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ABSTRACT 

Stroke is the second largest cause of death and disability in the world and 80% of all 

strokes are ischemic in nature. While most risk factors have been investigated in depth, 

others such as South Asian ethnicity, long term blood pressure variability and 

symptomatic carotid stenosis remain largely understudied. In order to understand the 

genetic etiology underlining ischemic stroke, it is important to study the genetic burden 

shouldered by these phenotypes as well.  

This thesis examined the genetics of ischemic stroke in the presence of the above risk 

factors using three independent lines of investigation: a) literature based meta-analysis, 

b) candidate gene based approach and c) genome-wide association study. 

Using a literature based meta-analysis comprising 2529 ischemic stroke cases and 2881 

healthy controls, genetic risk variants associated with ischemic stroke in South Asians 

were investigated. Genes PDE4D SNP 83, ACE I/D and IL10 G1082A were associated with 

South Asian ischemic stroke risk, with no major differences in strength of association 

for the same susceptibility genes in other ethnic groups.  

A candidate gene study was conducted using 8295 ischemic stroke cases and 12722 

controls of European ancestry to test the association of GWAS-derived blood pressure 

variability associated cluster of 17 NLGN1 intronic SNPs. The study did not confirm the 

risk association of NLGN1 with ischemic stroke. 

Finally, a genome-wide association study was conducted to identify novel gene variants 

associated with ≥ 50% carotid stenosis in ischemic stroke, using 1164 cases and 13,703 

healthy controls from seven independent cohorts. Three genetic loci at LRIG1, ROBO1 

and CAPN7 were found to be associated at genome-wide significance.  

The findings of this thesis provide new insights into the genetic mechanisms 

underpinning ischemic stroke, by examining genetic variants associated with unusual 

stroke related phenotypes. Future directions include replication of sentinel SNPs in 

larger study populations and a GWAS for South Asian ischemic stroke cases.  
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1.1. Global Impact of Ischemic Stroke 

1.1.1 Prevalence 

High quality and detailed collection of data on stroke incidence and prevalence are 

essential for estimating the burden of stroke on the general population and constructing 

prevention and treatment strategies. Much remains to be discovered about the global 

distribution of stroke and its association with the prevalence of vascular disease risk 

factors, demographic and economic characteristics. The World Health Organization is 

the leading authority on assessing the global burden of stroke and releases updated 

annual reports on incidence and mortality data consolidated from 14 different regions 

around the world. According to the WHO, stroke is the third most common cause of 

death in the developed world behind coronary heart disease and cancer, and around 

25% of all strokes afflict those less than 65 years of age. Stroke is also the second largest 

cause of death in individuals above 60 years of age and fifth largest cause of death in 

individuals between 15-59 years of age (WHO, 2002).  Nearly 15 million individuals 

suffer from stroke each year of which 5.5 million (10% of all global deaths) die. Stroke 

related disability counts as the 6th largest cause for reduced DALY’s and is expected to 

rise in the rankings due to the ever-increasing numbers of the elderly in western 

populations (Murray and Lopez, 1997).  Stroke has already risen from the fifth (in 1990) 

to the third largest (in 2010) cause of global disability adjusted years, accounting for a 

19% increase from 1990 (Murray et al., 2012). The WHO predicts that the burden of 

stroke is projected to rise from around 38 million DALYs globally in 1990 to 61 million 

DALYs in 2020 (WHO, 2002). Such a huge epidemiological transition of disease 

incidence will surely lead to an exponential increase in the number of global deaths 

attributable to stroke alone.  

Global disease burden is continuing to shift away from communicable to non-

communicable diseases and from premature death to years lived with disability. Stroke 

falls under the NCD’s along with heart disease, chronic lung diseases, cancer and 

diabetes, which are the major causes of death and disability in the world. NCD’s are 

responsible for over two-thirds or 63% of all global deaths (36 million of 57 million 

global deaths), 80% (29 million) of which occur in the lower and middle-income 

countries (WHO, 2010). 29% of all NCD deaths in the developing world occur before the 
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age of 60 years. Vascular disease is the leading cause of NCD deaths and accounts for 

nearly 17 million (48%) of mortalities. Stroke contributes to over one-third (5 million) 

of the vascular NCD deaths and leaves another 5 million people permanently disabled 

(WHO, 2010)  

A 2012 study by the American Heart Association on heart disease and stroke statistics 

reported an over-all decline in stroke mortality (34.8%) while nearly 795,000 

Americans experienced a new or recurrent stroke. Of these stroke cases 77% (610,000) 

were first attacks, and 23% (185,000) were recurrent attacks. Stroke accounted for 1 in 

18 deaths in the United States which amounted to 1 stroke occurrence every 40 seconds 

(Roger et al., 2012). The incidence of stroke in the United States is reported as ~269 per 

100,000 (Williams, 2001) and is higher than their European counterparts where the 

incidence of stroke ranges between 95 per 100,000 for women and 141 per 100,000 for 

men (Heuschmann et al., 2009). 

The average age adjusted stroke mortality in developed countries is 50-100 per 100,000 

(Donnan et al., 2008), although there are vast geographical differences in the incidence 

of stroke. Estimated projections in 2005 forage-standardized death rates from stroke 

per 100,000 individuals (aged 30–69 years) for nine selected countries representative 

of all regions and income groups across the globe were determined (Strong et al., 2007). 

Geographically Russia, India and China accounted for some of the highest number of 

deaths from stroke by region with an estimated mortality projection of ~180-100 per 

100,000 individuals (Figure 1.1a). Middle to low-income countries had a higher 

mortality rate than developed countries such as the United Kingdom (~20 per 100,000 

individuals) and Canada (~15 per 100,000 individuals) and this held true for premature 

death and years of life lost as well (Strong et al., 2007).  

A 100% increase in stroke incidence in low to middle income countries in the past 4 

decades (Feigin et al., 2009) is accompanied by reports of a 33% increase in stroke 

mortality (4 million deaths) (Strong et al., 2007), pointing towards an alarming 

occurrence of a stroke epidemic (Figure 1.1b). This is in contrast to the reduction in 

stroke incidence in developed and high-income countries where incidence rates have 

seen a sharp decline of over 42% in the last four decades (Feigin et al., 2009). These 

findings were later supported by other studies that showed that the rates of stroke 
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mortality and DALY loss were highest in low income countries such as eastern Europe, 

north Asia, central Africa, and the south Pacific, and this accounted for a 10-fold 

difference in mortality rates and DALY loss between the affected and non-affected 

regions (Johnston et al., 2009).  

Prevalence studies from within South Asia (India, Pakistan, Sri Lanka and Bangladesh) 

are few and far between with widely variable results over 40 years of analysis (44-1000 

per 100,000 individuals) (Prasad et al., 2012). Disparities in study population 

demographics and statistical methodology are probably a source of heterogeneity in 

these small community based studies leading to variable results. However, it is clear 

that South Asia shoulders a huge burden for stroke, which is higher than in Europe and 

United States. With an estimated 62 million diabetics (Shetty., 2012), the largest 

concentration in the world, 1 million Indians are estimated to suffer from stroke each 

year (Mehndiratta et al., 2013). The newly established Indian Stroke Association 

(http://www.indianstrokeassociation.com) is the first national effort to tackle the 

problem of stroke in India and aims to conduct research at a national level. Large well-

powered epidemiological studies are of utmost importance to estimate the true 

prevalence rates in this region and efforts are underway to improve stroke research in 

the region (Biswas, 2013, Bhaumik, 2013). 

Disparity in the prevalence of stroke across various geographical and ethnic lines could 

be partly due to the identification and improved control of modifiable risk factors such 

as HTN and diabetes. However, it is likely that genetic differences between populations 

may also account for this. 
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Figure 1.1a: Age-standardized death rates from stroke per 100,000 for ages 30-69 

years, selected countries and projections for the year 2005 (Source: Strong et al., 2007). 

 

 

Figure 1.1b: Projected trends for stroke deaths by World Bank income group 2002-30 

(Source: Strong et al., 2007). 
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1.1.2 Socio-economic Burden of Stroke 

Preventive stroke strategies and post-stroke care costs global national health institutes 

millions of dollars each year. Stroke consumes 2-4% of global health care costs and 

about 4% of direct health care costs in industrialized countries (Donnan et al., 2008).  

In 2004 the AHA estimated US stroke costs of $53.6 billion, a rise of $13.6 billion from 

1997. This included direct costs for medical care and therapy averaged at $33 billion 

and indirect costs from lost productivity at $20.6 billion. The updated 2012 AHA report 

showed a staggering increase in total direct costs (physicians cost, hospital services, 

prescribed medications, home health care, and other medical durables) and indirect 

costs (lost productivity resulting from mortality) of CVD and stroke to $297.7 billion. 

This was higher than the cost for any other disease (Roger et al., 2012). A breakdown of 

average cost per patient for the first 90 days after a stroke was estimated at $15,000, 

although 10% of cases cost more than $35,000 (WHO, 2002). 

On the other side of the pond, the British NHS spent an estimated £7.6 billion in 1997 on 

stroke health care costs, which rose considerably by the year 2000 and cost the NHS 

over 4% of the total health care budget (WHO, 2002). Stroke was estimated to be 

responsible for 3% of total health care costs in the Netherlands in 1994 with updated 

average total costs of care per patient for six months following a stroke estimated at 

€16,000 in 2003 (WHO, 2002). New studies are underway to estimate the 

socioeconomic impact of stroke in Netherlands. (van Eeden et al., 2012). Additionally an 

Italian study reflected the average stroke costs across Europe with one-year healthcare 

and societal costs estimated at €11,747 and €19,953 per stroke survivor respectively 

(Fattore et al., 2012). 

Asian countries are also under severe economic stress related to post stroke health care 

costs. In Singapore, average hospital costs for stroke were reported in 2000 as $5000 

per patient. Ward charges accounted for 38%, radiology 15%, doctors’ fees 10%, 

medications 8%, therapy 7% (WHO, 2002). Annual direct medical costs in Korea were 

estimated at $8732 per patient with female gender, young age and first stroke 

associated with increasing costs (Rha et al., 2013). The economic burden of stroke is 

largely unknown in South Asian countries and no studies on the costs of stroke have 

emerged from the region. However, the WHO predicts that over the period of 2011-
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2025, low and middle-income countries (such as in South Asia) will shoulder 51% of the 

global costs of NCDs (vascular disease), which amounts to $3.76 trillion (WHO, 2013). 

Besides the economic effects of stroke on the world’s economies and individual patients, 

there are several social implications of the disease. Stroke leaves over 60% of the 

survivors with moderate to severe disability, limiting their ability to gain employment 

and resulting in a decline in their social functioning (Sreedharan et al., 2013). A 60% 

loss of personal income (McAllister et al., 2013) and mounting health care costs can lead 

to a decline in the quality of life for stroke survivors. Stroke survivors are also known to 

suffer from psychological disorders such as post stroke depression (Chatterjee et al., 

2010), which results in greater mortality rates than non-depressive survivors (Paul et 

al., 2013). 

Socio-economic status of stroke patients also affects their propensity to risk factors and 

mortality. Low economic status affects an individual’s ability to access healthcare, take 

medication and maintain a healthy lifestyle. According to the WHO, individuals from low 

socio-economic strata of society with a poor educational background are more likely to 

suffer from vascular diseases and mortality due to heart attacks (WHO, 2002). Due to 

high poverty and illiteracy rates, this places South Asian countries at a particularly risky 

juncture. 
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1.2. Ischemic Stroke 

1.2.1 General Definition 

The WHO introduced a formal definition for stroke in the 1970’s, which is still being 

used today. WHO describes stroke as “rapidly developing clinical signs of focal (or 

global) disturbance of cerebral function, lasting more than 24 hours or leading to death, 

with no apparent cause other than that of vascular origin”. This definition was clinical 

and did not take into account the latest developments in stroke research and imaging 

technology. Experts across the globe felt the need to update this definition and 

resultantly the Stroke Council of the AHA/ASA organized a writing group composed of 

neurologists and other experts to re-examine the modern day definition of stroke (Sacco 

et al., 2013). They described ischemic stroke as “an episode of neurological dysfunction 

caused by focal cerebral, spinal, or retinal infarction”. Central nervous system infarction 

was defined as “infarction in the brain, spinal cord, or retinal cell death attributable to 

ischemia, based on, (a) pathological, imaging, or other objective evidence of cerebral, 

spinal cord, or retinal focal ischemic injury in a defined vascular distribution; or (b) 

clinical evidence of cerebral, spinal cord, or retinal focal ischemic injury based on 

symptoms persisting ≥24 hours or until death, and other aetiologies excluded”(Sacco et 

al., 2013). 

Symptoms of stroke include dysesthesia, dysphasia, paresis or paralysis, dysarthria, 

ataxia and hemianopsia. Vertigo and headache maybe present but are not typical 

symptoms of ischemic stroke. Several disability scales such as the Modified Rankin Scale 

of Disability (van Swieten et al., 1988), Barthel Index (Mahoney and Barthel, 1965) and 

the National Institutes of Health Stroke Scale (NIHSS) can measure the severity of 

disability caused by stroke. 

Ischemic stroke is a heterogeneous disorder of a complex etiology and 7-40% of all 

ischemic stroke patients have a TIA. TIA’s are a transient episode of neurological 

dysfunction caused by focal brain, spinal cord, or retinal ischemia, without acute 

infarction (Easton et al., 2009). They act as a precursor to a full-blown stroke with 

affects that last less than 24 hours. They act as warning events to an impending stroke 

and usually cannot be detected by imaging as the symptoms are passing with no visible 
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tissue damage. TIA’s are difficult to diagnose and often confused with other stroke 

mimics such at vertigo and migraines with aura. 

1.2.2 Ischemic Stroke Subtypes 

The sub type of ischemic stroke affects its prognosis, outcome, and management. Recent 

developments in diagnostic and imaging technologies have allowed clinicians to identify 

differential etiologies underpinning ischemic stroke sub types and molecular 

mechanisms of ischemic injury. The correct diagnosis of a stroke subtype requires an in 

depth analysis of clinical phenotypes, imaging and blood biochemistry results, which is 

imperative to good clinical and research practice. The etiological classification of 

ischemic stroke can be broadly divided into two categories; causative and phenotypic. 

Causative sub typing classifies stroke patients into one etiological subtype through a 

decision-making process that involves the combination of clinical phenotypes, 

modifiable risk factors, and imaging (Chen et al., 2012). Phenotypic sub typing patient 

can categorize a patient into more than one etiologic subtype and uses clinical 

phenotypes and diagnostic test findings (Chen et al., 2012).  

1.2.2.1 Phenotypic Sub-Typing of Ischemic Stroke 

1.2.2.1.1 Harvard Cooperative Stroke Registry: Before the advent of computed 

tomography, diagnosis and classification of stroke was primarily based on clinical 

symptoms of deceased patients. The Harvard Cooperative Stroke Registry was the first 

computer-based diagnostic program using a prospective published database for stroke 

sub classification using 694 stroke patients (Mohr et al., 1978). The basis of diagnosis 

was primarily angiography with only 3% patients with CT scans and 4% with 

necropsies. The computer-based diagnostic program used clinical data to differentiate 

between subarachnoid hemorrhage, intracerebral hemorrhage, brain embolism, large 

artery-related brain infarction, and lacunar infarction (Goldstein RJ, 1976). 

1.2.2.1.2 The Stroke Data Bank: Major limitation of the Harvard Cooperative Stroke 

Registry was that patients were predominantly white. In order to develop a reliable and 

reproducible diagnostic program, a racially diverse study population was needed. The 

Stroke Data Bank was an offshoot of the Harvard Cooperative Stroke Registry and was 
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funded by the National Institute of Neurological Disease and Stroke (Foulkes et al., 

1988). Most patients received CT scans. 

1.2.2.1.3 The New England Medical Centre Posterior Circulation Registry (NEMC-

PCR) was a prospective computerized registry between 1988 and 1996 and was 

entirely focused on the posterior circulation ischemic stroke (Caplan et al., 2004). The 

major aims of the registry were to clarify outcomes and the frequency of various stroke 

mechanisms and vascular lesions, and to understand the relationship of these 

mechanisms and lesions to the topography of brain infarcts (Caplan, 2011). Brain 

imaging was performed on all patients and >80% patients had MRI. 

1.2.2.1.4 The Atherosclerosis-Small Vessel Disease-Cardiac Disease-Other 

(Phenotypic) Stroke Classification (A-S-C-O) registry was set up by leaders in the 

field of stroke from across Europe (Amarenco et al., 2009). Like the NEMC-PCR, A-S-C-O 

was limited to ischemic stroke. Clinical phenotypes were used for a variety of purposes, 

such as describing patient characteristics in therapeutic trials, grouping patients in 

epidemiological studies, phenotyping in genetic studies, and classifying patients for 

therapeutic decision-making in daily practice (Caplan, 2011). 

1.2.2.1.5 The Oxfordshire Community Stroke Project (OCSP) was a prospective 

study of all new cases of stroke and transient ischemic attack in a defined population of 

about 103,000 patients registered with 49 general practitioners across rural and urban 

Oxfordshire (OCSP, 1983). OCSP was based solely on the clinical symptoms of the 

patients, or in combination with brain imaging. OCSP addressed the severity and 

outcome of the stroke but not the causes (Paci et al., 2011) and hence was plagued with 

several limitations such as the inability to establish a specific brain infarction site, 

failure to investigate confounding stroke risk factors and inaccurate discrimination 

between lacunar and small-volume cortical infarcts (Asdaghi et al., 2011). 

1.2.2.2 Causative Sub-Typing of Ischemic Stroke 

1.2.2.2.1 The Trial of Org 10172 in Acute Stroke Treatment is the most commonly 

used stroke classification system. TOAST was a placebo-controlled, randomized, blinded 

study of the low-molecular-weight heparinoid given to patients within 24 hours after 

stroke (Adams et al., 1993). A classification system was developed for the diagnosis of 

subtype of ischemic stroke that uses components of existing diagnostic schemes. The 
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classification system is based on clinical phenotypes and findings from imaging. The 

TOAST classification has five subtypes of ischemic stroke: large-artery atherosclerosis, 

cardio embolism, small-vessel occlusion, stroke of other determined etiology, and 

stroke of undetermined etiology (Adams et al., 1993). Stroke of undetermined etiology 

is further divided into three categories: two or more causes identified, negative 

evaluation and incomplete evaluation (Adams et al., 1993). 

Large-Artery Atherosclerosis  

Large-artery atherosclerosis is usually accompanied by stenosis > 50% or occlusion of 

an intracranial or extra cranial artery. It is the most common cause of ischemic stroke 

(including TIA’s) and atherosclerotic lesions are commonly found in the carotid artery 

bifurcation where the artery divides into the external and internal carotid arteries. 

Clinical manifestations of LAA include large cerebellar lesions and brain stem or sub 

cortical hemispheric infarcts greater than 1.5 cm in diameter on CT or MRI, cerebral 

cortical impairment and brain stem dysfunction. A history of TIA’s in the same vascular 

region lends support to the clinical diagnosis (Adams et al., 1993). 

Cardio Embolism 

Cardio embolic strokes account for nearly 30% of all ischemic strokes. Patients 

categorized, as having a cardio embolic stroke must have arterial occlusions presumably 

due to an embolus arising in the heart, with at least one validated cardiac source for an 

embolus for a possible or probable diagnosis. Clinical and imaging results are similar to 

LAA with evidence of recurrent TIA supporting the diagnosis (Adams et al., 1993). 

Small-Artery Occlusion 

Patients with small artery occlusion have lacunar infarcts of <1.5 cm in diameter and a 

history of HTN and diabetes. Potential sources of cardiac emboli must not be present 

and stenosis of >50% in an ipsilateral artery should be absent (Adams et al., 1993). 

Stroke of Other Determined Etiology 

Patients under this category have non-atherosclerotic, non-cardio embolic and rare 

causes of stroke, such as vasculopathies, hypercoagulable states, hematologic disorders 

or monogenic disorders. Clinical manifestation and brain imaging results are similar to 
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an acute ischemic stroke regardless of the size or location of the lesion. Rare causal 

factors are confirmed via blood tests or arteriography (Adams et al., 1993). 

Stroke of Undetermined Etiology 

Undetermined etiology refers to a cause of a stroke that cannot be determined with any 

degree of certainty despite extensive evaluation. This category also includes patients 

with two or more potential causes of stroke, however the clinician is unable to pin 

either as the casual sub type (Adams et al., 1993). 

1.2.2.2.2 The Causative Classification of Stroke System is a web-based diagnostic 

program with a questionnaire-style classification scheme for ischemic stroke 

(http://ccs.martinos.org) (Ay et al., 2007). CCS was developed by Harvard clinicians 

who wished to improve on the TOAST classification system by incorporating 

technological advances in stroke imaging, in particular diffusion-weighted MRI and MRA 

(Lee et al., 2000). The CCS is primarily a redefined TOAST classification system, which is 

based on the five categories of ischemic stroke (Adams et al., 1993). Improvements to 

this classification system include revised definitions of lacunar lesions and more sub 

categories under the ‘stroke of undetermined etiology’ and ‘other causes’ category (Ay 

et al., 2007). The CCS has high inter and intra rater reliability and offers clinicians and 

researchers the advantage of usability from any web browser. It also allows researchers 

to have individual components of the stroke work-up so that they can reorganize the 

data according to the needs of their research (Ay et al., 2007). 
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1.2.3 Stroke Diagnosis and Imaging Modalities 

Stroke is diagnosed by visible cerebral tissue damage and its symptoms are not specific 

and can be caused by other neurological diseases as well. The small window of 

treatment warrants accurate assessment and rapid treatment within hours of symptom 

onset (Wardlaw et al., 1997). The diagnostic unpredictability of stroke results in a lot of 

stroke mimics to be wrongly administered reperfusion therapy such thrombolysis, 

which is associated with hemorrhagic complications (Khaja and Grotta, 2007). 

Therefore clinical diagnosis of stroke is of utmost importance and imaging is the tool of 

choice to exclude mimics of ischemic stroke. 

Non-Contrast Computer tomography scanning is the most popular imaging modality for 

stroke as it is widely available, cheaper than MRI and is used to exclude acute 

intracranial hemorrhage (Davis et al., 2006, Radhiana et al., 2013). Although NCCT has 

been useful in the early detection of ischemic stroke, it lacks sensitivity and accuracy 

even in the most robust of studies, which report a maximum sensitivity of 50% (Mohr et 

al., 1995). 

Diffusion-weighted MRI uses the principle of Brownian motion and detects the 

movement of water protons in cerebral tissue, which occurs within few minutes of the 

ischemic insult (Davis et al., 2006). DWI has proved to be a more sensitive method of 

detecting early ischemic infarction with detection rates of 46% as compared to only 

10% by CT (Chalela et al., 2007).  

Magnetic resonance angiography is another imaging technique used to study cervical 

and cephalic large arteries. The diagnostic usefulness of combined DWI and MRA in 

characterizing early ischemic stroke sub types has been suggested (Lee et al., 2000). 
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1.2.4 Stroke Pathophysiology 

The brain does not have any stored energy reserves and relies completely on the 

continuous supply of nutrients and oxygen from the cerebral blood flow (Jones et al., 

1981). A 50% decrease in normal CBF (50–60 mL/100g/min) leads to interruption of 

synaptic transmissions, failure of the membrane and ionic gradients and eventually the 

advent of an apoptotic cascade that ends in neuronal death (Lewandowski and Barsan, 

2001). The CBF in the ischemic penumbra ranges from 25% to 50% of the normal blood 

flow and sufficient to maintain tissue viability for a few hours. The infarct core has less 

than 25% blood flow and these results in anaerobic metabolism, acidosis, and pan-

necrosis, requiring almost immediate reperfusion to recover (Astrup et al., 1981). The 

size of the infarct is dependent on the extent of collateral blood supply.  

A review by Zivin et al describes three processes involved in the development of 

pathological symptoms of stroke (Zivin and Choi, 1991). First, ischemic neurons release 

high toxic concentrations of glutamate by its action on post-synaptic receptors, which 

causes the intra-cellular build-up of calcium and sodium ions. Accumulation of calcium 

ions causes the initiation of a toxic cascade and reverses osmosis of water from the 

extracellular to intracellular compartment forming cytotoxic edema. The intracellular 

calcium activates enzymes that degrade many intracellular components and the release 

of free radicals, which damage cell membranes (Zivin and Choi, 1991). Several other 

cellular and molecular pathways also contribute to neuronal death through ischemia 

(Won et al., 2002). 
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1.3. Heritability of Stroke 

90% of the population attributable risk for stroke rests with ten conventional stroke 

risk factors including hypertension, atrial fibrillation, cigarette smoking, diabetes 

mellitus and obesity (O'Donnell et al., 2010). Management of these risk factors offers the 

exciting possibility of near complete elimination of stroke. However, stroke risk extends 

well beyond the boundaries of these risk factors and the disparity in stroke prevalence 

within a population that is uniformly exposed to environmental risk factors suggests 

that some other unknown mechanisms are at play. Some of this phenotypic variability 

has been attributed to genetic differences, with familial patterns of inheritance also 

lending support.  

In the following sections we provide evidence from observational and experimental 

studies supporting the heritability of stroke. 

1.3.1 Observational Studies 

1.3.1.1 Family Studies 

Positive parental history of stroke can predict the risk of stroke independent of 

confounding risk factors such as HTN, diabetes and smoking. Although the transmission 

of stroke in families does not always follow a classic mode of genetic inheritance, it is 

clear that stroke tends to run in families. An inherited component is likely, although it 

would not be surprising that a common disease like stroke is often found within families 

as family members age. Family studies contribute to understanding the heritability of 

stroke and also serve as a clinically useful risk marker of an individual’s susceptibility to 

stroke, which may serve as a useful tool in stroke diagnosis.  

In 1987 a study conducted by Welin et al analyzed parental death from stroke and other 

potential risk factors in relation to the incidence of stroke among 789 men born in 1913 

(54 years old at the base-line examination). They demonstrated that during 18.5 years 

of follow-up, 7.2% of the subjects suffered from strokes. Subjects with maternal stroke 

had a 3-fold increase in the risk of stroke as compared with men without such a 

maternal history (Welin et al., 1987). 
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Several familial studies on stroke were published in the 1990’s. In 1997 Liao et al 

examined the prevalence of stroke in 3168 individuals of African American and 

European American ancestry from the Family Heart Study, a National Heart, Lung, and 

Blood Institute (Liao et al., 1997). The study showed that the age, ethnicity, and sex-

adjusted stroke prevalence rates were higher in individuals with a positive family 

history as compared to individuals without any positive familial history. The age, 

ethnicity, and sex-adjusted ORs for stroke were larger for individuals with a positive 

paternal history (OR 2.00; 95% CI 1.13-3.54) compared to a positive maternal stroke 

history (OR 1.41; 95% CI 0.80-2.50) (Liao et al., 1997). The results remain unchanged 

when adjusted for additional confounders such as cholesterol, cigarette, coronary heart 

disease, HTN, and diabetes.  

Another prospective follow-up study examined 14,371 men and women with a positive 

parental history of stroke before the age of 60 years (Jousilahti et al., 1997). The risk 

ratio of stroke after adjustment for age, smoking, blood pressure, cholesterol, diabetes, 

and education associated with a positive parental history of stroke was similar in men 

and women (RR 1.89 and 1.80) and was stronger among subjects aged 25 to 49 

(Jousilahti et al., 1997).  

A case-control study in 470 cases and 477 controls (40-85 years) further examined the 

family history of stroke in first-degree relatives as an independent risk factor for all 

stroke types. The study established no difference in paternal or maternal stroke, 

although the results were minimally significant for maternal inheritance. Authors 

speculated that genetic factors, in combination with environmental risk factors might 

play role in heritability and eventual manifestation of stroke in families (Caicoya et al., 

1999). 

In 2000 a study published by the ARIC cohort investigated the association of parental 

history of stroke with subclinical or clinical stroke and also examined the role of 

confounding risk factors (Morrison et al., 2000). Subclinical stroke refers to 

asymptomatic stroke that is detected by chance by neuroimaging and exists in 

individuals with AF and carotid disease (Yatsu and Shaltoni, 2004). Parental history of 

stroke was significantly associated with silent or subclinical stroke after adjusting for 
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age, gender, race, BMI, WHR and blood pressure. (OR1.64, 95% CI1.20-2.24) but the 

same was not true for clinical stroke (Morrison et al., 2000). 

The OXVASC study of patients with ischemic stroke or transient ischemic attack, 

examined the relation between the sex and phenotype of 865 affected probands and 

history of stroke in mothers, fathers, and siblings. The study revealed gender 

differences in stroke subtypes, with women less likely than men to have small-vessel 

disease or large artery atherosclerosis and more likely to have a stroke of unexplained 

etiology. Maternal stroke was more common than paternal stroke and the maternal 

excess of stroke was concentrated only in female stroke patients (Touze and Rothwell, 

2007). The initial analysis was followed up by a meta-analysis of 18 studies including 

7941 patients and supported the findings of the original study. The meta-analysis 

revealed that women with stroke were more likely than men to have a parental history 

of stroke. The authors argued for both genetic and non-genetic processes to account for 

this phenomenon (Touze and Rothwell, 2008). 

A Swedish study conducted by the Lund Stroke Register study demonstrated that the 

prevalence of stroke or TIA was higher among first-degree relatives of stroke patients 

(12.3%) than among first-degree relatives of control subjects (7.5%) (OR 1.74, 95% CI 

1.36-2.22). This could be partly explained by the high prevalence of HTN amongst first-

degree relatives of stroke patients as compared to relatives of controls; however 

authors suggested that it might also indicate a heritable component of HTN (Lindgren et 

al., 2005).  

The Framingham Heart Study provided important evidence on the role of genetic risk 

factors in stroke risk in the offspring of stroke parents. In the study, 3443 stroke-free 

FHS offspring participants with confirmed stroke parents (by 65 years of age) were 

followed up for 8 years after baseline examination and the incident of stroke 

ascertained (Seshadri et al., 2010). Parental stroke was associated with an increased 

risk of incident stroke of the same type in the offspring with a 3-fold increase in the risk 

of stroke. 

Most family studies suggest that the genetic liability is greater in individuals aged 

younger than 70 years (Flossmann et al., 2004, Jood et al., 2005) and varies with stroke 

subtype (Schulz et al., 2004, Jerrard-Dunne et al., 2003). Family history of stroke has 
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been shown to be an independent risk factor for both LVA (OR 2.93; 95% CI 1.68-5.13) 

and SVD (OR 3.15; 95% CI 1.81-5.50) for stroke survivors < 65 years of age but was not 

associated with CE stroke or stroke of undetermined etiology (Jerrard-Dunne et al., 

2003). Case-control studies suggested a 76% increase in the risk of ischemic stroke in 

the presence of a family history of stroke (Flossmann et al., 2004), although not all 

reports have demonstrated a positive relationship with family history (Flossmann and 

Rothwell, 2006) possibly due to confounding factors such as blood pressure (Flossmann 

and Rothwell, 2005). 

1.3.1.2 Twin Studies 

Twins provide a unique model to study genetic effects in a shared environment in 

shaping individual behavior. Monozygotic twins are 100% genetically alike whereas 

dizygotic twins share 50% of their genetic material. In the classic twin model, the 

difference between the within-pair variances of dizygotic and monozygotic twins is 

used to calculate a maximum likelihood estimate of the genetic variation within 

dizygotic twins. If genes influence the prevalence of stroke, there should be a greater 

concordance rate for stroke among monozygotic twin pairs than dizygotic pairs. Over 

the years, twin studies looking at concordance rates for a disease or phenotypic trait 

between monozygotic and dizygotic twins have been widely used to establish the 

heritability for complex disorders such HTN, cardiovascular disease and diabetes.   

Although twin studies provide the most reliable method to ascertain a genetic 

component of stroke, they have been particularly challenging to conduct due to the fact 

that stroke is an age related disorder and recruiting elderly stroke twin pairs is a 

difficult task. It is also impossible to ascertain the cause of death as being solely due to 

stroke or compounded by other age-related disorders. Additionally, sample size in twin 

studies is small and provides no information on stroke sub-types. To date, three twin’s 

studies in stroke have been published with disparity in results. These studies failed to 

distinguish between stroke subtypes or assess the role of confounding risk factors.  

In the first of the twin studies, a Swedish group analyzed a cohort of 10,900 twin pairs 

but failed to establish a significant difference in stroke mortality concordance rates 

between monozygotic and dizygotic twins(de Faire U, Friberg L 1975). 
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A study of 9,475 male twins born between 1917 and 1927 from the Twin Registry 

maintained by the National Academy of Sciences-National Research Council showed a 

five-fold greater prevalence of stroke in monozygotic twins and a four-fold increase in 

stroke risk in monozygotic twins as compared to dizygotic twins (RR 4.3, p<0.05) (Brass 

et al., 1992).  

Similar results were observed by another study on 869 same-sex twins from the Danish 

Twin Register, which demonstrated that the observed risk of stroke death was 2.3 times 

greater in monozygotic twins as compared with dizygotic twins after adjustment with 

age and gender (Bak et al., 2002). Male gender and increasing age were also associated 

with stroke death. Monozygotic twins had a 1.5 times higher risk of stroke 

hospitalization compared with dizygotic twins after adjustment for sex and age 

although the difference was not statistically significant (p=0.11). Heritability for stroke 

death and stroke hospitalization in twins was estimated at 32% (95% CI, 0.04-0.47) and 

17% (95% CI, 0.00 to 0.44) respectively.  

Twin studies have shown that a positive family history is a risk factor for stroke and 

monozygotic twins are more likely to be concordant than dizygotic twins (Flossmann et 

al., 2004). 

1.3.1.3 Sibling Studies 

Familial and twin studies have effectively established the role of genetics in the 

increased risk of ischemic stroke.  Unlike twins who are genetically identical, siblings 

have a common genetic element, which biologically predisposes them to death and 

disease. Susceptibility due to similar environmental exposures can lead to increased 

risk of mortality from stroke, especially if one sibling has already died from stroke.  

A recent Swedish study examined this hypothesis in 30,735 exposed study participants 

whose sibling had suffered or died due to stroke. Individuals, who had a sibling with 

prior stroke, possessed a 60% increased risk for ischemic stroke (RR 1.61, 95% CI 1.48–

1.75, p=0.001). Familial risk was higher in full siblings (RR 1.64, 95% CI 1.50–1.81, 

p=0.001) as compared to half siblings (RR 1.41, 95% CI 1.10–1.82, p=0.007) suggesting 

that greater genetic similarity leads to a higher disease burden. The age of stroke in 

siblings was also important with familial risk of early ischemic stroke almost doubling 
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when exposed to early ischemic stroke (RR 1.94, 95% CI 1.41–2.67, p=0.001) (Kasiman 

et al., 2012). 

In another interesting study, researchers found that individuals who had experienced 

the loss of a sibling had an increased risk of fatal stroke in the second or third year since 

death (Rostila et al., 2013). Bereavement was suggested as a cause of stroke inducing 

stress but doesn’t rule out the role of a shared genetic predisposition or environmental 

determinants. In order to dissect causation from confounding it is essential to examine 

pairs of siblings that died of discordant causes as compared to the same specific cause 

(e.g. stroke)(Rostila et al., 2013). 

Another study on Mexican Americans found a doubling in stroke risk as compared to the 

national stroke prevalence estimates for siblings of ischemic stroke/TIA cases. A 

positive family history of stroke could be utilized to identify high-risk individuals within 

the Mexican American population (Lisabeth et al., 2008). 

Other studies have examined sibling pairs for specific stroke sub types via the presence 

of phenotypic markers such as microangiopathic brain lesions in siblings of probands 

with lacunar infarct and disproved the hypothesis that the subtype of ischemic stroke in 

a proband could be a determinant of the stroke subtype in the respective sibling 

(Leistner et al., 2008). It is likely that genetic risk factors for different stroke sub types 

differ and may not be specific for one subtype. 

Stroke risk factors have also been analyzed in siblings. Elevated plasma Hcys levels in 

hypertensiveprobands (18.96±8.08 μmol/L) as compared to their 

normotensive siblings (14.84±5.55 μmol/L) have been observed (Jain et al., 2003). 

Increased risk of HTN to siblings of stroke patients is also known (Nicolaou et al., 2000). 

Studies have also identified a familial predisposition to stroke in sickle cell anemia 

(Driscoll et al., 2003).  
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1.3.1.4 Migration Studies 

Migration studies are useful for identifying changes in environmental causes of common 

diseases and help reveal disease risk factors, which may not be readily visible in a 

general population. Besides comparing existing risk factors between migrants and 

native populations, such studies can also identify novel risk factors. Although non-

modifiable risk factors of stroke such as gender and genetics do not change with 

migration, there can be dramatic changes in environmental parameters that can cause 

additional stress. Changes in life style such as diet and physical activity can cause an 

increase in stroke risk factors such as HTN (Poulter et al., 1990), diabetes and high 

cholesterol, leading to increase in stroke incidence (Kusuma et al., 2009). Alternately, 

migration can lead to a decline in mortality (Hammar et al., 2002). 

In a large study based in India, Ebrahim et al examined the effect of rural-to-urban 

migration on the increase of stroke risk factors such as blood pressure, BMI, WHR, 

cholesterol and glucose (Ebrahim et al., 2010). The study showed that the rural male 

population had lower blood pressure, lipids, and fasting blood glucose than urban and 

migrant men, whereas no differences were seen in women. Within the migrant 

population, recent migrant men had slightly lower prevalence of both diabetes and 

obesity than long stay migrants. 

A 30-year follow-up study examined patterns of morbidity from stroke in Finnish 

migrants in Sweden. Finnish migrants were younger at the time of stroke and carried a 

greater mortality risk than Swedish natives. The greater length of residence in Sweden 

lowered risk of stroke mortality. The authors argued that a difference in the Finnish 

lifestyle and an inherent tendency for high blood pressure might underline the higher 

risk of mortality in the migrants (Albin et al., 2013). 

Although most evidence supports the increase in stroke risk factors in migrants, some 

studies contradict these findings. A large population-based matched Canadian cohort 

study showed that new immigrants appeared to be at lower risk of premature acute 

stroke than long-term residents. The incidence rate of acute stroke was greater (1.69 

per 10,000 person-years) in new immigrants as compared to long stay immigrants (2.56 

per 10,000 person-years) (Saposnik et al., 2010). Disparity in age-standardized 

mortality rate of immigrants to Canada when compared to the overall population has 
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been demonstrated before (DesMeules et al., 2005). Similar results for immigrants to 

the United States have also been observed (Lanska, 1997). 

1.3.1.5 Adoption Studies 

Large-scale population based adoption studies in stroke are scarce. However Sorensen 

et al have conducted several adoption studies for risk factors of stroke such as obesity 

(Stunkard et al., 1986) and smoking behavior (Osler et al., 2001). As early as 1988 it has 

been known that premature death in adult adoptees (aged 16 and 58 years) has a strong 

genetic burden for death due to CVD (Sorensen et al., 1988). An adoptee whose 

biological parent died due to cardiovascular and cerebrovascular causes before the age 

of 50 had a RR of death of 4.52 times (95% CI 1.32-15.4) (Sorensen et al., 1988). A 

similar study conducted on Danish adoptees came to the same conclusions i.e. there is a 

moderate genetic burden on the risk of dying prematurely in adulthood from vascular 

causes if the biological parents has died of a similar cause (Petersen et al., 2002). 

Although adoption studies are useful in dissecting the genetic burden away from shared 

familial environment, the circumstances leading to adoption and living as an adoptee 

may introduce bias (Osler et al., 2001). Studies have shown that adoptees have an 

increased all-cause mortality compared to the general population and this may bias the 

studies with regard to the relative influence of genes and environment compared to the 

general population (Petersen et al., 2010). 
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1.3.2 Experimental Studies 

1.3.2.1 Genome Wide Association Studies 

Heritability of stroke has also recently been estimated using data derived from GWAS 

studies. Genome-wide complex trait analysis, a tool that allows researchers to estimate 

heritability of a complex phenotypic trait such as stroke using genome wide association 

data on unrelated individuals and estimates variance explained by all SNPs entered 

against a phenotypic trait rather than individual SNPs (Bevan et al., 2012, Yang et al., 

2010). Using this methodology, heritability estimate for all ischemic stroke was 37.9% 

but varied considerably by subtype with the greatest associated with large vessel 

(40.3%) and cardio embolic disease (32.6%) and lowest for small vessel disease 

(16.1%) (Bevan et al., 2012). The phenotypic heterogeneity between stroke sub-types 

and differences in etiology could potentially explain the differences in heritability 

estimates. 

These results need validation due to several inherent limitations of the GCTA tool. 

Firstly GCTA uses only GWAS SNP data to calculate heritability and as a result takes into 

account the genetic variation of the submitted SNPs (both genotyped and imputed) 

(Bevan et al., 2012). Such estimates miss heritability due to rare and low frequency 

variants as well as non-SNP variants such as CNVs. GCTA is also greatly affected by 

underlying population sub-structure and require stringent control from population 

stratification using up to 20PCAs(Bevan et al., 2012). Other limitations include the lack 

of broad-sense heritability which captures gene–environment interactions or epistatic 

(gene–gene interactions) (Bevan et al., 2012). 

1.3.2.2 Linkage Studies (Monogenic Stroke) 

Linkage studies are the first line of choice for studying the genetics of stroke and have 

been very successful in identifying Mendelian diseases using solely the distribution of 

genotypes and phenotypes within narrowly delimited families to determine the location 

of disease genes (Devlin and Roeder, 1999). While stroke remains principally a common 

sporadic disorder, our understanding of monogenic forms of stroke has improved 

greatly in recent times (Muqtadar and Testai, 2012, Della-Morte et al., 2012). Studies 

conducted on monogenic stroke provide the most convincing evidence for the genetic 

etiology of stroke. However these rare forms of stroke account for only a small 
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percentage of stroke incidence and are not useful for determining the incidence of 

sporadic or polygenic forms of ischemic stroke. Although the monogenic disorders 

confer a high individual relative risk they contribute very little to population stroke due 

to their rarity. 

CADASIL 

Described by Joutel et al in 1996 (Joutel et al., 1996), CADASIL is a Mendelian form of 

hereditary small-vessel disease and vascular dementia. Over 100 pathogenic mutations 

in the NOTCH3 gene, an evolutionarily highly conserved transmembrane receptor 

protein regulating cell fate, (Artavanis-Tsakonas et al., 1999) are known to almost 

always lead to an odd number of cysteine residues in one of the 33 EGF like repeats in 

the extracellular domain of the Notch3 protein. These mainly missense mutations are 

thought to result in conformational changes of the Notch3 protein. Mutations have 

predominately been identified in individuals of European descent, although cases have 

been found in other populations such as South Asia (Yadav et al., 2013). Recent 

sequencing studies have shown the association between common variants in the 

NOTCH3 gene and increase in the risk of age-related white matter hyperintensities in 

hypertensives and stroke, suggesting that NOTCH3 may play an important role in 

sporadic stroke as well (Ross et al., 2013, Schmidt et al., 2011). 

The prevalence of CADASIL is likely underestimated, as clinical suspicion along with 

laboratory diagnosis is required. There are few prevalence studies, with one registry in 

Scotland, UK estimating prevalence rate of confirmed CADASIL cases of 1.98/100,000 

(Razvi et al., 2005). Genotype-phenotype correlations have been difficult to determine 

precisely, mainly because of the heterogeneous nature of the mutations although some 

mutations are associated with a worse prognosis (Monet-Lepretre et al., 2009, Opherk 

et al., 2004). Adding to this problem, CADASIL-like symptoms have also been observed 

in patients without NOTCH3 mutations (Pantoni et al., 2010). Phenotypic differences 

such as higher volume of white matter hyperintensities have also been observed in 

patients with mutations in the NOTCH3 Delta/Serrate/LAG-2 (DSL) ligand-binding 

domain as compared to patients with mutations outside of the DSL-binding domain 

(Meschia, 2011). 



CHAPTER 1: INTRODUCTION 

 
 

41 

Studies investigating CADASIL in monozygotic twins with the NOTCH3 Cys251Tyr 

mutation demonstrated significant phenotypic differences in the severity of disease. The 

study hinted at interplay of genes and environment, with the physically inactive-

smoking twin suffering a stroke 14 years earlier than the twin who led an active and 

healthy lifestyle (Mykkanen et al., 2009).  

There is no cure for CADASIL targeted specifically at the NOTCH3 gene and treatment 

mainly includes management of clinical symptoms.  

CARASIL 

CARASIL or Maeda syndrome (Fukutake and Hirayama, 1995) is caused by mutations in 

HTRA1 gene localized on Chr10q encoding HTRA1 that represses signaling mediated by 

Transforming Growth Factor β (TGF-β) family (Hara et al., 2009). Resultantly, CARASIL 

patients have unproteolized cellular proteins, which affect the signal transduction 

process. Brain MRI shows diffuse white matter changes and multiple lacunar infarctions 

in the basal ganglia and thalamus (Fukutake, 2011). Histopathologically, arteriosclerosis 

is seen in the penetrating arteries in the absence of granular osmiophilic or amyloid 

material (Arima et al., 2003). CARASIL patients are also less likely to have migraines and 

exhibit psychiatric disorders, such as euphoria and emotional liability (Muqtadar and 

Testai, 2012). 

Prevalence rates for CARASIL are lower than CADASIL, although it is probably more 

frequent than the few dozen currently reported cases, which to-date have only been 

described from Japan and China (Fukutake, 2011).  

Fabry's Disease 

Fabry disease is a congenital metabolic disorder caused by deficient activity of α-

galactosidase A, resulting in a progressive accumulation of globotriaosylceramide and 

related glycosphingolipids within vascular endothelial cells, myocardial cells and 

neurons (Toyooka, 2011). Prevalence rate of Fabry’s is unclear with studies reporting 

different results. A German study by Rolf et al reported the prevalence of Fabry's in 

young male stroke patients as 4.9% (Rolfs et al., 2005) and suggested that Fabry’s could 

be a common cause of cryptogenic ischemic stroke. Another multi racial study refutes 

this finding suggesting reporting Fabry’s disease in 0.18% of all strokes and 0.65% of 
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cryptogenic strokes (Wozniak et al., 2010). Although an X-linked lysosomal storage 

disorder, female carriers can develop symptoms (Wilcox et al., 2008) that appear 

comparatively later in life as compared to males, at a median age of 45.7 years (Sims et 

al., 2009). 

Treatment for Fabry’s includes bi-weekly recombinant α-gal enzyme replacement 

therapy at a dose of 1mg/kg body weight, however, continued management of 

conventional stroke risk factors is important as well (Sharma et al., 2013). 

 

MELAS 

MELAS is one of the most clinically prevalent and commonly encountered genetic 

disorder, 80% of which is accounted for by maternally transmitted mitochondrialtRNA 

(Leu) A3243G mutations (Goto et al., 1992). Another 10% of patients carry the T3271C 

mutation. The prevalence of MELAS varies from 7.9/100,000 in England to 

236/100,000 in Australia (Manwaring et al., 2007) with an age of onset ranging from 2 

to 20 years. 

Treatments for MELAS are varied and include the use of vitamin supplements (B 

complex, E and C) and enzyme co-factors (Q10, idebenone) that enhance mitochondrial 

metabolism and respiratory chain activity (Sharma et al., 2013). 

Other monogenic disorders 

A number of other monogenic disorders have been associated with stroke; Marfan 

syndrome (Della-Morte et al., 2012), Sickle cell disease (Muqtadar and Testai, 2012), 

homocystinuria (Kelly et al., 2003) and systemic lupus erythematosus (Troedson et al., 

2013). 
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1.4. Genetic Epidemiology of Risk Factors for Stroke 

The prevalence rates for various risk factors of stroke vary greatly amongst different 

countries and mirrors the disparity in rates of stroke mortality. Low-income countries 

remain as the highest affected regions and current measures of the prevalence of 

cardiovascular risk factors at the population level fail to predict overall stroke mortality 

and the greater burden in low-income countries (Johnston et al., 2009). A risk factor can 

exert its effect on the manifestation of stroke based on several factors including its 

relative risk and prevalence rate.  

Stroke has a large number of modifiable risk factors, which contribute in small 

increments to the overall risk of disease development. Some of these risk factors such as 

HTN and diabetes are common and occur is large populations while others such as AF 

and TIA’s are less common. Since the burden of stroke is high, reduction of a risk factor 

such as HTN can lead to considerable reduction in the incidence of disease at a 

population level. Importantly, the benefits of modulating risk factors to favorable levels 

(for example SBP 110 mmHg, total cholesterol 3.8 mmol/L and BMI 21 kg/m2) (Danaei 

et al., 2009, Law et al., 2009) produce significantly large and quick results. As a result, 

the majority of preventive strategies available today such as antiplatelet agents, 

angiotensin converting enzyme inhibitors, beta-blockers and statins, are aimed at 

reducing the burden of risk factors. There is an urgent need for effective global 

strategies and policies to reduce the risk of stroke by reducing the effect of major 

modifiable risk factors (Ezzati and Riboli, 2012).  

Although family history of stroke is an important risk factor several intermediate 

phenotypes are also involved in the etiology of stroke such as age, gender, HTN, AF, 

cigarette smoking, T2D and obesity. Such risk factors possess a substantial genetic 

component themselves and usually cluster such that the risk each imposes varies widely 

amongst population isolates. There is ambiguity about the exact causative molecular 

mechanisms for risk factors of stroke and genetic studies have provided some insights 

into the underpinnings of cellular processes. These studies have also highlighted the 

genetic contribution to the phenotypic variance of risk factors, which in turn affects 

their burden in stroke.  
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Early studies assigned 60% of the PAR for stroke to well known risk factors (Whisnant, 

1997). In the only large scale study of its kind, the population based case-control 

INTERSTROKE study conducted in 22 countries (high income countries, South America, 

South East Asia (including China), India and Africa) researchers provide compelling 

evidence towards the role of ten well known modifiable risk factors (Figure 1.2), 

contributing to 90% of the stroke risk in that population (Tu, 2010). On the assumption 

of a causal relationship, removing all of these risks from the population could prevent 

90% of all ischemic strokes. Considering the fact that these risk factors are also under 

genetic control, the answer to the missing heritability for stroke may lie within the 

complex interplay of genetic risk factors and phenotypic variance. 
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Figure 1.2: Comparison of PAR’s for common risk factors in the INTERSTROKE and 

INTERHEART studies (Source: Tu, 2010). 
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1.4.1 Age 

Stroke is of increasing socio-economic importance in aging populations. Historically it 

has been an age related disorder with an exponential increase in incidence with 

advancing age (Correia et al., 2004), however recent studies have demonstrated an 

increase in the incidence of stroke in young adults (aged 20-55 years) as well (Kissela et 

al., 2012). This trend of younger stroke has huge implications on public health care 

expenses due to a substantial loss of productive life years and a longer need for post 

stroke care. Age is also strongly associated with TIA, HTN and smoking, emphasizing the 

fact that preventive strategies may have greater benefit in younger stroke patients 

because of the higher relative risk for stroke at younger ages for these risk factors 

(Whisnant, 1997), whereas the same strategies in older patients may not apply. 

Preventive strategies in older patients have to reach many more people to have a 

comparable effect because of the lower relative risk with increasing age (Whisnant, 

1997). 

Stroke is easier to diagnose in older patients since large extracranial and intracranial 

atheroma, small-vessel disease and AF are frequent in older individuals and so are 

traditional risk factors such as diabetes and HTN (Ferro et al., 2010). Age is an 

important determinant of stroke outcome in the elderly (Konig et al., 2008) and 

observational studies and randomized trials that have shown poorer outcomes and 

higher risk of bleeding in this population due to complications from thrombolysis 

(Mishra et al., 2010, Sylaja et al., 2006). In a review of population based epidemiological 

studies Feigin et al reported that the age-specific incidence of stroke increases 

progressively with each decade of life (Figure 1.3) (Feigin et al., 2003). Individuals 

between 75–84 years of age had tens of folds greater incidence rates (12.0–20.0 per 

1000 person-years) than those aged less than 45 years (0.1 to 0.3 per 1000 person-

years) (Feigin et al., 2003). 

Environmental insult also increases with age and intern affects the genetic constitution 

of an individual. Epigenetic modifications and differential gene expression occurring 

over an individual’s lifespan reflect the natural process of aging and may contribute to 

the development of age-related phenotypes and diseases such as T2D, autoimmune and 

vascular disease (Johansson et al., 2013). A recent study by Traylor et all examined the 
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role of age at stroke onset as a source of heterogeneity and demonstrated that genetic 

heterogeneity exists within ischemic stroke sub-phenotypes by age at onset and urge 

researchers to examine their existing datasets for younger onset cases (Traylor et al., 

2013). 

The study participants included in our analysis varied in age and included both young 

and old adults. Therefore age was considered a confounding factor and used as a 

covariate to adjust the regression analysis in Chapters 3 and 4. 
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Figure 1.3: Annual incidence by age per 1000 population of all types of stroke 

combined in selected studies (Source: Feigin et al., 2003). 
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1.4.2 Gender 

Gender based differences in vascular disease are increasingly apparent (Banerjee et al., 

2009). While men have a greater incidence of stroke up to 75 years of age (Thom et al., 

2006), women shoulder a higher lifetime risk due to their greater life expectancy 

(Seshadri et al., 2006). Not only do women stroke survivors have worse outcomes post 

stroke but they also have a completely different risk factor profile from men. Women 

are older than men at stroke onset, which may help explain the higher presence of age, 

related risk factors such as cholesterol, HTN and AF (Bushnell, 2008, Haast et al., 2012). 

Changes in endogenous hormone levels, due to pregnancy or menopause, throughout a 

woman’s life cycle also serve as risk factors (Bushnell, 2008).  

The OXVASC was the first large-scale study to investigate gender-specific transmission 

of stroke. The study concluded that the heritability of ischemic stroke was greater in 

women than in men, with an excess of affected mothers and affected sisters in female 

probands independent of traditional vascular risk factors and intermediate phenotypes 

(Touze and Rothwell, 2007).  

The results of the study were validated by performing a large literature based meta-

analysis, which consolidated data from the original OXVASC study and 17 other studies 

(Touze and Rothwell, 2008). Although non-genetic risk factors were thought likely to 

explain the results of this study to a large extent, the presence of genetic factors was 

assessed for a possible explanation for the maternal excess of stroke. The authors 

speculated that mother-to-daughter transmission was probably mitochondrial in 

nature, which has a higher penetrance in women than in men. Alternately differential 

gene expression or epigenetics, which are changes in gene expression that do not entail 

a change in DNA sequence, provide an alternative explanation (Jiang et al., 2004). 

Further, the authors delve into the realm of genomic imprinting, which is a subtype of 

epigenetic regulation in which the activity of a gene is reversibly modified depending on 

the sex of the parent that transmits it (Jiang et al., 2004). Studies have shown that the 

epigenomic state of a gene can be established through behavioral programming and that 

the epigenotype, in particular imprinting genes, could be more susceptible than 

genotype to environmental factors (including maternal behavior in animals) (Weaver et 

al., 2004, Touze and Rothwell, 2007). 
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The gender differences in stroke are complex and may reflect the genetic differences 

that control hormonal state or longer life spans for women.  

Since gender is an important marker for clinical and genetic factors, it was considered a 

confounding factor and used as a covariate to adjust the regression analysis in Chapters 

3 and 4. 
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1.4.3 Ethnicity 

Studies have shown race-ethnic disparities in the distribution and prevalence of stroke, 

its risk factors and mortality among various populations (Cruz-Flores et al., 2011, Sen et 

al., 2013, O'Donnell et al., 2010b, Khan et al., 2013). The WHO supports these findings 

and has identified significant differences in the prevalence of stroke risk factors such as 

HTN, cholesterol and smoking amongst populations from the developed and developing 

regions of the world. 

Ethnic disparities in clinical phenotypes and risk factors also exist. Using a Caucasian 

reference group, Sen et al (Sen et al., 2013) examined race-ethnic disparities in minority 

groups (Asian-Indian, African-American and Hispanic) residing in the US. The study 

showed that racial differences in the impact of age and gender contributed to the risk of 

stroke i.e. Asian-Indians and the Hispanics were largely younger males as compared 

with the white stroke patients who were older females. Risk factors such as diabetes 

(55%) and elevated plasma Hcys levels (12.1 μmol/L, p=0.002) were most prevalent in 

Asian-Indians, who also had a higher number of strokes related to small vessel occlusive 

disease (25%).  

Similar results were observed by the INTERSTROKE study, which by far remains the 

largest epidemiological study covering 22 countries 3000 stroke patients (O'Donnell et 

al., 2010). Whether phenotypic differences in stroke can be attributed to genetic 

differences between races remains to be validated. Although studies have suggested 

that genetic risk associations are broadly similar for different ethnicities (Ariyaratnam 

et al., 2007), this does not rule out differential expression of intermediate biomarkers 

between ethnic groups (as shown for Hcys) (Bentley et al., 2010). Also most genetic 

association studies have examined common genetic variants and it is likely that the risk 

may lie with rare or non-SNP variations in the genome. 

Genetic risk variants of stroke are well studied in some ethnic groups such as 

Caucasians and Chinese, whereas they remain understudied or completely unknown in 

South Asians from India, Pakistan, Sri Lanka and Bangladesh. Reports on monogenic 

stroke in South Asians are limited. Three Indian studies on CADASIL have been reported 

(Yadav et al., 2013, Panagariya et al., 2004, Gurumukhani et al., 2004), of which only 2 

obtained a genetically confirmed diagnosis. Only one study on pediatric Fabry’s disease 
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has ever been reported with pedigree analysis for the α-galactosidaseA (GLA) gene 

mutation confirmed based on clinical suspicion only (Phadke et al., 2009). Studies on 

other forms of monogenic stroke such as CARASIL, MELAS, sickle cell anemia and 

Marfan syndrome have not been reported from India. It is surprising that despite the 

common frequency of sickle cell anemia in India, no studies examining the incidence of 

stroke in sickle cell anemia have been conducted.  

South Asian studies on sporadic stroke are also limited consisting mainly of a collection 

of small underpowered candidate gene studies. A selection criterion for candidate genes 

either depends on the researcher interest and includes cellular processes of choice (for 

example signal transduction, metabolism) or on GWAS-derived risk variants associated 

with other vascular disorders such as MI and CAD (Figure 1.4). Associations were 

confirmed for some risk variants that were previously identified for European 

populations, PDE4D, MTHFR, ACE, APOE, LPL and eNOS (Kaul and Munshi, 2012). 

Although these studies do not carry the same statistical weight as the larger European 

studies, they provide evidence for a genetic burden of stroke in South Asians and 

estimate the possible effect size exerted by these risk variants. 

In light of the fact that no large genetic association studies have been conducted on 

South Asians, we conducted a literature based meta-analysis of small candidate gene 

studies (Chapter 2) in order to increase power of the identified associations. 
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Figure 1.4: Candidate gene polymorphisms and associated phenotypes studied in the 

Indian population (Source: Kaul and Munshi, 2012)  
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1.4.4 Blood Pressure 

Hypertension is the biggest treatable risk factor for ischemic stroke (O'Donnell et al., 

2010) and association of elevated blood pressure is a strong predictor of stroke. Small 

changes in blood pressure have serious effects on prognosis of stroke and treatment of 

HTN can reduce this risk by over 40% (WHO, 2002). The number of hypertensives 

across the world has risen from 600 million individuals in 1980 to over 1 billion in 

2008, with higher prevalence in low and middle-income countries (WHO, 2013). In 

2010, a comparative risk assessment study on the burden of disease attributable to 67 

risk factors showed HTN to be the leading single risk factor accounting for 9.4 million 

(95% UI 8.6-10.1) deaths and 7% (95% UI 6.2-7.7) of the global disability adjusted life 

years (Lim et al., 2012). The study also showed that high blood pressure is one of the 

top five risk factors in individuals between 15-70 years of age and accounts for 15%-

20% of all health loss in individuals between 50-70 years of age (Lim et al., 2012).  

Another study by Johnston et al described the national level prevalence of stroke risk 

factors and found that raised mean systolic blood pressure predicted stroke mortality 

(albeit poorly) (Johnston et al., 2009). 

The Framingham Heart Study has been at the head of several important contributions to 

the current understanding of the epidemiology of blood pressure and stroke (Romero 

and Wolf, 2013). The FHS investigators demonstrated the importance of several 

measures of blood pressure such as SBP, DBP and MAP in the development of stroke. A 

systematic review of case-control and cohort studies reporting family history of HTN as 

risk factors for stroke showed that the frequency of HTN was greater in stroke patients 

than controls. Authors suggested that the apparent heritability of stroke could be partly 

accounted for by the heritability of HTN (Flossmann et al., 2005). 

Familial studies have long provided evidence of heritability (31%-68%) of blood 

pressure (BP) (Ehret et al., 2010). Since 2009, several large studies have contributed to 

the understanding of the genetics of various measures of blood pressure such as SBP, 

DBP, MAP and PP (Levy et al., 2009, Newton-Cheh et al., 2009, International Consortium 

for Blood Pressure Genome-Wide Association et al., 2011, Kato et al., 2011, Wain et al., 

2011, Johnson et al., 2011), although the effect size accounting for phenotypic variance 

was small.  



CHAPTER 1: INTRODUCTION 

 
 

55 

The genetics of long-term variability in blood pressure or episodic HTN remain 

unknown though its role in stroke is not new, with early studies (Ekbom et al., 1992) 

demonstrating the effect of antihypertensive drugs on decreasing blood pressure 

variability for the lowered risk of stroke.  

In Chapter 3, genes influencing BP variability were identified in 3802 individuals from 

the ASCOT IR-UK cohort. GWAS were tested for association with ischemic stroke using a 

meta-analysis of an independent ischemic stroke population comprising 8624 cases and 

12722 controls from 7 studies.  
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1.4.5 Carotid Disease 

Carotid IMT measured by high-resolution B-mode ultrasonography, is a well-studied 

surrogate marker for subclinical atherosclerosis and a strong predictor for stroke. 

Ultrasonography measures of the carotid artery can be a useful intermediate phenotype 

for the identification of early markers of risk (Manolio et al., 2004, Bis et al., 2011). 

Presence of carotid stenosis or plaque is indicative of a diffuse vascular condition and 

can generate thrombo emboli in a specific arterial territory-causing stroke. Besides the 

arterial narrowing and embolic characteristics, stenosis can also produce downstream 

hemodynamic effects that impair cerebrovascular reserve and is strongly associated 

with the risk of ischemic stroke (Gupta et al., 2012). A 30% increase in the risk of 

recurrent stroke for the first 2 years following the first-time stroke is reported for 

symptomatic carotid stenosis (Figure 1.5)(Markus, 2003). 

Variability of the carotid artery structure is suggested to be under genetic control and 

early family studies provided evidence supporting the presence of a strong independent 

genetic component to the burden of carotid IMT. Although there was evidence of 

heritability, initial candidate gene based studies were not successful in finding strong or 

consistent associations with common genetic risk variants (Manolio et al., 2004). The 

earliest evidence came from a candidate gene study, which found a risk association 

between IL-6 174G/C polymorphism with common carotid artery IMT although the 

effect size was small. The study showed that the CC genotype of IL-6 174G/C 

polymorphism was associated with a 4.8% increase in maximal carotid IMT and 

accounted for 0.6% of the observed variation in the trait, which is equivalent to 2.5% of 

the heritable component (Mayosi et al., 2005). 

The CHARGE consortium GWA study on carotid disease phenotypes is the largest study 

of its kind with > 40,000 individuals of European ancestry (Bis et al., 2011). The study 

identified genetic risk variants associated with increased risk of cIMT and plaque 

although the effect sizes were small (0.9% IMT variance and 18%-22% increase in odds 

of plaque) (Bis et al., 2011). Despite the small effect sizes, the study robustly established 

the genetic burden carried by different stages of carotid disease. 

In Chapter 5 we conducted an a priori GWA study on ~14,000 patients with advanced 

carotid disease (>50% stenosis) in an ischemic stroke population. 
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Figure 1.5: Risk of recurrent stroke with increasing carotid stenosis.  

(Source: Markus, 2003, Originally published in European Carotid Surgery Trialist’s 

Collaborative Group 1998) 
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1.4.6 Diabetes 

Type 2 diabetes is a major public health concern and has risen to become the 5th leading 

cause of death across the globe (Shaw et al., 2010). The disease is also a major cause of 

morbidity and risk factor for stroke. A population study by Danaei et al studied the 

population distribution of fasting plasma glucose to measure exposure to higher-than-

optimum blood glucose by collating individual patient level data, systematic reviews 

from 52 different countries. The study showed that in addition to 959,000 deaths 

attributed to diabetes, 709,000 deaths from stroke were attributable to high glucose 

levels (Danaei et al., 2006). 

Family studies have attributed a heritable component to T2D (h2=49%) (Risch, 1990), 

with twin studies showing high concordance rate in monozygotic twins (96%) 

supporting an underlying genetic burden (Medici et al., 1999, Lo et al., 1991). Several 

large GWA studies have identified significant associations with genetic risk factors and 

T2D. A study by Voight et al comprising of 8,130 T2D cases and 38,987 controls of 

European descent identified 12 genetic risk variants influencing beta-cell function and 

insulin action (Voight et al., 2010). Another study by Zeggini et al identified more 

genetic variants influencing pancreatic beta cells (Zeggini et al., 2007) thereby 

providing insight molecular mechanisms of T2D. 
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1.4.7 Lipids 

Stroke has historically been an age related disorder affecting elderly patients; however 

in recent times this boundary has been blurred. Due to a surge in risk factors such as 

cholesterol and HTN, stroke is now manifesting itself in young individuals between 35 

to 64 years. Although elevated cholesterol has typically been a weak risk factor for 

ischemic stroke of all types, it is a significant risk factor for carotid disease (Musialek et 

al., 2013), which in turn is a major risk factor for stroke. 

A huge evidence base implicating elevated plasma lipids as risk factor for stroke exists. 

A 2012 study by the American Heart Association found that obesity (body mass index 

>30 kg/m2) was associated with increased mortality and morbidity in the US population 

which was in turn associated with increased incidence of risk factor such as diabetes 

mellitus, vascular disease (coronary heart disease, stroke, and heart failure), and other 

health conditions such as asthma, cancer and degenerative joint disease (Roger et al., 

2012). 

Large GWA studies have reliably identified > 100 genetic risk variants associated with 

lipids such as HDL, LDL, triglycerides and total cholesterol (Teslovich et al., 2010) 

supporting a genetic liability for their phenotypic variance. 
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1.4.8 Homocysteine 

Elevated plasma Hcys levels have long been associated with stroke with contradicting 

reports on its causative or consequential roles. Notwithstanding this paradigm, stroke 

patients have significantly higher Hcys levels as compared to healthy individuals 

(Biswas et al., 2009) and are at a 19% increased risk of stroke for every 3μmol/L 

increase in plasma Hcys levels (Collaboration, 2002). Although the mechanistic 

understanding of the role of Hcys in stroke is still poorly understood, there is sufficient 

evidence available to tie it in as a major risk factor. Given the fact that Hcys levels can be 

effectively controlled through diet supplemented with folic acid and vitamin B6/B12 

(Hankey et al., 2013), it is important for clinical consideration.  

Several phenotypic and genetic studies have been conducted to examine the 

relationship between gene polymorphisms, Hcys and stroke, and unanimously support 

the association of Hcys with the increased risk of stroke. Although several genes play a 

role in Hcys metabolism, MTHFR remains the most widely studied. A study by Hsu et al 

investigated 86 SNPs in 9 candidate genes (BHMT1, BHMT2, CBS, CTH, MTHFR, MTR, 

MTRR, TCN1, and TCN2) coding for enzymes and cofactors involved in Hcys metabolism 

(Hsu et al., 2011). The study found that risk variants influenced post stroke plasma Hcys 

levels by altering the metabolic pathway, and also increased the risk of recurrent stroke 

in response to cofactor therapy (Hsu et al., 2011). 

The largest study to so far examine the modulation of effect exerted by gene 

polymorphisms according to changes in dietary folate suggested that, the genetic effect 

of the MTHFR 677CT variant on plasma Hcys levels was larger in low folate regions such 

as Asia (Mean difference of 3.12 μmol/L, 95% CI 2.23-4.01 between TT versus CC 

genotypes in healthy individuals) than in areas with high folate fortification such as 

America, Australia, and New Zealand (Mean difference of 0.13 μmol/L, 95% CI -0.85-

1.11)(Holmes et al., 2011). The study also reported increased odds of stroke for Asia 

(OR 1.68, 95% CI 1.44-1.97) as compared to America, Australia, and New Zealand (OR 

1.03, 95% CI 0.84-1.25) for individuals carrying TT vs. CC genotypes. The findings of 

this study strongly argued in support of a gene-environment interplay, which is 

understandable since folic acid is a major player in Hcys metabolism. 
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Indians have considerably higher Hcys levels as compared to other ethnicities (Bentley 

et al., 2010, Yadav et al., 2013, Bhargava et al., 2012). In a study on an Indian population, 

Biswas et al found plasma Hcys levels to be significantly higher in stroke patients as 

compared to healthy individuals (12 μmol/L, range 5.3-39.1 μmol/L vs. 11.2 μmol/L, 

range 6.2-14.2 μmol/L; P =0.001). Similar results were found by a later study although 

the Hcys levels were considerably higher in both cases and controls (12.42μmol/L, SD ± 

0.85 vs. 19.30 μmol/L, SD ± 2.41) (Bhargava et al., 2012). The study mirrored the 

findings of Holmes et al and reported lowering of patient Hcys levels in response to the 

increased folic acid dosage as well as a risk association between MTHFR C677T 

polymorphism and stroke (Biswas et al., 2009). 

In Chapter 2, we examine the causal relationship between MTHFR C677T polymorphism 

and stroke via Hcys in a South Asian population using a Mendelian randomization 

strategy. 
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1.5. Strategies to Study Genetics of Stroke 

With the emergence of large stroke consortia and developments in genotyping 

technology, statistical methods and computational power, researchers have finally 

begun to address the genetics of ischemic stroke effectively. Advances in our knowledge 

of the molecular underpinnings of stroke will enable scientists and clinicians to better 

understand the mechanistic workings of stroke and design effective treatments for it. 

Evidence for stroke genetics can come from two different platforms; study of 

individuals and population based studies. Study of individuals can help identify genetic 

variants that causally affect stroke and provides concrete evidence for the genetic risk 

of stroke. Individual studies usually identify rare genetic variants with large effect sizes 

and high penetrance. Although such studies are of immense value, they rarely 

contribute to the prevention of stroke at a population level since it involves a large 

number of individuals at a small risk of stroke which gives rise to more cases of disease 

than a small number who are at high risk (Rose, 1985). Individual based studies have 

led to the identification of several monogenic forms of stroke such as CADASIL (Joutel et 

al., 1996) and enabled clinicians to use this information in their every day clinical 

practice. 

Population based genetic association studies have found great popularity with genetic 

epidemiologists since the study samples are more representative of the general 

population and easier to recruit as compared to stroke families. Results from a large 

population study are useful in calculating PAR of a genetic variant, which can be 

extrapolated to the general population. Population studies also have greater power in 

detecting common genetic variants that affect >5% of the population. 

The following sections discuss the current state-of-knowledge of population based 

genetic strategies available to researchers. 

 

 

 

 



CHAPTER 1: INTRODUCTION 

 
 

63 

1.5.1 Candidate Gene Based Association Studies 

In the pre-GWAS era, candidate gene based studies have enjoyed wide spread 

popularity in the study of stroke genetics. These studies are based on a prior hypothesis, 

primarily driven by the choice of a candidate gene which is based on the investigators 

research interest in a particular biological pathway such as coagulation, lipid 

metabolism, inflammation and blood pressure regulation (Matarin et al., 2008, Williams 

et al., 2013, Wang et al., 2009, Olsson et al., 2012), or candidate genes derived from 

related vascular conditions such as MI (Gschwendtner et al., 2009) or CAD (Arregui et 

al., 2012). This is not surprising as the pathophysiology of stroke and coronary disease 

are similar (Jashari et al., 2012). However replication of such candidate genes in other 

phenotypes have not always been successful (Cheng et al., 2012), with some candidates 

appearing to be organ-specific rather than pathophysiology-specific (Bentley et al., 

2010, Helgadottir et al., 2012). Candidate genes found to be associated with stroke in 

one ethnic population are also routinely replicated in other ethnicities (Cheong et al., 

2011, Kostulas et al., 2007). 

Recently, findings from candidate gene association studies in stroke and other vascular 

phenotypes such as CAD and AF were replicated using statistically robust GWAS models. 

Using >3500 stroke cases and 5700 controls from the WTCCC 2ischemic stroke GWAS 

(International Stroke Genetics et al., 2012), Bevan et al tested association for 50 

previously reported candidate genes (Bevan et al., 2012). Of the 32 stroke associated 

genes tested, 4 genes ALOX5AP (CE), APOA (LPA) (SVD), Fibrinogen (all ischemic stroke), 

and Paroxonase-1 (SVD)) survived Bonferroni correction but failed when the Nyholt 

correction was applied (Bevan et al., 2012). The study also tested 18 genes associated 

with cardiovascular phenotypes and validated the association for3 genes at the 

modified Nyholt threshold: PHACTR1in LVD (P=2.63x10−6), PITX2in CE stroke 

(P=4.78x10−8), and ZFHX3in CE stroke (P=5.50x10−7). Given the failure to replicate most 

stroke associated genes, the study concluded that the risk association is likely to be sub-

type specific and success in identifying risk variants would continue to evade 

researchers unless the study populations are larger and extensively sub-typed. 

Candidate gene studies have also been applied to test the progression of stroke through 

its intermediate phenotypes. Adib-Samii et al examined the 17q25 locus, which was 
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previously found to be associated with white matter hyperintensities in stroke-free 

individuals, and replicated the association with white matter hyperintensity volume in 

ischemic stroke patients to determine whether the 17q25 locus promotes small vessel 

arteriopathy. The study furnished evidence in support of an association between 17q25 

and white matter hyperintensities (Adib-Samii et al., 2013). 

Unique step back approaches have also been implemented to test association of 

candidate genes with stroke. A study by Krug et al performed gene expression profiling 

in peripheral blood mononuclear cells of 20 stroke cases and 20 controls and examined 

the differentially expressed genes between the two groups. Sixteen differentially 

expressed genes were then mapped to GWAS-derived regions associated with various 

vascular disorders. Using this approach the group was able to identify a risk association 

between stroke and the TTC7B gene locus (Krug et al., 2012). 

Although candidate genes have largely produced unsatisfactory results and have not 

been successfully replicated in larger stroke association studies, these approaches have 

been helpful in indicating the effect size that a risk allele may exert. Candidate gene 

studies have also implicated disparity in the genetic burden of stroke for different 

stroke subtypes (Kostulas et al., 2009, Anderson et al., 2013) before this was discovered 

in large-scale GWA studies (Holliday et al., 2012). Genes involved in lipid metabolism 

and enzymatic activities are the most widely studied candidates for association with 

stroke (Stankovic et al., 2012) and provide an insight into the possible cellular 

processes that may underline stroke pathology. 
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1.5.2 Literature Based Meta-Analysis 

In the current era of GWAS studies and whole genome sequencing, the literature-based 

meta-analysis has found its own unique utility. Where large GWAS studies have failed to 

identify risk associations with gene variants such as MTHFR and ACE literature based 

meta-analysis of comparable (or greater) power and sample size have been able to 

identify these genetic risk variants to be associated with stroke (Bentley et al., 2010,  

Bevan et al., 2012, Paternoster et al., 2009). 

Although the stand-alone validity of individual candidate gene based studies and small 

meta-analysis (McColgan and Sharma, 2008) remains inconclusive, large-scale literature 

based meta-analysis may reveal a true association or confirm previous findings. The 

odds associated with candidate gene SNPs are varied due to small sample sizes, inter-

study heterogeneity and publication bias; however meta-analyses of these studies pool 

the effect sizes in statistically sound models to provide robust results. Although there is 

a paucity of genetic studies for some ethnic groups, this methodology has been applied 

to candidate studies across different ethnic populations and the odds have broadly held 

true for all.  

Results from most literature-based meta-analysis have suggested that common stroke 

has a genetic component with no single gene having a major effect. These studies have 

shown that common variants in several genes exert individual modest effects and 

contribute to the overall risk of stroke. They have also consistently demonstrated that 

genetic risk associations for ischemic stroke are similar across different ethnicities. 

Such findings have found great applicability in the design of large genetic studies and 

for predictive genetic testing for stroke. 

A recent meta-analysis comprising of 41 published & unpublished studies (9,027 

ischemic cases and 61,730 controls) established a small risk association between IS and 

different Apolipoprotein E genotypes (OR 1.05-1.12) (Khan et al., 2013). In an effort to 

establish causality for the observed effects between genotype-IS, the study further used 

individual patient level data from 16 studies (60,883 individuals). Mendelian 

randomization was used to translate the observed association to genotype-plasma 

lipids and a 33% increase in odds per 1 mmol/l increase in LDL plasma levels was 

reported (Khan et al., 2013). 
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Another comprehensive meta-analysis of 187 candidate genes in 37,481 European 

ischemic stroke cases and 95,322 controls, identified 5 genes to be associated with the 

risk of stroke; Factor V ArgGln506 (OR 1.31), ACE/ID (OR 1.15), MTHFR C677T (OR 

1.26), Prothrombin G20210A (OR 1.60), PAI-15G (OR 1.11), Glycoprotein IIIa Leu33Pro 

(OR 1.24) (Bentley et al., 2010). Although the effect size per gene was modest (OR 1.11-

1.60), they accounted for accumulative population attributable risk of ~30%. This result 

is of great significance given the high frequency of stroke in the general population and 

translates to a large clinically observed effect. 

A large meta-analysis conducted on 32,431 non-European individuals (Chinese, 

Japanese, and Korean), identified eight candidate genes, three of which were associated 

with ischemic stroke: ACE (I/D) polymorphism, OR 1.90 (95% CI 1.23–2.93) in the 

Chinese and OR 1.74 (95% CI0.88–3.42) in the Japanese; MTHFR C677T, OR 1.18 (95% 

CI 0.90–1.56) in Chinese and 1.34 (95% CI 0.87–2.06) in Koreans; and APOE, OR 2.18 

(95% CI 1.52–3.13) in Chinese and 1.51 (95% CI 0.93–2.45) in Japanese( Ariyaratnam et 

al., 2007). The observed effect sizes were modest (OR 1.18-1.90) and largely similar 

amongst different ethnic groups. 

A meta-analysis by Casas et al including 120 case-control studies and 32 genes, 

identified statistically significant risk associations with ischemic stroke for Factor V 

Leiden Arg506Gln (OR, 1.33; 95% CI, 1.12-1.58), MTHFR C677T (OR, 1.24; 95% CI, 1.08-

1.42), Prothrombin G20210A (OR, 1.44; 95% CI, 1.11-1.86), and ACE I/D (OR, 1.21; 95% 

CI, 1.08-1.35)(Casas et al., 2004). Using a similar methodology, the group went on to 

establish causality between MTHFR C677T polymorphism, plasma Hcys levels and risk 

of stroke, thereby demonstrating the validity of literature based meta-analysis (Casas et 

al., 2005). 

Literature based meta-analysis have also been applied to studying ischemic stroke 

subtypes (Rao et al., 2009), intracranial aneurysms (McColgan et al., 2010) and venous 

thromboembolisms (Gohil et al., 2009, Marjot et al., 2011). Although evidence for sub-

type specific genetic risk variants is thin (Rao et al., 2009), robust associations have 

been identified for VTE. A large meta-analyses comprising of 126,525 cases and 184,068 

controls from 173 case-control studies and including 21 genes was conducted (Gohil et 

al., 2009). Risk associations with VTE in Caucasian populations were identified for 
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Factor V G1691A (OR 9.45; 95% CI 6.72–13.30, p<0.0001), Factor V A4070G (OR 1.24; 

95% CI 1.02–1.52, p=0.03), Prothrombin G20210A, (OR 3.17; 95% CI 2.19–3.46, 

p<0.00001), Prothrombin G11991A, (OR 1.17; 95% CI 1.07–1.27, p=0.0007), PAI-1 

4G/5G, (OR 1.62; 95% CI 1.22–2.16, p=0.0008), Alpha-fibrinogen Thr312Ala (OR 1.37; 

95% CI 1.14–1.64, p=0.0008). MTHFR C677T was associated with risk in Chinese/Thai 

populations (OR 1.57; 95% CI 1.23–2.00, p=0.0003), and ACE I/D in African American 

populations (OR 1.5; 95% CI 1.03–2.18, p=0.03). Factor XIII Val34Leu (OR 0.80; 95% CI 

0.68–0.94, p=0.007) and β-fibrinogen 455 G/A (OR 0.84; 95% CI 0.72–0.97, p=0.02) both 

showed significantly protective effects (Gohil et al., 2009). Causal relationships with 

MTHFR C677T polymorphisms have also been suggested (Marjot et al., 2011). 
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1.5.3 Genome Wide Association Studies 

Population based GWA studies have been made possible by the advent of the human 

genome project (Consortium, 2004) and the HapMap consortium (Consortium, 2005). 

With completion of the Human Genome Project in 2003, scientists identified regions of 

variation between individuals, the most common form of which is the single nucleotide 

polymorphism or SNP. The human genome is believed to consist of over 10 million SNPs 

and, with the efforts of the International HapMap project, 3.1 million SNPs have already 

been characterized (Frazer et al., 2007). Information provided by the international 

HapMap consortium has enabled the development of commercially available genotyping 

microarrays and heralded the era of the GWA study. In recent times the 1000Genomes 

project (http://www.1000genomes.org) has provided 4X deep sequencing data and 

added immensely to the knowledge base.  

As technology used to unravel the genetic basis of disease has advanced, our ability to 

rapidly search for genetic risk variants on a throughput scale has dramatically 

improved. Statistically underpowered candidate gene studies have predominantly been 

replaced by whole-genome screening, which has been successfully conducted in a 

variety of disorders (Lettre and Rioux, 2008, Easton and Eeles, 2008). The emergence of 

genome wide approaches, which test variants without any priori hypothesis have 

presented investigators with an alternative and more powerful method to test the 

productivity of the candidate gene based, approached (Bevan et al., 2012).  

GWAS provides a powerful statistical model to study millions of genetic variants in a 

single experiment. The methodology is also free from recall and temporal bias. 

Population based case control studies possess two distinct advantages over other study 

designs. The samples are easier and cheaper to recruit and large sample sets can be 

collected in relatively less time. Under the assumption of low population substructure, 

population based studies are also believed to be more powerful than family studies 

(Morton and Collins, 1998). One of the earliest applications of the GWAS model was to 

study age-related macular degeneration, which revealed associations with complement 

factor H gene (Edwards et al., 2005). In later years, this methodology has been 

successfully applied to several complex polygenic disorders such as bipolar disorder, 

CAD, carotid disease, Crohn’s disease, HTN, rheumatoid arthritis, blood pressure, 

smoking and T2D (NHGRI catalogue, http://www.genome.gov/gwastudies). 
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GWA studies on stroke were few till 2003 when Gretarsdottir et al identified PDE4D to 

be significantly associated with risk of ischemic stroke in an Icelandic population 

(DeCODE) (Gretarsdottir et al., 2003). However several attempts to replicate these 

findings failed (Rosand et al., 2006, Bevan et al., 2005, Newcombe et al., 2009), while 

some studies reported conflicting results (Bevan et al., 2008, Matsushita et al., 2009, 

Bentley et al., 2010). These discrepancies were attributed to possible problems in study 

design, i.e. pooling of CE and LVD strokes in order to identify the risk association with 

PDE4D, which we now know are sub-type specific (Holliday et al., 2012).Lack of 

independent replication and limited experimental validation of results using B-cell lines 

was also suggested to be a major limitation of the original study (Worrall and 

Mychaleckyj, 2006). Several other GWA studies followed, but no single locus was 

identified at a genome wide level of significance (p value≤5x10-8). 

The WTCCC2 and the ISGC performed a GWAS involving 3,548 cases of ischemic stroke 

with replication of potential signals in 5,859 additional cases (International Stroke 

Genetics et al., 2012). The study demonstrated, as others had done previously 

(Gudbjartsson et al., 2009, Gudbjartsson et al., 2007), associations for CE stroke near 

PITX2 and ZFHX3, which are known risk loci for AF (Ellinor et al., 2012).  The study also 

confirmed the association for LVD and 9p21 locus.  A novel finding was an association 

for large vessel stroke within HDAC9 on chromosome 7p21.1 (OR 1.42). In a recent 

GWAS, the evidence for a stroke sub-type specific genetic influence became more 

compelling with the association of the 6p21.1 locus with large artery stroke subtype 

(Holliday et al., 2012).  

Despite a number of genome-wide association studies reporting discoveries of novel 

genetic risk variants for stroke, these were rarely replicated implying that either these 

discoveries were fallacious or the effect is small such that much larger studies are 

required (Lanktree et al., 2010).The largest and most recent GWA study published so 

far, the METASTROKE meta-analysis, (~12,000 cases and ~60,000 controls) validated 

previous findings of genes PITX2, ZFHX3, and HDAC9 suggesting that these are true 

associations (Traylor et al., 2012). All loci exhibited heterogeneous effect across 

subtypes, supporting distinct genetic architectures for each subtype.  
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Several other GWAS have been conducted in stroke mostly in those of European 

ancestry, with very little comparative data available in other ethnic populations.  A few 

studies have been conducted in populations of South East Asian ancestry (Kubo et al., 

2007, Yamada et al., 2009, Hata et al., 2007, Ding et al., 2010). The effect size is broadly 

similar across all GWAS’s, ranging from 1.00 to 1.85, confirming that the effect sizes are 

small but the population attributable risks could be large given the common nature of 

this condition. Many studies however have failed to replicate their findings (Debette et 

al., 2010, International Stroke Genetics and Wellcome Trust Case-Control, 2010, Ikram 

et al., 2009).  

Given that some ischemic stroke has a maternal heritability, a GWAS of common 

mitochondrial sequence variants failed to find a genome significance threshold, 

although this study was underpowered for GWAS (Anderson et al., 2011). GWA studies 

on stroke twins found no significant hits but were able to demonstrate significant 

correlation of age at stroke within pairs of affected siblings (r=0.83, 95% CI 0.78–0.86, 

p=2.2x10-16) and high concordance of stroke subtypes among affected pairs (33.8%, 

kappa=0.13, p=5.06x10-4) which did not differ by age at stroke in the proband (Meschia 

et al., 2011).  

Some investigators have undertaken GWAS on surrogate markers of stroke such as 

white matter hypertensities, which are endophenotypes of small vessel ischemic 

disease without any reliable associations (DeStefano et al., 2006, Turner et al., 2005, 

Paternoster et al., 2009). Other intermediate phenotypes such as carotid intima-media 

thickness have also been explored with promising associations reported (Bis et al., 

2011). 

Reports of a new wave of GWA studies is underway, including the WTCCC2 and NINDS 

Stroke Genetics Network (Meschia, 2011, Meschia et al., 2013) which will utilize the CCS 

classification system (Ay et al., 2007).The studies will focus entirely on sub-typing large 

number of ischemic stroke cases. A total of 24 genetic research centers across Europe 

and America will participate in this global consortium amassing over 14,549 stroke 

cases (Meschia et al., 2013). 

GWA studies on stroke, which reported GWAS significant associations (p≤5x10-8) are 

summarized in Table 1.1.
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Table 1.1: Genome wide association studies on ischemic stroke  

Gene SNP Chr Phenotype Ethnicity RA RAF 

OR  

(95% CI) p Study Other studies 

HDAC9 rs2107595 7p21.1 LVD European A 0.16 

1.39  

(1.27-1.53) 2.03 ×10-16 

(Traylor et al., 

2012) 

(International Stroke 

Genetics et al., 2012) 

PITX2 rs6843082 4q25 CE European G 0.21 

1.36  

(1.27-1.47) 2.8×10-16 

(Traylor et al., 

2012) 

(Gudbjartsson et al., 

2007, Gretarsdottir et al., 

2008, International 

Stroke Genetics et al., 

2012) 

CDKN2A

/B rs2383207 9p21.3 LVD European G 0.52 

1.15  

(1.08-1.23) 3.32×10-5 

(Traylor et al., 

2012) 

(Matarin et al., 2008, 

International Stroke 

Genetics et al., 2012) 

ZFHX3 rs879324 16q22.3 CE European A 0.19 

1.25  

(1.15-1.35) 2.28×10-8 

(Traylor et al., 

2012) 

(Gudbjartsson et al., 

2009) 

CDC5L rs556621 6p21.1 LVD European A -- 

1.21  

(1.13-1.30) 4.70×10-8 

(Holliday et al., 

2012a) -- 

FMNL2 rs2304556 2q23.3 YS 

European

/African G -- 

0.69  

(0.60, 0.79) 1.20×10-7 

(Cheng et al., 

2011) -- 

ARL6IP6 rs1986743 2q23.3 YS 

European

/African A -- 

0.69 

 (0.60, 0.79) 2.70×10-7 

(Cheng et al., 

2011) -- 

ROBO1 rs1383407 3p12.2 IS European C 0.44 0.96 7.63×10-5 

(Meschia et al., 

2011) -- 
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NINJ2 rs11833579 

12p13.3

3 IS European A 0.23 

1.41  

(1.27-1.56) 2.3×10-10 

(Ikram et al., 

2009) (Traylor et al., 2012) 

CELSR1 rs6007897 22 IS Japanese G -- 

1.85  

(1.29-2.61) 6.00×10-4 

(Yamada et al., 

2009) -- 

AGTRL1 rs9943582 11q12 IS Japanese G -- 

1.30  

(1.14-1.47) 6.66×10-5 

(Hata et al., 

2007) -- 

PRKCH rs1452 

14q22–

q23 SVD Japanese A 0.23 

1.40  

(1.23-1.59) 5.10×10-7 

(Kubo et al., 

2007) -- 

ALOX5A

P 

HapA 

(SG13S25, 

SG13S114, 

SG13S89 and 

SG13S32) 

13q12-

13 IS European -- 0.09ϯ 1.67 9.50×10-5 

(Helgadottir et 

al., 2004) -- 

PDE4D  5q12 

CE & 

cryptogenic European -- 0.16 -- 1.50×10-6 

(Gretarsdottir et 

al., 2003) -- 

 

*All p values are the lowest ever reported for a SNP by the main study under the ‘Study’ heading.  

**‘Other Studies’ are studies that have also reported a GWAS significant association for a SNP. 

ϯRAF reported in controls only 
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1.5.3.1 Limitations of GWA Studies on Stroke 

GWA studies are plagued with many limitations. The high throughput nature of GWA 

studies requires large sample sizes for analysis in order to boost power to detect 

modest effect sizes. Resultantly GWA studies are labor and finance intensive, taking 

years to compile data and running into millions of dollars per project.  

Recruitment: The manner in which cases and controls are recruited is also 

questionable. Ideally controls should be individuals with similar gender, age and 

environmental exposures. Most cohorts, as a norm and not an exception, collect DNA for 

cases and controls from different recruitment sites. Although all efforts are made to use 

age and gender matched controls, it is common practice to use standard common-pool 

controls such as the WTCCC 1958 British Birth Cohort controls, where there is a lack of 

locally recruited controls. This is mostly done to increase power of a study or to reduce 

costs. 

Experimental errors in DNA collection, genotyping and quality control are notorious 

for adding to the problem of spurious results. The sources of DNA can vary from blood, 

tissue, buccal and saliva cells. This is further compounded by disparities in the DNA 

isolation methods, division of labor between different laboratory personal and the use 

of different genotyping platforms. Because experimental methods vary over time and 

location, severe batch effects can be introduced for samples genotyped on separate sets 

of plates leading to false positives (Leek et al., 2010). An analysis by Lambert et al of 

commonly occurring GWAS mistakes, recommends the involvement of a statistician in 

the design of both sample collection and protocols for performing subsequent 

measurements (Lambert and Black, 2012). 

Analytical error: The choice of analytical and quality control methods can also lead to 

false positive results as has been implicated for the DeCODE GWA study (Worrall and 

Mychaleckyj, 2006). In a meta-analysis, the practice of pooling of family-based, 

population-based cohort and case-control studies can introduce heterogeneity due to 

survival bias, population stratification and differences in risk allele frequency. The use 

of different quality control thresholds, analytical and imputation software can also lead 

to introduction of heterogeneity. Adjustment for different covariates across studies can 

also be a source of heterogeneity. 



CHAPTER 1: INTRODUCTION 

74 
 

Population admixture is yet another limitation that can lead to spurious results. 

Despite stringent quality control measures, a population based case control study 

possesses several inherent disadvantages, which limit our ability to make reliable 

conclusions. Underlying population sub-structure due to systemic ancestral differences 

is one such limitation, which can act as a confounding factor and shield a true 

association or inflate a false one. Most of the stroke studies have been conducted on the 

European population that is known to be genetically stratified (Lao et al., 2008) and 

admixture of populations with different ancestry can lead to inflated statistics. Several 

methods to control population sub-structure exist, such as ancestry-informative 

principal components (Price et al., 2006) and genomic control (Devlin and Roeder, 

1999) but population sub-structure cannot be completely ruled out. Unreliability of test 

results may also lie in the lack of statistical power combined with multiple testing which 

can inflate test statistics and produce spurious results. Cryptic relatedness in 

individuals manifesting the same disease can also produce false positive results (Devlin 

and Roeder, 1999).  

Effect size: Another major limitation of the GWA study model has been the inability to 

identify common genetic variants (>5%) with large effect sizes that exert an effect 

measureable at the population level. Most published studies have identified common 

variants with small to modest effect sizes for dichotomous traits (OR <1.5) and variance 

of <1% for quantitative traits (de Bakker et al., 2008). However, results from large 

stroke GWA studies have yet to identify a risk variant for over-all stroke and have only 

shown the sub-type specific association of susceptibility loci (Holliday et al., 2012). This 

is not surprising, as stroke is more of a clinical syndrome multiple etiologies. 

Researchers have therefore increasingly begun to analyze stroke genetic datasets by 

subtype. 

Misspecification of outcomes: One of the major assumptions of GWA studies is that of 

association of the genetic risk variant with stroke cases as compared to non-stroke 

controls. However, there can be several other confounding factors, which might be 

associated with the risk variant, giving the false appearance of an association with 

stroke. 

Lack of causality: GWAS help identify and attribute genetic mutations to complex 

polygenic disorders such as stroke and MI, just as it has been done for single gene 
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Mendelian disorders. However the reality is far from the truth. Although these studies 

help identify genes which are part of molecular pathways that may be involved in the 

etiology of stroke they fail to pinpoint the causal variant and the exact biological 

mechanism relevant to the disease. The clinical utility of this genetic information for 

prognosis and treatment is also very thin and has not found any major applicability in 

everyday clinical practice. GWA studies also provide a limited understanding of the 

gene-environment interaction, which may play a major role in the differential gene 

expression.  

It is clear from the current understanding of GWAS results that there is a need for 

denser coverage of the genome to identify possible causal variants followed by 

validation of results at a transcriptomic and proteomic level. 

1.5.3.2 Genotyping Platforms 

Completion of the international HapMap consortium has enabled the development of 

commercially available genotyping microarrays and heralded the era of the GWA study. 

DNA microarrays have been widely used by scientists since the early 1990’s for gene 

discovery in diseased and healthy populations. Microarrays not only allow researchers 

the ability to analyze hundreds of thousands of genes in a single experiment but they 

also provide the flexibility of studying specific parts of the genome. High-throughput 

gene expression analysis has become a popular and standard method in many genetics 

and molecular biology laboratories. 

SNPs form the foundation of current GWA studies. These are the most common type of 

genetic variation in the human genome, which occur approximately every 1000 base 

pairs. Mutations of the genome that are stable across several generations and occur in 

>1% of the population are called SNPs. SNPs usually lie outside protein coding regions 

and are phenotypically silent (Perkel, 2008). Currently available genotyping arrays 

provide ~87% genome coverage for common SNPs which are found in >5% of the 

population. 

The International HapMap Project (http://hapmap.ncbi.nlm.nih.gov), a collaborative 

effort between Japan, United Kingdom, Canada, China, Nigeria, and United States, has 

identified most of the approximately 10 million SNPs estimated to occur commonly in 

the human genome. This has enabled the rapid growth in the genotyping tools and 

http://hapmap.ncbi.nlm.nih.gov/index.html.en
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companies such as Illumina (San Diego, USA) and Affymetrix (Santa Clara, USA) have 

become leading producers of high throughput genotyping technologies. The gene chips 

developed by these companies share similarities in application and format of the chips, 

however they differ considerably in SNP selection strategy and hybridization chemistry 

(Perkel, 2008). While Illumina uses50-mer oligonucleotides per SNP, Affymetrix uses 

25-mer oligo’s spotted as 4-6 replicate probes per allele. Additionally, probes designed 

by Illumina are based entirely on haplotype-tagging tag SNPs identified by the 

International HapMap consortium while only half of the Affymetrix probes are tag SNPs; 

the remaining being ‘unbiased’ SNPs chosen to cover the genome while accommodating 

sequence restraints imposed by the assay itself (Perkel, 2008). Studies have tested the 

technical reproducibility of Affymetrix and Illumina SNP arrays and validated the 

reliability of both genotyping platforms (Hong et al., 2012). 

The BRAINS-UK DNA samples were genotyped on the IlluminaHuman610-Quad bead 

chip, which was introduced in 2005, and the technology has since become obsolete. The 

study aims to perform whole-genome genotyping using Illumina’s brand new Omni 

Family of Microarrays, which can currently deliver up to 5 million markers per sample 

and are designed from next-generation sequencing data from international projects 

such as the 1000 Genomes Project, hence offering denser genome coverage as compared 

to previous gene chips. 

1.5.3.3 GWAS Consortiums Boost Power 

GWAS models have so far enjoyed over whelming popularity and encouraged 

researchers worldwide to form large collaborations to exchange data. Combining 

genetic data from multiple studies not only increases the sample size but also the 

statistical power to detect small effects caused by common genetic variants. Ideally, 

meta-analysis should combine raw genotype and phenotype data from various cohorts 

allowing tests for epistasis, gene effects and gene-phenotype interactions (de Bakker et 

al., 2008). However in the real world, several institutional and ethical limitations do not 

facilitate the above scenario and exchange of data between research groups mostly 

takes the form of an informal look-up request of sentinel hits from discovery GWAS’s or 

more formal requests for summary statistics to be included in genome wide meta-

analysis. Cohorts perform site-specific analysis (quality control, imputation using 
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reference datasets from HapMap or 1000 Genome and association testing) and forward 

the association results to the lead group for inclusion in the meta-analysis.  

For example, the METASTROKE collaboration combined data from 15 ischemic stroke 

cohorts with a total of 12,389 individuals with ischemic stroke and 62,004 controls. This 

was followed by a replication analysis of top hits in 13,347 ischemic stroke cases and 

29,083 controls from 18 cohorts. For a minor allele frequency of 0.25, the study had 

80% power to detect variants with a per-allele OR greater than 1.11 for the all ischemic 

stroke analysis, 1.23 for CE stroke, 1.24 for LVD, and 1.26 for SVD at p≤5×10-8 in the 

discovery phase (Traylor et al., 2012).  
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1.5.4 TDT and S-TDT 

Family based genetic association tests such as the TDT are robust against bias 

introduced by population stratification and varying environmental exposure, which are 

problems plaguing several population based case-control studies. However, due to the 

difficulty in recruiting sufficient number of stroke case-patient trios and the resultant 

loss of power, such study designs require very large sample sets (Hassan et al., 2002). 

An alternative to TDT is the S-TDT study design which is useful for late-onset or age 

related diseases where parent genotype data may not be available. 

Linkage studies have been widely used to study clinical phenotypes associated with the 

heritability of stroke and monogenic stroke, although they have only recently found 

applicability in analyzing common genetic risk variants. The SWISS was the first GWAS 

to examine the associations between genetic variants and risk of stroke and its subtypes 

within sibling pairs (Meschia et al., 2011). The family-based association analyses used 

the S-TDT, which is a simultaneous test of linkage and association based on 

transmission of alleles from parents to offspring, free of any population sub structure 

(Spielman et al., 1993). Findings showed that stroke subtype and age at stroke in 

affected sibling pairs exhibit significant clustering of genetic risk variants although no 

one variants reached genome-wide significance. 10 significantly associated SNPs 

covering 8 genomic loci were identified, of which 2 were promising risk variants on 

chromosome 3p (neuronal nitric oxide synthase) and 6p (Meschia et al., 2011). 

In another study by Kopyta et al, TDT analysis was used to study pediatric stroke 

genetics in 392 individuals (81 ischemic stroke children, 162 biological parents and 149 

control children). The study reported no significant preferential distribution of risk 

alleles (Factor II, Factor V, Factor VII, and Factor XIII genes) from parents to the affected 

children (Kopyta et al., 2012). 

  



CHAPTER 1: INTRODUCTION 

79 
 

1.5.5 CNV and Exome Analysis 

The genetic architecture of stroke is complex and is likely to include non-SNP variations 

as disease causing. Current association studies test the ‘common disease-common 

variant’ hypothesis assuming that the risk variant is commonly found in >5% of the 

general population. The variants tested are usually intronic or intragenic SNPs that do 

not provide any information on the role of protein coding part of the genome i.e. 

exomes. However the lack of reliable associations in the recent stroke GWA studies 

point towards the possibility of rare or low frequency variants with high penetrance 

and large effect sizes. These non-SNP variations could be very informative about the 

genetic underpinnings of stroke, yet they remain under represented in most association 

studies.  

The National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project 

recently identified rare genetic variations in HDL-associated paraoxonase-1 (PON1) 

gene to be associated with ischemic stroke. In a sub group analysis of different ethnic 

populations, the study also showed that the variants had the strongest association with 

African Americans (Kim et al., 2014).  

Another study identified rare exonic variants to be associated with stroke suggesting 

that coding variations in the human genome need to be closely examined (Cole et al., 

2012). The study was small, consisting of only 10 stroke cases (8 African-Americans and 

2 Caucasians) and a non-standardized methodology. 48 genes that had at least one rare 

variant across all stroke cases were identified. GeneCSN3,was found to contain an excess 

of rare variations as compared to other genes (Cole et al., 2012). 

CNVs are large structural variations of the genome that include deletions, insertions, 

translocations, inversions and variable number repeats. CNVs alter the gene dosage 

without affecting function and are known to play a role in monogenic disorders 

although their role in complex traits such as stroke is unclear (McCarroll and Altshuler, 

2007). GWA of CNVs associated with ischemic stroke has not identified any unique 

structural genomic variations that may contribute to the risk for stroke (Matarin et al., 

2008). Smaller candidate gene based studies have provided some evidence of a unique 

genomic structure in ischemic stroke patients (Tiszlavicz et al., 2012), however large 

well-powered studies have failed to do the same (Norskov et al., 2011). The Human 
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Genome Structural Variation initiative started by the NHGRI to map structural 

variations within the human genome, is currently in the process of genotyping human 

CNVs and will add more information to the existing reference genome which may aid 

future stroke CNV analysis in identifying a disease-causing mutation. 
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1.5.6 Next Generation Sequencing and Rare Variants 

GWAS studies function under the ‘common disease common variant’ hypothesis and 

have succeeded in identifying common genetic risk variants for stroke to which only a 

small effect size (<1.5) can be attributed. Although HapMap database has some rare 

variants, it is mostly the common SNPs that are genotyped. The general perception is 

that the ‘missing heritability’ lies with rare genetic variants, which are too infrequent to 

be picked up by commercially available genotyping platforms. Next generation 

sequencing is the latest technology to appear in the field of genetics, which offers a 

solution to this problem. The underlying hypothesis for NGS is that of ‘rare variant 

common disease’ (Bevan et al., 2011), which assumes that a rare causal genetic variant 

has a large effect on the development of stroke. The availability of the entire human 

genome via HapMap aided by advances in statistical computation makes it a promising 

strategy for studying genetics of stroke. The 1000Genomes project with whole genomes 

of 1000 healthy individuals will further provide dense coverage of both common and 

rare variants and add important information to the current knowledge base.  

Although large-scale NGS approaches are already in the pipeline, some researchers are 

using targeted approaches to finding rare variants. Perkel et al report that companies 

such as Perlegen Sciences, Mountain View, California, USA, are using 454 Life Sciences 

(Roche) sequencing platforms to identify very rare genetic variants to study side effects 

to PPAR-gamma agonists, identifying two candidate genes for further analysis (Perkel, 

2008). 

Currently there are no NGS studies on stroke. 
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1.6. Aims of Thesis 

This PhD thesis examined the genetic epidemiology of three unique risk factors that 

predispose individuals to ischemic stroke (South Asian ethnicity, blood pressure 

variability and carotid disease) using different study models: literature based meta-

analysis, candidate gene based study and genome wide association study. Following are 

the aims of the thesis: 

Aim 1 (Chapter 2): South Asian ethnicity predisposes individuals to the risk of stroke.  

However, the lack of large well-powered studies has obstructed the estimation of 

reliable risk associations. As the first aim of the study, a comprehensive systematic 

review and literature based meta-analysis of candidate gene studies examining gene 

polymorphisms associated with ischemic stroke in South Asians was conducted and the 

risk association was quantified by calculating pooled odds ratios. In an effort to 

establish causality, Mendelian randomization strategy was used to quantitate the level 

of risk for biomarkers. 

Aim 2 (Chapter 3): A genome wide association study in blood pressure variability by 

the multinational ASCOT study identified a cluster of 17 correlated SNPs within the 

NLGN1 to be associated with blood pressure variability. Since HTN and blood pressure 

variability are major risk factors for ischemic stroke, the study hypothesized that 

NLGN1SNPs may also be associated with stroke. In an effort to prove the hypothesis, the 

second aim of this study replicated the NLGN1 SNPs in an independent European 

ischemic stroke population comprising of 8295 ischemic stroke cases and 12722 

healthy controls from 7 different cohorts. 

Aim 3 (Chapter 4): Carotid stenosis of >50% is associated with high risk of ischemic 

stroke and nearly 20% of all ischemic strokes and TIA’s are caused by emboli 

originating from unstable plaque. As the final aim of the study, a GWAS was conducted 

to identify novel gene variants associated with advanced carotid disease in ischemic 

stroke. Seven independent cohorts comprising of >14,000 individuals were meta-

analyzed using fixed-effect model and inverse variance method of weighted beta 

coefficients. 

 



 

83 
 

CHAPTER 2: GENE POLYMORPHISMS 

ASSOCIATED WITH ISCHEMIC STROKE IN 

SOUTH ASIANS: A LITERATURE BASED 

META-ANALYSIS 

  



CHAPTER 2: GENE POLYMORPHISMS ASSOCIATED WITH ISCHEMIC STROKE IN SOUTH ASIANS: A 
LITERATURE BASED META ANALYSIS 

84 
 

Abstract 

The burden of stroke is disproportionately high in the South Asian subcontinent with 

South Asian ethnicity conferring a greater risk of ischemic stroke than European 

ancestry regardless of country inhabited. While genes associated with stroke in 

European populations have been investigated, they remain largely unknown in South 

Asians. A comprehensive meta-analysis of known genetic polymorphisms associated 

with South Asian ischemic stroke was conducted, and effect size of the MTHFR C677T-

stroke association was compared with effect sizes predicted from Hcys-stroke 

association.  

Electronic databases were searched up to August 2012 for published case control 

studies investigating genetic polymorphisms associated with ischemic stroke in South 

Asians. Pooled ORs for each gene-disease association were calculated using a random-

effects model. 26 studies (approximately 2529 stroke cases and 2881 controls) 

interrogating 33 independent genetic polymorphisms in 22 genes were identified. Ten 

studies described MTHFR C677T (108 with TT genotype and 2018 with CC genotype) -

Hcys relationship and six studies (735 stroke cases and 713 controls) Hcys-ischemic 

stroke relationship.  

Risk association ORs were calculated for ACE I/D (OR 5.00; 95% CI, 1.17-21.37; p=0.03), 

PDE4D SNP 83 (OR 2.20; 95% CI 1.21- 3.99; p=0.01), PDE4D SNP 32 (OR 1.57; 95% CI 

1.01-2.45, p=0.045) and IL10 G1082A (OR 1.44; 95% CI, 1.09-1.91, p=0.01). Significant 

association was observed between elevated plasma Hcys levels and MTHFR/677 TT 

genotypes in healthy South Asians (Mean difference (ΔX) 5.18 μmol/L; 95% CI 2.03-

8.34; p=0.001).  

Findings from this study demonstrated that the genetic etiology of ischemic stroke in 

South Asians is broadly similar to the risk conferred in Europeans, although the dataset 

is considerably smaller and warrants the same clinical considerations for risk profiling. 
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2.1 Introduction 

South Asia comprising of India, Pakistan, Sri Lanka and Bangladesh, forms 20% of the 

world’s populous and shoulders much of the global death burden from cardiovascular 

disease (Ezzati and Riboli, 2012) with India reporting 930,985 cases of stroke in 2004 

leading to 639,455 deaths and loss of 6.4 million DALYs (Goverment of India, 2008). The 

past decade has seen prevalence rates of stroke rise in South Asia from between ~200 

(Banerjee et al., 2006, Saha et al., 2003, Gourie-Devi et al., 2004) to 545 per 100,000 

persons (Das et al., 2007), while incidence studies demonstrate exponential increases in 

stroke incidence rates of >800% over the past 30 years (e.g. from 13 to 123 per 100 000 

persons per year between 1969 and 1993) (Rao et al., 1971, Bhattacharya et al., 2005). 

Studies of South Asian Diasporas in the West have also shown a heightened prevalence 

and incidence of stroke and coronary artery disease compared to Caucasians (Potluri et 

al., 2009, Baweja et al., 2004). This is compounded by the fact that South Asians are 

developing stroke at a relatively young age, despite lower rates of alcohol and tobacco 

use (Biswas et al., 2009). The burden of stroke is high in South Asia and is likely to 

increase further due to demographic and epidemiological transitions in the South Asian 

populations. As lifestyles change and urban and rural populations are re-structured, 

South Asia is set to witness a surge in stroke occurrence. 

Ethnic differences in the incidence of stroke (Tsai et al., 2013, Cappuccio et al., 1997) 

indicate differences in environmental exposure or genetic makeup underpinning the 

disease. Although 90% of the PAR for stroke is attributed to ten modifiable risk factors 

(O'Donnell et al., 2010), this does not account for the occurrence of stroke in young 

unexposed populations and also fails to explain the development of stroke in only some 

individuals within a population that is uniformly exposed to environmental risk factors. 

As with Europeans (Bentley et al., 2010, Bevan et al., 2012), it is likely that the causality 

of stroke in South Asians involves the complex interaction between genetic and 

environmental risk factors. 

We undertook a comprehensive meta-analysis of all known genetic associations with 

ischemic stroke in South Asians and compared it to published results in different ethnic 

groups. We further sought to establish whether Hcys, the putative biochemical 

intermediary of the MTHFR gene is associated with quantitative levels of risk (Casas et  
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al., 2005) in South Asians as similarly shown in Europeans (Casas et al., 2005, Bentley et 

al., 2010). Our meta-analysis strategy was to pool candidate gene based genetic studies 

into a statistical model and calculate more reliable pooled odds ratios, bearing in mind 

that most such are underpowered as stand-alone studies. Such candidate gene studies 

are based on a pathophysiological priori hypothesis tested by investigators. This was 

the model upon which we sought to provide further and more robust clarification.  
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2.2 Methods 

2.2.1 SNP Analysis 

2.2.1.1 Data Searching 

We identified all published case-control studies evaluating any gene polymorphisms 

and ischemic stroke in South Asians residing in their native countries and Diasporas 

around the world. Electronic searches were conducted using Medline, EMBASE and 

Google Scholar. All published manuscripts up until and including August 2012 as well as 

letters, previous meta-analyses and abstracts were included. The retrieved studies were 

examined thoroughly to assess their appropriateness for inclusion in our study. The 

references of all identified publications were manually reviewed for additional studies 

and the PUBMED ‘relevant articles’ option was utilized. The following index terms along 

with 'and/or' as a Boolean operator were used: ‘‘South Asia’’ ‘‘India’’ ‘‘Pakistan’’ ‘‘Sri 

Lanka’’ ‘‘Bangladesh’’ for ancestry and ‘‘stroke genetics’’ ‘‘gene polymorphism’’ ‘‘gene 

mutation’’ ‘‘stroke genes’’ for genetics and ‘‘stroke’’ ‘‘cerebrovascular disease’’ ‘‘ischemic 

stroke’’ ‘‘brain infarction’’ ‘‘brain ischemia’’ for clinical phenotype. 

2.2.1.2 Study Selection 

Study inclusion criteria were: (1) studies in populations of South Asian descent defined 

as Indian, Pakistani, Sri Lankan or Bangladeshi; (2) case-control studies where ischemic 

stroke was analyzed as a dichotomous trait; (3) stroke was confirmed using brain 

imaging with sub-acute (within 10 days) CT or MRI, and; (4) genotype frequency for 

both cases and controls was reported. Studies were excluded if: (1) subjects were <18 

years age; (2) the genotype frequency was not reported and could not be obtained from 

authors and (3) stroke other than ischemic. 

2.2.1.3 Data Extraction 

Data extracted from each study included: first author, journal, year of publication, 

stroke sub-type, and number of cases and controls for each genotype and SNP. Baseline 

characteristics for cases and controls were documented including mean age, gender, 

ethnicity and geographical location.  
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2.2.1.4 Data Analysis 

For each genetic variant for which data were available from at least two studies, a meta-

analysis was carried out. Data was analyzed using Review Manager v5.0 and 

Comprehensive Meta-Analysis v2.0. Using a recessive genetic model we tested the 

carriers of mutant homozygous genotypes (mt/mt) versus wild type heterozygous and 

wild type homozygous (mt/wt + wt/wt) genotype carriers. To test for strength of 

association for each gene variant, pooled OR and 95% CI were calculated using a 

random effects model (DerSimonian and Laird, 1986). The OR is the odds of an event 

occurring in one group divided by the odds of the event occurring in another group. For 

a recessive model, an OR was calculated using the following formula: 

 

          
                                

                           
  

  
        

 

 

If the mutant and wild type alleles have an identical effect the OR will be 1. If the mutant 

allele increases the risk of stroke, the OR will be greater than 1; if it reduces the risk of 

stroke the OR will be less than 1. In a recessive genetic model an OR of > 1 implies that 

carriers of the homozygous mutant (mt/mt) genotype have a greater risk of ischemic 

stroke than carriers of the wild type (wt/mt and wt/wt) genotypes. Effect sizes can be 

inflated or underestimated and 95% confidence intervals were calculated as a way of 

representing the uncertainty in the estimation of the OR. The 95% CI contains a range of 

values which are above and below the effect size (OR) within which we can say with 

95% certainty that the real effect lies. The results is considered statistically significant if 

the 95% CI does not contain the value 1 which implies that the mutant and wild type 

alleles have an identical effect. The strength of genetic association (risk or protection) 

for each polymorphism was tested using a chi square test and considered statistically 

significant if a p-value of <0.05 was obtained (Cochran, 2010).  

Statistical heterogeneity was determined in 2 ways. First forest plots were observed for 

overlapping confidence intervals. If the CI’s of studies were far apart from each other 

and did not overlap, heterogeneity was reported. Next, for each analysis a chi squared 
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and I2 index test for heterogeneity (Deeks, 2008) was performed, with significance set 

at p ≤ 0.10 rather than the conventional p ≤ 0.05.  This is because the test is not sensitive 

enough to detect heterogeneity in low powered studies. The chi-squared test generates 

a chi-squared statistic; degrees of freedom and a p value obtained by referring the first 

two numbers to statistical tables and measure the presence vs. absence of 

heterogeneity. Heterogeneity was reported if the chi squared statistic was greater than 

the df.  The I2 index test compliments the chi-squared test and quantifies (in 

percentage) the extent of heterogeneity in a meta-analysis (Cochran, 2010). 

Finally, funnel plots and Egger linear regression intercept p-values (two-tailed) were 

used to determine probability of publication bias (Egger et al., 1997). In funnel plots, 

study specific standard error was plotted against log OR’s and if the plot were not 

symmetrical i.e. did not resemble an inverted funnel, publication bias was reported. 

Observing whether 95% confidence intervals overlapped made comparison of ORs of 

genes with significant associations.  

2.2.2 MTHFR C677T – HcysPhenotype Comparison 

For MTHFR C677T gene variant which had an associated biomarker Hcys, we 

performed a separate analysis that produced an estimate of expected risk based upon 

genotype–biomarker, and biomarker–stroke, association studies, using Mendelian 

randomization (Bentley et al., 2010, Casas et al., 2005, Wald et al., 2003). 

2.2.2.1 Data Search Criteria 

Electronic searches were conducted using Medline, EMBASE and Google Scholar and all 

published manuscripts up until and including August 2012 were considered. The 

following index terms along with 'and/or' as Boolean operators were used for MTHFR: 

(MTHFR OR Methylenetetrahydrofolatereductase) AND (gene OR genetic OR genotype 

OR polymorphism OR mutation), in combination with (MTHFR OR 

Methylenetetrahydrofolatereductase ) AND (Hcys OR activity OR level); and 2) (MTHFR 

OR Methylenetetrahydrofolatereductase) AND (activity OR level) in conjunction with 

(CVDOR brain infarction OR stroke OR cerebral ischemia) and (South Asia or India or 

Pakistan or Sri Lanka or Bangladesh). 

  

http://en.wikipedia.org/wiki/Methylenetetrahydrofolate_reductase
http://en.wikipedia.org/wiki/Methylenetetrahydrofolate_reductase
http://en.wikipedia.org/wiki/Methylenetetrahydrofolate_reductase
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2.2.2.2 Study Selection 

The literature was searched for two types of studies: (Study 1) case-control studies 

reporting dichotomous and continuous data for plasma Hcys levels in South Asians with 

ischemic stroke, and; (Study 2) studies linking plasma Hcys levels with the MTHFR 677 

wild type (CC) and homozygous mutant (TT) genotype in healthy South Asians. Control 

populations with genotype-Hcys data from case-control studies on psoriasis, coronary 

artery disease and glaucoma were also included. 

2.2.2.3 Data Extraction 

Data extracted from each study included: first author, journal, year of publication, 

stroke sub-type, and total number of participants. Baseline characteristics for cases and 

controls were documented including mean age, gender, ethnicity and geographical 

location. In addition for Study 1, plasma Hcys levels as means with standard deviations 

and median with ranges in ischemic stroke cases and controls, and; for Study 2, plasma 

Hcys levels as means with standard deviations and median with ranges in MTHFR 677 

wild type (CC) and homozygous mutant (TT) genotype in healthy South Asians were 

extracted. 

2.2.2.4 Data Analysis 

The methodology for a literature based Mendelian randomization for MTHFR and Hcys 

is well described (Bentley et al., 2010, Casas et al., 2005). Where values of plasma Hcys 

were reported as medians and ranges, the mean and standard deviation were estimated 

using established models dependent upon sample size (Hozo et al., 2005). For both 

types of studies, mean Hcys difference between ischemic stroke cases vs. controls and 

MTHFR TT vs. CC genotypes were calculated using the continuous data type inverse 

variance method in Review Manager v5.0. A pooled mean difference (ΔX)with 95% 

confidence interval was calculated for MTHFR TT vs CC genotypes using a random 

effects model. Mean difference in Hcys levels between ischemic stroke cases vs. controls 

were converted to ORs and 95% confidence interval using Comprehensive Meta-

Analysis (CMA) v2.0. Assuming a log-linear relationship, this OR was scaled with the ΔX 

change in Hcys levels conferred by the MTHFR TT genotype to give the expected OR 

(Casas et al., 2005). 
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For each meta-analysis an I2 test for heterogeneity was performed, with significance set 

at p<0.05.  Funnel plots and Egger regression intercept p-value (two-tailed) were used 

to determine probability of publication bias.  
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2.3 Results 

2.3.1 Meta-Analysis of Gene Variants Associated with Ischemic Stroke 

Our search strategy identified ~4500 potentially relevant studies of which 26 met the 

inclusion criteria allowing interrogation of 33 independent genetic polymorphisms in 

22 different genes across 2529 stroke cases and 2881 controls (Figure 2.1). The 

majority of studies were from India (North and South) followed by Pakistan, 

Bangladesh, Malaysia and the United Kingdom (Table 2.1). 

Relevant studies identified were; five for MTHFR C677T (Biswas et al., 2009, Alluri et al., 

2005, Panigrahi et al., 2006, Somarajan et al., 2011, Mejia Mohamed et al., 2011), three 

for PDE4D SNP 83 (Saleheen et al., 2005, Munshi et al., 2009, Banerjee et al., 2008) and 2 

studies each for eNOS 4a/4b (Majumdar et al., 2009, Munshi et al., 2010), ACE (Munshi 

et al., 2008, Kalita et al., 2011), ApoE E4/E4 (Luthra et al., 2002, Chowdhury et al., 2001), 

FVL G1691A (Dindagur et al., 2007, Dindagur et al., 2006), PDE4D SNP 87 and 32 

(Saleheen et al., 2005, Munshi et al., 2009) and IL10 (Munshi et al., 2010, Sultana et al., 

2011) genes. Two studies each reporting different stroke sub types (CVT and arterial 

pediatric ischemic stroke) were found for genes MTRR G66A (Biswas et al., 2009, Biswas 

et al., 2009), MTR A2756G (Biswas et al., 2009, Biswas et al., 2009), MTHFR A1298C 

(Biswas et al., 2009, Biswas et al., 2009) and FVL A4070G (Biswas et al., 2009, Biswas et 

al., 2009, Dindagur et al., 2007), and therefore ORs for risk were not estimable. 

Prothrombin G20210A polymorphism was investigated in two studies (Dindagur et al., 

2006, Munshi et al., 2009). Homozygous or heterozygous variants were completely 

absent in all individuals studied and with only the wild type genotype being expressed 

an OR for risk was not estimable.  

One relevant study was identified for genes variants IL-1α C889T (Banerjee et al., 2008), 

CYP11B2 C344T (Munshi et al., 2010), ESR1PVUII and XbaI (Munshi et al., 2010), α ADD1 

WG (Kalita et al., 2011), TNF α G488A and G308A (Munshi et al., 2011), CYP4F2 G1347A 

(Munshi et al., 2012), MDR-1 (Sharma et al., 2011), t-PA C7351T and I/D (Babu et al., 

2012), PAI-1 4G/5G (Babu et al., 2012), CBS T833C (Chandra, 2006), Klotho KL-VS and 

C1818T (Majumdar et al., 2010), Factor XIIIB V34L (Kain et al., 2005), 

α1antichymotrypsinAla15Thr (Somarajan et al., 2010) and MMP3 5A/6A (Munshi et al., 

2011). Of these, IL-1α, CYP11B2, ESR1 PVUII, α ADD1, TNF α G488A), CYP4F2, MDR-1 and 
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t-PA I/D were found to be significantly associated with ischemic stroke (Table 2.1). The 

following are the results for the most significantly associated (p≤0.05) gene variants 

with 2 or more studies. 

2.3.1.1 PDE4D SNP 83 (rs966221) 

The PDE4D SNP83 polymorphism was investigated in three studies covering Pakistan 

and North India (Saleheen et al., 2005, Munshi et al., 2009, Banerjee et al., 2008) in a 

total of 1338 subjects (626 Ischemic stroke cases; 712 controls). A pooled OR of 2.20 

(95% CI, 1.21-3.99; p=0.01) was generated with a recessive random-effects model. 

There was no evidence of inter-study heterogeneity ([PHET] = 0.06, I2 = 65%) (Fig. 2.2). 

2.3.1.2 ACE I/D (rs4646994) 

The homozygous ACE D/D polymorphism was investigated in a total of 2 studies 

covering India (Munshi et al., 2008, Kalita et al., 2011) in 693 subjects (355 ischemic 

stroke cases; 338 controls) providing a pooled OR of 5.00 (95% CI, 1.17-21.37; p=0.03) 

with a recessive random-effects model. There was evidence of inter-study heterogeneity 

([PHET] = 0.002, I2 = 90%) (Fig. 2.3). 

2.3.1.3 IL10 G1082A (rs1800896) 

The homozygous IL10 G1082A polymorphism was investigated in a total of 2 studies 

(Munshi et al., 2011, Sultana et al., 2011) covering India in 1414 subjects (718 ischemic 

stroke cases; 696 controls) providing a pooled OR of 1.44 (95% CI, 1.09-1.91; p=0.01) 

with a recessive random-effects model. There was no evidence of inter-study 

heterogeneity ([PHET] = 0.12, I2 = 59%) (Fig. 2.4). 

2.3.1.4 MTHFR/C677T (rs1801133) 

The homozygous MTHFR C677T polymorphism was investigated in seven studies 

(Biswas et al., 2009, Alluri et al., 2005, Panigrahi et al., 2006, Somarajan et al., 2011, 

Dindagur et al., 2007, Biswas et al., 2009, Kalita et al., 2006), of which five studies 

covering North Indians and Malaysian Indians (Biswas et al., 2009, Alluri et al., 2005, 

Panigrahi et al., 2006, Somarajan et al., 2011, Dindagur et al., 2007) were included in the 

final analysis. These totaled 615 subjects (309 ischemic stroke cases and 356 controls) 

providing a pooled OR of 2.50 (95% CI, 0.89-6.97; p=0.08) with a recessive genetic and 
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random-effects model (Fig. 2.5). There was no evidence of inter-study heterogeneity 

([PHET]=0.33,I2=14%).
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2.3.2 Comparison with Different Ethnic Groups 

Comparisons of genetic risk of ischemic stroke for our top four gene polymorphisms 

were made with different ethnic populations reported in published literature (Figure 

2.6). PDE4D (SNP 83) was associated with risk for South Asians and Chinese but 

conferred protection for the Japanese. The gene showed a (non-significant) trend for 

protection against risk in a European descent population (Bevan et al., 2008). Odds 

ratios for MTHFR C677T gene polymorphism had relatively uniform association of risk 

between the different ethnic groups with overlapping 95% confidence intervals. Except 

for the current study, odds ratios for ACE I/D gene polymorphism were also uniformly 

distributed. We discuss the various reasons for the possible inflation of effect size in our 

study in the discussion section. IL10 (G1082A) gene polymorphism was associated with 

an increased risk of stroke for Caucasians as compared to South Asians; however the 

result is probably inflated due to inclusion of only 2 studies to calculate the pooled 

effect size. 

2.3.3 Biochemical Marker of Risk: MTHFR C677T and Hcys 

Seven studies (Modi et al., 2005, Kalita et al., 2009, Dhamija et al., 2009, Biswas et al., 

2009, Mamatha et al., 2011, Mejia Mohamed et al., 2011, Narang et al., 2009) that 

presented plasma Hcys levels in South Asian ischemic stroke patients were subjected to 

a meta-analysis. One study (Dhamija et al., 2009) did not have normally distributed data 

with a threefold difference in mean Hcys levels between cases and controls, and the 

study was excluded from the final analysis. The remaining six studies presented data as 

means and standard deviations as well as median with their lower and higher range.  

A mean difference in Hcys between ischemic stroke cases and controls was found to be 

2.90 μmol/L (p=0.02, 95% CI 0.45-5.34) and this corresponded to an OR of 1.68 (95% CI 

1.10-2.58), calculated using the CMA v2.0 software. There was evidence of inter-study 

heterogeneity ([PHET] < 0.0001, I2 = 95%) (Fig 2.5). We found 10 studies (Dhillon et al., 

2007, Chambers et al., 2000, Kumar et al., 2005, Liew et al., 2012, Iqbal et al., 2005, 

Misra et al., 2010, Tripathi et al., 2010, Micheal et al., 2009, Sukla et al., 2012, Rama Devi 

et al., 2004) linking Hcys levels to the MTHFR 677 wild type (CC) and homozygous 

mutant (TT) genotypes in healthy South Asians and calculated a mean difference (ΔX) of 

5.18 μmol/L (p= 0.001, 95% CI 2.03-8.34) between the TT vs. CC genotypes in healthy 
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individuals (Fig. 2.5). There was evidence of inter-study heterogeneity ([PHET] < 0.0001, 

I2 = 78%). 

The expected odds ratio was calculated using the following formula:  

                         

Where 1.68 = OR associated with 2.90 μmol/L difference in Hcys levels between stroke 

cases and controls 

ΔX = 5.18 μmol/L mean difference in Hcys levels between the MTHFR TT vs. CC 

genotypes in healthy individuals 

MD = Mean difference of 2.90 μmol/L associated with an OR of 1.68  

The above calculation revealed an expected OR of 2.52. A 95% confidence interval for 

the logged odds ratio of 0.92 (LN 2.52) was obtained as 1.96 standard errors on either 

side of the point estimate as previously described by Bland et al (Bland and Altman, 

2000). Standard error (SE) was calculated as the square root of the sum of reciprocals of 

the frequencies i.e. number of cases and controls. The 95% confidence interval was 

calculated using the formula LN (OR) ±1.96×SE, which generated a range of -1.17 to 

3.02. The antilog of these limits generated a 95% confidence interval for OR 2.52 as Exp 

(-1.17) =0.31 to Exp (3.02) =20.65.  A meta-analysis relating MTHFR 677/TT vs. CC risk 

genotype to disease in our current study generated a pooled observed OR of 2.50 (95% 

CI, 0.89-6.97). The observed OR was close to the expected OR and its 95% confidence 

interval fell entirely within the confidence interval for the expected OR (Fig. 2.7).  
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2.4 Discussion 

The current study is the most comprehensive genetic meta-analysis of ischemic stroke 

in South Asians from India, Pakistan, Sri Lanka and Bangladesh. Findings suggest three 

genes (PDE4D, ACE I/D and IL10) to have statistically significant ORs for risk of ischemic 

stroke in a South Asian adult population and the totality of data supported MTHFR 

C677T as a further likely risk factor. Results from 12 other gene variants, although 

significant, were of insufficient power to allow robust conclusions. The remaining 17 

gene polymorphisms (Table 2.1) failed to support any significant association either due 

to lack of sufficient studies, paucity of subjects studied and/or heterogeneity in the 

stroke sub-types investigated.  

The two most significant risk associations, PDE4D SNP 83 and ACE I/D identified, were 

previously described as genetic risk factors for stroke in other ethnic groups (Xu et al., 

2010). There was a doubling in the odds (OR 2.20; 95% CI, 1.21-3.99) or a ~120% 

increase in the risk of developing stroke per copy of the risk allele of PDE4D SNP 83 for 

overall ischemic stroke. PDE4D gene encodes a phosphodiesterase enzyme that 

regulates cAMP levels in the body (Conti et al., 2003) and was first identified as a 

candidate gene for stroke by the DeCODE study (Gretarsdottir et al., 2003). However 

several attempts to replicate these findings failed (Rosand et al., 2006), while some 

studies reported conflicting results (Bevan et al., 2008, Matsushita et al., 2009, Bentley 

et al., 2010). These discrepancies have been attributed to possible problems in study 

design and analytical methods (Worrall and Mychaleckyj, 2006). A recent meta-analysis 

by Yoon et al (Yoon et al., 2011) identified SNP 83 as having a protective association 

with stroke in Asians (OR 0.79, 95% CI 0.69-0.90; p=0.0005). The meta-analysis 

combined 4 studies of South East Asian origin and 2 studies of South Asian origin. While 

combining different ethnic populations for the analysis maybe a reasonable approach 

for an exploratory analysis of genetic risk factors, such assumptions may lead to 

fallacious results as studies have already proved that India has a unique genetic 

population sub-structure which cannot be imputed from other ethnic groups (Reich et 

al., 2009). Other studies have also identified race-ethnic disparities for stroke risk 

factors such as HTN and diabetes (Sacco et al., 2001) as well as genes affecting stroke in 

different ethnic groups (Hall et al., 2000). The current study included individuals of only 
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South Asian ancestry from the Indian sub-continent and though the population size is 

small, it takes into account the need for independent analysis of South Asians. 

ACE gene plays an important role in vascular physiology and structural integrity. This 

study finds a high risk of ACE/DD variant in South Asians (OR 5.00: 95% CI, 1.17-21.37) 

which accounts for a five-fold increase in the risk of overall ischemic stroke per copy of 

the risk allele of the ACE DD variant relative to Europeans (OR 1.15: 95% CI, 1.06-1.25) 

(Bentley et al., 2010). Closer examination of this comparison revealed a very large 

confidence interval for our study largely due to low sample size (355 cases/338 

controls vs. 4897 cases/13949 controls in Europeans) suggesting that the measured 

effect size is probably inflated. Partial overlapping confidence intervals further 

suggested that there might not be a statistical difference between the two groups. An 

alternate explanation could be the difference in the prevalent stroke sub type in South 

Asians as compared to other ethnic groups. The homozygous D allele is associated with 

HTN in Indians (Tao et al., 2009) and is also associated with preferential risk of small 

vessel disease (SVD) (Rao et al., 2009), which is the most common subtype of stroke 

found in South Asians (Gunarathne et al., 2009, Biswas et al., 2009). The polymorphism 

accounts for 47% of the total phenotypic variance of serum ACE (Rigat et al., 1990) that 

is linked with quantitative levels of risk of disease (Munshi et al., 2010, Bentley et al., 

2010).  

Interleukin 10 is an anti-inflammatory cytokine produced primarily by monocytes and 

type 2 T helper cells. The study found IL10 to be associated with a 44% increase (OR 

1.44; 95% CI 1.09-1.91) in the risk of overall ischemic stroke per copy of the risk allele 

of the IL 10 G1082Avariant. IL10 is involved in various cellular processes such as 

inhibition of pro-inflammatory cytokines, suppression of antigen-presenting capacity of 

antigen presenting cells (APC) and stimulation of B cell maturation. IL10 forms part of 

an inflammatory genetic profile and elevated levels of IL10 post stroke have been 

implicated in severe neurological impairment and major adverse clinical outcomes 

(Chang et al., 2010, Dziedzic et al., 2002). Since acute ischemic brain insult is known to 

trigger anti-inflamatories, mutations in IL10 may result in uninhibited effects of pro-

inflammatory cytokines. 
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MTHFR C677T genotype is associated with hyperhomocystinemia among South Asians 

and Europeans (Kelemen et al., 2004) and has been shown to have a larger effect on 

Hcys concentration in geographical regions of low folate consumption than in regions 

with high dietary folate intake (Holmes et al., 2011). Knowing whether there is an ethnic 

predisposition to hyperhomocystinemia is necessary as homocystiene levels can be 

effectively lowered by supplementing diet with folic acid, vitamin B12 and vitamin B6. 

This is important as the majority Hindu South Asian population has low plasma folate 

and Vitamin B12 levels (Hughes and Ong, 2000, Chandalia et al., 2003) which can be 

partly accounted for by their predominantly vegetarian diets or high temperature 

cooking methods which destroy folate. The study sought to establish whether the 

putative biochemical intermediary, Hcys, of the MTHFR C677Tgene variant was 

associated with equivalent quantitative levels of risk (Casas et al., 2005) in South Asians.  

Effect sizes of gene-stroke associations were compared with those predicted from 

independent biochemical data using a Mendelian randomization strategy which utilizes 

genetic variants or their cumulative risk allele scores (Burgess & Thomson, 2013) as 

instrumental variables (IV) for exposures of interest (in this case ischemic stroke) to 

overcome problems of confounding and reverse causality. MR strategies are widely 

used for analyzing causal relationships in genetic epidemiological studies using both 

summary data from published studies (Kunutsor et al., 2014, Huang et al., 2013, Bentley 

et al., 2010) and individual patient level data from prospective studies (Holmes et al., 

2014a, Holmes et al., 2014b, IL6R MR Consortium, 2012). 

Although the genetic association between MTHFR C677T and ischemic stroke was weak 

(p=0.08), and study results did not confirm causality, the totality and direction of effect 

of data supported a causal relationship, with support from previously documented 

strong association in Europeans (Casas et al., 2004). A Mendelian randomization 

strategy for a causal association was concordant with literature on Europeans (Casas et 

al., 2005, Bentley et al., 2010) with similar observed and expected odds ratios. Findings 

from the study also showed a significant association (p=0.02) between Hcys levels and 

ischemic stroke where a 2.90μMol/L elevation in plasma Hcys levels increased the odds 

of stroke risk by 68%. This is in contrast to reports from European studies, which have 

observed much lower odds of risk (24%) for a similar increment in plasma Hcys levels 

(Wald et al., 2003). Interestingly, the biochemical change C vs T also showed a high 
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difference in Hcys levels, ΔX value of 5.18 μMol/L, for South Asians, compared to 

Europeans ΔX of ~2.30μMol/L (Bentley et al., 2010). While it is possible this is an 

artefactual difference, another explanation is that healthy South Asians with CC 

genotype have overall higher levels of Hcys than healthy CC genotype Caucasians 

resulting in a greater ΔX. Alternately, the study population maybe largely vegetarian 

and resultantly have high Hcys levels (Bissoli et al., 2002). Epidemiological studies 

(Chandalia et al., 2003) have already established ethnic differences in plasma Hcys 

levels and these need to be followed up with comparative analysis of Hcys levels in 

healthy South Asians and Europeans with MTHFR C677C genotypes.   

Study Strengths  

Although the ideal data to address the genetics of ischemic stroke in South Asians would 

be experimentally genotyped from large study populations, the next best place to begin 

is published candidate gene based studies. The meta-analysis uses statistical methods to 

combine results of individual studies that are similar in their metrics and outcome 

measures, thereby increasing the power of the analysis. The method does not simply 

pool the events and non-events in different studies to generate an effect size but keeps 

each study discrete so as to preserve the effects of randomization and compare like with 

like. Single effect measure for each study (OR) were calculated and pooled to generate 

estimates across studies using a weighted average method that takes into account the 

sample size of each study. The larger studies are assumed to have a greater effect on the 

outcome measure and are given more weightage in the analysis. A random effect model, 

which takes inter-study heterogeneity into account based on the assumption that the 

true effects in individual studies differ from each other and are not common or fixed, 

was used. A random effects model also assumes that different true effects are normally 

distributed and based on this our meta-analysis calculated means and standard 

deviations which were converted to OR’s. 

Study Limitations  

The reliability of a meta-analysis depends on the accuracy and quality of the included 

data. Systemic reviews bring together studies from various sources, which are 

conducted by different analysts in varied ways. These differences can introduce 
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heterogeneity in the meta-analysis and lead to spurious results. As with all meta-

analyses, a number of limitations to interpreting results need to be reported.  

1. Publication bias: Possible publication bias (Lin et al., 2006) could be introduced by 

selective outcome reporting (only positive results) in the English language (language 

bias) as well as an unconscious exclusion of studies that may have reported 

contradictory results. Small studies are more vulnerable to publication bias since 

smaller studies are less likely to be published unless they demonstrate a positive 

statistically significant result. On the other hand, irrespective of the outcome larger 

studies are more likely to be published. An excess of positive studies in the meta-

analysis can lead to miscalculation of an effect size associated with a polymorphism. 

Therefore it is critical to make all possible efforts to identify unpublished, negative and 

non-significant genetic association studies in order to make the analysis well balanced 

and reliable. Other related biases such as time lag bias (more likely to be published 

rapidly) (Stern & Simes, 1997), multiple publication bias (more likely to be published 

many times), location bias (published in high impact indexed journals) and citation bias 

(more likely to be cited by others) can also lead to over-representation of significant 

positive results over non-significant negative findings.  

In order to overcome limitations introduced by bias, the current study made every 

possible effort to identify all published and unpublished genetic association studies in 

South Asian ischemic stroke. Authors were contacted if any reported study results were 

unclear or insufficient for analysis.  

2. Small study effects: Estimates from small genetic association studies are generally 

viewed with suspicion unless replicated in larger studies. Small studies are vulnerable 

to higher sampling random errors and their observed effect sizes may be markedly 

different (higher or lower) from the true effect. Such studies are also known to be 

consistently more positive or negative in their findings than larger association studies. A 

meta-analysis consisting of small genetic association studies may lead to an over or 

under estimation of the actual effect of the risk allele on a phenotype. 

RevMan 5 software offers several ways to test whether the results from a meta-analysis 

are associated with the presence of small study effects. This includes visual inspection 

of funnel plots, statistical testing and sensitivity analysis (comparing fixed and random 
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effects models). Funnel plots plot the individual study effect sizes against the study size, 

which is represented by the standard error of the study. The studies are scattered 

around the effect size and a symmetrical funnel plot indicates lack of study bias. 

Unfortunately funnel plots are not very meaningful for meta-analysis of ≤ 10 studies 

which was the case with the current study. 

There is considerable paucity of genetic studies on stroke in South Asians and our meta-

analysis highlights the need for larger statistically well-powered prospective and 

retrospective studies in this population. Studies were smaller and much fewer in 

numbers leading to less robust conclusions compared to similar work in Europeans 

(Ioannidis and Panagiotou, 2011). As an example, for ACE I/D polymorphism the 

availability of only 2 studies for the meta-analysis prevented us from conducting an 

iterative sensitivity analysis to identify and remove the source of inter study 

heterogeneity ([PHET] = 0.002, I2 = 90%). The small sample size meant a large confidence 

interval and less statistical reliability of data.  

3. Case control study design: Although case control genetic epidemiology studies have 

several advantages compared to cohort or family studies including being less time and 

resource intensive as well as being better models for studying outcomes with long 

dormant periods following exposure (such as stroke), they also have several limitations. 

Case control studies provide an estimate of relative risk and no information on the 

gene-environment interaction. Resultantly, detected association may be prone to 

reverse causation. Case control studies are also prone to various forms of bias (selection 

bias, observation bias, recall bias and misclassification) and do not control for 

confounding risk factors. 

 

4. Confounding: Confounding due to environmental stroke risk factors such as 

hypertension, diabetes and smoking can adversely affect the outcome measure of a 

meta-analysis. Alternative methods such as meta-regression can take such confounders 

into account however the small number of studies included in this study did not allow 

for such an analysis. Adjustment for population stratification is another important 

consideration with individual patient level data but it was not possible to adjust a 

literature based meta-analysis for confounders. Fewer studies also limited our ability to 

take the genetic stratification of the South Asian population (Reich et al., 2009) into 
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account and a pooled analysis of both South and North Indian stroke cases was 

conducted. The analysis was primarily based on a mixture of published studies from 

North and South India. The analysis attempted to control for heterogeneity by setting 

strict inclusion and exclusion criteria for studies and the use of a random effects model. 

5. Inadequate reporting by studies: Another limitation was that results of candidate 

SNPs from large stroke GWAS’s could not be tested although this was considered in the 

initial analysis plan. To the best of our knowledge no GWA studies specifically on South 

Asian stroke cases have been conducted and only a few studies have been conducted 

where some of the population included South Asian stroke, although these were not 

recruited in a systematic manner as that was not the primary purpose of those studies. 

6. Stroke sub-typing: The genetic burden of ischemic stroke is known to lie within 

specific sub-types (Holliday et al, 2012). Lack of stroke TOAST classification amongst 

the selected studies hampered sub-group analysis that is essential due to the 

heterogeneous etiology of ischemic stroke sub-types.  

7. Use of published summary data: There are several disadvantages of using 

published data for a meta-analysis as compared to individual patient level data. With 

published studies the methods used for data generation and quality control are 

unknown which may lead to the inclusion of unsuitable data. Since the reported 

summary statistics cannot be altered, downstream analysis options are limited. 

Sensitivity and sub-group analysis may also not be available with meta-analysis of 

published studies. 

 

8. Mendelian Randomization: Mendelian randomization strategy used in this chapter 

is useful to assess causal effects, however this methodology has several limitations that 

merit a detailed discussion. MR makes several assumptions such as, the genetic marker 

is associated with the exposure (Hcys), the genetic marker is independent of the 

outcome (stroke) (also called exclusion restriction) and the genetic marker is 

independent of factors that confound the exposure–outcome relation (VanderWeele et 

al, 2014). An ideal situation would be where the genetic marker affects the outcome 

only through the exposure; however, several scenarios violating the above assumptions 

can lead to biased results. 
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8a. Inadequate selection of instrumental variable: The inability to calculate the F 

statistic to determine the strength of the genetic instrumental variable is a major 

limitation and can lead to severe bias. A Mendelian randomization strategy on 

individual patient level data involves the assessment of a causal effect of a phenotype on 

an outcome by using genetic IV (Burgess and Thompson, 2011). The magnitude of bias 

is determined by the F statistic for the strength of association between the IV and 

phenotypes and is essential to assess the suitability of the IV. The F factor is calculated 

from the regression of the risk factor on the IV and a value of < 10 is deemed as a weak 

IV. A weak instrument has little effect on the exposure and bias is caused due to over 

fitting of the genetic model where the IV is forced to account for not only the systematic 

variation but also the chance variation in the confounders (Burgess & Thomson, 

2013).In a literature-based meta-analysis pooled F statistics can be calculated if each 

study included in the meta-analysis reports the study specific values. However none of 

the candidate gene based studies included in our meta-analysis conducted a Mendelian 

randomization or reported the study specific F statistics and only reported the allele 

and genotype frequencies with baseline population phenotypes. Previously published 

literature based Mendelian randomizations on the MTHFR C677T-Hcys-stroke have also 

not reported F statistics due to similar reasons (Casas et al., 2005, Bentley et al., 2010). 

8b. Lack of statistical power: Genetic risk variants typically exert a very small effect 

on the phenotypic variation of a trait and this makes power a very important 

consideration for a Mendelian randomization. As with genetic association studies, large 

samples sizes are required to meet the power requirements of MR studies. Previous 

studies have calculated power estimates for MR of continuous variables and a single IV 

using the F statistic and R2 from the first stage regression analysis of the exposure 

phenotype and genetic variant (Brion et al., 2013).  

8c. Gene-environment interaction: A major assumption of Mendelian randomization 

is that the genetic variants affect the outcome (stroke) only through the exposure 

(Hcys) and not external environmental factors (such as folic acid and vitamin 

supplements). However, gene–environment interactions are common and may involve 

both the genetic risk variant and environmental factor in causing the outcome.  
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8d. Canalization: Canalization is a process of developmental compensation by which 

the effect of potentially disruptive genetic and/or environmental influences on normal 

development is reduced. Several molecular mechanisms including genetic redundancy, 

feedback regulation and cooperative biochemical interactions are known to play a role 

in canalization. This phenomenon could invalidate findings from Mendelian 

randomization studies by altering the effect of a genotype on the outcome of interest in 

adulthood without any effect on the association between genotype and the modifiable 

exposure of interest (Lawlor et al, 2008).  

8e. Linkage disequilibrium and pleiotropy: One of the most common limitations of 

Mendelian randomization includes confounding by SNPs in high LD with the 

polymorphism being studied. If the genotype being used as an instrument and other 

polymorphisms associated with the outcome are in high LD, then there will be a 

violation of the MR assumptions, which will lead to a confounded estimate of the causal 

association. Plasma Hcys levels are controlled by other genetic risk markers such as 

MTRR and MTR which may be in strong LD with the genetic variant used in this 

analysis, MTHFR, and violate the assumptions of Mendelian Randomization. 

Pleiotropy, a phenomenon by which a single gene can have multiple effects, can also 

confound or invalidate the Mendelian randomization approach only if the genetic 

variant is associated with pleiotropic effects that influence the outcome. 

Conclusion 

In the current climate of GWAS studies and whole genome sequencing, the literature-

based meta-analysis has its own unique utility. Where large GWAS studies have failed to 

identify risk associations with gene variants such as MTHFR and ACE, literature based 

meta-analysis of comparable (or greater) power and sample size have been able to 

identify these genetic risk variants to be associated with stroke (Bevan et al., 2012, 

Bentley et al., 2010). Although the stand-alone validity of individual candidate gene 

based studies remains inconclusive, a meta-analysis may reveal a true association. 

Empirical comparison of meta-analyses of published gene-disease associations versus 

consortium analyses in cancer genetics has shown that although the two methodologies 

are based on significantly different data types, both approaches compliment each other 

and have been successful in identifying statistically significant decreased breast cancer 
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risks for gene CASP8 D302H (Janssens et al., 2009). 

The current meta-analysis included studies that examined candidate genes previously 

identified in other vascular disorders such as MI in Europeans and South East Asians. 

Though this is a reasonable exploratory approach to understanding the genetics of 

stroke in South Asians, there is a clear need for larger GWAS strategies to truly 

understand the genetic underpinnings of stroke. A good starting point could be 

replication in an independent South Asian stroke population of gene variants identified 

in large statistically powered GWAS studies conducted in Europeans. The WTCCC2 and 

the ISGC have successfully identified novel genes associated with stroke risk (PITX2, 

ZFHX3, 9p21 locus and HDAC9) (International Stroke Genetics et al., 2012) while other 

GWAS studies have highlighted the subtype specific nature of these genetic effects 

(Holliday et al., 2012). The recent METASTROKE (Traylor et al., 2012, Holliday et al., 

2012) meta-analysis which included 15 stroke cohorts comprising of 12,000 cases and 

60,000 controls validated these findings but failed to identify any new genetic risk 

variants. Replication of SNPs from related cardiovascular GWAS studies found one novel 

association with gene PHACTR1that suggests that detection of any new genetic risk 

variants will rest on proper stroke sub typing. Though the effect sizes for these genes 

are small, it is likely that they are true associations as compared to genes identified in 

smaller underpowered candidate gene based studies.  

Findings from the current study support a genetic etiology of ischemic stroke in South 

Asians but the dataset is considerably smaller compared to those of European descent. 

We show no major differences in risk associations for four previously studied stroke 

susceptibility genes between South Asians, Europeans and South East Asians. However 

our study evaluated a limited number of risk variants and therefore the presence of 

genetic variants with differential effects by ethnicity cannot be completely ruled out. It 

would be fallacious to assume a literal comparison between studies that are not 

statistically at power and hence there is a clear need for large prospective well powered 

GWAS studies in South Asians, as has been done in Europeans.  

  



CHAPTER 2: GENE POLYMORPHISMS ASSOCIATED WITH ISCHEMIC STROKE IN SOUTH ASIANS: A 
LITERATURE BASED META ANALYSIS 

2.5 Figures and Tables 

Figure 2.1: Flow diagram illustrating search strategy and studies included in the meta-

analysis. 
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Figure 2.2: Meta-analysis forest plot and pooled ORs of risk from studies investigating 
PDE4D SNP 83 polymorphism 

 

 

Figure 2.3: Meta-analysis forest plot and pooled ORs of risk from studies investigating 

ACE I/D polymorphism 

 

 

Figure 2.4: Meta-analysis forest plot and pooled ORs of risk from studies investigating 

IL10 G1082A polymorphism 
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Figure 2.5: Meta-analysis, forest plots and pooled ORs of risk from studies investigating 

MTHFR C677T polymorphism (TT vs CC-stroke, Hcys-stroke and Hcys-MTHFR C677T. 
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Figure 2.6: Comparison of effect sizes for risk of ischemic stroke for genes PDE4D 

(SNP83), ACE (I/D), IL10 (G1082A) and MTHFR (C677T), among different ethnicities. 
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Figure 2.7: Mendelian Randomization to compare estimated risk with observed risk for 

gene polymorphisms associated with ischemic stroke.  
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Table 2.1: Summary table of gene polymorphisms associated with risk of ischemic stroke in South Asians.  

Gene Polymorphism 

(R A) 

Study Cases Control Pooled OR 

(95% CI) 

p 

N Age (years) Gender 

(F/M) 

N Age (years) Gender 

(F/M) 

MTHFR C677T (T) Biswas 2009 

(J of Stroke and CVD) ∞ 

71 < 40 NR 90 < 40 NR 2.50 (0.89-6.97) 0.08 

Alluri 2005∞ 48 7-78 9/60 

 

48 NR NR 

Somarajan 2011∞ 142 54±15.9 55/152 

 

134 55.25±10.65 

 

62/126 

 

Panigrahi 2006∞ 26 12 (1-42) 10/32 

 

56 NR NR 

Mejia Mohamed 2011⌂ 22 61.0±10.1 58/92 

 

28 60.6±7.1 

 

71/71 

ACE I/D (D) Kalita 2011 (Clin. Chim. 

Acta) ∞ 

193 56.5±2.8 52/141 188 

 

55.7±12 (F) 

54.3±9.7 (M) 

69/129 5.00(1.17-21.37) 0.03 

Munshi 2008 (J of Neur 

Sc.) ◊ 

162 52.83±4.04 42/120 150 54.76±1.04 39/111 

ApoE E4/E4 Luthra 2002 (Clin Gen.) 63 

 

56.4±13.1 NR 57 39.4±8.0 NR 2.15 (0.75-6.19) 0.16 

  Chowdhury 2001 (J of 

Epid.)◦  

147 57.9±11.1 30/117 190 60.3±9.6 61/129 
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ENOS 4a/4b (aa) Majumdar 2010 (JAT) ◊ 175 29.71±10.82 54/123 214 28.42±7.87 72/147 1.87 (0.77-4.59) 0.17 

Munshi (BRB 2010) ◊ 357 48.01±15.25 

 

93/264 283 47.05±16.75 73/210 

T786C (C) Majumdar 2010 (JAT) ◊ 129 29.71±10.82 54/123 129 28.42±7.87 72/147 1.93(0.63-5.93) 0.25 

G894T (T) Majumdar 2010 (JAT) ◊ 172 29.71±10.82 54/123 214 28.42±7.87 72/147 0.64 (0.18-2.27) 0.49 

PDE4D SNP 83 Munshi 2009 (JNS) ◊ 250 48.53±16.34 62/188 250 47.01±17.78 65/185 2.20 (1.21-3.99) 0.001 

Saleheen 2005 (Stroke) 

▫  

200 62.4±12.4 

 

82/118 

 

250 54.1±8.87 

 

87/163 

 

Banerjee 2008 (Brain 

Res Bul.) ◊ 

176 58.6±14.2 63/113 212 57.4±8.8 69/143 

 SNP 87 Munshi 2009 (JNS) ◊ 250 48.53±16.34 62/188 250 47.01±17.78 65/185 1.17 (0.71-1.94) 0.54 

Saleheen 2005 (Stroke) 

▫  

200 62.4±12.4 82/118 250 54.1±8.87 87/163 

SNP 32 Munshi 2009 (JNS) ◊ 250 48.53±16.34 62/188 250 47.01±17.78 65/185 1.57 (1.01-2.45) 0.045 

Saleheen 2005 (Stroke) 

▫  

200 62.4±12.4 82/118 250 54.1±8.87 87/163 

SNP 41 

(T) 

Munshi 

(Gene 2012) ◊ 

516 49.3± 17.34 156/360 513 49.01±16.78 16.78 1.76 (1.25-2.48) 0.001 

SNP 56 

(T) 

Munshi 

(Gene 2012) ◊ 

516 49.3± 17.34 156/360 513 49.01±16.78 16.78 3.25 (2.30-4.59) <0.0001 

SNP 59736747 

T>G (G) 

Munshi 

(Gene 2012) ◊ 

516 49.3± 17.34 156/360 513 49.01±16.78 16.78 1.23 (0.50-2.99) 0.66 
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IL 10 G1082A Munshi 2010 

(Cytokine) ◊ 

480 49.3±17.34 123/357 470 47.01±16.78 155/351 1.44 (1.09-1.91) 0.01 

Sultana 2011 ◊ 238 53.72±11.11 74/164 226 54.06±10.98 105/121 

PAI-1 4G/5G Babu 2012 (Gene) ◊ 516 49.3 156/360 513 49.01 155/358 1.33 (0.83-2.15) 0.24 

CBS T833C/844ins68 

(C)* 

Chandra 2006 

(Neur. India) 

30 NR NR 138 NR NR 0.40 (0.049-3.2) 0.39 

IL-1 α C889T 

(T) 

Banerjee (BRB 2008) ∞ 176 58.6±14.2 63/113 212 57.4±8.8 69/143 0.53 (0.33-0.86) 0.009 

Factor 

XIIIB 

V34L Kain 2005 143 63±34 40/40 146 61±35 42/38 3.16 (0.32-31.08) 0.32 

α1 ACT Ala15Thr Somarajan 2009∞ 272 53±16.7 75/197 188 54.8±10 65/ 0.68 (0.40-1.17) 0.17 

 

ADD1 

 

G/W460 

 

Kalita (CCA 2011) 193 56.5 (2-83) 52/141 188 54.3±9.7 (M) 

55.7±12 (F) 

69/129  

1.38 (0.43-4.42) 

 

0.59 

CYP11

B2 

C344T Munshi 

(JNS 2010) ◊ 

403 49.3±17.34 116/287 394 47.01±16.78 115/279 0.43 (0.29-0.63) 0.0001 

ESR Pvu II Munshi 

(CCA 2011) ◊ 

400 49.3±17.34 115/285 380 47.01±16.78 102/278 1.92 (1.24-2.99) 0.004 

Xba I Munshi 

(CCA 2011) ◊ 

400 49.3±17.34 115/285 380 47.01±16.78 102/278 1.59 (0.92-2.75) 0.09 

Klotho KL-VS Majumdar 2010 ◊  

460 

 

41.76±16.34 

 

258/202 

 

574 

 

40.36±11.42 

 

321/253 

1.26 (0.56-2.84) 0.57 

C1818T Majumdar 2010 ◊  

460 

 

41.76±16.34 

 

258/202 

 

574 

 

40.36±11.42 

 

321/253 

0.81 (0.48-1.38) 0.44 

  



CHAPTER 2: GENE POLYMORPHISMS ASSOCIATED WITH ISCHEMIC STROKE IN SOUTH ASIANS: A LITERATURE BASED META ANALYSIS 

115 
 

α-ADD1 WG Kalita (CCA 2011)∞ 193 56.5±2-83 52/141 188 55.7±12 (F) 

54.3±9.7 (M) 

69/129 1.37 (0.43-4.39) 0.60 

TNF α G308A Sultana 2011 ◊ 238 53.72±11.11 74/164 226 54.06±10.98 105/121 1.39 (0.52-3.72) 0.5 

G488A Munshi (EJN 2011) ◊ 525 49.3 NR 500 47.01 NR 1.91 (1.32-2.76) 0.0006 

MMP-3 5A/6A Munshi (EJN 2011) ◊ 525 49.3 NR 500 47.01 NR 0.87 (0.58-1.29) 0.9 

CYP4F2 G1347A Munshi 

(M B R 2012) ◊ 

507 49.3±17.34 144/363 487 49.01±16.78 131/356 1.58 (1.16-2.15) 0.004 

MDR 1 C3435T Sharma (Neur. Sciences 

2011) ◊ 

560 49.3±17.34 167/393 560 49.01±16.78 173/387 2.66 (1.98-3.55) <0.0001 

LPL Hind III Munshi (JNS 2012) ◊ 525 49.3±17.34 151/374 500 49.01±16.78 143/357 0.65 (0.43-0.97) 0.03 

tPA C7351T Babu (Gene 2012) ◊ 516 49.3±17.34 156/360 513 49.01±16.78 155/358 1.14 (0.74-1.77) 0.56 

I/D Babu (Gene 2012) ◊ 516 49.3±17.34 156/360 513 49.01±16.78 155/358 1.74 (1.16-2.62) 0.008 

 

*All comparisons are based on a recessive genetic model i.e. homozygous mutant alleles (MM) vs. total alleles (W+) where W and M 

denote wild type and mutant alleles respectively and + can denote either W or M. 

** ∞ Studies from North India, ⌂Studies from Malaysia, ◊ Studies from South India, ◦ Studies from Bangladesh, ▫ Studies from Pakistan 
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Abstract 

Visit-to-visit variability in BP is associated with ischemic stroke and is likely to be a 

heritable trait as are other measures of elevated blood pressure (SBP, DBP, MAP, and 

PP). 

The study sought to determine whether genetic variants associated with long term BP 

variability are also associated with ischemic stroke. A GWAS for loci influencing BP 

variability was undertaken in 3,802 individuals from the multinational ASCOT study 

where long-term visit-to-visit and within visit BP measures were available. Since BP 

variability is strongly associated with ischemic stroke, the sentinel SNP from the BP 

analysis was tested for association in an independent ischemic stroke population 

comprising of 8,624 cases and 12,722 controls from 7 cohorts.  

The ASCOT discovery GWAS identified a cluster of 17 correlated SNPs within the NLGN1 

gene (3q26.31) associated with BP variability. The strongest association, reaching 

genome wide significance, was with rs976683 (p=1.4x10-8). Conditional analysis on 

rs976683 provided no evidence of additional independent associations at the locus. 

Analysis of rs976683 in a large group of patients with ischemic stroke found no 

association for overall stroke (OR 1.02; 95% CI 0.97-1.07; p=0.52) or its sub-types: 

cardio embolic stroke (OR 1.07; 95% CI 0.97-1.16; p=0.17), large vessel disease (OR 

0.98; 95% 0.89-1.07; p=0.60) and small vessel disease (OR 1.07; 95% CI 0.97-1.17; 

p=0.19).  

Findings from the study identified a cluster of SNPs within the NLGN1 gene showing 

significant association with BP variability. However, these SNPs were not associated 

with an increased risk of ischemic stroke or its subtypes. 
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3.1 Introduction 

Hypertension is the largest modifiable risk factor for stroke resulting in death and 

disability (WHO, 2013). Association of elevated BP is a strong predictor of ischemic 

stroke and small changes in BP can have serious effects on the prognosis of stroke. In 

2004, the WHO attributed approximately 7.4 million deaths, 12.5% of the global death 

burden, to high blood pressure. 

Familial studies have long provided estimates of heritability ranging from 31%-34% 

(single measure SBP and DBP averaged over 3 studies) to 56%-57% (long-term SBP and 

DBP average) to 63%-68% (24 hour SBP and DBP profile)(Ehret et al., 2011).  However, 

the genetics of blood pressure remained largely unexplained until the year 2009, when 

two big GWAS studies (Newton-Cheh et al., 2009, Levy et al., 2009) involving around 

~40,000 individuals identified 13 gene loci to be significantly associated with blood 

pressure. Cross-population GWAS’s in South-east Asians (Kato et al., 2011) and large 

global consortia (Ehret et al., 2011) soon followed and identified an additional 21 gene 

loci. Genome wide association studies have since identified several genetic loci to be 

significantly associated with blood pressure traits such as SBP, DBP, MAP, PP and 

presence or absence of HTN (Johnson et al., 2011). 

However, episodic HTN or variability in BP remains understudied despite evidence 

supporting their role as risk factors in vascular events (Rothwell et al., 2010b). Studies 

as early as 1992 (Ekbom et al., 1992) demonstrated the effect of antihypertensive drugs 

on decreasing blood pressure variability for the lowered risk of stroke. Other studies 

(Frattola et al., 1993, Mancia et al., 2007, Kikuya et al., 2000) also provided strong 

evidence supporting the association of blood pressure variability and cardiovascular 

risk. However, these early studies were limited by the fact that they measured only 

short-term blood pressure variability using 24 hour ambulatory monitoring or home 

blood-pressure recordings.  Recent work by Peter Rothwell and colleagues has shown 

that visit-to-visit variability in systolic BP is a strong predictor of ischemic stroke 

independent of mean BP (Rothwell et al., 2010), with hypertensives showing the most 

BP variability over a series of visits having the greatest risk of a cardiovascular event 

(Rothwell et al., 2010).  
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Further support was provided in a meta-analysis published on the effects of β-blocker 

selectivity on blood pressure variability and stroke (Rothwell et al., 2010), where 

authors concluded that nonselective β-blockers increase variability in blood pressure 

which may explain their non-effectiveness in preventing stroke and MI (Webb et al., 

2011). Since most of the studies on blood pressure variability have been conducted on 

stroke cohorts, it is difficult to rule out pre-existing ischemia. Cerebral auto regulation is 

an important protective mechanism of the brain against ischemic changes and 

regulation of blood pressure maybe associated with it (Jordan and Powers, 2012). 

Determining whether BP variability has a genetic basis is difficult given the lack of 

prospective cohorts with visit-to-visit BPs recorded and accompanying GWAS data. The 

ASCOT study is a longitudinal study investigating the impact of a calcium channel 

blocker against a beta-blocker regime in hypertensive individuals at moderate risk of 

cardiovascular outcomes, recruited in the United Kingdom, Ireland and Nordic countries 

from 1998-2000 (Sever et al., 2001). Unusually, long-term BP variability measurements 

and genotyped data were available for the ASCOT cohort allowing a genome wide 

analysis to be conducted on the genetic risk variants of BP variability. A cluster of 17 

correlated SNPs near the NLGN1 gene locus (Chr 3) were found to be associated with 

blood pressure variability at genome wide significance (p=1.7x10-8) in the ASCOT Anglo 

IR-UK cohort (N=3764).  

Based on the ASCOT GWAS results, there was a clear need for independent replication 

and further data analysis in another sample population. The study hypothesized that 

since visit-to-visit BP variability is associated with risk of ischemic stroke more than 

hemorrhagic stroke (Rothwell et al., 2010) and HTN is a major modifiable risk factor, 

any genetic variants associated with BP variability may also be associated with ischemic 

stroke. Based on recently published GWAS studies (Traylor et al., 2012, Holliday et al., 

2012), which show the genetic risk of stroke to be subtype specific, the genetic variant 

in stroke subtypes were also tested. 
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3.2 Methods 

3.2.1 Study Populations 

3.2.1.1 ASCOT 

The ASCOT study was conducted by the ASCOT group. The methodology and results are 

reproduced with permission from Dr. Patricia Munroe.  

The ASCOT Blood Pressure Lowering Arm (ASCOT-BPLA) is an investigator-led multi-

center trial, which included over 19,000 hypertensive patients, aged 40-79 years at 

baseline, with an average SBP of 140/90-mmHg on-treatment and 160/100-mmHg off-

treatment. Patients had no history of CHD but had at least three other risk factors for 

cardiovascular disease such as LVH, T2D, peripheral artery disease, previous 

stroke/TIA, male, ≥ 55 years of age or cigarette smoking. The study tested the impact of 

a contemporary calcium channel blocker based regimen against an older beta-blocker 

based regime in hypertensives at moderate risk of a cardiovascular outcome. The 

primary objective of the blood pressure-lowering arm (BPLA) was to assess and 

compare the long-term effects of two blood-pressure-lowering regimens on the 

combined endpoint of non-fatal MI (including silent MI) and fatal CHD. Blood pressure 

was measured in a seated position by a uniform automated device (Omron HEM705CP) 

in all participants over an average of 13 visits across 5.5 years.  

The ASCOT GWA study population included a subset of 3802 individuals extracted from 

the original cohort of 19,342 hypertensives. Visit-to-visit BP variability measurements 

were recorded prospectively for within visit and between visit BP variability over 5.5 

years. Blood samples for DNA isolation were collected of which 3,802 individuals of 

European ancestry from UK and Ireland were genotyped allowing a genome wide 

analysis to be conducted on the risk variants of BP variability. 

3.2.1.2 Ischemic Stroke 

The stroke population included 8,624 cases and 12,722 controls from 7 different 

cohorts: Australian Stroke Genetics Collaborative (ASGC) (McEvoy et al., 2010, Holliday 

et al., 2012), Bio-Repository of DNA in Stroke (BRAINS) (Yadav et al., 2011, Cotlarciuc I, 

2012), Genetics of Early Onset Stroke (GEOS) (MacClellan et al., 2006, Kittner et al., 

1998), Ischemic Stroke Genetics Study and Siblings with Ischemic Stroke Study (ISGS) 
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(Meschia et al., 2003)/SWISS (Meschia et al., 2006)), Welcome Trust Case Control 

Consortium 2 United Kingdom (WTCCC2-UK) (International Stroke Genetics et al., 

2012), Welcome Trust Case Control Consortium 2 Germany (WTCCC2-Germany) 

(International Stroke Genetics et al., 2012) and Vitamin Intervention for Stroke 

Prevention trial (VISP) (Spence et al., 2001).  

All participating cohorts received institutional ethical clearance and signed consent 

from each participating study subject. ISGS/SWISS, GEOS and VISP used gender and age 

matched stroke-free controls recruited from the local population. BRAINS and WTCCC2-

UK used the WTCCC 1958 British Birth cohort and National Blood Service (NBS) 

controls. WTCCC2-Germany derived controls of German Caucasian origin from the 

KORAgen study (www.gsf.de/kora). 

TOAST classification (Adams et al., 1993) was performed by an in-house neurologist 

and all stroke cases were classified into 3 categories: cardio embolic stroke, large artery 

disease and small vessel disease. All cohorts except VISP provided stroke subtype data. 

Details of stroke cohort study populations are as follows: 

ASGC: ASGC stroke cases comprised stroke patients of European ancestry who were 

admitted to four clinical centers across Australia (The Neurosciences Department at 

Gosford Hospital, Gosford; the Neurology Department at John Hunter Hospital, 

Newcastle; The Queen Elizabeth Hospital, Adelaide; and the Royal Perth Hospital, Perth) 

between 2003 and 2008(Holliday et al., 2012b). Stroke was defined by World Health 

Organization criteria as a sudden focal neurological deficit of vascular origin, lasting 

more than 24 h and confirmed by imaging, such as CT and/or MRI brain scan. Other 

investigative tests such as ECG, carotid Doppler and trans-esophageal echocardiogram 

were conducted to define ischemic stroke mechanism as clinically appropriate. Cases 

were excluded from participation if they were aged <18 years were diagnosed with 

hemorrhagic stroke or had transient ischemic attack rather than ischemic stroke or if 

they were unable to undergo baseline brain imaging. On the basis of these criteria, a 

total of 1,230 ischemic stroke cases were included in the current study. Ischemic stroke 

subtypes were assigned using TOAST criteria on the basis of clinical, imaging and risk 

factor data. ASGC controls were participants in the Hunter Community Study (HCS), a 

population-based cohort of individuals aged 55–85 years, predominantly of European 
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ancestry and residing in the Hunter Region in New South Wales, Australia. Detailed 

recruitment methods for the HCS have been previously described. Briefly, participants 

were randomly selected from the New South Wales State electoral roll and were 

contacted by mail between 2004 and 2007. Consenting participants completed five 

detailed self-report questionnaires and attended the HCS data collection center, at 

which time a series of clinical measures were obtained. A total of 1,280 HCS participants 

were genotyped for the current study. All study participants gave informed consent for 

participation in genetic studies. Approval for the individual studies was obtained from 

the relevant institutional ethics committees. 

BRAINS (http://www.brainsgenetics.com)is an ongoing, multicenter, in-hospital study, 

which recruits consenting acute stroke patients into a highly characterized bio bank 

(Yadav et al., 2011, Cotlarciuc I, 2012). All adult (>18 years of age) stroke cases were 

recruited with either ischemic or hemorrhagic pathology MRI confirmed lesions. 

Ischemic stroke subtypes were further sub-classified according to TOAST criteria 

(Adams et al., 1993). Known monogenic causes of stroke were excluded. BRAINS has 

two principal arms. The first arm recruits UK European stroke patients while the second 

arm recruits South Asian stroke patients from multiple sites in the UK and also from 

sites in India. Control data for the European arm was provided by the WTCCC 2 while 

control subjects for the South Asian arm are recruited simultaneously as the affected 

stroke patient and usually is the proband's spouse. 

GEOS is a population-based case-control study designed to identify genes associated 

with early-onset ischemic stroke and to characterize interactions of identified stroke 

genes and/or SNPs with environmental risk factors (Cheng et al., 2011).  Participants 

were recruited from the greater Baltimore-Washington area in 4 different time periods:  

Stroke Prevention in Young Women-1 (SPYW-1) conducted from 1992-1996, Stroke 

Prevention in Young Women-2 (SPYW-2) conducted from 2001-2003, Stroke 

Prevention in Young Men (SPYM) conducted from 2003-2007, and Stroke Prevention in 

Young Adults (SPYA) conducted in 2008.  Case participants were hospitalized with a 

first cerebral infarction identified by discharge surveillance from one of the 59 hospitals 

in the greater Baltimore-Washington area and direct referral from regional 

neurologists. The abstracted hospital records of cases were reviewed and adjudicated 

for ischemic stroke subtype by a pair of neurologists according to previously published 
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procedures with disagreements resolved by a third neurologist. The ischemic stroke 

subtype classification system retains information on all probable and possible causes, 

and is reducible to the more widely used TOAST system that assigns each case to a 

single category.   Control participants without a history of stroke were identified by 

random-digit dialing and were balanced to cases by age and region of residence in each 

recruitment period.  Genomic DNA was isolated from a variety of sample types, 

including cell line, whole blood, mouthwash and buccal swab.  Samples were genotyped 

at the Johns Hopkins Centre for Inherited Disease Research (CIDR) using the Illumina 

HumanOmni1-Quad_v1-0_B BeadChip (Illumina, San Diego, CA, USA). Individuals were 

excluded if they were unexpected duplicates, gender discrepancy and unexpected 

relatedness. 

ISGS/SWISS: ISGS is a multicenter inception cohort study of first-ever ischemic stroke 

in adult men and women (Meschia et al., 2003). Cases were recruited from inpatient 

stroke services at five academic medical centers in Florida, Georgia, Virginia and 

Minnesota. A study neurologist on the basis of medical history, physical examination 

and CT or MR imaging of the brain confirmed the diagnosis of ischemic stroke. Cases 

had to be enrolled within 30 days of onset of stroke symptoms.  Cases were excluded if 

they had a mechanical aortic or mitral valve, central nervous system vasculitis, or 

bacterial endocarditis at the time of the stroke. They were also excluded if they were 

known to have: CADASIL, Fabry disease, homocystinuria, MELAS, or sickle cell anemia. 

Stroke severity at enrollment was assessed using the NIH Stroke Scale (NIHSS) and 

outcomes at 90-days were assessed by telephone using the Barthel Index, Glasgow 

Outcome Scale, and the modified Rankin scale (Kasner, 2006). Diagnostic evaluation 

included: head CT (95% of individuals enrolled) or MRI (83%), electrocardiography 

(92%), cervical arterial imaging (86%), and echocardiography (74%). A vascular 

neurology committee reviewed the medical records of every case and assigned ischemic 

stroke subtype diagnoses according to criteria from the Trial of ORG10172 (TOAST) 

(Adams et al., 1993), the OCSP (Bamford et al., 1991), and the Baltimore-Washington 

Young Stroke Study (Johnson et al., 1995). DNA was donated to the NINDS DNA 

Repository (Coriell Institute, Camden, NJ) for eligible samples with appropriate written 

informed consent.  A separate certified neurologist adjudicator additionally assigned a 
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subtype diagnosis using the standardized Causative Classification of Stroke web-based 

algorithm (Ay et al., 2007).  

SWISS is a multicenter affected sibling pair study(Meschia et al., 2011b). Probands with 

ischemic stroke were enrolled at 66 US medical centers and 4 Canadian medical centers. 

Probands are adult men and women over the age of 18 years diagnosed with ischemic 

stroke confirmed by a study neurologist on the basis of history, physical examination 

and CT or MR imaging of the brain. Probands were required to have a history of at least 

one living sibling with a history of stroke.  Probands were excluded if they had a 

mechanical aortic or mitral valve, central nervous system vasculitis, or bacterial 

endocarditis at the time of the index ischemic stroke. Probands were also excluded if 

they were known to have CADASIL, Fabry disease, homocystinuria, MELAS, or sickle cell 

anemia. Siblings were enrolled using proband-initiated contact (Worrall et al., 2001) or 

direct contact when permitted by Institutional Review Boards. Concordant (affected) 

siblings had their diagnosis of ischemic stroke confirmed by review of medical records 

by a vascular neurology committee. Concordant siblings had the same eligibility criteria 

as probands. Subtype diagnoses were assigned to the index strokes of probands and 

concordant siblings according to TOAST criteria (Adams et al., 1993). Discordant 

siblings of the proband were confirmed to be stroke-free using the Questionnaire for 

Verifying Stroke-free Status (Meschia et al., 2000). Lymphoblastoid cell lines were 

created on all subjects. A certified neurologist adjudicator additionally assigned a 

subtype diagnosis using the standardized CCS web-based algorithm to all concordant 

siblings and a subset of probands for whom medical records were available (Ay et al., 

2007). 

VISP: The VISP trial (P.I. James Toole, MD, Wake Forest University School of Medicine 

(WFU); R01 NS34447) was a multicenter, double-blind, randomized, controlled clinical 

trial that enrolled patients aged 35 or older with Hcys levels above the 25th percentile 

at screening and a non-disabling cerebral infarction (NDCI) within 120 days of 

randomization. NDCI was defined as an ischemic brain infarction not due to embolism 

from a cardiac source, characterized by the sudden onset of a neurological deficit. The 

deficit must have persisted for at least 24 hours, or if not, an infarction in the part of the 

brain corresponding to the symptoms must have been demonstrated by CT or MRI 

imaging. The trial was designed to determine if daily intake of a multivitamin tablet with 
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high doses folic acid, vitamin B6 and vitamin B12 reduced recurrent cerebral infarction 

(1° endpoint), and nonfatal MI or mortality (2° endpoints). Subjects were randomly 

assigned to receive daily doses of the high-dose formulation (n=1,827), containing 

25mg pyridoxine (B6), 0.4mg cobalamin (B12), and 2.5mg folic acid; or the low-dose 

formulation (n=1,853), containing 200μg pyridoxine, 6μg cobalamin and 20μg folic acid. 

Enrolment in VISP began in August 1997, and was completed in December 2001, with 

3,680 participants enrolled, from 55 clinic sites across the US and Canada and one site 

in Scotland.   

Subsets of VISP participants gave consent and were included in the GWAS component of 

VISP, supported by the National Human Genome Research Institute (NHGRI), Grant U01 

HG005160, as part of the Genomics and Randomized Trials Network (GARNET). 

Samples were genotyped at the Johns Hopkins Center for Inherited Disease Research 

(CIDR), and genotyping was performed using the Illumina HumanOmni1-Quad_v1-0_B 

BeadChip (Illumina, San Diego, CA, USA). Individuals were excluded if they were 

unexpected duplicates or had gender discrepancies. All VISP participants are stroke 

cases, therefore we obtained GWAS data (dbGAP) for 1047 external controls from the 

High Density SNP Association Analysis of Melanoma: Case-Control and Outcomes 

Investigation (Study Accession: phs000187.v1.p1). These samples were also genotyped 

on the Illumina HumanOmni1-Quad. 

WTCCC2-United Kingdom and WTCCC2-Germany: The WTCCC2 samples were 

genotyped as part of the WTCCC 2 ischemic stroke study (International Stroke Genetics 

et al., 2012). Stroke cases included samples recruited by investigators at St. George's 

University London (SGUL), University of Oxford and Edinburgh Stroke Study in the UK 

and the Department of Neurology, KlinikumGroßhadern, Ludwig-Maximilians-

University, Munich. The SGUL collection comprised 1224 ischemic stroke samples from 

a hospital based setting. All cases were of self-reported Caucasian ancestry. Ischemic 

stroke subtypes were determined according to TOAST criteria based on relevant clinical 

imaging and available information on cardiovascular risk factors. The University of 

Oxford collection comprised 896 ischemic stroke cases, consecutively collected as part 

of the Oxford vascular study (OXVASC). Cases were of self-reported Caucasian ancestry, 

and ischemic stroke subtypes were determined according to TOAST criteria based on 

relevant clinical imaging. For the Edinburgh Stroke Study, consecutive consenting 
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patients with stroke who were admitted to or seen as outpatients at the Western 

General Hospital, Edinburgh were prospectively recruited between 2002 and 2005. 

Cases in this study were those with a clinically evident stroke, demonstrated by brain 

imaging (CT or MRI) to be ischemic. An experienced stroke physician assessed each 

patient as soon as possible after the stroke, prospectively recording demographic and 

clinical details, including vascular risk factors and results of brain imaging and other 

investigations. The Munich samples included 1383 ischemic stroke cases. Cases were 

consecutive European Caucasians recruited from a single dedicated Stroke Unit at the 

Department of Neurology, KlinikumGroßhadern, Ludwig-Maximilians-University, 

Munich. Ischemic stroke subtypes were determined according to TOAST criteria based 

on relevant clinical and imaging data. Controls for the UK samples were drawn from 

shared WTCCC controls obtained from the 1958 Birth Cohort. This is a prospectively 

collected cohort of individuals born in 1958 (www.b58cgene.sgul.ac.uk/) and 

ascertained as part of the national child development study 

(www.cls.ioe.ac.uk/studies.asp). Data from this cohort are available as a common 

control set for a number of genetic and epidemiological studies. For the German 

samples controls were Caucasians of German origin participating into the population 

KORAgen study (www.gsf.de/kora). This survey represents a gender- and age stratified 

random sample of all German residents of the Augsburg area and consists of individuals 

25 to 74 years of age, with about 300 subjects for each 10-year increment. All controls 

were free of a history of stroke or transient ischemic attack.  

3.2.2 Genotyping, Imputation and Quality control 

ASCOT  

Genotyping for the ASCOT samples was performed using the Illumina Human CNV370 

Bead Array. For the SNPs that were not directly genotyped, genotypes were obtained 

through imputation. Quality control and imputation of the ASCOT data have been 

described previously (Deshmukh et al., 2012). After stringent quality control and 

genotype imputation, a total of ~2.5 million SNPs and 3,802 individuals were tested for 

association.  
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Ischemic Stroke 

For the stroke meta-analysis site-specific quality control was performed in PLINK to 

remove individuals failing the following filters: (1) Call rate ≤ 95%, (2) Non-European 

ancestry, (3) Outlying autosomal heterozygosity, and (4) Cryptic relatedness (pi-hat ≥ 

0.2). Quality control also removed SNPs failing the following filters: (1) Call frequency ≤ 

95%, (2) MAF ≤ 0.01 and (3) HWE ≥ 10-6. Post imputation, SNPs with imputation r2<0.3 

or MAF ≤ 0.01 were removed.  

A detailed description of genotyping, imputation and quality control methods for each 

participating study in the ischemic stroke analysis is given in Table 3.1. 

3.2.3 Data Analysis 

ASCOT 

In the ASCOT study BP was measured in all participants over an average of all 13 visits 

across 5.5 years. Measurements for the first 6 months after starting therapy were 

excluded because this was a period of forced medication titration and any differential 

medication effects could have acted as a confounder. Data simulations demonstrated 

that the combination of within visit BP variability and visit-to-visit BP variability 

allowed the use of more BP measurements. Within-individual visit-to-visit BP variability 

phenotype was expressed as mean (±SD) and coefficient of variation (SD/mean) using 

the 2nd and 3rd readings for every visit for ASCOT-BPLA cohort. The Variance 

Independent of Mean (VIM) transformation was applied if there was a correlation 

between the mean SBP and coefficient of variation (Rothwell et al., 2010). The SBP-VIM 

was derived for all on-treatment SBP values, analyzing total variability (within visit and 

between visit variability) using a coefficient of variation (SD/meank) where k was 

determined from curve fitting (Rothwell et al., 2010). Analysis also included use of 

Residual Standard Deviation (RSD) for effect size estimates which is the square root of 

the total squared deviation of data points from a linear regression of blood pressure 

values against time, divided by (n–2), where n is the number of readings (Rothwell et al., 

2010). All analyses were adjusted for age, gender, gender*age, SBP mean, and the first 

10 principal components (from decomposition of the genotype matrix).  
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Ischemic Stroke 

For the stroke meta-analysis, the candidate SNPs were extracted from the genome wide 

data and site-specific logistic regression analysis was performed to test association of 

top SNP with overall ischemic stroke and its major sub-types (large artery disease, 

cardio embolic stroke and small vessel disease) under an additive genetic model. Age 

and gender were used as covariates. Log (OR), standard errors and p values from 

different studies were pooled via inverse variance meta-analysis using a fixed effects 

model. Meta-analysis was carried out for over-all ischemic stroke and its sub-types 

based on the TOAST criteria (Adams et al., 1993) using METAL software (Willer et al., 

2010). Pooled ORs were calculated using estimated effect size of the SNP and standard 

error of the effect size estimate. 95% confidence intervals were calculated using odd 

ratios and standard error. A detailed description of the statistical analysis methods for 

each participating study is given in Table 3.2. 

Power for the stroke meta-analysis was calculated using the CATS genetic power 

calculator (Skol et al., 2006). The following parameters were used to calculate the 

power for the replication of SNPs rs976683 in the ischemic stroke population using an 

additive model: N (cases): 8624, N (controls): 12,722, stroke prevalence: 7.2% (Lee et 

al., 2011), rs976683 MAF: 0.25 and significance level: 0.05. The sample size provided 

sufficient power to detect modest effect sizes ranging from 1.1-1.4 for overall ischemic 

stroke but had reduced power for subtypes.  
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3.3 Results 

3.3.1 ASCOT GWAS 

The ASCOT study population consisting of 3802 subjects was primarily male (82.3%) 

with a mean age of 63.7 (±8.1) years. Mean SBP and mean VIM was 138.2 (±9.8) mm Hg 

and 0.004 (±0.001) mm Hg respectively (Table 3.3).  

GWAS for BP variability identified a cluster of 17 correlated SNPs within the Neuroligin-

1 (NLGN1) gene on 3q26.31) (ENCODE ID: ENSG00000169760.13) (Figure 3.1 and 

Table 3.4). Within the cluster, 12 SNPs were directly genotyped and 5 were imputed. 

Seven SNPs (3 imputed and 4 genotyped) reached genome wide significance (p≤5 x 10-

8) with the strongest association at the imputed SNP rs976683 (p=1.4 x 10-8) (Figure 

3.2A and 3.2B). The effect size for SNP rs976683 association was extremely small 

(β=0.000179) corresponding to a 0.01% mm Hg change in BP variability per copy of the 

risk allele. Conditional analysis, conditioned on rs976683, provided no evidence of 

another independent signal at this locus.  

The top genotyped SNP to reach genome wide significance (p=1.72x10-8) was 

rs9830510 (Figure 3.2C and 3.2D). The direction of effect was in concordance with 

rs976683 however the SNPs were not highly correlated (LD r2 ~0.5).  

3.3.2 Ischemic Stroke Analysis 

3.3.2.1 Population Demographics 

8624 cases and 12722 controls of European descent from 7 studies spread across 

Europe, America and Australia: ASGC, BRAINS (European arm), GEOS, ISGS/SWISS, 

VISP, WTCCC2-UK and WTCCC2-Germany were available. The mean age of study 

participants ranged from 41.0 ± 7.0 years to 72.87 ± 13.16 years for stroke cases and 

39.5 ± 6.7 to 66.28 ± 7.54 for controls. The male: female ratio was approximately 50:50. 

The three main ischemic stroke subtypes; cardio embolic, large vessel disease and small 

vessel disease accounted for 1523, 1639 and 1254 cases, respectively. The demographic 

data such as age, gender distribution and stroke sub-type frequencies for each 

population are summarized in Table 3.5. 
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3.3.2.2 Association with Overall Ischemic Stroke and Sub-Types 

SNP rs976683 was directly genotyped in all 7 cohorts with an average MAF of 0.26 

(Table 3.6) and was not significantly associated (at p≤0.05) with the increased risk of 

ischemic stroke or its subtypes. Pooled odds ratios were as follows; overall-ischemic 

stroke (OR 1.02; 95% CI 0.97-1.07; p=0.52), cardio embolic (OR 1.07; 95% CI 0.97-1.16; 

p=0.17), large vessel disease (OR 0.98; 95% 0.89-1.07; p=0.60) and small vessel disease 

(OR 1.07; 95% CI 0.97-1.17; p=0.19). There was no significant heterogeneity between 

studies (Table 3.7). 

Genotyped SNP rs9830510 was also tested for association in the ischemic stroke cohort 

to ensure that the association result of imputed SNP rs976683 was not an imputation 

artifact. SNP rs9830510 was directly genotyped in all 7 cohorts with an average MAF of 

0.15 (Table 3.6). Association with increased risk of ischemic stroke or its subtypes was 

not significant (at p≤0.05) with pooled odds ratios as follows; overall ischemic stroke 

(OR 0.96; 95% CI 0.90-1.02; p=0.54), cardio embolic (OR 1.03; 95% CI 0.91-1.15; 

p=0.83), LVD (OR 0.76; 95% CI 0.66-0.80; p=0.03) and small vessel disease (OR 1.01; 

95% CI 0.89-1.14; p=0.92). There was no significant heterogeneity between studies 

(Table 3.7). 
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3.4 Discussion 

The current study provides evidence supporting the role of the Neuroligin-1 (NLGN1) 

gene in BP variability but was unable to demonstrate any association between this locus 

and ischemic stroke or any of its subtypes. A GWAS for BP variability in the Anglo IR-UK 

discovery cohort identified a cluster of 17 correlated SNPs within the NLGN1 gene, 

which encode a neuronal cell surface protein implicated in the growth and remodeling 

of the vascular system (Bottos et al., 2009). The strongest association reaching genome 

wide significance was at imputed SNP rs976683 (p=1.4x10-8) and correlated genotyped 

SNP rs9830510 (p=1.7x10-8), which represents a novel locus for BP variability in 

hypertensives and has not been detected in any of the previously published BP GWA 

studies. The effect size for the sentinel association was extremely small (β=0.000179) 

corresponding to a 0.01% unit change in BP variability per copy of the risk allele. 

Similar observations have been made in genome wide analysis of other measures of BP 

where effect sizes were also very small (1mmHg SBP and 0.5mmHg DBP) but could have 

the potential to significantly alter the outcomes at a population level.  This evidence 

leads us to believe that the observed effect (albeit small) may be part of a battery of 

unrelated and common gene loci that exert independent but small effects, which 

compound to cause the disease. However this hypothesis can only be confirmed via 

large prospective GWAS studies.   

In the initial phase of the project, there was a paucity of available cohorts with long 

term BP variability data and The ASCOT group lacked an opportunity to replicate the 

top hits with BP variability in an independent population. Since BP variability is 

strongly associated with ischemic stroke, we instead tested the top SNPs for association 

with ischemic stroke in an independent population comprising 8,624 cases and 12,722 

controls from 7 cohorts. This is a common exploratory approach used to study 

candidate genes that maybe associated with different vascular disorders such as MI and 

stroke through their effect on shared risk factors such as HTN, diabetes and smoking 

(Cheng et al., 2012). Our sample size provided sufficient power to detect modest effect 

sizes ranging from 1.1-1.4 for overall ischemic stroke but as with other studies, had 

reduced power for subtypes due to small sample size. SNPs rs976683 and rs9830510 

were not significantly associated (p≤0.05) with the risk of overall stroke or its subtypes 

with the estimated pooled ORs ranging from 1.02-0.96 for overall ischemic stroke, 1.07-
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1.03 for cardio embolic, 0.98-0.76 for large vessel disease and 1.07-1.01 for small vessel 

disease. 

Finally, a conditional analysis on the ASCOT Scandinavian (DK-FI-NO-SE) arm consisting 

of 3900 individuals provided no further evidence of an independent signal at the locus 

(p = 0.18). Failure to replicate this association could be attributed to population 

stratification induced by Anglo-Scandinavian differences such as admixture of Finnish 

and central European ancestry (Lao et al., 2008) and recruitment of the ASCOT-SE 

samples in Sweden. Further, the genetic effect could be confined to specific sub-

populations of smokers, alcohol consumers and furosemide-exposed individuals.  

The power to detect the effect size of a genetic risk variant is dependent on its minor 

allele frequency (Tabangin et al., 2009). It is interesting that the minor allele frequency 

of SNPs rs976683 and rs9830510 in both study populations were similar (0.25 and 0.15 

respectively).  However, even though the point estimates of the effect sizes observed for 

stroke were larger than BP variability, no comparative conclusions could be drawn from 

this, as neither SNP was significantly associated with the increased risk of stroke. 

NLGN1 gene may play a role in BP variability via processes involving the growth and 

remodeling of the vascular system (Bottos et al., 2009).  

Neuroligins are postsynaptic cell adhesion proteins that interact with neurexin at the 

synapse (Ichtchenko et al., 1995, Baudouin and Scheiffele, 2010). NLGN1 is one of 5 

different isoforms (NLGN1 at 3q26, NLGN2 at 17p13, NLGN3 at Xq13, NLGN4 at Xp22, 

and NLGN4Y at Yq11). In humans, NLGN3 and NLGN4 have been associated with autism 

and mutations in NLGN4 have also been associated with intellectual disability, seizures, 

and EEG abnormalities. Together they form the neurexin/neuroligin adhesion system of 

synapses, which is highly conserved through evolution (Biswas et al., 2008). NLGN’s are 

essential for important neurological processes and mutations in the gene leads to 

breakdown of critical interactions between brain cells and severe behavioral problems. 

The wide spread impact of the misfiring NLGN1 gene is demonstrated in its association 

with various cellular processes. Studies in Caenorhabditiselegans mutants deficient in 

nlgn-1, an orthologue of human neuroligin genes, have demonstrated recovery of gentle 

touch response when transgenic NGLN1 mutants were expressed (Calahorro and Ruiz-

Rubio, 2012). SNP rs6445141 in the NLGN1 gene was shown to be associated with 
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granular corneal dystrophy, type II in a GWAS study conducted on Korean CDG2 

patients (Eun-Ju Lee, July 2011). In an Autism genome-wide copy number variation 

study on European Caucasian children, CNV region 174754378–174771975 was found 

to be associated with autism (p value=0.001)(Glessner et al., 2009). The NLGN1 protein 

in ubiquitously produced outside the central nervous system and expression of its α and 

β protein isoforms in the blood vessel walls and pancreatic beta-cells (Suckow et al., 

2008) suggests roles in atherosclerosis and insulin regulation respectively. So far SNP 

rs976683 has only been implicated in Parkinson’s disease (Edwards et al., 2010). 

Study Strengths 

The ASCOT GWA study is the first ever attempt to decipher the underlying genetic 

burden of long-term blood pressure variability and the only cohort in the world with 

long term BP variability data from 13 visits spanning over 5 years. A well phenotyped 

data set enabled the correlation of clinical markers with genotype data providing a first 

ever insight into the genetics of a novel measure of blood pressure. 

The ASCOT study also addressed the possible confounding effect of anti-hypertensive 

medication on the BP variability and stroke phenotypes and their influence on the 

results. The ASCOT-Blood Pressure Lowering Arm cohort tested the impact of two 

treatment regimes, beta-blocker (Atenolol) and calcium channel blocker (Amplodipine), 

on hypertensives with a moderate risk of vascular disease. The study showed that the 

calcium channel blocker was more effective in lowering the risk of stroke by lowering 

both mean SBP and BP variability (Dahlof et al., 2005). Further support was provided in 

a meta-analysis on the effects of β-blocker selectivity on BP variability and stroke which 

concluded that nonselective β-blockers increase variability in BP which may explain 

their non-effectiveness in preventing stroke and MI (Webb et al., 2011). 

Due to the opposite effects observed for the calcium channel and beta-blockers on BP 

variability, both treatment arms were analyzed separately. In an effort to rule out the 

pharmacogenetic effects, measurements for the first 6 months after starting both 

treatments were excluded from the BP variability phenotype calculation because this 

was a period of forced medication titration and any differential medication effects could 

have acted as confounders. 
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In the absence of a similar replication population, the ischemic stroke cohort provided a 

different but relevant phenotype, which is associated with elevated blood pressure. The 

replication study consisted of 8624 cases and 12722 controls of European descent from 

7 studies spread across Europe, America and Australia providing sufficient power to 

detect small to modest effect sizes. Detailed demographics and stroke subtype 

classification enabled the sub-group analysis of LVD, SVD and CE stroke, which are 

known to have distinct genetic etiologies (Holliday et al., 2012). The study population 

was age and gender balanced in an effort to reduce confounding effects of these 

variables.  

Study Limitations 

The failure to detect an association with overall stroke could be due to several reasons. 

Genes affecting multi-factorial diseases such as stroke usually have small effect sizes 

and are difficult to identify in modestly sized study populations. Insufficient statistical 

power, given the small-observed effect size for rs96683 on BP variability, is the most 

likely cause of an undetectable association with ischemic stroke. Another reason could 

be the heterogeneous etiology of ischemic stroke, which makes it difficult to 

differentiate true signals from noise. Large studies such as the recent METASTROKE 

(Traylor et al., 2012) meta-analysis, which included 15 stroke cohorts comprising of 

12,000 cases and 60,000 controls, also failed to identify any new genetic risk variants 

and only validated previous findings of variants within genes PITX2, ZFHX3, and HDAC9. 

Despite the large study population, the observed effect sizes were small (OR 1.39 - 0.96) 

suggesting that a combined burden of risk alleles carried by an individual is the likely 

cause, as shown in hemorrhagic stroke (Falcone et al., 2012). These studies have also 

highlighted the subtype-specific nature of the risk, which lends support to the fact that 

true association’s maybe hidden under the multi-factorial pathogenesis of stroke. 

Other limitations include possible inaccuracy of the TOAST classification into stroke 

sub-types. The case-control study design of our meta-analysis may be another limitation 

as some studies can induce survival bias by including recurrent stroke, thus allowing 

selection of milder forms of strokes.  Identified SNPs from the ASCOT GWAS could also 

be artifactual, since they were not successfully replicated in an independent BP 

variability cohort. 
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Another limitation was the inability to perform an independent replication in a suitable 

population, which is a standard strategy to confirm, identified positive results in the 

discovery stage of a GWAS. This was due to a paucity of cohorts with long-term blood 

pressure variability data in which to replicate. This is not unprecedented as other GWAS 

groups who are also dealing with unusual phenotypes or phenotypes not often 

measured, such as cervical dissection in stroke and venous thrombosis, have found it 

difficult to bring together large study populations for replication. To overcome this issue 

we employed an alternate strategy to replicate in a downstream phenotype such as 

stroke. 

The replication population used to follow up further the original association of 

rs976638 with BP variability was the ASCOT Scandinavian (DK-FI-NO-SE) population 

consisting of 3900 individuals, in whom BP was measured and at the same time points 

as the UK and Irish ASCOT individuals. This was the only other potential replicable 

population we were able to identify. The cohort consisted of hypertensive individuals 

from different Scandinavian countries i.e. Denmark, Finland, Norway and Sweden. The 

Finnish and Swedish populations are known to have admixture (Lao et al., 2008, 

Humphreys et al., 2011), and be genetically heterogeneous compared to other European 

descent populations. This could be further compounded by the fact that the ASCOT-SE 

samples were recruited in Sweden. In such a mixed population, BP variability may occur 

disproportionally in a sub-population with higher prevalence and alleles that are more 

common in this population may become falsely associated with the disease leading to 

spurious associations. Further, it is also possible that the genetic effect is confined to 

specific sub-populations of smokers, alcohol consumers and furosemide-exposed 

individuals within the ASCOT-UK-IR cohort. Identified SNPs from the ASCOT-UK-IR 

GWAS could also be artifactual. 

Therefore, although not an ideal resource for follow-up of the original observation with 

BP variability the ASCOT Scandinavian population was the only available resource. Its 

strength was that these individuals were selected using identical recruitment criteria as 

the UK and Irish ASCOT individuals and BP measurements were taken at the same time 

points allowing identical analysis of BP variability. 
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Conclusion 

BP variability is associated with adverse outcome independent of treatment suggesting 

that the genetic burden is a genuine driver of BP variability in the general hypertensive 

population. In order to understand the true relationship between visit-to-visit BP 

variability and risk of stroke, large prospective longitudinal studies following healthy 

cohorts for stroke occurrence are required. There is a need for international guidelines 

for clinical monitoring of BP variability that advocate diagnosis and assessment of 

treatment response in HTN to be based upon the average of a series of blood pressure 

measures. Calibration of measuring devices is also needed to avoid phenotypic bias.  

The ASCOT GWA study lends support to a genetic contribution to BP variability and 

suggests a cluster of genetic variants that maybe associated with it. Negative replication 

results for the BP variability locus (albeit in stroke and another in a population with 

admixture) conclude that the lead identified SNP was not associated with ischemic 

stroke or its subtypes. This does not negate the initial results but simply means that the 

identified SNPs do not play a major role in the genetic etiology of ischemic stroke. Nor 

does it mean that BP variability does not influence ischemic stroke in a physiological 

fashion nor does it exclude other genetic associations on it. If an association does exist, 

it is likely to be modest for overall stroke or restricted to a single stroke subtype. It is 

likely that the causal variant differs from the identified SNPs and the functional region 

may also lie away from the implicated candidate gene (Kleinjan and van Heyningen, 

2005). 

The current study is the first to report any attempt at dissecting the genetics of BP 

variability and its effect on ischemic stroke. The findings argue strongly that based on 

the initial findings future BP studies should include long-term visit-to-visit BP 

variability, which is an unusual yet potentially important phenotype.  
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3.5 Figures and Tables 

Figure 3.1: Genome-wide QQ and Manhattan plots for the ASCOT Anglo IR-UK GWAS 

showing a cluster of 17 NLGN1SNPs associated with BP variability (p<5 x 10-7). 

Individual –log10 p values are plotted against their genomic position by chromosome. 

The dotted line at 10-6 marks the threshold for promising SNPs and the solid line at 10-8 

marks the genome-wide significance threshold. Figures reproduced with permission 

from the ASCOT group (Dr. Patricia Munroe, p.b.munroe@qmul.ac.uk).
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Figure 3.2: Regional association and LD plots for the 17 correlated SNPs within the 

Neuroligin-1 (NLGN1) gene (3q26.31). The plots A & B are conditioned on the imputed 

sentinel SNP rs976683 and C & D are conditioned on the top genotyped SNP rs9830510. 

In plot 2A & C, each colored square represents a SNP p value, with the color scale 

correlating the r2 values for that SNP to the target SNP (red diamond) taken from the 

HapMap phase 2 CEU panel. In plot 2B & C, the target SNP (orange diamond) is 

represented in linkage disequilibrium with the cluster of 16 SNPs and other SNPs in the 

HapMapphase 2 CEU panel. 
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Table 3.1: Details of genotyping, imputation and quality control for the ischemic stroke cohorts 

 
ASGS BRAINS GEOS ISGS-SWISS VISP WTCCC2-UK WTCCC2-Ger 

Genotyping 

Platform 

Illumina Human 

610 Quad 

Illumina 

Human 610 

Quad 

HumanOmni1-

Quad_v1-0_B 

BeadChip 

IlluminaHuman

Hap 

550k 

Illumina 

HumanOmni1-

Quad v1-0 B 

Illumina 660 

Illumina 

Human660W-Quad 

(cases) &Human 

550k (controls) 

Genotyping 

Calling algorithm 
Genome studio 

Genome studio 

V2010.1 

Genotyping 

module 

IlluminaBeadStudi

o version3.3.7 

IlluminaBeadStu

dio 

GenomeStudio  

V2010.2 

Genotyping 

Module V1.7.4 

GenTrain 

version 1.0 

Gencall Illuminus 

Call rate threshold 

(Individuals) 
≥ 0.95 ≥ 0.95 >0.98 ≥ 0.95 ≥ 0.95 0.95 

Bayesian 

clustering 

Call frequency 

threshold (SNPs) 
≥ 0.95 ≥ 0.95 >0.95 ≥ 0.95 ≥ 0.95 0.95 0.95 

Imputation 

software 
MACH 1.0.16 MACH 1.0 BEAGLE V3.3 MACH 1.0 MACH 1.0 MACH MACH 

Imputation build 
HapMap build 

36 release 24 

HapMap 

Build 36 

Release 22 

HapMap 

Build 36  

Release 22 

1000 genomes 

(06_2010) 

HapMap build 

36 release 22 
HapMap II HapMap 2 

LD threshold (r2) 

for surrogate markers 
0.8 0.8 0.8 0.8 0.8 0.8 0.8 
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Imputed Quality score 

threshold for imputed 

SNP 

0.3 0.3 0.3 0.3 0.3 0.3 0.3 
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Table 3.2: Details for statistical analysis forthe ischemic stroke cohorts 

 
ASGS BRAINS GEOS ISGS-SWISS VISP WTCCC2-UK WTCCC2-Ger 

Model Logistic regression Logistic regression 
Logistic 

Regression 
Logistic Regression 

Logistic 

regression 

Logistic 

Regression 

Additive model, 

Bayesian 

hierarchical 

model. 

Adjustment 

covariates 
Sex and age Sex and age 

age, study 

recruitment stages 

and MDS 

(component 1) 

Sex, age, principal 

components 1 & 2 

Sex, age, PC1, 

PC2 
None none 

Statistical 

software 

Plink, mach2dat, 

SAS 

Plink v1.07 , STATA 

v11, SPSS v20, 

METAL 

PLINK v1.07 

PLINK v1.07 for 

data cleaning, 

MACH for 

imputation, R and 

MACH2DAT for 

generation of 

summary statistics 

Plink v1.07 Plink & METAL 
SNPTEST, own 

software 
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Table 3.3: ASCOT-UK-IR stroke cohort population demographics 

Clinical Phenotype 

N 3802 

Age (mean ± SD) 63.7  ± 8.1 

Males, N (%) 3131 (82%) 

SBP baseline (Mean ± SD) 161.6 ± 17.6 

DBP baseline (Mean ± SD) 92.4 ± 9.9 

VIM (Mean ± SD) 0.004 (±0.001) 
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Table 3.4: Association results from the ASCOT GWAS identifying 17 correlated NLGN1 

SNPs (p≤5x10-7) 

SNP Position A1/A2 RAF r2 β SE p 

rs976683ϯ 174968065 C/T 0.24 0.95 0.0001786 3.15x10-5 1.44 x10-8 

rs12635897ϯ 174967790 C/G 0.24 0.95 0.0001784 3.15x10-5 1.49 x10-8 

rs9830510 174976996 A/G 0.86 1.00 -0.000215 3.81 x10-5 1.72 x10-8 

rs9882520 174977714 A/G 0.87 0.99 -0.000217 3.86 x10-5 1.88 x10-8 

rs12495045 174981764 A/C 0.13 0.99 0.0002175 3.87 x10-5 1.91 x10-8 

rs6776924 174980201 A/T 0.87 0.99 -0.000216 3.85 x10-5 2.12 x10-8 

rs1948161ϯ 174974090 C/T 0.81 0.96 -0.000189 3.43 x10-5 3.55 x10-8 

rs4377507 174982953 A/G 0.89 0.99 -0.000215 4.16 x10-5 2.49 x10-7 

rs6779230ϯ 174970831 A/C 0.72 0.96 -0.000153 2.96 x10-5 2.55 x10-7 

rs6779246ϯ 174970869 C/G 0.29 0.96 0.0001521 2.96 x10-5 2.77 x10-7 

rs9868353 174977376 A/G 0.12 0.99 0.0002028 3.97 x10-5 3.27 x10-7 

rs7428277 174979295 A/G 0.12 0.99 0.0002035 3.99 x10-5 3.37 x10-7 

rs9876713 174983921 A/G 0.11 0.99 0.0002117 4.15 x10-5 3.38 x10-7 

rs1488549 174984586 C/T 0.11 0.99 0.0002116 4.15 x10-5 3.43 x10-7 

rs4568169 174978999 A/T 0.88 0.99 -0.000202 3.97 x10-5 3.66 x10-7 

rs6774109 174980026 A/G 0.12 0.99 0.0002015 3.97 x10-5 3.85 x10-7 

rs7629797 174992286 C/T 0.89 1.00 -0.000208 4.14 x10-5 5.10 x10-7 

 

* Effect sizes are shown as a unit or percentage change in BP variability per copy of the 

risk allele.  

**ϯ represents imputed SNPs. The sentinel SNP rs976683 and top genotyped SNP 

rs9830510 are in bold. 
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Table 3.5: Details of population demographics for ischemic stroke cohorts 

 

ASGS BRAINS GEOS ISGS-SWISS 

Case Control Case Control Case Control Case Control 

N 1162 1244 342 2473 448 498 1070 1488 

Age in years 

(mean±SD) 
72.87 ± 13.16 66.28 ± 7.54 71.43 ± 14.02 45 ± 0 41.0 (7.0) 39.5 (6.7) 66.62 ± 13.63 64.12 ± 17.29 

Male n (%) 688 (59.21) 625 (50.24) 191 (56) 1292 (52) 275 (61.4) 282 (56.6) 607 (57%) 715 (48%) 

IS stroke subtype,n 

(%)         

-Cardio embolic 240 --- 79 --- 90 --- 247 --- 

-Large Artery 421 --- 42 --- 37 --- 229 --- 

-Small Vessel 310 --- 30 --- 54 --- 201 --- 

HTN, n (%) 732 (63.99) 809 (65.08) 240 (71) --- 137 (30.6) 79 (15.9) 691 (65) 518 (35) 

Diabetes, n (%) 249 (21.75) 126 (10.52) 46 (14) --- 52 (11.6) 12 (2.4) 220 (20) 163 (11) 

Hypercholestrime

mia, n (%) 
435 (42.48) 513 (41.24) 145 (44) --- 126 (28.1) 117 (23.5) NA NA 

Smoking, n (%) 207 (18.45) 80 (6.67) 69( 21) --- 187 (41.7) 117 (23.5) 196 (18) 716 (48) 
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Table 3.5: Population demographics continued 

 VISP WTCCC2-UK WTCCC2-Ger 

Case Control Case Control Case Control 

N 1726 1047 2702 5175 1174 797 

Age in years 

(mean±SD) 

67.99 ± 10.66 51.22 ± 12.57 72.1 ± 12.5  ---  66.7  ± 12.9 62.7  ± 10.9 

Male n (%) 1121 (65) 622 (59) 1468 (54.3)  ---  727 (62) 410 (51) 

IS stroke subtype, 

n (%) 

      

 -Cardio embolic --- --- 537   ---  330  --- 

 -Large Artery --- --- 564   ---  346  --- 

 -Small Vessel --- --- 553   ---  106  --- 

HTN, n (%) 1203 (70) --- 1936 (71.1)  ---  751 (64) --- 

Diabetes, n (%) 429 (25) --- 403 (14.0)  ---  270 (23) --- 

Hypercholestrime

mia, n (%) 

140 (8) --- 1280 (47.4)  ---  479 (41) --- 

Smoking, n (%) 860 (53) --- 1785 (66.1)  ---  366 (31) --- 
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Table 3.6: SNPs rs976683 and rs9830510 characteristics in the ischemic stroke meta-

analysis cohorts 

 

 

 

  

Cohorts 

rs976683 rs9830510 

Imputed/Genotyped Minor 

Allele 

Major 

Allele 
MAF 

Minor 

Allele 

Major 

Allele 
MAF 

ASGC C T 0.28 G A 0.15 Genotyped 

BRAINS C T 0.24 G A 0.16 Genotyped 

GEOS C T 0.25 G A 0.15 Genotyped 

ISGS-SWISS C T 0.28 G A 0.17 Genotyped 

VISP C T 0.28 G A 0.17 Genotyped 

WTCCC-UK C T 0.25 G A 0.15 Genotyped 

WTCCC-Ger C T 0.25 G A 0.16 Genotyped 
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Table 3.7: Association results for SNP rs976683 with overall ischemic stroke and its 

subtypes 

 
Association Heterogeneity 

Stroke Cohorts N A1/A2 OR (95% CI) p Q (p) I2 

All stroke 7 8624 t/c 1.02 (0.97-1.07) 0.52 4.85 (0.56) 0 

CE 6 1523 t/c 1.07 (0.97-1.16) 0.17 3.31 (0.65) 0 

LVD 6 1639 t/c 0.98 (0.89-1.07) 0.60 5.41 (0.37) 7.6 

SVD 6 1254 t/c 1.07 (0.97-1.17) 0.19 2.92 (0.71) 0 

 

 

Table 3.8: Association results for SNP rs9830510 with overall ischemic stroke and its 

subtypes 

 
Association Heterogeneity 

Stroke Cohorts N A1/A2 OR (95% CI) p Q (p) I2 

All stroke 7 8624 a/g 0.96 (0.90-1.02) 0.54 2.37 (0.88) 0 

CE 6 1523 a/g 1.03 (0.91-1.15) 0.83 4.43 (0.49) 0 

LVD 6 1639 a/g 0.76 (0.66-0.87) 0.03 1.43 (0.92) 0 

SVD 6 1254 a/g 1.01 (0.89-1.14) 0.92 5.28 (0.38) 5.4 

 

* Effect sizes are shown as odds ratios for the % increase or decrease per copy of the 

risk allele.  

 

 

 

  



 

148 
 

CHAPTER 4: META-ANALYSIS OF GENOME 

WIDE ASSOCIATION STUDIES ON CAROTID 

STENOSIS IN ISCHEMIC STROKE 

 

 

 

 

 

 

 

 

  



CHAPTER 4: META-ANALYSIS OF GENOME WIDE ASSOCIATION STUDIES ON CAROTID STENOSIS IN 
ISCHEMIC STROKE 

149 
 

Abstract 

Carotid stenosis of >50% is associated with high risk of ischemic stroke accounting for 

nearly 20% of all ischemic strokes and TIA’s caused by emboli originating from unstable 

plaque (>50% stenosis) in large arteries. The study hypothesized that there is a shared 

genetic burden for ischemic stroke and carotid disease, and individuals with 

superimposed carotid stenosis on ischemic stroke may carry a greater genetic risk 

burden than those with either standalone disease.  

A meta-analysis of 7 genome wide association studies was conducted to increase the 

statistical power of identifying novel gene variants associated with the risk of carotid 

disease in ischemic stroke. A total of 14,867 individuals of European ancestry (1164 

cases and 13,703 healthy controls) and approximately 2 million genotyped and imputed 

SNPs were tested for association using an additive genetic model. Evidence of a shared 

genetic basis of carotid disease and stroke was also investigated by analyzing previously 

published genome wide significance GWAS-derived SNPs associated with stroke and 

carotid disease.  

The study identified three genomic regions in chromosomes 3 to be associated at 

genome wide significance (p value ≤ 5 x 10-8) with > 50% carotid stenosis in ischemic 

stroke. The associated SNPs mapped in or near genesLRIG1 (OR 0.39, 95% CI 0.13-0.64, 

p=9.69x10-13), ROBO1 (OR 0.66, 95% CI 0.53-0.78, p=3.10x10-10) and CAPN7 (OR 0.58, 

95% CI 0.39-0.76, p=5.89x10-9).  

Three genetic risk variants associated with > 50% carotid stenosis and ischemic stroke 

were identified. Findings of the study may help in a better understanding of the genetic 

risk burden of symptomatic carotid stenosis. 
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4.1 Introduction 

Carotid disease is a major risk factor for ischemic stroke and > 50% carotid stenosis 

accounts for nearly 20% of all occurring ischemic stroke in the middle and anterior 

cerebral artery territories (Chaturvedi et al., 2005, Fairhead et al., 2005). The 

prevalence of moderate to high grade extra cranial carotid artery stenosis (50-99%) in 

adults ranges from 1–3 % and doubles to 6-9% in individuals >65 years of age (Eckstein 

et al., 2012). Embolising plaques or acute carotid occlusions cause cerebral ischemia in 

1-5% of all patients with an asymptomatic 50-99% stenosis of the internal carotid 

artery (Eckstein et al., 2012). Stroke risk in patients with > 50% carotid stenosis is 

directly related to the extent of stenosis; patients with 60-69% stenosis have 11% risk 

of stroke within 3 years, compared with 32% for patients with >90% stenosis (Jashari et 

al., 2012). 

Carotid plaque, defined as focal thickening of > 50% is a heritable trait (h2=23%-28%) 

and is under appreciable additive genetic influences (Hunt et al., 2002). It is strongly 

related to early parental CHD death as compared to IMT (Zureik et al., 1999) and with 

the risk of vascular events (Inaba et al., 2012). Evidence supporting the overlap of 

genetic risk factors between carotid disease and stroke exists and has revealed a shared 

genetic basis of these complex traits which is most likely through the effect of common 

risk factors such as blood pressure (Zakopoulos et al., 2005). For example, genetic 

variants at the 9p21 locus have been found to be associated with the risk of carotid 

disease and stroke (Congrains et al., 2012, Gschwendtner et al., 2009, Holdt and 

Teupser, 2012) and are known to exert their effect through modulation of ANRIL and 

CDKN2A/B. A recent study has identified a risk association of a microRNA SNP 

(rs3735590) near the PON1 gene with both ischemic stroke and IMT (Liu et al., 2013). 

Another example is the MTHFR gene, which is strongly associated with stroke via 

modulation of its biochemical marker Hcys, is also associated with carotid disease (Bova 

et al., 1999). Increasing numbers of epsilon4 alleles of the well-studied stroke 

associated APOE gene were also found to be associated with the risk of developing 

carotid plaque in men (Beilby et al., 2003). Evidence showing shared causality further 

lends support to mechanistic functioning of genetic risk variants (Kamstrup et al., 

2012). 
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Although there are common genetic influences for carotid stenosis and stroke, it is likely 

that each has its own set of unique genes that are independently associated with both 

traits, as shown in other carotid disease phenotypes (Spence and Hegele, 2004). Studies 

reporting weak associations for genetic determinants of cardiovascular risk with 

carotid disease also support this view (Manolio et al., 2004). Additionally phenotypes of 

early stage carotid disease (IMT) are not associated with genetic risk factors of coronary 

artery disease and MI, suggesting that these genetic risk factors may not exert their 

effect via early vascular remodeling or early arthrosclerosis and may play a role in the 

late stage disease (Conde et al., 2011). 

Despite a shared genetic etiology there is a genetic distinction between ischemic stroke 

and carotid stenosis (Kostulas et al., 1999) and stroke patients with superimposed 

carotid stenosis are likely to carry a greater genetic burden as compared to individuals 

with only stroke or healthy controls. Genetic investigations of complex disorders such 

as stroke are often confounded by heterogeneity of disease pathogenesis. Genetic 

variants associated with ultrasound-confirmed carotid disease may differ from variants 

associated with clinically relevant carotid stenosis and requires the study of carotid 

stenosis in stroke as a distinct phenotype. So far several large GWA studies (Bis et al., 

2011) and smaller candidate gene studies (Lanktree et al., 2009) have been published 

on carotid disease phenotypes in the healthy general population; however no studies 

have studied clinically relevant carotid disease in ischemic stroke. 

Based on published evidence, the study hypothesized that ischemic stroke and carotid 

disease carry a shared genetic burden and individuals with superimposed carotid 

stenosis on ischemic stroke may carry a greater genetic risk burden than those with 

either standalone disease or no disease. Previous studies have examined carotid 

stenosis and ischemic stroke as distinct phenotypes but so far no study has pursued 

both traits in the same population i.e. symptomatic carotid stenosis. An a priori genome 

wide association study to identify gene variants associated with > 50% carotid stenosis 

in patients with ischemic stroke was conducted. In order to correlate the findings with 

published studies, evidence of a shared genetic basis of carotid disease and stroke was 

investigated by analyzing previously published genome wide significant GWAS-derived 

SNPs associated with stroke and carotid disease. 
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4.2 Methods 

4.2.1 Study Populations 

14,867 individuals of European ancestry were included in the discovery meta-analysis 

of 7 GWA studies on carotid stenosis in ischemic stroke. The studies included 

individuals with genotype and phenotype data from the following cohorts: BRAINS 

(n=2527)(Cotlarciuc I, 2012, Yadav et al., 2011), GAROS 1 (n=3060)(Rost et al., 2010), 

GAROS 2 (n=152)(Rost et al., 2010), GEOS (n=545)(MacClellan et al., 2006, Kittner et al., 

1998), ISGS (n=1433)(Meschia et al., 2006), WTCCC-Ger (n=1162)(International Stroke 

Genetics et al., 2012) and WTCCC-UK (n=5988)(International Stroke Genetics et al., 

2012) (Figure 4.1).  All participating cohorts received institutional ethical clearance 

and signed consent from each participating study subject. Detailed description of the 

study cohorts are as follows: 

BRAINS: BRAINS cohort (http://www.brainsgenetics.com) is an on-going, multicenter, 

in-hospital study which recruits consenting acute stroke cases into a highly 

characterized bio bank (Yadav et al., 2011, Cotlarciuc I, 2012). All adult (>18 years of 

age) stroke patients are recruited with either ischemic or hemorrhagic pathology MRI 

confirmed lesions. Ischemic stroke subtypes are further sub-classified according to 

TOAST criteria (Adams et al., 1993). Known monogenic causes of stroke are excluded. 

BRAINS has two principal arms; the first arm recruits UK European stroke patients 

(BRAINS-UK) while the second arm recruits South Asian stroke patients from multiple 

sites in the UK and also from sites in India (BRAINS-South Asia). Control data for the 

European arm is provided by the British 1958 Birth Cohort 

(http://www.b58cgene.sgul.ac.uk) while control subjects for the South Asian arm are 

recruited simultaneously as the affected stroke patient and usually is the proband's 

spouse. A total of 2527 (54 cases and 2473 controls) individuals were included from the 

BRAINS cohort. 

GAROS 1 and GAROS 2: Cases included consecutive patient’s ≥ 18 years of age 

presenting with ischemic stroke and admitted to the Massachusetts General Hospital 

(MGH) Stroke Unit through the Emergency Department, or evaluated in the MGH 

Neurology outpatient clinics, or on the inpatient Medical and Vascular Surgical services 

from 2003 to 2010. A stroke was defined as either (1) a radiographically proven (head 
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CT or MRI) infarct associated with the appropriate clinical stroke syndrome or (2) a 

fixed neurological deficit persisting more than 24 hours, consistent with a vascular 

pattern of involvement and without radiographic evidence of demyelinating disease, or 

other non-vascular structural disease. Controls are 55 years or older recruited from the 

stroke-free adults presenting to the MGH outpatient clinics, matched with the cases on 

the basis of age, sex and ancestry information obtained from principal component 

analysis of GWAS data. Potential control subjects with a known history of carotid 

stenosis, transient monocular blindness, transient ischemic attack, ischemic or 

hemorrhagic stroke, systemic embolization, other thrombotic episodes, or surgery 

within the last 3 months were excluded. The Institutional Review Board approved all 

aspects of this study, and informed consent for collection of data was obtained for all 

subjects or their next of kin (case subjects only). Exclusion criteria for both case and 

control subjects were: (1) Stroke due to vasculitis, (2) Stroke due to endocarditis, (3) 

Active cancer or cancer treatment within the past two years, (4) Brain tumor, (5) 

Subdural hematoma, (6) Active lupus, (7) Recent cocaine use, (8) Meningitis, (9) Active 

myeloproliferative disorder, (10) Known genetic cause for stroke (i.e. MELAS, 

CADASIL), (11) Traumatic carotid dissections with no other stroke risk factors (i.e. neck 

injuries/manipulations), (12) End-stage liver disease and, (13) End-stage renal disease. 

A total of 3060 (32 cases and 3028 controls) and 152 (15 cases and 137 controls) 

individuals were included from GAROS 1 and GAROS 2 cohorts respectively. 

GEOS: GEOS is a population-based case-control study designed to identify genes 

associated with early-onset ischemic stroke and to characterize interactions of 

identified stroke genes and/or SNPs with environmental risk factors (Cheng et al., 

2011).  Participants were recruited from the greater Baltimore-Washington area in 4 

different time periods:  Stroke Prevention in Young Women-1 (SPYW-1) conducted from 

1992-1996, Stroke Prevention in Young Women-2 (SPYW-2) conducted from 2001-

2003, Stroke Prevention in Young Men (SPYM) conducted from 2003-2007, and Stroke 

Prevention in Young Adults (SPYA) conducted in 2008.  Case participants were 

hospitalized with a first cerebral infarction identified by discharge surveillance from 

one of the 59 hospitals in the greater Baltimore-Washington area and direct referral 

from regional neurologists. The abstracted hospital records of cases were reviewed and 

adjudicated for ischemic stroke subtype by a pair of neurologists according to 
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previously published procedures with disagreements resolved by a third neurologist. 

The ischemic stroke subtype classification system retains information on all probable 

and possible causes, and is reducible to the more widely used TOAST system that 

assigns each case to a single category.   Control participants without a history of stroke 

were identified by random-digit dialing and were balanced to cases by age and region of 

residence in each recruitment periods.  A total of 545 (47 cases and 498 controls) 

individuals were included from the GEOS cohort. 

ISGS: ISGS is a multicenter inception cohort study of first-ever ischemic stroke in adult 

men and women (Meschia et al., 2003). Cases were recruited from inpatient stroke 

services at five academic medical centers in Florida, Georgia, Virginia and Minnesota. A 

study neurologist on the basis of medical history, physical examination and CT or MR 

imaging of the brain confirmed the diagnosis of ischemic stroke. Cases had to be 

enrolled within 30 days of onset of stroke symptoms.  Cases were excluded if they had a 

mechanical aortic or mitral valve, central nervous system vasculitis, or bacterial 

endocarditis at the time of the stroke. They were also excluded if they were known to 

have: CADASIL, Fabry disease, homocystinuria, MELAS, or sickle cell anemia. Stroke 

severity at enrollment was assessed using the NIHSS and outcomes at 90-days were 

assessed by telephone using the Barthel Index, Glasgow Outcome Scale, and the 

modified Rankin scale (Kasner, 2006). Diagnostic evaluation included: head CT (95% of 

individuals enrolled) or MRI (83%), electrocardiography (92%), cervical arterial 

imaging (86%), and echocardiography (74%). A vascular neurology committee 

reviewed the medical records of every case and assigned ischemic stroke subtype 

diagnoses according to criteria from the Trial of ORG10172 (TOAST) (Adams et al., 

1993), the OCSP (Bamford et al., 1991), and the Baltimore-Washington Young Stroke 

Study (Johnson et al., 1995). DNA was donated to the NINDS DNA Repository (Coriell 

Institute, Camden, NJ) for eligible samples with appropriate written informed consent.  

A separate certified neurologist adjudicator additionally assigned a subtype diagnosis 

using the standardized CCS web-based algorithm (Ay et al., 2007). A total of 1433 (76 

cases and 1357 controls) individuals were included from the ISGS cohort. 
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WTCCC-Germany and WTCCC-UK: The WTCCC2 samples were genotyped as part of 

the WTCCC 2 ischemic stroke studies (International Stroke Genetics et al., 2012). Stroke 

cases included samples recruited by investigators at St. George's University London 

(SGUL), University of Oxford and Edinburgh Stroke Study in the UK and the Department 

of Neurology, KlinikumGroßhadern, Ludwig-Maximilians-University, Munich. The SGUL 

collection comprised 1224 ischemic stroke samples from a hospital based setting. All 

cases were of self-reported Caucasian ancestry. Ischemic stroke subtypes were 

determined according to TOAST criteria based on relevant clinical imaging and available 

information on cardiovascular risk factors. The University of Oxford collection 

comprised 896 ischemic stroke cases, consecutively collected as part of the Oxford 

vascular study (OXVASC). Cases were of self-reported Caucasian ancestry, and ischemic 

stroke subtypes were determined according to TOAST criteria based on relevant clinical 

imaging. For the Edinburgh Stroke Study, consecutive consenting patients with stroke 

who were admitted to or seen as outpatients at the Western General Hospital, 

Edinburgh were prospectively recruited between 2002 and 2005. Cases in this study 

were those with a clinically evident stroke, demonstrated by brain imaging (CT or MRI) 

to be ischemic. An experienced stroke physician assessed each patient as soon as 

possible after the stroke, prospectively recording demographic and clinical details, 

including vascular risk factors and results of brain imaging and other investigations. 

The Munich samples included 1383 ischemic stroke cases. Cases were consecutive 

European Caucasians recruited from a single dedicated Stroke Unit at the Department of 

Neurology, KlinikumGroßhadern, Ludwig-Maximilians-University, Munich. Ischemic 

stroke subtypes were determined according to TOAST criteria based on relevant clinical 

and imaging data.  

Controls for the UK samples were drawn from shared WTCCC controls obtained from 

the 1958 Birth Cohort. This is a prospectively collected cohort of individuals born in 

1958 (http://www.b58cgene.sgul.ac.uk/), and ascertained as part of the national child 

development study (http://www.cls.ioe.ac.uk/studies.asp). Data from this cohort are 

available as a common control set for a number of genetic and epidemiological studies. 

For the German samples controls were Caucasians of German origin participating into 

the population KORAgen study (www.gsf.de/kora). This survey represents a gender- 

and age stratified random sample of all German residents of the Augsburg area and 
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consists of individuals 25 to 74 years of age, with about 300 subjects for each 10-year 

increment. All controls were free of a history of stroke or transient ischemic attack. A 

total of 5988 (596 cases and 5392 controls) and 1162 (344 cases and 818 controls) 

individuals were included from WTCCC-Ger and WTCCC-UK cohorts respectively. 

4.2.2 Carotid Stenosis Phenotype 

Each study evaluated the carotid arteries using site-specific high-ultrasound B-mode 

ultrasonography. Carotid plaques are known to increase the risk of stroke irrespective 

of their location and are not consistently related to higher risks of infarction in the 

ipsilateral versus collateral cerebral hemispheres (Hollander et al., 2002). Therefore we 

used a single maximum measurement for stenosis, either bilateral or unilateral, in the 

common carotid arteries (CCA), external carotid arteries (ECA) and internal carotid 

arteries (ICA) to calculate the phenotype. For example, if the degree of carotid stenosis 

in a patient was as following; ICA (20-50%), ECA (50-70%) and CCA (70-90%), the 

maximal stenosis value of 90% was used as the carotid phenotype. This allowed us to 

take into account the severity of stenosis irrespective of the location. Patients with > 

50% carotid stenosis were chosen as cases based on the cut off for clinically relevant 

carotid stenosis (Thapar et al., 2013). 

4.2.3 Genotyping and Quality Control 

BRAINS: Whole genome DNA was isolated from EDTA-blood samples. BRAINS samples 

were genotyped on the Illumina HumanHap 610-quad Beadchip according to 

manufacturer’s standard protocol. The genotyping was performed with the help of Ms. 

Kerra Pearce at the University College London (k.pearce@ucl.ac.uk). Details of the 

procedure are listed in Appendix 1. 

Genome studio V2010.1 Genotyping module was used for the initial quality control of 

samples and all samples below the genotyping call rate of <95% were removed. The 

GenCall algorithm clustered the SNPs and plots were manually examined for improper 

clustering. Further quality control was performed in PLINK to remove individuals 

failing the following filters: (1) Call rate ≤ 95%, (2) Non-European ancestry, (3) Outlying 

autosomal heterozygosity, and (4) Cryptic relatedness (pi-hat ≥ 0.2). Quality control 

mailto:k.pearce@ucl.ac.uk
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also removed SNPs failing the following filters: (1) Call frequency ≤ 95%, (2) MAF ≤ 0.01 

and (3) HWE ≤ 10-6.  

GAROS 1 and GAROS 2:Genomic DNA was extracted from blood for all subjects using 

standard operating protocols. Samples were genotyped at the Broad Institute, 

Cambridge using the Affymetrix 6.0 and Illumina Human 610 Quad bead chips for 

GAROS 1 and GAROS 2 respectedly. 

GEOS: Genomic DNA was isolated from a variety of sample types, including cell line, 

whole blood, mouthwash and buccal swab.  Samples were genotyped at the Johns 

Hopkins Center for Inherited Disease Research (CIDR) using the Illumina HumanOmni1-

Quad_v1-0_B BeadChip (Illumina, San Diego, CA, USA). Individuals were excluded if they 

were unexpected duplicates, gender discrepancy and unexpected relatedness. 

ISGS: The ISGS/SWISS samples were genotyped on Illumina HumanHap550K chips and 

the Illumina Bead Studio software was used for the initial quality control of samples. 

Further quality control was performed in PLINK to remove individuals failing the 

following filters: (1) Call rate ≤ 95%, (2) Non-European ancestry, (3) Outlying 

autosomal heterozygosity, and (4) Cryptic relatedness (pi-hat ≥ 0.2). Quality control 

also removed SNPs failing the following filters: (1) Call frequency ≤ 95%, (2) MAF ≤ 0.01 

and (3) HWE ≤ 10-6.  

WTCCC-Ger and WTCCC-UK: All WTCCC2 cases were genotyped as part of the WTCCC2 

Ischemic Stroke study using the Illumina Human610W-Quad array. British controls 

were genotyped using the Illumina Human1.2M-Duo. German controls were genotyped 

on the Illumina Human 550k platform. Quality control procedures in the WTCCC2 

excluded SNPs not genotyped on all case and control collections and SNPs with Fisher 

information measure <0.98, genotype call rate <0.95, MAF <0.01 or HWE p value ≤ 

1×10-20 in either the case or control collections. Samples were excluded if identified as 

outliers on call rate, heterozygosity, ancestry and average probe intensity based on a 

Bayesian clustering algorithm. Samples were also removed if they exhibited 

discrepancies between inferred and recorded gender and cryptic relatedness with other 

WTCCC2 samples (pair wise identity-by-descent >0.05). Autosomal genotype 

imputation was performed using MACH based on HapMap Phase 2 European (CEU) 

reference data. Details of the genotyping are provided in Table 4.1. 
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4.2.4 Genotype Imputation 

Single Nucleotide polymorphisms analyzed in GWA studies are mostly derived 

experimentally from gene arrays that produce high throughput data in the hundreds of 

thousands. Genotypes are called from their allele signal fluorescent intensities and 

improper separations of signals are registered as missing genotypes. There is a huge 

loss of genetic information due to these missing genotypes that can introduce bias in the 

analysis and an inability to combine GWA studies that have used varied genotyping 

platforms that differ in their coverage of the genome. Re-genotyping missing data is an 

expensive and time-consuming option. Imputation provides a good alternative to filling 

in these missing genotype data gaps in the dataset and reducing the impact of missing 

data on association analysis.  

Imputation methods are based on the assumption that when SNPs are in LD, the 

unobserved genotypes can be predicted based on genotypes observed at other SNPs. 

The Markov Chain based haplotyper (MACH) software (Li et al., 2006) is a popular 

choice for inferring missing genotypes in samples of unrelated individuals using 

observed genotypes together with haplotypes from a reference dataset such as the 

HapMap or 1000Genomes.  

BRAINS samples were imputed using the MACH 1.0 software and the HapMap Build 36 

Release 22 imputation build. SNPs with a squared correlation between imputed and 

true genotypes (r2) <0.3, MAF ≤ 0.01, HWE ≤ 10-6 and pre-imputation call frequency ≤ 

0.95 were removed from further analysis. Dr. Ioana Cotlarciuc performed the 

imputation for the BRAINS samples. 

GAROS 1 and GAROS 2 samples were imputed using the IMPUTE v2.2.2 software and 

the 1000 Genomes Phase I integrated variant set and Haplotype release set (March 

2012, updated Aug 24 2012). SNPs with MAF ≤ 0.01, HWE ≤ 10-6 and pre-imputation call 

frequency ≤ 0.95 were removed from further analysis. 

GEOS samples were imputed using the IMPUTE v2.2.2 software and the 1000 Genomes 

phase 1 (June 2011) reference data set. SNPs with a squared correlation between 

imputed and true genotypes (r2) <0.3, monomorphic SNPs, HWE ≤ 10-4 and pre-

imputation call frequency ≤ 0.95 were removed from further analysis.  
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ISGS samples were imputed using the MACH 1.0 (miniMACH) software and the 1000 

Genomes.2012-03-14 imputation build. SNPs with a squared correlation between 

imputed and true genotypes (r2) <0.3 and MAF ≤ 0.01 were removed from further 

analysis.  

WTCCC-Ger and WTCCC-UK samples were imputed using the IMPUTE software and 

the HapMap II imputation build 36. SNPs with a squared correlation between imputed 

and true genotypes (r2) <0.3 and MAF ≤ 0.01 were removed from further analysis.  

Details of the genotype imputation are provided in Table 4.1. 
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4.2.5 Genome Wide Association Analysis 

Each participating study cohort performed its own site-specific logistic regression 

analysis using PLINK software (Purcell et al., 2007) to test association of genotyped and 

imputed SNPs, which passed the quality control criteria under an additive genetic 

model. Age and gender were used as covariates except for the BRAINS and WTCCC-Ger 

and WTCCC-UK cohorts because these cohorts utilized the British 1958 Birth Cohort 

where all individuals were the same age (45 years) at the time of blood collection.  

Each participating cohort provided the following summary stats: SNP, risk allele, non-

risk allele, minor allele frequency, log (OR), standard errors and p values. Data received 

from participating cohorts was subjected to further quality control and the following 

exclusion criteria were used to remove SNPs failing the following filters: (1) Call 

frequency ≤ 95%, (2) MAF ≤ 0.01 and (3) HWE ≤ 10-6, (4) r2< 0.3, (5) p value = 1 and (6) 

negative p values. 

Details of the statistical analysis are provided in Table4.2. 
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4.2.6 Meta-Analysis of GWAS Studies 

A meta-analysis was carried out using a fixed effects model and inverse variance 

method in METAL software (Willer et al., 2010).  A fixed effects model is based on the 

mathematical assumption that a there is only one true or ‘fixed’ effect underlying each 

study and all differences in observed effect is due to sampling error. The model provides 

greater power but does not take inter-study heterogeneity into account. Evidence of 

association from the studies was pooled using appropriate weights, which are 

calculated as the inverse of the square of the standard errors (1/SE2) for every effect 

estimate (β). The following equation was used to calculate the weighted pooled effects 

size: 

  
∑      

∑    
 

Where β = pooled effect size 

            βi = effect size estimate for study  

ωi = weight given to study i, equal to inverse of variance (1/SEi2)  

Pooled ORs were calculated as the exponential of the estimated effect size (Exp (β)) for 

each SNP. 95% confidence intervals were calculated using the following formula: 

 

 

Where ϰ = point estimate i.e. odd ratios  

            1.96 = Z score for a 95% CI for a Z distribution         

            SE = standard error 

We also applied the genomic control method (Devlin and Roeder, 1999, Marchini et al., 

2004, Bacanu et al., 2000) to control for population heterogeneity.  METAL calculates 

the inflation (λ) of the test statistic by comparing the median test statistic to that 

expected by chance, and then applies the genomic control correction to the standard 

error weighted meta-analysis.  

95% CI = ϰ ± 1.96 (SE)  
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Statistical heterogeneity, which is the variation in study outcomes between studies, was 

also estimated using the Cochran’s Q test, which is incorporated in the METAL software 

(Cochran, 1954). Cochran’s Q test is a non-parametric test used to determine whether 

variables have identical effects or not. Cochran’s Q test is calculated as the weighted 

sum of squared differences between individual study effects and the pooled effect 

across studies. 

  ∑       
 

 

Where    
∑  

∑ 
 

W = weight of the individual study E 

E = Effect of the individual study 

The Q statistic follows a χ2distribution with k-1 degrees of freedom (df) where k is the 

number of studies included in the meta-analysis. A high value for Q (> k-1) suggests 

statistical heterogeneity. The significance level of the Q statistic is estimated from 

the χ2 distribution with k−1 degrees of freedom. 

The I2 index test compliments the chi-squared test and quantifies the extent of variation 

across studies in a meta-analysis that is due to heterogeneity rather than chance 

(Higgins and Thompson, 2002). Unlike the Q statistic, the I² statistic does not depend on 

the number of studies included in the meta-analysis. The I² statistic was calculated 

using the following formula: 

   
      

 
       

Where Q = χ2 statistic 

df = degrees of freedom equal to number of studies minus 1 (k-1) 

A total of 2 million genotyped and imputed SNPs, which passed the quality control 

criteria, were included in the final meta-analysis from the 7 study cohorts. Bonferroni 

correction was applied to adjust for multiple testing and the significance threshold was 
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set at p≤5x10-8 which represents the Bonferroni corrected conventionally used p value 

of 0.05. 

4.2.7 Visualization of GWAS Data 

Probability value plots are widely used visual presentation aids for GWAS data. Two 

such plots are the −log10 (p) genome-wide association Manhattan plots and Q-Q plots. 

Manhattan plots represent the −log10 (p) values for the entire GWAS dataset in an 

easily readable format. The −log10 of the p values are plotted on the Y-axis by 

chromosome and base pair position on the X-axis. Because of local correlation of the 

genetic variants, arising from infrequent genetic recombination, groups of significant P 

values tend to rise up high on the Manhattan plot, making the graph look like a 

Manhattan skyline (Ehret et al., 2010). 

Q-Q plots were also used for visual inspection of the GWAS data. Modest levels of bias 

within a large GWA study can skew the null distribution and inflate test statistics. A Q-Q 

plot summarizes the quality of the GWAS data and can reveal underlying population 

sub-structure and experimental artifacts, which may warrant further analysis. Q-Q plots 

provide evidence of the extent of deviation (if any) of the observed p values from the 

null hypothesis (central line). The plots are produced by plotting the observed p values 

for each SNP (largest to smallest) against expected values from a theoretical χ2-

distribution. There is concordance between the observed and expected p values if all 

data points lie on or close to the central line. If there is an early upward separation of 

the expected from the observed, this means that many moderately significant p values 

are more significant than expected under the null hypothesis. 

Regional association and linkage plots allow fine mapping (up to 25 Kbp) of 

chromosomal regions of interest and are widely used to visualize GWA significant loci. 

Regional plots for genome wide significant loci are usually centered on the sentinel SNP 

for each locus. SNPs are plotted with their p values against their genomic position. The 

most significant SNP can be represented in linkage disequilibrium with other SNPs in 

the various HapMap panels or original dataset and are shaded according to their pair 

wise correlation (r2) with the target SNP. 
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4.2.8 Power Calculation 

The power of a genome wide association study is dependent on many factors such as 

the magnitude of the effect of a gene variant, its prevalence and sample size. The power 

of GWAS studies is also dependent not only on the number of cases but importantly on 

the number of controls recruited. A larger number of controls may compensate for a 

smaller number of cases and result in similar overall obtained power as if more cases 

had been recruited. 

Power for our meta-analysis was calculated using the CATS genetic power calculator 

(Skol et al., 2006). The following parameters were used to calculate the power using an 

additive genetic model: N (cases): 1164, N (controls): 13703, carotid disease in stroke 

prevalence in Europeans: 0.005 % (White et al., 2005), MAF: 0.1-0.5 and significance 

level: ≤5 x 10-8.  
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4.3 Results 

4.3.1 Population Characteristics 

The discovery genome-wide analysis of >50% carotid stenosis in ischemic stroke 

included 14,867 individuals of European ancestry (1164 cases and 13,703 healthy 

controls) from 7 population-based studies. The studies included individuals with 

genotype and carotid stenosis data from the following cohorts: BRAINS (n=2527), 

GAROS 1 (n=3060), GAROS 2 (n=152), GEOS (n=545), ISGS (n=1433), WTCCC-Ger 

(n=1162) and WTCCC-UK (n=5988) where ‘n’ is the total number of individuals in each 

cohort.  

BRAINS cohort included 54 genotyped cases with information on >50% carotid stenosis 

and a mean age of 73.30 ± 12.24 years. Males made up 73 % of the cases. The Mean age 

for the 2473 British 1958 Births Cohort controls was 45 years.  

GAROS 1 cohort included 32 genotyped cases with information on >50% carotid 

stenosis and a mean age of 68.23 ± 11.37 years. Males made up 69 % of the cases. The 

mean age for the 3028 healthy controls was 42.99 ± 7.76 of which 76 % were males.   

GAROS 2cohort included 15 genotyped cases with information on >50% carotid 

stenosis and a mean age of 63.39 ± 12.19 years. Males made up 67 % of the cases. The 

mean age for the 137 healthy controls was 73.02 ± 7.47 of which 50 % were males.   

GEOS cohort included 47 cases with >50% carotid stenosis data with a mean age of 44.7 

± 3.7 years and 66% males. Control population included 498 healthy individuals with a 

mean age of 39.5 ± 6.7 years and 57% males. 

ISGS cohort included 76 genotyped cases with >50% carotid stenosis data with a mean 

age of 70.87 ± 13.41 years and 66% males. 1357 healthy controls consisted of 47% 

males and a mean age of 64.75 ± 12.63 years. 

WTCCC-Germany cohort included 344 genotyped cases with >50% carotid stenosis 

data with a mean age of 66.00 ± 10.90 years and 70% males. The mean age for the 818 

British 1958 Births Cohort controls was 45 years. 
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WTCCC-UK cohort included 596 genotyped cases with a mean age of 70.0±10.90 years 

and 63% males. The mean age for the 5392 British 1958 Births Cohort controls was 45 

years. 

The population demographics for all 7 cohorts are detailed in the Table 4.3. 

4.3.2 Genotyping, Quality Control and Imputation 

The participating cohorts were genotyped on various commercially available 

genotyping platforms as follows: BRAINS (Illumina HumanHap 610-quad), GAROS 1 

(Affymetrix 6.0), GAROS 2 (Illumina HumanHap 610-quad), GEOS (Illumina 

HumanOmni1-Quad_v1-0_B), ISGS (Illumina HumanHap550K), WTCCC-Ger (Illumina 

HumanHap 660-quad) and WTCCC-UK (Illumina HumanHap 660-quad).  

In order to facilitate a meta-analysis of all 7 cohorts, imputation of the genotyped SNPs 

was performed for each dataset. Genotypes were inferred for the BRAINS dataset using 

the HapMap Build 36 Release 22 reference dataset and consisted of 2,259,726SNPs. 

Genotypes were inferred for the GAROS 1and GAROS 2 datasets using the 1000 

Genomes Phase 1 variant reference dataset and consisted of ~37 million SNPs. 

Genotypes were inferred for the GEOS dataset using the 1000 Genomes Phase 1 variant 

reference dataset and consisted of 16,219,283SNPs. The ISGS cohort was imputed using 

the 1000 Genome.2012-03-14 reference dataset and consisted of about 18,639,697 

million SNPs. A total of approximately 2 million overlapping SNPs were included in the 

final meta-analysis. Details of the genotyping and imputation metrics for all 7 cohorts 

are described in the Table 4.1. 

Q-Q plots were plotted to assess the quality of data for each GWA study (Figure 4.2). 

The GWAS association plots largely followed the null distribution with results for 

BRAINS, WTCCC-Ger and WTCCC-UK showing strong deviation of the observed p values 

from the null hypothesis indicating genome wide significant associations. Q-Q plots for 

GAROS 1 and GAROS 2 showed evidence of high inflation with skewed distributions 

indicating a marked difference between the distributions of the observed p values as 

compared to the null distribution. METAL software has the ability to adjust studies for 

genomic control in order to control for small amounts of population stratification and 

unaccounted relatedness (Willer et al., 2010). Prior to meta-analysis METAL calculates 



CHAPTER 4: META-ANALYSIS OF GENOME WIDE ASSOCIATION STUDIES ON CAROTID STENOSIS IN 
ISCHEMIC STROKE 

167 
 

the inflation of the test statistic and applies the genomic control correction to the SE of 

each study. The genomic inflation factor (λ) for the meta-analysis was low (0.98) 

suggesting low population stratification and hence no additional adjustment was 

required. 

4.3.3 Meta-Analysis 

Meta-analysis of the 7 participating cohorts was performed in METAL (Willer et al., 

2010) using a fixed effects models and inverse variance method of weighted beta 

coefficients. The Q-Q plot of the meta-analysis association results showed strong 

deviation of the observed p values from the null hypothesis indicating genome wide 

significant associations of gene polymorphisms with carotid stenosis in ischemic stroke 

(Figure 4.3). We obtained a λ of 0.98 for our meta-analysis suggesting low population 

stratification and hence no additional adjustment was required. 

The meta-analysis results were reported as log (OR) and standard errors, which were 

converted to odds ratios and 95% confidence intervals. Inter study heterogeneity was 

assessed for each significant association. All identified associations had significant 

heterogeneity (Q ≥ degrees of freedom and p≤5×10−8) (Table 4.4). 

The a priori threshold for genome-wide significance was set at p≤5×10−8, which 

corresponds to the Bonferroni corrected conventional p value of 0.05 for approximately 

2.0 million multiple tests conducted.  
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4.3.3.1 Genetic loci associated with>50% carotid stenosis in ischemic 

stroke 

Meta-analysis of 7 GWA studies identified three genomic regions in chromosomes 3 to 

be associated at GWA significance (p value≤5x10-8) with >50% carotid stenosis in 

ischemic stroke (Figure 4.4 and Table 4.4).  

LRIG 1 locus 

Two correlated inter-genic SNPs (r2 ≥ 0.60, D=1), rs6788586 and rs6785590, spanning 

74 Kb were identified on chromosome 3 (3p14.1) near the human leucine-rich repeats 

and immunoglobulin-like domain 1 (LRIG 1) gene (GENCODE ID: 

ENSG00000144749)(Figure 4.5A). Both SNPslay~207 Kb 5’ of LRIG 1. SNP rs6788586 

was highly correlated with two other functionally non-annotated SNPs, rs61523447 

(r2=1, D=1) and rs79841184 (r2 =0.91, D=0.97) that lie 207Kb and 202 Kb 5’ of LRIG1 

respectively. SNP rs6788586 was associated with an OR 0.39 (95% CI 0.13-0.64, 

p=9.69x10-13). SNP rs6785590 was highly correlated with the functionally non-

annotated SNP rs1379184 (r2=0.94, D=1) that lay 209Kb 5’ of LRIG1.rs6785590 was 

associated with an OR 2.20 (95% CI 1.98-2.42, p=2.05x10-12). There were no coding 

SNPs within any gene in high LD with both SNPs. 

ROBO1 locus 

Two highly correlated (r2=1, D=1) intronic SNPs, rs7644521 and rs3923526, spanning 

406 Kb were identified on chromosome 3 (3p12.2) within the roundabout, axon 

guidance receptor, homolog 1 gene (ROBO 1)(GENCODE ID:  ENSG00000169855) 

(Figure 4.5B). The sentinel SNPs, rs7644521 and rs3923526 were associated with OR 

0.66 (95% CI 0.53-0.78, p=3.1x10-10) and OR 1.49 (95% CI 1.36-1.62, p=5.43x10-10) 

respectively. Both SNPs were in high LD (r2≥0.8) with a cluster of 9 intronic SNPs 

spanning 28 Kb. There were no coding SNPs within any gene in high LD with both SNPs. 

CAPN7 locus 

SNP rs4685240 was identified on chromosome 3 (3p25.1), 5.7 Kb 3’ of LOC344875 

(GeneID: 344875), 27 Kb 5’ of AC090954.1 and 66 Kb 5’ of Calpain Like Protease 7 gene 

(CAPN7) (GENCODE ID: ENSG00000131375) (Figure 4.5C). rs4685240 was in high LD 

(r2≥ 0.8) with two cluster of SNPs: 14 intronic SNPs 35 Kb-25 Kb 5’ of the CAPN7 gene 

and 11 SNPs 19 Kb-35 Kb 5’ of AC090954.1.SNP rs4685240 was associated with an OR 

of 0.58 (95% CI 0.39-0.76, p=5.9x10-9).  
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4.3.3.2 Association with previously published GWAS-derived stroke and 

carotid disease SNPs 

In a cross phenotype comparison, we replicated previously published genome wide 

significant and suggestive SNPs associated with stroke and carotid disease phenotypes 

(IMT and plaque) in our dataset (Table 4.6). The direction of effect and effect size were 

consistent for rs17398575 (PIK3CG) from a plaque analysis (OR 1.18, 95% CI 1.12–1.23, 

p=2.3 × 10-12) (Bis et al., 2011) and our study (OR 1.26, 95% CI 1.15-1.37, p=4.97×10-5), 

although the association was nominal. Stroke associated SNP rs2107595 near gene 

HDAC9 (OR 1.39 (95% CI 1.27–1.53, p=2.03 × 10-16)(Traylor et al., 2012) was also 

suggestively associated in our study (OR 1.35 (95% 1.23-1.47, p=7.16 × 10-7). No other 

GWAS derived SNP showed association in our study. Conversely none of the top SNPs 

from our analysis were found to be associated with any other vascular phenotypes. 
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4.4 Discussion 

Carotid stenosis is a major risk factor for stroke and the commonly held belief that 

carotid disease is largely caused by environmental risk factors has recently been 

challenged by large population based GWA studies that have identified genetic variants 

to be associated with the risk of carotid stenosis and plaque (Bis et al., 2011). A genome 

wide association meta-analysis in 14,867 individuals of European ancestry from 7 

studies on >50% carotid stenosis in ischemic stroke was performed and identified 

genome wide significant associations (p≤5x10-8) for three gene loci.  

The study is the first to attempt a better understanding of the genetics of superimposed 

and clinically relevant carotid stenosis in ischemic stroke. Findings from the study 

extend our current knowledge of advanced carotid disease. 

Genetic loci associated with > 50% carotid stenosis in ischemic stroke 

LRIG1 

The most notable association was for the LRIG1gene, which was also the sentinel 

association in our study. The top SNPs were located 207 Kb 5’ of the LRIG1 gene locus 

which is a member of the human leucine-rich repeats and immunoglobulin-like domains 

(LRIG) gene family and includes LRIG1, LRIG2 and LRIG3 proteins. LRIG1is a type 1 

transmembrane protein with 15 leucine-rich repeats in its extracellular domain and 3 

immunoglobulin (Ig)-like domains. LRIG1 negatively regulates EGFR signaling by 

reducing the phosphorylation of ERBB and resultant decreased activation of 

downstream receptor tyrosine kinase signaling. The role of LRIG1 in human cancers is 

well known but complex. For some human cancers such as nasopharyngeal, renal, and 

breast cancers, the LRIG1 locus (3p14.3) was deleted whereas for others (colorectal, 

lung, glioblastoma and ovarian) it is neither deleted nor mutated (Wang et al., 2013). It 

is likely that the occurrence and severity of disease depends on the differential 

expression of the LRIG1 protein confounded by the tissue type, cancer stage and cancer 

subtype (Wang et al., 2013). LRIG 1 has also been found to be associated with blood 

urea nitrogen (Okada et al., 2012) and QRS duration and cardiac ventricular conduction 

(Sotoodehnia et al., 2010) suggesting a possible role in vascular disease. 
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Although the role of LRIG1 in carotid disease is unclear it has been associated with 

carotid phenotypes in a CAD population (Bis et al., 2011). SNP rs17045031, located 217 

Kb 5’ of LRIG1, showed a suggestive association with carotid artery plaque, with the G 

allele being associated with both lower odds of plaque (>50% stenosis) and lower risk 

of coronary artery disease (p=0.04)(Bis et al., 2011). Although the sentinel SNP 

(rs6788586) was not in high LD with rs17045031, the direction of our results were 

concordant with their analyses, with the G allele being associated with lower odds of > 

50% stenosis (OR 0.39, p=9.69x10-13). The concordance of results is not surprising 

given the systemic nature of arthrosclerosis and shared risk factors such as HTN, 

diabetes and old age, between coronary and carotid arthrosclerosis (Jashari et al., 

2012). However, SNP rs17045031 was not associated with carotid stenosis in our study 

population. 

The HaploReg V2 software (Ward and Kellis, 2012) was used to explore mechanistic 

functioning of both SNPs. The software uses LD information from the 1000 Genomes 

phase 1 project characterize of non-coding SNPs by studying their predicted chromatin 

state, sequence conservation and their effect on regulatory motifs. SNP rs6788586 was 

found to effect 17 regulatory protein binding motifs: AIRE_1, AIRE_2, Barhl1, FAC1, 

Foxa_known1, Foxa_known2, Foxi1, Foxj1_1, Foxj2_1, HDAC2_disc2, Isl2, Nkx2_3, 

Nkx3_3, RREB-1_1, RREB-1_2, Sox_6 and p300_disc3 and SNP rs6785590 was found to 

effect two protein binding motifs: SRF_known5 and p300_disc5. An in silico regulatory 

SNP detection analysis using the is-rSNP software (Macintyre et al., 2010) revealed that 

both SNPs also cause a transcription factor binding sight altering mutation and affects 

the binding sights of 10 cellular transcription factors at p value ≤ 0.05.  

ROBO1  

The second genome-wide significant region was at the axon guidance receptor 

gene ROBO1 (3p12.2). Two intronic SNPs, rs7644521 and rs3923526 emerged as 

genome-wide significant with the strongest association at rs7644521. The C allele of 

rs7644521 was associated with lower odds of >50% stenosis in ischemic stroke (OR 

0.66 (95% CI 0.53-0.78, p=3.10x10-10). ROBO1 plays a major role in axonal guidance in 

neurogenesis and is ubiquitously expressed in various human tissues of the nervous, 

vascular and immune systems. ROBO1 and DUTT1 are alternative splice variants with 

different initial exons and initiation codons. Although it’s function in vascular diseases 



CHAPTER 4: META-ANALYSIS OF GENOME WIDE ASSOCIATION STUDIES ON CAROTID STENOSIS IN 
ISCHEMIC STROKE 

172 
 

remains unknown, the varied roles ROBO1 protein may play in the body are supported 

by its associating with risk of many disorders such as developmental dyslexia (Hannula-

Jouppi et al., 2005), tumor suppression (Dallol et al., 2002), cervical cancer (Narayan et 

al., 2006), chronic schizophrenia (Potkin et al., 2009) and autism (Anitha et al., 2008). A 

recent study examined the association of 144 ROBO1 SNPs with theoretically motivated 

measures of language impairment, reading and spelling ability (Dyslexia), and short-

term verbal information storage and manipulation in a family based study and found 

the T allele of SNP rs7644521 to be nominally associated with the risk of digits-forward 

memory span (p=0.0002) and working memory (p=0.046) (Bates et al., 2011). ROBO1 

has also been implicated in forebrain development and stress response, a measure of 

schizophrenic dysfunction (Potkin et al., 2009). A GWAS study on siblings with ischemic 

stroke identified two ROBO1 intronic SNPs, rs1383407 and rs328049, to be nominally 

associated with stroke affected siblings (Meschia et al., 2011). However, neither SNPs 

were significant in our study (p values 0.82 and 0.53 respectively) nor were the SNPs in 

LD with our top SNP. 

Mechanistic characterization using the HaploReg V2 software (Ward and Kellis, 2012) 

revealed that SNP rs7644521 affects the SP1_known3 regulatory protein binding motifs. 

In silico regulatory SNP detection analysis using the is-rSNP software (Macintyre et al., 

2010) revealed that rs7644521 also causes transcription factor binding sight-altering 

mutation and affects the binding sights of over 138 cellular transcription factors at p 

value ≤ 0.05. 

CAPN7 

The third genome-wide significant region was at CAPN7 (3p24). The G allele of SNP 

rs4685240 was associated with lower odds of >50% stenosis in ischemic stroke (OR 

0.58 (95% CI 0.39-0.76, p=5.89x10-9). CAPN7 is a 92.65 KDa protein comprising of 813 

amino acids. The ubiquitous, well-conserved family of calcium-dependent, cysteine 

proteases and have been implicated in neurodegenerative processes, as their activation 

can be triggered by calcium influx and oxidative stress. Studies have found CAP7 

intronic SNPs rs1318937 and rs10510438 to be associated with alcoholism (Zuo et al., 

2012, Zuo et al., 2012) and macular degeneration (dbGaP Study 

Accession: phs000001.v3.p1) respectively. However, neither SNPs were significant in 
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our study (p values 0.91 and 0.52 respectively) nor were the SNPs in LD with our 

sentinel SNP.  

How SNPs operate at physiological level is clearly important. Our top SNPs map in or 

near genes in pathways with established roles in signal transduction (LRIG1), cell 

adhesion and guidance (ROBO1) and cysteine proteases (CAPN7). Besides their 

predicted conventional roles, the proteins are implicated in various disorders across the 

body implicating the involvement of previously unidentified biological processes. We 

demonstrate that LRIG1, a known risk factor for sub-clinical carotid disease (Bis et al., 

2011) and candidate gene at the most significantly associated locus in our study, is also 

involved in late stage carotid disease. ROBO1, a known risk factor for ischemic stroke 

(Meschia et al., 2011) was also associated with carotid disease supporting the role of a 

shared genetic risk burden. CAPN7 was a novel find which has not been implicated in 

any vascular disease so far.  

Study Strengths  

The strengths of the study include a well-designed analysis plan, population based case-

control design, high quality genotyping and in depth phenotyping of study subjects. The 

analysis was restricted to individuals of European ancestry and corrected for 

underlying population substructure, therefore ruling out artefactual associations caused 

by differences in allelic frequencies amongst ethnic groups. The study was also able to 

replicate results from other carotid disease and stroke GWAS’s in the current dataset 

and replicate findings from the CHARGE consortium GWAS that analyzed carotid 

disease phenotypes such as IMT and plaque. This replication also allowed us to relate 

the findings to carotid disease in a large independent healthy population thereby 

providing important additional context to the results. The current study is the first to 

attempt a better understanding of superimposed carotid stenosis in ischemic stroke by 

dissecting genetic risk variants associated with carotid stenosis.  
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Study Limitations  

Lack of Independent Replication and Functional Studies 

The current study lacks an independent replication, which is a standard strategy in the 

current GWAS climate, to confirm identified positive results in the discovery stage of a 

GWAS. We highlight the difficulty in identifying cohorts with > 50% carotid stenosis 

measurements in an ischemic stroke population with genotyped data, in which to 

replicate the discovery results. This is not unprecedented as other GWAS groups who 

are also dealing with unusual phenotypes or phenotypes not often measured, such as 

cervical dissection in stroke and venous thrombosis, have found it difficult to bring 

together large study populations for replication. We are currently in the process of 

recruiting more cohorts for our discovery and replication stages. 

The understanding of how SNPs behave at a physiological level to cause disease is 

ultimately the goal of any GWA study. Differential expression of top SNPs from a GWAS 

need to be followed up with expression and translational studies in cell lines and animal 

models to validate the findings. The current study lacked functional studies to validate 

the top hits.   

Small Sample Size and Low Power 

The study consisted of 14,867 individuals (1164 ischemic stroke cases and 13,703 

healthy controls), which provided very low statistical power to detect modest effect 

sizes exerted by genetic variants (OR 1.1-1.4). For MAF’s ranging from 0.01-0.5 a sample 

size of >10,000 cases and controls were required (Table 4.7). Complex disorders such 

as carotid stenosis and stroke are likely to have a polygenic inheritance with small 

individual genetic effect sizes coming together to produce a larger effect. Low statistical 

power can also result in inflation of effect size. Our study cohorts were small and much 

fewer in numbers leading to less robust conclusions compared to other GWA studies on 

carotid phenotypes (Bis et al., 2011). Our discovery result may indicate a founder’s 

effect, which is confined to the population isolate within the Europeans (Peltonen et al., 

2000). A replication analysis in a large well-powered study is required to validate our 

findings. There was limited funding for genome-wide genotyping, therefore only 500 of 

the BRAINS resource have been genotyped so far. Individuals recruited in the UK and 

genotyped in the year 2010 were included in the final analysis. Additional genotyping of 
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~ 1000 BRAINS samples will be performed in the future, giving the potential for 

inclusion in the validation study. 

Case-Control Design 

Our GWA study is a case-control design, which compares cases (ischemic stroke 

patients with > 50% stenosis) to healthy controls, with the assumption that cases have a 

higher prevalence of risk variants for the phenotypic trait as compared to the controls. 

The recruitment of study subjects from a hospital based patient population, though 

common practice is indicative of biased sampling and introduces selection bias via the 

unconscious inclusion of subjects that are not representative of the general population.  

Lack of Stroke Sub-Type Data 

Large GWAS studies have highlighted the stroke subtype specific nature of genetic risk 

variants (Holliday et al., 2012, Traylor et al., 2012). Our study lacked information on 

stroke TOAST classification that hampered sub-group analysis, an essential requirement 

for any stroke study. Due to the heterogeneous etiology of ischemic stroke sub-types it 

is possible that a small effect lies within a sub-group and is undetectable in a pooled 

analysis.  

Experimental Heterogeneity and Lack of Data on Carotid Imaging Site 

Our study showed evidence of heterogeneity, which may be due to disparity in 

measurement techniques. Ultrasound protocols varied across the participating cohorts 

and most did not have detailed phenotyping information on the site of imaging for the 

carotid artery. Studies have reported differences in relationships of risk factors and 

disease incidence with IMT measured at different carotid sites (Manolio et al., 2004). 

This suggests site-specific differences in their cause and possible genetic differences as 

well. For example, the turbulent flow of the internal carotid artery, which is associated 

with lipid accumulation and plaque hemorrhage, burdens a greater risk of disease as 

compared to IMT in the common carotid, which has a laminar flow (O'Leary et al., 

1999). However, internal cIMT measurements are more challenging to obtain and most 

of the participating cohorts in our study did not have detailed phenotyping information 

on the site of imaging for the carotid artery. Low study participant numbers also 

prevented us from conducting a detailed analysis by site-specific stenosis. Such 

experimental heterogeneity introduced due to disparity in measurement techniques 
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may have compromised our ability to detect small associations. It is clear that future 

studies must use a standardized protocol for measurement of stenosis and possibly a 

higher resolution technique, such as MRI. 

Poor Coverage by Genotyping Arrays and Lack of Causality 

All our cohorts used commercially available Illumina genotyping platforms, which 

typically have poor coverage of rare variants, which may play an important causative 

role in carotid disease. Although imputation based on LD pattern using the HapMap and 

1000 Genomes reference datasets helped populate the dataset to several million SNPs, 

these may have missed rare functional variants. Additionally a mix of imputation 

reference data sets used by the participating cohorts allowed us to meta-analyze 

approximately 2 million SNPs, which cover only a small proportion of SNPs available 

through 1000 Genomes (Abecasis et al., 2012). Future projects should ideally meta-

analyze cohorts which have imputed data from 1000 Genomes reference datasets only. 

The three genetic loci identified in our study were either intergenic or intronic SNPs, 

which were not in high LD with any non-synonymous SNPs. It is likely that the causal 

variant differs from the identified SNPs and the functional region may lie away from the 

implicated candidate gene (Kleinjan and van Heyningen, 2005).  

Conclusion 

Results from the current study identified three genetic loci associated at genome wide 

significance with >50% carotid stenosis in ischemic stroke. The most strongly 

associated SNP in the analysis lies close to LRIG1, which has also been identified as a 

risk variant for carotid disease in a CAD population. Findings lend support to a common 

genetic risk burden for vascular diseases. 

Discovery of genetic risk variants associated with complex disorders such as carotid 

disease and ischemic stroke may lead to an in-depth understanding of molecular 

pathways underlining them and possibly reveal new drug targets for therapy. 

Innovations in genotyping technology, imaging modalities and statistical computation 

will eventually lead to well powered studies that are strongly positioned to provide 

specific pathophysiological gene targets. Findings from the study warrant further 

validation in large well-powered replication studies and need to be followed up with 

functional analysis in cell lines and animal models.  
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Figure 4.1: Flow diagram of carotid stenosis-ischemic stroke GWAS analyses 

 

 

* Cases (total number of ischemic stroke cases with > 50% carotid stenosis), Controls 

(total number of healthy individuals) 
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Figure 4.2: Q-Q plot for association results from the (A) BRAINS, (B) GAROS 1, (C) 

GAROS 2, (D) GEOS, (E) ISGS, (F) WTCCC-Ger and (G) WTCCC-UK. −log10 (p) observed p 

values are plotted against the −log10 (p) expected p values.  Upward deviations of the 

observed p values (black circles) towards the Y-axis, at the extreme right end of the plot 

indicate that they are more significant than the expected p values (red line) under the 

null hypothesis. Strong deviations from the null hypothesis suggest significantly 

associated genetic loci. 
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Figure 4.3: Q-Q plot for the meta-analysis association results showing genome wide 

significant deviations from the null hypothesis suggesting strongly associated genetic 

polymorphisms with carotid stenosis in ischemic stroke. Genomic inflation factor (λ) for 

the meta-analysis was 0.98. 
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Figure 4.4: Genome-wide Manhattan plot showing three genetic loci in or near genes 

LRIG1, ROBO1 and CAPN7 associated at GWA significance (p<5 x 10-8) with >50% 

carotid stenosis in ischemic stroke. Individual –log10 p values for SNPs are plotted 

against their genomic position by chromosome. The dotted line at 10-6 marks the 

threshold for promising SNPs and the solid line at 10-8 marks the genome-wide 

significance threshold. 
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Figure 4.5: Regional LD plots for the three genome wide significant loci associated with 

>50% carotid stenosis in ischemic stroke. The plots are centered on the sentinel SNP for 

each locus. SNPs are plotted with their meta-analysis p values against their genomic 

position. The most significant SNP (orange diamond) is represented in linkage 

disequilibrium with other SNPs in the HapMap phase 2 CEU panel and are shaded 

according to their pair wise correlation (r2) with the target SNP. The blue lines 

represent the estimated recombination rates. Genes are annotated in green. 
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Table 4.1: Details of genotyping and imputation for the carotid stenosis-ischemic stroke cohorts 

 
BRAINS GAROS-1 GAROS-2 GEOS ISGS WTCCC-Ger WTCCC-UK 

Genotyping 

Platform 

Illumina Human 

610 Quad 
Affymetrix 6.0 

Illumina Human 

610 Quad 

Illumina 

HumanOmni1-

Quad_v1-0_B 

Illumina 550k 

Human 610 Quad 

Illumina 

Human 610 

Quad 

Illumina 

Human 610 

Quad 

Genotyping 

Centre 

Institute of Child 

Health, UCL 

Broad Institute, 

Cambridge MA 

Broad Institute, 

Cambridge MA 

Centre of Inherited 

Disease Research, 

Johns Hopkins Univ 

NIA Laboratory of 

Neurogenetics, UCL 

Institute of 

Neurology 

Sanger Sanger 

Genotyping 

calling algorithm 

Genomestudio 

V2010.1 

Genotyping 

module 

Birdsuite GenCall 
IlluminaBeadstudio 

v3.3.7 

Genome studio 

V2010.1 Genotyping 

module 

Gencall Gencall 

Call rate 

threshold 

(individuals) 

≥ 0.95 ≥ 0.90 ≥ 0.90 ≥ 0.98 ≥ 0.95 0.95 0.95 

Call frequency 

threshold (SNPs) 
≥ 0.95 ≥ 0.95 ≥ 0.95 ≥ 0.95 ≥ 0.95 0.95 0.95 

Imputation 

software 
MACH 1.0 IMPUTE v2.2.2 IMPUTE v2.2.2 IMPUTE2 MACH 1.0/miniMac Impute Impute 
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Imputation 

reference panel 

HapMap build 36 

release 22 

1000 Genomes 

Phase I 

integrated 

variant set 

NCBI b37, 

Haplotype 

release 2012 

1000 Genomes 

Phase I integrated 

variant set NCBI 

b37, Haplotype 

release 2012 

June 2011 (phase I, 

1094 samples); 

https://mathgen.stats.

ox.ac.uk/impute/data_

download_1000G_pha

se1_interim.html 

1000 genomes 

.2012-03-14 
HapMap II 36 

HapMap II 

36 

Pre-imputation 

MAF 
< 0.01 < 0.01 < 0.01 Monomorhpic < 0.01 < 0.01 < 0.01 

Pre-imputation 

HWE filter 
< 10-6 < 10-6 < 10-6 < 10-4 < 10-6 < 10-6 < 10-6 

Pre-imputation 

call frequency 
< 0.95 < 0.95 < 0.95 < 0.95 < 0.95 < 0.97 < 0.97 

SNPs used for 

imputation (N) 
556,847 580,445 522,488 861131 416385 -- -- 

Quality 

threshold for 

imputed SNP 

0.3 -- -- 0.3 0.3 0.3 0.3 

Imputed SNPs 

for analysis (N) 
2259726 37,250,499 37,124,082 16219283 18639697 -- -- 
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Table 4.2: Details of statistical analysis for the carotid stenosis-ischemic stroke cohorts 

 
BRAINS GAROS 1  GAROS 2  GEOS ISGS WTCCC-Ger WTCCC-UK 

Model 
Logistic 

Regression 

Logistic 

Regression 
Logistic Regression Logistic Regression Logistic Regression 

Logistic 

Regression 

Logistic 

Regression 

Adjustment 

covariates 
Sex 

Sex, Age, PC1 & 

PC2 
Sex, Age, PC1 & PC2 Sex, Age, PC1 & PC2 

Sex, Age, PC1 & 

PC2 
Sex Sex 

Statistical 

software 

Plink v1.07 , 

STATA11 & 12,  

MATLAB, METAL 

Plink v1.07 & 

SNPTEST v2.4.1 

64bit static2 

version 

Plink v1.07 & 

SNPTEST v2.4.1 64bit 

static2 version 

PLINK v1.07 

PLINK v1.07 , 

MACH , R & 

MACH2DAT 

Plink & 

METAL 
Plink & METAL 
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Table 4.3: Population demographics for 7 participating cohorts 

 

BRAINS GAROS-1  GAROS-2  GEOS ISGS WTCCC-UK WTCCC-Ger 

Case Control Case Control Case Control Case Control Case Control Case Control Case Control 

N 54 2473 32 3028 15 137 47 498 76 1357 596 5392 344 818 

Age in years 

(mean ± SD) 

73.30 

(± 12.24) 
45 

68.23 

(± 11.37) 

42.99 

( ± 7.76) 

63.39 

(± 12.19) 

73.02 

(± 7.47) 

44.7 

(± 3.7) 

39.5 

(± 6.7) 

70.87 

(± 13.41) 

64.75 

(± 12.63) 

70.00 

(± 10.9) 
45 

66.00 

(± 10.9) 
45 

Male 

n (%) 

42 

(73)  
68.75 75.83 66.67 49.63 

31 

(66.0) 

282 

(56.6) 

50 

(66) 

363 

(47) 

375 

(63) 
-- 241 (70) -- 

IS stroke 

subtype 

n (%) 
              

-Cardioembolic 
2 

(3.5) 
-- 9.37 -- 13.33 -- 

0 

(0.0) 
-- 

9 

(11.84) 
-- 

22 

(3.7) 
-- 

0 

(0)  

-Large Artery 
28 

(50) 
-- 78.12 -- 66.67 -- 

37 

(78.7) 
-- 

31 

(40.7) 
-- 

478 

(80.2) 
-- 

344 

(100.0) 
-- 

-Small Vessel 
2 

(3.5) 
-- 0 -- 0 -- 

0 

(0.0) 
-- 

7 

(9.2) 
-- 

6 

(1.6) 
-- 

0 

(0) 
-- 

HTN 

n (%) 

28 

(49) 
-- 78.12 -- 93.33 60.58 

23 

(48.9) 

79 

(15.9) 

53 

(70%) 

465 

(34.2) 

441 

(74) 
-- 

251 

(73) 
-- 

Diabetes 

n (%) 

7 

(12) 
-- 28.12 -- 20 9.49 

10 

(21.3) 

12 

(2.4) 

63 

(82.9) 

147 

(10.8) 

95 

(16) 
-- 

79 

(23) 
-- 

Hypercholestri

memia n (%) 

16 

(28) 
-- 56.25 -- 66.67 49.63 

19 

(41.3) 

117 

(23.6) 
33 (43.42) 

120 

(8.8) 

411 

(69) 
-- 

169 

(49) 
-- 

Smoking 

n(%) 

13 

(23) 
-- 71.87 -- 73.33 54.41 

27 

(57.5) 

117 

(23.5) 

64 

(84.2) 

650 

(47.9) 

459 

(77) 
-- 

131 

(38) 
-- 
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Stenosis 
              

-50%-70% 

n (%) 
-- -- -- -- -- -- 

4 

(8.5) 
-- -- -- -- -- -- -- 

-70%-

occlusion 

n (%) 

-- -- -- -- -- -- 
43 

(91.5) 
-- -- -- -- -- -- -- 
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Table 4.4:  Genome wide association results identifying three genetic loci associated at GWA significance (p≤5x10-8) with > 50% 

carotid stenosis in ischemic stroke, (A) by participating cohorts and (B) meta-analysis results. 

Cohort (N) 
LRIG (rs6788586) ROBO 1 (rs7644521) CAPN7(rs4685240) 

Log (OR) SE Log (OR) SE Log (OR) SE 

BRAINS (2527) 0.38 0.39 0.02 0.25 -0.36 0.39 

GAROS 1 (3060) 1.23 0.79 0.08 0.42 0.26 0.51 

GAROS 2 (153) -1.42 0.96 -0.44 0.63 0.46 0.75 

GEOS (545) -0.20 0.55 -0.36 0.27 0.76 0.54 

ISGS (1433) 0.98 0.69 0.28 0.24 0.12 0.34 

WTCCC Ger (1062) -4.91 0.32 -2.82 0.17 -1.60 0.19 

WTCCC UK (5988) -0.26 0.16 -0.02 0.08 -0.21 0.11 

* p values did not reach significance (p<0.05) for any individual cohort 

 

 
Association Heterogeneity 

SNP Chr BP Gene A1/A2 OR (95% CI) p Q (p) I2 (%) 

rs6788586 3 66758659 LRIG g/t 0.39 (0.13-0.64) 9.69-13 174.04 (1.0-35) 96 

rs7644521 3 79784534 ROBO1 c/t 0.66 (0.53-0.78) 3.10-10 224.81 (1.73-47) 97.3 

rs4685240 3 15203172 CAPN7 g/t 0.58 (0.39-0.76) 5.89-09 39.04 (6.84-08) 84.6 

 

*Effect sizes are shown as odds ratios for the % increase or decrease per copy of the risk allele.  

**Where more than one SNP at a locus surpassed our P value threshold, the SNP with the lowest P value is shown. 
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Table 4.5:  Characteristics of SNPs rs6788586, rs7644521 and rs4685240 in the meta-analysis cohorts 

 
rs6788586 rs7644521 rs4685240 

Cohorts A1/A2 MAF I/G A1/A2 MAF I/G A1/A2 MAF I/G 

BRAINS G/T 0.02 I C/T 0.17 I G/T 0.08 I 

GAROS 1 G/T 0.05 G C/T 0.16 G G/T 0.09 G 

GAROS 2 G/T 0.05 I C/T 0.18 G G/T 0.09 G 

GEOS G/T 0.04 I C/T 0.18 I G/T 0.08 I 

ISGS G/T 0.04 I C/T 0.18 G G/T 0.09 I 

WTCCC-Ger G/T 0.16 I C/T 0.32 I G/T 0.14 I 

WTCCC-UK G/T 0.04 G C/T 0.17 G G/T 0.08 G 
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Table 4.6: Association of carotid-ischemic stroke cohort with GWAS-derived cIMT (A), plaque (B) and stroke (C) associated SNPs 

A. Carotid IMT 
 CHARGE GWAS (Bis et al., 2011) Current study 

SNP Gene Chr N a1/a2 beta se p a1/a2 beta se p 

rs11781551 ZHX2 8 41,295 a/g –0.0078 0.0012 2.4 × 10−11 a/g 0.027 0.0464 0.56 

rs445925 APOC1 19 17,185 a/g –0.0156 0.0028 1.7x10-8 a/g 
-

0.0836 
0.0797 0.29 

rs6601530 PINX1 8 32,631 g/a 0.0078 0.0014 1.7 × 10−8 a/g 0.0017 0.0489 0.97 

rs4712972 SLC17A4 6 40,959 g/a 0.0099 0.0018 7.8 × 10−8 a/g 0.0309 0.0649 0.63 

 
B.Plaque 

 CHARGE GWAS (Bis et al., 2011) Current study 

SNP Gene Chr N a1/a2 OR (95% CI) p a1/a2 OR (95% CI) p 

rs17398575 PIK3CG 7 29,255 a/g 1.18 (1.12–1.23) 2.3 × 10−12 a/g 1.26 (1.15-1.37) 4.97x10-05 

rs1878406 EDNRA 4 29,827 t/c 1.22 (1.15–1.29) 6.9 × 10−12 c/t 0.87 (0.75-1.00) 0.039 

rs17045031 LRIG 1 3 27,896 a/g 0.74 (0.66 - 0.83) 4 × 10−7 a/g 1.19 (0.93- 1.46) 0.18 

rs6511720 LDLR 19 22,952 t/g 0.84 (0.78 - 0.89) 1 × 10−7 g/t 1.16 (1.02-1.31) 0.04 

 
C.Stroke 

 GWAS derived SNPs Current study 

SNP Gene Chr a1/a2 OR (95% CI) p Study a1/a2 OR (95% CI) p 

rs2107595 HDAC9 7 a/g 1.39 (1.27–1.53) 2.03 x 10-¹⁶ (Traylor et al., 2012) a/g 1.35 (1.23-1.47) 7.16x10-07 

rs6843082 PITX2 4 g/a 1.36 (1.27–1.47) 2.80 x 10-¹⁶ (Traylor et al., 2012) a/g 0.92 (0.81-1.03) 0.17 

rs879324 ZFHX3 16 a/g 1.25 (1.15–1.35) 2.28 x 10-⁸ (Traylor et al., 2012) a/g 1.06 (0.94-1.19) 0.27 

rs556621 6p21.1 6 a/c 1.21 (1.13–1.30) 4.70x 10−8 (Holliday et al., 2012) g/t 0.87 (0.77-0.96) 0.004 

rs11833579 NINJ2 12 a/g 1.41 (1.27–1.56) 2.30 x 10−10 (Ikram et al., 2009) a/g 0.98 (0.87-1.10) 0.85 

rs2200733 PITX2 4 t/c 1.52 (1.35-1.71) 5.82x 10-12 (Gretarsdottir et al., 2008) c/t 0.85 (0.71-0.99) 0.027 
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Table 4.7: Effect of MAF and cases: control recruitment on achieving 80% power  

MAF Effect size Cases Controls 

0.01 1.8 8026 >10000 

0.02 1.6 6241 >10000 

0.05 1.4 5050 >10000 

0.1 1.3 4517 >10000 

0.2 1.2 6084 >10000 

0.3 1.2 4423 >10000 

0.4 1.2 3859 >10000 

0.5 1.2 3891 >10000 

 

* Results set for achieving 80% power, genome wide significance (p value=5x10-8), 

prevalence of carotid disease in ischemic stroke=0.005% (White et al., 2005) and an 

additive genetic model. 
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5.1 Contribution of the Current Study to the Genetics of 

Ischemic Stroke 

Stroke is a devastating disease of the nervous system, which is symptomatic of a diffuse 

vascular dysfunction. Due to its complex etiology and multi-layered pathology, stroke is 

considered to be more of a syndrome than a disease. It is likely that stroke has a 

polygenic component with a battery of individual genes (with small effects) coming 

together to exert an effect that manifests into disease. Recent large-scale genetic 

association studies support this hypothesis by demonstrating the sub-type specific 

nature of risk association and small effect sizes (OR 1.15-1.85) (Traylor et al., 2012, 

Holliday et al., 2012). The genetic risk associated with stroke can also arise from the 

genetic risk burden of a risk factor.  

This thesis makes several original contributions to the knowledge of ischemic stroke 

genetics and summarizes the state of knowledge in ischemic stroke genetics particularly 

in the context of 3 unique confounding risk factors, South Asian ethnicity, long term 

blood pressure variability and clinically relevant carotid disease (>50% stenosis). In 

doing so, 3 widely used strategies have been utilized; literature based meta-analysis, 

candidate gene study and genome wide association study to decipher the genetic risk 

variants that may be associated with stroke and its risk factors. The study shows that, 

irrespective of the methodology used, the observed effect sizes for various genetic risk 

associations were small and broadly similar, further supporting previous findings. 

5.1.1 Chapter 1: Introduction 

The Introduction section is an exhaustive review of all relevant literature related to the 

genetic epidemiology of ischemic stroke and has (in-part) been published as a review 

article (Sharma et al., 2013) with a special focus on the utility of genetic information to 

clinicians in their everyday clinical practice. We begin with the global impact of stroke 

on the lives of individuals and economies around the world, which strongly brings home 

the point that stroke is a devastating disease with huge socio-economic repercussions 

and needs to be tackled on a global stage. We further delve into the modern day 

definitions of ischemic stroke, its sub-types, common classification systems and imaging 

modalities. This is information that is critical in the correct phenotypic characterization 
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of study participants and determines their eligibility to be included in genetic studies. 

Next we present the current state of knowledge on the heritability of stroke. 

Observational and experimental studies are reviewed extensively to establish a strong 

evidence base for heritability and genetic etiology of stroke. Section 4 presents a 

comprehensive review of literature on the genetic epidemiology of stroke via its 

intermediate phenotypes such as ethnicity, blood pressure, carotid disease, diabetes, 

smoking and obesity. Finally, we examine the various strategies that have been 

successfully used to gain an insight into the genetic underpinnings of ischemic stroke. 

Some of these strategies have also been implemented in this thesis. 

5.1.2 Chapter 2: Gene polymorphisms associated with ischemic stroke in South 

Asians: A literature based meta-analysis 

The literature-based meta-analysis on the gene polymorphisms associated with 

ischemic stroke in South Asians was the first and most comprehensive study 

undertaken to pool underpowered stand-alone candidate gene based genetic studies 

into a more statistically powered model (Yadav et al., 2013). The study emphasized the 

paucity of research being conducted in South Asians and the resultant lack of genetic 

studies on stroke. This is despite the fact that South Asians constitute ~20% of the 

world’s population and are projected to shoulder 80% of the world's burden of stroke 

by the year 2050.  

Although this study points towards a similar genetic risk burden of stroke for all 

examined ethnic groups, the results remain open to debate since the analyzed dataset 

was very small and the results were based on pooled summary statistics from different 

studies rather than individual patient level data. Similar limitations further plague the 

analysis of homocystiene levels in South Asians that demonstrated a significant 

difference in the levels of the intermediate phenotype with healthy South Asians 

carrying the MTHFR 677CC genotype having almost double the levels of plasma Hcys as 

compared to Europeans. Not withstanding the lack of power, the result from the current 

study show that the South Asian ethnicity places individuals at a greater risk of stroke 

from birth, partly due to their ethnic make-up and possibly because of gene-

environment interaction. Study results tie in well with previously published studies 

(Holmes et al., 2011). As a future directive large scale comparative analysis of patient 
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level Hcys data in healthy South Asians and Europeans with MTHFR 677CC genotype 

may provide an explanation for the higher prevalence of stroke in South Asia and opens 

up avenues for further research. Clinicians may utilize information provided by such 

studies to test patients for the recessive MTHFR C677T genotype, if patients present 

with high Hcys levels in the absence of risk factors such as low folic acid levels. 

Little is known about the molecular mechanisms underlining the role of MTHFR C677T 

polymorphisms and elevated plasma homocysteine levels with the risk of stroke, 

although both markers have been widely reported in small hospital based genetic 

studies. The results from such small-scale genetic studies are in sharp contrast to large 

randomized control trials testing the use of B vitamins and folic acid in reducing 

homocysteine levels and stroke risk. A recent meta-analysis of 18 large RCT’s reporting 

data on 57,143 individuals and 2,555 stroke events showed that B-vitamin 

supplementation was not associated with a lower risk of stroke (Zhang et al., 2013). 

Although results from large studies are considered more reliable, we can argue that 

since clinical trials generally last between 3-5 years, the long term effects of elevated 

plasma homocysteine on cerebrovascular disease may not be fully captured by these 

trials. Stroke is an age related disorder and most stroke patients manifest the disease in 

their 60’s and 70’s. The long-term effects of MTHFR C677Tpolymorphism and elevated 

plasma homocysteine levels in stroke can only be understood by long-term prospective 

studies, with genetic data, spanning several decades. 

5.1.3 Chapter 3: Genome wide analysis of blood pressure variability in ischemic 

stroke 

The candidate gene study examining long term BP variability in ischemic stroke is the 

first to report any attempt at dissecting the genetics of BP variability and ischemic 

stroke (Yadav et al., 2013).  

The ASCOT UK-IR GWAS was a ‘case’ only cohort with limited funding for genome-wide 

genotyping, therefore only 50% (2000 individuals) of the ASCOT resource were 

genotyped in the initial discovery GWAS using the Illumina CAReiSelect array. 

Individuals recruited in the UK and Ireland were chosen for genotyping as many of 

these individuals were also participating in ASCOT sub-studies, and additional 

measurements were being taken, giving the potential in the future for inclusion in other 
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genetic studies.  The recruitment criteria and population demographics of the UK and 

Irish ASCOT participants did not differ from the rest of the ASCOT study (Dahlof et al., 

2005). An analysis of blood pressure phenotypes (systolic BP, diastolic BP, mean 

arterial pressure, pulse pressure and hypertension) was performed including controls 

from the national blood donors and the Allied Irish bank normotensive controls.  

Unfortunately the NLGN1 SNP or a close proxy was not genotyped in this panel and the 

association could not be tested. NLGN1SNP rs976683 was looked up in the International 

Consortium for Blood Pressure (ICBP et al., 2011) GWAS result file but was not 

significantly associated with both SBP (P value (GC) SBP = 0.194) and DBP (P value (GC) 

DBP = 0.065). 

In the absence of a suitable replication population with long-term blood pressure 

variability data, the initial replication of the ASCOT UK-IR discovery GWAS findings was 

conducted in an independent ischemic stroke population comprising of 8,624 stroke 

cases and 12,722 controls from 7 different cohorts. This is not unprecedented as other 

GWAS groups who are also dealing with unusual phenotypes or phenotypes not often 

measured, such as cervical dissection in stroke and venous thrombosis, have found it 

difficult to bring together large study populations for replication. An alternative strategy 

is to replicate in a downstream phenotype, which is a common exploratory approach, 

used to study candidate genes that maybe associated with different vascular disorders 

such as MI and stroke through their effect on shared risk factors such as hypertension, 

diabetes and smoking (Cheng et al., 2012). The study had sufficient power to detect a 

modest effect size of between 1.1-1.4. However, given the small effect size of the top 

SNP on blood pressure variability, a smaller effect size on stroke may well have been 

missed despite using nearly 15,000 subjects. Although we were unable to demonstrate 

an association between the BP variability SNPs and ischemic stroke, we have argued 

strongly that based on our initial findings, future BP studies should include long-term 

visit-to-visit BP variability. It neither means that BP variability has no influence on 

ischemic stroke in a physiological manner nor does it exclude other genetic associations 

on it. It simply means that the identified SNPs do not play a major role in the genetic 

etiology of ischemic stroke in our population. There is a possibility that the form of 

blood pressure variability that the NLGN1 is presumed to affect, may have no effect 

whatsoever on stroke risk. In order to decipher the true relationship between blood 
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pressure variability and ischemic stroke, prospective studies in healthy cohorts with 

long term BP variability data are required. 

To follow up further the original association of SNP rs976638 with BP variability the 

SNP was genotyped in the ASCOT Scandinavian (DK-FI-NO-SE) population consisting of 

3900 individuals, in whom vBP was measured at the same time points as the UK and 

Irish ASCOT individuals. This was the only other potential replicable population that 

was available. However the analysis did not provide support for association (p=0.18). 

Failure to replicate this association could be due to population stratification induced by 

Anglo-Scandinavian differences such as admixture of Finnish and central European 

ancestry (Lao et al., 2008) and recruitment of the ‘ASCOT-SE’ samples in Sweden. 

Further, the genetic effect could be confined to specific sub-populations of smokers, 

alcohol consumers and furosemide-exposed individuals. The negative replication 

results observed in the ASCOT GWAS, possibly due to low power and phenotypic 

heterogeneity, do not negate the initial findings of the ASCOT UK-IR GWAS. It is possible 

that the lack of association may reflect environmental heterogeneity between 

Scandinavian and the UK-IR cohorts, and/or ascertainment differences, with UK-IR 

cohort primarily being a hospital based recruitment and Scandinavian cohort being 

more focused on GP based recruitment. Therefore, although not an ideal resource for 

follow up of the original observation with BP variability it was the only available 

resource. Its strength was that these individuals were selected using identical 

recruitment criteria as the UK and Irish ASCOT individuals and BP measurements were 

taken at the same time points allowing identical analysis of BP variability. 

The work conducted in this chapter was the first to report any attempt at dissecting the 

genetics of BP variability and ischemic stroke. The study puts a flag in the ground for 

this unusual yet potentially important phenotype and strongly argues that based on the 

initial findings future BP studies should include long-term visit-to-visit BP variability.  
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5.1.4 Chapter 4: Meta-analysis of genome wide association studies on carotid 

stenosis in ischemic stroke 

Carotid stenosis is associated with high risk of ischemic stroke accounting for nearly 

20% of all ischemic strokes and TIA’s caused by emboli originating from unstable 

plaque (>50% stenosis) in large arteries. Several cellular and molecular pathways 

underpin carotid disease and stroke, pointing towards a polygenic etiology. Studies 

have examined both phenotypes in independent populations identifying risk variants 

unique to each; however no study has examined both phenotypes together. A meta-

analysis of 7 genome wide association studies was conducted to increase the statistical 

power of identifying gene variants associated with the risk of carotid disease in 

ischemic stroke. A total of 14,867 individuals of European ancestry (1164 cases and 

13,703 healthy controls) were tested for association using logistic regression and an 

additive genetic model. The study identified three genomic regions in chromosomes 3 to 

be associated at genome wide significance (p≤5x10-8) with >50% carotid stenosis in 

ischemic stroke: LRIG1 (p=9.69x10-13), ROBO1 (p=3.10x10-10) and CAPN7 (p=5.89x10-9). 

Evidence was also sought for a shared genetic basis of carotid disease and stroke by 

analyzing previously published GWAS-derived SNPs associated with stroke and carotid 

disease. Interestingly, we were able to replicate the association of SNP rs17398575 

(PIK3CG) from a plaque analysis (OR 1.18, 95% CI 1.12–1.23, p=2.3 × 10-12) (Bis et al., 

2011) and stroke associated SNP rs2107595 (HDAC9) (OR 1.39, 95% CI 1.27–1.53, 

p=2.03 × 10-16)(Traylor et al., 2012).  

One of the major difficulties of this study was deriving a uniform definition of the 

carotid stenosis phenotype. Study specific diagnosis was conducted using high-

ultrasound B-mode ultrasonography. All participating cohorts collected the data on 

carotid stenosis retrospectively and the information on the grading method (NASCET vs. 

ECST) was not available for all the studies. Since both methodologies have significant 

differences in grading stenosis (NASCET 50% stenosis = ECST 70% stenosis) (Thapar et 

al., 2013), a quantitative phenotype could not be calculated for a linear regression 

analysis. 

Although the diagnostic accuracy of carotid ultrasound in predicting significant stenosis 

is high (86% inter sonographer agreement for 70-99% stenosis) (Thapar et al., 2013), 
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as with any imaging modality it can be prone to measurement error. The carotid 

stenosis phenotypes is highly quantitative and instrumental heterogeneity can be 

introduced due to different sonographers handling different machines at various time 

points. Carotid ultrasound is a technician dependent imaging method which is greatly 

influenced by the expertise and training of the sonographers. The participating studies 

in the carotid GWAS were retrospective and conducted many years ago, which may have 

lead to inaccurate measurements by the sonographer that do not meet the current 

international guidelines. The diagnosis of carotid stenosis may not have been blinded 

and conducted by multiple individuals leading to bias and interobserver differences. As 

a future goal, genetic studies on carotid phenotypes must device a diagnostic standard 

operating protocol, which is uniformly followed by all participating cohorts in an effort 

to reduce measurement inaccuracies. 

 

The presence of superimposed carotid disease in ischemic stroke is indicative of a 

severe disease burden that may not only account for an increased genetic risk but could 

also alter the functioning of the risk variants. Findings from the current study suggest 

that individuals with stroke and superimposed carotid disease may carry a greater 

combined genetic burden than individuals with either stand-alone disease. Conversely 

none of the top SNPs from the analysis were found to be associated with any other 

vascular phenotypes suggesting that these are novel candidate genes for stroke and 

advanced carotid disease. Study results need to be validated in a suitable replication 

cohort and refined by fine mapping of the suggested genomic region. Functional studies 

are also required to establish causality.  
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5.1.5 Summary of Main Results 

 Genetic risk associations for common variants of genes PDE4D, ACE I/D and IL10 

with ischemic stroke in South Asians were established. Although the study data 

set was small in comparison to European studies, the observed effect sizes were 

similar to those in other ethnicities. 

 High Hcys levels in healthy South Asians with MTHFR TT genotype as compared 

to healthy Europeans carrying the same genotype were observed. This finding 

suggests that South Asians may carry an inherent genetic liability to stroke risk 

via elevated plasma Hcys levels. To confirm this observation, future studies need 

to examine individual patient level data taking into consideration folic acid, 

Vitamin B6 and Vitamin 12 levels. 

 Mendelian randomization established a causal relationship between MTHFR 

C677T and ischemic stroke with similar results as Europeans (Bentley et al., 

2010). This lends support to the increasing demand for evidence supporting 

causality of risk variants via their intermediate biomarkers. Mendelian 

randomization using individual patient level data and MTHFR as an instrument 

variable is required to validate this finding. 

 A novel gene candidate (NLGN1) was associated with the increased risk of blood 

pressure variability. The inability to replicate the association with ischemic 

stroke may be due to heterogeneity and low power, and therefore future studies 

require a larger replication cohort. 

 GWAS for carotid stenosis in ischemic stroke identified genes previously 

associated with CAD-cIMT (LRIG1) (Bis et al., 2011) and ischemic stroke 

(ROBO1)(Meschia et al., 2011) lending support to our finding being true 

associations. We also identified a novel gene candidate (CAPN7) for carotid 

stenosis-ischemic stroke, which has not been implicated as disease causing in 

any vascular disease. 
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5.2 Future Directions 

Considerable amounts of treasure and time has been spent on studying the genetics of 

stroke and most studies point towards common genetic risk variants carrying small to 

modest risk and accounting for only a small percentage of the heritability. Clinically, the 

results from the current stroke studies may still be in their infancy, in terms of inclusion 

value in patient care. It is clear that for a true understanding of the genetics of stroke, 

researchers will need to extend their efforts beyond the current strategies. 

5.2.1 Studies in Prospective Healthy Cohorts 

Most studies on stroke include individuals at two extremes of the trait distribution i.e. 

stroke patients and healthy individuals. Although this is an acceptable approach and has 

successfully identified risk variants, a true understanding of the genetic burden of 

stroke lies in studying large prospective longitudinal studies following healthy cohorts 

at moderate risk for stroke occurrence. Studies have questioned the generalizability of 

stroke patients recruited into studies and recommended careful consideration of 

various prognostic factors before grouping patients into a single study (Busija et al., 

2013). International guidelines for clinical monitoring of stroke, standardized sub-

typing based on pathophysiology and calibration of biochemical tests are required to be 

followed uniformly by all participating cohorts in future genetic studies. 

5.2.2 Detailed Phenotyping of Stroke Sub-Types 

Ample evidence has been presented to establish the sub-type specific nature of genetic 

risk of stroke. This is not surprising as stroke sub-types have very different etiologies 

and genetic variants underlining these pathophysiological mechanisms are bound to 

differ. Most genetic studies in stroke have reported the lack of proper sub-type 

classification as a major limitation and cause of low power in the analysis of stroke sub-

types. Future studies must ensure detailed phenotyping of stroke sub-types, using a 

uniform classification system, in order to minimize heterogeneity and provide sufficient 

statistical power for the analysis.  
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5.2.3 Stroke GWAS in South Asians 

Although studies have shown the existence of genetic differences i.e. varying allele 

frequencies, between different ethnic groups, the magnitude of effect broadly remains 

the same (Ioannidis et al., 2004). However, this may be far from the truth since an 

overwhelming number of studies have been conducted on European populations 

(Traylor et al., 2012, Holliday et al., 2012) and so far no GWAS studies of comparable 

size or power have been conducted specifically in South Asian stroke patients. Just as 

with individuals of African ancestry (Frazer et al., 2007), genetic studies in South Asians 

may reveal new variations, which are absent in European populations. Future goals 

should include replication in South Asians of findings of published GWA studies and 

conducting a GWAS in this population. Established and highly phenotyped data banks 

for South Asian stroke patients (and controls) are well on their way to begin the first 

stage of genetic association studies (Yadav et al., 2011, Cotlarciuc I, 2012). 

5.2.4 Missing Heritability of Stroke 

Most genetic studies conducted on stroke to date have been on common variants with a 

prevalence of >5% of the general population and relatively small to modest effect sizes 

(<1.5). Although the best heritability estimates come from family studies, estimates for 

stroke have been calculated from population based GWA studies using experimentally 

determined common variants. The heritability varies amongst stroke subtypes; 37.9% 

for all ischemic stroke, 40.3% for large-vessel disease, 32.6% for cardio embolic and 

16.1% for small-vessel disease (Bevan et al., 2012), partly due to differences in the 

underlying pathology of each sub type. These estimates are most likely inflated since 

they excluded the heritability that could be attributed to rare low frequency variants 

(MAF < 0.1%) and non-SNP variations of the genome such as CNVs (Zhang et al., 2010). 

Further evidence towards disproving these heritability estimates lie in the fact that 

almost 90% of stroke heritability has been assigned to ten modifiable risk factors 

(O'Donnell et al., 2010a). This raises the question as to whether stroke risk can be 

greatly reduced just by effectively controlling these risk factors. 
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Given the high prevalence of stroke, natural selection may have played a role in 

selecting small gene effects over large ones, which in evolutionary terms, would be 

beneficial for the survival of the human race (Pritchard and Cox, 2002). Different 

selection pressures such as changes in environmental factors, infections and 

modulations of the immune system may have also resulted in the disappearance of large 

effect producing common variants of stroke (Manolio et al., 2009).  

Current heritability estimates on stroke don’t take gene-environment and gene-gene 

effects into consideration and highlight our limited understanding of this complex 

interplay of factors. For a true measure of heritability, whole genome next generation 

sequencing of stroke patients may be able to provide an answer as it would take into 

account all genomic variations. Deep sequencing of the human genome may be able to 

identify rare variants that are hidden within already know genes associated with stroke 

risk (Manolio et al., 2009) and validate or disprove the actual risk reported for these 

genes. The 1000 Genomes project is a human genome reference dataset that is in the 

process of deep sequencing (up to 4X coverage) variants that occur in at least 1% of the 

population. Once all phases of the project are complete, the reference data set will allow 

researchers to populate their genotyped data sets to several million rare and common 

markers allowing for the detection of variants with low allele frequencies. 

5.2.5 Identification of Novel Stroke Biomarkers 

Although the knowledge of underlying genetic mechanism gives researchers in-depth 

understanding of the mechanistic functioning’s of stroke, there is a need to translate the 

results to a biological level. Blood biomarkers are biomolecules that are released into 

the blood stream in response to neural tissue damage. Alternately they may be 

produced prior to a stroke and could play a role in causing stroke. Knowledge of reliable 

blood biomarkers for stroke would make it possible to develop blood tests for stroke 

and TIA’s to guide treatment and ultimately improve outcomes. They may also help to 

improve inaccurate prognostic models for stroke. 

Several studies have examined blood biomarkers for stroke (Whiteley et al., 2009, 

Montaner, 2009, Jensen et al., 2009) with little potential to be successfully used in 

everyday clinical practice. A large literature based meta-analysis by Hasan et al 

identified 3 known biomarkers (C-reactive protein, P-selectin and Hcys) to be 
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marginally differentiated between ischemic stroke and healthy control subjects (Hasan 

et al., 2012). The study demonstrated the wide spread utility of biomarkers and its 

importance in diagnosis and prognosis of stroke. With the identification of new stroke 

genetic risk variants, there is a possibility of identifying new biomarkers, which may 

help in the improved prognosis of stroke. 

Another recently published study examined GluN1-S2 serum antibodies produced in 

response to neuronal tissue damage after stroke. Interestingly the study showed that 

the antibodies were generated after cerebral injury and the levels of antibodies 

produced were proportional to the infarct size. As biomarkers, these antibodies could 

reveal important information about the presence and severity of the stroke (Kalev-

Zylinska et al., 2013). 

Research on stroke blood biomarkers promises an exciting opportunity to decipher the 

molecular pathophysiology of stroke at a biological level. Individuals may be tested for 

stroke specific blood biomarkers, which could help in improving the prognosis and 

diagnosis of stroke. Although, currently there are no specific biomarkers for stroke, 

successful identification of biomarkers for other vascular disorders suggests that this 

may be possible for stroke as well (Musialek et al., 2013). 
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5.3 Conclusion 

Developments in genotyping technology and statistical analysis methods have provided 

substantial evidence in support of the genetic burden of ischemic stroke and its risk 

factors. This thesis utilized new methodologies to lend further support to the current 

evidence base and the findings broadly reflect results similar to previous estimates of 

the genetic liability of stroke. Novel insights into the genetics of South Asian ethnicity, 

long term blood pressure variability and symptomatic carotid disease have been gained 

through this study.  
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APPENDICES 

Appendix 1: Laboratory Techniques 

A1.1 DNA Isolation 

Blood samples were collected by the in-house phlebotomist in EDTA coated tubes and 

stored at -20 °C. Frozen blood samples were thawed in a 37 °C water bath with mild 

agitation and stored on ice till the start of the procedure. DNA isolation was performed 

using the Qiagen Gentra Puregene Blood kit (Catalogue number: 158445). 3X RBC lysis 

solution was added to the blood sample and inverted 10 times. Sample was incubated 

for 5 min at room temperature (15-25°C) and inverted at least once during incubation. 

White blood cells were isolated by centrifugation (2.000xg, 5 min). The supernatant was 

carefully discarded by pouring, leaving only about 200 µl of the residual liquid and the 

WBC pellet. The pellet was completely dispersed by vigorous vortexing and equivalent 

starting sample volume of the cell lysis solution was added. Sample was vigorously 

vortexed for 10s and incubated at 37 °C for 5 min. 1 µl of RNase A solution/ 200 µl of 

starting sample volume was added and incubated for 15 min at 37 °C followed by 3 min 

on ice. 333 µl of protein precipitation solution/ ml of starting sample volume was added 

and vigorously vortexed for 20s. Sample was incubated on ice for 5 min and centrifuged 

(2.000xg, 5 min). Supernatant was carefully decanted into isopropanol and mixed gently 

by inverting 50 times till the DNA threads were visible. The sample was centrifuged 

(2.000xg, 3 min), supernatant discarded and tube drained by inverting on a clean piece 

of absorbant paper. Pellet was washed by rinsing with 10 ml 70% ethanol, followed by 

centrifugation (2.000xg, 3 min). DNA pellets were air-dried for 15 min before re-

suspension in DNA hydration solution. Tubes were incubated at 65°C for 1 hour to 

dissolve the DNA and incubated overnight at room temperature with gentle shaking. 

Samples were centrifuged and stored at -20°C. 
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A1.2 Genotyping and Quality Control 

Processing was carried out in accordance with the Infinium HD Super Assay (Rev.C, June 

2010) protocol (Illumina Inc, San Diego, USA).  Briefly, in a deep well plate 200ng of 

high quality genomic DNA was whole genome amplified overnight (37°C, 20-24 hours), 

then fragmented (37°C for 1 hour and 15mins in hybridization oven), precipitated and 

resuspended in hybridization buffer.  Samples were denatured then taken from the 

plate and loaded onto the chips using a liquid handling robot (Freedom Evo, Tecan Ltd, 

Switzerland).  Hybridization took place overnight at 48°C (16-24 hours).  The process of 

single base extension (SBE) and staining was carried out using the liquid handling robot 

at 44°C and 32°C respectively.  The probes on the chip were extended by a single 

hapten-labelled dideoxynucleotide (ddNTP) base complementary to the hybridized 

DNA.  ddATP and ddTTP bases were labeled with DNP (2,4-Dinitrophenol), ddCTP and 

ddGTP were labeled with Biotin.  The DNA sample was then stripped off the chip using 

formamide.  The staining procedure involves signal amplification by multi-layer 

immune histochemical staining.  Streptavidin detected the haptens simultaneously and 

an anti-DNP primary antibody conjugated to green and red fluorophores respectively 

(STM reagent, Illumina).  They were then counterstained with biotinylated anti-

steptavidin antibody and a DNP-labeled secondary antibody to the anti-DNP antibody 

(ATM reagent, Illumina) to amplify the fluorescent signals.  The last layer of stain was 

the STM, containing fluorophores to allow signal detection.  Finally the stained chips 

were coated in XC4 reagent, a glue-like substance to protect the dyes, and scanned using 

the iScan scanner with autoloader (IlluminaInc, San Diego, USA). 

The robot was used for hybridization and staining to ensure that samples are not mixed 

up during transfer from plate to chip and to ensure that the pipetting and incubation for 

the staining procedure is accurate and consistent across the batch.  An initial quality 

check was carried out on the genomic DNA before processing to ensure appropriate 

concentration and there was no loss of integrity. 

Intensity data were quality controlled using the genotyping module in the Illumina 

Genome studio software.  Samples were assessed for their call rate, which was set at ≥ 

95% individually, and average across the batch.  Control probes on the chip were 

checked to identify any possible processing errors: Every array contains both sample 
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dependent and sample independent control probes.  Sample independent probes assess 

the quality of the processing; sample dependent probes also assess the quality of the 

DNA.  The B-allele frequency plots (BAF) were also checked to identify contaminated 

samples.  This plot would show more than three modes if the sample had been 

contaminated at source.  A noisy BAF plot may also suggest degradation of the DNA 

sample. 
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