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Abstract Model-based analysis of cellular metabolism can facilitate our un-
derstanding of intracellular kinetics and aid the improvement of cell growth
and biological product manufacturing. In this paper, a model-based kinetic
study of cytosolic glucose metabolism for two industrially relevant cell lines,
Saccharomyces cerevisiae and Chinese hamster ovary (CHO) cells, based on
enzyme genetic presence and expression information is described. We have re-
constructed the cytosolic glucose metabolism map for S. cerevisiae and CHO
cells, containing 18 metabolites and 18 enzymes using information from the
Kyoto Encyclopedia of Genes and Genomes (KEGG). Based on this map, we
have developed a kinetic mathematical model for the pathways involved, con-
sidering regulation and/or inhibition by products or co-substrates. The values
of the maximum rates of reactions (Vmax) were estimated based on kinetic pa-
rameter information and metabolic flux analysis results available in literature
and resulting simulation results for steady state metabolite concentrations are
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in good agreement with published experimental data. Finally, the model was
used to analyse how the production of DHAP, an important intermediate in
fine chemicals synthesis, could be increased using gene knockout.

Keywords kinetic modelling · Saccharomyces cerevisiae · Chinese hamster
ovary cells · genome-scale metabolic reconstruction · glucose metabolism

1 Introduction

Detailed kinetic modelling, which describes all the enzymatic reaction steps,
is the most comprehensive way of modelling cellular metabolism. However,
the validation of such a modelling approach requires a considerable amount
of high quality intracellular data, which are difficult to obtain experimen-
tally and are cell line dependent. Hence, considerable resources are needed
to parameterize the model and studies sought alternative methods to model
cellular metabolism, e.g., by simplifying the reaction network (e.g. [43, 60]),
developing models based only on reaction stoichiometry (e.g. [49]), or per-
forming metabolic flux analyses (e.g. [13, 44]). However, these models do not
have the ability to describe the exact intracellular metabolic activity and how
this changes over cell culture time or, equally importantly, enzyme regulation
by certain metabolites. Hence, even though some regulation effects have been
described in detail, to the best of our knowledge there are a limited number of
published kinetic studies that examine an entire metabolic network in detail.

Glucose metabolism is essential for cell survival as the preferred cellular
supply of energy. However, glucose acts not only as an energy source but also
as a carbon skeleton donor for the tricarboxylic acid (TCA) cycle, as well
as for nucleic and amino acid synthesis via the pentose phosphate pathway
(PPP). The ability to quantitatively describe metabolic activity is essential for
analyzing cellular nutrient requirements and hence devising appropriate cell
culture media and feeding strategies. Glucose metabolism has been studied in
significant detail experimentally, thus rendering the development of a kinetic
model for this reaction network a good starting point for modelling cellular
metabolism.

In the first structured, kinetic single-cell model for CHO cells [60], a sim-
plified network for 18 metabolic components including amino acid, glucose,
lactate, DNA, RNA and proteins, which separated the cell into two compart-
ments, the cytocol and the nucleus, was presented. Sanderson [43] developed
a new model that tracked intracellular concentrations, considered competitive
amino acid transport, as well as fatty acid and amino acid metabolism, and
new cell and product formation algorithms. Following this work, the afore-
mentioned single cell model and a population balance model was coupled [48].
These models simplified the metabolic pathways heavily, for example con-
sidering glycolysis as a set of 3 sequential reactions, and lacked the ability
to determine the role of lumped metabolites. A recent model for glycolytic
oscillations in starved S. cerevisiae cell cultures [23] based on detailed enzy-
matic reactions demonstrates that kinetic modelling of cell metabolism is an
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achievable goal and a reasonable method for analysing metabolic behaviour.
Importantly, recent genome-scale kinetic studies (e.g. [50, 51]) have gained
increased research interest and have found application both in the analysis of
cell metabolism as well as in the optimisation of bioprocesses.

We have launched a genome-based kinetic study of metabolism in both
yeast and mammalian cells starting from cytosolic glucose metabolism, which
includes glycolysis and the PPP. Herein, we present a mechanistic model for
two industrially-relevant cell lines, S. cerevisiae cells, a yeast cell line, and
CHO cells, a mammalian cell line with a more complex metabolic network,
developed in line with the methodology outlined in [54]. Reaction kinetics
were modelled explicitly with a minimum number of reactions lumped due to
lack of experimental information, as depicted in Figures 2 and 3. Parameter
values for these models were estimated using kinetic information from liter-
ature and published MFA studies for the pathways considered. Since various
MFA studies report different numerical values for the fluxes of the pathways
for the same organism depending on the cell growth phase the measurements
were conducted in, we further assessed how significant the resulting differences
in estimated parameter values can be. Finally, as an application of the model,
we performed a simulation study on enhancing DHAP production by knocking
out the gene for triose-phosphate isomerase.

2 Mathematical model development

We built a kinetic model for cytosolic glucose metabolism for S. cerevisiae and
CHO cells to describe the metabolic map shown in Figure 1 (abbreviations are
explained in Tables 1 & 2). The map was constructed based on genetic and
kinetic information from two online databases, namely the Kyoto Encyclopedia
of Genes and Genomes (KEGG) and the Braunschweig Enzyme Database
(BRENDA), respectively. Since complete genomic information on CHO cells
is currently not publicly available, we used that of the closest species, Rattus
norvegicus, as a substitute when required.

Eighteen metabolites and eighteen reactions compose the metabolic map,
which includes glycolysis and the pentose-phosphate pathway. The model is a
system of ordinary differential and algebraic equations and consists of mass
balances for all metabolites and kinetic rates for all enzymatic reactions. Mass
balances equations are described as:

dci
dt

=
∑
j

si,jvj + Fin,i − Fout,i, (1)

where si,j are the stoichiometric coefficients as presented in Table 5 and vj
represent the reaction rates. The rates are described mathematically as sum-
marised in Table 4 using Michaelis-Menten kinetics and account for known
regulation (activation and inhibition) effects. Co-factors (NAD+, NADH, etc.)
are assumed to be present at sufficient concentrations, and redox metabolism
(from NADH to NAD+) has not been considered in line with previous kinetic
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models [19, 26, 42]. Fin,i and Fout,i are the rates at which metabolite i is fed
into and out of the system via side reactions accounting for other metabolic
pathways or trans-membrane transport.

Since available enzyme kinetic data are derived from studies performed in
vitro, only Michaelis-Menten constants Km can be considered accurate for the
purpose of simulating in vivo behaviour. The Vmax values require estimation
from experimental findings. Metabolic flux analysis data are only reported as
net fluxes, thus it is not possible to consider the reversible reactions in our
model. Hence, for the majority of the reactions, only net forward reaction
rates are considered, which are described using apparent Michaelis-Menten
constants (Km,app) and maximum rates of reaction (Vmax,app).

Based on data availability, namely metabolite concentrations (see Table 1)
and enzyme kinetic constants (see Table 3 & 4), the metabolic model was re-
duced by grouping certain adjacent reactions, in order to avoid inaccuracies
and overfitting of kinetic parameters. Specifically, for S. cerevisiae cells, the
concentrations of 1,3-bisphosphoglycerate (13BPG) and 6-phospho-glucono-
1,5-lactone (6PGL) in glycolysis, and ribulose-5-phosphate (Ru5P), ribose-5-
phosphate (R5P) and xylulose-5-phosphate (X5P) in the PPP have not been
reported experimentally, while the concentration of erythrose-4-phosphate (E4P)
and sedoheptulose-7-phosphate (S7P) have been reported as non-detectable[46].
Therefore, the reaction catalysed by phosphoglycerate kinase (PGK), which
uses 13BPG as a substrate, is grouped with the previous reaction. Moreover,
since there is little information for the PPP, the entire pathway has been
grouped.

Metabolic flux analysis studies have showed that the metabolic fluxes exit-
ing glycolysis and the PPP are considerable [17, 20, 22, 47] and therefore need
to be taken into account in the model. Based on the reconstructed metabolic
map and fluxes reported in [20, 22], the set of Fin,i and Fout,i considered in
the model for S. cerevisiae are:

(1) Fin,Glc, feed of glucose from media via trans-membrane transport,
(2) Fout,G6P, reactions towards nucleotide sugar donor metabolism and PPP
(3) Fin,F6P, reactions from PPP,
(4) Fout,F6P, reactions towards synthesis of fructose 2,6-bisphosphate,
(5) Fin,GA3P, reactions from PPP,
(6) Fout,GA3P, reactions towards PPP,
(7) Fout,DHAP, reactions towards synthesis of glycerol,
(8) Fout,13BPG, reactions towards synthesis of amino acids,
(9) Fout,Pyr, reactions towards synthesis of lactate, synthesis of amino acids

and TCA cycle,

The reduced model based on the above considerations was based on the revised
metabolic map shown in Figure 2.

Similarly, for CHO cells, since the concentrations of 13BPG and 6PGL are
not available in the literature, these two relevant reactions, namely PGK and
PGLS, were grouped with their upstream reactions, GAPDH and G6PDH, re-
spectively. The missing concentration of F26BP was approximated to 0.005mM
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based on experimental findings reported in [57]. Importantly, the model consid-
ers the pathways towards other metabolic networks and homeostatic activities,
including amino acid and nucleotide sugar donor metabolism, the TCA cycle,
DNA synthesis, and lactate and glycerol accumulation, for which experimen-
tal information is available. The following inlet and outlet flows were therefore
considered in the model for CHO cells:

(1) Fin,Glc, feed of glucose from media via trans-membrane transport,
(2) Fout,G6P, reactions towards nucleotide sugar donor metabolism,
(3) Fout,F6P, reactions towards synthesis of fructose 2,6-bisphosphate,
(4) Fout,DHAP, reactions towards synthesis of glycerol,
(5) Fout,13BPG, reactions towards synthesis of amino acids,
(6) Fout,Pyr, reactions towards the TCA cycle and lactate accumulation,
(7) Fout,Ru5P, reactions towards synthesis of DNA and amino acids.

The revised metabolic map based on which the model for CHO cells was
developed is shown in Figure 3.

3 Results and Discussion

3.1 Parameter estimation and model simulation

For S. cerevisiae cells, various different values for the metabolic flux enter-
ing the PPP have been reported, e.g., 2.5%[17], 1.3%-2.8%[47] and 16.2%-
44.2%[20]. We have therefore chosen to examine three scenarios. Scenario A
uses the metabolic flux distribution reported by Gombert et al.[20] for parame-
ter estimation because this is one of the few studies conducted in a defined fer-
mentation medium. This study involved the batch cultivation of S. cerevisiae
using [1-13C] glucose as the limiting substrate. Samples were removed from the
culture at the late exponential phase, were analysed by gas chromatography
coupled to mass spectrometry (GC-MS) to measure fractional labelings of in-
tracellular metabolites, and the data were used as inputs to a flux estimation
routine. The reported metabolic fluxes were converted herein to units of mM/s
using a cell density equal to 1.1029 g/mL[7] and water content of 67%[2] and
are presented in Figure 2. Scenario B refers to the estimation results when the
metabolic flux towards the PPP in [20] is halved, while scenario C refers to the
results obtained when using the experimental results reported by [47]. In all
cases, intracellular metabolite concentrations from various sources (see Table
7) were used in conjunction with the aforementioned fluxes for the purpose of
parameter estimation.

The apparent Vmax values for all reactions considered explicitly in the
model were estimated in gPROMS (PSE Ltd., U.K.) based on an assumption
that net metabolic flux rates equals to counterpart reaction rates, using the
metabolite concentrations in Table 1, metabolic fluxes results in Figure 2 and
the enzyme kinetics in Table 4. The results for all three cases are presented
in Figure 4. Interestingly, the estimated values for all scenarios are compara-
ble. Table 6 summarises the numerical results of the estimation and in most
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cases the deviation is within 5%, i.e. within the margin of experimental error.
Significant deviation occurs in the case of the Vmax for GPI, the enzyme that
catalyses the conversion of glucose-6-phosphate to fructose-6-phosphate, for
which the values under scenarios B and C differ from that for scenario A by
10% and 19.72%, respectively. This result is unsurprising since by reducing the
flux to the PPP, an increased glucose flux will be channeled to the main gly-
colytic pathway for the same glucose utilisation rate. Similarly, this increases
the Vmax for PFK1 and ALD, which catalyse the following two reactions in
glycolysis. However, the effect of reduced PPP flux changes the Vmax values
for the remaining enzymes in opposite ways, with values increasing under sce-
nario B and decreasing under scenario C. This can be attributed to the fact
that although all fluxes associated with the PPP are lower in scenario C than
in other cases, there is a significant increase in the outward fluxes from dihy-
droxyacetone phosphate (DHAP) towards glycerol, from phosphoenolpyruvate
towards the TCA cycle and amino acid metabolism and from pyruvate towards
the TCA cycle, amino acid metabolism, and lactate. This significantly affects
our estimates for Vmax in the latter reactions of the glycolytic pathway. This
exercise illustrates that a significant impediment in the accurate estimation of
kinetic parameters in the lack of complete experimental datasets containing
both flux and metabolite concentration information.

Similarly, metabolic fluxes as presented in [22] were used for the estimation
of apparent Vmax values in CHO cells. This study involved the quantification
of steady state isotopomer distribution in a perfusion bioreactor operated with
10% [U-13C] glucose, 40% labelled [1-13C] glucose and 50% unlabelled glucose,
from which metabolic fluxes were determined using the 13C-Flux software
package. The fluxes were converted to mM/s from pmol/cell · day reported
in Goudar’s work [22] using a CHO cell diameter equal to 15 µm[24]. The
converted metabolic flux values, which were used for parameter estimation
herein, are presented in Figure 3. Again, intracellular metabolite concentra-
tions from [1] and [41] (see Table 7 for values) were used in tandem with the
aforementioned fluxes for the estimation of unknown parameter values.

The estimated values for CHO are presented in Figure 4 and 5. The esti-
mated apparent values of Vmax for the first four enzymes in glycolysis, namely
GCK, PGI, PFK1 and ALD, are considerably lower than for those enzymes
from the latter part of glycolysis, namely GAPDH, PGM, ENO and PK. Our
findings suggest that the rate of glycolysis is mostly limited by earlier reactions
in both S. cerevisiae and CHO cells. As presented in Table 7, the steady-state
simulation results are in agreement with known metabolite concentrations for
both cell lines. Where a range of values was available from literature, the
parameter estimation was carried out to minimise the difference between sim-
ulation results and the lower value reported, hence, the agreement with this
value is reported.
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3.2 DHAP production analysis

DHAP is an important metabolite and intermediate in the synthesis of fine
chemicals. We therefore sought to analyse how the cell-based production of
DHAP in S. cerevisiae can be improved. As shown in the metabolic map
(Figure ) and the flux distribution in Figure , DHAP is one of the two products
of the reaction catalysed by ALD together with glyceraldehyde 3-phosphate
(GA3P). It is also the substrate of the reversible reaction catalysed by TPI
towards GA3P. From the network structure, it is deduced that one strategy
for increasing the production rate of DHAP would be by knocking out the
gene for TPI, as attempted in the cell-free study described in [8]. This was
simulated for S. cerevisiae by setting the value for Vmax,TPI equal to zero in the
mathematical model. Following this, the glucose uptake rate, qGlc was varied
between 0.1 µM and 20 µM (approximately twice the value reported in [20])
and the system was simulated until it reached steady-state. Two outputs,
namely the steady-state DHAP accumulation rate δDHAP/δt and yield of
DHAP over Glucose YDHAP,Glc, were recorded and are shown in Figure 6.
At about qGlc = 0.0155 mM/s, δDHAP/δt stops increasing because of the
limitation of the low Vmax values in the early part of glycolysis while YDHAP,Glc

reaches the peak. This value is 28% bigger than the flux in Figure 2, which
shows that S. cerevisiae metabolism is not operating at a very efficient state,
and there are about 28% for increasing. Our findings also showed that there is
no significant difference in fluxes and metabolite concentration in the early part
of glycolysis and PPP under different glucose uptake rates in the presence and
absence of TPI (data not included), which is mainly caused by the omission
of rates for the backward reactions (gluconeogenesis)in glycolysis.

4 Conclusions

Kinetic modelling is a demanding yet powerful method to study cellular meta-
bolism and related bioprocessing applications. Herein, we examined how it can
be applied to analyse extracellular culture data for two commonly used cell
lines. We additionally demonstrated its potential usefulness for analysing ge-
netic manipulation effects and evaluating process operation conditions. When
coupled with meaningful experiments, kinetic modelling can therefore facil-
itate our understanding of regulation effects and help optimize cell culture
conditions. However, considerable computational and experimental work is
still required to enrich related enzyme databases.

First, a more complete map for glucose metabolism needs to be considered
including hexose phosphate(s), e.g., F1P and F26BP, and the metabolic path-
way towards glycerol, which are important in glycolysis inhibition/activation
and metabolite generation. Second, informative cell culture experiments can
be designed specifically for parameter estimation and model validation, as
demonstrated in [28]. Specifically, isotope labelling can be employed to deter-
mine the concentrations of individual metabolites as a function of cell culture
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time. The collection of high-quality dynamic data on extracellular and intracel-
lular metabolite concentrations, in conjunction with a transcriptomic analysis
on the metabolic enzymes, can enable the accurate determination of the kinetic
properties of each enzyme involved using model-based network analysis. Once
such a kinetic model has been developed and validated it will become possible
to use it in order to optimize the cell culture process and media formulation
based on an advanced understanding of the contribution of all metabolites and
enzymes.
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(1970) The isolation and crystallization of yeast and rabbit liver triose
phosphate isomerase and a comparative characterization with the rabbit
muscle enzyme. Eur J Biochem 14(2):289–300

30. Kusakabe T, Motoki K, Hori K (1994) Human aldolase C: Characteriza-
tion of the recombinant enzyme expressed in Escherichia coli. J Biochem
115(6):1172–1177

31. Lagunas R, Gancedo C (1983) Role of phosphate in the regulation of the
Pasteur effect in Saccharomyces cerevisiae. Eur J Biochem 137(3):479–483

32. Lambeir AM, Opperdoes FR, Wierenga RK (1987) Kinetic properties of
triose-phosphate isomerase from trypanosoma brucei brucei. a comparison
with the rabbit muscle and yeast enzymes. Eur J Biochem 168(1):69–74

33. Lindell TJ, Stellwagen E (1968) Purification and properties of phospho-
fructokinase from yeast. J Biol Chem 243(5):907–912

34. Milewski S, Janiak A, Wojciechowski M (2006) Structural analogues of
reactive intermediates as inhibitors of glucosamine-6-phosphate synthase
and phosphoglucose isomerase. Arch Biochem Biophys 450(1):39–49

35. Nicolau J, Souza DN, Nunez-Burgos G (2000) Regulation of
phosphofructokinase-1 on submandibular salivary glands of rats after iso-
proterenol administration. Arch Physiol Biochem 108(5):437–443

36. Noltmann E (1972) Aldose-ketose isomerases. In: Boyer P (ed) The En-
zymes, vol 6, Acad. Press, New York, pp 271–354

37. Ottaway JH, Mowbray J (1977) The role of compartmentation in the con-
trol of glycolysis. Curr Top Cell Regul 12:107–208

38. Patra S, Ghosh S, Bera S, Roy A, Ray S, Ray M (2009) Molecular charac-
terization of tumor associated glyceraldehyde-3-phosphate dehydrogenase.
Biochemistry (Moscow) 74(7):717–727

39. Poyner RR, Laughlin LT, Sowa GA, Reed GH (1996) Toward identifica-
tion of acid/base catalysts in the active site of enolase: comparison of the
properties of k345a, e168q, and e211q variants. Biochemistry 35(5):1692–
1699

40. Rider CC, Taylor CB (1974) Enolase isoenzymes in rat tissues. elec-
trophoretic, chromatographic, immunological and kinetic properties.
Biochim Biophys Acta 365(1):285–300

41. Sabate L, Franco R, Canela EI, Centelles JJ, Cascante M (1995) A model
of the pentose phosphate pathway in rat liver cells. Mol Cell Biochem
142(1):9–17



Genome-based kinetic modeling of cytosolic glucose metabolism 11
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Table 1 Metabolites abbreviation and concentrations reported experimentally

Concentrations (mM)
Abbr. Metabolite S. cerevisiae cells CHO cells

13BPG 1,3-bisphosphoglycerate - -
2PG 2-phosphoglycerate 0.420-1.100[37] 0.005[1]
3PG 3-phosphoglycerate 0.100-0.260[37] 0.040-0.048[1]
6PG 6-phospho-gluconate 0.100-0.300[16] 0.018[41]
6PGL 6-phospho-glucono-1,5-lactone - -
DHAP Dihydroxyacetone phosphate 0.330[31] 0.040-0.046[1]
E4P Erythrose 4-phosphate Not detectable[46] 0.004[41]
F16BP Fructose 1,6-phosphate 1.700-4.500[16, 31] 0.046[1]
F26BP Fructose 2,6-bisphosphate 0.0012[31] 0-0.006[57]
F6P Fructose 6-phosphate 0.650[1] 0.362[1]
G6P Glucose 6-phosphate 2.300[31] 1.033[1]
GA3P Glyceraldehyde 3-phosphate 0.400-1.200[37] 0.021[6]
Glc Glucose 1.500[53] 2.377[1]
PEP Phosphoenolpyruvate ≤0.030[16, 31] 0.008[1]
Pyr Pyruvate 1.600[31] 0.056[1]
R5P Ribose 5-phosphate - 0.009[41]
Ru5P Ribulose 5-phosphate - 0.012[41]
S7P Sedoheptulose 7-phosphate Not detectable[46] 0.068[41]
X5P Xylulose 5-phosphate - 0.018[41]
ATP Adenosine triphosphate 1.100-1.900[16, 31] 3.075[1]
ADP Adenosine diphosphate 0.320-1.300[16, 31] 1.059[1]
Pi Phosphate 22.000[31] 5.500[1]

Table 2 Enzymes abbreviations

Abbr. Enzyme

ALD Fructose-bisphosphate aldolase
ENO Phosphopyruvate hydratase
FBP1 Fructose-bisphosphatase
G6PD Glucose-6-phosphate dehydrogenase
GAPDH Glyceraldehyde-3-phosphate dehydrogenase
GCK Glucokinase
G6Pase Glucose-6-phosphatase
GPI Glucose-6-phosphate isomerase
HK Hexokinase
PFK1 6-phosphofructokinase
PGD Phosphogluconate dehydrogenase
PGK Phosphoglycerate kinase
PGL 6-phosphogluconolactonase
PGM Phosphoglycerate mutase
PK Pyruvate kinase
PPE Ribulose-phosphate 3-epimerase
RPI Ribose-5-phosphate isomerase
TA Transaldolase
TK Transketolase
TPI Triose-phosphate isomerase
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Table 3 Kinetic reaction rate expression for S. cerevisiae cells

Reaction Kinetic expression Parameters

HK vHK =
Vmax,HK(

1+
KGlc

m,HK
[Glc]

)[
1+

KATP
m,HK
[ATP]

(
1+

[ADP]

KADP
i,HK

)] KGlc
m,HK = 0.13 mM [18],

KATP
m,HK = 0.10 mM [18],

KADP
i,HK = 0.122 mM [18]

GPI vGPI =
Vmax,GPI

1+
KG6P

m,GPI
[G6P]

(
1+

[F6P]

KF6P
i,GPI

) KG6P
m,GPI = 0.700 mM [34],

KF6P
i,GPI = 0.040 mM [34]

PFK1 vPFK1 =
Vmax,PFK1(

1+
KF6P

m,PFK1
[F6P]

)(
1+

KATP
m,PFK1
[ATP]

) KF6P
m,PFK1 = 0.58 mM [33],

KATP
m,PFK1 = 0.033 mM [33]

ALD vALD =
Vmax,ALD

1+
KF16BP

m,ALD
[F16BP]

KF16BP
m,ALD = 0.45 mM [15]

TPI vTPI =
Vmax,TPI

1+
KDHAP

m,TPI
[DHAP]

− Vmax,r,TPI

1+
KGA3P

m,TPI
[GA3P]

KGA3P
m,TPI = 1.1 mM [21],

KDHAP
m,TPI = 2.1 mM [21],

Kcat = 4.7 s−1[21],
Kcat,r = 0.5 s−1[21]

GADPH vGADPH =
Vmax,GADPH

1+
KGA3P

m,GADPH
[GA3P]

KGA3P
m,GADPH = 0.6 mM [9]

PGM vPGM =
Vmax,PGM

1+
K3PG

m,PGM
[3PG]

K3PG
m,PGM = 0.65 mM [58]

ENO vENO =
Vmax,ENO

1+
K2PG

m,ENO
[2PG]

K2PG
m,ENO = 0.3 mM [39]

PK vPK =
Vmax,PK(

1+
KPEP

m,PK
[PEP]

)(
1+

KADP
m,PK

[ADP]

) KPEP
m,PK = 0.099 mM [3],

KADP
m,PK = 0.16 mM [3]

PGD vPGD =
Vmax,PGD

1+
K6PG

m,PGD
[6PG]

K6PG
m,PGD = 0.0509 mM [25]

PPE vPPE =
Vmax,PPE

1+
KRu5P

m,PPE
[Ru5P]

KRu5P
m,PPE = 1.5 mM [4]

RPI vRPI =
Vmax,RPI

1+
KRu5P

m,RPI
[Ru5P]

KRu5P
m,RPI = 0.74 mM [36]

TK1 vTK1 =
Vmax,TK1(

1+
KX5P

m,TK
[X5P]

)(
1+

KR5P
m,TK
[R5P]

) KR5P
m,TK = 0.4 mM [45],

KX5P
m,TK = 0.21 mM [45]

TK2 vTK2 =
Vmax,TK2(

1+
KX5P

m,TK
[X5P]

)(
1+

KE4P
m,TK
[E4P]

) KX5P
m,TK = 0.21 mM [45],

KE4P
m,TK = 0.09 mM [45]

TA vTA =
Vmax,TA(

1+
KS7P

m,TA
[S7P]

)(
1+

KGA3P
m,TA

[GA3P]

) KS7P
m,TA = 0.18 mM [56],

KGA3P
m,TA = 0.22 mM [56]
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Table 4 Kinetic reaction rate expressions for CHO cells

Reaction Kinetic expression Parameters

HK vHK =
Vmax,HK(

1+
KGlc

m,HK
[Glc]

)(
1+

KATP
m,HK
[ATP]

)(
1+

[G6P]

KG6P
i,HK

) KGlc
m,HK = 0.11 mM [55],

KATP
m,HK = 0.8 mM [55],

KG6P
i,HK = 9.1 mM [41]

GPI vGPI =
Vmax,GPI

1+
KG6P

m,GPI
[G6P]

KG6P
m,GPI = 0.705 mM [61]

PFK1 vPFK1 =
Vmax,PFK1[

(]1+

(
KF6P

m,PFK1
[F6P]

)n](
1+

KATP
m,PFK1
[ATP]

) KF6P
m,PFK1 = a[F26BP] + b,

n = c[F26BP] + d,
a = −164.9 s−1,
b = 1.306 mM/s,
c = −161.7 mM−1,
d = 2.964 (calculated based
on [57]), KATP

m,PFK1 = 0.06[35]

ALD vALD =
Vmax,ALD

1+
KF16BP

m,ALD
[F16BP]

KF16BP
m,ALD = 0.013 mM [30]

TPI vTPI =
Vmax,TPI

1+
KDHAP

m,TPI
[DHAP]

(
1+

[PEP]

KPEP
i,TPI

)(
1+

[3PG]

K3PG
i,TPI

)(
1+

[2PG]

K2PG
i,TPI

)−
Vmax,r,TPI

1+
KGA3P

m,TPI
[GA3P]

(
1+

[PEP]

KPEP
i

)(
1+

[3PG]

K3PG
i,TPI

)(
1+

[2PG]

K2PG
i,TPI

)

KGA3P
m,TPI = 0.32 mM [29],

KDHAP
m,TPI = 0.62 mM [29],

KPEP
i,TPI = 0.5 mM [32],

K3PG
i,TPI = 0.51 mM [32],

K2PG
i,TPI = 4.1 mM [32]

GADPH vGADPH =
Vmax,GADPH

1+
KGA3P

m,GADPH
[GA3P]

KGA3P
m,GADPH = 0.149 mM [38]

PGM vPGM =
Vmax,PGM

1+
K3PG

m,PGM
[3PG]

(
1+

[2PG]

K2PG
m

) K3PG
m,PGM = 0.4 mM [12],

K2PG
i,PGM = 100 mM [12]

ENO vENO =
Vmax,ENO

1+
K2PG

m,ENO
[2PG]

K2PG
m,ENO = 0.12 mM [40]

PK vPK =
Vmax,PK(

1+
KPEP

m,PK
[PEP]

)(
1+

KADP
m,PK

[ADP]

) KPEP
m,PK = 0.07 mM [14],

KADP
m,PK = 1.05 mM [14]

G6PD vG6PD =
Vmax,G6PD

1+
KG6P

m,G6PD
[G6P]

KG6P
m,G6PD = 0.329 mM [11]

PGD vPGD =
Vmax,PGD

1+
K6PG

m,PGD
[6PG]

K6PG
m,PGD = 0.157 mM [10]

PPE vPPE =
Vmax,PPE

1+
KRu5P

m,PPE
[Ru5P]

KRu5P
m,PPE = 0.19 mM [59]

RPI vRPI =
Vmax,RPI

1+
KRu5P

m,RPI
[Ru5P]

KRu5P
m,RPI = 0.78 mM [27]

TK1 vTK1 =
Vmax,TK1(

1+
KX5P

m,TK
[X5P]

)(
1+

KR5P
m,TK
[R5P]

) KR5P
m,TK = 0.33 mM [5],

KX5P
m,TK = 0.12 mM [5]

TK2 vTK2 =
Vmax,TK2(

1+
KX5P

m,TK
[X5P]

)(
1+

KE4P
m,TK
[E4P]

) KX5P
m,TK = 0.12 mM [5],

KE4P
m,TK = 0.39 mM [45]

TA vTA =
Vmax,TA(

1+
KS7P

m,TA
[S7P]

)(
1+

KGA3P
m,TA

[GA3P]

) KS7P
m,TA = 0.285 mM [52],

KGA3P
m,TA = 0.038 mM [52]
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Table 5 Stoichiometry of reactions considered in the model

Reaction Stoichiometry

HK Glc + ATP→ G6P + ADP
GPI G6P 
 F6P
PFK1 F6P + ATP→ F16BP + ADP
ALD F16BP→ GA3P + DHAP
TPI GA3P 
 DHAP
GADPH GA3P + NAD+ + Pi 
 13BPG + NADH + H+

PGM 3PG 
 2PG
ENO 2PG 
 PEP + H2O
PK PEP + ADP→ Pyr + ATP
G6PD G6P + NADP+ → 6PGL + NADPH + H+

PGD 6PG + NADP+ → Ru5P + NADPH + CO2 + H+

PPE Ru5P 
 X5P
RPI Ru5P 
 R5P
TK1 X5P + R5P 
 GA3P + S7P
TK2 X5P + E4P 
 GA3P + F6P
TA S7P + GA3P 
 E4P + F6P

Table 6 Estimated Vmax values in S. cerevisiae cells

Scenario A Scenario B Scenario C
Enzymes Vmax Vmax Difference Vmax Difference

HK 0.0175 0.0175 0.00% 0.0175 0.00%
GPI 0.0614 0.0676 +10.00% 0.0735 +19.72%
PFK1 0.0215 0.0223 +3.41% 0.0231 +7.43%
ALD 0.0140 0.0144 +3.41% 0.0150 +7.43%
TPI 0.0968 0.1003 +3.62% 0.0917 -5.27%
GADPH 0.0546 0.0557 +2.14% 0.0543 -0.53%
PGM 0.1637 0.1672 +2.14% 0.1593 -2.72%
ENO 0.0374 0.0382 +2.14% 0.0364 -2.72%
PK 0.1398 0.1428 +2.16% 0.1339 -4.23%
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Table 7 Comparison of steady-state simulation and experimental results for intracellular
metabolite concentrations

S. cerevisiae cells CHO cells
Metabolite In literature Simulation (mM) In literature Simulation (mM)

2PG 0.420-1.100[37] 0.4190 0.005[1] 0.0050
3PG 0.100-0.260[37] 0.0998 0.040-0.048[1] 0.0400
6PG 0.100-0.300[16] Not simulated 0.018[41] 0.0179
DHAP 0.330[31] 0.3293 0.040-0.046[1] 0.0401
E4P Not detectable[46] Not simulated 0.004[41] 0.0040
F16BP 1.700-4.500[16, 31] 1.6670 0.046[1] 0.0462
F6P 0.650[1] 0.6491 0.362[1] 0.3619
G6P 2.300[31] 2.2940 1.033[1] 1.0541
GA3P 0.400-1.200[37] 0.3986 0.021[6] 0.0210
Glc 1.500[53] 1.5000 2.377[1] 2.3770
PEP ≤0.030[16, 31] 0.0299 0.008[1] 0.0080
Pyr 1.600[31] 1.6000 0.056[1] 0.0560
R5P - Not simulated 0.009[41] 0.0090
Ru5P - Not simulated 0.012[41] 0.0120
S7P Not detectable[46] Not simulated 0.068[41] 0.0676
X5P - Not simulated 0.018[41] 0.0180
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Fig. 1 Metabolic map of glycolysis and PPP for S. cerevisiae and CHO cells (based on
KEGG and BRENDA)
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Fig. 2 Metabolic flux distribution for S. cerevisiae cells (calculated based on literature[20]).
Arrows denote the direction of the net flux measured experimentally.
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Fig. 3 Metabolic flux distribution for CHO cells (calculated based on literature[22]). Arrows
denote the direction of the net flux measured experimentally.
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Fig. 4 Estimated Vmax in S. cerevisiae cells

Fig. 5 Estimated Vmax in CHO cells

Fig. 6 DHAP accumulation rate and yield over glucose with no TPI enzyme under different
glucose uptake rates


