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Abstract

A framework is proposed for the solution of fluid phase equilibrium (P −T flash)

for binary mixtures described by equations of state of general form. The framework

is based on decomposing the phase equilibrium problem into sub-problems with

more convenient and tractable mathematical and numerical properties. System-

atic procedures are used to identify the mapping of the problem in the density

and composition space, referred to as the density-composition pattern, at specified

temperature and pressure. A series of stability tests is then carried out to explore

the existence or non-existence of phases. Once the existence of a phase has been

determined, the limits of stability and physical bounds on the problem are used to

define the search area for that phase in the density-composition pattern. Finally,

all available information from this detailed analysis is used for the solution of phase

equilibrium between the phases identified in order to find the stable state at the

specified conditions. The features of the proposed approach are exposed in detail

through an algorithm for the fluid phase equilibria of the augmented van der Waals

equation of state applied to non-azeotropic mixtures.
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1 Introduction

The phase equilibrium problem consists in determining, for a given fluid mixture at spec-

ified conditions (usually pressure P , temperature T and total composition z; i.e., the P -T

flash), the number of equilibrium phases, their compositions and densities. There are two

main approaches to formulate the phase equilibrium problem which can be derived from

the restrictions that must hold at every stable equilibrium state as described by Baker et

al. [1].

The first approach is based on the fact that a system is stable if and only if it attains

the global maximum in the overall entropy or equivalently the global minimum in its free

energy. These are the necessary and sufficient conditions for equilibrium, which in the

case of a P -T flash at pressure Pspec and temperature Tspec can be cast as the following

optimization problem

min GT

s.t. GT =

np∑

k=1

nc∑
i=1

ni,kµi,k (Tspec, ρk, n1,k, . . . , nnc,k)

Pspec = Pk (Tspec, ρk, n1,k, . . . , nnc,k) ∀k = 1, . . . , np
np∑

k=1

ni,k = Ni ∀i = 1, . . . , nc

GT ∈ R, µ ∈ R(nc×np), n ∈ R(nc×np)
+ , ρ ∈ Rnp (1)

where GT is the total Gibbs free energy of the system, ni,k and µi,k the number of moles and

the chemical potential, respectively, of component i in phase k, ρk is the number density of

phase k, Pk is the pressure of phase k, nc is the number of components, and np the number

of phases. Since the number of phases np is an unknown integer quantity, formulation (1)

is classified as a Mixed Integer Non Linear Programming (MINLP) problem. It must be

solved to global optimality to ensure that the stable solution is found.

The second approach is based on the fact that when a system is at stable equilibrium

there must be no driving force to cause a net transfer of work (mechanical equilibrium),

heat (thermal equilibrium), or mass (chemical equilibrium). Hence, at a stable equilib-

rium state, the pressure, the temperature, and the chemical potential of each component

in the mixture must be the same in all equilibrium phases. However, the reverse of this

statement is not necessarily true, as there may exist states where the pressure, the tem-

perature, and the chemical potential of each component in the mixture are the same in
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all phases, but where the system may be at unstable or metastable equilibrium, which

would not correspond to the global minimum in the free energy. The equality of pressure,

temperature, and chemical potential of the components over all phases hence mathemat-

ically correspond to the necessary conditions for phase equilibrium, and for the case of

the P -T flash at the pressure Pspec and temperature Tspec, can be formulated as

Pspec = Pk (Tspec, ρk, n1,k, . . . , nnc,k) ∀k = 1, . . . , np

µi,1 (Tspec, ρ1, n1,1, . . . , nnc,1) = µi,k (Tspec, ρk, n1,k, . . . , nnc,k) ∀k = 2, . . . , np

and ∀i = 1, . . . , nc
np∑

k=1

ni,k = Ni ∀i = 1, . . . , nc

n ∈ Rnc×np
+ , ρ ∈ Rnp (2)

Formulation (2) is a system of np(nc + 1) nonlinear equations with np(nc + 1) variables

which is usually solved based on the assumption that the number of phases np is known

a priori. This form allows the coupling of the phase equilibrium problem with the rest

of the equations that describe a unit operation within a process modelling environment,

so this approach is often used in practice. It should be noted that both formulations

(1) and (2) can also be expressed in terms of mole fractions. In this case, only nc − 1

mole fractions are independent of each other since their sum should be equal to one. The

treatment of the phase equilibrium problem is similar for sets of specifications other than

temperature and pressure. Detailed descriptions can be found in [2]-[5].

The numerical solution of the phase equilibrium problem introduces distinct chal-

lenges. Clear evidence for this is that almost all existing numerical algorithms (from

simple successive substitution to sophisticated global optimization methods), and hybrid

combinations of these algorithms, have been employed in an attempt to solve the problem.

Several comprehensive reviews can be found in the literature [6] - [13]. Here, the focus is

placed on the main sources of complexity of the problem.

Both formulations (1) and (2) are highly nonlinear. Even when the number of phases

(np) is known, multiple solutions can be found for problems (1) and (2). As stated

earlier, among these solutions, that corresponding to the global minimum of the total

Gibbs free energy of the system is the only stable one. Undesirable solutions can either

be found at local (but not global) minima of the total Gibbs free energy (referred to

as metastable solutions) or, in the case of formulation (2), at maximum points of the
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total Gibbs free energy. Such solutions are physically meaningless and are referred to

as unstable. The degree of non-linearity and the number of solutions increase when

the behavior of the mixture under consideration departs from ideality at the specified

conditions. Such behavior is usually related to liquid-liquid separation, criticality, and

azeotropy. In such cases the provision of a good initial guess, which drives calculations to

the desired solution, becomes important.

The mathematical form of the thermodynamic model used can introduce additional

complexity in the solution procedure. When equations of state (EoS) are used, the avail-

ability of analytical solutions for the vapor and liquid density roots can simplify cal-

culations significantly. This is true for all cubic equations of state and explains their

widespread use in engineering applications. Recent advances in molecular thermody-

namics, however, have resulted in the development of sophisticated equations of state

such as the statistical associating fluid theory (SAFT) [14, 15, 16]. Such thermodynamic

approaches consist of highly nonlinear mathematical expressions which correspond to

high-order polynomials (i.e. non-cubic) in terms of density that can no longer be solved

explicitly in terms of density. Of particular complexity are cases in which the equilibrium

phases have similar densities as in calculations of liquid-liquid equilibrium and near a crit-

ical point. In such situations, convergence can be problematic even when cubic equations

of state are used.

Another source of complexity in the numerical solution of the phase equilibrium prob-

lem is the fact that the number of equilibrium phases is not known a priori. To overcome

this complicating factor, more elaborate and multi-step algorithms have been developed

based on phase stability tests that indicate whether a given solution corresponds to the

global minimum of the Gibbs free energy, and if not, suggest the introduction or removal of

phases before the phase equilibrium problem is solved again. The tangent plane criterion,

first introduced by Gibbs [17] based on the properties of the free energy space, is the most

commonly used stability test in phase equilibrium algorithms. Michelsen [18, 19] was the

first to implement the tangent plane stability test within a phase equilibrium algorithm

and since the tangent plane stability test involves a global search over the solution space,

several authors have developed deterministic [20] - [31] or stochastic [32, 33] global search

algorithms and algorithms based on continuation methods [34]. Such techniques have the

advantage of converging reliably to the correct solution, although solution times can be

long. Furthermore, almost all these approaches have only been applied to cubic equations
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of state and activity coefficient models. Xu et al. [35] were the first to apply an interval

Newton algorithm for the solution of the phase equilibrium and stability problems to the

SAFT equation of state. The same algorithm was later applied to the construction of

phase diagrams [36, 37]. Finally, Mitsos and Barton [38] have very recently proposed

a reinterpretation of the Gibbs tangent plane analysis via Lagrangian duality, whereby

differentiability of the Gibbs free energy is not required.

In a series of papers, we are presenting an alternative approach for the solution of

the P -T flash problem for binary mixtures. A generic framework is proposed, which can

be adapted to the needs of any equation of state of general form. The framework is

based on a systematic analysis of the form and the geometrical properties of the various

thermodynamic spaces involved in the solution of the phase equilibrium problem. The

overall problem is decomposed into a series of sub-problems, with useful mathematical

and numerical properties that facilitate their solution. In this paper (part I) the basic

principles of the framework are presented in detail through its application to a non-

cubic equation of state, the augmented van der Waals equation [39]–[42]. The case of

binary non-azeotropic mixtures is considered as the low dimensionality of the problem

allows the graphical representation of the thermodynamic spaces, which helps to illustrate

the underlying concepts. In part II we present the application of this algorithm to the

construction of non-azeotropic phase diagrams through a review of the types of phase

behavior predicted by the augmented van der Waals equation of state. Understanding

the physical and mathematical behavior of non-azeotropic binary mixtures is a very useful

stepping stone for the study of azeotropic mixtures (which are discussed in part III of this

series) and multicomponent systems.

2 Overview of the proposed framework

The sequence of steps in the framework is shown schematically in figure 1. The input

specifications are: the temperature (Tspec); the pressure (Pspec); the total mole fraction

of each component in the binary mixture (zi, i = 1, 2); and the intermolecular potential

parameter values (vector Θ) that characterize the mixture under consideration for a given

equation of state. The output information consists of: the number of equilibrium phases

(np); the mole fraction of the two components in each phase (xi,k, i = 1, 2 and k =

1, . . . , np); the density of each phase (ρk, k = 1, . . . , np); and the molar fractions of each
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phase (wk, k = 1 . . . np). A few key definitions are introduced first.

Step I: Equation of state

P- -z space at Tspec

Identification and study of key space 

characteristics

Step II: phase stability

Density-composition ( -z) pattern

at Tspec and Pspec

Identification of the number of phases that 

may exist and calculation of their search 

area in the ( -z) pattern

Step III: phase equilibrium calculation

Necessary conditions

Calculation of stable state at:

Tspec, Pspec and zi

Input

Tspec, Pspec, zi,

i=1,2

Output

np, xi,k, k, wk

i=1,2, k=1…np

Figure 1: Overview of the framework, where P refers to the pressure, T to the temperature, ρ

to the density, z to the total composition, xi to the equilibrium mole fraction of component i,

and np is the number of phases.

2.1 Key definitions

1. A pressure-density-composition surface is defined as the surface arising by plotting

the pressure as a function of the density and composition at a fixed temperature;

2. A density-composition pattern is a curve or set of curves that define a cross-section

of the pressure-density-composition surface along the density-composition plane at

a fixed pressure;

3. A phase is defined to be a continuous and differentiable region on the density-

composition pattern where: (i) the conditions of mechanical stability and material

stability or metastability are satisfied, and (ii) there is a one-to-one mapping between

density and composition.
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2.2 Overview for main steps

Step I

The role of step I is to collect all the necessary information to determine the shape of

the density-composition pattern at the specified temperature and pressure. The pressure-

density-composition surface is thus studied at the specified temperature in step I. The

mathematical properties of equations of state suggest that the pressure-density-composition

surface can have only a limited number of topologies (for densities in the physical fluid

range), which can be determined systematically by studying the locus of the limits

of mechanical stability. Furthermore, depending on the shape of the pressure-density-

composition surface, the values of pressure at certain limits of mechanical stability de-

termine qualitative changes in the shape of the density-composition pattern. Hence, in

step I, small, numerically well-behaved, problems are formulated and solved first to find

the shape of the pressure-density-composition surface and subsequently to find the key

pressures at which the shape of the density-composition pattern changes.

Step II

The role of step II is to determine the number of phases that may exist at the speci-

fied temperature and pressure and to identify a restricted search area for each phase in

the density-composition space. First, the pressure is fixed and the shape of the density-

composition pattern is determined. This is achieved by comparing the specified pressure

with the key pressures calculated in step I. Due to the mathematical properties of equa-

tions of state, only a limited number of qualitatively different density-composition patterns

may exist. They can be determined systematically. A series of mechanical and material

stability tests are then performed on the density-composition pattern to eliminate all the

unstable regions. The remaining parts of the pattern determine the existing phases (ma-

terially stable and/or metastable phases). Finally, the results of the stability tests are

used to define the search area of each phase on the density-composition pattern.

Step III

In step III the stable state is found. First the necessary conditions for equilibrium (prob-

lem (2)) are applied between pairs of phases by restricting the density and the composition

of each phase to lie within the search area determined in step II. The resulting formula-
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tion is referred to as the “restricted necessary conditions for equilibrium,” the solution of

which is much easier than the full necessary conditions for equilibrium. In the case of the

augmented van der Waals equation of state, studied in this work, it can be shown that the

problem has at most one solution [43], which can be found reliably using a Newton-type

method. The conditions for the existence of the unique solution can also be derived. Once

the restricted necessary conditions for equilibrium are tested and solved for all pairs of

phases, a characterization of the stable and metastable two-phase regions at the specified

temperature and pressure is available. Subsequently, the metastable regions are elimi-

nated by comparing the total Gibbs free energy of the two-phase regions which overlap

in composition. As a result, the phase behavior of the system over the entire range of

composition is calculated at the specified temperature and pressure. Finally, the total

composition is fixed and compared with the equilibrium compositions of the multiphase

regions to find the solution to the problem.

It is useful to highlight two important points relating to the proposed algorithm.

Firstly, the proposed approach can be applied to any equation of state. However, since

efficiency is a key issue in such calculations, any possible simplification implied by the

mathematical properties of the equation of state under consideration should be taken

advantage of. Such simplifications will mainly be reflected in the analysis of the pressure-

density-composition surface and may reduce much of the complexity in step I. In this work,

we use as an example the augmented van der Waals equation of state for mixtures, and take

advantage of a number of possible simplifications as explained later. Secondly, by taking

advantage of the information available at the end of each step, the proposed framework

can be applied to derive information other than the solution of the phase equilibrium

problem. This includes: the automated construction of temperature-composition and

pressure-composition phase diagrams; the calculation of the vapor pressure and the critical

point of any component which is subcritical at the specified temperature; the calculation of

all the limits of mechanical and material stability of a mixture at a specified temperature

and pressure; and the calculation of the properties of a phase (composition, density).

An algorithm is thus developed for binary phase equilibrium calculations for an equa-

tion of state which is complex enough to highlight the capabilities of the framework, but

that is sufficiently well-structured mathematically to gain insight into the key concepts.

The augmented van der Waals equation of state fits this description. It is presented with

its mathematical properties in the next section.
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3 The augmented van der Waals equation of state

The augmented van der Waals equation of state (AVDW EoS) [39]-[42] is based on the

representation of molecules as hard spheres of volume b. The hard-sphere free volume is

described by taking into account many-body interactions, as approximated by Carnahan

and Starling [44], while attractions are treated at the van der Waals mean-field level in the

one-fluid approximation. The equation is simple enough to facilitate the study of global

phase diagrams [45], and is also accurate enough to model real systems [46].

To allow for a systematic investigation of the proposed framework in the parameter

space of the augmented van der Waals equation of state, two simplifying assumptions

are made: Both components are assumed to be equal-sized spheres with volume equal

to 1 (b1 = b2 = b = 1), so that the terms “density” and “packing fraction” are used

interchangeably in the remainder of this paper; the de Broglie wavelengths of the two

components, Λ1 and Λ2, can be omitted from the description, since they do not affect

the equilibrium compositions and densities. And to facilitate calculations further, the

temperature and the pressure are scaled with respect to the energy parameter α2,2 of

component 2 to yield dimensionless reduced quantities, T ∗ and P ∗, defined as T ∗ = kTb
α2,2

and P ∗ = Pb2

α2,2
, where αi,j denotes the binary attractive interactions between molecules of

the same (i = j) and of different species (i 6= j) with respect to the interactions of 2, k is

the Boltzmann constant, T the absolute temperature and P the pressure.

In this case, the reduced Helmholtz free energy, A∗, for a binary mixture of components

1 and 2 with mole fractions z1 and z2, respectively, can be written as

A∗ =
A

NkT
=

[
2∑

i=1

zi ln (ziη)− 1

]
+

4η − 3η2

(1− η)2 −
η

T ∗

2∑
i=1

2∑
j=1

zizj
αi,j

α2,2

. (3)

Since α2,2/α2,2 = 1 and α1,2 = α2,1, mixtures within this equation of state are characterized

by only two parameters, which are the ratios of the like α1,1/α2,2 and unlike α1,2/α2,2

attractive interactions. Without loss of generality, component 1 can be chosen to be

the more volatile component. Since the two components are of equal size, this implies

that α1,1 ≤ α2,2. Other thermodynamic quantities can be obtained as first or higher-

order partial derivatives of the reduced Helmholtz free energy (3). The corresponding

analytical expressions for the relevant derivatives are provided as supplementary material

(see also [43]).

Now we discuss some of the key mathematical properties of the augmented van der

Waals equation of state that are used to simplify the proposed framework.
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3.1 Number of density roots of the equation of state

The pressure form of the equation of state

P ∗ = −
(

∂A∗

∂V

)

T ∗,N
= T ∗η + η2 + η3 − η4

(1− η)3 − η2

2∑
i=1

2∑
j=1

zizj
αi,j

α2,2

(4)

suggests that it corresponds to a fifth-order polynomial with respect to density, which

prohibits the derivation of analytical solutions for the density roots. Analytical expressions

for the density roots are readily available for all the cubic equations of state and this

partly explains their widespread use in most engineering applications. However, over

the last decade a shift has been apparent in the use of more sophisticated equations of

state that are able to treat complex fluids more accurately. Such equations are based on

a sound physical insight, but the price for this is the complexity in the corresponding

mathematical expressions. The augmented van der Waals equation forms the basis of

many modern equations of state.

The unavailability of analytical expressions for the density roots of the equation of state

at a given pressure, temperature, composition, and set of parameters requires systematic

and reliable ways to solve the pressure equation numerically. In this framework this is

achieved through an exhaustive investigation of the pressure-density-composition surface

in step I and subsequently the density-composition pattern in step II. An important

prerequisite for this investigation is to determine the number of density roots of the

equation of state within the physically allowable range of pressure, temperature, density,

composition, and set of parameters. For the equation of state to be physically meaningful

a maximum of three density roots should exist within the fluid density range. A proof

that this is true for the AVDW equation of state is provided as supplementary material

(see also [43]).

3.2 Analytical calculation of composition roots

An interesting mathematical property of the AVDW EoS, when applied to a binary mix-

ture of equal-size molecules, is that it offers analytical expressions for the composition

roots at specified temperature and pressure. This is due to the fact that this type of

van der Waals one-fluid theory corresponds to a second-order polynomial with respect to

composition. The corresponding expressions are of the form: z1 = f
(
η, T ∗, P ∗, α1,1

α2,2
, α1,2

α2,2

)
.

The use of these analytical solutions can improve much the efficiency of the calculations.
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However, they are not utilized in this study in order to maintain the generality of the

concepts and procedures presented.

3.3 Azeotropic behaviour

Another significant simplification of the AVDW equation of state when applied to equal-

size molecules is that the azeotropic composition of component 1, x1,az, depends only on

the values of the parameters of the equation of state and is given as: x1,az = (α2,2 −
α1,2)/(α1,1 − 2α1,2 + α2,2).

This implies that for a given mixture, the azeotropic composition is always fixed and

does not depend on the temperature and pressure. The azeotropic line will thus follow

the same temperature scale as the pure component vapor pressure curves.

Further investigation reveals that when α1,1 < α1,2 < α2,2, x1,az attains values outside

its physical range [0,1], which implies that in this case azeotropic behavior cannot be

observed; and when α1,2 < α1,1 < α2,2 or α1,1 < α2,2 < α1,2, x1,az attains values inside

its physical range [0,1], which implies that in these cases azeotropic behavior is observed.

This means that azeotropic behavior can be identified directly by comparing the values

of the two parameters of the equation of state, α1,1/α2,2 and α1,2/α2,2. In addition, when

non-azeotropic behavior is observed (α1,1 < α1,2 < α2,2), the partial derivative
(

∂P ∗
∂z1

)
T,η

,

(
∂P ∗

∂z1

)

T ∗,η
= −2η2

(
z1

α1,1 − α1,2

α2,2

− z2
α2,2 − α1,2

α2,2

)
, (5)

is by inspection always seen to be positive within the physical bounds of composition. This

implies that for a non-azeotropic mixture the slope of the pressure-density-composition

surface at any given temperature is positive in the compositional direction. Since the

focus of this papers is on non-azeotropic mixtures the case α1,1 < α1,2 < α2,2 will be

considered.

4 Step I: The pressure-density-composition surface

In the first step of the algorithm, the temperature is fixed and the shape of the pressure-

density-composition (P ∗ − η − z1) surface is determined.
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4.1 The shape of the pressure-density-composition surface

The shape of the P ∗ − η − z1 surface is analyzed by considering any given composition

and studying the shape of the corresponding projection onto the pressure-density plane.

Such a projection is referred to as an isopleth. The isopleths at the boundaries of the

composition range (z1 = 0 and z1 = 1) correspond to the pure component isotherms as

described in any thermodynamics textbook (e.g. [47, 48]). Any isopleth on the interior

of the composition range has similar properties to the pure component isopleths and for

illustrative purposes can be considered as the isotherm of a pseudo pure component whose

attractive interaction parameter is given by α =
∑2

i=1

∑2
j=1 zizj

αi,j

α2,2
.

In the AVDW equation of state at any given pressure, an isopleth can have either one

or three density roots (cf. supplementary material and [43]). An isopleth which has only

one root at all pressures is supercritical, while an isopleth which has three density roots

over a range of pressures is subcritical. For three roots to exist, a subcritical isopleth must

exhibit an unconstrained maximum and an unconstrained minimum in pressure. These

points correspond to the limits of mechanical stability, and, for a binary mixture, they

satisfy:
(

∂P ∗

∂η

)

T ∗,z1

= 0. (6)

For convenience, an isopleth at its critical temperature is classified as subcritical in this

work. This does not restrict the applicability of the algorithm.

Furthermore, as discussed in section 3.3, for a non-azeotropic mixture, in which com-

ponent 1 is the most volatile, the partial derivative
(

∂P ∗
∂z1

)
T ∗,η

is always positive. This

implies that the slope of the P ∗ − η − z1 surface remains positive in the compositional

direction of component 1, and hence that the locus of an isopleth at composition z1 = a

will be at higher pressures than the locus of another isopleth at composition z1 = b if

b < a. The physical interpretation of this observation is that the pseudo pure component

at composition z1 = a is more volatile than that at composition z1 = b.

As a result of these mathematical properties, the P ∗ − η − z1 surface for a non-

azeotropic binary mixture, in which component 1 is the most volatile, can have one of the

four possible shapes characterised by the topology of the loci of the limits of mechanical

stability (see figures 2 to 5):

• In a type 1 surface (figure 2), all isopleths are subcritical and the locus of the limits

of mechanical stability has two branches which extend over the whole composition
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0.0

0.5
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−0.01
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0.02

z
1

η

P*

Type 1 

A B

C

D

Figure 2: A type 1 pressure-density-composition P ∗ − η − z1 surface. A, B, C, D, note the

limits of mechanical stability of the pure components and the thick solid curves correspond to

the locus of limits of mechanical stability for all compositions of the mixture. All isopleths are

subcritical and the pressure at A is greater than the pressure at D.

0.0  

0.5

1.0  

0.0  0.10.20.30.40.5

−0.05

0.00

0.05

0.10

z
1

η

P*

Type 2

C

D

BA

Figure 3: A type 2 pressure-density-composition surface. All isopleths are subcritical and the

pressure at A is less than the pressure at D. See figure 2 for details.

range (lines A-C and B-D). Furthermore, the pressure at point A is greater than

the pressure at point D.

• In a type 2 surface (figure 3), all isopleths are subcritical. The locus of the limits of

mechanical stability is similar to that of type 1, but the pressure at point A is less

than or equal to the pressure at point D.

• In a type 3 surface (figure 4), some isopleths are subcritical and others are super-

critical. The locus of the limits of mechanical stability extends over only part of the

composition space. In this case, the two branches, starting at points C and D, merge
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Figure 4: A type 3 pressure-density-composition surface. Only some isopleths are subcritical.

See figure 2 for details
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Figure 5: A type 4 pressure-density-composition surface. All isopleths are supercritical. See

figure 2 for details.

at point E, the pseudo-critical point [50]. The isopleth which passes through point

E has three identical density roots at that point and separates regions of subcritical

and supercritical isopleths. Consequently, the following mathematical conditions

hold at the pseudo-critical point (analogous to a pure component critical point):

(
∂P ∗

∂η

)

T ∗,z1

= 0 and

(
∂2P ∗

∂η2

)

T ∗,z1

= 0 (7)

• In a type 4 surface (figure 5), all isopleths are supercritical and there are no limits

of mechanical stability on the surface.

The classification that we use for the types of P ∗ − η − z1 surfaces presented here are

not related to the types of phase behavior as defined by van Konynenburg and Scott [49].
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Figure 6: The P ∗-T ∗ diagram for a binary mixture with α1,1/α2,2 = 0.5 and α1,2/α2,2 = 0.75.

The temperature regions for which different types of P ∗ − η − z1 surfaces occur are separated

by dash-dotted lines. The thick solid curves correspond to the vapor pressure curves of the pure

components, and the dashed curve to the locus of vapor-liquid critical points. C1 and C2 note

the critical points of the pure components.

A physical interpretation of the four types of surfaces can be gleaned from an inspection

of the temperature-pressure phase diagram shown in figure 6. For all temperatures below

the critical temperature of component 1 (T ∗
C1), both pure components are subcritical in

temperature, which gives rise to P ∗−η−z1 surfaces of type 1 and/or 2. For temperatures

between the critical temperatures of the pure components, only component 2 is subcritical

in temperature. The corresponding surface in this case is of type 3, in which the pure

component 1 isopleth is supercritical while the pure component 2 isopleth is subcritical.

Finally, when the temperature is greater than the critical temperature of component 2,

both components are supercritical in temperature. The P ∗ − η − z1 surface is of type 4

in this case.

4.2 Sequence of calculations in step I

The conclusion from the above analysis is that the pure component isopleths provide all

the necessary information to identify the shape of the P ∗ − η − z1 surface. In figures 7a)

and 7b), the pure component isopleths corresponding to the type 3 P ∗ − η − z1 surface

presented in figure 4 are shown. In this case, pure component 2 (figure 7a) is subcritical

and the corresponding thermodynamic derivative (∂P ∗/∂η)T ∗,z1=0 exhibits two roots and

a single minimum with a negative value (figure 7c). The roots are the densities of the two
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Figure 7: Pressure-density P ∗ − η isotherms at constant composition z1, and their cor-

responding derivatives with density. a) A subcritical isopleth has two limits of mechanical

stability, C and D; b) a supercritical isopleth has no limits of mechanical stability; c) The deriva-

tive of the subcritical isopleth in a) has two roots and a negative minimum; d) The derivative

of the isopleth in b) is always positive.

limits of mechanical stability. On the other hand, pure component 1 (figure 7b)) is super-

critical and the pressure is a monotonically increasing function with respect to density so

that the thermodynamic derivative (∂P ∗/∂η)T ∗,z1=1 is positive for all η (figure 7d)). Thus,

in order to determine whether an isopleth (z1 = ẑ1) is supercritical or subcritical, it suf-

fices to examine whether there exists at least one value of η for which (∂P ∗/∂η)T ∗,z1=ẑ1
is

strictly negative. In particular, the minimum value of (∂P ∗/∂η)T ∗,z1=ẑ1
can be calculated

by solving the following optimization problem

fmech(ẑ1) = min
η

(
∂P ∗

∂η

)

T ∗,z1=ẑ1

, s.t. 0 ≤ η ≤ ηup, (8)

where the upper bound ηup is chosen as the limit of close packing, π/(3
√

2), for a pure hard-

sphere solid. If fmech(ẑ1) is positive, then the ẑ1 isopleth is supercritical, while if fmech(ẑ1)

is negative, then the isopleth is subcritical. In the latter case, the limits of mechanical

stability can be calculated as the two roots of the partial derivative (∂P ∗/∂η)T ∗,ẑ1
=0. To

isolate the two roots, the value of the density at the solution of problem (8), ηmin
mech(ẑ1),

is used. The low-density root, η−mech(ẑ1), is smaller than ηmin
mech(ẑ1) and is calculated by
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solving

(
∂P ∗

∂η

)

T ∗,ẑ1

= 0, 0 ≤ η ≤ ηmin
mech(ẑ1). (9)

The high-density root, η+
mech(ẑ1), is greater than ηmin

mech(ẑ1) and is calculated by solving

(
∂P ∗

∂η

)

T ∗,ẑ1

= 0, ηmin
mech(ẑ1) ≤ η ≤ ηup. (10)

The pressures at the solution of problems (9) and (10) are the pressures at the limits of

mechanical stability Pmech. The pressures at points B (ẑ1 = 1) and D (ẑ1 = 0) in figures

2–5 correspond to low-density roots and are given by

P−
mech(ẑ1) = P ∗ (

T ∗
spec, η

−
mech(ẑ1), ẑ1

)
, (11)

and the pressures at points A (ẑ1 = 1) and C (ẑ1 = 0) correspond to high-density roots

and are given by

P+
mech(ẑ1) = P ∗ (

T ∗
spec, η

+
mech(ẑ1), ẑ1

)
. (12)

If both pure components are subcritical, then, by comparing the pressure at points A

and D (P+
mech(ẑ1 = 1) and P−

mech(ẑ1 = 0), respectively), one can determine whether the

P ∗ − η − z1 surface is of type 1 or 2. Finally, in the case of a type 3 P ∗ − η − z1 surface,

the pseudo-critical pressure (point E in figure 4) is calculated by solving an optimization

problem formulated as

Pp−c = max
η,z1

P ∗, s.t.

(
∂P ∗

∂η

)

T ∗,z1

= 0,
2∑

i=1

zi = 1. (13)

The density and composition at point C or D can be used as an initial guess to solve this

problem reliably.

The numerical solution of each of the problems posed in step I of the algorithm is

straightforward. Problem (8) is a one-dimensional problem with a unique solution as dis-

cussed in the supplementary material. Problems (9) and (10) are also one-dimensional and

have unique solutions due to the use of ηmin
mech(ẑ1) as a bound on the solution. Problems (11)

and (12) are direct function evaluations. Finally, problem (13) is two-dimensional; it has

a unique solution for a non-azeotropic mixture and the use of a feasible initial guess (point

C or D) ensures robust convergence.

18



Table 1: Step I of the algorithm

1. Fix the temperature T ∗.

2. For isopleths ẑ1 = 0 and ẑ1 = 1,

• Solve problem (8).

• If fmech(ẑ1) ≤ 0, isopleth is subcritical. Solve problems (9) to (12) to ob-

tain densities and pressures at both limits of mechanical stability. Else

isopleth is supercritical.

3. (a) If both isopleths ẑ1 = 0 and ẑ1 = 1 are subcritical,

• If P−
mech(ẑ1 = 0) < P+

mech(ẑ1 = 1), surface is of type 1.

• Else, surface is of type 2.

(b) Else if isopleth ẑ1 = 0 is subcritical and isopleth ẑ1 = 1 is supercritical,

solve problem (13) to obtain the pseudo-critical pressure. Surface is of

type 3.

(c) Else surface is of type 4.

Table 2: Characterization of the four types of P ∗ − η− z1 surfaces. Pmech refers to the limit of

mechanical stability and Pp−c to the pseudo-critical point; (0) denotes the ẑ1 = 0 isopleth, and

(1) the ẑ1 = 1 isopleth.

Type ẑ1=0 ẑ1=1 Limits of mechanical stability

and pseudo-critical point

1 subcritical subcritical P+
mech(0) < P−

mech(0) < P+
mech(1) ≤ P−

mech(1)

2 subcritical subcritical P+
mech(0) < P+

mech(1) ≤ P−
mech(0) < P−

mech(1)

3 subcritical supercritical P+
mech(0) < P−

mech(0) < Pp−c

4 supercritical supercritical –

4.3 Summary of step I

At the end of step I (table 1), the pressures and densities at the pure component limits

of mechanical stability and at the pseudo-critical point (if present) are known. The four

different types of shapes of the P ∗ − η − z1 surface are summarized in table 2, where

the pressures of the limits of mechanical stability and of the pseudo-critical point are
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presented in ascending order. All this information will be valuable in the next steps of

the algorithm.

5 Step II: Phase stability – the density-composition

space

In the second step of the algorithm, both the temperature and the pressure are fixed

and the density-composition pattern is identified (section 5.1). For the analysis of the

density-composition pattern, step II is organized into three stages (sections 5.2-5.4).

5.1 Density-composition patterns

A density-composition pattern is defined as a cross-section of the P ∗−η−z1 surface along

the η − z1 plane at the specified pressure. It therefore gives a mapping between density

and composition. The possible shapes of this mapping are limited by the mathematical

properties of the equation of state and the type of P ∗ − η − z1 surface. There is only

a restricted number of patterns which may occur. Consider, for instance, the type 1

P ∗− η− z1 surface shown in figure 8. The limit of mechanical stability with the smallest

positive pressure is at point D, and that with the largest pressure is at point B (note

that while it is possible to obtain metastable negative pressures, the coexistence pressure

is always greater than zero, hence bounding the problem). At pressures below that of

point D, the density-composition pattern consists of two detached parts, shown as a

dashed curve in the figure. One part of this pattern corresponds to low values of density

and extends over the whole range of compositions, while the other exhibits a loop in

composition which connects to the z1 = 0 isopleth at both ends and which lies in the

region of intermediate to high densities. As the pressure is increased towards that of point

D, the loop grows larger until it becomes attached to the low-density part of the pattern

at the pressure of D. For all pressures between that of D and that of the high-density

limit of mechanical stability of component 1 (point A), the pattern forms a double loop in

composition as shown by the thick continuous curve in figure 8 (the orientation of the figure

is such that it appears that these two pressures are equal, but in fact P+
mech(1) > P−

mech(0)

corresponding to a type 1 surface). The two end-points for this pattern lie on the two

pure component isopleths, but the two turning points can be at any composition. As

the pressure is increased above that of point A, the pattern separates again into two
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Figure 8: A type 1 P ∗ − η − z1 surface, on which all four qualitatively different density-

composition patterns are represented. Points A to D denote the limits of mechanical stability

on the pure component isopleths and 0 > P ∗
C < P ∗

D < P ∗
A < P ∗

B. The thick dashed curve

corresponds to locus of constant pressure points for P ∗
C < P ∗

spec < P ∗
D, the thick continuous

curve to P ∗
D < P ∗

spec < P ∗
A, the thick dashed-dotted curve to P ∗

A < P ∗
spec < P ∗

B and the thin

continuous curve to P ∗
spec > P ∗

B

parts. In this case, the part which extends over the whole range of compositions is in the

high-density region, while the part which exhibits the loop in composition lies at lower

values of density, as shown by dash-dotted curves in figure 8. As the pressure increases

from that of point A to that of the low-density limit of mechanical stability of component

1 (point B in figure 8), the low-density loop becomes smaller. It eventually disappears

when the pressure reaches that of point B. Above this pressure, the pattern consists of

only one high-density part that extends over the whole range of compositions as shown

by a thin solid line in figure 8. In summary, only four qualitatively different patterns

characterize the type 1 P ∗ − η − z1 surface shown in figure 8. Other patterns can be

observed by considering type 1 surfaces in which the pressure at point C is positive, or

the other types of P ∗ − η − z1 surfaces. Similar studies on all these cases reveal that

there are only seven qualitatively different patterns that represent all possible mappings

of density and composition. These are presented in figure 9.

An analysis of the patterns in figure 8 indicates that the type of pattern observed for

a mixture at given temperature and pressure depends first on the type of P ∗ − η − z1

surface found at the given temperature, and second on the value of the pressure relative

to the key pressures calculated in step I and summarized in table 1 of the supplementary

material. This analysis has been repeated for all types of P ∗ − η − z1 surfaces and the
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occurrence of the seven patterns in the four types of P ∗ − η − z1 surfaces is summarized

in table 3. In surfaces of types 1 and 2, patterns e and f can readily be differentiated

based on whether the specified pressure is above or below the pressure of all the limits of

mechanical stability, respectively. In type 3 surfaces, the value of the pressure relative to

the pseudo-critical point pressure, Pp−c, becomes important as it marks the change in the

type of density-composition pattern. In addition pattern e does not occur. In surfaces

of type 4, patterns e and f are equivalent. The main conclusion from table 3 is that the

relevant pattern can be identified based entirely on the results of step I and the pressure

of interest.
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Figure 9: All seven density-composition η − z1 patterns which can be observed in a non-

azeotropic mixture.

Table 3: Conditions under which each of the seven density-composition patterns are observed.

P denotes the specified pressure. All other symbols are as defined in table 2.

Type of P ∗ − η − z1 surface at the specified temperature

Pattern 1 2 3 4

a P+
mech(1) ≤ P < P−mech(1) P−mech(0) < P < P−mech(1) – –

b P+
mech(0) ≤ P < P−mech(0) P+

mech(0) ≤ P < P+
mech(1) P+

mech(0) ≤ P < P−mech(0) –

c – P+
mech(1) ≤ P ≤ P−mech(0) – –

d P−mech(0) ≤ P < P+
mech(1) – P−mech(0) ≤ P < Pp−c –

e P−mech(1) ≤ P P−mech(1) ≤ P – any P

f P < P+
mech(0) P < P+

mech(0) P < P+
mech(0) any P

g – – Pp−c ≤ P –
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5.2 Step IIa: Mechanical stability – density branches

The role of the density-composition pattern is central in the overall algorithm. Equations

of state are explicit functions of temperature, density and composition. However, at fixed

temperature and pressure, only certain combinations of density and composition are al-

lowed, and the density-composition pattern consists of all those possible combinations.

Thus, in mathematical terms the density-composition pattern represents the feasible re-

gion of the problem. In physical terms, it also provides information on the types of phases

which may be observed. In the first instance, the types of phases which may exist can

be derived directly from the form of the pattern. For this purpose the concept of density

branch is introduced. A density branch is a once-continuously differentiable region of

the density-composition pattern over which a one-to-one mapping between density and

composition exists. Based on figure 9 a pattern may therefore consist either of one branch

(patterns e, f, g) or three branches (patterns a, b, c, d). This is a direct consequence of

the fact that the equation of state has at most three density roots at any given tempera-

ture and pressure. A density branch that spans higher densities suggests that one or two

liquid phases may exist and it is referred to as a “liquid density branch”. The density

and composition of any liquid phase must lie on this branch, which therefore defines the

η − z1 search area for all liquid phases. Patterns a to e have a liquid density branch.

Similarly, a density branch that spans lower densities is a vapor branch and it defines

the η − z1 search area for the vapor phase. Patterns a to d and pattern f have a vapor

density branch. The intermediate density branch which is observed in patterns a to d is

mechanically unstable, because it is the locus of points where the thermodynamic deriva-

tive
(

∂P ∗
∂η

)
T ∗,z1

is negative. Mechanically unstable branches should be discarded from

the phase equilibrium calculations since any density-composition combination on these

branches is unstable.There are two cases in which it is not possible to identify distinct

vapor and liquid branches. First, in pattern g, which occurs close to a vapor-liquid critical

point, vapor and liquid phases all lie on the same mechanically stable branch. Second,

for type 4 surfaces, where both components are supercritical, the concept of vapor and

liquid becomes irrelevant, and patterns e and f are equivalent.

The branches of the density-composition patterns give valuable information of the

possible existence of vapor and liquid phases at the specified temperature and pressure.

In the particular case of the augmented van der Waals equation of state, the use of the

analytical expressions for calculating the composition roots (presented in section 3.1) can
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improve the performance of the algorithm at this stage. However, in order to maintain

the generality of the concepts and procedures presented they are not used. An important

property of patterns a to e is that the search areas for the liquid and vapor branches

are distinct. For cubic equations of state, analytical expressions are available which relate

density roots, and hence density branches, to the pressure, temperature, and composition.

As a consequence, difficulties are only encountered when phases belong to the same density

branch, such as when multiple liquid phases are present, or when the vapor and liquid

phases belong to the same branch (pattern g), close to a vapor-liquid critical point. To

identify the search areas for the liquid and vapor phases, the mathematical properties of

patterns are further studied.

One can consider, for example, pattern b shown in figure 9(pattern b). The search

areas can be defined by calculating the densities and compositions at these bounds. Since

the vapor branch extends over the whole composition range, both bounds are on the pure

components isopleths. Thus, only the densities need to be calculated by solving problems

of the following form:

For a given ẑ1, find η such that:Pspec = P ∗ (Tspec, η, ẑ1) and ηlo < η < ηup. (14)

For the ẑ1 = 0 isopleth, it is clear from figure 9 (pattern b) that three density values

can be found. To make sure the value on the vapor branch is identified, the low-density

limit of mechanical stability of component 2 is used as an upper bound in problem (14),

that is ηup = η−mech(0). A value of zero is used for the lower bound (ηlo = 0). For the

ẑ1 = 1 isopleth, the low-density limit of mechanical stability of component 1 is used as

an upper bound in problem (14) to facilitate its numerical solution (i.e., ηup = η−mech(1)).

Once again, zero is used as a lower bound (ηlo = 0). The bounds on the vapor search area

obtained in this way are denoted by zV
1,lo, zV

1,up, ηV
lo , ηV

up, where ηV
lo < ηV

up. Here, zV
1,lo = 0

and zV
1,up = 1.

The liquid density branch in figure 9 (pattern b) extends over part of the composition

range and has one bound on the pure component 2 isopleth and the other at the turning

point of the composition loop. The bound on the pure component isopleth ẑ1 = 0 is

calculated by solving a problem of form (14), where the high-density limit of mechanical

stability of component 2 is used as a lower bound on the solution (ηlo = η+
mech(0)) to make

sure the desired density is found. The upper bound is taken to be the physical bound

on density (ηup = π/(3
√

2)). For the other liquid branch bound, which corresponds to a

turning point, the fact that the thermodynamic derivative
(

∂z1

∂η

)
T ∗,P ∗

is equal to zero is
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used. This derivative is given by
(

∂z1

∂η

)

T ∗,P ∗
= −

(
∂P ∗

∂η

)

T ∗,z1

/
(

∂P ∗

∂z1

)

T ∗,η
. (15)

It should be noted at this point that the partial derivative
(

∂P ∗
∂z1

)
T ∗,η

appearing in the

denominator of equation (15) can never be zero in our binary systems, as it is strictly

positive for non-azeotropic mixtures. The roots of equation (15) correspond to points(
∂P ∗
∂η

)
T ∗,z1

= 0, which, by definition, correspond to limits of mechanical stability at the

specified pressure and temperature. To calculate the density and composition at these

points, a system of nonlinear equations of the following form can be solved:

Pspec = P ∗ (Tspec, η, z1) ;

(
∂P ∗

∂η

)

T ∗,z1

= 0;
2∑

i=1

zi = 1. (16)

Due to the shape of the P ∗−η−z1 surface, problem (16) has one solution for the particular

case of pattern b. The choice of a good initial guess is very important. In pattern b, the

use of the high-density limit of mechanical stability of pure component 2 (available from

step I) guarantees that the last two equations in the system are satisfied, and allows

Newton-based algorithms to converge. The bounds on the liquid phase search area are

denoted zL
1,lo, zL

1,up, ηL
lo, and ηL

up, where ηL
lo < ηL

up, and zL
1,lo = 0. In the case of pattern a,

problem (16) has one solution as well, while two solutions exist for pattern d. The choice

of an appropriate pure component limit of mechanical stability as an initial guess for the

solution of problem (16) in these cases can guarantee convergence to the correct density

and composition.

Using information from step I, and the analysis of the density-composition patterns,

the number and type of density branches, and their bounds, can be determined following

the procedure shown in table 4 (Step IIa). Furthermore, it is known that the liquid and

vapor branches that exist are not mechanically unstable. In the next stages of Step II we

aim to investigate further whether phases exist or not. This involves two rigorous stability

tests on the branches found: one based on the vapor pressures of the pure components,

and one based on material instability.

5.3 Step IIb: Mechanical stability - pure component vapor pres-

sure test

For a non-azeotropic binary mixture, if the specified pressure is greater than the vapor

pressure of the most volatile component (component 1 in this algorithm), then only liquid
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phases can be stable. Similarly, if the specified pressure is less than the vapor pressure of

the least volatile component (component 2 in this algorithm), then only the vapor phase

can be stable. When both vapor and liquid density branches exist, it may be possible to

discard one of the branches by comparing the specified pressure to the pure component

vapor pressures. This can only occur for patterns a, b and c, in which gas and liquid

branches are present and at least one branch extends over the whole composition range.

In this case, the specified pressure and the vapor pressure of one of the pure components

are in the same pressure interval as specified in table 3, because the vapor pressure of a

Table 4: Step IIa of the algorithm – Density branches and their bounds

1. Fix the pressure to the specified value Pspec.

2. Use table 3 to identify the relevant pattern.

3. If pattern a, b, c, d, or e, find bounds for liquid branch:

• If pattern a, c or e, zL
1,lo = 0, zL

1,up = 1. Solve problem (14) with (ẑ1, ηlo, ηup) =

(0, η+
mech(0), ηup) and with (z1, ηlo, ηup) = (1, η+

mech(1), ηup). Assign solutions

to ηL
lo and ηL

up.

• Else if pattern b or d, zL
1,lo = 0. Solve problem (14) with (ẑ1, ηlo, ηup) =

(0, η+
mech(0), ηup). Solve problem (16) using (z1, η) = (0, η+

mech(0)) as a starting

point. The composition at the solution of (16) gives zL
1,up. The densities at the

solutions (14) and (16) give ηL
up and ηL

lo respectively.

4. If pattern a, b, c, d or f, find bounds for vapor branch:

• If pattern b, c or f, zV
1,lo = 0, zV

1,up = 1. Solve problem (14) with (ẑ1, ηlo, ηup) =

(0, 0, η−mech(0)) and with (ẑ1, ηlo, ηup) = (1, 0, η−mech(1)). Assign solutions to ηV
lo

and ηV
up.

• Else if pattern a or d, zV
1,up = 1. Solve problem (14) with (ẑ1, ηlo, ηup) =

(1, 0, η−mech(1)). Solve problem (16) using (z1, η) = (0, η−mech(0)) as a starting

point. The composition at the solution of (16) gives zV
1,lo. The densities at the

solutions (14) and (16) give ηV
lo and ηV

up respectively.

5. If pattern g, zLV
1,lo = 0, zLV

1,up = 1. Solve problem (14) with (ẑ1, ηlo, ηup) =

(0, η+
mech(0), ηup) and with (ẑ1, ηlo, ηup) = (1, 0, ηup). Assign solutions to ηLV

up and

ηLV
lo respectively.
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pure component always lies between the pressures at the limits of mechanical stability.

In table 5 we show the pressure intervals and patterns from table 3 in which the vapor

pressure of pure component 1, P sat
1 , and the vapor pressure of pure component 2, P sat

2 , can

be found. To calculate the vapor pressure of pure component 1 (ẑ1 = 1), the equilibrium

conditions are solved at the specified temperature:

P sat
1 = P ∗V (

Tspec, η
V , ẑ1 = 1

)
= P ∗L (

Tspec, η
L, ẑ1 = 1

)

µV
(
Tspec, η

V , ẑ1 = 1
)

= µL
(
Tspec, η

L, ẑ1 = 1
)

0 < ηV < η−mech(1)

η+
mech(1) < ηL < ηup. (17)

To avoid convergence to the trivial solution, bounds are placed on the densities of the two

phases. The densities at the pure component limits of mechanical stability, available from

step I, are chosen as bounds and their use guarantees convergence. A similar problem is

solved to calculate the vapor pressure of pure component 2.

In patterns a and c, if the specified pressure is greater than the vapor pressure of

component 1, the vapor branch is discarded and pattern e is used to further study the

Table 5: Pressure intervals and patterns where the vapor pressures of the two pure components

can be found. See table 2 for details of symbols.

Type of P ∗ − η − z1 surface at the specified temperature

Pattern 1 2 3 4

a P+
mech(1) < P sat

1 < P−mech(1) P−mech(0) < P sat
1 < P−mech(1) – –

b P+
mech(0) < P sat

2 < P−mech(0) P+
mech(0) < P sat

2 < P+
mech(1) P+

mech(0) < P sat
2 < P−mech(0) –

c – P+
mech(1) < P sat

2 < P sat
1 < P−mech(0) – –

Table 6: Step IIb of the algorithm – Pure component vapor-pressure test

1. If pattern a or c,

• Calculate P sat
1 from problem (17).

• If P sat
1 < Pspec, change pattern to pattern e.

2. If pattern b or c,

• Calculate P sat
2 from problem (17).

• If P sat
2 > Pspec, change pattern to pattern f.
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mixture’s phase behavior. Similarly, in patterns b and c, if the specified pressure is less

than the vapor pressure of component 2, the liquid branch can be discarded and pattern

f is used instead. This step of the algorithm is summarized in table 6.

5.4 Step IIc: Material stability test

The liquid and vapor density branches retained at this stage are mechanically stable,

i.e., the thermodynamic derivative
(

∂P ∗
∂η

)
T ∗,z1

is always positive at any point on each

branch. The branches identified are then tested in terms of material stability as defined

by Rowlinson and Swinton [48]. Material instability results in liquid-liquid separation,

and in vapor-liquid separation close to and at a critical point. Hence, material stability

tests only need to be performed on the liquid density branches of patterns a to e (LLE)

and on the single branch of pattern g (VLE and/or LLE).

The material stability test used in this algorithm is based on the thermodynamic

criteria for the stability of binary mixtures as presented by Beegle et al. [51, 52]. Ac-

cording to these authors, the stability of a single-phase state can be tested by studying

the sign of an appropriate thermodynamic derivative. The choice of the most suitable

thermodynamic derivative depends on the problem specifications. For a binary mixture

at specified temperature and pressure, the following two equivalent criteria guarantee the

stability/metastability of a single-phase state [48, 53]:

(
∂2G

∂z2
1

)

T ∗,P ∗
> 0 or

(
∂µ1

∂z1

)

T ∗,P ∗
> 0. (18)

A negative value of the above derivatives implies that the single-phase state is unstable

at the corresponding overall composition, and the introduction of a new phase is required

to make the system stable or metastable. The roots of the above derivatives are referred

to as limits of material stability or spinodal points. The locus of the limits of material

stability extends to the critical point of a two-phase region. As can be seen in figure

10, for any temperature at which phase separation can occur (for instance T ∗
2 ), there

exist two limits of material stability. The segment between these two limits corresponds

to all unstable single liquid phase states at that temperature. This means that, at T ∗
2 ,

the thermodynamic derivative
(

∂µ1

∂z1

)
T ∗,P ∗

has two roots, both of which must lie on the

liquid branch. When there is a single stable liquid phase, for example at temperature T ∗
1

on figure 10, there are no limits of material stability and the thermodynamic derivative(
∂µ1

∂z1

)
T ∗,P ∗

is positive for all compositions. Plots of the chemical potential and its partial
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Figure 10: A constant pressure T ∗ − z1 phase diagram showing the envelope of a liquid-liquid

region (continuous curve) and the locus of the points of material stability (dashed curve).

derivative with respect to composition for these two temperatures are shown schematically

in figure 11. When there is liquid-liquid separation, the chemical potential always exhibits

a maximum and a minimum point at the limits of material stability (points A and B on

figure 11).

On a liquid branch, only liquid-liquid separation may be detected, in which case the

thermodynamic derivative
(

∂µ1

∂z1

)
T ∗,P ∗

has at least two roots. On the single density branch

of pattern g, both vapor-liquid and liquid-liquid separation may occur, in which case there

are up to four roots. Some examples that illustrate the range of behavior of
(

∂µ1

∂z1

)
T ∗,P ∗

when there is material instability are shown in figure 12. These cases can be described as

follows:

• In figure 12a we show an example of the variation of
(

∂µ1

∂z1

)
T ∗,P ∗

for liquid-liquid

separation when the liquid branch extends over the whole composition space (pat-

terns a, c and e) and there exist only two roots which correspond to the limits of

material stability. This is observed, for instance, in isotherm T ∗
2 in figure 10.

• Figure 12b corresponds to liquid-liquid separation when the liquid branch extends

over part of the composition space only (patterns b and d). This may cause the

appearance of a third root close to the value of z1 at which the liquid branch termi-

nates (zL
1,up). The occurrence of this third root can be explained by examining the
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c) are the limits of material stability.
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as a function of z1 when there is liquid-

liquid separation: a) in patterns a, c, e; b) in patterns b, d; c) in pattern g with vapor-liquid

separation; and d) in pattern g without vapor-liquid separation.
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following expression for the partial derivative
(

∂µ1

∂z1

)
T ∗,P ∗

(
∂µ1

∂z1

)

T ∗,P ∗
=

(
∂µ1

∂z1

)

T ∗,η
+

(
∂µ1

∂η

)

T ∗,z1

×
(

∂η

∂z1

)

T ∗,P ∗
. (19)

As z1 approaches zL
1,up from below in patterns b and d, the partial derivative(

∂η
∂z1

)
T ∗,P ∗

tends to −∞, as can be seen in Figure 9. If
(

∂µ1

∂η

)
T ∗,z1

is positive,

the right-hand side of equation (19) also tends to −∞, resulting in the appearance

of a root near zL
1,up. This root is often present on the liquid branch of patterns b

or d. Thus, these branches have up to three roots, and liquid-liquid separation can

only occur when there are two or three roots. The derivative
(

∂µ1

∂z1

)
T ∗,P ∗

is closely

related to the determinant of the Hessian matrix of the Gibbs free energy: based

on equation (18), when taken at constant temperature and pressure, the first-order

derivative of µ1 with respect to z1 and the second-order derivative of G with respect

to z1 have the same sign. Consequently, this additional root implies the existence

of regions where the Hessian matrix of the phase equilibrium problem is negative

definite, which causes numerical problems for many algorithms.

• In figure 12c we show an example of the case of liquid-liquid and vapor-liquid sep-

aration due to material stability at a fixed temperature and pressure. It can be

observed at elevated pressures, just below a vapor-liquid critical point (pattern g).

There are four roots which correspond to the limits of material stability for the two

phase separations.

• Figure 12d corresponds also to pattern g when only liquid-liquid separation occurs

and hence only two roots exist. This behavior is usually seen when liquid-liquid

separation occurs above a vapor-liquid critical point.

Thus, the identification of all the roots of
(

∂µ1

∂z1

)
T ∗,P ∗

can be used to determine whether

the system exhibits material instability and hence phase separation. A related algorithm

which makes use of the limits of material stability and the method of alternating tangents

in determination of LLE in polymer mixtures has been presented recently [54].

Because the number of roots is not known a priori, global search algorithms (see

for example [26, 55]) must be employed in order to guarantee a reliable investigation of

phase separation due to material stability. The computational cost of such methods can

be high and increases quickly in the case when there are no roots at all. Due to the low

dimensionality of the problem in the case of binary mixtures, an alternative approach is to
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Figure 13: The liquid branch corresponding to figure 12a. The continuous curves delimit

the regions of phase stability/metastability. The dashed curve denotes the region of material

instability. The bounds on density and composition determined in the first two steps of the

algorithm are shown. The boxes delimit the search regions to be used in subsequent steps of the

algorithm.

use a path continuation method with adjustable step length, which can offer a good trade-

off between efficiency and reliability [56, 57, 58]. For the specific case of the augmented

van der Waals equation of state when applied to non-azeotropic mixtures, experience has

shown that local search algorithms can be used reliably. In particular, a first-order liquid-

liquid separation test is developed for the simplest case of patterns a, c and e (figure 12a),

and a second-order test is proposed for the more complicated case of patterns b and d

(figure 12b). These tests are presented as supplementary material and in [43].

If limits of material stability are found in patterns a to e, the low-composition limit is

denoted by (z−1,matLL, η−matLL) and the high-composition limit is denoted by (z+
1,matLL, η+

matLL),

where z−1,matLL < z+
1,matLL. The limits of material stability give bounds on the density and

composition of each of the liquid phases, as illustrated in figures 13 and 14. A liquid

branch in patterns a, c and e is depicted in figure 13. The composition of liquid phase 1 is

between 0 and z−1,matLL and its density is between η−matLL and ηL(z1 = 0), where ηL(z1 = 0)

is the liquid branch density at z1 = 0 as calculated in step IIa, i.e., ηL(z1 = 0) = ηL
lo or

ηL
up. Similarly, the composition of liquid phase 2 is between z+

1,matLL and 1, and its density

between ηL(z1 = 1) and η+
matLL, where ηL(z1 = 1) is the liquid branch density at z1 = 1

(ηL(z1 = 1) = ηL
lo or ηL

up). Liquid and vapor branches typical of patterns b and d are

depicted in figure 14. For patterns b and d, the additional (third) root of
(

∂µ1

∂z1

)
T ∗,P ∗
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1, ,matLL matLLz η− − 1, ,matLL matLLz η+ +

Figure 14: A pattern of type d with liquid-liquid separation, corresponding to figure 12b.

The continuous curves denote regions of phase stability/metastability on the liquid and vapor

branches. The dashed curves denote the region of material or mechanical instability. The bounds

on density and composition determined in the first two steps of the algorithm are shown. The

area around the vapor branch is shown as an inset. The boxes delimit the search regions to be

used in subsequent steps of the algorithm.

is denoted by (zL
1,add, η

L
add). The composition of liquid phase 1 is between 0 and z−1,matLL

and its density is between η−matLL and ηL(z1 = 0), where ηL(z1 = 0) is the liquid branch

density at z1 = 0, i.e., ηL(z1 = 0) = ηL
lo or ηL

up. The composition of liquid phase 2 is

between z+
1,matLL and zL

1,add, and its density between ηL
add and η+

matLL. In the occurrence

of patterns a and d, a root similar to (zL
1,add, η

L
add) is expected to appear in the derivative(

∂µ1

∂z1

)
T ∗,P ∗

on the vapor density branch. This root is denoted by (zV
1,add, η

V
add), as shown

in the inset of figure 14.

In pattern g, if two limits of material stability are found, the low-composition limit

is denoted by (z−1,matLL, η−matLL), and the high-composition limit by (z+
1,matLL, η+

matLL). In

this case, it is not possible to tell whether limits of material stability correspond to liquid-

liquid or liquid-vapor separation; the subscript ‘LL’ is used for convenience. If four limits

are found, they are denoted by (z−1,matLL, η−matLL), (z+
1,matLL, η+

matLL), (z−1,matLV , η−matLV ),

(z+
1,matLV , η+

matLV ), in order of increasing mole fraction of component 1. Once again, these

limits are physical bounds on the liquid phase and vapor phase compositions and densities.

The material stability tests performed in step IIc of the algorithm are summarized in

table 7.
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Table 7: Step IIc of the algorithm - material stability test

1. Find all roots of
(

∂µ1

∂z1

)
T ∗,P ∗

.

2. If pattern a, c or e,

• If there is no root, there is a single liquid phase.

• Else, there is liquid-liquid separation. The limits of material stability

(z−1,matLL, η−matLL) and (z+
1,matLL, η+

matLL) give bounds on the two liquid phases.

3. If pattern b or d,

• If there is one root, there is a single liquid phase.

• Else, there may be liquid-liquid separation. The limits of material sta-

bility (z−1,matLL2, η
−
matLL2) and (z+

1,matLL2, η
+
matLL2) and the additional root

(zL
1,add, η

L
add) give bounds on the two liquid phases.

4. If pattern a or c, calculate root (zL
1,add, η

L
add) on the vapor branch

5. If pattern g,

• If there is no root, there is no phase separation.

• Else if there are two roots, there is one phase separation (vapor-liquid

or liquid-liquid). The limits of material stability, (z−1,matLL, η−matLL) and

(z+
1,matLL, η+

matLL) give bounds on the two phases.

• Else if there are four roots, there are is vapor-liquid separation and there may

be liquid-liquid separation. The limits of material stability (z−1,matLL, η−matLL),

(z+
1,matLL, η+

matLL), (z−1,matLV , η−matLV ) and (z+
1,matLV , η+

matLV ) give bounds on

the two liquid phases and the vapor phase.

5.5 Summary of step II

In step II of the algorithm both the temperature and the pressure are fixed. Based on

the output information available from step I, the density-composition pattern is identified

and analyzed in terms of mechanical and material stability. At the end of step II, the

following information is available

1. the number and type of all materially stable or metastable phases that exist at

the specified temperature and pressure. Each phase corresponds to a distinct, con-
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tinuous and differentiable segment on the density-composition pattern where: (i)

the conditions of mechanical stability and material stability or metastability are

satisfied and (ii) there is a one-to-one mapping between density and composition;

2. the search area for each existing phase in the density-composition space (figures 13

and 14). Here, the search area of each phase is defined as a bounding box, en-

closing exactly the segment mapping for that phase on the density-composition

pattern. Hence, the search areas of all existing phases are also distinct on the

density-composition pattern and can never overlap. All possible cases are summa-

rized in table 1 of the supplementary material and in [43]. These search areas are

used in step III of the algorithm, where a series of two-phase equilibrium problems

are solved in order to reach the final stable solution; the coexistence compositions,

densities, and amounts of each phase (phase fractions) are obtained.

6 Step III: Phase equilibrium calculations

6.1 The restricted necessary conditions for equilibrium

In the third step of the algorithm, given all the stable and metastable phases and their

search areas: all the stable multi-phase regions are found at the specified temperature and

pressure (step IIIa) and the stable state is identified at the specified temperature, pressure

and total composition (step IIIb). If, at the stable state, more than one equilibrium phase

exist, the corresponding phase fractions are calculated.

The solution of the two-phase equilibrium problems between the phases identified in

step IIIa is of key importance. In the context of this algorithm the restricted necessary

conditions for equilibrium at the specified temperature and pressure are introduced and

used. The mathematical formulation of the restricted necessary conditions for equilibrium
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is as follows:

P ∗,α (Tspec, η
α, xα

1 )− Pspec = 0

P ∗,β
(
Tspec, η

β, xβ
1

)
− Pspec = 0

µα
1 (Tspec, η

α, xα
1 )− µβ

1

(
Tspec, η

β, xβ
1

)
= 0

µα
2 (Tspec, η

α, xα
1 )− µβ

2

(
Tspec, η

β, xβ
1

)
= 0

zα
1,lo < xα

1 < zα
1,up

ηα
lo < ηα < ηα

up

zβ
1,lo < xβ

1 < zβ
1,up

ηβ
lo < ηβ < ηβ

up. (20)

where α and β are used to denote the two phases under consideration. This formulation

is based on the necessary conditions for equilibrium (problem (2)), where the material

balance has been removed and where the densities and the compositions are restricted to

the search areas identified in step II and summarized in table ??. A detailed analysis of

the numerical and convergence properties of problem (20) is presented in [43]. There are

two possible cases.

In the first case, both phases α and β belong to the same branch on the density-

composition pattern. This happens when liquid-liquid equilibrium (patterns a(LL), b(LL),

c(LL), d(LL), e(LL), g(LL) and g(LLV)) or vapor-liquid equilibrium close to a critical

point (patterns g(LV) and g(LLV)) is considered. It can be shown [43] that when the

restricted necessary conditions for equilibrium have a solution, it is unique. Furthermore,

the necessary and sufficient conditions for a solution to exist have been derived [43] and

can be implemented for use within the algorithm. Finally, the solution, if it exists, can

thus be found from any starting point within the search area by applying a Newton

algorithm.

In the second case, the two phases belong to different density branches. This happens

when vapor-liquid equilibrium is considered (patterns a, b, c, and d). As in the first case,

when the restricted necessary conditions for equilibrium have a solution, it is unique [43].

The existence of a solution can be readily ascertained [43]. Since in the context of this

algorithm component 1 is the most volatile, and azeotropic mixtures are not considered,

it can be shown that, at the solution, the composition of component 1 in the vapor phase,

x∗,V1 , is always greater than the composition of the same component in the liquid phase,
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x∗,L1 . When a solution exists, it can be found from any starting point at which xV
1 > xL

1

by applying a Newton algorithm.

6.2 Step IIIa: Calculation of all stable multiple phase states at

the specified temperature and pressure

In step IIIa the temperature and pressure are fixed to the specified values and the re-

stricted necessary conditions for equilibrium (20) are solved between all pairs made from

the phases identified in step II. It is well-known that with equations of state of the type

considered here, there can only be up to three fluid phases in coexistence in a binary

mixture. In the case of a non-azeotropic mixture a maximum of three phases can be

identified in step II: liquid phase L1 which is either the default liquid phase or the liquid

phase at lower composition of component 1 when liquid-liquid separation occurs; liquid

phase L2 which corresponds to the liquid phase at higher composition of component 1

when liquid-liquid separation occurs; and the vapor phase V ; so that a maximum of three

pairs of phases have to be studied: L1L2, L1V and L2V .

For a given pair of phases (α, β) ∈ {L1, L2, V }2, α 6= β, the existence of a unique solu-

tion of the restricted necessary conditions for equilibrium (20) is first tested as described

in [43]. If that solution exists, problem (20) is solved to find the equilibrium compositions

(x∗,α1,αβ and x∗,β1,αβ) and densities (η∗,ααβ and η∗,βαβ ) of the two phases. This procedure is re-

peated for all pairs of phases. As a result all the stable and metastable two-phase regions

at the specified temperature and pressure are obtained.

Comparisons between the calculated equilibrium compositions are performed next to

identify and discard any metastable two-phase regions and to locate three-phase lines.

The following criteria are used:

1. if there exists a single two-phase region, it is always stable,

2. if only L1L2 and L2V exist, then they are both stable,

3. if only L1L2 and L1V exist, then L1V is stable and L1L2 is metastable,

4. if only L2V and L1V exist, then L1V is stable and L2V is metastable,

5. if there exist three two-phase regions, namely L1L2, L1V and L2V, then:

(a) if x∗,L2
1,L1L2 < x∗,L2

1,L2V , then the L1L2 and L2V regions are stable and the L1V

region is metastable,
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(b) if x∗,L2
1,L1L2 = x∗,L2

1,L2V , then there is three-phase equilibrium L1L2V,

(c) if x∗,L2
1,L1L2 > x∗,L2

1,L2V , then the L1V region is stable and the L1L2 and L2V regions

are metastable.

The above criteria are derived based on inspection of all possible types of phase diagrams

that may occur in binary mixtures of molecules with asymmetrical interactions [49]. A

more systematic way to draw the above conclusions would be the following:

1. identify all the two-phase regions which intersect in terms of their composition range.

For instance in case 5(c) above, the regions of L1L2, L1V and L2V will intersect;

2. find the composition interval I over which the two-phase regions identified intersect.

In case 5(c): I = [x∗,L2
1,L2V , x∗,L2

1,L1L2];

3. choose any total composition z ∈ I and calculate the total Gibbs free energy for

each two-phase state identified. The state with the minimum total Gibbs free energy

will be the stable one.

It should be noted, however, that the latter procedure is computationally slower.

At the end of step IIIa, all stable two- or three-phase regions are identified at the

specified temperature and pressure. When the algorithm is used for the construction of

phase diagrams, calculations terminate at this stage for the particular temperature and

pressure. When a single flash calculation is performed the algorithm proceeds to step IIIb

where the specified total composition of the mixture is fixed.

6.3 Step IIIb: calculation of the stable state at the specified

temperature, pressure and total composition

In step IIIb, the total composition of interest, zi, i = 1, 2, is compared with the equilibrium

compositions of the stable two-phase and three-phase regions identified in step IIIa. If

it lies outside multiple phase regions, the mixture is in a stable one-phase state, with

composition equal to the total composition. If it lies within any of the multiple phase

regions identified, then the mixture separates into the corresponding number of phases.

The equilibrium compositions and densities will be as calculated in step IIIa. Furthermore,

the phase fractions, wk, are calculated by solving a linear system of equations, which for
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a two-phase state can be expressed as

2∑

k=1

wkx
∗,k
i,αβ = zi, for i = 1, 2. (21)

7 Conclusions

A framework for phase equilibrium calculations using equations of state of general form

has been presented. The basic principles of the framework have been discussed in detail

through an application to binary non-azeotropic mixtures described by the augmented

van der Waals equation of state. The overall problem is decomposed into sub-problems,

each with useful mathematical and numerical properties, which can reliably and efficiently

be solved to reach the final solution.

In step I, the temperature is fixed and the pressure-density-composition surface is

studied. It was shown that, under the assumptions made for the augmented van der

Waals equation of state, the surface can be one of four types. To identify the correct

type and determine the keys points on the surface, a series of one- and two-dimensional

problems is solved. Because each problem has a unique solution, local solvers can be used

for efficiency.

In step II, the information from step I is used to identify the relevant density-composition

pattern at the pressure (and temperature) of interest. Only seven types of pattern are

found, each representing a combination of phases. A series of tests has been proposed

to determine the stability or metastability of each phase. Through the use of judicious

initial guesses and bounds, the tests for mechanical stability can be performed reliably.

Tests are also developed for material stability. Heuristics are proposed for their solution,

but deterministic techniques with guaranteed solutions can also be used if desired.

Finally, in the third step, information about the composition ranges of the phases

identified in step II is used to formulate a set of restricted phase equilibrium problems.

These have unique solutions and are solved with a standard local solver.

Thus, the application of the proposed framework to the augmented van der Waals

equation of state has led to an algorithm that can identify the stable solution, and much

additional information on stability, through the solution of a sequence of simple problems.

We feel that the methodology presented in this work will provide an invaluable platform

for the robust determination of the phase equilibria in more complex multicomponent

fluid mixtures. The effectiveness of this approach is highlighted in detail in part II of this
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paper through the construction of binary phase diagrams.
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