation and 

model validation 

The above steps are repeated until 

model exhibits satisfactory 

agreement with experimental data 
†This work 

Step 4 

Predictive capability
† 

1. Perform an 

independent 

dynamic experiment 

2. Check and confirm 

model validity and 

predictive capability 

by comparing model 

simulation results 

with resulting set of 

data  

 

 
†This work 
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Figure 10 
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Appendix A: List of model equations (Kontoravdi et al., 2005). 

The mass balances on the viable and total cell populations, based on conventional 

assumptions such as perfect mixing and negligible dilution effect, are: 

outin FF
dt

dV
 ,               (1) 

 
voutvdv

v XFVXVX
dt

VXd
  ,             (2) 

 
toutv

t XFVX
dt

VXd
  .                    (3) 

The specific cell growth rate is determined by the concentrations of the glucose, glutamine, 

lactate and ammonia, following Monod kinetics: 

inhff limmax 
,                           (4) 

 
 

 
 































GLNK

GLN

GLCK

GLC
f

gglc ln
lim

,             (5) 

   






























AMMKI

KI

LACKI

KI
f

amm

amm

lac

lac
inh

.               (6) 

Based on the assumption that cell death only depends on the concentration of ammonia in the 

extracellular medium, the rate of cell death is determined by: 

 

n
ammd

d
d

AMM

K













,

max,

1


 , n>1.              (7) 

The mass balances on glucose and glutamine around the bioreactor are: 

  
   GLCFGLCFVXQ

dt

GLCVd
outininvglc 

,           (8) 

glc
glcx

glc m
Y

Q 
,



,               (9) 

  
     GLNFGLNFGLNVKVXQ

dt

GLNVd
outinindgvg  lnln

,         (10) 

ln
ln,

ln g
gx

g m
Y

Q 


,                    (11) 

 
 GLN

GLN
mg




2

1
ln





.                    (12) 

The mass balances for lactate and ammonia are: 

  
 LACFVXQ

dt

LACVd
outvlac 

,               (13) 

glcglclaclac QYQ ,
,               (14) 

  
   AMMFGLNVKVXQ

dt

AMMVd
outdgvamm  ln

,          (15) 

lnln, ggammamm QYQ 
.               (16) 

The heavy- and light-chain mRNA balances are: 

HHH
H KmSN

dt

dm


,              (17) 
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LLL
L KmSN

dt

dm


.               (18) 

The intraER heavy- and light-chain and assembly intermediates balances are: 

 
HHH RmT

dt

Hd


,               (19) 

 
LLL RmT

dt

Ld


,               (20) 

where, 

 2
3

2
HKR AH 

,               (21) 

     LLHKLHKR AAL 222 
,             (22) 

and 

 
    LHKHK

dt

Hd
AA 2

22 2
3

1


,             (23) 

 
     LLHKLHK

dt

LHd
AA 22

2 2
|


.            (24) 

The intraER MAb balance is: 

 
    ERERA

ER LHKLLHK
dt

LHd
222

22


.            (25) 

Similarly, for the Golgi apparatus: 

 
   GGERER

G LHKLHK
dt

LHd
22221

22
 

.                     (26) 

Finally, the rate of MAb production is: 

  
   MAbFVXQ

dt

MAbVd
outvMAb   12

,           (27) 

 GGMAb LHKQ 222
.              (28) 

 


